max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
generator/modules/__module__.py
vv111y/deepo
6,560
12674065
# -*- coding: utf-8 -*- def parametrized(dec): def layer(*args, **kwargs): def repl(f): return dec(f, *args, **kwargs) return repl return layer @parametrized def dependency(module, *_deps): module.deps = _deps return module @parametrized def source(module, _source): module.source = _source return module @parametrized def version(module, _ver): module.version = _ver return module @dependency() @source('unknown') @version('latest') class Module(object): def __init__(self, composer): self.composer = composer def __repr__(self): return '%-13s %-6s (%s)' % ( self.name(), self.version, self.source) def build(self): pass def expose(self): return [] def name(self): return self.__class__.__name__.lower()
Validation/HGCalValidation/python/HGVHistoProducerAlgoBlock_cfi.py
Purva-Chaudhari/cmssw
852
12674073
<filename>Validation/HGCalValidation/python/HGVHistoProducerAlgoBlock_cfi.py import FWCore.ParameterSet.Config as cms HGVHistoProducerAlgoBlock = cms.PSet( minEta = cms.double(-4.5), maxEta = cms.double(4.5), nintEta = cms.int32(100), useFabsEta = cms.bool(False), #parameters for energy minEne = cms.double(0.), maxEne = cms.double(500.), nintEne = cms.int32(250), #parameters for pt minPt = cms.double(0.), maxPt = cms.double(100.), nintPt = cms.int32(100), #parameters for phi minPhi = cms.double(-3.2), maxPhi = cms.double(3.2), nintPhi = cms.int32(80), #parameters for counting mixed hits clusters minMixedHitsSimCluster = cms.double(0.), maxMixedHitsSimCluster = cms.double(800.), nintMixedHitsSimCluster = cms.int32(100), #parameters for counting mixed hits clusters minMixedHitsCluster = cms.double(0.), maxMixedHitsCluster = cms.double(800.), nintMixedHitsCluster = cms.int32(100), #parameters for the total amount of energy clustered by all layer clusters (fraction over caloparticles) minEneCl = cms.double(0.), maxEneCl = cms.double(110.), nintEneCl = cms.int32(110), #parameters for the longitudinal depth barycenter minLongDepBary = cms.double(0.), maxLongDepBary = cms.double(110.), nintLongDepBary = cms.int32(110), #z position of vertex minZpos = cms.double(-550.), maxZpos = cms.double(550.), nintZpos = cms.int32(1100), #Parameters for the total number of simclusters per layer minTotNsimClsperlay = cms.double(0.), maxTotNsimClsperlay = cms.double(50.), nintTotNsimClsperlay = cms.int32(50), #Parameters for the total number of layer clusters per layer minTotNClsperlay = cms.double(0.), maxTotNClsperlay = cms.double(50.), nintTotNClsperlay = cms.int32(50), #Parameters for the energy clustered by layer clusters per layer (fraction) minEneClperlay = cms.double(0.), maxEneClperlay = cms.double(110.), nintEneClperlay = cms.int32(110), #Parameters for the score both for: #1. calo particle to layer clusters association per layer #2. layer cluster to calo particles association per layer minScore = cms.double(0.), maxScore = cms.double(1.02), nintScore = cms.int32(51), #Parameters for shared energy fraction. That is: #1. Fraction of each of the layer clusters energy related to a # calo particle over that calo particle's energy. #2. Fraction of each of the calo particles energy # related to a layer cluster over that layer cluster's energy. minSharedEneFrac = cms.double(0.), maxSharedEneFrac = cms.double(1.), nintSharedEneFrac = cms.int32(100), minTSTSharedEneFracEfficiency = cms.double(0.5), #Same as above for tracksters minTSTSharedEneFrac = cms.double(0.), maxTSTSharedEneFrac = cms.double(1.0), nintTSTSharedEneFrac = cms.int32(100), #Parameters for the total number of simclusters per thickness minTotNsimClsperthick = cms.double(0.), maxTotNsimClsperthick = cms.double(800.), nintTotNsimClsperthick = cms.int32(100), #Parameters for the total number of layer clusters per thickness minTotNClsperthick = cms.double(0.), maxTotNClsperthick = cms.double(800.), nintTotNClsperthick = cms.int32(100), #Parameters for the total number of cells per per thickness per layer minTotNcellsperthickperlayer = cms.double(0.), maxTotNcellsperthickperlayer = cms.double(500.), nintTotNcellsperthickperlayer = cms.int32(100), #Parameters for the distance of cluster cells to seed cell per thickness per layer minDisToSeedperthickperlayer = cms.double(0.), maxDisToSeedperthickperlayer = cms.double(300.), nintDisToSeedperthickperlayer = cms.int32(100), #Parameters for the energy weighted distance of cluster cells to seed cell per thickness per layer minDisToSeedperthickperlayerenewei = cms.double(0.), maxDisToSeedperthickperlayerenewei = cms.double(10.), nintDisToSeedperthickperlayerenewei = cms.int32(50), #Parameters for the distance of cluster cells to max cell per thickness per layer minDisToMaxperthickperlayer = cms.double(0.), maxDisToMaxperthickperlayer = cms.double(300.), nintDisToMaxperthickperlayer = cms.int32(100), #Parameters for the energy weighted distance of cluster cells to max cell per thickness per layer minDisToMaxperthickperlayerenewei = cms.double(0.), maxDisToMaxperthickperlayerenewei = cms.double(50.), nintDisToMaxperthickperlayerenewei = cms.int32(50), #Parameters for the distance of cluster cells to max cell per thickness per layer minDisSeedToMaxperthickperlayer = cms.double(0.), maxDisSeedToMaxperthickperlayer = cms.double(300.), nintDisSeedToMaxperthickperlayer = cms.int32(100), #Parameters for the energy of a cluster per thickness per layer minClEneperthickperlayer = cms.double(0.), maxClEneperthickperlayer = cms.double(10.), nintClEneperthickperlayer = cms.int32(100), #Parameters for the energy density of cluster cells per thickness minCellsEneDensperthick = cms.double(0.), maxCellsEneDensperthick = cms.double(100.), nintCellsEneDensperthick = cms.int32(200), #Parameters for the total number of tracksters per event #We always treet one event as two events, one in +z one in -z minTotNTSTs = cms.double(0.), maxTotNTSTs = cms.double(50.), nintTotNTSTs = cms.int32(50), #Parameters for the total number of layer clusters in trackster minTotNClsinTSTs = cms.double(0.), maxTotNClsinTSTs = cms.double(400.), nintTotNClsinTSTs = cms.int32(100), #Parameters for the total number of layer clusters in trackster per layer minTotNClsinTSTsperlayer = cms.double(0.), maxTotNClsinTSTsperlayer = cms.double(50.), nintTotNClsinTSTsperlayer = cms.int32(50), #Parameters for the multiplicity of layer clusters in trackster minMplofLCs = cms.double(0.), maxMplofLCs = cms.double(20.), nintMplofLCs = cms.int32(20), #Parameters for cluster size minSizeCLsinTSTs = cms.double(0.), maxSizeCLsinTSTs = cms.double(50.), nintSizeCLsinTSTs = cms.int32(50), #Parameters for the energy of a cluster per multiplicity minClEnepermultiplicity = cms.double(0.), maxClEnepermultiplicity = cms.double(10.), nintClEnepermultiplicity = cms.int32(10), #parameters for X minX = cms.double(-300.), maxX = cms.double(300.), nintX = cms.int32(100), #parameters for Y minY = cms.double(-300.), maxY = cms.double(300.), nintY = cms.int32(100), #parameters for Z minZ = cms.double(-550.), maxZ = cms.double(550.), nintZ = cms.int32(1100) )
alexa/listService/listService.py
eifinger/appdaemon-scripts
122
12674086
import appdaemon.plugins.hass.hassapi as hass # # Provide the list of HA entities for Alexa Apps # # # Args: # # switchable: dict of switchable entities # temperature: dict of temperature sensors # door: dict of reed sensors showing if the door is completely open # door_tilted: dict of reed sensors showing if a door is partially/leaning open # window: dict of reed sensors showing if a window is open # # # Release Notes # # Version 1.0: # Initial Version class ListService(hass.Hass): def initialize(self): return def getSwitchable(self): return self.args["switchable"] def getTemperature(self): return self.args["temperature"] def getDoor(self): return self.args["door"] def getWindow(self): return self.args["window"] def getDoorTilted(self): return self.args["door_tilted"]
src/rayoptics/elem/elements.py
diplodocuslongus/ray-optics
106
12674100
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright © 2018 <NAME> """ Module for element modeling .. Created on Sun Jan 28 16:27:01 2018 .. codeauthor: <NAME> """ from collections import namedtuple import itertools from packaging import version import numpy as np from anytree import Node import rayoptics import rayoptics.util.rgbtable as rgbt import rayoptics.oprops.thinlens as thinlens from rayoptics.elem import parttree from rayoptics.elem.profiles import Spherical, Conic from rayoptics.elem.surface import Surface from rayoptics.seq.gap import Gap from rayoptics.seq.medium import Glass, glass_decode import rayoptics.gui.appcmds as cmds from rayoptics.gui.actions import (Action, AttrAction, SagAction, BendAction, ReplaceGlassAction) import opticalglass.glassfactory as gfact import opticalglass.glasspolygons as gp GraphicsHandle = namedtuple('GraphicsHandle', ['polydata', 'tfrm', 'polytype', 'color'], defaults=(None,)) GraphicsHandle.polydata.__doc__ = "poly data in local coordinates" GraphicsHandle.tfrm.__doc__ = "global transformation for polydata" GraphicsHandle.polytype.__doc__ = "'polygon' (for filled) or 'polyline'" GraphicsHandle.color.__doc__ = "RGBA for the polydata or None for default" """ tuple grouping together graphics rendering data Attributes: polydata: poly data in local coordinates tfrm: global transformation for polydata polytype: 'polygon' (for filled) or 'polyline' """ # --- Factory functions def create_thinlens(power=0., indx=1.5, sd=None, **kwargs): tl = thinlens.ThinLens(power=power, ref_index=indx, max_ap=sd, **kwargs) tle = ThinElement(tl) tree = tle.tree() return [[tl, None, None, 1, +1]], [tle], tree def create_mirror(c=0.0, r=None, cc=0.0, ec=None, power=None, profile=None, sd=None, **kwargs): '''Create a sequence and element for a mirror. Args: c: vertex curvature r: vertex radius of curvature cc: conic constant ec: 1 + cc power: optical power of the mirror sd: semi-diameter profile: Spherical or Conic type, or a profile instance ''' delta_n = kwargs['delta_n'] if 'delta_n' in kwargs else -2 if power: cv = power/delta_n elif r: cv = 1.0/r else: cv = c if ec: k = ec - 1.0 else: k = cc if profile is Spherical: prf = Spherical(c=cv) elif profile is Conic: prf = Conic(c=cv, cc=k) elif profile is not None: prf = profile else: if k == 0.0: prf = Spherical(c=cv) else: prf = Conic(c=cv, cc=k) m = Surface(profile=prf, interact_mode='reflect', max_ap=sd, delta_n=delta_n, **kwargs) ele_kwargs = {'label': kwargs['label']} if 'label' in kwargs else {} me = Mirror(m, sd=sd, **ele_kwargs) tree = me.tree() return [[m, None, None, 1, -1]], [me], tree def lens_from_power(power=0., bending=0., th=None, sd=1., med=None, nom_wvl='d'): if med is None: med = Glass() rndx = med.rindex(nom_wvl) if th is None: th = sd/5 if bending == -1: cv2 = -power/(rndx - 1) cv1 = 0 else: B = (bending - 1)/(bending + 1) a = (rndx - 1)*(th/rndx)*B b = 1 - B c = -power/(rndx - 1) cv1 = (-b + np.sqrt(b**2 - 4*a*c))/(2*a) cv2 = cv1*B return cv1, cv2, th, rndx, sd def create_lens(power=0., bending=0., th=None, sd=1., med=None, **kwargs): if med is None: med = Glass() lens = lens_from_power(power=power, bending=bending, th=th, sd=sd, med=med) cv1, cv2, th, rndx, sd = lens s1 = Surface(profile=Spherical(c=cv1), max_ap=sd, delta_n=(rndx - 1)) s2 = Surface(profile=Spherical(c=cv2), max_ap=sd, delta_n=(1 - rndx)) g = Gap(t=th, med=med) le = Element(s1, s2, g, sd=sd) tree = le.tree() return [[s1, g, None, rndx, 1], [s2, None, None, 1, 1]], [le], tree def achromat(power, Va, Vb): """Compute lens powers for a thin doublet achromat, given their V-numbers.""" power_a = (Va/(Va - Vb))*power power_b = (Vb/(Vb - Va))*power return power_a, power_b def create_cemented_doublet(power=0., bending=0., th=None, sd=1., glasses=('N-BK7,Schott', 'N-F2,Schott'), **kwargs): from opticalglass.spectral_lines import get_wavelength from opticalglass import glass wvls = np.array([get_wavelength(w) for w in ['d', 'F', 'C']]) gla_a = gfact.create_glass(glasses[0]) rndx_a = gla_a.calc_rindex(wvls) Va, PcDa = glass.calc_glass_constants(*rndx_a) gla_b = gfact.create_glass(glasses[1]) rndx_b = gla_b.calc_rindex(wvls) Vb, PcDb = glass.calc_glass_constants(*rndx_b) power_a, power_b = achromat(power, Va, Vb) if th is None: th = sd/4 t1 = 3*th/4 t2 = th/4 if power_a < 0: t1, t2 = t2, t1 lens_a = lens_from_power(power=power_a, bending=bending, th=t1, sd=sd, med=gla_a) cv1, cv2, t1, indx_a, sd = lens_a # cv1 = power_a/(rndx_a[0] - 1) # delta_cv = -cv1/2 # cv1 += delta_cv # cv2 = delta_cv # cv3 = power_b/(1 - rndx_b[0]) + delta_cv indx_b = rndx_b[0] cv3 = (power_b/(indx_b-1) - cv2)/((t2*cv2*(indx_b-1)/indx_b) - 1) s1 = Surface(profile=Spherical(c=cv1), max_ap=sd, delta_n=(rndx_a[0] - 1)) s2 = Surface(profile=Spherical(c=cv2), max_ap=sd, delta_n=(rndx_b[0] - rndx_a[0])) s3 = Surface(profile=Spherical(c=cv3), max_ap=sd, delta_n=(1 - rndx_b[0])) g1 = Gap(t=t1, med=gla_a) g2 = Gap(t=t2, med=gla_b) g_tfrm = np.identity(3), np.array([0., 0., 0.]) ifc_list = [] ifc_list.append([0, s1, g1, 1, g_tfrm]) ifc_list.append([1, s2, g2, 1, g_tfrm]) ifc_list.append([2, s3, None, 1, g_tfrm]) ce = CementedElement(ifc_list) tree = ce.tree() return [[s1, g1, None, rndx_a, 1], [s2, g2, None, rndx_b, 1], [s3, None, None, 1, 1]], [ce], tree def create_dummy_plane(sd=1., **kwargs): s = Surface(**kwargs) se = DummyInterface(s, sd=sd) tree = se.tree() return [[s, None, None, 1, +1]], [se], tree def create_air_gap(t=0., **kwargs): g = Gap(t=t) ag = AirGap(g, **kwargs) tree = ag.tree() return g, ag, tree def create_from_file(filename, **kwargs): opm = cmds.open_model(filename) sm = opm['seq_model'] osp = opm['optical_spec'] em = opm['ele_model'] pt = opm['part_tree'] if len(pt.nodes_with_tag(tag='#element')) == 0: parttree.elements_from_sequence(em, sm, pt) if 'power' in kwargs: desired_power = kwargs['power'] cur_power = osp.parax_data.fod.power # scale_factor is linear, power is 1/linear # so use reciprocal of power to compute scale_factor scale_factor = cur_power/desired_power sm.apply_scale_factor(scale_factor) seq = [list(node) for node in sm.path(start=1, stop=-1)] seq[-1][2] = None sys_nodes = pt.nodes_with_tag(tag='#element#airgap', not_tag='#object#image') eles = [node.id for node in sys_nodes] root = Node('file', id=None, tag='#group', children=sys_nodes) return seq, eles, root def calc_render_color_for_material(matl): """ get element color based on V-number of glass""" try: gc = float(matl.glass_code()) except AttributeError: return (255, 255, 255, 64) # white else: # set element color based on V-number indx, vnbr = glass_decode(gc) dsg, rgb = gp.find_glass_designation(indx, vnbr) if rgb is None: return [228, 237, 243, 64] # ED designation # rgb = Element.clut.get_color(vnbr) return rgb # --- Element definitions class Element(): """Lens element domain model. Manage rendering and selection/editing. An Element consists of 2 Surfaces, 1 Gap, and edge_extent information. Attributes: parent: the :class:`ElementModel` label: string identifier s1: first/origin :class:`~rayoptics.seq.interface.Interface` s2: second/last :class:`~rayoptics.seq.interface.Interface` gap: element thickness and material :class:`~rayoptics.seq.gap.Gap` tfrm: global transform to element origin, (Rot3, trans3) medium_name: the material filling the gap flat1, flat2: semi-diameter of flat or None. Setting to None will result in re-evaluation of flat ID do_flat1, do_flat2: 'if concave', 'always', 'never', 'if convex' handles: dict of graphical entities actions: dict of actions associated with the graphical handles """ clut = rgbt.RGBTable(filename='red_blue64.csv', data_range=[10.0, 100.]) label_format = 'E{}' serial_number = 0 def __init__(self, s1, s2, g, tfrm=None, idx=0, idx2=1, sd=1., label=None): if label is None: Element.serial_number += 1 self.label = Element.label_format.format(Element.serial_number) else: self.label = label if tfrm is not None: self.tfrm = tfrm else: self.tfrm = (np.identity(3), np.array([0., 0., 0.])) self.s1 = s1 self.s1_indx = idx self.s2 = s2 self.s2_indx = idx2 self.gap = g self.medium_name = self.gap.medium.name() self._sd = sd self.flat1 = None self.flat2 = None self.do_flat1 = 'if concave' # alternatives are 'never', 'always', self.do_flat2 = 'if concave' # or 'if convex' self.handles = {} self.actions = {} @property def sd(self): """Semi-diameter """ return self._sd @sd.setter def sd(self, semidiam): self._sd = semidiam self.edge_extent = (-semidiam, semidiam) def __json_encode__(self): attrs = dict(vars(self)) del attrs['parent'] del attrs['tfrm'] del attrs['s1'] del attrs['s2'] del attrs['gap'] del attrs['handles'] del attrs['actions'] return attrs def __str__(self): fmt = 'Element: {!r}, {!r}, t={:.4f}, sd={:.4f}, glass: {}' return fmt.format(self.s1.profile, self.s2.profile, self.gap.thi, self.sd, self.gap.medium.name()) def sync_to_restore(self, ele_model, surfs, gaps, tfrms): # when restoring, we want to use the stored indices to look up the # new object instances self.parent = ele_model self.tfrm = tfrms[self.s1_indx] self.s1 = surfs[self.s1_indx] self.gap = gaps[self.s1_indx] self.s2 = surfs[self.s2_indx] if not hasattr(self, 'medium_name'): self.medium_name = self.gap.medium.name() if not hasattr(self, 'do_flat1'): self.do_flat1 = 'if concave' if not hasattr(self, 'do_flat2'): self.do_flat2 = 'if concave' def sync_to_update(self, seq_model): # when updating, we want to use the stored object instances to get the # current indices into the interface list (e.g. to handle insertion and # deletion of interfaces) self.s1_indx = seq_model.ifcs.index(self.s1) self.s2_indx = seq_model.ifcs.index(self.s2) self.medium_name = self.gap.medium.name() def tree(self, **kwargs): """Build tree linking sequence to element model. """ default_tag = '#element#lens' tag = default_tag + kwargs.get('tag', '') zdir = kwargs.get('z_dir', 1) # Interface branch 1 e = Node('E', id=self, tag=tag) p1 = Node('p1', id=self.s1.profile, tag='#profile', parent=e) Node(f'i{self.s1_indx}', id=self.s1, tag='#ifc', parent=p1) # Gap branch t = Node('t', id=self.gap, tag='#thic', parent=e) Node(f'g{self.s1_indx}', id=(self.gap, zdir), tag='#gap', parent=t) # Interface branch 2 p2 = Node('p2', id=self.s2.profile, tag='#profile', parent=e) Node(f'i{self.s2_indx}', id=self.s2, tag='#ifc', parent=p2) return e def reference_interface(self): return self.s1 def reference_idx(self): return self.s1_indx def interface_list(self): return [self.s1, self.s2] def gap_list(self): return [self.gap] def get_bending(self): cv1 = self.s1.profile_cv cv2 = self.s2.profile_cv delta_cv = cv1 - cv2 bending = 0. if delta_cv != 0.0: bending = (cv1 + cv2)/delta_cv return bending def set_bending(self, bending): cv1 = self.s1.profile_cv cv2 = self.s2.profile_cv delta_cv = cv1 - cv2 cv2_new = 0.5*(bending - 1.)*delta_cv cv1_new = bending*delta_cv - cv2_new self.s1.profile_cv = cv1_new self.s2.profile_cv = cv2_new def update_size(self): extents = np.union1d(self.s1.get_y_aperture_extent(), self.s2.get_y_aperture_extent()) self.edge_extent = (extents[0], extents[-1]) self.sd = max(self.s1.surface_od(), self.s2.surface_od()) return self.sd def compute_flat(self, s): ca = s.surface_od() if (1.0 - ca/self.sd) >= 0.05: flat = ca else: flat = None return flat def extent(self): if hasattr(self, 'edge_extent'): return self.edge_extent else: return (-self.sd, self.sd) def render_shape(self): def use_flat(do_flat, is_concave): if do_flat == 'always': return True elif do_flat == 'is concave' and is_concave: return True elif do_flat == 'is convex' and not is_concave: return True return False is_concave_s1 = self.s1.profile_cv < 0.0 is_concave_s2 = self.s2.profile_cv > 0.0 if use_flat(self.do_flat1, is_concave_s1): if self.flat1 is None: flat1 = self.flat1 = self.compute_flat(self.s1) else: flat1 = self.flat1 else: flat1 = None poly = self.s1.full_profile(self.extent(), flat1) if use_flat(self.do_flat2, is_concave_s2): if self.flat2 is None: flat2 = self.flat2 = self.compute_flat(self.s2) else: flat2 = self.flat2 else: flat2 = None poly2 = self.s2.full_profile(self.extent(), flat2, -1) for p in poly2: p[0] += self.gap.thi poly += poly2 poly.append(poly[0]) return poly def render_handles(self, opt_model): self.handles = {} ifcs_gbl_tfrms = opt_model.seq_model.gbl_tfrms shape = self.render_shape() color = calc_render_color_for_material(self.gap.medium) self.handles['shape'] = GraphicsHandle(shape, self.tfrm, 'polygon', color) extent = self.extent() if self.flat1 is not None: extent_s1 = self.flat1, else: extent_s1 = extent poly_s1 = self.s1.full_profile(extent_s1, None) gh1 = GraphicsHandle(poly_s1, ifcs_gbl_tfrms[self.s1_indx], 'polyline') self.handles['s1_profile'] = gh1 if self.flat2 is not None: extent_s2 = self.flat2, else: extent_s2 = extent poly_s2 = self.s2.full_profile(extent_s2, None, -1) gh2 = GraphicsHandle(poly_s2, ifcs_gbl_tfrms[self.s2_indx], 'polyline') self.handles['s2_profile'] = gh2 poly_sd_upr = [] poly_sd_upr.append([poly_s1[-1][0], extent[1]]) poly_sd_upr.append([poly_s2[0][0]+self.gap.thi, extent[1]]) self.handles['sd_upr'] = GraphicsHandle(poly_sd_upr, self.tfrm, 'polyline') poly_sd_lwr = [] poly_sd_lwr.append([poly_s2[-1][0]+self.gap.thi, extent[0]]) poly_sd_lwr.append([poly_s1[0][0], extent[0]]) self.handles['sd_lwr'] = GraphicsHandle(poly_sd_lwr, self.tfrm, 'polyline') poly_ct = [] poly_ct.append([0., 0.]) poly_ct.append([self.gap.thi, 0.]) self.handles['ct'] = GraphicsHandle(poly_ct, self.tfrm, 'polyline') return self.handles def handle_actions(self): self.actions = {} shape_actions = {} shape_actions['pt'] = BendAction(self) shape_actions['y'] = AttrAction(self, 'sd') shape_actions['glass'] = ReplaceGlassAction(self.gap) self.actions['shape'] = shape_actions s1_prof_actions = {} s1_prof_actions['pt'] = SagAction(self.s1) self.actions['s1_profile'] = s1_prof_actions s2_prof_actions = {} s2_prof_actions['pt'] = SagAction(self.s2) self.actions['s2_profile'] = s2_prof_actions sd_upr_action = {} sd_upr_action['y'] = AttrAction(self, 'sd') self.actions['sd_upr'] = sd_upr_action sd_lwr_action = {} sd_lwr_action['y'] = AttrAction(self, 'sd') self.actions['sd_lwr'] = sd_lwr_action ct_action = {} ct_action['x'] = AttrAction(self.gap, 'thi') self.actions['ct'] = ct_action return self.actions class Mirror(): label_format = 'M{}' serial_number = 0 def __init__(self, ifc, tfrm=None, idx=0, sd=1., thi=None, z_dir=1.0, label=None): if label is None: Mirror.serial_number += 1 self.label = Mirror.label_format.format(Mirror.serial_number) else: self.label = label self.render_color = (158, 158, 158, 64) if tfrm is not None: self.tfrm = tfrm else: self.tfrm = (np.identity(3), np.array([0., 0., 0.])) self.s = ifc self.s_indx = idx self.z_dir = z_dir self.sd = sd self.flat = None self.thi = thi self.medium_name = 'Mirror' self.handles = {} self.actions = {} def get_thi(self): thi = self.thi if self.thi is None: thi = 0.05*self.sd return thi def __json_encode__(self): attrs = dict(vars(self)) del attrs['parent'] del attrs['tfrm'] del attrs['s'] del attrs['handles'] del attrs['actions'] return attrs def __str__(self): thi = self.get_thi() fmt = 'Mirror: {!r}, t={:.4f}, sd={:.4f}' return fmt.format(self.s.profile, thi, self.sd) def sync_to_restore(self, ele_model, surfs, gaps, tfrms): self.parent = ele_model self.tfrm = tfrms[self.s_indx] self.s = surfs[self.s_indx] if not hasattr(self, 'medium_name'): self.medium_name = 'Mirror' def sync_to_update(self, seq_model): self.s_indx = seq_model.ifcs.index(self.s) def tree(self, **kwargs): default_tag = '#element#mirror' tag = default_tag + kwargs.get('tag', '') # Interface branch m = Node('M', id=self, tag=tag) p = Node('p', id=self.s.profile, tag='#profile', parent=m) Node(f'i{self.s_indx}', id=self.s, tag='#ifc', parent=p) # Gap branch = None return m def reference_interface(self): return self.s def reference_idx(self): return self.s_indx def interface_list(self): return [self.s] def gap_list(self): return [] def update_size(self): self.edge_extent = self.s.get_y_aperture_extent() self.sd = self.s.surface_od() return self.sd def extent(self): if hasattr(self, 'edge_extent'): return self.edge_extent else: self.edge_extent = self.s.get_y_aperture_extent() return self.edge_extent def substrate_offset(self): thi = self.get_thi() # We want to extend the mirror substrate along the same direction # of the incoming ray. The mirror's z_dir is following reflection so # flip the sign to get the preceding direction. offset = -self.z_dir*thi return offset def render_shape(self): poly = self.s.full_profile(self.extent(), self.flat) poly2 = self.s.full_profile(self.extent(), self.flat, -1) offset = self.substrate_offset() for p in poly2: p[0] += offset poly += poly2 poly.append(poly[0]) return poly def render_handles(self, opt_model): self.handles = {} ifcs_gbl_tfrms = opt_model.seq_model.gbl_tfrms self.handles['shape'] = GraphicsHandle(self.render_shape(), self.tfrm, 'polygon', self.render_color) poly = self.s.full_profile(self.extent(), None) self.handles['s_profile'] = GraphicsHandle(poly, ifcs_gbl_tfrms[self.s_indx], 'polyline') offset = self.substrate_offset() poly_sd_upr = [] poly_sd_upr.append(poly[-1]) poly_sd_upr.append([poly[-1][0]+offset, poly[-1][1]]) self.handles['sd_upr'] = GraphicsHandle(poly_sd_upr, self.tfrm, 'polyline') poly_sd_lwr = [] poly_sd_lwr.append(poly[0]) poly_sd_lwr.append([poly[0][0]+offset, poly[0][1]]) self.handles['sd_lwr'] = GraphicsHandle(poly_sd_lwr, self.tfrm, 'polyline') return self.handles def handle_actions(self): self.actions = {} shape_actions = {} shape_actions['pt'] = SagAction(self.s) self.actions['shape'] = shape_actions s_prof_actions = {} s_prof_actions['pt'] = SagAction(self.s) self.actions['s_profile'] = s_prof_actions sd_upr_action = {} sd_upr_action['y'] = AttrAction(self, 'edge_extent[1]') self.actions['sd_upr'] = sd_upr_action sd_lwr_action = {} sd_lwr_action['y'] = AttrAction(self, 'edge_extent[0]') self.actions['sd_lwr'] = sd_lwr_action return self.actions class CementedElement(): """Cemented element domain model. Manage rendering and selection/editing. A CementedElement consists of 3 or more Surfaces, 2 or more Gaps, and edge_extent information. Attributes: parent: the :class:`ElementModel` label: string identifier idxs: list of seq_model interface indices ifcs: list of :class:`~rayoptics.seq.interface.Interface` gaps: list of thickness and material :class:`~rayoptics.seq.gap.Gap` tfrm: global transform to element origin, (Rot3, trans3) medium_name: the material filling the gap flats: semi-diameter of flat if ifc is concave, or None handles: dict of graphical entities actions: dict of actions associated with the graphical handles """ clut = rgbt.RGBTable(filename='red_blue64.csv', data_range=[10.0, 100.]) label_format = 'CE{}' serial_number = 0 def __init__(self, ifc_list, label=None): if label is None: CementedElement.serial_number += 1 self.label = CementedElement.label_format.format( CementedElement.serial_number) else: self.label = label g_tfrm = ifc_list[0][4] if g_tfrm is not None: self.tfrm = g_tfrm else: self.tfrm = (np.identity(3), np.array([0., 0., 0.])) self.idxs = [] self.ifcs = [] self.gaps = [] self.medium_name = '' for interface in ifc_list: i, ifc, g, z_dir, g_tfrm = interface self.idxs.append(i) self.ifcs.append(ifc) if g is not None: self.gaps.append(g) if self.medium_name != '': self.medium_name += ', ' self.medium_name += g.medium.name() if len(self.gaps) == len(self.ifcs): self.gaps.pop() self.medium_name = self.medium_name.rpartition(',')[0] self._sd = self.update_size() self.flats = [None]*len(self.ifcs) self.handles = {} self.actions = {} @property def sd(self): """Semi-diameter """ return self._sd @sd.setter def sd(self, semidiam): self._sd = semidiam self.edge_extent = (-semidiam, semidiam) def __json_encode__(self): attrs = dict(vars(self)) del attrs['parent'] del attrs['tfrm'] del attrs['ifcs'] del attrs['gaps'] del attrs['flats'] del attrs['handles'] del attrs['actions'] return attrs def __str__(self): fmt = 'CementedElement: {}' return fmt.format(self.idxs) def sync_to_restore(self, ele_model, surfs, gaps, tfrms): # when restoring, we want to use the stored indices to look up the # new object instances self.parent = ele_model self.ifcs = [surfs[i] for i in self.idxs] self.gaps = [gaps[i] for i in self.idxs[:-1]] self.tfrm = tfrms[self.idxs[0]] self.flats = [None]*len(self.ifcs) if not hasattr(self, 'medium_name'): self.medium_name = self.gap.medium.name() def sync_to_update(self, seq_model): # when updating, we want to use the stored object instances to get the # current indices into the interface list (e.g. to handle insertion and # deletion of interfaces) self.idxs = [seq_model.ifcs.index(ifc) for ifc in self.ifcs] def element_list(self): idxs = self.idxs ifcs = self.ifcs gaps = self.gaps e_list = [] for i in range(len(gaps)): e = Element(ifcs[i], ifcs[i+1], gaps[i], sd=self.sd, tfrm=self.tfrm, idx=idxs[i], idx2=idxs[i+1]) e_list.append(e) def tree(self, **kwargs): default_tag = '#element#cemented' tag = default_tag + kwargs.get('tag', '') zdir = kwargs.get('z_dir', 1) ce = Node('CE', id=self, tag=tag) for i, sg in enumerate(itertools.zip_longest(self.ifcs, self.gaps), start=1): ifc, gap = sg pid = f'p{i}'.format(i) p = Node(pid, id=ifc.profile, tag='#profile', parent=ce) Node(f'i{self.idxs[i-1]}', id=ifc, tag='#ifc', parent=p) # Gap branch if gap is not None: t = Node(f't{i}', id=gap, tag='#thic', parent=ce) Node(f'g{self.idxs[i-1]}', id=(gap, zdir), tag='#gap', parent=t) return ce def reference_interface(self): return self.ifcs[0] def reference_idx(self): return self.idxs[0] def interface_list(self): return self.ifcs def gap_list(self): return self.gaps def update_size(self): extents = np.union1d(self.ifcs[0].get_y_aperture_extent(), self.ifcs[-1].get_y_aperture_extent()) self.edge_extent = (extents[0], extents[-1]) self.sd = max([ifc.surface_od() for ifc in self.ifcs]) return self.sd def compute_flat(self, s): ca = s.surface_od() if (1.0 - ca/self.sd) >= 0.05: flat = ca else: flat = None return flat def extent(self): if hasattr(self, 'edge_extent'): return self.edge_extent else: return (-self.sd, self.sd) def render_shape(self): if self.ifcs[0].profile_cv < 0.0: self.flats[0] = self.compute_flat(self.ifcs[0]) else: self.flats[0] = None if self.ifcs[-1].profile_cv > 0.0: self.flats[-1] = self.compute_flat(self.ifcs[-1]) else: self.flats[-1] = None # generate the profile polylines self.profiles = [] sense = 1 for ifc, flat in zip(self.ifcs, self.flats): poly = ifc.full_profile(self.extent(), flat, sense) self.profiles.append(poly) sense = -sense # offset the profiles wrt the element origin thi = 0 for i, poly_profile in enumerate(self.profiles[1:]): thi += self.gaps[i].thi for p in poly_profile: p[0] += thi # just return outline poly_shape = [] poly_shape += self.profiles[0] poly_shape += self.profiles[-1] poly_shape.append(poly_shape[0]) return poly_shape def render_handles(self, opt_model): self.handles = {} shape = self.render_shape() # self.handles['shape'] = GraphicsHandle(shape, self.tfrm, 'polygon') for i, gap in enumerate(self.gaps): poly = [] poly += self.profiles[i] poly += self.profiles[i+1] poly.append(self.profiles[i][0]) color = calc_render_color_for_material(gap.medium) self.handles['shape'+str(i+1)] = GraphicsHandle(poly, self.tfrm, 'polygon', color) return self.handles def handle_actions(self): self.actions = {} return self.actions class ThinElement(): label_format = 'TL{}' serial_number = 0 def __init__(self, ifc, tfrm=None, idx=0, sd=None, label=None): if label is None: ThinElement.serial_number += 1 self.label = ThinElement.label_format.format( ThinElement.serial_number) else: self.label = label self.render_color = (192, 192, 192) if tfrm is not None: self.tfrm = tfrm else: self.tfrm = (np.identity(3), np.array([0., 0., 0.])) self.intrfc = ifc self.intrfc_indx = idx self.medium_name = 'Thin Element' if sd is not None: self.sd = sd else: self.sd = ifc.max_aperture self.handles = {} self.actions = {} def __json_encode__(self): attrs = dict(vars(self)) del attrs['parent'] del attrs['tfrm'] del attrs['intrfc'] del attrs['handles'] del attrs['actions'] return attrs def __str__(self): return str(self.intrfc) def tree(self, **kwargs): default_tag = '#element#thinlens' tag = default_tag + kwargs.get('tag', '') tle = Node('TL', id=self, tag=tag) Node('tl', id=self.intrfc, tag='#ifc', parent=tle) return tle def sync_to_restore(self, ele_model, surfs, gaps, tfrms): self.parent = ele_model self.tfrm = tfrms[self.intrfc_indx] self.intrfc = surfs[self.intrfc_indx] if not hasattr(self, 'medium_name'): self.medium_name = 'Thin Element' ro_version = ele_model.opt_model.ro_version if version.parse(ro_version) < version.parse("0.7.0a"): ThinElement.serial_number += 1 self.label = ThinElement.label_format.format(ThinElement.serial_number) def sync_to_update(self, seq_model): self.intrfc_indx = seq_model.ifcs.index(self.intrfc) def reference_interface(self): return self.intrfc def reference_idx(self): return self.intrfc_indx def interface_list(self): return [self.intrfc] def gap_list(self): return [] def update_size(self): self.sd = self.intrfc.surface_od() return self.sd def render_shape(self): poly = self.intrfc.full_profile((-self.sd, self.sd)) return poly def render_handles(self, opt_model): self.handles = {} shape = self.render_shape() self.handles['shape'] = GraphicsHandle(shape, self.tfrm, 'polygon', self.render_color) return self.handles def handle_actions(self): self.actions = {} return self.actions class DummyInterface(): label_format = 'D{}' serial_number = 0 def __init__(self, ifc, idx=0, sd=None, tfrm=None, label=None): if label is None: DummyInterface.serial_number += 1 self.label = DummyInterface.label_format.format( DummyInterface.serial_number) else: self.label = label self.render_color = (192, 192, 192) if tfrm is not None: self.tfrm = tfrm else: self.tfrm = (np.identity(3), np.array([0., 0., 0.])) self.ref_ifc = ifc self.idx = idx self.medium_name = 'Interface' if sd is not None: self.sd = sd else: self.sd = ifc.max_aperture self.handles = {} self.actions = {} def __json_encode__(self): attrs = dict(vars(self)) del attrs['parent'] del attrs['tfrm'] del attrs['ref_ifc'] del attrs['handles'] del attrs['actions'] return attrs def __str__(self): return str(self.ref_ifc) def sync_to_restore(self, ele_model, surfs, gaps, tfrms): self.parent = ele_model self.tfrm = tfrms[self.idx] self.ref_ifc = surfs[self.idx] if not hasattr(self, 'medium_name'): self.medium_name = 'Interface' def sync_to_update(self, seq_model): self.idx = seq_model.ifcs.index(self.ref_ifc) def tree(self, **kwargs): default_tag = '#dummyifc' tag = default_tag + kwargs.get('tag', '') di = Node('DI', id=self, tag=tag) p = Node('p', id=self.ref_ifc.profile, tag='#profile', parent=di) Node(f'i{self.idx}', id=self.ref_ifc, tag='#ifc', parent=p) return di def reference_interface(self): return self.ref_ifc def reference_idx(self): return self.idx def interface_list(self): return [self.ref_ifc] def gap_list(self): return [] def update_size(self): self.sd = self.ref_ifc.surface_od() return self.sd def render_shape(self): poly = self.ref_ifc.full_profile((-self.sd, self.sd)) return poly def render_handles(self, opt_model): self.handles = {} self.handles['shape'] = GraphicsHandle(self.render_shape(), self.tfrm, 'polyline') return self.handles def handle_actions(self): self.actions = {} def get_adj_spaces(): seq_model = self.parent.opt_model.seq_model if self.idx > 0: before = seq_model.gaps[self.idx-1].thi else: before = None if self.idx < seq_model.get_num_surfaces() - 1: after = seq_model.gaps[self.idx].thi else: after = None return (before, after) def set_adj_spaces(cur_value, change): seq_model = self.parent.opt_model.seq_model if cur_value[0] is not None: seq_model.gaps[self.idx-1].thi = cur_value[0] + change if cur_value[1] is not None: seq_model.gaps[self.idx].thi = cur_value[1] - change slide_action = {} slide_action['x'] = Action(get_adj_spaces, set_adj_spaces) self.actions['shape'] = slide_action return self.actions class AirGap(): label_format = 'AG{}' serial_number = 0 def __init__(self, g, idx=0, tfrm=None, label=None): if label is None: AirGap.serial_number += 1 self.label = AirGap.label_format.format(AirGap.serial_number) else: self.label = label if tfrm is not None: self.tfrm = tfrm else: self.tfrm = (np.identity(3), np.array([0., 0., 0.])) self.render_color = (237, 243, 254, 64) # light blue self.gap = g self.medium_name = self.gap.medium.name() self.idx = idx self.handles = {} self.actions = {} def __json_encode__(self): attrs = dict(vars(self)) del attrs['parent'] del attrs['tfrm'] del attrs['gap'] del attrs['handles'] del attrs['actions'] return attrs def __str__(self): return str(self.gap) def sync_to_restore(self, ele_model, surfs, gaps, tfrms): self.parent = ele_model self.gap = gaps[self.idx] self.tfrm = tfrms[self.idx] if not hasattr(self, 'render_color'): self.render_color = (237, 243, 254, 64) # light blue if not hasattr(self, 'medium_name'): self.medium_name = self.gap.medium.name() ro_version = ele_model.opt_model.ro_version if version.parse(ro_version) < version.parse("0.7.0a"): AirGap.serial_number += 1 self.label = AirGap.label_format.format(AirGap.serial_number) def sync_to_update(self, seq_model): self.idx = seq_model.gaps.index(self.gap) def tree(self, **kwargs): default_tag = '#airgap' tag = default_tag + kwargs.get('tag', '') ag = Node('AG', id=self, tag=tag) t = Node('t', id=self.gap, tag='#thic', parent=ag) zdir = kwargs.get('z_dir', 1) Node(f'g{self.idx}', id=(self.gap, zdir), tag='#gap', parent=t) return ag def reference_interface(self): return None def reference_idx(self): return self.idx def interface_list(self): return [] def gap_list(self): return [self.gap] def update_size(self): pass def render_handles(self, opt_model): self.handles = {} poly_ct = [] poly_ct.append([0., 0.]) poly_ct.append([self.gap.thi, 0.]) # Modify the tfrm to account for any decenters following # the reference ifc. tfrm = self.tfrm decenter = opt_model.seq_model.ifcs[self.idx].decenter if decenter is not None: r_global, t_global = tfrm r_after_ifc, t_after_ifc = decenter.tform_after_surf() t = r_global.dot(t_after_ifc) + t_global r = r_global if r_after_ifc is None else r_global.dot(r_after_ifc) tfrm = r, t self.handles['ct'] = GraphicsHandle(poly_ct, tfrm, 'polyline') return self.handles def handle_actions(self): self.actions = {} ct_action = {} ct_action['x'] = AttrAction(self.gap, 'thi') self.actions['ct'] = ct_action return self.actions # --- Element model class ElementModel: """Maintain the element based representation of the optical model Attributes: opt_model: the :class:`~rayoptics.optical.opticalmodel.OpticalModel` elements: list of element type things """ def __init__(self, opt_model, **kwargs): self.opt_model = opt_model self.elements = [] def reset(self): self.__init__(self.opt_model) def __json_encode__(self): attrs = dict(vars(self)) del attrs['opt_model'] return attrs def sync_to_restore(self, opt_model): self.opt_model = opt_model seq_model = opt_model.seq_model surfs = seq_model.ifcs gaps = seq_model.gaps tfrms = seq_model.compute_global_coords(1) # special processing for older models # self.airgaps_from_sequence(seq_model, tfrms) # self.add_dummy_interface_at_image(seq_model, tfrms) self.reset_serial_numbers() for i, e in enumerate(self.elements, start=1): e.sync_to_restore(self, surfs, gaps, tfrms) if not hasattr(e, 'label'): e.label = e.label_format.format(i) self.sequence_elements() # self.relabel_airgaps() def reset_serial_numbers(self): Element.serial_number = 0 Mirror.serial_number = 0 CementedElement.serial_number = 0 ThinElement.serial_number = 0 DummyInterface.serial_number = 0 AirGap.serial_number = 0 def airgaps_from_sequence(self, seq_model, tfrms): """ add airgaps and dummy interfaces to an older version model """ for e in self.elements: if isinstance(e, AirGap): return # found an AirGap, model probably OK num_elements = 0 seq_model = self.opt_model.seq_model for i, g in enumerate(seq_model.gaps): if g.medium.name().lower() == 'air': if i > 0: s = seq_model.ifcs[i] tfrm = tfrms[i] num_elements = self.process_airgap( seq_model, i, g, s, tfrm, num_elements, add_ele=False) def add_dummy_interface_at_image(self, seq_model, tfrms): if len(self.elements) and self.elements[-1].label == 'Image': return s = seq_model.ifcs[-1] idx = seq_model.get_num_surfaces() - 1 di = DummyInterface(s, sd=s.surface_od(), tfrm=tfrms[-1], idx=idx, label='Image') self.opt_model.part_tree.add_element_to_tree(di, tag='#image') self.add_element(di) def update_model(self, **kwargs): seq_model = self.opt_model['seq_model'] tfrms = seq_model.compute_global_coords(1) # dynamically build element list from part_tree part_tree = self.opt_model['part_tree'] nodes = part_tree.nodes_with_tag(tag='#element#airgap#dummyifc') elements = [n.id for n in nodes] # hook or unhook elements from ele_model cur_set = set(self.elements) new_set = set(elements) added_ele = list(new_set.difference(cur_set)) for e in added_ele: e.parent = self removed_ele = list(cur_set.difference(new_set)) for e in removed_ele: e.parent = None # update the elements for e in elements: e.update_size() e.sync_to_update(seq_model) e.tfrm = tfrms[e.reference_idx()] self.elements = elements self.sequence_elements() def sequence_elements(self): """ Sort elements in order of reference interfaces in seq_model """ seq_model = self.opt_model.seq_model # sort by element reference interface sequential index self.elements.sort(key=lambda e: e.reference_idx()) # Make sure z_dir matches the sequential model. Used to get # the correct substrate offset. if hasattr(seq_model, 'z_dir'): for e in self.elements: if hasattr(e, 'z_dir'): e.z_dir = seq_model.z_dir[e.reference_idx()] def relabel_airgaps(self): for i, e in enumerate(self.elements): if isinstance(e, AirGap): eb = self.elements[i-1].label ea = self.elements[i+1].label e.label = AirGap.label_format.format(eb + '-' + ea) def add_element(self, e): e.parent = self self.elements.append(e) def remove_element(self, e): e.parent = None self.elements.remove(e) def remove_node(self, e_node): part_tree = self.opt_model.part_tree nodes = part_tree.nodes_with_tag(tag='#element#airgap#dummyifc', root=e_node) eles = [n.id for n in nodes] for e in eles: self.remove_element(e) def get_num_elements(self): return len(self.elements) def list_model(self, tag='#element#dummyifc'): nodes = self.opt_model.part_tree.nodes_with_tag(tag=tag) elements = [n.id for n in nodes] for i, ele in enumerate(elements): print("%d: %s (%s): %s" % (i, ele.label, type(ele).__name__, ele)) def list_elements(self): for i, ele in enumerate(self.elements): print("%d: %s (%s): %s" % (i, ele.label, type(ele).__name__, ele)) def element_type(self, i): return type(self.elements[i]).__name__
fireworks/user_objects/firetasks/tests/test_filepad_tasks.py
jmmshn/fireworks
251
12674102
__author__ = "<NAME>, <NAME>" import os import unittest from ruamel.yaml import YAML from fireworks.user_objects.firetasks.filepad_tasks import ( AddFilesTask, DeleteFilesTask, GetFilesByQueryTask, GetFilesTask, ) from fireworks.utilities.filepad import FilePad module_dir = os.path.abspath(os.path.dirname(__file__)) class FilePadTasksTest(unittest.TestCase): def setUp(self): self.paths = [os.path.join(module_dir, "write.yaml"), os.path.join(module_dir, "delete.yaml")] self.identifiers = ["write", "delete"] self.fp = FilePad.auto_load() def test_addfilestask_run(self): t = AddFilesTask(paths=self.paths, identifiers=self.identifiers) t.run_task({}) write_file_contents, _ = self.fp.get_file("write") with open(self.paths[0]) as f: self.assertEqual(write_file_contents, f.read().encode()) del_file_contents, _ = self.fp.get_file("delete") with open(self.paths[1]) as f: self.assertEqual(del_file_contents, f.read().encode()) def test_deletefilestask_run(self): t = DeleteFilesTask(identifiers=self.identifiers) t.run_task({}) file_contents, doc = self.fp.get_file("write") self.assertIsNone(file_contents) self.assertIsNone(doc) file_contents, doc = self.fp.get_file("delete") self.assertIsNone(file_contents) self.assertIsNone(doc) def test_getfilestask_run(self): t = AddFilesTask(paths=self.paths, identifiers=self.identifiers) t.run_task({}) dest_dir = os.path.abspath(".") identifiers = ["write"] new_file_names = ["write_2.yaml"] t = GetFilesTask(identifiers=identifiers, dest_dir=dest_dir, new_file_names=new_file_names) t.run_task({}) write_file_contents, _ = self.fp.get_file("write") with open(os.path.join(dest_dir, new_file_names[0])) as f: self.assertEqual(write_file_contents, f.read().encode()) os.remove(os.path.join(dest_dir, new_file_names[0])) def test_getfilesbyquerytask_run(self): """Tests querying objects from FilePad by metadata""" t = AddFilesTask(paths=self.paths, identifiers=self.identifiers, metadata={"key": "value"}) t.run_task({}) dest_dir = os.path.abspath(".") new_file_names = ["test_file.yaml"] t = GetFilesByQueryTask(query={"metadata->key": "value"}, dest_dir=dest_dir, new_file_names=new_file_names) t.run_task({}) test_file_contents, _ = self.fp.get_file("test_idenfifier") self.assertEqual(test_file_contents, open(os.path.join(dest_dir, new_file_names[0])).read().encode()) os.remove(os.path.join(dest_dir, new_file_names[0])) def test_getfilesbyquerytask_run(self): """Tests querying objects from FilePad by metadata""" with open("original_test_file.txt", "w") as f: f.write("Some file with some content") t = AddFilesTask(paths=["original_test_file.txt"], identifiers=["some_identifier"], metadata={"key": "value"}) t.run_task({}) os.remove("original_test_file.txt") dest_dir = os.path.abspath(".") t = GetFilesByQueryTask( query={"metadata->key": "value"}, dest_dir=dest_dir, new_file_names=["queried_test_file.txt"] ) t.run_task({}) test_file_contents, _ = self.fp.get_file("some_identifier") with open(os.path.join(dest_dir, "queried_test_file.txt")) as f: self.assertEqual(test_file_contents, f.read().encode()) os.remove(os.path.join(dest_dir, "queried_test_file.txt")) def test_getfilesbyquerytask_metafile_run(self): """Tests writing metadata to a yaml file""" with open("original_test_file.txt", "w") as f: f.write("Some file with some content") t = AddFilesTask(paths=["original_test_file.txt"], identifiers=["test_identifier"], metadata={"key": "value"}) t.run_task({}) os.remove("original_test_file.txt") dest_dir = os.path.abspath(".") t = GetFilesByQueryTask( query={"metadata->key": "value"}, meta_file=True, meta_file_suffix=".meta.yaml", dest_dir=dest_dir, new_file_names=["queried_test_file.txt"], ) t.run_task({}) with open("queried_test_file.txt.meta.yaml") as f: yaml = YAML(typ="safe") metadata = yaml.load(f) self.assertEqual(metadata["key"], "value") os.remove(os.path.join(dest_dir, "queried_test_file.txt")) os.remove(os.path.join(dest_dir, "queried_test_file.txt.meta.yaml")) def test_getfilesbyquerytask_ignore_empty_result_run(self): """Tests on ignoring empty results from FilePad query""" dest_dir = os.path.abspath(".") t = GetFilesByQueryTask( query={"metadata->key": "value"}, fizzle_empty_result=False, dest_dir=dest_dir, new_file_names=["queried_test_file.txt"], ) t.run_task({}) # test successful if no exception raised def test_getfilesbyquerytask_raise_empty_result_run(self): """Tests on raising exception on empty results from FilePad query""" dest_dir = os.path.abspath(".") t = GetFilesByQueryTask( query={"metadata->key": "value"}, fizzle_empty_result=True, dest_dir=dest_dir, new_file_names=["queried_test_file.txt"], ) with self.assertRaises(ValueError): t.run_task({}) # test successful if exception raised def test_getfilesbyquerytask_ignore_degenerate_file_name(self): """Tests on ignoring degenerate file name in result from FilePad query""" with open("degenerate_file.txt", "w") as f: f.write("Some file with some content") t = AddFilesTask(paths=["degenerate_file.txt"], identifiers=["some_identifier"], metadata={"key": "value"}) t.run_task({}) with open("degenerate_file.txt", "w") as f: f.write("Some other file with some other content BUT same file name") t = AddFilesTask( paths=["degenerate_file.txt"], identifiers=["some_other_identifier"], metadata={"key": "value"} ) t.run_task({}) os.remove("degenerate_file.txt") t = GetFilesByQueryTask(query={"metadata->key": "value"}, fizzle_degenerate_file_name=False) t.run_task({}) # test successful if no exception raised def test_getfilesbyquerytask_raise_degenerate_file_name(self): """Tests on raising exception on degenerate file name from FilePad query""" with open("degenerate_file.txt", "w") as f: f.write("Some file with some content") t = AddFilesTask(paths=["degenerate_file.txt"], identifiers=["some_identifier"], metadata={"key": "value"}) t.run_task({}) with open("degenerate_file.txt", "w") as f: f.write("Some other file with some other content BUT same file name") t = AddFilesTask( paths=["degenerate_file.txt"], identifiers=["some_other_identifier"], metadata={"key": "value"} ) t.run_task({}) os.remove("degenerate_file.txt") t = GetFilesByQueryTask(query={"metadata->key": "value"}, fizzle_degenerate_file_name=True) with self.assertRaises(ValueError): t.run_task({}) # test successful if exception raised def test_getfilesbyquerytask_sort_ascending_name_run(self): """Tests on sorting queried files in ascending order""" file_contents = ["Some file with some content", "Some other file with some other content"] with open("degenerate_file.txt", "w") as f: f.write(file_contents[0]) t = AddFilesTask( paths=["degenerate_file.txt"], identifiers=["some_identifier"], metadata={"key": "value", "sort_key": 0} ) t.run_task({}) with open("degenerate_file.txt", "w") as f: f.write(file_contents[-1]) t = AddFilesTask( paths=["degenerate_file.txt"], identifiers=["some_other_identifier"], metadata={"key": "value", "sort_key": 1}, ) t.run_task({}) os.remove("degenerate_file.txt") t = GetFilesByQueryTask( query={"metadata->key": "value"}, fizzle_degenerate_file_name=False, sort_key="sort_key", sort_direction=1 ) t.run_task({}) with open("degenerate_file.txt") as f: self.assertEqual(file_contents[-1], f.read()) def test_getfilesbyquerytask_sort_descending_name_run(self): """Tests on sorting queried files in descending order""" file_contents = ["Some file with some content", "Some other file with some other content"] with open("degenerate_file.txt", "w") as f: f.write(file_contents[0]) t = AddFilesTask( paths=["degenerate_file.txt"], identifiers=["some_identifier"], metadata={"key": "value", "sort_key": 10} ) t.run_task({}) with open("degenerate_file.txt", "w") as f: f.write(file_contents[-1]) t = AddFilesTask( paths=["degenerate_file.txt"], identifiers=["some_other_identifier"], metadata={"key": "value", "sort_key": 20}, ) t.run_task({}) os.remove("degenerate_file.txt") t = GetFilesByQueryTask( query={"metadata->key": "value"}, fizzle_degenerate_file_name=False, sort_key="metadata.sort_key", sort_direction=-1, ) t.run_task({}) with open("degenerate_file.txt") as f: self.assertEqual(file_contents[0], f.read()) os.remove("degenerate_file.txt") def test_addfilesfrompatterntask_run(self): t = AddFilesTask(paths="*.yaml", directory=module_dir) t.run_task({}) write_file_contents, _ = self.fp.get_file(self.paths[0]) with open(self.paths[0]) as f: self.assertEqual(write_file_contents, f.read().encode()) del_file_contents, wdoc = self.fp.get_file(self.paths[1]) with open(self.paths[1]) as f: self.assertEqual(del_file_contents, f.read().encode()) def tearDown(self): self.fp.reset() if __name__ == "__main__": unittest.main()
var/spack/repos/builtin/packages/r-insight/package.py
LiamBindle/spack
2,360
12674103
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RInsight(RPackage): """Easy Access to Model Information for Various Model Objects A tool to provide an easy, intuitive and consistent access to information contained in various R models, like model formulas, model terms, information about random effects, data that was used to fit the model or data from response variables. 'insight' mainly revolves around two types of functions: Functions that find (the names of) information, starting with 'find_', and functions that get the underlying data, starting with 'get_'. The package has a consistent syntax and works with many different model objects, where otherwise functions to access these information are missing.""" homepage = "https://easystats.github.io/insight/" cran = "insight" version('0.14.1', sha256='0e7761997a46ee33039cdeff1779dbc210de3644e4444c6e893e4ef2f12cc129') depends_on('[email protected]:', type=('build', 'run'))
config_files/sthv1/tsm_baseline.py
shreyas-bk/TPN
353
12674133
model = dict( type='TSN2D', backbone=dict( type='ResNet', pretrained='modelzoo://resnet50', nsegments=8, depth=50, out_indices=(3,), tsm=True, bn_eval=False, partial_bn=False), spatial_temporal_module=dict( type='SimpleSpatialModule', spatial_type='avg', spatial_size=7), segmental_consensus=dict( type='SimpleConsensus', consensus_type='avg'), cls_head=dict( type='ClsHead', with_avg_pool=False, temporal_feature_size=1, spatial_feature_size=1, dropout_ratio=0.5, in_channels=2048, num_classes=174)) train_cfg = None test_cfg = None # dataset settings dataset_type = 'RawFramesDataset' data_root = '' data_root_val = '' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) data = dict( videos_per_gpu=8, workers_per_gpu=8, train=dict( type=dataset_type, ann_file='data/sthv1/train_videofolder.txt', img_prefix=data_root, img_norm_cfg=img_norm_cfg, num_segments=8, new_length=1, new_step=1, random_shift=True, modality='RGB', image_tmpl='{:05d}.jpg', img_scale=256, input_size=224, flip_ratio=0.5, resize_keep_ratio=True, resize_crop=True, color_jitter=True, color_space_aug=True, oversample=None, max_distort=1, test_mode=False), val=dict( type=dataset_type, ann_file='data/sthv1/val_videofolder.txt', img_prefix=data_root_val, img_norm_cfg=img_norm_cfg, num_segments=8, new_length=1, new_step=1, random_shift=False, modality='RGB', image_tmpl='{:05d}.jpg', img_scale=256, input_size=224, flip_ratio=0, resize_keep_ratio=True, oversample=None, test_mode=False), test=dict( type=dataset_type, ann_file='data/sthv1/val_videofolder.txt', img_prefix=data_root_val, img_norm_cfg=img_norm_cfg, num_segments=16, new_length=1, new_step=1, random_shift=False, modality='RGB', image_tmpl='{:05d}.jpg', img_scale=256, input_size=256, flip_ratio=0, resize_keep_ratio=True, oversample="three_crop", test_mode=True)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True) optimizer_config = dict(grad_clip=dict(max_norm=20, norm_type=2)) # learning policy lr_config = dict( policy='step', step=[75, 125]) checkpoint_config = dict(interval=1) workflow = [('train', 1)] # yapf:disable log_config = dict( interval=20, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 150 dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None
app/main/routes_picoferm_api.py
zuiko42/picobrew_pico
142
12674140
<gh_stars>100-1000 import json from datetime import datetime from flask import current_app, send_from_directory from webargs import fields from webargs.flaskparser import use_args, FlaskParser from . import main from .. import socketio from .config import ferm_active_sessions_path, picoferm_firmware_path, MachineType from .firmware import firmware_filename, minimum_firmware, firmware_upgrade_required from .model import PicoFermSession from .session_parser import active_ferm_sessions arg_parser = FlaskParser() # Register: /API/PicoFerm/isRegistered?uid={uid}&token={token} # Response: '#{0}#' where {0} : 1 = Registered, 0 = Not Registered ferm_registered_args = { 'uid': fields.Str(required=True), # 12 character alpha-numeric serial number 'token': fields.Str(required=True), # 8 character alpha-numberic number } @main.route('/API/PicoFerm/isRegistered') @use_args(ferm_registered_args, location='querystring') def process_ferm_registered(args): uid = args['uid'] if uid not in active_ferm_sessions: active_ferm_sessions[uid] = PicoFermSession() return '#1#' # Check Firmware: /API/PicoFerm/checkFirmware?uid={UID}&version={VERSION} # Response: '#{0}#' where {0} : 1 = Update Available, 0 = No Updates check_ferm_firmware_args = { 'uid': fields.Str(required=True), # 12 character alpha-numeric serial number 'version': fields.Str(required=True), # Current firmware version - i.e. 0.1.11 } @main.route('/API/PicoFerm/checkFirmware') @use_args(check_ferm_firmware_args, location='querystring') def process_check_ferm_firmware(args): if firmware_upgrade_required(MachineType.PICOFERM, args['version']): return '#1#' return '#0#' # Get Firmware: /API/pico/getFirmware?uid={UID} # Response: RAW Bin File Contents get_firmware_args = { 'uid': fields.Str(required=True), # 12 character alpha-numeric serial number } @main.route('/API/PicoFerm/getFirmwareAddress') @use_args(get_firmware_args, location='querystring') def process_get_firmware_address(args): filename = firmware_filename(MachineType.PICOFERM, minimum_firmware(MachineType.PICOFERM)) return '#http://picobrew.com/firmware/picoferm/{}#'.format(filename) # Get Firmware: /firmware/picoferm/<version> # Response: RAW Bin File @main.route('/firmware/picoferm/<file>', methods=['GET']) def process_picoferm_firmware(file): current_app.logger.debug('DEBUG: PicoFerm fetch firmware file={}'.format(file)) return send_from_directory(picoferm_firmware_path(), file) # Get State: /API/PicoFerm/getState?uid={UID} # Response: '#{0}#' where {0} : 2,4 = nothing to do, 10,0 = in progress/send data, 10,16 = in progress/error, 2,16 = complete/stop sending data get_ferm_state_args = { 'uid': fields.Str(required=True), # 12 character alpha-numeric serial number } @main.route('/API/PicoFerm/getState') @use_args(get_ferm_state_args, location='querystring') def process_get_ferm_state(args): uid = args['uid'] if uid not in active_ferm_sessions: active_ferm_sessions[uid] = PicoFermSession() session = active_ferm_sessions[uid] if session.active == True: return '#10,0#' elif session.uninit or session.file == None: return '#2,4' # LogDataSet: /API/PicoFerm/logDataSet?uid={UID}&rate={RATE}&voltage={VOLTAGE}&data={DATA} # Response: '#{0}#' where {0} : 10,0 = in progress/send data, ????? log_ferm_dataset_args = { 'uid': fields.Str(required=True), # 12 character alpha-numeric serial number 'rate': fields.Float(required=True), # Rate between samples (minutes) 'voltage': fields.Float(required=True), # %0.2f Voltage 'data': fields.Str(required=True), # List of dictionary (Temperature (S1), Pressure (S2)): [{"s1":%0.2f,"s2":%0.2f},] } @main.route('/API/PicoFerm/logDataSet') @use_args(log_ferm_dataset_args, location='querystring') def process_log_ferm_dataset(args): uid = args['uid'] if uid not in active_ferm_sessions or active_ferm_sessions[uid].uninit: create_new_session(uid) data = json.loads(args['data']) time_delta = args['rate'] * 60 * 1000 time = ((datetime.utcnow() - datetime(1970, 1, 1)).total_seconds() * 1000) - (time_delta * (len(data) - 1)) session_data = [] log_data = '' for d in data: point = {'time': time, 'temp': d['s1'], 'pres': d['s2'], } session_data.append(point) time = time + time_delta log_data += '\n\t{},'.format(json.dumps(point)) active_ferm_sessions[uid].data.extend(session_data) active_ferm_sessions[uid].voltage = str(args['voltage']) + 'V' graph_update = json.dumps({'voltage': args['voltage'], 'data': session_data}) socketio.emit('ferm_session_update|{}'.format(args['uid']), graph_update) # end fermentation only when user specifies fermentation is complete if active_ferm_sessions[uid].uninit == False and active_ferm_sessions[uid].active == False: active_ferm_sessions[uid].file.write('{}\n\n]'.format(log_data[:-2])) active_ferm_sessions[uid].cleanup() # The server makes a determination when fermenting is done based on the datalog after it sends '2,4' return '#2,4#' else: active_ferm_sessions[uid].active = True active_ferm_sessions[uid].file.write(log_data) active_ferm_sessions[uid].file.flush() # Errors like '10,16' send data but mark data error. # '10,0' tells the PicoFerm to continue to send data. return '#10,0#' # -------- Utility -------- def create_new_session(uid): if uid not in active_ferm_sessions: active_ferm_sessions[uid] = PicoFermSession() active_ferm_sessions[uid].uninit = False active_ferm_sessions[uid].start_time = datetime.now() # Not now, but X interval seconds ago active_ferm_sessions[uid].filepath = ferm_active_sessions_path().joinpath('{0}#{1}.json'.format(active_ferm_sessions[uid].start_time.strftime('%Y%m%d_%H%M%S'), uid)) active_ferm_sessions[uid].file = open(active_ferm_sessions[uid].filepath, 'w') active_ferm_sessions[uid].file.write('[')
vtrace/notifiers.py
rnui2k/vivisect
716
12674143
