max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
src/generate-jobs/calculate_quad_key.py
geops/osm2vectortiles
524
12688885
#!/usr/bin/env python """Calculate QuadKey for TSV file and append it as column Usage: calculate_quad_key.py <list_file> calculate_quad_key.py (-h | --help) calculate_quad_key.py --version Options: -h --help Show this screen. --version Show version. """ import sys import csv from docopt import docopt def quad_tree(tx, ty, zoom): """ Converts XYZ tile coordinates to Microsoft QuadTree http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/ """ quad_key = '' for i in range(zoom, 0, -1): digit = 0 mask = 1 << (i-1) if (tx & mask) != 0: digit += 1 if (ty & mask) != 0: digit += 2 quad_key += str(digit) return quad_key if __name__ == '__main__': args = docopt(__doc__, version='0.1') writer = csv.writer(sys.stdout, delimiter=' ') with open(args['<list_file>'], "r") as file_handle: for line in file_handle: z, x, y = line.split('/') writer.writerow([ line.strip(), quad_tree(int(x), int(y), int(z))] )
conans/test/functional/generators/package_info/deps_cpp_info_test.py
ssaavedra/conan
6,205
12688890
import textwrap import unittest from conans.test.assets.genconanfile import GenConanfile from conans.test.utils.tools import TestClient class DepsCppInfoTest(unittest.TestCase): def test(self): # https://github.com/conan-io/conan/issues/7598 client = TestClient() client.save({"conanfile.py": GenConanfile()}) client.run("create . dep/0.1@user/testing") conanfile = textwrap.dedent(""" from conans import ConanFile class Pkg(ConanFile): requires = "dep/0.1@user/testing" def build(self): self.output.info("DEPS_CPP_INFO_BIN: %s" % self.deps_cpp_info["dep"].bin_paths) """) client.save({"conanfile.py": conanfile}) client.run("create . pkg/0.1@user/testing") self.assertIn("pkg/0.1@user/testing: DEPS_CPP_INFO_BIN: []", client.out) client.run("install .") client.run("build .") self.assertIn("conanfile.py: DEPS_CPP_INFO_BIN: []", client.out)
colossalai/nn/optimizer/hybrid_adam.py
RichardoLuo/ColossalAI
1,630
12688891
<reponame>RichardoLuo/ColossalAI<filename>colossalai/nn/optimizer/hybrid_adam.py import torch from colossalai.utils import multi_tensor_applier from colossalai.registry import OPTIMIZERS from colossalai.nn.optimizer import CPU_ADAM_CNT @OPTIMIZERS.register_module class HybridAdam(torch.optim.Optimizer): """Implements Adam algorithm. Supports parameters updating on both GPU and CPU, depanding on the device of paramters. But the parameters and gradients should on the same device: * Parameters on CPU and gradients on CPU is allowed. * Parameters on GPU and gradients on GPU is allowed. * Parameters on GPU and gradients on CPU is **not** allowed. Requires ColossalAI to be installed via ``pip install .`` This version of Hybrid Adam is an hybrid of CPUAdam and FusedAdam. * For parameters updating on CPU, it uses CPUAdam. * For parameters updating on GPU, it uses FusedAdam. * Hybird precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients. :class:`colossalai.nn.optimizer.HybridAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``, or ``torch.optim.Adam`` with ``adamw_mode=False`` Adam was been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: model_params (iterable): iterable of parameters of dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED yet in CPUAdam! adamw_mode (boolean, optional): Apply L2 regularization or weight decay True for decoupled weight decay(also known as AdamW) (default: True) simd_log (boolean, optional): whether to show if you are using SIMD to accelerate. (default: False) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ # Number of fp32 shards for per parameter # Param weight, grad, momentum and variance num_fp32_shards_per_param = 4 def __init__(self, model_params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, adamw_mode=True, simd_log=False): default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction) super(HybridAdam, self).__init__(model_params, default_args) self.opt_id = CPU_ADAM_CNT() self.adamw_mode = adamw_mode try: import cpu_adam import colossal_C except ImportError: raise ImportError('Please install colossalai from source code to use HybridAdam') self.cpu_adam_op = cpu_adam self.cpu_adam_op.create_adam(self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode, simd_log) self.gpu_adam_op = colossal_C.multi_tensor_adam self._dummy_overflow_buf = torch.cuda.IntTensor([0]) def __del__(self): if self.cpu_adam_op: self.cpu_adam_op.destroy_adam(self.opt_id) @torch.no_grad() def step(self, closure=None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() for _, group in enumerate(self.param_groups): g_l, p_l, m_l, v_l = [], [], [], [] group_step = 0 for _, p in enumerate(group['params']): if p.grad is None: continue state = self.state[p] target_device = p.device if len(state) == 0: state['step'] = 0 # gradient momentums state['exp_avg'] = torch.zeros_like(p.data, dtype=torch.float, device=target_device) # gradient variances state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=torch.float, device=target_device) state['step'] += 1 group_step = state['step'] beta1, beta2 = group['betas'] if target_device.type == 'cpu': assert state['exp_avg'].device.type == 'cpu', "exp_avg should stay on cpu" assert state['exp_avg_sq'].device.type == 'cpu', "exp_avg should stay on cpu" self.cpu_adam_op.adam_update(self.opt_id, state['step'], group['lr'], beta1, beta2, group['eps'], group['weight_decay'], group['bias_correction'], p.data, p.grad.data, state['exp_avg'], state['exp_avg_sq'], -1) elif target_device.type == 'cuda': assert state['exp_avg'].device.type == 'cuda', "exp_avg should stay on cuda" assert state['exp_avg_sq'].device.type == 'cuda', "exp_avg should stay on cuda" # record the state by gruop and update at once g_l.append(p.grad.data) p_l.append(p.data) m_l.append(state['exp_avg']) v_l.append(state['exp_avg_sq']) else: raise RuntimeError if len(g_l) > 0: adamw_mode = 1 if self.adamw_mode else 0 bias_correction = 1 if group['bias_correction'] else 0 multi_tensor_applier(self.gpu_adam_op, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l], group['lr'], group['betas'][0], group['betas'][1], group['eps'], group_step, adamw_mode, bias_correction, group['weight_decay']) return loss
