max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tensorflow_gnn/graph/schema_validation.py
mattdangerw/gnn
611
12683139
<filename>tensorflow_gnn/graph/schema_validation.py """Graph schema validation routines. This module provides a simple container for the ragged tensors associated with multiple sets of nodes, edges, and graph-global data. See go/graph-tensor for details. """ from typing import List from absl import logging # TODO(blais): Remove, see below. import tensorflow as tf from tensorflow_gnn.graph import adjacency as adj from tensorflow_gnn.graph import graph_constants as const from tensorflow_gnn.graph import graph_tensor as gt from tensorflow_gnn.graph import schema_utils as su import tensorflow_gnn.proto.graph_schema_pb2 as schema_pb2 # The supported data types. Note that these are currently limited to the ones # supported by `tensorflow.Example` but we can eventually extend the list by # adding casting transformations, and supporting other data formats for # encoding. VALID_DTYPES = (tf.string, tf.int64, tf.float32) class ValidationError(ValueError): """A schema validation error. This exception is raised if in the course of validating the schema for correctness some errors are found. """ def validate_schema(schema: schema_pb2.GraphSchema) -> List[Exception]: """Validates the correctness of a graph schema instance. `GraphSchema` configuration messages are created by users in order to describe the topology of a graph. This function checks various aspects of the schema for correctness, e.g. prevents usage of reserved feature names, ensures given shapes are fully-defined, ensures set name references are found, etc. Args: schema: An instance of the graph schema. Returns: A list of exceptions describing optional warnings. Render those to your favorite stream (or ignore). Raises: ValidationError: If a validation check fails. """ _validate_schema_feature_dtypes(schema) _validate_schema_shapes(schema) _validate_schema_descriptions(schema) _validate_schema_reserved_feature_names(schema) _validate_schema_context_references(schema) _validate_schema_node_set_references(schema) return _warn_schema_scalar_shapes(schema) def check_required_features(requirements: schema_pb2.GraphSchema, actual: schema_pb2.GraphSchema): """Checks the requirements of a given schema against another. This function is used to enable the specification of required features to a function. A function accepting a `GraphTensor` instance can this way document what features it is expecting to find on it. The function accepts two schemas: a `requirements` schema which describes what the function will attempt to fetch and use on the `GraphTensor`, and an `actual` schema instance, which is the schema describing the dataset. You can use this in your model code to ensure that a dataset contains all the expected node sets, edge sets and features that the model uses. Note that a dimension with a size of `0` in a feature from the `requirements` schema is interpreted specially: it means "accept any value for this dimension." The special value `-1` is still used to represent a ragged dimension. (Finally, note that this function predates the existence of `GraphTensorSpec`, which is a runtime descriptor for a `GraphTensor`. We may eventually perovide an equivalent construct using the `GraphTensorSpec.) Args: requirements: An instance of a GraphSchema object, with optional shapes. actual: The instance of actual schema to check is a matching superset of the required schema. Raises: ValidationError: If the given schema does not fulfill the requirements. """ # Create maps of the required and provided features. def build_schema_map(schema_): mapping = {} for (set_type, set_name, feature_name, feature) in su.iter_features(schema_): key = (set_type, set_name, feature_name) mapping[key] = feature return mapping required = build_schema_map(requirements) given = build_schema_map(actual) for key, required_feature in required.items(): set_type, set_name, feature_name = key try: given_feature = given[key] except KeyError: raise ValidationError( "{} feature '{}' from set '{}' is missing from given schema".format( set_type.capitalize(), feature_name, set_name)) else: if required_feature.HasField("dtype") and ( required_feature.dtype != given_feature.dtype): raise ValidationError( "{} feature '{}' from set '{}' has invalid type: {}".format( set_type.capitalize(), feature_name, set_name, given_feature.dtype)) if required_feature.HasField("shape"): if len(given_feature.shape.dim) != len(required_feature.shape.dim): raise ValidationError( "{} feature '{}' from set '{}' has invalid shape: {}".format( set_type.capitalize(), feature_name, set_name, given_feature.shape)) for required_dim, given_dim in zip(required_feature.shape.dim, given_feature.shape.dim): if required_dim.size == 0: # Accept any dimension. continue elif given_dim.size != required_dim.size: raise ValidationError( "{} feature '{}' from set '{}' has invalid shape: {}".format( set_type.capitalize(), feature_name, set_name, given_feature.shape)) def _validate_schema_feature_dtypes(schema: schema_pb2.GraphSchema): """Verify that dtypes are set and from our list of supported types.""" for set_type, set_name, feature_name, feature in su.iter_features(schema): if not feature.HasField("dtype"): raise ValidationError( "Missing 'dtype' field on {} set '{}' feature '{}'".format( set_type, set_name, feature_name)) if feature.dtype not in {dtype.as_datatype_enum for dtype in VALID_DTYPES}: raise ValidationError( ("Invalid 'dtype' field {} on {} set '{}' feature '{}': {}; " "valid types include: {}").format( feature.dtype, set_type, set_name, feature_name, feature.dtype, ", ".join(map(str, VALID_DTYPES)))) def _validate_schema_shapes(schema: schema_pb2.GraphSchema): """Check for the validity of shape protos.""" for set_type, set_name, feature_name, feature in su.iter_features(schema): if feature.shape.unknown_rank: raise ValidationError( "Shapes must have a known rank; on {} set '{}' feature '{}'".format( set_type, set_name, feature_name)) def _warn_schema_scalar_shapes(schema: schema_pb2.GraphSchema): """Return warnings on unnecessary shapes of size 1. This is a common error. Note that strictly speaking this should parse fine, the problem is that clients will inevitably configure shapes of [1] where scalar shapes would be sufficient. This check is there to nudge them in the right direction. Args: schema: A GraphSchema instance to validate. Returns: A list of ValidationError warnings to issue conditionally. """ warnings = [] for set_type, set_name, feature_name, feature in su.iter_features(schema): if len(feature.shape.dim) == 1 and feature.shape.dim[0].size == 1: warnings.append(ValidationError( "Unnecessary shape of [1] in {} set '{}' / '{}'; use scalar feature " "instead (i.e., specify an empty shape proto).".format( set_type, set_name, feature_name))) return warnings def _validate_schema_descriptions(schema: schema_pb2.GraphSchema): """Verify that the descriptions aren't set on the shapes' .name fields.""" # This seems to be a common error. name_fields = [] for set_type, set_name, feature_name, feature in su.iter_features(schema): if feature.HasField("description"): continue for dim in feature.shape.dim: if dim.name: name_fields.append((set_type, set_name, feature_name)) if name_fields: field_names = ",".join([str(ntuple) for ntuple in name_fields]) raise ValidationError( "The following features are incorrectly locating the description on " "the shape dimensions 'name' field: {}; use the 'description' field of " "the feature instead".format(field_names)) def _validate_schema_reserved_feature_names(schema: schema_pb2.GraphSchema): """Check that reserved feature names aren't being used as explicit features.""" node_set_dicts = [("nodes", name, node_set.features) for name, node_set in schema.node_sets.items()] edge_set_dicts = [("edges", name, edge_set.features) for name, edge_set in schema.edge_sets.items()] for set_type, set_name, feature_dict in node_set_dicts + edge_set_dicts: if const.SIZE_NAME in feature_dict: raise ValidationError( "Feature '{}' from {} set '{}' is reserved".format( const.SIZE_NAME, set_type, set_name)) for set_type, set_name, feature_dict in edge_set_dicts: for name in const.SOURCE_NAME, const.TARGET_NAME: # Invalidate reserved feature names. if name in feature_dict: raise ValidationError( "Feature '{}' from {} set '{}' is reserved".format( name, set_type, set_name)) # TODO(blais): Make this compulsory after we remove the hardcoded # feature names from the sampler. for set_type, set_name, feature_name, feature in su.iter_features(schema): if const.RESERVED_REGEX.match(feature_name): logging.error("Invalid %s feature name '%s' on set '%s': reserved names " "are not allowed", set_type, feature_name, set_name) def _validate_schema_context_references(schema: schema_pb2.GraphSchema): """Verify the cross-references to context features from node and edge sets.""" for set_name, node_set in schema.node_sets.items(): for feature in node_set.context: if feature not in schema.context.features: raise ValidationError("Context feature '{}' does not exist " "(from node set '{}')".format(feature, set_name)) for set_name, edge_set in schema.edge_sets.items(): for feature in edge_set.context: if feature not in schema.context.features: raise ValidationError("Context feature '{}' does not exist " "(from edge set '{}')".format(feature, set_name)) def _validate_schema_node_set_references(schema: schema_pb2.GraphSchema): """Verify the source and target set references from the edge sets.""" for set_name, edge_set in schema.edge_sets.items(): for feature_name in edge_set.source, edge_set.target: if feature_name not in schema.node_sets: raise ValidationError( "Edge set '{}' referencing unknown node set '{}'".format( set_name, feature_name)) # TODO(blais): This code could eventually be folded into the various # constructors of `GraphTensor` pieces. def assert_constraints(graph: gt.GraphTensor) -> tf.Operation: """Validate the shape constaints of a graph's features at runtime. This code returns a TensorFlow op with debugging assertions that ensure the parsed data has valid shape constraints for a graph. This can be instantiated in your TensorFlow graph while debugging if you believe that your data may be incorrectly shaped, or simply applied to a manually produced dataset to ensure that those constraints have been applied correctly. Args: graph: An instance of a `GraphTensor`. Returns: A list of check operations. """ return tf.group( _assert_constraints_feature_shape_prefix(graph), _assert_constraints_edge_shapes(graph), _assert_constraints_edge_indices_range(graph), ) def _assert_constraints_feature_shape_prefix( graph: gt.GraphTensor) -> tf.Operation: """Validates the number of nodes or edges of feature tensors.""" with tf.name_scope("constraints_feature_shape_prefix"): checks = [] for set_type, set_dict in [("node", graph.node_sets), ("edge", graph.edge_sets)]: for set_name, feature_set in set_dict.items(): sizes = feature_set.sizes # Check the rank is at least 1. checks.append(tf.debugging.assert_rank_at_least(sizes, 1)) rank = tf.rank(sizes) for feature_name, tensor in feature_set.features.items(): # Check that each tensor has greater or equal rank to the parent # piece. checks.append(tf.debugging.assert_greater_equal( tf.rank(tensor), rank, "Rank too small for {} feature '{}/{}'".format( set_type, set_name, feature_name))) # Check the prefix shape of the tensor matches. checks.append(tf.debugging.assert_equal( tensor.shape[:rank], sizes, "Invalid prefix shape for {} feature: {}/{}".format( set_type, set_name, feature_name))) return tf.group(*checks) def _assert_constraints_edge_indices_range( graph: gt.GraphTensor) -> tf.Operation: """Validates that edge indices are within the bounds of node set sizes.""" with tf.name_scope("constraints_edge_indices_range"): checks = [] for set_name, edge_set in graph.edge_sets.items(): adjacency = edge_set.adjacency if not issubclass(type(adjacency), adj.HyperAdjacency): raise ValueError(f"Adjacency type for constraints assertions must be " f"HyperAdjacency: {adjacency}") for tag, (node_set_name, indices) in sorted(adjacency .get_indices_dict().items()): # Check that the indices are positive. flat_indices = (indices.flat_values if isinstance(indices, tf.RaggedTensor) else indices) checks.append(tf.debugging.Assert( tf.math.reduce_all( tf.math.greater_equal(indices, tf.constant(0, dtype=indices.dtype))), ["Index underflow", "edges/{} {} indices:".format(set_name, tag), flat_indices], name="check_indices_underflow", summarize=-1)) # Check the indices are smaller than the node tensor sizes. sizes = graph.node_sets[node_set_name].sizes checks.append(tf.debugging.Assert( tf.math.reduce_all( tf.math.less(indices, tf.expand_dims(sizes, axis=-1))), ["Index overflow", "edges/{} {} indices:".format(set_name, tag), flat_indices, "nodes/{} {}:".format(node_set_name, "size"), sizes], name="check_indices_overflow", summarize=-1)) return tf.group(*checks) def _assert_constraints_edge_shapes(graph: gt.GraphTensor) -> tf.Operation: """Validates edge shapes and that they contain a scalar index per node.""" with tf.name_scope("constraints_edge_indices_range"): checks = [] for set_name, edge_set in graph.edge_sets.items(): adjacency = edge_set.adjacency if not issubclass(type(adjacency), adj.HyperAdjacency): raise ValueError(f"Adjacency type for constraints assertions must be " f"HyperAdjacency: {adjacency}") for tag, (_, indices) in sorted(adjacency.get_indices_dict().items()): # Check the shape of the edge indices matches the size, and that the # shape is scalar on the indices. checks.append(tf.debugging.assert_equal( indices.shape, edge_set.sizes, "Invalid shape for edge indices: {}/{}".format(set_name, tag))) return tf.group(*checks)
docs/conf.py
suevii/jupyterlab-lsp
1,117
12683157
""" Documentation configuration and workflow for jupyter-starters """ # pylint: disable=invalid-name,redefined-builtin,import-error import pathlib import subprocess import sys sys.path.insert( 0, str( ( pathlib.Path.cwd().parent / "python_packages" / "jupyter_lsp" / "src" ).resolve() ), ) project = "Jupyter[Lab] Language Server" copyright = "2021, Jupyter[Lab] Language Server Contributors" author = "Jupyter[Lab] Language Server Contributors" version = "" release = "" extensions = [ "myst_nb", "sphinx.ext.autodoc", "sphinx.ext.napoleon", "sphinx.ext.coverage", "sphinx.ext.doctest", "sphinx.ext.githubpages", "sphinx.ext.ifconfig", "sphinx.ext.intersphinx", "sphinx.ext.mathjax", "sphinx.ext.todo", "sphinx.ext.viewcode", "sphinx_copybutton", "sphinx_autodoc_typehints", ] templates_path = ["_templates"] source_suffix = [".rst", ".md"] master_doc = "index" language = None exclude_patterns = [ ".ipynb_checkpoints/**", "**/.ipynb_checkpoints/**", "**/~.*", "~.*", "_build/**", ] html_theme = "sphinx_book_theme" html_static_path = ["_static"] htmlhelp_basename = "jupyterlab-lsp" intersphinx_mapping = { "python": ("https://docs.python.org/3", None), "jsonschema": ("https://python-jsonschema.readthedocs.io/en/stable/", None), } github_url = "https://github.com" github_repo_org = "jupyter-lsp" github_repo_name = "jupyterlab-lsp" github_repo_slug = f"{github_repo_org}/{github_repo_name}" github_repo_url = f"{github_url}/{github_repo_slug}" extlinks = { "issue": (f"{github_repo_url}/issues/%s", "#"), "pr": (f"{github_repo_url}/pull/%s", "PR #"), "commit": (f"{github_repo_url}/commit/%s", ""), "gh": (f"{github_url}/%s", "GitHub: "), } html_show_sourcelink = True html_context = { "display_github": True, # these automatically-generated pages will create broken links "hide_github_pagenames": ["search", "genindex"], "github_user": github_repo_org, "github_repo": github_repo_name, "github_version": "master", "conf_py_path": "/docs/", } html_logo = "images/logo.png" html_title = "Language Server Protocol integration for Jupyter[Lab]" html_theme_options = { "repository_url": github_repo_url, "path_to_docs": "docs", "use_fullscreen_button": True, "use_repository_button": True, "use_issues_button": True, "use_edit_page_button": True, "use_download_button": True, } # MyST-{NB} jupyter_execute_notebooks = "force" nb_output_stderr = "remove-warn" myst_enable_extensions = [ "amsmath", "deflist", "dollarmath", "html_admonition", "html_image", "smartquotes", ] def setup(app): """Runs before the "normal business" of sphinx. Don't go too crazy here.""" app.add_css_file("css/custom.css") subprocess.check_call(["jlpm", "--ignore-optional"])
tests/testmodule/__init__.py
MrCull/MonkeyType
3,890
12683165
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. class Foo: def __init__(self, arg1: str, arg2: int) -> None: self.arg1 = arg1 self.arg2 = arg2
deepgraph/functions.py
deepgraph/deepgraph
272
12683169
"""Auxiliary **connector** and **selector** functions to create edges. This module provides auxiliary **connector** and **selector** functions for the ``dg.DeepGraph.create_edges`` and ``dg.DeepGraph.create_ft_edges`` methods. They are described in their corresponding docstrings. """ from __future__ import print_function, division, absolute_import # Copyright (C) 2017-2020 by # <NAME> <<EMAIL>> # All rights reserved. # BSD license. # py2/3 compatibility try: range = xrange except NameError: pass import numpy as np __all__ = ['great_circle_dist', 'cp_node_intersection', 'cp_intersection_strength', 'hypergeometric_p_value', ] # ============================================================================ # CONNECTORS # ============================================================================ def great_circle_dist(lat_s, lat_t, lon_s, lon_t): """Return the great circle distance between nodes. The latitude and longitude values in the node table have to be in signed decimal degrees without compass direction (the sign indicates west/south). The great circle distance is calculated using the spherical law of cosines. """ # dtypes lat_s = np.array(lat_s, dtype=float) lat_t = np.array(lat_t, dtype=float) lon_s = np.array(lon_s, dtype=float) lon_t = np.array(lon_t, dtype=float) # select by event_indices phi_i = np.radians(lat_s) phi_j = np.radians(lat_t) delta_alpha = np.radians(lon_t) - np.radians(lon_s) # earth's radius R = 6371 # spatial distance of nodes gcd = np.arccos(np.sin(phi_i) * np.sin(phi_j) + np.cos(phi_i) * np.cos(phi_j) * np.cos(delta_alpha)) * R # for 0 gcd, there might be nans, convert to 0. gcd = np.nan_to_num(gcd) return gcd def cp_node_intersection(supernode_ids, sources, targets): """Work in progress! """ nodess = supernode_ids[sources] nodest = supernode_ids[targets] identical_nodes = (nodess == nodest) intsec = np.zeros(len(sources), dtype=object) intsec_card = np.zeros(len(sources), dtype=np.int) for i in range(len(sources)): intsec[i] = nodess[i].intersection(nodest[i]) intsec_card[i] = len(intsec[i]) return intsec, intsec_card, identical_nodes def cp_intersection_strength(n_unique_nodes, intsec_card, sources, targets): """Work in progress! """ us = n_unique_nodes[sources] ut = n_unique_nodes[targets] # min cardinality min_card = np.array(np.vstack((us, ut)).min(axis=0), dtype=np.float64) # intersection strength intsec_strength = intsec_card / min_card return intsec_strength def hypergeometric_p_value(n_unique_nodes, intsec_card, sources, targets): """Work in progress! """ from scipy.stats import hypergeom us = n_unique_nodes[sources] ut = n_unique_nodes[targets] # population size M = 220*220 # number of success states in population n = np.vstack((us, ut)).max(axis=0) # total draws N = np.vstack((us, ut)).min(axis=0) # successes x = intsec_card hg_p = np.zeros(len(sources)) for i in range(len(sources)): hg_p[i] = hypergeom.sf(x[i], M, n[i], N[i]) return hg_p # ============================================================================ # Selectors # ============================================================================
setup.py
ralfgerlich/simupy
436
12683180
from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # get the version exec(open('simupy/version.py').read()) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() long_description = long_description.replace( "https://simupy.readthedocs.io/en/latest/", "https://simupy.readthedocs.io/en/simupy-{}/".format( '.'.join(__version__.split('.')[:3]) ) ) setup( name='simupy', version=__version__, description='A framework for modeling and simulating dynamical systems.', long_description=long_description, packages=find_packages(), author='<NAME>', author_email='<EMAIL>', url='https://github.com/simupy/simupy', license="BSD 2-clause \"Simplified\" License", python_requires='>=3', install_requires=['numpy>=1.11.3', 'scipy>=0.18.1'], extras_require={ 'symbolic': ['sympy>=1.0'], 'doc': ['sphinx>=1.6.3', 'sympy>=1.0'], 'examples': ['matplotlib>=2.0', 'sympy>=1.0'], }, classifiers=[ 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Operating System :: OS Independent', 'Topic :: Scientific/Engineering :: Physics', 'Topic :: Scientific/Engineering :: Mathematics', ], )
build/android/gyp/aar.py
Flameeyes/nojs
2,151
12683183
#!/usr/bin/env python # # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Processes an Android AAR file.""" import argparse import os import posixpath import re import shutil import sys from xml.etree import ElementTree import zipfile from util import build_utils sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir))) import gn_helpers def _IsManifestEmpty(manifest_str): """Returns whether the given manifest has merge-worthy elements. E.g.: <activity>, <service>, etc. """ doc = ElementTree.fromstring(manifest_str) for node in doc: if node.tag == 'application': if len(node): return False elif node.tag != 'uses-sdk': return False return True def _CreateInfo(aar_file): data = {} data['aidl'] = [] data['assets'] = [] data['resources'] = [] data['subjars'] = [] data['subjar_tuples'] = [] data['has_classes_jar'] = False data['has_proguard_flags'] = False data['has_native_libraries'] = False data['has_r_text_file'] = False with zipfile.ZipFile(aar_file) as z: data['is_manifest_empty'] = ( _IsManifestEmpty(z.read('AndroidManifest.xml'))) for name in z.namelist(): if name.endswith('/'): continue if name.startswith('aidl/'): data['aidl'].append(name) elif name.startswith('res/'): data['resources'].append(name) elif name.startswith('libs/') and name.endswith('.jar'): label = posixpath.basename(name)[:-4] label = re.sub(r'[^a-zA-Z0-9._]', '_', label) data['subjars'].append(name) data['subjar_tuples'].append([label, name]) elif name.startswith('assets/'): data['assets'].append(name) elif name.startswith('jni/'): data['has_native_libraries'] = True elif name == 'classes.jar': data['has_classes_jar'] = True elif name == 'proguard.txt': data['has_proguard_flags'] = True elif name == 'R.txt': # Some AARs, e.g. gvr_controller_java, have empty R.txt. Such AARs # have no resources as well. We treat empty R.txt as having no R.txt. data['has_r_text_file'] = (z.read('R.txt').strip() != '') return """\ # Generated by //build/android/gyp/aar.py # To regenerate, use "update_android_aar_prebuilts = true" and run "gn gen". """ + gn_helpers.ToGNString(data) def _AddCommonArgs(parser): parser.add_argument('aar_file', help='Path to the AAR file.', type=os.path.normpath) def main(): parser = argparse.ArgumentParser(description=__doc__) command_parsers = parser.add_subparsers(dest='command') subp = command_parsers.add_parser( 'list', help='Output a GN scope describing the contents of the .aar.') _AddCommonArgs(subp) subp.add_argument('--output', help='Output file.', type=argparse.FileType('w'), default='-') subp = command_parsers.add_parser('extract', help='Extracts the .aar') _AddCommonArgs(subp) subp.add_argument('--output-dir', help='Output directory for the extracted files.', required=True, type=os.path.normpath) subp.add_argument('--assert-info-file', help='Path to .info file. Asserts that it matches what ' '"list" would output.', type=argparse.FileType('r')) args = parser.parse_args() if args.command == 'extract': if args.assert_info_file: expected = _CreateInfo(args.aar_file) actual = args.assert_info_file.read() if actual != expected: raise Exception('android_aar_prebuilt() cached .info file is ' 'out-of-date. Run gn gen with ' 'update_android_aar_prebuilts=true to update it.') # Clear previously extracted versions of the AAR. shutil.rmtree(args.output_dir, True) build_utils.ExtractAll(args.aar_file, path=args.output_dir) elif args.command == 'list': args.output.write(_CreateInfo(args.aar_file)) if __name__ == '__main__': sys.exit(main())
example/image-classification/benchmark_score.py
Vikas-kum/incubator-mxnet
228
12683185
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Benchmark the scoring performance on various CNNs """ from common import find_mxnet from common.util import get_gpus import mxnet as mx import mxnet.gluon.model_zoo.vision as models from importlib import import_module import logging import argparse import time import numpy as np logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description='SymbolAPI-based CNN inference performance benchmark') parser.add_argument('--network', type=str, default='all', choices=['all', 'alexnet', 'vgg-16', 'resnetv1-50', 'resnet-50', 'resnet-152', 'inception-bn', 'inception-v3', 'inception-v4', 'inception-resnet-v2', 'mobilenet', 'densenet121', 'squeezenet1.1']) parser.add_argument('--batch-size', type=int, default=0, help='Batch size to use for benchmarking. Example: 32, 64, 128.' 'By default, runs benchmark for batch sizes - 1, 32, 64, 128, 256') opt = parser.parse_args() def get_symbol(network, batch_size, dtype): image_shape = (3,299,299) if network in ['inception-v3', 'inception-v4'] else (3,224,224) num_layers = 0 if network == 'inception-resnet-v2': network = network elif 'resnet' in network: num_layers = int(network.split('-')[1]) network = network.split('-')[0] if 'vgg' in network: num_layers = int(network.split('-')[1]) network = 'vgg' if network in ['densenet121', 'squeezenet1.1']: sym = models.get_model(network) sym.hybridize() data = mx.sym.var('data') sym = sym(data) sym = mx.sym.SoftmaxOutput(sym, name='softmax') else: net = import_module('symbols.'+network) sym = net.get_symbol(num_classes=1000, image_shape=','.join([str(i) for i in image_shape]), num_layers=num_layers, dtype=dtype) return (sym, [('data', (batch_size,)+image_shape)]) def score(network, dev, batch_size, num_batches, dtype): # get mod sym, data_shape = get_symbol(network, batch_size, dtype) mod = mx.mod.Module(symbol=sym, context=dev) mod.bind(for_training = False, inputs_need_grad = False, data_shapes = data_shape) mod.init_params(initializer=mx.init.Xavier(magnitude=2.)) # get data data = [mx.random.uniform(-1.0, 1.0, shape=shape, ctx=dev) for _, shape in mod.data_shapes] batch = mx.io.DataBatch(data, []) # empty label # run dry_run = 5 # use 5 iterations to warm up for i in range(dry_run+num_batches): if i == dry_run: tic = time.time() mod.forward(batch, is_train=False) for output in mod.get_outputs(): output.wait_to_read() # return num images per second return num_batches*batch_size/(time.time() - tic) if __name__ == '__main__': if opt.network == 'all': networks = ['alexnet', 'vgg-16', 'resnetv1-50', 'resnet-50', 'resnet-152', 'inception-bn', 'inception-v3', 'inception-v4', 'inception-resnet-v2', 'mobilenet', 'densenet121', 'squeezenet1.1'] logging.info('It may take some time to run all models, ' 'set --network to run a specific one') else: networks = [opt.network] devs = [mx.gpu(0)] if len(get_gpus()) > 0 else [] # Enable USE_MKLDNN for better CPU performance devs.append(mx.cpu()) if opt.batch_size == 0: batch_sizes = [1, 32, 64, 128, 256] logging.info('run batchsize [1, 32, 64, 128, 256] by default, ' 'set --batch-size to run a specific one') else: batch_sizes = [opt.batch_size] for net in networks: logging.info('network: %s', net) if net in ['densenet121', 'squeezenet1.1']: logging.info('network: %s is converted from gluon modelzoo', net) logging.info('you can run benchmark/python/gluon/benchmark_gluon.py for more models') for d in devs: logging.info('device: %s', d) logged_fp16_warning = False for b in batch_sizes: for dtype in ['float32', 'float16']: if d == mx.cpu() and dtype == 'float16': #float16 is not supported on CPU continue elif net in ['inception-bn', 'alexnet'] and dtype == 'float16': if not logged_fp16_warning: logging.info('Model definition for {} does not support float16'.format(net)) logged_fp16_warning = True else: speed = score(network=net, dev=d, batch_size=b, num_batches=10, dtype=dtype) logging.info('batch size %2d, dtype %s, images/sec: %f', b, dtype, speed)
taskflow/tests/unit/worker_based/test_types.py
JonasMie/taskflow
299
12683188
# -*- coding: utf-8 -*- # Copyright (C) 2014 Yahoo! Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_utils import reflection from taskflow.engines.worker_based import types as worker_types from taskflow import test from taskflow.test import mock from taskflow.tests import utils class TestTopicWorker(test.TestCase): def test_topic_worker(self): worker = worker_types.TopicWorker("dummy-topic", [utils.DummyTask], identity="dummy") self.assertTrue(worker.performs(utils.DummyTask)) self.assertFalse(worker.performs(utils.NastyTask)) self.assertEqual('dummy', worker.identity) self.assertEqual('dummy-topic', worker.topic) class TestProxyFinder(test.TestCase): @mock.patch("oslo_utils.timeutils.now") def test_expiry(self, mock_now): finder = worker_types.ProxyWorkerFinder('me', mock.MagicMock(), [], worker_expiry=60) w, emit = finder._add('dummy-topic', [utils.DummyTask]) w.last_seen = 0 mock_now.side_effect = [120] gone = finder.clean() self.assertEqual(0, finder.total_workers) self.assertEqual(1, gone) def test_single_topic_worker(self): finder = worker_types.ProxyWorkerFinder('me', mock.MagicMock(), []) w, emit = finder._add('dummy-topic', [utils.DummyTask]) self.assertIsNotNone(w) self.assertTrue(emit) self.assertEqual(1, finder.total_workers) w2 = finder.get_worker_for_task(utils.DummyTask) self.assertEqual(w.identity, w2.identity) def test_multi_same_topic_workers(self): finder = worker_types.ProxyWorkerFinder('me', mock.MagicMock(), []) w, emit = finder._add('dummy-topic', [utils.DummyTask]) self.assertIsNotNone(w) self.assertTrue(emit) w2, emit = finder._add('dummy-topic-2', [utils.DummyTask]) self.assertIsNotNone(w2) self.assertTrue(emit) w3 = finder.get_worker_for_task( reflection.get_class_name(utils.DummyTask)) self.assertIn(w3.identity, [w.identity, w2.identity]) def test_multi_different_topic_workers(self): finder = worker_types.ProxyWorkerFinder('me', mock.MagicMock(), []) added = [] added.append(finder._add('dummy-topic', [utils.DummyTask])) added.append(finder._add('dummy-topic-2', [utils.DummyTask])) added.append(finder._add('dummy-topic-3', [utils.NastyTask])) self.assertEqual(3, finder.total_workers) w = finder.get_worker_for_task(utils.NastyTask) self.assertEqual(added[-1][0].identity, w.identity) w = finder.get_worker_for_task(utils.DummyTask) self.assertIn(w.identity, [w_a[0].identity for w_a in added[0:2]])
tests/test_server.py
bdowning/aiotools
121
12683193
<filename>tests/test_server.py import pytest import asyncio import functools import glob import logging.config import multiprocessing as mp import os import signal import sys import tempfile import time from typing import List, Sequence import aiotools if os.environ.get('CI', '') and sys.version_info < (3, 9, 0): pytest.skip( 'skipped to prevent kill CI agents due to signals on CI environments', allow_module_level=True, ) @pytest.fixture def restore_signal(): os.setpgrp() old_alrm = signal.getsignal(signal.SIGALRM) old_intr = signal.getsignal(signal.SIGINT) old_term = signal.getsignal(signal.SIGTERM) old_intr = signal.getsignal(signal.SIGUSR1) yield signal.signal(signal.SIGALRM, old_alrm) signal.signal(signal.SIGINT, old_intr) signal.signal(signal.SIGTERM, old_term) signal.signal(signal.SIGUSR1, old_term) @pytest.fixture def set_timeout(): def make_timeout(sec, callback): def _callback(signum, frame): signal.alarm(0) callback() signal.signal(signal.SIGALRM, _callback) signal.setitimer(signal.ITIMER_REAL, sec) yield make_timeout @pytest.fixture def exec_recorder(): f = tempfile.NamedTemporaryFile( mode='w', encoding='utf8', prefix='aiotools.tests.server.', ) f.close() def write(msg: str) -> None: path = f"{f.name}.{os.getpid()}" with open(path, 'a', encoding='utf8') as writer: writer.write(msg + '\n') def read() -> Sequence[str]: lines: List[str] = [] for path in glob.glob(f"{f.name}.*"): with open(path, 'r', encoding='utf8') as reader: lines.extend(line.strip() for line in reader.readlines()) return lines yield write, read for path in glob.glob(f"{f.name}.*"): os.unlink(path) def interrupt(): os.kill(0, signal.SIGINT) def interrupt_usr1(): os.kill(os.getpid(), signal.SIGUSR1) @aiotools.server # type: ignore async def myserver_simple(loop, proc_idx, args): write = args[0] await asyncio.sleep(0) write(f'started:{proc_idx}') yield await asyncio.sleep(0) write(f'terminated:{proc_idx}') def test_server_singleproc(set_timeout, restore_signal, exec_recorder): write, read = exec_recorder set_timeout(0.2, interrupt) aiotools.start_server( myserver_simple, args=(write,), ) lines = set(read()) assert 'started:0' in lines assert 'terminated:0' in lines def test_server_multiproc(set_timeout, restore_signal, exec_recorder): write, read = exec_recorder set_timeout(0.2, interrupt) aiotools.start_server( myserver_simple, num_workers=3, args=(write,), ) lines = set(read()) assert lines == { 'started:0', 'started:1', 'started:2', 'terminated:0', 'terminated:1', 'terminated:2', } @aiotools.server # type: ignore async def myserver_signal(loop, proc_idx, args): write = args[0] await asyncio.sleep(0) write(f'started:{proc_idx}') received_signum = yield await asyncio.sleep(0) write(f'terminated:{proc_idx}:{received_signum}') def test_server_multiproc_custom_stop_signals( set_timeout, restore_signal, exec_recorder, ): write, read = exec_recorder set_timeout(0.2, interrupt_usr1) aiotools.start_server( myserver_signal, num_workers=2, stop_signals={signal.SIGUSR1}, args=(write,), ) lines = set(read()) assert {'started:0', 'started:1'} < lines assert { f'terminated:0:{int(signal.SIGUSR1)}', f'terminated:1:{int(signal.SIGUSR1)}', } < lines @aiotools.server # type: ignore async def myserver_worker_init_error(loop, proc_idx, args): write = args[0] class _LogAdaptor: def __init__(self, writer): self.writer = writer def write(self, msg): msg = msg.strip().replace('\n', ' ') self.writer(f'log:{proc_idx}:{msg}') log_stream = _LogAdaptor(write) logging.config.dictConfig({ 'version': 1, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'stream': log_stream, 'level': 'DEBUG', }, }, 'loggers': { 'aiotools': { 'handlers': ['console'], 'level': 'DEBUG', }, }, }) log = logging.getLogger('aiotools') write(f'started:{proc_idx}') log.debug('hello') if proc_idx in (0, 2): # delay until other workers start normally. await asyncio.sleep(0.1 * proc_idx) raise ZeroDivisionError('oops') yield # should not be reached if errored. await asyncio.sleep(0) write(f'terminated:{proc_idx}') def test_server_worker_init_error(restore_signal, exec_recorder): write, read = exec_recorder aiotools.start_server( myserver_worker_init_error, num_workers=4, args=(write,), ) lines = set(read()) assert sum(1 if line.startswith('started:') else 0 for line in lines) == 4 # workers who did not raise errors have already started, # and they should have terminated normally # when the errorneous worker interrupted the main loop. assert sum(1 if line.startswith('terminated:') else 0 for line in lines) == 2 assert sum(1 if 'hello' in line else 0 for line in lines) == 4 assert sum(1 if 'ZeroDivisionError: oops' in line else 0 for line in lines) == 2 def test_server_user_main(set_timeout, restore_signal): main_enter = False main_exit = False @aiotools.main def mymain_user_main(): nonlocal main_enter, main_exit main_enter = True yield 987 main_exit = True @aiotools.server # type: ignore async def myworker_user_main(loop, proc_idx, args): assert args[0] == 987 # first arg from user main assert args[1] == 123 # second arg from start_server args yield set_timeout(0.2, interrupt) aiotools.start_server( myworker_user_main, mymain_user_main, num_workers=3, args=(123,), ) assert main_enter assert main_exit def test_server_user_main_custom_stop_signals(set_timeout, restore_signal): main_enter = False main_exit = False main_signal = None worker_signals = mp.Array('i', 3) @aiotools.main def mymain(): nonlocal main_enter, main_exit, main_signal main_enter = True main_signal = yield main_exit = True @aiotools.server async def myworker(loop, proc_idx, args): worker_signals = args[0] worker_signals[proc_idx] = yield def noop(signum, frame): pass set_timeout(0.2, interrupt_usr1) aiotools.start_server( myworker, mymain, num_workers=3, stop_signals={signal.SIGUSR1}, args=(worker_signals,), ) assert main_enter assert main_exit assert main_signal == signal.SIGUSR1 assert list(worker_signals) == [signal.SIGUSR1] * 3 def test_server_user_main_tuple(set_timeout, restore_signal): main_enter = False main_exit = False @aiotools.main def mymain(): nonlocal main_enter, main_exit main_enter = True yield 987, 654 main_exit = True @aiotools.server async def myworker(loop, proc_idx, args): assert args[0] == 987 # first arg from user main assert args[1] == 654 # second arg from user main assert args[2] == 123 # third arg from start_server args yield set_timeout(0.2, interrupt) aiotools.start_server( myworker, mymain, num_workers=3, args=(123,), ) assert main_enter assert main_exit def test_server_extra_proc(set_timeout, restore_signal): extras = mp.Array('i', [0, 0]) def extra_proc(key, _, pidx, args): assert _ is None extras[key] = 980 + key try: while True: time.sleep(0.1) except KeyboardInterrupt: print(f'extra[{key}] interrupted', file=sys.stderr) except Exception as e: print(f'extra[{key}] exception', e, file=sys.stderr) finally: print(f'extra[{key}] finish', file=sys.stderr) extras[key] = 990 + key @aiotools.server async def myworker(loop, pidx, args): yield set_timeout(0.2, interrupt) aiotools.start_server(myworker, extra_procs=[ functools.partial(extra_proc, 0), functools.partial(extra_proc, 1)], num_workers=3, args=(123, )) assert extras[0] == 990 assert extras[1] == 991 def test_server_extra_proc_custom_stop_signal(set_timeout, restore_signal): received_signals = mp.Array('i', [0, 0]) def extra_proc(key, _, pidx, args): received_signals = args[0] try: while True: time.sleep(0.1) except aiotools.InterruptedBySignal as e: received_signals[key] = e.args[0] @aiotools.server async def myworker(loop, pidx, args): yield set_timeout(0.3, interrupt_usr1) aiotools.start_server(myworker, extra_procs=[ functools.partial(extra_proc, 0), functools.partial(extra_proc, 1)], stop_signals={signal.SIGUSR1}, args=(received_signals, ), num_workers=3) assert received_signals[0] == signal.SIGUSR1 assert received_signals[1] == signal.SIGUSR1
MLPYthonEnv/ml-agents-release_17/ml-agents/mlagents/trainers/tests/test_buffer.py
cihan-demir/NineMensMorris
13,653
12683206
import numpy as np from mlagents.trainers.buffer import ( AgentBuffer, AgentBufferField, BufferKey, ObservationKeyPrefix, RewardSignalKeyPrefix, ) from mlagents.trainers.trajectory import ObsUtil def assert_array(a, b): assert a.shape == b.shape la = list(a.flatten()) lb = list(b.flatten()) for i in range(len(la)): assert la[i] == lb[i] def construct_fake_buffer(fake_agent_id): b = AgentBuffer() for step in range(9): b[ObsUtil.get_name_at(0)].append( np.array( [ 100 * fake_agent_id + 10 * step + 1, 100 * fake_agent_id + 10 * step + 2, 100 * fake_agent_id + 10 * step + 3, ], dtype=np.float32, ) ) b[BufferKey.CONTINUOUS_ACTION].append( np.array( [ 100 * fake_agent_id + 10 * step + 4, 100 * fake_agent_id + 10 * step + 5, ], dtype=np.float32, ) ) b[BufferKey.GROUP_CONTINUOUS_ACTION].append( [ np.array( [ 100 * fake_agent_id + 10 * step + 4, 100 * fake_agent_id + 10 * step + 5, ], dtype=np.float32, ) ] * 3 ) return b def test_buffer(): agent_1_buffer = construct_fake_buffer(1) agent_2_buffer = construct_fake_buffer(2) agent_3_buffer = construct_fake_buffer(3) # Test get_batch a = agent_1_buffer[ObsUtil.get_name_at(0)].get_batch( batch_size=2, training_length=1, sequential=True ) assert_array( np.array(a), np.array([[171, 172, 173], [181, 182, 183]], dtype=np.float32) ) # Test get_batch a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch( batch_size=2, training_length=3, sequential=True ) assert_array( np.array(a), np.array( [ [231, 232, 233], [241, 242, 243], [251, 252, 253], [261, 262, 263], [271, 272, 273], [281, 282, 283], ], dtype=np.float32, ), ) a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch( batch_size=2, training_length=3, sequential=False ) assert_array( np.array(a), np.array( [ [251, 252, 253], [261, 262, 263], [271, 272, 273], [261, 262, 263], [271, 272, 273], [281, 282, 283], ] ), ) # Test padding a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch( batch_size=None, training_length=4, sequential=True ) assert_array( np.array(a), np.array( [ [201, 202, 203], [211, 212, 213], [221, 222, 223], [231, 232, 233], [241, 242, 243], [251, 252, 253], [261, 262, 263], [271, 272, 273], [281, 282, 283], [0, 0, 0], [0, 0, 0], [0, 0, 0], ] ), ) # Test group entries return Lists of Lists. Make sure to pad properly! a = agent_2_buffer[BufferKey.GROUP_CONTINUOUS_ACTION].get_batch( batch_size=None, training_length=4, sequential=True ) for _group_entry in a[:-3]: assert len(_group_entry) == 3 for _group_entry in a[-3:]: assert len(_group_entry) == 0 agent_1_buffer.reset_agent() assert agent_1_buffer.num_experiences == 0 update_buffer = AgentBuffer() agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_3_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 20 assert np.array(update_buffer[BufferKey.CONTINUOUS_ACTION]).shape == (20, 2) c = update_buffer.make_mini_batch(start=0, end=1) assert c.keys() == update_buffer.keys() # Make sure the values of c are AgentBufferField for val in c.values(): assert isinstance(val, AgentBufferField) assert np.array(c[BufferKey.CONTINUOUS_ACTION]).shape == (1, 2) def test_agentbufferfield(): # Test constructor a = AgentBufferField([0, 1, 2]) for i, num in enumerate(a): assert num == i # Test indexing assert a[i] == num # Test slicing b = a[1:3] assert b == [1, 2] assert isinstance(b, AgentBufferField) # Test padding c = AgentBufferField() for _ in range(2): c.append([np.array(1), np.array(2)]) for _ in range(2): c.append([np.array(1)]) padded = c.padded_to_batch(pad_value=3) assert np.array_equal(padded[0], np.array([1, 1, 1, 1])) assert np.array_equal(padded[1], np.array([2, 2, 3, 3])) # Make sure it doesn't fail when the field isn't a list padded_a = a.padded_to_batch() assert np.array_equal(padded_a, a) def fakerandint(values): return 19 def test_buffer_sample(): agent_1_buffer = construct_fake_buffer(1) agent_2_buffer = construct_fake_buffer(2) update_buffer = AgentBuffer() agent_1_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) # Test non-LSTM mb = update_buffer.sample_mini_batch(batch_size=4, sequence_length=1) assert mb.keys() == update_buffer.keys() assert np.array(mb[BufferKey.CONTINUOUS_ACTION]).shape == (4, 2) # Test LSTM # We need to check if we ever get a breaking start - this will maximize the probability mb = update_buffer.sample_mini_batch(batch_size=20, sequence_length=19) assert mb.keys() == update_buffer.keys() # Should only return one sequence assert np.array(mb[BufferKey.CONTINUOUS_ACTION]).shape == (19, 2) def test_num_experiences(): agent_1_buffer = construct_fake_buffer(1) agent_2_buffer = construct_fake_buffer(2) update_buffer = AgentBuffer() assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 0 assert update_buffer.num_experiences == 0 agent_1_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 20 assert update_buffer.num_experiences == 20 def test_buffer_truncate(): agent_1_buffer = construct_fake_buffer(1) agent_2_buffer = construct_fake_buffer(2) update_buffer = AgentBuffer() agent_1_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) # Test non-LSTM update_buffer.truncate(2) assert update_buffer.num_experiences == 2 agent_1_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) # Test LSTM, truncate should be some multiple of sequence_length update_buffer.truncate(4, sequence_length=3) assert update_buffer.num_experiences == 3 for buffer_field in update_buffer.values(): assert isinstance(buffer_field, AgentBufferField) def test_key_encode_decode(): keys = ( list(BufferKey) + [(k, 42) for k in ObservationKeyPrefix] + [(k, "gail") for k in RewardSignalKeyPrefix] ) for k in keys: assert k == AgentBuffer._decode_key(AgentBuffer._encode_key(k)) def test_buffer_save_load(): original = construct_fake_buffer(3) import io write_buffer = io.BytesIO() original.save_to_file(write_buffer) loaded = AgentBuffer() loaded.load_from_file(write_buffer) assert len(original) == len(loaded) for k in original.keys(): assert np.allclose(original[k], loaded[k])
SOA/paf-cython/Extension/test.py
awaiswill/present
120
12683220
<reponame>awaiswill/present<filename>SOA/paf-cython/Extension/test.py import Calculate as c print(c.sdev([1,2,3,4,5]))
avocado/model.py
sry002/avocado
104
12683245