<filename>vtrace/notifiers.py """ Vtrace notitifers base classes and examples Vtrace supports the idea of callback notifiers which get called whenever particular events occur in the target process. Notifiers may be registered to recieve a callback on any of the vtrace.NOTIFY_FOO events from vtrace. One notifier *may* be registered with more than one trace, as the "notify" method is passed a reference to the trace for which an event has occured... """ # Copyright (C) 2007 Invisigoth - See LICENSE file for details import logging import traceback import vtrace logger = logging.getLogger(__name__) class Notifier(object): """ The top level example notifier... Anything which registers itself for trace events or tracegroup events should implement the notify method as shown here. """ def __init__(self): """ All extenders *must* call this. Mostly because all the goop necessary for the remote debugging stuff... (if notifier is instantiated on server, all is well, if it's on the client it needs a proxy...) """ pass def handleEvent(self, event, trace): """ An "internal" handler so if we need to do something from an API perspective before calling the notify method we can have a good "all at once" hook """ self.notify(event, trace) def notify(self, event, trace): logger.info("Got event: %d from pid %d", event, trace.getPid()) class VerboseNotifier(Notifier): def notify(self, event, trace): logger.info("PID %d - ThreadID (%d) got", trace.getPid(), trace.getMeta("ThreadId")) if event == vtrace.NOTIFY_ALL: ("WTF, how did we get a vtrace.NOTIFY_ALL event?!?!") elif event == vtrace.NOTIFY_SIGNAL: signo = trace.getCurrentSignal() ("vtrace.NOTIFY_SIGNAL %d (0x%08x)" % (signo, signo)) if trace.getMeta("Platform") == "windows": logger.info(repr(trace.getMeta("Win32Event"))) elif event == vtrace.NOTIFY_BREAK: logger.info("vtrace.NOTIFY_BREAK") logger.info("\tIP: 0x%08x", trace.getProgramCounter()) elif event == vtrace.NOTIFY_SYSCALL: logger.info("vtrace.NOTIFY_SYSCALL") elif event == vtrace.NOTIFY_CONTINUE: logger.info("vtrace.NOTIFY_CONTINUE") elif event == vtrace.NOTIFY_EXIT: logger.info("vtrace.NOTIFY_EXIT") logger.info("\tExitCode: %d", trace.getMeta("ExitCode")) elif event == vtrace.NOTIFY_ATTACH: logger.info("vtrace.NOTIFY_ATTACH") elif event == vtrace.NOTIFY_DETACH: logger.info("vtrace.NOTIFY_DETACH") elif event == vtrace.NOTIFY_LOAD_LIBRARY: logger.info("vtrace.NOTIFY_LOAD_LIBRARY") logger.info("\tLoaded library %s", trace.getMeta('LatestLibrary')) elif event == vtrace.NOTIFY_UNLOAD_LIBRARY: logger.info("vtrace.NOTIFY_UNLOAD_LIBRARY") elif event == vtrace.NOTIFY_CREATE_THREAD: logger.info("vtrace.NOTIFY_CREATE_THREAD") logger.info("\tNew thread - ThreadID: %d", trace.getMeta("ThreadId")) elif event == vtrace.NOTIFY_EXIT_THREAD: logger.info("vtrace.NOTIFY_EXIT_THREAD") logger.info("Thread exited - ThreadID: %d", trace.getMeta("ExitThread", -1)) elif event == vtrace.NOTIFY_STEP: logger.info("vtrace.NOTIFY_STEP") else: logger.warning("Unhandled vtrace event type of: %d", event) class DistributedNotifier(Notifier): """ A notifier which will distributed notifications out to locally registered notifiers so that remote tracer's notifier callbacks only require once across the wire. """ # NOTE: once you turn on vtrace.NOTIFY_ALL it can't be turned back off yet. def __init__(self): Notifier.__init__(self) self.shared = False self.events = [] self.notifiers = {} for i in range(vtrace.NOTIFY_MAX): self.notifiers[i] = [] def notify(self, event, trace): self.fireNotifiers(event, trace) def fireNotifiers(self, event, trace): """ Fire all our registerd local-notifiers """ nlist = self.notifiers.get(vtrace.NOTIFY_ALL, []) for notifier in nlist: try: notifier.handleEvent(event, trace) except Exception: logger.error("Exception in notifier:\n%s", traceback.format_exc()) nlist = self.notifiers.get(event, []) for notifier in nlist: try: notifier.handleEvent(event, trace) except Exception: logger.error("Exception in notifier:\n%s", traceback.format_exc()) def registerNotifier(self, event, notif): """ Register a sub-notifier to get the remote callback's via our local delivery. """ nlist = self.notifiers.get(event) nlist.append(notif) def deregisterNotifier(self, event, notif): nlist = self.notifiers.get(event) nlist.remove(notif)
venv/lib/python3.8/site-packages/pylint/extensions/_check_docs_utils.py
DiegoSilvaHoffmann/Small-Ecommerce
463
12674161
<reponame>DiegoSilvaHoffmann/Small-Ecommerce # Copyright (c) 2016-2020 <NAME> <<EMAIL>> # Copyright (c) 2016-2019 <NAME> <<EMAIL>> # Copyright (c) 2016 <NAME> <<EMAIL>> # Copyright (c) 2016 <NAME> <<EMAIL>> # Copyright (c) 2016 <NAME> <<EMAIL>> # Copyright (c) 2017, 2020 hippo91 <<EMAIL>> # Copyright (c) 2017 Mitar <<EMAIL>> # Copyright (c) 2018, 2020 <NAME> <<EMAIL>> # Copyright (c) 2018 <NAME> <<EMAIL>> # Copyright (c) 2018 ssolanki <<EMAIL>> # Copyright (c) 2018 <NAME> <<EMAIL>> # Copyright (c) 2018 <NAME> <<EMAIL>> # Copyright (c) 2019 <NAME> <<EMAIL>> # Copyright (c) 2019 <NAME> <<EMAIL>> # Copyright (c) 2019 <NAME> <<EMAIL>> # Copyright (c) 2021 <NAME> <<EMAIL>> # Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html # For details: https://github.com/PyCQA/pylint/blob/master/LICENSE """Utility methods for docstring checking.""" import re from typing import List import astroid from pylint.checkers import utils def space_indentation(s): """The number of leading spaces in a string :param str s: input string :rtype: int :return: number of leading spaces """ return len(s) - len(s.lstrip(" ")) def get_setters_property_name(node): """Get the name of the property that the given node is a setter for. :param node: The node to get the property name for. :type node: str :rtype: str or None :returns: The name of the property that the node is a setter for, or None if one could not be found. """ decorators = node.decorators.nodes if node.decorators else [] for decorator in decorators: if ( isinstance(decorator, astroid.Attribute) and decorator.attrname == "setter" and isinstance(decorator.expr, astroid.Name) ): return decorator.expr.name return None def get_setters_property(node): """Get the property node for the given setter node. :param node: The node to get the property for. :type node: astroid.FunctionDef :rtype: astroid.FunctionDef or None :returns: The node relating to the property of the given setter node, or None if one could not be found. """ property_ = None property_name = get_setters_property_name(node) class_node = utils.node_frame_class(node) if property_name and class_node: class_attrs = class_node.getattr(node.name) for attr in class_attrs: if utils.decorated_with_property(attr): property_ = attr break return property_ def returns_something(return_node): """Check if a return node returns a value other than None. :param return_node: The return node to check. :type return_node: astroid.Return :rtype: bool :return: True if the return node returns a value other than None, False otherwise. """ returns = return_node.value if returns is None: return False return not (isinstance(returns, astroid.Const) and returns.value is None) def _get_raise_target(node): if isinstance(node.exc, astroid.Call): func = node.exc.func if isinstance(func, (astroid.Name, astroid.Attribute)): return utils.safe_infer(func) return None def _split_multiple_exc_types(target: str) -> List[str]: delimiters = r"(\s*,(?:\s*or\s)?\s*|\s+or\s+)" return re.split(delimiters, target) def possible_exc_types(node): """ Gets all of the possible raised exception types for the given raise node. .. note:: Caught exception types are ignored. :param node: The raise node to find exception types for. :type node: astroid.node_classes.NodeNG :returns: A list of exception types possibly raised by :param:`node`. :rtype: set(str) """ excs = [] if isinstance(node.exc, astroid.Name): inferred = utils.safe_infer(node.exc) if inferred: excs = [inferred.name] elif node.exc is None: handler = node.parent while handler and not isinstance(handler, astroid.ExceptHandler): handler = handler.parent if handler and handler.type: inferred_excs = astroid.unpack_infer(handler.type) excs = (exc.name for exc in inferred_excs if exc is not astroid.Uninferable) else: target = _get_raise_target(node) if isinstance(target, astroid.ClassDef): excs = [target.name] elif isinstance(target, astroid.FunctionDef): for ret in target.nodes_of_class(astroid.Return): if ret.frame() != target: # return from inner function - ignore it continue val = utils.safe_infer(ret.value) if ( val and isinstance(val, (astroid.Instance, astroid.ClassDef)) and utils.inherit_from_std_ex(val) ): excs.append(val.name) try: return {exc for exc in excs if not utils.node_ignores_exception(node, exc)} except astroid.InferenceError: return set() def docstringify(docstring, default_type="default"): for docstring_type in [ SphinxDocstring, EpytextDocstring, GoogleDocstring, NumpyDocstring, ]: instance = docstring_type(docstring) if instance.is_valid(): return instance docstring_type = DOCSTRING_TYPES.get(default_type, Docstring) return docstring_type(docstring) class Docstring: re_for_parameters_see = re.compile( r""" For\s+the\s+(other)?\s*parameters\s*,\s+see """, re.X | re.S, ) supports_yields: bool = False """True if the docstring supports a "yield" section. False if the docstring uses the returns section to document generators. """ # These methods are designed to be overridden # pylint: disable=no-self-use def __init__(self, doc): doc = doc or "" self.doc = doc.expandtabs() def is_valid(self): return False def exceptions(self): return set() def has_params(self): return False def has_returns(self): return False def has_rtype(self): return False def has_property_returns(self): return False def has_property_type(self): return False def has_yields(self): return False def has_yields_type(self): return False def match_param_docs(self): return set(), set() def params_documented_elsewhere(self): return self.re_for_parameters_see.search(self.doc) is not None class SphinxDocstring(Docstring): re_type = r""" [~!.]? # Optional link style prefix \w(?:\w|\.[^\.])* # Valid python name """ re_simple_container_type = r""" {type} # a container type [\(\[] [^\n\s]+ [\)\]] # with the contents of the container """.format( type=re_type ) re_multiple_simple_type = r""" (?:{container_type}|{type}) (?:(?:\s+(?:of|or)\s+|\s*,\s*)(?:{container_type}|{type}))* """.format( type=re_type, container_type=re_simple_container_type ) re_xref = r""" (?::\w+:)? # optional tag `{}` # what to reference """.format( re_type ) re_param_raw = r""" : # initial colon (?: # Sphinx keywords param|parameter| arg|argument| key|keyword ) \s+ # whitespace (?: # optional type declaration ({type}|{container_type}) \s+ )? (\w+) # Parameter name \s* # whitespace : # final colon """.format( type=re_type, container_type=re_simple_container_type ) re_param_in_docstring = re.compile(re_param_raw, re.X | re.S) re_type_raw = r""" :type # Sphinx keyword \s+ # whitespace ({type}) # Parameter name \s* # whitespace : # final colon """.format( type=re_multiple_simple_type ) re_type_in_docstring = re.compile(re_type_raw, re.X | re.S) re_property_type_raw = r""" :type: # Sphinx keyword \s+ # whitespace {type} # type declaration """.format( type=re_multiple_simple_type ) re_property_type_in_docstring = re.compile(re_property_type_raw, re.X | re.S) re_raise_raw = r""" : # initial colon (?: # Sphinx keyword raises?| except|exception ) \s+ # whitespace ({type}) # exception type \s* # whitespace : # final colon """.format( type=re_multiple_simple_type ) re_raise_in_docstring = re.compile(re_raise_raw, re.X | re.S) re_rtype_in_docstring = re.compile(r":rtype:") re_returns_in_docstring = re.compile(r":returns?:") supports_yields = False def is_valid(self): return bool( self.re_param_in_docstring.search(self.doc) or self.re_raise_in_docstring.search(self.doc) or self.re_rtype_in_docstring.search(self.doc) or self.re_returns_in_docstring.search(self.doc) or self.re_property_type_in_docstring.search(self.doc) ) def exceptions(self): types = set() for match in re.finditer(self.re_raise_in_docstring, self.doc): raise_type = match.group(1) types.update(_split_multiple_exc_types(raise_type)) return types def has_params(self): if not self.doc: return False return self.re_param_in_docstring.search(self.doc) is not None def has_returns(self): if not self.doc: return False return bool(self.re_returns_in_docstring.search(self.doc)) def has_rtype(self): if not self.doc: return False return bool(self.re_rtype_in_docstring.search(self.doc)) def has_property_returns(self): if not self.doc: return False # The summary line is the return doc, # so the first line must not be a known directive. return not self.doc.lstrip().startswith(":") def has_property_type(self): if not self.doc: return False return bool(self.re_property_type_in_docstring.search(self.doc)) def match_param_docs(self): params_with_doc = set() params_with_type = set() for match in re.finditer(self.re_param_in_docstring, self.doc): name = match.group(2) params_with_doc.add(name) param_type = match.group(1) if param_type is not None: params_with_type.add(name) params_with_type.update(re.findall(self.re_type_in_docstring, self.doc)) return params_with_doc, params_with_type class EpytextDocstring(SphinxDocstring): """ Epytext is similar to Sphinx. See the docs: http://epydoc.sourceforge.net/epytext.html http://epydoc.sourceforge.net/fields.html#fields It's used in PyCharm: https://www.jetbrains.com/help/pycharm/2016.1/creating-documentation-comments.html#d848203e314 https://www.jetbrains.com/help/pycharm/2016.1/using-docstrings-to-specify-types.html """ re_param_in_docstring = re.compile( SphinxDocstring.re_param_raw.replace(":", "@", 1), re.X | re.S ) re_type_in_docstring = re.compile( SphinxDocstring.re_type_raw.replace(":", "@", 1), re.X | re.S ) re_property_type_in_docstring = re.compile( SphinxDocstring.re_property_type_raw.replace(":", "@", 1), re.X | re.S ) re_raise_in_docstring = re.compile( SphinxDocstring.re_raise_raw.replace(":", "@", 1), re.X | re.S ) re_rtype_in_docstring = re.compile( r""" @ # initial "at" symbol (?: # Epytext keyword rtype|returntype ) : # final colon """, re.X | re.S, ) re_returns_in_docstring = re.compile(r"@returns?:") def has_property_returns(self): if not self.doc: return False # If this is a property docstring, the summary is the return doc. if self.has_property_type(): # The summary line is the return doc, # so the first line must not be a known directive. return not self.doc.lstrip().startswith("@") return False class GoogleDocstring(Docstring): re_type = SphinxDocstring.re_type re_xref = SphinxDocstring.re_xref re_container_type = r""" (?:{type}|{xref}) # a container type [\(\[] [^\n]+ [\)\]] # with the contents of the container """.format( type=re_type, xref=re_xref ) re_multiple_type = r""" (?:{container_type}|{type}|{xref}) (?:(?:\s+(?:of|or)\s+|\s*,\s*)(?:{container_type}|{type}|{xref}))* """.format( type=re_type, xref=re_xref, container_type=re_container_type ) _re_section_template = r""" ^([ ]*) {0} \s*: \s*$ # Google parameter header ( .* ) # section """ re_param_section = re.compile( _re_section_template.format(r"(?:Args|Arguments|Parameters)"), re.X | re.S | re.M, ) re_keyword_param_section = re.compile( _re_section_template.format(r"Keyword\s(?:Args|Arguments|Parameters)"), re.X | re.S | re.M, ) re_param_line = re.compile( r""" \s* \*{{0,2}}(\w+) # identifier potentially with asterisks \s* ( [(] {type} (?:,\s+optional)? [)] )? \s* : # optional type declaration \s* (.*) # beginning of optional description """.format( type=re_multiple_type ), re.X | re.S | re.M, ) re_raise_section = re.compile( _re_section_template.format(r"Raises"), re.X | re.S | re.M ) re_raise_line = re.compile( r""" \s* ({type}) \s* : # identifier \s* (.*) # beginning of optional description """.format( type=re_multiple_type ), re.X | re.S | re.M, ) re_returns_section = re.compile( _re_section_template.format(r"Returns?"), re.X | re.S | re.M ) re_returns_line = re.compile( r""" \s* ({type}:)? # identifier \s* (.*) # beginning of description """.format( type=re_multiple_type ), re.X | re.S | re.M, ) re_property_returns_line = re.compile( r""" ^{type}: # indentifier \s* (.*) # Summary line / description """.format( type=re_multiple_type ), re.X | re.S | re.M, ) re_yields_section = re.compile( _re_section_template.format(r"Yields?"), re.X | re.S | re.M ) re_yields_line = re_returns_line supports_yields = True def is_valid(self): return bool( self.re_param_section.search(self.doc) or self.re_raise_section.search(self.doc) or self.re_returns_section.search(self.doc) or self.re_yields_section.search(self.doc) or self.re_property_returns_line.search(self._first_line()) ) def has_params(self): if not self.doc: return False return self.re_param_section.search(self.doc) is not None def has_returns(self): if not self.doc: return False entries = self._parse_section(self.re_returns_section) for entry in entries: match = self.re_returns_line.match(entry) if not match: continue return_desc = match.group(2) if return_desc: return True return False def has_rtype(self): if not self.doc: return False entries = self._parse_section(self.re_returns_section) for entry in entries: match = self.re_returns_line.match(entry) if not match: continue return_type = match.group(1) if return_type: return True return False def has_property_returns(self): # The summary line is the return doc, # so the first line must not be a known directive. first_line = self._first_line() return not bool( self.re_param_section.search(first_line) or self.re_raise_section.search(first_line) or self.re_returns_section.search(first_line) or self.re_yields_section.search(first_line) ) def has_property_type(self): if not self.doc: return False return bool(self.re_property_returns_line.match(self._first_line())) def has_yields(self): if not self.doc: return False entries = self._parse_section(self.re_yields_section) for entry in entries: match = self.re_yields_line.match(entry) if not match: continue yield_desc = match.group(2) if yield_desc: return True return False def has_yields_type(self): if not self.doc: return False entries = self._parse_section(self.re_yields_section) for entry in entries: match = self.re_yields_line.match(entry) if not match: continue yield_type = match.group(1) if yield_type: return True return False def exceptions(self): types = set() entries = self._parse_section(self.re_raise_section) for entry in entries: match = self.re_raise_line.match(entry) if not match: continue exc_type = match.group(1) exc_desc = match.group(2) if exc_desc: types.update(_split_multiple_exc_types(exc_type)) return types def match_param_docs(self): params_with_doc = set() params_with_type = set() entries = self._parse_section(self.re_param_section) entries.extend(self._parse_section(self.re_keyword_param_section)) for entry in entries: match = self.re_param_line.match(entry) if not match: continue param_name = match.group(1) param_type = match.group(2) param_desc = match.group(3) if param_type: params_with_type.add(param_name) if param_desc: params_with_doc.add(param_name) return params_with_doc, params_with_type def _first_line(self): return self.doc.lstrip().split("\n", 1)[0] @staticmethod def min_section_indent(section_match): return len(section_match.group(1)) + 1 @staticmethod def _is_section_header(_): # Google parsing does not need to detect section headers, # because it works off of indentation level only return False def _parse_section(self, section_re): section_match = section_re.search(self.doc) if section_match is None: return [] min_indentation = self.min_section_indent(section_match) entries = [] entry = [] is_first = True for line in section_match.group(2).splitlines(): if not line.strip(): continue indentation = space_indentation(line) if indentation < min_indentation: break # The first line after the header defines the minimum # indentation. if is_first: min_indentation = indentation is_first = False if indentation == min_indentation: if self._is_section_header(line): break # Lines with minimum indentation must contain the beginning # of a new parameter documentation. if entry: entries.append("\n".join(entry)) entry = [] entry.append(line) if entry: entries.append("\n".join(entry)) return entries class NumpyDocstring(GoogleDocstring): _re_section_template = r""" ^([ ]*) {0} \s*?$ # Numpy parameters header \s* [-=]+ \s*?$ # underline ( .* ) # section """ re_param_section = re.compile( _re_section_template.format(r"(?:Args|Arguments|Parameters)"), re.X | re.S | re.M, ) re_param_line = re.compile( r""" \s* (\w+) # identifier \s* : \s* (?:({type})(?:,\s+optional)?)? # optional type declaration \n # description starts on a new line \s* (.*) # description """.format( type=GoogleDocstring.re_multiple_type ), re.X | re.S, ) re_raise_section = re.compile( _re_section_template.format(r"Raises"), re.X | re.S | re.M ) re_raise_line = re.compile( r""" \s* ({type})$ # type declaration \s* (.*) # optional description """.format( type=GoogleDocstring.re_type ), re.X | re.S | re.M, ) re_returns_section = re.compile( _re_section_template.format(r"Returns?"), re.X | re.S | re.M ) re_returns_line = re.compile( r""" \s* (?:\w+\s+:\s+)? # optional name ({type})$ # type declaration \s* (.*) # optional description """.format( type=GoogleDocstring.re_multiple_type ), re.X | re.S | re.M, ) re_yields_section = re.compile( _re_section_template.format(r"Yields?"), re.X | re.S | re.M ) re_yields_line = re_returns_line supports_yields = True @staticmethod def min_section_indent(section_match): return len(section_match.group(1)) @staticmethod def _is_section_header(line): return bool(re.match(r"\s*-+$", line)) DOCSTRING_TYPES = { "sphinx": SphinxDocstring, "epytext": EpytextDocstring, "google": GoogleDocstring, "numpy": NumpyDocstring, "default": Docstring, } """A map of the name of the docstring type to its class. :type: dict(str, type) """
esrally/utils/net.py
Kua-Fu/rally
1,577
12674182
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import functools import logging import os import socket import urllib.error from urllib.parse import parse_qs, quote, urlencode, urlparse, urlunparse import certifi import urllib3 from esrally import exceptions from esrally.utils import console, convert __HTTP = None def init(): logger = logging.getLogger(__name__) global __HTTP proxy_url = os.getenv("http_proxy") if proxy_url and len(proxy_url) > 0: parsed_url = urllib3.util.parse_url(proxy_url) logger.info("Connecting via proxy URL [%s] to the Internet (picked up from the env variable [http_proxy]).", proxy_url) __HTTP = urllib3.ProxyManager( proxy_url, cert_reqs="CERT_REQUIRED", ca_certs=certifi.where(), # appropriate headers will only be set if there is auth info proxy_headers=urllib3.make_headers(proxy_basic_auth=parsed_url.auth), ) else: logger.info("Connecting directly to the Internet (no proxy support).") __HTTP = urllib3.PoolManager(cert_reqs="CERT_REQUIRED", ca_certs=certifi.where()) class Progress: def __init__(self, msg, accuracy=0): self.p = console.progress() # if we don't show a decimal sign, the maximum width is 3 (max value is 100 (%)). Else its 3 + 1 (for the decimal point) # the accuracy that the user requested. total_width = 3 if accuracy == 0 else 4 + accuracy # sample formatting string: [%5.1f%%] for an accuracy of 1 self.percent_format = "[%%%d.%df%%%%]" % (total_width, accuracy) self.msg = msg def __call__(self, bytes_read, bytes_total): if bytes_total: completed = bytes_read / bytes_total total_as_mb = convert.bytes_to_human_string(bytes_total) self.p.print("%s (%s total size)" % (self.msg, total_as_mb), self.percent_format % (completed * 100)) else: self.p.print(self.msg, ".") def finish(self): self.p.finish() def _fake_import_boto3(): # This function only exists to be mocked in tests to raise an ImportError, in # order to simulate the absence of boto3 pass def _download_from_s3_bucket(bucket_name, bucket_path, local_path, expected_size_in_bytes=None, progress_indicator=None): # pylint: disable=import-outside-toplevel # lazily initialize S3 support - it might not be available try: _fake_import_boto3() import boto3.s3.transfer except ImportError: console.error("S3 support is optional. Install it with `python -m pip install esrally[s3]`") raise class S3ProgressAdapter: def __init__(self, size, progress): self._expected_size_in_bytes = size self._progress = progress self._bytes_read = 0 def __call__(self, bytes_amount): self._bytes_read += bytes_amount self._progress(self._bytes_read, self._expected_size_in_bytes) s3 = boto3.resource("s3") bucket = s3.Bucket(bucket_name) if expected_size_in_bytes is None: expected_size_in_bytes = bucket.Object(bucket_path).content_length progress_callback = S3ProgressAdapter(expected_size_in_bytes, progress_indicator) if progress_indicator else None bucket.download_file(bucket_path, local_path, Callback=progress_callback, Config=boto3.s3.transfer.TransferConfig(use_threads=False)) def _build_gcs_object_url(bucket_name, bucket_path): # / and other special characters must be urlencoded in bucket and object names # ref: https://cloud.google.com/storage/docs/request-endpoints#encoding return functools.reduce( urllib.parse.urljoin, [ "https://storage.googleapis.com/storage/v1/b/", f"{quote(bucket_name.strip('/'), safe='')}/", "o/", f"{quote(bucket_path.strip('/'), safe='')}", "?alt=media", ], ) def _download_from_gcs_bucket(bucket_name, bucket_path, local_path, expected_size_in_bytes=None, progress_indicator=None): # pylint: disable=import-outside-toplevel # lazily initialize Google Cloud Storage support - we might not need it import google.auth import google.auth.transport.requests as tr_requests import google.oauth2.credentials # Using Google Resumable Media as the standard storage library doesn't support progress # (https://github.com/googleapis/python-storage/issues/27) from google.resumable_media.requests import ChunkedDownload ro_scope = "https://www.googleapis.com/auth/devstorage.read_only" access_token = os.environ.get("GOOGLE_AUTH_TOKEN") if access_token: credentials = google.oauth2.credentials.Credentials(token=access_token, scopes=(ro_scope,)) else: # https://google-auth.readthedocs.io/en/latest/user-guide.html credentials, _ = google.auth.default(scopes=(ro_scope,)) transport = tr_requests.AuthorizedSession(credentials) chunk_size = 50 * 1024 * 1024 # 50MB with open(local_path, "wb") as local_fp: media_url = _build_gcs_object_url(bucket_name, bucket_path) download = ChunkedDownload(media_url, chunk_size, local_fp) # allow us to calculate the total bytes download.consume_next_chunk(transport) if not expected_size_in_bytes: expected_size_in_bytes = download.total_bytes while not download.finished: if progress_indicator and download.bytes_downloaded and download.total_bytes: progress_indicator(download.bytes_downloaded, expected_size_in_bytes) download.consume_next_chunk(transport) def download_from_bucket(blobstore, url, local_path, expected_size_in_bytes=None, progress_indicator=None): blob_downloader = {"s3": _download_from_s3_bucket, "gs": _download_from_gcs_bucket} logger = logging.getLogger(__name__) bucket_and_path = url[5:] # s3:// or gs:// prefix for now bucket_end_index = bucket_and_path.find("/") bucket = bucket_and_path[:bucket_end_index] # we need to remove the leading "/" bucket_path = bucket_and_path[bucket_end_index + 1 :] logger.info("Downloading from [%s] bucket [%s] and path [%s] to [%s].", blobstore, bucket, bucket_path, local_path) blob_downloader[blobstore](bucket, bucket_path, local_path, expected_size_in_bytes, progress_indicator) return expected_size_in_bytes def download_http(url, local_path, expected_size_in_bytes=None, progress_indicator=None): with __http().request("GET", url, preload_content=False, retries=10, timeout=urllib3.Timeout(connect=45, read=240)) as r, open( local_path, "wb" ) as out_file: if r.status > 299: raise urllib.error.HTTPError(url, r.status, "", None, None) # noinspection PyBroadException try: size_from_content_header = int(r.getheader("Content-Length")) if expected_size_in_bytes is None: expected_size_in_bytes = size_from_content_header except BaseException: size_from_content_header = None chunk_size = 2 ** 16 bytes_read = 0 for chunk in r.stream(chunk_size): out_file.write(chunk) bytes_read += len(chunk) if progress_indicator and size_from_content_header: progress_indicator(bytes_read, size_from_content_header) return expected_size_in_bytes def add_url_param_elastic_no_kpi(url): scheme = urllib3.util.parse_url(url).scheme if scheme.startswith("http"): return _add_url_param(url, {"x-elastic-no-kpi": "true"}) else: return url def _add_url_param(url, params): url_parsed = urlparse(url) query = parse_qs(url_parsed.query) query.update(params) return urlunparse( (url_parsed.scheme, url_parsed.netloc, url_parsed.path, url_parsed.params, urlencode(query, doseq=True), url_parsed.fragment) ) def download(url, local_path, expected_size_in_bytes=None, progress_indicator=None): """ Downloads a single file from a URL to the provided local path. :param url: The remote URL specifying one file that should be downloaded. May be either a HTTP, HTTPS, S3 or GS URL. :param local_path: The local file name of the file that should be downloaded. :param expected_size_in_bytes: The expected file size in bytes if known. It will be used to verify that all data have been downloaded. :param progress_indicator A callable that can be use to report progress to the user. It is expected to take two parameters ``bytes_read`` and ``total_bytes``. If not provided, no progress is shown. Note that ``total_bytes`` is derived from the ``Content-Length`` header and not from the parameter ``expected_size_in_bytes`` for downloads via HTTP(S). """ tmp_data_set_path = local_path + ".tmp" try: scheme = urllib3.util.parse_url(url).scheme if scheme in ["s3", "gs"]: expected_size_in_bytes = download_from_bucket(scheme, url, tmp_data_set_path, expected_size_in_bytes, progress_indicator) else: expected_size_in_bytes = download_http(url, tmp_data_set_path, expected_size_in_bytes, progress_indicator) except BaseException: if os.path.isfile(tmp_data_set_path): os.remove(tmp_data_set_path) raise else: download_size = os.path.getsize(tmp_data_set_path) if expected_size_in_bytes is not None and download_size != expected_size_in_bytes: if os.path.isfile(tmp_data_set_path): os.remove(tmp_data_set_path) raise exceptions.DataError( "Download of [%s] is corrupt. Downloaded [%d] bytes but [%d] bytes are expected. Please retry." % (local_path, download_size, expected_size_in_bytes) ) os.rename(tmp_data_set_path, local_path) def retrieve_content_as_string(url): with __http().request("GET", url, timeout=urllib3.Timeout(connect=45, read=240)) as response: return response.read().decode("utf-8") def has_internet_connection(probing_url): logger = logging.getLogger(__name__) try: # We try to connect to Github by default. We use that to avoid touching too much different remote endpoints. logger.debug("Checking for internet connection against [%s]", probing_url) # We do a HTTP request here to respect the HTTP proxy setting. If we'd open a plain socket connection we circumvent the # proxy and erroneously conclude we don't have an Internet connection. response = __http().request("GET", probing_url, timeout=2.0) status = response.status logger.debug("Probing result is HTTP status [%s]", str(status)) return status == 200 except KeyboardInterrupt: raise except BaseException: logger.debug("Could not detect a working Internet connection", exc_info=True) return False def __http(): if not __HTTP: init() return __HTTP def resolve(hostname_or_ip): if hostname_or_ip and hostname_or_ip.startswith("127"): return hostname_or_ip addrinfo = socket.getaddrinfo(hostname_or_ip, 22, 0, 0, socket.IPPROTO_TCP) for family, _, _, _, sockaddr in addrinfo: # we're interested in the IPv4 address if family == socket.AddressFamily.AF_INET: ip, _ = sockaddr if ip[:3] != "127": return ip return None
python3-alpha/extra_modules/bs4/builder/_htmlparser.py
stormtheh4ck3r/python-for-android
267
12674194
"""Use the HTMLParser library to parse HTML files that aren't too bad.""" __all__ = [ 'HTMLParserTreeBuilder', ] from html.parser import HTMLParser import sys # Starting in Python 3.2, the HTMLParser constructor takes a 'strict' # argument, which we'd like to set to False. Unfortunately, # http://bugs.python.org/issue13273 makes strict=True a better bet # before Python 3.2.3. # # At the end of this file, we monkeypatch HTMLParser so that # strict=True works well on Python 3.2.2. major, minor, release = sys.version_info[:3] CONSTRUCTOR_TAKES_STRICT = ( major > 3 or (major == 3 and minor > 2) or (major == 3 and minor == 2 and release >= 3)) from bs4.element import ( CData, Comment, Declaration, Doctype, ProcessingInstruction, ) from bs4.dammit import EntitySubstitution, UnicodeDammit from bs4.builder import ( HTML, HTMLTreeBuilder, STRICT, ) HTMLPARSER = 'html.parser' class BeautifulSoupHTMLParser(HTMLParser): def handle_starttag(self, name, attrs): # XXX namespace self.soup.handle_starttag(name, None, None, dict(attrs)) def handle_endtag(self, name): self.soup.handle_endtag(name) def handle_data(self, data): self.soup.handle_data(data) def handle_charref(self, name): # XXX workaround for a bug in HTMLParser. Remove this once # it's fixed. if name.startswith('x'): real_name = int(name.lstrip('x'), 16) else: real_name = int(name) try: data = chr(real_name) except (ValueError, OverflowError) as e: data = "\N{REPLACEMENT CHARACTER}" self.handle_data(data) def handle_entityref(self, name): character = EntitySubstitution.HTML_ENTITY_TO_CHARACTER.get(name) if character is not None: data = character else: data = "&%s;" % name self.handle_data(data) def handle_comment(self, data): self.soup.endData() self.soup.handle_data(data) self.soup.endData(Comment) def handle_decl(self, data): self.soup.endData() if data.startswith("DOCTYPE "): data = data[len("DOCTYPE "):] self.soup.handle_data(data) self.soup.endData(Doctype) def unknown_decl(self, data): if data.upper().startswith('CDATA['): cls = CData data = data[len('CDATA['):] else: cls = Declaration self.soup.endData() self.soup.handle_data(data) self.soup.endData(cls) def handle_pi(self, data): self.soup.endData() self.soup.handle_data(data) self.soup.endData(ProcessingInstruction) class HTMLParserTreeBuilder(HTMLTreeBuilder): is_xml = False features = [HTML, STRICT, HTMLPARSER] def __init__(self, *args, **kwargs): if CONSTRUCTOR_TAKES_STRICT: kwargs['strict'] = False self.parser_args = (args, kwargs) def prepare_markup(self, markup, user_specified_encoding=None, document_declared_encoding=None): """ :return: A 4-tuple (markup, original encoding, encoding declared within markup, whether any characters had to be replaced with REPLACEMENT CHARACTER). """ if isinstance(markup, str): return markup, None, None, False try_encodings = [user_specified_encoding, document_declared_encoding] dammit = UnicodeDammit(markup, try_encodings, is_html=True) return (dammit.markup, dammit.original_encoding, dammit.declared_html_encoding, dammit.contains_replacement_characters) def feed(self, markup): args, kwargs = self.parser_args parser = BeautifulSoupHTMLParser(*args, **kwargs) parser.soup = self.soup parser.feed(markup) # Patch 3.2 versions of HTMLParser earlier than 3.2.3 to use some # 3.2.3 code. This ensures they don't treat markup like <p></p> as a # string. # # XXX This code can be removed once most Python 3 users are on 3.2.3. if major == 3 and minor == 2 and not CONSTRUCTOR_TAKES_STRICT: import re attrfind_tolerant = re.compile( r'\s*((?<=[\'"\s])[^\s/>][^\s/=>]*)(\s*=+\s*' r'(\'[^\']*\'|"[^"]*"|(?![\'"])[^>\s]*))?') HTMLParserTreeBuilder.attrfind_tolerant = attrfind_tolerant locatestarttagend = re.compile(r""" <[a-zA-Z][-.a-zA-Z0-9:_]* # tag name (?:\s+ # whitespace before attribute name (?:[a-zA-Z_][-.:a-zA-Z0-9_]* # attribute name (?:\s*=\s* # value indicator (?:'[^']*' # LITA-enclosed value |\"[^\"]*\" # LIT-enclosed value |[^'\">\s]+ # bare value ) )? ) )* \s* # trailing whitespace """, re.VERBOSE) BeautifulSoupHTMLParser.locatestarttagend = locatestarttagend from html.parser import tagfind, attrfind def parse_starttag(self, i): self.__starttag_text = None endpos = self.check_for_whole_start_tag(i) if endpos < 0: return endpos rawdata = self.rawdata self.__starttag_text = rawdata[i:endpos] # Now parse the data between i+1 and j into a tag and attrs attrs = [] match = tagfind.match(rawdata, i+1) assert match, 'unexpected call to parse_starttag()' k = match.end() self.lasttag = tag = rawdata[i+1:k].lower() while k < endpos: if self.strict: m = attrfind.match(rawdata, k) else: m = attrfind_tolerant.match(rawdata, k) if not m: break attrname, rest, attrvalue = m.group(1, 2, 3) if not rest: attrvalue = None elif attrvalue[:1] == '\'' == attrvalue[-1:] or \ attrvalue[:1] == '"' == attrvalue[-1:]: attrvalue = attrvalue[1:-1] if attrvalue: attrvalue = self.unescape(attrvalue) attrs.append((attrname.lower(), attrvalue)) k = m.end() end = rawdata[k:endpos].strip() if end not in (">", "/>"): lineno, offset = self.getpos() if "\n" in self.__starttag_text: lineno = lineno + self.__starttag_text.count("\n") offset = len(self.__starttag_text) \ - self.__starttag_text.rfind("\n") else: offset = offset + len(self.__starttag_text) if self.strict: self.error("junk characters in start tag: %r" % (rawdata[k:endpos][:20],)) self.handle_data(rawdata[i:endpos]) return endpos if end.endswith('/>'): # XHTML-style empty tag: <span attr="value" /> self.handle_startendtag(tag, attrs) else: self.handle_starttag(tag, attrs) if tag in self.CDATA_CONTENT_ELEMENTS: self.set_cdata_mode(tag) return endpos def set_cdata_mode(self, elem): self.cdata_elem = elem.lower() self.interesting = re.compile(r'</\s*%s\s*>' % self.cdata_elem, re.I) BeautifulSoupHTMLParser.parse_starttag = parse_starttag BeautifulSoupHTMLParser.set_cdata_mode = set_cdata_mode CONSTRUCTOR_TAKES_STRICT = True
Examples/Tests/particle_pusher/analysis_pusher.py
ruohai0925/artemis
131
12674215
<gh_stars>100-1000 #! /usr/bin/env python # Copyright 2019 <NAME> # # This file is part of WarpX. # # License: BSD-3-Clause-LBNL # This script tests the particle pusher (HC) # using a force-free field, # in which position x should remain 0. # An initial velocity Vy corresponding to # Lorentz factor = 20 is used. # Bz is fixed at 1 T. # Ex = -Vy*Bz. # Possible errors: # Boris: 2321.3958529 # Vay: 0.00010467 # HC: 0.00011403 # tolerance: 0.001 # Possible running time: ~ 4.0 s import sys import yt sys.path.insert(1, '../../../../warpx/Regression/Checksum/') import checksumAPI tolerance = 0.001 filename = sys.argv[1] ds = yt.load( filename ) ad = ds.all_data() x = ad['particle_position_x'].to_ndarray() print('error = ', abs(x)) print('tolerance = ', tolerance) assert(abs(x) < tolerance) test_name = filename[:-9] # Could also be os.path.split(os.getcwd())[1] checksumAPI.evaluate_checksum(test_name, filename)
skiing-huabei/utils/email_warning.py
OneCodeMonkey/spider-suites
3,649
12674216
<reponame>OneCodeMonkey/spider-suites from traceback import format_tb import smtplib from email.header import Header from email.mime.text import MIMEText from email.utils import ( parseaddr, formataddr) from config import get_email_args from logger import other email_args = get_email_args() smtp_server = email_args['server'] smtp_port = email_args['port'] from_addr = email_args['from'] from_password = email_args['password'] to_addr = email_args['to'] email_subject = email_args['subject'] warning_info = email_args['warning_info'] def _format_addr(nick_addr): name, addr = parseaddr(nick_addr) return formataddr((Header(name, 'utf-8').encode(), addr)) def gen_msg(content, subject, email_from, email_to, from_nick=None, to_nick=None): if from_nick is None: from_nick = email_from if to_nick is None: to_nick = email_to msg = MIMEText(content, 'plain', 'utf-8') msg['From'] = _format_addr('{} <{}>'.format(from_nick, email_from)) msg['To'] = _format_addr('{} <{}>'.format(to_nick, email_to)) msg['Subject'] = Header(subject).encode() return msg def send_email(email_from=from_addr, email_pass=from_password, to_addrs=None, server=smtp_server, port=smtp_port, from_nick='weibospider', to_nick='SpiderUser'): if to_addrs is None or isinstance(to_addrs, str): to_addrs = [to_addrs] msg = gen_msg(warning_info, email_subject, email_from, to_addrs[0], from_nick, to_nick) server = smtplib.SMTP(server, port) try: server.starttls() server.login(email_from, email_pass) rs = server.sendmail(email_from, to_addrs, msg.as_string()) except Exception as e: other.error('Failed to send emails, {} is raised, here are details:{}'.format(e, format_tb(e.__traceback__)[0])) else: return rs finally: server.quit()
meter/daemon/master_v1.py
anbo225/docklet
273
12674237
import subprocess, os def http_client_post(ip, port, url, entries = {}): import urllib.request, urllib.parse, json url = url if not url.startswith('/') else url[1:] response = urllib.request.urlopen('http://%s:%d/%s' % (ip, port, url), urllib.parse.urlencode(entries).encode()) obj = json.loads(response.read().decode().strip()) response.close() return obj class case_handler: # [Order-by] lexicographic order # curl -L -X POST http://0.0.0.0:1728/v1/minions/list def minions_list(form, args): minions = [] for item in args.conn: minions.append(args.conn[item][1]) return {"minions": minions} # curl -L -X POST -F mem=4096 -F cpu=2 http://0.0.0.0:1728/v1/resource/allocation def resource_allocation(form, args): mem = int(form['mem']) cpu = int(form['cpu']) candidates = {} from daemon.http import minion_http_handler for item in args.conn: addr = args.conn[item][1] obj = http_client_post(addr, minion_http_handler.http_port, '/v1/system/memsw/available') if obj['success'] and obj['data']['Mbytes'] >= mem: candidates[addr] = obj['data'] if len(candidates) <= 0: raise Exception("no minions") else: from policy.allocate import candidates_selector one = candidates_selector.select(candidates) return {"recommend": one} # curl -L -X POST -F user=docklet http://0.0.0.0:1728/v1/user/live/add def user_live_add(form, args): if not os.path.exists('/var/lib/docklet/global/users/%s' % form['user']): return False subprocess.getoutput('echo live > /var/lib/docklet/global/users/%s/status' % form['user']) return True # curl -L -X POST -F user=docklet http://0.0.0.0:1728/v1/user/live/remove def user_live_remove(form, args): subprocess.getoutput('rm -f /var/lib/docklet/global/users/%s/status' % form['user']) return True # curl -L -X POST http://0.0.0.0:1728/v1/user/live/list def user_live_list(form, args): return subprocess.getoutput('ls -1 /var/lib/docklet/global/users/*/status 2>/dev/null | awk -F\/ \'{print $(NF-1)\'}').split()
apps/__init__.py
PyCN/BlogBackendProject
335
12674244
<filename>apps/__init__.py # _*_ coding: utf-8 _*_ __author__ = 'LennonChin' __date__ = '2017/11/27 23:38'
terrascript/provider/NetApp/netapp_elementsw.py
mjuenema/python-terrascript
507
12674275
<filename>terrascript/provider/NetApp/netapp_elementsw.py # terrascript/provider/NetApp/netapp_elementsw.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:22:13 UTC) import terrascript class netapp_elementsw(terrascript.Provider): """Support for Volume, Initiator, Account, and Volume Access Group resources.""" __description__ = ( "Support for Volume, Initiator, Account, and Volume Access Group resources." ) __namespace__ = "NetApp" __name__ = "netapp-elementsw" __source__ = "https://github.com/NetApp/terraform-provider-netapp-elementsw" __version__ = "20.11.0" __published__ = "2020-11-24T20:02:40Z" __tier__ = "partner" __all__ = ["netapp_elementsw"]
fuzzymatcher/scorer_default.py
nikoAguilar/fuzzymatcher_edit
218
12674277
<gh_stars>100-1000 # -*- coding: utf-8 -*- import pandas as pd from collections import Counter from itertools import chain, product from operator import mul from functools import reduce from math import log10 from functools import lru_cache import logging log = logging.getLogger(__name__) from fuzzymatcher.utils import add_dmetaphones_to_col, is_mispelling, convert_series_to_dmetaphones, tokens_to_dmetaphones class Scorer: """ A DataPreprocessor is responsible for ingesting df_left (the dataframe containing the records we want to find matches for) and df_right (the dataframe we want to search for potential matches) and applying preprocessing stages like normalisation to make matching easier. """ def add_data(self, matcher): self.matcher = matcher self._generate_probs() def get_prob(self, token, field, left_right, misspelling=False): """ Get probability given field and token """ try: if not misspelling and left_right == "left": return self.left_field_token_probs_dict[field][token] if not misspelling and left_right == "right": return self.right_field_token_probs_dict[field][token] if misspelling and left_right == "left": return self.left_field_misspelling_probs_dict[field][token] if misspelling and left_right == "right": return self.right_field_misspelling_probs_dict[field][token] except KeyError: return None @lru_cache(maxsize=int(1e6)) def score_match(self, record_left_id, record_right_id): record_left = self.matcher.left_records[record_left_id] record_right = self.matcher.right_records[record_right_id] # Need to find common tokens, and get their probabilities fields_left = record_left.fields prob = 1 for f_left in fields_left: p = self._field_to_prob(f_left, record_left, record_right) prob = p * prob match_score = self.prob_to_score(prob) return {"match_prob" : prob, "match_score": match_score, "record_right": record_right} def _field_to_prob(self, field_left, record_left, record_right): field_right = self.matcher.left_to_right_lookup[field_left] tokens_left = set(record_left.clean_token_dict[field_left]) tokens_right = set(record_right.clean_token_dict[field_right]) matching_tokens = tokens_left.intersection(tokens_right) unmatching_tokens_left = tokens_left.difference(tokens_right) unmatching_tokens_right = tokens_right.difference(tokens_left) prob_matching = self._get_prob_matching(matching_tokens, field_right) prob_unmatching1 = self._get_prob_unmatching(unmatching_tokens_left, tokens_right, field_right, field_left) prob_unmatching2 = self._get_prob_unmatching(unmatching_tokens_right, tokens_left, field_right, field_left) tokens_alt_left = set(record_left.token_misspelling_dict[field_left]) tokens_alt_right = set(record_right.token_misspelling_dict[field_right]) matching_tokens_alt = tokens_alt_left.intersection(tokens_alt_right) prob_matching_alt = self._get_prob_matching(matching_tokens_alt, field_right, misspelling=True) prob = prob_matching * prob_unmatching1 * prob_unmatching2 * prob_matching_alt return prob def _get_prob_matching(self, tokens, f_right, misspelling=False): prob = 1 for t in tokens: p = self.get_prob(t,f_right,"right", misspelling) prob = p * prob return prob def _get_prob_unmatching(self, unmatching_tokens, record_tokens, field_right, field_left): # If the unmatching token is not a misspelling, then undo its probability prob = 1 for umt in unmatching_tokens: if not self._is_misspelling_of_one(umt, record_tokens): p = self.get_prob(umt,field_right,"right") if p is None: # If this token never appears on the right, how often does it appear on the left p = self.get_prob(umt,field_left,"left") prob = p * prob prob = Scorer._adjust_prob_towards_one(prob) return 1/prob def _is_misspelling_of_one(self, token, token_list): for t in token_list: if self.matcher.token_comparison.is_mispelling(token, t): return True return False def get_token_lists_by_field(self, recordsdict, attribute): token_lists_by_field = {} key = next(iter(recordsdict)) fields = recordsdict[key].fields for f in fields: token_lists_by_field[f] = [] for key, this_record in recordsdict.items(): for f in fields: tokens = getattr(this_record, attribute)[f] token_lists_by_field[f].extend(tokens) return token_lists_by_field def field_tokens_to_prob(self, field_tokens): ft = field_tokens for key, value in ft.items(): counts = Counter(value) count_sum = sum(counts.values()) counts = {k: v/count_sum for k,v in counts.items()} ft[key] = counts return ft def _generate_probs(self): left_field_tokens = self.get_token_lists_by_field(self.matcher.left_records, "clean_token_dict") self.left_field_token_probs_dict = self.field_tokens_to_prob(left_field_tokens) right_field_tokens = self.get_token_lists_by_field(self.matcher.right_records, "clean_token_dict") self.right_field_token_probs_dict = self.field_tokens_to_prob(right_field_tokens) left_field_tokens = self.get_token_lists_by_field(self.matcher.left_records, "token_misspelling_dict") self.left_field_misspelling_probs_dict = self.field_tokens_to_prob(left_field_tokens) right_field_tokens = self.get_token_lists_by_field(self.matcher.right_records, "token_misspelling_dict") self.right_field_misspelling_probs_dict = self.field_tokens_to_prob(right_field_tokens) @staticmethod def prob_to_score(prob): return -(log10(prob))/30 @staticmethod def _adjust_prob_towards_one(initial_prob, amount = 2): return initial_prob
faker/providers/internet/sk_SK/__init__.py
StabbarN/faker
12,077
12674283
from .. import Provider as InternetProvider class Provider(InternetProvider): user_name_formats = ( '{{last_name_female}}.{{first_name_female}}', '{{last_name_female}}.{{first_name_female}}', '{{last_name_male}}.{{first_name_male}}', '{{last_name_male}}.{{first_name_male}}', '{{first_name_female}}.{{last_name_female}}', '{{first_name_male}}.{{last_name_male}}', '{{first_name}}##', '?{{last_name}}', '?{{last_name}}', '?{{last_name}}', ) email_formats = ('{{user_name}}@{{free_email_domain}}', ) free_email_domains = ( 'zoznam.sk', 'gmail.com', 'centrum.sk', 'post.sk', 'chello.sk', 'pobox.sk', 'szm.sk', 'atlas.sk', 'azet.sk', 'inmail.sk', ) tlds = ('sk', 'com')
src/config.py
eco999/VALORANT-rank-yoinker
107
12674294
import json from io import TextIOWrapper from json import JSONDecodeError import requests import os from src.logs import Logging class Config: def __init__(self, log): self.log = log if not os.path.exists("config.json"): self.log("config.json not found, creating new one") with open("config.json", "w") as file: config = self.config_dialog(file) try: with open("config.json", "r") as file: self.log("config opened") config = json.load(file) if config.get("cooldown") is None: self.log("some config values are None, getting new config") config = self.config_dialog(file) if config.get("weapon") == "" or config.get("weapon") == None: weapon = input("Enter the name of the weapon you use the most (This is for tracking the skins): ").capitalize().strip() self.log(f"User inputted {weapon} as the weapon") with open("config.json", "w") as f: if not self.weapon_check(weapon): print(weapon + " is not known valorant weapon you can edit directly " + os.getcwd() + "\config.json\n") config["weapon"] = "vandal" json.dump(config, f, indent=4) self.log("vandal weapon has been added to the config file by default") else: config["weapon"] = weapon json.dump(config, f, indent=4) self.log(f"{weapon} weapon has been added to the config file by user") except (JSONDecodeError): self.log("invalid file") with open("config.json", "w") as file: config = self.config_dialog(file) finally: self.cooldown = config["cooldown"] self.log(f"got cooldown with value '{self.cooldown}'") if not self.weapon_check(config["weapon"]): self.weapon = "vandal" # if the user manually entered a wrong name into the config file, this will be the default until changed by the user. else: self.weapon = config["weapon"] def config_dialog(self, fileToWrite: TextIOWrapper): self.log("color config prompt called") jsonToWrite = {"cooldown": 1, "weapon":""} json.dump(jsonToWrite, fileToWrite) return jsonToWrite def weapon_check(self, name): if name in [weapon["displayName"] for weapon in requests.get("https://valorant-api.com/v1/weapons").json()["data"]]: return True else: return False
exercises/fr/exc_01_08_02.py
Jette16/spacy-course
2,085
12674298
import spacy nlp = spacy.load("fr_core_news_sm") text = "Apple a été créée en 1976 par <NAME>, <NAME> et <NAME>." # Traite le texte doc = ____ # Itère sur les entités prédites for ent in ____.____: # Affiche le texte de l'entité et son label print(ent.____, ____.____)
test/element_test.py
screamingskulls/sofi
402
12674304
<gh_stars>100-1000 from sofi.ui import Element def test_attrs_to_string_shortcut(): attributes = [ ('cl', 'class'), ('ident', 'id'), ] e = Element(cl='container', ident='foo') should_be = 'class="container" id="foo"' assert e._attrs_to_string(attributes) == should_be def test_attrs_to_string_empty_shortcut(): attributes = [ ] e = Element() should_be = '' assert e._attrs_to_string(attributes) == should_be def test_attrs_to_string_default_arguments(): e = Element(cl='container', ident='foo') should_be = 'class="container" id="foo"' assert e._attrs_to_string() == should_be def test_attrs_to_string_attribute_with_no_value(): attributes = [ ('cl', 'class'), ('ident', 'id'), ('disabled', None), ] e = Element(cl='container', ident='foo') should_be = 'class="container" id="foo" disabled' assert e._attrs_to_string(attributes) == should_be def test_attrs_to_string_with_nonexistent_attribute(): attributes = [ ('cl', 'class'), ('ident', 'id'), ('this_doesnt_exist', 'foo'), ] e = Element(cl='container', ident='foo') should_be = 'class="container" id="foo"' assert e._attrs_to_string(attributes) == should_be
indra/tests/test_cyjs_assembler.py
zebulon2/indra
136
12674312
<filename>indra/tests/test_cyjs_assembler.py<gh_stars>100-1000 from __future__ import absolute_import, print_function, unicode_literals from builtins import dict, str from indra.statements import * from indra.assemblers.cyjs import CyJSAssembler mek = Agent('MAP2K1', db_refs={'HGNC': '6840', 'TEXT': 'mek1'}) erk = Agent('MAPK1', db_refs={'UP': 'P28482'}) dusp = Agent('DUSP4') st_phos = Phosphorylation(mek, erk) st_phos_Y = Phosphorylation(mek, erk, residue='Y') st_phos_T = Phosphorylation(mek, erk, residue='T') st_dephos = Dephosphorylation(dusp, erk) st_complex = Complex([mek, erk, dusp]) st_act = Activation(mek, erk) st_gef = Gef(Agent('SOS1'), Agent('HRAS')) st_gap = Gap(Agent('RASA1'), Agent('HRAS')) st_incamount = IncreaseAmount(Agent('TP53'), Agent('MDM2')) st_decamount = DecreaseAmount(Agent('MDM2'), Agent('TP53')) st_act2 = Inhibition(dusp, erk) st_cited = Phosphorylation(mek, erk, evidence=Evidence(pmid='12345', text='MEK phosphorylates ERK')) st_cited2 = Phosphorylation(mek, erk, evidence=Evidence(pmid='api35', text='MEK phosphorylates ERK')) st_selfmod = Autophosphorylation(Agent('AKT1'), 'S', '473') def test_act(): cja = CyJSAssembler() cja.add_statements([st_act, st_act2]) cja.make_model() assert len(cja._nodes) == 3 assert len(cja._edges) == 2 polarities = [edge['data']['polarity'] for edge in cja._edges] assert len(set(polarities))==2 assert 'positive' in polarities assert 'negative' in polarities db_refs = [node['data']['db_refs'] for node in cja._nodes] for node, refs in zip(cja._nodes, db_refs): if node['data']['name'] == 'MAP2K1': assert refs.get('HGNC') == \ 'https://identifiers.org/hgnc:6840', refs assert refs.get('TEXT') == 'mek1', refs if node['data']['name'] == 'MAPK1': assert refs.get('UniProt') if node['data']['name'] == 'DUSP4': assert not refs def test_regamount(): cja = CyJSAssembler() cja.add_statements([st_incamount, st_decamount]) cja.make_model() assert len(cja._nodes) == 2 assert len(cja._edges) == 2 polarities = [edge['data']['polarity'] for edge in cja._edges] assert len(set(polarities))==2 assert 'positive' in polarities assert 'negative' in polarities def test_ras(): cja = CyJSAssembler() cja.add_statements([st_gef, st_gap]) cja.make_model() assert len(cja._nodes) == 3 assert len(cja._edges) == 2 polarities = [edge['data']['polarity'] for edge in cja._edges] assert len(set(polarities))==2 assert 'positive' in polarities assert 'negative' in polarities def test_selfmod(): cja = CyJSAssembler() cja.add_statements([st_selfmod]) cja.make_model() assert len(cja._nodes) == 1 assert len(cja._edges) == 1 polarities = [edge['data']['polarity'] for edge in cja._edges] assert len(polarities) == 1 assert polarities[0] == 'positive' def test_complex(): cja = CyJSAssembler() cja.add_statements([st_complex]) cja.make_model() assert len(cja._nodes) == 3 assert len(cja._edges) == 3 polarities = [edge['data']['polarity'] for edge in cja._edges] assert len(set(polarities))==1 assert 'none' in polarities def test_print_cyjs_graph(): cja = CyJSAssembler() cja.add_statements([st_act, st_act2]) cja.make_model() cyjs_str = cja.print_cyjs_graph() # assert output is not empty assert len(cyjs_str) > len('{\n "edges": [],\n "nodes": []\n}') def test_no_grouping(): st1 = Phosphorylation(Agent('A'), Agent('B')) st2 = Phosphorylation(Agent('A'), Agent('C')) st3 = Phosphorylation(Agent('C'), Agent('B')) cja = CyJSAssembler() cja.add_statements([st1, st2, st3]) cja.make_model(grouping=True) parents = [node['data']['parent'] for node in cja._nodes] for parent in parents: assert parent == '' def test_grouping_block_targeting_node(): st1 = Phosphorylation(Agent('A'), Agent('B')) st2 = Phosphorylation(Agent('C'), Agent('B')) cja = CyJSAssembler() cja.add_statements([st1, st2]) cja.make_model(grouping=True) for node in cja._nodes: if node['data']['name'] == 'A': parent_a = node['data']['parent'] if node['data']['name'] == 'B': parent_b = node['data']['parent'] assert parent_b == '' if node['data']['name'] == 'C': parent_c = node['data']['parent'] assert_element_properties(cja) assert parent_a == parent_c parent_a_name = [x['data']['name'] for x in cja._nodes if x['data']['id']==parent_a][0] assert parent_a_name.startswith('Group') assert len(cja._edges) == 3 virtual_edges = [x for x in cja._edges if x['data']['i'] == 'Virtual'] assert len(virtual_edges) == 2 real_edges = [x for x in cja._edges if x['data']['i'] != 'Virtual'] assert len(real_edges) == 1 def test_grouping_node_targeting_block(): st1 = Phosphorylation(Agent('A'), Agent('B')) st2 = Phosphorylation(Agent('A'), Agent('C')) cja = CyJSAssembler() cja.add_statements([st1, st2]) cja.make_model(grouping=True) for node in cja._nodes: if node['data']['name'] == 'A': parent_a = node['data']['parent'] assert parent_a == '' if node['data']['name'] == 'B': parent_b = node['data']['parent'] if node['data']['name'] == 'C': parent_c = node['data']['parent'] assert_element_properties(cja) assert parent_b == parent_c parent_b_name = [x['data']['name'] for x in cja._nodes if x['data']['id']==parent_b][0] assert parent_b_name.startswith('Group') assert len(cja._edges) == 3 virtual_edges = [x for x in cja._edges if x['data']['i'] == 'Virtual'] assert len(virtual_edges) == 2 real_edges = [x for x in cja._edges if x['data']['i'] != 'Virtual'] assert len(real_edges) == 1 def test_grouping_node_targeting_block_targeting_node(): st1 = Phosphorylation(Agent('A'), Agent('B')) st2 = Phosphorylation(Agent('A'), Agent('C')) st3 = Phosphorylation(Agent('B'), Agent('D')) st4 = Phosphorylation(Agent('C'), Agent('D')) cja = CyJSAssembler() cja.add_statements([st1, st2, st3, st4]) cja.make_model(grouping=True) for node in cja._nodes: if node['data']['name'] == 'A': parent_a = node['data']['parent'] assert parent_a == '' if node['data']['name'] == 'B': parent_b = node['data']['parent'] if node['data']['name'] == 'C': parent_c = node['data']['parent'] if node['data']['name'] == 'D': parent_d = node['data']['parent'] assert parent_d == '' assert_element_properties(cja) assert parent_b == parent_c parent_b_name = [x['data']['name'] for x in cja._nodes if x['data']['id']==parent_b][0] assert parent_b_name.startswith('Group') assert len(cja._edges) == 6 virtual_edges = [x for x in cja._edges if x['data']['i'] == 'Virtual'] assert len(virtual_edges) == 4 real_edges = [x for x in cja._edges if x['data']['i'] != 'Virtual'] assert len(real_edges) == 2 def test_grouping_block_targeting_block(): st1 = Phosphorylation(Agent('A'), Agent('B')) st2 = Phosphorylation(Agent('A'), Agent('C')) st3 = Phosphorylation(Agent('D'), Agent('B')) st4 = Phosphorylation(Agent('D'), Agent('C')) cja = CyJSAssembler() cja.add_statements([st1, st2, st3, st4]) cja.make_model(grouping=True) for node in cja._nodes: if node['data']['name'] == 'A': parent_a = node['data']['parent'] if node['data']['name'] == 'B': parent_b = node['data']['parent'] if node['data']['name'] == 'C': parent_c = node['data']['parent'] if node['data']['name'] == 'D': parent_d = node['data']['parent'] assert_element_properties(cja) assert parent_b == parent_c assert parent_a == parent_d parent_b_name = [x['data']['name'] for x in cja._nodes if x['data']['id']==parent_b][0] parent_a_name = [x['data']['name'] for x in cja._nodes if x['data']['id']==parent_a][0] assert parent_b_name.startswith('Group') assert parent_a_name.startswith('Group') assert len(cja._edges) == 5 virtual_edges = [x for x in cja._edges if x['data']['i'] == 'Virtual'] assert len(virtual_edges) == 4 real_edges = [x for x in cja._edges if x['data']['i'] != 'Virtual'] assert len(real_edges) == 1 def test_edge_aggregation_between_nongroup_nodes(): cja = CyJSAssembler() cja.add_statements([st_phos_Y, st_phos_T]) cja.make_model(grouping=False) assert len(cja._nodes) == 2 assert len(cja._edges) == 1 for edge in cja._edges: assert len(edge['data']['uuid_list']) == 2 for node in cja._nodes: assert len(node['data']['uuid_list']) == 2 cja = CyJSAssembler() cja.add_statements([st_phos_Y, st_phos_T]) cja.make_model(grouping=True) assert len(cja._nodes) == 2 assert len(cja._edges) == 1 for edge in cja._edges: assert len(edge['data']['uuid_list']) == 2 for node in cja._nodes: assert len(node['data']['uuid_list']) == 2 def assert_element_properties(cja): # each element needs an id elements = ([n for n in cja._nodes] + [e for e in cja._edges]) for element in elements: assert element['data']['id'] is not None, "Element ID is none" assert element['data']['id'] != '', "Element ID is blank string!" # each element should also have a list of uuids with at least one uuid assert element['data']['uuid_list'] is not None, "uuid_list is None" assert len(element['data']['uuid_list']) >= 1, "uuid_list is empty!" for uuid in element['data']['uuid_list']: assert type(uuid) == type('abc'), str(uuid) + ' is not a string'
tools/version_bump.py
tirkarthi/python-plexapi
749
12674323
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """Helper script to bump the current version.""" import argparse import re import subprocess from packaging.version import Version from plexapi import const SUPPORTED_BUMP_TYPES = ["patch", "minor", "major"] def _bump_release(release, bump_type): """Return a bumped release tuple consisting of 3 numbers.""" major, minor, patch = release if bump_type == "patch": patch += 1 elif bump_type == "minor": minor += 1 patch = 0 elif bump_type == "major": major += 1 minor = 0 patch = 0 return major, minor, patch def bump_version(version, bump_type): """Return a new version given a current version and action.""" new_release = _bump_release(version.release, bump_type) temp = Version("0") temp._version = version._version._replace(release=new_release) return Version(str(temp)) def write_version(version): """Update plexapi constant file with new version.""" with open("plexapi/const.py") as f: content = f.read() version_names = ["MAJOR", "MINOR", "PATCH"] version_values = str(version).split(".", 2) for n, v in zip(version_names, version_values): version_line = f"{n}_VERSION = " content = re.sub(f"{version_line}.*\n", f"{version_line}{v}\n", content) with open("plexapi/const.py", "wt") as f: content = f.write(content) def main(): """Execute script.""" parser = argparse.ArgumentParser(description="Bump version of plexapi") parser.add_argument( "bump_type", help="The type of version bump to perform", choices=SUPPORTED_BUMP_TYPES, ) parser.add_argument( "--commit", action="store_true", help="Create a version bump commit" ) parser.add_argument( "--tag", action="store_true", help="Tag the commit with the release version" ) arguments = parser.parse_args() if arguments.tag and not arguments.commit: parser.error("--tag requires use of --commit") if arguments.commit and subprocess.run(["git", "diff", "--quiet"]).returncode == 1: print("Cannot use --commit because git is dirty") return current = Version(const.__version__) bumped = bump_version(current, arguments.bump_type) assert bumped > current, "Bumped version is not newer than old version" write_version(bumped) if not arguments.commit: return subprocess.run(["git", "commit", "-nam", f"Release {bumped}"]) if arguments.tag: subprocess.run(["git", "tag", str(bumped), "-m", f"Release {bumped}"]) def test_bump_version(): """Make sure it all works.""" import pytest assert bump_version(Version("4.7.0"), "patch") == Version("4.7.1") assert bump_version(Version("4.7.0"), "minor") == Version("4.8.0") assert bump_version(Version("4.7.3"), "minor") == Version("4.8.0") assert bump_version(Version("4.7.0"), "major") == Version("5.0.0") assert bump_version(Version("4.7.3"), "major") == Version("5.0.0") assert bump_version(Version("5.0.0"), "major") == Version("6.0.0") if __name__ == "__main__": main()