cctbx/adp_restraints/flags.py
dperl-sol/cctbx_project
155
12688892
from __future__ import absolute_import, division, print_function from libtbx import adopt_init_args import sys class flags(object): def __init__(self, adp_similarity=None, rigid_bond=None, isotropic_adp=None, default=False): if (adp_similarity is None): adp_similarity = default if (rigid_bond is None): rigid_bond = default if (isotropic_adp is None): isotropic_adp = default adopt_init_args(self, locals()) def show(self, f=None): if (f is None): f = sys.stdout print("adp_restraints.manager.flags:", file=f) print(" adp_similarity:", self.adp_similarity, file=f) print(" rigid_bond:", self.rigid_bond, file=f) print(" isotropic_adp:", self.isotropic_adp, file=f)
tutorial/python/1-Flat.py
ScriptBox99/facebook-faiss
17,006
12688897
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np d = 64 # dimension nb = 100000 # database size nq = 10000 # nb of queries np.random.seed(1234) # make reproducible xb = np.random.random((nb, d)).astype('float32') xb[:, 0] += np.arange(nb) / 1000. xq = np.random.random((nq, d)).astype('float32') xq[:, 0] += np.arange(nq) / 1000. import faiss # make faiss available index = faiss.IndexFlatL2(d) # build the index print(index.is_trained) index.add(xb) # add vectors to the index print(index.ntotal) k = 4 # we want to see 4 nearest neighbors D, I = index.search(xb[:5], k) # sanity check print(I) print(D) D, I = index.search(xq, k) # actual search print(I[:5]) # neighbors of the 5 first queries print(I[-5:]) # neighbors of the 5 last queries
geoplot/datasets.py
QuLogic/geoplot
1,025
12688898
<gh_stars>1000+ """ Example dataset fetching utility. Used in docs. """ src = 'https://raw.githubusercontent.com/ResidentMario/geoplot-data/master' def get_path(dataset_name): """ Returns the URL path to an example dataset suitable for reading into ``geopandas``. """ if dataset_name == 'usa_cities': return f'{src}/usa-cities.geojson' elif dataset_name == 'contiguous_usa': return f'{src}/contiguous-usa.geojson' elif dataset_name == 'nyc_collision_factors': return f'{src}/nyc-collision-factors.geojson' elif dataset_name == 'nyc_boroughs': return f'{src}/nyc-boroughs.geojson' elif dataset_name == 'ny_census': return f'{src}/ny-census-partial.geojson' elif dataset_name == 'obesity_by_state': return f'{src}/obesity-by-state.tsv' elif dataset_name == 'la_flights': return f'{src}/la-flights.geojson' elif dataset_name == 'dc_roads': return f'{src}/dc-roads.geojson' elif dataset_name == 'nyc_map_pluto_sample': return f'{src}/nyc-map-pluto-sample.geojson' elif dataset_name == 'nyc_collisions_sample': return f'{src}/nyc-collisions-sample.csv' elif dataset_name == 'boston_zip_codes': return f'{src}/boston-zip-codes.geojson' elif dataset_name == 'boston_airbnb_listings': return f'{src}/boston-airbnb-listings.geojson' elif dataset_name == 'napoleon_troop_movements': return f'{src}/napoleon-troop-movements.geojson' elif dataset_name == 'nyc_fatal_collisions': return f'{src}/nyc-fatal-collisions.geojson' elif dataset_name == 'nyc_injurious_collisions': return f'{src}/nyc-injurious-collisions.geojson' elif dataset_name == 'nyc_police_precincts': return f'{src}/nyc-police-precincts.geojson' elif dataset_name == 'nyc_parking_tickets': return f'{src}/nyc-parking-tickets-sample.geojson' elif dataset_name == 'world': return f'{src}/world.geojson' elif dataset_name == 'melbourne': return f'{src}/melbourne.geojson' elif dataset_name == 'melbourne_schools': return f'{src}/melbourne-schools.geojson' elif dataset_name == 'san_francisco': return f'{src}/san-francisco.geojson' elif dataset_name == 'san_francisco_street_trees_sample': return f'{src}/san-francisco-street-trees-sample.geojson' elif dataset_name == 'california_congressional_districts': return f'{src}/california-congressional-districts.geojson' else: raise ValueError( f'The dataset_name value {dataset_name!r} is not in the list of valid names.' )
FWCore/MessageService/test/u20_cfg.py
ckamtsikis/cmssw
852
12688903
# Unit test configuration file for MessageLogger service # Uses include MessageLogger.cfi and nothing else except time stamp suppression # Currently output will be jumbled unless cout and cerr are directed separately import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") import FWCore.Framework.test.cmsExceptionsFatal_cff process.options = FWCore.Framework.test.cmsExceptionsFatal_cff.options process.load("FWCore.MessageService.test.Services_cff") process.load("FWCore.MessageService.MessageLogger_cfi") process.MessageLogger.default = cms.untracked.PSet( noTimeStamps = cms.untracked.bool(True) ) process.MessageLogger.cerr.noTimeStamps = True process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.source = cms.Source("EmptySource") process.sendSomeMessages = cms.EDAnalyzer("UnitTestClient_G") process.p = cms.Path(process.sendSomeMessages)
Skype4Py/api/posix_x11.py
low456high/Skype4Py
199
12688914