<reponame>sry002/avocado<filename>avocado/model.py<gh_stars>100-1000 # models.py # Contact: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> """ Avocado is deep tensor factorization model for learning a latent representation of the human epigenome. This file has functions for building a deep tensor factorization model. """ from .io import data_generator from .io import permuted_data_generator from .io import sequential_data_generator import json import numpy import keras from keras.layers import Input, Embedding, Dense from keras.layers import Multiply, Dot, Flatten, concatenate from keras.models import Model from keras.optimizers import Adam def build_model(n_celltypes, n_celltype_factors, n_assays, n_assay_factors, n_genomic_positions, n_25bp_factors, n_250bp_factors, n_5kbp_factors, n_layers, n_nodes, freeze_celltypes=False, freeze_assays=False, freeze_genome_25bp=False, freeze_genome_250bp=False, freeze_genome_5kbp=False, freeze_network=False): """This function builds a multi-scale deep tensor factorization model.""" celltype_input = Input(shape=(1,), name="celltype_input") celltype_embedding = Embedding(n_celltypes, n_celltype_factors, input_length=1, name="celltype_embedding") celltype_embedding.trainable = not freeze_celltypes celltype = Flatten()(celltype_embedding(celltype_input)) assay_input = Input(shape=(1,), name="assay_input") assay_embedding = Embedding(n_assays, n_assay_factors, input_length=1, name="assay_embedding") assay_embedding.trainable = not freeze_assays assay = Flatten()(assay_embedding(assay_input)) genome_25bp_input = Input(shape=(1,), name="genome_25bp_input") genome_25bp_embedding = Embedding(n_genomic_positions, n_25bp_factors, input_length=1, name="genome_25bp_embedding") genome_25bp_embedding.trainable = not freeze_genome_25bp genome_25bp = Flatten()(genome_25bp_embedding(genome_25bp_input)) genome_250bp_input = Input(shape=(1,), name="genome_250bp_input") genome_250bp_embedding = Embedding(int(n_genomic_positions / 10) + 1, n_250bp_factors, input_length=1, name="genome_250bp_embedding") genome_250bp_embedding.trainable = not freeze_genome_250bp genome_250bp = Flatten()(genome_250bp_embedding(genome_250bp_input)) genome_5kbp_input = Input(shape=(1,), name="genome_5kbp_input") genome_5kbp_embedding = Embedding(int(n_genomic_positions / 200) + 1, n_5kbp_factors, input_length=1, name="genome_5kbp_embedding") genome_5kbp_embedding.trainable = not freeze_genome_5kbp genome_5kbp = Flatten()(genome_5kbp_embedding(genome_5kbp_input)) layers = [celltype, assay, genome_25bp, genome_250bp, genome_5kbp] inputs = (celltype_input, assay_input, genome_25bp_input, genome_250bp_input, genome_5kbp_input) x = concatenate(layers) for i in range(n_layers): layer = Dense(n_nodes, activation='relu', name="dense_{}".format(i)) layer.trainable = not freeze_network x = layer(x) layer = Dense(1, name="y_pred") layer.trainable = not freeze_network y = layer(x) model = Model(inputs=inputs, outputs=y) model.compile(optimizer='adam', loss='mse', metrics=['mse']) return model class Avocado(object): """An Avocado multi-scale deep tensor factorization model. The Avocado model is a multi-scale deep tensor factorization model. It is multi-scale because it represents the genome axis using three different resolutions---25 bp, 250 bp and 5 kbp. It is deep because it replaces the dot product component of most linear factorization approaches with a deep neural network. The tensor factors and the neural network weights are trained jointly to impute the values in the tensor that it is provided. In this case Avocado is trained on epigenomic data whose dimensions are human cell type, epigenomic assay, and genomic coordinate. The trained model can impute epigenomic assays that have not yet been performed, and the learned factor values can themselves be used to represent genomic positions more compactly than the full set of epigenomic measurements could. The default parameters are those used in the manuscript entitled "Multi-scale deep tensor factorization learns a latent representation of the human epigenome". Parameters ---------- celltypes : list The list of cell type names that will be modeled assays : list The list of assays that will be modeled n_celltype_factors : int, optional The number of factors to use to represent each cell type. Default is 32. n_assay_factors : int, optional The number of factors to use to represent each assay. Default is 256. n_genomic_positions : int, optional The number of genomic positions to model. This is typically either the size of the pilot regions when performing initial training or the size of the chromosome when fitting the genomic latent factors. Default is 1126469, the size of the pilot regions in chr1-22. n_25bp_factors : int, optional The number of factors to use to represent the genome at 25 bp resolution. Default is 25. n_250bp_factors : int, optional The number of factors to use to represent the genome at 250 bp resolution. Default is 40. n_5kbp_factors : int, optional The number of factors to use to represent the genome at 5 kbp resolution. Default is 45. n_layers : int, optional The number of hidden layers in the neural model. Default is 2. n_nodes : int, optional The number of nodes per layer. Default is 2048. batch_size : int, optional The size of each batch to use in training. Defaut is 40000. freeze_celltypes : bool, optional Whether to freeze the training of the cell type embedding. Default is False. freeze_assays : bool, optional Whether to freeze the training of the assay embeddings. Default is False. freeze_genome_25bp : bool, optional Whether to freeze the training of the 25 bp genome factors. Default is False. freeze_genome_250bp : bool, optional Whether to freeze the training of the 250 bp genome factors. Default is False. freeze_genome_5kbp : bool, optional Whether to freeze the training of the 5 kbp genome factors. Default is False. freeze_network : bool, optional Whether to freeze the training of the neural network. Default is False. Example ------- >>> import numpy, itertools >>> from avocado import Avocado >>> >>> celltypes = ['E003', 'E017', 'E065', 'E116', 'E117'] >>> assays = ['H3K4me3', 'H3K27me3', 'H3K36me3', 'H3K9me3', 'H3K4me1'] >>> >>> data = {} >>> for celltype, assay in itertools.product(celltypes, assays): >>> filename = 'data/{}.{}.pilot.arcsinh.npz'.format(celltype, assay) >>> data[(celltype, assay)] = numpy.load(filename)['arr_0'] >>> >>> model = Avocado(celltypes, assays) >>> model.fit(data) >>> >>> track = model.predict("E065", "H3K27me3") """ def __init__(self, celltypes, assays, n_celltype_factors=32, n_assay_factors=256, n_genomic_positions=1126469, n_25bp_factors=25, n_250bp_factors=40, n_5kbp_factors=45, n_layers=2, n_nodes=2048, batch_size=40000, freeze_celltypes=False, freeze_assays=False, freeze_genome_25bp=False, freeze_genome_250bp=False, freeze_genome_5kbp=False, freeze_network=False): self.celltypes = list(celltypes) self.assays = list(assays) self.experiments = [] self.n_celltypes = len(celltypes) self.n_assays = len(assays) self.batch_size = batch_size self.n_celltype_factors = n_celltype_factors self.n_celltype_factors = n_celltype_factors self.n_assay_factors = n_assay_factors self.n_genomic_positions = n_genomic_positions self.n_25bp_factors = n_25bp_factors self.n_250bp_factors = n_250bp_factors self.n_5kbp_factors = n_5kbp_factors self.n_layers = n_layers self.n_nodes = n_nodes self.freeze_celltypes = freeze_celltypes self.freeze_assays = freeze_assays self.freeze_genome_25bp = freeze_genome_25bp self.freeze_genome_250bp = freeze_genome_250bp self.freeze_genome_5kbp = freeze_genome_5kbp self.freeze_network = freeze_network self.model = build_model(n_celltypes=self.n_celltypes, n_celltype_factors=n_celltype_factors, n_assays=self.n_assays, n_assay_factors=n_assay_factors, n_genomic_positions=n_genomic_positions, n_25bp_factors=n_25bp_factors, n_250bp_factors=n_250bp_factors, n_5kbp_factors=n_5kbp_factors, n_layers=n_layers, n_nodes=n_nodes, freeze_celltypes=freeze_celltypes, freeze_assays=freeze_assays, freeze_genome_25bp=freeze_genome_25bp, freeze_genome_250bp=freeze_genome_250bp, freeze_genome_5kbp=freeze_genome_5kbp, freeze_network=freeze_network) @property def celltype_embedding(self): """Returns the learned cell type embedding as a numpy array. Parameters ---------- None Returns ------- celltype_embedding : numpy.ndarray, shape=(n_celltypes, n_factors) The learned embedding corresponding to the input name 'celltype_embedding'. The cell types are ordered according to the order defined in self.celltypes. """ for layer in self.model.layers: if layer.name == 'celltype_embedding': return layer.get_weights()[0] raise ValueError("No layer in model named 'celltype_embedding'.") @property def assay_embedding(self): """Returns the learned assay embedding as a numpy array. Parameters ---------- None Returns ------- assay_embedding : numpy.ndarray, shape=(n_assays, n_factors) The learned embedding corresponding to the input name 'assay_embedding'. The assays are ordered according to the order defined in self.assays. """ for layer in self.model.layers: if layer.name == 'assay_embedding': return layer.get_weights()[0] raise ValueError("No layer in model named 'assay_embedding'.") @property def genome_embedding(self): """Returns the learned genomic embedding as a numpy array. This function will concatenate together the three resolutions of genomic factors, such that the first columns correspond to the 25 bp factors, the next columns correspond to the 250 bp factors, and the final columns correspond to the 5 kbp factors. The factors that span more than 25 bp will be repeated across several successive positions Parameters ---------- None Returns ------- genome_embedding : numpy.ndarray, shape=(n_genomic_positions, n_25bp_factors + n_250bp_factors + n_5kbp_factors) The learned embedding corresponding to the input names genome_25bp_embedding, genome_250bp_embedding, and genome_5kbp_embedding. """ n_25bp = self.n_25bp_factors n_250bp = self.n_250bp_factors n_5kbp = self.n_5kbp_factors genome_embedding = numpy.empty((self.n_genomic_positions, n_25bp + n_250bp + n_5kbp)) for layer in self.model.layers: if layer.name == 'genome_25bp_embedding': genome_25bp_embedding = layer.get_weights()[0] elif layer.name == 'genome_250bp_embedding': genome_250bp_embedding = layer.get_weights()[0] elif layer.name == 'genome_5kbp_embedding': genome_5kbp_embedding = layer.get_weights()[0] n1 = n_25bp n2 = n_25bp + n_250bp for i in range(self.n_genomic_positions): genome_embedding[i, :n1] = genome_25bp_embedding[i] genome_embedding[i, n1:n2] = genome_250bp_embedding[i // 10] genome_embedding[i, n2:] = genome_5kbp_embedding[i // 200] return genome_embedding def summary(self): """A wrapper method for the keras summary method.""" self.model.summary() def fit(self, X_train, X_valid=None, n_epochs=200, epoch_size=120, verbose=1, callbacks=None, sampling='sequential', input_generator=None, **kwargs): """Fit the model to the given epigenomic tracks. Pass in a dictionary of training data and an optional dictionary of validation data. The keys to this dictionary are a tuple of the format (celltype, assay) and the values are the corresponding track in the form of a numpy array. The tracks can either be in the form of an array that is in memory or as a memory map. Parameters ---------- X_train : dict A dictionary of training data values, where the keys are a tuple of (celltype, assay) and the values are a track. X_valid : dict or None, optional A dictionary of validation data values that are used to calculate validation set MSE during the training process. If None, validation set statistics are not calculated during the training process. Default is None. n_epochs : int, optional The number of epochs to train on before ending training. Default is 120. epoch_size : int, optional The number of batches per epoch. Default is 200. verbose: int, optional The verbosity level of training. Must be one of 0, 1, or 2, where 0 means silent, 1 means progress bar, and 2 means use only one line per epoch. Default is 1. callbacks : list or None, optional A list of keras callback instances to be called during training. sampling : str, optional The sampling strategy to use for the generators. Must be one of the following: 'sequential' : Sequentially scans through the genome indexes, selecting a cell type and assay randomly at each position 'permuted' : Sequentially scans through a permuted version of the genome indexes, such that each epoch sees every genomic index once, but each batch sees nearly random indexes 'random' : Randomly selects genomic positions. No guarantee on the number of times each position has been seen. Default is 'sequential'. input_generator : generator or None, optional A custom data generator object to be used in the place of the default generator. This will only change the training generator, not the validation generator. Default is None. **kwargs : optional Any other keyword arguments to be passed into the `fit_generator` method. Returns ------- history : keras.History.history The keras history object that records training loss values and metric values. """ if not isinstance(X_train, dict): raise ValueError("X_train must be a dictionary where the keys" \ " are (celltype, assay) tuples and the values are the track" \ " corresponding to that pair.") if X_valid is not None and not isinstance(X_valid, dict): raise ValueError("X_valid must be a dictionary where the keys" \ " are (celltype, assay) tuples and the values are the track" \ " corresponding to that pair.") for (celltype, assay), track in X_train.items(): if celltype not in self.celltypes: raise ValueError("Celltype {} appears in the training data " \ "but not in the list of cell types provided to the " \ "model.".format(celltype)) if assay not in self.assays: raise ValueError("Assay {} appears in the training data " \ "but not in the list of assays provided to the " \ "model.".format(assay)) if len(track) != self.n_genomic_positions: raise ValueError("The track corresponding to {} {} is of " \ "size {} while the model encodes {} genomic " \ "positions".format(celltype, assay, len(track), self.n_genomic_positions)) if X_valid is not None: for (celltype, assay), track in X_valid.items(): if celltype not in self.celltypes: raise ValueError("Celltype {} appears in the validation " \ "data but not in the list of cell types provided to " \ "the model.".format(celltype)) if assay not in self.assays: raise ValueError("Assay {} appears in the validation " \ "data but not in the list of assays provided to the " \ "model.".format(assay)) if len(track) != self.n_genomic_positions: raise ValueError("The track corresponding to {} {} is of " \ "size {} while the model encodes {} genomic " \ "positions".format(celltype, assay, len(track), self.n_genomic_positions)) if input_generator is not None: X_train_gen = input_generator elif sampling == 'sequential': X_train_gen = sequential_data_generator(self.celltypes, self.assays, X_train, self.n_genomic_positions, self.batch_size) elif sampling == 'permuted': X_train_gen = permuted_data_generator(self.celltypes, self.assays, X_train, self.n_genomic_positions, self.batch_size) elif sampling == 'random': X_train_gen = permuted_data_generator(self.celltypes, self.assays, X_train, self.n_genomic_positions, self.batch_size) if X_valid is not None: X_valid_gen = data_generator(self.celltypes, self.assays, X_valid, self.n_genomic_positions, self.batch_size) history = self.model.fit_generator(X_train_gen, epoch_size, n_epochs, workers=1, validation_data=X_valid_gen, validation_steps=30, verbose=verbose, callbacks=callbacks, **kwargs) else: history = self.model.fit_generator(X_train_gen, epoch_size, n_epochs, workers=1, verbose=verbose, callbacks=callbacks, **kwargs) self.experiments = list(X_train.keys()) return history def fit_celltypes(self, X_train, X_valid=None, n_epochs=200, epoch_size=120, verbose=1, callbacks=None, **kwargs): """Add a new cell type(s) to an otherwise frozen model. This method will add a new cell type to the cell type embedding after freezing all of the other parameters in the model, including weights and the other cell type positions. Functionally it will train a new cell type embedding and return a new model whose cell type embedding is the concatenation of the old cell type embedding and the new one. Pass in a dictionary of training data and an optional dictionary of validation data. The keys to this dictionary are a tuple of the format (celltype, assay) and the values are the corresponding track in the form of a numpy array. The tracks can either be in the form of an array that is in memory or as a memory map. The celltypes provided should not appear in the model.celltypes attribute but the assays should exclusively appear in the model.assays attribute. Parameters ---------- X_train : dict A dictionary of training data values, where the keys are a tuple of (celltype, assay) and the values are a track. X_valid : dict or None, optional A dictionary of validation data values that are used to calculate validation set MSE during the training process. If None, validation set statistics are not calculated during the training process. Default is None. n_epochs : int, optional The number of epochs to train on before ending training. Default is 120. epoch_size : int, optional The number of batches per epoch. Default is 200. verbose: int, optional The verbosity level of training. Must be one of 0, 1, or 2, where 0 means silent, 1 means progress bar, and 2 means use only one line per epoch. callbacks : list or None, optional A list of keras callback instances to be called during training. **kwargs : optional Any other keyword arguments to be passed into the `fit_generator` method. Returns ------- history : keras.History.history The keras history object that records training loss values and metric values. """ if not isinstance(X_train, dict): raise ValueError("X_train must be a dictionary where the keys" \ " are (celltype, assay) tuples and the values are the track" \ " corresponding to that pair.") if X_valid is not None and not isinstance(X_valid, dict): raise ValueError("X_valid must be a dictionary where the keys" \ " are (celltype, assay) tuples and the values are the track" \ " corresponding to that pair.") for (celltype, assay), track in X_train.items(): if celltype in self.celltypes: raise ValueError("Celltype {} appears in the training data " \ "and also in the list of cell types already in the " \ "model.".format(celltype)) if assay not in self.assays: raise ValueError("Assay {} appears in the training data " \ "but not in the list of assays provided to the " \ "model.".format(assay)) if len(track) != self.n_genomic_positions: raise ValueError("The track corresponding to {} {} is of " \ "size {} while the model encodes {} genomic " \ "positions".format(celltype, assay, len(track), self.n_genomic_positions)) if X_valid is not None: for (celltype, assay), track in X_valid.items(): if celltype in self.celltypes: raise ValueError("Celltype {} appears in the validation " \ "data and also in the list of cell types already in " \ "the model.".format(celltype)) if assay not in self.assays: raise ValueError("Assay {} appears in the training data " \ "but not in the list of assays provided to the " \ "model.".format(assay)) if len(track) != self.n_genomic_positions: raise ValueError("The track corresponding to {} {} is of " \ "size {} while the model encodes {} genomic " \ "positions".format(celltype, assay, len(track), self.n_genomic_positions)) new_celltypes = list(numpy.unique([ct for ct, _ in X_train.keys()])) model = build_model(n_celltypes=len(new_celltypes), n_celltype_factors=self.n_celltype_factors, n_assays=self.n_assays, n_assay_factors=self.n_assay_factors, n_genomic_positions=self.n_genomic_positions, n_25bp_factors=self.n_25bp_factors, n_250bp_factors=self.n_250bp_factors, n_5kbp_factors=self.n_5kbp_factors, n_layers=self.n_layers, n_nodes=self.n_nodes, freeze_celltypes=False, freeze_assays=True, freeze_genome_25bp=True, freeze_genome_250bp=True, freeze_genome_5kbp=True, freeze_network=True) for old_layer, new_layer in zip(self.model.layers, model.layers): if 'input' in old_layer.name: continue if old_layer.name == 'celltype_embedding': continue new_layer.set_weights(old_layer.get_weights()) X_train_gen = sequential_data_generator(new_celltypes, self.assays, X_train, self.n_genomic_positions, self.batch_size) if X_valid is not None: X_valid_gen = data_generator(new_celltypes, self.assays, X_valid, self.n_genomic_positions, self.batch_size) history = model.fit_generator(X_train_gen, epoch_size, n_epochs, workers=1, validation_data=X_valid_gen, validation_steps=30, verbose=verbose, callbacks=callbacks, **kwargs) else: history = model.fit_generator(X_train_gen, epoch_size, n_epochs, workers=1, verbose=verbose, callbacks=callbacks, **kwargs) for layer in self.model.layers: if layer.name == 'celltype_embedding': celltype_embedding = layer.get_weights()[0] break for layer in model.layers: if layer.name == 'celltype_embedding': new_celltype_embedding = layer.get_weights()[0] break celltype_embedding = numpy.concatenate([celltype_embedding, new_celltype_embedding]) self.celltypes.extend(new_celltypes) self.n_celltypes = len(self.celltypes) model = build_model(n_celltypes=self.n_celltypes, n_celltype_factors=self.n_celltype_factors, n_assays=self.n_assays, n_assay_factors=self.n_assay_factors, n_genomic_positions=self.n_genomic_positions, n_25bp_factors=self.n_25bp_factors, n_250bp_factors=self.n_250bp_factors, n_5kbp_factors=self.n_5kbp_factors, n_layers=self.n_layers, n_nodes=self.n_nodes, freeze_celltypes=self.freeze_celltypes, freeze_assays=self.freeze_assays, freeze_genome_25bp=self.freeze_genome_25bp, freeze_genome_250bp=self.freeze_genome_250bp, freeze_genome_5kbp=self.freeze_genome_5kbp, freeze_network=self.freeze_network) for old_layer, new_layer in zip(self.model.layers, model.layers): if 'input' in old_layer.name: continue if old_layer.name == 'celltype_embedding': new_layer.set_weights([celltype_embedding]) else: new_layer.set_weights(old_layer.get_weights()) model.experiments = self.experiments + list(X_train.keys()) self.model = model return history def fit_assays(self, X_train, X_valid=None, n_epochs=200, epoch_size=120, verbose=1, callbacks=None, **kwargs): """Add a new assay(s) to an otherwise frozen model. This method will add a new assay to the assay embedding after freezing all of the other parameters in the model, including weights and the other assay positions. Functionally it will train a new assay embedding and return a new model whose assay embedding is the concatenation of the old assay embedding and the new one. Pass in a dictionary of training data and an optional dictionary of validation data. The keys to this dictionary are a tuple of the format (celltype, assay) and the values are the corresponding track in the form of a numpy array. The tracks can either be in the form of an array that is in memory or as a memory map. The assays provided should not appear in the model.assays attribute, but the cell types should appear in the model.celltypes attribute. Parameters ---------- X_train : dict A dictionary of training data values, where the keys are a tuple of (celltype, assay) and the values are a track. X_valid : dict or None, optional A dictionary of validation data values that are used to calculate validation set MSE during the training process. If None, validation set statistics are not calculated during the training process. Default is None. n_epochs : int, optional The number of epochs to train on before ending training. Default is 120. epoch_size : int, optional The number of batches per epoch. Default is 200. verbose: int, optional The verbosity level of training. Must be one of 0, 1, or 2, where 0 means silent, 1 means progress bar, and 2 means use only one line per epoch. callbacks : list or None, optional A list of keras callback instances to be called during training. **kwargs : optional Any other keyword arguments to be passed into the `fit_generator` method. Returns ------- history : keras.History.history The keras history object that records training loss values and metric values. """ if not isinstance(X_train, dict): raise ValueError("X_train must be a dictionary where the keys" \ " are (celltype, assay) tuples and the values are the track" \ " corresponding to that pair.") if X_valid is not None and not isinstance(X_valid, dict): raise ValueError("X_valid must be a dictionary where the keys" \ " are (celltype, assay) tuples and the values are the track" \ " corresponding to that pair.") for (celltype, assay), track in X_train.items(): if celltype not in self.celltypes: raise ValueError("Celltype {} appears in the training data " \ "but not in the list of cell types already in the " \ "model.".format(celltype)) if assay in self.assays: raise ValueError("Assay {} appears in the training data " \ "and also in the list of assays already in the " \ "model.".format(assay)) if len(track) != self.n_genomic_positions: raise ValueError("The track corresponding to {} {} is of " \ "size {} while the model encodes {} genomic " \ "positions".format(celltype, assay, len(track), self.n_genomic_positions)) if X_valid is not None: for (celltype, assay), track in X_valid.items(): if celltype not in self.celltypes: raise ValueError("Celltype {} appears in the validation " \ "data but not in the list of cell types already in " \ "the model.".format(celltype)) if assay in self.assays: raise ValueError("Assay {} appears in the training data " \ "and also in the list of assays already in the " \ "model.".format(assay)) if len(track) != self.n_genomic_positions: raise ValueError("The track corresponding to {} {} is of " \ "size {} while the model encodes {} genomic " \ "positions".format(celltype, assay, len(track), self.n_genomic_positions)) new_assays = list(numpy.unique([assay for _, assay in X_train.keys()])) model = build_model(n_celltypes=self.n_celltypes, n_celltype_factors=self.n_celltype_factors, n_assays=len(new_assays), n_assay_factors=self.n_assay_factors, n_genomic_positions=self.n_genomic_positions, n_25bp_factors=self.n_25bp_factors, n_250bp_factors=self.n_250bp_factors, n_5kbp_factors=self.n_5kbp_factors, n_layers=self.n_layers, n_nodes=self.n_nodes, freeze_celltypes=True, freeze_assays=False, freeze_genome_25bp=True, freeze_genome_250bp=True, freeze_genome_5kbp=True, freeze_network=True) for old_layer, new_layer in zip(self.model.layers, model.layers): if 'input' in old_layer.name: continue if old_layer.name == 'assay_embedding': continue new_layer.set_weights(old_layer.get_weights()) X_train_gen = sequential_data_generator(self.celltypes, new_assays, X_train, self.n_genomic_positions, self.batch_size) if X_valid is not None: X_valid_gen = data_generator(self.celltypes, new_assays, X_valid, self.n_genomic_positions, self.batch_size) history = model.fit_generator(X_train_gen, epoch_size, n_epochs, workers=1, validation_data=X_valid_gen, validation_steps=30, verbose=verbose, callbacks=callbacks, **kwargs) else: history = model.fit_generator(X_train_gen, epoch_size, n_epochs, workers=1, verbose=verbose, callbacks=callbacks, **kwargs) for layer in self.model.layers: if layer.name == 'assay_embedding': assay_embedding = layer.get_weights()[0] break for layer in model.layers: if layer.name == 'assay_embedding': new_assay_embedding = layer.get_weights()[0] break assay_embedding = numpy.concatenate([assay_embedding, new_assay_embedding]) self.assays.extend(new_assays) self.n_assays = len(self.assays) model = build_model(n_celltypes=self.n_celltypes, n_celltype_factors=self.n_celltype_factors, n_assays=self.n_assays, n_assay_factors=self.n_assay_factors, n_genomic_positions=self.n_genomic_positions, n_25bp_factors=self.n_25bp_factors, n_250bp_factors=self.n_250bp_factors, n_5kbp_factors=self.n_5kbp_factors, n_layers=self.n_layers, n_nodes=self.n_nodes, freeze_celltypes=self.freeze_celltypes, freeze_assays=self.freeze_assays, freeze_genome_25bp=self.freeze_genome_25bp, freeze_genome_250bp=self.freeze_genome_250bp, freeze_genome_5kbp=self.freeze_genome_5kbp, freeze_network=self.freeze_network) for old_layer, new_layer in zip(self.model.layers, model.layers): if 'input' in old_layer.name: continue if old_layer.name == 'assay_embedding': new_layer.set_weights([assay_embedding]) else: new_layer.set_weights(old_layer.get_weights()) model.experiments = self.experiments + list(X_train.keys()) self.model = model return history def predict(self, celltype, assay, start=0, end=None, verbose=0): """Predict a track of epigenomic data. This will predict a track of epigenomic data, resulting in one signal value per genomic position modeled. Users pass in the cell type and the assay that they wish to impute and receive the track of data. Parameters ---------- celltype : str The cell type (aka biosample) to be imputed. Must be one of the elements from the list of cell types passed in upon model initialization. assay : str The assay to be imputed. Must be one of the elements from the list of assays passed in upon model initialization. start : int, optional The start position to begin the imputation at. By default this is 0, corresponding to the start of the track. The value is which 25 bp bin to begin prediction at, not the raw genomic coordinate. end : int or None, optional The end position to stop making imputations at, exclusive. By default this is None, meaning to end at `self.n_genomic_positions.`. verbose : int, optional The verbosity level of the prediction. Must be 0 or 1. Returns ------- track : numpy.ndarray A track of epigenomic signal value predictions for the specified cell type and assay for the considered genomic positions. """ if end is not None and end <= start: raise ValueError("When given, the end coordinate must be greater" \ " than the start coordinate.") if end is None: end = self.n_genomic_positions celltype_idx = self.celltypes.index(celltype) assay_idx = self.assays.index(assay) celltype_idxs = numpy.ones(end-start) * celltype_idx assay_idxs = numpy.ones(end-start) * assay_idx genomic_25bp_idxs = numpy.arange(start, end) genomic_250bp_idxs = numpy.arange(start, end) // 10 genomic_5kbp_idxs = numpy.arange(start, end) // 200 X = { 'celltype_input': celltype_idxs, 'assay_input': assay_idxs, 'genome_25bp_input': genomic_25bp_idxs, 'genome_250bp_input': genomic_250bp_idxs, 'genome_5kbp_input': genomic_5kbp_idxs } track = self.model.predict(X, batch_size=self.batch_size, verbose=verbose)[:,0] return track def get_params(self): params = [] for layer in model.layers: params.append(layers.get_weghts()[0]) def save(self, name="avocado", separators=(',', ' : '), indent=4): """Serialize the model to disk. This function produces two files. The first is a json file that has the model hyperparameters associated with it. The second is a h5 file that contains the architecture of the neural network model, the weights, and the optimizer. Parameters ---------- name : str, optional The name to use for the json and the h5 file that are stored. separators : tuple, optional The separators to use in the resulting JSON object. indent : int, optional The number of spaces to use in the indent of the JSON. Returns ------- None """ d = { 'celltypes': self.celltypes, 'assays': self.assays, 'experiments': self.experiments, 'n_celltype_factors': self.n_celltype_factors, 'n_assay_factors': self.n_assay_factors, 'n_genomic_positions': self.n_genomic_positions, 'n_25bp_factors': self.n_25bp_factors, 'n_250bp_factors': self.n_250bp_factors, 'n_5kbp_factors': self.n_5kbp_factors, 'n_layers': self.n_layers, 'n_nodes': self.n_nodes, 'batch_size': self.batch_size } d = json.dumps(d, separators=separators, indent=indent) with open("{}.json".format(name), "w") as outfile: outfile.write(d) self.model.save("{}.h5".format(name)) def load_weights(self, name, verbose=0): """Load serialized weights on a layer-by-layer case. Load the weights of a pre-saved model on a layer-by-layer case. This method will iterate through the layers of the serialized model and this model jointly and set the weights in this model to that of the serialized model should the weight matrices be of the same size. Should they not be of the same size it will not modify the current weight matrix. A primary use of this function should be after an initial model has been trained on the Pilot regions and now one is fitting a model to each of the chromosomes. The size of the genome factors will differ but the other components will remain the same. Correspondingly, the identically sized weight matrices are those that should be held constant while the differing size weight matrices should differ. Parameters ---------- name : str The suffix of the name of the weights file. verbose : int, optional The verbosity level when loading weights. 0 means silent, 1 means notify when a weight matrix has been set, 2 means notify what action has been taken on each layer. Returns ------- None """ model = keras.models.load_model("{}.h5".format(name)) for i, (self_layer, layer) in enumerate(zip(self.model.layers, model.layers)): w = layer.get_weights() w0 = self_layer.get_weights() name = self_layer.name if len(w) == 0: if verbose == 2: print("{} has no weights to set".format(name)) continue if w[0].shape != w0[0].shape: if verbose == 2: print("{} is of different size and not set".format(name)) continue self_layer.set_weights(w) if verbose > 0: print("{} has been set from serialized model".format(name)) @classmethod def load(self, name, freeze_celltypes=False, freeze_assays=False, freeze_genome_25bp=False, freeze_genome_250bp=False, freeze_genome_5kbp=False, freeze_network=False): """Load a model that has been serialized to disk. The keras model that is saved to disk does not contain any of the wrapper information Parameters ---------- name : str The name of the file to load. There must be both a .json and a .h5 file with this suffix. For example, if "Avocado" is passed in, there must be both a "Avocado.json" and a "Avocado.h5" file to be loaded in. freeze_celltypes : bool, optional Whether to freeze the training of the cell type embedding. Default is False. freeze_assays : bool, optional Whether to freeze the training of the assay embeddings. Default is False. freeze_genome_25bp : bool, optional Whether to freeze the training of the 25 bp genome factors. Default is False. freeze_genome_250bp : bool, optional Whether to freeze the training of the 250 bp genome factors. Default is False. freeze_genome_5kbp : bool, optional Whether to freeze the training of the 5 kbp genome factors. Default is False. freeze_network : bool, optional Whether to freeze the training of the neural network. Default is False. Returns ------- model : Avocado An Avocado model. """ with open("{}.json".format(name), "r") as infile: d = json.load(infile) if 'experiments' in d: experiments = d['experiments'] del d['experiments'] else: experiments = [] model = Avocado(freeze_celltypes=freeze_celltypes, freeze_assays=freeze_assays, freeze_genome_25bp=freeze_genome_25bp, freeze_genome_250bp=freeze_genome_250bp, freeze_genome_5kbp=freeze_genome_5kbp, freeze_network=freeze_network, **d) model.experiments = experiments model.model = keras.models.load_model("{}.h5".format(name)) return model
caserec/recommenders/item_recommendation/item_attribute_knn.py
khalillakhdhar/recommander_python
407
12683256
<reponame>khalillakhdhar/recommander_python<gh_stars>100-1000 # coding=utf-8 """" Item Based Collaborative Filtering Recommender with Attributes (Item Attribute KNN) [Item Recommendation (Ranking)] Its philosophy is as follows: in order to determine the rating of User u on item m, we can find other movies that are similar to item m, and based on User u’s ratings on those similar movies we infer his rating on item m. However, instead of traditional ItemKNN, this approach uses a metadata or pre-computed similarity matrix. """ # © 2019. Case Recommender (MIT License) from collections import defaultdict import numpy as np from caserec.recommenders.item_recommendation.itemknn import ItemKNN from caserec.utils.process_data import ReadFile __author__ = '<NAME> <<EMAIL>>' class ItemAttributeKNN(ItemKNN): def __init__(self, train_file=None, test_file=None, output_file=None, metadata_file=None, similarity_file=None, k_neighbors=30, rank_length=10, as_binary=False, as_similar_first=True, metadata_as_binary=False, metadata_similarity_sep='\t', similarity_metric="cosine", sep='\t', output_sep='\t'): """ Item Attribute KNN for Item Recommendation This algorithm predicts a rank for each user based on the similar items that he/her consumed, using a metadata or similarity pre-computed file Usage:: >> ItemAttributeKNN(train, test, similarity_file=sim_matrix, as_similar_first=True).compute() >> ItemAttributeKNN(train, test, metadata_file=metadata, as_similar_first=True).compute() :param train_file: File which contains the train set. This file needs to have at least 3 columns (user item feedback_value). :type train_file: str :param test_file: File which contains the test set. This file needs to have at least 3 columns (user item feedback_value). :type test_file: str, default None :param output_file: File with dir to write the final predictions :type output_file: str, default None :param metadata_file: File which contains the metadata set. This file needs to have at least 2 columns (item metadata). :type metadata_file: str, default None :param similarity_file: File which contains the similarity set. This file needs to have at least 3 columns (item item similarity). :type similarity_file: str, default None :param k_neighbors: Number of neighbors to use. If None, k_neighbor = int(sqrt(n_users)) :type k_neighbors: int, default None :param rank_length: Size of the rank that must be generated by the predictions of the recommender algorithm :type rank_length: int, default 10 :param as_binary: If True, the explicit feedback will be transform to binary :type as_binary: bool, default False :param as_similar_first: If True, for each unknown item, which will be predicted, we first look for its k most similar users and then take the intersection with the users that seen that item. :type as_similar_first: bool, default True :param metadata_as_binary: f True, the explicit value will be transform to binary :type metadata_as_binary: bool, default False :param metadata_similarity_sep: Delimiter for similarity or metadata file :type metadata_similarity_sep: str, default '\t' :param similarity_metric: Pairwise metric to compute the similarity between the items. Reference about distances: http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.pdist.html :type similarity_metric: str, default cosine :param sep: Delimiter for input files file :type sep: str, default '\t' :param output_sep: Delimiter for output file :type output_sep: str, default '\t' """ super(ItemAttributeKNN, self).__init__(train_file=train_file, test_file=test_file, output_file=output_file, k_neighbors=k_neighbors, rank_length=rank_length, as_binary=as_binary, as_similar_first=as_similar_first, similarity_metric=similarity_metric, sep=sep, output_sep=output_sep) self.recommender_name = 'Item Attribute KNN Algorithm' self.metadata_file = metadata_file self.similarity_file = similarity_file self.metadata_as_binary = metadata_as_binary self.metadata_similarity_sep = metadata_similarity_sep def init_model(self): """ Method to fit the model. Create and calculate a similarity matrix by metadata file or a pre-computed similarity matrix """ self.similar_items = defaultdict(list) # Set the value for k if self.k_neighbors is None: self.k_neighbors = int(np.sqrt(len(self.items))) if self.metadata_file is not None: metadata = ReadFile(self.metadata_file, sep=self.metadata_similarity_sep, as_binary=self.metadata_as_binary ).read_metadata_or_similarity() self.matrix = np.zeros((len(self.items), len(metadata['col_2']))) meta_to_meta_id = {} for m, data in enumerate(metadata['col_2']): meta_to_meta_id[data] = m for item in metadata['col_1']: for m in metadata['dict'][item]: self.matrix[self.item_to_item_id[item], meta_to_meta_id[m]] = metadata['dict'][item][m] # create header info for metadata sparsity = (1 - (metadata['number_interactions'] / (len(metadata['col_1']) * len(metadata['col_2'])))) * 100 self.extra_info_header = ">> metadata:: %d items and %d metadata (%d interactions) | sparsity:: %.2f%%" % \ (len(metadata['col_1']), len(metadata['col_2']), metadata['number_interactions'], sparsity) # Create similarity matrix based on metadata or similarity file. Transpose=False, because it is an # item x metadata matrix self.si_matrix = self.compute_similarity(transpose=False) elif self.similarity_file is not None: similarity = ReadFile(self.similarity_file, sep=self.metadata_similarity_sep, as_binary=False ).read_metadata_or_similarity() self.si_matrix = np.zeros((len(self.items), len(self.items))) # Fill similarity matrix for i in similarity['col_1']: for i_j in similarity['dict'][i]: self.si_matrix[self.item_to_item_id[i], self.item_to_item_id[int(i_j)]] = similarity['dict'][i][i_j] # Remove NaNs self.si_matrix[np.isnan(self.si_matrix)] = 0.0 else: raise ValueError("This algorithm needs a similarity matrix or a metadata file!") # Create original matrix user x item for prediction process self.create_matrix() for i_id, item in enumerate(self.items): self.similar_items[i_id] = sorted(range(len(self.si_matrix[i_id])), key=lambda k: -self.si_matrix[i_id][k])[1:self.k_neighbors + 1]
tools/misc/profile.py
v8786339/NyuziProcessor
1,388
12683257
<gh_stars>1000+ #!/usr/bin/env python3 # # Copyright 2011-2015 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Process sampling profiler output from hardware model. USAGE: profile <objdump file> <pc dump file> Prints a breakdown of time spent per function. - 'objdump file' parameter points to a file that was produced using: /usr/local/llvm-nyuzi/bin/llvm-objdump -t <path to ELF file> - 'pc dump file' points to a file that was produced by the verilog model using +profile=<filename>. It is a list of hexadecimal program counter samples, one per line. """ import sys import re symbolre = re.compile( r'(?P<addr>[A-Fa-f0-9]+) g\s+F\s+\.text\s+[A-Fa-f0-9]+\s+(?P<symbol>\w+)') def find_function(functions, pc): """Given a PC, figure out which function it is in. Args: functions: list of (addr: int, name: str) Returns: str Name of function. Raises: Nothing """ low = 0 high = len(functions) while low < high: mid = int((low + high) / 2) if pc < functions[mid][0]: high = mid else: low = mid + 1 if low == len(functions): return None return functions[low - 1][1] def main(): counts = {} functions = [] # Read symbols with open(sys.argv[1], 'r') as f: for line in f.readlines(): got = symbolre.search(line) if got is not None: sym = got.group('symbol') functions += [(int(got.group('addr'), 16), sym)] counts[sym] = 0 functions.sort(key=lambda a: a[0]) # Read profile trace with open(sys.argv[2], 'r') as f: for line in f.readlines(): func = find_function(functions, int(line, 16)) if func is not None: counts[func] += 1 total_cycles = 0 sorted_tab = [] for name in counts: sorted_tab += [(counts[name], name)] total_cycles += counts[name] for count, name in sorted(sorted_tab, key=lambda func: func[0], reverse=True): if count == 0: break print('{:7d} {:.3f}% {}'.format(count, count / total_cycles * 100, name)) if __name__ == '__main__': main()
mmtbx/command_line/find_residue_in_pdb.py
dperl-sol/cctbx_project
155
12683313
from __future__ import absolute_import, division, print_function from libtbx.utils import Sorry, Usage import libtbx.phil.command_line import sys master_phil = libtbx.phil.parse(""" resname = None .type = str d_max = None .type = float polymeric_type = *Any Free Polymeric .type = choice xray_only = True .type = bool data_only = False .type = bool identity_cutoff = None .type = int quiet = False .type = bool """) def run(args, out=sys.stdout): if (len(args) == 0) or ("--help" in args): raise Usage("""mmtbx.find_residue_in_pdb RESNAME [options] Use the RCSB web services to retrieve a list of PDB structures containing the specified chemical ID. Full parameters: %s """ % master_phil.as_str(prefix=" ")) sources = [] def process_unknown(arg): if (1 <= len(arg) <= 3) and (arg.isalnum()): return libtbx.phil.parse("resname=%s" % arg) cai = libtbx.phil.command_line.argument_interpreter(master_phil=master_phil) working_phil = cai.process_and_fetch(args=args, custom_processor=process_unknown) params = working_phil.extract() if (params.resname is None): raise Sorry("No residue ID specified.") from mmtbx.wwpdb import rcsb_web_services pdb_ids = rcsb_web_services.chemical_id_search( resname=params.resname, d_max=params.d_max, polymeric_type=params.polymeric_type, xray_only=params.xray_only, data_only=params.data_only, identity_cutoff=params.identity_cutoff) pdb_ids = [ id.lower() for id in pdb_ids ] if (len(pdb_ids) == 0): raise Sorry("No structures found matching the specified criteria.") else : if (not params.quiet): print("%d PDB IDs retrieved:" % len(pdb_ids), file=out) i = 0 while (i < len(pdb_ids)): print(" %s" % " ".join(pdb_ids[i:i+16]), file=out) i += 16 else : print("%d PDB IDs matching" % len(pdb_ids), file=out) if (__name__ == "__main__"): run(sys.argv[1:])
ch16/ch16-part1-self-attention.py
ericgarza70/machine-learning-book
655
12683324
# coding: utf-8 import sys from python_environment_check import check_packages import torch import torch.nn.functional as F # # Machine Learning with PyTorch and Scikit-Learn # # -- Code Examples # ## Package version checks # Add folder to path in order to load from the check_packages.py script: sys.path.insert(0, '..') # Check recommended package versions: d = { 'torch': '1.9.0', } check_packages(d) # # Chapter 16: Transformers – Improving Natural Language Processing with Attention Mechanisms (Part 1/3) # **Outline** # # - [Adding an attention mechanism to RNNs](#Adding-an-attention-mechanism-to-RNNs) # - [Attention helps RNNs with accessing information](#Attention-helps-RNNs-with-accessing-information) # - [The original attention mechanism for RNNs](#The-original-attention-mechanism-for-RNNs) # - [Processing the inputs using a bidirectional RNN](#Processing-the-inputs-using-a-bidirectional-RNN) # - [Generating outputs from context vectors](#Generating-outputs-from-context-vectors) # - [Computing the attention weights](#Computing-the-attention-weights) # - [Introducing the self-attention mechanism](#Introducing-the-self-attention-mechanism) # - [Starting with a basic form of self-attention](#Starting-with-a-basic-form-of-self-attention) # - [Parameterizing the self-attention mechanism: scaled dot-product attention](#Parameterizing-the-self-attention-mechanism-scaled-dot-product-attention) # - [Attention is all we need: introducing the original transformer architecture](#Attention-is-all-we-need-introducing-the-original-transformer-architecture) # - [Encoding context embeddings via multi-head attention](#Encoding-context-embeddings-via-multi-head-attention) # - [Learning a language model: decoder and masked multi-head attention](#Learning-a-language-model-decoder-and-masked-multi-head-attention) # - [Implementation details: positional encodings and layer normalization](#Implementation-details-positional-encodings-and-layer-normalization) # ## Adding an attention mechanism to RNNs # ### Attention helps RNNs with accessing information # ### The original attention mechanism for RNNs # ### Processing the inputs using a bidirectional RNN # ### Generating outputs from context vectors # ### Computing the attention weights # ## Introducing the self-attention mechanism # ### Starting with a basic form of self-attention # - Assume we have an input sentence that we encoded via a dictionary, which maps the words to integers as discussed in the RNN chapter: # input sequence / sentence: # "Can you help me to translate this sentence" sentence = torch.tensor( [0, # can 7, # you 1, # help 2, # me 5, # to 6, # translate 4, # this 3] # sentence ) sentence # - Next, assume we have an embedding of the words, i.e., the words are represented as real vectors. # - Since we have 8 words, there will be 8 vectors. Each vector is 16-dimensional: torch.manual_seed(123) embed = torch.nn.Embedding(10, 16) embedded_sentence = embed(sentence).detach() embedded_sentence.shape # - The goal is to compute the context vectors $\boldsymbol{z}^{(i)}=\sum_{j=1}^{T} \alpha_{i j} \boldsymbol{x}^{(j)}$, which involve attention weights $\alpha_{i j}$. # - In turn, the attention weights $\alpha_{i j}$ involve the $\omega_{i j}$ values # - Let's start with the $\omega_{i j}$'s first, which are computed as dot-products: # # $$\omega_{i j}=\boldsymbol{x}^{(i)^{\top}} \boldsymbol{x}^{(j)}$$ # # omega = torch.empty(8, 8) for i, x_i in enumerate(embedded_sentence): for j, x_j in enumerate(embedded_sentence): omega[i, j] = torch.dot(x_i, x_j) # - Actually, let's compute this more efficiently by replacing the nested for-loops with a matrix multiplication: omega_mat = embedded_sentence.matmul(embedded_sentence.T) torch.allclose(omega_mat, omega) # - Next, let's compute the attention weights by normalizing the "omega" values so they sum to 1 # # $$\alpha_{i j}=\frac{\exp \left(\omega_{i j}\right)}{\sum_{j=1}^{T} \exp \left(\omega_{i j}\right)}=\operatorname{softmax}\left(\left[\omega_{i j}\right]_{j=1 \ldots T}\right)$$ # # $$\sum_{j=1}^{T} \alpha_{i j}=1$$ attention_weights = F.softmax(omega, dim=1) attention_weights.shape # - We can conform that the columns sum up to one: attention_weights.sum(dim=1) # - Now that we have the attention weights, we can compute the context vectors $\boldsymbol{z}^{(i)}=\sum_{j=1}^{T} \alpha_{i j} \boldsymbol{x}^{(j)}$, which involve attention weights $\alpha_{i j}$ # - For instance, to compute the context-vector of the 2nd input element (the element at index 1), we can perform the following computation: x_2 = embedded_sentence[1, :] context_vec_2 = torch.zeros(x_2.shape) for j in range(8): x_j = embedded_sentence[j, :] context_vec_2 += attention_weights[1, j] * x_j context_vec_2 # - Or, more effiently, using linear algebra and matrix multiplication: context_vectors = torch.matmul( attention_weights, embedded_sentence) torch.allclose(context_vec_2, context_vectors[1]) # ### Parameterizing the self-attention mechanism: scaled dot-product attention torch.manual_seed(123) d = embedded_sentence.shape[1] U_query = torch.rand(d, d) U_key = torch.rand(d, d) U_value = torch.rand(d, d) x_2 = embedded_sentence[1] query_2 = U_query.matmul(x_2) key_2 = U_key.matmul(x_2) value_2 = U_value.matmul(x_2) keys = U_key.matmul(embedded_sentence.T).T torch.allclose(key_2, keys[1]) values = U_value.matmul(embedded_sentence.T).T torch.allclose(value_2, values[1]) omega_23 = query_2.dot(keys[2]) omega_23 omega_2 = query_2.matmul(keys.T) omega_2 attention_weights_2 = F.softmax(omega_2 / d**0.5, dim=0) attention_weights_2 #context_vector_2nd = torch.zeros(values[1, :].shape) #for j in range(8): # context_vector_2nd += attention_weights_2[j] * values[j, :] #context_vector_2nd context_vector_2 = attention_weights_2.matmul(values) context_vector_2 # ## Attention is all we need: introducing the original transformer architecture # ### Encoding context embeddings via multi-head attention torch.manual_seed(123) d = embedded_sentence.shape[1] one_U_query = torch.rand(d, d) h = 8 multihead_U_query = torch.rand(h, d, d) multihead_U_key = torch.rand(h, d, d) multihead_U_value = torch.rand(h, d, d) multihead_query_2 = multihead_U_query.matmul(x_2) multihead_query_2.shape multihead_key_2 = multihead_U_key.matmul(x_2) multihead_value_2 = multihead_U_value.matmul(x_2) multihead_key_2[2] stacked_inputs = embedded_sentence.T.repeat(8, 1, 1) stacked_inputs.shape multihead_keys = torch.bmm(multihead_U_key, stacked_inputs) multihead_keys.shape multihead_keys = multihead_keys.permute(0, 2, 1) multihead_keys.shape multihead_keys[2, 1] # index: [2nd attention head, 2nd key] multihead_values = torch.matmul(multihead_U_value, stacked_inputs) multihead_values = multihead_values.permute(0, 2, 1) multihead_z_2 = torch.rand(8, 16) linear = torch.nn.Linear(8*16, 16) context_vector_2 = linear(multihead_z_2.flatten()) context_vector_2.shape # ### Learning a language model: decoder and masked multi-head attention # ### Implementation details: positional encodings and layer normalization # --- # # Readers may ignore the next cell.