third_party/gsutil/third_party/pyasn1/tests/codec/cer/__main__.py
tingshao/catapult
2,151
12674325
<filename>third_party/gsutil/third_party/pyasn1/tests/codec/cer/__main__.py # # This file is part of pyasn1 software. # # Copyright (c) 2005-2017, <NAME> <<EMAIL>> # License: http://snmplabs.com/pyasn1/license.html # try: import unittest2 as unittest except ImportError: import unittest suite = unittest.TestLoader().loadTestsFromNames( ['tests.codec.cer.test_encoder.suite', 'tests.codec.cer.test_decoder.suite'] ) if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite)
macro_benchmark/SegLink/seglink/config.py
songhappy/ai-matrix
180
12674329
import tensorflow as tf # basic tf.app.flags.DEFINE_string('action', 'train', 'Action to take') tf.app.flags.DEFINE_string('working_dir', '', 'Directory for saving checkpoints and log files') tf.app.flags.DEFINE_string('log_file_prefix', 'fctd_', 'Prefix of logging file name') # FCTD model tf.app.flags.DEFINE_integer('pos_label', 1, 'Label for the background class') tf.app.flags.DEFINE_integer('neg_label', 0, 'Label for the background class') tf.app.flags.DEFINE_float('fctd_min_scale', 0.1, 'Minimum region size') tf.app.flags.DEFINE_float('fctd_max_scale', 0.95, 'Maximum region size') tf.app.flags.DEFINE_float('pos_scale_diff_threshold', 1.7, '') tf.app.flags.DEFINE_float('neg_scale_diff_threshold', 2.0, '') tf.app.flags.DEFINE_integer('fctd_n_scale', 6, 'Number of region scales') tf.app.flags.DEFINE_integer('n_local_links', 8, 'Number of links of a grid node') tf.app.flags.DEFINE_integer('n_cross_links', 4, 'Number of cross-layer links on each node') tf.app.flags.DEFINE_string('link_clf_mode', 'softmax', 'Mode of classifying local links. Can be softmax or sigmoid') # testing tf.app.flags.DEFINE_integer('test_period', 5000, 'Period of on-the-fly testing') tf.app.flags.DEFINE_string('test_model_path', '', 'Test model path') tf.app.flags.DEFINE_string('test_record_path', '', 'Test tf-records path') tf.app.flags.DEFINE_integer('num_test', 500, 'Number of test images') tf.app.flags.DEFINE_float('node_threshold', 0.5, 'Confidence threshold for nodes') tf.app.flags.DEFINE_float('link_threshold', 0.5, 'Confidence threshold for links') tf.app.flags.DEFINE_integer('nms_top_k', 400, 'Apply NMS only to examples with top-k scores on each class') tf.app.flags.DEFINE_integer('keep_top_k', 200, 'Keep examples with top-k scores after NMS') tf.app.flags.DEFINE_integer('save_visualization', 0, 'Save visualization results') tf.app.flags.DEFINE_string('result_format', 'icdar_2015_inc', 'Result file format') tf.app.flags.DEFINE_float('bbox_scale_factor', 0, 'Bounding box scale trick') # summaries and checkpoints tf.app.flags.DEFINE_integer('brief_summary_period', 10, 'Period for brief summaries') tf.app.flags.DEFINE_integer('detailed_summary_period', 500, 'Period for detailed summaries') tf.app.flags.DEFINE_integer('checkpoint_period', 5000, 'Period for saving checkpoints')
filprofiler/__init__.py
whalesalad/filprofiler
521
12674344
<filename>filprofiler/__init__.py<gh_stars>100-1000 """The Fil memory profiler.""" __all__ = ["__version__"] # If we're running with Fil preloaded, after forks make sure Fil is no longer # enabled, since we don't yet support child processes. This is also done in C # code; doing it only in Python or only C doesn't seem to work. import sys import os if sys.version_info[:2] > (3, 6): # register_at_fork only works in Python 3.6 or later. if os.getenv("__FIL_STATUS") in ("api", "program"): def unset(_os=os): _os.environ["__FIL_STATUS"] = "subprocess" os.register_at_fork(after_in_child=unset) del unset # Fallback mechanism for detecting forks, for Python 3.6 or if someone isn't # doing fork()-without-exec() right (i.e. not calling the C API postfork()): _original_pid = os.getpid() del sys, os try: from ._version import version as __version__ except ImportError: # package is not installed try: from importlib.metadata import version, PackageNotFoundError try: __version__ = version(__name__) except PackageNotFoundError: __version__ = "unknown" except ImportError: # Python 3.6 doesn't have importlib.metadata: __version__ = "unknown" def load_ipython_extension(ipython): """Load our IPython magic.""" from IPython.core.error import UsageError import os if os.environ.get("__FIL_STATUS") != "api": raise UsageError( "In order to use Fil, you need to run your notebook with the Fil kernel.\n\n" "You can change the kernel via the 'Change Kernel' option at the bottom of " "the Kernel menu in Jupyter." ) from ._ipython import FilMagics ipython.register_magics(FilMagics)
pipeline/Serverless/02_pipeline/deploy.py
Rkauff/Klayers
1,096
12674353
import os import time from datetime import datetime import boto3 from botocore.exceptions import ClientError from boto3.dynamodb.conditions import Key from aws_lambda_powertools.logging import Logger logger = Logger() import common.get_config as get_config def check_regions_to_deploy(package, requirements_hash, regions): """ Args: package: Name of package to deploy requirements_hash: Hash of requirements.txt file regions: Total regions configured to deployed return: regions_to_deploy(list): Regions where latest package doesn't match requirements_hash provided """ table_name = os.environ["DB_NAME"] dynamodb = boto3.resource("dynamodb") table = dynamodb.Table(table_name) response = table.query( IndexName="package_global", KeyConditionExpression=Key("pckg").eq(package) & Key("dplySts").eq("latest"), ) # check if there are any region in regions that aren't deployed regions_deployed = [item["rgn"] for item in response["Items"]] regions_to_deploy = [region for region in regions if region not in regions_deployed] logger.info( { "message": f"Deploying to {len(regions_to_deploy)} new regions", "new_regions": regions_to_deploy, "regions_deployed": regions_deployed, } ) # for all deployed regions, check if it has the latest version for item in response["Items"]: if item["rqrmntsHsh"] != requirements_hash: if item["rgn"] in regions: regions_to_deploy.append(item["rgn"]) # deduplicate regions_to_deploy = list(set(regions_to_deploy)) logger.info({"regions_to_deploy": regions_to_deploy}) return regions_to_deploy def download_artifact(package_artifact): """ Downloads s3://bucket_name/package_artifact to /tmp directory """ bucket_name = os.environ["BUCKET_NAME"] s3 = boto3.resource("s3") s3.meta.client.download_file( bucket_name, package_artifact, f"/tmp/{package_artifact}" ) with open(f"/tmp/{package_artifact}", "rb") as zip_file: zip_binary = zip_file.read() logger.info(f"Package {package_artifact} downloaded") return zip_binary def get_requirements_txt(package): """ Args: package: Name of package to query for return: requirements_txt (str): Requirements.txt of the package, or "null" ot not present """ build_v0 = "bldVrsn0#" sk = f"pckg#{package}" client = boto3.client("dynamodb") table_name = os.environ["DB_NAME"] response = client.get_item( TableName=table_name, Key={"pk": {"S": build_v0}, "sk": {"S": sk}}, ) logger.info({"query_requirements": response}) requirements_txt = response.get("Item", {}).get("rqrmntsTxt", {}).get("S", "null") return requirements_txt @logger.inject_lambda_context def main(event, context): regions = get_config.get_aws_regions() package = event["package"] version = event["version"] build_flag = event["build_flag"] package_artifact = event["zip_file"] requirements_hash = event["requirements_hash"] license_info = event["license_info"] table_name = os.environ["DB_NAME"] expiry_days = int(os.environ["EXPIRY_DAYS"]) dynamo_client = boto3.client("dynamodb") deployed_flag = False # Check if need to deploy regions_to_deploy = check_regions_to_deploy(package, requirements_hash, regions) if len(regions_to_deploy) == 0: logger.info({"message": "No new regions to deploy to, terminating!"}) return { "deployed_flag": deployed_flag, "build_flag": build_flag, "package": package, "version": version, "requirements_hash": requirements_hash, } logger.info( {"message": "Regions to deploy", "regions_to_deploy": regions_to_deploy} ) # Download Lambda Artifact layer_name = f"{os.environ['LAMBDA_PREFIX']}{package}" zip_binary = download_artifact(package_artifact) # Get requirements txt requirements_txt = get_requirements_txt(package) for region in regions_to_deploy: # Publish Layer Version logger.info({"message": "Deploying", "region": region, "package": package}) lambda_client = boto3.client("lambda", region_name=region) response = lambda_client.publish_layer_version( LayerName=layer_name, Description=f"{package}=={version} | {requirements_hash}", Content={"ZipFile": zip_binary}, CompatibleRuntimes=["python3.6", "python3.7", "python3.8"], LicenseInfo=license_info, ) layer_version_arn = response["LayerVersionArn"] layer_version_created_date = datetime.utcnow().isoformat() layer_version = int(layer_version_arn.split(":")[-1]) # Make Layer Publicly accessible logger.info( { "message": "Making Public", "region": region, "package": package, "arn": layer_version_arn, "created_date": layer_version_created_date, } ) lambda_client.add_layer_version_permission( LayerName=layer_name, VersionNumber=layer_version, StatementId="make_public", Action="lambda:GetLayerVersion", Principal="*", ) # Insert new entry into DynamoDB logger.info( { "message": "Inserting to table", "region": region, "package": package, "arn": layer_version_arn, } ) pk = f"lyr#{region}.{package}" sk_v0 = "lyrVrsn0#" sk = f"lyrVrsn#v{layer_version}" sk_previous = f"lyrVrsn#v{layer_version-1}" dynamo_client.transact_write_items( TransactItems=[ { "Update": { "TableName": table_name, "Key": {"pk": {"S": pk}, "sk": {"S": sk_v0},}, "UpdateExpression": "set " "rqrmntsTxt = :rqrmntsTxt, " "pckgVrsn = :pckgVrsn, " "rqrmntsHsh = :rqrmntsHsh," "arn = :arn," "crtdDt = :crtdDt," "lyrVrsn = :lyrVrsn", "ExpressionAttributeValues": { ":rqrmntsTxt": {"S": requirements_txt}, ":crtdDt": {"S": layer_version_created_date}, ":pckgVrsn": {"S": version}, ":rqrmntsHsh": {"S": requirements_hash}, ":arn": {"S": layer_version_arn}, ":lyrVrsn": {"N": str(layer_version)}, }, # Allow update only if # Current lyrVrsn is less than updated value # or lyrVrsn doesn't exists "ConditionExpression": "lyrVrsn <= :lyrVrsn OR attribute_not_exists(lyrVrsn)", } }, { "Put": { "TableName": table_name, "Item": { "pk": {"S": pk}, "sk": {"S": sk}, "pckgVrsn": {"S": version}, "crtdDt": {"S": layer_version_created_date}, "rqrmntsTxt": {"S": requirements_txt}, "rqrmntsHsh": {"S": requirements_hash}, "arn": {"S": layer_version_arn}, "pckg": {"S": package}, "rgn": {"S": region}, "dplySts": {"S": "latest"}, "lyrVrsn": {"N": str(layer_version)}, }, } }, ] ) if layer_version > 1: logger.info( { "message": "Updating Previous Version", "region": region, "package": package, "arn": layer_version_arn, } ) try: dynamo_client.update_item( TableName=table_name, Key={"pk": {"S": pk}, "sk": {"S": sk_previous}}, UpdateExpression="set " "dplySts = :dplySts, " "exDt = :exDt", ExpressionAttributeValues={ ":dplySts": {"S": "deprecated"}, ":exDt": {"N": str(int(time.time() + 24 * 3600 * expiry_days))}, }, ConditionExpression="attribute_exists(sk)", ) except ClientError as e: if e.response["Error"]["Code"] == "ConditionalCheckFailedException": logger.warning( { "message": "Conditional Check failed", "layer_version": layer_version, "sk": sk_previous, } ) deployed_flag = True return { "deployed_to": regions_to_deploy, "deployed_flag": deployed_flag, "build_flag": build_flag, "package": package, "version": version, "requirements_hash": requirements_hash, }
lib/gcn/sparse/torch_nn.py
ChenFengYe/relightable-nr
105
12674371
from torch import nn from torch.nn import Sequential as Seq, Linear as Lin ############################## # Basic layers ############################## def act_layer(act_type, inplace=False, neg_slope=0.2, n_prelu=1): """ helper selecting activation :param act_type: :param inplace: :param neg_slope: :param n_prelu: :return: """ act_type = act_type.lower() if act_type == 'relu': layer = nn.ReLU(inplace) elif act_type == 'leakyrelu': layer = nn.LeakyReLU(neg_slope, inplace) elif act_type == 'prelu': layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) else: raise NotImplementedError('activation layer [%s] is not found' % act_type) return layer def norm_layer(norm_type, nc): # helper selecting normalization layer norm_type = norm_type.lower() if norm_type == 'batch': layer = nn.BatchNorm1d(nc, affine=True) elif norm_type == 'instance': layer = nn.InstanceNorm1d(nc, affine=False) else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return layer class MultiSeq(Seq): def __init__(self, *args): super(MultiSeq, self).__init__(*args) def forward(self, *inputs): for module in self._modules.values(): if type(inputs) == tuple: inputs = module(*inputs) else: inputs = module(inputs) return inputs class MLP(Seq): def __init__(self, channels, act_type='relu', norm_type=None, bias=True): m = [] for i in range(1, len(channels)): m.append(Lin(channels[i - 1], channels[i], bias)) if act_type: m.append(act_layer(act_type)) if norm_type: m.append(norm_layer(norm_type, channels[-1])) super(MLP, self).__init__(*m)
scraper/src/tests/default_strategy/tags_test.py
erichiggins0/docsearch-scraper
242
12674377
<filename>scraper/src/tests/default_strategy/tags_test.py # coding: utf-8 import lxml.html from .abstract import get_strategy class TestTags: def test_adding_tags_for_page(self): # Given strategy = get_strategy({ 'start_urls': [{ 'url': 'http://foo.bar/api', 'tags': ["test"] }] }) strategy.dom = lxml.html.fromstring(""" <html><body> <h1>Foo</h1> </body></html> """) # When actual = strategy.get_records_from_dom("http://foo.bar/api") # Then assert actual[0]['tags'] == ["test"] def test_adding_tags_for_subpage(self): # Given strategy = get_strategy({ 'start_urls': [{ 'url': 'http://foo.bar/api', 'tags': ["test"] }] }) strategy.dom = lxml.html.fromstring(""" <html><body> <h1>Foo</h1> </body></html> """) # When actual = strategy.get_records_from_dom("http://foo.bar/api/test") # Then assert actual[0]['tags'] == ["test"] def test_regex_start_urls(self): # Given # Stub ENV variables read by ConfigLoader strategy = get_strategy({ 'start_urls': [ { 'url': 'http://foo.bar/.*', 'tags': ["test"] } ] }) strategy.dom = lxml.html.fromstring(""" <html><body> <h1>Foo</h1> </body></html> """) # When actual = strategy.get_records_from_dom("http://foo.bar/api/test") # Then assert actual[0]['tags'] == ["test"]
tools/dev/parrot_fuzzer.py
winnit-myself/Wifie
312
12674394
<reponame>winnit-myself/Wifie #!/usr/bin/env python # Copyright (C) 2009-2011, Parrot Foundation. from fusil.application import Application from fusil.process.watch import WatchProcess from fusil.process.create import CreateProcess from fusil.process.stdout import WatchStdout from fusil.project_agent import ProjectAgent from fusil.process.tools import locateProgram from fusil.write_code import WriteCode from optparse import OptionGroup import re import string import random ''' =head1 NAME parrot_fuzzer.py - opcode fuzzer =head1 DESCRIPTION This is a fuzzer for Parrot, written in Python using the Fusil library. It attempts to break Parrot by generating calls to random PIR opcodes. =head1 DEPENDENCIES This script requires Python 2.5+ to run. The Fusil L<http://fusil.hachoir.org/trac> and python-ptrace L<http://python-ptrace.hachoir.org/trac> libraries are also required. =head1 USAGE Short version: C<sudo python tools/dev/parrot_fuzzer.py> C<parrot_fuzzer.py> is run like any other Fusil-based fuzzer. Fusil likes to be run as the root user so that the child process in which Parrot runs can be put in a more restricted environment, limiting potential damage. Fusil assumes the existence of a C<fusil> user and group. Parrot runs as this user/group as part of its restricted environment. Passing C<--unsafe> allows it to run as the current user. Although it is not likely that this will cause any damage to your system, it is possible. C<parrot_fuzzer.py> needs access to Parrot's source code in order to figure out which PMCs and ops are available. It assumes that it's running in the root directory of Parrot's source code. You can specify a different directory using the C<--parrot-root> switch. =head1 OPTIONS =over 4 =item C<--parrot-root=/path/to/parrot> Represents the path to the Parrot root directory. By default, this is the current directory. =item C<--runcore=--some-runcore> Specifies which runcore to use when running Parrot. The default is the I<slow> core. This option corresponds directly to Parrot's C<--runcore> option. Other runcores include I<fast>. Run C<parrot --help> for more details. =item C<--ignore-blacklist> Some PMC's and opcodes are known to cause false positives or results of limited value. These are blacklisted by default. Using C<--ignore-blacklist> causes the fuzzer to use all available PMC's and opcodes, even those known to behave badly during testing. =item C<--instructions=10> Represents the number of instructions during the test run. Note that a larger number such as 20 does not necessarily result in more failures. Defaults to 3. =back =head1 LICENSE This program is distributed under the same license as Parrot itself. =cut ''' class ParrotFuzzer(Application): # Base name of the dir where temp files and successful results will be stored NAME="parrot_fuzz" def createFuzzerOptions(self, parser): options = OptionGroup(parser, "Parrot fuzzer") options.add_option("--parrot-root", help="Parrot program path (default: .)", type="str", default=".") options.add_option("--runcore", help="Run Parrot with the specified runcore (default: --slow-core)", type="str", default="--slow-core") options.add_option("--instructions", help="Generate this many instructions per test run (default: 3)", type="int", default="3") options.add_option("--ignore-blacklist", help="Use opcodes and PMCs known to cause bad or questionable results (default: use blacklists)", action="store_true", default=False) return options def setupProject(self): parrot_root = self.options.parrot_root runcore = self.options.runcore parrot = locateProgram(parrot_root + "/parrot") process = ParrotProcess(self.project, [parrot, runcore, "<fuzzy.pir>"]) pirgen = PirGenerator(self.project, self.options) WatchProcess(process) WatchStdout(process) class PirGenerator(ProjectAgent, WriteCode): def __init__(self, project, options): self.parrot_root = options.parrot_root self.instruction_count = options.instructions self.ignore_blacklist = options.ignore_blacklist self.opfunc_gen = OpfuncGenerator() self.arg_gen = ArgGenerator(self.parrot_root, self.ignore_blacklist) self.opfunc_gen.populateOpfuncList(self.parrot_root, self.ignore_blacklist) ProjectAgent.__init__(self, project, "pir_source") WriteCode.__init__(self) def generatePir(self, filename): self.pir_body = '' self.pir_preamble = """ .sub main $P0 = new ['ExceptionHandler'] set_addr $P0, catchall push_eh $P0 #pokemon: gotta catch 'em all """ self.pir_postamble = """ catchall: # Don't do anything with exceptions: we're hoping for a segfault or similar. .end """ # How many instructions to generate # Strangely, a low number like 3 seems to generate slightly more faults # than a high number like 20 opfunc_count = self.instruction_count self.pir_body += " # generating "+str(opfunc_count)+" instructions\n" arg_types = ['s', 'p', 'i', 'n', 'sc', 'ic', 'nc'] opfuncs = [] arg_counts = dict() self.createFile(filename) arg_gen = self.arg_gen # Pick some opfuncs for i in range(opfunc_count): opfuncs.append(OpfuncCall(*self.opfunc_gen.getOpfunc())) # Calculate how many of each type of arg will be needed for arg_type in arg_types: arg_counts[arg_type] = 0 for opfunc in opfuncs: arg_counts[arg_type] += opfunc.getArgCount(arg_type) for arg_type in arg_types: arg_gen.setArgCount(arg_type, arg_counts[arg_type]) # Generate the args, adding any supporting code to the preamble self.pir_preamble += arg_gen.generateStringArgs() self.pir_preamble += arg_gen.generatePMCArgs() self.pir_preamble += arg_gen.generateIntArgs() self.pir_preamble += arg_gen.generateNumArgs() self.pir_preamble += arg_gen.generateStringConstArgs() self.pir_preamble += arg_gen.generateIntConstArgs() self.pir_preamble += arg_gen.generateNumConstArgs() # Put the args into the opfunc calls for opfunc in opfuncs: for arg_num in range(opfunc.getTotalArgCount()): arg_type = opfunc.getArgType(arg_num) opfunc.setArgVal(arg_num, arg_gen.getArgVal(arg_type)) self.pir_body += opfunc.getOpfuncCall() # Write the code self.write(0, self.pir_preamble) self.write(0, self.pir_body) self.write(0, self.pir_postamble) self.close() def on_session_start(self): filename = self.session().createFilename('fuzzy.pir') self.generatePir(filename) self.send('pir_source', filename) # Representation of a call to an opfunc, including values of arguments # Note that argumens are literal, e.g. '$P0', '"foo"', etc class OpfuncCall: def __init__(self, name, sig): self.arg_types = [] self.arg_vals = [] self.name = name if sig == '': self.long_name = name else: self.long_name = name + '_' + sig self.total_arg_count = 0 if sig != '': for arg in string.split(sig, "_"): self.arg_types.append(arg) self.arg_vals.append('') self.total_arg_count += 1 def getLongName(self): return self.long_name def getArgCount(self, arg): return self.arg_types.count(arg) def getTotalArgCount(self): return self.total_arg_count def getArgType(self, n): return self.arg_types[n] def getArgType(self, n): return self.arg_types[n] def setArgVal(self, n, arg_val): self.arg_vals[n] = arg_val def getOpfuncCall(self): opfunc_call = '\n # '+self.long_name+'\n ' + self.name for arg_val in self.arg_vals: opfunc_call += ' ' + arg_val + ',' opfunc_call = string.rstrip(opfunc_call, ",") opfunc_call += "\n" return opfunc_call class ArgGenerator: arg_counts = {} args = {} def __init__(self, parrot_root, ignore_blacklist): self.pmc_gen = PMCTypeGenerator() self.pmc_gen.populatePMCList(parrot_root, ignore_blacklist) def setArgCount(self, arg_type, count): self.arg_counts[arg_type] = count def getArgVal(self, arg_type): return random.choice(self.args[arg_type]) def generateStringArgs(self): pir_preamble = "" self.args['s'] = [] for n in range(self.arg_counts['s']): str_val = self.getString() pir_preamble += " $S" + str(n) + " = \"" + str_val + "\"\n" self.args['s'].append('$S' + str(n)) return pir_preamble def generatePMCArgs(self): pir_preamble = "" self.args['p'] = [] for n in range(self.arg_counts['p']): pir_preamble += " $P" + str(n) + " = new ['" + self.pmc_gen.getPMCType() + "']\n" self.args['p'].append('$P' + str(n)) return pir_preamble def generateIntArgs(self): pir_preamble = "" self.args['i'] = [] for n in range(self.arg_counts['i']): num = random.choice(['neg_many','neg_one','zero','pos_one','pos_many']) if num == 'neg_many': num_val = random.randint(-999999,-2) if num == 'neg_one': num_val = -1 if num == 'zero': num_val = 0 if num == 'pos_one': num_val = 1 if num == 'pos_many': num_val = random.randint(2, 999999) pir_preamble += " $I" + str(n) + " = "+str(num_val)+"\n" self.args['i'].append('$I' + str(n)) return pir_preamble def generateNumArgs(self): pir_preamble = "" self.args['n'] = [] for n in range(self.arg_counts['n']): num = random.choice(['neg_many','neg_one','zero','pos_one','pos_many']) if num == 'neg_many': num_val = (random.random() * -999999) - 1 if num == 'neg_one': num_val = -1.0 if num == 'zero': num_val = 0.0 if num == 'pos_one': num_val = 1.0 if num == 'pos_many': num_val = (random.random() * 999999) + 1 pir_preamble += " $N" + str(n) + " = "+str(num_val)+"\n" self.args['n'].append('$N' + str(n)) return pir_preamble def generateStringConstArgs(self): pir_preamble = "" self.args['sc'] = [] for n in range(self.arg_counts['sc']): self.args['sc'].append('"'+self.getString()+'"') return pir_preamble def generateIntConstArgs(self): pir_preamble = "" self.args['ic'] = [] for n in range(self.arg_counts['ic']): # Negative numbers and zero mess up control flow-related ops #num = random.choice(['neg_many','neg_one','zero','pos_one','pos_many']) num = random.choice(['pos_one','pos_many']) if num == 'neg_many': num_val = random.randint(-999999,-2) if num == 'neg_one': num_val = -1 if num == 'zero': num_val = 0 if num == 'pos_one': num_val = 1 if num == 'pos_many': num_val = random.randint(2, 999999) self.args['ic'].append(str(num_val)) return pir_preamble def generateNumConstArgs(self): pir_preamble = "" self.args['nc'] = [] for n in range(self.arg_counts['nc']): num = random.choice(['neg_many','neg_one','zero','pos_one','pos_many']) if num == 'neg_many': num_val = (random.random() * -999999) - 1 if num == 'neg_one': num_val = -1.0 if num == 'zero': num_val = 0.0 if num == 'pos_one': num_val = 1.0 if num == 'pos_many': num_val = (random.random() * 999999) + 1 self.args['nc'].append(str(num_val)) return pir_preamble def getString(self): str_val = '' chars = string.printable + string.punctuation + string.whitespace str_len = random.randint(0,10) for m in range(str_len): char = chars[random.randint(0, len(chars)-1)] if char == '"': char = '\\"' if char == '\\': char = '\\\\' if char == '\n' or char == '\r': char = '' str_val += char return str_val class PMCTypeGenerator: pmc_list = [] pmc_blacklist = [ 'Packfile', 'PackfileAnnotation', 'PackfileAnnotationKeys', 'PackfileAnnotations', 'PackfileConstantTable', 'PackfileDirectory', 'PackfileFixupEntry', 'PackfileFixupTable', 'PackfileRawSegment', 'PackfileSegment', ] def populatePMCList(self, parrot_root, ignore_blacklist): pmc_pm = parrot_root + "/lib/Parrot/PMC.pm" pmc_f = open(pmc_pm, 'r') for line in pmc_f: if re.search('\t[a-zA-Z]+ => [0-9]+,', line): line = re.sub('\t', '', line) line = re.sub(' =>.*\n', '', line) if ignore_blacklist or line not in self.pmc_blacklist: self.pmc_list.append(line) def getPMCType(self): return random.choice(self.pmc_list) class OpfuncGenerator: opfunc_list = [] opfunc_blacklist = [ 'check_events', # Only for testing 'check_events__', # Not for direct use 'clears', # Clearing all [SPIN] registers isn't useful 'clearp', 'cleari', 'clearn', 'cpu_ret', 'debug', 'debug_break', 'debug_init', 'debug_load', 'debug_print', 'die', 'exit', 'gc_debug', 'if', 'pic_callr__', 'pic_get_params__', 'pic_infix__', 'pic_inline_sub__', 'pic_set_returns__', 'pin', 'pop_eh', 'prederef__', 'profile', 'push_eh', 'returncc', 'rethrow', 'runinterp', 'setn_ind', 'sets_ind', 'seti_ind', 'setp_ind', 'sleep', 'tailcall', 'trace', 'trap', 'unless', 'unpin', 'yield', ] def populateOpfuncList(self, parrot_root, ignore_blacklist): ops_h = parrot_root + "/src/ops/core_ops.c" ops_f = open(ops_h, 'r') # This is a moderately fragile hack that relies on the specific # format of some generated code, expect breakage for line in ops_f: if line.find('PARROT_INLINE_OP') > -1 or line.find('PARROT_FUNCTION_OP') > -1: line = ops_f.next() short_name = line line = ops_f.next() long_name = line # Strip leading space and opening double-quote short_name = re.sub('[ ]+"', '', short_name) long_name = re.sub('[ ]+"', '', long_name) # Strip everything after closing double-quote short_name = re.sub('".*\n', '', short_name) long_name = re.sub('".*\n', '', long_name) if long_name == short_name: sig = '' else: sig = string.replace(long_name, short_name + '_', '') #XXX: Don't know how to handle these args if (not re.search('(pc|k|ki|kc|kic)', sig)): if ignore_blacklist or short_name not in self.opfunc_blacklist: self.opfunc_list.append([short_name, sig]) # print "accepted "+long_name+"("+sig+")" #else: # print "REJECTED "+long_name+"("+sig+")" def getOpfunc(self): return random.choice(self.opfunc_list) class ParrotProcess(CreateProcess): def on_pir_source(self, filename): self.cmdline.arguments[1] = filename self.createProcess() if __name__ == "__main__": ParrotFuzzer().main()
tools/perf/page_sets/media_cns_cases.py
google-ar/chromium
777
12674398
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from telemetry.page import page as page_module from telemetry import story class BasicPlayPage(page_module.Page): def __init__(self, url, page_set, name=''): super(BasicPlayPage, self).__init__(url=url, page_set=page_set, name=name) self.add_browser_metrics = True def PlayAction(self, action_runner): action_runner.PlayMedia(playing_event_timeout_in_seconds=60, ended_event_timeout_in_seconds=60) def RunPageInteractions(self, action_runner): self.PlayAction(action_runner) def SeekBeforeAndAfterPlayhead(self, action_runner): action_runner.PlayMedia(playing_event_timeout_in_seconds=60) # Wait for 1 second so that we know the play-head is at ~1s. action_runner.Wait(1) # Seek to before the play-head location. action_runner.SeekMedia(seconds=0.5, timeout_in_seconds=60, label='seek_warm') # Seek to after the play-head location. action_runner.SeekMedia(seconds=15, timeout_in_seconds=60, label='seek_cold') class SeekBeforeAndAfterPlayheadPage(BasicPlayPage): def __init__(self, url, page_set, name): super(SeekBeforeAndAfterPlayheadPage, self).__init__(url=url, page_set=page_set, name=name) self.add_browser_metrics = False def RunPageInteractions(self, action_runner): self.SeekBeforeAndAfterPlayhead(action_runner) class MediaCnsCasesPageSet(story.StorySet): """ Media benchmark on network constrained conditions. """ def __init__(self): super(MediaCnsCasesPageSet, self).__init__() urls_list = [ # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=no_constraints_webm&src=tulip2.webm&net=none', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=cable_webm&src=tulip2.webm&net=cable', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_webm&src=tulip2.webm&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=no_constraints_ogv&src=tulip2.ogv&net=none', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=cable_ogv&src=tulip2.ogv&net=cable', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_ogv&src=tulip2.ogv&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=no_constraints_mp4&src=tulip2.mp4&net=none', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=cable_mp4&src=tulip2.mp4&net=cable', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_mp4&src=tulip2.mp4&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=no_constraints_wav&src=tulip2.wav&type=audio&net=none', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=cable_wav&src=tulip2.wav&type=audio&net=cable', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_wav&src=tulip2.wav&type=audio&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=no_constraints_ogg&src=tulip2.ogg&type=audio&net=none', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=cable_ogg&src=tulip2.ogg&type=audio&net=cable', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_ogg&src=tulip2.ogg&type=audio&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=no_constraints_mp3&src=tulip2.mp3&type=audio&net=none', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=cable_mp3&src=tulip2.mp3&type=audio&net=cable', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_mp3&src=tulip2.mp3&type=audio&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=no_constraints_m4a&src=tulip2.m4a&type=audio&net=none', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=cable_m4a&src=tulip2.m4a&type=audio&net=cable', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_m4a&src=tulip2.m4a&type=audio&net=wifi' ] for url in urls_list: self.AddStory(BasicPlayPage(url, self)) urls_list2 = [ # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_mp3&src=tulip2.mp3&type=audio&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_m4a&src=tulip2.m4a&type=audio&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_ogg&src=tulip2.ogg&type=audio&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_wav&src=tulip2.wav&type=audio&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_mp4&src=tulip2.mp4&type=audio&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_ogv&src=tulip2.ogv&type=audio&net=wifi', # pylint: disable=line-too-long 'file://tough_video_cases/video.html?id=wifi_webm&src=tulip2.webm&type=audio&net=wifi' ] for url in urls_list2: if url in urls_list: name = 'seek_' + url else: name = '' self.AddStory(SeekBeforeAndAfterPlayheadPage(url, self, name=name))
src/backbones/efficientnet/effnetv2_configs.py
HY-Vision-Lab/metrabs
208
12674423
<reponame>HY-Vision-Lab/metrabs # Copyright 2021 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """EfficientNet V1 and V2 model configs.""" import functools import re import backbones.efficientnet.effnetv2_hparams as hparams cfg_register = functools.partial(hparams.register, prefix='cfg:') class BlockDecoder(object): """Block Decoder for readability.""" def _decode_block_string(self, block_string): """Gets a block through a string notation of arguments.""" assert isinstance(block_string, str) ops = block_string.split('_') options = {} for op in ops: splits = re.split(r'(\d.*)', op) if len(splits) >= 2: key, value = splits[:2] options[key] = value return hparams.Config( kernel_size=int(options['k']), num_repeat=int(options['r']), input_filters=int(options['i']), output_filters=int(options['o']), expand_ratio=int(options['e']), se_ratio=float(options['se']) if 'se' in options else None, bottomright_stride='br' in options, strides=int(options['s']), conv_type=int(options['c']) if 'c' in options else 0, ) def _encode_block_string(self, block): """Encodes a block to a string.""" args = [ 'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d' % block.strides, 'e%s' % block.expand_ratio, 'i%d' % block.input_filters, 'o%d' % block.output_filters, 'c%d' % block.conv_type, 'f%d' % block.fused_conv, ] if block.se_ratio > 0 and block.se_ratio <= 1: args.append('se%s' % block.se_ratio) if block.bottomright_stride > 0 and block.se_ratio <= 1: args.append('br') return '_'.join(args) def decode(self, string_list): """Decodes a list of string notations to specify blocks inside the network. Args: string_list: a list of strings, each string is a notation of block. Returns: A list of namedtuples to represent blocks arguments. """ assert isinstance(string_list, list) blocks_args = [] for block_string in string_list: blocks_args.append(self._decode_block_string(block_string)) return blocks_args def encode(self, blocks_args): """Encodes a list of Blocks to a list of strings. Args: blocks_args: A list of namedtuples to represent blocks arguments. Returns: a list of strings, each string is a notation of block. """ block_strings = [] for block in blocks_args: block_strings.append(self._encode_block_string(block)) return block_strings #################### EfficientNet V1 configs #################### v1_b0_block_str = [ 'r1_k3_s1_e1_i32_o16_se0.25', 'r2_k3_s2_e6_i16_o24_se0.25', 'r2_k5_s2_e6_i24_o40_se0.25', 'r3_k3_s2_e6_i40_o80_se0.25', 'r3_k5_s1_e6_i80_o112_se0.25', 'r4_k5_s2_e6_i112_o192_se0.25_br', 'r1_k3_s1_e6_i192_o320_se0.25', ] efficientnetv1_params = { # (width_coefficient, depth_coefficient, resolution, dropout_rate) 'efficientnet-b0': (1.0, 1.0, 224, 0.2), 'efficientnet-b1': (1.0, 1.1, 240, 0.2), 'efficientnet-b2': (1.1, 1.2, 260, 0.3), 'efficientnet-b3': (1.2, 1.4, 300, 0.3), 'efficientnet-b4': (1.4, 1.8, 380, 0.4), 'efficientnet-b5': (1.6, 2.2, 456, 0.4), 'efficientnet-b6': (1.8, 2.6, 528, 0.5), 'efficientnet-b7': (2.0, 3.1, 600, 0.5), 'efficientnet-b8': (2.2, 3.6, 672, 0.5), 'efficientnet-l2': (4.3, 5.3, 800, 0.5), } def efficientnetv1_config(model_name='efficientnet-b0'): """EfficientNetV1 model config.""" width_coefficient, depth_coefficient, isize, dropout_rate = ( efficientnetv1_params[model_name]) cfg = hparams.Config( model=dict( model_name=model_name, blocks_args=BlockDecoder().decode(v1_b0_block_str), width_coefficient=width_coefficient, depth_coefficient=depth_coefficient, dropout_rate=dropout_rate, ), eval=dict(isize=isize), train=dict(isize=0.8), # 80% of eval size data=dict(augname='effnetv1_autoaug'), ) return cfg #################### EfficientNet V2 configs #################### v2_base_block = [ # The baseline config for v2 models. 'r1_k3_s1_e1_i32_o16_c1', 'r2_k3_s2_e4_i16_o32_c1', 'r2_k3_s2_e4_i32_o48_c1', 'r3_k3_s2_e4_i48_o96_se0.25', 'r5_k3_s1_e6_i96_o112_se0.25', 'r8_k3_s2_e6_i112_o192_se0.25_br', ] v2_s_block = [ # about base.yaml * (width1.4, depth1.8) 'r2_k3_s1_e1_i24_o24_c1', 'r4_k3_s2_e4_i24_o48_c1', 'r4_k3_s2_e4_i48_o64_c1', 'r6_k3_s2_e4_i64_o128_se0.25', 'r9_k3_s1_e6_i128_o160_se0.25', 'r15_k3_s2_e6_i160_o256_se0.25_br', ] v2_m_block = [ # about base.yaml * (width1.6, depth2.2) 'r3_k3_s1_e1_i24_o24_c1', 'r5_k3_s2_e4_i24_o48_c1', 'r5_k3_s2_e4_i48_o80_c1', 'r7_k3_s2_e4_i80_o160_se0.25', 'r14_k3_s1_e6_i160_o176_se0.25', 'r18_k3_s2_e6_i176_o304_se0.25_br', 'r5_k3_s1_e6_i304_o512_se0.25', ] v2_l_block = [ # about base.yaml * (width2.0, depth3.1) 'r4_k3_s1_e1_i32_o32_c1', 'r7_k3_s2_e4_i32_o64_c1', 'r7_k3_s2_e4_i64_o96_c1', 'r10_k3_s2_e4_i96_o192_se0.25', 'r19_k3_s1_e6_i192_o224_se0.25', 'r25_k3_s2_e6_i224_o384_se0.25_br', 'r7_k3_s1_e6_i384_o640_se0.25', ] v2_xl_block = [ # only for 21k pretraining. 'r4_k3_s1_e1_i32_o32_c1', 'r8_k3_s2_e4_i32_o64_c1', 'r8_k3_s2_e4_i64_o96_c1', 'r16_k3_s2_e4_i96_o192_se0.25', 'r24_k3_s1_e6_i192_o256_se0.25', 'r32_k3_s2_e6_i256_o512_se0.25_br', 'r8_k3_s1_e6_i512_o640_se0.25', ] efficientnetv2_params = { # (block, width, depth, train_size, eval_size, dropout, randaug, mixup, aug) 'efficientnetv2-s': # 83.9% @ 22M (v2_s_block, 1.0, 1.0, 300, 384, 0.2, 10, 0, 'randaug'), 'efficientnetv2-m': # 85.2% @ 54M (v2_m_block, 1.0, 1.0, 384, 480, 0.3, 15, 0.2, 'randaug'), 'efficientnetv2-l': # 85.7% @ 120M (v2_l_block, 1.0, 1.0, 384, 480, 0.4, 20, 0.5, 'randaug'), 'efficientnetv2-xl': (v2_xl_block, 1.0, 1.0, 384, 512, 0.4, 20, 0.5, 'randaug'), # For fair comparison to EfficientNetV1, using the same scaling and autoaug. 'efficientnetv2-b0': # 78.7% @ 7M params (v2_base_block, 1.0, 1.0, 192, 224, 0.2, 0, 0, 'effnetv1_autoaug'), 'efficientnetv2-b1': # 79.8% @ 8M params (v2_base_block, 1.0, 1.1, 192, 240, 0.2, 0, 0, 'effnetv1_autoaug'), 'efficientnetv2-b2': # 80.5% @ 10M params (v2_base_block, 1.1, 1.2, 208, 260, 0.3, 0, 0, 'effnetv1_autoaug'), 'efficientnetv2-b3': # 82.1% @ 14M params (v2_base_block, 1.2, 1.4, 240, 300, 0.3, 0, 0, 'effnetv1_autoaug'), } def efficientnetv2_config(model_name='efficientnetv2-s'): """EfficientNetV2 model config.""" block, width, depth, train_size, eval_size, dropout, randaug, mix, aug = ( efficientnetv2_params[model_name]) cfg = hparams.Config( model=dict( model_name=model_name, blocks_args=BlockDecoder().decode(block), width_coefficient=width, depth_coefficient=depth, dropout_rate=dropout, ), train=dict(isize=train_size, stages=4, sched=True), eval=dict(isize=eval_size), data=dict(augname=aug, ram=randaug, mixup_alpha=mix, cutmix_alpha=mix), ) return cfg ################################################################################ def get_model_config(model_name: str): """Main entry for model name to config.""" if model_name.startswith('efficientnet-'): return efficientnetv1_config(model_name) if model_name.startswith('efficientnetv2-'): return efficientnetv2_config(model_name) raise ValueError(f'Unknown model_name {model_name}')
locations/spiders/thebigbiscuit.py
nbeecher/alltheplaces
297
12674426
# -*- coding: utf-8 -*- import scrapy from locations.items import GeojsonPointItem class TheBigBiscuitSpider(scrapy.Spider): name = 'thebigbiscuit' item_attributes = {'brand': 'The Big Biscuit'} allowed_domains = ['www.bigbiscuit.com'] start_urls = ['https://bigbiscuit.com/locations/'] def parse(self, response): for each in response.xpath('//*[contains(@class, "section--location")]'): name = each.xpath('./*[@class="location-title"]/text()').extract_first() if name: street = each.xpath('.//*[@class="info-block"]//*[@class="text-small"][1]/text()').extract_first() postcode = each.xpath('./@data-zip').extract_first() city = each.xpath('./@data-city').extract_first() state = each.xpath('./@data-state').extract_first() phone = each.xpath('.//*[@class="phone"]/text()').extract_first() ref = each.xpath('.//*[@data-location]/@data-location').extract_first() hours = each.xpath('.//*[@class="info-block"]//*[@class="text-small"][3]/text()').extract_first() website = each.xpath(f'//*[@class="title h6" and text()="{name}"]/parent::div/following-sibling::a[1]/@href').extract_first() properties = { 'name': name, 'ref': ref, 'street': street, 'city': city, 'postcode': postcode, 'state': state, 'phone': phone, 'website': website } yield GeojsonPointItem(**properties)
setup.py
vilhub/DeBERTa
916
12674450
import subprocess import datetime import sys def install(package): subprocess.check_call([sys.executable, "-m", "pip", "install", package]) install('setuptools') install('gitpython') import setuptools import git repo = git.Repo(search_parent_directories=True) date=datetime.datetime.utcnow() with open("README.md", "r") as fh: long_description = fh.read() + f'\n git version: {repo.head.object.hexsha}' + \ f'\n date: {date}' with open('VERSION') as fs: version = fs.readline().strip() # version += f".dev{date.strftime('%y%m%d%H%M%S')}" with open('requirements.txt') as fs: requirements = [l.strip() for l in fs if not l.strip().startswith('#')] extras = {} extras["docs"] = ["recommonmark", "sphinx", "sphinx-markdown-tables", "sphinx-rtd-theme"] setuptools.setup( name="DeBERTa", version=version, author="penhe", author_email="<EMAIL>", description="Decoding enhanced BERT with Disentangled Attention", keywords="NLP deep learning transformer pytorch Attention BERT RoBERTa DeBERTa", license="MIT", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/microsoft/DeBERTa", packages=setuptools.find_packages(exclude=['__pycache__']), package_dir = {'DeBERTa':'DeBERTa'}, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', extras_require=extras, install_requires=requirements)
tests/test_s3-acl.py
kaiboma/hammer
385
12674455
<filename>tests/test_s3-acl.py import pytest from . import mock_s3 from library.aws.s3 import S3BucketsAclChecker from library.aws.utility import Account buckets = { "Bucket1": { "Description": "Private bucket", "CheckShouldPass": True, "ACL": "private", }, "Bucket2": { "Description": "Public read bucket", "CheckShouldPass": False, "ACL": "public-read", }, "Bucket3": { "Description": "Public read-write bucket", "CheckShouldPass": False, "ACL": "public-read-write", }, "Bucket4": { "Description": "Authenticated read bucket", "CheckShouldPass": False, "ACL": "authenticated-read", } } def find_rule_prop(bucket, prop, default): try: return buckets[bucket.name][prop] except KeyError: return default def ident_test(arg): """ Used to build identification string for each autogenerated test (for easy recognition of failed tests). :param bucket: dict with information about rules :return: . """ # print(jsonDumps(s3acl_details)) if isinstance(arg, bool): return "remediated" if arg else "original" else: descr = find_rule_prop(arg, "Description", "default description") return f"params: {arg.name} ({descr})" def pytest_generate_tests(metafunc): """ Entrypoint for tests (built-in pytest function for dynamic generation of test cases). """ # Launch EC2 mocking and env preparation mock_s3.start() mock_s3.create_env(buckets) account = Account() checker = S3BucketsAclChecker(account) checker.check() for s3_bucket in checker.buckets: s3_bucket.restrict_acl() checker_remediated = S3BucketsAclChecker(account) checker_remediated.check() s3_buckets = [(bucket, False) for bucket in checker.buckets] s3_buckets += [(bucket, True) for bucket in checker_remediated.buckets] metafunc.parametrize("bucket,remediated", s3_buckets, ids=ident_test) @pytest.mark.s3acl def test_s3acl(bucket, remediated): """ Actual testing function. :param bucket: :param remediated :return: nothing, raises AssertionError if actual test result is not matched with expected """ # print(f"{jsonDumps(s3acl_details)}") expected = True if remediated else find_rule_prop(bucket, "CheckShouldPass", True) assert expected == (not bucket.public_by_acl)
tests/gpflow/utilities/test_bijectors.py
HarrySpearing/GPflow
1,724
12674469
<filename>tests/gpflow/utilities/test_bijectors.py<gh_stars>1000+ import numpy as np import pytest import tensorflow_probability as tfp from gpflow.config import Config, as_context from gpflow.utilities import positive, triangular @pytest.mark.parametrize( "env_lower, override_lower", [ (0.1, None), # ensure default from config is applied (0.0, 0.2), # ensure override is applied (0.3, 0.4), # ensure local overrides config ], ) def test_positive_lower(env_lower, override_lower): expected_lower = override_lower or env_lower with as_context(Config(positive_bijector="softplus", positive_minimum=env_lower)): bijector = positive(lower=override_lower) assert isinstance(bijector, tfp.bijectors.Chain) assert np.isclose(bijector.bijectors[0].shift, expected_lower) @pytest.mark.parametrize( "env_bijector, override_bijector, expected_class", [ ("softplus", None, tfp.bijectors.Softplus), ("softplus", "Exp", tfp.bijectors.Exp), ("exp", None, tfp.bijectors.Exp), ("exp", "Softplus", tfp.bijectors.Softplus), ], ) def test_positive_bijector(env_bijector, override_bijector, expected_class): with as_context(Config(positive_bijector=env_bijector, positive_minimum=0.0)): bijector = positive(base=override_bijector) assert isinstance(bijector, expected_class) def test_positive_calculation_order(): value, lower = -10.0, 10.0 expected = np.exp(value) + lower with as_context(Config(positive_bijector="exp", positive_minimum=lower)): result = positive()(value).numpy() assert np.isclose(result, expected) assert result >= lower def test_triangular(): assert isinstance(triangular(), tfp.bijectors.FillTriangular)
venv/lib/python3.7/site-packages/pyasn1_modules/rfc8619.py
nicholasadamou/StockBird
9,953
12674491
# # This file is part of pyasn1-modules software. # # Created by <NAME>. # # Copyright (c) 2019, Vigil Security, LLC # License: http://snmplabs.com/pyasn1/license.html # # Algorithm Identifiers for HKDF # # ASN.1 source from: # https://www.rfc-editor.org/rfc/rfc8619.txt # from pyasn1.type import univ from pyasn1_modules import rfc5280 # Object Identifiers id_alg_hkdf_with_sha256 = univ.ObjectIdentifier('1.2.840.113549.1.9.16.3.28') id_alg_hkdf_with_sha384 = univ.ObjectIdentifier('1.2.840.113549.1.9.16.3.29') id_alg_hkdf_with_sha512 = univ.ObjectIdentifier('1.2.840.113549.1.9.16.3.30') # Key Derivation Algorithm Identifiers kda_hkdf_with_sha256 = rfc5280.AlgorithmIdentifier() kda_hkdf_with_sha256['algorithm'] = id_alg_hkdf_with_sha256 # kda_hkdf_with_sha256['parameters'] are absent kda_hkdf_with_sha384 = rfc5280.AlgorithmIdentifier() kda_hkdf_with_sha384['algorithm'] = id_alg_hkdf_with_sha384 # kda_hkdf_with_sha384['parameters'] are absent kda_hkdf_with_sha512 = rfc5280.AlgorithmIdentifier() kda_hkdf_with_sha512['algorithm'] = id_alg_hkdf_with_sha512 # kda_hkdf_with_sha512['parameters'] are absent
deps/memkind/test/python_framework/cmd_helper.py
kimleeju/Heterogeneous_Redis
107
12674498
# # Copyright (C) 2016 Intel Corporation. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice(s), # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice(s), # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO # EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import pytest import os import tempfile import subprocess class CMD_helper(object): def execute_cmd(self, command, sudo=False): if sudo: command = "sudo {0}".format(command) #Initialize temp file for stdout. Will be removed when closed. outfile = tempfile.SpooledTemporaryFile() try: #Invoke process p = subprocess.Popen(command, stdout=outfile, stderr=subprocess.STDOUT, shell=True) p.communicate() #Read stdout from file outfile.seek(0) stdout = outfile.read() except: raise finally: #Make sure the file is closed outfile.close() retcode = p.returncode return stdout, retcode def get_command_path(self, binary): """Get the path to the binary.""" path = os.path.dirname(os.path.abspath(__file__)) return os.path.join(path, binary)
nodemcu_uploader/luacode.py
bazooka07/nodemcu-uploader
324
12674565
# -*- coding: utf-8 -*- """This module contains all the LUA code that needs to be on the device to perform whats needed. They will be uploaded if they doesn't exist""" # Copyright (C) 2015-2019 <NAME> <<EMAIL>> # pylint: disable=C0301 # flake8: noqa LUA_FUNCTIONS = ['recv_block', 'recv_name', 'recv', 'shafile', 'send_block', 'send_file', 'send'] DOWNLOAD_FILE = "file.open('{filename}') print(file.seek('end', 0)) file.seek('set', {bytes_read}) uart.write(0, file.read({chunk_size}))file.close()" PRINT_FILE = "file.open('{filename}') print('---{filename}---') print(file.read()) file.close() print('---')" INFO_GROUP = "for key,value in pairs(node.info('{group}')) do k=tostring(key) print(k .. string.rep(' ', 20 - #k), tostring(value)) end" LIST_FILES = 'for key,value in pairs(file.list()) do print(key,value) end' # NUL = \000, ACK = \006 RECV_LUA = \ r""" function recv() local on,w,ack,nack=uart.on,uart.write,'\6','\21' local fd local function recv_block(d) local t,l = d:byte(1,2) if t ~= 1 then w(0, nack); fd:close(); return on('data') end if l >= 0 then fd:write(d:sub(3, l+2)); end if l == 0 then fd:close(); w(0, ack); return on('data') else w(0, ack) end end local function recv_name(d) d = d:gsub('%z.*', '') d:sub(1,-2) file.remove(d) fd=file.open(d, 'w') on('data', 130, recv_block, 0) w(0, ack) end on('data', '\0', recv_name, 0) w(0, 'C') end function shafile(f) print(crypto.toHex(crypto.fhash('sha1', f))) end """ # noqa: E122 SEND_LUA = \ r""" function send(f) uart.on('data', 1, function (data) local on,w=uart.on,uart.write local fd local function send_block(d) l = string.len(d) w(0, '\001' .. string.char(l) .. d .. string.rep('\0', 128 - l)) return l end local function send_file(f) local s, p fd=file.open(f) s=fd:seek('end', 0) p=0 on('data', 1, function(data) if data == '\006' and p<s then fd:seek('set',p) p=p+send_block(fd:read(128)) else send_block('') fd:close() on('data') print('interrupted') end end, 0) w(0, f .. '\000') end uart.on('data') if data == 'C' then send_file(f) else print('transfer interrupted') end end, 0) end """ UART_SETUP = 'uart.setup(0,{baud},8,0,1,1)' REMOVE_ALL_FILES = r""" for key,value in pairs(file.list()) do file.remove(key) end """
tests/views/test_current.py
whywaita/gitfs
921
12674583
# Copyright 2014-2016 Presslabs SRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from threading import Event import pytest from mock import patch, MagicMock, call from fuse import FuseOSError from gitfs.views.current import CurrentView from gitfs.cache.gitignore import CachedIgnore class TestCurrentView(object): def test_rename(self): mocked_re = MagicMock() mocked_index = MagicMock() mocked_os = MagicMock() mocked_result = MagicMock() mocked_result.rename.return_value = True mocked_re.sub.return_value = "new" mocked_os.path.split.return_value = [1, 1] with patch.multiple("gitfs.views.current", re=mocked_re, os=mocked_os): from gitfs.views import current as current_view old_rename = current_view.PassthroughView.rename current_view.PassthroughView.rename = lambda self, old, new: True current = CurrentView( regex="regex", repo="repo", repo_path="repo_path", ignore=CachedIgnore() ) current._stage = mocked_index result = current.rename("old", "new") assert result is True mocked_index.assert_called_once_with( **{"remove": 1, "add": "new", "message": "Rename old to new"} ) mocked_os.path.split.assert_called_once_with("old") current_view.PassthroughView.rename = old_rename def test_rename_in_git_dir(self): current = CurrentView(repo="repo", repo_path="repo_path", ignore=CachedIgnore()) with pytest.raises(FuseOSError): current.rename(".git/", ".git/") def test_symlink(self): mocked_index = MagicMock() mocked_repo = MagicMock() mocked_full_path = MagicMock() mocked_full_path.return_value = "full_path" mocked_repo._full_path = mocked_full_path with patch("gitfs.views.current.os") as mocked_os: mocked_os.symlink.return_value = "done" current = CurrentView( repo=mocked_repo, repo_path="repo_path", ignore=CachedIgnore() ) current._stage = mocked_index assert current.symlink("name", "target") == "done" mocked_os.symlink.assert_called_once_with("target", "full_path") mocked_full_path.assert_called_once_with("name") message = "Create symlink to target for name" mocked_index.assert_called_once_with(add="name", message=message) def test_readlink(self): mocked_repo = MagicMock() mocked_full_path = MagicMock() mocked_full_path.return_value = "full path" mocked_repo._full_path = mocked_full_path with patch("gitfs.views.current.os") as mocked_os: mocked_os.readlink.return_value = "done" current = CurrentView( repo=mocked_repo, repo_path="repo_path", ignore=CachedIgnore() ) current._full_path = mocked_full_path assert current.readlink("path") == "done" def test_getattr(self): mocked_full = MagicMock() mocked_os = MagicMock() mocked_stat = MagicMock() mocked_repo = MagicMock() mocked_stat.simple = "stat" mocked_os.lstat.return_value = mocked_stat mocked_full.return_value = "full_path" mocked_repo._full_path = mocked_full with patch.multiple("gitfs.views.current", os=mocked_os, STATS=["simple"]): current = CurrentView( repo=mocked_repo, uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore(), ) current._full_path = mocked_full result = current.getattr("path") asserted_result = {"st_uid": 1, "st_gid": 1, "simple": "stat"} assert result == asserted_result mocked_os.lstat.assert_called_once_with("full_path") mocked_full.assert_called_once_with("path") def test_write_in_git_dir(self): with pytest.raises(FuseOSError): current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", read_only=Event(), ignore=CachedIgnore(), ) current.write(".git/index", "buf", "offset", 1) def test_write_in_modules_dir(self): with pytest.raises(FuseOSError): current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", read_only=Event(), ignore=CachedIgnore(), ) current.write(".gitmodules", "buf", "offset", 1) def test_write_to_large_file(self): current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", read_only=Event(), ignore=CachedIgnore(), ) current.max_size = 10 current.dirty = {"/path": {"size": 5}} with pytest.raises(FuseOSError): current.write("/path", "bufffffert", 11, 1) def test_write(self): from gitfs.views import current as current_view mocked_write = lambda self, path, buf, offste, fh: "done" old_write = current_view.PassthroughView.write current_view.PassthroughView.write = mocked_write current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", read_only=Event(), ignore=CachedIgnore(), ) current.max_offset = 20 current.max_size = 20 current.dirty = {1: {}} assert current.write("/path", "buf", 3, 1) == "done" assert current.dirty == {1: {"message": "Update /path", "stage": True}} current_view.PassthroughView.write = old_write def test_mkdir(self): from gitfs.views import current as current_view old_mkdir = current_view.PassthroughView.mkdir old_chmod = current_view.PassthroughView.chmod mocked_mkdir = lambda self, path, mode: "done" mocked_chmod = MagicMock() mocked_chmod.return_value = None current_view.PassthroughView.mkdir = mocked_mkdir current_view.PassthroughView.chmod = mocked_chmod mocked_release = MagicMock() mocked_full_path = MagicMock() mocked_repo = MagicMock() mocked_full_path.return_value = "full_path" mocked_repo._full_path = mocked_full_path keep_path = "/path/.keep" mode = os.O_WRONLY | os.O_CREAT with patch("gitfs.views.current.os") as mocked_os: mocked_os.path.exists.return_value = False mocked_os.open.return_value = 10 mocked_os.O_WRONLY = os.O_WRONLY mocked_os.O_CREAT = os.O_CREAT current = CurrentView( repo=mocked_repo, uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore(), ) current.release = mocked_release assert current.mkdir("/path", "mode") == "done" mocked_full_path.assert_called_once_with(keep_path) mocked_os.path.exists.assert_called_once_with(keep_path) mocked_os.open.assert_called_once_with("full_path", mode) mocked_chmod.assert_called_once_with(keep_path, 0o644) assert current.dirty == { 10: {"message": "Create the /path directory", "stage": True} } mocked_release.assert_called_once_with(keep_path, 10) current_view.PassthroughView.mkdir = old_mkdir current_view.PassthroughView.chmod = old_chmod def test_mkdir_in_git_dir(self): current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore() ) with pytest.raises(FuseOSError): current.mkdir(".git/", "mode") def test_create_in_git_dir(self): current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore() ) with pytest.raises(FuseOSError): current.create(".git/", "mode") def test_create(self): from gitfs.views import current as current_view old_chmod = current_view.PassthroughView.chmod mock_chmod = lambda self, path, mode: "done" current_view.PassthroughView.chmod = mock_chmod mocked_open = MagicMock() mocked_open.return_value = "done" current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore() ) current.dirty = {"/path": {"content": "here"}} current.open_for_write = mocked_open assert current.create("/path", "mode") == "done" current_view.PassthroughView.chmod = old_chmod def test_chmod_in_git_dir(self): current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore() ) with pytest.raises(FuseOSError): current.chmod(".git/", "mode") def test_chmod(self): from gitfs.views import current as current_view old_chmod = current_view.PassthroughView.chmod current_view.PassthroughView.chmod = lambda self, path, mode: "done" mocked_index = MagicMock() mocked_full = MagicMock(return_value="/path") mocked_repo = MagicMock(_full_path=mocked_full) current = CurrentView( repo=mocked_repo, uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore() ) current._stage = mocked_index assert current.chmod("/path", 0o100644) == "done" message = "Chmod to 0%o on %s" % (0o644, "/path") mocked_index.assert_called_once_with(add="/path", message=message) current_view.PassthroughView.chmod = old_chmod def test_chmod_on_dir(self): from gitfs.views import current as current_view old_chmod = current_view.PassthroughView.chmod current_view.PassthroughView.chmod = lambda self, path, mode: "done" mocked_full = MagicMock(return_value="repo/path/to/dir") mocked_repo = MagicMock(_full_path=mocked_full) with patch("gitfs.views.current.os") as mocked_os: mocked_os.path.isdir.return_value = True current = CurrentView( repo=mocked_repo, uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore(), ) assert current.chmod("/path/to/dir", 0o040755) == "done" mocked_os.path.isdir.assert_called_once_with("repo/path/to/dir") current_view.PassthroughView.chmod = old_chmod def test_fsync_a_file_from_git_dir(self): current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore() ) with pytest.raises(FuseOSError): current.fsync(".git/", "data", 0) def test_fsync(self): from gitfs.views import current as current_view old_fsync = current_view.PassthroughView.fsync current_view.PassthroughView.fsync = lambda me, path, data, fh: "done" mocked_index = MagicMock() current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore() ) current._stage = mocked_index assert current.fsync("/path", "data", 1) == "done" message = "Fsync /path" mocked_index.assert_called_once_with(add="/path", message=message) current_view.PassthroughView.fsync = old_fsync def test_unlink_from_git_dir(self): current = CurrentView(repo="repo", repo_path="repo_path", ignore=CachedIgnore()) with pytest.raises(FuseOSError): current.unlink(".git/") def test_unlink(self): from gitfs.views import current as current_view old_unlink = current_view.PassthroughView.unlink current_view.PassthroughView.unlink = lambda me, path: "done" mocked_index = MagicMock() current = CurrentView( repo="repo", uid=1, gid=1, repo_path="repo_path", ignore=CachedIgnore() ) current._stage = mocked_index assert current.unlink("/path") == "done" message = "Deleted /path" mocked_index.assert_called_once_with(remove="/path", message=message) current_view.PassthroughView.unlink = old_unlink def test_stage(self): mocked_repo = MagicMock() mocked_sanitize = MagicMock() mocked_queue = MagicMock() mocked_files = MagicMock(return_value=None) mocked_sanitize.return_value = ["to-stage"] current = CurrentView( repo=mocked_repo, repo_path="repo_path", queue=mocked_queue, ignore=CachedIgnore(), ) current._sanitize = mocked_sanitize current._get_files_from_path = mocked_files current._stage("message", ["add"], ["remove"]) mocked_queue.commit.assert_called_once_with( add=["to-stage"], remove=["to-stage"], message="message" ) mocked_repo.index.add.assert_called_once_with(["to-stage"]) mocked_repo.index.remove.assert_called_once_with(["to-stage"]) mocked_files.has_calls([call(["add"])]) mocked_sanitize.has_calls([call(["add"]), call(["remove"])]) def test_sanitize(self): current = CurrentView(repo="repo", repo_path="repo_path") assert current._sanitize("/path") == "path" def test_open(self): mocked_full = MagicMock(return_value="full_path") mocked_repo = MagicMock(_full_path=mocked_full) mocked_os = MagicMock() mocked_os.open.return_value = 1 with patch.multiple("gitfs.views.current", os=mocked_os): current = CurrentView( repo=mocked_repo, repo_path="repo_path", ignore=CachedIgnore() ) current._full_path = mocked_full current.writing = set([]) assert current.open("path/", os.O_WRONLY) == 1 mocked_os.open.assert_called_once_with("full_path", os.O_WRONLY) def test_release_with_stage(self): message = "I need to stage this" mocked_os = MagicMock() mocked_stage = MagicMock() mocked_os.close.return_value = 0 with patch.multiple("gitfs.views.current", os=mocked_os): current = CurrentView( repo="repo", repo_path="repo_path", ignore=CachedIgnore() ) current._stage = mocked_stage current.dirty = {4: {"message": message, "stage": True}} assert current.release("/path", 4) == 0 mocked_os.close.assert_called_once_with(4) mocked_stage.assert_called_once_with(add="/path", message=message) def test_release_without_stage(self): message = "No need to stage this" mocked_os = MagicMock() mocked_stage = MagicMock() mocked_os.close.return_value = 0 with patch.multiple("gitfs.views.current", os=mocked_os): current = CurrentView( repo="repo", repo_path="repo_path", ignore=CachedIgnore() ) current._stage = mocked_stage current.dirty = {4: {"message": message, "stage": False}} assert current.release("/path", 4) == 0 mocked_os.close.assert_called_once_with(4) assert mocked_stage.call_count == 0
var/spack/repos/builtin/packages/node-js/package.py