<gh_stars>100-1000 """ Low level *Skype for Linux* interface implemented using *XWindows messaging*. Uses direct *Xlib* calls through *ctypes* module. This module handles the options that you can pass to `Skype.__init__` for Linux machines when the transport is set to *X11*. No further options are currently supported. Warning PyGTK framework users ============================= The multithreaded architecture of Skype4Py requires a special treatment if the Xlib transport is combined with PyGTK GUI framework. The following code has to be called at the top of your script, before PyGTK is even imported. .. python:: from Skype4Py.api.posix_x11 import threads_init threads_init() This function enables multithreading support in Xlib and GDK. If not done here, this is enabled for Xlib library when the `Skype` object is instantiated. If your script imports the PyGTK module, doing this so late may lead to a segmentation fault when the GUI is shown on the screen. A remedy is to enable the multithreading support before PyGTK is imported by calling the ``threads_init`` function. """ __docformat__ = 'restructuredtext en' import sys import threading import os from ctypes import * from ctypes.util import find_library import time import logging from Skype4Py.api import Command, SkypeAPIBase, \ timeout2float, finalize_opts from Skype4Py.enums import * from Skype4Py.errors import SkypeAPIError __all__ = ['SkypeAPI', 'threads_init'] # The Xlib Programming Manual: # ============================ # http://tronche.com/gui/x/xlib/ # some Xlib constants PropertyChangeMask = 0x400000 PropertyNotify = 28 ClientMessage = 33 PropertyNewValue = 0 PropertyDelete = 1 # some Xlib types c_ulong_p = POINTER(c_ulong) DisplayP = c_void_p Atom = c_ulong AtomP = c_ulong_p XID = c_ulong Window = XID Bool = c_int Status = c_int Time = c_ulong c_int_p = POINTER(c_int) # should the structures be aligned to 8 bytes? align = (sizeof(c_long) == 8 and sizeof(c_int) == 4) # some Xlib structures class XClientMessageEvent(Structure): if align: _fields_ = [('type', c_int), ('pad0', c_int), ('serial', c_ulong), ('send_event', Bool), ('pad1', c_int), ('display', DisplayP), ('window', Window), ('message_type', Atom), ('format', c_int), ('pad2', c_int), ('data', c_char * 20)] else: _fields_ = [('type', c_int), ('serial', c_ulong), ('send_event', Bool), ('display', DisplayP), ('window', Window), ('message_type', Atom), ('format', c_int), ('data', c_char * 20)] class XPropertyEvent(Structure): if align: _fields_ = [('type', c_int), ('pad0', c_int), ('serial', c_ulong), ('send_event', Bool), ('pad1', c_int), ('display', DisplayP), ('window', Window), ('atom', Atom), ('time', Time), ('state', c_int), ('pad2', c_int)] else: _fields_ = [('type', c_int), ('serial', c_ulong), ('send_event', Bool), ('display', DisplayP), ('window', Window), ('atom', Atom), ('time', Time), ('state', c_int)] class XErrorEvent(Structure): if align: _fields_ = [('type', c_int), ('pad0', c_int), ('display', DisplayP), ('resourceid', XID), ('serial', c_ulong), ('error_code', c_ubyte), ('request_code', c_ubyte), ('minor_code', c_ubyte)] else: _fields_ = [('type', c_int), ('display', DisplayP), ('resourceid', XID), ('serial', c_ulong), ('error_code', c_ubyte), ('request_code', c_ubyte), ('minor_code', c_ubyte)] class XEvent(Union): if align: _fields_ = [('type', c_int), ('xclient', XClientMessageEvent), ('xproperty', XPropertyEvent), ('xerror', XErrorEvent), ('pad', c_long * 24)] else: _fields_ = [('type', c_int), ('xclient', XClientMessageEvent), ('xproperty', XPropertyEvent), ('xerror', XErrorEvent), ('pad', c_long * 24)] XEventP = POINTER(XEvent) if getattr(sys, 'skype4py_setup', False): # we get here if we're building docs; to let the module import without # exceptions, we emulate the X11 library using a class: class X(object): def __getattr__(self, name): return self def __setattr__(self, name, value): pass def __call__(self, *args, **kwargs): pass x11 = X() else: # load X11 library (Xlib) libpath = find_library('X11') if not libpath: raise ImportError('Could not find X11 library') x11 = cdll.LoadLibrary(libpath) del libpath # setup Xlib function prototypes x11.XCloseDisplay.argtypes = (DisplayP,) x11.XCloseDisplay.restype = None x11.XCreateSimpleWindow.argtypes = (DisplayP, Window, c_int, c_int, c_uint, c_uint, c_uint, c_ulong, c_ulong) x11.XCreateSimpleWindow.restype = Window x11.XDefaultRootWindow.argtypes = (DisplayP,) x11.XDefaultRootWindow.restype = Window x11.XDeleteProperty.argtypes = (DisplayP, Window, Atom) x11.XDeleteProperty.restype = None x11.XDestroyWindow.argtypes = (DisplayP, Window) x11.XDestroyWindow.restype = None x11.XFree.argtypes = (c_void_p,) x11.XFree.restype = None x11.XGetAtomName.argtypes = (DisplayP, Atom) x11.XGetAtomName.restype = c_void_p x11.XGetErrorText.argtypes = (DisplayP, c_int, c_char_p, c_int) x11.XGetErrorText.restype = None x11.XGetWindowProperty.argtypes = (DisplayP, Window, Atom, c_long, c_long, Bool, Atom, AtomP, c_int_p, c_ulong_p, c_ulong_p, POINTER(POINTER(Window))) x11.XGetWindowProperty.restype = c_int x11.XInitThreads.argtypes = () x11.XInitThreads.restype = Status x11.XInternAtom.argtypes = (DisplayP, c_char_p, Bool) x11.XInternAtom.restype = Atom x11.XNextEvent.argtypes = (DisplayP, XEventP) x11.XNextEvent.restype = None x11.XOpenDisplay.argtypes = (c_char_p,) x11.XOpenDisplay.restype = DisplayP x11.XPending.argtypes = (DisplayP,) x11.XPending.restype = c_int x11.XSelectInput.argtypes = (DisplayP, Window, c_long) x11.XSelectInput.restype = None x11.XSendEvent.argtypes = (DisplayP, Window, Bool, c_long, XEventP) x11.XSendEvent.restype = Status x11.XLockDisplay.argtypes = (DisplayP,) x11.XLockDisplay.restype = None x11.XUnlockDisplay.argtypes = (DisplayP,) x11.XUnlockDisplay.restype = None def threads_init(gtk=True): """Enables multithreading support in Xlib and PyGTK. See the module docstring for more info. :Parameters: gtk : bool May be set to False to skip the PyGTK module. """ # enable X11 multithreading x11.XInitThreads() if gtk: from gtk.gdk import threads_init threads_init() class SkypeAPI(SkypeAPIBase): def __init__(self, opts): self.logger = logging.getLogger('Skype4Py.api.posix_x11.SkypeAPI') SkypeAPIBase.