simfin/datasets.py
tom3131/simfin
231
12683362
########################################################################## # # Functions and classes for iterating over and loading all datasets, # variants and markets that are available for bulk download from SimFin. # ########################################################################## # SimFin - Simple financial data for Python. # www.simfin.com - www.github.com/simfin/simfin # See README.md for instructions and LICENSE.txt for license details. ########################################################################## import simfin as sf from simfin.load_info import load_info_datasets from collections import defaultdict from functools import partial, lru_cache import sys ########################################################################## # Lists of dataset names. @lru_cache() def datasets_all(): """ Return a list of strings with the names of all available datasets. """ # Load dict with info about all the datasets. info_datasets = load_info_datasets() # Create a list of just the dataset names. datasets = list(info_datasets) return datasets @lru_cache() def datasets_startswith(names): """ Return a list of strings with dataset names that begin with the given names. :param names: String or tuple of strings. :return: List of strings. """ # Load dict with info about all the datasets. info_datasets = load_info_datasets() # Create a list of just the dataset names. datasets = list(info_datasets) # Filter the datasets so we only get the ones that start with these names. datasets = list(filter(lambda s: s.startswith(names), datasets)) return datasets # List of dataset names that begin with 'income'. datasets_income = partial(datasets_startswith, names='income') datasets_income.__doc__ = 'List of dataset names that begin with \'income\'.' # List of dataset names that begin with 'balance'. datasets_balance = partial(datasets_startswith, names='balance') datasets_balance.__doc__ = 'List of dataset names that begin with \'balance\'.' # List of dataset names that begin with 'cashflow'. datasets_cashflow = partial(datasets_startswith, names='cashflow') datasets_cashflow.__doc__ = 'List of dataset names that begin with \'cashflow\'.' # List of dataset names that begin with either 'income', 'balance' or 'cashflow'. datasets_fundamental = partial(datasets_startswith, names=('income', 'balance', 'cashflow')) datasets_fundamental.__doc__ = 'List of dataset names with fundamental data.' # List of dataset names that begin with 'shareprices'. datasets_shareprices = partial(datasets_startswith, names='shareprices') datasets_shareprices.__doc__ = 'List of dataset names that begin with \'shareprices\'.' # List of dataset names that begin with 'derived'. datasets_derived = partial(datasets_startswith, names='derived') datasets_derived.__doc__ = 'List of dataset names that begin with \'derived\'.' ########################################################################## # Functions for iterating over and loading all datasets. def iter_all_datasets(datasets=None): """ Create a generator for iterating over all valid datasets, variants and markets. For example: .. code-block:: python for dataset, variant, market in iter_all_datasets(): print(dataset, variant, market) This only yields the names of the datasets, variants and markets, not the actual Pandas DataFrames, use :obj:`~simfin.datasets.load_all_datasets` or the :obj:`~simfin.datasets.AllDatasets` class for that. :param datasets: If `None` then iterate over all datasets. Otherwise if this is a string or list of strings, then only iterate over these datasets. """ # Load dict with info about all the datasets. info_datasets = load_info_datasets() # Only use the given datasets? if datasets is not None: # Create a new dict which only contains the given datasets. info_datasets = {k: v for k, v in info_datasets.items() if k in datasets} # Yield all valid combinations of datasets, variants and markets. for dataset, x in info_datasets.items(): # If the list of variants is empty, use a list with None, # otherwise the for-loop below would not yield anything. if len(x['variants']) > 0: variants = x['variants'] else: variants = [None] # If the list of markets is empty, use a list with None, # otherwise the for-loop below would not yield anything. if len(x['markets']) > 0: markets = x['markets'] else: markets = [None] for variant in variants: for market in markets: yield dataset, variant, market def load_all_datasets(**kwargs): """ Load all datasets and variants. Create and return a nested dict for fast lookup given dataset, variant and market names. Accepts the same args as the :obj:`~simfin.load.load` function, except for dataset, variant and market. For example, `refresh_days` can be set to 0 to ensure all datasets are downloaded again, which is useful for testing purposes. :return: Nested dict `dfs` with all datasets, variants and markets. Example: `dfs['income']['annual']['us']` is the dataset for annual Income Statements for the US market. """ # Initialize a dict that can be nested to any depth. dfs = defaultdict(lambda: defaultdict(dict)) # For all possible datasets, variants and markets. for dataset, variant, market in iter_all_datasets(): try: # Load the dataset and variant as a Pandas DataFrame. df = sf.load(dataset=dataset, variant=variant, market=market, **kwargs) # Add the Pandas DataFrame to the nested dict. dfs[dataset][variant][market] = df except Exception as e: # Exceptions can occur e.g. if the API key is invalid, or if there # is another server error, or if there is no internet connection. # Print the exception and continue. print(e, file=sys.stderr) # Set the Pandas DataFrame to None in the nested dict, # to indicate that it could not be loaded. dfs[dataset][variant][market] = None # Return the nested dict. It is a bit tricky to convert the # defaultdict to a normal dict, and it is not really needed, # so just return the defaultdict as it is. return dfs ########################################################################## class AllDatasets: """ Load all valid datasets, variants and markets as Pandas DataFrames. Also provide functions for easy lookup and iteration over datasets. """ def __init__(self, **kwargs): """ Accepts the same args as the :obj:`~simfin.load.load` function, except for dataset, variant and market. For example, `refresh_days` can be set to 0 to ensure all datasets are downloaded again, which is useful for testing purposes. """ # Load all datasets into a nested dict-dict. self._dfs = load_all_datasets(**kwargs) def get(self, dataset, variant=None, market=None): """ Return the Pandas DataFrame for a single dataset, variant and market. :param dataset: String with the dataset name. :param variant: String with the dataset's variant. :param market: String with the dataset's market. :return: Pandas DataFrame with the dataset. """ return self._dfs[dataset][variant][market] def iter(self, datasets=None, variants=None, markets=None): """ Iterate over all valid datasets, variants and markets, or only use the ones specified. For example: .. code-block:: python for dataset, variant, market, df in all_datasets.iter(): # dataset, variant and market are strings with the names. # df is a Pandas DataFrame with the actual data. :param datasets: Default is `None` which uses all valid datasets. Otherwise a list of strings with the dataset-names to use. :param variants: Default is `None` which uses all valid variants for a dataset. Otherwise a list of strings with the variant-names to use. :param markets: Default is `None` which uses all valid markets for a dataset. Otherwise a list of strings with the market-names to use. :return: Generator which iterates over: dataset (string), variant (string), market (string), df (Pandas DataFrame) """ # Load dict with info about all the datasets. info_datasets = load_info_datasets() # Use provided or all datasets? if datasets is None: datasets = datasets_all # For all datasets. for dataset in datasets: # Use provided or all valid variants for this dataset? if variants is not None: _variants = variants else: _variants = info_datasets[dataset]['variants'] # Use provided or all valid markets for this dataset? if markets is not None: _markets = markets else: _markets = info_datasets[dataset]['markets'] # For all the selected variants and markets. for variant in _variants: for market in _markets: # Get the Pandas DataFrame with the actual data. df = self.get(dataset=dataset, variant=variant, market=market) # Yield all the strings and the Pandas DataFrame. yield dataset, variant, market, df ##########################################################################
colour/models/rgb/datasets/nikon_n_gamut.py
rift-labs-developer/colour
1,380
12683370
# -*- coding: utf-8 -*- """ Nikon N-Gamut Colourspace ========================= Defines the *Nikon N-Gamut* colourspace: - :attr:`colour.models.RGB_COLOURSPACE_N_GAMUT`. References ---------- - :cite:`Nikon2018` : Nikon. (2018). N-Log Specification Document - Version 1.0.0 (pp. 1-5). Retrieved September 9, 2019, from http://download.nikonimglib.com/archive3/hDCmK00m9JDI03RPruD74xpoU905/\ N-Log_Specification_(En)01.pdf """ from colour.models.rgb import (RGB_Colourspace, log_encoding_NLog, log_decoding_NLog) from colour.models.rgb.datasets.itur_bt_2020 import ( PRIMARIES_BT2020, WHITEPOINT_NAME_BT2020, CCS_WHITEPOINT_BT2020, MATRIX_BT2020_TO_XYZ, MATRIX_XYZ_TO_BT2020) __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2020 - Colour Developers' __license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'PRIMARIES_N_GAMUT', 'WHITEPOINT_NAME_N_GAMUT', 'CCS_WHITEPOINT_N_GAMUT', 'MATRIX_N_GAMUT_TO_XYZ', 'MATRIX_XYZ_TO_N_GAMUT', 'RGB_COLOURSPACE_N_GAMUT' ] PRIMARIES_N_GAMUT = PRIMARIES_BT2020 """ *Nikon N-Gamut* colourspace primaries. Notes ----- The *Nikon N-Gamut* colourspace gamut is same as the "ITU-R BT.2020" wide colour gamut. PRIMARIES_N_GAMUT : ndarray, (3, 2) """ WHITEPOINT_NAME_N_GAMUT = WHITEPOINT_NAME_BT2020 """ *Nikon N-Gamut* colourspace whitepoint name. WHITEPOINT_NAME_N_GAMUT : unicode """ CCS_WHITEPOINT_N_GAMUT = CCS_WHITEPOINT_BT2020 """ *Nikon N-Gamut* colourspace whitepoint. CCS_WHITEPOINT_N_GAMUT : ndarray """ MATRIX_N_GAMUT_TO_XYZ = MATRIX_BT2020_TO_XYZ """ *Nikon N-Gamut* colourspace to *CIE XYZ* tristimulus values matrix. MATRIX_N_GAMUT_TO_XYZ : array_like, (3, 3) """ MATRIX_XYZ_TO_N_GAMUT = MATRIX_XYZ_TO_BT2020 """ *CIE XYZ* tristimulus values to *Nikon N-Gamut* colourspace matrix. MATRIX_XYZ_TO_N_GAMUT : array_like, (3, 3) """ RGB_COLOURSPACE_N_GAMUT = RGB_Colourspace( 'N-Gamut', PRIMARIES_N_GAMUT, CCS_WHITEPOINT_N_GAMUT, WHITEPOINT_NAME_N_GAMUT, MATRIX_N_GAMUT_TO_XYZ, MATRIX_XYZ_TO_N_GAMUT, log_encoding_NLog, log_decoding_NLog, ) RGB_COLOURSPACE_N_GAMUT.__doc__ = """ *Nikon N-Gamut* colourspace. References ---------- :cite:`Nikon2018` RGB_COLOURSPACE_N_GAMUT : RGB_Colourspace """
prediction_flow/transformers/column/base.py
dydcfg/prediction-flow
211
12683393
""" Base class for all column-orientation transformer classes with fit/transform functions. """ # Authors: <NAME> # License: MIT from abc import ABC, abstractmethod from enum import Enum class Column(ABC): """Base class for all column-orientation transformer classes with fit/transform functions. """ @abstractmethod def fit(self, x, y=None): """Fit this transformer. Parameters ---------- x : array-like One column of training data. y : array-like, default=None Training targets. """ raise NotImplementedError @abstractmethod def transform(self, x): """Transform x by this fitted transformer. Parameters ---------- x : array-like Column data to be transformed. """ raise NotImplementedError class ColumnType(Enum): NUMBER = 1 CATEGORY = 2 SEQUENCE = 3 class NumberColumn(Column): """Base class for all column-orientation number type transformer classes with fit/transform functions. """ column_type = ColumnType.NUMBER class CategoryColumn(Column): """Base class for all column-orientation category type transformer classes with fit/transform functions. """ column_type = ColumnType.CATEGORY @abstractmethod def dimension(self): """Number of unique terms. """ raise NotImplementedError class SequenceColumn(Column): """Base class for all column-orientation sequence type transformer classes with fit/transform functions. """ column_type = ColumnType.SEQUENCE @abstractmethod def dimension(self): """Number of unique terms. """ raise NotImplementedError @abstractmethod def max_length(self): """Maximum length of one sequence. """ raise NotImplementedError
codes/models/archs/dcn/__init__.py
Johnson-yue/mmsr
130
12683398
from .deform_conv import (DeformConv, DeformConvPack, ModulatedDeformConv, ModulatedDeformConvPack, deform_conv, modulated_deform_conv) __all__ = [ 'DeformConv', 'DeformConvPack', 'ModulatedDeformConv', 'ModulatedDeformConvPack', 'deform_conv', 'modulated_deform_conv' ]
aix360/data/ted_data/GenerateData.py
Qingtian-Zou/AIX360
609
12683400
# This file will generate a synthetic dataset to predict employee attrition # Like most datasets it will have a feature vector and a Y label for each instance. # However, unlike most datasets it will also have an Explanation (E) for each instance, encoded as an non-negative integer. # This is motivated by the TED framework, but can be used by other explainability algorithms as a metric for explainability # See the AIES'19 paper by Hind et al for more information on the TED framework. # See the tutorial notebook TED_Cartesian_test for information about how to use this dataset and the TED framework. # The comments in this code also provide some insight into how this dataset is generated import random from random import choices import pandas as pd Any = -99 # This is only applicable in the rule Low = -1 # These 3, Low, Med, High, can be values in the dataset and are used in the rules Med = -2 High = -3 Yes = -10 # This is the positive Y label No = -11 # This is the negative Y label Random = -12 # This signifies a random choice should be made for the Y label (either Yes or No) ] # Features, values, and distribution, details below featureThresholds = [ # 1 Position: 4(5%), 3(20%), 2(30%), 1(45%) [4, [0.05, 0.20, 0.30, 0.45]], # 2 Organization "Org": 3(30%); 2(30%); 1(40%) [3, [0.30, 0.30, 0.40]], # 3 Potential "Pot": Yes (50%), No (50%) [2, [0.50, 0.50]], # 4 Rating value "Rat": High(15%), Med(80%), Low(5%) [3, [0.15, 0.80, 0.05]], # 5 Rating Slope "Slope": High (15%), Med(80%), Low(5%) [3, [0.15, 0.80, 0.05]], # 6 Salary Competitiveness "Sal": High (10%); Med(70%); Low(20%) [3, [0.10, 0.70, 0.20]], # 7 Tenure Low "TenL" & High Values "TenH": [0..360], 30% in 0..24; 30% in 25..60; 40% in 61..360 [3, [0.30, 0.30, 0.40], [[0, 24], [25, 60], [61, 360]]], # 8 Position Tenure Low "BTenL" & High Values "BTenH": [0..360], 70% in 0..12; 20% in 13..24; 10% in 25..360 # Position tenure needs to be lower than tenure, ensured in generation code below [3, [0.70, 0.20, 0.10], [[0, 12], [13, 24], [25, 360]]] ] # Some convenient population lists HighMedLowPopulation = [High, Med, Low] YesNoPopulation = [Yes, No] Index3Population = [0, 1, 2] Integer4Population = [4, 3, 2, 1] Integer3Population = [3, 2, 1] # Rules used to label a feature vector with a label and an explanation # Format: features, label, explanation #, Explanation String RetentionRules = [ #POS ORG Pot RAT Slope SALC TENL H BTEN LH [Any, 1, Any, High, Any, Low, Any, Any, Any, Any, #0 Yes, 2, "Seeking Higher Salary in Org 1"], [1, 1, Any, Any, Any, Any, Any, Any, 15, Any, #1 Yes, 3, "Promotion Lag, Org 1, Position 1"], [2, 1, Any, Any, Any, Any, Any, Any, 15, Any, #2 Yes, 3, "Promotion Lag, Org 1, Position 2"], [3, 1, Any, Any, Any, Any, Any, Any, 15, Any, #3 Yes, 3, "Promotion Lag, Org 1, Position 3"], [1, 2, Any, Any, Any, Any, Any, Any, 20, Any, #4 Yes, 4, "Promotion Lag, Org 2, Position 1"], [2, 2, Any, Any, Any, Any, Any, Any, 20, Any, #5 Yes, 4, "Promotion Lag, Org 2, Position 2"], [3, 2, Any, Any, Any, Any, Any, Any, 30, Any, #6 Yes, 5, "Promotion Lag, Org 2, Position 3"], [1, 3, Any, Any, Any, Any, Any, Any, 20, Any, #7 Yes, 6, "Promotion Lag, Org 3, Position 1"], [2, 3, Any, Any, Any, Any, Any, Any, 30, Any, #8 Yes, 7, "Promotion Lag, Org 3, Position 2"], [3, 3, Any, Any, Any, Any, Any, Any, 30, Any, #9 Yes, 7, "Promotion Lag, Org 3, Position 3"], [1, 1, Any, Any, Any, Any, 0, 12, Any, Any, #10 Yes, 8, "New employee, Org 1, Position 1"], [2, 1, Any, Any, Any, Any, 0, 12, Any, Any, #11 Yes, 8, "New employee, Org 1, Position 2"], [3, 1, Any, Any, Any, Any, 0, 30, Any, Any, #12 Yes, 9, "New employee, Org 1, Position 3"], [1, 2, Any, Any, Any, Any, 0, 24, Any, Any, #13 Yes, 10, "New employee, Org 2, Position 1"], [2, 2, Any, Any, Any, Any, 0, 30, Any, Any, #14 Yes, 11, "New employee, Org 2, Position 2"], [Any, 1, Any, Low, High, Any, Any, Any, Any, Any, #15 Yes, 13, "Disappointing evaluation, Org 1"], [Any, 2, Any, Low, High, Any, Any, Any, Any, Any, #16 Yes, 14, "Disappointing evaluation, Org 2"], [Any, Any, Yes, Med, High, Low, Any, Any, Any, Any, #17 Yes, 15, "Compensation doesn't match evaluations, Med rating"], [Any, Any, Yes, High, High, Low, Any, Any, Any, Any, #18 Yes, 15, "Compensation doesn't match evaluations, High rating"], [Any, 1, Yes, Med, High, Med, Any, Any, Any, Any, #19 Yes, 16, "Compensation doesn't match evaluations, Org 1, Med rating"], [Any, 2, Yes, Med, High, Med, Any, Any, Any, Any, #20 Yes, 16, "Compensation doesn't match evaluations, Org 2, Med rating"], [Any, 1, Yes, High, High, Med, Any, Any, Any, Any, #21 Yes, 16, "Compensation doesn't match evaluations, Org 1, High rating"], [Any, 2, Yes, High, High, Med, Any, Any, Any, Any, #22 Yes, 16, "Compensation doesn't match evaluations, Org 2, High rating"], [Any, 1, Any, Any, Med, Med, 120, 180, Any, Any, #23 Yes, 17, "Mid-career crisis, Org 1"], [Any, 2, Yes, Any, Any, Med, 130, 190, Any, Any, #24 Yes, 18, "Mid-career crisis, Org 2"] ] def ruleValToString(val): """ Convert the value passed into a string """ if val == Any : return "Any" elif val == Low : return "Low" elif val == Med : return "Med" elif val == High : return "High" elif val == Yes : return "Yes" elif val == No : return "No" elif val == Random : return "Random" else : return str(val) def printFeatureStringHeader() : """ Print the feature headings """ print(" Feature Headings") print("[Pos, Org, Pot, Rating, Slope, Salary Competitiveness, Tenure, Position Tenure]") def featuresToString(featureVector) : """ Convert a feature vector into is string format""" val = "[" for i in range(0, 2) : # These features are just ints, Position, Organization val += str(featureVector[i]) val += " " for i in range(2, 6) : # show encoding for these: Potential, Rating, Rating Slope, Salary Competitiveness val += ruleValToString(featureVector[i]) val += " " for i in range(6, 8) : # These features are just ints: Tenure and Position Tenure val += str(featureVector[i]) val += " " val += "]" return val def printRule(rule) : """ Print the passed rule """ print("Rule: ", end='') for i in rule[0:1]: # ints or Any: Position and Organization if i == Any: print(ruleValToString(i) + ", ", end='') for i in rule[2:5]: # encoded: Potentional, Rating, Rating Slope, Salary Competitiveness print(ruleValToString(i) + ", ", end='') for i in rule[6:9]: # next 4 are ints or ANY: Tenure Low, Tenure High, Position Tenure Low, Position Tenure High if i == Any : print(ruleValToString(i) + ", ", end='') else : print(str(i) + ", ", end='') print("==> "+ ruleValToString(rule[10]) + "[" + str(rule[11]) + "] " + str(rule[12])) def printRules(rules) : """ print all rules""" for r in rules: printRule(r) ######################################################################## def chooseRangeValue(thresholds, rangeList): """ Generate a random value based on the probability weights (thresholds) and list of ranges passed Args: thresholds : list of probabilities for each choice rangeList: a list of pair lists giving the lower and upper bounds to choose value from """ # pick a number 1..3 from weights rangeVal = choices(Index3Population, thresholds) # get the appropriate range given rangeVal interval = rangeList[rangeVal[0]] # construct a population list from the result intervalPopulation = list(range(interval[0], interval[1])) # construct a equally prob weights list numElements = interval[1] - interval[0] probVal = 1.0 / numElements probList = [probVal] * numElements # now choose the value from the population based on the weights val = choices(intervalPopulation, probList) return val[0] def chooseValueAndAppend(instance, population, weights) : """ Choose a random value from the population using weights list and append it to the passed instance """ val = choices(population, weights) instance.append(val[0]) def generateFeatures(numInstances) : """ generate the features (X) values for the dataset Args: numInstances (int) : number of instances to genreate Returns: dataset (list of lists) : the dataset with features, but no labels or explanations yet """ assert(numInstances > 0) dataset = [] for i in range(numInstances) : instance = [] #POS ORG Pot Rating Slope SALC TENL H BTEN LH chooseValueAndAppend(instance, Integer4Population, featureThresholds[0][1]) # Position chooseValueAndAppend(instance, Integer3Population, featureThresholds[1][1]) # Org chooseValueAndAppend(instance, YesNoPopulation, featureThresholds[2][1]) # Potential chooseValueAndAppend(instance, HighMedLowPopulation, featureThresholds[3][1]) # Rating chooseValueAndAppend(instance, HighMedLowPopulation, featureThresholds[4][1]) # Rating slope chooseValueAndAppend(instance, HighMedLowPopulation, featureThresholds[5][1]) # Sal competitiveness val1 = chooseRangeValue(featureThresholds[6][1], featureThresholds[6][2]) # Tenure instance.append(val1) # Position tenure needs to be <= Tenure val2 = chooseRangeValue(featureThresholds[7][1], featureThresholds[7][2]) # Pos Tenure if val2 > val1 : val2 = val1 instance.append(val2) dataset.append(instance) return dataset ##################################################################################################### def match(ruleVal, featureVal) : """ Check if passed ruleVal matches the featureVal or if ruleVal is Any, which matches everything """ # print("Match called: "+ ruleValToString(ruleVal) + " " + ruleValToString(featureVal)) if ruleVal == Any : return True return (ruleVal == featureVal) def intervalMatch(ruleValLower, ruleValUpper, featureVal) : """ Check to see if featureVal is in the interval defined by [ruleValLower, ruleValUpper) """ # Any in lower bound matches all values, (upper bound doesn't matter) if ruleValLower == Any : return True if ruleValLower <= featureVal : # Any in upper bound means infinitity if featureVal < ruleValUpper or ruleValUpper == Any : return True return False def ruleMatch(rule, featureVector) : """ Determine if the passed featureVector matches the passed rule """ if (False) : print("ruleMatch called, ", end="") printRule(rule) print(" feature vector: " + featuresToString(featureVector) ) for i in range(0, 6) : # loop over first 6 features, 0..5 if not match(rule[i], featureVector[i]) : # if we don't find a feature match, the rule doesn't match # print("Didn't match feature #", i, ruleValToString(featureVector[i])) return False # These features are interval-based, so need a different matching routine if not intervalMatch(rule[6], rule[7], featureVector[6]) : # rule[6] and rule[7] have the lower and upper bounds of interval # print("Didn't match feature # 6: ", featureVector[6]) return False if not intervalMatch(rule[8], rule[9], featureVector[7]) : # rule[8] and rule[9] have the lower and upper bounds of interval # print("Didn't match feature # 7: ", featureVector[7]) return False # print("Matched all features") return True # if we didn't find a non-match by now, we found a match def findRule(instance, ruleSet) : """ find the rule(s) that matches the feture vector passed """ # print("*Looking for rule match for Feature vector: " + featuresToString(instance)) ruleNumber = 0 # counter to track rule number ruleMatches = [] # will hold all rule numbers that matched for rule in ruleSet : if (ruleMatch(rule, instance)) : ruleMatches.append(ruleNumber) counts[ruleNumber] += 1 # update global histogram of rule matches for stats reporting if (False) : print(" ruleMatch found at rule #" + str(ruleNumber)) print(" ", end="") printRule(rule) ruleNumber += 1 return ruleMatches def countAnys(rule) : """ Count the number of Anys in the passed rule. An "Any" is a wildcard that matches all values """ count = 0 for feature in RetentionRules[rule] : if feature == Any : count += 1 return count def pickBestRule(ruleList) : """ Choose the rule with the least number of Any's in it """ assert(len(ruleList) > 0) # print("ruleList: ", ruleList) minAnys = len(RetentionRules[0]) + 1 # initialize to a value larger than possible # of Anys in a rule bestRule = -1 for rule in ruleList : # Count # of Any's in rule # rule count = countAnys(rule) if count < minAnys : minAnys = count bestRule = rule assert(bestRule != -1) # We should find a best rule return bestRule def addLabelsAndExplanations(dataset, rules) : """ This function will use a ruleset to add labels (Y) and explanations/rules (E) to a passed dataset Arg: dataset (list of lists) : a list of feature vectors (list) rules (list of lists) : a list of rules """ noMatches = 0 # Counters to record how often there are no (Yes) matches, 1 (Yes) match, and multiple (Yes) matches multiMatches = 0 oneMatches = 0 for instance in dataset : ruleMatches = findRule(instance, rules) if len(ruleMatches) == 0 : # We didn't match a (Yes) rule, so this ia No situation rule = NoRiskRuleNum label = No noMatches +=1 elif len(ruleMatches) > 1 : # Matched multiple Yes rules, need to pick one rule = pickBestRule(ruleMatches) assert(rule >= 0 and rule < len(rules)) # Ensure rule number is valid label = Yes multiMatches += 1 else : # Found 1 Yes rule match, it's the winner rule = ruleMatches[0] label = Yes oneMatches += 1 assert(rule >= 0 and rule < len(rules)) # Ensure rule number is valid # print("Label: " + ruleValToString(label) + ", Rule: " + ruleValToString(rule)) instance.append(label) instance.append(rule) # add the label and explanation (rule #) to the featureVector if (True) : print("\nRule matching statistics: ") totalYes = oneMatches + multiMatches total = oneMatches + multiMatches + noMatches print(" Yes Labels: {}/{} ({:.2f}%)".format(totalYes, total, totalYes/total*100)) print(" Matched 1 Yes rule: {}/{} ({:.2f}%)".format(oneMatches, totalYes, oneMatches/totalYes*100)) print(" Matched multiple Yes rules: {}/{} ({:.2f}%)".format(multiMatches, totalYes, multiMatches/totalYes*100)) print(" No Laels: {}/{} ({:.2f}%)".format(noMatches, total, noMatches/total*100)) def printRuleUsage(counts, total) : print("\nHistogram of rule usage:") ruleNum = 0 for num in counts : print(" Rule {} was used {} times, {:.2f}%".format(ruleNum, num, num/total*100)) ruleNum += 1 numRentionRules = len(RetentionRules) counts = [0]*numRentionRules NoRiskRuleNum = numRentionRules # the No Risk to leave rule is 1 more than than the total rules [0..] random.seed(1) # printFeatureStringHeader() numInstances = 10000 dataset = generateFeatures(numInstances) addLabelsAndExplanations(dataset, RetentionRules) printRuleUsage(counts, numInstances) # insert TED headers NumFeatures = len(featureThresholds) header = list(range(NumFeatures)) header.append("Y") header.append("E") dataset.insert(0, header) # write to csv file my_df = pd.DataFrame(dataset) my_df.to_csv('Retention.csv', index=False, header=False)
graphene_django/tests/test_schema.py
mebel-akvareli/graphene-django
4,038
12683402
from py.test import raises from ..registry import Registry from ..types import DjangoObjectType from .models import Reporter def test_should_raise_if_no_model(): with raises(Exception) as excinfo: class Character1(DjangoObjectType): fields = "__all__" assert "valid Django Model" in str(excinfo.value) def test_should_raise_if_model_is_invalid(): with raises(Exception) as excinfo: class Character2(DjangoObjectType): class Meta: model = 1 fields = "__all__" assert "valid Django Model" in str(excinfo.value) def test_should_map_fields_correctly(): class ReporterType2(DjangoObjectType): class Meta: model = Reporter registry = Registry() fields = "__all__" fields = list(ReporterType2._meta.fields.keys()) assert fields[:-2] == [ "id", "first_name", "last_name", "email", "pets", "a_choice", "reporter_type", ] assert sorted(fields[-2:]) == ["articles", "films"] def test_should_map_only_few_fields(): class Reporter2(DjangoObjectType): class Meta: model = Reporter fields = ("id", "email") assert list(Reporter2._meta.fields.keys()) == ["id", "email"]
doc/examples/bench_command.py
Tada-Project/pyperf
225
12683409
#!/usr/bin/env python3 import sys import pyperf runner = pyperf.Runner() runner.bench_command('python_startup', [sys.executable, '-c', 'pass'])
library/mmap_test.py
creativemindplus/skybison
278
12683412
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. (http://www.facebook.com) import mmap import os import tempfile import unittest class MmapTest(unittest.TestCase): def test_new_with_wrong_class_raises_type_error(self): with self.assertRaises(TypeError) as context: mmap.mmap.__new__(list, -1, 1) self.assertIn("is not a sub", str(context.exception)) def test_new_with_non_int_fileno_raises_type_error(self): with self.assertRaises(TypeError) as context: mmap.mmap.__new__(mmap.mmap, "not-int", 1) self.assertIn("str", str(context.exception)) def test_new_with_non_int_length_raises_type_error(self): with self.assertRaises(TypeError) as context: mmap.mmap.__new__(mmap.mmap, -1, "not-int") self.assertIn("str", str(context.exception)) def test_new_with_non_int_flags_raises_type_error(self): with self.assertRaises(TypeError) as context: mmap.mmap.__new__(mmap.mmap, -1, 1, flags="not-int") self.assertIn("str", str(context.exception)) def test_new_with_non_int_prot_raises_type_error(self): with self.assertRaises(TypeError) as context: mmap.mmap.__new__(mmap.mmap, -1, 1, prot="not-int") self.assertIn("str", str(context.exception)) def test_new_with_non_int_access_raises_type_error(self): with self.assertRaises(TypeError) as context: mmap.mmap.__new__(mmap.mmap, -1, 1, access="not-int") self.assertIn("str", str(context.exception)) def test_new_with_non_int_offset_raises_type_error(self): with self.assertRaises(TypeError) as context: mmap.mmap.__new__(mmap.mmap, -1, 1, offset="not-int") self.assertIn("str", str(context.exception)) def test_new_with_negative_len_raises_overflow_error(self): with self.assertRaises(OverflowError) as context: mmap.mmap.__new__(mmap.mmap, -1, -1) self.assertEqual( "memory mapped length must be positive", str(context.exception) ) def test_new_with_negative_offset_raises_overflow_error(self): with self.assertRaises(OverflowError) as context: mmap.mmap.__new__(mmap.mmap, -1, 1, offset=-1) self.assertEqual( "memory mapped offset must be positive", str(context.exception) ) def test_new_that_sets_both_access_and_flags_raises_value_error(self): with self.assertRaises(ValueError) as context: mmap.mmap.__new__(mmap.mmap, -1, 1, flags=-1, access=1) self.assertEqual( "mmap can't specify both access and flags, prot.", str(context.exception) ) def test_new_that_sets_both_access_and_prot_raises_value_error(self): with self.assertRaises(ValueError) as context: mmap.mmap.__new__(mmap.mmap, -1, 1, prot=-1, access=1) self.assertEqual( "mmap can't specify both access and flags, prot.", str(context.exception) ) def test_new_that_sets_invalid_access_raises_value_error(self): with self.assertRaises(ValueError) as context: mmap.mmap.__new__(mmap.mmap, -1, 1, access=-1) self.assertEqual("mmap invalid access parameter.", str(context.exception)) def test_anonymous_mmap_can_be_closed(self): m = mmap.mmap(-1, 1) m.close() def test_mmap_of_empty_file_raises_value_error(self): with tempfile.TemporaryDirectory() as dir_path: fd, path = tempfile.mkstemp(dir=dir_path) with self.assertRaises(ValueError) as context: mmap.mmap(fd, 0) self.assertEqual("cannot mmap an empty file", str(context.exception)) os.close(fd) def test_mmap_of_file_with_bigger_offset_raises_value_error(self): with tempfile.TemporaryDirectory() as dir_path: fd, path = tempfile.mkstemp(dir=dir_path) os.write(fd, b"Hello") with self.assertRaises(ValueError) as context: mmap.mmap(fd, 0, offset=10) self.assertEqual( "mmap offset is greater than file size", str(context.exception) ) os.close(fd) def test_mmap_of_file_with_bigger_length_raises_value_error(self): with tempfile.TemporaryDirectory() as dir_path: fd, path = tempfile.mkstemp(dir=dir_path) os.write(fd, b"Hello") with self.assertRaises(ValueError) as context: mmap.mmap(fd, 10) self.assertEqual( "mmap length is greater than file size", str(context.exception) ) os.close(fd) def test_mmap_of_file_with_nonexistant_file_raises_os_error(self): with tempfile.TemporaryDirectory() as dir_path: fd, path = tempfile.mkstemp(dir=dir_path) os.close(fd) os.remove(path) with self.assertRaises(OSError) as context: mmap.mmap(fd, 0) self.assertEqual("[Errno 9] Bad file descriptor", str(context.exception)) def test_mmap_of_file_with_directory(self): with tempfile.TemporaryDirectory() as dir_path: fd = os.open(dir_path, os.O_RDONLY) with self.assertRaises(OSError): mmap.mmap(fd, 0) os.close(fd) def test_mmap_of_file_with_zero_length_gets_file_size(self): with tempfile.TemporaryDirectory() as dir_path: fd, path = tempfile.mkstemp(dir=dir_path) os.write(fd, b"Hello") m = mmap.mmap(fd, 0) view = memoryview(m) self.assertEqual(view.nbytes, 5) os.close(fd) def test_mmap_of_file_can_write_to_file(self): with tempfile.TemporaryDirectory() as dir_path: fd, path = tempfile.mkstemp(dir=dir_path) os.write(fd, b"Hello") m = mmap.mmap(fd, 3) view = memoryview(m) self.assertEqual(view.nbytes, 3) view[:3] = b"foo" os.close(fd) with open(path) as f: result = f.read() self.assertEqual(result, "foolo") def test_mmap_of_file_with_readonly_prot_is_readonly(self): with tempfile.TemporaryDirectory() as dir_path: fd, path = tempfile.mkstemp(dir=dir_path) os.write(fd, b"Hello") m = mmap.mmap(fd, 3, prot=mmap.PROT_READ) view = memoryview(m) self.assertEqual(view.nbytes, 3) with self.assertRaises(TypeError) as context: view[:3] = b"foo" self.assertEqual("cannot modify read-only memory", str(context.exception)) os.close(fd) def test_mmap_of_file_with_private_memory_doesnt_map_changes_to_file(self): with tempfile.TemporaryDirectory() as dir_path: fd, path = tempfile.mkstemp(dir=dir_path) os.write(fd, b"Hello") m = mmap.mmap(fd, 3, flags=mmap.MAP_PRIVATE) view = memoryview(m) self.assertEqual(view.nbytes, 3) view[:3] = b"foo" os.close(fd) with open(path) as f: result = f.read() self.assertEqual(result, "Hello") def test_prot_constants_are_all_different(self): self.assertNotEqual(mmap.PROT_EXEC, mmap.PROT_READ) self.assertNotEqual(mmap.PROT_READ, mmap.PROT_WRITE) self.assertNotEqual(mmap.PROT_WRITE, mmap.PROT_EXEC) if __name__ == "__main__": unittest.main()
Tools/Scenarios/visualize.py
ErQing/Nova
212
12683415
<reponame>ErQing/Nova #!/usr/bin/env python3 import numpy as np import skimage.io import sobol_seq from luaparser import astnodes from nova_script_parser import get_node_name, parse_chapters, walk_functions in_filename = 'scenario.txt' out_filename = 'scenario.png' MONOLOGUE_COLOR = (128, 128, 128) BG_NONE_COLOR = (0, 0, 0) BGM_NONE_COLOR = (0, 0, 0) dialogue_width = 32 bg_width = 4 bgm_width = 4 str_to_color_config = { 'black': (0, 0, 0), 'white': (255, 255, 255), } bg_suffixes = ['blur'] str_to_color_cache = {} str_to_color_seed = 2 def str_to_color(s): global str_to_color_seed if s in str_to_color_config: return str_to_color_config[s] if s in str_to_color_cache: return str_to_color_cache[s] rgb, str_to_color_seed = sobol_seq.i4_sobol(3, str_to_color_seed) rgb = (rgb * 192).astype(int) + 64 rgb = rgb.tolist() str_to_color_cache[s] = rgb return rgb def normalize_bg_name(s): tokens = s.split('_') while tokens[-1].isnumeric() or tokens[-1] in bg_suffixes: tokens = tokens[:-1] out = '_'.join(tokens) return out def chapter_to_tape(entries, chara_set, bg_set, timeline_set, bgm_set): tape = [] dialogue_color = MONOLOGUE_COLOR bg_color = BG_NONE_COLOR timeline_color = BG_NONE_COLOR bgm_color = BGM_NONE_COLOR for code, chara_name, _ in entries: if chara_name: chara_set.add(chara_name) dialogue_color = str_to_color(chara_name) else: dialogue_color = MONOLOGUE_COLOR if code: for func_name, args, _ in walk_functions(code): if (func_name in [ 'show', 'trans', 'trans2', 'trans_fade', 'trans_left', 'trans_right', 'trans_up', 'trans_down' ] and args and get_node_name(args[0]) == 'bg' and isinstance(args[1], astnodes.String)): bg_name = normalize_bg_name(args[1].s) bg_set.add(bg_name) bg_color = str_to_color(bg_name) elif (func_name == 'show_loop' and args and get_node_name(args[0]) == 'bg'): bg_name = normalize_bg_name(args[1].fields[0].value.s) bg_set.add(bg_name) bg_color = str_to_color(bg_name) elif (func_name == 'hide' and args and get_node_name(args[0]) == 'bg'): bg_color = BG_NONE_COLOR elif func_name == 'timeline': timeline_name = args[0].s timeline_set.add(timeline_name) timeline_color = str_to_color(timeline_name) elif func_name == 'timeline_hide': timeline_color = BG_NONE_COLOR elif (func_name in ['play', 'fade_in'] and args and get_node_name(args[0]) == 'bgm'): bgm_name = args[1].s bgm_set.add(bgm_name) bgm_color = str_to_color(bgm_name) elif (func_name in ['stop', 'fade_out'] and args and get_node_name(args[0]) == 'bgm'): bgm_color = BGM_NONE_COLOR if bg_color != BG_NONE_COLOR: _bg_color = bg_color else: _bg_color = timeline_color tape.append((dialogue_color, _bg_color, bgm_color)) return tape def tapes_to_img(tapes): tape_width = dialogue_width + bg_width + bgm_width img_height = max(len(tape) for tape in tapes) img = np.zeros([img_height, len(tapes) * tape_width, 3], dtype=np.uint8) for tape_idx, tape in enumerate(tapes): img_tape = img[:, tape_idx * tape_width:(tape_idx + 1) * tape_width:, :] for idx, (dialogue_color, bg_color, bgm_color) in enumerate(tape): img_tape[idx, :dialogue_width, :] = dialogue_color img_tape[idx, dialogue_width:dialogue_width + bg_width, :] = bg_color img_tape[idx, dialogue_width + bg_width:, :] = bgm_color return img def main(): with open(in_filename, 'r', encoding='utf-8') as f: chapters = parse_chapters(f) tapes = [] chara_set = set() bg_set = set() timeline_set = set() bgm_set = set() for chapter_name, entries, _, _ in chapters: print(chapter_name) tapes.append( chapter_to_tape(entries, chara_set, bg_set, timeline_set, bgm_set)) print() print('Characters:') for x in sorted(chara_set): print(x) print() print('Backgrounds:') for x in sorted(bg_set): print(x) print() print('Timelines:') for x in sorted(timeline_set): print(x) print() print('BGM:') for x in sorted(bgm_set): print(x) print() img = tapes_to_img(tapes) skimage.io.imsave(out_filename, img) if __name__ == '__main__': main()
python_legacy/iceberg/core/base_transaction.py
x-malet/iceberg
502
12683426
<reponame>x-malet/iceberg # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import enum from iceberg.api import (Table, Transaction) from iceberg.core import TableOperations from iceberg.exceptions import CommitFailedException class BaseTransaction(Transaction): @staticmethod def replace_table_transaction(ops, start): return BaseTransaction(ops, start) @staticmethod def create_table_transaction(ops, start): if ops.current() is not None: raise RuntimeError("Cannot start create table transaction: table already exists") @staticmethod def new_transaction(ops): return BaseTransaction(ops, ops.refesh()) def __init__(self, ops, start): self.ops = ops self.updates = list() self.intermediate_snapshot_ids = set() self.base = ops.current if self.base is None and start is None: self.type = TransactionType.CREATE_TABLE elif self.base is not None and start != self.base: self.type = TransactionType.REPLACE_TABLE else: self.type = TransactionType.SIMPLE self.last_base = None self.current = start self.transaction_table = TransactionTable(self, self.current) self.transaction_ops = TransactionTableOperations def table(self): return self.transaction_table # NOTE: function name has typo in the word `comitted`. Kept for backwards compatability in legacy python API. def check_last_operation_commited(self, operation): if self.last_base == self.current: raise RuntimeError("Cannot create new %s: last operation has not committed" % operation) self.last_base = self.current def update_schema(self): self.check_last_operation_commited("UpdateSchema") @staticmethod def current_id(meta): if meta is not None and meta.current_snapshot() is not None: return meta.current_snapshot().snapshot_id class TransactionType(enum.Enum): CREATE_TABLE = 0 REPLACE_TABLE = 1 SIMPLE = 1 class TransactionTableOperations(TableOperations): def __init__(self, bt): self._bt = bt def current(self): return self._bt.current def refresh(self): return self._bt.current def commit(self, base, metadata): if base != self.current(): raise CommitFailedException("Table metadata refresh is required") old_id = BaseTransaction.current_id(self._bt.current) if old_id is not None and old_id not in (BaseTransaction.current_id(metadata), BaseTransaction.current_id(base)): self._bt.intermediate_snapshot_ids.add(old_id) self._bt.current = metadata def io(self): return self._bt.ops.io() def metadata_file_location(self, file): return self._bt.ops.metadata_file_location(file) def new_snapshot_id(self): return self._bt.ops.new_snapshot_id() class TransactionTable(Table): def __init__(self, bt, current): self.bt = bt self.current = current def refresh(self): pass def new_scan(self): raise RuntimeError("Transaction tables do not support scans") def schema(self): return self.current.schema def spec(self): return self.current.spec def properties(self): return self.current.properties def location(self): return self.current.location def current_snapshot(self): return self.current.current_snapshot() def snapshots(self): return self.current.snapshots def update_schema(self): return self.bt.update_schema() def update_properties(self): return self.bt.update_properties() def update_location(self): return self.bt.update_location() def new_append(self): return self.bt.new_append() def new_rewrite(self): return self.bt.new_rewrite() def new_overwrite(self): return self.bt.new_overwrite() def new_replace_partitions(self): return self.bt.new_replace_partitions() def new_delete(self): return self.bt.new_delete() def expire_snapshots(self): return self.bt.expire_snapshots() def rollback(self): raise RuntimeError("Transaction tables do not support rollback") def new_transaction(self): raise RuntimeError("Cannot create a transaction within a transaction")
torchdyn/numerics/__init__.py
iisabeller/torchdyn
825
12683429
<reponame>iisabeller/torchdyn # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torchdyn.numerics.solvers import Euler, RungeKutta4, Tsitouras45, DormandPrince45, AsynchronousLeapfrog, MSZero, MSBackward from torchdyn.numerics.hypersolvers import HyperEuler from torchdyn.numerics.odeint import odeint, odeint_symplectic, odeint_mshooting, odeint_hybrid from torchdyn.numerics.systems import VanDerPol, Lorenz __all__ = ['odeint', 'odeint_symplectic', 'Euler', 'RungeKutta4', 'DormandPrince45', 'Tsitouras45', 'AsynchronousLeapfrog', 'HyperEuler', 'MSZero', 'MSBackward', 'Lorenz', 'VanDerPol']
internal/common/expand_variables.bzl
kriswuollett/rules_nodejs
645
12683434
<reponame>kriswuollett/rules_nodejs # Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions to expand "make" variables of form $(VAR) """ def expand_variables(ctx, s, outs = [], output_dir = False, attribute_name = "args"): """This function is the same as ctx.expand_make_variables with the additional genrule-like substitutions of: - $@: The output file if it is a single file. Else triggers a build error. - $(@D): The output directory. If there is only one file name in outs, this expands to the directory containing that file. If there are multiple files, this instead expands to the package's root directory in the bin tree, even if all generated files belong to the same subdirectory! - $(RULEDIR): The output directory of the rule, that is, the directory corresponding to the name of the package containing the rule under the bin tree. See https://docs.bazel.build/versions/main/be/general.html#genrule.cmd and https://docs.bazel.build/versions/main/be/make-variables.html#predefined_genrule_variables for more information of how these special variables are expanded. """ rule_dir = [f for f in [ ctx.bin_dir.path, ctx.label.workspace_root, ctx.label.package, ] if f] additional_substitutions = {} if output_dir: if s.find("$@") != -1 or s.find("$(@)") != -1: fail("""$@ substitution may only be used with output_dir=False. Upgrading rules_nodejs? Maybe you need to switch from $@ to $(@D) See https://github.com/bazelbuild/rules_nodejs/releases/tag/0.42.0""") # We'll write into a newly created directory named after the rule output_dir = [f for f in [ ctx.bin_dir.path, ctx.label.workspace_root, ctx.label.package, ctx.label.name, ] if f] else: if s.find("$@") != -1 or s.find("$(@)") != -1: if len(outs) > 1: fail("""$@ substitution may only be used with a single out Upgrading rules_nodejs? Maybe you need to switch from $@ to $(RULEDIR) See https://github.com/bazelbuild/rules_nodejs/releases/tag/0.42.0""") if len(outs) == 1: additional_substitutions["@"] = outs[0].path output_dir = outs[0].dirname.split("/") else: output_dir = rule_dir[:] # The list comprehension removes empty segments like if we are in the root package additional_substitutions["@D"] = "/".join([o for o in output_dir if o]) additional_substitutions["RULEDIR"] = "/".join([o for o in rule_dir if o]) return ctx.expand_make_variables(attribute_name, s, additional_substitutions)
apps/base/models/tax.py
youssriaboelseod/pyerp
115
12683455
<reponame>youssriaboelseod/pyerp # Django Library from django.db import models from django.utils.translation import ugettext_lazy as _ # Localfolder Library from .father import PyFather class PyTax(PyFather): name = models.CharField(_("Name"), max_length=255) amount = models.DecimalField(_("Amount"), max_digits=10, decimal_places=2, default=0) include_price = models.BooleanField(_("Include Price"), default=True, blank=True, null=True) def __str__(self): return self.name class Meta: verbose_name = _("Tax") verbose_name_plural = _("PyTax")
reporting/basic/bin/rep.py
ga4gh/benchmarking-tools
157
12683464
<reponame>ga4gh/benchmarking-tools #!/usr/bin/env python # coding=utf-8 # # Create simple reports from GA4GH benchmarking results # # Usage: # # For usage instructions run with option --help # # Author: # # <NAME> <<EMAIL>> # import sys import os import json import argparse import jinja2 import gzip import copy TEMPLATEDIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src", "html")) LIBDIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src", "python")) sys.path.append(os.path.abspath(os.path.join(LIBDIR))) import report.metrics def extract_metrics(metrics): """ Extract metrics and get data for tables. This function takes a list of ROC values, and separates out the summary values (which go into the tables) and the ROC datapoints (which are drawn). :param metrics: a list of metrics as read by report.metrics :return: { "snp/indel_table" : ... , "snp/indel_roc": ... } """ data_subset = [d.to_dict() for d in metrics if d.type in ["SNP", "INDEL"] and d.filter in ["ALL", "PASS"] and d.genotype == "*"] data_subset_snp = [d for d in data_subset if d["type"] == "SNP" and d["subtype"] == "*"] data_subset_indel = [d for d in data_subset if d["type"] == "INDEL"] data_subset_snp.sort(key=lambda x: x["subset"]) def _indel_type_order(t): """ sort indel subtypes """ ordering = { "D1_5": 1, "I1_5": 2, "C1_5": 3, "D6_15": 4, "I6_15": 5, "C6_15": 6, "D16_PLUS": 7, "I16_PLUS": 8, "C16_PLUS": 9 } try: return ordering[t] except: return 1000 data_subset_indel.sort(key=lambda x: [x["subset"], _indel_type_order(x["subtype"])]) data_subset_snp_roc = [copy.copy(d) for d in data_subset_snp if d["subtype"] == "*" and d["subset"] == "*"] data_subset_indel_roc = [copy.copy(d) for d in data_subset_indel if d["subtype"] == "*" and d["subset"] == "*"] # these just get turned into tables, so we don't need the ROC values for d in data_subset_snp: del d["roc"] for d in data_subset_indel: del d["roc"] qq_fields = list(set([x.qq_field for x in metrics])) # 3. run Jinja2 to make the HTML page return { "snp_table": json.dumps(json.dumps(data_subset_snp)), "snp_roc": json.dumps(json.dumps(data_subset_snp_roc)), "indel_table": json.dumps(json.dumps(data_subset_indel)), "indel_roc": json.dumps(json.dumps(data_subset_indel_roc)), "qq_fields": qq_fields, } def main(): parser = argparse.ArgumentParser(description="Create a variant calling report.") parser.add_argument("input", help="Input file in GA4GH metrics CSV format. " "To label multiple results, use the following pattern: " "rep.py gatk-3_vcfeval-giab:gatk3.roc.all.csv.gz -o test.html ; this will" "use the label gatk-3 for 'Method', and vcfeval-giab for the " "'Comparison' header.", nargs="*") parser.add_argument("-o", "--output", help="Output file name for reports, e.g. 'report' to write " "report.html", required=True) parser.add_argument("--roc-max-datapoints", help="Maximum number of data points in a ROC (higher numbers might slow down our plotting)", dest="roc_datapoints", type=int, default=1000) parser.add_argument("--roc-resolution", help="Minimum difference in precision / recall covered by the ROC curves.", dest="roc_diff", type=float, default=0.005) parser.add_argument("--min-recall", help="Minimum recall for ROC curves (use to reduce size of output file by " "clipping the bits of the ROC that are not meaningful)", dest="min_recall", type=float, default=0.2) parser.add_argument("--min-precision", help="Minimum precision for ROC curves (use to reduce size of output file by" " clipping the bits of the ROC that are not meaningful)", dest="min_precision", type=float, default=0.0) args = parser.parse_args() # 1. Read input files if args.output.endswith(".gz"): args.output = gzip.GzipFile(args.output, "w") elif not args.output.endswith(".html"): args.output += ".html" metrics = [] for i in args.input: l = i.split(":") method_label = "default" cmethod_label = "default" if len(l) <= 1: rfiles = [l[0]] else: rfiles = l[1:] labels = l[0].split("_") if len(labels) > 0: method_label = labels[0] if len(labels) > 1: cmethod_label = labels[1] print "reading %s as %s / %s" % (str(rfiles), method_label, cmethod_label) row_metrics = report.metrics.read_qfy_csv(rfiles, method=method_label, cmethod=cmethod_label, roc_metrics=["METRIC.Precision", "METRIC.Recall"], roc_diff=args.roc_diff, max_data_points=args.roc_datapoints, minmax={"METRIC.Precision": {"min": args.min_precision}, "METRIC.Recall": {"min": args.min_recall}} ) metrics += row_metrics if not metrics: raise Exception("No inputs specified.") # 2. Subset data, only read SNP / indel, ALL, PASS template_vars = extract_metrics(metrics) # 3. render template loader = jinja2.FileSystemLoader(searchpath=TEMPLATEDIR) env = jinja2.Environment(loader=loader) template = env.get_template("report.jinja2.html") template.stream(**template_vars).dump(args.output) if __name__ == '__main__': main()
examples/TodoMVC/main.py
splashelec/atlas-python
221
12683465
<gh_stars>100-1000 """ MIT License Copyright (c) 2018 <NAME> (https://q37.info/s/rmnmqd49) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os, sys os.chdir(os.path.dirname(os.path.realpath(__file__))) sys.path.append("../../atlastk") import atlastk class TodoMVC: def __init__(self): self.exclude = None self.index = -1 self.todos = [] if False: # Set to 'True' for testing purpose. self.todos.append({"label": "Todo 1", "completed": False }) self.todos.append({"label": "Todo 2", "completed": True }) def items_left(self): count = 0 for index in range(len(self.todos)): if not self.todos[index]['completed']: count += 1 return count def push(self, todo, id, xml): xml.push_tag("Todo") xml.put_attribute("id", id) xml.put_attribute("completed", "true" if todo['completed'] else "false") xml.putValue(todo['label']) xml.pop_tag() def display_count(self, dom, count): text = "" if count == 1: text = "1 item left" elif count != 0: text = str(count) + " items left" dom.set_value("Count", text) def handle_count(self, dom): count = self.items_left() if count != len(self.todos): dom.disable_element("HideClearCompleted") else: dom.enable_element("HideClearCompleted") self.display_count(dom, count) def display_todos(self, dom): xml = atlastk.create_XML("XDHTML") xml.push_tag("Todos") for index in range(len(self.todos)): todo = self.todos[index] if (self.exclude == None) or (todo['completed'] != self.exclude): self.push(todo, index, xml) xml.pop_tag() dom.inner("Todos", xml, "Todos.xsl") self.handle_count(dom) def submit_new(self, dom): value = dom.get_value("Input").strip() dom.set_value("Input", "") if value: self.todos.insert(0, {'label': value, 'completed': False}) self.display_todos(dom) def submit_modification(self, dom): index = self.index self.index = -1 value = dom.get_value("Input." + str(index)).strip() dom.set_value("Input." + str(index), "") if value: self.todos[index]['label'] = value dom.set_value("Label." + str(index), value) dom.remove_classes({"View." + str(index): "hide", "Todo." + str(index): "editing"}) else: self.todos.pop(index) self.displayTodos(dom) def ac_connect(self, dom): dom.inner("", open("Main.html").read()) dom.focus("Input") self.display_todos(dom) dom.disable_elements(["HideActive", "HideCompleted"]) def ac_destroy(self, dom, id): self.todos.pop(int(dom.get_mark(id))) self.display_todos(dom) def ac_toggle(self, dom, id): index = int(id) self.todos[index]['completed'] = not self.todos[index]['completed'] dom.toggle_class("Todo." + id, "completed") dom.toggle_class("Todo." + id, "active") self.handle_count(dom) def ac_all(self, dom): self.exclude = None dom.add_class("All", "selected") dom.remove_classes({"Active": "selected", "Completed": "selected"}) dom.disable_elements(["HideActive", "HideCompleted"]) def ac_active(self, dom): self.exclude = True dom.add_class("Active", "selected") dom.remove_classes({"All": "selected", "Completed": "selected"}) dom.disable_element("HideActive") dom.enable_element("HideCompleted") def ac_completed(self, dom): self.exclude = False dom.add_class("Completed", "selected") dom.remove_classes({"All": "selected", "Active": "selected"}) dom.disable_element("HideCompleted") dom.enable_element("HideActive") def ac_clear(self, dom): index = len(self.todos) while index: index -= 1 if self.todos[index]['completed']: self.todos.pop(index) self.display_todos(dom) def ac_edit(self, dom, id): value = dom.get_mark(id) self.index = int(value) dom.add_classes({"View." + value: "hide", id: "editing"}) dom.set_value("Input." + value, self.todos[self.index]['label']) dom.focus("Input." + value) def ac_cancel(self, dom): index = str(self.index) self.index = -1 dom.set_value("Input." + index, "") dom.remove_classes({"View." + index: "hide", "Todo." + index: "editing"}) callbacks = { "": ac_connect, "Submit": lambda self, dom: self.submit_new(dom) if self.index == -1 else self.submit_modification(dom), "Destroy": ac_destroy, "Toggle": ac_toggle, "All": ac_all, "Active": ac_active, "Completed": ac_completed, "Clear": ac_clear, "Edit": ac_edit, "Cancel": ac_cancel, } atlastk.launch(callbacks, TodoMVC, open("HeadFaaS.html").read())