LiamBindle/spack
2,360
12674598
<reponame>LiamBindle/spack # Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import subprocess import sys from spack import * class NodeJs(Package): """Node.js is a JavaScript runtime built on Chrome's V8 JavaScript engine.""" homepage = "https://nodejs.org/" url = "https://nodejs.org/dist/v13.5.0/node-v13.5.0.tar.gz" list_url = "https://nodejs.org/dist/" list_depth = 1 # Current (latest features) version('15.3.0', sha256='cadfa384a5f14591b84ce07a1afe529f28deb0d43366fb0ae4e78afba96bfaf2') version('14.16.1', sha256='5f5080427abddde7f22fd2ba77cd2b8a1f86253277a1eec54bc98a202728ce80') version('14.13.0', sha256='8538b2e76aa06ee0e6eb1c118426c3c5ca53b2e49d66591738eacf76e89edd61') version('14.10.0', sha256='7e0d7a1aa23697415e3588a1ca4f1c47496e6c88b9cf37c66be90353d3e4ac3e') version('13.8.0', sha256='815b5e1b18114f35da89e4d98febeaba97555d51ef593bd5175db2b05f2e8be6') version('13.5.0', sha256='4b8078d896a7550d7ed399c1b4ac9043e9f883be404d9b337185c8d8479f2db8') # LTS (recommended for most users) version('14.15.1', sha256='a1120472bf55aea745287693a6651e16973e1008c9d6107df350126adf9716fe', preferred=True) version('12.18.4', sha256='a802d87e579e46fc52771ed6f2667048320caca867be3276f4c4f1bbb41389c3') version('12.18.3', sha256='6ea85f80e01b007cc9b566b8836513bc5102667d833bad4c1092be60fa60c2d4') version('12.16.0', sha256='ae2dfe74485d821d4fef7cf1802acd2322cd994c853a2327c4306952f4453441') version('12.14.0', sha256='5c1939867228f3845c808ef84a89c8ee93cc35f857bf7587ecee1b5a6d9da67b') version('11.1.0', sha256='3f53b5ac25b2d36ad538267083c0e603d9236867a936c22a9116d95fa10c60d5') version('10.13.0', sha256='aa06825fff375ece7c0d881ae0de5d402a857e8cabff9b4a50f2f0b7b44906be') version('8.11.4', sha256='459144e361d64ca7362c37cc9717c044ef909d348cb5aa3f2b62538560a6085a') version('8.9.1', sha256='32491b7fcc4696b2cdead45c47e52ad16bbed8f78885d32e873952fee0f971e1') version('7.1.0', sha256='595e7e2a37d1e0573044a90077bb12c0f750e5d8851899ffa74038238da9a983') version('6.3.0', sha256='4ed7a99985f8afee337cc22d5fef61b495ab4238dfff3750ac9019e87fc6aae6') version('6.2.2', sha256='b6baee57a0ede496c7c7765001f7495ad74c8dfe8c34f1a6fb2cd5d8d526ffce') variant('debug', default=False, description='Include debugger support') variant('doc', default=False, description='Compile with documentation') variant('icu4c', default=False, description='Build with support for all locales instead of just English') variant('openssl', default=True, description='Build with Spacks OpenSSL instead of the bundled version') variant('zlib', default=True, description='Build with Spacks zlib instead of the bundled version') # https://github.com/nodejs/node/blob/master/BUILDING.md#unix-and-macos depends_on('[email protected]:', type='build') depends_on('libtool', type='build', when=sys.platform != 'darwin') depends_on('pkgconfig', type='build') depends_on('[email protected]:2.8,3.5:', when='@12:', type='build') depends_on('[email protected]:2.8', when='@:11', type='build') # depends_on('bash-completion', when="+bash-completion") depends_on('icu4c', when='+icu4c') depends_on('[email protected]:1.0', when='@:9+openssl') depends_on('[email protected]:', when='@10:+openssl') depends_on('zlib', when='+zlib') phases = ['configure', 'build', 'install'] # https://github.com/spack/spack/issues/19310 conflicts('%gcc@:4.8', msg="fails to build with gcc 4.8 " "(see https://github.com/spack/spack/issues/19310") def setup_build_environment(self, env): # Force use of experimental Python 3 support env.set('PYTHON', self.spec['python'].command.path) env.set('NODE_GYP_FORCE_PYTHON', self.spec['python'].command.path) def configure_args(self): # On OSX, the system libtool must be used # So, we ensure that this is the case by... if sys.platform == 'darwin': process_pipe = subprocess.Popen(["which", "libtool"], stdout=subprocess.PIPE) result_which = process_pipe.communicate()[0] process_pipe = subprocess.Popen(["whereis", "libtool"], stdout=subprocess.PIPE) result_whereis = process_pipe.communicate()[0] assert result_which == result_whereis, ( 'On OSX the system libtool must be used. Please' '(temporarily) remove \n %s or its link to libtool from' 'path') args = [ '--prefix={0}'.format(self.prefix), # Note: npm is updated more regularly than node.js, so we build # the package instead of using the bundled version '--without-npm' ] if '+debug' in self.spec: args.append('--debug') if '+openssl' in self.spec: args.extend([ '--shared-openssl', '--shared-openssl-includes={0}'.format( self.spec['openssl'].prefix.include), '--shared-openssl-libpath={0}'.format( self.spec['openssl'].prefix.lib), ]) if '+zlib' in self.spec: args.extend([ '--shared-zlib', '--shared-zlib-includes={0}'.format( self.spec['zlib'].prefix.include), '--shared-zlib-libpath={0}'.format( self.spec['zlib'].prefix.lib), ]) if '+icu4c' in self.spec: args.append('--with-intl=full-icu') return args def configure(self, spec, prefix): if self.version >= Version('10.11.0'): python('configure.py', *self.configure_args()) else: python('configure', *self.configure_args()) def build(self, spec, prefix): make() if '+doc' in spec: make('doc') @run_after('build') @on_package_attributes(run_tests=True) def build_test(self): make('test') make('test-addons') def install(self, spec, prefix): make('install')
python_toolbox/wx_tools/widgets/cute_html_window.py
hboshnak/python_toolbox
119
12674599
# Copyright 2009-2011 <NAME>. # This program is distributed under the LGPL2.1 license. import webbrowser import wx.html from python_toolbox.wx_tools.widgets.cute_window import CuteWindow class CuteHtmlWindow(wx.html.HtmlWindow, CuteWindow): event_modules = wx.html def __init__(self, parent, id=-1, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.html.HW_DEFAULT_STYLE, name=wx.html.HtmlWindowNameStr): wx.html.HtmlWindow.__init__(self, parent=parent, id=id, pos=pos, size=size, style=style, name=name) self.bind_event_handlers(CuteHtmlWindow) def _on_html_link_clicked(self, event): webbrowser.open_new_tab( event.GetLinkInfo().GetHref() )
pandapower/test/networks/test_cigre_networks.py
yougnen/pandapower
104
12674600
# -*- coding: utf-8 -*- # Copyright (c) 2016-2021 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. import pandas as pd import pytest import pandapower as pp import pandapower.networks as pn def test_cigre_hv(): net = pn.create_cigre_network_hv() # length_km_6a_6b=0.1 pp.runpp(net) all_vn_kv = pd.Series([22, 220, 380]) assert net.bus.vn_kv.isin(all_vn_kv).all() all_length_km = pd.Series([100, 300, 600, 0.1]) assert net.line.length_km.isin(all_length_km).all() assert len(net.bus) == 13 assert len(net.line) == 9 assert len(net.gen) == 3 assert len(net.sgen) == 0 assert len(net.shunt) == 3 assert len(net.trafo) == 6 assert len(net.load) == 5 assert len(net.ext_grid) == 1 assert net.converged net = pn.create_cigre_network_hv(length_km_6a_6b=80) assert net.line.length_km[8] == 80 def test_cigre_mv(): net = pn.create_cigre_network_mv() # with_der=False pp.runpp(net) all_vn_kv = pd.Series([110, 20]) assert net.bus.vn_kv.isin(all_vn_kv).all() assert len(net.bus) == 15 assert len(net.line) == 15 assert len(net.gen) == 0 assert len(net.sgen) == 0 assert len(net.shunt) == 0 assert len(net.trafo) == 2 assert len(net.load) == 18 assert len(net.ext_grid) == 1 assert len(net.switch) == 8 assert net.converged net = pn.create_cigre_network_mv(with_der="pv_wind") pp.runpp(net) all_vn_kv = pd.Series([110, 20]) assert net.bus.vn_kv.isin(all_vn_kv).all() assert len(net.bus) == 15 assert len(net.line) == 15 assert len(net.gen) == 0 assert len(net.sgen) == 9 assert len(net.shunt) == 0 assert len(net.trafo) == 2 assert len(net.load) == 18 assert len(net.ext_grid) == 1 assert len(net.switch) == 8 assert net.converged net = pn.create_cigre_network_mv(with_der="all") pp.runpp(net) all_vn_kv = pd.Series([110, 20]) assert net.bus.vn_kv.isin(all_vn_kv).all() assert len(net.bus) == 15 assert len(net.line) == 15 assert len(net.gen) == 0 assert len(net.sgen) == 13 assert len(net.storage) == 2 assert len(net.shunt) == 0 assert len(net.trafo) == 2 assert len(net.load) == 18 assert len(net.ext_grid) == 1 assert len(net.switch) == 8 assert net.converged def test_cigre_lv(): net = pn.create_cigre_network_lv() pp.runpp(net) all_vn_kv = pd.Series([20, 0.4]) assert net.bus.vn_kv.isin(all_vn_kv).all() assert len(net.bus) == 44 assert len(net.line) == 37 assert len(net.gen) == 0 assert len(net.sgen) == 0 assert len(net.shunt) == 0 assert len(net.trafo) == 3 assert len(net.load) == 15 assert len(net.ext_grid) == 1 assert len(net.switch) == 3 assert net.converged if __name__ == '__main__': pytest.main(['-x', "test_cigre_networks.py"])
package_control/commands/advanced_install_package_command.py
zjzh/package_control
3,373
12674612
<reponame>zjzh/package_control import threading import re import time import functools import sublime import sublime_plugin from ..show_error import show_error from ..package_manager import PackageManager from ..package_disabler import PackageDisabler from ..thread_progress import ThreadProgress try: str_cls = unicode bytes_cls = str except (NameError): str_cls = str bytes_cls = bytes class AdvancedInstallPackageCommand(sublime_plugin.WindowCommand): """ A command that accepts a comma-separated list of packages to install, or prompts the user to paste a comma-separated list """ def run(self, packages=None): is_str = isinstance(packages, str_cls) is_bytes = isinstance(packages, bytes_cls) if packages and (is_str or is_bytes): packages = self.split(packages) if packages and isinstance(packages, list): return self.start(packages) self.window.show_input_panel( 'Packages to Install (Comma-separated)', '', self.on_done, None, None ) def split(self, packages): if isinstance(packages, bytes_cls): packages = packages.decode('utf-8') return re.split(r'\s*,\s*', packages) def on_done(self, input): """ Input panel handler - adds the provided URL as a repository :param input: A string of the URL to the new repository """ input = input.strip() if not input: show_error( u''' No package names were entered ''' ) return self.start(self.split(input)) def start(self, packages): thread = AdvancedInstallPackageThread(packages) thread.start() message = 'Installing package' if len(packages) > 1: message += 's' ThreadProgress(thread, message, '') class AdvancedInstallPackageThread(threading.Thread, PackageDisabler): """ A thread to run the installation of one or more packages in """ def __init__(self, packages): """ :param window: An instance of :class:`sublime.Window` that represents the Sublime Text window to show the available package list in. """ self.manager = PackageManager() self.packages = packages self.installed = self.manager.list_packages() self.disabled = [] for package_name in packages: operation_type = 'install' if package_name not in self.installed else 'upgrade' self.disabled.extend(self.disable_packages(package_name, operation_type)) threading.Thread.__init__(self) def run(self): # Allow packages to properly disable time.sleep(0.7) def do_reenable_package(package_name): operation_type = 'install' if package_name not in self.installed else 'upgrade' self.reenable_package(package_name, operation_type) for package in self.packages: result = self.manager.install_package(package) # Do not reenable if installation deferred until next restart if result is not None and package in self.disabled: # We use a functools.partial to generate the on-complete callback in # order to bind the current value of the parameters, unlike lambdas. sublime.set_timeout(functools.partial(do_reenable_package, package), 700)
Lib/bsddb/__init__.py
arvindm95/unladen-swallow
2,293
12674619
<filename>Lib/bsddb/__init__.py<gh_stars>1000+ #---------------------------------------------------------------------- # Copyright (c) 1999-2001, Digital Creations, Fredericksburg, VA, USA # and <NAME>. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # o Redistributions of source code must retain the above copyright # notice, this list of conditions, and the disclaimer that follows. # # o Redistributions in binary form must reproduce the above copyright # notice, this list of conditions, and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # o Neither the name of Digital Creations nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY DIGITAL CREATIONS AND CONTRIBUTORS *AS # IS* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DIGITAL # CREATIONS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS # OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR # TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH # DAMAGE. #---------------------------------------------------------------------- """Support for Berkeley DB 4.0 through 4.7 with a simple interface. For the full featured object oriented interface use the bsddb.db module instead. It mirrors the Oracle Berkeley DB C API. """ import sys absolute_import = (sys.version_info[0] >= 3) if sys.py3kwarning: import warnings warnings.warnpy3k("in 3.x, bsddb has been removed; " "please use the pybsddb project instead", DeprecationWarning, 2) try: if __name__ == 'bsddb3': # import _pybsddb binary as it should be the more recent version from # a standalone pybsddb addon package than the version included with # python as bsddb._bsddb. if absolute_import : # Because this syntaxis is not valid before Python 2.5 exec("from . import _pybsddb") else : import _pybsddb _bsddb = _pybsddb from bsddb3.dbutils import DeadlockWrap as _DeadlockWrap else: import _bsddb from bsddb.dbutils import DeadlockWrap as _DeadlockWrap except ImportError: # Remove ourselves from sys.modules import sys del sys.modules[__name__] raise # bsddb3 calls it db, but provide _db for backwards compatibility db = _db = _bsddb __version__ = db.__version__ error = db.DBError # So bsddb.error will mean something... #---------------------------------------------------------------------- import sys, os from weakref import ref if sys.version_info[0:2] <= (2, 5) : import UserDict MutableMapping = UserDict.DictMixin else : import collections MutableMapping = collections.MutableMapping class _iter_mixin(MutableMapping): def _make_iter_cursor(self): cur = _DeadlockWrap(self.db.cursor) key = id(cur) self._cursor_refs[key] = ref(cur, self._gen_cref_cleaner(key)) return cur def _gen_cref_cleaner(self, key): # use generate the function for the weakref callback here # to ensure that we do not hold a strict reference to cur # in the callback. return lambda ref: self._cursor_refs.pop(key, None) def __iter__(self): self._kill_iteration = False self._in_iter += 1 try: try: cur = self._make_iter_cursor() # FIXME-20031102-greg: race condition. cursor could # be closed by another thread before this call. # since we're only returning keys, we call the cursor # methods with flags=0, dlen=0, dofs=0 key = _DeadlockWrap(cur.first, 0,0,0)[0] yield key next = getattr(cur, "next") while 1: try: key = _DeadlockWrap(next, 0,0,0)[0] yield key except _bsddb.DBCursorClosedError: if self._kill_iteration: raise RuntimeError('Database changed size ' 'during iteration.') cur = self._make_iter_cursor() # FIXME-20031101-greg: race condition. cursor could # be closed by another thread before this call. _DeadlockWrap(cur.set, key,0,0,0) next = getattr(cur, "next") except _bsddb.DBNotFoundError: pass except _bsddb.DBCursorClosedError: # the database was modified during iteration. abort. pass # When Python 2.3 not supported in bsddb3, we can change this to "finally" except : self._in_iter -= 1 raise self._in_iter -= 1 def iteritems(self): if not self.db: return self._kill_iteration = False self._in_iter += 1 try: try: cur = self._make_iter_cursor() # FIXME-20031102-greg: race condition. cursor could # be closed by another thread before this call. kv = _DeadlockWrap(cur.first) key = kv[0] yield kv next = getattr(cur, "next") while 1: try: kv = _DeadlockWrap(next) key = kv[0] yield kv except _bsddb.DBCursorClosedError: if self._kill_iteration: raise RuntimeError('Database changed size ' 'during iteration.') cur = self._make_iter_cursor() # FIXME-20031101-greg: race condition. cursor could # be closed by another thread before this call. _DeadlockWrap(cur.set, key,0,0,0) next = getattr(cur, "next") except _bsddb.DBNotFoundError: pass except _bsddb.DBCursorClosedError: # the database was modified during iteration. abort. pass # When Python 2.3 not supported in bsddb3, we can change this to "finally" except : self._in_iter -= 1 raise self._in_iter -= 1 class _DBWithCursor(_iter_mixin): """ A simple wrapper around DB that makes it look like the bsddbobject in the old module. It uses a cursor as needed to provide DB traversal. """ def __init__(self, db): self.db = db self.db.set_get_returns_none(0) # FIXME-20031101-greg: I believe there is still the potential # for deadlocks in a multithreaded environment if someone # attempts to use the any of the cursor interfaces in one # thread while doing a put or delete in another thread. The # reason is that _checkCursor and _closeCursors are not atomic # operations. Doing our own locking around self.dbc, # self.saved_dbc_key and self._cursor_refs could prevent this. # TODO: A test case demonstrating the problem needs to be written. # self.dbc is a DBCursor object used to implement the # first/next/previous/last/set_location methods. self.dbc = None self.saved_dbc_key = None # a collection of all DBCursor objects currently allocated # by the _iter_mixin interface. self._cursor_refs = {} self._in_iter = 0 self._kill_iteration = False def __del__(self): self.close() def _checkCursor(self): if self.dbc is None: self.dbc = _DeadlockWrap(self.db.cursor) if self.saved_dbc_key is not None: _DeadlockWrap(self.dbc.set, self.saved_dbc_key) self.saved_dbc_key = None # This method is needed for all non-cursor DB calls to avoid # Berkeley DB deadlocks (due to being opened with DB_INIT_LOCK # and DB_THREAD to be thread safe) when intermixing database # operations that use the cursor internally with those that don't. def _closeCursors(self, save=1): if self.dbc: c = self.dbc self.dbc = None if save: try: self.saved_dbc_key = _DeadlockWrap(c.current, 0,0,0)[0] except db.DBError: pass _DeadlockWrap(c.close) del c for cref in self._cursor_refs.values(): c = cref() if c is not None: _DeadlockWrap(c.close) def _checkOpen(self): if self.db is None: raise error, "BSDDB object has already been closed" def isOpen(self): return self.db is not None def __len__(self): self._checkOpen() return _DeadlockWrap(lambda: len(self.db)) # len(self.db) if sys.version_info[0:2] >= (2, 6) : def __repr__(self) : if self.isOpen() : return repr(dict(_DeadlockWrap(self.db.items))) return repr(dict()) def __getitem__(self, key): self._checkOpen() return _DeadlockWrap(lambda: self.db[key]) # self.db[key] def __setitem__(self, key, value): self._checkOpen() self._closeCursors() if self._in_iter and key not in self: self._kill_iteration = True def wrapF(): self.db[key] = value _DeadlockWrap(wrapF) # self.db[key] = value def __delitem__(self, key): self._checkOpen() self._closeCursors() if self._in_iter and key in self: self._kill_iteration = True def wrapF(): del self.db[key] _DeadlockWrap(wrapF) # del self.db[key] def close(self): self._closeCursors(save=0) if self.dbc is not None: _DeadlockWrap(self.dbc.close) v = 0 if self.db is not None: v = _DeadlockWrap(self.db.close) self.dbc = None self.db = None return v def keys(self): self._checkOpen() return _DeadlockWrap(self.db.keys) def has_key(self, key): self._checkOpen() return _DeadlockWrap(self.db.has_key, key) def set_location(self, key): self._checkOpen() self._checkCursor() return _DeadlockWrap(self.dbc.set_range, key) def next(self): # Renamed by "2to3" self._checkOpen() self._checkCursor() rv = _DeadlockWrap(getattr(self.dbc, "next")) return rv if sys.version_info[0] >= 3 : # For "2to3" conversion next = __next__ def previous(self): self._checkOpen() self._checkCursor() rv = _DeadlockWrap(self.dbc.prev) return rv def first(self): self._checkOpen() # fix 1725856: don't needlessly try to restore our cursor position self.saved_dbc_key = None self._checkCursor() rv = _DeadlockWrap(self.dbc.first) return rv def last(self): self._checkOpen() # fix 1725856: don't needlessly try to restore our cursor position self.saved_dbc_key = None self._checkCursor() rv = _DeadlockWrap(self.dbc.last) return rv def sync(self): self._checkOpen() return _DeadlockWrap(self.db.sync) #---------------------------------------------------------------------- # Compatibility object factory functions def hashopen(file, flag='c', mode=0666, pgsize=None, ffactor=None, nelem=None, cachesize=None, lorder=None, hflags=0): flags = _checkflag(flag, file) e = _openDBEnv(cachesize) d = db.DB(e) d.set_flags(hflags) if pgsize is not None: d.set_pagesize(pgsize) if lorder is not None: d.set_lorder(lorder) if ffactor is not None: d.set_h_ffactor(ffactor) if nelem is not None: d.set_h_nelem(nelem) d.open(file, db.DB_HASH, flags, mode) return _DBWithCursor(d) #---------------------------------------------------------------------- def btopen(file, flag='c', mode=0666, btflags=0, cachesize=None, maxkeypage=None, minkeypage=None, pgsize=None, lorder=None): flags = _checkflag(flag, file) e = _openDBEnv(cachesize) d = db.DB(e) if pgsize is not None: d.set_pagesize(pgsize) if lorder is not None: d.set_lorder(lorder) d.set_flags(btflags) if minkeypage is not None: d.set_bt_minkey(minkeypage) if maxkeypage is not None: d.set_bt_maxkey(maxkeypage) d.open(file, db.DB_BTREE, flags, mode) return _DBWithCursor(d) #---------------------------------------------------------------------- def rnopen(file, flag='c', mode=0666, rnflags=0, cachesize=None, pgsize=None, lorder=None, rlen=None, delim=None, source=None, pad=None): flags = _checkflag(flag, file) e = _openDBEnv(cachesize) d = db.DB(e) if pgsize is not None: d.set_pagesize(pgsize) if lorder is not None: d.set_lorder(lorder) d.set_flags(rnflags) if delim is not None: d.set_re_delim(delim) if rlen is not None: d.set_re_len(rlen) if source is not None: d.set_re_source(source) if pad is not None: d.set_re_pad(pad) d.open(file, db.DB_RECNO, flags, mode) return _DBWithCursor(d) #---------------------------------------------------------------------- def _openDBEnv(cachesize): e = db.DBEnv() if cachesize is not None: if cachesize >= 20480: e.set_cachesize(0, cachesize) else: raise error, "cachesize must be >= 20480" e.set_lk_detect(db.DB_LOCK_DEFAULT) e.open('.', db.DB_PRIVATE | db.DB_CREATE | db.DB_THREAD | db.DB_INIT_LOCK | db.DB_INIT_MPOOL) return e def _checkflag(flag, file): if flag == 'r': flags = db.DB_RDONLY elif flag == 'rw': flags = 0 elif flag == 'w': flags = db.DB_CREATE elif flag == 'c': flags = db.DB_CREATE elif flag == 'n': flags = db.DB_CREATE #flags = db.DB_CREATE | db.DB_TRUNCATE # we used db.DB_TRUNCATE flag for this before but Berkeley DB # 4.2.52 changed to disallowed truncate with txn environments. if file is not None and os.path.isfile(file): os.unlink(file) else: raise error, "flags should be one of 'r', 'w', 'c' or 'n'" return flags | db.DB_THREAD #---------------------------------------------------------------------- # This is a silly little hack that allows apps to continue to use the # DB_THREAD flag even on systems without threads without freaking out # Berkeley DB. # # This assumes that if Python was built with thread support then # Berkeley DB was too. try: import thread del thread except ImportError: db.DB_THREAD = 0 #----------------------------------------------------------------------
reviewboard/oauth/models.py
amalik2/reviewboard
921
12674620
<filename>reviewboard/oauth/models.py """Models for OAuth2 applications.""" from __future__ import unicode_literals from django.contrib.auth.models import User from django.db import models from django.utils.translation import ugettext_lazy as _ from djblets.db.fields import JSONField from oauth2_provider.models import AbstractApplication from reviewboard.site.models import LocalSite class Application(AbstractApplication): """An OAuth2 application. This model is specialized so that it can be limited to a :py:class:`~reviewboard.site.models.LocalSite`. """ enabled = models.BooleanField( verbose_name=_('Enabled'), help_text=_('Whether or not this application can be used to ' 'authenticate with Review Board.'), default=True, ) original_user = models.ForeignKey( verbose_name=_('Original User'), to=User, blank=True, null=True, help_text=_('The original owner of this application.') ) local_site = models.ForeignKey( verbose_name=_('Local Site'), to=LocalSite, related_name='oauth_applications', blank=True, null=True, help_text=_('An optional Local Site to limit this application to.<br>' 'If specified, only users with access to the Local Site ' 'will be able to use the application.'), ) extra_data = JSONField( _('Extra Data'), null=True, default=dict, ) @property def is_disabled_for_security(self): """Whether or not this application is disabled for security reasons. This will be ``True`` when the :py:attr:`original_owner` no longer has access to the :py:attr:`local_site` this application is associated with. """ return not self.enabled and self.original_user_id is not None def clean(self): """Validate the application. We do the validation for this in :py:meth:`ApplicationForm.clean() <reviewboard.oauth.forms.ApplicationForm.clean` so that we can have errors for ``authorization_grant_type`` and ``redirect_uris`` conflicts show up on the appropriate field. The parent class does the same validation, but as a result it will have form-wide errors instead of per-field errors for the above two fields when they are in conflict. Therefore we avoid that validation by making this a no-op. """ pass def is_accessible_by(self, user, local_site=None): """Return whether or not the user has access to this Application. A user has access if one of the following conditions is met: * The user owns the Application. * The user is an administrator. * The user is a Local Site administrator on the Local Site the Application is assigned to. Args: user (django.contrib.auth.models.User): The user in question. local_site (reviewboard.site.models.LocalSite): The Local Site the user would access this Application under. Returns: bool: Whether or not the given user has access to information about this Application. """ return (user.is_authenticated() and (self.user_id == user.pk or user.is_superuser or (self.local_site_id is not None and local_site is not None and self.local_site_id == local_site.pk and local_site.is_mutable_by(user)))) def is_mutable_by(self, user, local_site=None): """Return whether or not the user can modify this Application. A user has access if one of the following conditions is met: * The user owns the Application. * The user is an administrator. * The user is a Local Site administrator on the Local Site the Application is assigned to. Args: user (django.contrib.auth.models.User): The user in question. local_site (reviewboard.site.models.LocalSite): The Local Site the user would modify this Application under. Returns: bool: Whether or not the given user can modify this Application. """ return self.is_accessible_by(user, local_site=local_site) class Meta: db_table = 'reviewboard_oauth_application' verbose_name = _('OAuth Application') verbose_name_plural = _('OAuth Applications')
AppServer/lib/django-1.2/tests/modeltests/serializers/tests.py
loftwah/appscale
790
12674629
# -*- coding: utf-8 -*- from datetime import datetime from StringIO import StringIO import unittest from xml.dom import minidom from django.conf import settings from django.core import serializers from django.db import transaction from django.test import TestCase, TransactionTestCase, Approximate from django.utils import simplejson from models import Category, Author, Article, AuthorProfile, Actor, \ Movie, Score, Player, Team class SerializerRegistrationTests(unittest.TestCase): def setUp(self): self.old_SERIALIZATION_MODULES = getattr(settings, 'SERIALIZATION_MODULES', None) self.old_serializers = serializers._serializers serializers._serializers = {} settings.SERIALIZATION_MODULES = { "json2" : "django.core.serializers.json", } def tearDown(self): serializers._serializers = self.old_serializers if self.old_SERIALIZATION_MODULES: settings.SERIALIZATION_MODULES = self.old_SERIALIZATION_MODULES else: delattr(settings, 'SERIALIZATION_MODULES') def test_register(self): "Registering a new serializer populates the full registry. Refs #14823" serializers.register_serializer('json3', 'django.core.serializers.json') public_formats = serializers.get_public_serializer_formats() self.assertTrue('json3' in public_formats) self.assertTrue('json2' in public_formats) self.assertTrue('xml' in public_formats) def test_unregister(self): "Unregistering a serializer doesn't cause the registry to be repopulated. Refs #14823" serializers.unregister_serializer('xml') serializers.register_serializer('json3', 'django.core.serializers.json') public_formats = serializers.get_public_serializer_formats() self.assertFalse('xml' in public_formats) self.assertTrue('json3' in public_formats) def test_builtin_serializers(self): "Requesting a list of serializer formats popuates the registry" all_formats = set(serializers.get_serializer_formats()) public_formats = set(serializers.get_public_serializer_formats()) self.assertTrue('xml' in all_formats), self.assertTrue('xml' in public_formats) self.assertTrue('json2' in all_formats) self.assertTrue('json2' in public_formats) self.assertTrue('python' in all_formats) self.assertFalse('python' in public_formats) class SerializersTestBase(object): @staticmethod def _comparison_value(value): return value def setUp(self): sports = Category.objects.create(name="Sports") music = Category.objects.create(name="Music") op_ed = Category.objects.create(name="Op-Ed") self.joe = Author.objects.create(name="Joe") self.jane = Author.objects.create(name="Jane") self.a1 = Article( author=self.jane, headline="Poker has no place on ESPN", pub_date=datetime(2006, 6, 16, 11, 00) ) self.a1.save() self.a1.categories = [sports, op_ed] self.a2 = Article( author=self.joe, headline="Time to reform copyright", pub_date=datetime(2006, 6, 16, 13, 00, 11, 345) ) self.a2.save() self.a2.categories = [music, op_ed] def test_serialize(self): """Tests that basic serialization works.""" serial_str = serializers.serialize(self.serializer_name, Article.objects.all()) self.assertTrue(self._validate_output(serial_str)) def test_serializer_roundtrip(self): """Tests that serialized content can be deserialized.""" serial_str = serializers.serialize(self.serializer_name, Article.objects.all()) models = list(serializers.deserialize(self.serializer_name, serial_str)) self.assertEqual(len(models), 2) def test_altering_serialized_output(self): """ Tests the ability to create new objects by modifying serialized content. """ old_headline = "Poker has no place on ESPN" new_headline = "Poker has no place on television" serial_str = serializers.serialize(self.serializer_name, Article.objects.all()) serial_str = serial_str.replace(old_headline, new_headline) models = list(serializers.deserialize(self.serializer_name, serial_str)) # Prior to saving, old headline is in place self.assertTrue(Article.objects.filter(headline=old_headline)) self.assertFalse(Article.objects.filter(headline=new_headline)) for model in models: model.save() # After saving, new headline is in place self.assertTrue(Article.objects.filter(headline=new_headline)) self.assertFalse(Article.objects.filter(headline=old_headline)) def test_one_to_one_as_pk(self): """ Tests that if you use your own primary key field (such as a OneToOneField), it doesn't appear in the serialized field list - it replaces the pk identifier. """ profile = AuthorProfile(author=self.joe, date_of_birth=datetime(1970,1,1)) profile.save() serial_str = serializers.serialize(self.serializer_name, AuthorProfile.objects.all()) self.assertFalse(self._get_field_values(serial_str, 'author')) for obj in serializers.deserialize(self.serializer_name, serial_str): self.assertEqual(obj.object.pk, self._comparison_value(self.joe.pk)) def test_serialize_field_subset(self): """Tests that output can be restricted to a subset of fields""" valid_fields = ('headline','pub_date') invalid_fields = ("author", "categories") serial_str = serializers.serialize(self.serializer_name, Article.objects.all(), fields=valid_fields) for field_name in invalid_fields: self.assertFalse(self._get_field_values(serial_str, field_name)) for field_name in valid_fields: self.assertTrue(self._get_field_values(serial_str, field_name)) def test_serialize_unicode(self): """Tests that unicode makes the roundtrip intact""" actor_name = u"Za\u017c\u00f3\u0142\u0107" movie_title = u'G\u0119\u015bl\u0105 ja\u017a\u0144' ac = Actor(name=actor_name) mv = Movie(title=movie_title, actor=ac) ac.save() mv.save() serial_str = serializers.serialize(self.serializer_name, [mv]) self.assertEqual(self._get_field_values(serial_str, "title")[0], movie_title) self.assertEqual(self._get_field_values(serial_str, "actor")[0], actor_name) obj_list = list(serializers.deserialize(self.serializer_name, serial_str)) mv_obj = obj_list[0].object self.assertEqual(mv_obj.title, movie_title) def test_serialize_with_null_pk(self): """ Tests that serialized data with no primary key results in a model instance with no id """ category = Category(name="Reference") serial_str = serializers.serialize(self.serializer_name, [category]) pk_value = self._get_pk_values(serial_str)[0] self.assertFalse(pk_value) cat_obj = list(serializers.deserialize(self.serializer_name, serial_str))[0].object self.assertEqual(cat_obj.id, None) def test_float_serialization(self): """Tests that float values serialize and deserialize intact""" sc = Score(score=3.4) sc.save() serial_str = serializers.serialize(self.serializer_name, [sc]) deserial_objs = list(serializers.deserialize(self.serializer_name, serial_str)) self.assertEqual(deserial_objs[0].object.score, Approximate(3.4, places=1)) def test_custom_field_serialization(self): """Tests that custom fields serialize and deserialize intact""" team_str = "<NAME>" player = Player() player.name = "<NAME>" player.rank = 1 player.team = Team(team_str) player.save() serial_str = serializers.serialize(self.serializer_name, Player.objects.all()) team = self._get_field_values(serial_str, "team") self.assertTrue(team) self.assertEqual(team[0], team_str) deserial_objs = list(serializers.deserialize(self.serializer_name, serial_str)) self.assertEqual(deserial_objs[0].object.team.to_string(), player.team.to_string()) def test_pre_1000ad_date(self): """Tests that year values before 1000AD are properly formatted""" # Regression for #12524 -- dates before 1000AD get prefixed # 0's on the year a = Article.objects.create( author = self.jane, headline = "Nobody remembers the early years", pub_date = datetime(1, 2, 3, 4, 5, 6)) serial_str = serializers.serialize(self.serializer_name, [a]) date_values = self._get_field_values(serial_str, "pub_date") self.assertEquals(date_values[0], "0001-02-03 04:05:06") def test_pkless_serialized_strings(self): """ Tests that serialized strings without PKs can be turned into models """ deserial_objs = list(serializers.deserialize(self.serializer_name, self.pkless_str)) for obj in deserial_objs: self.assertFalse(obj.object.id) obj.save() self.assertEqual(Category.objects.all().count(), 4) class SerializersTransactionTestBase(object): def test_forward_refs(self): """ Tests that objects ids can be referenced before they are defined in the serialization data. """ # The deserialization process needs to be contained # within a transaction in order to test forward reference # handling. transaction.enter_transaction_management() transaction.managed(True) objs = serializers.deserialize(self.serializer_name, self.fwd_ref_str) for obj in objs: obj.save() transaction.commit() transaction.leave_transaction_management() for model_cls in (Category, Author, Article): self.assertEqual(model_cls.objects.all().count(), 1) art_obj = Article.objects.all()[0] self.assertEqual(art_obj.categories.all().count(), 1) self.assertEqual(art_obj.author.name, "Agnes") class XmlSerializerTestCase(SerializersTestBase, TestCase): serializer_name = "xml" pkless_str = """<?xml version="1.0" encoding="utf-8"?> <django-objects version="1.0"> <object model="serializers.category"> <field type="CharField" name="name">Reference</field> </object> </django-objects>""" @staticmethod def _comparison_value(value): # The XML serializer handles everything as strings, so comparisons # need to be performed on the stringified value return unicode(value) @staticmethod def _validate_output(serial_str): try: minidom.parseString(serial_str) except Exception: return False else: return True @staticmethod def _get_pk_values(serial_str): ret_list = [] dom = minidom.parseString(serial_str) fields = dom.getElementsByTagName("object") for field in fields: ret_list.append(field.getAttribute("pk")) return ret_list @staticmethod def _get_field_values(serial_str, field_name): ret_list = [] dom = minidom.parseString(serial_str) fields = dom.getElementsByTagName("field") for field in fields: if field.getAttribute("name") == field_name: temp = [] for child in field.childNodes: temp.append(child.nodeValue) ret_list.append("".join(temp)) return ret_list class XmlSerializerTransactionTestCase(SerializersTransactionTestBase, TransactionTestCase): serializer_name = "xml" fwd_ref_str = """<?xml version="1.0" encoding="utf-8"?> <django-objects version="1.0"> <object pk="1" model="serializers.article"> <field to="serializers.author" name="author" rel="ManyToOneRel">1</field> <field type="CharField" name="headline">Forward references pose no problem</field> <field type="DateTimeField" name="pub_date">2006-06-16 15:00:00</field> <field to="serializers.category" name="categories" rel="ManyToManyRel"> <object pk="1"></object> </field> </object> <object pk="1" model="serializers.author"> <field type="CharField" name="name">Agnes</field> </object> <object pk="1" model="serializers.category"> <field type="CharField" name="name">Reference</field></object> </django-objects>""" class JsonSerializerTestCase(SerializersTestBase, TestCase): serializer_name = "json" pkless_str = """[{"pk": null, "model": "serializers.category", "fields": {"name": "Reference"}}]""" @staticmethod def _validate_output(serial_str): try: simplejson.loads(serial_str) except Exception: return False else: return True @staticmethod def _get_pk_values(serial_str): ret_list = [] serial_list = simplejson.loads(serial_str) for obj_dict in serial_list: ret_list.append(obj_dict["pk"]) return ret_list @staticmethod def _get_field_values(serial_str, field_name): ret_list = [] serial_list = simplejson.loads(serial_str) for obj_dict in serial_list: if field_name in obj_dict["fields"]: ret_list.append(obj_dict["fields"][field_name]) return ret_list class JsonSerializerTransactionTestCase(SerializersTransactionTestBase, TransactionTestCase): serializer_name = "json" fwd_ref_str = """[ { "pk": 1, "model": "serializers.article", "fields": { "headline": "Forward references pose no problem", "pub_date": "2006-06-16 15:00:00", "categories": [1], "author": 1 } }, { "pk": 1, "model": "serializers.category", "fields": { "name": "Reference" } }, { "pk": 1, "model": "serializers.author", "fields": { "name": "Agnes" } }]""" try: import yaml except ImportError: pass else: class YamlSerializerTestCase(SerializersTestBase, TestCase): serializer_name = "yaml" fwd_ref_str = """- fields: headline: Forward references pose no problem pub_date: 2006-06-16 15:00:00 categories: [1] author: 1 pk: 1 model: serializers.article - fields: name: Reference pk: 1 model: serializers.category - fields: name: Agnes pk: 1 model: serializers.author""" pkless_str = """- fields: name: Reference pk: null model: serializers.category""" @staticmethod def _validate_output(serial_str): try: yaml.load(StringIO(serial_str)) except Exception: return False else: return True @staticmethod def _get_pk_values(serial_str): ret_list = [] stream = StringIO(serial_str) for obj_dict in yaml.load(stream): ret_list.append(obj_dict["pk"]) return ret_list @staticmethod def _get_field_values(serial_str, field_name): ret_list = [] stream = StringIO(serial_str) for obj_dict in yaml.load(stream): if "fields" in obj_dict and field_name in obj_dict["fields"]: field_value = obj_dict["fields"][field_name] # yaml.load will return non-string objects for some # of the fields we are interested in, this ensures that # everything comes back as a string if isinstance(field_value, basestring): ret_list.append(field_value) else: ret_list.append(str(field_value)) return ret_list class YamlSerializerTransactionTestCase(SerializersTransactionTestBase, TransactionTestCase): serializer_name = "yaml" fwd_ref_str = """- fields: headline: Forward references pose no problem pub_date: 2006-06-16 15:00:00 categories: [1] author: 1 pk: 1 model: serializers.article - fields: name: Reference pk: 1 model: serializers.category - fields: name: Agnes pk: 1 model: serializers.author"""
rllib/env/dm_env_wrapper.py
firebolt55439/ray
21,382
12674643
<gh_stars>1000+ import gym from gym import spaces import numpy as np try: from dm_env import specs except ImportError: specs = None def _convert_spec_to_space(spec): if isinstance(spec, dict): return spaces.Dict( {k: _convert_spec_to_space(v) for k, v in spec.items()}) if isinstance(spec, specs.DiscreteArray): return spaces.Discrete(spec.num_values) elif isinstance(spec, specs.BoundedArray): return spaces.Box( low=np.asscalar(spec.minimum), high=np.asscalar(spec.maximum), shape=spec.shape, dtype=spec.dtype) elif isinstance(spec, specs.Array): return spaces.Box( low=-float("inf"), high=float("inf"), shape=spec.shape, dtype=spec.dtype) raise NotImplementedError( ("Could not convert `Array` spec of type {} to Gym space. " "Attempted to convert: {}").format(type(spec), spec)) class DMEnv(gym.Env): """A `gym.Env` wrapper for the `dm_env` API. """ metadata = {"render.modes": ["rgb_array"]} def __init__(self, dm_env): super(DMEnv, self).__init__() self._env = dm_env self._prev_obs = None if specs is None: raise RuntimeError(( "The `specs` module from `dm_env` was not imported. Make sure " "`dm_env` is installed and visible in the current python " "environment.")) def step(self, action): ts = self._env.step(action) reward = ts.reward if reward is None: reward = 0. return ts.observation, reward, ts.last(), {"discount": ts.discount} def reset(self): ts = self._env.reset() return ts.observation def render(self, mode="rgb_array"): if self._prev_obs is None: raise ValueError( "Environment not started. Make sure to reset before rendering." ) if mode == "rgb_array": return self._prev_obs else: raise NotImplementedError( "Render mode '{}' is not supported.".format(mode)) @property def action_space(self): spec = self._env.action_spec() return _convert_spec_to_space(spec) @property def observation_space(self): spec = self._env.observation_spec() return _convert_spec_to_space(spec) @property def reward_range(self): spec = self._env.reward_spec() if isinstance(spec, specs.BoundedArray): return spec.minimum, spec.maximum return -float("inf"), float("inf")
TL-ERC/setup.py
NouamaneTazi/conv-emotion
488
12674644
<reponame>NouamaneTazi/conv-emotion import os DATASET_DIRECTORY_PATH = "./datasets/" GENERATIVE_WEIGHTS_DIRECTORY_PATH = "./generative_weights/" if not os.path.exists(DATASET_DIRECTORY_PATH): os.makedirs(DATASET_DIRECTORY_PATH) if not os.path.exists(GENERATIVE_WEIGHTS_DIRECTORY_PATH): os.makedirs(GENERATIVE_WEIGHTS_DIRECTORY_PATH)
pyscf/mcscf/__init__.py
QuESt-Calculator/pyscf
501
12674646
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''CASCI and CASSCF When using results of this code for publications, please cite the following paper: "A general second order complete active space self-consistent-field solver for large-scale systems", <NAME>, <NAME>, and <NAME>, Chem. Phys. Lett. 683, 291 (2017). Simple usage:: >>> from pyscf import gto, scf, mcscf >>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='ccpvdz', verbose=0) >>> mf = scf.RHF(mol).run() >>> mc = mcscf.CASCI(mf, 6, 6) >>> mc.kernel()[0] -108.980200816243354 >>> mc = mcscf.CASSCF(mf, 6, 6) >>> mc.kernel()[0] -109.044401882238134 >>> mc = mcscf.CASSCF(mf, 4, 4) >>> cas_list = [5,6,8,9] # pick orbitals for CAS space, 1-based indices >>> mo = mcscf.sort_mo(mc, mf.mo_coeff, cas_list) >>> mc.kernel(mo)[0] -109.007378939813691 :func:`mcscf.CASSCF` or :func:`mcscf.CASCI` returns a proper instance of CASSCF/CASCI class. There are some parameters to control the CASSCF/CASCI method. verbose : int Print level. Default value equals to :class:`Mole.verbose`. max_memory : float or int Allowed memory in MB. Default value equals to :class:`Mole.max_memory`. ncas : int Active space size. nelecas : tuple of int Active (nelec_alpha, nelec_beta) ncore : int or tuple of int Core electron number. In UHF-CASSCF, it's a tuple to indicate the different core eletron numbers. natorb : bool Whether to restore the natural orbital during CASSCF optimization. Default is not. canonicalization : bool Whether to canonicalize orbitals. Default is True. fcisolver : an instance of :class:`FCISolver` The pyscf.fci module provides several FCISolver for different scenario. Generally, fci.direct_spin1.FCISolver can be used for all RHF-CASSCF. However, a proper FCISolver can provide better performance and better numerical stability. One can either use :func:`fci.solver` function to pick the FCISolver by the program or manually assigen the FCISolver to this attribute, e.g. >>> from pyscf import fci >>> mc = mcscf.CASSCF(mf, 4, 4) >>> mc.fcisolver = fci.solver(mol, singlet=True) >>> mc.fcisolver = fci.direct_spin1.FCISolver(mol) You can control FCISolver by setting e.g.:: >>> mc.fcisolver.max_cycle = 30 >>> mc.fcisolver.conv_tol = 1e-7 For more details of the parameter for FCISolver, See :mod:`fci`. By replacing this fcisolver, you can easily use the CASCI/CASSCF solver with other FCI replacements, such as DMRG, QMC. See :mod:`dmrgscf` and :mod:`fciqmcscf`. The Following attributes are used for CASSCF conv_tol : float Converge threshold. Default is 1e-7 conv_tol_grad : float Converge threshold for CI gradients and orbital rotation gradients. Default is 1e-4 max_stepsize : float The step size for orbital rotation. Small step size is prefered. Default is 0.03. (NOTE although the default step size is small enough for many systems, it happens that the orbital optimizor crosses the barriar of local minimum and converge to the neighbour solution, e.g. the CAS(4,4) for C2H4 in the test files. In these systems, adjusting max_stepsize, max_ci_stepsize and max_cycle_micro, max_cycle_micro_inner and ah_start_tol may be helpful) >>> mc = mcscf.CASSCF(mf, 6, 6) >>> mc.max_stepsize = .01 >>> mc.max_cycle_micro = 1 >>> mc.max_cycle_macro = 100 >>> mc.max_cycle_micro_inner = 1 >>> mc.ah_start_tol = 1e-6 max_ci_stepsize : float The max size for approximate CI updates. The approximate updates are used in 1-step algorithm, to estimate the change of CI wavefunction wrt the orbital rotation. Small step size is prefered. Default is 0.01. max_cycle_macro : int Max number of macro iterations. Default is 50. max_cycle_micro : int Max number of micro iterations in each macro iteration. Depending on systems, increasing this value might reduce the total macro iterations. Generally, 2 - 3 steps should be enough. Default is 2. max_cycle_micro_inner : int Max number of steps for the orbital rotations allowed for the augmented hessian solver. It can affect the actual size of orbital rotation. Even with a small max_stepsize, a few max_cycle_micro_inner can accumulate the rotation and leads to a significant change of the CAS space. Depending on systems, increasing this value migh reduce the total number of macro iterations. The value between 2 - 8 is preferred. Default is 4. frozen : int or list If integer is given, the inner-most orbitals are excluded from optimization. Given the orbital indices (0-based) in a list, any doubly occupied core orbitals, active orbitals and external orbitals can be frozen. ah_level_shift : float, for AH solver. Level shift for the Davidson diagonalization in AH solver. Default is 0. ah_conv_tol : float, for AH solver. converge threshold for Davidson diagonalization in AH solver. Default is 1e-8. ah_max_cycle : float, for AH solver. Max number of iterations allowd in AH solver. Default is 20. ah_lindep : float, for AH solver. Linear dependence threshold for AH solver. Default is 1e-16. ah_start_tol : flat, for AH solver. In AH solver, the orbital rotation is started without completely solving the AH problem. This value is to control the start point. Default is 1e-4. ah_start_cycle : int, for AH solver. In AH solver, the orbital rotation is started without completely solving the AH problem. This value is to control the start point. Default is 3. ``ah_conv_tol``, ``ah_max_cycle``, ``ah_lindep``, ``ah_start_tol`` and ``ah_start_cycle`` can affect the accuracy and performance of CASSCF solver. Lower ``ah_conv_tol`` and ``ah_lindep`` can improve the accuracy of CASSCF optimization, but slow down the performance. >>> from pyscf import gto, scf, mcscf >>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='ccpvdz', verbose=0) >>> mf = scf.UHF(mol) >>> mf.scf() >>> mc = mcscf.CASSCF(mf, 6, 6) >>> mc.conv_tol = 1e-10 >>> mc.ah_conv_tol = 1e-5 >>> mc.kernel() -109.044401898486001 >>> mc.ah_conv_tol = 1e-10 >>> mc.kernel() -109.044401887945668 chkfile : str Checkpoint file to save the intermediate orbitals during the CASSCF optimization. Default is the checkpoint file of mean field object. Saved results e_tot : float Total MCSCF energy (electronic energy plus nuclear repulsion) ci : ndarray CAS space FCI coefficients converged : bool, for CASSCF only It indicates CASSCF optimization converged or not. mo_energy: ndarray, Diagonal elements of general Fock matrix mo_coeff : ndarray, for CASSCF only Optimized CASSCF orbitals coefficients Note the orbitals are NOT natural orbitals by default. There are two inbuilt methods to convert the mo_coeff to natural orbitals. 1. Set .natorb attribute. It can be used before calculation. 2. call .cas_natorb_ method after the calculation to in-place convert the orbitals ''' from pyscf.mcscf import mc1step from pyscf.mcscf import mc1step_symm from pyscf.mcscf import casci from pyscf.mcscf import casci_symm from pyscf.mcscf import addons from pyscf.mcscf import ucasci casci_uhf = ucasci # for backward compatibility from pyscf.mcscf import umc1step mc1step_uhf = umc1step # for backward compatibility from pyscf.mcscf.addons import * from pyscf.mcscf import chkfile def CASSCF(mf_or_mol, ncas, nelecas, ncore=None, frozen=None): from pyscf import gto from pyscf import scf if isinstance(mf_or_mol, gto.Mole): mf = scf.RHF(mf_or_mol) else: mf = mf_or_mol if isinstance(mf, scf.uhf.UHF): mf = scf.addons.convert_to_rhf(mf) if getattr(mf, 'with_df', None): return DFCASSCF(mf, ncas, nelecas, ncore, frozen) if mf.mol.symmetry: mc = mc1step_symm.CASSCF(mf, ncas, nelecas, ncore, frozen) else: mc = mc1step.CASSCF(mf, ncas, nelecas, ncore, frozen) return mc RCASSCF = CASSCF def CASCI(mf_or_mol, ncas, nelecas, ncore=None): from pyscf import gto from pyscf import scf if isinstance(mf_or_mol, gto.Mole): mf = scf.RHF(mf_or_mol) else: mf = mf_or_mol if isinstance(mf, scf.uhf.UHF): mf = scf.addons.convert_to_rhf(mf) if getattr(mf, 'with_df', None): return DFCASCI(mf, ncas, nelecas, ncore) if mf.mol.symmetry: mc = casci_symm.CASCI(mf, ncas, nelecas, ncore) else: mc = casci.CASCI(mf, ncas, nelecas, ncore) return mc RCASCI = CASCI def UCASCI(mf_or_mol, ncas, nelecas, ncore=None): from pyscf import gto from pyscf import scf if isinstance(mf_or_mol, gto.Mole): mf = scf.UHF(mf_or_mol) else: mf = mf_or_mol if not isinstance(mf, scf.uhf.UHF): mf = scf.addons.convert_to_uhf(mf, remove_df=True) mc = ucasci.UCASCI(mf, ncas, nelecas, ncore) return mc def UCASSCF(mf_or_mol, ncas, nelecas, ncore=None, frozen=None): from pyscf import gto from pyscf import scf if isinstance(mf_or_mol, gto.Mole): mf = scf.UHF(mf_or_mol) else: mf = mf_or_mol if not isinstance(mf, scf.uhf.UHF): mf = scf.addons.convert_to_uhf(mf, remove_df=True) mc = umc1step.UCASSCF(mf, ncas, nelecas, ncore, frozen) return mc def newton(mc): return mc.newton() from pyscf.mcscf import df def DFCASSCF(mf_or_mol, ncas, nelecas, auxbasis=None, ncore=None, frozen=None): from pyscf import gto from pyscf import scf if isinstance(mf_or_mol, gto.Mole): mf = scf.RHF(mf_or_mol).density_fit() else: mf = mf_or_mol if isinstance(mf, scf.uhf.UHF): mf = scf.addons.convert_to_rhf(mf, remove_df=False) if mf.mol.symmetry: mc = mc1step_symm.CASSCF(mf, ncas, nelecas, ncore, frozen) else: mc = mc1step.CASSCF(mf, ncas, nelecas, ncore, frozen) return df.density_fit(mc, auxbasis) def DFCASCI(mf_or_mol, ncas, nelecas, auxbasis=None, ncore=None): from pyscf import gto from pyscf import scf if isinstance(mf_or_mol, gto.Mole): mf = scf.RHF(mf_or_mol).density_fit() else: mf = mf_or_mol if isinstance(mf, scf.uhf.UHF): mf = scf.addons.convert_to_rhf(mf, remove_df=False) if mf.mol.symmetry: mc = casci_symm.CASCI(mf, ncas, nelecas, ncore) else: mc = casci.CASCI(mf, ncas, nelecas, ncore) return df.density_fit(mc, auxbasis) approx_hessian = df.approx_hessian def density_fit(mc, auxbasis=None, with_df=None): return mc.density_fit(auxbasis, with_df)
tests/cpydiff/types_bytearray_sliceassign.py
learnforpractice/micropython-cpp
13,648
12674648
<gh_stars>1000+ """ categories: Types,bytearray description: Array slice assignment with unsupported RHS cause: Unknown workaround: Unknown """ b = bytearray(4) b[0:1] = [1, 2] print(b)
sfa/config/train_config.py
FinalCold/SFA3D
409
12674653
""" # -*- coding: utf-8 -*- ----------------------------------------------------------------------------------- # Author: <NAME> # DoC: 2020.08.17 # email: <EMAIL> ----------------------------------------------------------------------------------- # Description: The configurations of the project will be defined here """ import os import argparse import torch from easydict import EasyDict as edict def parse_train_configs(): parser = argparse.ArgumentParser(description='The Implementation using PyTorch') parser.add_argument('--seed', type=int, default=2020, help='re-produce the results with seed random') parser.add_argument('--saved_fn', type=str, default='fpn_resnet_18', metavar='FN', help='The name using for saving logs, models,...') parser.add_argument('--root-dir', type=str, default='../', metavar='PATH', help='The ROOT working directory') #################################################################### ############## Model configs ######################## #################################################################### parser.add_argument('--arch', type=str, default='fpn_resnet_18', metavar='ARCH', help='The name of the model architecture') parser.add_argument('--pretrained_path', type=str, default=None, metavar='PATH', help='the path of the pretrained checkpoint') #################################################################### ############## Dataloader and Running configs ####### #################################################################### parser.add_argument('--hflip_prob', type=float, default=0.5, help='The probability of horizontal flip') parser.add_argument('--no-val', action='store_true', help='If true, dont evaluate the model on the val set') parser.add_argument('--num_samples', type=int, default=None, help='Take a subset of the dataset to run and debug') parser.add_argument('--num_workers', type=int, default=4, help='Number of threads for loading data') parser.add_argument('--batch_size', type=int, default=16, help='mini-batch size (default: 16), this is the total' 'batch size of all GPUs on the current node when using' 'Data Parallel or Distributed Data Parallel') parser.add_argument('--print_freq', type=int, default=50, metavar='N', help='print frequency (default: 50)') parser.add_argument('--tensorboard_freq', type=int, default=50, metavar='N', help='frequency of saving tensorboard (default: 50)') parser.add_argument('--checkpoint_freq', type=int, default=2, metavar='N', help='frequency of saving checkpoints (default: 5)') #################################################################### ############## Training strategy #################### #################################################################### parser.add_argument('--start_epoch', type=int, default=1, metavar='N', help='the starting epoch') parser.add_argument('--num_epochs', type=int, default=300, metavar='N', help='number of total epochs to run') parser.add_argument('--lr_type', type=str, default='cosin', help='the type of learning rate scheduler (cosin or multi_step or one_cycle)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='initial learning rate') parser.add_argument('--minimum_lr', type=float, default=1e-7, metavar='MIN_LR', help='minimum learning rate during training') parser.add_argument('--momentum', type=float, default=0.949, metavar='M', help='momentum') parser.add_argument('-wd', '--weight_decay', type=float, default=0., metavar='WD', help='weight decay (default: 0.)') parser.add_argument('--optimizer_type', type=str, default='adam', metavar='OPTIMIZER', help='the type of optimizer, it can be sgd or adam') parser.add_argument('--steps', nargs='*', default=[150, 180], help='number of burn in step') #################################################################### ############## Loss weight ########################## #################################################################### #################################################################### ############## Distributed Data Parallel ############ #################################################################### parser.add_argument('--world-size', default=-1, type=int, metavar='N', help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, metavar='N', help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://127.0.0.1:29500', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--gpu_idx', default=None, type=int, help='GPU index to use.') parser.add_argument('--no_cuda', action='store_true', help='If true, cuda is not used.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') #################################################################### ############## Evaluation configurations ################### #################################################################### parser.add_argument('--evaluate', action='store_true', help='only evaluate the model, not training') parser.add_argument('--resume_path', type=str, default=None, metavar='PATH', help='the path of the resumed checkpoint') parser.add_argument('--K', type=int, default=50, help='the number of top K') configs = edict(vars(parser.parse_args())) #################################################################### ############## Hardware configurations ############################# #################################################################### configs.device = torch.device('cpu' if configs.no_cuda else 'cuda') configs.ngpus_per_node = torch.cuda.device_count() configs.pin_memory = True configs.input_size = (608, 608) configs.hm_size = (152, 152) configs.down_ratio = 4 configs.max_objects = 50 configs.imagenet_pretrained = True configs.head_conv = 64 configs.num_classes = 3 configs.num_center_offset = 2 configs.num_z = 1 configs.num_dim = 3 configs.num_direction = 2 # sin, cos configs.heads = { 'hm_cen': configs.num_classes, 'cen_offset': configs.num_center_offset, 'direction': configs.num_direction, 'z_coor': configs.num_z, 'dim': configs.num_dim } configs.num_input_features = 4 #################################################################### ############## Dataset, logs, Checkpoints dir ###################### #################################################################### configs.dataset_dir = os.path.join(configs.root_dir, 'dataset', 'kitti') configs.checkpoints_dir = os.path.join(configs.root_dir, 'checkpoints', configs.saved_fn) configs.logs_dir = os.path.join(configs.root_dir, 'logs', configs.saved_fn) if not os.path.isdir(configs.checkpoints_dir): os.makedirs(configs.checkpoints_dir) if not os.path.isdir(configs.logs_dir): os.makedirs(configs.logs_dir) return configs
colour/notation/datasets/__init__.py
rift-labs-developer/colour
1,380
12674674
# -*- coding: utf-8 -*- from .munsell import * # noqa from . import munsell __all__ = [] __all__ += munsell.__all__
Tools/Scenarios/strip_code.py
ErQing/Nova
212
12674687
#!/usr/bin/env python3 from nova_script_parser import normalize_dialogue, parse_chapters in_filename = 'scenario.txt' out_filename = 'scenario_no_code.txt' with open(in_filename, 'r', encoding='utf-8') as f: chapters = parse_chapters(f) with open(out_filename, 'w', encoding='utf-8', newline='\n') as f: for chapter_name, entries, _, _ in chapters: print(chapter_name) f.write(chapter_name + '\n\n') for _, chara_name, dialogue in entries: dialogue = normalize_dialogue(dialogue, remove_todo=False) if dialogue: if chara_name: f.write(f'{chara_name}:{dialogue}\n\n') else: f.write(dialogue + '\n\n')
official/vision/detection/modeling/learning_rates.py
akshit-protonn/models
82,518
12674689