__init__(self) finalize_opts(opts) # initialize threads if not done already by the user threads_init(gtk=False) # init Xlib display self.disp = x11.XOpenDisplay(None) if not self.disp: raise SkypeAPIError('Could not open XDisplay') self.win_root = x11.XDefaultRootWindow(self.disp) self.win_self = x11.XCreateSimpleWindow(self.disp, self.win_root, 100, 100, 100, 100, 1, 0, 0) x11.XSelectInput(self.disp, self.win_root, PropertyChangeMask) self.win_skype = self.get_skype() ctrl = 'SKYPECONTROLAPI_MESSAGE' self.atom_msg = x11.XInternAtom(self.disp, ctrl, False) self.atom_msg_begin = x11.XInternAtom(self.disp, ctrl + '_BEGIN', False) self.loop_event = threading.Event() self.loop_timeout = 0.0001 self.loop_break = False def __del__(self): if x11: if hasattr(self, 'disp'): if hasattr(self, 'win_self'): x11.XDestroyWindow(self.disp, self.win_self) x11.XCloseDisplay(self.disp) def run(self): self.logger.info('thread started') # main loop event = XEvent() data = '' while not self.loop_break and x11: while x11.XPending(self.disp): self.loop_timeout = 0.0001 x11.XNextEvent(self.disp, byref(event)) # events we get here are already prefiltered by the predicate function if event.type == ClientMessage: if event.xclient.format == 8: if event.xclient.message_type == self.atom_msg_begin: data = str(event.xclient.data) elif event.xclient.message_type == self.atom_msg: if data != '': data += str(event.xclient.data) else: self.logger.warning('Middle of Skype X11 message received with no beginning!') else: continue if len(event.xclient.data) != 20 and data: self.notify(data.decode('utf-8')) data = '' elif event.type == PropertyNotify: namep = x11.XGetAtomName(self.disp, event.xproperty.atom) is_inst = (c_char_p(namep).value == '_SKYPE_INSTANCE') x11.XFree(namep) if is_inst: if event.xproperty.state == PropertyNewValue: self.win_skype = self.get_skype() # changing attachment status can cause an event handler to be fired, in # turn it could try to call Attach() and doing this immediately seems to # confuse Skype (command '#0 NAME xxx' returns '#0 CONNSTATUS OFFLINE' :D); # to fix this, we give Skype some time to initialize itself time.sleep(1.0) self.set_attachment_status(apiAttachAvailable) elif event.xproperty.state == PropertyDelete: self.win_skype = None self.set_attachment_status(apiAttachNotAvailable) self.loop_event.wait(self.loop_timeout) if self.loop_event.isSet(): self.loop_timeout = 0.0001 elif self.loop_timeout < 1.0: self.loop_timeout *= 2 self.loop_event.clear() self.logger.info('thread finished') def get_skype(self): """Returns Skype window ID or None if Skype not running.""" skype_inst = x11.XInternAtom(self.disp, '_SKYPE_INSTANCE', True) if not skype_inst: return type_ret = Atom() format_ret = c_int() nitems_ret = c_ulong() bytes_after_ret = c_ulong() winp = pointer(Window()) fail = x11.XGetWindowProperty(self.disp, self.win_root, skype_inst, 0, 1, False, 33, byref(type_ret), byref(format_ret), byref(nitems_ret), byref(bytes_after_ret), byref(winp)) if not fail and format_ret.value == 32 and nitems_ret.value == 1: return winp.contents.value def close(self): self.loop_break = True self.loop_event.set() while self.isAlive(): time.sleep(0.01) SkypeAPIBase.close(self) def set_friendly_name(self, friendly_name): SkypeAPIBase.set_friendly_name(self, friendly_name) if self.attachment_status == apiAttachSuccess: # reattach with the new name self.set_attachment_status(apiAttachUnknown) self.attach() def attach(self, timeout, wait=True): if self.attachment_status == apiAttachSuccess: return self.acquire() try: if not self.isAlive(): try: self.start() except AssertionError: raise SkypeAPIError('Skype API closed') try: self.wait = True t = threading.Timer(timeout2float(timeout), lambda: setattr(self, 'wait', False)) if wait: t.start() while self.wait: self.win_skype = self.get_skype() if self.win_skype is not None: break else: time.sleep(1.0) else: raise SkypeAPIError('Skype attach timeout') finally: t.cancel() command = Command('NAME %s' % self.friendly_name, '', True, timeout) self.release() try: self.send_command(command, True) finally: self.acquire() if command.Reply != 'OK': self.win_skype = None self.set_attachment_status(apiAttachRefused) return self.set_attachment_status(apiAttachSuccess) finally: self.release() command = Command('PROTOCOL %s' % self.protocol, Blocking=True) self.send_command(command, True) self.protocol = int(command.Reply.rsplit(None, 1)[-1]) def is_running(self): return (self.get_skype() is not None) def startup(self, minimized, nosplash): # options are not supported as of Skype 1.4 Beta for Linux if not self.is_running(): if os.fork() == 0: # we're the child os.setsid() os.execlp('skype', 'skype') def shutdown(self): from signal import SIGINT fh = os.popen('ps -o %p --no-heading -C skype') pid = fh.readline().strip() fh.close() if pid: os.kill(int(pid), SIGINT) # Skype sometimes doesn't delete the '_SKYPE_INSTANCE' property skype_inst = x11.XInternAtom(self.disp, '_SKYPE_INSTANCE', True) if skype_inst: x11.XDeleteProperty(self.disp, self.win_root, skype_inst) self.win_skype = None self.set_attachment_status(apiAttachNotAvailable) def send_command(self, command, force=False): if self.attachment_status != apiAttachSuccess and not force: self.attach(command.Timeout) self.push_command(command) self.notifier.sending_command(command) cmd = u'#%d %s' % (command.Id, command.Command) self.logger.debug('sending %s', repr(cmd)) if command.Blocking: command._event = bevent = threading.Event() else: command._timer = timer = threading.Timer(command.timeout2float(), self.pop_command, (command.Id,)) event = XEvent() event.xclient.type = ClientMessage event.xclient.display = self.disp event.xclient.window = self.win_self event.xclient.message_type = self.atom_msg_begin event.xclient.format = 8 cmd = cmd.encode('utf-8') + '\x00' for i in xrange(0, len(cmd), 20): event.xclient.data = cmd[i:i + 20] x11.XSendEvent(self.disp, self.win_skype, False, 0, byref(event)) event.xclient.message_type = self.atom_msg self.loop_event.set() if command.Blocking: bevent.wait(command.timeout2float()) if not bevent.isSet(): raise SkypeAPIError('Skype command timeout') else: timer.start() def notify(self, cmd): self.logger.debug('received %s', repr(cmd)) # Called by main loop for all received Skype commands. if cmd.startswith(u'#'): p = cmd.find(u' ') command = self.pop_command(int(cmd[1:p])) if command is not None: command.Reply = cmd[p + 1:] if command.Blocking: command._event.set() else: command._timer.cancel() self.notifier.reply_received(command) else: self.notifier.notification_received(cmd[p + 1:]) else: self.notifier.notification_received(cmd)