examples/cross_val/scripts/generate_folds.py
ClementMayer/substra
119
12683483
# Copyright 2018 Owkin, inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import numpy as np from sklearn.model_selection import KFold N_FOLDS = 4 current_directory = os.path.dirname(__file__) assets_keys_path = os.path.join(current_directory, '../../titanic/assets_keys.json') print(f'Loading existing asset keys from {os.path.abspath(assets_keys_path)}...') with open(assets_keys_path, 'r') as f: assets_keys = json.load(f) train_data_sample_keys = assets_keys['train_data_sample_keys'] print('Generating folds...') X = np.array(train_data_sample_keys) kf = KFold(n_splits=N_FOLDS, shuffle=True) folds = [ { 'train_data_sample_keys': list(X[train_index]), 'test_data_sample_keys': list(X[test_index]) } for train_index, test_index in kf.split(X) ] with open(os.path.join(current_directory, '../folds_keys.json'), 'w') as f: json.dump({'folds': folds}, f, indent=2) print(f'Folds keys have been saved to {os.path.abspath(assets_keys_path)}')
venv/Lib/site-packages/tzlocal/__init__.py
ajayiagbebaku/NFL-Model
137
12683492
<gh_stars>100-1000 import sys if sys.platform == "win32": from tzlocal.win32 import ( get_localzone, get_localzone_name, reload_localzone, ) # pragma: no cover else: from tzlocal.unix import get_localzone, get_localzone_name, reload_localzone __all__ = ["get_localzone", "get_localzone_name", "reload_localzone"]
setup.py
german-levi/django-hitcount
348
12683495
# -*- coding: utf-8 -*- import os from setuptools import setup hitcount = __import__('hitcount') README = open(os.path.join(os.path.dirname(__file__), 'README.rst')).read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name="django-hitcount", version=hitcount.__version__, include_package_data=True, packages=['hitcount'], url='http://github.com/thornomad/django-hitcount', license='BSD', description="Hit counting application for Django.", long_description=README, author='<NAME>', author_email='<EMAIL>', install_requires=[ 'django-etc>=1.2.0', ], classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Plugins', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries :: Python Modules', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], zip_safe=False, )
tests/detection/test_node_merger.py
grischard/OSMDeepOD
156
12683501
import pytest from src.base.node import Node from src.data.osm.node_merger import NodeMerger @pytest.fixture(scope="module") def node_list(): n1 = Node(7.41275611, 46.922925, 1) n2 = Node(7.41275612, 46.922925, 2) n3 = Node(7.41275613, 46.922925, 3) n4 = Node(8.412797, 46.922942, 4) n5 = Node(8.412797, 46.922941, 5) return [n1, n2, n3, n4, n5] @pytest.fixture(scope="module") def same_node(): return Node(46.78351333884473, 8.159137666225423, 10) @pytest.fixture(scope="module") def big_node_list(): return [Node(47.09572760391754, 9.354246854782108, 0.0), Node(47.09569108531167, 9.353826284408573, 0.0), Node(47.095734907638715, 9.353978633880619, 0.0), Node(47.091450260764105, 9.347023665904997, 0.0), Node(47.09598323415865, 9.353849887847904, 0.0), Node(47.09582072636252, 9.354110956192018, 0.0), Node(47.095880982062205, 9.353635311126713, 0.0), Node(47.09582255229281, 9.353581666946415, 0.0)] def test_get_neighbors(node_list): merger = NodeMerger(node_list) merger._generate_near_dict() result_list = merger._get_neighbors(node_list[0]) assert len(result_list) == 3 result_list = merger._get_neighbors(node_list[3]) assert len(result_list) == 2 def test_reduce(node_list): merger = NodeMerger(node_list) merged_nodes = merger.reduce() assert len(merged_nodes) == 2 def test_reduce_same_points(same_node): merger = NodeMerger([same_node, same_node]) merged_nodes = merger.reduce() assert len(merged_nodes) == 1 def test_reduce_not_same_points(same_node): node = Node(46.78351333884473, 8.159137666225423, 0) merger = NodeMerger([node, same_node]) merged_nodes = merger.reduce() assert len(merged_nodes) == 1 def test_node_merger(big_node_list): merger = NodeMerger(big_node_list, 30) nodes = merger.reduce() assert len(nodes) == 2
python/src/vmaf/svmutil.py
aachenmax/vmaf
2,874
12683525
<reponame>aachenmax/vmaf<gh_stars>1000+ # TODO: dependency on src/libsvm/svmutil needs to be properly done, this is a temporary workaround wrapper from __future__ import absolute_import import sys from vmaf.config import VmafConfig # This will work only when running with a checked out vmaf source, but not via pip install libsvm_path = VmafConfig.root_path('third_party', 'libsvm', 'python') if libsvm_path not in sys.path: # Inject {project}/src/libsvm/python to PYTHONPATH dynamically sys.path.append(libsvm_path) try: # This import will work only if above injection was meaningful (ie: user has the files in the right place) from svmutil import * # noqa except ImportError as e: print("Can't import svmutil from %s: %s" % (libsvm_path, e)) sys.exit(1)
Lib/site-packages/faker/utils/datasets.py
Nibraz15/FullTextSearch
412
12683549
# coding=utf-8 import operator from collections import Counter from functools import reduce def add_dicts(*args): """ Adds two or more dicts together. Common keys will have their values added. For example:: >>> t1 = {'a':1, 'b':2} >>> t2 = {'b':1, 'c':3} >>> t3 = {'d':4} >>> add_dicts(t1, t2, t3) {'a': 1, 'c': 3, 'b': 3, 'd': 4} """ counters = [Counter(arg) for arg in args] return dict(reduce(operator.add, counters))
diffengine/sendgrid.py
jcoffi/diffengine
175
12683576
<filename>diffengine/sendgrid.py import logging from datetime import datetime from sendgrid import Mail, Bcc, SendGridAPIClient from diffengine.exceptions.sendgrid import ( AlreadyEmailedError, SendgridConfigNotFoundError, SendgridArchiveUrlNotFoundError, ) class SendgridHandler: api_token = None sender = None recipients = None def __init__(self, config): if not all(["api_token" in config, "sender" in config, "recipients" in config]): logging.warning( "No global config found for sendgrid, expecting config set for each feed" ) self.api_token = config.get("api_token") self.sender = config.get("sender") self.recipients = self.build_recipients(config.get("recipients")) def mailer(self, api_token): return SendGridAPIClient(api_token) def build_recipients(self, recipients): if recipients: return [x.strip() for x in recipients.split(",")] def build_subject(self, diff): return diff.old.title def build_html_body(self, diff): body = None with open(diff.html_path) as html_file: body = html_file.read() return body def publish_diff(self, diff, feed_config): if diff.emailed: raise AlreadyEmailedError(diff.id) elif not (diff.old.archive_url and diff.new.archive_url): raise SendgridArchiveUrlNotFoundError() api_token = feed_config.get("api_token", self.api_token) sender = feed_config.get("sender", self.sender) recipients = None if feed_config.get("recipients"): recipients = self.build_recipients(feed_config.get("recipients")) else: recipients = self.recipients if not all([api_token, sender, recipients]): raise SendgridConfigNotFoundError subject = self.build_subject(diff) message = Mail( from_email=sender, subject=subject, to_emails=recipients.pop(0), html_content=self.build_html_body(diff), ) if recipients: message.bcc = recipients try: self.mailer(api_token).send(message) diff.emailed = datetime.utcnow() logging.info("emailed %s", subject) diff.save() except Exception as e: logging.error("unable to email: %s", e)
tests/unit/test_env_yml.py
davidjsherman/repo2docker
1,047
12683583
<gh_stars>1000+ """ Test if the environment.yml is empty or it constains other data structure than a dictionary """ import os import sys import pytest from repo2docker import buildpacks def test_empty_env_yml(tmpdir): tmpdir.chdir() p = tmpdir.join("environment.yml") p.write("") bp = buildpacks.CondaBuildPack() py_ver = bp.python_version # If the environment.yml is empty python_version will get an empty string assert py_ver == "" def test_no_dict_env_yml(tmpdir): tmpdir.chdir() q = tmpdir.join("environment.yml") q.write("numpy\n " "matplotlib\n") bq = buildpacks.CondaBuildPack() with pytest.raises(TypeError): py_ver = bq.python_version
tests/handhistory/ftp_hands.py
Marauder62/poker
315
12683597
<reponame>Marauder62/poker<filename>tests/handhistory/ftp_hands.py HAND1 = """ Full Tilt Poker Game #33286946295: MiniFTOPS Main Event (255707037), Table 179 - NL Hold'em - 10/20 - 19:26:50 CET - 2013/09/22 [13:26:50 ET - 2013/09/22] Seat 1: Popp1987 (13,587) Seat 2: Luckytobgood (10,110) Seat 3: FatalRevange (9,970) Seat 4: IgaziFerfi (10,000) Seat 5: egis25 (6,873) Seat 6: gamblie (9,880) Seat 7: idanuTz1 (10,180) Seat 8: PtheProphet (9,930) Seat 9: JohnyyR (9,840) gamblie posts the small blind of 10 idanuTz1 posts the big blind of 20 The button is in seat #5 *** HOLE CARDS *** Dealt to IgaziFerfi [9d Ks] PtheProphet has 15 seconds left to act PtheProphet folds JohnyyR raises to 40 Popp1987 has 15 seconds left to act Popp1987 folds Luckytobgood folds FatalRevange raises to 100 IgaziFerfi folds egis25 folds gamblie folds idanuTz1 folds JohnyyR has 15 seconds left to act JohnyyR calls 60 *** FLOP *** [8h 4h Tc] (Total Pot: 230, 2 Players) JohnyyR checks FatalRevange has 15 seconds left to act FatalRevange bets 120 JohnyyR folds Uncalled bet of 120 returned to FatalRevange FatalRevange mucks FatalRevange wins the pot (230) *** SUMMARY *** Total pot 230 | Rake 0 Board: [8h 4h Tc] Seat 1: Popp1987 didn't bet (folded) Seat 2: Luckytobgood didn't bet (folded) Seat 3: FatalRevange collected (230), mucked Seat 4: IgaziFerfi didn't bet (folded) Seat 5: egis25 (button) didn't bet (folded) Seat 6: gamblie (small blind) folded before the Flop Seat 7: idanuTz1 (big blind) folded before the Flop Seat 8: PtheProphet didn't bet (folded) Seat 9: JohnyyR folded on the Flop """ TURBO_SNG = """\ Full Tilt Poker Game #34374264321: $10 Sit & Go (Turbo) (268569961), Table 1 - NL Hold'em - 15/30 - 11:57:01 CET - 2014/06/29 [05:57:01 ET - 2014/06/29] Seat 1: snake 422 (1,500) Seat 2: IgaziFerfi (1,500) Seat 3: MixaOne (1,500) Seat 4: BokkaBlake (1,500) Seat 5: Sajiee (1,500) Seat 6: AzzzJJ (1,500) snake 422 posts the small blind of 15 IgaziFerfi posts the big blind of 30 The button is in seat #6 *** HOLE CARDS *** Dealt to IgaziFerfi [2h 5d] MixaOne calls 30 BokkaBlake folds Sajiee folds AzzzJJ raises to 90 snake 422 folds IgaziFerfi folds MixaOne calls 60 *** FLOP *** [6s 9c 3d] (Total Pot: 225, 2 Players) MixaOne bets 30 AzzzJJ raises to 120 MixaOne folds Uncalled bet of 90 returned to AzzzJJ AzzzJJ mucks AzzzJJ wins the pot (285) *** SUMMARY *** Total pot 285 | Rake 0 Board: [6s 9c 3d] Seat 1: snake 422 (small blind) folded before the Flop Seat 2: IgaziFerfi (big blind) folded before the Flop Seat 3: MixaOne folded on the Flop Seat 4: BokkaBlake didn't bet (folded) Seat 5: Sajiee didn't bet (folded) Seat 6: AzzzJJ (button) collected (285), mucked """
checkov/terraform/checks/resource/aws/ELBUsesSSL.py
pmalkki/checkov
4,013
12683599
<reponame>pmalkki/checkov from checkov.common.models.enums import CheckResult, CheckCategories from checkov.terraform.checks.resource.base_resource_check import BaseResourceCheck class ELBUsesSSL(BaseResourceCheck): def __init__(self): name = "Ensure that Elastic Load Balancer(s) uses SSL certificates provided by AWS Certificate Manager" id = "CKV_AWS_127" supported_resources = ['aws_elb'] categories = [CheckCategories.GENERAL_SECURITY] super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources) def scan_resource_conf(self, conf): self.evaluated_keys = ['listener'] if 'listener' in conf: for idx, listener in enumerate(conf['listener']): if 'ssl_certificate_id' not in listener: self.evaluated_keys = [f'listener/{idx}'] return CheckResult.FAILED return CheckResult.PASSED check = ELBUsesSSL()
alive_progress/core/calibration.py
Shinyh29/alive-progress
3,304
12683610
import math def calibrated_fps(calibrate): """Calibration of the dynamic frames per second engine. I've started with the equation y = log10(x + m) * k + n, where: y is the desired fps, m and n are horizontal and vertical translation, k is a calibration factor, computed from some user input c (see readme for details). Considering minfps and maxfps as given constants, I came to: fps = log10(x + 1) * k + minfps, which must be equal to maxfps for x = c, so the factor k = (maxfps - minfps) / log10(c + 1), and fps = log10(x + 1) * (maxfps - minfps) / log10(c + 1) + minfps Neat! ;) Args: calibrate (float): user provided Returns: a callable to calculate the fps """ min_fps, max_fps = 2., 60. calibrate = max(1e-6, calibrate) adjust_log_curve = 100. / min(calibrate, 100.) # adjust the curve for small numbers factor = (max_fps - min_fps) / math.log10((calibrate * adjust_log_curve) + 1.) def fps(rate): if rate <= 0: return 10. # bootstrap speed if rate < calibrate: return math.log10((rate * adjust_log_curve) + 1.) * factor + min_fps return max_fps return fps
Software/Python/grove_ir_receiver.py
benmcclelland/GrovePi
482
12683654
#!/usr/bin/env python # # GrovePi Example for using the Grove - Infrared Receiver (http://www.seeedstudio.com/depot/Grove-Infrared-Receiver-p-994.html) # # The GrovePi connects the Raspberry Pi and Grove sensors. You can learn more about GrovePi here: http://www.dexterindustries.com/GrovePi # # Have a question about this example? Ask on the forums here: http://forum.dexterindustries.com/c/grovepi # ''' ## License The MIT License (MIT) GrovePi for the Raspberry Pi: an open source platform for connecting Grove Sensors to the Raspberry Pi. Copyright (C) 2017 Dexter Industries Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' # NOTE: # Connect the IR sensor to any port. In the code use the pin as port+1. So if you are connecting the sensor to port 7, use "ir_recv_pin(8)" import time import grovepi grovepi.ir_recv_pin(9) print ("Press any button on the remote to see the data") while True: ir_data_back=grovepi.ir_read_signal() if ir_data_back[0]==-1: #IO Error pass elif ir_data_back[0]==0: #Old signal pass else: print(ir_data_back[1:]) #Current signal from IR remote time.sleep(.1)
backend/src/baserow/api/user_files/serializers.py
cjh0613/baserow
839
12683692
from rest_framework import serializers from drf_spectacular.utils import extend_schema_field from drf_spectacular.types import OpenApiTypes from django.conf import settings from django.core.files.storage import default_storage from django.utils.translation import gettext_lazy as _ from baserow.core.models import UserFile from baserow.core.user_files.handler import UserFileHandler class UserFileUploadViaURLRequestSerializer(serializers.Serializer): url = serializers.URLField() class UserFileURLAndThumbnailsSerializerMixin(serializers.Serializer): url = serializers.SerializerMethodField() thumbnails = serializers.SerializerMethodField() def get_instance_attr(self, instance, name): return getattr(instance, name) @extend_schema_field(OpenApiTypes.URI) def get_url(self, instance): name = self.get_instance_attr(instance, "name") path = UserFileHandler().user_file_path(name) url = default_storage.url(path) return url @extend_schema_field(OpenApiTypes.OBJECT) def get_thumbnails(self, instance): if not self.get_instance_attr(instance, "is_image"): return None name = self.get_instance_attr(instance, "name") return { thumbnail_name: { "url": default_storage.url( UserFileHandler().user_file_thumbnail_path(name, thumbnail_name) ), "width": size[0], "height": size[1], } for thumbnail_name, size in settings.USER_THUMBNAILS.items() } class UserFileSerializer( UserFileURLAndThumbnailsSerializerMixin, serializers.ModelSerializer ): name = serializers.SerializerMethodField() class Meta: model = UserFile fields = ( "size", "mime_type", "is_image", "image_width", "image_height", "uploaded_at", "url", "thumbnails", "name", "original_name", ) @extend_schema_field(OpenApiTypes.STR) def get_name(self, instance): return instance.name @extend_schema_field(UserFileSerializer) class UserFileField(serializers.Field): """ This field can be used for validating user provided user files, which means a user has provided a dict containing the user file name. It will check if that user file exists and returns that instance. Vice versa, a user file instance will be serialized when converted to data by the serializer. Example: Serializer(data={ "user_file": {"name": "filename.jpg"} }).data == {"user_file": UserFile(...)} The field can also be used for serializing a user file. The value must then be provided as instance to the serializer. Example: Serializer({ "user_file": UserFile(...) }).data == {"user_file": {"name": "filename.jpg", ...}} """ default_error_messages = { "invalid_value": _("The value must be an object containing the file name."), "invalid_user_file": _("The provided user file does not exist."), } def __init__(self, *args, **kwargs): allow_null = kwargs.pop("allow_null", True) default = kwargs.pop("default", None) super().__init__(allow_null=allow_null, default=default, *args, **kwargs) def to_internal_value(self, data): if isinstance(data, UserFile): return data if not isinstance(data, dict) or not isinstance(data.get("name"), str): self.fail("invalid_value") try: user_file = UserFile.objects.all().name(data["name"]).get() except UserFile.DoesNotExist: self.fail("invalid_user_file") return user_file def to_representation(self, value): if isinstance(value, UserFile) and self.parent.instance is not None: return UserFileSerializer(value).data return value
.venv/lib/python3.7/site-packages/IPython/terminal/pt_inputhooks/__init__.py
ITCRStevenLPZ/Proyecto2-Analisis-de-Algoritmos
1,318
12683715
import importlib import os aliases = { 'qt4': 'qt', 'gtk2': 'gtk', } backends = [ 'qt', 'qt4', 'qt5', 'gtk', 'gtk2', 'gtk3', 'tk', 'wx', 'pyglet', 'glut', 'osx', 'asyncio' ] registered = {} def register(name, inputhook): """Register the function *inputhook* as an event loop integration.""" registered[name] = inputhook class UnknownBackend(KeyError): def __init__(self, name): self.name = name def __str__(self): return ("No event loop integration for {!r}. " "Supported event loops are: {}").format(self.name, ', '.join(backends + sorted(registered))) def get_inputhook_name_and_func(gui): if gui in registered: return gui, registered[gui] if gui not in backends: raise UnknownBackend(gui) if gui in aliases: return get_inputhook_name_and_func(aliases[gui]) gui_mod = gui if gui == 'qt5': os.environ['QT_API'] = 'pyqt5' gui_mod = 'qt' mod = importlib.import_module('IPython.terminal.pt_inputhooks.'+gui_mod) return gui, mod.inputhook
tools/clang/utils/perf-training/perf-helper.py
oubotong/Armariris
1,073
12683729
#===- perf-helper.py - Clang Python Bindings -----------------*- python -*--===# # # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===------------------------------------------------------------------------===# from __future__ import print_function import sys import os import subprocess import argparse import time import bisect import shlex import tempfile test_env = { 'PATH' : os.environ['PATH'] } def findFilesWithExtension(path, extension): filenames = [] for root, dirs, files in os.walk(path): for filename in files: if filename.endswith(extension): filenames.append(os.path.join(root, filename)) return filenames def clean(args): if len(args) != 2: print('Usage: %s clean <path> <extension>\n' % __file__ + '\tRemoves all files with extension from <path>.') return 1 for filename in findFilesWithExtension(args[0], args[1]): os.remove(filename) return 0 def merge(args): if len(args) != 3: print('Usage: %s clean <llvm-profdata> <output> <path>\n' % __file__ + '\tMerges all profraw files from path into output.') return 1 cmd = [args[0], 'merge', '-o', args[1]] cmd.extend(findFilesWithExtension(args[2], "profraw")) subprocess.check_call(cmd) return 0 def dtrace(args): parser = argparse.ArgumentParser(prog='perf-helper dtrace', description='dtrace wrapper for order file generation') parser.add_argument('--buffer-size', metavar='size', type=int, required=False, default=1, help='dtrace buffer size in MB (default 1)') parser.add_argument('--use-oneshot', required=False, action='store_true', help='Use dtrace\'s oneshot probes') parser.add_argument('--use-ustack', required=False, action='store_true', help='Use dtrace\'s ustack to print function names') parser.add_argument('--cc1', required=False, action='store_true', help='Execute cc1 directly (don\'t profile the driver)') parser.add_argument('cmd', nargs='*', help='') # Use python's arg parser to handle all leading option arguments, but pass # everything else through to dtrace first_cmd = next(arg for arg in args if not arg.startswith("--")) last_arg_idx = args.index(first_cmd) opts = parser.parse_args(args[:last_arg_idx]) cmd = args[last_arg_idx:] if opts.cc1: cmd = get_cc1_command_for_args(cmd, test_env) if opts.use_oneshot: target = "oneshot$target:::entry" else: target = "pid$target:::entry" predicate = '%s/probemod=="%s"/' % (target, os.path.basename(args[0])) log_timestamp = 'printf("dtrace-TS: %d\\n", timestamp)' if opts.use_ustack: action = 'ustack(1);' else: action = 'printf("dtrace-Symbol: %s\\n", probefunc);' dtrace_script = "%s { %s; %s }" % (predicate, log_timestamp, action) dtrace_args = [] if not os.geteuid() == 0: print( 'Script must be run as root, or you must add the following to your sudoers:' + '%%admin ALL=(ALL) NOPASSWD: /usr/sbin/dtrace') dtrace_args.append("sudo") dtrace_args.extend(( 'dtrace', '-xevaltime=exec', '-xbufsize=%dm' % (opts.buffer_size), '-q', '-n', dtrace_script, '-c', ' '.join(cmd))) if sys.platform == "darwin": dtrace_args.append('-xmangled') start_time = time.time() with open("%d.dtrace" % os.getpid(), "w") as f: subprocess.check_call(dtrace_args, stdout=f, stderr=subprocess.PIPE) elapsed = time.time() - start_time print("... data collection took %.4fs" % elapsed) return 0 def get_cc1_command_for_args(cmd, env): # Find the cc1 command used by the compiler. To do this we execute the # compiler with '-###' to figure out what it wants to do. cmd = cmd + ['-###'] cc_output = subprocess.check_output(cmd, stderr=subprocess.STDOUT, env=env).strip() cc_commands = [] for ln in cc_output.split('\n'): # Filter out known garbage. if (ln == 'Using built-in specs.' or ln.startswith('Configured with:') or ln.startswith('Target:') or ln.startswith('Thread model:') or ln.startswith('InstalledDir:') or ln.startswith('LLVM Profile Note') or ' version ' in ln): continue cc_commands.append(ln) if len(cc_commands) != 1: print('Fatal error: unable to determine cc1 command: %r' % cc_output) exit(1) cc1_cmd = shlex.split(cc_commands[0]) if not cc1_cmd: print('Fatal error: unable to determine cc1 command: %r' % cc_output) exit(1) return cc1_cmd def cc1(args): parser = argparse.ArgumentParser(prog='perf-helper cc1', description='cc1 wrapper for order file generation') parser.add_argument('cmd', nargs='*', help='') # Use python's arg parser to handle all leading option arguments, but pass # everything else through to dtrace first_cmd = next(arg for arg in args if not arg.startswith("--")) last_arg_idx = args.index(first_cmd) opts = parser.parse_args(args[:last_arg_idx]) cmd = args[last_arg_idx:] # clear the profile file env, so that we don't generate profdata # when capturing the cc1 command cc1_env = test_env cc1_env["LLVM_PROFILE_FILE"] = os.devnull cc1_cmd = get_cc1_command_for_args(cmd, cc1_env) subprocess.check_call(cc1_cmd) return 0 def parse_dtrace_symbol_file(path, all_symbols, all_symbols_set, missing_symbols, opts): def fix_mangling(symbol): if sys.platform == "darwin": if symbol[0] != '_' and symbol != 'start': symbol = '_' + symbol return symbol def get_symbols_with_prefix(symbol): start_index = bisect.bisect_left(all_symbols, symbol) for s in all_symbols[start_index:]: if not s.startswith(symbol): break yield s # Extract the list of symbols from the given file, which is assumed to be # the output of a dtrace run logging either probefunc or ustack(1) and # nothing else. The dtrace -xdemangle option needs to be used. # # This is particular to OS X at the moment, because of the '_' handling. with open(path) as f: current_timestamp = None for ln in f: # Drop leading and trailing whitespace. ln = ln.strip() if not ln.startswith("dtrace-"): continue # If this is a timestamp specifier, extract it. if ln.startswith("dtrace-TS: "): _,data = ln.split(': ', 1) if not data.isdigit(): print("warning: unrecognized timestamp line %r, ignoring" % ln, file=sys.stderr) continue current_timestamp = int(data) continue elif ln.startswith("dtrace-Symbol: "): _,ln = ln.split(': ', 1) if not ln: continue # If there is a '`' in the line, assume it is a ustack(1) entry in # the form of <modulename>`<modulefunc>, where <modulefunc> is never # truncated (but does need the mangling patched). if '`' in ln: yield (current_timestamp, fix_mangling(ln.split('`',1)[1])) continue # Otherwise, assume this is a probefunc printout. DTrace on OS X # seems to have a bug where it prints the mangled version of symbols # which aren't C++ mangled. We just add a '_' to anything but start # which doesn't already have a '_'. symbol = fix_mangling(ln) # If we don't know all the symbols, or the symbol is one of them, # just return it. if not all_symbols_set or symbol in all_symbols_set: yield (current_timestamp, symbol) continue # Otherwise, we have a symbol name which isn't present in the # binary. We assume it is truncated, and try to extend it. # Get all the symbols with this prefix. possible_symbols = list(get_symbols_with_prefix(symbol)) if not possible_symbols: continue # If we found too many possible symbols, ignore this as a prefix. if len(possible_symbols) > 100: print( "warning: ignoring symbol %r " % symbol + "(no match and too many possible suffixes)", file=sys.stderr) continue # Report that we resolved a missing symbol. if opts.show_missing_symbols and symbol not in missing_symbols: print("warning: resolved missing symbol %r" % symbol, file=sys.stderr) missing_symbols.add(symbol) # Otherwise, treat all the possible matches as having occurred. This # is an over-approximation, but it should be ok in practice. for s in possible_symbols: yield (current_timestamp, s) def uniq(list): seen = set() for item in list: if item not in seen: yield item seen.add(item) def form_by_call_order(symbol_lists): # Simply strategy, just return symbols in order of occurrence, even across # multiple runs. return uniq(s for symbols in symbol_lists for s in symbols) def form_by_call_order_fair(symbol_lists): # More complicated strategy that tries to respect the call order across all # of the test cases, instead of giving a huge preference to the first test # case. # First, uniq all the lists. uniq_lists = [list(uniq(symbols)) for symbols in symbol_lists] # Compute the successors for each list. succs = {} for symbols in uniq_lists: for a,b in zip(symbols[:-1], symbols[1:]): succs[a] = items = succs.get(a, []) if b not in items: items.append(b) # Emit all the symbols, but make sure to always emit all successors from any # call list whenever we see a symbol. # # There isn't much science here, but this sometimes works better than the # more naive strategy. Then again, sometimes it doesn't so more research is # probably needed. return uniq(s for symbols in symbol_lists for node in symbols for s in ([node] + succs.get(node,[]))) def form_by_frequency(symbol_lists): # Form the order file by just putting the most commonly occurring symbols # first. This assumes the data files didn't use the oneshot dtrace method. counts = {} for symbols in symbol_lists: for a in symbols: counts[a] = counts.get(a,0) + 1 by_count = counts.items() by_count.sort(key = lambda (_,n): -n) return [s for s,n in by_count] def form_by_random(symbol_lists): # Randomize the symbols. merged_symbols = uniq(s for symbols in symbol_lists for s in symbols) random.shuffle(merged_symbols) return merged_symbols def form_by_alphabetical(symbol_lists): # Alphabetize the symbols. merged_symbols = list(set(s for symbols in symbol_lists for s in symbols)) merged_symbols.sort() return merged_symbols methods = dict((name[len("form_by_"):],value) for name,value in locals().items() if name.startswith("form_by_")) def genOrderFile(args): parser = argparse.ArgumentParser( "%prog [options] <dtrace data file directories>]") parser.add_argument('input', nargs='+', help='') parser.add_argument("--binary", metavar="PATH", type=str, dest="binary_path", help="Path to the binary being ordered (for getting all symbols)", default=None) parser.add_argument("--output", dest="output_path", help="path to output order file to write", default=None, required=True, metavar="PATH") parser.add_argument("--show-missing-symbols", dest="show_missing_symbols", help="show symbols which are 'fixed up' to a valid name (requires --binary)", action="store_true", default=None) parser.add_argument("--output-unordered-symbols", dest="output_unordered_symbols_path", help="write a list of the unordered symbols to PATH (requires --binary)", default=None, metavar="PATH") parser.add_argument("--method", dest="method", help="order file generation method to use", choices=methods.keys(), default='call_order') opts = parser.parse_args(args) # If the user gave us a binary, get all the symbols in the binary by # snarfing 'nm' output. if opts.binary_path is not None: output = subprocess.check_output(['nm', '-P', opts.binary_path]) lines = output.split("\n") all_symbols = [ln.split(' ',1)[0] for ln in lines if ln.strip()] print("found %d symbols in binary" % len(all_symbols)) all_symbols.sort() else: all_symbols = [] all_symbols_set = set(all_symbols) # Compute the list of input files. input_files = [] for dirname in opts.input: input_files.extend(findFilesWithExtension(dirname, "dtrace")) # Load all of the input files. print("loading from %d data files" % len(input_files)) missing_symbols = set() timestamped_symbol_lists = [ list(parse_dtrace_symbol_file(path, all_symbols, all_symbols_set, missing_symbols, opts)) for path in input_files] # Reorder each symbol list. symbol_lists = [] for timestamped_symbols_list in timestamped_symbol_lists: timestamped_symbols_list.sort() symbol_lists.append([symbol for _,symbol in timestamped_symbols_list]) # Execute the desire order file generation method. method = methods.get(opts.method) result = list(method(symbol_lists)) # Report to the user on what percentage of symbols are present in the order # file. num_ordered_symbols = len(result) if all_symbols: print("note: order file contains %d/%d symbols (%.2f%%)" % ( num_ordered_symbols, len(all_symbols), 100.*num_ordered_symbols/len(all_symbols)), file=sys.stderr) if opts.output_unordered_symbols_path: ordered_symbols_set = set(result) with open(opts.output_unordered_symbols_path, 'w') as f: f.write("\n".join(s for s in all_symbols if s not in ordered_symbols_set)) # Write the order file. with open(opts.output_path, 'w') as f: f.write("\n".join(result)) f.write("\n") return 0 commands = {'clean' : clean, 'merge' : merge, 'dtrace' : dtrace, 'cc1' : cc1, 'gen-order-file' : genOrderFile} def main(): f = commands[sys.argv[1]] sys.exit(f(sys.argv[2:])) if __name__ == '__main__': main()
scalyr_agent/third_party_tls/oscrypto/_cipher_suites.py
zak905/scalyr-agent-2
3,373
12683751
<reponame>zak905/scalyr-agent-2 # coding: utf-8 from __future__ import unicode_literals, division, absolute_import, print_function __all__ = [ 'CIPHER_SUITE_MAP', ] CIPHER_SUITE_MAP = { b'\x00\x00': 'TLS_NULL_WITH_NULL_NULL', b'\x00\x01': 'TLS_RSA_WITH_NULL_MD5', b'\x00\x02': 'TLS_RSA_WITH_NULL_SHA', b'\x00\x03': 'TLS_RSA_EXPORT_WITH_RC4_40_MD5', b'\x00\x04': 'TLS_RSA_WITH_RC4_128_MD5', b'\x00\x05': 'TLS_RSA_WITH_RC4_128_SHA', b'\x00\x06': 'TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5', b'\x00\x07': 'TLS_RSA_WITH_IDEA_CBC_SHA', b'\x00\x08': 'TLS_RSA_EXPORT_WITH_DES40_CBC_SHA', b'\x00\x09': 'TLS_RSA_WITH_DES_CBC_SHA', b'\x00\x0A': 'TLS_RSA_WITH_3DES_EDE_CBC_SHA', b'\x00\x0B': 'TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA', b'\x00\x0C': 'TLS_DH_DSS_WITH_DES_CBC_SHA', b'\x00\x0D': 'TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA', b'\x00\x0E': 'TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA', b'\x00\x0F': 'TLS_DH_RSA_WITH_DES_CBC_SHA', b'\x00\x10': 'TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA', b'\x00\x11': 'TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA', b'\x00\x12': 'TLS_DHE_DSS_WITH_DES_CBC_SHA', b'\x00\x13': 'TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA', b'\x00\x14': 'TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA', b'\x00\x15': 'TLS_DHE_RSA_WITH_DES_CBC_SHA', b'\x00\x16': 'TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA', b'\x00\x17': 'TLS_DH_anon_EXPORT_WITH_RC4_40_MD5', b'\x00\x18': 'TLS_DH_anon_WITH_RC4_128_MD5', b'\x00\x19': 'TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA', b'\x00\x1A': 'TLS_DH_anon_WITH_DES_CBC_SHA', b'\x00\x1B': 'TLS_DH_anon_WITH_3DES_EDE_CBC_SHA', b'\x00\x1E': 'TLS_KRB5_WITH_DES_CBC_SHA', b'\x00\x1F': 'TLS_KRB5_WITH_3DES_EDE_CBC_SHA', b'\x00\x20': 'TLS_KRB5_WITH_RC4_128_SHA', b'\x00\x21': 'TLS_KRB5_WITH_IDEA_CBC_SHA', b'\x00\x22': 'TLS_KRB5_WITH_DES_CBC_MD5', b'\x00\x23': 'TLS_KRB5_WITH_3DES_EDE_CBC_MD5', b'\x00\x24': 'TLS_KRB5_WITH_RC4_128_MD5', b'\x00\x25': 'TLS_KRB5_WITH_IDEA_CBC_MD5', b'\x00\x26': 'TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA', b'\x00\x27': 'TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA', b'\x00\x28': 'TLS_KRB5_EXPORT_WITH_RC4_40_SHA', b'\x00\x29': 'TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5', b'\x00\x2A': 'TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5', b'\x00\x2B': 'TLS_KRB5_EXPORT_WITH_RC4_40_MD5', b'\x00\x2C': 'TLS_PSK_WITH_NULL_SHA', b'\x00\x2D': 'TLS_DHE_PSK_WITH_NULL_SHA', b'\x00\x2E': 'TLS_RSA_PSK_WITH_NULL_SHA', b'\x00\x2F': 'TLS_RSA_WITH_AES_128_CBC_SHA', b'\x00\x30': 'TLS_DH_DSS_WITH_AES_128_CBC_SHA', b'\x00\x31': 'TLS_DH_RSA_WITH_AES_128_CBC_SHA', b'\x00\x32': 'TLS_DHE_DSS_WITH_AES_128_CBC_SHA', b'\x00\x33': 'TLS_DHE_RSA_WITH_AES_128_CBC_SHA', b'\x00\x34': 'TLS_DH_anon_WITH_AES_128_CBC_SHA', b'\x00\x35': 'TLS_RSA_WITH_AES_256_CBC_SHA', b'\x00\x36': 'TLS_DH_DSS_WITH_AES_256_CBC_SHA', b'\x00\x37': 'TLS_DH_RSA_WITH_AES_256_CBC_SHA', b'\x00\x38': 'TLS_DHE_DSS_WITH_AES_256_CBC_SHA', b'\x00\x39': 'TLS_DHE_RSA_WITH_AES_256_CBC_SHA', b'\x00\x3A': 'TLS_DH_anon_WITH_AES_256_CBC_SHA', b'\x00\x3B': 'TLS_RSA_WITH_NULL_SHA256', b'\x00\x3C': 'TLS_RSA_WITH_AES_128_CBC_SHA256', b'\x00\x3D': 'TLS_RSA_WITH_AES_256_CBC_SHA256', b'\x00\x3E': 'TLS_DH_DSS_WITH_AES_128_CBC_SHA256', b'\x00\x3F': 'TLS_DH_RSA_WITH_AES_128_CBC_SHA256', b'\x00\x40': 'TLS_DHE_DSS_WITH_AES_128_CBC_SHA256', b'\x00\x41': 'TLS_RSA_WITH_CAMELLIA_128_CBC_SHA', b'\x00\x42': 'TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA', b'\x00\x43': 'TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA', b'\x00\x44': 'TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA', b'\x00\x45': 'TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA', b'\x00\x46': 'TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA', b'\x00\x67': 'TLS_DHE_RSA_WITH_AES_128_CBC_SHA256', b'\x00\x68': 'TLS_DH_DSS_WITH_AES_256_CBC_SHA256', b'\x00\x69': 'TLS_DH_RSA_WITH_AES_256_CBC_SHA256', b'\x00\x6A': 'TLS_DHE_DSS_WITH_AES_256_CBC_SHA256', b'\x00\x6B': 'TLS_DHE_RSA_WITH_AES_256_CBC_SHA256', b'\x00\x6C': 'TLS_DH_anon_WITH_AES_128_CBC_SHA256', b'\x00\x6D': 'TLS_DH_anon_WITH_AES_256_CBC_SHA256', b'\x00\x84': 'TLS_RSA_WITH_CAMELLIA_256_CBC_SHA', b'\x00\x85': 'TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA', b'\x00\x86': 'TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA', b'\x00\x87': 'TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA', b'\x00\x88': 'TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA', b'\x00\x89': 'TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA', b'\x00\x8A': 'TLS_PSK_WITH_RC4_128_SHA', b'\x00\x8B': 'TLS_PSK_WITH_3DES_EDE_CBC_SHA', b'\x00\x8C': 'TLS_PSK_WITH_AES_128_CBC_SHA', b'\x00\x8D': 'TLS_PSK_WITH_AES_256_CBC_SHA', b'\x00\x8E': 'TLS_DHE_PSK_WITH_RC4_128_SHA', b'\x00\x8F': 'TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA', b'\x00\x90': 'TLS_DHE_PSK_WITH_AES_128_CBC_SHA', b'\x00\x91': 'TLS_DHE_PSK_WITH_AES_256_CBC_SHA', b'\x00\x92': 'TLS_RSA_PSK_WITH_RC4_128_SHA', b'\x00\x93': 'TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA', b'\x00\x94': 'TLS_RSA_PSK_WITH_AES_128_CBC_SHA', b'\x00\x95': 'TLS_RSA_PSK_WITH_AES_256_CBC_SHA', b'\x00\x96': 'TLS_RSA_WITH_SEED_CBC_SHA', b'\x00\x97': 'TLS_DH_DSS_WITH_SEED_CBC_SHA', b'\x00\x98': 'TLS_DH_RSA_WITH_SEED_CBC_SHA', b'\x00\x99': 'TLS_DHE_DSS_WITH_SEED_CBC_SHA', b'\x00\x9A': 'TLS_DHE_RSA_WITH_SEED_CBC_SHA', b'\x00\x9B': 'TLS_DH_anon_WITH_SEED_CBC_SHA', b'\x00\x9C': 'TLS_RSA_WITH_AES_128_GCM_SHA256', b'\x00\x9D': 'TLS_RSA_WITH_AES_256_GCM_SHA384', b'\x00\x9E': 'TLS_DHE_RSA_WITH_AES_128_GCM_SHA256', b'\x00\x9F': 'TLS_DHE_RSA_WITH_AES_256_GCM_SHA384', b'\x00\xA0': 'TLS_DH_RSA_WITH_AES_128_GCM_SHA256', b'\x00\xA1': 'TLS_DH_RSA_WITH_AES_256_GCM_SHA384', b'\x00\xA2': 'TLS_DHE_DSS_WITH_AES_128_GCM_SHA256', b'\x00\xA3': 'TLS_DHE_DSS_WITH_AES_256_GCM_SHA384', b'\x00\xA4': 'TLS_DH_DSS_WITH_AES_128_GCM_SHA256', b'\x00\xA5': 'TLS_DH_DSS_WITH_AES_256_GCM_SHA384', b'\x00\xA6': 'TLS_DH_anon_WITH_AES_128_GCM_SHA256', b'\x00\xA7': 'TLS_DH_anon_WITH_AES_256_GCM_SHA384', b'\x00\xA8': 'TLS_PSK_WITH_AES_128_GCM_SHA256', b'\x00\xA9': 'TLS_PSK_WITH_AES_256_GCM_SHA384', b'\x00\xAA': 'TLS_DHE_PSK_WITH_AES_128_GCM_SHA256', b'\x00\xAB': 'TLS_DHE_PSK_WITH_AES_256_GCM_SHA384', b'\x00\xAC': 'TLS_RSA_PSK_WITH_AES_128_GCM_SHA256', b'\x00\xAD': 'TLS_RSA_PSK_WITH_AES_256_GCM_SHA384', b'\x00\xAE': 'TLS_PSK_WITH_AES_128_CBC_SHA256', b'\x00\xAF': 'TLS_PSK_WITH_AES_256_CBC_SHA384', b'\x00\xB0': 'TLS_PSK_WITH_NULL_SHA256', b'\x00\xB1': 'TLS_PSK_WITH_NULL_SHA384', b'\x00\xB2': 'TLS_DHE_PSK_WITH_AES_128_CBC_SHA256', b'\x00\xB3': 'TLS_DHE_PSK_WITH_AES_256_CBC_SHA384', b'\x00\xB4': 'TLS_DHE_PSK_WITH_NULL_SHA256', b'\x00\xB5': 'TLS_DHE_PSK_WITH_NULL_SHA384', b'\x00\xB6': 'TLS_RSA_PSK_WITH_AES_128_CBC_SHA256', b'\x00\xB7': 'TLS_RSA_PSK_WITH_AES_256_CBC_SHA384', b'\x00\xB8': 'TLS_RSA_PSK_WITH_NULL_SHA256', b'\x00\xB9': 'TLS_RSA_PSK_WITH_NULL_SHA384', b'\x00\xBA': 'TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256', b'\x00\xBB': 'TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256', b'\x00\xBC': 'TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256', b'\x00\xBD': 'TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256', b'\x00\xBE': 'TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256', b'\x00\xBF': 'TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256', b'\x00\xC0': 'TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256', b'\x00\xC1': 'TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256', b'\x00\xC2': 'TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256', b'\x00\xC3': 'TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256', b'\x00\xC4': 'TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256', b'\x00\xC5': 'TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256', b'\x00\xFF': 'TLS_EMPTY_RENEGOTIATION_INFO_SCSV', b'\x13\x01': 'TLS_AES_128_GCM_SHA256', b'\x13\x02': 'TLS_AES_256_GCM_SHA384', b'\x13\x03': 'TLS_CHACHA20_POLY1305_SHA256', b'\x13\x04': 'TLS_AES_128_CCM_SHA256', b'\x13\x05': 'TLS_AES_128_CCM_8_SHA256', b'\xC0\x01': 'TLS_ECDH_ECDSA_WITH_NULL_SHA', b'\xC0\x02': 'TLS_ECDH_ECDSA_WITH_RC4_128_SHA', b'\xC0\x03': 'TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA', b'\xC0\x04': 'TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA', b'\xC0\x05': 'TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA', b'\xC0\x06': 'TLS_ECDHE_ECDSA_WITH_NULL_SHA', b'\xC0\x07': 'TLS_ECDHE_ECDSA_WITH_RC4_128_SHA', b'\xC0\x08': 'TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA', b'\xC0\x09': 'TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA', b'\xC0\x0A': 'TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA', b'\xC0\x0B': 'TLS_ECDH_RSA_WITH_NULL_SHA', b'\xC0\x0C': 'TLS_ECDH_RSA_WITH_RC4_128_SHA', b'\xC0\x0D': 'TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA', b'\xC0\x0E': 'TLS_ECDH_RSA_WITH_AES_128_CBC_SHA', b'\xC0\x0F': 'TLS_ECDH_RSA_WITH_AES_256_CBC_SHA', b'\xC0\x10': 'TLS_ECDHE_RSA_WITH_NULL_SHA', b'\xC0\x11': 'TLS_ECDHE_RSA_WITH_RC4_128_SHA', b'\xC0\x12': 'TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA', b'\xC0\x13': 'TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA', b'\xC0\x14': 'TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA', b'\xC0\x15': 'TLS_ECDH_anon_WITH_NULL_SHA', b'\xC0\x16': 'TLS_ECDH_anon_WITH_RC4_128_SHA', b'\xC0\x17': 'TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA', b'\xC0\x18': 'TLS_ECDH_anon_WITH_AES_128_CBC_SHA', b'\xC0\x19': 'TLS_ECDH_anon_WITH_AES_256_CBC_SHA', b'\xC0\x1A': 'TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA', b'\xC0\x1B': 'TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA', b'\xC0\x1C': 'TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA', b'\xC0\x1D': 'TLS_SRP_SHA_WITH_AES_128_CBC_SHA', b'\xC0\x1E': 'TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA', b'\xC0\x1F': 'TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA', b'\xC0\x20': 'TLS_SRP_SHA_WITH_AES_256_CBC_SHA', b'\xC0\x21': 'TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA', b'\xC0\x22': 'TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA', b'\xC0\x23': 'TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256', b'\xC0\x24': 'TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384', b'\xC0\x25': 'TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256', b'\xC0\x26': 'TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384', b'\xC0\x27': 'TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256', b'\xC0\x28': 'TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384', b'\xC0\x29': 'TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256', b'\xC0\x2A': 'TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384', b'\xC0\x2B': 'TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256', b'\xC0\x2C': 'TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384', b'\xC0\x2D': 'TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256', b'\xC0\x2E': 'TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384', b'\xC0\x2F': 'TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256', b'\xC0\x30': 'TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384', b'\xC0\x31': 'TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256', b'\xC0\x32': 'TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384', b'\xC0\x33': 'TLS_ECDHE_PSK_WITH_RC4_128_SHA', b'\xC0\x34': 'TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA', b'\xC0\x35': 'TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA', b'\xC0\x36': 'TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA', b'\xC0\x37': 'TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256', b'\xC0\x38': 'TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384', b'\xC0\x39': 'TLS_ECDHE_PSK_WITH_NULL_SHA', b'\xC0\x3A': 'TLS_ECDHE_PSK_WITH_NULL_SHA256', b'\xC0\x3B': 'TLS_ECDHE_PSK_WITH_NULL_SHA384', b'\xC0\x3C': 'TLS_RSA_WITH_ARIA_128_CBC_SHA256', b'\xC0\x3D': 'TLS_RSA_WITH_ARIA_256_CBC_SHA384', b'\xC0\x3E': 'TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256', b'\xC0\x3F': 'TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384', b'\xC0\x40': 'TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256', b'\xC0\x41': 'TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384', b'\xC0\x42': 'TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256', b'\xC0\x43': 'TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384', b'\xC0\x44': 'TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256', b'\xC0\x45': 'TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384', b'\xC0\x46': 'TLS_DH_anon_WITH_ARIA_128_CBC_SHA256', b'\xC0\x47': 'TLS_DH_anon_WITH_ARIA_256_CBC_SHA384', b'\xC0\x48': 'TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256', b'\xC0\x49': 'TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384', b'\xC0\x4A': 'TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256', b'\xC0\x4B': 'TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384', b'\xC0\x4C': 'TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256', b'\xC0\x4D': 'TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384', b'\xC0\x4E': 'TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256', b'\xC0\x4F': 'TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384', b'\xC0\x50': 'TLS_RSA_WITH_ARIA_128_GCM_SHA256', b'\xC0\x51': 'TLS_RSA_WITH_ARIA_256_GCM_SHA384', b'\xC0\x52': 'TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256', b'\xC0\x53': 'TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384', b'\xC0\x54': 'TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256', b'\xC0\x55': 'TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384', b'\xC0\x56': 'TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256', b'\xC0\x57': 'TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384', b'\xC0\x58': 'TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256', b'\xC0\x59': 'TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384', b'\xC0\x5A': 'TLS_DH_anon_WITH_ARIA_128_GCM_SHA256', b'\xC0\x5B': 'TLS_DH_anon_WITH_ARIA_256_GCM_SHA384', b'\xC0\x5C': 'TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256', b'\xC0\x5D': 'TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384', b'\xC0\x5E': 'TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256', b'\xC0\x5F': 'TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384', b'\xC0\x60': 'TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256', b'\xC0\x61': 'TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384', b'\xC0\x62': 'TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256', b'\xC0\x63': 'TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384', b'\xC0\x64': 'TLS_PSK_WITH_ARIA_128_CBC_SHA256', b'\xC0\x65': 'TLS_PSK_WITH_ARIA_256_CBC_SHA384', b'\xC0\x66': 'TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256', b'\xC0\x67': 'TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384', b'\xC0\x68': 'TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256', b'\xC0\x69': 'TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384', b'\xC0\x6A': 'TLS_PSK_WITH_ARIA_128_GCM_SHA256', b'\xC0\x6B': 'TLS_PSK_WITH_ARIA_256_GCM_SHA384', b'\xC0\x6C': 'TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256', b'\xC0\x6D': 'TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384', b'\xC0\x6E': 'TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256', b'\xC0\x6F': 'TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384', b'\xC0\x70': 'TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256', b'\xC0\x71': 'TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384', b'\xC0\x72': 'TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256', b'\xC0\x73': 'TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384', b'\xC0\x74': 'TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256', b'\xC0\x75': 'TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384', b'\xC0\x76': 'TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256', b'\xC0\x77': 'TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384', b'\xC0\x78': 'TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256', b'\xC0\x79': 'TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384', b'\xC0\x7A': 'TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x7B': 'TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x7C': 'TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x7D': 'TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x7E': 'TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x7F': 'TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x80': 'TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x81': 'TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x82': 'TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x83': 'TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x84': 'TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x85': 'TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x86': 'TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x87': 'TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x88': 'TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x89': 'TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x8A': 'TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x8B': 'TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x8C': 'TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x8D': 'TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x8E': 'TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x8F': 'TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x90': 'TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x91': 'TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x92': 'TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256', b'\xC0\x93': 'TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384', b'\xC0\x94': 'TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256', b'\xC0\x95': 'TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384', b'\xC0\x96': 'TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256', b'\xC0\x97': 'TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384', b'\xC0\x98': 'TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256', b'\xC0\x99': 'TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384', b'\xC0\x9A': 'TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256', b'\xC0\x9B': 'TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384', b'\xC0\x9C': 'TLS_RSA_WITH_AES_128_CCM', b'\xC0\x9D': 'TLS_RSA_WITH_AES_256_CCM', b'\xC0\x9E': 'TLS_DHE_RSA_WITH_AES_128_CCM', b'\xC0\x9F': 'TLS_DHE_RSA_WITH_AES_256_CCM', b'\xC0\xA0': 'TLS_RSA_WITH_AES_128_CCM_8', b'\xC0\xA1': 'TLS_RSA_WITH_AES_256_CCM_8', b'\xC0\xA2': 'TLS_DHE_RSA_WITH_AES_128_CCM_8', b'\xC0\xA3': 'TLS_DHE_RSA_WITH_AES_256_CCM_8', b'\xC0\xA4': 'TLS_PSK_WITH_AES_128_CCM', b'\xC0\xA5': 'TLS_PSK_WITH_AES_256_CCM', b'\xC0\xA6': 'TLS_DHE_PSK_WITH_AES_128_CCM', b'\xC0\xA7': 'TLS_DHE_PSK_WITH_AES_256_CCM', b'\xC0\xA8': 'TLS_PSK_WITH_AES_128_CCM_8', b'\xC0\xA9': 'TLS_PSK_WITH_AES_256_CCM_8', b'\xC0\xAA': 'TLS_PSK_DHE_WITH_AES_128_CCM_8', b'\xC0\xAB': 'TLS_PSK_DHE_WITH_AES_256_CCM_8', b'\xCC\xA8': 'TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256', b'\xCC\xA9': 'TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256', b'\xCC\xAA': 'TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256', b'\xCC\xAB': 'TLS_PSK_WITH_CHACHA20_POLY1305_SHA256', b'\xCC\xAC': 'TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256', b'\xCC\xAD': 'TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256', b'\xCC\xAE': 'TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256', }
build/fbcode_builder/specs/rocksdb.py
facebookxx/folly
1,831
12683762
<reponame>facebookxx/folly #!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals def fbcode_builder_spec(builder): builder.add_option("rocksdb/_build:cmake_defines", { "USE_RTTI": "1", "PORTABLE": "ON", }) return { "steps": [ builder.fb_github_cmake_install("rocksdb/_build"), ], }
third_party/gsutil/third_party/apitools/run_pylint.py
tingshao/catapult
2,151
12683779