<filename>official/vision/detection/modeling/learning_rates.py # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Learning rate schedule.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np import tensorflow as tf from official.modeling.hyperparams import params_dict class StepLearningRateWithLinearWarmup( tf.keras.optimizers.schedules.LearningRateSchedule): """Class to generate learning rate tensor.""" def __init__(self, total_steps, params): """Creates the step learning rate tensor with linear warmup.""" super(StepLearningRateWithLinearWarmup, self).__init__() self._total_steps = total_steps assert isinstance(params, (dict, params_dict.ParamsDict)) if isinstance(params, dict): params = params_dict.ParamsDict(params) self._params = params def __call__(self, global_step): warmup_lr = self._params.warmup_learning_rate warmup_steps = self._params.warmup_steps init_lr = self._params.init_learning_rate lr_levels = self._params.learning_rate_levels lr_steps = self._params.learning_rate_steps linear_warmup = ( warmup_lr + tf.cast(global_step, dtype=tf.float32) / warmup_steps * (init_lr - warmup_lr)) learning_rate = tf.where(global_step < warmup_steps, linear_warmup, init_lr) for next_learning_rate, start_step in zip(lr_levels, lr_steps): learning_rate = tf.where(global_step >= start_step, next_learning_rate, learning_rate) return learning_rate def get_config(self): return {'_params': self._params.as_dict()} class CosineLearningRateWithLinearWarmup( tf.keras.optimizers.schedules.LearningRateSchedule): """Class to generate learning rate tensor.""" def __init__(self, total_steps, params): """Creates the consine learning rate tensor with linear warmup.""" super(CosineLearningRateWithLinearWarmup, self).__init__() self._total_steps = total_steps assert isinstance(params, (dict, params_dict.ParamsDict)) if isinstance(params, dict): params = params_dict.ParamsDict(params) self._params = params def __call__(self, global_step): global_step = tf.cast(global_step, dtype=tf.float32) warmup_lr = self._params.warmup_learning_rate warmup_steps = self._params.warmup_steps init_lr = self._params.init_learning_rate total_steps = self._total_steps linear_warmup = ( warmup_lr + global_step / warmup_steps * (init_lr - warmup_lr)) cosine_learning_rate = ( init_lr * (tf.cos(np.pi * (global_step - warmup_steps) / (total_steps - warmup_steps)) + 1.0) / 2.0) learning_rate = tf.where(global_step < warmup_steps, linear_warmup, cosine_learning_rate) return learning_rate def get_config(self): return {'_params': self._params.as_dict()} def learning_rate_generator(total_steps, params): """The learning rate function generator.""" if params.type == 'step': return StepLearningRateWithLinearWarmup(total_steps, params) elif params.type == 'cosine': return CosineLearningRateWithLinearWarmup(total_steps, params) else: raise ValueError('Unsupported learning rate type: {}.'.format(params.type))
examples/titanic/multiple_model_training.py
yarenty/ludwig
970
12674694
<reponame>yarenty/ludwig #!/usr/bin/env python # # Multiple Model Training Example # # This example trains multiple models and extracts training statistics import logging import shutil # ## Import required libraries from ludwig.api import LudwigModel from ludwig.datasets import titanic from ludwig.visualize import learning_curves # clean out old results shutil.rmtree("./results", ignore_errors=True) shutil.rmtree("./visualizations", ignore_errors=True) # list models to train list_of_model_ids = ["model1", "model2"] list_of_train_stats = [] training_set, _, _ = titanic.load(split=True) # ## Train models for model_id in list_of_model_ids: print(">>>> training: ", model_id) # Define Ludwig model object that drive model training model = LudwigModel(config="./" + model_id + "_config.yaml", logging_level=logging.WARN) # initiate model training train_stats, _, _ = model.train(dataset=training_set, experiment_name="multiple_experiment", model_name=model_id) # save training stats for later use list_of_train_stats.append(train_stats) print(">>>>>>> completed: ", model_id, "\n") # generating learning curves from training learning_curves( list_of_train_stats, "Survived", model_names=list_of_model_ids, output_directory="./visualizations", file_format="png", )
trove/common/cache.py
hlesesne/trove
244
12674706
# Copyright 2021 Catalyst Cloud # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The code related to integration between oslo.cache module and trove.""" from oslo_cache import core from oslo_config import cfg def register_cache_configurations(conf): """Register all configurations required for oslo.cache. The procedure registers all configurations required for oslo.cache. It should be called before configuring of cache region """ core.configure(conf) ports_cache_group = cfg.OptGroup('instance_ports_cache') ports_cache_opts = [ cfg.IntOpt('expiration_time', default=86400, help='TTL, in seconds, for any cached item in the ' 'dogpile.cache region used for caching of the ' 'instance ports.'), cfg.BoolOpt("caching", default=True, help='Toggle to enable/disable caching when getting trove ' 'instance ports. Please note that the global toggle ' 'for oslo.cache(enabled=True in [cache] group) ' 'must be enabled to use this feature.') ] conf.register_group(ports_cache_group) conf.register_opts(ports_cache_opts, group=ports_cache_group) return conf # variable that stores an initialized cache region for trove _REGION = None def get_cache_region(): global _REGION if not _REGION: _REGION = core.configure_cache_region( conf=register_cache_configurations(cfg.CONF), region=core.create_region()) return _REGION
easytransfer/losses/classification_regression_loss.py
johnson7788/EasyTransfer
806
12674707
# coding=utf-8 # Copyright (c) 2019 Alibaba PAI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf def softmax_cross_entropy(labels, depth, logits): labels = tf.squeeze(labels) one_hot_labels = tf.one_hot(labels, depth=depth, dtype=tf.float32) loss = tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels, logits=logits) return loss def mean_square_error(labels, logits): return tf.losses.mean_squared_error(labels, logits) def multi_label_sigmoid_cross_entropy(labels, depth, logits): one_hots = tf.one_hot(labels, depth) multi_hots = tf.reduce_max(one_hots, axis=1) multi_hots = tf.cast(multi_hots, logits.dtype) return tf.losses.sigmoid_cross_entropy(multi_class_labels=multi_hots, logits=logits)
python_modules/libraries/dagster-pagerduty/dagster_pagerduty_tests/test_resources.py
rpatil524/dagster
4,606
12674718
<gh_stars>1000+ import responses from dagster import build_op_context, op from dagster_pagerduty import pagerduty_resource @responses.activate def test_pagerduty_resource(): @op(required_resource_keys={"pagerduty"}) def pagerduty_op(context): assert context.resources.pagerduty with responses.RequestsMock() as rsps: rsps.add( rsps.POST, "https://events.pagerduty.com/v2/enqueue/", status=202, json={"status": "success", "message": "Event processed", "dedup_key": "foobar"}, ) context.resources.pagerduty.EventV2_create( summary="PING OK - Packet loss = 0%, RTA = 1.41 ms Host 'acme-andromeda-sv1-c40" ":: 172.16.31.10' is DOWN", source="prod05.theseus.acme-widgets.com", severity="error", event_action="trigger", dedup_key="foobar", timestamp="2015-07-17T08:42:58.315+0000", component="mysql", group="prod-datapipe", event_class="High CPU", custom_details={"ping time": "1500ms", "load avg": 0.75}, ) return True with build_op_context( resources={ "pagerduty": pagerduty_resource.configured( {"routing_key": "<KEY>"} ) } ) as context: assert pagerduty_op(context)
experimental/language_structure/psl/psl_model_multiwoz_test_util.py
y0ast/uncertainty-baselines
794
12674720
# coding=utf-8 # Copyright 2021 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Util file for psl rules test.""" from typing import List import tensorflow as tf LOGITS = [[[0.0, 0.0, 0.4, 0.4, 0.0, 0.2, 0.0, 0.0, 0.0], [0.0, 0.0, 0.2, 0.6, 0.0, 0.2, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0], [0.0, 0.8, 0.1, 0.1, 0.2, 0.0, 0.0, 0.0, 0.2], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.8, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0], [0.0, 0.0, 0.5, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0], [0.0, 0.0, 0.5, 0.4, 0.0, 0.0, 0.0, 0.1, 0.0], [0.0, 0.0, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.9, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]] FEATURES = [[[-1, -2, -2, -2, -1, -2, -2, -2], [-1, -2, -2, -2, -1, -2, -2, -2], [-1, -2, -2, -2, -2, -2, -2, -2], [-1, -2, -2, -2, -2, -1, -2, -1], [-1, -2, -2, -1, -1, -2, -2, -2], [-2, -1, -2, -1, -1, -2, -1, -2], [-3, -2, -2, -2, -2, -2, -2, -2], [-3, -2, -2, -2, -2, -2, -2, -2], [-3, -2, -2, -2, -2, -2, -2, -2], [-3, -2, -2, -2, -2, -2, -2, -2]], [[-1, -2, -2, -2, -2, -2, -2, -2], [-1, -2, -2, -2, -2, -2, -2, -2], [-1, -2, -2, -1, -1, -2, -2, -2], [-1, -2, -2, -2, -1, -2, -2, -1], [-1, -2, -1, -2, -1, -2, -2, -2], [-2, -2, -2, -1, -1, -2, -2, -2], [-3, -2, -2, -2, -2, -2, -2, -2], [-3, -2, -2, -2, -2, -2, -2, -2], [-3, -2, -2, -2, -2, -2, -2, -2], [-3, -2, -2, -2, -2, -2, -2, -2]]] DATA = { 'train_data': [ [[[ 1109, 1616, 41, 800, 740, 1743, 557, 981, 886, 1616, 1658, 909, 1380, 1256, 1565, 482, 1304 ], [1109, 1304]], [[1109, 1023, 38, 893, 1037, 1664, 886, 1304], [ 1109, 218, 751, 1616, 812, 1406, 1152, 981, 65, 778, 688, 886, 427, 641, 611, 742, 321, 557, 354, 1471, 161, 182, 767, 1304 ]], [[1109, 1162, 145, 557, 981, 740, 734, 776, 1037, 755, 886, 1304], [ 1109, 1616, 812, 1406, 1152, 981, 79, 886, 766, 1616, 558, 165, 1471, 161, 182, 4, 1304 ]], [[1109, 1738, 145, 893, 532, 1304], [ 1109, 1616, 1658, 218, 1616, 812, 1406, 1152, 981, 79, 886, 1023, 38, 557, 354, 182, 731, 161, 182, 1304 ]], [[1109, 1738, 145, 1215, 1047, 1274, 1304], [ 1109, 1616, 812, 1406, 1152, 981, 740, 65, 778, 688, 886, 427, 641, 611, 742, 321, 557, 354, 1017, 161, 731, 1304 ]], [[1109, 1162, 641, 631, 145, 1738, 1499, 740, 1743, 557, 981, 1304], [ 1109, 1616, 1658, 218, 145, 1162, 1499, 981, 740, 263, 173, 62, 886, 766, 1616, 558, 165, 1471, 161, 1017, 4, 1304 ]]], [[[ 1109, 1616, 1658, 1450, 1743, 800, 1430, 79, 886, 1616, 1658, 1496, 1565, 1448, 929, 1489, 742, 1662, 1565, 1662, 1304 ], [1109, 1304]]], [[[ 1109, 1616, 1658, 1276, 1450, 1743, 800, 1430, 79, 751, 1616, 1133, 1431, 1496, 742, 1062, 1415, 1565, 818, 1304 ], [1109, 1304]]], [[[ 1109, 1616, 41, 800, 981, 886, 1616, 1077, 742, 1145, 1565, 83, 1037, 923, 1304 ], [1109, 1304]], [[1109, 1738, 145, 557, 740, 1743, 557, 981, 909, 256, 680, 187, 1304], [ 1109, 218, 1616, 812, 1406, 1152, 981, 740, 886, 1023, 38, 557, 354, 182, 767, 161, 1017, 4, 1304 ]], [[1109, 525, 641, 751, 1498, 1133, 1431, 1085, 1743, 610, 1304], [1109, 427, 641, 611, 742, 865, 641, 557, 574, 1304]], [[1109, 525, 641, 751, 1498, 1133, 1431, 1085, 886, 1304], [1109, 1185, 641, 1077, 1762, 512, 4, 1304]]], [[[ 1109, 764, 1178, 1616, 1658, 1450, 1743, 557, 981, 79, 886, 1616, 1133, 1431, 1496, 742, 821, 1565, 83, 1304 ], [1109, 1304]]] ], 'test_data': [ [[[ 1109, 1616, 1658, 1450, 1743, 891, 38, 800, 1430, 886, 1616, 1658, 909, 742, 499, 1565, 1159, 1472, 886, 1304 ], [1109, 1304]]], [[[ 1109, 1616, 427, 611, 564, 112, 801, 1412, 742, 446, 248, 800, 1001, 194, 886, 1616, 1077, 742, 1514, 1743, 142, 886, 1304 ], [1109, 1304]], [[1109, 1738, 1573, 557, 1510, 1561, 1301, 1301, 1412, 4, 1304], [ 1109, 1616, 323, 800, 1409, 1177, 886, 1573, 1738, 557, 1412, 742, 1621, 248, 800, 1001, 194, 886, 1304 ]], [[1109, 1499, 1718, 37, 1738, 1337, 1616, 1077, 886, 1304], [ 1109, 800, 1176, 72, 1506, 1738, 1374, 751, 427, 641, 611, 742, 1514, 1573, 1304 ]]], [[[ 1109, 1228, 1616, 1658, 1450, 1743, 800, 981, 886, 1616, 1077, 742, 1145, 283, 1669, 1565, 482, 1250, 551, 886, 1304 ], [1109, 1304]], [[1109, 1228, 766, 641, 1406, 1762, 742, 849, 1304], [ 1109, 1616, 812, 1406, 1152, 981, 740, 886, 427, 641, 611, 742, 321, 557, 354, 182, 731, 4, 1304 ]], [[1109, 1718, 37, 1738, 1337, 1616, 1077, 1304], [1109, 427, 641, 611, 742, 865, 641, 557, 574, 1304]], [[1109, 525, 641, 37, 1738, 1337, 1616, 1077, 886, 1304], [1109, 1738, 145, 1762, 512, 1616, 766, 814, 641, 4, 1304]]], [[[ 1109, 1228, 1616, 1658, 1450, 1743, 662, 226, 557, 981, 79, 886, 1616, 1658, 1496, 742, 1187, 1493, 1136, 1565, 1690, 886, 1304 ], [1109, 1304]]], ], 'vocab_mapping': { 'address': 53, 'thank': 525, 'sure': 631, 'yes': 758, 'hello': 764, 'pricey': 1012, 'hi': 1228, 'great': 1490, 'no': 1499, 'phone': 1596, 'thanks': 1718, }, 'train_labels': [[ 'init_request', 'second_request', 'second_request', 'second_request', 'second_request', 'insist' ], ['init_request'], ['init_request'], ['init_request', 'second_request', 'cancel', 'end'], ['init_request']], 'test_labels': [['init_request'], ['init_request', 'slot_question', 'cancel'], ['init_request', 'second_request', 'cancel', 'end'], ['init_request']] } TEST_MULTIWOZ_CONFIG = { 'default_seed': 4, 'batch_size': 128, 'max_dialog_size': 10, 'max_utterance_size': 40, 'class_map': { 'accept': 0, 'cancel': 1, 'end': 2, 'greet': 3, 'info_question': 4, 'init_request': 5, 'insist': 6, 'second_request': 7, 'slot_question': 8, }, 'accept_words': ['yes', 'great'], 'cancel_words': ['no'], 'end_words': ['thank', 'thanks'], 'greet_words': ['hello', 'hi'], 'info_question_words': ['address', 'phone'], 'insist_words': ['sure', 'no'], 'slot_question_words': ['pricey'], 'includes_word': -1, 'excludes_word': -2, 'mask_index': 0, 'accept_index': 1, 'cancel_index': 2, 'end_index': 3, 'greet_index': 4, 'info_question_index': 5, 'insist_index': 6, 'slot_question_index': 7, 'utterance_mask': -1, 'last_utterance_mask': -2, 'pad_utterance_mask': -3, 'shuffle_train': True, 'shuffle_test': False, 'train_epochs': 5, } def build_constrained_model(input_size: List[int]) -> tf.keras.Model: """Build simple neural model for class prediction.""" input_layer = tf.keras.layers.Input(input_size) hidden_layer_1 = tf.keras.layers.Dense(1024)(input_layer) hidden_layer_2 = tf.keras.layers.Dense( 512, activation='sigmoid')( hidden_layer_1) output = tf.keras.layers.Dense( 9, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2(1.0))( hidden_layer_2) model = tf.keras.Model(input_layer, output) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) return model
test_twowheel.py
rossning92/rpi-robot
106
12674722
from device import Motor from time import sleep from twowheel import TwoWheelController def test_controller(controller): for _ in range(2): controller.set_axis(x=-0.3) sleep(0.25) controller.set_axis(x=0.3) sleep(0.25) controller.set_axis() if __name__ == "__main__": controller = TwoWheelController() test_controller(controller)
src/oci/golden_gate/models/create_deployment_backup_details.py
Manny27nyc/oci-python-sdk
249
12674736
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class CreateDeploymentBackupDetails(object): """ The information about a new DeploymentBackup. """ def __init__(self, **kwargs): """ Initializes a new CreateDeploymentBackupDetails object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param display_name: The value to assign to the display_name property of this CreateDeploymentBackupDetails. :type display_name: str :param compartment_id: The value to assign to the compartment_id property of this CreateDeploymentBackupDetails. :type compartment_id: str :param deployment_id: The value to assign to the deployment_id property of this CreateDeploymentBackupDetails. :type deployment_id: str :param namespace_name: The value to assign to the namespace_name property of this CreateDeploymentBackupDetails. :type namespace_name: str :param bucket_name: The value to assign to the bucket_name property of this CreateDeploymentBackupDetails. :type bucket_name: str :param object_name: The value to assign to the object_name property of this CreateDeploymentBackupDetails. :type object_name: str :param freeform_tags: The value to assign to the freeform_tags property of this CreateDeploymentBackupDetails. :type freeform_tags: dict(str, str) :param defined_tags: The value to assign to the defined_tags property of this CreateDeploymentBackupDetails. :type defined_tags: dict(str, dict(str, object)) """ self.swagger_types = { 'display_name': 'str', 'compartment_id': 'str', 'deployment_id': 'str', 'namespace_name': 'str', 'bucket_name': 'str', 'object_name': 'str', 'freeform_tags': 'dict(str, str)', 'defined_tags': 'dict(str, dict(str, object))' } self.attribute_map = { 'display_name': 'displayName', 'compartment_id': 'compartmentId', 'deployment_id': 'deploymentId', 'namespace_name': 'namespaceName', 'bucket_name': 'bucketName', 'object_name': 'objectName', 'freeform_tags': 'freeformTags', 'defined_tags': 'definedTags' } self._display_name = None self._compartment_id = None self._deployment_id = None self._namespace_name = None self._bucket_name = None self._object_name = None self._freeform_tags = None self._defined_tags = None @property def display_name(self): """ **[Required]** Gets the display_name of this CreateDeploymentBackupDetails. An object's Display Name. :return: The display_name of this CreateDeploymentBackupDetails. :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """ Sets the display_name of this CreateDeploymentBackupDetails. An object's Display Name. :param display_name: The display_name of this CreateDeploymentBackupDetails. :type: str """ self._display_name = display_name @property def compartment_id(self): """ **[Required]** Gets the compartment_id of this CreateDeploymentBackupDetails. The `OCID`__ of the compartment being referenced. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :return: The compartment_id of this CreateDeploymentBackupDetails. :rtype: str """ return self._compartment_id @compartment_id.setter def compartment_id(self, compartment_id): """ Sets the compartment_id of this CreateDeploymentBackupDetails. The `OCID`__ of the compartment being referenced. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :param compartment_id: The compartment_id of this CreateDeploymentBackupDetails. :type: str """ self._compartment_id = compartment_id @property def deployment_id(self): """ **[Required]** Gets the deployment_id of this CreateDeploymentBackupDetails. The `OCID`__ of the deployment being referenced. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :return: The deployment_id of this CreateDeploymentBackupDetails. :rtype: str """ return self._deployment_id @deployment_id.setter def deployment_id(self, deployment_id): """ Sets the deployment_id of this CreateDeploymentBackupDetails. The `OCID`__ of the deployment being referenced. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :param deployment_id: The deployment_id of this CreateDeploymentBackupDetails. :type: str """ self._deployment_id = deployment_id @property def namespace_name(self): """ **[Required]** Gets the namespace_name of this CreateDeploymentBackupDetails. Name of namespace that serves as a container for all of your buckets :return: The namespace_name of this CreateDeploymentBackupDetails. :rtype: str """ return self._namespace_name @namespace_name.setter def namespace_name(self, namespace_name): """ Sets the namespace_name of this CreateDeploymentBackupDetails. Name of namespace that serves as a container for all of your buckets :param namespace_name: The namespace_name of this CreateDeploymentBackupDetails. :type: str """ self._namespace_name = namespace_name @property def bucket_name(self): """ **[Required]** Gets the bucket_name of this CreateDeploymentBackupDetails. Name of the bucket where the object is to be uploaded in the object storage :return: The bucket_name of this CreateDeploymentBackupDetails. :rtype: str """ return self._bucket_name @bucket_name.setter def bucket_name(self, bucket_name): """ Sets the bucket_name of this CreateDeploymentBackupDetails. Name of the bucket where the object is to be uploaded in the object storage :param bucket_name: The bucket_name of this CreateDeploymentBackupDetails. :type: str """ self._bucket_name = bucket_name @property def object_name(self): """ **[Required]** Gets the object_name of this CreateDeploymentBackupDetails. Name of the object to be uploaded to object storage :return: The object_name of this CreateDeploymentBackupDetails. :rtype: str """ return self._object_name @object_name.setter def object_name(self, object_name): """ Sets the object_name of this CreateDeploymentBackupDetails. Name of the object to be uploaded to object storage :param object_name: The object_name of this CreateDeploymentBackupDetails. :type: str """ self._object_name = object_name @property def freeform_tags(self): """ Gets the freeform_tags of this CreateDeploymentBackupDetails. A simple key-value pair that is applied without any predefined name, type, or scope. Exists for cross-compatibility only. Example: `{\"bar-key\": \"value\"}` :return: The freeform_tags of this CreateDeploymentBackupDetails. :rtype: dict(str, str) """ return self._freeform_tags @freeform_tags.setter def freeform_tags(self, freeform_tags): """ Sets the freeform_tags of this CreateDeploymentBackupDetails. A simple key-value pair that is applied without any predefined name, type, or scope. Exists for cross-compatibility only. Example: `{\"bar-key\": \"value\"}` :param freeform_tags: The freeform_tags of this CreateDeploymentBackupDetails. :type: dict(str, str) """ self._freeform_tags = freeform_tags @property def defined_tags(self): """ Gets the defined_tags of this CreateDeploymentBackupDetails. Tags defined for this resource. Each key is predefined and scoped to a namespace. Example: `{\"foo-namespace\": {\"bar-key\": \"value\"}}` :return: The defined_tags of this CreateDeploymentBackupDetails. :rtype: dict(str, dict(str, object)) """ return self._defined_tags @defined_tags.setter def defined_tags(self, defined_tags): """ Sets the defined_tags of this CreateDeploymentBackupDetails. Tags defined for this resource. Each key is predefined and scoped to a namespace. Example: `{\"foo-namespace\": {\"bar-key\": \"value\"}}` :param defined_tags: The defined_tags of this CreateDeploymentBackupDetails. :type: dict(str, dict(str, object)) """ self._defined_tags = defined_tags def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
python/ffi_navigator/pattern.py
csullivan/ffi-navigator
148
12674747
"""FFI related code patterns and utility function to detect them.""" from typing import Optional import re import attr import numpy as np from bisect import bisect from .lsp import Range, Position, Location class Pattern: """Base class of all interesting code patterns.""" pass @attr.s class Def(Pattern): """Definition of an FFI resource. Parameters ---------- key : str Global unique id to locate the FFI resource. path : str The file path. range: Range The location range of the defininition. """ key : str = attr.ib() path : str = attr.ib() range: Range = attr.ib() @attr.s class Ref(Pattern): """Reference of an FFI resource. Parameters ---------- key : str Global unique id to locate the FFI resource. path : str The file path. range: Range The location range of the defininition. """ key : str = attr.ib() path : str = attr.ib() range : Range = attr.ib() @attr.s class Export(Pattern): """Export a collection of keys with the same prefix. Parameters ---------- key_prefix : str The prefix of keys to be exported. path : str The file path to be exported. fkey2var : Function The function that takes a key and maps to a local var in the path which corresponds to the FFI resource. fvar2key : Function The function that takes local var name and maps to the corresponding key, can return None. """ key_prefix : str = attr.ib() path : str = attr.ib() fkey2var = attr.ib() fvar2key = attr.ib() @attr.s class Symbol(Pattern): """A symbol in python expression, can contain dot. """ value : str = attr.ib() def re_matcher(rexpr, fcreate, use_search=False): """ Parameters ---------- rexpr : str A regexp pattern to match. fcreate : Function (match, path, range) -> result. use_search: bool Whether use search """ rexpr = re.compile(rexpr) def _matcher(path, source, begin_line=0, end_line=None): source = source.split("\n") if isinstance(source, str) else source results = [] end_line = min(end_line, len(source)) if end_line else len(source) for line in range(begin_line, end_line): content = source[line] match = rexpr.search(content) if use_search else rexpr.match(content) if match: start, end = match.span() start_pos = Position(line, start) end_pos = Position(line, end) item = fcreate(match, path, Range(start_pos, end_pos)) if item: results.append(item) return results return _matcher def re_multi_line_matcher(rexpr, fcreate): """ Matches a pattern spanning multiple lines Parameters ---------- rexpr : str A regexp pattern to match. fcreate : Function (match, path, range) -> result. """ rexpr = re.compile(rexpr) def _matcher(path, lines): source = "".join(lines) matches = list(rexpr.finditer(source)) if matches == []: return [] line_counts = map(lambda line: len(line), lines) cumsum = np.cumsum(list(line_counts)) # find line num, start and end pos for each match next_begin = 0 result = [] for match in matches: line_num_start = bisect(cumsum[next_begin:], match.start()) + next_begin next_begin = line_num_start line_num_end = line_num_start + match.group().count("\n") pos_start = match.start() - int(cumsum[line_num_start-1]) pos_end = match.end() - int(cumsum[line_num_end-1]) assert(pos_start >= 0 and pos_end >= 0) rg = Range(Position(line_num_start, pos_start), Position(line_num_end, pos_end)) result.append(fcreate(match, path, rg)) return result return _matcher def re_match_pybind_class(): return re_multi_line_matcher(r"py::class_\<[A-Za-z0-9|_|::|<|>]+(\,\s*[A-Za-z0-9|_|::|<|>]+)*\>" r"\s*\(\s*m,\s*\"(?P<key>[A-Za-z0-9|_]+)\"" r"(,\s*[A-Za-z0-9|_|::|<|>|(|)]+)*\)", lambda match, path, rg: \ Def(key=match.group("key"), path=path, range=rg)) def re_match_pybind_method(): return re_multi_line_matcher(r"\.def\(\s*\"(?P<key>[a-z0-9|_]+)\"", lambda match, path, rg: \ Def(key=match.group("key"), path=path, range=rg)) def macro_matcher(macro_names, fcreate=None): """Match pattern <macro_name>("<skey>" Parameters ---------- macro_names : list List of macro names to match. fcreate : Function (skey, path, range, macro_name) -> result. """ rexpr = r"(?P<macro_name>(" rexpr += "|".join(re.escape(x) for x in macro_names) rexpr += r"))\(\"(?P<skey>[^\"]+)\"\)?" def _fcreate(match, path, rg): return fcreate(match.group("skey"), path, rg, match.group("macro_name")) return re_matcher(rexpr, _fcreate) def func_get_searcher(func_names, fcreate=None): """Search pattern <func_name>("<skey>") Parameters ---------- func_names : list List of macro names to match. fcreate : Function (skey, path, range, func_name) -> result. """ rexpr = r"(?P<func_name>(" rexpr += "|".join(re.escape(x) for x in func_names) rexpr += r"))\(\"(?P<skey>[^\"]+)\"\)" rexpr = re.compile(rexpr) def _matcher(path, source, begin_line=0, end_line=None): source = source.split("\n") if isinstance(source, str) else source results = [] end_line = min(end_line, len(source)) if end_line else len(source) for line in range(begin_line, end_line): content = source[line] str_pos = 0 while True: match = rexpr.search(content, str_pos) if not match: break start, end = match.span("skey") start_pos = Position(line, start) end_pos = Position(line, end) item = fcreate(match.group("skey"), path, Range(start_pos, end_pos), match.group("func_name")) if item: results.append(item) str_pos = match.end() return results return _matcher def decorator_matcher(func_names, keyword, fcreate=None): """Search pattern @[namespace]<func_name>("<skey>") Parameters ---------- func_names : list List of macro names to match. fcreate : Function (skey, path, range, func_name) -> result. """ decorator = r"@?(?P<decorator>([a-zA-Z_]?[a-zA-Z_0-9.]*.)?(" decorator += "|".join(re.escape(x) for x in func_names) decorator += "))((\(\"(?P<skey>[^\"]+)\")|(\s*\Z))" nextline = keyword + r"\s+(?P<skey>[a-zA-Z_0-9]+)\(" decorator = re.compile(decorator) nextline = re.compile(nextline) def _matcher(path, source, begin_line=0, end_line=None): source = source.split("\n") if isinstance(source, str) else source results = [] end_line = min(end_line, len(source)) if end_line else len(source) for line in range(begin_line, end_line): content = source[line] match = decorator.match(content) if match: skey = match.group("skey") if skey: start, end = match.span("skey") lineno = line if not skey and line + 1 < len(source): match_name = nextline.match(source[line + 1]) if match_name: skey = match_name.group("skey") start, end = match_name.span("skey") lineno = line + 1 if skey: start_pos = Position(lineno, start) end_pos = Position(lineno, end) item = fcreate(skey, path, Range(start_pos, end_pos), match.group("decorator")) if item: results.append(item) return results return _matcher @attr.s class PyImport: """Python import syntax.""" from_mod : Optional[str] = attr.ib() import_name : str = attr.ib() alias : Optional[str] = attr.ib() RE_PY_IMPORT_PREFIX = re.compile(r"\s*from\s+(?P<mod>[^\s]+)\s+import") RE_PY_IMPORT_ITEM = re.compile(r"\s+(?P<name>[^\s]+)(\s+as\s+(?P<alias>[^\s]+))?") def find_py_imports(source): """Discover python import information.""" source = source.split("\n") if isinstance(source, str) else source results = [] for line, content in enumerate(source): prefix = RE_PY_IMPORT_PREFIX.match(content) if prefix: from_mod = prefix.group("mod") for item in content[prefix.end():].split(","): match = RE_PY_IMPORT_ITEM.match(item) if match: results.append(PyImport(from_mod=from_mod, import_name=match.group("name"), alias=match.group("alias"))) return results RE_PY_DELIM = r"(\s|[.,\(\)\[\]{}:=\+\-\*]|\Z)+" def search_symbol(source, symbols): """Search symbols within a source, return matched positions.""" source = source.split("\n") if isinstance(source, str) else source rexpr = RE_PY_DELIM + "(?P<name>(" rexpr += "|".join([re.escape(sym) for sym in symbols]) + "))" rexpr += RE_PY_DELIM rexpr = re.compile(rexpr) results = [] for line, content in enumerate(source): match = rexpr.search(content) if match: start, end = match.span("name") start_pos = Position(line, start) end_pos = Position(line, end) results.append(Range(start_pos, end_pos)) return results RE_PY_NAMESPACE_PREFIX = re.compile(r"[a-zA-Z_][a-zA-Z0-9_.]+\Z") RE_PY_VAR_NAME = re.compile(r"[a-zA-Z0-9_.]+") def extract_symbol(source, pos: Position): """Find the complete expression, include namespace prefix""" source = source.split("\n") if isinstance(source, str) else source content = source[pos.line] mprefix = RE_PY_NAMESPACE_PREFIX.search(content, 0, pos.character) start = mprefix.start() if mprefix else pos.character mvar = RE_PY_VAR_NAME.match(content, pos.character) end = mvar.end() if mvar else pos.character value = content[start:end] if end < len(content) and content[end] == "\"": return None return Symbol(value)
ceilometer/keystone_client.py
ionutbiru/ceilometer
239
12674754
<gh_stars>100-1000 # # Copyright 2015 eNovance <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from keystoneauth1 import loading as ka_loading from keystoneclient.v3 import client as ks_client_v3 from oslo_config import cfg DEFAULT_GROUP = "service_credentials" # List of group that can set auth_section to use a different # credentials section OVERRIDABLE_GROUPS = ['gnocchi', 'zaqar', 'monasca'] def get_session(conf, requests_session=None, group=None, timeout=None): """Get a ceilometer service credentials auth session.""" group = group or DEFAULT_GROUP auth_plugin = ka_loading.load_auth_from_conf_options(conf, group) kwargs = {'auth': auth_plugin, 'session': requests_session} if timeout is not None: kwargs['timeout'] = timeout session = ka_loading.load_session_from_conf_options(conf, group, **kwargs) return session def get_client(conf, trust_id=None, requests_session=None, group=DEFAULT_GROUP): """Return a client for keystone v3 endpoint, optionally using a trust.""" session = get_session(conf, requests_session=requests_session, group=group) return ks_client_v3.Client(session=session, trust_id=trust_id, region_name=conf[group].region_name) def get_service_catalog(client): return client.session.auth.get_access(client.session).service_catalog def get_auth_token(client): return client.session.auth.get_access(client.session).auth_token CLI_OPTS = [ cfg.StrOpt('region-name', deprecated_group="DEFAULT", deprecated_name="os-region-name", default=os.environ.get('OS_REGION_NAME'), help='Region name to use for OpenStack service endpoints.'), cfg.StrOpt('interface', default=os.environ.get( 'OS_INTERFACE', os.environ.get('OS_ENDPOINT_TYPE', 'public')), deprecated_name="os-endpoint-type", choices=('public', 'internal', 'admin', 'auth', 'publicURL', 'internalURL', 'adminURL'), help='Type of endpoint in Identity service catalog to use for ' 'communication with OpenStack services.'), ] def register_keystoneauth_opts(conf): _register_keystoneauth_group(conf, DEFAULT_GROUP) for group in OVERRIDABLE_GROUPS: _register_keystoneauth_group(conf, group) conf.set_default('auth_section', DEFAULT_GROUP, group=group) def _register_keystoneauth_group(conf, group): ka_loading.register_auth_conf_options(conf, group) ka_loading.register_session_conf_options( conf, group, deprecated_opts={'cacert': [ cfg.DeprecatedOpt('os-cacert', group=group), cfg.DeprecatedOpt('os-cacert', group="DEFAULT")] }) conf.register_opts(CLI_OPTS, group=group) def post_register_keystoneauth_opts(conf): for group in OVERRIDABLE_GROUPS: if conf[group].auth_section != DEFAULT_GROUP: # NOTE(sileht): We register this again after the auth_section have # been read from the configuration file _register_keystoneauth_group(conf, conf[group].auth_section)
04-distillation/model.py
PeiqinSun/tf-tutorials
184
12674784
<reponame>PeiqinSun/tf-tutorials #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf import tensorflow.contrib as tf_contrib from common import config from model_utils import conv2d_quantize class Model(): def __init__(self): # set the initializer of conv_weight and conv_bias self.weight_init = tf_contrib.layers.variance_scaling_initializer(factor=1.0, mode='FAN_IN', uniform=False) self.bias_init = tf.zeros_initializer() self.reg = tf_contrib.layers.l2_regularizer(config.weight_decay) def _conv_layer(self, name, inp, kernel_shape, stride, padding='SAME', f_num_bits=None,w_num_bits = None, if_num_bits = None, is_training=False): with tf.variable_scope(name) as scope: conv_filter = tf.get_variable(name=name+'_filter', shape=kernel_shape, initializer=self.weight_init, regularizer=self.reg) conv_bias = tf.get_variable(name=name+'_bias', shape=kernel_shape[-1], initializer=self.bias_init) x = conv2d_quantize(name + '_quantize', inp, stride, padding, data_format='NHWC',kernel_shape = kernel_shape, conv_filter = conv_filter, conv_bias = conv_bias, f_num_bits = f_num_bits, w_num_bits = w_num_bits, if_num_bits = if_num_bits, is_training = is_training ) return x def _pool_layer(self, name, inp, ksize, stride, padding='SAME', mode='MAX'): assert mode in ['MAX', 'AVG'], 'the mode of pool must be MAX or AVG' if mode == 'MAX': x = tf.nn.max_pool(inp, ksize=[1, ksize, ksize, 1], strides=[1, stride, stride, 1], padding=padding, name=name, data_format='NHWC') elif mode == 'AVG': x = tf.nn.avg_pool(inp, ksize=[1, ksize, ksize, 1], strides=[1, stride, stride, 1], padding=padding, name=name, data_format='NHWC') return x def _fc_layer(self, name, inp, units, dropout=0.5): with tf.variable_scope(name) as scope: shape = inp.get_shape().as_list() dim = 1 for d in shape[1:]: dim *= d x = tf.reshape(inp, [-1, dim]) # flatten if dropout > 0: x = tf.nn.dropout(x, keep_prob=dropout, name='dropout') x = tf.layers.dense(x, units, kernel_initializer=self.weight_init, bias_initializer=self.bias_init, kernel_regularizer=self.reg) return x def build(self): w_bits = 2 f_bits = 1 data = tf.placeholder(tf.float32, shape=(None,)+config.image_shape+(config.nr_channel,), name='data') label = tf.placeholder(tf.int32, shape=(None,), name='label') # convert the format of label to one-hot label_onehot = tf.one_hot(label, config.nr_class, dtype=tf.int32) # a setting for bn is_training = tf.placeholder(tf.bool, name='is_training') # conv1 x = self._conv_layer(name='quantized_conv1', inp=data, kernel_shape=[3, 3, config.nr_channel, 16], stride=1, f_num_bits = f_bits, w_num_bits = w_bits, is_training=is_training) # Nx32x32x32 x = self._pool_layer(name='quantized_pool1', inp=x, ksize=2, stride=2, mode='MAX') # Nx16x16x16 # conv2 x = self._conv_layer(name='quantized_conv21', inp=x, kernel_shape=[3, 3, 16, 32], stride=1, f_num_bits = f_bits, w_num_bits = w_bits,is_training=is_training) x = self._conv_layer(name='quantized_conv22', inp=x, kernel_shape=[3, 3, 32, 32], stride=1, f_num_bits = f_bits, w_num_bits = w_bits, is_training=is_training) x = self._pool_layer(name='quantized_pool2', inp=x, ksize=2, stride=2, mode='MAX') # Nx8x8x32 # conv3 x = self._conv_layer(name='quantized_conv31', inp=x, kernel_shape=[3, 3, 32, 64], stride=1, f_num_bits = f_bits, w_num_bits = w_bits,is_training=is_training) x = self._conv_layer(name='quantized_conv32', inp=x, kernel_shape=[3, 3, 64, 64], stride=1, f_num_bits = f_bits, w_num_bits = w_bits,is_training=is_training) x = self._pool_layer(name='quantized_pool3', inp=x, ksize=2, stride=2, mode='MAX') # Nx4x4x64 # conv4 x = self._conv_layer(name='quantized_conv41', inp=x, kernel_shape=[3, 3, 64, 128], stride=1, f_num_bits = f_bits, w_num_bits = w_bits,is_training=is_training) x = self._conv_layer(name='quantized_conv42', inp=x, kernel_shape=[3, 3, 128, 128], stride=1, f_num_bits = f_bits, w_num_bits = w_bits,is_training=is_training) x = self._pool_layer(name='quantized_pool4', inp=x, ksize=4, stride=4, mode='AVG') # Nx1x1x128 # fc1 logits = self._fc_layer(name='quantized_fc1', inp=x, units=config.nr_class, dropout=0) placeholders = { 'data': data, 'label': label, 'is_training': is_training, } return placeholders, label_onehot, logits
zipfly/__init__.py
beckedorf/zipfly
522
12674807
<reponame>beckedorf/zipfly<filename>zipfly/__init__.py<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import unicode_literals, print_function, with_statement __version__ = '6.0.4' __author__ = '<NAME> - Buzon, Inc.' __license__ = 'MIT' # v from .zipfly import ZipFly from .zipfly import LargePredictionSize from .response import FileResponse from .api import Buffer
explainerdashboard/dashboard_components/composites.py
Simon-Free/explainerdashboard
1,178
12674824
__all__ = [ 'ImportancesComposite', 'ClassifierModelStatsComposite', 'RegressionModelStatsComposite', 'IndividualPredictionsComposite', 'ShapDependenceComposite', 'ShapInteractionsComposite', 'DecisionTreesComposite', 'WhatIfComposite', 'SimplifiedClassifierComposite', 'SimplifiedRegressionComposite', ] import dash_bootstrap_components as dbc import dash_html_components as html from ..explainers import RandomForestExplainer, XGBExplainer from ..dashboard_methods import * from .classifier_components import * from .regression_components import * from .overview_components import * from .connectors import * from .shap_components import * from .decisiontree_components import * from .. import to_html class ImportancesComposite(ExplainerComponent): def __init__(self, explainer, title="Feature Importances", name=None, hide_title=False, hide_importances=False, hide_descriptions=False, hide_selector=True, **kwargs): """Overview tab of feature importances Can show both permutation importances and mean absolute shap values. Args: explainer (Explainer): explainer object constructed with either ClassifierExplainer() or RegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Feature Importances". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_title (bool, optional): hide the title hide_importances (bool, optional): hide the ImportancesComponent hide_descriptions (bool, optional): hide the FeatureDescriptionsComponent hide_selector (bool, optional): hide the post label selector. Defaults to True. """ super().__init__(explainer, title, name) self.importances = ImportancesComponent( explainer, name=self.name+"0", hide_selector=hide_selector, **kwargs) self.feature_descriptions = FeatureDescriptionsComponent(explainer, **kwargs) if not self.explainer.descriptions: self.hide_descriptions=True def layout(self): return html.Div([ dbc.Row([ make_hideable( dbc.Col([ html.H2(self.title)]), hide=self.hide_title), ]), dbc.Row([ make_hideable( dbc.Col([ self.importances.layout(), ]), hide=self.hide_importances), ], style=dict(margin=25)), dbc.Row([ make_hideable( dbc.Col([ self.feature_descriptions.layout(), ]), hide=self.hide_descriptions), ], style=dict(margin=25)) ]) def to_html(self, state_dict=None, add_header=True): html = to_html.hide(to_html.title(self.title), hide=self.hide_title) html += to_html.card_rows( [to_html.hide(self.importances.to_html(state_dict, add_header=False), self.hide_importances)], [to_html.hide(self.feature_descriptions.to_html(state_dict, add_header=False), self.hide_descriptions)], ) if add_header: return to_html.add_header(html) return html class ClassifierModelStatsComposite(ExplainerComponent): def __init__(self, explainer, title="Classification Stats", name=None, hide_title=True, hide_selector=True, hide_globalcutoff=False, hide_modelsummary=False, hide_confusionmatrix=False, hide_precision=False, hide_classification=False, hide_rocauc=False, hide_prauc=False, hide_liftcurve=False, hide_cumprecision=False, pos_label=None, bin_size=0.1, quantiles=10, cutoff=0.5, **kwargs): """Composite of multiple classifier related components: - precision graph - confusion matrix - lift curve - classification graph - roc auc graph - pr auc graph Args: explainer (Explainer): explainer object constructed with either ClassifierExplainer() or RegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Decision Trees". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_title (bool, optional): hide title. Defaults to True. hide_selector (bool, optional): hide all pos label selectors. Defaults to True. hide_globalcutoff (bool, optional): hide CutoffPercentileComponent hide_modelsummary (bool, optional): hide ClassifierModelSummaryComponent hide_confusionmatrix (bool, optional): hide ConfusionMatrixComponent hide_precision (bool, optional): hide PrecisionComponent hide_classification (bool, optional): hide ClassificationComponent hide_rocauc (bool, optional): hide RocAucComponent hide_prauc (bool, optional): hide PrAucComponent hide_liftcurve (bool, optional): hide LiftCurveComponent hide_cumprecision (bool, optional): hide CumulativePrecisionComponent pos_label ({int, str}, optional): initial pos label. Defaults to explainer.pos_label bin_size (float, optional): bin_size for precision plot. Defaults to 0.1. quantiles (int, optional): number of quantiles for precision plot. Defaults to 10. cutoff (float, optional): initial cutoff. Defaults to 0.5. """ super().__init__(explainer, title, name) self.summary = ClassifierModelSummaryComponent(explainer, name=self.name+"0", hide_selector=hide_selector, pos_label=pos_label, **kwargs) self.precision = PrecisionComponent(explainer, name=self.name+"1", hide_selector=hide_selector, pos_label=pos_label, **kwargs) self.confusionmatrix = ConfusionMatrixComponent(explainer, name=self.name+"2", hide_selector=hide_selector, pos_label=pos_label, **kwargs) self.cumulative_precision = CumulativePrecisionComponent(explainer, name=self.name+"3", hide_selector=hide_selector, pos_label=pos_label, **kwargs) self.liftcurve = LiftCurveComponent(explainer, name=self.name+"4", hide_selector=hide_selector, pos_label=pos_label, **kwargs) self.classification = ClassificationComponent(explainer, name=self.name+"5", hide_selector=hide_selector, pos_label=pos_label, **kwargs) self.rocauc = RocAucComponent(explainer, name=self.name+"6", hide_selector=hide_selector, pos_label=pos_label, **kwargs) self.prauc = PrAucComponent(explainer, name=self.name+"7", hide_selector=hide_selector, pos_label=pos_label, **kwargs) self.cutoffpercentile = CutoffPercentileComponent(explainer, name=self.name+"8", hide_selector=hide_selector, pos_label=pos_label, **kwargs) self.cutoffconnector = CutoffConnector(self.cutoffpercentile, [self.summary, self.precision, self.confusionmatrix, self.liftcurve, self.cumulative_precision, self.classification, self.rocauc, self.prauc]) def layout(self): return html.Div([ dbc.Row([ make_hideable( dbc.Col([ html.H2('Model Performance:')]), hide=self.hide_title), ]), dbc.Row([ make_hideable( dbc.Col([ self.cutoffpercentile.layout(), ]), hide=self.hide_globalcutoff), ], style=dict(marginTop=25, marginBottom=25)), dbc.CardDeck([ make_hideable(self.summary.layout(), hide=self.hide_modelsummary), make_hideable(self.confusionmatrix.layout(), hide=self.hide_confusionmatrix), ], style=dict(marginBottom=25)), dbc.CardDeck([ make_hideable(self.precision.layout(), hide=self.hide_precision), make_hideable(self.classification.layout(), hide=self.hide_classification) ], style=dict(marginBottom=25)), dbc.CardDeck([ make_hideable(self.rocauc.layout(), hide=self.hide_rocauc), make_hideable(self.prauc.layout(), hide=self.hide_prauc), ], style=dict(marginBottom=25)), dbc.CardDeck([ make_hideable(self.liftcurve.layout(), self.hide_liftcurve), make_hideable(self.cumulative_precision.layout(), self.hide_cumprecision), ], style=dict(marginBottom=25)), ]) def to_html(self, state_dict=None, add_header=True): html = to_html.hide(to_html.title(self.title), hide=self.hide_title) html += to_html.card_rows( [to_html.hide(self.summary.to_html(state_dict, add_header=False), hide=self.hide_modelsummary), to_html.hide(self.confusionmatrix.to_html(state_dict, add_header=False), hide=self.hide_confusionmatrix)], [to_html.hide(self.precision.to_html(state_dict, add_header=False), hide=self.hide_precision), to_html.hide(self.classification.to_html(state_dict, add_header=False), hide=self.hide_classification)], [to_html.hide(self.rocauc.to_html(state_dict, add_header=False), hide=self.hide_rocauc), to_html.hide(self.prauc.to_html(state_dict, add_header=False), hide=self.hide_prauc)], [to_html.hide(self.liftcurve.to_html(state_dict, add_header=False), hide=self.hide_liftcurve), to_html.hide(self.cumulative_precision.to_html(state_dict, add_header=False), hide=self.hide_cumprecision)] ) if add_header: return to_html.add_header(html) return html class RegressionModelStatsComposite(ExplainerComponent): def __init__(self, explainer, title="Regression Stats", name=None, hide_title=True, hide_modelsummary=False, hide_predsvsactual=False, hide_residuals=False, hide_regvscol=False, logs=False, pred_or_actual="vs_pred", residuals='difference', col=None, **kwargs): """Composite for displaying multiple regression related graphs: - predictions vs actual plot - residual plot - residuals vs feature Args: explainer (Explainer): explainer object constructed with either ClassifierExplainer() or RegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Regression Stats". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_title (bool, optional): hide title. Defaults to True. hide_modelsummary (bool, optional): hide RegressionModelSummaryComponent hide_predsvsactual (bool, optional): hide PredictedVsActualComponent hide_residuals (bool, optional): hide ResidualsComponent hide_regvscol (bool, optional): hide RegressionVsColComponent logs (bool, optional): Use log axis. Defaults to False. pred_or_actual (str, optional): plot residuals vs predictions or vs y (actual). Defaults to "vs_pred". residuals (str, {'difference', 'ratio', 'log-ratio'} optional): How to calcualte residuals. Defaults to 'difference'. col ({str, int}, optional): Feature to use for residuals plot. Defaults to None. """ super().__init__(explainer, title, name) assert pred_or_actual in ['vs_actual', 'vs_pred'], \ "pred_or_actual should be 'vs_actual' or 'vs_pred'!" self.modelsummary = RegressionModelSummaryComponent(explainer, name=self.name+"0",**kwargs) self.preds_vs_actual = PredictedVsActualComponent(explainer, name=self.name+"0", logs=logs, **kwargs) self.residuals = ResidualsComponent(explainer, name=self.name+"1", pred_or_actual=pred_or_actual, residuals=residuals, **kwargs) self.reg_vs_col = RegressionVsColComponent(explainer, name=self.name+"2", logs=logs, **kwargs) def layout(self): return html.Div([ dbc.Row([ make_hideable( dbc.Col([ html.H2('Model Performance:')]), hide=self.hide_title) ]), dbc.CardDeck([ make_hideable(self.modelsummary.layout(), hide=self.hide_modelsummary), make_hideable(self.preds_vs_actual.layout(), hide=self.hide_predsvsactual), ], style=dict(margin=25)), dbc.CardDeck([ make_hideable(self.residuals.layout(), hide=self.hide_residuals), make_hideable(self.reg_vs_col.layout(), hide=self.hide_regvscol), ], style=dict(margin=25)) ]) def to_html(self, state_dict=None, add_header=True): html = to_html.hide(to_html.title(self.title), hide=self.hide_title) html += to_html.card_rows( [to_html.hide(self.modelsummary.to_html(state_dict, add_header=False), hide=self.hide_modelsummary), to_html.hide(self.preds_vs_actual.to_html(state_dict, add_header=False), hide=self.hide_predsvsactual)], [to_html.hide(self.residuals.to_html(state_dict, add_header=False), hide=self.hide_residuals), to_html.hide(self.reg_vs_col.to_html(state_dict, add_header=False), hide=self.hide_regvscol)], ) if add_header: return to_html.add_header(html) return html class IndividualPredictionsComposite(ExplainerComponent): def __init__(self, explainer, title="Individual Predictions", name=None, hide_predindexselector=False, hide_predictionsummary=False, hide_contributiongraph=False, hide_pdp=False, hide_contributiontable=False, hide_title=False, hide_selector=True, index_check=True, **kwargs): """Composite for a number of component that deal with individual predictions: - random index selector - prediction summary - shap contributions graph - shap contribution table - pdp graph Args: explainer (Explainer): explainer object constructed with either ClassifierExplainer() or RegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Individual Predictions". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_predindexselector (bool, optional): hide ClassifierRandomIndexComponent or RegressionRandomIndexComponent hide_predictionsummary (bool, optional): hide ClassifierPredictionSummaryComponent or RegressionPredictionSummaryComponent hide_contributiongraph (bool, optional): hide ShapContributionsGraphComponent hide_pdp (bool, optional): hide PdpComponent hide_contributiontable (bool, optional): hide ShapContributionsTableComponent hide_title (bool, optional): hide title. Defaults to False. index_check (bool, optional): only pass valid indexes from random index selector to feature input. Defaults to True. hide_selector(bool, optional): hide all pos label selectors. Defaults to True. """ super().__init__(explainer, title, name) if self.explainer.is_classifier: self.index = ClassifierRandomIndexComponent(explainer, name=self.name+"0", hide_selector=hide_selector, **kwargs) self.summary = ClassifierPredictionSummaryComponent(explainer, name=self.name+"1", hide_selector=hide_selector, **kwargs) elif self.explainer.is_regression: self.index = RegressionRandomIndexComponent(explainer, name=self.name+"0", hide_selector=hide_selector, **kwargs) self.summary = RegressionPredictionSummaryComponent(explainer, name=self.name+"1", hide_selector=hide_selector, **kwargs) self.contributions = ShapContributionsGraphComponent(explainer, name=self.name+"2", hide_selector=hide_selector, **kwargs) self.pdp = PdpComponent(explainer, name=self.name+"3", hide_selector=hide_selector, **kwargs) self.contributions_list = ShapContributionsTableComponent(explainer, name=self.name+"4", hide_selector=hide_selector, **kwargs) self.index_connector = IndexConnector(self.index, [self.summary, self.contributions, self.pdp, self.contributions_list], explainer=explainer if index_check else None) def layout(self): return dbc.Container([ dbc.CardDeck([ make_hideable(self.index.layout(), hide=self.hide_predindexselector), make_hideable(self.summary.layout(), hide=self.hide_predictionsummary), ], style=dict(marginBottom=25, marginTop=25)), dbc.CardDeck([ make_hideable(self.contributions.layout(), hide=self.hide_contributiongraph), make_hideable(self.pdp.layout(), hide=self.hide_pdp), ], style=dict(marginBottom=25, marginTop=25)), dbc.Row([ dbc.Col([ make_hideable(self.contributions_list.layout(), hide=self.hide_contributiontable), ], md=6), dbc.Col([ html.Div([]), ], md=6), ]) ], fluid=True) def to_html(self, state_dict=None, add_header=True): html = to_html.title(self.title) html += to_html.card_rows( [to_html.hide(self.index.to_html(state_dict, add_header=False), self.hide_predindexselector), to_html.hide(self.summary.to_html(state_dict, add_header=False), self.hide_predictionsummary)], [to_html.hide(self.contributions.to_html(state_dict, add_header=False), self.hide_contributiongraph), to_html.hide(self.pdp.to_html(state_dict, add_header=False), self.hide_pdp)], [to_html.hide(self.contributions_list.to_html(state_dict, add_header=False), self.hide_contributiontable)] ) if add_header: return to_html.add_header(html) return html class WhatIfComposite(ExplainerComponent): def __init__(self, explainer, title="What if...", name=None, hide_whatifindexselector=False, hide_inputeditor=False, hide_whatifprediction=False, hide_whatifcontributiongraph=False, hide_whatifpdp=False, hide_whatifcontributiontable=False, hide_title=True, hide_selector=True, index_check=True, n_input_cols=4, sort='importance', **kwargs): """Composite for the whatif component: Args: explainer (Explainer): explainer object constructed with either ClassifierExplainer() or RegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Individual Predictions". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_title (bool, optional): hide title. Defaults to True. hide_selector(bool, optional): hide all pos label selectors. Defaults to True. hide_whatifindexselector (bool, optional): hide ClassifierRandomIndexComponent or RegressionRandomIndexComponent hide_inputeditor (bool, optional): hide FeatureInputComponent hide_whatifprediction (bool, optional): hide PredictionSummaryComponent hide_whatifcontributiongraph (bool, optional): hide ShapContributionsGraphComponent hide_whatifcontributiontable (bool, optional): hide ShapContributionsTableComponent hide_whatifpdp (bool, optional): hide PdpComponent index_check (bool, optional): only pass valid indexes from random index selector to feature input. Defaults to True. n_input_cols (int, optional): number of columns to divide the feature inputs into. Defaults to 4. sort ({'abs', 'high-to-low', 'low-to-high', 'importance'}, optional): sorting of shap values. Defaults to 'importance'. """ super().__init__(explainer, title, name) if 'hide_whatifcontribution' in kwargs: print("Warning: hide_whatifcontribution will be deprecated, use hide_whatifcontributiongraph instead!") self.hide_whatifcontributiongraph = kwargs['hide_whatifcontribution'] self.input = FeatureInputComponent(explainer, name=self.name+"0", hide_selector=hide_selector, n_input_cols=self.n_input_cols, **update_params(kwargs, hide_index=True)) if self.explainer.is_classifier: self.index = ClassifierRandomIndexComponent(explainer, name=self.name+"1", hide_selector=hide_selector, **kwargs) self.prediction = ClassifierPredictionSummaryComponent(explainer, name=self.name+"2", feature_input_component=self.input, hide_star_explanation=True, hide_selector=hide_selector, **kwargs) elif self.explainer.is_regression: self.index = RegressionRandomIndexComponent(explainer, name=self.name+"1", **kwargs) self.prediction = RegressionPredictionSummaryComponent(explainer, name=self.name+"2", feature_input_component=self.input, **kwargs) self.contribgraph = ShapContributionsGraphComponent(explainer, name=self.name+"3", feature_input_component=self.input, hide_selector=hide_selector, sort=sort, **kwargs) self.contribtable = ShapContributionsTableComponent(explainer, name=self.name+"4", feature_input_component=self.input, hide_selector=hide_selector, sort=sort, **kwargs) self.pdp = PdpComponent(explainer, name=self.name+"5", feature_input_component=self.input, hide_selector=hide_selector, **kwargs) self.index_connector = IndexConnector(self.index, self.input, explainer=explainer if index_check else None) def layout(self): return dbc.Container([ dbc.Row([ make_hideable( dbc.Col([ html.H1(self.title) ]), hide=self.hide_title), ]), dbc.Row([ make_hideable( dbc.Col([ self.index.layout(), ], md=7), hide=self.hide_whatifindexselector), make_hideable( dbc.Col([ self.prediction.layout(), ], md=5), hide=self.hide_whatifprediction), ], style=dict(marginBottom=15, marginTop=15)), dbc.CardDeck([ make_hideable(self.input.layout(), hide=self.hide_inputeditor), ], style=dict(marginBottom=15, marginTop=15)), dbc.CardDeck([ make_hideable(self.contribgraph.layout(), hide=self.hide_whatifcontributiongraph), make_hideable(self.pdp.layout(), hide=self.hide_whatifpdp), ], style=dict(marginBottom=15, marginTop=15)), dbc.Row([ make_hideable( dbc.Col([ self.contribtable.layout() ], md=6), hide=self.hide_whatifcontributiontable), dbc.Col([], md=6), ]) ], fluid=True) def to_html(self, state_dict=None, add_header=True): html = to_html.title(self.title) html += to_html.card_rows( [to_html.hide(self.index.to_html(state_dict, add_header=False), self.hide_whatifindexselector), to_html.hide(self.prediction.to_html(state_dict, add_header=False), self.hide_whatifprediction)], [to_html.hide(self.input.to_html(state_dict, add_header=False), self.hide_inputeditor)], [to_html.hide(self.contribgraph.to_html(state_dict, add_header=False), self.hide_whatifcontributiongraph), to_html.hide(self.pdp.to_html(state_dict, add_header=False), self.hide_whatifpdp)], [to_html.hide(self.contribtable.to_html(state_dict, add_header=False), self.hide_whatifcontributiontable)] ) if add_header: return to_html.add_header(html) return html class ShapDependenceComposite(ExplainerComponent): def __init__(self, explainer, title='Feature Dependence', name=None, hide_selector=True, hide_shapsummary=False, hide_shapdependence=False, depth=None, **kwargs): """Composite of ShapSummary and ShapDependence component Args: explainer (Explainer): explainer object constructed with either ClassifierExplainer() or RegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Feature Dependence". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_selector (bool, optional): hide all pos label selectors. Defaults to True. hide_shapsummary (bool, optional): hide ShapSummaryComponent hide_shapdependence (bool, optional): ShapDependenceComponent depth (int, optional): Number of features to display. Defaults to None. """ super().__init__(explainer, title, name) self.shap_summary = ShapSummaryComponent( self.explainer, name=self.name+"0", **update_params(kwargs, hide_selector=hide_selector, depth=depth)) self.shap_dependence = ShapDependenceComponent( self.explainer, name=self.name+"1", hide_selector=hide_selector, **kwargs) self.connector = ShapSummaryDependenceConnector( self.shap_summary, self.shap_dependence) def layout(self): return dbc.Container([ dbc.CardDeck([ make_hideable(self.shap_summary.layout(), hide=self.hide_shapsummary), make_hideable(self.shap_dependence.layout(), hide=self.hide_shapdependence), ], style=dict(marginTop=25)), ], fluid=True) def to_html(self, state_dict=None, add_header=True): html = to_html.title(self.title) html += to_html.card_rows( [to_html.hide(self.shap_summary.to_html(state_dict, add_header=False), self.hide_shapsummary), to_html.hide(self.shap_dependence.to_html(state_dict, add_header=False), self.hide_shapdependence)], ) if add_header: return to_html.add_header(html) return html class ShapInteractionsComposite(ExplainerComponent): def __init__(self, explainer, title='Feature Interactions', name=None, hide_selector=True, hide_interactionsummary=False, hide_interactiondependence=False, depth=None, **kwargs): """Composite of InteractionSummaryComponent and InteractionDependenceComponent Args: explainer (Explainer): explainer object constructed with either ClassifierExplainer() or RegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Feature Interactions". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_selector (bool, optional): hide all pos label selectors. Defaults to True. hide_interactionsummary (bool, optional): hide InteractionSummaryComponent hide_interactiondependence (bool, optional): hide InteractionDependenceComponent depth (int, optional): Initial number of features to display. Defaults to None. """ super().__init__(explainer, title, name) self.interaction_summary = InteractionSummaryComponent(explainer, name=self.name+"0", hide_selector=hide_selector, depth=depth, **kwargs) self.interaction_dependence = InteractionDependenceComponent(explainer, name=self.name+"1", hide_selector=hide_selector, **kwargs) self.connector = InteractionSummaryDependenceConnector( self.interaction_summary, self.interaction_dependence) def layout(self): return dbc.Container([ dbc.CardDeck([ make_hideable(self.interaction_summary.layout(), hide=self.hide_interactionsummary), make_hideable(self.interaction_dependence.layout(), hide=self.hide_interactiondependence), ], style=dict(marginTop=25)) ], fluid=True) def to_html(self, state_dict=None, add_header=True): html = to_html.title(self.title) html += to_html.card_rows( [to_html.hide(self.interaction_summary.to_html(state_dict, add_header=False), self.hide_interactionsummary), to_html.hide(self.interaction_dependence.to_html(state_dict, add_header=False), self.hide_interactiondependence)], ) if add_header: return to_html.add_header(html) return html class DecisionTreesComposite(ExplainerComponent): def __init__(self, explainer, title="Decision Trees", name=None, hide_treeindexselector=False, hide_treesgraph=False, hide_treepathtable=False, hide_treepathgraph=False, hide_selector=True, index_check=True, **kwargs): """Composite of decision tree related components: - index selector - individual decision trees barchart - decision path table - deciion path graph Args: explainer (Explainer): explainer object constructed with either RandomForestClassifierExplainer() or RandomForestRegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Decision Trees". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_treeindexselector (bool, optional): hide ClassifierRandomIndexComponent or RegressionRandomIndexComponent hide_treesgraph (bool, optional): hide DecisionTreesComponent hide_treepathtable (bool, optional): hide DecisionPathTableComponent hide_treepathgraph (bool, optional): DecisionPathGraphComponent hide_selector (bool, optional): hide all pos label selectors. Defaults to True. index_check (bool, optional): only pass valid indexes from random index selector to feature input. Defaults to True. """ super().