pe_tree/hash_pe.py
lybtongji/pe_tree
1,271
12688928
# # Copyright (c) 2020 BlackBerry Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Hash all portions of a PE file, this may be run as a separate process""" # Standard imports import json import hashlib import pefile def hash_data(data, entropy_H): """Calculate MD5/SHA1/SHA256 of given data Args: data (bytes): Data to calculate hashes/entropy entropy_H (pefile.SectionStructure.entropy_H): Callback function for calculating entropy Returns: dict: Dictionary of hashes/entropy """ md5 = hashlib.md5() sha1 = hashlib.sha1() sha256 = hashlib.sha256() md5.update(data) sha1.update(data) sha256.update(data) return {"md5": md5.hexdigest(), "sha1": sha1.hexdigest(), "sha256": sha256.hexdigest(), "entropy": entropy_H(data), "size": len(data)} def hash_pe_file(filename, data=None, pe=None, json_dumps=True): """Calculate PE file hashes. Either call directly or invoke via processpool:: processpool = multiprocessing.Pool(10) hashes = json.loads(processpool.apply_async(pe_tree.hash_pe.hash_pe_file, (filename,)).get()) Args: filename (str): Path to file to hash (or specify via data) data (bytes, optional): PE file data pe (pefile.PE, optional): Parsed PE file json_dumps (bool, optional): Return data as JSON Returns: dict: PE file hashes if json_dumps == False str: JSON PE file hashes if json_dumps == True """ if pe is None: pe = pefile.PE(filename) # Calculate entropy (use pefile implementation!) entropy_H = pefile.SectionStructure(pe.__IMAGE_SECTION_HEADER_format__, pe=pe).entropy_H file_hashes = {"file": {"md5": "", "sha1": "", "sha256": "", "entropy": 0.0, "size": 0}, "file_no_overlay": {"md5": "", "sha1": "", "sha256": "", "entropy": 0.0, "size": 0}, "dos_stub": {"md5": "", "sha1": "", "sha256": "", "entropy": 0.0, "size": 0}, "sections": [], "resources": [], "security_directory": {"md5": "", "sha1": "", "sha256": "", "entropy": 0.0, "size": 0}, "overlay": {"md5": "", "sha1": "", "sha256": "", "entropy": 0.0, "size": 0}} if not data: with open(filename, "rb") as f: data = f.read() # Hash entire file file_hashes["file"] = hash_data(data, entropy_H) # Hash DOS stub if pe.DOS_HEADER.e_lfanew > 64: file_hashes["dos_stub"] = hash_data(data[64:pe.DOS_HEADER.e_lfanew], entropy_H) # Hash sections for section in pe.sections: file_hashes["sections"].append({"md5": section.get_hash_md5(), "sha256": section.get_hash_sha256(), "entropy": section.get_entropy()}) # Hash resources if hasattr(pe, "DIRECTORY_ENTRY_RESOURCE"): mapped_data = pe.get_memory_mapped_image() for resource_type in pe.DIRECTORY_ENTRY_RESOURCE.entries: if not hasattr(resource_type, "directory"): continue for resource_id in resource_type.directory.entries: if not hasattr(resource_id, "directory"): continue for resource_language in resource_id.directory.entries: if not hasattr(resource_language, "data"): continue offset = resource_language.data.struct.OffsetToData size = resource_language.data.struct.Size try: resource_data = mapped_data[offset:offset + size] except: resource_data = "" file_hashes["resources"].append(hash_data(resource_data, entropy_H)) overlay_offset = pe.get_overlay_data_start_offset() if overlay_offset: overlay_data = pe.get_overlay() security = pe.OPTIONAL_HEADER.DATA_DIRECTORY[pefile.DIRECTORY_ENTRY["IMAGE_DIRECTORY_ENTRY_SECURITY"]] if security.VirtualAddress != 0 and security.Size != 0: size = min(security.Size, len(overlay_data)) # Hash security directory file_hashes["security_directory"] = hash_data(overlay_data[:size], entropy_H) overlay_data = overlay_data[size:] overlay_offset += size # Hash overlay file_hashes["overlay"] = hash_data(overlay_data, entropy_H) file_hashes["file_no_overlay"] = hash_data(data[overlay_offset:], entropy_H) # Return JSON if json_dumps: return json.dumps(file_hashes) # Return dict return file_hashes
recipes/Python/578882_Monitor_Progress_File_Descriptors_Another/recipe-578882.py
tdiprima/code
2,023
12688929
#!/usr/bin/env python # # fdprogress.py -- by Alfe (<EMAIL>), inspired by azat@Stackoverflow # # usage: fdprogress.py <pid> # import time, os, os.path from collections import defaultdict def getFds(pid): return os.listdir('/proc/%s/fd/' % pid) def getPos(pid, fd): with open('/proc/%s/fdinfo/%s' % (pid, fd)) as f: return int(f.readline()[5:]) def getSize(pid, fd): return os.path.getsize(getPath(pid, fd)) class FdIsPipe(Exception): pass def getPath(pid, fd): result = os.readlink('/proc/%s/fd/%s' % (pid, fd)) if result.startswith('pipe:['): raise FdIsPipe(result) return result def extendHistory(history, pid): for fd in getFds(pid): try: history[fd, getPath(pid, fd)].append( (time.time(), getPos(pid, fd), getSize(pid, fd))) except FdIsPipe: pass # ignore fds to pipe def initHistory(pid): result = defaultdict(list) extendHistory(result, pid) return result def reduceHistory(history): for key, value in history.iteritems(): if len(value) > 2: del value[1:-2] # only keep first and last # (this can be more clever in the future) def entryPrediction(fd, path, values): t1, pos1, size1 = values[0] t2, pos2, size2 = values[-1] if t1 == t2: # no time passed yet? return fd, path, (t2, pos2, size2), None, None, None, None, None, None, None