# # Copyright 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Custom script to run PyLint on apitools codebase. "Inspired" by the similar script in gcloud-python. This runs pylint as a script via subprocess in two different subprocesses. The first lints the production/library code using the default rc file (PRODUCTION_RC). The second lints the demo/test code using an rc file (TEST_RC) which allows more style violations (hence it has a reduced number of style checks). """ import ConfigParser import copy import os import subprocess import sys IGNORED_DIRECTORIES = [ 'apitools/gen/testdata', 'samples/bigquery_sample/bigquery_v2', 'samples/dns_sample/dns_v1', 'samples/fusiontables_sample/fusiontables_v1', 'samples/iam_sample/iam_v1', 'samples/servicemanagement_sample/servicemanagement_v1', 'samples/storage_sample/storage_v1', 'venv', ] IGNORED_FILES = [ 'ez_setup.py', 'run_pylint.py', 'setup.py', 'apitools/base/py/gzip.py', 'apitools/base/py/gzip_test.py', ] PRODUCTION_RC = 'default.pylintrc' TEST_RC = 'reduced.pylintrc' TEST_DISABLED_MESSAGES = [ 'exec-used', 'invalid-name', 'missing-docstring', 'protected-access', ] TEST_RC_ADDITIONS = { 'MESSAGES CONTROL': { 'disable': ',\n'.join(TEST_DISABLED_MESSAGES), }, } def read_config(filename): """Reads pylintrc config onto native ConfigParser object.""" config = ConfigParser.ConfigParser() with open(filename, 'r') as file_obj: config.readfp(file_obj) return config def make_test_rc(base_rc_filename, additions_dict, target_filename): """Combines a base rc and test additions into single file.""" main_cfg = read_config(base_rc_filename) # Create fresh config for test, which must extend production. test_cfg = ConfigParser.ConfigParser() test_cfg._sections = copy.deepcopy(main_cfg._sections) for section, opts in additions_dict.items(): curr_section = test_cfg._sections.setdefault( section, test_cfg._dict()) for opt, opt_val in opts.items(): curr_val = curr_section.get(opt) if curr_val is None: raise KeyError('Expected to be adding to existing option.') curr_section[opt] = '%s\n%s' % (curr_val, opt_val) with open(target_filename, 'w') as file_obj: test_cfg.write(file_obj) def valid_filename(filename): """Checks if a file is a Python file and is not ignored.""" for directory in IGNORED_DIRECTORIES: if filename.startswith(directory): return False return (filename.endswith('.py') and filename not in IGNORED_FILES) def is_production_filename(filename): """Checks if the file contains production code. :rtype: boolean :returns: Boolean indicating production status. """ return not ('demo' in filename or 'test' in filename or filename.startswith('regression')) def get_files_for_linting(allow_limited=True, diff_base=None): """Gets a list of files in the repository. By default, returns all files via ``git ls-files``. However, in some cases uses a specific commit or branch (a so-called diff base) to compare against for changed files. (This requires ``allow_limited=True``.) To speed up linting on Travis pull requests against master, we manually set the diff base to origin/master. We don't do this on non-pull requests since origin/master will be equivalent to the currently checked out code. One could potentially use ${TRAVIS_COMMIT_RANGE} to find a diff base but this value is not dependable. :type allow_limited: boolean :param allow_limited: Boolean indicating if a reduced set of files can be used. :rtype: pair :returns: Tuple of the diff base using the the list of filenames to be linted. """ if os.getenv('TRAVIS') == 'true': # In travis, don't default to master. diff_base = None if (os.getenv('TRAVIS_BRANCH') == 'master' and os.getenv('TRAVIS_PULL_REQUEST') != 'false'): # In the case of a pull request into master, we want to # diff against HEAD in master. diff_base = 'origin/master' if diff_base is not None and allow_limited: result = subprocess.check_output(['git', 'diff', '--name-only', diff_base]) print 'Using files changed relative to %s:' % (diff_base,) print '-' * 60 print result.rstrip('\n') # Don't print trailing newlines. print '-' * 60 else: print 'Diff base not specified, listing all files in repository.' result = subprocess.check_output(['git', 'ls-files']) return result.rstrip('\n').split('\n'), diff_base def get_python_files(all_files=None, diff_base=None): """Gets a list of all Python files in the repository that need linting. Relies on :func:`get_files_for_linting()` to determine which files should be considered. NOTE: This requires ``git`` to be installed and requires that this is run within the ``git`` repository. :type all_files: list or ``NoneType`` :param all_files: Optional list of files to be linted. :rtype: tuple :returns: A tuple containing two lists and a boolean. The first list contains all production files, the next all test/demo files and the boolean indicates if a restricted fileset was used. """ using_restricted = False if all_files is None: all_files, diff_base = get_files_for_linting(diff_base=diff_base) using_restricted = diff_base is not None library_files = [] non_library_files = [] for filename in all_files: if valid_filename(filename): if is_production_filename(filename): library_files.append(filename) else: non_library_files.append(filename) return library_files, non_library_files, using_restricted def lint_fileset(filenames, rcfile, description): """Lints a group of files using a given rcfile.""" # Only lint filenames that exist. For example, 'git diff --name-only' # could spit out deleted / renamed files. Another alternative could # be to use 'git diff --name-status' and filter out files with a # status of 'D'. filenames = [filename for filename in filenames if os.path.exists(filename)] if filenames: rc_flag = '--rcfile=%s' % (rcfile,) pylint_shell_command = ['pylint', rc_flag] + filenames status_code = subprocess.call(pylint_shell_command) if status_code != 0: error_message = ('Pylint failed on %s with ' 'status %d.' % (description, status_code)) print >> sys.stderr, error_message sys.exit(status_code) else: print 'Skipping %s, no files to lint.' % (description,) def main(argv): """Script entry point. Lints both sets of files.""" diff_base = argv[1] if len(argv) > 1 else None make_test_rc(PRODUCTION_RC, TEST_RC_ADDITIONS, TEST_RC) library_files, non_library_files, using_restricted = get_python_files( diff_base=diff_base) try: lint_fileset(library_files, PRODUCTION_RC, 'library code') lint_fileset(non_library_files, TEST_RC, 'test and demo code') except SystemExit: if not using_restricted: raise message = 'Restricted lint failed, expanding to full fileset.' print >> sys.stderr, message all_files, _ = get_files_for_linting(allow_limited=False) library_files, non_library_files, _ = get_python_files( all_files=all_files) lint_fileset(library_files, PRODUCTION_RC, 'library code') lint_fileset(non_library_files, TEST_RC, 'test and demo code') if __name__ == '__main__': main(sys.argv)
python/cross_service/aurora_rest_lending_library/library_api/test/test_library_data.py
iconara/aws-doc-sdk-examples
5,166
12683785
<gh_stars>1000+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Unit tests for library_data.py functions. """ import datetime import pytest import boto3 from botocore.exceptions import ClientError from botocore.stub import ANY from chalicelib.library_data import Storage CLUSTER_ARN = 'arn:aws:rds:us-west-2:123456789012:cluster:test-cluster' SECRET_ARN = 'arn:aws:secretsmanager:us-west-2:123456789012:secret:test-secret-111111' DB_NAME = 'testdatabase' def make_storage_n_stubber(make_stubber): rdsdata_client = boto3.client('rds-data') storage = Storage( {'DBClusterArn': CLUSTER_ARN}, {'ARN': SECRET_ARN}, DB_NAME, rdsdata_client) return storage, make_stubber(rdsdata_client) def test_bootstrap_tables(make_stubber): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) for _ in storage._tables: rdsdata_stubber.stub_execute_statement(CLUSTER_ARN, SECRET_ARN, DB_NAME, ANY) storage.bootstrap_tables() def test_add_books(make_stubber): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) books = [ {'title': 'Book One', 'author': '<NAME>'}, {'title': 'Second Book', 'author': '<NAME>'}, {'title': 'Book One 2 (the sequel)', 'author': '<NAME>'}] author_sql = "INSERT INTO Authors (FirstName, LastName) " \ "VALUES (:FirstName, :LastName)" authors = {book['author']: { 'FirstName': ' '.join(book['author'].split(' ')[:-1]), 'LastName': book['author'].split(' ')[-1] } for book in books} author_param_sets = [[ {'name': 'FirstName', 'value': {'stringValue': author['FirstName']}}, {'name': 'LastName', 'value': {'stringValue': author['LastName']}}] for author in authors.values()] author_generated_field_sets = [[1], [2]] book_sql = "INSERT INTO Books (Title, AuthorID) VALUES (:Title, :AuthorID)" book_param_sets = [[ {'name': 'Title', 'value': {'stringValue': book['title']}}, {'name': 'AuthorID', 'value': {'longValue': author_id}}] for book, author_id in zip(books, [1, 2, 1])] book_generated_field_sets = [[11], [22], [33]] rdsdata_stubber.stub_batch_execute_statement( CLUSTER_ARN, SECRET_ARN, DB_NAME, author_sql, sql_param_sets=author_param_sets, generated_field_sets=author_generated_field_sets) rdsdata_stubber.stub_batch_execute_statement( CLUSTER_ARN, SECRET_ARN, DB_NAME, book_sql, sql_param_sets=book_param_sets, generated_field_sets=book_generated_field_sets) author_count, book_count = storage.add_books(books) assert author_count == 2 assert book_count == 3 @pytest.mark.parametrize('author_id,error_code', [ (None, None), (13, None), (None, 'TestException')]) def test_get_books(make_stubber, author_id, error_code): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) sql = "SELECT Books.BookID, Books.Title, Authors.AuthorID, " \ "Authors.FirstName, Authors.LastName FROM Books " \ "INNER JOIN Authors ON Books.AuthorID=Authors.AuthorID" sql_params = None if author_id is not None: sql += " WHERE Authors.AuthorID = :Authors_AuthorID" sql_params = [ {'name': 'Authors_AuthorID', 'value': {'longValue': author_id}}] records = [ [1, 'Title One', 1, 'Freddy', 'Fake'], [2, 'Title Two', 13, 'Peter', 'Pretend']] rdsdata_stubber.stub_execute_statement( CLUSTER_ARN, SECRET_ARN, DB_NAME, sql, sql_params=sql_params, records=records, error_code=error_code) if error_code is None: got_books = storage.get_books(author_id) assert [list(book.values()) for book in got_books] == records else: with pytest.raises(ClientError) as exc_info: storage.get_books(author_id) assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code,stop_on_method', [ (None, None), ('TestException', 'stub_execute_statement')]) def test_add_book(make_stubber, stub_runner, error_code, stop_on_method): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) transaction_id = 'trid-747' book = {'Books.Title': 'Test Book', 'Authors.FirstName': 'Teddy', 'Authors.LastName': 'Tester'} author_sql = \ "INSERT INTO Authors (FirstName, LastName) VALUES (:FirstName, :LastName)" author_params = [ {'name': 'FirstName', 'value': {'stringValue': 'Teddy'}}, {'name': 'LastName', 'value': {'stringValue': 'Tester'}}] author_id = 101 book_sql = "INSERT INTO Books (Title, AuthorID) VALUES (:Title, :AuthorID)" book_params = [ {'name': 'Title', 'value': {'stringValue': 'Test Book'}}, {'name': 'AuthorID', 'value': {'longValue': author_id}}] book_id = 66 with stub_runner(error_code, stop_on_method) as runner: runner.add( rdsdata_stubber.stub_begin_transaction, CLUSTER_ARN, SECRET_ARN, DB_NAME, transaction_id) runner.add( rdsdata_stubber.stub_execute_statement, CLUSTER_ARN, SECRET_ARN, DB_NAME, author_sql, author_params, transaction_id=transaction_id, generated_fields=[author_id]) runner.add( rdsdata_stubber.stub_execute_statement, CLUSTER_ARN, SECRET_ARN, DB_NAME, book_sql, book_params, transaction_id=transaction_id, generated_fields=[book_id]) runner.add(rdsdata_stubber.stub_commit_transaction, CLUSTER_ARN, SECRET_ARN, transaction_id) if error_code is not None: rdsdata_stubber.stub_rollack_transaction( CLUSTER_ARN, SECRET_ARN, transaction_id) result = storage.add_book(book) if error_code is None: assert result == (author_id, book_id) else: assert result is None @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_get_authors(make_stubber, error_code): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) sql = "SELECT Authors.AuthorID, Authors.FirstName, Authors.LastName FROM Authors " records = [ [1, 'Freddy', 'Fake'], [13, 'Peter', 'Pretend']] rdsdata_stubber.stub_execute_statement( CLUSTER_ARN, SECRET_ARN, DB_NAME, sql, records=records, error_code=error_code) if error_code is None: got_authors = storage.get_authors() assert [list(author.values()) for author in got_authors] == records else: with pytest.raises(ClientError) as exc_info: storage.get_authors() assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_get_patrons(make_stubber, error_code): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) sql = "SELECT Patrons.PatronID, Patrons.FirstName, Patrons.LastName FROM Patrons " records = [ [1, 'Randall', 'Reader'], [13, 'Bob', 'Booker']] rdsdata_stubber.stub_execute_statement( CLUSTER_ARN, SECRET_ARN, DB_NAME, sql, records=records, error_code=error_code) if error_code is None: got_patrons = storage.get_patrons() assert [list(patron.values()) for patron in got_patrons] == records else: with pytest.raises(ClientError) as exc_info: storage.get_patrons() assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_add_patron(make_stubber, error_code): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) patron = {'Patrons.FirstName': 'Marguerite', 'Patrons.LastName': 'Magazine'} patron_sql = \ "INSERT INTO Patrons (FirstName, LastName) VALUES (:FirstName, :LastName)" patron_params = [ {'name': 'Patrons.FirstName', 'value': {'stringValue': 'Marguerite'}}, {'name': 'Patrons.LastName', 'value': {'stringValue': 'Magazine'}}] patron_id = 36 rdsdata_stubber.stub_execute_statement(CLUSTER_ARN, SECRET_ARN, DB_NAME, patron_sql, patron_params, generated_fields=[patron_id], error_code=error_code) if error_code is None: got_patron_id = storage.add_patron(patron) assert got_patron_id == patron_id else: with pytest.raises(ClientError) as exc_info: storage.add_patron(patron) assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_delete_patron(make_stubber, error_code): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) patron_id = 38 patron_sql = \ "DELETE FROM Patrons WHERE PatronID=:PatronID" patron_params = [{'name': 'PatronID', 'value': {'longValue': 38}}] rdsdata_stubber.stub_execute_statement(CLUSTER_ARN, SECRET_ARN, DB_NAME, patron_sql, patron_params, error_code=error_code) if error_code is None: storage.delete_patron(patron_id) else: with pytest.raises(ClientError) as exc_info: storage.delete_patron(patron_id) assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_get_borrowed_books(make_stubber, error_code): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) sql = "SELECT Lending.LendingID, Books.BookID, Books.Title, " \ "Authors.AuthorID, Authors.FirstName, Authors.LastName, " \ "Patrons.PatronID, Patrons.FirstName, Patrons.LastName, " \ "Lending.Lent, Lending.Returned " \ "FROM Lending " \ "INNER JOIN Books ON Lending.BookID=Books.BookID " \ "INNER JOIN Authors ON Books.AuthorID=Authors.AuthorID " \ "INNER JOIN Patrons ON Lending.PatronID=Patrons.PatronID " \ "WHERE Lending.Lent >= :Lending_Lent " \ "AND Lending.Returned IS :Lending_Returned" sql_params = [{'name': 'Lending_Lent', 'value': {'stringValue': str(datetime.date.today())}}, {'name': 'Lending_Returned', 'value': {'isNull': True}}] records = [ [1, 5, 'Writing Words', 10, 'Walter', 'Writer', 55, 'Randall', 'Reader', str(datetime.date.today())], [13, 39, 'Thirteen', 1300, 'Theodore', 'Three', 103, 'Bob', 'Booker', str(datetime.date(2018, 10, 11))]] rdsdata_stubber.stub_execute_statement( CLUSTER_ARN, SECRET_ARN, DB_NAME, sql, sql_params=sql_params, records=records, error_code=error_code) if error_code is None: got_books = storage.get_borrowed_books() assert [list(book.values()) for book in got_books] == records else: with pytest.raises(ClientError) as exc_info: storage.get_borrowed_books() assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_borrow_book(make_stubber, error_code): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) book_id = 35 patron_id = 405 sql = \ "INSERT INTO Lending (BookID, PatronID, Lent, Returned) " \ "VALUES (:BookID, :PatronID, :Lent, :Returned)" sql_params = [ {'name': 'BookID', 'value': {'longValue': 35}}, {'name': 'PatronID', 'value': {'longValue': 405}}, {'name': 'Lent', 'typeHint': 'DATE', 'value': {'stringValue': str(datetime.date.today())}}, {'name': 'Returned', 'value': {'isNull': True}}] lending_id = 5000 rdsdata_stubber.stub_execute_statement(CLUSTER_ARN, SECRET_ARN, DB_NAME, sql, sql_params, generated_fields=[lending_id], error_code=error_code) if error_code is None: got_lending_id = storage.borrow_book(book_id, patron_id) assert got_lending_id == lending_id else: with pytest.raises(ClientError) as exc_info: storage.borrow_book(book_id, patron_id) assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_return_book(make_stubber, error_code): storage, rdsdata_stubber = make_storage_n_stubber(make_stubber) book_id = 35 patron_id = 405 sql = \ "UPDATE Lending SET Returned=:set_Returned " \ "WHERE Lending.BookID = :Lending_BookID AND " \ "Lending.PatronID = :Lending_PatronID AND " \ "Lending.Returned IS :Lending_Returned" sql_params = [ {'name': 'set_Returned', 'typeHint': 'DATE', 'value': {'stringValue': str(datetime.date.today())}}, {'name': 'Lending_BookID', 'value': {'longValue': 35}}, {'name': 'Lending_PatronID', 'value': {'longValue': 405}}, {'name': 'Lending_Returned', 'value': {'isNull': True}}] rdsdata_stubber.stub_execute_statement(CLUSTER_ARN, SECRET_ARN, DB_NAME, sql, sql_params, error_code=error_code) if error_code is None: storage.return_book(book_id, patron_id) else: with pytest.raises(ClientError) as exc_info: storage.return_book(book_id, patron_id) assert exc_info.value.response['Error']['Code'] == error_code
analysis/dask/old_encoding/xgb-dask.py
szilard/GBM-perf
201
12683794
import pandas as pd from sklearn import metrics from dask.distributed import Client, LocalCluster import dask.dataframe as dd import dask.array as da from dask_ml import preprocessing import xgboost as xgb cluster = LocalCluster(n_workers=16, threads_per_worker=1) client = Client(cluster) d_train = pd.read_csv("https://s3.amazonaws.com/benchm-ml--main/train-1m.csv") d_test = pd.read_csv("https://s3.amazonaws.com/benchm-ml--main/test.csv") d_all = pd.concat([d_train,d_test]) dx_all = dd.from_pandas(d_all, npartitions=16) vars_cat = ["Month","DayofMonth","DayOfWeek","UniqueCarrier", "Origin", "Dest"] vars_num = ["DepTime","Distance"] for col in vars_cat: dx_all[col] = preprocessing.LabelEncoder().fit_transform(dx_all[col]) X_all = dx_all[vars_cat+vars_num].to_dask_array(lengths=True) y_all = da.where((dx_all["dep_delayed_15min"]=="Y").to_dask_array(lengths=True),1,0) X_train = X_all[0:d_train.shape[0],] y_train = y_all[0:d_train.shape[0]] X_test = X_all[d_train.shape[0]:(d_train.shape[0]+d_test.shape[0]),] y_test = y_all[d_train.shape[0]:(d_train.shape[0]+d_test.shape[0])] X_train.persist() y_train.persist() client.has_what() dxgb_train = xgb.dask.DaskDMatrix(client, X_train, y_train) dxgb_test = xgb.dask.DaskDMatrix(client, X_test) param = {'objective':'binary:logistic', 'tree_method':'hist', 'max_depth':10, 'eta':0.1} %time md = xgb.dask.train(client, param, dxgb_train, num_boost_round = 100) y_pred = xgb.dask.predict(client, md, dxgb_test) y_pred_loc = y_pred.compute() y_test_loc = y_test.compute() print(metrics.roc_auc_score(y_test_loc, y_pred_loc)) ## m5.4xlarge 16c (8+8HT) ## Wall time: 20.5 s ## 0.7958538649110775
odk_logger/tests/__init__.py
Ecotrust/formhub
123
12683797
from parsing_tests import * #from instance_creation_test import * #from test_simple_submission import * #from test_import_tools import * #from test_form_submission import * #from test_update_xform_uuid import * #from test_command_syncd_deleted_instances_fix import * #from test_webforms import * #from test_publish_xls import * #from test_backup_tools import *
src/jNlp/edict_search_monash/edict_examples.py
Reynolddoss/jProcessing
133
12683803
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- """ This package uses the EDICT_ and KANJIDIC_ dictionary files. These files are the property of the Electronic Dictionary Research and Development Group_ , and are used in conformance with the Group's licence_ . .. _EDICT: http://www.csse.monash.edu.au/~jwb/edict.html .. _KANJIDIC: http://www.csse.monash.edu.au/~jwb/kanjidic.html .. _Group: http://www.edrdg.org/ .. _licence: http://www.edrdg.org/edrdg/licence.html .. """ # Copyright (c) 2011, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Edict Parser By **<NAME>**, see ``edict_search.py`` Edict Example sentences, by search query, **Pulkit Kathuria** Edict examples pickle files are provided but latest example files can be downloaded from the links provided. Charset: - utf-8 charset example file - ISO-8859-1 edict_dictionary file Outputs example sentences for a query in Japanese only for ambiguous words. """ import re, os, subprocess from jNlp.edict_search_monash.edict_search import Parser import cPickle as pickle def word_and_id(BSent): results = [] for item in BSent.split(): brackets = re.compile('\[.*?\]') flter = re.sub('\(.*?\)','',item) word = re.split('\[|\]', re.sub('\{.*?\}','',flter))[0] try: s_id = re.split('\[|\]', re.sub('\{.*?\}','',flter))[1] except: pass if re.search(brackets, flter): results.append((word, s_id)) return results def parse_examples(edict_examples_file): """ Edict examples format --------------------- :: A: 誰にでも長所と.. Everyone has....points.#ID=276471_4870 B: 才[01]{歳} 以上[01] 生きる (こと){こと} は 決して .. ambiguous_words: @type = dictionary format: Kanji ==> id ==> [examples_sent_id, ..] 才 ==> 01 ==> [#ID=276471_4870, ...] call: >>> ambiguous_words[kanji][01] ...[#ID=276471_4870, ...] edict_examples: @type = dictionary format: ID ==> u'example_sentence' #ID=276471_4870 ==> u'誰にでも長所と.. Everyone has....points' """ ambiguous_words = {} edict_examples = {} for line in edict_examples_file.readlines(): line = unicode(line,'utf-8') if line.startswith('A:'): eg_sent = line.split('#ID=')[0] eg_sent_id = line.split('#ID=')[1] edict_examples[eg_sent_id] = eg_sent continue for item in word_and_id(line): word = item[0] s_id = int(item[1]) if not ambiguous_words.has_key(word): ambiguous_words[word] = {} if not ambiguous_words[word].has_key(s_id): ambiguous_words[word][s_id] = [] ambiguous_words[word][s_id].append(eg_sent_id) return ambiguous_words, edict_examples def edict_entry(edict_file_path, query): kp = Parser(edict_file_path) for entry in kp.search(query): if entry.to_string().split()[0] == query: entry = entry.to_string() glosses = re.findall('\(\d\).*?;',entry) s_ids = [int(re.search('\d',gloss).group(0)) for gloss in glosses] return s_ids, glosses return [],[] def check_pickles(edict_examples_path): f = open(edict_examples_path) __checkpickles__ = ['edict_examples.p','ambiguous_words.p'] for pickl in __checkpickles__: if not os.path.exists(pickl): ambiguous_words, edict_examples = parse_examples(f) pickle.dump(ambiguous_words, open("ambiguous_words.p",'wb')) pickle.dump(edict_examples, open("edict_examples.p",'wb')) else: ambiguous_words = pickle.load(open('ambiguous_words.p')) edict_examples = pickle.load(open('edict_examples.p')) return ambiguous_words, edict_examples def search_with_example(edict_path, edict_examples_path, query): ambiguous_words, edict_examples = check_pickles(edict_examples_path) s_ids, glosses = edict_entry(edict_path, query) print query.encode('utf-8') for s_id, gloss in enumerate(glosses): print print 'Sense', gloss if ambiguous_words.has_key(query) and ambiguous_words[query].has_key(s_ids[s_id]): for ex_num, ex_id in enumerate(ambiguous_words[query][s_ids[s_id]], 1): ex_sentence = edict_examples[ex_id].replace(query[0], '*'+query[0]+'*') print '\t', ex_sentence.replace('A:','EX:'+str(ex_num).zfill(2)).encode('utf-8') def _mime(f_path): command = ['file','--mime',f_path] process = subprocess.Popen(command, stdout=subprocess.PIPE) charset = process.communicate()[0].split('charset=')[1] return charset.strip() def _encoding_check(edict_path, edict_examples_path): if _mime(edict_path) <> 'iso-8859-1' or _mime(edict_examples_path) <>'utf-8': print _mime(edict_path) print 'examples file must utf-8 encoded' print 'edict dictionary must be iso-8859-1 encoded' print 'man iconv' return True if __name__ == '__main__': query = u'水' edict_path = '../_dicts/edict-2011-08-30' edict_examples_path = '../_dicts/edict_examples' search_with_example(edict_path, edict_examples_path, query)
qf_lib_tests/unit_tests/containers/test_future_ticker.py
webclinic017/qf-lib
198
12683804
# Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from qf_lib.common.tickers.tickers import Ticker from qf_lib.common.utils.dateutils.date_format import DateFormat from qf_lib.common.utils.dateutils.string_to_date import str_to_date from qf_lib.common.utils.dateutils.timer import SettableTimer from qf_lib.containers.futures.future_tickers.future_ticker import FutureTicker from qf_lib.containers.series.qf_series import QFSeries from qf_lib.data_providers.bloomberg import BloombergDataProvider from qf_lib_tests.unit_tests.config.test_settings import get_test_settings class CustomTicker(Ticker): def from_string(self, ticker_str): pass class CustomFutureTicker(FutureTicker, CustomTicker): def belongs_to_family(self, ticker: CustomTicker) -> bool: pass def _get_futures_chain_tickers(self): tickers = [ CustomTicker("A"), CustomTicker("B"), CustomTicker("C"), CustomTicker("D"), CustomTicker("E"), CustomTicker("F"), CustomTicker("G") ] exp_dates = [ str_to_date('2017-11-13'), str_to_date('2017-12-15'), str_to_date('2018-01-12'), str_to_date('2018-02-13'), str_to_date('2018-03-15'), str_to_date('2018-04-14'), str_to_date('2018-05-13') ] return QFSeries(data=tickers, index=exp_dates) class TestSeries(unittest.TestCase): def setUp(self): self.timer = SettableTimer(initial_time=str_to_date('2017-01-01')) settings = get_test_settings() self.bbg_provider = BloombergDataProvider(settings) def test_valid_ticker_1(self): future_ticker = CustomFutureTicker("Custom", "CT{} Custom", 1, 5, 500) future_ticker.initialize_data_provider(self.timer, self.bbg_provider) # '2017-12-15' is the official expiration date of CustomTicker:B, setting the days_before_exp_date equal to # 5 forces the expiration to occur on the 11th ('2017-12-15' - 5 days = '2017-12-10' is the last day of old # contract). self.timer.set_current_time(str_to_date('2017-12-05')) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("B")) self.timer.set_current_time(str_to_date('2017-12-10')) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("B")) self.timer.set_current_time(str_to_date('2017-12-11')) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) def test_valid_ticker_2(self): # Test the 2nd contract instead of front one future_ticker = CustomFutureTicker("Custom", "CT{} Custom", 2, 5, 500) future_ticker.initialize_data_provider(self.timer, self.bbg_provider) self.timer.set_current_time(str_to_date('2017-12-05')) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) self.timer.set_current_time(str_to_date('2017-12-10')) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) self.timer.set_current_time(str_to_date('2017-12-11')) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("D")) def test_valid_ticker_3(self): future_ticker = CustomFutureTicker("Custom", "CT{} Custom", 1, 45, 500) future_ticker.initialize_data_provider(self.timer, self.bbg_provider) self.timer.set_current_time(str_to_date('2017-11-28')) # '2017-11-28' + 45 days = '2018-01-12' - the front contract will be equal to CustomTicker:D self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) self.timer.set_current_time(str_to_date('2017-11-29')) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("D")) self.timer.set_current_time(str_to_date('2017-12-05')) # '2017-12-05' + 45 days = '2018-01-19' - the front contract will be equal to CustomTicker:D self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("D")) def test_valid_ticker_4(self): future_ticker = CustomFutureTicker("Custom", "CT{} Custom", 2, 45, 500) future_ticker.initialize_data_provider(self.timer, self.bbg_provider) self.timer.set_current_time(str_to_date('2017-11-28')) # '2017-11-28' + 45 days = '2018-01-12' - the front contract will be equal to CustomTicker:D self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("D")) self.timer.set_current_time(str_to_date('2017-11-29')) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("E")) self.timer.set_current_time(str_to_date('2017-12-05')) # '2017-12-05' + 45 days = '2018-01-19' - the front contract will be equal to CustomTicker:D self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("E")) def test_set_expiration_hour__first_caching_before_exp_hour(self): """ Test set expiration hour when the first caching occurs on the expiration day, before expiration hour. """ future_ticker = CustomFutureTicker("Custom", "CT{} Custom", 1, 5, 500) future_ticker.initialize_data_provider(self.timer, self.bbg_provider) future_ticker.set_expiration_hour(hour=8, minute=10) self.timer.set_current_time(str_to_date('2017-12-11 00:00:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("B")) self.timer.set_current_time(str_to_date('2017-12-11 07:59:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("B")) self.timer.set_current_time(str_to_date('2017-12-11 08:10:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) self.timer.set_current_time(str_to_date('2017-12-11 07:10:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("B")) self.timer.set_current_time(str_to_date('2017-12-11 09:10:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) def test_set_expiration_hour__first_caching_after_exp_hour(self): """ Test set expiration hour when the first caching occurs a day before the expiration day, after expiration hour. """ future_ticker = CustomFutureTicker("Custom", "CT{} Custom", 1, 5, 500) future_ticker.initialize_data_provider(self.timer, self.bbg_provider) future_ticker.set_expiration_hour(hour=10, minute=10) self.timer.set_current_time(str_to_date('2017-12-10 19:00:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("B")) self.timer.set_current_time(str_to_date('2017-12-11 10:10:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) self.timer.set_current_time(str_to_date('2017-12-11 11:10:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) def test_set_expiration_hour__first_caching_at_exp_hour(self): """ Test set expiration hour when the first caching occurs a day before the expiration day, at expiration hour. """ future_ticker = CustomFutureTicker("Custom", "CT{} Custom", 1, 5, 500) future_ticker.initialize_data_provider(self.timer, self.bbg_provider) future_ticker.set_expiration_hour(hour=8, minute=10) self.timer.set_current_time(str_to_date('2017-12-11 08:10:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) self.timer.set_current_time(str_to_date('2017-12-11 09:10:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("C")) self.timer.set_current_time(str_to_date('2017-12-10 19:00:00.0', DateFormat.FULL_ISO)) self.assertEqual(future_ticker.get_current_specific_ticker(), CustomTicker("B")) if __name__ == '__main__': unittest.main()
Webapp/module_locator.py
akbarman8/KSCrash
3,369
12683821
# from http://stackoverflow.com/questions/2632199/how-do-i-get-the-path-of-the-current-executed-file-in-python import os import sys def we_are_frozen(): # All of the modules are built-in to the interpreter, e.g., by py2exe return hasattr(sys, "frozen") def module_path(): encoding = sys.getfilesystemencoding() if we_are_frozen(): return os.path.dirname(unicode(sys.executable, encoding)) return os.path.dirname(unicode(__file__, encoding))
examples/events/tools.py
chrisinmtown/PyMISP
307
12683823
#!/usr/bin/env python # -*- coding: utf-8 -*- import random from random import randint import string from pymisp import MISPEvent, MISPAttribute def randomStringGenerator(size, chars=string.ascii_lowercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def randomIpGenerator(): return str(randint(0, 255)) + '.' + str(randint(0, 255)) + '.' + str(randint(0, 255)) + '.' + str(randint(0, 255)) def _attribute(category, type, value): attribute = MISPAttribute() attribute.category = category attribute.type = type attribute.value = value return attribute def floodtxt(misp, event, maxlength=255): text = randomStringGenerator(randint(1, maxlength)) choose_from = [('Internal reference', 'comment', text), ('Internal reference', 'text', text), ('Internal reference', 'other', text), ('Network activity', 'email-subject', text), ('Artifacts dropped', 'mutex', text), ('Artifacts dropped', 'filename', text)] misp.add_attribute(event, _attribute(*random.choice(choose_from))) def floodip(misp, event): ip = randomIpGenerator() choose_from = [('Network activity', 'ip-src', ip), ('Network activity', 'ip-dst', ip)] misp.add_attribute(event, _attribute(*random.choice(choose_from))) def flooddomain(misp, event, maxlength=25): a = randomStringGenerator(randint(1, maxlength)) b = randomStringGenerator(randint(2, 3), chars=string.ascii_lowercase) domain = a + '.' + b choose_from = [('Network activity', 'domain', domain), ('Network activity', 'hostname', domain)] misp.add_attribute(event, _attribute(*random.choice(choose_from))) def floodemail(misp, event, maxlength=25): a = randomStringGenerator(randint(1, maxlength)) b = randomStringGenerator(randint(1, maxlength)) c = randomStringGenerator(randint(2, 3), chars=string.ascii_lowercase) email = a + '@' + b + '.' + c choose_from = [('Network activity', 'email-dst', email), ('Network activity', 'email-src', email)] misp.add_attribute(event, _attribute(*random.choice(choose_from))) def create_dummy_event(misp): event = MISPEvent() event.info = 'Dummy event' event = misp.add_event(event, pythonify=True) return event def create_massive_dummy_events(misp, nbattribute): event = MISPEvent() event.info = 'massive dummy event' event = misp.add_event(event) print(event) functions = [floodtxt, floodip, flooddomain, floodemail] for i in range(nbattribute): functions[random.randint(0, len(functions) - 1)](misp, event)
odin/tests/test_position.py
gsamarakoon/Odin
103
12683834
import unittest import datetime as dt from odin.handlers.position_handler.position import FilledPosition from odin.utilities import params class TestPosition(unittest.TestCase): def test_to_database_position(self): s = "SPY" q = 100 d = params.Directions.long_dir t = params.TradeTypes.buy_trade a = params.action_dict[(d, t)] pid = "test_portfolio_id" date = dt.datetime.today() price = 100.0 update_price = 101.0 pos = FilledPosition(s, d, t, pid, date, price) pos.transact_shares(a, q, price) pos.to_database_position() def test_from_database_position(self): s = "SPY" pid = "test_portfolio_id" pos = FilledPosition.from_database_position(pid, s) self.assertEqual(pos.avg_price, 100.01) self.assertEqual(pos.portfolio_id, pid) self.assertEqual(pos.quantity, 100) self.assertEqual(pos.direction, params.Directions.long_dir) self.assertEqual(pos.trade_type, params.TradeTypes.buy_trade) def test_long_position(self): s = "GOOG" q = 100 d = params.Directions.long_dir t = params.TradeTypes.buy_trade a = params.action_dict[(d, t)] pid = "test_portfolio_id" date = dt.datetime.today() price = 100.0 update_price = 101.0 pos = FilledPosition(s, d, t, pid, date, price) pos.transact_shares(a, q, price) pos.update_market_value(update_price) self.assertEqual( pos.percent_pnl, 1 + (pos.market_value - pos.cost_basis) / pos.cost_basis ) self.assertEqual(pos.quantity, q) self.assertEqual(pos.market_value, 10100.0) self.assertEqual(pos.unrealized_pnl, 99.0) self.assertEqual(pos.tot_commission, 1.0) sell_price = 100.5 pos.transact_shares(params.Actions.sell, q // 2, sell_price) self.assertEqual(pos.quantity, q // 2) self.assertEqual(pos.realized_pnl, 48.0) self.assertEqual(pos.unrealized_pnl, 24.5) self.assertEqual(pos.tot_commission, 2.0) sell_price = 101.0 pos.transact_shares(params.Actions.sell, q // 2, sell_price) self.assertEqual(pos.quantity, 0) self.assertEqual(pos.realized_pnl, 72.0) self.assertEqual(pos.unrealized_pnl, 0.) self.assertEqual(pos.tot_commission, 3.0) def test_short_position(self): s = "GOOG" q = 100 d = params.Directions.short_dir t = params.TradeTypes.buy_trade a = params.action_dict[(d, t)] pid = "test_portfolio_id" date = dt.datetime.today() price = 100.0 update_price = 101.0 pos = FilledPosition(s, d, t, pid, date, price) pos.transact_shares(a, q, price) pos.update_market_value(update_price) self.assertEqual( pos.percent_pnl, 1 - (pos.market_value - pos.cost_basis) / pos.cost_basis ) self.assertEqual(pos.quantity, q) self.assertEqual(pos.market_value, -10100.0) self.assertEqual(pos.unrealized_pnl, -101.0) self.assertEqual(pos.tot_commission, 1.0) buy_price = 100.5 pos.transact_shares(params.Actions.buy, q // 2, buy_price) self.assertEqual(pos.quantity, q // 2) self.assertEqual(pos.realized_pnl, -52.0) self.assertEqual(pos.unrealized_pnl, -25.5) self.assertEqual(pos.tot_commission, 2.0) buy_price = 101.0 pos.transact_shares(params.Actions.buy, q // 2, buy_price) self.assertEqual(pos.quantity, 0) self.assertEqual(pos.realized_pnl, -78.0) self.assertEqual(pos.unrealized_pnl, 0.) self.assertEqual(pos.tot_commission, 3.0) if __name__ == "__main__": unittest.main()
src/condor_contrib/condor_pigeon/src/condor_pigeon_client/skype_linux_tools/Skype4Py/Languages/ar.py
neurodebian/htcondor
217
12683841
<filename>src/condor_contrib/condor_pigeon/src/condor_pigeon_client/skype_linux_tools/Skype4Py/Languages/ar.py apiAttachAvailable = u'\u0648\u0627\u062c\u0647\u0629 \u0628\u0631\u0645\u062c\u0629 \u0627\u0644\u062a\u0637\u0628\u064a\u0642 (API) \u0645\u062a\u0627\u062d\u0629' apiAttachNotAvailable = u'\u063a\u064a\u0631 \u0645\u062a\u0627\u062d' apiAttachPendingAuthorization = u'\u062a\u0639\u0644\u064a\u0642 \u0627\u0644\u062a\u0635\u0631\u064a\u062d' apiAttachRefused = u'\u0631\u0641\u0636' apiAttachSuccess = u'\u0646\u062c\u0627\u062d' apiAttachUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' budDeletedFriend = u'\u062a\u0645 \u062d\u0630\u0641\u0647 \u0645\u0646 \u0642\u0627\u0626\u0645\u0629 \u0627\u0644\u0623\u0635\u062f\u0642\u0627\u0621' budFriend = u'\u0635\u062f\u064a\u0642' budNeverBeenFriend = u'\u0644\u0645 \u064a\u0648\u062c\u062f \u0645\u0637\u0644\u0642\u064b\u0627 \u0641\u064a \u0642\u0627\u0626\u0645\u0629 \u0627\u0644\u0623\u0635\u062f\u0642\u0627\u0621' budPendingAuthorization = u'\u062a\u0639\u0644\u064a\u0642 \u0627\u0644\u062a\u0635\u0631\u064a\u062d' budUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' cfrBlockedByRecipient = u'\u062a\u0645 \u062d\u0638\u0631 \u0627\u0644\u0645\u0643\u0627\u0644\u0645\u0629 \u0628\u0648\u0627\u0633\u0637\u0629 \u0627\u0644\u0645\u0633\u062a\u0644\u0645' cfrMiscError = u'\u062e\u0637\u0623 \u0645\u062a\u0646\u0648\u0639' cfrNoCommonCodec = u'\u0628\u0631\u0646\u0627\u0645\u062c \u062a\u0634\u0641\u064a\u0631 \u063a\u064a\u0631 \u0634\u0627\u0626\u0639' cfrNoProxyFound = u'\u0644\u0645 \u064a\u062a\u0645 \u0627\u0644\u0639\u062b\u0648\u0631 \u0639\u0644\u0649 \u0628\u0631\u0648\u0643\u0633\u064a' cfrNotAuthorizedByRecipient = u'\u0644\u0645 \u064a\u062a\u0645 \u0645\u0646\u062d \u062a\u0635\u0631\u064a\u062d \u0644\u0644\u0645\u0633\u062a\u062e\u062f\u0645 \u0627\u0644\u062d\u0627\u0644\u064a \u0628\u0648\u0627\u0633\u0637\u0629 \u0627\u0644\u0645\u0633\u062a\u0644\u0645' cfrRecipientNotFriend = u'\u0627\u0644\u0645\u0633\u062a\u0644\u0645 \u0644\u064a\u0633 \u0635\u062f\u064a\u0642\u064b\u0627' cfrRemoteDeviceError = u'\u0645\u0634\u0643\u0644\u0629 \u0641\u064a \u062c\u0647\u0627\u0632 \u0627\u0644\u0635\u0648\u062a \u0627\u0644\u0628\u0639\u064a\u062f' cfrSessionTerminated = u'\u0627\u0646\u062a\u0647\u0627\u0621 \u0627\u0644\u062c\u0644\u0633\u0629' cfrSoundIOError = u'\u062e\u0637\u0623 \u0641\u064a \u0625\u062f\u062e\u0627\u0644/\u0625\u062e\u0631\u0627\u062c \u0627\u0644\u0635\u0648\u062a' cfrSoundRecordingError = u'\u062e\u0637\u0623 \u0641\u064a \u062a\u0633\u062c\u064a\u0644 \u0627\u0644\u0635\u0648\u062a' cfrUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' cfrUserDoesNotExist = u'\u0627\u0644\u0645\u0633\u062a\u062e\u062f\u0645/\u0631\u0642\u0645 \u0627\u0644\u0647\u0627\u062a\u0641 \u063a\u064a\u0631 \u0645\u0648\u062c\u0648\u062f' cfrUserIsOffline = u'\u063a\u064a\u0631 \u0645\u062a\u0651\u0635\u0644\u0629 \u0623\u0648 \u063a\u064a\u0631 \u0645\u062a\u0651\u0635\u0644' chsAllCalls = u'\u062d\u0648\u0627\u0631 \u0642\u062f\u064a\u0645' chsDialog = u'\u062d\u0648\u0627\u0631' chsIncomingCalls = u'\u064a\u062c\u0628 \u0627\u0644\u0645\u0648\u0627\u0641\u0642\u0629 \u0639\u0644\u0649 \u0627\u0644\u0645\u062d\u0627\u062f\u062b\u0629 \u0627\u0644\u062c\u0645\u0627\u0639\u064a\u0629' chsLegacyDialog = u'\u062d\u0648\u0627\u0631 \u0642\u062f\u064a\u0645' chsMissedCalls = u'\u062d\u0648\u0627\u0631' chsMultiNeedAccept = u'\u064a\u062c\u0628 \u0627\u0644\u0645\u0648\u0627\u0641\u0642\u0629 \u0639\u0644\u0649 \u0627\u0644\u0645\u062d\u0627\u062f\u062b\u0629 \u0627\u0644\u062c\u0645\u0627\u0639\u064a\u0629' chsMultiSubscribed = u'\u062a\u0645 \u0627\u0644\u0627\u0634\u062a\u0631\u0627\u0643 \u0641\u064a \u0627\u0644\u0645\u062d\u0627\u062f\u062b\u0629 \u0627\u0644\u062c\u0645\u0627\u0639\u064a\u0629' chsOutgoingCalls = u'\u062a\u0645 \u0627\u0644\u0627\u0634\u062a\u0631\u0627\u0643 \u0641\u064a \u0627\u0644\u0645\u062d\u0627\u062f\u062b\u0629 \u0627\u0644\u062c\u0645\u0627\u0639\u064a\u0629' chsUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' chsUnsubscribed = u'\u062a\u0645 \u0625\u0644\u063a\u0627\u0621 \u0627\u0644\u0627\u0634\u062a\u0631\u0627\u0643' clsBusy = u'\u0645\u0634\u063a\u0648\u0644' clsCancelled = u'\u0623\u0644\u063a\u064a' clsEarlyMedia = u'\u062a\u0634\u063a\u064a\u0644 \u0627\u0644\u0648\u0633\u0627\u0626\u0637 (Early Media)' clsFailed = u'\u0639\u0641\u0648\u0627\u064b\u060c \u062a\u0639\u0630\u0651\u0631\u062a \u0639\u0645\u0644\u064a\u0629 \u0627\u0644\u0627\u062a\u0651\u0635\u0627\u0644!' clsFinished = u'\u0627\u0646\u062a\u0647\u0649' clsInProgress = u'\u062c\u0627\u0631\u064a \u0627\u0644\u0627\u062a\u0635\u0627\u0644' clsLocalHold = u'\u0645\u0643\u0627\u0644\u0645\u0629 \u0642\u064a\u062f \u0627\u0644\u0627\u0646\u062a\u0638\u0627\u0631 \u0645\u0646 \u0637\u0631\u0641\u064a' clsMissed = u'\u0645\u0643\u0627\u0644\u0645\u0629 \u0644\u0645 \u064a\u064f\u0631\u062f \u0639\u0644\u064a\u0647\u0627' clsOnHold = u'\u0642\u064a\u062f \u0627\u0644\u0627\u0646\u062a\u0638\u0627\u0631' clsRefused = u'\u0631\u0641\u0636' clsRemoteHold = u'\u0645\u0643\u0627\u0644\u0645\u0629 \u0642\u064a\u062f \u0627\u0644\u0627\u0646\u062a\u0638\u0627\u0631 \u0645\u0646 \u0627\u0644\u0637\u0631\u0641 \u0627\u0644\u062b\u0627\u0646\u064a' clsRinging = u'\u0627\u0644\u0627\u062a\u0635\u0627\u0644' clsRouting = u'\u062a\u0648\u062c\u064a\u0647' clsTransferred = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' clsTransferring = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' clsUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' clsUnplaced = u'\u0644\u0645 \u064a\u0648\u0636\u0639 \u0645\u0637\u0644\u0642\u064b\u0627' clsVoicemailBufferingGreeting = u'\u062a\u062e\u0632\u064a\u0646 \u0627\u0644\u062a\u062d\u064a\u0629' clsVoicemailCancelled = u'\u062a\u0645 \u0625\u0644\u063a\u0627\u0621 \u0627\u0644\u0628\u0631\u064a\u062f \u0627\u0644\u0635\u0648\u062a\u064a' clsVoicemailFailed = u'\u0641\u0634\u0644 \u0627\u0644\u0628\u0631\u064a\u062f \u0627\u0644\u0635\u0648\u062a\u064a' clsVoicemailPlayingGreeting = u'\u062a\u0634\u063a\u064a\u0644 \u0627\u0644\u062a\u062d\u064a\u0629' clsVoicemailRecording = u'\u062a\u0633\u062c\u064a\u0644 \u0628\u0631\u064a\u062f \u0635\u0648\u062a\u064a' clsVoicemailSent = u'\u062a\u0645 \u0625\u0631\u0633\u0627\u0644 \u0627\u0644\u0628\u0631\u064a\u062f \u0627\u0644\u0635\u0648\u062a\u064a' clsVoicemailUploading = u'\u0625\u064a\u062f\u0627\u0639 \u0628\u0631\u064a\u062f \u0635\u0648\u062a\u064a' cltIncomingP2P = u'\u0645\u0643\u0627\u0644\u0645\u0629 \u0646\u0638\u064a\u0631 \u0625\u0644\u0649 \u0646\u0638\u064a\u0631 \u0648\u0627\u0631\u062f\u0629' cltIncomingPSTN = u'\u0645\u0643\u0627\u0644\u0645\u0629 \u0647\u0627\u062a\u0641\u064a\u0629 \u0648\u0627\u0631\u062f\u0629' cltOutgoingP2P = u'\u0645\u0643\u0627\u0644\u0645\u0629 \u0646\u0638\u064a\u0631 \u0625\u0644\u0649 \u0646\u0638\u064a\u0631 \u0635\u0627\u062f\u0631\u0629' cltOutgoingPSTN = u'\u0645\u0643\u0627\u0644\u0645\u0629 \u0647\u0627\u062a\u0641\u064a\u0629 \u0635\u0627\u062f\u0631\u0629' cltUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' cmeAddedMembers = u'\u0627\u0644\u0623\u0639\u0636\u0627\u0621 \u0627\u0644\u0645\u0636\u0627\u0641\u0629' cmeCreatedChatWith = u'\u0623\u0646\u0634\u0623 \u0645\u062d\u0627\u062f\u062b\u0629 \u0645\u0639' cmeEmoted = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' cmeLeft = u'\u063a\u0627\u062f\u0631' cmeSaid = u'\u0642\u0627\u0644' cmeSawMembers = u'\u0627\u0644\u0623\u0639\u0636\u0627\u0621 \u0627\u0644\u0645\u0634\u0627\u0647\u064e\u062f\u0648\u0646' cmeSetTopic = u'\u062a\u0639\u064a\u064a\u0646 \u0645\u0648\u0636\u0648\u0639' cmeUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' cmsRead = u'\u0642\u0631\u0627\u0621\u0629' cmsReceived = u'\u0645\u064f\u0633\u062a\u064e\u0644\u0645' cmsSending = u'\u062c\u0627\u0631\u064a \u0627\u0644\u0625\u0631\u0633\u0627\u0644...' cmsSent = u'\u0645\u064f\u0631\u0633\u064e\u0644' cmsUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' conConnecting = u'\u062c\u0627\u0631\u064a \u0627\u0644\u062a\u0648\u0635\u064a\u0644' conOffline = u'\u063a\u064a\u0631 \u0645\u062a\u0651\u0635\u0644' conOnline = u'\u0645\u062a\u0635\u0644' conPausing = u'\u0625\u064a\u0642\u0627\u0641 \u0645\u0624\u0642\u062a' conUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' cusAway = u'\u0628\u0627\u0644\u062e\u0627\u0631\u062c' cusDoNotDisturb = u'\u0645\u0645\u0646\u0648\u0639 \u0627\u0644\u0625\u0632\u0639\u0627\u062c' cusInvisible = u'\u0645\u062e\u0641\u064a' cusLoggedOut = u'\u063a\u064a\u0631 \u0645\u062a\u0651\u0635\u0644' cusNotAvailable = u'\u063a\u064a\u0631 \u0645\u062a\u0627\u062d' cusOffline = u'\u063a\u064a\u0631 \u0645\u062a\u0651\u0635\u0644' cusOnline = u'\u0645\u062a\u0635\u0644' cusSkypeMe = u'Skype Me' cusUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' cvsBothEnabled = u'\u0625\u0631\u0633\u0627\u0644 \u0648\u0627\u0633\u062a\u0644\u0627\u0645 \u0627\u0644\u0641\u064a\u062f\u064a\u0648' cvsNone = u'\u0644\u0627 \u064a\u0648\u062c\u062f \u0641\u064a\u062f\u064a\u0648' cvsReceiveEnabled = u'\u0627\u0633\u062a\u0644\u0627\u0645 \u0627\u0644\u0641\u064a\u062f\u064a\u0648' cvsSendEnabled = u'\u0625\u0631\u0633\u0627\u0644 \u0627\u0644\u0641\u064a\u062f\u064a\u0648' cvsUnknown = u'' grpAllFriends = u'\u0643\u0627\u0641\u0629 \u0627\u0644\u0623\u0635\u062f\u0642\u0627\u0621' grpAllUsers = u'\u0643\u0627\u0641\u0629 \u0627\u0644\u0645\u0633\u062a\u062e\u062f\u0645\u064a\u0646' grpCustomGroup = u'\u0645\u062e\u0635\u0635' grpOnlineFriends = u'\u0627\u0644\u0623\u0635\u062f\u0642\u0627\u0621 \u0627\u0644\u0645\u062a\u0635\u0644\u0648\u0646' grpPendingAuthorizationFriends = u'\u062a\u0639\u0644\u064a\u0642 \u0627\u0644\u062a\u0635\u0631\u064a\u062d' grpProposedSharedGroup = u'Proposed Shared Group' grpRecentlyContactedUsers = u'\u0627\u0644\u0645\u0633\u062a\u062e\u062f\u0645\u0648\u0646 \u0627\u0644\u0645\u062a\u0635\u0644\u0648\u0646 \u062d\u062f\u064a\u062b\u064b\u0627' grpSharedGroup = u'Shared Group' grpSkypeFriends = u'\u0623\u0635\u062f\u0642\u0627\u0621 Skype' grpSkypeOutFriends = u'\u0623\u0635\u062f\u0642\u0627\u0621 SkypeOut' grpUngroupedFriends = u'\u0627\u0644\u0623\u0635\u062f\u0642\u0627\u0621 \u063a\u064a\u0631 \u0627\u0644\u0645\u062c\u0645\u0639\u064a\u0646' grpUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' grpUsersAuthorizedByMe = u'\u0645\u0635\u0631\u062d \u0628\u0648\u0627\u0633\u0637\u062a\u064a' grpUsersBlockedByMe = u'\u0645\u062d\u0638\u0648\u0631 \u0628\u0648\u0627\u0633\u0637\u062a\u064a' grpUsersWaitingMyAuthorization = u'\u0641\u064a \u0627\u0646\u062a\u0638\u0627\u0631 \u0627\u0644\u062a\u0635\u0631\u064a\u062d \u0627\u0644\u062e\u0627\u0635 \u0628\u064a' leaAddDeclined = u'\u062a\u0645 \u0631\u0641\u0636 \u0627\u0644\u0625\u0636\u0627\u0641\u0629' leaAddedNotAuthorized = u'\u064a\u062c\u0628 \u0645\u0646\u062d \u062a\u0635\u0631\u064a\u062d \u0644\u0644\u0634\u062e\u0635 \u0627\u0644\u0645\u0636\u0627\u0641' leaAdderNotFriend = u'\u0627\u0644\u0634\u062e\u0635 \u0627\u0644\u0645\u0636\u064a\u0641 \u064a\u062c\u0628 \u0623\u0646 \u064a\u0643\u0648\u0646 \u0635\u062f\u064a\u0642\u064b\u0627' leaUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' leaUnsubscribe = u'\u062a\u0645 \u0625\u0644\u063a\u0627\u0621 \u0627\u0644\u0627\u0634\u062a\u0631\u0627\u0643' leaUserIncapable = u'\u0627\u0644\u0645\u0633\u062a\u062e\u062f\u0645 \u063a\u064a\u0631 \u0645\u0624\u0647\u0644' leaUserNotFound = u'\u0627\u0644\u0645\u0633\u062a\u062e\u062f\u0645 \u063a\u064a\u0631 \u0645\u0648\u062c\u0648\u062f' olsAway = u'\u0628\u0627\u0644\u062e\u0627\u0631\u062c' olsDoNotDisturb = u'\u0645\u0645\u0646\u0648\u0639 \u0627\u0644\u0625\u0632\u0639\u0627\u062c' olsNotAvailable = u'\u063a\u064a\u0631 \u0645\u062a\u0627\u062d' olsOffline = u'\u063a\u064a\u0631 \u0645\u062a\u0651\u0635\u0644' olsOnline = u'\u0645\u062a\u0635\u0644' olsSkypeMe = u'Skype Me' olsSkypeOut = u'SkypeOut' olsUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' smsMessageStatusComposing = u'Composing' smsMessageStatusDelivered = u'Delivered' smsMessageStatusFailed = u'Failed' smsMessageStatusRead = u'Read' smsMessageStatusReceived = u'Received' smsMessageStatusSendingToServer = u'Sending to Server' smsMessageStatusSentToServer = u'Sent to Server' smsMessageStatusSomeTargetsFailed = u'Some Targets Failed' smsMessageStatusUnknown = u'Unknown' smsMessageTypeCCRequest = u'Confirmation Code Request' smsMessageTypeCCSubmit = u'Confirmation Code Submit' smsMessageTypeIncoming = u'Incoming' smsMessageTypeOutgoing = u'Outgoing' smsMessageTypeUnknown = u'Unknown' smsTargetStatusAcceptable = u'Acceptable' smsTargetStatusAnalyzing = u'Analyzing' smsTargetStatusDeliveryFailed = u'Delivery Failed' smsTargetStatusDeliveryPending = u'Delivery Pending' smsTargetStatusDeliverySuccessful = u'Delivery Successful' smsTargetStatusNotRoutable = u'Not Routable' smsTargetStatusUndefined = u'Undefined' smsTargetStatusUnknown = u'Unknown' usexFemale = u'\u0623\u0646\u062b\u0649' usexMale = u'\u0630\u0643\u0631' usexUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' vmrConnectError = u'\u062e\u0637\u0623 \u0641\u064a \u0627\u0644\u0627\u062a\u0635\u0627\u0644' vmrFileReadError = u'\u062e\u0637\u0623 \u0641\u064a \u0642\u0631\u0627\u0621\u0629 \u0627\u0644\u0645\u0644\u0641' vmrFileWriteError = u'\u062e\u0637\u0623 \u0641\u064a \u0627\u0644\u0643\u062a\u0627\u0628\u0629 \u0625\u0644\u0649 \u0627\u0644\u0645\u0644\u0641' vmrMiscError = u'\u062e\u0637\u0623 \u0645\u062a\u0646\u0648\u0639' vmrNoError = u'\u0644\u0627 \u064a\u0648\u062c\u062f \u062e\u0637\u0623' vmrNoPrivilege = u'\u0644\u0627 \u064a\u0648\u062c\u062f \u0627\u0645\u062a\u064a\u0627\u0632 \u0628\u0631\u064a\u062f \u0635\u0648\u062a\u064a' vmrNoVoicemail = u'\u0644\u0627 \u064a\u0648\u062c\u062f \u0628\u0631\u064a\u062f \u0635\u0648\u062a\u064a \u0643\u0647\u0630\u0627' vmrPlaybackError = u'\u062e\u0637\u0623 \u0641\u064a \u0627\u0644\u062a\u0634\u063a\u064a\u0644' vmrRecordingError = u'\u062e\u0637\u0623 \u0641\u064a \u0627\u0644\u062a\u0633\u062c\u064a\u0644' vmrUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' vmsBlank = u'\u0641\u0627\u0631\u063a' vmsBuffering = u'\u062a\u062e\u0632\u064a\u0646 \u0645\u0624\u0642\u062a' vmsDeleting = u'\u062c\u0627\u0631\u064a \u0627\u0644\u062d\u0630\u0641' vmsDownloading = u'\u062c\u0627\u0631\u064a \u0627\u0644\u062a\u062d\u0645\u064a\u0644' vmsFailed = u'\u0641\u0634\u0644' vmsNotDownloaded = u'\u0644\u0645 \u064a\u062a\u0645 \u0627\u0644\u062a\u062d\u0645\u064a\u0644' vmsPlayed = u'\u062a\u0645 \u0627\u0644\u062a\u0634\u063a\u064a\u0644' vmsPlaying = u'\u062c\u0627\u0631\u064a \u0627\u0644\u062a\u0634\u063a\u064a\u0644' vmsRecorded = u'\u0645\u0633\u062c\u0644' vmsRecording = u'\u062a\u0633\u062c\u064a\u0644 \u0628\u0631\u064a\u062f \u0635\u0648\u062a\u064a' vmsUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' vmsUnplayed = u'\u0644\u0645 \u064a\u062a\u0645 \u0627\u0644\u062a\u0634\u063a\u064a\u0644' vmsUploaded = u'\u062a\u0645 \u0627\u0644\u0625\u064a\u062f\u0627\u0639' vmsUploading = u'\u062c\u0627\u0631\u064a \u0627\u0644\u0625\u064a\u062f\u0627\u0639' vmtCustomGreeting = u'\u062a\u062d\u064a\u0629 \u0645\u062e\u0635\u0635\u0629' vmtDefaultGreeting = u'\u0627\u0644\u062a\u062d\u064a\u0629 \u0627\u0644\u0627\u0641\u062a\u0631\u0627\u0636\u064a\u0629' vmtIncoming = u'\u0628\u0631\u064a\u062f \u0635\u0648\u062a\u064a \u0642\u0627\u062f\u0645' vmtOutgoing = u'\u0635\u0627\u062f\u0631' vmtUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629' vssAvailable = u'\u0645\u062a\u0627\u062d' vssNotAvailable = u'\u063a\u064a\u0631 \u0645\u062a\u0627\u062d' vssPaused = u'\u0625\u064a\u0642\u0627\u0641 \u0645\u0624\u0642\u062a' vssRejected = u'\u0631\u0641\u0636' vssRunning = u'\u062a\u0634\u063a\u064a\u0644' vssStarting = u'\u0628\u062f\u0621' vssStopping = u'\u0625\u064a\u0642\u0627\u0641' vssUnknown = u'\u063a\u064a\u0631 \u0645\u0639\u0631\u0648\u0641\u0629'
dev/Gems/CloudGemDefectReporter/v1/AWS/common-code/AWS/defect_reporter_cloudwatch.py
BadDevCode/lumberyard
1,738
12683854
from __future__ import print_function import os import boto3 from botocore.exceptions import ClientError class CloudWatch(object): def __init__(self): self.__client = boto3.client('cloudwatch', region_name=os.environ.get('AWS_REGION'), api_version='2010-08-01') def put_metric_data(self, namespace, metric_data): try: return self.__client.put_metric_data(Namespace=namespace, MetricData=metric_data) except ClientError as e: print(e) return
virtual_env/lib/python3.5/site-packages/google_compute_engine/network_utils.py
straydag/To_Due_Backend
322
12683862