__init__(explainer, title, name) self.trees = DecisionTreesComponent(explainer, name=self.name+"0", hide_selector=hide_selector, **kwargs) self.decisionpath_table = DecisionPathTableComponent(explainer, name=self.name+"1", hide_selector=hide_selector, **kwargs) if explainer.is_classifier: self.index = ClassifierRandomIndexComponent(explainer, name=self.name+"2", hide_selector=hide_selector, **kwargs) elif explainer.is_regression: self.index = RegressionRandomIndexComponent(explainer, name=self.name+"2", **kwargs) self.decisionpath_graph = DecisionPathGraphComponent(explainer, name=self.name+"3", hide_selector=hide_selector, **kwargs) self.index_connector = IndexConnector(self.index, [self.trees, self.decisionpath_table, self.decisionpath_graph], explainer=explainer if index_check else None) self.highlight_connector = HighlightConnector(self.trees, [self.decisionpath_table, self.decisionpath_graph]) def layout(self): return html.Div([ dbc.Row([ make_hideable( dbc.Col([ self.index.layout(), ]), hide=self.hide_treeindexselector), ], style=dict(margin=25)), dbc.Row([ make_hideable( dbc.Col([ self.trees.layout(), ]), hide=self.hide_treesgraph), ], style=dict(margin=25)), dbc.Row([ make_hideable( dbc.Col([ self.decisionpath_table.layout(), ]), hide=self.hide_treepathtable), ], style=dict(margin=25)), dbc.Row([ make_hideable( dbc.Col([ self.decisionpath_graph.layout() ]), hide=self.hide_treepathgraph), ], style=dict(margin=25)), ]) def to_html(self, state_dict=None, add_header=True): html = to_html.title(self.title) html += to_html.card_rows( [to_html.hide(self.index.to_html(state_dict, add_header=False), self.hide_treeindexselector)], [to_html.hide(self.trees.to_html(state_dict, add_header=False), self.hide_treesgraph)], [to_html.hide(self.decisionpath_table.to_html(state_dict, add_header=False), self.hide_treepathtable)], ) if add_header: return to_html.add_header(html) return html class SimplifiedClassifierComposite(ExplainerComponent): def __init__(self, explainer, title="Simple Classifier Explainer", name=None, hide_title=False, classifier_custom_component='roc_auc', hide_confusionmatrix=False, hide_classifier_custom_component=False, hide_shapsummary=False, hide_shapdependence=False, hide_predindexselector=False, hide_predictionsummary=False, hide_contributiongraph=False, **kwargs): """Composite of multiple classifier related components, on a single tab: - confusion matrix - one other model quality indicator: choose from pr auc graph, precision graph, lift curve, classification graph, or roc auc graph - shap importance - shap dependence - index selector - index prediction summary - index shap contribution graph Args: explainer (Explainer): explainer object constructed with either ClassifierExplainer() or RegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Simple Classification Stats". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_title (bool, optional): hide the title. Defaults to False. classifier_custom_component (str, optional): custom classifier quality indicator supported by the ClassifierExplainer object. Valid values are: 'roc_auc', 'metrics', pr_auc', 'precision_graph', 'lift_curve', 'classification'. Defaults to 'roc_auc'. hide_confusionmatrix (bool, optional): hide ConfusionMatrixComponent hide_classifier_custom_component (bool, optional): hide the chosen classifier_custom_component hide_shapsummary (bool, optional): hide ShapSummaryComponent hide_shapdependence (bool, optional): hide ShapDependenceComponent hide_predindexselector (bool, optional): hide ClassifierRandomIndexComponent or RegressionRandomIndexComponent hide_predictionsummary (bool, optional): hide ClassifierPredictionSummaryComponent or RegressionPredictionSummaryComponent hide_contributiongraph (bool, optional): hide ShapContributionsGraphComponent """ super().__init__(explainer, title=title, name=name) self.confusionmatrix = ConfusionMatrixComponent(explainer, **update_params(kwargs, hide_percentage=True, hide_selector=True, hide_normalize=True)) # select custom classifier report metric if classifier_custom_component == 'metrics': self.classifier_custom_component = ClassifierModelSummaryComponent(explainer, **update_params(kwargs, hide_selector=True)) elif classifier_custom_component == 'pr_auc': self.classifier_custom_component = PrAucComponent(explainer, **update_params(kwargs, hide_selector=True)) elif classifier_custom_component == 'precision_graph': self.classifier_custom_component = PrecisionComponent(explainer, **update_params(kwargs, hide_selector=True)) elif classifier_custom_component == 'lift_curve': self.classifier_custom_component = LiftCurveComponent(explainer, **update_params(kwargs, hide_selector=True)) elif classifier_custom_component == 'classifiction': self.classifier_custom_component = ClassificationComponent(explainer, **update_params(kwargs, hide_selector=True)) elif classifier_custom_component == 'roc_auc': self.classifier_custom_component = RocAucComponent(explainer, **update_params(kwargs, hide_selector=True)) else: raise ValueError( "ERROR: SimplifiedClassifierDashboard parameter classifier_custom_component " "should be in {'metrics', 'roc_auc', pr_auc', 'precision_graph', 'lift_curve', 'class_graph'} " f"but you passed {classifier_custom_component}!") # SHAP summary & dependence self.shap_summary = ShapSummaryComponent( explainer, **update_params(kwargs, title="Shap Feature Importances", hide_index=True, hide_selector=True, depth=None, hide_depth=True)) self.shap_dependence = ShapDependenceComponent( explainer, **update_params(kwargs, hide_selector=True, hide_index=True, color_col="no_color_col")) # SHAP contribution, along with prediction summary self.index = ClassifierRandomIndexComponent(explainer, hide_selector=True, **kwargs) self.summary = ClassifierPredictionSummaryComponent(explainer, hide_index=True, hide_selector=True, **kwargs) self.contributions = ShapContributionsGraphComponent(explainer, hide_index=True, hide_depth=True, hide_selector=True, **kwargs) self.cutoffconnector = CutoffConnector(self.confusionmatrix, self.classifier_custom_component) self.connector = ShapSummaryDependenceConnector(self.shap_summary, self.shap_dependence) self.index_connector = IndexConnector(self.index, [self.summary, self.contributions]) def layout(self): return dbc.Container([ dbc.Row([ make_hideable( dbc.Col([ html.H1(self.title, id='simple-classifier-composite-title') ]), hide=self.hide_title), ]), dbc.Row([ dbc.Col([ html.H2("Model performance"), dbc.CardDeck([ make_hideable(self.confusionmatrix.layout(), hide=self.hide_confusionmatrix), make_hideable(self.classifier_custom_component.layout(), hide=self.hide_classifier_custom_component), ], style=dict(marginTop=25, marginBottom=25)), ]) ]), dbc.Row([ dbc.Col([ html.H3("SHAP values"), dbc.CardDeck([ make_hideable(self.shap_summary.layout(), hide=self.hide_shapsummary), make_hideable(self.shap_dependence.layout(), hide=self.hide_shapdependence), ], style=dict(marginTop=25, marginBottom=25)), ]) ]), dbc.Row([ dbc.Col([ html.H2("Individual predictions"), dbc.CardDeck([ make_hideable(self.index.layout(), hide=self.hide_predindexselector), make_hideable(self.summary.layout(), hide=self.hide_predictionsummary), ], style=dict(marginBottom=25, marginTop=25)), dbc.CardDeck([ make_hideable(self.contributions.layout(), hide=self.hide_contributiongraph), ], style=dict(marginBottom=25, marginTop=25)) ]) ]), ], fluid=False) def to_html(self, state_dict=None, add_header=True): html = to_html.hide(to_html.title(self.title), hide=self.hide_title) html += to_html.card_rows( [to_html.hide(self.confusionmatrix.to_html(state_dict, add_header=False), hide=self.hide_confusionmatrix), to_html.hide(self.classifier_custom_component.to_html(state_dict, add_header=False), hide=self.hide_classifier_custom_component)], [to_html.hide(self.shap_summary.to_html(state_dict, add_header=False), hide=self.hide_shapsummary), to_html.hide(self.shap_dependence.to_html(state_dict, add_header=False), hide=self.hide_shapdependence)], [to_html.hide(self.index.to_html(state_dict, add_header=False), hide=self.hide_predindexselector), to_html.hide(self.summary.to_html(state_dict, add_header=False), hide=self.hide_predictionsummary)], [to_html.hide(self.contributions.to_html(state_dict, add_header=False), hide=self.hide_contributiongraph)] ) if add_header: return to_html.add_header(html) return html class SimplifiedRegressionComposite(ExplainerComponent): def __init__(self, explainer, title="Simple Regression Explainer", name=None, hide_title=False, regression_custom_component='vs_col', hide_goodness_of_fit=False, hide_regression_custom_component=False, hide_shapsummary=False, hide_shapdependence=False, hide_predindexselector=False, hide_predictionsummary=False, hide_contributiongraph=False, **kwargs): """Composite of multiple classifier related components, on a single tab: - goodness of fit component - one other model quality indicator: 'metrics', 'residuals' or'residuals_vs_col' - shap importance - shap dependence - index selector - index prediction summary - index shap contribution graph Args: explainer (Explainer): explainer object constructed with either ClassifierExplainer() or RegressionExplainer() title (str, optional): Title of tab or page. Defaults to "Simple Classification Stats". name (str, optional): unique name to add to Component elements. If None then random uuid is generated to make sure it's unique. Defaults to None. hide_title (bool, optional): hide the title. Defaults to False. regression_custom_component (str, optional): custom classifier quality indicator supported by the ClassifierExplainer object. Valid values are: 'metrics', 'residuals' or'vs_col' hide_goodness_of_fit (bool, optional): hide goodness of fit component hide_regression_custom_component (bool, optional): hide the chosen regression_custom_component hide_shapsummary (bool, optional): hide ShapSummaryComponent hide_shapdependence (bool, optional): hide ShapDependenceComponent hide_predindexselector (bool, optional): hide RegressionRandomIndexComponent or RegressionRandomIndexComponent hide_predictionsummary (bool, optional): hide RegressionPredictionSummaryComponent or RegressionPredictionSummaryComponent hide_contributiongraph (bool, optional): hide ShapContributionsGraphComponent """ super().__init__(explainer, title, name) self.goodness_of_fit = PredictedVsActualComponent(explainer, **kwargs) # select custom classifier report metric if regression_custom_component == 'metrics': self.regression_custom_component = RegressionModelSummaryComponent(explainer, **kwargs) elif regression_custom_component == 'residuals': self.regression_custom_component = ResidualsComponent(explainer, **kwargs) elif regression_custom_component == 'vs_col': self.regression_custom_component = RegressionVsColComponent(explainer, **update_params(kwargs, display='predicted')) else: raise ValueError( "ERROR: SimplifiedRegressionDashboard parameter " "regression_custom_component should be in {'metrics', 'residuals', 'vs_col'}" f" but you passed {regression_custom_component}!") # SHAP summary & dependence self.shap_summary = ShapSummaryComponent( explainer, **update_params(kwargs, title="Shap Feature Importances", hide_index=True, depth=None, hide_depth=True)) self.shap_dependence = ShapDependenceComponent( explainer, **update_params(kwargs, hide_index=True)) # SHAP contribution, along with prediction summary self.index = RegressionRandomIndexComponent(explainer, **kwargs) self.summary = RegressionPredictionSummaryComponent(explainer, hide_index=True, **kwargs) self.contributions = ShapContributionsGraphComponent(explainer, **update_params(kwargs, hide_index=True, hide_depth=True)) self.connector = ShapSummaryDependenceConnector(self.shap_summary, self.shap_dependence) self.index_connector = IndexConnector(self.index, [self.summary, self.contributions]) def layout(self): return dbc.Container([ dbc.Row([ make_hideable( dbc.Col([ html.H1(self.title, id='simple-regression-composite-title'), ]), hide=self.hide_title), ]), dbc.Row([ dbc.Col([ html.H2("Model performance"), dbc.CardDeck([ make_hideable(self.goodness_of_fit.layout(), hide=self.hide_goodness_of_fit), make_hideable(self.regression_custom_component.layout(), hide=self.hide_regression_custom_component), ], style=dict(marginTop=25, marginBottom=25)), ]) ]), dbc.Row([ dbc.Col([ html.H3("SHAP values"), dbc.CardDeck([ make_hideable(self.shap_summary.layout(), hide=self.hide_shapsummary), make_hideable(self.shap_dependence.layout(), hide=self.hide_shapdependence), ], style=dict(marginTop=25, marginBottom=25)), ]) ]), dbc.Row([ dbc.Col([ html.H2("Individual predictions"), dbc.CardDeck([ make_hideable(self.index.layout(), hide=self.hide_predindexselector), make_hideable(self.summary.layout(), hide=self.hide_predictionsummary), ], style=dict(marginBottom=25, marginTop=25)), dbc.CardDeck([ make_hideable(self.contributions.layout(), hide=self.hide_contributiongraph), ], style=dict(marginBottom=25, marginTop=25)) ]) ]) ], fluid=False) def to_html(self, state_dict=None, add_header=True): html = to_html.hide(to_html.title(self.title), hide=self.hide_title) html += to_html.card_rows( [to_html.hide(self.goodness_of_fit.to_html(state_dict, add_header=False), hide=self.hide_goodness_of_fit), to_html.hide(self.regression_custom_component.to_html(state_dict, add_header=False), hide=self.hide_regression_custom_component)], [to_html.hide(self.shap_summary.to_html(state_dict, add_header=False), hide=self.hide_shapsummary), to_html.hide(self.shap_dependence.to_html(state_dict, add_header=False), hide=self.hide_shapdependence)], [to_html.hide(self.index.to_html(state_dict, add_header=False), hide=self.hide_predindexselector), to_html.hide(self.summary.to_html(state_dict, add_header=False), hide=self.hide_predictionsummary)], [to_html.hide(self.contributions.to_html(state_dict, add_header=False), hide=self.hide_contributiongraph)] ) if add_header: return to_html.add_header(html) return html
third_party/chromite/cli/cros/lint_unittest.py
zipated/src
2,151
12674833
# -*- coding: utf-8 -*- # Copyright (c) 2013 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Test the lint module.""" from __future__ import print_function import collections import StringIO from chromite.cli.cros import lint from chromite.lib import cros_test_lib # pylint: disable=protected-access class TestNode(object): """Object good enough to stand in for lint funcs""" Args = collections.namedtuple('Args', ('args', 'vararg', 'kwarg')) Arg = collections.namedtuple('Arg', ('name',)) def __init__(self, doc='', fromlineno=0, path='foo.py', args=(), vararg='', kwarg='', names=None, lineno=0, name='module', display_type='Module', col_offset=None): if names is None: names = [('name', None)] self.doc = doc self.lines = doc.split('\n') self.fromlineno = fromlineno self.lineno = lineno self.file = path self.args = self.Args(args=[self.Arg(name=x) for x in args], vararg=vararg, kwarg=kwarg) self.names = names self.name = name self._display_type = display_type self.col_offset = col_offset def argnames(self): return [arg.name for arg in self.args.args] def display_type(self): return self._display_type class StatStub(object): """Dummy object to stand in for stat checks.""" def __init__(self, size=0, mode=0o644): self.st_size = size self.st_mode = mode class CheckerTestCase(cros_test_lib.TestCase): """Helpers for Checker modules""" def add_message(self, msg_id, node=None, line=None, args=None): """Capture lint checks""" # We include node.doc here explicitly so the pretty assert message # inclues it in the output automatically. doc = node.doc if node else '' self.results.append((msg_id, doc, line, args)) def setUp(self): assert hasattr(self, 'CHECKER'), 'TestCase must set CHECKER' self.results = [] self.checker = self.CHECKER() self.checker.add_message = self.add_message class DocStringCheckerTest(CheckerTestCase): """Tests for DocStringChecker module""" GOOD_FUNC_DOCSTRINGS = ( 'Some string', """Short summary Body of text. """, """line o text Body and comments on more than one line. Args: moo: cow Returns: some value Raises: something else """, """Short summary. Args: fat: cat Yields: a spoon """, """Don't flag args variables as sections. Args: return: Foo! """, ) BAD_FUNC_DOCSTRINGS = ( """ bad first line """, """The first line is good but the second one isn't """, """ whitespace is wrong""", """whitespace is wrong """, """ whitespace is wrong Multiline tickles differently. """, """Should be no trailing blank lines Returns: a value """, """ok line cuddled end""", """we want Args, not Arguments Arguments: some: arg """, """section order is wrong here Raises: It raised. Returns: It returned """, """sections are duplicated Returns: True Returns: or was it false """, """sections lack whitespace between them Args: foo: bar Returns: yeah """, """yields is misspelled Yield: a car """, """Section name has bad spacing Args:\x20\x20\x20 key: here """, """too many blank lines Returns: None """, """wrongly uses javadoc @returns None """, """the indentation is incorrect Args: some: day """, """the final indentation is incorrect Blah. """, ) # The current linter isn't good enough yet to detect these. TODO_BAD_FUNC_DOCSTRINGS = ( """The returns section isn't a proper section Args: bloop: de returns something """, ) CHECKER = lint.DocStringChecker def testGood_visit_function(self): """Allow known good docstrings""" for dc in self.GOOD_FUNC_DOCSTRINGS: self.results = [] node = TestNode(doc=dc, display_type=None, col_offset=4) self.checker.visit_function(node) self.assertEqual(self.results, [], msg='docstring was not accepted:\n"""%s"""' % dc) def testBad_visit_function(self): """Reject known bad docstrings""" for dc in self.BAD_FUNC_DOCSTRINGS: self.results = [] node = TestNode(doc=dc, display_type=None, col_offset=4) self.checker.visit_function(node) self.assertNotEqual(self.results, [], msg='docstring was not rejected:\n"""%s"""' % dc) def testSmoke_visit_module(self): """Smoke test for modules""" self.checker.visit_module(TestNode(doc='foo')) self.assertEqual(self.results, []) self.checker.visit_module(TestNode(doc='', path='/foo/__init__.py')) self.assertEqual(self.results, []) def testSmoke_visit_class(self): """Smoke test for classes""" self.checker.visit_class(TestNode(doc='bar')) def testGood_check_first_line(self): """Verify _check_first_line accepts good inputs""" docstrings = ( 'Some string', ) for dc in docstrings: self.results = [] node = TestNode(doc=dc) self.checker._check_first_line(node, node.lines) self.assertEqual(self.results, [], msg='docstring was not accepted:\n"""%s"""' % dc) def testBad_check_first_line(self): """Verify _check_first_line rejects bad inputs""" docstrings = ( '\nSome string\n', ) for dc in docstrings: self.results = [] node = TestNode(doc=dc) self.checker._check_first_line(node, node.lines) self.assertEqual(len(self.results), 1) def testGood_check_second_line_blank(self): """Verify _check_second_line_blank accepts good inputs""" docstrings = ( 'Some string\n\nThis is the third line', 'Some string', ) for dc in docstrings: self.results = [] node = TestNode(doc=dc) self.checker._check_second_line_blank(node, node.lines) self.assertEqual(self.results, [], msg='docstring was not accepted:\n"""%s"""' % dc) def testBad_check_second_line_blank(self): """Verify _check_second_line_blank rejects bad inputs""" docstrings = ( 'Some string\nnonempty secondline', ) for dc in docstrings: self.results = [] node = TestNode(doc=dc) self.checker._check_second_line_blank(node, node.lines) self.assertEqual(len(self.results), 1) def testGoodFuncVarKwArg(self): """Check valid inputs for *args and **kwargs""" for vararg in (None, 'args', '_args'): for kwarg in (None, 'kwargs', '_kwargs'): self.results = [] node = TestNode(vararg=vararg, kwarg=kwarg) self.checker._check_func_signature(node) self.assertEqual(len(self.results), 0) def testMisnamedFuncVarKwArg(self): """Reject anything but *args and **kwargs""" for vararg in ('arg', 'params', 'kwargs', '_moo'): self.results = [] node = TestNode(vararg=vararg) self.checker._check_func_signature(node) self.assertEqual(len(self.results), 1) for kwarg in ('kwds', '_kwds', 'args', '_moo'): self.results = [] node = TestNode(kwarg=kwarg) self.checker._check_func_signature(node) self.assertEqual(len(self.results), 1) def testGoodFuncArgs(self): """Verify normal args in Args are allowed""" datasets = ( ("""args are correct, and cls is ignored Args: moo: cow """, ('cls', 'moo',), None, None, ), ("""args are correct, and self is ignored Args: moo: cow *args: here """, ('self', 'moo',), 'args', 'kwargs', ), ("""args are allowed to wrap Args: moo: a big fat cow that takes many lines to describe its fatness """, ('moo',), None, 'kwargs', ), ) for dc, args, vararg, kwarg in datasets: self.results = [] node = TestNode(doc=dc, args=args, vararg=vararg, kwarg=kwarg) self.checker._check_all_args_in_doc(node, node.lines) self.assertEqual(len(self.results), 0) def testBadFuncArgs(self): """Verify bad/missing args in Args are caught""" datasets = ( ("""missing 'bar' Args: moo: cow """, ('moo', 'bar',), ), ("""missing 'cow' but has 'bloop' Args: moo: cow """, ('bloop',), ), ("""too much space after colon Args: moo: cow """, ('moo',), ), ("""not enough space after colon Args: moo:cow """, ('moo',), ), ) for dc, args in datasets: self.results = [] node = TestNode(doc=dc, args=args) self.checker._check_all_args_in_doc(node, node.lines) self.assertEqual(len(self.results), 1) class ChromiteLoggingCheckerTest(CheckerTestCase): """Tests for ChromiteLoggingChecker module""" CHECKER = lint.ChromiteLoggingChecker def testLoggingImported(self): """Test that import logging is flagged.""" node = TestNode(names=[('logging', None)], lineno=15) self.checker.visit_import(node) self.assertEqual(self.results, [('R9301', '', 15, None)]) def testLoggingNotImported(self): """Test that importing something else (not logging) is not flagged.""" node = TestNode(names=[('myModule', None)], lineno=15) self.checker.visit_import(node) self.assertEqual(self.results, []) class SourceCheckerTest(CheckerTestCase): """Tests for SourceChecker module""" CHECKER = lint.SourceChecker def _testShebang(self, shebangs, exp, mode): """Helper for shebang tests""" for shebang in shebangs: self.results = [] node = TestNode() stream = StringIO.StringIO(shebang) st = StatStub(size=len(shebang), mode=mode) self.checker._check_shebang(node, stream, st) self.assertEqual(len(self.results), exp, msg='processing shebang failed: %r' % shebang) def testBadShebang(self): """Verify _check_shebang rejects bad shebangs""" shebangs = ( '#!/usr/bin/python\n', '#! /usr/bin/python2 \n', '#!/usr/bin/env python\n', '#! /usr/bin/env python2 \n', '#!/usr/bin/python2\n', ) self._testShebang(shebangs, 1, 0o755) def testGoodShebangNoExec(self): """Verify _check_shebang rejects shebangs on non-exec files""" shebangs = ( '#!/usr/bin/env python2\n', '#!/usr/bin/env python3\n', ) self._testShebang(shebangs, 1, 0o644) def testGoodShebang(self): """Verify _check_shebang accepts good shebangs""" shebangs = ( '#!/usr/bin/env python2\n', '#!/usr/bin/env python3\n', '#!/usr/bin/env python2\t\n', ) self._testShebang(shebangs, 0, 0o755) def testGoodUnittestName(self): """Verify _check_module_name accepts good unittest names""" module_names = ( 'lint_unittest', ) for name in module_names: node = TestNode(name=name) self.results = [] self.checker._check_module_name(node) self.assertEqual(len(self.results), 0) def testBadUnittestName(self): """Verify _check_module_name accepts good unittest names""" module_names = ( 'lint_unittests', ) for name in module_names: node = TestNode(name=name) self.results = [] self.checker._check_module_name(node) self.assertEqual(len(self.results), 1)
old_jobs/guess_sklearn_ma_daily_job.py
welldo/stock
5,309
12674847
<reponame>welldo/stock<gh_stars>1000+ #!/usr/local/bin/python3 # -*- coding: utf-8 -*- import libs.common as common import pandas as pd import numpy as np import math import datetime import sklearn as skl from sklearn import datasets, linear_model # https://github.com/udacity/machine-learning/issues/202 # sklearn.cross_validation 这个包不推荐使用了。 from sklearn.model_selection import train_test_split, cross_val_score from sklearn.neighbors import KNeighborsClassifier # 要操作的数据库表名称。 table_name = "guess_sklearn_ma_daily" # 批处理数据。 def stat_all_batch(tmp_datetime): datetime_str = (tmp_datetime).strftime("%Y-%m-%d") datetime_int = (tmp_datetime).strftime("%Y%m%d") print("datetime_str:", datetime_str) print("datetime_int:", datetime_int) try: # 删除老数据。 del_sql = " DELETE FROM `stock_data`.`%s` WHERE `date`= %s " % (table_name, datetime_int) print("del_sql:", del_sql) common.insert(del_sql) except Exception as e: print("error :", e) sql_count = """ SELECT count(1) FROM stock_data.ts_today_all WHERE `date` = %s and `trade` > 0 and `open` > 0 and trade <= 20 and `code` not like %s and `name` not like %s """ # 修改逻辑,增加中小板块计算。 中小板:002,创业板:300 。and `code` not like %s and `code` not like %s and `name` not like %s # count = common.select_count(sql_count, params=[datetime_int, '002%', '300%', '%st%']) count = common.select_count(sql_count, params=[datetime_int, '300%', '%st%']) print("count :", count) batch_size = 100 end = int(math.ceil(float(count) / batch_size) * batch_size) print(end) # for i in range(0, end, batch_size): for i in range(0, end, batch_size): print("loop :", i) # 查询今日满足股票数据。剔除数据:创业板股票数据,中小板股票数据,所有st股票 # #`code` not like '002%' and `code` not like '300%' and `name` not like '%st%' sql_1 = """ SELECT `date`, `code`, `name`, `changepercent`, `trade`, `open`, `high`, `low`, `settlement`, `volume`, `turnoverratio`, `amount`, `per`, `pb`, `mktcap`, `nmc` FROM stock_data.ts_today_all WHERE `date` = %s and `trade` > 0 and `open` > 0 and trade <= 20 and `code` not like %s and `name` not like %s limit %s , %s """ print(sql_1) # data = pd.read_sql(sql=sql_1, con=common.engine(), params=[datetime_int, '002%', '300%', '%st%', i, batch_size]) data = pd.read_sql(sql=sql_1, con=common.engine(), params=[datetime_int, '300%', '%st%', i, batch_size]) data = data.drop_duplicates(subset="code", keep="last") print("########data[trade]########:", len(data)) # 使用 trade 填充数据 stock_sklearn = pd.DataFrame({ "date": data["date"], "code": data["code"], "next_close": data["trade"], "sklearn_score": data["trade"]}, index=data.index.values) print(stock_sklearn.head()) stock_sklearn_apply = stock_sklearn.apply(apply_sklearn, axis=1) # , axis=1) # 重命名 del stock_sklearn_apply["date"] # 合并前删除 date 字段。 # 合并数据 data_new = pd.merge(data, stock_sklearn_apply, on=['code'], how='left') # for index, row in data.iterrows(): # next_stock, score = stat_index_all(row, i) # print(next_stock, score) data_new["next_close"] = data_new["next_close"].round(2) # 数据保留4位小数 data_new["sklearn_score"] = data_new["sklearn_score"].round(2) # 数据保留2位小数 data_new["trade_float32"] = data["trade"].astype('float32', copy=False) data_new["up_rate"] = (data_new["next_close"] - data_new["trade_float32"]) * 100 / data_new["trade_float32"] data_new["up_rate"] = data_new["up_rate"].round(2) # 数据保留2位小数 del data_new["trade_float32"] try: common.insert_db(data_new, table_name, False, "`date`,`code`") print("insert_db") except Exception as e: print("error :", e) # 重命名 del data_new["name"] print(data_new) # code date next_close sklearn_score def apply_sklearn(data): # 要操作的数据库表名称。 print("########stat_index_all########:", len(data)) date = data["date"] code = data["code"] print(date, code) date_end = datetime.datetime.strptime(date, "%Y%m%d") date_start = (date_end + datetime.timedelta(days=-300)).strftime("%Y-%m-%d") date_end = date_end.strftime("%Y-%m-%d") print(code, date_start, date_end) # open high close low volume price_change p_change ma5 ma10 ma20 v_ma5 v_ma10 v_ma20 turnover stock_X = common.get_hist_data_cache(code, date_start, date_end) # 增加空判断,如果是空返回 0 数据。 if stock_X is None: return list([code, date, 0.0, 0.0]) stock_X = stock_X.sort_index(0) # 将数据按照日期排序下。 stock_y = pd.Series(stock_X["close"].values) # 标签 stock_X_next = stock_X.iloc[len(stock_X) - 1] print("########################### stock_X_next date:", stock_X_next) # 使用今天的交易价格,13 个指标预测明天的价格。偏移股票数据,今天的数据,目标是明天的价格。 stock_X = stock_X.drop(stock_X.index[len(stock_X) - 1]) # 删除最后一条数据 stock_y = stock_y.drop(stock_y.index[0]) # 删除第一条数据 # print("########################### stock_X date:", stock_X) # 删除掉close 也就是收盘价格。 del stock_X["close"] del stock_X_next["close"] model = linear_model.LinearRegression() # model = KNeighborsClassifier() model.fit(stock_X.values, stock_y) # print("############## test_akshare & target #############") # print("############## coef_ & intercept_ #############") # print(model.coef_) # 系数 # print(model.intercept_) # 截断 next_close = model.predict([stock_X_next.values]) if len(next_close) == 1: next_close = next_close[0] sklearn_score = model.score(stock_X.values, stock_y) print("score:", sklearn_score) # 评分 return list([code, date, next_close, sklearn_score * 100]) # main函数入口 if __name__ == '__main__': # 使用方法传递。 tmp_datetime = common.run_with_args(stat_all_batch)
todo/parser/subparsers/todo.py
tomasdanjonsson/td-cli
154
12674872
<reponame>tomasdanjonsson/td-cli import argparse from todo.constants import COMMANDS from todo.parser.base import BaseParser class TodoParser(BaseParser): """ usage: td [id] {get,delete,uncomplete,complete,edit} ... manage todo positional arguments: id the id of the todo {...} commands get (g) show todo's details delete (d) delete todo uncomplete (u) uncomplete todo complete (c) complete todo edit (e) edit todo optional arguments: -h, --help show this help message and exit `td [id]` defaults to `td [id] get` You don't have to specify the whole `id`, a substring will do """ command = COMMANDS.GET_TODO def _add_arguments(self): self.parser.add_argument("id", action="store", help="the id of the todo") subparser = self.parser.add_subparsers(dest="command", help="commands") get_parser = self._add_parser(subparser, "get", aliases=["g"], help="get todo") get_parser.set_defaults(command=COMMANDS.GET_TODO) get_parser.usage = "td [id]\n td [id] get\n td [id] g" get_parser.epilog = "`td [id]` is the shortcut to `td [id] get`" get_parser.description = "show todo's details" delete_parser = self._add_parser(subparser, "delete", aliases=["d"], help="delete todo") delete_parser.add_argument( "--yes", "-y", dest="skip_prompt", action="store_true", help="skip yes/no prompt when deleting todo", ) delete_parser.set_defaults(command=COMMANDS.DELETE_TODO) delete_parser.usage = "td [id] delete [-yes]\n td [id] d [-y]" delete_parser.description = "delete todo" uncomplete_parser = self._add_parser( subparser, "uncomplete", aliases=["u"], help="uncomplete todo" ) uncomplete_parser.set_defaults(command=COMMANDS.UNCOMPLETE_TODO) uncomplete_parser.usage = "td [id] uncomplete\n td [id] u" uncomplete_parser.description = "uncomplete todo" complete_parser = self._add_parser( subparser, "complete", aliases=["c"], help="complete todo" ) complete_parser.set_defaults(command=COMMANDS.COMPLETE_TODO) complete_parser.usage = "td [id] complete\n td [id] c" complete_parser.description = "complete todo" edit_parser = self._add_parser( subparser, "edit", aliases=["e"], help="edit todo", formatter_class=argparse.RawTextHelpFormatter, epilog="""If no optional arguments are provided, the todo will be opened in your editor where you can edit the todo's details. The editor defaults to `vi`, but you can choose your preferred one be setting: ``` [settings] editor: <your_editor> ``` in ~/.td.cfg """, ) edit_parser.add_argument("--name", "-n", action="store", help="update todo's name") edit_parser.add_argument("--details", "-d", action="store", help="update todo's detail") edit_parser.add_argument("--group", "-g", action="store", help="set todo's group") edit_parser.set_defaults(command=COMMANDS.EDIT_TODO) edit_parser.usage = "td [id] edit [--name NAME] [--details DETAILS]\n td [id] e [-n NAME] [-d DETAILS]" edit_parser.description = "edit todo"
docs/source/examples/main.py
torarvid/aio-pika
832
12674878
<reponame>torarvid/aio-pika import asyncio from aio_pika import connect_robust, Message async def main(loop): connection = await connect_robust( "amqp://guest:[email protected]/", loop=loop ) queue_name = "test_queue" routing_key = "test_queue" # Creating channel channel = await connection.channel() # Declaring exchange exchange = await channel.declare_exchange("direct", auto_delete=True) # Declaring queue queue = await channel.declare_queue(queue_name, auto_delete=True) # Binding queue await queue.bind(exchange, routing_key) await exchange.publish( Message( bytes("Hello", "utf-8"), content_type="text/plain", headers={"foo": "bar"}, ), routing_key, ) # Receiving message incoming_message = await queue.get(timeout=5) # Confirm message await incoming_message.ack() await queue.unbind(exchange, routing_key) await queue.delete() await connection.close() if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(main(loop))
usaspending_api/awards/v2/urls_subawards.py
g4brielvs/usaspending-api
217
12674897
<gh_stars>100-1000 from django.conf.urls import url from usaspending_api.awards.v2.views.subawards import SubawardsViewSet urlpatterns = [url(r"^$", SubawardsViewSet.as_view())]
opensfm/test/test_stats.py
ricklentz/OpenSfM
2,535
12674900
<filename>opensfm/test/test_stats.py<gh_stars>1000+ from opensfm import stats, types from opensfm.synthetic_data import synthetic_dataset, synthetic_scene def test_processing_statistics_normal( scene_synthetic: synthetic_scene.SyntheticInputData, ): reference = scene_synthetic.reconstruction dataset = synthetic_dataset.SyntheticDataSet( reference, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) processing_statistics = stats.processing_statistics(dataset, [reference]) assert list(processing_statistics.keys()) == ["steps_times", "date", "area"] assert processing_statistics["steps_times"] == { "Feature Extraction": -1, "Features Matching": -1, "Tracks Merging": -1, "Reconstruction": -1, "Total Time": 0, } assert processing_statistics["date"] == "unknown" assert 3500 < processing_statistics["area"] < 3600 def test_processing_statistics_null( scene_synthetic: synthetic_scene.SyntheticInputData, null_scene: types.Reconstruction, ): dataset = synthetic_dataset.SyntheticDataSet( null_scene, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) processing_statistics = stats.processing_statistics(dataset, [null_scene]) assert list(processing_statistics.keys()) == ["steps_times", "date", "area"] assert processing_statistics["steps_times"] == { "Feature Extraction": -1, "Features Matching": -1, "Tracks Merging": -1, "Reconstruction": -1, "Total Time": 0, } assert processing_statistics["date"] == "unknown" assert processing_statistics["area"] == -1 def test_features_statistics_normal( scene_synthetic: synthetic_scene.SyntheticInputData, ): reference = scene_synthetic.reconstruction dataset = synthetic_dataset.SyntheticDataSet( reference, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) features_statistics = stats.features_statistics( dataset, scene_synthetic.tracks_manager, [reference] ) assert list(features_statistics.keys()) == [ "detected_features", "reconstructed_features", ] assert ( features_statistics["detected_features"] == features_statistics["reconstructed_features"] ) assert features_statistics["reconstructed_features"] == { "min": 303, "max": 1065, "mean": 841, "median": 884, } def test_features_statistics_null( scene_synthetic: synthetic_scene.SyntheticInputData, null_scene: types.Reconstruction, ): dataset = synthetic_dataset.SyntheticDataSet( null_scene, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) features_statistics = stats.features_statistics( dataset, scene_synthetic.tracks_manager, [null_scene] ) assert list(features_statistics.keys()) == [ "detected_features", "reconstructed_features", ] assert ( features_statistics["detected_features"] == features_statistics["reconstructed_features"] ) assert features_statistics["reconstructed_features"] == { "min": -1, "max": -1, "mean": -1, "median": -1, } def test_reconstruction_statistics_normal( scene_synthetic: synthetic_scene.SyntheticInputData, ): reference = scene_synthetic.reconstruction dataset = synthetic_dataset.SyntheticDataSet( reference, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) reconstruction_statistics = stats.reconstruction_statistics( dataset, scene_synthetic.tracks_manager, [reference] ) assert reconstruction_statistics["components"] == 1 assert not reconstruction_statistics["has_gps"] assert not reconstruction_statistics["has_gcp"] assert 4900 < reconstruction_statistics["initial_points_count"] < 5000 assert reconstruction_statistics["initial_shots_count"] == 20 assert 4900 < reconstruction_statistics["reconstructed_points_count"] < 5000 assert reconstruction_statistics["reconstructed_shots_count"] == 20 assert 16800 < reconstruction_statistics["observations_count"] < 16900 assert 3.3 < reconstruction_statistics["average_track_length"] < 3.4 assert 3.4 < reconstruction_statistics["average_track_length_over_two"] < 3.5 assert len(reconstruction_statistics["histogram_track_length"]) == 5 assert 0.15 < reconstruction_statistics["reprojection_error_normalized"] < 0.16 assert 1.25 < reconstruction_statistics["reprojection_error_pixels"] < 1.28 assert len(reconstruction_statistics["reprojection_histogram_normalized"][0]) == 30 assert len(reconstruction_statistics["reprojection_histogram_normalized"][1]) == 31 assert len(reconstruction_statistics["reprojection_histogram_pixels"][0]) == 30 assert len(reconstruction_statistics["reprojection_histogram_pixels"][1]) == 31 def test_reconstruction_statistics_null( scene_synthetic: synthetic_scene.SyntheticInputData, null_scene: types.Reconstruction, ): dataset = synthetic_dataset.SyntheticDataSet( null_scene, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) reconstruction_statistics = stats.reconstruction_statistics( dataset, scene_synthetic.tracks_manager, [null_scene] ) assert reconstruction_statistics["components"] == 1 assert not reconstruction_statistics["has_gps"] assert not reconstruction_statistics["has_gcp"] assert 4900 < reconstruction_statistics["initial_points_count"] < 5000 assert reconstruction_statistics["initial_shots_count"] == 0 assert reconstruction_statistics["reconstructed_points_count"] == 0 assert reconstruction_statistics["reconstructed_shots_count"] == 0 assert reconstruction_statistics["observations_count"] == 0 assert reconstruction_statistics["average_track_length"] == -1 assert reconstruction_statistics["average_track_length_over_two"] == -1 assert len(reconstruction_statistics["histogram_track_length"]) == 0 assert reconstruction_statistics["reprojection_error_normalized"] == -1.0 assert reconstruction_statistics["reprojection_error_pixels"] == -1.0 assert len(reconstruction_statistics["reprojection_histogram_normalized"][0]) == 0 assert len(reconstruction_statistics["reprojection_histogram_normalized"][1]) == 0 assert len(reconstruction_statistics["reprojection_histogram_pixels"][0]) == 0 assert len(reconstruction_statistics["reprojection_histogram_pixels"][1]) == 0 def test_cameras_statistics_normal( scene_synthetic: synthetic_scene.SyntheticInputData, ): reference = scene_synthetic.reconstruction dataset = synthetic_dataset.SyntheticDataSet( reference, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) cameras_statistics = stats.cameras_statistics(dataset, [reference]) assert cameras_statistics == { "1": { "initial_values": {"k1": -0.1, "k2": 0.01, "focal": 0.7}, "optimized_values": {"k1": -0.1, "k2": 0.01, "focal": 0.7}, "bias": { "rotation": [-0.0, -0.0, -0.0], "scale": 1.0, "translation": [0.0, 0.0, 0.0], }, } } def test_cameras_statistics_null( scene_synthetic: synthetic_scene.SyntheticInputData, null_scene: types.Reconstruction, ): dataset = synthetic_dataset.SyntheticDataSet( null_scene, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) cameras_statistics = stats.cameras_statistics(dataset, [null_scene]) assert cameras_statistics == {} def test_rig_statistics_normal( scene_synthetic: synthetic_scene.SyntheticInputData, ): reference = scene_synthetic.reconstruction dataset = synthetic_dataset.SyntheticDataSet( reference, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) rig_statistics = stats.rig_statistics(dataset, [reference]) assert rig_statistics == {} def test_rig_statistics_null( scene_synthetic: synthetic_scene.SyntheticInputData, null_scene: types.Reconstruction, ): dataset = synthetic_dataset.SyntheticDataSet( null_scene, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) cameras_statistics = stats.rig_statistics(dataset, [null_scene]) assert cameras_statistics == {} def test_gps_errors_normal( scene_synthetic: synthetic_scene.SyntheticInputData, ): reference = scene_synthetic.reconstruction gps_errors = stats.gps_errors([reference]) assert gps_errors == {} def test_gps_errors_null( scene_synthetic: synthetic_scene.SyntheticInputData, null_scene: types.Reconstruction, ): gps_errors = stats.gps_errors([null_scene]) assert gps_errors == {} def test_gcp_errors_normal( scene_synthetic: synthetic_scene.SyntheticInputData, ): reference = scene_synthetic.reconstruction dataset = synthetic_dataset.SyntheticDataSet( reference, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) gcp_errors = stats.gcp_errors(dataset, [reference]) assert gcp_errors == {} def test_gcp_errors_null( scene_synthetic: synthetic_scene.SyntheticInputData, null_scene: types.Reconstruction, ): dataset = synthetic_dataset.SyntheticDataSet( null_scene, scene_synthetic.exifs, scene_synthetic.features, scene_synthetic.tracks_manager, ) gcp_errors = stats.gcp_errors(dataset, [null_scene]) assert gcp_errors == {}
mayan/apps/testing/tests/mixins.py
bonitobonita24/Mayan-EDMS
343
12674923
<gh_stars>100-1000 import glob import importlib import logging import os import random import time from furl import furl import psutil from selenium.webdriver.firefox.options import Options from selenium.webdriver.firefox.webdriver import WebDriver from django.apps import apps from django.conf import settings from django.conf.urls import url from django.contrib.contenttypes.models import ContentType from django.db import connection, connections, models from django.db.models.signals import post_save, pre_save from django.http import HttpResponse from django.http.response import FileResponse from django.template import Context, Template from django.test.utils import ContextList from django.urls import clear_url_caches, reverse from django.utils.encoding import DjangoUnicodeDecodeError, force_text from stronghold.decorators import public from mayan.apps.acls.classes import ModelPermission from mayan.apps.permissions.tests.mixins import PermissionTestMixin from mayan.apps.storage.settings import setting_temporary_directory from ..literals import ( TEST_SERVER_HOST, TEST_SERVER_SCHEME, TEST_VIEW_NAME, TEST_VIEW_URL ) class ClientMethodsTestCaseMixin: def _build_verb_kwargs(self, viewname=None, path=None, *args, **kwargs): data = kwargs.pop('data', None) or {} follow = kwargs.pop('follow', False) query = kwargs.pop('query', None) or {} headers = kwargs.pop('headers', None) or {} if viewname: path = reverse(viewname=viewname, *args, **kwargs) path = furl(url=path) path.args.update(query) result = {'follow': follow, 'data': data, 'path': path.tostr()} result.update(headers) return result def delete(self, viewname=None, path=None, *args, **kwargs): return self.client.delete( **self._build_verb_kwargs( path=path, viewname=viewname, *args, **kwargs ) ) def generic(self, method, viewname=None, path=None, *args, **kwargs): return self.client.generic( method=method, **self._build_verb_kwargs( path=path, viewname=viewname, *args, **kwargs ) ) def get(self, viewname=None, path=None, *args, **kwargs): return self.client.get( **self._build_verb_kwargs( path=path, viewname=viewname, *args, **kwargs ) ) def patch(self, viewname=None, path=None, *args, **kwargs): return self.client.patch( **self._build_verb_kwargs( path=path, viewname=viewname, *args, **kwargs ) ) def post(self, viewname=None, path=None, *args, **kwargs): return self.client.post( **self._build_verb_kwargs( path=path, viewname=viewname, *args, **kwargs ) ) def put(self, viewname=None, path=None, *args, **kwargs): return self.client.put( **self._build_verb_kwargs( path=path, viewname=viewname, *args, **kwargs ) ) class ConnectionsCheckTestCaseMixin: _open_connections_check_enable = True def _get_open_connections_count(self): return len(connections.all()) def setUp(self): super().setUp() self._connections_count = self._get_open_connections_count() def tearDown(self): if self._open_connections_check_enable: self.assertEqual( self._connections_count, self._get_open_connections_count(), msg='Database connection leak. The number of database ' 'connections at the start and at the end of the test are not ' 'the same.' ) super().tearDown() class ContentTypeCheckTestCaseMixin: expected_content_types = ('text/html', 'text/html; charset=utf-8') def _pre_setup(self): super()._pre_setup() test_instance = self class CustomClient(self.client_class): def request(self, *args, **kwargs): response = super().request(*args, **kwargs) content_type = response.headers.get('content-type', '') if test_instance.expected_content_types: test_instance.assertTrue( content_type in test_instance.expected_content_types, msg='Unexpected response content type: {}, expected: {}.'.format( content_type, ' or '.join(test_instance.expected_content_types) ) ) return response self.client = CustomClient() class ContentTypeTestCaseMixin: def _inject_test_object_content_type(self): self.test_object_content_type = ContentType.objects.get_for_model( model=self.test_object ) self.test_object_view_kwargs = { 'app_label': self.test_object_content_type.app_label, 'model_name': self.test_object_content_type.model, 'object_id': self.test_object.pk } class DelayTestCaseMixin: def _test_delay(self, seconds=0.1): time.sleep(seconds) class DescriptorLeakCheckTestCaseMixin: _skip_file_descriptor_test = False def _get_process_descriptor_count(self): process = psutil.Process() return process.num_fds() def _get_process_descriptors(self): process = psutil.Process()._proc return os.listdir("%s/%s/fd" % (process._procfs_path, process.pid)) def setUp(self): super().setUp() self._process_descriptor_count = self._get_process_descriptor_count() self._process_descriptors = self._get_process_descriptors() def tearDown(self): if not self._skip_file_descriptor_test: if self._get_process_descriptor_count() > self._process_descriptor_count: raise ValueError( 'File descriptor leak. The number of file descriptors ' 'at the end are higher than at the start of the test.' ) for descriptor in self._get_process_descriptors(): if descriptor not in self._process_descriptors: raise ValueError( 'File descriptor leak. A descriptor was found at ' 'the end of the test that was not present at the ' 'start of the test.' ) super().tearDown() class DownloadTestCaseMixin: def assert_download_response( self, response, content=None, filename=None, is_attachment=None, mime_type=None ): self.assertTrue(isinstance(response, FileResponse)) if filename: self.assertEqual(response.filename, filename) if content: response_content = b''.join(list(response)) try: response_content = force_text(s=response_content) except DjangoUnicodeDecodeError: """Leave as bytes""" self.assertEqual(response_content, content) if is_attachment is not None: self.assertTrue(response.as_attachment) if mime_type: self.assertTrue( response.headers['Content-Type'].startswith(mime_type) ) class EnvironmentTestCaseMixin: def setUp(self): super().setUp() self._test_environment_variables = [] def tearDown(self): for name in self._test_environment_variables: os.environ.pop(name) super().tearDown() def _set_environment_variable(self, name, value): self._test_environment_variables.append(name) os.environ[name] = value class ModelTestCaseMixin: def _model_instance_to_dictionary(self, instance): return instance._meta.model._default_manager.filter( pk=instance.pk ).values()[0] class OpenFileCheckTestCaseMixin: _skip_open_file_leak_test = False def _get_open_files(self): process = psutil.Process() return process.open_files() def setUp(self): super().setUp() self._open_files = self._get_open_files() def tearDown(self): if not self._skip_open_file_leak_test: for new_open_file in self._get_open_files(): if new_open_file not in self._open_files: raise ValueError( 'File left open: {}'.format(new_open_file) ) super().tearDown() class RandomPrimaryKeyModelMonkeyPatchMixin: random_primary_key_random_floor = 100 random_primary_key_random_ceiling = 10000 random_primary_key_maximum_attempts = 100 random_primary_key_enable = True @staticmethod def get_unique_primary_key(model): manager = model._meta.default_manager attempts = 0 while True: primary_key = random.randint( RandomPrimaryKeyModelMonkeyPatchMixin.random_primary_key_random_floor, RandomPrimaryKeyModelMonkeyPatchMixin.random_primary_key_random_ceiling ) if not manager.filter(pk=primary_key).exists(): break attempts = attempts + 1 if attempts > RandomPrimaryKeyModelMonkeyPatchMixin.random_primary_key_maximum_attempts: raise ValueError( 'Maximum number of retries for an unique random primary ' 'key reached.' ) return primary_key @classmethod def setUpClass(cls): super().setUpClass() random.seed() def setUp(self): if self.random_primary_key_enable: self.method_save_original = models.Model.save def method_save_new(instance, *args, **kwargs): if instance.pk: return self.method_save_original(instance, *args, **kwargs) else: # Set meta.auto_created to True to have the original save_base # not send the pre_save signal which would normally send # the instance without a primary key. Since we assign a random # primary key any pre_save signal handler that relies on an # empty primary key will fail. # The meta.auto_created and manual pre_save sending emulates # the original behavior. Since meta.auto_created also disables # the post_save signal we must also send it ourselves. # This hack work with Django 1.11 .save_base() but can break # in future versions if that method is updated. pre_save.send( sender=instance.__class__, instance=instance, raw=False, update_fields=None, ) instance._meta.auto_created = True instance.pk = RandomPrimaryKeyModelMonkeyPatchMixin.get_unique_primary_key( model=instance._meta.model ) instance.id = instance.pk kwargs['force_insert'] = True result = instance.save_base(*args, **kwargs) instance._meta.auto_created = False post_save.send( sender=instance.__class__, instance=instance, created=True, update_fields=None, raw=False ) return result setattr(models.Model, 'save', method_save_new) super().setUp() def tearDown(self): if self.random_primary_key_enable: models.Model.save = self.method_save_original super().tearDown() class SeleniumTestMixin: SKIP_VARIABLE_NAME = 'TESTS_SELENIUM_SKIP' @staticmethod def _get_skip_variable_value(): return os.environ.get( SeleniumTestMixin._get_skip_variable_environment_name(), getattr(settings, SeleniumTestMixin.SKIP_VARIABLE_NAME, False) ) @staticmethod def _get_skip_variable_environment_name(): return 'MAYAN_{}'.format(SeleniumTestMixin.SKIP_VARIABLE_NAME) @classmethod def setUpClass(cls): super().setUpClass() cls.webdriver = None if not SeleniumTestMixin._get_skip_variable_value(): options = Options() options.add_argument('--headless') cls.webdriver = WebDriver( firefox_options=options, log_path='/dev/null' ) @classmethod def tearDownClass(cls): if cls.webdriver: cls.webdriver.quit() super().tearDownClass() def setUp(self): if SeleniumTestMixin._get_skip_variable_value(): self.skipTest(reason='Skipping selenium test') super().setUp() def _open_url(self, fragment=None, path=None, viewname=None): url = '{}{}{}'.format( self.live_server_url, path or reverse(viewname=viewname), fragment or '' ) self.webdriver.get(url=url) class SilenceLoggerTestCaseMixin: """ Changes the log level of a specific logger for the duration of a test. The default level for silenced loggers is CRITICAL. Example: self._silence_logger(name='mayan.apps.converter.managers') """ test_case_silenced_logger = None test_case_silenced_logger_new_level = logging.CRITICAL def tearDown(self): if self.test_case_silenced_logger: self.test_case_silenced_logger.setLevel( level=self.test_case_silenced_logger_level ) super().tearDown() def _silence_logger(self, name): self.test_case_silenced_logger = logging.getLogger(name=name) self.test_case_silenced_logger_level = self.test_case_silenced_logger.level self.test_case_silenced_logger.setLevel( level=self.test_case_silenced_logger_new_level ) class TempfileCheckTestCasekMixin: # Ignore the jvmstat instrumentation and GitLab's CI .config files. # Ignore LibreOffice fontconfig cache dir. ignore_globs = ('hsperfdata_*', '.config', '.cache') def _get_temporary_entries(self): ignored_result = [] # Expand globs by joining the temporary directory and then flattening # the list of lists into a single list. for item in self.ignore_globs: ignored_result.extend( glob.glob( os.path.join(setting_temporary_directory.value, item) ) ) # Remove the path and leave only the expanded filename. ignored_result = map(lambda x: os.path.split(x)[-1], ignored_result) return set( os.listdir(setting_temporary_directory.value) ) - set(ignored_result) def setUp(self): super().setUp() if getattr(settings, 'COMMON_TEST_TEMP_FILES', False): self._temporary_items = self._get_temporary_entries() def tearDown(self): if getattr(settings, 'COMMON_TEST_TEMP_FILES', False): final_temporary_items = self._get_temporary_entries() self.assertEqual( self._temporary_items, final_temporary_items, msg='Orphan temporary file. The number of temporary ' 'files and/or directories at the start and at the end of ' 'the test are not the same. Orphan entries: {}'.format( ','.join(final_temporary_items - self._temporary_items) ) ) super().tearDown() class TestModelTestCaseMixin(ContentTypeTestCaseMixin, PermissionTestMixin): auto_create_test_object = False auto_create_test_object_fields = None auto_create_test_object_instance_kwargs = None auto_create_test_object_model = False auto_create_test_object_permission = False @staticmethod def _delete_test_model(model): ModelPermission.deregister(model=model) content_type = ContentType.objects.get_for_model(model=model) if content_type.pk: content_type.delete() # Only attempt to deleted if the model was not deleted as part # of the previous main test model deletion. if model in apps.all_models[model._meta.app_label] or model in apps.app_configs[model._meta.app_label].models: if not model._meta.proxy: with connection.schema_editor() as schema_editor: schema_editor.delete_model(model=model) # Only attempt to delete if the model was not deleted as part # of the previous main test model deletion. TestModelTestCaseMixin._unregister_model( app_label=model._meta.app_label, model_name=model._meta.model_name ) ContentType.objects.clear_cache() apps.clear_cache() @staticmethod def _unregister_model(app_label, model_name): try: del apps.all_models[app_label][model_name] del apps.app_configs[app_label].models[model_name] except KeyError: """ Non fatal. Means the model was deleted in the first attempt. """ @classmethod def setUpClass(cls): if connection.vendor == 'sqlite': connection.disable_constraint_checking() super().setUpClass() def _delete_test_models(self): # Delete the test models' content type entries and deregister the # permissions, this avoids their Content Type from being looked up # in subsequent tests where they don't exists due to the database # transaction rollback. # Clear previous model registration before re-registering it again to # avoid conflict with test models with the same name, in the same app # but from another test module. self._test_models.reverse() for model in self._test_models: model.objects.all().delete() for model in self._test_models: TestModelTestCaseMixin._delete_test_model(model=model) for model in self._test_models_extra: TestModelTestCaseMixin._delete_test_model(model=model) def setUp(self): self._test_models = [] self._test_models_extra = set() self.test_objects = [] self._test_migrations = [] super().setUp() if self.auto_create_test_object or self.auto_create_test_object_model: self.TestModel = self._create_test_model( fields=self.auto_create_test_object_fields ) if self.auto_create_test_object_permission: self._create_test_permission() ModelPermission.register( model=self.TestModel, permissions=( self.test_permission, ) ) if self.auto_create_test_object: self._create_test_object( instance_kwargs=self.auto_create_test_object_instance_kwargs ) self._create_test_models() def _create_test_models(self): """ Optional test class method to have all of its test models created in the proper order. """ def tearDown(self): self._delete_test_models() super().tearDown() def _create_test_model( self, base_class=None, fields=None, model_name=None, options=None ): base_class = base_class or models.Model test_model_count = len(self._test_models) self._test_model_name = model_name or '{}_{}'.format( 'TestModel', test_model_count ) self.options = options # Obtain the app_config and app_label from the test's module path. self.app_config = apps.get_containing_app_config( object_name=self.__class__.__module__ ) if connection.vendor == 'mysql': self.skipTest( reason='MySQL doesn\'t support schema changes inside an ' 'atomic block.' ) attrs = { '__module__': self.__class__.__module__, 'Meta': self._get_test_model_meta() } if fields: attrs.update(fields) model_list_previous = set( apps.app_configs[self.app_config.label].models.values() ) model = type( self._test_model_name, (base_class,), attrs ) if not model._meta.proxy: with connection.schema_editor() as schema_editor: schema_editor.create_model(model=model) self._test_models_extra.update( set( apps.app_configs[self.app_config.label].models.values() ) - model_list_previous - set((model,)) ) self._test_models.append(model) ContentType.objects.clear_cache() apps.clear_cache() return model def _create_test_object(self, instance_kwargs=None): instance_kwargs = instance_kwargs or {} if not getattr(self, 'TestModel', None): self.TestModel = self._create_test_model() self.test_object = self.TestModel.objects.create(**instance_kwargs) self._inject_test_object_content_type() self.test_objects.append(self.test_object) def _get_test_model_meta(self): self._test_db_table = '{}_{}'.format( self.app_config.label, self._test_model_name.lower() ) class Meta: app_label = self.app_config.label db_table = self._test_db_table ordering = ('id',) verbose_name = self._test_model_name if self.options: for key, value in self.options.items(): setattr(Meta, key, value) return Meta class TestServerTestCaseMixin: def setUp(self): super().setUp() self.testserver_prefix = self.get_testserver_prefix() self.testserver_url = self.get_testserver_url() self.test_view_request = None def _test_view_factory(self, test_object=None): def test_view(request): self.test_view_request = request return HttpResponse() return test_view def get_testserver_prefix(self): return furl( scheme=TEST_SERVER_SCHEME, host=TEST_SERVER_HOST, ).tostr() def get_testserver_url(self): return furl( scheme=TEST_SERVER_SCHEME, host=TEST_SERVER_HOST, path=self.test_view_url ).tostr() class TestViewTestCaseMixin: auto_add_test_view = False test_view_is_public = False test_view_object = None test_view_name = None test_view_template = '{{ object }}' test_view_url = TEST_VIEW_URL def setUp(self): super().setUp() self._test_view_count = 0 self._test_view_names = [] if self.auto_add_test_view: self.add_test_view(test_object=self.test_view_object) def tearDown(self): self.client.logout() for _ in range(self._test_view_count): self._get_test_view_urlpatterns().pop(0) super().tearDown() def _get_context_from_test_response(self, response): if isinstance(response.context, ContextList): # Template widget rendering causes test client response to be # ContextList rather than RequestContext. Typecast to dictionary # before updating. result = dict(response.context).copy() result.update({'request': response.wsgi_request}) context = Context(result) else: result = response.context or {} result.update({'request': response.wsgi_request}) context = Context(result) context.request = response.wsgi_request return context def _test_view_factory(self, test_object=None): def test_view(request): template = Template(template_string=self.test_view_template) context = Context( dict_={'object': test_object, 'resolved_object': test_object} ) return HttpResponse(content=template.render(context=context)) if self.test_view_is_public: return public(function=test_view) else: return test_view def _get_test_view_urlpatterns(self): return importlib.import_module(settings.ROOT_URLCONF).urlpatterns def add_test_view( self, test_object=None, test_view_factory=None, test_view_name=None, test_view_url=None ): if test_view_factory: view = test_view_factory() else: view = self._test_view_factory( test_object=test_object ) if test_view_name: self._test_view_name = test_view_name else: self._test_view_name = '{}_{}'.format( TEST_VIEW_NAME, len(self._test_view_names) ) self._get_test_view_urlpatterns().insert( 0, url( regex=test_view_url or self.test_view_url, view=view, name=self._test_view_name ) ) clear_url_caches() self._test_view_count += 1 self._test_view_names.append(self._test_view_name) def get_test_view(self): response = self.get(viewname=self._test_view_name) return self._get_context_from_test_response(response=response)
easy_maps/widgets.py
cyber-barrista/django-easy-maps
114
12674927
<gh_stars>100-1000 # -*- coding: utf-8 -*- from django import template from django.forms import TextInput class AddressWithMapWidget(TextInput): width = 700 height = 200 zoom = 16 tpl = "{{% load easy_maps_tags %}}{{% easy_map address {0.width} {0.height} {0.zoom} %}}" def render(self, name, value, attrs=None, renderer=None): output = super(AddressWithMapWidget, self).render(name, value, attrs, renderer) t = template.Template(self.tpl.format(self)) context = template.Context( { "address": value, } ) return output + t.render(context)
libraries/botbuilder-core/botbuilder/core/user_state.py
Fl4v/botbuilder-python
388
12674958
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from .turn_context import TurnContext from .bot_state import BotState from .storage import Storage class UserState(BotState): """ Reads and writes user state for your bot to storage. """ no_key_error_message = ( "UserState: channel_id and/or conversation missing from context.activity." ) def __init__(self, storage: Storage, namespace=""): """ Creates a new UserState instance. :param storage: :param namespace: """ self.namespace = namespace super(UserState, self).__init__(storage, "Internal.UserState") def get_storage_key(self, turn_context: TurnContext) -> str: """ Returns the storage key for the current user state. :param turn_context: :return: """ channel_id = turn_context.activity.channel_id or self.__raise_type_error( "invalid activity-missing channelId" ) user_id = turn_context.activity.from_property.id or self.__raise_type_error( "invalid activity-missing from_property.id" ) storage_key = None if channel_id and user_id: storage_key = "%s/users/%s" % (channel_id, user_id) return storage_key def __raise_type_error(self, err: str = "NoneType found while expecting value"): raise TypeError(err)
homeassistant/components/cups/__init__.py
domwillcode/home-assistant
30,023
12674962
<gh_stars>1000+ """The cups component."""