growth = (size2 - size1) / (t2 - t1) # bytes/sec growth of file if growth != 0: tSize0 = t1 - size1 / growth # time when size was 0 else: tSize0 = None speed = (pos2 - pos1) / (t2 - t1) # speed of pos in bytes/sec if speed != 0: tPos0 = t1 - pos1 / speed # time when pos was 0 tPosSize2 = t1 + (size2 - pos1) / speed # time of pos reaching size2 else: tPos0 = tPosSize2 = None if speed != growth: # when will both meet? tm = t2 + (size2 - pos2) / (speed - growth) sizeM = size2 + growth * (tm - t2) else: tm = sizeM = None return (fd, path, (t2, pos2, size2), growth, speed, tSize0, tPos0, tPosSize2, tm, sizeM) def eachPrediction(history): for (fd, path), values in history.iteritems(): yield entryPrediction(fd, path, values) def displayTime(t): if t is None: return "<>" d = t - time.time() try: lt = time.localtime(t) except: return "??" return ( time.strftime("%%F (now%+dy)" % (d/86400/365), lt) if abs(d) > 2 * 86400 * 365 else time.strftime("%%F (now%+dM)" % (d/86400/30), lt) if abs(d) > 2 * 86400 * 30 else time.strftime("%%F (now%+dd)" % (d/86400), lt) if abs(d) > 2 * 86400 else time.strftime("%%a, %%T (now%+dh)" % (d/3600), lt) if time.strftime('%F', lt) != time.strftime('%F', time.localtime()) else time.strftime("%%T (now%+dh)" % (d/3600), lt) if abs(d) > 2 * 3600 else time.strftime("%%T (now%+dm)" % (d/60), lt) if abs(d) > 2 * 60 else time.strftime("%%T (now%+ds)" % d, lt)) def displaySize(size): return ( "<>" if size is None else "%d B" % size if size < 1e3 else "%.2f kB" % (size / 1e3) if size < 1e6 else "%.2f MB" % (size / 1e6) if size < 1e9 else "%.2f GB" % (size / 1e9)) def displaySpeed(speed): return displaySize(speed) + "/s" def printPrediction(history): for (fd, path, (t2, pos2, size2), growth, speed, tSize0, tPos0, tPosSize2, tm, sizeM) in eachPrediction(history): print '\n', fd, "->", os.path.basename(path) dT = displayTime dSi = displaySize dSp = displaySpeed print "size:", dSi(size2), "\tgrowth:", dSp(growth), \ "\t\tpos:", dSi(pos2), "\tspeed:", dSp(speed) print "emptyTime:", dT(tSize0), "\tstartTime:", dT(tPos0), \ "\treachTime:", dT(tPosSize2), "\tmeetTime:", dT(tm) def main(argv): pid = argv[1] history = initHistory(pid) while True: os.system('clear') printPrediction(history) extendHistory(history, pid) reduceHistory(history) time.sleep(1.0) if __name__ == '__main__': import sys sys.exit(main(sys.argv))
DQMOffline/Trigger/python/PhotonMonitor_cfi.py
ckamtsikis/cmssw
852
12688940
import FWCore.ParameterSet.Config as cms from DQMOffline.Trigger.photonMonitoring_cfi import photonMonitoring hltPhotonmonitoring = photonMonitoring.clone() hltPhotonmonitoring.FolderName = cms.string('HLT/Photon/Photon200/') hltPhotonmonitoring.histoPSet.lsPSet = cms.PSet( nbins = cms.uint32 ( 250 ), xmin = cms.double( 0.), xmax = cms.double( 2500.), ) hltPhotonmonitoring.histoPSet.photonPSet = cms.PSet( nbins = cms.uint32( 500 ), xmin = cms.double( 0.0), xmax = cms.double(5000), ) hltPhotonmonitoring.met = cms.InputTag("pfMetEI") # pfMet hltPhotonmonitoring.jets = cms.InputTag("pfJetsEI") # ak4PFJets, ak4PFJetsCHS hltPhotonmonitoring.electrons = cms.InputTag("gedGsfElectrons") # while pfIsolatedElectronsEI are reco::PFCandidate ! hltPhotonmonitoring.photons = cms.InputTag("gedPhotons") # while pfIsolatedElectronsEI are reco::PFCandidate ! hltPhotonmonitoring.numGenericTriggerEventPSet.andOr = cms.bool( False ) #hltPhotonmonitoring.numGenericTriggerEventPSet.dbLabel = cms.string("ExoDQMTrigger") # it does not exist yet, we should consider the possibility of using the DB, but as it is now it will need a label per path ! hltPhotonmonitoring.numGenericTriggerEventPSet.andOrHlt = cms.bool(True)# True:=OR; False:=AND hltPhotonmonitoring.numGenericTriggerEventPSet.hltInputTag = cms.InputTag( "TriggerResults::HLT" ) hltPhotonmonitoring.numGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_Photon175_v*") # HLT_ZeroBias_v* #hltPhotonmonitoring.numGenericTriggerEventPSet.hltDBKey = cms.string("EXO_HLT_MET") hltPhotonmonitoring.numGenericTriggerEventPSet.errorReplyHlt = cms.bool( False ) hltPhotonmonitoring.numGenericTriggerEventPSet.verbosityLevel = cms.uint32(1) hltPhotonmonitoring.denGenericTriggerEventPSet.andOr = cms.bool( False ) hltPhotonmonitoring.denGenericTriggerEventPSet.andOrHlt = cms.bool( True ) hltPhotonmonitoring.denGenericTriggerEventPSet.hltInputTag = cms.InputTag( "TriggerResults::HLT" ) hltPhotonmonitoring.denGenericTriggerEventPSet.hltPaths = cms.vstring("HLT_PFJet40_v*","HLT_PFJet60_v*","HLT_PFJet80_v*") # HLT_ZeroBias_v* hltPhotonmonitoring.denGenericTriggerEventPSet.errorReplyHlt = cms.bool( False ) hltPhotonmonitoring.denGenericTriggerEventPSet.dcsInputTag = cms.InputTag( "scalersRawToDigi" ) hltPhotonmonitoring.denGenericTriggerEventPSet.dcsPartitions = cms.vint32 ( 24, 25, 26, 27, 28, 29 ) # 24-27: strip, 28-29: pixel, we should add all other detectors ! hltPhotonmonitoring.denGenericTriggerEventPSet.andOrDcs = cms.bool( False ) hltPhotonmonitoring.denGenericTriggerEventPSet.errorReplyDcs = cms.bool( True ) hltPhotonmonitoring.denGenericTriggerEventPSet.verbosityLevel = cms.uint32(1)
var/spack/repos/builtin/packages/ruby-erubis/package.py
kkauder/spack
2,360
12688959
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class RubyErubis(RubyPackage): """Erubis is a fast, secure, and very extensible implementation of eRuby. """ homepage = "http://www.kuwata-lab.com/erubis/" git = "https://github.com/kwatch/erubis.git" version('master', branch='master') version('2.7.0', commit='<PASSWORD>') def patch(self): filter_file('$Release$', str(self.version), 'erubis.gemspec', string=True)
albu-solution/src/pytorch_utils/concrete_eval.py
Hulihrach/RoadDetector
180
12688960