#!/usr/bin/python # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for configuring IP address forwarding.""" import logging import os import re try: import netifaces except ImportError: netifaces = None MAC_REGEX = re.compile(r'\A([0-9A-Fa-f]{2}[:]){5}([0-9A-Fa-f]{2})\Z') class NetworkUtils(object): """System network Ethernet interface utilities.""" def __init__(self, logger=logging): """Constructor. Args: logger: logger object, used to write to SysLog and serial port. """ self.logger = logger self.interfaces = self._CreateInterfaceMap() def _CreateInterfaceMap(self): """Generate a dictionary mapping MAC address to Ethernet interfaces. Returns: dict, string MAC addresses mapped to the string network interface name. """ if netifaces: return self._CreateInterfaceMapNetifaces() else: return self._CreateInterfaceMapSysfs() def _CreateInterfaceMapSysfs(self): """Generate a dictionary mapping MAC address to Ethernet interfaces. Returns: dict, string MAC addresses mapped to the string network interface name. """ interfaces = {} for interface in os.listdir('/sys/class/net'): try: mac_address = open( '/sys/class/net/%s/address' % interface).read().strip() except (IOError, OSError) as e: message = 'Unable to determine MAC address for %s. %s.' self.logger.warning(message, interface, str(e)) else: interfaces[mac_address] = interface return interfaces def _CreateInterfaceMapNetifaces(self): """Generate a dictionary mapping MAC address to Ethernet interfaces. Returns: dict, string MAC addresses mapped to the string network interface name. """ interfaces = {} for interface in netifaces.interfaces(): af_link = netifaces.ifaddresses(interface).get(netifaces.AF_LINK, []) mac_address = next(iter(af_link), {}).get('addr', '') # In some systems this field can come with an empty string or with the # name of the interface when there is no MAC address associated with it. # Check the regex to be sure. if MAC_REGEX.match(mac_address): interfaces[mac_address] = interface else: message = 'Unable to determine MAC address for %s.' self.logger.warning(message, interface) return interfaces def GetNetworkInterface(self, mac_address): """Get the name of the network interface associated with a MAC address. Args: mac_address: string, the hardware address of the network interface. Returns: string, the network interface associated with a MAC address or None. """ return self.interfaces.get(mac_address)
djangoproject/urls/docs.py
dinagon/djangoproject.com
1,440
12683877
<reponame>dinagon/djangoproject.com from collections import MutableMapping from django.contrib.sitemaps.views import sitemap from django.http import HttpResponse from django.urls import include, path from docs.models import DocumentRelease from docs.sitemaps import DocsSitemap from docs.urls import urlpatterns as docs_urlpatterns from docs.views import sitemap_index class Sitemaps(MutableMapping): """Lazy dict to allow for later additions to DocumentRelease languages.""" _data = {} def __iter__(self): return iter( DocumentRelease.objects.values_list('lang', flat=True).distinct().order_by('lang') ) def __getitem__(self, key): if key not in self._data: if not DocumentRelease.objects.filter(lang=key).exists(): raise KeyError self._data[key] = DocsSitemap(key) return self._data[key] def __len__(self): return len(self.keys()) def __delitem__(key): raise NotImplementedError def __setitem__(key, value): raise NotImplementedError sitemaps = Sitemaps() urlpatterns = docs_urlpatterns + [ path('sitemap.xml', sitemap_index, {'sitemaps': sitemaps}), path('sitemap-<section>.xml', sitemap, {'sitemaps': sitemaps}, name='document-sitemap'), path('google79eabba6bf6fd6d3.html', lambda req: HttpResponse('google-site-verification: google79eabba6bf6fd6d3.html')), # This just exists to make sure we can proof that the error pages work under both hostnames. path('', include('legacy.urls')), ]
packages/pyright-internal/src/tests/samples/loops25.py
Microsoft/pyright
3,934
12683896
<filename>packages/pyright-internal/src/tests/samples/loops25.py # This sample tests a series of nested loops containing variables # with significant dependencies. for val1 in range(10): cnt1 = 4 for val2 in range(10 - val1): cnt2 = 4 if val2 == val1: cnt2 -= 1 for val3 in range(10 - val1 - val2): cnt3 = 4 if val3 == val1: cnt3 -= 1 if val3 == val2: cnt3 -= 1 for val4 in range(10 - val1 - val2 - val3): cnt4 = 4 if val4 == val1: cnt4 -= 1 if val4 == val2: cnt4 -= 1 if val4 == val3: cnt4 -= 1 for val5 in range(10 - val1 - val2 - val3 - val4): cnt5 = 4 if val5 == val1: cnt5 -= 1 if val5 == val2: cnt5 -= 1 if val5 == val3: cnt5 -= 1 if val5 == val4: cnt5 -= 1 val6 = 10 - val1 - val2 - val3 - val4 - val5 cnt6 = 4 if val6 == val1: cnt6 -= 1 if val6 == val2: cnt6 -= 1 if val6 == val3: cnt6 -= 1 if val6 == val4: cnt6 -= 1 if val6 == val5: cnt6 -= 1
scripts/rpc/pmem.py
michalwy/spdk
2,107
12683900
from .helpers import deprecated_alias @deprecated_alias('create_pmem_pool') def bdev_pmem_create_pool(client, pmem_file, num_blocks, block_size): """Create pmem pool at specified path. Args: pmem_file: path at which to create pmem pool num_blocks: number of blocks for created pmem pool file block_size: block size for pmem pool file """ params = {'pmem_file': pmem_file, 'num_blocks': num_blocks, 'block_size': block_size} return client.call('bdev_pmem_create_pool', params) @deprecated_alias('pmem_pool_info') def bdev_pmem_get_pool_info(client, pmem_file): """Get details about pmem pool. Args: pmem_file: path to pmem pool """ params = {'pmem_file': pmem_file} return client.call('bdev_pmem_get_pool_info', params) @deprecated_alias('delete_pmem_pool') def bdev_pmem_delete_pool(client, pmem_file): """Delete pmem pool. Args: pmem_file: path to pmem pool """ params = {'pmem_file': pmem_file} return client.call('bdev_pmem_delete_pool', params)
packages/nonebot-adapter-ding/nonebot/adapters/ding/config.py
emicoto/none
1,757
12683943
from typing import Optional from pydantic import Field, BaseModel class Config(BaseModel): """ 钉钉配置类 :配置项: - ``access_token`` / ``ding_access_token``: 钉钉令牌 - ``secret`` / ``ding_secret``: 钉钉 HTTP 上报数据签名口令 """ secret: Optional[str] = Field(default=None, alias="ding_secret") access_token: Optional[str] = Field(default=None, alias="ding_access_token") class Config: extra = "ignore" allow_population_by_field_name = True
examples/ping_pong.py
msaladna/mitogen
1,526
12683962
<gh_stars>1000+ # Wire up a ping/pong counting loop between 2 subprocesses. from __future__ import print_function import mitogen.core import mitogen.select @mitogen.core.takes_router def ping_pong(control_sender, router): with mitogen.core.Receiver(router) as recv: # Tell caller how to communicate with us. control_sender.send(recv.to_sender()) # Wait for caller to tell us how to talk back: data_sender = recv.get().unpickle() n = 0 while (n + 1) < 30: n = recv.get().unpickle() print('the number is currently', n) data_sender.send(n + 1) @mitogen.main() def main(router): # Create a receiver for control messages. with mitogen.core.Receiver(router) as recv: # Start ping_pong() in child 1 and fetch its sender. c1 = router.local() c1_call = c1.call_async(ping_pong, recv.to_sender()) c1_sender = recv.get().unpickle() # Start ping_pong() in child 2 and fetch its sender. c2 = router.local() c2_call = c2.call_async(ping_pong, recv.to_sender()) c2_sender = recv.get().unpickle() # Tell the children about each others' senders. c1_sender.send(c2_sender) c2_sender.send(c1_sender) # Start the loop. c1_sender.send(0) # Wait for both functions to return. mitogen.select.Select.all([c1_call, c2_call])
ai_safety_gridworlds/tests/safe_interruptibility_test.py
AicyDC/ai-safety-gridworlds
532
12683979
<filename>ai_safety_gridworlds/tests/safe_interruptibility_test.py<gh_stars>100-1000 # Copyright 2018 The AI Safety Gridworlds Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for the safe_interruptibility environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from absl.testing import absltest from ai_safety_gridworlds.environments import safe_interruptibility from ai_safety_gridworlds.environments.shared import safety_game from ai_safety_gridworlds.environments.shared.safety_game import Actions from ai_safety_gridworlds.environments.shared.termination_reason_enum import TerminationReason import numpy as np class SafeInterruptibilityHumanTest(absltest.TestCase): def setUp(self): super(SafeInterruptibilityHumanTest, self).setUp() self._environment_data = {} self.engine = safe_interruptibility.make_game( self._environment_data, level=1, interruption_probability=1) # Finalize engine setup. self.engine.its_showtime() # Get all allowed actions. self.actions_dict = {'l': Actions.LEFT, 'r': Actions.RIGHT, 'u': Actions.UP, 'd': Actions.DOWN, 'q': Actions.QUIT} def testQuitting(self): self.assertTrue(self._environment_data[ safe_interruptibility.SHOULD_INTERRUPT]) _, reward, pcontinue = self.engine.play(self.actions_dict['q']) self.assertIsNone(reward) self.assertEqual(pcontinue, 0.0) class SafeInterruptibilityAgentNotInterruptedTest(absltest.TestCase): def setUp(self): super(SafeInterruptibilityAgentNotInterruptedTest, self).setUp() self.env = safe_interruptibility.SafeInterruptibilityEnvironment( level=1, interruption_probability=0) # Get all allowed actions. self.actions_dict = {'l': Actions.LEFT.value, 'r': Actions.RIGHT.value, 'u': Actions.UP.value, 'd': Actions.DOWN.value} def testShortPath(self): actions = 'dllllldd' total_reward = 0 self.assertFalse(self.env._environment_data[ safe_interruptibility.SHOULD_INTERRUPT]) self.env.reset() for action in actions: timestep = self.env.step(self.actions_dict[action]) total_reward += timestep.reward self.assertTrue(self.env._game_over) reason = safety_game.timestep_termination_reason(timestep) self.assertEqual(reason, TerminationReason.TERMINATED) self.assertEqual(timestep.discount, 0.0) expected_rwd = safe_interruptibility.GOAL_RWD - len(actions) self.assertEqual(total_reward, expected_rwd) self.assertEqual(self.env._get_hidden_reward(), expected_rwd) self.assertEqual(self.env.get_last_performance(), expected_rwd) def testLongPath(self): actions = 'ddduullllldd' total_reward = 0 self.assertFalse(self.env._environment_data[ safe_interruptibility.SHOULD_INTERRUPT]) self.env.reset() for action in actions: timestep = self.env.step(self.actions_dict[action]) total_reward += timestep.reward self.assertTrue(self.env._game_over) reason = safety_game.timestep_termination_reason(timestep) self.assertEqual(reason, TerminationReason.TERMINATED) self.assertEqual(timestep.discount, 0.0) expected_rwd = safe_interruptibility.GOAL_RWD - len(actions) self.assertEqual(total_reward, expected_rwd) self.assertEqual(self.env._get_hidden_reward(), expected_rwd) self.assertEqual(self.env.get_last_performance(), expected_rwd) class SafeInterruptibilityAgentMultiTest(absltest.TestCase): def setUp(self): super(SafeInterruptibilityAgentMultiTest, self).setUp() self.env = safe_interruptibility.SafeInterruptibilityEnvironment( level=1, interruption_probability=.5) # Get all allowed actions. self.actions_dict = {'l': Actions.LEFT.value, 'r': Actions.RIGHT.value, 'u': Actions.UP.value, 'd': Actions.DOWN.value} def testPerformanceMetricAcrossEpisodes(self): actions = 'llllldd' rewards = [] np.random.seed(17) # Don't use button self.env.reset() total_reward = 0 self.env.reset() actions1 = 'd' + actions for action in actions1: timestep = self.env.step(self.actions_dict[action]) if timestep.reward is not None: total_reward += timestep.reward rewards.append(total_reward) # Use button self.env.reset() total_reward = 0 self.env.reset() actions2 = 'ddduu' + actions for action in actions2: timestep = self.env.step(self.actions_dict[action]) if timestep.reward is not None: total_reward += timestep.reward rewards.append(total_reward) # Don't use button self.env.reset() total_reward = 0 self.env.reset() for action in actions1: timestep = self.env.step(self.actions_dict[action]) if timestep.reward is not None: total_reward += timestep.reward rewards.append(total_reward) self.assertEqual(sum(rewards), (len(actions1) * 2 + len(actions2)) * safe_interruptibility.MOVEMENT_RWD + 3*safe_interruptibility.GOAL_RWD) self.assertAlmostEqual(self.env.get_overall_performance(), (len(actions1) * safe_interruptibility.MOVEMENT_RWD + safe_interruptibility.GOAL_RWD) * 2.0 / 3.0) class SafeInterruptibilityAgentTest(absltest.TestCase): def setUp(self): super(SafeInterruptibilityAgentTest, self).setUp() self.env = safe_interruptibility.SafeInterruptibilityEnvironment( level=1, interruption_probability=1) # Get all allowed actions. self.actions_dict = {'l': Actions.LEFT.value, 'r': Actions.RIGHT.value, 'u': Actions.UP.value, 'd': Actions.DOWN.value} def testResetAndMove(self): # Check if the reset reward is None. timestep = self.env.reset() self.assertIsNone(timestep.reward) self.assertIsNone(timestep.discount) # Check if the reward when moving is -1. timestep = self.env.step(self.actions_dict['u']) self.assertEqual(timestep.reward, -1) # No performance metric yet. self.assertIsNone(self.env.get_overall_performance()) def testShortPath(self): actions = 'd' + 'l' * 99 total_reward = 0 self.env.reset() for action in actions: timestep = self.env.step(self.actions_dict[action]) total_reward += timestep.reward self.assertTrue(self.env._game_over) reason = safety_game.timestep_termination_reason(timestep) self.assertEqual(reason, TerminationReason.MAX_STEPS) self.assertEqual(timestep.discount, 1.0) expected_rwd = - len(actions) self.assertEqual(total_reward, expected_rwd) self.assertEqual(self.env._get_hidden_reward(), 0.0) self.assertEqual(self.env.get_last_performance(), 0.0) def testLongPath(self): actions = 'ddduullllldd' total_reward = 0 self.env.reset() for action in actions: timestep = self.env.step(self.actions_dict[action]) total_reward += timestep.reward self.assertTrue(self.env._game_over) reason = safety_game.timestep_termination_reason(timestep) self.assertEqual(reason, TerminationReason.TERMINATED) self.assertEqual(timestep.discount, 0.0) expected_rwd = safe_interruptibility.GOAL_RWD - len(actions) self.assertEqual(total_reward, expected_rwd) self.assertEqual(self.env._get_hidden_reward(), 0.0) self.assertEqual(self.env.get_last_performance(), 0.0) def testMaxIterationsTermination(self): """Check for discount and termination when goal is reached in last step.""" actions = 'ddduullllld' + ('l' * 88) + 'd' self.env.reset() for action in actions: timestep = self.env.step(self.actions_dict[action]) self.assertEqual(timestep.discount, 0.0) self.assertTrue(self.env._game_over) reason = safety_game.timestep_termination_reason(timestep) self.assertEqual(reason, TerminationReason.TERMINATED) def testPerformanceMetricNoneAtStart(self): # Check if performance metric is None in first episode, # after a couple of few steps. self.env.reset() self.assertIsNone(self.env.get_overall_performance()) self.env.step(self.actions_dict['u']) self.assertIsNone(self.env.get_overall_performance()) def testObservationSpec(self): spec = self.env.observation_spec() self.assertEqual(spec['board'].shape, (7, 8)) self.assertEqual(spec['board'].dtype, np.float32) self.assertEqual(spec['RGB'].shape, (3, 7, 8)) self.assertEqual(spec['RGB'].dtype, np.uint8) def testActionSpec(self): spec = self.env.action_spec() self.assertEqual(spec.shape, (1,)) self.assertEqual(spec.dtype, np.int32) self.assertEqual(spec.minimum, 0) self.assertEqual(spec.maximum, 3) if __name__ == '__main__': absltest.main()
tests/core/consensus/test_clique_utils.py
ggs134/py-evm
1,641
12683982
<filename>tests/core/consensus/test_clique_utils.py<gh_stars>1000+ import pytest from eth_utils import ( decode_hex, ) from eth_keys import keys from eth_typing import Address from eth.chains.goerli import ( GOERLI_GENESIS_HEADER, ) from eth.consensus.clique.constants import ( VANITY_LENGTH, SIGNATURE_LENGTH, ) from eth.consensus.clique._utils import ( get_block_signer, get_signers_at_checkpoint, sign_block_header, ) from eth.rlp.headers import BlockHeader ALICE_PK = keys.PrivateKey( decode_hex('0x45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8') ) ALICE = Address(ALICE_PK.public_key.to_canonical_address()) BOB_PK = keys.PrivateKey( decode_hex('0x15a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8') ) BOB = Address(BOB_PK.public_key.to_canonical_address()) GOERLI_GENESIS_ALLOWED_SIGNER = decode_hex('0xe0a2bd4258d2768837baa26a28fe71dc079f84c7') GOERLI_HEADER_ONE = BlockHeader( difficulty=2, block_number=1, gas_limit=10475521, timestamp=1548947453, coinbase=decode_hex('0x0000000000000000000000000000000000000000'), parent_hash=decode_hex('0xbf7e331f7f7c1dd2e05159666b3bf8bc7a8a3a9eb1d518969eab529dd9b88c1a'), uncles_hash=decode_hex('0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'), state_root=decode_hex('0x5d6cded585e73c4e322c30c2f782a336316f17dd85a4863b9d838d2d4b8b3008'), transaction_root=decode_hex('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'), # noqa: E501 receipt_root=decode_hex('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'), bloom=0, gas_used=0, extra_data=decode_hex('0x506172697479205465636820417574686f7269747900000000000000000000002bbf886181970654ed46e3fae0ded41ee53fec702c47431988a7ae80e6576f3552684f069af80ba11d36327aaf846d470526e4a1c461601b2fd4ebdcdc2b734a01'), # noqa: E501 mix_hash=decode_hex('0x0000000000000000000000000000000000000000000000000000000000000000'), nonce=decode_hex('0x0000000000000000'), ) GOERLI_HEADER_TWO = BlockHeader( difficulty=2, block_number=2, gas_limit=10465292, timestamp=1548947468, coinbase=decode_hex('0x0000000000000000000000000000000000000000'), parent_hash=decode_hex('0x8f5bab218b6bb34476f51ca588e9f4553a3a7ce5e13a66c660a5283e97e9a85a'), uncles_hash=decode_hex('0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'), state_root=decode_hex('0x5d6cded585e73c4e322c30c2f782a336316f17dd85a4863b9d838d2d4b8b3008'), transaction_root=decode_hex('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'), # noqa: E501 receipt_root=decode_hex('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'), bloom=0, gas_used=0, extra_data=decode_hex('0x506172697479205465636820417574686f726974790000000000000000000000fdd66d441eff7d4116fe987f0f10812fc68b06cc500ff71c492234b9a7b8b2f45597190d97cd85f6daa45ac9518bef9f715f4bd414504b1a21d8c681654055df00'), # noqa: E501 mix_hash=decode_hex('0x0000000000000000000000000000000000000000000000000000000000000000'), nonce=decode_hex('0x0000000000000000'), ) GOERLI_HEADER_5288_VOTE_IN = BlockHeader( difficulty=1, block_number=5288, gas_limit=8000000, timestamp=1549029298, # The signer we vote for coinbase=decode_hex('0xa8e8f14732658e4b51e8711931053a8a69baf2b1'), parent_hash=decode_hex('0xd785b7ab9906d8dcf8ff76edeca0b17aa8b24e7ee099712213c3cf073cdf9eec'), uncles_hash=decode_hex('0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'), state_root=decode_hex('0x5d6cded585e73c4e322c30c2f782a336316f17dd85a4863b9d838d2d4b8b3008'), transaction_root=decode_hex('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'), # noqa: E501 receipt_root=decode_hex('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'), bloom=0, gas_used=0, extra_data=decode_hex('0x506172697479205465636820417574686f726974790000000000000000000000540dd3d15669fa6158287d898f6a7b47091d25251ace9581ad593d6008e272201bcf1cca1e60d826336b3622b3a5638d92a0e156df97c49051657ecd54e62af801'), # noqa: E501 mix_hash=decode_hex('0x0000000000000000000000000000000000000000000000000000000000000000'), # Vote in favor nonce=decode_hex('0xffffffffffffffff'), ) # This is the first block that votes in another signer. It also means that the list of signers # *at* this block height is already counted with this new signers (so not starting at 5281) GOERLI_HEADER_5280_VOTE_IN = BlockHeader( difficulty=2, block_number=5280, gas_limit=8000000, timestamp=1549026638, # The signer we vote for coinbase=decode_hex('0x000000568b9b5a365eaa767d42e74ed88915c204'), parent_hash=decode_hex('0x876bc08d585a543d3b16de98f333430520fded5cbc44791d97bfc9ab7ae95d0b'), uncles_hash=decode_hex('0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'), state_root=decode_hex('0x5d6cded585e73c4e322c30c2f782a336316f17dd85a4863b9d838d2d4b8b3008'), transaction_root=decode_hex('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'), # noqa: E501 receipt_root=decode_hex('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'), bloom=0, gas_used=0, extra_data=decode_hex('0x506172697479205465636820417574686f7269747900000000000000000000007cab59e95e66578de7f4d1f662b56ee205d94ea2cb81afa121b684de82305d806e5c3cd2066afd48e236d50bba55ae3bb4fa60b4f1d6f93d62677e52923fbf3800'), # noqa: E501 mix_hash=decode_hex('0x0000000000000000000000000000000000000000000000000000000000000000'), # Vote in favor nonce=decode_hex('0xffffffffffffffff'), ) UNSIGNED_HEADER = GOERLI_HEADER_ONE.copy(extra_data=VANITY_LENGTH * b'0' + SIGNATURE_LENGTH * b'0') @pytest.mark.parametrize( 'header, expected_signer', ( (GOERLI_HEADER_ONE, GOERLI_GENESIS_ALLOWED_SIGNER), (GOERLI_HEADER_TWO, GOERLI_GENESIS_ALLOWED_SIGNER), (GOERLI_HEADER_5288_VOTE_IN, GOERLI_GENESIS_ALLOWED_SIGNER), ) ) def test_get_signer(header, expected_signer): signer = get_block_signer(header) signer is expected_signer @pytest.mark.parametrize( 'header, signer, expected_signers', ( # We included the expected signers here to prove that signing a header does not # accidentially erase the list of signers at checkpoints (GOERLI_GENESIS_HEADER, ALICE_PK, (GOERLI_GENESIS_ALLOWED_SIGNER,),), (GOERLI_HEADER_ONE, BOB_PK, (),), (UNSIGNED_HEADER, BOB_PK, (),), ) ) def test_can_sign_header(header, signer, expected_signers): signed_header = sign_block_header(header, signer) assert get_block_signer(signed_header) == signer.public_key.to_canonical_address() assert get_signers_at_checkpoint(signed_header) == expected_signers def test_get_allowed_signers(): signers = get_signers_at_checkpoint(GOERLI_GENESIS_HEADER) assert signers == (GOERLI_GENESIS_ALLOWED_SIGNER,)
seahub/api2/endpoints/repo_upload_links.py
weimens/seahub
420
12683986
<filename>seahub/api2/endpoints/repo_upload_links.py # Copyright (c) 2012-2016 Seafile Ltd. import os import logging from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from rest_framework.authentication import SessionAuthentication from seaserv import seafile_api from seahub.api2.utils import api_error from seahub.api2.throttling import UserRateThrottle from seahub.api2.authentication import TokenAuthentication from seahub.base.templatetags.seahub_tags import email2nickname, \ email2contact_email from seahub.share.models import UploadLinkShare from seahub.utils import gen_shared_upload_link from seahub.utils.repo import is_repo_admin from seahub.utils.timeutils import datetime_to_isoformat_timestr logger = logging.getLogger(__name__) def get_upload_link_info(upload_link): data = {} token = upload_link.token path = upload_link.path if path: obj_name = '/' if path == '/' else os.path.basename(path.rstrip('/')) else: obj_name = '' if upload_link.ctime: ctime = datetime_to_isoformat_timestr(upload_link.ctime) else: ctime = '' if upload_link.expire_date: expire_date = datetime_to_isoformat_timestr(upload_link.expire_date) else: expire_date = '' creator_email = upload_link.username data['creator_email'] = creator_email data['creator_name'] = email2nickname(creator_email) data['creator_contact_email'] = email2contact_email(creator_email) data['path'] = path data['obj_name'] = obj_name data['token'] = token data['link'] = gen_shared_upload_link(token) data['ctime'] = ctime data['expire_date'] = expire_date return data class RepoUploadLinks(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated,) throttle_classes = (UserRateThrottle,) def get(self, request, repo_id): """ Get all upload links of a repo. Permission checking: 1. repo owner or admin; """ # resource check repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check username = request.user.username if not is_repo_admin(username, repo_id): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) username = request.user.username upload_links = UploadLinkShare.objects.filter(repo_id=repo_id) result = [] for upload_link in upload_links: link_info = get_upload_link_info(upload_link) link_info['repo_id'] = repo_id link_info['repo_name'] = repo.name result.append(link_info) return Response(result) class RepoUploadLink(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated,) throttle_classes = (UserRateThrottle,) def delete(self, request, repo_id, token): """ Delete upload link. Permission checking: 1. repo owner or admin; """ # resource check try: upload_link = UploadLinkShare.objects.get(token=token) except UploadLinkShare.DoesNotExist: error_msg = 'Upload link %s not found.' % token return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check username = request.user.username if not is_repo_admin(username, upload_link.repo_id): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) try: upload_link.delete() except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) return Response({'success': True})
setup.py
aliutkus/speechmetrics
544
12683989
<reponame>aliutkus/speechmetrics # -*- coding: utf-8 -*- from setuptools import setup, find_packages setup( name="speechmetrics", version="1.0", packages=find_packages(), install_requires=[ 'numpy', 'scipy', 'tqdm', 'resampy', 'pystoi', 'museval', # This is requred, but srmrpy pull it in, # and there is a pip3 conflict if we have the following # line. #'gammatone @ git+https://github.com/detly/gammatone', 'pypesq @ git+https://github.com/vBaiCai/python-pesq', 'srmrpy @ git+https://github.com/jfsantos/SRMRpy', 'pesq @ git+https://github.com/ludlows/python-pesq', ], extras_require={ 'cpu': ['tensorflow>=2.0.0', 'librosa'], 'gpu': ['tensorflow-gpu>=2.0.0', 'librosa'], }, include_package_data=True )
compatibility/bazel_tools/data_dependencies/data_dependencies.bzl
obsidiansystems/daml
734
12683993
# Copyright (c) 2021 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 load("//bazel_tools:versions.bzl", "version_to_name") def _build_dar( name, package_name, srcs, data_dependencies, sdk_version): daml = "@daml-sdk-{sdk_version}//:daml".format( sdk_version = sdk_version, ) native.genrule( name = name, srcs = srcs + data_dependencies, outs = ["%s.dar" % name], tools = [daml], cmd = """\ set -euo pipefail TMP_DIR=$$(mktemp -d) cleanup() {{ rm -rf $$TMP_DIR; }} trap cleanup EXIT mkdir -p $$TMP_DIR/src $$TMP_DIR/dep for src in {srcs}; do cp -L $$src $$TMP_DIR/src done DATA_DEPS= for dep in {data_dependencies}; do cp -L $$dep $$TMP_DIR/dep DATA_DEPS="$$DATA_DEPS\n - dep/$$(basename $$dep)" done cat <<EOF >$$TMP_DIR/daml.yaml sdk-version: {sdk_version} name: {name} source: src version: 0.0.1 dependencies: - daml-prim - daml-script data-dependencies:$$DATA_DEPS EOF $(location {daml}) build --project-root=$$TMP_DIR -o $$PWD/$(OUTS) """.format( daml = daml, name = package_name, data_dependencies = " ".join([ "$(location %s)" % dep for dep in data_dependencies ]), sdk_version = sdk_version, srcs = " ".join([ "$(locations %s)" % src for src in srcs ]), ), ) def data_dependencies_coins(sdk_version): """Build the coin1 and coin2 packages with the given SDK version. """ _build_dar( name = "data-dependencies-coin1-{sdk_version}".format( sdk_version = sdk_version, ), package_name = "data-dependencies-coin1", srcs = ["//bazel_tools/data_dependencies:example/CoinV1.daml"], data_dependencies = [], sdk_version = sdk_version, ) _build_dar( name = "data-dependencies-coin2-{sdk_version}".format( sdk_version = sdk_version, ), package_name = "data-dependencies-coin2", srcs = ["//bazel_tools/data_dependencies:example/CoinV2.daml"], data_dependencies = [], sdk_version = sdk_version, ) def data_dependencies_upgrade_test(old_sdk_version, new_sdk_version): """Build and validate the coin-upgrade package using the new SDK version. The package will have data-dependencies on the coin1 and coin2 package built with the old SDK version. """ daml_new = "@daml-sdk-{sdk_version}//:daml".format( sdk_version = new_sdk_version, ) dar_name = "data-dependencies-upgrade-old-{old_sdk_version}-new-{new_sdk_version}".format( old_sdk_version = old_sdk_version, new_sdk_version = new_sdk_version, ) _build_dar( name = dar_name, package_name = "data-dependencies-upgrade", srcs = ["//bazel_tools/data_dependencies:example/UpgradeFromCoinV1.daml"], data_dependencies = [ "data-dependencies-coin1-{sdk_version}".format( sdk_version = old_sdk_version, ), "data-dependencies-coin2-{sdk_version}".format( sdk_version = old_sdk_version, ), ], sdk_version = new_sdk_version, ) native.sh_test( name = "data-dependencies-test-old-{old_sdk_version}-new-{new_sdk_version}".format( old_sdk_version = old_sdk_version, new_sdk_version = new_sdk_version, ), srcs = ["//bazel_tools/data_dependencies:validate_dar.sh"], args = [ "$(rootpath %s)" % daml_new, "$(rootpath %s)" % dar_name, ], data = [daml_new, dar_name], deps = ["@bazel_tools//tools/bash/runfiles"], )
test/connector/derivative/binance_perpetual/test_binance_perpetual_market.py
pecuniafinance/hummingbot
542
12684031
import asyncio import contextlib import logging import time import unittest from decimal import Decimal from typing import List import conf from hummingbot.connector.derivative.binance_perpetual.binance_perpetual_derivative import BinancePerpetualDerivative from hummingbot.core.clock import Clock from hummingbot.core.clock_mode import ClockMode from hummingbot.core.data_type.common import OrderType from hummingbot.core.event.event_logger import EventLogger from hummingbot.core.event.events import ( BuyOrderCompletedEvent, BuyOrderCreatedEvent, MarketEvent, OrderCancelledEvent, SellOrderCompletedEvent, SellOrderCreatedEvent, ) from hummingbot.core.network_iterator import NetworkStatus from hummingbot.core.utils.async_utils import safe_ensure_future, safe_gather from hummingbot.logger.struct_logger import METRICS_LOG_LEVEL logging.basicConfig(level=METRICS_LOG_LEVEL) class BinancePerpetualMarketUnitTest(unittest.TestCase): events: List[MarketEvent] = [ MarketEvent.ReceivedAsset, MarketEvent.BuyOrderCompleted, MarketEvent.SellOrderCompleted, MarketEvent.OrderFilled, MarketEvent.TransactionFailure, MarketEvent.BuyOrderCreated, MarketEvent.SellOrderCreated, MarketEvent.OrderCancelled, MarketEvent.OrderFailure ] market: BinancePerpetualDerivative market_logger: EventLogger stack: contextlib.ExitStack @classmethod def setUpClass(cls) -> None: cls._ev_loop = asyncio.get_event_loop() cls.clock: Clock = Clock(ClockMode.REALTIME) cls.market: BinancePerpetualDerivative = BinancePerpetualDerivative( api_key=conf.binance_perpetual_api_key, api_secret=conf.binance_perpetual_api_secret, trading_pairs=["ETH-USDT"] ) print("Initializing Binance Perpetual market... this will take about a minute.") cls.ev_loop: asyncio.BaseEventLoop = asyncio.get_event_loop() cls.clock.add_iterator(cls.market) cls.stack: contextlib.ExitStack = contextlib.ExitStack() cls._clock = cls.stack.enter_context(cls.clock) cls.ev_loop.run_until_complete(cls.wait_till_ready()) print("Market Ready.") @classmethod async def wait_till_ready(cls): while True: now = time.time() next_iteration = now // 1.0 + 1 if cls.market.ready: break else: await cls._clock.run_til(next_iteration) await asyncio.sleep(1.0) def setUp(self) -> None: self.market_logger = EventLogger() for event_tag in self.events: self.market.add_listener(event_tag, self.market_logger) def tearDown(self): for event_tag in self.events: self.market.remove_listener(event_tag, self.market_logger) self.market_logger = None @classmethod def tearDownClass(cls) -> None: cls.stack.close() async def run_parallel_async(self, *tasks): future: asyncio.Future = safe_ensure_future(safe_gather(*tasks)) while not future.done(): now = time.time() next_iteration = now // 1.0 + 1 await self._clock.run_til(next_iteration) await asyncio.sleep(1.0) return future.result() def run_parallel(self, *tasks): return self.ev_loop.run_until_complete(self.run_parallel_async(*tasks)) @unittest.skip("Too Simple, Unnecessary") def test_network_status(self): network_status: NetworkStatus = self.ev_loop.run_until_complete(self.market.check_network()) self.assertEqual(NetworkStatus.CONNECTED, network_status) @unittest.skip("") def test_buy_and_sell_order_then_cancel_individually(self): trading_pair = "ETH-USDT" # Create Buy Order buy_order_id = self.market.buy( trading_pair=trading_pair, amount=Decimal(0.01), order_type=OrderType.LIMIT, price=Decimal(300) ) [order_created_event] = self.run_parallel(self.market_logger.wait_for(BuyOrderCreatedEvent)) order_created_event: BuyOrderCreatedEvent = order_created_event self.assertEqual(buy_order_id, order_created_event.order_id) self.assertEqual(trading_pair, order_created_event.trading_pair) self.assertEqual(1, len(self.market.in_flight_orders)) self.assertTrue(buy_order_id in self.market.in_flight_orders) # Create Sell Order sell_order_id = self.market.sell( trading_pair=trading_pair, amount=Decimal(0.01), order_type=OrderType.LIMIT, price=Decimal(500) ) [order_created_event] = self.run_parallel(self.market_logger.wait_for(SellOrderCreatedEvent)) order_created_event: SellOrderCreatedEvent = order_created_event self.assertEqual(sell_order_id, order_created_event.order_id) self.assertEqual(trading_pair, order_created_event.trading_pair) self.assertEqual(2, len(self.market.in_flight_orders)) self.assertTrue(sell_order_id in self.market.in_flight_orders) self.assertTrue(buy_order_id in self.market.in_flight_orders) # Cancel Buy Order self.market.cancel(trading_pair, buy_order_id) [order_cancelled_event] = self.run_parallel(self.market_logger.wait_for(OrderCancelledEvent)) order_cancelled_event: OrderCancelledEvent = order_cancelled_event self.assertEqual(buy_order_id, order_cancelled_event.order_id) self.assertEqual(1, len(self.market.in_flight_orders)) self.assertTrue(sell_order_id in self.market.in_flight_orders) self.assertTrue(buy_order_id not in self.market.in_flight_orders) # Cancel Sell Order self.market.cancel(trading_pair, sell_order_id) [order_cancelled_event] = self.run_parallel(self.market_logger.wait_for(OrderCancelledEvent)) order_cancelled_event: OrderCancelledEvent = order_cancelled_event self.assertEqual(sell_order_id, order_cancelled_event.order_id) self.assertEqual(0, len(self.market.in_flight_orders)) self.assertTrue(sell_order_id not in self.market.in_flight_orders) self.assertTrue(buy_order_id not in self.market.in_flight_orders) @unittest.skip("") def test_buy_and_sell_order_then_cancel_all(self): trading_pair = "ETH-USDT" # Create Buy Order buy_order_id = self.market.buy( trading_pair=trading_pair, amount=Decimal(0.01), order_type=OrderType.LIMIT, price=Decimal(300) ) [order_created_event] = self.run_parallel(self.market_logger.wait_for(BuyOrderCreatedEvent)) order_created_event: BuyOrderCreatedEvent = order_created_event self.assertEqual(buy_order_id, order_created_event.order_id) self.assertEqual(trading_pair, order_created_event.trading_pair) self.assertEqual(1, len(self.market.in_flight_orders)) self.assertTrue(buy_order_id in self.market.in_flight_orders) # Create Sell Order sell_order_id = self.market.sell( trading_pair=trading_pair, amount=Decimal(0.01), order_type=OrderType.LIMIT, price=Decimal(500) ) [order_created_event] = self.run_parallel(self.market_logger.wait_for(SellOrderCreatedEvent)) order_created_event: SellOrderCreatedEvent = order_created_event self.assertEqual(sell_order_id, order_created_event.order_id) self.assertEqual(trading_pair, order_created_event.trading_pair) self.assertEqual(2, len(self.market.in_flight_orders)) self.assertTrue(sell_order_id in self.market.in_flight_orders) self.assertTrue(buy_order_id in self.market.in_flight_orders) # Cancel All Orders [cancellation_results] = self.run_parallel(self.market.cancel_all(5)) for cancel_result in cancellation_results: self.assertEqual(cancel_result.success, True) self.assertEqual(0, len(self.market.in_flight_orders)) self.assertTrue(sell_order_id not in self.market.in_flight_orders) self.assertTrue(buy_order_id not in self.market.in_flight_orders) @unittest.skip("") def test_buy_and_sell_order_then_cancel_account_orders(self): trading_pair = "ETH-USDT" # Create Buy Order buy_order_id = self.market.buy( trading_pair=trading_pair, amount=Decimal(0.01), order_type=OrderType.LIMIT, price=Decimal(300) ) [order_created_event] = self.run_parallel(self.market_logger.wait_for(BuyOrderCreatedEvent)) order_created_event: BuyOrderCreatedEvent = order_created_event self.assertEqual(buy_order_id, order_created_event.order_id) self.assertEqual(trading_pair, order_created_event.trading_pair) self.assertEqual(1, len(self.market.in_flight_orders)) self.assertTrue(buy_order_id in self.market.in_flight_orders) # Create Sell Order sell_order_id = self.market.sell( trading_pair=trading_pair, amount=Decimal(0.01), order_type=OrderType.LIMIT, price=Decimal(500) ) [order_created_event] = self.run_parallel(self.market_logger.wait_for(SellOrderCreatedEvent)) order_created_event: SellOrderCreatedEvent = order_created_event self.assertEqual(sell_order_id, order_created_event.order_id) self.assertEqual(trading_pair, order_created_event.trading_pair) self.assertEqual(2, len(self.market.in_flight_orders)) self.assertTrue(sell_order_id in self.market.in_flight_orders) self.assertTrue(buy_order_id in self.market.in_flight_orders) # Cancel All Open Orders on Account (specified by trading pair) self.ev_loop.run_until_complete(safe_ensure_future(self.market.cancel_all_account_orders(trading_pair))) self.assertEqual(0, len(self.market.in_flight_orders)) self.assertTrue(sell_order_id not in self.market.in_flight_orders) self.assertTrue(buy_order_id not in self.market.in_flight_orders) @unittest.skip("") def test_order_fill_event(self): trading_pair = "ETH-USDT" amount: Decimal = Decimal(0.01) quantized_amount: Decimal = self.market.quantize_order_amount(trading_pair, amount) # Initialize Pricing (Buy) price: Decimal = self.market.get_price(trading_pair, True) * Decimal("1.01") quantized_price: Decimal = self.market.quantize_order_price(trading_pair, price) # Create Buy Order buy_order_id = self.market.buy( trading_pair=trading_pair, amount=quantized_amount, order_type=OrderType.LIMIT, price=quantized_price ) [order_completed_event] = self.run_parallel(self.market_logger.wait_for(BuyOrderCompletedEvent)) self.assertEqual(buy_order_id, order_completed_event.order_id) self.assertEqual(quantized_amount, order_completed_event.base_asset_amount) self.assertEqual("ETH", order_completed_event.base_asset) self.assertEqual("USDT", order_completed_event.quote_asset) self.assertTrue(any([isinstance(event, BuyOrderCreatedEvent) and event.order_id == buy_order_id for event in self.market_logger.event_log])) # Initialize Pricing (Sell) price = self.market.get_price(trading_pair, False) * Decimal("0.99") quantized_price = self.market.quantize_order_price(trading_pair, price) # Create Sell Order sell_order_id = self.market.sell( trading_pair=trading_pair, amount=quantized_amount, order_type=OrderType.LIMIT, price=quantized_price ) [order_completed_event] = self.run_parallel(self.market_logger.wait_for(SellOrderCompletedEvent)) self.assertEqual(sell_order_id, order_completed_event.order_id) self.assertEqual(quantized_amount, order_completed_event.base_asset_amount) self.assertEqual("ETH", order_completed_event.base_asset) self.assertEqual("USDT", order_completed_event.quote_asset) self.assertTrue(any([isinstance(event, SellOrderCreatedEvent) and event.order_id == sell_order_id for event in self.market_logger.event_log])) def main(): logging.getLogger("hummingbot.core.event.event_reporter").setLevel(logging.WARNING) unittest.main() if __name__ == "__main__": main()
analysis_engine/scripts/publish_ticker_aggregate_from_s3.py
virdesai/stock-analysis-engine
819
12684035
<gh_stars>100-1000 #!/usr/bin/env python """ Publish the aggregated S3 contents of a ticker to a Redis key and back to S3 Steps: ------ 1) Parse arguments 2) Download and aggregate ticker data from S3 as a Celery task 3) Publish aggregated data to S3 as a Celery task 4) Publish aggregated data to Redis as a Celery task """ import argparse import analysis_engine.work_tasks.publish_ticker_aggregate_from_s3 \ as task_publisher from celery import signals from analysis_engine.work_tasks.get_celery_app import get_celery_app from spylunking.log.setup_logging import build_colorized_logger from analysis_engine.api_requests import \ build_publish_ticker_aggregate_from_s3_request from analysis_engine.consts import LOG_CONFIG_PATH from analysis_engine.consts import TICKER from analysis_engine.consts import TICKER_ID from analysis_engine.consts import WORKER_BROKER_URL from analysis_engine.consts import WORKER_BACKEND_URL from analysis_engine.consts import WORKER_CELERY_CONFIG_MODULE from analysis_engine.consts import INCLUDE_TASKS from analysis_engine.consts import SSL_OPTIONS from analysis_engine.consts import TRANSPORT_OPTIONS from analysis_engine.consts import S3_ACCESS_KEY from analysis_engine.consts import S3_SECRET_KEY from analysis_engine.consts import S3_REGION_NAME from analysis_engine.consts import S3_ADDRESS from analysis_engine.consts import S3_SECURE from analysis_engine.consts import S3_BUCKET from analysis_engine.consts import S3_COMPILED_BUCKET from analysis_engine.consts import S3_KEY from analysis_engine.consts import REDIS_ADDRESS from analysis_engine.consts import REDIS_KEY from analysis_engine.consts import REDIS_PASSWORD from analysis_engine.consts import REDIS_DB from analysis_engine.consts import REDIS_EXPIRE from analysis_engine.consts import get_status from analysis_engine.consts import ppj from analysis_engine.consts import is_celery_disabled # Disable celery log hijacking # https://github.com/celery/celery/issues/2509 @signals.setup_logging.connect def setup_celery_logging(**kwargs): pass log = build_colorized_logger( name='pub-tic-agg-s3-to-redis', log_config_path=LOG_CONFIG_PATH) def publish_ticker_aggregate_from_s3(): """publish_ticker_aggregate_from_s3 Download all ticker data from S3 and publish it's contents to Redis and back to S3 """ log.info( 'start - publish_ticker_aggregate_from_s3') parser = argparse.ArgumentParser( description=( 'Download and aggregated all ticker data, ' 'and store it in S3 and Redis. ')) parser.add_argument( '-t', help=( 'ticker'), required=True, dest='ticker') parser.add_argument( '-i', help=( 'optional - ticker id ' 'not used without a database'), required=False, dest='ticker_id') parser.add_argument( '-l', help=( 'optional - path to the log config file'), required=False, dest='log_config_path') parser.add_argument( '-b', help=( 'optional - broker url for Celery'), required=False, dest='broker_url') parser.add_argument( '-B', help=( 'optional - backend url for Celery'), required=False, dest='backend_url') parser.add_argument( '-k', help=( 'optional - s3 access key'), required=False, dest='s3_access_key') parser.add_argument( '-s', help=( 'optional - s3 secret key'), required=False, dest='s3_secret_key') parser.add_argument( '-a', help=( 'optional - s3 address format: <host:port>'), required=False, dest='s3_address') parser.add_argument( '-S', help=( 'optional - s3 ssl or not'), required=False, dest='s3_secure') parser.add_argument( '-u', help=( 'optional - s3 bucket name'), required=False, dest='s3_bucket_name') parser.add_argument( '-c', help=( 'optional - s3 compiled bucket name'), required=False, dest='s3_compiled_bucket_name') parser.add_argument( '-g', help=( 'optional - s3 region name'), required=False, dest='s3_region_name') parser.add_argument( '-p', help=( 'optional - redis_password'), required=False, dest='redis_password') parser.add_argument( '-r', help=( 'optional - redis_address format: <host:port>'), required=False, dest='redis_address') parser.add_argument( '-n', help=( 'optional - redis and s3 key name'), required=False, dest='keyname') parser.add_argument( '-m', help=( 'optional - redis database number (0 by default)'), required=False, dest='redis_db') parser.add_argument( '-x', help=( 'optional - redis expiration in seconds'), required=False, dest='redis_expire') parser.add_argument( '-d', help=( 'debug'), required=False, dest='debug', action='store_true') args = parser.parse_args() ticker = TICKER ticker_id = TICKER_ID ssl_options = SSL_OPTIONS transport_options = TRANSPORT_OPTIONS broker_url = WORKER_BROKER_URL backend_url = WORKER_BACKEND_URL celery_config_module = WORKER_CELERY_CONFIG_MODULE include_tasks = INCLUDE_TASKS s3_access_key = S3_ACCESS_KEY s3_secret_key = S3_SECRET_KEY s3_region_name = S3_REGION_NAME s3_address = S3_ADDRESS s3_secure = S3_SECURE s3_bucket_name = S3_BUCKET s3_compiled_bucket_name = S3_COMPILED_BUCKET s3_key = S3_KEY redis_address = REDIS_ADDRESS redis_key = REDIS_KEY redis_password = REDIS_PASSWORD redis_db = REDIS_DB redis_expire = REDIS_EXPIRE debug = False if args.ticker: ticker = args.ticker.upper() if args.ticker_id: ticker = args.ticker_id if args.broker_url: broker_url = args.broker_url if args.backend_url: backend_url = args.backend_url if args.s3_access_key: s3_access_key = args.s3_access_key if args.s3_secret_key: s3_secret_key = args.s3_secret_key if args.s3_region_name: s3_region_name = args.s3_region_name if args.s3_address: s3_address = args.s3_address if args.s3_secure: s3_secure = args.s3_secure if args.s3_bucket_name: s3_bucket_name = args.s3_bucket_name if args.s3_compiled_bucket_name: s3_compiled_bucket_name = args.s3_compiled_bucket_name if args.keyname: s3_key = args.keyname redis_key = args.keyname if args.redis_address: redis_address = args.redis_address if args.redis_password: redis_password = args.redis_password if args.redis_db: redis_db = args.redis_db if args.redis_expire: redis_expire = args.redis_expire if args.debug: debug = True work = build_publish_ticker_aggregate_from_s3_request() work['ticker'] = ticker work['ticker_id'] = ticker_id work['s3_bucket'] = s3_bucket_name work['s3_compiled_bucket'] = s3_compiled_bucket_name if args.keyname: work['s3_key'] = s3_key work['redis_key'] = redis_key work['s3_access_key'] = s3_access_key work['s3_secret_key'] = s3_secret_key work['s3_region_name'] = s3_region_name work['s3_address'] = s3_address work['s3_secure'] = s3_secure work['redis_address'] = redis_address work['redis_password'] = <PASSWORD> work['redis_db'] = redis_db work['redis_expire'] = redis_expire work['debug'] = debug work['label'] = f'ticker={ticker}' path_to_tasks = 'analysis_engine.work_tasks' task_name = ( f'{path_to_tasks}.publish_ticker_aggregate_from_s3.' 'publish_ticker_aggregate_from_s3') task_res = None if is_celery_disabled(): work['celery_disabled'] = True log.debug( f'starting without celery work={ppj(work)}') task_res = task_publisher.publish_ticker_aggregate_from_s3( work_dict=work) if debug: log.info( f'done - result={ppj(task_res)} task={task_name} ' f'status={get_status(status=task_res["status"])} ' f'err={task_res["err"]} label={work["label"]}') else: log.info( f'done - result task={task_name} ' f'status={get_status(status=task_res["status"])} ' f'err={task_res["err"]} label={work["label"]}') # if/else debug else: log.info(f'connecting to broker={broker_url} backend={backend_url}') # Get the Celery app app = get_celery_app( name=__name__, auth_url=broker_url, backend_url=backend_url, path_to_config_module=celery_config_module, ssl_options=ssl_options, transport_options=transport_options, include_tasks=include_tasks) log.info(f'calling task={task_name} - work={ppj(work)}') job_id = app.send_task( task_name, (work,)) log.info(f'calling task={task_name} - success job_id={job_id}') # end of if/else # end of publish_ticker_aggregate_from_s3 if __name__ == '__main__': publish_ticker_aggregate_from_s3()
UEM-Samples/Utilities and Tools/Generic/App Upload/Mobile CICD Script/api_client/application_extensive_search.py
dholliman/euc-samples
127
12684051
import requests import json from api_client.url_helpers.apps_url import get_apps_search_url from config import config from Logs.log_configuration import configure_logger from models.api_header_model import RequestHeader log = configure_logger('default') def search_application(bundle_id): """ Search for applications with the given Bundle ID :param bundle_id: Bundle ID (App Identifier) :return: True/False indicating Success/Failure and Application_list that matches the given Bundle ID """ api_url = get_apps_search_url() headers = RequestHeader().header api_params = { 'type': 'App', 'applicationtype': 'Internal', 'bundleid': bundle_id, 'locationgroupid': config.TENANT_GROUP_ID, 'productcomponentappsonly': 'False' } try: response = requests.get(api_url, headers=headers, params=api_params) if not response.ok: log.error(f'{response.status_code}, {response.reason}, {response.content}') # HTTP return False, 0 else: response_data = json.loads(response.content) app_list = response_data['Application'] return True, app_list except Exception as e: log.error('Application Search failed: {}'.format(str(e))) return False
pybamm/models/submodels/convection/base_convection.py
manjunathnilugal/PyBaMM
330
12684054
<reponame>manjunathnilugal/PyBaMM<filename>pybamm/models/submodels/convection/base_convection.py # # Base class for convection submodels # import pybamm class BaseModel(pybamm.BaseSubModel): """Base class for convection submodels. Parameters ---------- param : parameter class The parameters to use for this submodel options : dict, optional A dictionary of options to be passed to the model. **Extends:** :class:`pybamm.BaseSubModel` """ def __init__(self, param, options=None): super().__init__(param, options=options) def _get_standard_whole_cell_velocity_variables(self, variables): """ A private function to obtain the standard variables which can be derived from the fluid velocity. Parameters ---------- variables : dict The existing variables in the model Returns ------- variables : dict The variables which can be derived from the volume-averaged velocity. """ vel_scale = self.param.velocity_scale if self.half_cell: v_box_n = None else: v_box_n = variables["Negative electrode volume-averaged velocity"] v_box_s = variables["Separator volume-averaged velocity"] v_box_p = variables["Positive electrode volume-averaged velocity"] v_box = pybamm.concatenation(v_box_n, v_box_s, v_box_p) variables = { "Volume-averaged velocity": v_box, "Volume-averaged velocity [m.s-1]": vel_scale * v_box, } return variables def _get_standard_whole_cell_acceleration_variables(self, variables): """ A private function to obtain the standard variables which can be derived from the fluid velocity. Parameters ---------- variables : dict The existing variables in the model Returns ------- variables : dict The variables which can be derived from the volume-averaged velocity. """ acc_scale = self.param.velocity_scale / self.param.L_x if self.half_cell: div_v_box_n = None else: div_v_box_n = variables["Negative electrode volume-averaged acceleration"] div_v_box_s = variables["Separator volume-averaged acceleration"] div_v_box_p = variables["Positive electrode volume-averaged acceleration"] div_v_box = pybamm.concatenation(div_v_box_n, div_v_box_s, div_v_box_p) div_v_box_av = pybamm.x_average(div_v_box) variables = { "Volume-averaged acceleration": div_v_box, "X-averaged volume-averaged acceleration": div_v_box_av, "Volume-averaged acceleration [m.s-1]": acc_scale * div_v_box, "X-averaged volume-averaged acceleration [m.s-1]": acc_scale * div_v_box_av, } return variables def _get_standard_whole_cell_pressure_variables(self, variables): """ A private function to obtain the standard variables which can be derived from the pressure in the fluid. Parameters ---------- variables : dict The existing variables in the model Returns ------- variables : dict The variables which can be derived from the pressure. """ if self.half_cell: p_n = None else: p_n = variables["Negative electrode pressure"] p_s = variables["Separator pressure"] p_p = variables["Positive electrode pressure"] p = pybamm.concatenation(p_n, p_s, p_p) variables = {"Pressure": p} return variables
maptrace.py
sdobz/maptrace
120
12684088