chemdataextractor_batteries/chemdataextractor/parse/base.py
MB9991/test_demo-
199
12674977
# -*- coding: utf-8 -*- """ chemdataextractor.parse.base ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from abc import abstractproperty, abstractmethod import logging log = logging.getLogger(__name__) class BaseParser(object): """""" @abstractproperty def root(self): pass @abstractmethod def interpret(self, result, start, end): pass def parse(self, tokens): for result in self.root.scan(tokens): for model in self.interpret(*result): yield model
tests/test_type_alignment.py
TinkerBoard-Android/external-google-fruit
1,666
12674980
#!/usr/bin/env python3 # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import parameterized from fruit_test_common import * COMMON_DEFINITIONS = ''' #include "test_common.h" struct alignas(1) X { INJECT(X()) { Assert(reinterpret_cast<std::uintptr_t>(this) % 1 == 0); } }; struct alignas(4) Y { INJECT(Y()) { Assert(reinterpret_cast<std::uintptr_t>(this) % 4 == 0); } }; struct alignas(128) Z { INJECT(Z()) { Assert(reinterpret_cast<std::uintptr_t>(this) % 128 == 0); } }; ''' class TestTypeAlignment(parameterized.TestCase): def test_everything(self): source = ''' fruit::Component<X, Y, Z> getComponent() { return fruit::createComponent(); } int main() { fruit::Injector<X, Y, Z> injector(getComponent); injector.get<X*>(); injector.get<Y*>(); injector.get<Z*>(); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) if __name__ == '__main__': absltest.main()
okta/models/policy_rule_conditions.py
corylevine/okta-sdk-python
145
12674996
# flake8: noqa """ Copyright 2020 - Present Okta, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # AUTO-GENERATED! DO NOT EDIT FILE DIRECTLY # SEE CONTRIBUTOR DOCUMENTATION from okta.okta_object import OktaObject from okta.models import app_and_instance_policy_rule_condition\ as app_and_instance_policy_rule_condition from okta.models import app_instance_policy_rule_condition\ as app_instance_policy_rule_condition from okta.models import policy_rule_auth_context_condition\ as policy_rule_auth_context_condition from okta.models import password_policy_authentication_provider_condition\ as password_policy_authentication_provider_condition from okta.models import before_scheduled_action_policy_rule_condition\ as before_scheduled_action_policy_rule_condition from okta.models import client_policy_condition\ as client_policy_condition from okta.models import context_policy_rule_condition\ as context_policy_rule_condition from okta.models import device_policy_rule_condition\ as device_policy_rule_condition from okta.models import grant_type_policy_rule_condition\ as grant_type_policy_rule_condition from okta.models import group_policy_rule_condition\ as group_policy_rule_condition from okta.models import identity_provider_policy_rule_condition\ as identity_provider_policy_rule_condition from okta.models import mdm_enrollment_policy_rule_condition\ as mdm_enrollment_policy_rule_condition from okta.models import policy_network_condition\ as policy_network_condition from okta.models import policy_people_condition\ as policy_people_condition from okta.models import platform_policy_rule_condition\ as platform_policy_rule_condition from okta.models import risk_policy_rule_condition\ as risk_policy_rule_condition from okta.models import risk_score_policy_rule_condition\ as risk_score_policy_rule_condition from okta.models import o_auth_2_scopes_mediation_policy_rule_condition\ as o_auth_2_scopes_mediation_policy_rule_condition from okta.models import user_identifier_policy_rule_condition\ as user_identifier_policy_rule_condition from okta.models import user_status_policy_rule_condition\ as user_status_policy_rule_condition from okta.models import user_policy_rule_condition\ as user_policy_rule_condition class PolicyRuleConditions( OktaObject ): """ A class for PolicyRuleConditions objects. """ def __init__(self, config=None): super().__init__(config) if config: if "app" in config: if isinstance(config["app"], app_and_instance_policy_rule_condition.AppAndInstancePolicyRuleCondition): self.app = config["app"] elif config["app"] is not None: self.app = app_and_instance_policy_rule_condition.AppAndInstancePolicyRuleCondition( config["app"] ) else: self.app = None else: self.app = None if "apps" in config: if isinstance(config["apps"], app_instance_policy_rule_condition.AppInstancePolicyRuleCondition): self.apps = config["apps"] elif config["apps"] is not None: self.apps = app_instance_policy_rule_condition.AppInstancePolicyRuleCondition( config["apps"] ) else: self.apps = None else: self.apps = None if "authContext" in config: if isinstance(config["authContext"], policy_rule_auth_context_condition.PolicyRuleAuthContextCondition): self.auth_context = config["authContext"] elif config["authContext"] is not None: self.auth_context = policy_rule_auth_context_condition.PolicyRuleAuthContextCondition( config["authContext"] ) else: self.auth_context = None else: self.auth_context = None if "authProvider" in config: if isinstance(config["authProvider"], password_policy_authentication_provider_condition.PasswordPolicyAuthenticationProviderCondition): self.auth_provider = config["authProvider"] elif config["authProvider"] is not None: self.auth_provider = password_policy_authentication_provider_condition.PasswordPolicyAuthenticationProviderCondition( config["authProvider"] ) else: self.auth_provider = None else: self.auth_provider = None if "beforeScheduledAction" in config: if isinstance(config["beforeScheduledAction"], before_scheduled_action_policy_rule_condition.BeforeScheduledActionPolicyRuleCondition): self.before_scheduled_action = config["beforeScheduledAction"] elif config["beforeScheduledAction"] is not None: self.before_scheduled_action = before_scheduled_action_policy_rule_condition.BeforeScheduledActionPolicyRuleCondition( config["beforeScheduledAction"] ) else: self.before_scheduled_action = None else: self.before_scheduled_action = None if "clients" in config: if isinstance(config["clients"], client_policy_condition.ClientPolicyCondition): self.clients = config["clients"] elif config["clients"] is not None: self.clients = client_policy_condition.ClientPolicyCondition( config["clients"] ) else: self.clients = None else: self.clients = None if "context" in config: if isinstance(config["context"], context_policy_rule_condition.ContextPolicyRuleCondition): self.context = config["context"] elif config["context"] is not None: self.context = context_policy_rule_condition.ContextPolicyRuleCondition( config["context"] ) else: self.context = None else: self.context = None if "device" in config: if isinstance(config["device"], device_policy_rule_condition.DevicePolicyRuleCondition): self.device = config["device"] elif config["device"] is not None: self.device = device_policy_rule_condition.DevicePolicyRuleCondition( config["device"] ) else: self.device = None else: self.device = None if "grantTypes" in config: if isinstance(config["grantTypes"], grant_type_policy_rule_condition.GrantTypePolicyRuleCondition): self.grant_types = config["grantTypes"] elif config["grantTypes"] is not None: self.grant_types = grant_type_policy_rule_condition.GrantTypePolicyRuleCondition( config["grantTypes"] ) else: self.grant_types = None else: self.grant_types = None if "groups" in config: if isinstance(config["groups"], group_policy_rule_condition.GroupPolicyRuleCondition): self.groups = config["groups"] elif config["groups"] is not None: self.groups = group_policy_rule_condition.GroupPolicyRuleCondition( config["groups"] ) else: self.groups = None else: self.groups = None if "identityProvider" in config: if isinstance(config["identityProvider"], identity_provider_policy_rule_condition.IdentityProviderPolicyRuleCondition): self.identity_provider = config["identityProvider"] elif config["identityProvider"] is not None: self.identity_provider = identity_provider_policy_rule_condition.IdentityProviderPolicyRuleCondition( config["identityProvider"] ) else: self.identity_provider = None else: self.identity_provider = None if "mdmEnrollment" in config: if isinstance(config["mdmEnrollment"], mdm_enrollment_policy_rule_condition.MdmEnrollmentPolicyRuleCondition): self.mdm_enrollment = config["mdmEnrollment"] elif config["mdmEnrollment"] is not None: self.mdm_enrollment = mdm_enrollment_policy_rule_condition.MdmEnrollmentPolicyRuleCondition( config["mdmEnrollment"] ) else: self.mdm_enrollment = None else: self.mdm_enrollment = None if "network" in config: if isinstance(config["network"], policy_network_condition.PolicyNetworkCondition): self.network = config["network"] elif config["network"] is not None: self.network = policy_network_condition.PolicyNetworkCondition( config["network"] ) else: self.network = None else: self.network = None if "people" in config: if isinstance(config["people"], policy_people_condition.PolicyPeopleCondition): self.people = config["people"] elif config["people"] is not None: self.people = policy_people_condition.PolicyPeopleCondition( config["people"] ) else: self.people = None else: self.people = None if "platform" in config: if isinstance(config["platform"], platform_policy_rule_condition.PlatformPolicyRuleCondition): self.platform = config["platform"] elif config["platform"] is not None: self.platform = platform_policy_rule_condition.PlatformPolicyRuleCondition( config["platform"] ) else: self.platform = None else: self.platform = None if "risk" in config: if isinstance(config["risk"], risk_policy_rule_condition.RiskPolicyRuleCondition): self.risk = config["risk"] elif config["risk"] is not None: self.risk = risk_policy_rule_condition.RiskPolicyRuleCondition( config["risk"] ) else: self.risk = None else: self.risk = None if "riskScore" in config: if isinstance(config["riskScore"], risk_score_policy_rule_condition.RiskScorePolicyRuleCondition): self.risk_score = config["riskScore"] elif config["riskScore"] is not None: self.risk_score = risk_score_policy_rule_condition.RiskScorePolicyRuleCondition( config["riskScore"] ) else: self.risk_score = None else: self.risk_score = None if "scopes" in config: if isinstance(config["scopes"], o_auth_2_scopes_mediation_policy_rule_condition.OAuth2ScopesMediationPolicyRuleCondition): self.scopes = config["scopes"] elif config["scopes"] is not None: self.scopes = o_auth_2_scopes_mediation_policy_rule_condition.OAuth2ScopesMediationPolicyRuleCondition( config["scopes"] ) else: self.scopes = None else: self.scopes = None if "userIdentifier" in config: if isinstance(config["userIdentifier"], user_identifier_policy_rule_condition.UserIdentifierPolicyRuleCondition): self.user_identifier = config["userIdentifier"] elif config["userIdentifier"] is not None: self.user_identifier = user_identifier_policy_rule_condition.UserIdentifierPolicyRuleCondition( config["userIdentifier"] ) else: self.user_identifier = None else: self.user_identifier = None if "userStatus" in config: if isinstance(config["userStatus"], user_status_policy_rule_condition.UserStatusPolicyRuleCondition): self.user_status = config["userStatus"] elif config["userStatus"] is not None: self.user_status = user_status_policy_rule_condition.UserStatusPolicyRuleCondition( config["userStatus"] ) else: self.user_status = None else: self.user_status = None if "users" in config: if isinstance(config["users"], user_policy_rule_condition.UserPolicyRuleCondition): self.users = config["users"] elif config["users"] is not None: self.users = user_policy_rule_condition.UserPolicyRuleCondition( config["users"] ) else: self.users = None else: self.users = None else: self.app = None self.apps = None self.auth_context = None self.auth_provider = None self.before_scheduled_action = None self.clients = None self.context = None self.device = None self.grant_types = None self.groups = None self.identity_provider = None self.mdm_enrollment = None self.network = None self.people = None self.platform = None self.risk = None self.risk_score = None self.scopes = None self.user_identifier = None self.user_status = None self.users = None def request_format(self): parent_req_format = super().request_format() current_obj_format = { "app": self.app, "apps": self.apps, "authContext": self.auth_context, "authProvider": self.auth_provider, "beforeScheduledAction": self.before_scheduled_action, "clients": self.clients, "context": self.context, "device": self.device, "grantTypes": self.grant_types, "groups": self.groups, "identityProvider": self.identity_provider, "mdmEnrollment": self.mdm_enrollment, "network": self.network, "people": self.people, "platform": self.platform, "risk": self.risk, "riskScore": self.risk_score, "scopes": self.scopes, "userIdentifier": self.user_identifier, "userStatus": self.user_status, "users": self.users } parent_req_format.update(current_obj_format) return parent_req_format
tensorflow_model_analysis/slicer/slicer_test.py
jaymessina3/model-analysis
1,118
12675017
# Lint as: python3 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Slicer test.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import apache_beam as beam from apache_beam.testing import util import numpy as np import six import tensorflow as tf from tensorflow_model_analysis import constants from tensorflow_model_analysis import types from tensorflow_model_analysis.eval_saved_model import testutil from tensorflow_model_analysis.extractors import slice_key_extractor from tensorflow_model_analysis.post_export_metrics import metric_keys from tensorflow_model_analysis.proto import config_pb2 from tensorflow_model_analysis.proto import metrics_for_slice_pb2 from tensorflow_model_analysis.slicer import slicer_lib as slicer from google.protobuf import text_format def make_features_dict(features_dict): result = {} for key, value in features_dict.items(): result[key] = {'node': np.array(value)} return result def create_fpls(): fpl1 = types.FeaturesPredictionsLabels( input_ref=0, features=make_features_dict({ 'gender': ['f'], 'age': [13], 'interest': ['cars'] }), predictions=make_features_dict({ 'kb': [1], }), labels=make_features_dict({'ad_risk_score': [0]})) fpl2 = types.FeaturesPredictionsLabels( input_ref=0, features=make_features_dict({ 'gender': ['m'], 'age': [10], 'interest': ['cars'] }), predictions=make_features_dict({ 'kb': [1], }), labels=make_features_dict({'ad_risk_score': [0]})) return [fpl1, fpl2] def wrap_fpl(fpl): return { constants.INPUT_KEY: fpl, constants.FEATURES_PREDICTIONS_LABELS_KEY: fpl } class SlicerTest(testutil.TensorflowModelAnalysisTest, parameterized.TestCase): def setUp(self): super(SlicerTest, self).setUp() self.longMessage = True # pylint: disable=invalid-name def _makeFeaturesDict(self, features_dict): result = {} for key, value in features_dict.items(): result[key] = {'node': np.array(value)} return result def assertSliceResult(self, name, features_dict, columns, features, expected): spec = slicer.SingleSliceSpec(columns=columns, features=features) msg = 'Test case %s: slice on columns %s, features %s' % (name, columns, features) six.assertCountEqual( self, expected, slicer.get_slices_for_features_dicts([features_dict], None, [spec]), msg) def testDeserializeSliceKey(self): slice_metrics = text_format.Parse( """ single_slice_keys { column: 'age' int64_value: 5 } single_slice_keys { column: 'language' bytes_value: 'english' } single_slice_keys { column: 'price' float_value: 1.0 } """, metrics_for_slice_pb2.SliceKey()) got_slice_key = slicer.deserialize_slice_key(slice_metrics) self.assertCountEqual([('age', 5), ('language', 'english'), ('price', 1.0)], got_slice_key) def testDeserializeCrossSliceKey(self): slice_metrics = text_format.Parse( """ baseline_slice_key { single_slice_keys { column: 'age' int64_value: 5 } single_slice_keys { column: 'language' bytes_value: 'english' } single_slice_keys { column: 'price' float_value: 1.0 } } comparison_slice_key { single_slice_keys { column: 'age' int64_value: 8 } single_slice_keys { column: 'language' bytes_value: 'hindi' } } """, metrics_for_slice_pb2.CrossSliceKey()) got_slice_key = slicer.deserialize_cross_slice_key(slice_metrics) self.assertCountEqual( ((('age', 5), ('language', 'english'), ('price', 1.0)), (('age', 8), ('language', 'hindi'))), got_slice_key) def testSliceEquality(self): overall = slicer.SingleSliceSpec() age_column = slicer.SingleSliceSpec(columns=['age']) age_feature = slicer.SingleSliceSpec(features=[('age', 5)]) age_and_gender = slicer.SingleSliceSpec( columns=['age'], features=[('gender', 'f')]) # Note that we construct new instances of the slices to ensure that we # aren't just checking object identity. def check_equality_and_hash_equality(left, right): self.assertEqual(left, right) self.assertEqual(hash(left), hash(right)) check_equality_and_hash_equality(overall, slicer.SingleSliceSpec()) check_equality_and_hash_equality(age_column, slicer.SingleSliceSpec(columns=['age'])) check_equality_and_hash_equality( age_feature, slicer.SingleSliceSpec(features=[('age', 5)])) check_equality_and_hash_equality( age_and_gender, slicer.SingleSliceSpec(columns=['age'], features=[('gender', 'f')])) self.assertNotEqual(overall, age_column) self.assertNotEqual(age_column, age_feature) self.assertNotEqual(age_column, age_and_gender) self.assertNotEqual(age_feature, age_and_gender) self.assertCountEqual([slicer.SingleSliceSpec()], [overall]) self.assertCountEqual([ slicer.SingleSliceSpec(columns=['age']), slicer.SingleSliceSpec(), slicer.SingleSliceSpec(features=[('age', 5)]), slicer.SingleSliceSpec(columns=['age'], features=[('gender', 'f')]) ], [age_and_gender, age_feature, overall, age_column]) def testNoOverlappingColumns(self): self.assertRaises(ValueError, slicer.SingleSliceSpec, ['age'], [('age', 5)]) def testNonUTF8ValueRaisesValueError(self): column_name = 'column_name' invalid_value = b'\x8a' spec = slicer.SingleSliceSpec(columns=[column_name]) features_dict = self._makeFeaturesDict({ column_name: [invalid_value], }) with self.assertRaisesRegex(ValueError, column_name): list(slicer.get_slices_for_features_dicts([features_dict], None, [spec])) def testGetSlicesForFeaturesDictUnivalent(self): test_cases = [ ('Overall', [], [], [()]), ('Feature does not match', [], [('age', 99)], []), ('No such column', ['no_such_column'], [], []), ('Single column', ['age'], [], [(('age', 5),)]), ('Single feature', [], [('age', 5)], [(('age', 5),)]), ('Single feature type mismatch', [], [('age', '5')], [(('age', 5),)]), ('One column, one feature', ['gender'], [('age', 5)], [(('age', 5), ('gender', 'f'))]), ('Two features', ['interest', 'gender'], [('age', 5)], [(('age', 5), ('gender', 'f'), ('interest', 'cars'))]), ] # pyformat: disable features_dict = self._makeFeaturesDict({ 'gender': ['f'], 'age': [5], 'interest': ['cars'] }) for (name, columns, features, expected) in test_cases: self.assertSliceResult(name, features_dict, columns, features, expected) def testGetSlicesForFeaturesDictMultivalent(self): test_cases = [ ( 'One column', ['fruits'], [], [ (('fruits', 'apples'),), (('fruits', 'pears'),) ], ), ( 'Two columns', ['fruits', 'interests'], [], [ (('fruits', 'apples'), ('interests', 'cars')), (('fruits', 'apples'), ('interests', 'dogs')), (('fruits', 'pears'), ('interests', 'cars')), (('fruits', 'pears'), ('interests', 'dogs')) ], ), ( 'One feature', [], [('interests', 'cars')], [ (('interests', 'cars'),) ], ), ( 'Two features', [], [('gender', 'f'), ('interests', 'cars')], [ (('gender', 'f'), ('interests', 'cars')) ], ), ( 'One column, one feature', ['fruits'], [('interests', 'cars')], [ (('fruits', 'apples'), ('interests', 'cars')), (('fruits', 'pears'), ('interests', 'cars')) ], ), ( 'One column, two features', ['fruits'], [('gender', 'f'), ('interests', 'cars')], [ (('fruits', 'apples'), ('gender', 'f'), ('interests', 'cars')), (('fruits', 'pears'), ('gender', 'f'), ('interests', 'cars')), ], ), ( 'Two columns, one feature', ['interests', 'fruits'], [('gender', 'f')], [ (('fruits', 'apples'), ('gender', 'f'), ('interests', 'cars')), (('fruits', 'pears'), ('gender', 'f'), ('interests', 'cars')), (('fruits', 'apples'), ('gender', 'f'), ('interests', 'dogs')), (('fruits', 'pears'), ('gender', 'f'), ('interests', 'dogs')) ], ), ( 'Two columns, two features', ['interests', 'fruits'], [('gender', 'f'), ('age', 5)], [ (('age', 5), ('fruits', 'apples'), ('gender', 'f'), ('interests', 'cars')), (('age', 5), ('fruits', 'pears'), ('gender', 'f'), ('interests', 'cars')), (('age', 5), ('fruits', 'apples'), ('gender', 'f'), ('interests', 'dogs')), (('age', 5), ('fruits', 'pears'), ('gender', 'f'), ('interests', 'dogs')) ], ) ] # pyformat: disable features_dict = self._makeFeaturesDict({ 'gender': ['f'], 'age': [5], 'interests': ['cars', 'dogs'], 'fruits': ['apples', 'pears'] }) for (name, columns, features, expected) in test_cases: self.assertSliceResult(name, features_dict, columns, features, expected) def testGetSlicesForFeaturesDictMultipleSingleSliceSpecs(self): features_dict = self._makeFeaturesDict({ 'gender': ['f'], 'age': [5], 'interest': ['cars'] }) spec_overall = slicer.SingleSliceSpec() spec_age = slicer.SingleSliceSpec(columns=['age']) spec_age4 = slicer.SingleSliceSpec(features=[('age', 4)]) spec_age5_gender = slicer.SingleSliceSpec( columns=['gender'], features=[('age', 5)]) slice_spec = [spec_overall, spec_age, spec_age4, spec_age5_gender] expected = [(), (('age', 5),), (('age', 5), ('gender', 'f'))] self.assertCountEqual( expected, slicer.get_slices_for_features_dicts([features_dict], None, slice_spec)) def testStringifySliceKey(self): test_cases = [ ('overall', (), 'Overall'), ('one bytes feature', (('age_str', '5'),), 'age_str:5'), ('one int64 feature', (('age', 1),), 'age:1'), ('mixed', (('age', 1), ('gender', 'f')), 'age_X_gender:1_X_f'), ('more', (('age', 1), ('gender', 'f'), ('interest', 'cars')), 'age_X_gender_X_interest:1_X_f_X_cars'), ('unicode', (('text', b'\xe4\xb8\xad\xe6\x96\x87'),), u'text:\u4e2d\u6587'), ] # pyformat: disable for (name, slice_key, stringified_key) in test_cases: self.assertEqual( stringified_key, slicer.stringify_slice_key(slice_key), msg=name) def testIsCrossSliceApplicable(self): test_cases = [ (True, 'overall pass', ((), (('b', 2),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(), slicing_specs=[config_pb2.SlicingSpec(feature_values={'b': '2'})])), (True, 'value pass', ((('a', 1),), (('b', 2),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(feature_values={'a': '1'}), slicing_specs=[config_pb2.SlicingSpec(feature_values={'b': '2'})])), (True, 'baseline key pass', ((('a', 1),), (('b', 2),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(feature_keys=['a']), slicing_specs=[config_pb2.SlicingSpec(feature_values={'b': '2'})])), (True, 'comparison key pass', ((('a', 1),), (('b', 2),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(feature_values={'a': '1'}), slicing_specs=[config_pb2.SlicingSpec(feature_keys=['b'])])), (True, 'comparison multiple key pass', ((('a', 1),), (('c', 3),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(feature_values={'a': '1'}), slicing_specs=[config_pb2.SlicingSpec(feature_keys=['b']), config_pb2.SlicingSpec(feature_keys=['c'])])), (False, 'overall fail', ((('a', 1),), (('b', 2),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(), slicing_specs=[config_pb2.SlicingSpec(feature_values={'b': '2'})])), (False, 'value fail', ((('a', 1),), (('b', 3),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(feature_values={'a': '1'}), slicing_specs=[config_pb2.SlicingSpec(feature_values={'b': '2'})])), (False, 'baseline key fail', ((('c', 1),), (('b', 2),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(feature_keys=['a']), slicing_specs=[config_pb2.SlicingSpec(feature_values={'b': '2'})])), (False, 'comparison key fail', ((('a', 1),), (('c', 3),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(feature_values={'a': '1'}), slicing_specs=[config_pb2.SlicingSpec(feature_keys=['b'])])), (False, 'comparison multiple key fail', ((('a', 1),), (('d', 3),)), config_pb2.CrossSlicingSpec( baseline_spec=config_pb2.SlicingSpec(feature_values={'a': '1'}), slicing_specs=[config_pb2.SlicingSpec(feature_keys=['b']), config_pb2.SlicingSpec(feature_keys=['c'])])), ] # pyformat: disable for (expected_result, name, sliced_key, slicing_spec) in test_cases: self.assertEqual( expected_result, slicer.is_cross_slice_applicable( cross_slice_key=sliced_key, cross_slicing_spec=slicing_spec), msg=name) def testGetSliceKeyType(self): test_cases = [ (slicer.SliceKeyType, 'overall', ()), (slicer.SliceKeyType, 'one bytes feature', (('a', '5'),)), (slicer.SliceKeyType, 'one int64 feature', (('a', 1),)), (slicer.SliceKeyType, 'mixed', (('a', 1), ('b', 'f'))), (slicer.SliceKeyType, 'more', (('a', 1), ('b', 'f'), ('c', 'cars'))), (slicer.SliceKeyType, 'unicode', (('a', b'\xe4\xb8\xad\xe6\x96\x87'),)), (slicer.CrossSliceKeyType, 'CrossSlice overall', ((), ())), (slicer.CrossSliceKeyType, 'CrossSlice one slice key baseline', ((('a', '5'),), ())), (slicer.CrossSliceKeyType, 'CrossSlice one slice key comparison', ((), (('a', 1),))), (slicer.CrossSliceKeyType, 'CrossSlice two simple slice key', ((('a', 1),), (('b', 'f'),))), (slicer.CrossSliceKeyType, 'CrossSlice two multiple slice key', ((('a', 1), ('b', 'f'), ('c', '11')), (('a2', 1), ('b', 'm'), ('c', '11')))), ] # pyformat: disable for (expected_result, name, slice_key) in test_cases: self.assertEqual( expected_result, slicer.get_slice_key_type(slice_key), msg=name) unrecognized_test_cases = [ ('Unrecognized 1: ', ('a')), ('Unrecognized 2: ', ('a',)), ('Unrecognized 3: ', ('a', 1)), ('Unrecognized 4: ', (('a'))), ('Unrecognized 5: ', (('a',))), ('Unrecognized 6: ', ((), (), ())), ('Unrecognized 7: ', ((('a', 1),), (('b', 1),), (('c', 1),))), ('Unrecognized 8: ', ((('a', 1),), ('b', 1))), ('Unrecognized 9: ', (('a', 1), (('b', 1),))), ] # pyformat: disable for (name, slice_key) in unrecognized_test_cases: with self.assertRaises(TypeError, msg=name + str(slice_key)): slicer.get_slice_key_type(slice_key) def testIsSliceApplicable(self): test_cases = [ ('applicable', ['column1'], [('column3', 'value3'), ('column4', 'value4')], (('column1', 'value1'), ('column3', 'value3'), ('column4', 'value4')), True), ('wrongcolumns', ['column1', 'column2'], [('column3', 'value3'), ('column4', 'value4')], (('column1', 'value1'), ('column3', 'value3'), ('column4', 'value4')), False), ('wrongfeatures', ['column1'], [('column3', 'value3')], (('column1', 'value1'), ('column3', 'value3'), ('column4', 'value4')), False), ('nocolumns', [], [('column3', 'value3')], (('column1', 'value1'), ('column3', 'value3'), ('column4', 'value4')), False), ('nofeatures', ['column1'], [], (('column1', 'value1'),), True), ('empty slice key', ['column1'], [('column2', 'value1')], (), False), ('overall', [], [], (), True) ] # pyformat: disable for (name, columns, features, slice_key, result) in test_cases: slice_spec = slicer.SingleSliceSpec(columns=columns, features=features) self.assertEqual( slice_spec.is_slice_applicable(slice_key), result, msg=name) def testSliceDefaultSlice(self): with beam.Pipeline() as pipeline: fpls = create_fpls() metrics = ( pipeline | 'CreateTestInput' >> beam.Create(fpls) | 'WrapFpls' >> beam.Map(wrap_fpl) | 'ExtractSlices' >> slice_key_extractor.ExtractSliceKeys( [slicer.SingleSliceSpec()]) | 'FanoutSlices' >> slicer.FanoutSlices()) def check_result(got): try: self.assertLen(got, 2) expected_result = [ ((), wrap_fpl(fpls[0])), ((), wrap_fpl(fpls[1])), ] self.assertEqual(len(got), len(expected_result)) self.assertTrue( got[0] == expected_result[0] and got[1] == expected_result[1] or got[1] == expected_result[0] and got[0] == expected_result[1]) except AssertionError as err: raise util.BeamAssertException(err) util.assert_that(metrics, check_result) def testSliceOneSlice(self): with beam.Pipeline() as pipeline: fpls = create_fpls() metrics = ( pipeline | 'CreateTestInput' >> beam.Create(fpls, reshuffle=False) | 'WrapFpls' >> beam.Map(wrap_fpl) | 'ExtractSlices' >> slice_key_extractor.ExtractSliceKeys([ slicer.SingleSliceSpec(), slicer.SingleSliceSpec(columns=['gender']) ]) | 'FanoutSlices' >> slicer.FanoutSlices()) def check_result(got): try: self.assertLen(got, 4) expected_result = [ ((), wrap_fpl(fpls[0])), ((), wrap_fpl(fpls[1])), ((('gender', 'f'),), wrap_fpl(fpls[0])), ((('gender', 'm'),), wrap_fpl(fpls[1])), ] self.assertCountEqual(got, expected_result) except AssertionError as err: raise util.BeamAssertException(err) util.assert_that(metrics, check_result) def testMultidimSlices(self): data = [{ 'features': { 'gender': [['f'], ['f']], 'age': [[13], [13]], 'interest': [['cars'], ['cars']] }, 'predictions': [[1], [1]], 'labels': [[0], [0]], constants.SLICE_KEY_TYPES_KEY: np.array([[(), (('gender', 'f'),)], [(), (('gender', 'f'),)]]) }, { 'features': { 'gender': [['f'], ['m']], 'age': [[13], [10]], 'interest': [['cars'], ['cars']] }, 'predictions': [[1], [1]], 'labels': [[0], [0]], constants.SLICE_KEY_TYPES_KEY: [[(), (('gender', 'f'),)], [(), (('gender', 'm'),)]] }] with beam.Pipeline() as pipeline: result = ( pipeline | 'CreateTestInput' >> beam.Create(data, reshuffle=False) | 'FanoutSlices' >> slicer.FanoutSlices()) def check_result(got): try: self.assertLen(got, 5) del data[0][constants.SLICE_KEY_TYPES_KEY] del data[1][constants.SLICE_KEY_TYPES_KEY] expected_result = [ ((), data[0]), ((), data[1]), ((('gender', 'f'),), data[0]), ((('gender', 'f'),), data[1]), ((('gender', 'm'),), data[1]), ] self.assertCountEqual(got, expected_result) except AssertionError as err: raise util.BeamAssertException(err) util.assert_that(result, check_result) def testMultidimOverallSlices(self): data = [{ constants.SLICE_KEY_TYPES_KEY: np.array([[()], [()]]) }, { constants.SLICE_KEY_TYPES_KEY: np.array([[()], [()]]) }] with beam.Pipeline() as pipeline: result = ( pipeline | 'CreateTestInput' >> beam.Create(data, reshuffle=False) | 'FanoutSlices' >> slicer.FanoutSlices()) def check_result(got): try: self.assertLen(got, 2) del data[0][constants.SLICE_KEY_TYPES_KEY] del data[1][constants.SLICE_KEY_TYPES_KEY] expected_result = [ ((), data[0]), ((), data[1]), ] self.assertCountEqual(got, expected_result) except AssertionError as err: raise util.BeamAssertException(err) util.assert_that(result, check_result) def testFilterOutSlices(self): slice_key_1 = (('slice_key', 'slice1'),) slice_key_2 = (('slice_key', 'slice2'),) slice_key_3 = (('slice_key', 'slice3'),) values_list = [(slice_key_1, { 'val11': 'val12' }), (slice_key_2, { 'val21': 'val22' })] slice_counts_list = [(slice_key_1, 2), (slice_key_2, 1), (slice_key_3, 0)] def check_output(got): try: self.assertLen(got, 2) slices = {} for (k, v) in got: slices[k] = v self.assertEqual(slices[slice_key_1], {'val11': 'val12'}) self.assertIn(metric_keys.ERROR_METRIC, slices[slice_key_2]) except AssertionError as err: raise util.BeamAssertException(err) with beam.Pipeline() as pipeline: slice_counts_pcoll = ( pipeline | 'CreateSliceCountsPColl' >> beam.Create(slice_counts_list)) output_dict = ( pipeline | 'CreateValuesPColl' >> beam.Create(values_list) | 'FilterOutSlices' >> slicer.FilterOutSlices( slice_counts_pcoll, min_slice_size=2, error_metric_key=metric_keys.ERROR_METRIC)) util.assert_that(output_dict, check_output) @parameterized.named_parameters( { 'testcase_name': 'matching_single_spec', 'slice_key': (('f1', 1),), 'slice_specs': [slicer.SingleSliceSpec(features=[('f1', 1)])], 'expected_result': True }, { 'testcase_name': 'matching_single_spec_with_float', 'slice_key': (('f1', '1.0'),), 'slice_specs': [slicer.SingleSliceSpec(features=[('f1', '1.0')])], 'expected_result': True }, { 'testcase_name': 'non_matching_single_spec', 'slice_key': (('f1', 1),), 'slice_specs': [slicer.SingleSliceSpec(columns=['f2'])], 'expected_result': False }, { 'testcase_name': 'matching_multiple_specs', 'slice_key': (('f1', 1),), 'slice_specs': [ slicer.SingleSliceSpec(columns=['f1']), slicer.SingleSliceSpec(columns=['f2']) ], 'expected_result': True }, { 'testcase_name': 'empty_specs', 'slice_key': (('f1', 1),), 'slice_specs': [], 'expected_result': False }, ) def testSliceKeyMatchesSliceSpecs(self, slice_key, slice_specs, expected_result): self.assertEqual( expected_result, slicer.slice_key_matches_slice_specs(slice_key, slice_specs)) if __name__ == '__main__': tf.test.main()
robogym/robot/utils/logistic_functions.py
0xflotus/robogym
288
12675039
<reponame>0xflotus/robogym<filename>robogym/robot/utils/logistic_functions.py """ Logistic functions Function List: 1. logistic_sigmoid(x: float, a: float) -> float: calculate the normalized logistic sigmoid with slope parameter a 2. clipped_logistic_sigmoid(x: float, a: float) -> float: calculate the normalized logistic sigmoid with slope parameter a clipped to a [0, 1] output range """ import numpy as np def logistic_sigmoid(x: float, a: float) -> float: """ Calculates the normalized logistic sigmoid as a function of x with parameterization on a This function will be symmetric about 0.5 :param x: input value for calculation. Range: -inf to inf will not clip at values to 0 and 1 outside of the 0 to 1 input range :param a: value of the slope of the sigmoid. Values range from 0.5 for slope ~ 1 to 1.0 for slope ~ infinity. There's very little signal at a < 0.5 :return: the value of the normalized logistic sigmoid at x """ # set epsilon to be small. this is so we don't have divide by zero conditions epsilon: float = 0.0001 # clip a to be between (0 + epsilon) and (1 - epsilon) min_param_a: float = 0.0 + epsilon max_param_a: float = 1.0 - epsilon a = np.maximum(min_param_a, np.minimum(max_param_a, a)) # set a to be asymptotic at 1 and zero at 0 a = 1 / (1 - a) - 1 # calculate the numerator and denominator terms for the normalized sigmoid A: float = 1.0 / (1.0 + np.exp(0 - ((x - 0.5) * a * 2.0))) B: float = 1.0 / (1.0 + np.exp(a)) C: float = 1.0 / (1.0 + np.exp(0 - a)) y: float = (A - B) / (C - B) return y def clipped_logistic_sigmoid(x: float, a: float) -> float: """ Calculates the normalized logistic sigmoid as a function of x with parameterization on a This function will be symmetric about 0.5 :param x: input value for calculation range: Range: -inf to inf, effective range 0 to 1 will output 0 for values below 0 and 1 for values above 1 :param a: value of the slope of the sigmoid. Values range from 0.5 for slope ~ 1 to 1.0 for slope ~ infinity. There's very little signal at a < 0.5 :return: the value of the normalized logistic sigmoid at x """ # clip values below zero and above one x = np.maximum(x, 0.0) x = np.minimum(x, 1.0) # set epsilon to be small. this is so we don't have divide by zero conditions epsilon: float = 0.0001 # clip a to be between (0 + epsilon) and (1 - epsilon) min_param_a: float = 0.0 + epsilon max_param_a: float = 1.0 - epsilon a = np.maximum(min_param_a, np.minimum(max_param_a, a)) # set a to be asymptotic at 1 and zero at 0 a = 1 / (1 - a) - 1 # calculate the numerator and denominator terms for the normalized sigmoid A: float = 1.0 / (1.0 + np.exp(0 - ((x - 0.5) * a * 2.0))) B: float = 1.0 / (1.0 + np.exp(a)) C: float = 1.0 / (1.0 + np.exp(0 - a)) y: float = (A - B) / (C - B) return y
python/federatedml/nn/backend/tf_keras/layers/baisc.py
rubenlozanoaht3m/DataDogm
715
12675041
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from tensorflow.python.keras import layers from .util import _get_initializer def _build_dense(units, activation, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, seed=None, **kwargs): return layers.Dense(units=units, activation=activation, use_bias=use_bias, kernel_initializer=_get_initializer(kernel_initializer, seed), bias_initializer=_get_initializer(bias_initializer, seed), kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, **kwargs) def _build_dropout(rate, noise_shape=None, seed=None, **kwargs): return layers.Dropout(rate, noise_shape=noise_shape, seed=seed, **kwargs) def _build_flatten(data_format=None, **kwargs): return layers.Flatten(data_format=data_format, **kwargs)
__scraping__/legit.ng - requests/main.py
whitmans-max/python-examples
140
12675070
<reponame>whitmans-max/python-examples #!/usr/bin/env python3 # date: 2020.01.09 # import requests from bs4 import BeautifulSoup res = requests.get('https://www.legit.ng/1087216-igbo-proverbs-meaning.html') soup = BeautifulSoup(res.content, 'html.parser') data = [] for div in soup.find_all('div'): for block in div.find_all('blockquote'): text = block.text if text.startswith('Igbo Proverb – '): name = text[15:] # len('Igbo Proverb – ') == 15 data.append(name) for item in data: print(item)
biscuit/src/kernel/rewrite.py
whakapapa/biscuit
2,062
12675085
#!/usr/bin/env python2 import os import subprocess import sys def usage(): print >> sys.stderr, 'usage: %s <in gobin> <out gobin>' % (sys.argv[0]) sys.exit(1) def _fsrex(data): # FS seg override? c = ord(data[0]) if c != 0x64: return False c = ord(data[1]) # 64 bit width, 64bit width + r8-r15 reg rexes = [0x48, 0x4c] if c not in rexes: return False return True def _movs(data): # rewrite all movs using an fs segment override to use a gs segment # override if not _fsrex(data): return False c = ord(data[2]) # moves that i don't expect but may see someday maybemov = [0x88, 0x8c, 0x8e, 0xa0, 0xa1, 0xa2, 0xa3, 0xb0, 0xb8, 0xc6] if c in maybemov: raise ValueError('new kind of mov %x' % (c)) movs = [0x8b, 0x89, 0xc7] if c not in movs: return False return True def _cmps(data): # rewrite all cmps using an fs segment override to use a gs segment # override if not _fsrex(data): return False if data[2] != '\x39': return False return True def rewrite(f): spots = getspots(f.name) data = list(f.read()) found = 0 for i in spots: d = data[i:i+3] if _movs(d) or _cmps(d): found += 1 data[i] = '\x65' if found == 0: raise ValueError('didnt find a single occurance') skipped = len(spots) - found print >> sys.stderr, 'patched %d instructions (%d skipped)' % (found, skipped) if found < skipped: raise ValueError('more skipped than found') return ''.join(data) def getspots(fn): # find all potential file offsets where an instruction uses %fs odcmd = ['objdump', '--prefix-addresses', '-F', '-d', fn] od = subprocess.Popen(odcmd, stdout=subprocess.PIPE) gcmd = ['grep', '%fs'] gr = subprocess.Popen(gcmd, stdin=od.stdout, stdout=subprocess.PIPE) od.stdout.close() data, _ = gr.communicate() ret = [] for l in data.split('\n'): l = l.strip() if l == '': continue l = l.split('File Offset: ') if len(l) != 2: print l raise ValueError('unexpected output') l = l[1].split(')')[0] ret.append(int(l, 16)) return ret if len(sys.argv) != 3: usage() fn = sys.argv[1] dn = sys.argv[2] newdata = '' with open(fn, 'r+b') as f: newdata = rewrite(f) with open(dn, 'w') as nf: nf.write(newdata) print >> sys.stderr, 'created %s' % (dn)
tests/test_fms_api_event_list_parser.py
tervay/the-blue-alliance
266
12675109
<gh_stars>100-1000 import datetime import json import unittest2 from datafeeds.parsers.fms_api.fms_api_event_list_parser import FMSAPIEventListParser from google.appengine.ext import ndb from google.appengine.ext import testbed from consts.event_type import EventType from models.sitevar import Sitevar class TestFMSAPIEventListParser(unittest2.TestCase): def setUp(self): self.testbed = testbed.Testbed() self.testbed.activate() self.testbed.init_datastore_v3_stub() self.testbed.init_memcache_stub() ndb.get_context().clear_cache() # Prevent data from leaking between tests def tearDown(self): self.testbed.deactivate() def test_parse_event_list(self): with open('test_data/fms_api/2015_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2015).parse(json.loads(f.read())) self.assertTrue(isinstance(events, list)) self.assertTrue(isinstance(districts, list)) # File has 6 events, but we ignore CMP divisions (only subdivisions), so only 5 are expected back self.assertEquals(len(events), 5) self.assertEquals(len(districts), 1) def test_parse_regional_event(self): with open('test_data/fms_api/2015_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2015).parse(json.loads(f.read())) event = events[0] self.assertEquals(event.key_name, "<KEY>") self.assertEquals(event.name, "New York City Regional") self.assertEquals(event.short_name, "New York City") self.assertEquals(event.event_short, "nyny") self.assertEquals(event.official, True) self.assertEquals(event.start_date, datetime.datetime(year=2015, month=3, day=12, hour=0, minute=0, second=0)) self.assertEquals(event.end_date, datetime.datetime(year=2015, month=3, day=15, hour=23, minute=59, second=59)) self.assertEquals(event.venue, "<NAME> Convention Center") self.assertEquals(event.city, "New York") self.assertEquals(event.state_prov, "NY") self.assertEquals(event.country, "USA") self.assertEquals(event.year, 2015) self.assertEquals(event.event_type_enum, EventType.REGIONAL) self.assertEquals(event.district_key, None) def test_parse_district_event(self): with open('test_data/fms_api/2015_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2015).parse(json.loads(f.read())) event = events[1] district = districts[0] self.assertEquals(event.key_name, "2015cthar") self.assertEquals(event.name, "NE District - Hartford Event") self.assertEquals(event.short_name, "Hartford") self.assertEquals(event.event_short, "cthar") self.assertEquals(event.official, True) self.assertEquals(event.start_date, datetime.datetime(year=2015, month=3, day=27, hour=0, minute=0, second=0)) self.assertEquals(event.end_date, datetime.datetime(year=2015, month=3, day=29, hour=23, minute=59, second=59)) self.assertEquals(event.venue, "Hartford Public High School") self.assertEquals(event.city, "Hartford") self.assertEquals(event.state_prov, "CT") self.assertEquals(event.country, "USA") self.assertEquals(event.year, 2015) self.assertEquals(event.event_type_enum, EventType.DISTRICT) self.assertEquals(event.district_key, district.key) self.assertEquals(district.key_name, "2015ne") self.assertEquals(district.abbreviation, "ne") self.assertEquals(district.year, 2015) def test_parse_district_cmp(self): with open('test_data/fms_api/2015_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2015).parse(json.loads(f.read())) event = events[2] self.assertEquals(event.key_name, "2015necmp") self.assertEquals(event.name, "NE FIRST District Championship presented by United Technologies") self.assertEquals(event.short_name, "NE FIRST") self.assertEquals(event.event_short, "necmp") self.assertEquals(event.official, True) self.assertEquals(event.start_date, datetime.datetime(year=2015, month=4, day=8, hour=0, minute=0, second=0)) self.assertEquals(event.end_date, datetime.datetime(year=2015, month=4, day=11, hour=23, minute=59, second=59)) self.assertEquals(event.venue, "Sports and Recreation Center, WPI") self.assertEquals(event.city, "Worcester") self.assertEquals(event.state_prov, "MA") self.assertEquals(event.country, "USA") self.assertEquals(event.year, 2015) self.assertEquals(event.event_type_enum, EventType.DISTRICT_CMP) self.assertEquals(event.district_key, districts[0].key) def test_parse_cmp_subdivision(self): with open('test_data/fms_api/2015_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2015).parse(json.loads(f.read())) event = events[3] self.assertEquals(event.key_name, "2015tes") self.assertEquals(event.name, "Tesla Division") self.assertEquals(event.short_name, "Tesla") self.assertEquals(event.event_short, "tes") self.assertEquals(event.official, True) self.assertEquals(event.start_date, datetime.datetime(year=2015, month=4, day=22, hour=0, minute=0, second=0)) self.assertEquals(event.end_date, datetime.datetime(year=2015, month=4, day=25, hour=23, minute=59, second=59)) self.assertEquals(event.venue, "<NAME>") self.assertEquals(event.city, "St. Louis") self.assertEquals(event.state_prov, "MO") self.assertEquals(event.country, "USA") self.assertEquals(event.year, 2015) self.assertEquals(event.event_type_enum, EventType.CMP_DIVISION) self.assertEquals(event.district_key, None) def test_parse_offseason(self): with open('test_data/fms_api/2015_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2015).parse(json.loads(f.read())) event = events[4] self.assertEquals(event.key_name, "2015iri") self.assertEquals(event.name, "Indiana Robotics Invitational") self.assertEquals(event.short_name, "Indiana Robotics Invitational") self.assertEquals(event.event_short, "iri") self.assertEquals(event.official, False) self.assertEquals(event.start_date, datetime.datetime(year=2015, month=7, day=17, hour=0, minute=0, second=0)) self.assertEquals(event.end_date, datetime.datetime(year=2015, month=7, day=18, hour=23, minute=59, second=59)) self.assertEquals(event.venue, "Lawrence North HS") self.assertEquals(event.city, "Indianapolis") self.assertEquals(event.state_prov, "IN") self.assertEquals(event.country, "USA") self.assertEquals(event.year, 2015) self.assertEquals(event.event_type_enum, EventType.OFFSEASON) self.assertEquals(event.district_key, None) def test_parse_2017_event(self): with open('test_data/fms_api/2017_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2017).parse(json.loads(f.read())) self.assertEqual(len(events), 165) self.assertEqual(len(districts), 10) event = events[16] self.assertEquals(event.key_name, "2017casj") self.assertEquals(event.name, "Silicon Valley Regional") self.assertEquals(event.short_name, "Silicon Valley") self.assertEquals(event.event_short, "casj") self.assertEquals(event.official, True) self.assertEquals(event.start_date, datetime.datetime(year=2017, month=3, day=29, hour=0, minute=0, second=0)) self.assertEquals(event.end_date, datetime.datetime(year=2017, month=4, day=1, hour=23, minute=59, second=59)) self.assertEquals(event.venue, "San Jose State University - The Event Center") self.assertEquals(event.city, "San Jose") self.assertEquals(event.state_prov, "CA") self.assertEquals(event.country, "USA") self.assertEquals(event.year, 2017) self.assertEquals(event.event_type_enum, EventType.REGIONAL) self.assertEquals(event.district_key, None) # New in 2017 self.assertEquals(event.website, "http://www.firstsv.org") def test_parse_2017_events_with_cmp_hacks(self): hack_sitevar = Sitevar(id='cmp_registration_hacks') hack_sitevar.contents = { "event_name_override": [ {"event": "2017cmpmo", "name": "FIRST Championship Event", "short_name": "Championship"}, {"event": "2017cmptx", "name": "FIRST Championship Event", "short_name": "Championship"}], "set_start_to_last_day": ["2017cmptx", "2017cmpmo"], "divisions_to_skip": ["2017arc", "2017cars", "2017cur", "2017dal", "2017dar"], } hack_sitevar.put() with open('test_data/fms_api/2017_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2017).parse(json.loads(f.read())) self.assertEqual(len(events), 160) self.assertEqual(len(districts), 10) non_einstein_types = EventType.CMP_EVENT_TYPES non_einstein_types.remove(EventType.CMP_FINALS) for key in hack_sitevar.contents['divisions_to_skip']: self.assertFalse(filter(lambda e: e.key_name == key, events)) einstein_stl = next(e for e in events if e.key_name == '<KEY>') self.assertIsNotNone(einstein_stl) self.assertEqual(einstein_stl.name, "FIRST Championship Event (St. Louis)") self.assertEqual(einstein_stl.short_name, "Championship (St. Louis)") self.assertEquals(einstein_stl.start_date, datetime.datetime(year=2017, month=4, day=29, hour=0, minute=0, second=0)) self.assertEquals(einstein_stl.end_date, datetime.datetime(year=2017, month=4, day=29, hour=23, minute=59, second=59)) einstein_hou = next(e for e in events if e.key_name == '<KEY>') self.assertIsNotNone(einstein_hou) self.assertEqual(einstein_hou.name, "FIRST Championship Event (Houston)") self.assertEqual(einstein_hou.short_name, "Championship (Houston)") self.assertEquals(einstein_hou.start_date, datetime.datetime(year=2017, month=4, day=22, hour=0, minute=0, second=0)) self.assertEquals(einstein_hou.end_date, datetime.datetime(year=2017, month=4, day=22, hour=23, minute=59, second=59)) def test_parse_2017_official_offseason(self): with open('test_data/fms_api/2017_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2017).parse(json.loads(f.read())) self.assertEqual(len(events), 165) self.assertEqual(len(districts), 10) event = next(e for e in events if e.key_name == "2017iri") self.assertEquals(event.key_name, "2017iri") self.assertEquals(event.name, "Indiana Robotics Invitational") self.assertEquals(event.short_name, "Indiana Robotics Invitational") self.assertEquals(event.event_short, "iri") self.assertEquals(event.official, True) self.assertEquals(event.start_date, datetime.datetime(year=2017, month=7, day=14, hour=0, minute=0, second=0)) self.assertEquals(event.end_date, datetime.datetime(year=2017, month=7, day=15, hour=23, minute=59, second=59)) self.assertEquals(event.venue, "Lawrence North High School") self.assertEquals(event.city, "Indianapolis") self.assertEquals(event.state_prov, "IN") self.assertEquals(event.country, "USA") self.assertEquals(event.year, 2017) self.assertEquals(event.event_type_enum, EventType.OFFSEASON) self.assertEquals(event.district_key, None) self.assertEquals(event.website, "http://indianaroboticsinvitational.org/") self.assertIsNone(event.webcast) def test_parse_2018_event(self): with open('test_data/fms_api/2018_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2018).parse(json.loads(f.read())) self.assertEqual(len(events), 178) self.assertEqual(len(districts), 10) event = events[18] self.assertEquals(event.key_name, "2018casj") self.assertEquals(event.name, "Silicon Valley Regional") self.assertEquals(event.short_name, "Silicon Valley") self.assertEquals(event.event_short, "casj") self.assertEquals(event.official, True) self.assertEquals(event.start_date, datetime.datetime(year=2018, month=3, day=28, hour=0, minute=0, second=0)) self.assertEquals(event.end_date, datetime.datetime(year=2018, month=3, day=31, hour=23, minute=59, second=59)) self.assertEquals(event.venue, "San Jose State University - The Event Center") self.assertEquals(event.city, "San Jose") self.assertEquals(event.state_prov, "CA") self.assertEquals(event.country, "USA") self.assertEquals(event.year, 2018) self.assertEquals(event.event_type_enum, EventType.REGIONAL) self.assertEquals(event.district_key, None) self.assertEquals(event.website, "http://www.firstsv.org") # New in 2018 self.assertEqual(event.webcast, [{"type": "twitch", "channel": "firstinspires9"}, {"type": "twitch", "channel": "firstinspires10"}]) def test_parse_division_parent(self): with open('test_data/fms_api/2017_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2017).parse(json.loads(f.read())) self.assertEqual(len(events), 165) self.assertEqual(len(districts), 10) # Test division <-> parent associations for event in events: event_key = event.key.id() if event_key == '2017micmp': self.assertEqual(event.parent_event, None) self.assertEqual( event.divisions, [ ndb.Key('Event', '2017micmp1'), ndb.Key('Event', '2017micmp2'), ndb.Key('Event', '2017micmp3'), ndb.Key('Event', '2017micmp4'), ] ) elif event_key in {'2017micmp1', '2017micmp2', '2017micmp3', '2017micmp4'}: self.assertEqual(event.parent_event, ndb.Key('Event', '2017micmp')) self.assertEqual(event.divisions, []) elif event_key == '<KEY>': self.assertEqual(event.parent_event, None) self.assertEqual( event.divisions, [ ndb.Key('Event', '2017carv'), ndb.Key('Event', '2017gal'), ndb.Key('Event', '2017hop'), ndb.Key('Event', '2017new'), ndb.Key('Event', '2017roe'), ndb.Key('Event', '2017tur'), ] ) elif event_key in {'2017carv', '2017gal', '2017hop', '2017new', '2017roe', '2017tur'}: self.assertEqual(event.parent_event, ndb.Key('Event', '2017cmptx')) self.assertEqual(event.divisions, []) elif event_key == '<KEY>': self.assertEqual(event.parent_event, None) self.assertEqual( event.divisions, [ ndb.Key('Event', '2017arc'), ndb.Key('Event', '2017cars'), ndb.Key('Event', '2017cur'), ndb.Key('Event', '2017dal'), ndb.Key('Event', '2017dar'), ndb.Key('Event', '2017tes'), ] ) elif event_key in {'2017arc', '2017cars', '2017cur', '2017dal', '2017dar', '2017tes'}: self.assertEqual(event.parent_event, ndb.Key('Event', '2017cmpmo')) self.assertEqual(event.divisions, []) else: self.assertEqual(event.parent_event, None) self.assertEqual(event.divisions, []) with open('test_data/fms_api/2018_event_list.json', 'r') as f: events, districts = FMSAPIEventListParser(2018).parse(json.loads(f.read())) self.assertEqual(len(events), 178) self.assertEqual(len(districts), 10) # Test division <-> parent associations for event in events: event_key = event.key.id() if event_key == '2018oncmp': self.assertEqual(event.parent_event, None) self.assertEqual( event.divisions, [ ndb.Key('Event', '2018oncmp1'), ndb.Key('Event', '2018oncmp2'), ] ) elif event_key in {'2018oncmp1', '2018oncmp2'}: self.assertEqual(event.parent_event, ndb.Key('Event', '2018oncmp')) self.assertEqual(event.divisions, []) elif event_key == '2018micmp': self.assertEqual(event.parent_event, None) self.assertEqual( event.divisions, [ ndb.Key('Event', '2018micmp1'), ndb.Key('Event', '2018micmp2'), ndb.Key('Event', '2018micmp3'), ndb.Key('Event', '2018micmp4'), ] ) elif event_key in {'2018micmp1', '2018micmp2', '2018micmp3', '2018micmp4'}: self.assertEqual(event.parent_event, ndb.Key('Event', '2018micmp')) self.assertEqual(event.divisions, []) elif event_key == '<KEY>': self.assertEqual(event.parent_event, None) self.assertEqual( event.divisions, [ ndb.Key('Event', '2018carv'), ndb.Key('Event', '2018gal'), ndb.Key('Event', '2018hop'), ndb.Key('Event', '2018new'), ndb.Key('Event', '2018roe'), ndb.Key('Event', '2018tur'), ] ) elif event_key in {'2018carv', '2018gal', '2018hop', '2018new', '2018roe', '2018tur'}: self.assertEqual(event.parent_event, ndb.Key('Event', '2018cmptx')) self.assertEqual(event.divisions, []) elif event_key == '<KEY>': self.assertEqual(event.parent_event, None) self.assertEqual( event.divisions, [ ndb.Key('Event', '2018arc'), ndb.Key('Event', '2018cars'), ndb.Key('Event', '2018cur'), ndb.Key('Event', '2018dal'), ndb.Key('Event', '2018dar'), ndb.Key('Event', '2018tes'), ] ) elif event_key in {'2018arc', '2018cars', '2018cur', '2018dal', '2018dar', '2018tes'}: self.assertEqual(event.parent_event, ndb.Key('Event', '2018cmpmi')) self.assertEqual(event.divisions, []) else: self.assertEqual(event.parent_event, None) self.assertEqual(event.divisions, [])
lib/__init__.py
lockywolf/pysqlcipher3
108
12675149
# pysqlite2/__init__.py: the pysqlite2 package. # # Copyright (C) 2005 <NAME> <<EMAIL>> # # This file is part of pysqlite. # # This software is provided 'as-is', without any express or implied # warranty. In no event will the authors be held liable for any damages # arising from the use of this software. # # Permission is granted to anyone to use this software for any purpose, # including commercial applications, and to alter it and redistribute it # freely, subject to the following restrictions: # # 1. The origin of this software must not be misrepresented; you must not # claim that you wrote the original software. If you use this software # in a product, an acknowledgment in the product documentation would be # appreciated but is not required. # 2. Altered source versions must be plainly marked as such, and must not be # misrepresented as being the original software. # 3. This notice may not be removed or altered from any source distribution.