import os import cv2 cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) import numpy as np from .eval import Evaluator class FullImageEvaluator(Evaluator): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def process_batch(self, predicted, model, data, prefix=""): names = data['image_name'] for i in range(len(names)): self.on_image_constructed(names[i], predicted[i,...], prefix) def save(self, name, prediction, prefix=""): cv2.imwrite(os.path.join(self.save_dir, prefix + name), (prediction * 255).astype(np.uint8)) class CropEvaluator(Evaluator): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.current_mask = None self.current_prediction = None self.current_image_name = None def process_batch(self, predicted, model, data, prefix=""): names = data['image_name'] config = self.config batch_geometry = self.parse_geometry(data['geometry']) for i in range(len(names)): name = names[i] geometry = batch_geometry[i] sx, sy = geometry['sx'], geometry['sy'] pred = self.cut_border(np.squeeze(predicted[i,...])) if name != self.current_image_name: if self.current_image_name is None: self.current_image_name = name else: self.on_image_constructed(self.current_image_name, self.current_prediction / self.current_mask, prefix=prefix) self.construct_big_image(geometry) self.current_prediction[sy + self.border:sy + config.target_rows - self.border, sx + self.border:sx + config.target_cols - self.border] += pred self.current_mask[sy+self.border:sy + config.target_rows - self.border, sx + self.border:sx + config.target_cols - self.border] += 1 self.current_image_name = name def parse_geometry(self, batch_geometry): rows = batch_geometry['rows'].numpy() cols = batch_geometry['cols'].numpy() sx = batch_geometry['sx'].numpy() sy = batch_geometry['sy'].numpy() geometries = [] for idx in range(rows.shape[0]): geometry = {'rows': rows[idx], 'cols': cols[idx], 'sx': sx[idx], 'sy': sy[idx]} geometries.append(geometry) return geometries def construct_big_image(self, geometry): self.current_mask = np.zeros((geometry['rows'], geometry['cols']), np.uint8) self.current_prediction = np.zeros((geometry['rows'], geometry['cols']), np.float32) def save(self, name, prediction, prefix=""): cv2.imwrite(os.path.join(self.save_dir, prefix + name), (prediction * 255).astype(np.uint8)) def post_predict_action(self, prefix): self.on_image_constructed(self.current_image_name, self.current_prediction / self.current_mask, prefix=prefix) self.current_image_name = None
dl_coursera/markup.py
nodamu/dl_coursera
111
12688964
import logging import copy import re from urllib.parse import quote import bs4 import jinja2 from .resource import load_resource from .define import URL_ROOT def _is_root(e): return e.parent is None def _is_tag(e): return isinstance(e, bs4.Tag) def _has_no_child(tag): return len(tag.contents) == 0 class Traversal: '''depth-first traversal ''' def __init__(self, root, *, tagOnly=False): assert _is_root(root) self._e = root self._skip_children = False self._tagOnly = tagOnly def __iter__(self): return self def __next__(self): e = self._next() if e is None: raise StopIteration('no more element') self._e = e self._skip_children = False return e def _next(self): if (not self._skip_children) and _is_tag(self._e): for e in self._e.children: if (not self._tagOnly) or _is_tag(e): return e e = self._e while True: if _is_root(e): return None for _e in e.next_siblings: if (not self._tagOnly) or _is_tag(_e): return _e e = e.parent def skip_children(self): self._skip_children = True class CML: def __init__(self, doc): doc = doc.translate(doc.maketrans('\u21b5', ' ')) self._root = bs4.BeautifulSoup(doc, 'lxml-xml') self._assets = None self._assetIDs = None self._refids = None self._html = None def get_resources(self, *, _pat_ref=re.compile(r'%s/learn/[^/]+/resources/([0-9a-zA-Z-]+)' % URL_ROOT)): if self._assets is None: self._assets = [] self._assetIDs = [] self._refids = [] for e in Traversal(self._root, tagOnly=True): if e.name == 'asset': self._assetIDs.append(e['id']) elif e.name == 'img': if e.get('src'): import uuid from .lib.misc import url_basename from .define import Asset id_ = str(uuid.uuid4()); e['assetId'] = id_ url = e['src'] name = url_basename(url) self._assets.append(Asset(id_=id_, url=url, name=name)) else: self._assetIDs.append(e['assetId']) elif e.name == 'a': match = _pat_ref.match(e['href']) if match: _ = match.group(1) self._refids.append(_) e['refid'] = _ return self._assets, self._assetIDs, self._refids def to_html(self, *, assets): if self._html is not None: return self._html asset_by_id = {_['id']: _ for _ in assets} def _assetName(id_): return asset_by_id[id_]['name'] html = bs4.BeautifulSoup('', 'lxml') d = {} def _add(e0, e1): parent1 = html _e = e0 while _e is not None: if id(_e) in d: parent1 = d[id(_e)] break _e = _e.parent if (parent1 is html) and (not _is_tag(e0)): return if _is_tag(e0): d[id(e0)] = e1 parent1.append(e1) tr = Traversal(self._root) for e0 in tr: if isinstance(e0, bs4.NavigableString): _li = str(e0).split('$$') hasMath = False for _ in _li: if not hasMath: _add(e0, _) else: _span = bs4.Tag(name='span') _span['hasMath'] = 'true' _span.append(_) _add(e0, _span) hasMath = not hasMath continue if not _is_tag(e0): continue if e0.name == 'asset': assert _has_no_child(e0) e1 = bs4.Tag(name='p') e1['class'] = 'asset' e1.append(_assetName(e0['id'])) elif e0.name == 'img': assert _has_no_child(e0) e1 = bs4.Tag(name='img') e1['src'] = e1['alt'] = _assetName(e0['assetId']) e1['src'] = quote(e1['src']) elif e0.name == 'heading': e1 = bs4.Tag(name='h%d' % int(e0['level'])) elif e0.name == 'text': e1 = bs4.Tag(name='p') elif e0.name == 'list': bulletType = e0['bulletType'] if bulletType == 'numbers': e1 = bs4.Tag(name='ol') e1['type'] = '1' elif bulletType == 'bullets': e1 = bs4.Tag(name='ul') else: e1 = bs4.Tag(name='ul') logging.warning('[CML] unknown bulletType=%s' % bulletType) elif e0.name == 'a': e1 = bs4.Tag(name='a') e1['href'] = e0['href'] if e0.get('refid'): e1['refid'] = e0['refid'] elif e0.name == 'code': e1 = bs4.Tag(name='pre') e1.append(copy.copy(e0)) tr.skip_children() elif e0.name in ['li', 'strong', 'em', 'u', 'table', 'tr', 'td', 'th', 'sup', 'sub']: e1 = bs4.Tag(name=e0.name) elif e0.name in ['co-content']: continue else: logging.warning('[CML] unknown e0.name=%s\n%s' % (e0.name, e0)) continue _add(e0, e1) self._html = str(html) return self._html def render_supplement(*, content, resource_path, title='', __={}): if __.get('template') is None: __['template'] = jinja2.Template(load_resource('template/supplement.html').decode('UTF-8')) return __['template'].render(content=content, resource_path=resource_path, title=title)