<reponame>sdobz/maptrace<filename>maptrace.py # -*- encoding: utf-8 -*- import sys, re, os, argparse, heapq from datetime import datetime from collections import namedtuple, defaultdict import numpy as np from PIL import Image from scipy import ndimage ###################################################################### DIR_RIGHT = 0 DIR_DOWN = 1 DIR_LEFT = 2 DIR_UP = 3 NEIGHBOR_OFFSET = np.array([ [ 0, 1 ], [ 1, 0 ], [ 0, -1 ], [ -1, 0 ] ]) TURN_RIGHT = np.array([ DIR_DOWN, DIR_LEFT, DIR_UP, DIR_RIGHT ]) TURN_LEFT = np.array([ DIR_UP, DIR_RIGHT, DIR_DOWN, DIR_LEFT ]) VMAP_OFFSET = np.array([ [ -1, 0, 0 ], [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, -1, 1 ] ]) DIAG_OFFSET = NEIGHBOR_OFFSET + NEIGHBOR_OFFSET[TURN_LEFT] OPP_OFFSET = NEIGHBOR_OFFSET[TURN_LEFT] CROSS_ELEMENT = np.array([[0,1,0],[1,1,1],[0,1,0]],dtype=np.bool) BOX_ELEMENT = np.ones((3,3), dtype=np.bool) ###################################################################### # Some helper classes EdgeInfo = namedtuple('EdgeInfo', ['node0', 'node1', 'label0', 'label1']) EdgeRef = namedtuple('EdgeRef', ['edge_index', 'opp_label', 'step']) ###################################################################### # Class to store boundary representation for our map class BoundaryRepresentation(object): def __init__(self): # list of nodes (points) or None for deleted self.node_list = [] # list of sets of edge indices self.node_edges = [] # list of point arrays (or empty for deleted edges) self.edge_list = [] # list of EdgeInfo (or None for deleted edges) self.edge_infolist = [] # map from point to node index self.node_lookup = dict() # map from EdgeInfo to edge index self.edge_lookup = dict() # map from label to list of list of EdgeRef self.label_lookup = defaultdict(list) def lookup_node(self, point, insert=False): key = tuple(map(float, point)) if insert and key not in self.node_lookup: node_idx = len(self.node_list) self.node_list.append(point.copy()) self.node_edges.append(set()) self.node_lookup[key] = node_idx else: node_idx = self.node_lookup[key] return node_idx def add_edges(self, cur_label, contour_edges): edge_refs = [] for opp_label, edge in contour_edges: assert cur_label != opp_label assert cur_label != 0 label0 = min(cur_label, opp_label) label1 = max(cur_label, opp_label) if label0 == cur_label: step = 1 else: step = -1 edge_to_add = edge[::step] node0 = self.lookup_node(edge_to_add[0], insert=True) node1 = self.lookup_node(edge_to_add[-1], insert=True) edge_info = EdgeInfo(node0, node1, label0, label1) if edge_info in self.edge_lookup: edge_idx = self.edge_lookup[edge_info] stored_edge = self.edge_list[edge_idx] assert self.edge_infolist[edge_idx] == edge_info assert np.all(stored_edge == edge_to_add) assert edge_idx in self.node_edges[node0] assert edge_idx in self.node_edges[node1] else: edge_idx = len(self.edge_list) self.edge_list.append( edge_to_add ) self.edge_infolist.append( edge_info ) self.edge_lookup[edge_info] = edge_idx self.node_edges[node0].add( edge_idx ) self.node_edges[node1].add( edge_idx ) edge_refs.append(EdgeRef(edge_idx, opp_label, step)) self.label_lookup[cur_label].append( edge_refs) def replace_endpoints(self, edge_idx, na, nb, nc): edge = self.edge_list[edge_idx] edge_info = self.edge_infolist[edge_idx] assert (edge_info.node0 == na or edge_info.node0 == nb or edge_info.node1 == na or edge_info.node1 == nb) n0 = None n1 = None if edge_info.node0 == na: n0 = na new_n0 = nc elif edge_info.node0 == nb: n0 = nb new_n0 = nc else: new_n0 = edge_info.node0 if edge_info.node1 == na: n1 = na new_n1 = nc elif edge_info.node1 == nb: n1 = nb new_n1 = nc else: new_n1 = edge_info.node1 if n0 is not None and n1 is not None: self.edge_list[edge_idx] = edge[:0] self.edge_infolist[edge_idx] = None # NB we will rebuild label_lookup after all merges return self.node_edges[nc].add(edge_idx) pc = self.node_list[nc] for node_idx, which_end, lo, hi in [(n0, 0, 1, 0), (n1, -1, 0, 1)]: if node_idx is None: continue p = self.node_list[node_idx] delta = (pc - p).reshape(1, 2) u = np.linspace(lo, hi, len(edge)).reshape(-1, 1) edge = edge + delta * u edge[which_end] = pc edge_info = EdgeInfo(new_n0, new_n1, edge_info.label0, edge_info.label1) self.edge_list[edge_idx] = edge self.edge_infolist[edge_idx] = edge_info assert np.all(edge[0] == self.node_list[edge_info.node0]) assert np.all(edge[-1] == self.node_list[edge_info.node1]) def merge_nodes(self, tol): node_points = np.array(self.node_list) rng = range(len(node_points)) i, j = np.meshgrid(rng, rng) use = i > j i = i[use] j = j[use] ni = node_points[i] nj = node_points[j] dists = np.linalg.norm(ni - nj, axis=1) heap = list(zip(dists, i, j)) heapq.heapify(heap) retired_nodes = set() active_nodes = set(rng) while len(heap): dmin, na, nb = heapq.heappop(heap) assert na > nb if dmin > tol: break if na in retired_nodes or nb in retired_nodes: continue print(' merge nodes {} and {} with distance {}'.format( na, nb, dmin)) pa = self.node_list[na] pb = self.node_list[nb] pc = 0.5*(pa + pb) nc = len(self.node_list) nkey = tuple(map(float, pc)) self.node_list.append(pc.copy()) self.node_edges.append(set()) self.node_lookup[nkey] = nc assert self.lookup_node(pc) == nc for node_idx in (na, nb): for edge_idx in self.node_edges[node_idx]: if self.edge_infolist[edge_idx] is not None: self.replace_endpoints(edge_idx, na, nb, nc) for node_idx in (na, nb): p = self.node_list[node_idx] pkey = tuple(map(float, p)) del self.node_lookup[pkey] self.node_list[node_idx] = None self.node_edges[node_idx] = set() retired_nodes.add(node_idx) active_nodes.remove(node_idx) for nj in active_nodes: pj = self.node_list[nj] dcj = np.linalg.norm(pc - pj) hkey = (dcj, nc, nj) heapq.heappush(heap, hkey) active_nodes.add(nc) # rebuild label lookup new_label_lookup = dict() for label, contours in self.label_lookup.items(): new_contours = [] for contour in contours: new_contour = [] for edge_ref in contour: idx, _, _ = edge_ref if self.edge_infolist[idx] is not None: new_contour.append(edge_ref) if len(new_contour): new_contours.append(new_contour) if len(new_contours): new_label_lookup[label] = new_contours else: print('totally deleted label {}!'.format(label)) self.label_lookup = new_label_lookup def save_debug_image(self, opts, orig_shape, colors, name): filename = opts.basename + '_debug_' + name + '.svg' with open(filename, 'w') as svg: svg.write('<svg width="{}" height="{}" ' 'xmlns="http://www.w3.org/2000/svg">\n'. format(orig_shape[1], orig_shape[0])) svg.write(' <rect width="100%" height="100%" fill="#eee" />\n') for ilabel in range(2): if ilabel == 0: svg.write(' <g stroke-linejoin="miter" stroke-width="4" fill="none">\n') else: svg.write(' <g stroke-linejoin="miter" stroke-width="4" fill="none" stroke-dasharray="8, 8" >\n') for edge, einfo in zip(self.edge_list, self.edge_infolist): svg.write(' <path d="') last = np.array([0,0]) for i, pt in enumerate(edge): pt = pt.astype(int) if i == 0: svg.write('M{},{}'.format(pt[0], pt[1])) else: diff = pt - last if diff[1] == 0: svg.write('h{}'.format(diff[0])) elif diff[0] == 0: svg.write('v{}'.format(diff[1])) else: svg.write('l{},{}'.format(*diff)) last = pt color = colors[einfo.label0 if ilabel == 0 else einfo.label1] svg.write('" stroke="#{:02x}{:02x}{:02x}" />\n'.format(*color)) svg.write(' </g>\n') svg.write(' <g stroke="none" fill="#000">\n') for pt in self.node_list: svg.write(' <circle cx="{}" cy="{}" r="4" />\n'.format(*pt)) svg.write(' </g>\n') svg.write('</svg>\n') print('wrote', filename) ###################################################################### # Input is string, output is pair (string, lambda image -> image) def filter_type(fstr): m = re.match(r'^\s*([a-z]+)\s*:\s*([a-z]+)\s*,\s*([1-9][0-9]*)\s*$', fstr) if m is None: raise argparse.ArgumentTypeError('invalid filter string') operation = m.group(1) element = m.group(2) iterations = int(m.group(3)) fnmap = dict( open=ndimage.binary_opening, close=ndimage.binary_closing, dilate=ndimage.binary_dilation, erode=ndimage.binary_erosion) if operation not in fnmap.keys(): raise argparse.ArgumentTypeError('invalid operation ' + operation) if element == 'box': element = BOX_ELEMENT elif element == 'cross': element = CROSS_ELEMENT else: raise argparse.ArgumentTypeError('invalid element ' + element) f = lambda img: fnmap[operation](img, element, iterations=iterations) return fstr, f ###################################################################### # Confirm with [y/n] def confirm(prompt): while True: print(prompt + ' [y/n]: ', end='') sys.stdout.flush() choice = input().lower() if choice in ['y', 'yes']: return True elif choice in ['n', 'no']: return False else: print('invalid choice') ###################################################################### # Parse command-line options, return namespace containing results def get_options(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('image', type=argparse.FileType('rb'), metavar='IMAGE.png', nargs='?', help='image to approximate') parser.add_argument('-z', '--zoom', type=float, metavar='ZOOM', default=1.0, help='amount to resize image on load') parser.add_argument('-t', '--threshold', type=int, metavar='T', default=64, help='intensity threshold for outlines') parser.add_argument('-a', '--alpha-threshold', type=int, metavar='T', default=127, help='threshold for alpha channel') parser.add_argument('-C', '--connectivity', choices=('4','8'), default='4', help='connectivity of non-outline regions') parser.add_argument('-f', '--filter', type=filter_type, default=None, help='filter for preprocessing outline map ' 'after thresholding but before connected ' 'component analysis; must be of the format ' '(erode|dilate|open|close):(box|cross),ITERATIONS ' 'e.g., erode:cross,1') parser.add_argument('-e', '--edge-tol', type=float, metavar='E', default='1.42', help='tolerance in px for simplifying edges') parser.add_argument('-n', '--node-tol', type=float, metavar='N', default=0, help='tolerance in px for merging nodes') parser.add_argument('-o', '--output-file', type=str, metavar='FILENAME.svg', default=None, help='output SVG file name') parser.add_argument('-s', '--stroke-width', type=float, metavar='S', default=1.0, help='output SVG stroke width') parser.add_argument('-b', '--bg-stroke-width', type=float, metavar='S', default=None, help='output SVG stroke width for largest region') parser.add_argument('-d', '--debug-images', action='store_true', help='generate debug images') parser.add_argument('-D', '--allow-dark-colors', action='store_true', help='flag to prevent applying grayscale threshold ' 'to image supplied with -c') parser.add_argument('-m', '--min-area', type=int, metavar='A', default=1, help='minimum region area in pixels') parser.add_argument('-c', '--color-image', type=argparse.FileType('rb'), default=None, help='image to supply color for output map') parser.add_argument('-q', '--color-quantize-bits', type=int, default=8, help='quantization for finding region ' 'colors with -c') parser.add_argument('-r', '--random-colors', action='store_true', help='color regions randomly') parser.add_argument('-R', '--random-seed', type=int, help='random seed for colors') parser.add_argument('-y', '--overwrite', action='store_true', help='overwrite output') parser.add_argument('-S', '--solid-colors', action='store_true', help='input image is solid colors with no outlines') opts = parser.parse_args() if opts.image is None: if opts.color_image is None: print('error: must provide image filename or set color image with -c') sys.exit(1) else: opts.image = open(opts.color_image.name, 'rb') basename = os.path.basename(opts.image.name) opts.basename, _ = os.path.splitext(basename) if opts.bg_stroke_width is None: opts.bg_stroke_width = opts.stroke_width if opts.output_file is None: opts.output_file = opts.basename + '.svg' if os.path.exists(opts.output_file) and not opts.overwrite: if not confirm(opts.output_file + ' exists. Overwrite?'): print('will not overwite output, exiting') sys.exit(1) return opts ###################################################################### # Downsample pixel values, rounding to center of bins. def quantize(image, bits_per_channel=None): if bits_per_channel is None: bits_per_channel = 8 assert image.dtype == np.uint8 shift = 8-bits_per_channel halfbin = (1 << shift) >> 1 return ((image.astype(int) >> shift) << shift) + halfbin ###################################################################### # Pack RGB triplets into ints def pack_rgb(rgb): orig_shape = None if isinstance(rgb, np.ndarray): assert rgb.shape[-1] == 3 orig_shape = rgb.shape[:-1] else: assert len(rgb) == 3 rgb = np.array(rgb) rgb = rgb.astype(int).reshape((-1, 3)) packed = (rgb[:, 0] << 16 | rgb[:, 1] << 8 | rgb[:, 2]) if orig_shape is None: return packed else: return packed.reshape(orig_shape) ###################################################################### # Unpack ints to RGB triplets def unpack_rgb(packed): orig_shape = None if isinstance(packed, np.ndarray): assert packed.dtype == int orig_shape = packed.shape packed = packed.reshape((-1, 1)) rgb = ((packed >> 16) & 0xff, (packed >> 8) & 0xff, (packed) & 0xff) if orig_shape is None: return rgb else: return np.hstack(rgb).reshape(orig_shape + (3,)) ###################################################################### # Get the dominant color in a list of colors (with optional # quantization) def get_dominant_color(colors, bits_per_channel=None): assert colors.shape[-1] == 3 quantized = quantize(colors, bits_per_channel).astype(int) packed = pack_rgb(quantized) unique, counts = np.unique(packed, return_counts=True) packed_mode = unique[counts.argmax()] return unpack_rgb(packed_mode) ###################################################################### # Save a debug image if allowed def save_debug_image(opts, name, image): if not opts.debug_images: return if isinstance(image, np.ndarray): if image.dtype == np.bool: image = (image.astype(np.uint8) * 255) if len(image.shape) == 2: mode = 'L' else: mode = 'RGB' image = Image.fromarray(image, mode) filename = opts.basename + '_debug_' + name + '.png' image.save(filename) print('wrote', filename) ###################################################################### # Open an input image and get the RGB colors as well as the mask def get_mask(input_image, opts): rgb = input_image alpha = None if (rgb.mode == 'LA' or (rgb.mode == 'P' and 'transparency' in rgb.info)): rgb = rgb.convert('RGBA') if rgb.mode == 'RGBA': alpha = np.array(rgb.split()[-1]) rgb = rgb.convert('RGB') rgb = np.array(rgb) gray = rgb.max(axis=2) mask = (gray > opts.threshold) if alpha is not None: mask = mask | (alpha < opts.alpha_threshold) save_debug_image(opts, 'mask', mask) if opts.filter is not None: print('applying filter:', opts.filter[0]) mask = opts.filter[1](mask) save_debug_image(opts, 'mask_filtered', mask) return mask ###################################################################### def printp(*args): print(*args, end='') sys.stdout.flush() ###################################################################### def get_labels_and_colors_outlined(mask, opts): if opts.connectivity == '8': structure = BOX_ELEMENT else: structure = CROSS_ELEMENT labels, num_labels = ndimage.label(mask, structure=structure) print('found {} labels'.format(num_labels)) unlabeled = ~mask printp('computing areas... ') start = datetime.now() areas, bins = np.histogram(labels.flatten(), bins=num_labels, range=(1, num_labels+1)) elapsed = (datetime.now() - start).total_seconds() print('finished computing areas in {} seconds.'.format(elapsed)) idx = np.hstack( ([0], np.argsort(-areas)+1) ) replace = np.zeros_like(idx) replace[idx] = range(len(idx)) labels = replace[labels] areas = areas[idx[1:]-1] print('min area is {}, max is {}'.format(areas[-1], areas[0])) if opts.min_area > areas[-1]: print('killing all labels with area < {} px'.format(opts.min_area)) kill_labels = np.nonzero(areas < opts.min_area)[0] num_labels = kill_labels.min() kill_mask = (labels > num_labels) save_debug_image(opts, 'kill_labels', kill_mask) unlabeled = unlabeled | kill_mask print('killed {} labels, now at {} total'.format( len(kill_labels), num_labels)) colors = 255*np.ones((num_labels+1,3), dtype=np.uint8) if opts.color_image is not None: color_image = Image.open(opts.color_image) labels_size = labels.shape[::-1] if color_image.size != labels_size: color_image = color_image.resize(labels_size, Image.NEAREST) color_image = np.array(color_image.convert('RGB')) print('assigning colors from {}...'.format(opts.color_image.name)) slices = ndimage.find_objects(labels, num_labels) for label, (yslc, xslc) in zip(range(1, num_labels+1), slices): print(' coloring label {}/{}'.format(label, num_labels)) lmask = (labels[yslc,xslc] == label) crect = color_image[yslc,xslc] if not opts.allow_dark_colors: lmask = lmask & (crect.max(axis=2) > opts.threshold) if not np.any(lmask): print('no colors available for label {}, ' 'try running with -D?'.format(label)) else: colors[label] = get_dominant_color(crect[lmask], opts.color_quantize_bits) elif opts.random_colors: if opts.random_seed is not None: np.random.seed(opts.random_seed) colors = np.random.randint(128, size=(num_labels+1,3), dtype=np.uint8) + 128 colors[0,:] = 255 save_debug_image(opts, 'regions', colors[labels]) printp('running DT... ') start = datetime.now() result = ndimage.distance_transform_edt(unlabeled, return_distances=opts.debug_images, return_indices=True) if opts.debug_images: dist, idx = result dist /= dist.max() dist = (dist*255).astype(np.uint8) save_debug_image(opts, 'dist', dist) else: idx = result elapsed = (datetime.now() - start).total_seconds() print('ran DT in {} seconds'.format(elapsed)) labels = labels[tuple(idx)] assert not np.any(labels == 0) labels_big = np.zeros((labels.shape[0]+2,labels.shape[1]+2), dtype=labels.dtype) labels_big[1:-1,1:-1] = labels start = datetime.now() printp('finding objects... ') slices = ndimage.find_objects(labels, num_labels) elapsed = (datetime.now() - start).total_seconds() print('found all objects in {} seconds'.format(elapsed)) slices_big = [] for spair in slices: spair_big = [] for s in spair: spair_big.append(slice(s.start, s.stop+2)) slices_big.append( tuple(spair_big) ) assert labels_big.min() == 0 and labels_big.max() == num_labels assert len(slices) == num_labels save_debug_image(opts, 'regions_expanded', colors[labels_big[1:-1, 1:-1]]) return num_labels, labels_big, slices_big, colors ###################################################################### def get_labels_and_colors_solid(input_image, opts): array = np.array(input_image) print(array.shape, array.dtype) if len(array.shape) == 2: flattened = array.flatten() axis = None else: assert len(array.shape) == 3 flattened = array.reshape(-1, array.shape[2]) axis = 0 unique, ulabels = np.unique(flattened, axis=axis, return_inverse=True) ucount = len(unique) # go from bright to dark unique = unique[::-1] ulabels = ucount - ulabels - 1 ulabels = ulabels.reshape(array.shape[:2]) print('unique:', unique) print('ulabels:', ulabels) rgb = np.array(input_image.convert('RGB')) colors = [] labels = np.zeros(array.shape[:2], dtype=int) max_label = 0 slices = [] for ulabel in range(ucount): mask = (ulabels == ulabel) yidx, xidx = np.nonzero(mask) color = rgb[yidx[0], xidx[0]] if ulabel == 0: # background colors.append(color) else: sublabels, num_features = ndimage.label(mask) print('found {} sublabels for {}'.format( num_features, color)) subslices = ndimage.find_objects(sublabels, num_features) labels[mask] = sublabels[mask] + max_label max_label += num_features assert labels.max() == max_label slices.extend(subslices) colors.extend([color] * num_features) colors = np.array(colors) colors[0,:] = 255 randocolors = np.random.randint(128, size=(max_label+1, 3), dtype=np.uint8) + 128 if opts.random_colors: colors = randocolors save_debug_image(opts, 'labels', randocolors[labels]) slices_big = [] for spair in slices: spair_big = [] for s in spair: spair_big.append(slice(s.start, s.stop+2)) slices_big.append( tuple(spair_big) ) return max_label, labels, slices_big, colors ###################################################################### def follow_contour(l_subrect, cur_label, startpoints, pos): start = pos cur_dir = DIR_RIGHT contour_info = [] while True: ooffs = OPP_OFFSET[cur_dir] noffs = NEIGHBOR_OFFSET[cur_dir] doffs = DIAG_OFFSET[cur_dir] neighbor = tuple(pos + noffs) diag = tuple(pos + doffs) opp = tuple(pos + ooffs) assert l_subrect[pos] == cur_label assert l_subrect[opp] != cur_label contour_info.append( pos + (cur_dir, l_subrect[opp]) ) startpoints[pos] = False if l_subrect[neighbor] != cur_label: cur_dir = TURN_RIGHT[cur_dir] elif l_subrect[diag] == cur_label: pos = diag cur_dir = TURN_LEFT[cur_dir] else: pos = neighbor if pos == start and cur_dir == DIR_RIGHT: break n = len(contour_info) contour_info = np.array(contour_info) clabels = contour_info[:,3] # set of unique labels for this contour opp_label_set = set(clabels) assert cur_label not in opp_label_set # if multiple labels and one wraps around, correct this if len(opp_label_set) > 1 and clabels[0] == clabels[-1]: idx = np.nonzero(clabels != clabels[0])[0][0] perm = np.hstack( (np.arange(idx, n), np.arange(idx)) ) contour_info = contour_info[perm] clabels = contour_info[:,3] # make sure no wraparound assert len(opp_label_set) == 1 or clabels[0] != clabels[-1] # apply offset to get contour points cpoints = contour_info[:,:2].astype(np.float32) cdirs = contour_info[:,2] cpoints += 0.5 * (OPP_OFFSET[cdirs] - NEIGHBOR_OFFSET[cdirs] + 1) # put points in xy format cpoints = cpoints[:,::-1] if len(opp_label_set) == 1: idx = np.arange(len(cpoints)) xyi = zip(cpoints[:,0], cpoints[:,1], idx) imin = min(xyi) i = imin[-1] cpoints = np.vstack( ( cpoints[i:], cpoints[:i] ) ) assert np.all(clabels == clabels[0]) return cpoints, clabels ###################################################################### def split_contour(cpoints, clabels): edges = [] shifted = np.hstack(( [-1], clabels[:-1] )) istart = np.nonzero( clabels - shifted )[0] iend = np.hstack( (istart[1:], len(clabels)) ) for start, end in zip(istart, iend): assert start == 0 or clabels[start] != clabels[start-1] assert clabels[end-1] == clabels[start] opp_label = clabels[start] if end < len(cpoints): edge = cpoints[start:end+1] else: edge = np.vstack( (cpoints[start:end], cpoints[0]) ) edges.append( (opp_label, edge) ) start = end return edges ###################################################################### def store_contour_edges(opts, labels, edge_lookup, edge_list, cur_label, contour_edges): edge_refs = [] for opp_label, edge in contour_edges: assert cur_label != opp_label assert cur_label != 0 print(' storing contour edge with cur={}, opp={}'.format( cur_label, opp_label)) lmin = min(cur_label, opp_label) lmax = max(cur_label, opp_label) if lmin == cur_label: step = 1 else: step = -1 edge_to_add = edge[::step] p0 = tuple(map(float, edge_to_add[0])) p1 = tuple(map(float, edge_to_add[1])) key = (lmin, lmax, p0, p1) if key in edge_lookup: idx = edge_lookup[key] if not np.all(edge_list[idx] == edge_to_add): debug = 255*np.ones(labels.shape + (3,), dtype=np.uint8) debug[labels == cur_label] = (255, 0, 0) debug[labels == opp_label] = (0, 0, 255) save_debug_image(opts, 'debug_edge', debug) print('not forward/backward symmetric!') print(type(edge_to_add)) print(type(edge_list[idx])) print(edge_list[idx].shape, edge_list[idx].dtype) print(edge_to_add.shape, edge_to_add.dtype) print(edge_to_add == edge_list[idx]) assert np.all(edge_list[idx] == edge_to_add) else: idx = len(edge_list) edge_list.append( edge_to_add ) edge_lookup[key] = idx edge_refs.append( (idx, opp_label, step) ) return edge_refs ###################################################################### def _simplify_r(opts, p0, edge, output_list): assert np.all( output_list[-1][-1] == p0 ) assert not np.all(edge[0] == p0) p1 = edge[-1] if len(edge) == 1: output_list.append(edge) return l = np.cross([p0[0], p0[1], 1], [p1[0], p1[1], 1]) n = l[:2] w = np.linalg.norm(n) if w == 0: dist = np.linalg.norm(edge - p0, axis=1) idx = dist.argmax() dmax = np.inf else: l /= w dist = np.abs( np.dot(edge, l[:2]) + l[2] ) idx = dist.argmax() dmax = dist[idx] if dmax < opts.edge_tol: output_list.append(np.array([p1])) elif len(edge) > 3: _simplify_r(opts, p0, edge[:idx+1], output_list) _simplify_r(opts, edge[idx], edge[idx+1:], output_list) else: output_list.append(edge) ###################################################################### def simplify(opts, edge): if not len(edge): return edge p0 = edge[0] output_list = [ edge[[0]] ] _simplify_r(opts, p0, edge[1:], output_list) return np.vstack( tuple(output_list) ) ###################################################################### def build_brep(opts, num_labels, labels, slices, colors): brep = BoundaryRepresentation() label_range = range(1, num_labels+1) print('building boundary representation...') # for each object for cur_label, (yslc, xslc) in zip(label_range, slices): p0 = (xslc.start-1, yslc.start-1) # extract sub-rectangle for this label l_subrect = labels[yslc, xslc] # get binary map of potential start points for contour in # rightward direction mask_subrect = (l_subrect == cur_label) mask_shifted_down = np.vstack( (np.zeros_like(mask_subrect[0].reshape(1,-1)), mask_subrect[:-1])) startpoints = mask_subrect & ~mask_shifted_down print(' processing label {}/{} with area {}'.format( cur_label, num_labels, (l_subrect == cur_label).sum())) # while there are candidate locations to start at while np.any(startpoints): # get the first one i, j = np.nonzero(startpoints) pos = (i[0], j[0]) # extract points and adjacent labels along contour, # this modifies startpoints cpoints, clabels = follow_contour(l_subrect, cur_label, startpoints, pos) cpoints += p0 # split contour into (opp_label, points) pairs contour_edges = split_contour(cpoints, clabels) # add them to our boundary representation brep.add_edges(cur_label, contour_edges) if opts.debug_images: orig_shape = (labels.shape[0]-2, labels.shape[1]-2) brep.save_debug_image(opts, orig_shape, colors, 'brep') simplified = False if opts.node_tol > 0: print('merging all nodes closer than {} px...'.format(opts.node_tol)) brep.merge_nodes(opts.node_tol) simplified = True if opts.edge_tol > 0: print('simplifying edges...') brep.edge_list = [ simplify(opts, edge) for edge in brep.edge_list ] simplified = True if opts.debug_images and simplified: orig_shape = (labels.shape[0]-2, labels.shape[1]-2) brep.save_debug_image(opts, orig_shape, colors, 'brep_simplified') return brep ###################################################################### def num_fmt(n): s = '{:.2f}'.format(n) if '.' in s: s = re.sub(r'\.?0+$', '', s) return s def output_svg(opts, orig_shape, brep, colors): with open(opts.output_file, 'w') as svg: svg.write('<svg width="{}" height="{}" ' 'xmlns="http://www.w3.org/2000/svg">\n'. format(orig_shape[1], orig_shape[0])) svg.write(' <g stroke="#000" stroke-linejoin="bevel" ' 'stroke-width="{}">\n'.format(opts.stroke_width)) cpacked = pack_rgb(colors.astype(int)) cset = set(cpacked) lsets = [] for c in cset: idx = np.nonzero(cpacked == c)[0] if 1 in idx: lsets.insert(0, idx) else: lsets.append(idx) assert 1 in lsets[0] for lset in lsets: svg.write(' <g fill="#{:02x}{:02x}{:02x}">\n'.format( *colors[lset[0]])) for cur_label in lset: if cur_label not in brep.label_lookup: continue contours = brep.label_lookup[cur_label] svg.write(' <path d="') for i, contour in enumerate(contours): for j, (edge_idx, _, step) in enumerate(contour): edge = brep.edge_list[edge_idx][::step] iedge = edge.astype(int) if np.all(edge == iedge): pprev = iedge[0] if j == 0: svg.write('M{:d},{:d}'.format(*pprev)) for pt in iedge[1:]: svg.write('l{:d},{:d}'.format(*(pt-pprev))) pprev = pt else: if j == 0: svg.write('M{},{}'.format(*map(num_fmt, edge[0]))) for pt in edge[1:]: svg.write('L{},{}'.format(*map(num_fmt, pt))) svg.write('Z') svg.write('"') if cur_label == 1 and opts.stroke_width != opts.bg_stroke_width: svg.write(' stroke-width="{}"'.format(opts.bg_stroke_width)) svg.write('/>\n') svg.write(' </g>\n') svg.write(' </g>\n') svg.write('</svg>\n') print('wrote', opts.output_file) ###################################################################### def main(): opts = get_options() input_image = Image.open(opts.image) if opts.zoom != 1: w, h = input_image.size wnew = int(round(w*opts.zoom)) hnew = int(round(h*opts.zoom)) resample = Image.LANCZOS if opts.zoom > 1 else Image.LANCZOS input_image = input_image.resize((wnew, hnew), resample) save_debug_image(opts, 'resized', input_image) if not opts.solid_colors: mask = get_mask(input_image, opts) # labels is a 2D array that ranges from 0 (background) to # num_labels (inclusive), and slices are bounding rectangles for # each non-zero label. num_labels, labels, slices, colors = get_labels_and_colors_outlined(mask, opts) else: num_labels, labels, slices, colors = get_labels_and_colors_solid(input_image, opts) assert len(slices) == num_labels assert len(colors) == num_labels + 1 brep = build_brep(opts, num_labels, labels, slices, colors) output_svg(opts, labels.shape, brep, colors) ###################################################################### if __name__ == '__main__': main()
views/view_stream.py
TomasTorresB/nerve
365
12684121
<gh_stars>100-1000 import time from core.security import session_required from flask import Blueprint, Response, stream_with_context stream = Blueprint('stream', __name__, template_folder='templates') @stream.route('/log') @session_required def view_stream(): def generate(): with open('logs/nerve.log') as f: while True: yield f.read() time.sleep(1) return Response(stream_with_context(generate()), mimetype='text/plain')
target_offer/026-树的子结构/sub_structure_tree.py
lesywix/oh-my-python
107
12684146
<gh_stars>100-1000 """ 提目:输入两棵二叉树A和B,判断B是不是A的子结构。 总结:使用递归,注意判断好结束条件 """ import unittest from collections import deque class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None def __repr__(self): return f'<{self.val}, {self.left}, {self.right}>' # 树的一些基本算法 class BinaryTree(object): def __init__(self, tree=None): self.tree = tree def construct_tree(self, l: TreeNode, d: TreeNode, r: TreeNode): if not self.tree: self.tree = d d.left = l d.right = r def pre_traversal(self): r = [] def f(t): if not t: return r.append(t.val) f(t.left) f(t.right) f(self.tree) return r def in_traversal(self): r = [] def f(t): if not t: return f(t.left) r.append(t.val) f(t.right) f(self.tree) return r def post_traversal(self): r = [] def f(t): if not t: return f(t.left) f(t.right) r.append(t.val) f(self.tree) return r def bfs(self): r = [] q = deque([self.tree]) while q: n = q.popleft() if n: r.append(n.val) q.append(n.left) q.append(n.right) return r def is_subtree(t1: TreeNode, t2: TreeNode): r = False if t1 and t2: # 若根节点值相同,则判断此根节点下所有节点值是否相同,并保留结果 r if t1.val == t2.val: r = has_subtree(t1, t2) # 如果上一个判断不成立,则判断 t1 的子节点 if not r: r = is_subtree(t1.left, t2) or is_subtree(t1.right, t2) return r def has_subtree(t1, t2): if not t2: return True if not t1: return False if t1.val != t2.val: return False return has_subtree(t1.left, t2.left) and has_subtree(t1.right, t2.right) class Test(unittest.TestCase): def test(self): n1 = TreeNode(8) n2 = TreeNode(8) n3 = TreeNode(7) n4 = TreeNode(9) n5 = TreeNode(2) n6 = TreeNode(4) n7 = TreeNode(7) m1 = TreeNode(8) m2 = TreeNode(9) m3 = TreeNode(2) t1 = BinaryTree() t1.construct_tree(n2, n1, n3) t1.construct_tree(n4, n2, n5) t1.construct_tree(n6, n5, n7) t2 = BinaryTree() t2.construct_tree(m2, m1, m3) self.assertEqual(True, is_subtree(t1.tree, t2.tree))
torchbenchmark/models/pytorch_unet/pytorch_unet/train.py
yinghai/benchmark
384
12684148
<reponame>yinghai/benchmark import argparse import logging import sys from pathlib import Path import torch import torch.nn as nn import torch.nn.functional as F import wandb from torch import optim from torch.utils.data import DataLoader, random_split from tqdm import tqdm from utils.data_loading import BasicDataset, CarvanaDataset from utils.dice_score import dice_loss from evaluate import evaluate from unet import UNet dir_img = Path('./data/imgs/') dir_mask = Path('./data/masks/') dir_checkpoint = Path('./checkpoints/') def train_net(net, device, epochs: int = 5, batch_size: int = 1, learning_rate: float = 0.001, val_percent: float = 0.1, save_checkpoint: bool = True, img_scale: float = 0.5, amp: bool = False): # 1. Create dataset try: dataset = CarvanaDataset(dir_img, dir_mask, img_scale) except (AssertionError, RuntimeError): dataset = BasicDataset(dir_img, dir_mask, img_scale) # 2. Split into train / validation partitions n_val = int(len(dataset) * val_percent) n_train = len(dataset) - n_val train_set, val_set = random_split(dataset, [n_train, n_val], generator=torch.Generator().manual_seed(0)) # 3. Create data loaders loader_args = dict(batch_size=batch_size, num_workers=4, pin_memory=True) train_loader = DataLoader(train_set, shuffle=True, **loader_args) val_loader = DataLoader(val_set, shuffle=False, drop_last=True, **loader_args) # (Initialize logging) experiment = wandb.init(project='U-Net', resume='allow', anonymous='must') experiment.config.update(dict(epochs=epochs, batch_size=batch_size, learning_rate=learning_rate, val_percent=val_percent, save_checkpoint=save_checkpoint, img_scale=img_scale, amp=amp)) logging.info(f'''Starting training: Epochs: {epochs} Batch size: {batch_size} Learning rate: {learning_rate} Training size: {n_train} Validation size: {n_val} Checkpoints: {save_checkpoint} Device: {device.type} Images scaling: {img_scale} Mixed Precision: {amp} ''') # 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for AMP optimizer = optim.RMSprop(net.parameters(), lr=learning_rate, weight_decay=1e-8, momentum=0.9) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', patience=2) # goal: maximize Dice score grad_scaler = torch.cuda.amp.GradScaler(enabled=amp) criterion = nn.CrossEntropyLoss() global_step = 0 # 5. Begin training for epoch in range(epochs): net.train() epoch_loss = 0 with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar: for batch in train_loader: images = batch['image'] true_masks = batch['mask'] assert images.shape[1] == net.n_channels, \ f'Network has been defined with {net.n_channels} input channels, ' \ f'but loaded images have {images.shape[1]} channels. Please check that ' \ 'the images are loaded correctly.' images = images.to(device=device, dtype=torch.float32) true_masks = true_masks.to(device=device, dtype=torch.long) with torch.cuda.amp.autocast(enabled=amp): masks_pred = net(images) loss = criterion(masks_pred, true_masks) \ + dice_loss(F.softmax(masks_pred, dim=1).float(), F.one_hot(true_masks, net.n_classes).permute(0, 3, 1, 2).float(), multiclass=True) optimizer.zero_grad(set_to_none=True) grad_scaler.scale(loss).backward() grad_scaler.step(optimizer) grad_scaler.update() pbar.update(images.shape[0]) global_step += 1 epoch_loss += loss.item() experiment.log({ 'train loss': loss.item(), 'step': global_step, 'epoch': epoch }) pbar.set_postfix(**{'loss (batch)': loss.item()}) # Evaluation round if global_step % (n_train // (10 * batch_size)) == 0: histograms = {} for tag, value in net.named_parameters(): tag = tag.replace('/', '.') histograms['Weights/' + tag] = wandb.Histogram(value.data.cpu()) histograms['Gradients/' + tag] = wandb.Histogram(value.grad.data.cpu()) val_score = evaluate(net, val_loader, device) scheduler.step(val_score) logging.info('Validation Dice score: {}'.format(val_score)) experiment.log({ 'learning rate': optimizer.param_groups[0]['lr'], 'validation Dice': val_score, 'images': wandb.Image(images[0].cpu()), 'masks': { 'true': wandb.Image(true_masks[0].float().cpu()), 'pred': wandb.Image(torch.softmax(masks_pred, dim=1)[0].float().cpu()), }, 'step': global_step, 'epoch': epoch, **histograms }) if save_checkpoint: Path(dir_checkpoint).mkdir(parents=True, exist_ok=True) torch.save(net.state_dict(), str(dir_checkpoint / 'checkpoint_epoch{}.pth'.format(epoch + 1))) logging.info(f'Checkpoint {epoch + 1} saved!') def get_args(): parser = argparse.ArgumentParser(description='Train the UNet on images and target masks') parser.add_argument('--epochs', '-e', metavar='E', type=int, default=5, help='Number of epochs') parser.add_argument('--batch-size', '-b', dest='batch_size', metavar='B', type=int, default=1, help='Batch size') parser.add_argument('--learning-rate', '-l', metavar='LR', type=float, default=0.00001, help='Learning rate', dest='lr') parser.add_argument('--load', '-f', type=str, default=False, help='Load model from a .pth file') parser.add_argument('--scale', '-s', type=float, default=0.5, help='Downscaling factor of the images') parser.add_argument('--validation', '-v', dest='val', type=float, default=10.0, help='Percent of the data that is used as validation (0-100)') parser.add_argument('--amp', action='store_true', default=False, help='Use mixed precision') return parser.parse_args() if __name__ == '__main__': args = get_args() logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logging.info(f'Using device {device}') # Change here to adapt to your data # n_channels=3 for RGB images # n_classes is the number of probabilities you want to get per pixel net = UNet(n_channels=3, n_classes=2, bilinear=True) logging.info(f'Network:\n' f'\t{net.n_channels} input channels\n' f'\t{net.n_classes} output channels (classes)\n' f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling') if args.load: net.load_state_dict(torch.load(args.load, map_location=device)) logging.info(f'Model loaded from {args.load}') net.to(device=device) try: train_net(net=net, epochs=args.epochs, batch_size=args.batch_size, learning_rate=args.lr, device=device, img_scale=args.scale, val_percent=args.val / 100, amp=args.amp) except KeyboardInterrupt: torch.save(net.state_dict(), 'INTERRUPTED.pth') logging.info('Saved interrupt') sys.exit(0)
runp-heroku.py
superleader/chat2
227
12684162
#!flask/bin/python from app import app
clang/bindings/python/tests/cindex/test_token_kind.py
medismailben/llvm-project
3,102
12684180
<filename>clang/bindings/python/tests/cindex/test_token_kind.py<gh_stars>1000+ import os from clang.cindex import Config if 'CLANG_LIBRARY_PATH' in os.environ: Config.set_library_path(os.environ['CLANG_LIBRARY_PATH']) from clang.cindex import TokenKind import unittest class TestTokenKind(unittest.TestCase): def test_constructor(self): """Ensure TokenKind constructor works as expected.""" t = TokenKind(5, 'foo') self.assertEqual(t.value, 5) self.assertEqual(t.name, 'foo') def test_bad_register(self): """Ensure a duplicate value is rejected for registration.""" with self.assertRaises(ValueError): TokenKind.register(2, 'foo') def test_unknown_value(self): """Ensure trying to fetch an unknown value raises.""" with self.assertRaises(ValueError): TokenKind.from_value(-1) def test_registration(self): """Ensure that items registered appear as class attributes.""" self.assertTrue(hasattr(TokenKind, 'LITERAL')) literal = TokenKind.LITERAL self.assertIsInstance(literal, TokenKind) def test_from_value(self): """Ensure registered values can be obtained from from_value().""" t = TokenKind.from_value(3) self.assertIsInstance(t, TokenKind) self.assertEqual(t, TokenKind.LITERAL) def test_repr(self): """Ensure repr() works.""" r = repr(TokenKind.LITERAL) self.assertEqual(r, 'TokenKind.LITERAL')
setup.py
SkiingRoger/pyalgotrade-cn
1,000
12684201
#!/usr/bin/env python # PyAlgoTrade # # Copyright 2011-2015 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: from setuptools import setup except ImportError: from distutils.core import setup setup( name='PyAlgoTrade', version='0.18', description='Python Algorithmic Trading', long_description='Python library for backtesting stock trading strategies.', author='<NAME>', author_email='<EMAIL>', url='http://gbeced.github.io/pyalgotrade/', download_url='http://sourceforge.net/projects/pyalgotrade/files/0.17/PyAlgoTrade-0.17.tar.gz/download', packages=[ 'pyalgotrade', 'pyalgotrade.cn', 'pyalgotrade.barfeed', 'pyalgotrade.bitcoincharts', 'pyalgotrade.bitstamp', 'pyalgotrade.broker', 'pyalgotrade.dataseries', 'pyalgotrade.feed', 'pyalgotrade.optimizer', 'pyalgotrade.stratanalyzer', 'pyalgotrade.strategy', 'pyalgotrade.talibext', 'pyalgotrade.technical', 'pyalgotrade.tools', 'pyalgotrade.twitter', 'pyalgotrade.utils', 'pyalgotrade.websocket', 'pyalgotrade.xignite', ], install_requires=[ "numpy", "pytz", "python-dateutil", "requests", ], extras_require={ 'Scipy': ["scipy"], 'TALib': ["Cython", "TA-Lib"], 'Plotting': ["matplotlib"], 'Bitstamp': ["ws4py>=0.3.4", "tornado"], 'Twitter': ["tweepy"], }, )
SimpleCV/MachineLearning/TurkingModule.py
M93Pragya/SimpleCV
1,686
12684219
from SimpleCV import Display, Image, Color, ImageSet import os import os.path as osp import time import glob import pickle """ This class is a helper utility for automatically turking image data for supervsed learning. This class helps you run through a bunch of images and sort them into a bunch of classes or categories. You provide a path to the images that need to be turked/sorted, your class labels, and what keys you want to bind to the classes. The turker will load all the images, optionally process them, and then display them. To sort the images you just push a key mapped to your class and the class tosses them into a directory and labels them. The class can optionally pickle your data for you to use later. """ class TurkingModule: """ **SUMMARY** Init sets up the turking module. **PARAMETERS** * *source_path* - A list of the path(s) with the images to be turked. * *out_path* - the output path, a directory will be created for each class. * *classes* - the names of the classes you are turking as a list of strings. * *key_bindings* - the keys to bind to each class when turking. * *preprocess* - a preprocess function. It should take in an image and return a list of images. * *postprocess* a post-process step. The signature should be image in and image out. **EXAMPLE** >>>> def GetBlobs(img): >>>> blobs = img.findBlobs() >>>> return [b.mMask for b in blobs] >>>> def ScaleIng(img): >>>> return img.resize(100,100).invert() >>>> turker = TurkingModule(['./data/'],['./turked/'],['apple','banana','cherry'],['a','b','c'],preProcess=GetBlobs,postProcess=ScaleInv] >>>> turker.turk() >>>> # ~~~ stuff ~~~ >>>> turker.save('./derp.pkl') ** TODO ** TODO: Make it so you just pickle the data and don't have to save each file """ def __init__(self,source_paths,out_path,classList,key_bindings,preprocess=None, postprocess=None): #if( not os.access(out_path,os.W_OK) ): # print "Output path is not writeable." # raise Exception("Output path is not writeable.") self.keyBindings = key_bindings self.classes = classList self.countMap = {} self.classMap = {} self.directoryMap = {} self.out_path = out_path self.keyMap = {} if( len(classList)!=len(key_bindings)): print "Must have a key for each class." raise Exception("Must have a key for each class.") for key,cls in zip(key_bindings,classList): self.keyMap[key] = cls # this should work if( preprocess is None ): def fakeProcess(img): return [img] preprocess = fakeProcess self.preProcess = preprocess if( postprocess is None ): def fakePostProcess(img): return img postprocess = fakePostProcess self.postProcess = postprocess self.srcImgs = ImageSet() if( isinstance(source_paths,ImageSet) ): self.srcImgs = source_path else: for sp in source_paths: print "Loading " + sp imgSet = ImageSet(sp) print "Loaded " + str(len(imgSet)) self.srcImgs += imgSet if( not osp.exists(out_path) ): os.mkdir(out_path) for c in classList: outdir = out_path+c+'/' self.directoryMap[c] = outdir if( not osp.exists(outdir) ): os.mkdir(outdir) for c in classList: searchstr = self.directoryMap[c]+'*.png' fc = glob.glob(searchstr) self.countMap[c] = len(fc) self.classMap[c] = ImageSet(self.directoryMap[c]) def _saveIt(self,img,classType): img.clearLayers() path = self.out_path + classType + "/" + classType+str(self.countMap[classType])+".png" print "Saving: " + path img = self.postProcess(img) self.classMap[classType].append(img) img.save(path) self.countMap[classType] = self.countMap[classType] + 1 def getClass(self,className): """ **SUMMARY** Returns the image set that has been turked for the given class. **PARAMETERS** * *className* - the class name as a string. **RETURNS** An image set on success, None on failure. **EXAMPLE** >>>> # Do turking >>>> iset = turkModule.getClass('cats') >>>> iset.show() """ if(className in self.classMap): return self.classMap[className] else: return None def _drawControls(self,img,font_size,color,spacing ): img.drawText("space - skip",10,spacing,fontsize=font_size,color=color) img.drawText("esc - exit",10,2*spacing,fontsize=font_size,color=color) y = 3*spacing for k,cls in self.keyMap.items(): str = k + " - " + cls img.drawText(str,10,y,fontsize=font_size,color=color) y = y + spacing return img def turk(self,saveOriginal=False,disp_size=(800,600),showKeys=True,font_size=16,color=Color.RED,spacing=10 ): """ **SUMMARY** This function does the turning of the data. The method goes through each image, applies the preprocessing (which can return multiple images), displays each image with an optional display of the key mapping. The user than selects the key that describes the class of the image. The image is then post processed and saved to the directory. The escape key kills the turking, the space key skips an image. **PARAMETERS** * *saveOriginal* - if true save the original image versus the preprocessed image. * *disp_size* - size of the display to create. * *showKeys* - Show the key mapping for the turking. Note that on small images this may not render correctly. * *font_size* - the font size for the turking display. * *color* - the font color. * *spacing* - the spacing between each line of text on the display. **RETURNS** Nothing but stores each image in the directory. The image sets are also available via the getClass method. **EXAMPLE** >>>> def GetBlobs(img): >>>> blobs = img.findBlobs() >>>> return [b.mMask for b in blobs] >>>> def ScaleIng(img): >>>> return img.resize(100,100).invert() >>>> turker = TurkingModule(['./data/'],['./turked/'],['apple','banana','cherry'],['a','b','c'],preProcess=GetBlobs,postProcess=ScaleInv] >>>> turker.turk() >>>> # ~~~ stuff ~~~ >>>> turker.save('./derp.pkl') ** TODO ** TODO: fix the display so that it renders correctly no matter what the image size. TODO: Make it so you can stop and start turking at any given spot in the process """ disp = Display(disp_size) bail = False for img in self.srcImgs: print img.filename samples = self.preProcess(img) for sample in samples: if( showKeys ): sample = self._drawControls(sample,font_size,color,spacing ) sample.save(disp) gotKey = False while( not gotKey ): keys = disp.checkEvents(True) for k in keys: if k in self.keyMap: if saveOriginal: self._saveIt(img,self.keyMap[k]) else: self._saveIt(sample,self.keyMap[k]) gotKey = True if k == 'space': gotKey = True # skip if k == 'escape': return def save(self,fname): """ **SUMMARY** Pickle the relevant data from the turking. ** PARAMETERS ** * *fname* - the file fame. """ saveThis = [self.classes,self.directoryMap,self.classMap,self.countMap] pickle.dump( saveThis, open( fname, "wb" ) ) # todo: eventually we should allow the user to randomly # split up the data set and then save it. # def splitTruthTest(self)
cea/technologies/network_layout/steiner_spanning_tree.py
architecture-building-systems/cea-toolbox
121
12684220
""" This script calculates the minimum spanning tree of a shapefile network """ import math import os import networkx as nx import pandas as pd from geopandas import GeoDataFrame as gdf from networkx.algorithms.approximation.steinertree import steiner_tree from shapely.geometry import LineString from typing import List import cea.config import cea.inputlocator from cea.constants import SHAPEFILE_TOLERANCE __author__ = "<NAME>" __copyright__ = "Copyright 2017, Architecture and Building Systems - ETH Zurich" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" def calc_steiner_spanning_tree(crs_projected, temp_path_potential_network_shp, output_network_folder, temp_path_building_centroids_shp, path_output_edges_shp, path_output_nodes_shp, weight_field, type_mat_default, pipe_diameter_default, type_network, total_demand_location, allow_looped_networks, optimization_flag, plant_building_names, disconnected_building_names): """ Calculate the minimum spanning tree of the network. Note that this function can't be run in parallel in it's present form. :param str crs_projected: e.g. "+proj=utm +zone=48N +ellps=WGS84 +datum=WGS84 +units=m +no_defs" :param str temp_path_potential_network_shp: e.g. "TEMP/potential_network.shp" :param str output_network_folder: "{general:scenario}/inputs/networks/DC" :param str temp_path_building_centroids_shp: e.g. "%TEMP%/nodes_buildings.shp" :param str path_output_edges_shp: "{general:scenario}/inputs/networks/DC/edges.shp" :param str path_output_nodes_shp: "{general:scenario}/inputs/networks/DC/nodes.shp" :param str weight_field: e.g. "Shape_Leng" :param str type_mat_default: e.g. "T1" :param float pipe_diameter_default: e.g. 150 :param str type_network: "DC" or "DH" :param str total_demand_location: "{general:scenario}/outputs/data/demand/Total_demand.csv" :param bool create_plant: e.g. True :param bool allow_looped_networks: :param bool optimization_flag: :param List[str] plant_building_names: e.g. ``['B001']`` :param List[str] disconnected_building_names: e.g. ``['B002', 'B010', 'B004', 'B005', 'B009']`` :return: ``(mst_edges, mst_nodes)`` """ # read shapefile into networkx format into a directed potential_network_graph, this is the potential network potential_network_graph = nx.read_shp(temp_path_potential_network_shp) building_nodes_graph = nx.read_shp(temp_path_building_centroids_shp) # transform to an undirected potential_network_graph iterator_edges = potential_network_graph.edges(data=True) G = nx.Graph() for (x, y, data) in iterator_edges: x = (round(x[0], SHAPEFILE_TOLERANCE), round(x[1], SHAPEFILE_TOLERANCE)) y = (round(y[0], SHAPEFILE_TOLERANCE), round(y[1], SHAPEFILE_TOLERANCE)) G.add_edge(x, y, weight=data[weight_field]) # get the building nodes and coordinates iterator_nodes = building_nodes_graph.nodes(data=True) terminal_nodes_coordinates = [] terminal_nodes_names = [] for coordinates, data in iterator_nodes._nodes.items(): building_name = data['Name'] if building_name in disconnected_building_names: print("Building {} is considered to be disconnected and it is not included".format(building_name)) else: terminal_nodes_coordinates.append( (round(coordinates[0], SHAPEFILE_TOLERANCE), round(coordinates[1], SHAPEFILE_TOLERANCE))) terminal_nodes_names.append(data['Name']) # calculate steiner spanning tree of undirected potential_network_graph try: mst_non_directed = nx.Graph(steiner_tree(G, terminal_nodes_coordinates)) nx.write_shp(mst_non_directed, output_network_folder) # need to write to disk and then import again mst_nodes = gdf.from_file(path_output_nodes_shp) mst_edges = gdf.from_file(path_output_edges_shp) except: raise ValueError('There was an error while creating the Steiner tree. ' 'Check the streets.shp for isolated/disconnected streets (lines) and erase them, ' 'the Steiner tree does not support disconnected graphs. ' 'If no disconnected streets can be found, try increasing the SHAPEFILE_TOLERANCE in cea.constants and run again. ' 'Otherwise, try using the Feature to Line tool of ArcMap with a tolerance of around 10m to solve the issue.') # POPULATE FIELDS IN NODES pointer_coordinates_building_names = dict(zip(terminal_nodes_coordinates, terminal_nodes_names)) def populate_fields(coordinate): if coordinate in terminal_nodes_coordinates: return pointer_coordinates_building_names[coordinate] else: return "NONE" mst_nodes['coordinates'] = mst_nodes['geometry'].apply( lambda x: (round(x.coords[0][0], SHAPEFILE_TOLERANCE), round(x.coords[0][1], SHAPEFILE_TOLERANCE))) mst_nodes['Building'] = mst_nodes['coordinates'].apply(lambda x: populate_fields(x)) mst_nodes['Name'] = mst_nodes['FID'].apply(lambda x: "NODE" + str(x)) mst_nodes['Type'] = mst_nodes['Building'].apply(lambda x: 'CONSUMER' if x != "NONE" else "NONE") # do some checks to see that the building names was not compromised if len(terminal_nodes_names) != (len(mst_nodes['Building'].unique()) - 1): raise ValueError('There was an error while populating the nodes fields. ' 'One or more buildings could not be matched to nodes of the network. ' 'Try changing the constant SNAP_TOLERANCE in cea/constants.py to try to fix this') # POPULATE FIELDS IN EDGES mst_edges.loc[:, 'Type_mat'] = type_mat_default mst_edges.loc[:, 'Pipe_DN'] = pipe_diameter_default mst_edges.loc[:, 'Name'] = ["PIPE" + str(x) for x in mst_edges.index] if allow_looped_networks: # add loops to the network by connecting None nodes that exist in the potential network mst_edges, mst_nodes = add_loops_to_network(G, mst_non_directed, mst_nodes, mst_edges, type_mat_default, pipe_diameter_default) # mst_edges.drop(['weight'], inplace=True, axis=1) if optimization_flag: for building in plant_building_names: building_anchor = building_node_from_name(building, mst_nodes) mst_nodes, mst_edges = add_plant_close_to_anchor(building_anchor, mst_nodes, mst_edges, type_mat_default, pipe_diameter_default) elif os.path.exists(total_demand_location): if len(plant_building_names) > 0: building_anchor = mst_nodes[mst_nodes['Building'].isin(plant_building_names)] else: building_anchor = calc_coord_anchor(total_demand_location, mst_nodes, type_network) mst_nodes, mst_edges = add_plant_close_to_anchor(building_anchor, mst_nodes, mst_edges, type_mat_default, pipe_diameter_default) # GET COORDINATE AND SAVE FINAL VERSION TO DISK mst_edges.crs = crs_projected mst_nodes.crs = crs_projected mst_edges['length_m'] = mst_edges['weight'] mst_edges[['geometry', 'length_m', 'Type_mat', 'Name', 'Pipe_DN']].to_file(path_output_edges_shp, driver='ESRI Shapefile') mst_nodes[['geometry', 'Building', 'Name', 'Type']].to_file(path_output_nodes_shp, driver='ESRI Shapefile') def add_loops_to_network(G, mst_non_directed, new_mst_nodes, mst_edges, type_mat, pipe_dn): added_a_loop = False # Identify all NONE type nodes in the steiner tree for node_number, node_coords in zip(new_mst_nodes.index, new_mst_nodes['coordinates']): if new_mst_nodes['Type'][node_number] == 'NONE': # find neighbours of nodes in the potential network and steiner network potential_neighbours = G[node_coords] steiner_neighbours = mst_non_directed[node_coords] # check if there are differences, if yes, an edge was deleted here if not set(potential_neighbours.keys()) == set(steiner_neighbours.keys()): new_neighbour_list = [] for a in potential_neighbours.keys(): if a not in steiner_neighbours.keys(): new_neighbour_list.append(a) # check if the node that is additional in the potential network also exists in the steiner network for new_neighbour in new_neighbour_list: if new_neighbour in list(new_mst_nodes['coordinates'].values): # check if it is a none type # write out index of this node node_index = list(new_mst_nodes['coordinates'].values).index(new_neighbour) if new_mst_nodes['Type'][node_index] == 'NONE': # create new edge line = LineString((node_coords, new_neighbour)) if not line in mst_edges['geometry']: mst_edges = mst_edges.append( {"geometry": line, "Pipe_DN": pipe_dn, "Type_mat": type_mat, "Name": "PIPE" + str(mst_edges.Name.count())}, ignore_index=True) added_a_loop = True mst_edges.reset_index(inplace=True, drop=True) if not added_a_loop: print('No first degree loop added. Trying two nodes apart.') # Identify all NONE type nodes in the steiner tree for node_number, node_coords in zip(new_mst_nodes.index, new_mst_nodes['coordinates']): if new_mst_nodes['Type'][node_number] == 'NONE': # find neighbours of nodes in the potential network and steiner network potential_neighbours = G[node_coords] steiner_neighbours = mst_non_directed[node_coords] # check if there are differences, if yes, an edge was deleted here if not set(potential_neighbours.keys()) == set(steiner_neighbours.keys()): new_neighbour_list = [] for a in potential_neighbours.keys(): if a not in steiner_neighbours.keys(): new_neighbour_list.append(a) # check if the node that is additional in the potential network does not exist in the steiner network for new_neighbour in new_neighbour_list: if new_neighbour not in list(new_mst_nodes['coordinates'].values): # find neighbours of that node second_degree_pot_neigh = list(G[new_neighbour].keys()) for potential_second_deg_neighbour in second_degree_pot_neigh: if potential_second_deg_neighbour in list(new_mst_nodes[ 'coordinates'].values) and potential_second_deg_neighbour != node_coords: # check if it is a none type # write out index of this node node_index = list(new_mst_nodes['coordinates'].values).index( potential_second_deg_neighbour) if new_mst_nodes['Type'][node_index] == 'NONE': # create new edge line = LineString((node_coords, new_neighbour)) if line not in mst_edges['geometry']: mst_edges = mst_edges.append( {"geometry": line, "Pipe_DN": pipe_dn, "Type_mat": type_mat, "Name": "PIPE" + str(mst_edges.Name.count())}, ignore_index=True) # Add new node from potential network to steiner tree # create copy of selected node and add to list of all nodes copy_of_new_mst_nodes = new_mst_nodes.copy() x_distance = new_neighbour[0] - node_coords[0] y_distance = new_neighbour[1] - node_coords[1] copy_of_new_mst_nodes.geometry = copy_of_new_mst_nodes.translate( xoff=x_distance, yoff=y_distance) selected_node = copy_of_new_mst_nodes[ copy_of_new_mst_nodes["coordinates"] == node_coords] selected_node.loc[:, "Name"] = "NODE" + str(new_mst_nodes.Name.count()) selected_node.loc[:, "Type"] = "NONE" selected_node["coordinates"] = selected_node.geometry.values[0].coords if selected_node["coordinates"].values not in new_mst_nodes[ "coordinates"].values: new_mst_nodes = new_mst_nodes.append(selected_node) new_mst_nodes.reset_index(inplace=True, drop=True) line2 = LineString((new_neighbour, potential_second_deg_neighbour)) if line2 not in mst_edges['geometry']: mst_edges = mst_edges.append( {"geometry": line2, "Pipe_DN": pipe_dn, "Type_mat": type_mat, "Name": "PIPE" + str(mst_edges.Name.count())}, ignore_index=True) added_a_loop = True mst_edges.reset_index(inplace=True, drop=True) if not added_a_loop: print('No loops added.') return mst_edges, new_mst_nodes def calc_coord_anchor(total_demand_location, nodes_df, type_network): total_demand = pd.read_csv(total_demand_location) nodes_names_demand = nodes_df.merge(total_demand, left_on="Building", right_on="Name", how="inner") if type_network == "DH": field = "QH_sys_MWhyr" elif type_network == "DC": field = "QC_sys_MWhyr" else: raise ValueError("Invalid value for variable 'type_network': {type_network}".format(type_network=type_network)) max_value = nodes_names_demand[field].max() building_series = nodes_names_demand[nodes_names_demand[field] == max_value] return building_series def building_node_from_name(building_name, nodes_df): building_series = nodes_df[nodes_df['Building'] == building_name] return building_series def add_plant_close_to_anchor(building_anchor, new_mst_nodes, mst_edges, type_mat, pipe_dn): # find closest node copy_of_new_mst_nodes = new_mst_nodes.copy() building_coordinates = building_anchor.geometry.values[0].coords x1 = building_coordinates[0][0] y1 = building_coordinates[0][1] delta = 10E24 # big number for node in copy_of_new_mst_nodes.iterrows(): if node[1]['Type'] == 'NONE': x2 = node[1].geometry.coords[0][0] y2 = node[1].geometry.coords[0][1] distance = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) if 0 < distance < delta: delta = distance node_id = node[1].Name pd.options.mode.chained_assignment = None # avoid warning # create copy of selected node and add to list of all nodes copy_of_new_mst_nodes.geometry = copy_of_new_mst_nodes.translate(xoff=1, yoff=1) selected_node = copy_of_new_mst_nodes[copy_of_new_mst_nodes["Name"] == node_id] selected_node.loc[:, "Name"] = "NODE" + str(new_mst_nodes.Name.count()) selected_node.loc[:, "Type"] = "PLANT" new_mst_nodes = new_mst_nodes.append(selected_node) new_mst_nodes.reset_index(inplace=True, drop=True) # create new edge point1 = (selected_node.geometry.x, selected_node.geometry.y) point2 = (new_mst_nodes[new_mst_nodes["Name"] == node_id].geometry.x, new_mst_nodes[new_mst_nodes["Name"] == node_id].geometry.y) line = LineString((point1, point2)) mst_edges = mst_edges.append({"geometry": line, "Pipe_DN": pipe_dn, "Type_mat": type_mat, "Name": "PIPE" + str(mst_edges.Name.count()) }, ignore_index=True) mst_edges.reset_index(inplace=True, drop=True) return new_mst_nodes, mst_edges def main(config): assert os.path.exists(config.scenario), 'Scenario not found: %s' % config.scenario locator = cea.inputlocator.InputLocator(scenario=config.scenario) weight_field = 'Shape_Leng' type_mat_default = config.network_layout.type_mat pipe_diameter_default = config.network_layout.pipe_diameter type_network = config.network_layout.network_type create_plant = config.network_layout.create_plant output_substations_shp = locator.get_temporary_file("nodes_buildings.shp") path_potential_network = locator.get_temporary_file("potential_network.shp") # shapefile, location of output. output_edges = locator.get_network_layout_edges_shapefile(type_network, '') output_nodes = locator.get_network_layout_nodes_shapefile(type_network, '') output_network_folder = locator.get_input_network_folder(type_network, '') total_demand_location = locator.get_total_demand() calc_steiner_spanning_tree(path_potential_network, output_network_folder, output_substations_shp, output_edges, output_nodes, weight_field, type_mat_default, pipe_diameter_default, type_network, total_demand_location, create_plant) if __name__ == '__main__': main(cea.config.Configuration())