palladium/tests/test_julia.py
vishalbelsare/palladium
528
12675155
<reponame>vishalbelsare/palladium from unittest.mock import call from unittest.mock import Mock from unittest.mock import patch import numpy as np import pytest from pytest import fixture pytest.importorskip("julia") @fixture def bridge(monkeypatch): make_bridge = Mock() monkeypatch.setattr('palladium.julia.make_bridge', make_bridge) return make_bridge.return_value class TestAbstractModel: @fixture def Model(self): from palladium.julia import AbstractModel return AbstractModel @fixture def model(self, Model, bridge): return Model( fit_func='myjulia.fit_func', predict_func='yourjulia.predict_func', fit_kwargs={'fit': 'kwargs'}, predict_kwargs={'predict': 'kwargs'}, ) def test_initialize_julia(self, model, bridge): bridge.eval.side_effect = ['fit', 'predict'] model._initialize_julia() assert model.fit_func_ == 'fit' assert model.predict_func_ == 'predict' assert call('import myjulia') in bridge.mock_calls assert call('import yourjulia') in bridge.mock_calls assert call('myjulia.fit_func') in bridge.mock_calls assert call('yourjulia.predict_func') in bridge.mock_calls def test_fit(self, model): X, y = Mock(), Mock() assert model.fit(X, y) is model fit_func = model.fit_func_ fit_func.assert_called_with(X.T, y, fit='kwargs') assert model.fitted_ == fit_func.return_value def test_fit_with_label_encoder(self, model): model.encode_labels = True X, y = Mock(), Mock() with patch('palladium.julia.LabelEncoder') as encoder: model.fit(X, y) is model fit_func = model.fit_func_ transform = encoder().fit_transform fit_func.assert_called_with(X.T, transform.return_value, fit='kwargs') def test_predict(self, model): X = Mock() model.fitted_ = Mock() model._initialize_julia() result = model.predict(X) predict_func = model.predict_func_ predict_func.assert_called_with( model.fitted_, X.astype().T, predict='kwargs') assert result == predict_func.return_value def test_predict_with_label_encoder(self, model): model.encode_labels = True X = Mock() model.fitted_ = Mock() model.enc_ = Mock() inverse_transform = model.enc_.inverse_transform model._initialize_julia() result = model.predict(X) assert result == inverse_transform.return_value inverse_transform.assert_called_with(model.predict_func_.return_value) def test_predict_convert_to_float(self, model): X_in = np.array([1, 2, 3], dtype=object) model.fitted_ = Mock() model.enc_ = Mock() model._initialize_julia() model.predict(X_in) X_conv = model.predict_func_.call_args[0][1] assert np.all(X_in == X_conv) assert X_conv.dtype == np.float64 def test_getstate(self, model): model._initialize_julia() model.fitted_ = Mock() state = model.__getstate__() assert state['fitted_'] is not model.fitted_ assert 'fit_func_' not in state assert 'predict_func_' not in state assert 'bridge_' not in state idict = model.__dict__ assert 'fit_func_' in idict assert 'predict_func_' in idict assert 'bridge_' in idict def test_setstate(self, model, bridge): model.__setstate__( {'fitted_': 'fitted', 'fit_kwargs': {'bl': 'arg'}}) assert model.fitted_ != 'fitted' assert model.fitted_ == bridge.eval.return_value.return_value class TestClassificationModel(TestAbstractModel): @fixture def Model(self): from palladium.julia import ClassificationModel return ClassificationModel def test_score(self, model): X, y = Mock(), Mock() with patch('palladium.julia.accuracy_score') as accuracy_score: with patch('palladium.julia.AbstractModel.predict') as predict: model.score(X, y) accuracy_score.assert_called_with(predict.return_value, y) predict.assert_called_with(X)
pyrosm/networks.py
nmarchio/pyrosm
186
12675163
from pyrosm.data_manager import get_osm_data from pyrosm.frames import prepare_geodataframe import warnings def get_network_data( node_coordinates, way_records, tags_as_columns, network_filter, bounding_box, slice_to_segments, ): # Tags to keep as separate columns tags_as_columns += ["id", "nodes", "timestamp", "changeset", "version"] # Call signature for fetching network data nodes, ways, relation_ways, relations = get_osm_data( node_arrays=None, way_records=way_records, relations=None, tags_as_columns=tags_as_columns, data_filter=network_filter, filter_type="exclude", # Keep only records having 'highway' tag osm_keys="highway", ) # If there weren't any data, return None if ways is None: warnings.warn( "Could not find any edges for given area.", UserWarning, stacklevel=2 ) return None, None # Prepare GeoDataFrame edges, nodes = prepare_geodataframe( nodes, node_coordinates, ways, relations, relation_ways, tags_as_columns, bounding_box, parse_network=True, calculate_seg_lengths=slice_to_segments, ) return edges, nodes
documents/__init__.py
nuwainfo/treeio
242
12675178
# encoding: utf-8 # Copyright 2011 Tree.io Limited # This file is part of Treeio. # License www.tree.io/license """ Documents docstring """
scripts/vim/plugin/snippets/__init__.py
n13l/OpenAAA
413
12675179
__all__ = ['clang_complete', 'ultisnips', 'dummy']
downstream/votenet_det_new/models/backbone/sparseconv/models/wrapper.py
mbanani/PointContrast
244
12675200
<reponame>mbanani/PointContrast # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random from torch.nn import Module from MinkowskiEngine import SparseTensor class Wrapper(Module): """ Wrapper for the segmentation networks. """ OUT_PIXEL_DIST = -1 def __init__(self, NetClass, in_nchannel, out_nchannel, config): super(Wrapper, self).__init__() self.initialize_filter(NetClass, in_nchannel, out_nchannel, config) def initialize_filter(self, NetClass, in_nchannel, out_nchannel, config): raise NotImplementedError('Must initialize a model and a filter') def forward(self, x, coords, colors=None): soutput = self.model(x) # During training, make the network invariant to the filter if not self.training or random.random() < 0.5: # Filter requires the model to finish the forward pass wrapper_coords = self.filter.initialize_coords(self.model, coords, colors) finput = SparseTensor(soutput.F, wrapper_coords) soutput = self.filter(finput) return soutput
tests/test_worksheet.py
aaaddress1/boobsnail
169
12675201
from unittest import TestCase from excel4lib.sheet import * class TestWorksheet(TestCase): def test_column_iterate(self): worksheet = Worksheet("test.csv") worksheet.set_current_cords(1, 1) for i in range(1,10): for j in range(1, 10): worksheet.add_cell(Cell(i, j, "{}{}".format(i,j))) i = 1 for col in worksheet.column_iterate(): j = 1 for c in col[1]: self.assertEqual(str(col[1][c]), "{}{}".format(i,j), "Should be {}{}".format(i,j)) j = j + 1 i = i + 1 def test_get_cell(self): worksheet = Worksheet("test.csv") worksheet.set_current_cords(1, 1) worksheet.add_next_cell(Cell(-1, -1, "A")) worksheet.add_next_cell(Cell(-1, -1, "A")) worksheet.add_next_cell(Cell(-1, -1, "")) worksheet.add_next_cell(Cell(-1, -1, "")) worksheet.add_next_cell(Cell(-1, -1, "A")) worksheet.set_current_cords(2, 1) worksheet.add_next_cell(Cell(-1, -1, "B")) worksheet.add_next_cell(Cell(-1, -1, "B")) cell = worksheet.get_cell(1,1) self.assertEqual(str(cell), "A", "Should be: A") cell = worksheet.get_cell(10, 1) self.assertEqual(cell, None, "Should be: None") def test_is_reserved(self): worksheet = Worksheet("test.csv") for i in range(1,5): worksheet.add_cell(Cell(1,i)) self.assertEqual(worksheet.is_reserved(1, 1, 2), True, "Should be True") self.assertEqual(worksheet.is_reserved(2, 1, 2), False, "Should be False") for i in range(8,12): worksheet.add_cell(Cell(1,i)) self.assertEqual(worksheet.is_reserved(6, 8, 2), False, "Should be False") def test_add_next_cell(self): worksheet = Worksheet("test.csv") worksheet.set_current_cords(1,1) worksheet.add_next_cell(Cell(-1,-1,"A")) worksheet.add_next_cell(Cell(-1, -1, "A")) worksheet.add_next_cell(Cell(-1, -1, "")) worksheet.add_next_cell(Cell(-1, -1, "")) worksheet.add_next_cell(Cell(-1, -1, "A")) worksheet.set_current_cords(2, 1) worksheet.add_next_cell(Cell(-1, -1, "B")) worksheet.add_next_cell(Cell(-1, -1, "B")) csv = worksheet.to_csv() val = """A;B;\nA;B;\n;;\n;;\nA;;\n""" self.assertEqual(csv, val, "Should be: {}".format(val)) def test_add_cell(self): worksheet = Worksheet("test.csv") worksheet.add_cell(Cell(1,1, "A")) worksheet.add_cell(Cell(2,1, "B")) worksheet.add_cell(Cell(1,2, "A")) worksheet.add_cell(Cell(2,2, "B")) worksheet.add_cell(Cell(1,5, "A")) csv = worksheet.to_csv() val = """A;B;\nA;B;\n;;\n;;\nA;;\n""" self.assertEqual(csv, val, "Should be: {}".format(val)) def test_replace_cell(self): worksheet = Worksheet("test.csv") worksheet.add_cell(Cell(1,1, "A")) worksheet.add_cell(Cell(2,1, "B")) worksheet.add_cell(Cell(1,2, "A")) worksheet.add_cell(Cell(2,2, "B")) c = Cell(1,5, "A") c2 = Cell(1,5, "C") worksheet.add_cell(c) worksheet.replace_cell(c, c2) csv = worksheet.to_csv() val = """A;B;\nA;B;\n;;\n;;\nC;;\n""" self.assertEqual(csv, val, "Should be: {}".format(val)) def test_add_above(self): worksheet = Worksheet("test.csv") # Cell is in first row c = Cell(1, 1, "A") worksheet.add_cell(c) worksheet.add_above(Cell(1,1, "B"), c) csv = worksheet.to_csv() val = """B;\nA;\n""" self.assertEqual(csv, val, "Should be: {}".format(val)) # Cell above is empty worksheet = Worksheet("test.csv") c = Cell(1, 2, "A") worksheet.add_cell(c) worksheet.add_above(Cell(1,1, "B"), c) csv = worksheet.to_csv() val = """B;\nA;\n""" self.assertEqual(csv, val, "Should be: {}".format(val)) # Cell above is reserved but below is not worksheet = Worksheet("test.csv") c = Cell(1, 2, "A") worksheet.add_cell(c) worksheet.add_cell(Cell(1, 1, "A")) worksheet.add_above(Cell(1,2, "B"), c) csv = worksheet.to_csv() val = """A;\nB;\nA;\n""" self.assertEqual(csv, val, "Should be: {}".format(val)) # Cell above and below are reserved worksheet = Worksheet("test.csv") c = Cell(1, 2, "A") worksheet.add_cell(c) worksheet.add_cell(Cell(1, 1, "A")) worksheet.add_cell(Cell(1, 3, "A")) worksheet.add_above(Cell(1,2, "B"), c) csv = worksheet.to_csv() val = """A;\nB;\nA;\nA;\n""" self.assertEqual(csv, val, "Should be: {}".format(val)) # Cell above and below are reserved worksheet = Worksheet("test.csv") c = Cell(1, 2, "A") worksheet.add_cell(c) worksheet.add_cell(Cell(1, 1, "A")) worksheet.add_cell(Cell(1, 3, "A")) worksheet.add_cell(Cell(1, 4, "A")) worksheet.add_cell(Cell(1, 6, "A")) worksheet.add_above(Cell(1,2, "B"), c) csv = worksheet.to_csv() val = """A;\nB;\nA;\nA;\nA;\nA;\n""" self.assertEqual(csv, val, "Should be: {}".format(val)) def test_remove_cell(self): worksheet = Worksheet("test.csv") c = Cell(1, 1, "A") worksheet.add_cell(c) c = worksheet.get_cell(1,1) self.assertEqual(str(c), "A", "Should be A") worksheet.remove_cell(c) c = worksheet.get_cell(1, 1) self.assertEqual(c, None, "Should be None")
lib/node_modules/@stdlib/blas/base/sswap/binding.gyp
ghalimi/stdlib
3,428
12675212
<reponame>ghalimi/stdlib<filename>lib/node_modules/@stdlib/blas/base/sswap/binding.gyp<gh_stars>1000+ # @license Apache-2.0 # # Copyright (c) 2018 The Stdlib Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # A `.gyp` file for building a Node.js native add-on. # # [1]: https://gyp.gsrc.io/docs/InputFormatReference.md # [2]: https://gyp.gsrc.io/docs/UserDocumentation.md { # List of files to include in this file: 'includes': [ './include.gypi', ], # Define variables to be used throughout the configuration for all targets: 'variables': { # Target name should match the add-on export name: 'addon_target_name%': 'addon', # Fortran compiler (to override -Dfortran_compiler=<compiler>): 'fortran_compiler%': 'gfortran', # Fortran compiler flags: 'fflags': [ # Specify the Fortran standard to which a program is expected to conform: '-std=f95', # Indicate that the layout is free-form source code: '-ffree-form', # Aggressive optimization: '-O3', # Enable commonly used warning options: '-Wall', # Warn if source code contains problematic language features: '-Wextra', # Warn if a procedure is called without an explicit interface: '-Wimplicit-interface', # Do not transform names of entities specified in Fortran source files by appending underscores (i.e., don't mangle names, thus allowing easier usage in C wrappers): '-fno-underscoring', # Warn if source code contains Fortran 95 extensions and C-language constructs: '-pedantic', # Compile but do not link (output is an object file): '-c', ], # Set variables based on the host OS: 'conditions': [ [ 'OS=="win"', { # Define the object file suffix: 'obj': 'obj', }, { # Define the object file suffix: 'obj': 'o', } ], # end condition (OS=="win") ], # end conditions }, # end variables # Define compile targets: 'targets': [ # Target to generate an add-on: { # The target name should match the add-on export name: 'target_name': '<(addon_target_name)', # Define dependencies: 'dependencies': [], # Define directories which contain relevant include headers: 'include_dirs': [ # Local include directory: '<@(include_dirs)', ], # List of source files: 'sources': [ '<@(src_files)', ], # Settings which should be applied when a target's object files are used as linker input: 'link_settings': { # Define libraries: 'libraries': [ '<@(libraries)', ], # Define library directories: 'library_dirs': [ '<@(library_dirs)', ], }, # C/C++ compiler flags: 'cflags': [ # Enable commonly used warning options: '-Wall', # Aggressive optimization: '-O3', ], # C specific compiler flags: 'cflags_c': [ # Specify the C standard to which a program is expected to conform: '-std=c99', ], # C++ specific compiler flags: 'cflags_cpp': [ # Specify the C++ standard to which a program is expected to conform: '-std=c++11', ], # Linker flags: 'ldflags': [], # Apply conditions based on the host OS: 'conditions': [ [ 'OS=="mac"', { # Linker flags: 'ldflags': [ '-undefined dynamic_lookup', '-Wl,-no-pie', '-Wl,-search_paths_first', ], }, ], # end condition (OS=="mac") [ 'OS!="win"', { # C/C++ flags: 'cflags': [ # Generate platform-independent code: '-fPIC', ], }, ], # end condition (OS!="win") ], # end conditions # Define custom build actions for particular inputs: 'rules': [ { # Define a rule for processing Fortran files: 'extension': 'f', # Define the pathnames to be used as inputs when performing processing: 'inputs': [ # Full path of the current input: '<(RULE_INPUT_PATH)' ], # Define the outputs produced during processing: 'outputs': [ # Store an output object file in a directory for placing intermediate results (only accessible within a single target): '<(INTERMEDIATE_DIR)/<(RULE_INPUT_ROOT).<(obj)' ], # Define the rule for compiling Fortran based on the host OS: 'conditions': [ [ 'OS=="win"', # Rule to compile Fortran on Windows: { 'rule_name': 'compile_fortran_windows', 'message': 'Compiling Fortran file <(RULE_INPUT_PATH) on Windows...', 'process_outputs_as_sources': 0, # Define the command-line invocation: 'action': [ '<(fortran_compiler)', '<@(fflags)', '<@(_inputs)', '-o', '<@(_outputs)', ], }, # Rule to compile Fortran on non-Windows: { 'rule_name': 'compile_fortran_linux', 'message': 'Compiling Fortran file <(RULE_INPUT_PATH) on Linux...', 'process_outputs_as_sources': 1, # Define the command-line invocation: 'action': [ '<(fortran_compiler)', '<@(fflags)', '-fPIC', # generate platform-independent code '<@(_inputs)', '-o', '<@(_outputs)', ], } ], # end condition (OS=="win") ], # end conditions }, # end rule (extension=="f") ], # end rules }, # end target <(addon_target_name) # Target to copy a generated add-on to a standard location: { 'target_name': 'copy_addon', # Declare that the output of this target is not linked: 'type': 'none', # Define dependencies: 'dependencies': [ # Require that the add-on be generated before building this target: '<(addon_target_name)', ], # Define a list of actions: 'actions': [ { 'action_name': 'copy_addon', 'message': 'Copying addon...', # Explicitly list the inputs in the command-line invocation below: 'inputs': [], # Declare the expected outputs: 'outputs': [ '<(addon_output_dir)/<(addon_target_name).node', ], # Define the command-line invocation: 'action': [ 'cp', '<(PRODUCT_DIR)/<(addon_target_name).node', '<(addon_output_dir)/<(addon_target_name).node', ], }, ], # end actions }, # end target copy_addon ], # end targets }
yellowbrick/text/freqdist.py
mrtrkmn/yellowbrick
3,662
12675237
# yellowbrick.text.freqdist # Implementations of frequency distributions for text visualization. # # Author: <NAME> # Created: Mon Feb 20 12:38:20 2017 -0500 # # Copyright (C) 2017 The scikit-yb developers # For license information, see LICENSE.txt # # ID: freqdist.py [67b2740] <EMAIL> $ """ Implementations of frequency distributions for text visualization """ ########################################################################## ## Imports ########################################################################## import numpy as np from operator import itemgetter from yellowbrick.text.base import TextVisualizer from yellowbrick.exceptions import YellowbrickValueError ########################################################################## ## Quick Method ########################################################################## def freqdist( features, X, y=None, ax=None, n=50, orient="h", color=None, show=True, **kwargs ): """Displays frequency distribution plot for text. This helper function is a quick wrapper to utilize the FreqDist Visualizer (Transformer) for one-off analysis. Parameters ---------- features : list, default: None The list of feature names from the vectorizer, ordered by index. E.g. a lexicon that specifies the unique vocabulary of the corpus. This can be typically fetched using the ``get_feature_names()`` method of the transformer in Scikit-Learn. X: ndarray or DataFrame of shape n x m A matrix of n instances with m features. In the case of text, X is a list of list of already preprocessed words y: ndarray or Series of length n An array or series of target or class values ax : matplotlib axes, default: None The axes to plot the figure on. n: integer, default: 50 Top N tokens to be plotted. orient : 'h' or 'v', default: 'h' Specifies a horizontal or vertical bar chart. color : string Specify color for bars show: bool, default: True If True, calls ``show()``, which in turn calls ``plt.show()`` however you cannot call ``plt.savefig`` from this signature, nor ``clear_figure``. If False, simply calls ``finalize()`` kwargs: dict Keyword arguments passed to the super class. Returns ------- visualizer: FreqDistVisualizer Returns the fitted, finalized visualizer """ # Instantiate the visualizer viz = FreqDistVisualizer(features, ax=ax, n=n, orient=orient, color=color, **kwargs) # Fit and transform the visualizer (calls draw) viz.fit(X, y, **kwargs) viz.transform(X) # Draw the final visualization if show: viz.show() else: viz.finalize() # Return the visualizer object return viz class FrequencyVisualizer(TextVisualizer): """ A frequency distribution tells us the frequency of each vocabulary item in the text. In general, it could count any kind of observable event. It is a distribution because it tells us how the total number of word tokens in the text are distributed across the vocabulary items. Parameters ---------- features : list, default: None The list of feature names from the vectorizer, ordered by index. E.g. a lexicon that specifies the unique vocabulary of the corpus. This can be typically fetched using the ``get_feature_names()`` method of the transformer in Scikit-Learn. ax : matplotlib axes, default: None The axes to plot the figure on. n: integer, default: 50 Top N tokens to be plotted. orient : 'h' or 'v', default: 'h' Specifies a horizontal or vertical bar chart. color : string Specify color for bars kwargs : dict Pass any additional keyword arguments to the super class. These parameters can be influenced later on in the visualization process, but can and should be set as early as possible. """ def __init__(self, features, ax=None, n=50, orient="h", color=None, **kwargs): super(FreqDistVisualizer, self).__init__(ax=ax, **kwargs) # Check that the orient is correct orient = orient.lower().strip() if orient not in {"h", "v"}: raise YellowbrickValueError("Orientation must be 'h' or 'v'") # Visualizer parameters self.N = n self.features = features # Visual arguments self.color = color self.orient = orient def count(self, X): """ Called from the fit method, this method gets all the words from the corpus and their corresponding frequency counts. Parameters ---------- X : ndarray or masked ndarray Pass in the matrix of vectorized documents, can be masked in order to sum the word frequencies for only a subset of documents. Returns ------- counts : array A vector containing the counts of all words in X (columns) """ # Sum on axis 0 (by columns), each column is a word # Convert the matrix to an array # Squeeze to remove the 1 dimension objects (like ravel) return np.squeeze(np.asarray(X.sum(axis=0))) def fit(self, X, y=None): """ The fit method is the primary drawing input for the frequency distribution visualization. It requires vectorized lists of documents and a list of features, which are the actual words from the original corpus (needed to label the x-axis ticks). Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features representing the corpus of frequency vectorized documents. y : ndarray or DataFrame of shape n Labels for the documents for conditional frequency distribution. Notes ----- .. note:: Text documents must be vectorized before ``fit()``. """ # Compute the conditional word frequency if y is not None: # Fit the frequencies self.conditional_freqdist_ = {} # Conditional frequency distribution self.classes_ = [str(label) for label in set(y)] for label in self.classes_: self.conditional_freqdist_[label] = self.count(X[y == label]) else: # No conditional frequencies self.conditional_freqdist_ = None # Frequency distribution of entire corpus. self.freqdist_ = self.count(X) self.sorted_ = self.freqdist_.argsort()[::-1] # Descending order # Compute the number of words, vocab, and hapaxes self.vocab_ = self.freqdist_.shape[0] self.words_ = self.freqdist_.sum() self.hapaxes_ = sum(1 for c in self.freqdist_ if c == 1) # Draw and ensure that we return self self.draw() return self def draw(self, **kwargs): """ Called from the fit method, this method creates the canvas and draws the distribution plot on it. Parameters ---------- kwargs: generic keyword arguments. """ # Prepare the data bins = np.arange(self.N) words = [self.features[i] for i in self.sorted_[: self.N]] freqs = {} # Set up the bar plots if self.conditional_freqdist_: for label, values in sorted( self.conditional_freqdist_.items(), key=itemgetter(0) ): freqs[label] = [values[i] for i in self.sorted_[: self.N]] else: freqs["corpus"] = [self.freqdist_[i] for i in self.sorted_[: self.N]] # Draw a horizontal barplot if self.orient == "h": # Add the barchart, stacking if necessary for label, freq in freqs.items(): self.ax.barh(bins, freq, label=label, color=self.color, align="center") # Set the y ticks to the words self.ax.set_yticks(bins) self.ax.set_yticklabels(words) # Order the features from top to bottom on the y axis self.ax.invert_yaxis() # Turn off y grid lines and turn on x grid lines self.ax.yaxis.grid(False) self.ax.xaxis.grid(True) # Draw a vertical barplot elif self.orient == "v": # Add the barchart, stacking if necessary for label, freq in freqs.items(): self.ax.bar(bins, freq, label=label, color=self.color, align="edge") # Set the y ticks to the words self.ax.set_xticks(bins) self.ax.set_xticklabels(words, rotation=90) # Turn off x grid lines and turn on y grid lines self.ax.yaxis.grid(True) self.ax.xaxis.grid(False) # Unknown state else: raise YellowbrickValueError("Orientation must be 'h' or 'v'") return self.ax def finalize(self, **kwargs): """ The finalize method executes any subclass-specific axes finalization steps. The user calls show & show calls finalize. Parameters ---------- kwargs: generic keyword arguments. """ # Set the title self.set_title("Frequency Distribution of Top {} tokens".format(self.N)) # Create the vocab, count, and hapaxes labels infolabel = "vocab: {:,}\nwords: {:,}\nhapax: {:,}".format( self.vocab_, self.words_, self.hapaxes_ ) self.ax.text( 0.68, 0.97, infolabel, transform=self.ax.transAxes, fontsize=9, verticalalignment="top", bbox={"boxstyle": "round", "facecolor": "white", "alpha": 0.8}, ) # Set the legend and the grid self.ax.legend(loc="upper right", frameon=True) # Backwards compatibility alias FreqDistVisualizer = FrequencyVisualizer
dataloaders/image_transforms.py
yoxu515/aot-benchmark
105
12675242
<filename>dataloaders/image_transforms.py import math import warnings import random import numbers import numpy as np from PIL import Image from collections.abc import Sequence import torch import torchvision.transforms.functional as TF _pil_interpolation_to_str = { Image.NEAREST: 'PIL.Image.NEAREST', Image.BILINEAR: 'PIL.Image.BILINEAR', Image.BICUBIC: 'PIL.Image.BICUBIC', Image.LANCZOS: 'PIL.Image.LANCZOS', Image.HAMMING: 'PIL.Image.HAMMING', Image.BOX: 'PIL.Image.BOX', } def _get_image_size(img): if TF._is_pil_image(img): return img.size elif isinstance(img, torch.Tensor) and img.dim() > 2: return img.shape[-2:][::-1] else: raise TypeError("Unexpected type {}".format(type(img))) class RandomHorizontalFlip(object): """Horizontal flip the given PIL Image randomly with a given probability. Args: p (float): probability of the image being flipped. Default value is 0.5 """ def __init__(self, p=0.5): self.p = p def __call__(self, img, mask): """ Args: img (PIL Image): Image to be flipped. Returns: PIL Image: Randomly flipped image. """ if random.random() < self.p: img = TF.hflip(img) mask = TF.hflip(mask) return img, mask def __repr__(self): return self.__class__.__name__ + '(p={})'.format(self.p) class RandomAffine(object): """Random affine transformation of the image keeping center invariant Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). Set to 0 to deactivate rotations. translate (tuple, optional): tuple of maximum absolute fraction for horizontal and vertical translations. For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default. scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b. Will keep original scale by default. shear (sequence or float or int, optional): Range of degrees to select from. If shear is a number, a shear parallel to the x axis in the range (-shear, +shear) will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values, a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied. Will not apply shear by default resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See `filters`_ for more information. If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area outside the transform in the output image.(Pillow>=5.0.0) .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters """ def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError( "If degrees is a single number, it must be positive.") self.degrees = (-degrees, degrees) else: assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \ "degrees should be a list or tuple and it must be of length 2." self.degrees = degrees if translate is not None: assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ "translate should be a list or tuple and it must be of length 2." for t in translate: if not (0.0 <= t <= 1.0): raise ValueError( "translation values should be between 0 and 1") self.translate = translate if scale is not None: assert isinstance(scale, (tuple, list)) and len(scale) == 2, \ "scale should be a list or tuple and it must be of length 2." for s in scale: if s <= 0: raise ValueError("scale values should be positive") self.scale = scale if shear is not None: if isinstance(shear, numbers.Number): if shear < 0: raise ValueError( "If shear is a single number, it must be positive.") self.shear = (-shear, shear) else: assert isinstance(shear, (tuple, list)) and \ (len(shear) == 2 or len(shear) == 4), \ "shear should be a list or tuple and it must be of length 2 or 4." # X-Axis shear with [min, max] if len(shear) == 2: self.shear = [shear[0], shear[1], 0., 0.] elif len(shear) == 4: self.shear = [s for s in shear] else: self.shear = shear self.resample = resample self.fillcolor = fillcolor @staticmethod def get_params(degrees, translate, scale_ranges, shears, img_size): """Get parameters for affine transformation Returns: sequence: params to be passed to the affine transformation """ angle = random.uniform(degrees[0], degrees[1]) if translate is not None: max_dx = translate[0] * img_size[0] max_dy = translate[1] * img_size[1] translations = (np.round(random.uniform(-max_dx, max_dx)), np.round(random.uniform(-max_dy, max_dy))) else: translations = (0, 0) if scale_ranges is not None: scale = random.uniform(scale_ranges[0], scale_ranges[1]) else: scale = 1.0 if shears is not None: if len(shears) == 2: shear = [random.uniform(shears[0], shears[1]), 0.] elif len(shears) == 4: shear = [ random.uniform(shears[0], shears[1]), random.uniform(shears[2], shears[3]) ] else: shear = 0.0 return angle, translations, scale, shear def __call__(self, img, mask): """ img (PIL Image): Image to be transformed. Returns: PIL Image: Affine transformed image. """ ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size) img = TF.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor) mask = TF.affine(mask, *ret, resample=Image.NEAREST, fillcolor=0) return img, mask def __repr__(self): s = '{name}(degrees={degrees}' if self.translate is not None: s += ', translate={translate}' if self.scale is not None: s += ', scale={scale}' if self.shear is not None: s += ', shear={shear}' if self.resample > 0: s += ', resample={resample}' if self.fillcolor != 0: s += ', fillcolor={fillcolor}' s += ')' d = dict(self.__dict__) d['resample'] = _pil_interpolation_to_str[d['resample']] return s.format(name=self.__class__.__name__, **d) class RandomCrop(object): """Crop the given PIL Image at a random location. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. padding (int or sequence, optional): Optional padding on each border of the image. Default is None, i.e no padding. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. If a sequence of length 2 is provided, it is used to pad left/right, top/bottom borders, respectively. pad_if_needed (boolean): It will pad the image if smaller than the desired size to avoid raising an exception. Since cropping is done after padding, the padding seems to be done at a random offset. fill: Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. - constant: pads with a constant value, this value is specified with fill - edge: pads with the last value on the edge of the image - reflect: pads with reflection of image (without repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2] - symmetric: pads with reflection of image (repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] """ def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size self.padding = padding self.pad_if_needed = pad_if_needed self.fill = fill self.padding_mode = padding_mode @staticmethod def get_params(img, output_size): """Get parameters for ``crop`` for a random crop. Args: img (PIL Image): Image to be cropped. output_size (tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. """ w, h = _get_image_size(img) th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = random.randint(0, h - th) j = random.randint(0, w - tw) return i, j, th, tw def __call__(self, img, mask): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ # if self.padding is not None: # img = TF.pad(img, self.padding, self.fill, self.padding_mode) # # # pad the width if needed # if self.pad_if_needed and img.size[0] < self.size[1]: # img = TF.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode) # # pad the height if needed # if self.pad_if_needed and img.size[1] < self.size[0]: # img = TF.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode) i, j, h, w = self.get_params(img, self.size) img = TF.crop(img, i, j, h, w) mask = TF.crop(mask, i, j, h, w) return img, mask def __repr__(self): return self.__class__.__name__ + '(size={0}, padding={1})'.format( self.size, self.padding) class RandomResizedCrop(object): """Crop the given PIL Image to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR): if isinstance(size, (tuple, list)): self.size = size else: self.size = (size, size) if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") self.interpolation = interpolation self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ width, height = _get_image_size(img) area = height * width for _ in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if 0 < w <= width and 0 < h <= height: i = random.randint(0, height - h) j = random.randint(0, width - w) return i, j, h, w # Fallback to central crop in_ratio = float(width) / float(height) if (in_ratio < min(ratio)): w = width h = int(round(w / min(ratio))) elif (in_ratio > max(ratio)): h = height w = int(round(h * max(ratio))) else: # whole image w = width h = height i = (height - h) // 2 j = (width - w) // 2 return i, j, h, w def __call__(self, img, mask): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) # print(i, j, h, w) img = TF.resized_crop(img, i, j, h, w, self.size, self.interpolation) mask = TF.resized_crop(mask, i, j, h, w, self.size, Image.NEAREST) return img, mask def __repr__(self): interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format( tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format( tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0})'.format(interpolate_str) return format_string class ToOnehot(object): """To oneshot tensor Args: max_obj_n (float): Maximum number of the objects """ def __init__(self, max_obj_n, shuffle): self.max_obj_n = max_obj_n self.shuffle = shuffle def __call__(self, mask, obj_list=None): """ Args: mask (Mask in Numpy): Mask to be converted. Returns: Tensor: Converted mask in onehot format. """ new_mask = np.zeros((self.max_obj_n + 1, *mask.shape), np.uint8) if not obj_list: obj_list = list() obj_max = mask.max() + 1 for i in range(1, obj_max): tmp = (mask == i).astype(np.uint8) if tmp.max() > 0: obj_list.append(i) if self.shuffle: random.shuffle(obj_list) obj_list = obj_list[:self.max_obj_n] for i in range(len(obj_list)): new_mask[i + 1] = (mask == obj_list[i]).astype(np.uint8) new_mask[0] = 1 - np.sum(new_mask, axis=0) return torch.from_numpy(new_mask), obj_list def __repr__(self): return self.__class__.__name__ + '(max_obj_n={})'.format( self.max_obj_n) class Resize(torch.nn.Module): """Resize the input image to the given size. The image can be a PIL Image or a torch Tensor, in which case it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions Args: size (sequence or int): Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size). In torchscript mode padding as single int is not supported, use a tuple or list of length 1: ``[size, ]``. interpolation (int, optional): Desired interpolation enum defined by `filters`_. Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR`` and ``PIL.Image.BICUBIC`` are supported. """ def __init__(self, size, interpolation=Image.BILINEAR): super().__init__() if not isinstance(size, (int, Sequence)): raise TypeError("Size should be int or sequence. Got {}".format( type(size))) if isinstance(size, Sequence) and len(size) not in (1, 2): raise ValueError( "If size is a sequence, it should have 1 or 2 values") self.size = size self.interpolation = interpolation def forward(self, img, mask): """ Args: img (PIL Image or Tensor): Image to be scaled. Returns: PIL Image or Tensor: Rescaled image. """ img = TF.resize(img, self.size, self.interpolation) mask = TF.resize(mask, self.size, Image.NEAREST) return img, mask def __repr__(self): interpolate_str = _pil_interpolation_to_str[self.interpolation] return self.__class__.__name__ + '(size={0}, interpolation={1})'.format( self.size, interpolate_str)
wilds/datasets/rxrx1_dataset.py
caglasozen/wilds
355
12675249
<reponame>caglasozen/wilds import os from pathlib import Path from collections import defaultdict from PIL import Image import pandas as pd import numpy as np import torch from wilds.datasets.wilds_dataset import WILDSDataset from wilds.common.grouper import CombinatorialGrouper from wilds.common.metrics.all_metrics import Accuracy class RxRx1Dataset(WILDSDataset): """ The RxRx1-WILDS dataset. This is a modified version of the original RxRx1 dataset. Supported `split_scheme`: - 'official' - 'mixed-to-test' Input (x): 3-channel fluorescent microscopy images of cells Label (y): y is one of 1,139 classes: - 0 to 1107: treatment siRNAs - 1108 to 1137: positive control siRNAs - 1138: negative control siRNA Metadata: Each image is annotated with its experiment, plate, well, and site, as well as with the id of the siRNA the cells were perturbed with. Website: https://www.rxrx.ai/rxrx1 https://www.kaggle.com/c/recursion-cellular-image-classification Original publication: @inproceedings{taylor2019rxrx1, author = {<NAME>. and <NAME>. and <NAME>. and <NAME>. and <NAME>.}, title = {RxRx1: An Image Set for Cellular Morphological Variation Across Many Experimental Batches.}, year = {2019}, booktitle = {International Conference on Learning Representations (ICLR)}, booksubtitle = {AI for Social Good Workshop}, url = {https://aiforsocialgood.github.io/iclr2019/accepted/track1/pdfs/30_aisg_iclr2019.pdf}, } License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. """ _dataset_name = 'rxrx1' _versions_dict = { '1.0': { 'download_url': 'https://worksheets.codalab.org/rest/bundles/0x6b7a05a3056a434498f0bb1252eb8440/contents/blob/', 'compressed_size': 7_413_123_845} } def __init__(self, version=None, root_dir='data', download=False, split_scheme='official'): self._version = version self._split_scheme = split_scheme if self._split_scheme not in ['official', 'mixed-to-test']: raise ValueError(f'Split scheme {self._split_scheme} not recognized') # path self._data_dir = Path(self.initialize_data_dir(root_dir, download)) # Load splits df = pd.read_csv(self._data_dir / 'metadata.csv') # Splits if split_scheme == 'official': # Training: 33 experiments, 1 site per experiment (site 1) # Validation: 4 experiments, 2 sites per experiment # Test OOD: 14 experiments, 2 sites per experiment # Test ID: Same 33 experiments from training set # 1 site per experiment (site 2) self._split_dict = { 'train': 0, 'val': 1, 'test': 2, 'id_test': 3 } self._split_names = { 'train': 'Train', 'val': 'Validation (OOD)', 'test': 'Test (OOD)', 'id_test': 'Test (ID)' } self._split_array = df.dataset.apply(self._split_dict.get).values # id_test set mask = ((df.dataset == 'train') & (df.site == 2)).values self._split_array[mask] = self.split_dict['id_test'] elif split_scheme == 'mixed-to-test': # Training: 33 experiments total, 1 site per experiment (site 1) # = 19 experiments from the orig training set (site 1) # + 14 experiments from the orig test set (site 1) # Validation: same as official split # Test: 14 experiments from the orig test set, # 1 site per experiment (site 2) self._split_dict = { 'train': 0, 'val': 1, 'test': 2 } self._split_names = { 'train': 'Train', 'val': 'Validation', 'test': 'Test' } self._split_array = df.dataset.apply(self._split_dict.get).values # Use half of the training set (site 1) and discard site 2 mask_to_discard = ((df.dataset == 'train') & (df.site == 2)).values self._split_array[mask_to_discard] = -1 # Take all site 1 in the test set and move it to train mask_to_move = ((df.dataset == 'test') & (df.site == 1)).values self._split_array[mask_to_move] = self._split_dict['train'] # For each of the test experiments, remove a train experiment of the same cell type test_cell_type_counts = defaultdict(int) test_experiments = df.loc[(df['dataset'] == 'test'), 'experiment'].unique() for test_experiment in test_experiments: test_cell_type = test_experiment.split('-')[0] test_cell_type_counts[test_cell_type] += 1 # Training experiments are numbered starting from 1 and left-padded with 0s experiments_to_discard = [ f'{cell_type}-{num:02}' for cell_type, count in test_cell_type_counts.items() for num in range(1, count+1)] # Sanity check train_experiments = df.loc[(df['dataset'] == 'train'), 'experiment'].unique() for experiment in experiments_to_discard: assert experiment in train_experiments mask_to_discard = (df.experiment == experiment).values self._split_array[mask_to_discard] = -1 else: raise ValueError(f'Split scheme {self._split_scheme} not recognized') # Filenames def create_filepath(row): filepath = os.path.join('images', row.experiment, f'Plate{row.plate}', f'{row.well}_s{row.site}.png') return filepath self._input_array = df.apply(create_filepath, axis=1).values # Labels self._y_array = torch.tensor(df['sirna_id'].values) self._n_classes = max(df['sirna_id']) + 1 self._y_size = 1 assert len(np.unique(df['sirna_id'])) == self._n_classes # Convert experiment and well from strings to idxs indexed_metadata = {} self._metadata_map = {} for key in ['cell_type', 'experiment', 'well']: all_values = list(df[key].unique()) value_to_idx_map = {value: idx for idx, value in enumerate(all_values)} value_idxs = [value_to_idx_map[value] for value in df[key].tolist()] self._metadata_map[key] = all_values indexed_metadata[key] = value_idxs self._metadata_array = torch.tensor( np.stack([indexed_metadata['cell_type'], indexed_metadata['experiment'], df['plate'].values, indexed_metadata['well'], df['site'].values, self.y_array], axis=1) ) self._metadata_fields = ['cell_type', 'experiment', 'plate', 'well', 'site', 'y'] # eval grouper self._eval_grouper = CombinatorialGrouper( dataset=self, groupby_fields=(['cell_type']) ) super().__init__(root_dir, download, split_scheme) def eval(self, y_pred, y_true, metadata, prediction_fn=None): """ Computes all evaluation metrics. Args: - y_pred (Tensor): Predictions from a model. By default, they are predicted labels (LongTensor). But they can also be other model outputs such that prediction_fn(y_pred) are predicted labels. - y_true (LongTensor): Ground-truth labels - metadata (Tensor): Metadata - prediction_fn (function): A function that turns y_pred into predicted labels Output: - results (dictionary): Dictionary of evaluation metrics - results_str (str): String summarizing the evaluation metrics """ metric = Accuracy(prediction_fn=prediction_fn) return self.standard_group_eval( metric, self._eval_grouper, y_pred, y_true, metadata) def get_input(self, idx): """ Args: - idx (int): Index of a data point Output: - x (Tensor): Input features of the idx-th data point """ # All images are in the train folder img_path = self.data_dir / self._input_array[idx] img = Image.open(img_path) return img
tools/perf/core/results_dashboard_unittest.py
sarang-apps/darshan_browser
575
12675254
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest import mock from mock import call from core import results_dashboard class ResultsDashboardTest(unittest.TestCase): def setUp(self): self.dummy_token_generator = lambda service_file, timeout: 'Ar<PASSWORD>' self.perf_data = {'foo': 1, 'bar': 2} self.dashboard_url = 'https://chromeperf.appspot.com' def testRetryForSendResultRetryException(self): def raise_retry_exception( url, histogramset_json, token_generator_callback): del url, histogramset_json # unused del token_generator_callback # unused raise results_dashboard.SendResultsRetryException('Should retry') with mock.patch('core.results_dashboard.time.sleep') as sleep_mock: with mock.patch('core.results_dashboard._SendHistogramJson', side_effect=raise_retry_exception) as m: upload_result = results_dashboard.SendResults( self.perf_data, 'dummy_benchmark', self.dashboard_url, send_as_histograms=True, token_generator_callback=self.dummy_token_generator, num_retries=5) self.assertFalse(upload_result) self.assertEqual(m.call_count, 5) self.assertEqual( sleep_mock.mock_calls, [call(15), call(30), call(60), call(120), call(240)]) def testNoRetryForSendResultFatalException(self): def raise_retry_exception( url, histogramset_json, token_generator_callback): del url, histogramset_json # unused del token_generator_callback # unused raise results_dashboard.SendResultsFatalException('Do not retry') with mock.patch('core.results_dashboard.time.sleep') as sleep_mock: with mock.patch('core.results_dashboard._SendHistogramJson', side_effect=raise_retry_exception) as m: upload_result = results_dashboard.SendResults( self.perf_data, 'dummy_benchmark', self.dashboard_url, send_as_histograms=True, token_generator_callback=self.dummy_token_generator, num_retries=5) self.assertFalse(upload_result) self.assertEqual(m.call_count, 1) self.assertFalse(sleep_mock.mock_calls) def testNoRetryForSuccessfulSendResult(self): with mock.patch('core.results_dashboard.time.sleep') as sleep_mock: with mock.patch('core.results_dashboard._SendHistogramJson') as m: upload_result = results_dashboard.SendResults( self.perf_data, 'dummy_benchmark', self.dashboard_url, send_as_histograms=True, token_generator_callback=self.dummy_token_generator, num_retries=5) self.assertTrue(upload_result) self.assertEqual(m.call_count, 1) self.assertFalse(sleep_mock.mock_calls) def testNoRetryAfterSucessfulSendResult(self): counter = [0] def raise_retry_exception_first_two_times( url, histogramset_json, token_generator_callback): del url, histogramset_json # unused del token_generator_callback # unused counter[0] += 1 if counter[0] <= 2: raise results_dashboard.SendResultsRetryException('Please retry') with mock.patch('core.results_dashboard.time.sleep') as sleep_mock: with mock.patch('core.results_dashboard._SendHistogramJson', side_effect=raise_retry_exception_first_two_times) as m: upload_result = results_dashboard.SendResults( self.perf_data, 'dummy_benchmark', self.dashboard_url, send_as_histograms=True, token_generator_callback=self.dummy_token_generator, num_retries=5) self.assertTrue(upload_result) self.assertEqual(m.call_count, 3) self.assertEqual( sleep_mock.mock_calls, [call(15), call(30)])
cityscapesScripts/cityscapesscripts/preparation/json2instanceImg.py
zeroAska/TFSegmentation
633
12675265
#!/usr/bin/python # # Reads labels as polygons in JSON format and converts them to instance images, # where each pixel has an ID that represents the ground truth class and the # individual instance of that class. # # The pixel values encode both, class and the individual instance. # The integer part of a division by 1000 of each ID provides the class ID, # as described in labels.py. The remainder is the instance ID. If a certain # annotation describes multiple instances, then the pixels have the regular # ID of that class. # # Example: # Let's say your labels.py assigns the ID 26 to the class 'car'. # Then, the individual cars in an image get the IDs 26000, 26001, 26002, ... . # A group of cars, where our annotators could not identify the individual # instances anymore, is assigned to the ID 26. # # Note that not all classes distinguish instances (see labels.py for a full list). # The classes without instance annotations are always directly encoded with # their regular ID, e.g. 11 for 'building'. # # Usage: json2instanceImg.py [OPTIONS] <input json> <output image> # Options: # -h print a little help text # -t use train IDs # # Can also be used by including as a module. # # Uses the mapping defined in 'labels.py'. # # See also createTrainIdInstanceImgs.py to apply the mapping to all annotations in Cityscapes. # # python imports import os, sys, getopt # Image processing # Check if PIL is actually Pillow as expected try: from PIL import PILLOW_VERSION except: print("Please install the module 'Pillow' for image processing, e.g.") print("pip install pillow") sys.exit(-1) try: import PIL.Image as Image import PIL.ImageDraw as ImageDraw except: print("Failed to import the image processing packages.") sys.exit(-1) # cityscapes imports sys.path.append( os.path.normpath( os.path.join( os.path.dirname( __file__ ) , '..' , 'helpers' ) ) ) from annotation import Annotation from labels import labels, name2label # Print the information def printHelp(): print('{} [OPTIONS] inputJson outputImg'.format(os.path.basename(sys.argv[0]))) print('') print(' Reads labels as polygons in JSON format and converts them to instance images,') print(' where each pixel has an ID that represents the ground truth class and the') print(' individual instance of that class.') print('') print(' The pixel values encode both, class and the individual instance.') print(' The integer part of a division by 1000 of each ID provides the class ID,') print(' as described in labels.py. The remainder is the instance ID. If a certain') print(' annotation describes multiple instances, then the pixels have the regular') print(' ID of that class.') print('') print(' Example:') print(' Let\'s say your labels.py assigns the ID 26 to the class "car".') print(' Then, the individual cars in an image get the IDs 26000, 26001, 26002, ... .') print(' A group of cars, where our annotators could not identify the individual') print(' instances anymore, is assigned to the ID 26.') print('') print(' Note that not all classes distinguish instances (see labels.py for a full list).') print(' The classes without instance annotations are always directly encoded with') print(' their regular ID, e.g. 11 for "building".') print('') print('Options:') print(' -h Print this help') print(' -t Use the "trainIDs" instead of the regular mapping. See "labels.py" for details.') # Print an error message and quit def printError(message): print('ERROR: {}'.format(message)) print('') print('USAGE:') printHelp() sys.exit(-1) # Convert the given annotation to a label image def createInstanceImage(annotation, encoding): # the size of the image size = ( annotation.imgWidth , annotation.imgHeight ) # the background if encoding == "ids": backgroundId = name2label['unlabeled'].id elif encoding == "trainIds": backgroundId = name2label['unlabeled'].trainId else: print("Unknown encoding '{}'".format(encoding)) return None # this is the image that we want to create instanceImg = Image.new("I", size, backgroundId) # a drawer to draw into the image drawer = ImageDraw.Draw( instanceImg ) # a dict where we keep track of the number of instances that # we already saw of each class nbInstances = {} for labelTuple in labels: if labelTuple.hasInstances: nbInstances[labelTuple.name] = 0 # loop over all objects for obj in annotation.objects: label = obj.label polygon = obj.polygon # If the object is deleted, skip it if obj.deleted: continue # if the label is not known, but ends with a 'group' (e.g. cargroup) # try to remove the s and see if that works # also we know that this polygon describes a group isGroup = False if ( not label in name2label ) and label.endswith('group'): label = label[:-len('group')] isGroup = True if not label in name2label: printError( "Label '{}' not known.".format(label) ) # the label tuple labelTuple = name2label[label] # get the class ID if encoding == "ids": id = labelTuple.id elif encoding == "trainIds": id = labelTuple.trainId # if this label distinguishs between invidudial instances, # make the id a instance ID if labelTuple.hasInstances and not isGroup: id = id * 1000 + nbInstances[label] nbInstances[label] += 1 # If the ID is negative that polygon should not be drawn if id < 0: continue try: drawer.polygon( polygon, fill=id ) except: print("Failed to draw polygon with label {} and id {}: {}".format(label,id,polygon)) raise return instanceImg # A method that does all the work # inJson is the filename of the json file # outImg is the filename of the instance image that is generated # encoding can be set to # - "ids" : classes are encoded using the regular label IDs # - "trainIds" : classes are encoded using the training IDs def json2instanceImg(inJson,outImg,encoding="ids"): annotation = Annotation() annotation.fromJsonFile(inJson) instanceImg = createInstanceImage( annotation , encoding ) instanceImg.save( outImg ) # The main method, if you execute this script directly # Reads the command line arguments and calls the method 'json2instanceImg' def main(argv): trainIds = False try: opts, args = getopt.getopt(argv,"ht") except getopt.GetoptError: printError( 'Invalid arguments' ) for opt, arg in opts: if opt == '-h': printHelp() sys.exit(0) elif opt == '-t': trainIds = True else: printError( "Handling of argument '{}' not implementend".format(opt) ) if len(args) == 0: printError( "Missing input json file" ) elif len(args) == 1: printError( "Missing output image filename" ) elif len(args) > 2: printError( "Too many arguments" ) inJson = args[0] outImg = args[1] if trainIds: json2instanceImg( inJson , outImg , 'trainIds' ) else: json2instanceImg( inJson , outImg ) # call the main method if __name__ == "__main__": main(sys.argv[1:])