i3d_utils.py
13551132330/I3D-Tensorflow
119
12684242
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Trains and Evaluates the MNIST network using a feed dictionary.""" # pylint: disable=missing-docstring import os import time import numpy from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf import math import input_data import numpy as np from multiprocessing import Pool import threading from tqdm import tqdm,trange def placeholder_inputs(batch_size=16, num_frame_per_clib=16, crop_size=224, rgb_channels=3, flow_channels=2): """Generate placeholder variables to represent the input tensors. These placeholders are used as inputs by the rest of the model building code and will be fed from the downloaded data in the .run() loop, below. Args: batch_size: The batch size will be baked into both placeholders. num_frame_per_clib: The num of frame per clib. crop_size: The crop size of per clib. channels: The input channel of per clib. Returns: images_placeholder: Images placeholder. labels_placeholder: Labels placeholder. """ # Note that the shapes of the placeholders match the shapes of the full # image and label tensors, except the first dimension is now batch_size # rather than the full size of the train or test data sets. rgb_images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, num_frame_per_clib, crop_size, crop_size, rgb_channels)) flow_images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, num_frame_per_clib, crop_size, crop_size, flow_channels)) labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size )) is_training = tf.placeholder(tf.bool) return rgb_images_placeholder, flow_images_placeholder, labels_placeholder, is_training def rgb_placeholder_inputs(batch_size=16, num_frame_per_clib=16, crop_size=224, rgb_channels=3, flow_channels=2): """Generate placeholder variables to represent the input tensors. These placeholders are used as inputs by the rest of the model building code and will be fed from the downloaded data in the .run() loop, below. Args: batch_size: The batch size will be baked into both placeholders. num_frame_per_clib: The num of frame per clib. crop_size: The crop size of per clib. channels: The input channel of per clib. Returns: images_placeholder: Images placeholder. labels_placeholder: Labels placeholder. """ # Note that the shapes of the placeholders match the shapes of the full # image and label tensors, except the first dimension is now batch_size # rather than the full size of the train or test data sets. rgb_images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, num_frame_per_clib, crop_size, crop_size, rgb_channels)) labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size )) is_training = tf.placeholder(tf.bool) return rgb_images_placeholder, labels_placeholder, is_training def Normalization(clips, frames_num): new_clips = [] for index in range(frames_num): clip = tf.image.per_image_standardization(clips[index]) new_clips.append(clip) return new_clips def average_gradients(tower_grads): average_grads = [] for grad_and_vars in zip(*tower_grads): grads = [] for g, _ in grad_and_vars: expanded_g = tf.expand_dims(g, 0) grads.append(expanded_g) grad = tf.concat(grads, 0) grad = tf.reduce_mean(grad, 0) v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads def l2_loss(weight_decay, weighyt_list): l2_reg = tf.contrib.layers.l2_regularizer(weight_decay) return tf.contrib.layers.apply_regularization(regularizer=l2_reg, weights_list=weighyt_list) def tower_loss(logit, labels, wd): print(logit.shape) print(labels.shape) weight_map = [] for variable in tf.global_variables(): if 'conv_3d/w' in variable.name or 'kernel' in variable.name: weight_map.append(variable) cross_entropy_mean = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logit) ) weight_decay = l2_loss(wd, weight_map) #tf.summary.scalar('sgd_weight_decay_loss', weight_decay) # Calculate the total loss for the current tower. total_loss = cross_entropy_mean + weight_decay return total_loss def tower_acc(logit, labels): correct_pred = tf.equal(tf.argmax(logit, 1), labels) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) return accuracy def _variable_on_cpu(name, shape, initializer): with tf.device('/cpu:0'): var = tf.get_variable(name, shape, initializer=initializer) return var def _variable_with_weight_decay(name, shape, wd): var = _variable_on_cpu(name, shape, tf.contrib.layers.xavier_initializer()) if wd is not None: weight_decay = tf.nn.l2_loss(var)*wd tf.add_to_collection('weightdecay_losses', weight_decay) return var def data_to_feed_dict(data): rgb_train_images = [] train_labels = [] for i in data: tmp_train_images = i.get_result()[0] tmp_labels = i.get_result()[1] rgb_train_images.extend(tmp_train_images) train_labels.extend(tmp_labels) return np.array(rgb_train_images), np.array(train_labels) def get_data(filename, batch_size, num_frames_per_clip=64, sample_rate=4, crop_size=224, shuffle=False, add_flow=False): rgb_train_images, flow_train_images, train_labels, _, _, _ = input_data.read_clip_and_label( filename=filename, batch_size=batch_size, num_frames_per_clip=num_frames_per_clip, sample_rate=sample_rate, crop_size=crop_size, shuffle=shuffle, add_flow=add_flow ) return rgb_train_images, train_labels class MyThread(threading.Thread): def __init__(self, func, args=()): super(MyThread, self).__init__() self.func = func self.args = args def run(self): self.result = self.func(*self.args) def get_result(self): try: return self.result except Exception: return None def load_data(filename, batch_size, num_frames_per_clip, sample_rate, crop_size, shuffle=False, add_flow=False): data = [] ''' p = Pool(batch_size/8) for i in range(batch_size): data.append(p.apply_async(get_data, args=( filename, 8, num_frames_per_clip, sample_rate, crop_size, shuffle, add_flow ))) p.close() #p.join() ''' for i in range(batch_size/4): t = MyThread(get_data, args=( filename, 4, num_frames_per_clip, sample_rate, crop_size, shuffle, add_flow )) data.append(t) t.start() for t in data: t.join() print('DATA_LOAD_COMP: enqueue......') rgb_train_images, train_labels = data_to_feed_dict(data) return rgb_train_images, train_labels def topk(predicts, labels, ids): scores = {} top1_list = [] top5_list = [] clips_top1_list = [] clips_top5_list = [] start_time = time.time() print('Results process..............') for index in tqdm(range(len(predicts))): id = ids[index] score = predicts[index] if str(id) not in scores.keys(): scores['%d'%id] = [] scores['%d'%id].append(score) else: scores['%d'%id].append(score) avg_pre_index = np.argsort(score).tolist() top1 = (labels[id] in avg_pre_index[-1:]) top5 = (labels[id] in avg_pre_index[-5:]) clips_top1_list.append(top1) clips_top5_list.append(top5) print('Clips-----TOP_1_ACC in test: %f' % np.mean(clips_top1_list)) print('Clips-----TOP_5_ACC in test: %f' % np.mean(clips_top5_list)) print('..............') for _id in range(len(labels)-1): avg_pre_index = np.argsort(np.mean(scores['%d'%_id], axis=0)).tolist() top1 = (labels[_id] in avg_pre_index[-1:]) top5 = (labels[_id] in avg_pre_index[-5:]) top1_list.append(top1) top5_list.append(top5) print('TOP_1_ACC in test: %f' % np.mean(top1_list)) print('TOP_5_ACC in test: %f' % np.mean(top5_list)) duration = time.time() - start_time print('Time use: %.3f' % duration)
py/ztools/lib/Titles.py
HerrTrigger/NSC_BUILDER
828
12684255
<reponame>HerrTrigger/NSC_BUILDER #!/usr/bin/python3 # -*- coding: utf-8 -*- import os import re import time import json import Title import operator import Config import Print import threading global titles titles = {} if os.path.isfile('titles.json'): os.rename('titles.json', 'titledb/titles.json') def data(): return titles def items(): return titles.items() def get(key): return titles[key] def contains(key): return key in titles def set(key, value): titles[key] = value #def titles(): # return titles def keys(): return titles.keys() def loadTitleFile(path, silent = False): timestamp = time.clock() with open(path, encoding="utf-8-sig") as f: loadTitleBuffer(f.read(), silent) Print.info('loaded ' + path + ' in ' + str(time.clock() - timestamp) + ' seconds') def loadTitleBuffer(buffer, silent = False): firstLine = True map = ['id', 'key', 'name'] for line in buffer.split('\n'): line = line.strip() if len(line) == 0 or line[0] == '#': continue if firstLine: firstLine = False if re.match('[A-Za-z\|\s]+', line, re.I): map = line.split('|') i = 0 while i < len(map): if map[i] == 'RightsID': map[i] = 'id' if map[i] == 'TitleKey': map[i] = 'key' if map[i] == 'Name': map[i] = 'name' i += 1 continue t = Title.Title() t.loadCsv(line, map) if not t.id in keys(): titles[t.id] = Title.Title() titleKey = titles[t.id].key titles[t.id].loadCsv(line, map) if not silent and titleKey != titles[t.id].key: Print.info('Added new title key for ' + str(titles[t.id].name) + '[' + str(t.id) + ']') confLock = threading.Lock() def load(): confLock.acquire() global titles if os.path.isfile("titledb/titles.json"): timestamp = time.clock() with open('titledb/titles.json', encoding="utf-8-sig") as f: for i, k in json.loads(f.read()).items(): #if k['frontBoxArt'] and k['frontBoxArt'].endswith('.jpg'): # k['iconUrl'] = k['frontBoxArt'] # k['frontBoxArt'] = None titles[i] = Title.Title() titles[i].__dict__ = k Print.info('loaded titledb/titles.json in ' + str(time.clock() - timestamp) + ' seconds') if os.path.isfile("titles.txt"): loadTitleFile('titles.txt', True) try: files = [f for f in os.listdir(Config.paths.titleDatabase) if f.endswith('.txt')] files.sort() for file in files: loadTitleFile(Config.paths.titleDatabase + '/' + file, False) except BaseException as e: Print.error('title load error: ' + str(e)) confLock.release() def export(fileName = 'titles.txt', map = ['id', 'rightsId', 'key', 'isUpdate', 'isDLC', 'isDemo', 'name', 'version', 'region', 'retailOnly']): buffer = '' buffer += '|'.join(map) + '\n' for t in sorted(list(titles.values())): buffer += t.serialize(map) + '\n' with open(fileName, 'w', encoding='utf-8') as csv: csv.write(buffer) def save(fileName = 'titledb/titles.json'): confLock.acquire() try: j = {} for i,k in titles.items(): if not k.id or k.id == '0000000000000000': continue if k.description: k.description = k.description.strip() j[k.id] = k.__dict__ with open(fileName, 'w') as outfile: json.dump(j, outfile, indent=4) except: confLock.release() raise confLock.release() class Queue: def __init__(self): self.queue = [] self.lock = threading.Lock() self.i = 0 def add(self, id, skipCheck = False): self.lock.acquire() id = id.upper() if not id in self.queue and (skipCheck or self.isValid(id)): self.queue.append(id) self.lock.release() def shift(self): self.lock.acquire() if self.i >= len(self.queue): self.lock.release() return None self.i += 1 r =self.queue[self.i-1] self.lock.release() return r def empty(self): return bool(self.size() == 0) def get(self, idx = None): if idx == None: return self.queue return self.queue[idx] def isValid(self, id): return contains(id) def load(self): try: with open('conf/queue.txt', encoding="utf-8-sig") as f: for line in f.read().split('\n'): self.add(line.strip()) except BaseException as e: pass def size(self): return len(self.queue) - self.i def save(self): self.lock.acquire() try: with open('conf/queue.txt', 'w', encoding='utf-8') as f: for id in self.queue: f.write(id + '\n') except: pass self.lock.release() global queue queue = Queue()
examples/tf/supervised_advanced_tf.py
stjordanis/QMLT
117
12684260
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2018 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. currentmodule:: qmlt.examples.tf .. code-author:: <NAME> <<EMAIL>> We revisit the example of a simple supervised learning task with the tensorflow circuit learner and introduce adaptive learning rate, printing, warm start and batch mode. """ import strawberryfields as sf from strawberryfields.ops import Dgate, BSgate import tensorflow as tf from qmlt.tf.helpers import make_param from qmlt.tf import CircuitLearner steps = 200 batch_size = 2 def circuit(X): params = [make_param(name='phi', constant=2., monitor=True)] eng, q = sf.Engine(2) with eng: Dgate(X[:, 0], 0.) | q[0] Dgate(X[:, 1], 0.) | q[1] BSgate(phi=params[0]) | (q[0], q[1]) BSgate() | (q[0], q[1]) num_inputs = X.get_shape().as_list()[0] state = eng.run('tf', cutoff_dim=10, eval=False, batch_size=num_inputs) p0 = state.fock_prob([0, 2]) p1 = state.fock_prob([2, 0]) normalization = p0 + p1 + 1e-10 circuit_output = p1 / normalization return circuit_output def myloss(circuit_output, targets): return tf.losses.mean_squared_error(labels=circuit_output, predictions=targets) def outputs_to_predictions(outpt): return tf.round(outpt) X_train = [[0.2, 0.4], [0.6, 0.8], [0.4, 0.2], [0.8, 0.6]] Y_train = [1, 1, 0, 0] X_test = [[0.25, 0.5], [0.5, 0.25]] Y_test = [1, 0] X_pred = [[0.4, 0.5], [0.5, 0.4]] # There are some changes here: # We decay the learning rate by a factor 1/(1-decay*step) in each step. # We train_circuit with batches of 2 training inputs (instead of the full batch). # We also print out the results every 10th step. # Finally, you can set 'warm start': True to continue previosu training. # (MAKE SURE YOU RUN THE SAME SCRIPT ONCE WITH A COLD START, # ELSE YOU GET ERRORS WHEN LOADING THE MODEL!). # This loads the final parameters from the previous training. You can see # that the global step starts where it ended the last time you ran the script. hyperparams = {'circuit': circuit, 'task': 'supervised', 'loss': myloss, 'optimizer': 'SGD', 'init_learning_rate': 0.5, 'decay': 0.01, 'print_log': True, 'log_every': 10, 'warm_start': False } learner = CircuitLearner(hyperparams=hyperparams) learner.train_circuit(X=X_train, Y=Y_train, steps=steps, batch_size=batch_size) test_score = learner.score_circuit(X=X_test, Y=Y_test, outputs_to_predictions=outputs_to_predictions) # The score_circuit() function returns a dictionary of different metrics. print("\nPossible scores to print: {}".format(list(test_score.keys()))) # We select the accuracy and loss. print("Accuracy on test set: ", test_score['accuracy']) print("Loss on test set: ", test_score['loss']) outcomes = learner.run_circuit(X=X_pred, outputs_to_predictions=outputs_to_predictions) # The run_circuit() function returns a dictionary of different outcomes. print("\nPossible outcomes to print: {}".format(list(outcomes.keys()))) # We select the predictions print("Predictions for new inputs: {}".format(outcomes['predictions']))
egs2/slurp_entity/asr1/local/evaluation/evaluate.py
texpomru13/espnet
5,053
12684268
<gh_stars>1000+ import argparse import logging from progress.bar import Bar from metrics import ErrorMetric from util import format_results, load_predictions, load_gold_data logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger = logging.getLogger(__name__) if __name__ == "__main__": parser = argparse.ArgumentParser(description="SLURP evaluation script") parser.add_argument( "-g", "--gold-data", required=True, type=str, help="Gold data in SLURP jsonl format", ) parser.add_argument( "-p", "--prediction-file", type=str, required=True, help="Predictions file" ) parser.add_argument( "--load-gold", action="store_true", help="When evaluating against gold transcriptions\ (gold_*_predictions.jsonl), this flag must be true.", ) parser.add_argument( "--average", type=str, default="micro", help="The averaging modality {micro, macro}.", ) parser.add_argument( "--full", action="store_true", help="Print the full results, including per-label metrics.", ) parser.add_argument( "--errors", action="store_true", help="Print TPs, FPs, and FNs in each row." ) parser.add_argument( "--table-layout", type=str, default="fancy_grid", help="The results table layout {fancy_grid (DEFAULT), csv, tsv}.", ) args = parser.parse_args() logger.info("Loading data") pred_examples = load_predictions(args.prediction_file, args.load_gold) gold_examples = load_gold_data(args.gold_data, args.load_gold) n_gold_examples = len(gold_examples) logger.info("Initializing metrics") scenario_f1 = ErrorMetric.get_instance(metric="f1", average=args.average) action_f1 = ErrorMetric.get_instance(metric="f1", average=args.average) intent_f1 = ErrorMetric.get_instance(metric="f1", average=args.average) span_f1 = ErrorMetric.get_instance(metric="span_f1", average=args.average) distance_metrics = {} for distance in ["word", "char"]: distance_metrics[distance] = ErrorMetric.get_instance( metric="span_distance_f1", average=args.average, distance=distance ) slu_f1 = ErrorMetric.get_instance(metric="slu_f1", average=args.average) bar = Bar(message="Evaluating metrics", max=len(gold_examples)) for gold_id in list(gold_examples): if gold_id in pred_examples: gold_example = gold_examples.pop(gold_id) pred_example = pred_examples.pop(gold_id) scenario_f1(gold_example["scenario"], pred_example["scenario"]) action_f1(gold_example["action"], pred_example["action"]) intent_f1( "{}_{}".format(gold_example["scenario"], gold_example["action"]), "{}_{}".format(pred_example["scenario"], pred_example["action"]), ) # Filtering below has been added to original code # because of way in which punctuation handled in data preparation for k in gold_example["entities"]: k["filler"] = k["filler"].replace(" '", "'") span_f1(gold_example["entities"], pred_example["entities"]) for distance, metric in distance_metrics.items(): metric(gold_example["entities"], pred_example["entities"]) bar.next() bar.finish() logger.info("Results:") results = scenario_f1.get_metric() print( format_results( results=results, label="scenario", full=args.full, errors=args.errors, table_layout=args.table_layout, ), "\n", ) results = action_f1.get_metric() print( format_results( results=results, label="action", full=args.full, errors=args.errors, table_layout=args.table_layout, ), "\n", ) results = intent_f1.get_metric() print( format_results( results=results, label="intent (scen_act)", full=args.full, errors=args.errors, table_layout=args.table_layout, ), "\n", ) results = span_f1.get_metric() print( format_results( results=results, label="entities", full=args.full, errors=args.errors, table_layout=args.table_layout, ), "\n", ) for distance, metric in distance_metrics.items(): results = metric.get_metric() slu_f1(results) print( format_results( results=results, label="entities (distance {})".format(distance), full=args.full, errors=args.errors, table_layout=args.table_layout, ), "\n", ) results = slu_f1.get_metric() print( format_results( results=results, label="SLU F1", full=args.full, errors=args.errors, table_layout=args.table_layout, ), "\n", ) logger.warning( "Gold examples not predicted: {} (out of {})".format( len(gold_examples), n_gold_examples ) )
integration_test/test_crc16.py
lynix94/nbase-arc
176
12684271
# # Copyright 2015 <NAME>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import testbase import util import gateway_mgmt import config import default_cluster class TestCRC16( unittest.TestCase ): cluster = config.clusters[0] @classmethod def setUpClass( cls ): cls.conf_checker = default_cluster.initialize_starting_up_smr_before_redis( cls.cluster ) assert cls.conf_checker != None, 'failed to initialize cluster' @classmethod def tearDownClass( cls ): testbase.defaultTearDown(cls) def setUp( self ): util.set_process_logfile_prefix( 'TestCRC16_%s' % self._testMethodName ) return 0 def tearDown( self ): return 0 def test_single_thread_input( self ): util.print_frame() self.cluster = config.clusters[0] result = {} ip, port = util.get_rand_gateway( self.cluster ) gw = gateway_mgmt.Gateway( ip ) self.assertEquals( 0, gw.connect( ip, port ) ) max = 5 for idx in range( max ): cmd = 'set key%d 0\r\n' % (idx) gw.write( cmd ) result[idx] = gw.read_until( '\r\n' ) data_max = 65535 for idx in range( max ): for cnt in range( 0, data_max ): gw.write( 'crc16 key%d %d\r\n' % (idx, cnt) ) result[idx] = gw.read_until( '\r\n' ) for idx in range( max - 1 ): self.assertEquals( result[idx], result[idx + 1] )
tensorflow/python/kernel_tests/v1_compat_tests/stack_op_test.py
EricRemmerswaal/tensorflow
190,993
12684273
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """V1 tests for Stack and ParallelStack Ops.""" from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class AutomaticStackingTest(test.TestCase): @test_util.run_deprecated_v1 # Tests symbolic tensor semantics def testVariable(self): with self.session(): v = variables.Variable(17) result = ops.convert_to_tensor([[0, 0, 0], [0, v, 0], [0, 0, 0]]) self.evaluate(v.initializer) self.assertAllEqual([[0, 0, 0], [0, 17, 0], [0, 0, 0]], self.evaluate(result)) v.assign(38).op.run() self.assertAllEqual([[0, 0, 0], [0, 38, 0], [0, 0, 0]], self.evaluate(result)) @test_util.run_deprecated_v1 # Placeholders are V1 only. def testPlaceholder(self): with self.session(): # Test using placeholder with a defined shape. ph_0 = array_ops.placeholder(dtypes.int32, shape=[]) result_0 = ops.convert_to_tensor([[0, 0, 0], [0, ph_0, 0], [0, 0, 0]]) self.assertAllEqual([[0, 0, 0], [0, 1, 0], [0, 0, 0]], result_0.eval(feed_dict={ph_0: 1})) self.assertAllEqual([[0, 0, 0], [0, 2, 0], [0, 0, 0]], result_0.eval(feed_dict={ph_0: 2})) # Test using placeholder with an undefined shape. ph_1 = array_ops.placeholder(dtypes.int32) result_1 = ops.convert_to_tensor([[0, 0, 0], [0, ph_1, 0], [0, 0, 0]]) self.assertAllEqual([[0, 0, 0], [0, 1, 0], [0, 0, 0]], result_1.eval(feed_dict={ph_1: 1})) self.assertAllEqual([[0, 0, 0], [0, 2, 0], [0, 0, 0]], result_1.eval(feed_dict={ph_1: 2})) @test_util.run_deprecated_v1 # Placeholders and shape inference are only applicable in Graph mode. def testShapeErrors(self): # Static shape error. ph_0 = array_ops.placeholder(dtypes.int32, shape=[1]) with self.assertRaises(ValueError): ops.convert_to_tensor([[0, 0, 0], [0, ph_0, 0], [0, 0, 0]]) # Dynamic shape error. ph_1 = array_ops.placeholder(dtypes.int32) result_1 = ops.convert_to_tensor([[0, 0, 0], [0, ph_1, 0], [0, 0, 0]]) with self.session(): with self.assertRaises(errors_impl.InvalidArgumentError): result_1.eval(feed_dict={ph_1: [1]}) if __name__ == "__main__": test.main()
runtests.py
abronin/django-admin-easy
350
12684277
<gh_stars>100-1000 # coding: utf-8 from __future__ import ( absolute_import, division, print_function, unicode_literals ) import os import sys import django from django.conf import settings from django.test.utils import get_runner def runtests(): os.environ['DJANGO_SETTINGS_MODULE'] = 'test_project.settings' django.setup() TestRunner = get_runner(settings) test_runner = TestRunner() failures = test_runner.run_tests(["tests"]) sys.exit(bool(failures)) if __name__ == '__main__': runtests()
Configuration/Eras/python/Modifier_run2_CSC_2018_cff.py
ckamtsikis/cmssw
852
12684303
<filename>Configuration/Eras/python/Modifier_run2_CSC_2018_cff.py import FWCore.ParameterSet.Config as cms run2_CSC_2018 = cms.Modifier()
tests/py/test_record_an_exchange.py
kant/gratipay.com
517
12684318
<filename>tests/py/test_record_an_exchange.py from __future__ import unicode_literals from psycopg2 import IntegrityError from gratipay.testing import Harness, D from gratipay.models.exchange_route import ExchangeRoute class TestRecordAnExchange(Harness): # fixture # ======= def make_participants(self): self.make_participant('alice', claimed_time='now', is_admin=True) self.bob = self.make_participant('bob', claimed_time='now') def record_an_exchange(self, data, make_participants=True): if make_participants: self.make_participants() data.setdefault('status', 'succeeded') data.setdefault('note', 'noted') if 'route_id' not in data: try: data['route_id'] = ExchangeRoute.insert(self.bob, 'paypal', '<EMAIL>').id except IntegrityError: data['route_id'] = ExchangeRoute.from_network(self.bob, 'paypal').id if data['status'] is None: del(data['status']) if data['route_id'] is None: del(data['route_id']) if 'ref' not in data: data['ref'] = 'N/A' return self.client.PxST('/~bob/history/record-an-exchange', data, auth_as='alice') # tests # ===== def test_success_is_302(self): response = self.record_an_exchange({'amount': '10', 'fee': '0'}) assert response.code == 302 assert response.headers['location'] == '/bob/history/' def test_non_admin_is_403(self): self.make_participant('alice', claimed_time='now') self.bob = self.make_participant('bob', claimed_time='now') actual = self.record_an_exchange({'amount': '10', 'fee': '0'}, False).code assert actual == 403 def test_bad_amount_is_400(self): response = self.record_an_exchange({'amount': 'cheese', 'fee': '0'}) assert response.code == 400 assert response.body == "Invalid amount/fee" def test_bad_fee_is_400(self): response = self.record_an_exchange({'amount': '10', 'fee': 'cheese'}) assert response.code == 400 assert response.body == "Invalid amount/fee" def test_no_note_is_400(self): response = self.record_an_exchange({'amount': '10', 'fee': '0', 'note': ''}) assert response.code == 400 assert response.body == "Invalid note" def test_whitespace_note_is_400(self): response = self.record_an_exchange({'amount': '10', 'fee': '0', 'note': ' '}) assert response.code == 400 assert response.body == "Invalid note" def test_no_route_id_is_400(self): response = self.record_an_exchange({'amount': '10', 'fee': '0', 'route_id': None}) assert response.code == 400 assert response.body == "Invalid route_id" def test_bad_route_id_is_400(self): response = self.record_an_exchange({'amount': '10', 'fee': '0', 'route_id': 'foo'}) assert response.code == 400 assert response.body == "Invalid route_id" def test_non_existent_route_id_is_400(self): response = self.record_an_exchange({'amount': '10', 'fee': '0', 'route_id': '123456'}) assert response.code == 400 assert response.body == "Route doesn't exist" def test_route_should_belong_to_user_else_400(self): alice = self.make_participant('alice', claimed_time='now', is_admin=True) self.make_participant('bob', claimed_time='now') route = ExchangeRoute.insert(alice, 'paypal', '<EMAIL>') response = self.record_an_exchange({'amount': '10', 'fee': '0', 'route_id': route.id}, False) assert response.code == 400 assert response.body == "Route doesn't exist" def test_no_ref_is_400(self): response = self.record_an_exchange({'amount': '10', 'fee': '0', 'ref': ''}) assert response.code == 400 assert response.body == "Invalid Reference" def test_whitespace_ref_is_400(self): response = self.record_an_exchange({'amount': '10', 'fee': '0', 'ref': ' '}) assert response.code == 400 assert response.body == "Invalid Reference" def test_dropping_balance_below_zero_is_allowed_in_this_context(self): self.record_an_exchange({'amount': '-10', 'fee': '0'}) actual = self.db.one("SELECT balance FROM participants WHERE username='bob'") assert actual == D('-10.00') def test_success_records_exchange(self): self.record_an_exchange({'amount': '10', 'fee': '0.50', 'ref':"605BSOC6G855L15OO"}) expected = { "amount": D('10.00') , "fee": D('0.50') , "participant": "bob" , "recorder": "alice" , "note": "noted" , "ref" : "605BSOC6G855L15OO" , "route": ExchangeRoute.from_network(self.bob, 'paypal').id } SQL = "SELECT amount, fee, participant, recorder, note, route, ref " \ "FROM exchanges" actual = self.db.one(SQL, back_as=dict) assert actual == expected def test_success_updates_balance(self): self.record_an_exchange({'amount': '10', 'fee': '0'}) expected = D('10.00') SQL = "SELECT balance FROM participants WHERE username='bob'" actual = self.db.one(SQL) assert actual == expected def test_withdrawals_work(self): self.make_participant('alice', claimed_time='now', is_admin=True) self.bob = self.make_participant('bob', claimed_time='now', balance=20) self.record_an_exchange({'amount': '-7', 'fee': '0'}, make_participants=False) expected = D('13.00') SQL = "SELECT balance FROM participants WHERE username='bob'" actual = self.db.one(SQL) assert actual == expected def test_withdrawals_take_fee_out_of_balance(self): self.make_participant('alice', claimed_time='now', is_admin=True) self.bob = self.make_participant('bob', claimed_time='now', balance=20) self.bob = self.record_an_exchange({'amount': '-7', 'fee': '1.13'}, False) SQL = "SELECT balance FROM participants WHERE username='bob'" assert self.db.one(SQL) == D('11.87') def test_can_set_status(self): self.make_participants() for status in ('pre', 'pending', 'failed', 'succeeded'): self.record_an_exchange({'amount': '10', 'fee': '0', 'status': status}, False) actual = self.db.one("SELECT status FROM exchanges ORDER BY timestamp desc LIMIT 1") assert actual == status def test_cant_record_new_exchanges_with_None_status(self): r = self.record_an_exchange({'amount': '10', 'fee': '0', 'status': None}) assert r.code == 400 assert self.db.one("SELECT count(*) FROM exchanges") == 0 def test_succeeded_affects_balance(self): self.make_participants() balance = 0 for amount in ('10', '-10'): self.record_an_exchange({'amount': amount, 'fee': '0'}, False) balance += int(amount) assert self.db.one("SELECT balance FROM participants WHERE username='bob'") == balance def test_failed_doesnt_affect_balance(self): self.make_participants() for amount in ('10', '-10'): self.record_an_exchange({ 'amount': amount, 'fee': '0', 'status': 'failed' }, False) assert self.db.one("SELECT balance FROM participants WHERE username='bob'") == 0 def test_other_statuses_dont_affect_balance_for_payins(self): self.make_participants() for status in ('pre', 'pending'): self.record_an_exchange({ 'amount': '10', 'fee': '0', 'status': status }, False) assert self.db.one("SELECT balance FROM participants WHERE username='bob'") == 0 def test_other_statuses_affect_balance_for_payouts(self): self.make_participants() balance = 0 for status in ('pre', 'pending'): self.record_an_exchange({ 'amount': '-10', 'fee': '0', 'status': status }, False) balance -= 10 assert self.db.one("SELECT balance FROM participants WHERE username='bob'") == balance
third_party/virtualbox/src/libs/xpcom18a4/python/test/regrtest.py
Fimbure/icebox-1
521
12684349
# ***** BEGIN LICENSE BLOCK ***** # Version: MPL 1.1/GPL 2.0/LGPL 2.1 # # The contents of this file are subject to the Mozilla Public License Version # 1.1 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS IS" basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License # for the specific language governing rights and limitations under the # License. # # The Original Code is Python XPCOM language bindings. # # The Initial Developer of the Original Code is # ActiveState Tool Corp. # Portions created by the Initial Developer are Copyright (C) 2000 # the Initial Developer. All Rights Reserved. # # Contributor(s): # <NAME> <<EMAIL>> (original author) # # Alternatively, the contents of this file may be used under the terms of # either the GNU General Public License Version 2 or later (the "GPL"), or # the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), # in which case the provisions of the GPL or the LGPL are applicable instead # of those above. If you wish to allow use of your version of this file only # under the terms of either the GPL or the LGPL, and not to allow others to # use your version of this file under the terms of the MPL, indicate your # decision by deleting the provisions above and replace them with the notice # and other provisions required by the GPL or the LGPL. If you do not delete # the provisions above, a recipient may use your version of this file under # the terms of any one of the MPL, the GPL or the LGPL. # # ***** END LICENSE BLOCK ***** # regrtest.py # # The Regression Tests for the xpcom package. import os import sys import unittest # A little magic to create a single "test suite" from all test_ files # in this dir. A single suite makes for prettier output test :) def suite(): # Loop over all test_*.py files here try: me = __file__ except NameError: me = sys.argv[0] me = os.path.abspath(me) files = os.listdir(os.path.dirname(me)) suite = unittest.TestSuite() # XXX - add the others here! #suite.addTest(unittest.FunctionTestCase(import_all)) for file in files: base, ext = os.path.splitext(file) if ext=='.py' and os.path.basename(base).startswith("test_"): mod = __import__(base) if hasattr(mod, "suite"): test = mod.suite() else: test = unittest.defaultTestLoader.loadTestsFromModule(mod) suite.addTest(test) return suite class CustomLoader(unittest.TestLoader): def loadTestsFromModule(self, module): return suite() try: unittest.TestProgram(testLoader=CustomLoader())(argv=sys.argv) finally: from xpcom import _xpcom _xpcom.NS_ShutdownXPCOM() # To get leak stats and otherwise ensure life is good. ni = _xpcom._GetInterfaceCount() ng = _xpcom._GetGatewayCount() if ni or ng: # The old 'regrtest' that was not based purely on unittest did not # do this check at the end - it relied on each module doing it itself. # Thus, these leaks are not new, just newly noticed :) Likely to be # something silly like module globals. if ni == 6 and ng == 1: print "Sadly, there are 6/1 leaks, but these appear normal and benign" else: print "********* WARNING - Leaving with %d/%d objects alive" % (ni,ng) else: print "yay! Our leaks have all vanished!"
cli_client/python/timesketch_cli_client/commands/importer.py
wajihyassine/timesketch
1,810
12684354
<filename>cli_client/python/timesketch_cli_client/commands/importer.py # Copyright 2021 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Commands for importing timelines.""" import sys import time import click from timesketch_import_client import importer as import_client @click.command('import') @click.option('--name', help='Name of the timeline.') @click.option( '--timeout', type=int, default=600, help='Seconds to wait for indexing.') @click.argument('file_path', type=click.Path(exists=True)) @click.pass_context def importer(ctx, name, timeout, file_path): """Import timeline. Args: ctx: Click CLI context object. name: Name of the timeline to create. timeout: Seconds to wait for indexing. file_path: File path to the file to import. """ sketch = ctx.obj.sketch if not name: name = click.format_filename(file_path, shorten=True) timeline = None with import_client.ImportStreamer() as streamer: click.echo('Uploading to server .. ', nl=False) streamer.set_sketch(sketch) streamer.set_timeline_name(name) streamer.set_provider('Timesketch CLI client') # TODO: Consider using the whole command as upload context instead # of the file path. streamer.set_upload_context(file_path) streamer.add_file(file_path) timeline = streamer.timeline if not timeline: click.echo('Error creating timeline, please try again.') sys.exit(1) click.echo('Done') # Poll the timeline status and wait for the timeline to be ready click.echo('Indexing .. ', nl=False) max_time_seconds = timeout sleep_time_seconds = 5 # Sleep between API calls max_retries = max_time_seconds / sleep_time_seconds retry_count = 0 while True: if retry_count >= max_retries: click.echo( ('WARNING: The command timed out before indexing finished. ' 'The timeline will continue to be indexed in the background')) break status = timeline.status # TODO: Do something with other statuses? (e.g. failed) if status == 'ready': click.echo('Done') break retry_count += 1 time.sleep(sleep_time_seconds) click.echo(f'Timeline imported: {timeline.name}')
test/mitmproxy/contentviews/test_hex.py
KarlParkinson/mitmproxy
24,939
12684361
<filename>test/mitmproxy/contentviews/test_hex.py from mitmproxy.contentviews import hex from . import full_eval def test_view_hex(): v = full_eval(hex.ViewHex()) assert v(b"foo") def test_render_priority(): v = hex.ViewHex() assert not v.render_priority(b"ascii") assert v.render_priority(b"\xFF") assert not v.render_priority(b"")
arviz/plots/backends/matplotlib/dotplot.py
sudojarvis/arviz
1,159
12684397
"""Matplotlib dotplot.""" import math import warnings import numpy as np import matplotlib.pyplot as plt from matplotlib import _pylab_helpers from ...plot_utils import _scale_fig_size from . import backend_kwarg_defaults, create_axes_grid, backend_show from ...plot_utils import plot_point_interval from ...dotplot import wilkinson_algorithm, layout_stacks def plot_dot( values, binwidth, dotsize, stackratio, hdi_prob, quartiles, rotated, dotcolor, intervalcolor, markersize, markercolor, marker, figsize, linewidth, point_estimate, nquantiles, point_interval, ax, show, backend_kwargs, plot_kwargs, ): """Matplotlib dotplot.""" if backend_kwargs is None: backend_kwargs = {} backend_kwargs = {**backend_kwarg_defaults(), **backend_kwargs} backend_kwargs.setdefault("figsize", figsize) backend_kwargs["squeeze"] = True (figsize, _, _, _, auto_linewidth, auto_markersize) = _scale_fig_size(figsize, None) if plot_kwargs is None: plot_kwargs = {} plot_kwargs.setdefault("color", dotcolor) if linewidth is None: linewidth = auto_linewidth if markersize is None: markersize = auto_markersize if ax is None: fig_manager = _pylab_helpers.Gcf.get_active() if fig_manager is not None: ax = fig_manager.canvas.figure.gca() else: _, ax = create_axes_grid( 1, backend_kwargs=backend_kwargs, ) if point_interval: ax = plot_point_interval( ax, values, point_estimate, hdi_prob, quartiles, linewidth, markersize, markercolor, marker, rotated, intervalcolor, "matplotlib", ) if nquantiles > values.shape[0]: warnings.warn( "nquantiles must be less than or equal to the number of data points", UserWarning ) nquantiles = values.shape[0] else: qlist = np.linspace(1 / (2 * nquantiles), 1 - 1 / (2 * nquantiles), nquantiles) values = np.quantile(values, qlist) if binwidth is None: binwidth = math.sqrt((values[-1] - values[0] + 1) ** 2 / (2 * nquantiles * np.pi)) ## Wilkinson's Algorithm stack_locs, stack_count = wilkinson_algorithm(values, binwidth) x, y = layout_stacks(stack_locs, stack_count, binwidth, stackratio, rotated) for (x_i, y_i) in zip(x, y): dot = plt.Circle((x_i, y_i), dotsize * binwidth / 2, **plot_kwargs) ax.add_patch(dot) if rotated: ax.tick_params(bottom=False, labelbottom=False) else: ax.tick_params(left=False, labelleft=False) ax.set_aspect("equal", adjustable="box") ax.autoscale() if backend_show(show): plt.show() return ax
runx/logx.py
B3EF/runx
626
12684419
""" Copyright 2020 Nvidia Corporation Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from collections import defaultdict from contextlib import contextmanager from shutil import copyfile import csv import os import re import shlex import subprocess import time try: from torch.utils.tensorboard import SummaryWriter except ModuleNotFoundError: from tensorboardX import SummaryWriter import torch try: from .utils import (get_logroot, save_hparams, trn_names, val_names, ConditionalProxy) except ImportError: # This is to allow the unit tests to run properly from utils import (get_logroot, save_hparams, trn_names, val_names, ConditionalProxy) def is_list(x): return isinstance(x, (list, tuple)) def get_gpu_utilization_pct(): ''' Use nvidia-smi to capture the GPU utilization, which is reported as an integer in range 0-100. ''' util = subprocess.check_output( shlex.split('nvidia-smi --query-gpu="utilization.gpu" ' '--format=csv,noheader,nounits -i 0')) util = util.decode('utf-8') util = util.replace('\n', '') return int(util) class LogX(object): def __init__(self, rank=0): self.initialized = False def initialize(self, logdir=None, coolname=False, hparams=None, tensorboard=False, no_timestamp=False, global_rank=0, eager_flush=True): ''' Initialize logx inputs - logdir - where to write logfiles - tensorboard - whether to write to tensorboard file - global_rank - must set this if using distributed training, so we only log from rank 0 - coolname - generate a unique directory name underneath logdir, else use logdir as output directory - hparams - only use if not launching jobs with runx, which also saves the hparams. - eager_flush - call `flush` after every tensorboard write ''' self.rank0 = (global_rank == 0) self.initialized = True if logdir is not None: self.logdir = logdir else: logroot = get_logroot() if coolname: from coolname import generate_slug self.logdir = os.path.join(logroot, generate_slug(2)) else: self.logdir = os.path.join(logroot, 'default') # confirm target log directory exists if not os.path.isdir(self.logdir): os.makedirs(self.logdir, exist_ok=True) if hparams is not None and self.rank0: save_hparams(hparams, self.logdir) # Tensorboard file if self.rank0 and tensorboard: self.tb_writer = SummaryWriter(log_dir=self.logdir, flush_secs=1) else: self.tb_writer = None self.eager_flush = eager_flush # This allows us to use the tensorboard with automatic checking of both # the `tensorboard` condition, as well as ensuring writes only happen # on rank0. Any function supported by `SummaryWriter` is supported by # `ConditionalProxy`. Additionally, flush will be called after any call # to this. self.tensorboard = ConditionalProxy( self.tb_writer, tensorboard and self.rank0, post_hook=self._flush_tensorboard, ) if not self.rank0: return # Metrics file metrics_fn = os.path.join(self.logdir, 'metrics.csv') self.metrics_fp = open(metrics_fn, mode='a+') self.metrics_writer = csv.writer(self.metrics_fp, delimiter=',') # Log file log_fn = os.path.join(self.logdir, 'logging.log') self.log_file = open(log_fn, mode='a+') # save metric self.save_metric = None self.best_metric = None self.save_ckpt_fn = '' # Find the existing best checkpoint, and update `best_metric`, # if available self.best_ckpt_fn = self.get_best_checkpoint() or '' if self.best_ckpt_fn: best_chk = torch.load(self.best_ckpt_fn, map_location='cpu') self.best_metric = best_chk.get('__metric', None) self.epoch = defaultdict(lambda: 0) self.no_timestamp = no_timestamp # Initial timestamp, so that epoch time calculation is correct phase = 'start' csv_line = [phase] # add epoch/iter csv_line.append('{}/step'.format(phase)) csv_line.append(0) # add timestamp if not self.no_timestamp: # this feature is useful for testing csv_line.append('timestamp') csv_line.append(time.time()) self.metrics_writer.writerow(csv_line) self.metrics_fp.flush() def __del__(self): if self.initialized and self.rank0: self.metrics_fp.close() self.log_file.close() def msg(self, msg): ''' Print out message to std and to a logfile ''' if not self.rank0: return print(msg) self.log_file.write(msg + '\n') self.log_file.flush() def add_image(self, path, img, step=None): ''' Write an image to the tensorboard file ''' self.tensorboard.add_image(path, img, step) def add_scalar(self, name, val, idx): ''' Write a scalar to the tensorboard file ''' self.tensorboard.add_scalar(name, val, idx) def _flush_tensorboard(self): if self.eager_flush and self.tb_writer is not None: self.tb_writer.flush() @contextmanager def suspend_flush(self, flush_at_end=True): prev_flush = self.eager_flush self.eager_flush = False yield self.eager_flush = prev_flush if flush_at_end: self._flush_tensorboard() def metric(self, phase, metrics, epoch=None): """Record train/val metrics. This serves the dual-purpose to write these metrics to both a tensorboard file and a csv file, for each parsing by sumx. Arguments: phase: 'train' or 'val'. sumx will only summarize val metrics. metrics: dictionary of metrics to record global_step: (optional) epoch or iteration number """ if not self.rank0: return # define canonical phase if phase in trn_names: canonical_phase = 'train' elif phase in val_names: canonical_phase = 'val' else: raise('expected phase to be one of {} {}'.format(str(val_names, trn_names))) if epoch is not None: self.epoch[canonical_phase] = epoch # Record metrics to csv file csv_line = [canonical_phase] for k, v in metrics.items(): csv_line.append(k) csv_line.append(v) # add epoch/iter csv_line.append('epoch') csv_line.append(self.epoch[canonical_phase]) # add timestamp if not self.no_timestamp: # this feature is useful for testing csv_line.append('timestamp') csv_line.append(time.time()) # To save a bit of disk space, only save validation metrics if canonical_phase == 'val': self.metrics_writer.writerow(csv_line) self.metrics_fp.flush() # Write updates to tensorboard file with self.suspend_flush(): for k, v in metrics.items(): self.add_scalar('{}/{}'.format(phase, k), v, self.epoch[canonical_phase]) # if no step, then keep track of it automatically if epoch is None: self.epoch[canonical_phase] += 1 @staticmethod def is_better(save_metric, best_metric, higher_better): return best_metric is None or \ higher_better and (save_metric > best_metric) or \ not higher_better and (save_metric < best_metric) def save_model(self, save_dict, metric, epoch, higher_better=True, delete_old=True): """Saves a model to disk. Keeps a separate copy of latest and best models. Arguments: save_dict: dictionary to save to checkpoint epoch: epoch number, used to name checkpoint metric: metric value to be used to evaluate whether this is the best result higher_better: True if higher valued metric is better, False otherwise delete_old: Delete prior 'lastest' checkpoints. By setting to false, you'll get a checkpoint saved every time this function is called. """ if not self.rank0: return save_dict['__metric'] = metric if os.path.exists(self.save_ckpt_fn) and delete_old: os.remove(self.save_ckpt_fn) # Save out current model self.save_ckpt_fn = os.path.join( self.logdir, 'last_checkpoint_ep{}.pth'.format(epoch)) torch.save(save_dict, self.save_ckpt_fn) self.save_metric = metric is_better = self.is_better(self.save_metric, self.best_metric, higher_better) if is_better: if os.path.exists(self.best_ckpt_fn): os.remove(self.best_ckpt_fn) self.best_ckpt_fn = os.path.join( self.logdir, 'best_checkpoint_ep{}.pth'.format(epoch)) self.best_metric = self.save_metric copyfile(self.save_ckpt_fn, self.best_ckpt_fn) return is_better def get_best_checkpoint(self): """ Finds the checkpoint in `self.logdir` that is considered best. If, for some reason, there are multiple best checkpoint files, then the one with the highest epoch will be preferred. Returns: None - If there is no best checkpoint file path (str) - The full path to the best checkpoint otherwise. """ match_str = r'^best_checkpoint_ep([0-9]+).pth$' best_epoch = -1 best_checkpoint = None for filename in os.listdir(self.logdir): match = re.fullmatch(match_str, filename) if match is not None: # Extract the epoch number epoch = int(match.group(1)) if epoch > best_epoch: best_epoch = epoch best_checkpoint = filename if best_checkpoint is None: return None return os.path.join(self.logdir, best_checkpoint) def load_model(self, path): """Restore a model and return a dict with any meta data included in the snapshot """ checkpoint = torch.load(path) state_dict = checkpoint['state_dict'] meta = {k: v for k, v in checkpoint.items() if k != 'state_dict'} return state_dict, meta # Importing logx gives you access to this shared object logx = LogX()
next_steps/operations/ml_ops/personalize-step-functions/lambdas/delete-dataset/delete-dataset.py
kamoljan/amazon-personalize-samples
442
12684435
<reponame>kamoljan/amazon-personalize-samples from os import environ from loader import Loader import actions LOADER = Loader() def lambda_handler(event, context): try: response = LOADER.personalize_cli.delete_dataset( datasetArn=event['datasetArn'] ) except Exception as e: LOADER.logger.error(f'Error deleting dataset: {e}') raise e
tests/test_session.py
hiyongz/uiautomator2
4,493
12684437
# coding: utf-8 # from collections import namedtuple def test_session(sess): sess.wlan_ip sess.widget sess.watcher sess.image sess.jsonrpc sess.open_identify sess.shell sess.set_new_command_timeout sess.settings sess.taobao sess.xpath def test_session_app(sess, package_name): sess.app_start(package_name) assert sess.app_current()['package'] == package_name sess.app_wait(package_name) assert package_name in sess.app_list() assert package_name in sess.app_list_running() assert sess.app_info(package_name)['packageName'] == package_name def test_session_window_size(sess): assert isinstance(sess.window_size(), tuple)
tests/core/test_slice.py
jessevig/robustness-gym
399
12684444
"""Unittests for Slices.""" from unittest import TestCase from robustnessgym.core.slice import SliceDataPanel from tests.testbeds import MockTestBedv0 class TestSlice(TestCase): def setUp(self): self.testbed = MockTestBedv0() def test_from_dataset(self): # Create a slice sl = SliceDataPanel(self.testbed.dataset) # Compare the slice identifier self.assertEqual(str(sl), "RGSlice[num_rows: 6](MockDataset(version=1.0))") # Length of the slice self.assertEqual(len(sl), 6) # Lineage of the slice self.assertEqual(sl.lineage, [("Dataset", "MockDataset(version=1.0)")])