tests/utils/object_factory.py
chschroeder/small-text
218
12688991
<reponame>chschroeder/small-text<gh_stars>100-1000 import numpy as np from small_text.active_learner import PoolBasedActiveLearner def get_initialized_active_learner(clf_factory, query_strategy, dataset): active_learner = PoolBasedActiveLearner(clf_factory, query_strategy, dataset) x_indices_initial = np.random.choice(np.arange(len(dataset)), size=10, replace=False) y_initial = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1]) active_learner.initialize_data(x_indices_initial, y_initial) return active_learner
tests/st/ops/ascend/test_drop_out_gen_mask.py
GuoSuiming/mindspore
3,200
12688996
<filename>tests/st/ops/ascend/test_drop_out_gen_mask.py # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.mask = P.DropoutGenMask(10, 28) self.shape = P.Shape() def construct(self, x_, y_): shape_x = self.shape(x_) return self.mask(shape_x, y_) x = np.ones([2, 4, 2, 2]).astype(np.int32) y = np.array([1.0]).astype(np.float32) def test_net(): mask = Net() tx, ty = Tensor(x), Tensor(y) output = mask(tx, ty) print(output.asnumpy()) assert ([255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255] == output.asnumpy()).all()
azure-kusto-data/tests/test_converter.py
artunduman/azure-kusto-python
134
12689003
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License import unittest from datetime import timedelta from azure.kusto.data._converters import to_datetime, to_timedelta class ConverterTests(unittest.TestCase): """These are unit tests that should test custom converters used in.""" def test_to_timestamp(self): """Happy path to test converter from TimeSpan to timedelta.""" # Test hours, minutes and seconds assert to_timedelta("00:00:00") == timedelta(seconds=0) assert to_timedelta("00:00:03") == timedelta(seconds=3) assert to_timedelta("00:04:03") == timedelta(minutes=4, seconds=3) assert to_timedelta("02:04:03") == timedelta(hours=2, minutes=4, seconds=3) # Test milliseconds assert to_timedelta("00:00:00.099") == timedelta(milliseconds=99) assert to_timedelta("02:04:03.0123") == timedelta(hours=2, minutes=4, seconds=3, microseconds=12300) # Test days assert to_timedelta("01.00:00:00") == timedelta(days=1) assert to_timedelta("02.04:05:07") == timedelta(days=2, hours=4, minutes=5, seconds=7) # Test negative assert to_timedelta("-01.00:00:00") == -timedelta(days=1) assert to_timedelta("-02.04:05:07") == -timedelta(days=2, hours=4, minutes=5, seconds=7) # Test all together assert to_timedelta("00.00:00:00.000") == timedelta(seconds=0) assert to_timedelta("02.04:05:07.789") == timedelta(days=2, hours=4, minutes=5, seconds=7, milliseconds=789) assert to_timedelta("03.00:00:00.111") == timedelta(days=3, milliseconds=111) # Test from Ticks assert to_timedelta(-80080008) == timedelta(microseconds=-8008001) assert to_timedelta(10010001) == timedelta(microseconds=1001000) def test_to_timestamp_fail(self): """ Sad path to test TimeSpan to timedelta converter """ self.assertRaises(ValueError, to_timedelta, "") self.assertRaises(ValueError, to_timedelta, "foo") self.assertRaises(ValueError, to_timedelta, "00") self.assertRaises(ValueError, to_timedelta, "00:00") self.assertRaises(ValueError, to_timedelta, "03.00:00:00.") self.assertRaises(ValueError, to_timedelta, "03.00:00:00.111a") def test_to_datetime(self): """Tests datetime read by KustoResultIter""" assert to_datetime("2016-06-07T16:00:00Z") is not None def test_to_datetime_fail(self): """Tests that invalid strings fails to convert to datetime""" self.assertRaises(ValueError, to_datetime, "invalid")
tests/components/panel_custom/__init__.py
domwillcode/home-assistant
30,023
12689019
<gh_stars>1000+ """Tests for the panel_custom component."""
examples/implicit_orientation_learning/processors.py
niqbal996/paz
300
12689041
<reponame>niqbal996/paz from paz.abstract import Processor import numpy as np class MakeDictionary(Processor): def __init__(self, encoder, renderer): super(MakeDictionary, self).__init__() self.latent_dimension = encoder.encoder.output_shape[1] self.encoder = encoder self.renderer = renderer def call(self): data = self.renderer.render() dictionary = {} latent_vectors = np.zeros((len(data), self.latent_dimension)) for sample_arg, sample in enumerate(data): image = sample['image'] latent_vectors[sample_arg] = self.encoder(image) dictionary[sample_arg] = image dictionary['latent_vectors'] = latent_vectors return dictionary class MeasureSimilarity(Processor): def __init__(self, dictionary, measure): super(MeasureSimilarity, self).__init__() self.dictionary = dictionary self.measure = measure def call(self, latent_vector): latent_vectors = self.dictionary['latent_vectors'] measurements = self.measure(latent_vectors, latent_vector) closest_image = self.dictionary[np.argmax(measurements)] return latent_vector, closest_image
psdaq/psdaq/pyxpm/surf/devices/silabs/_Si5345Lite.py
ZhenghengLi/lcls2
134
12689047
#----------------------------------------------------------------------------- # This file is part of 'SLAC Firmware Standard Library'. # It is subject to the license terms in the LICENSE.txt file found in the # top-level directory of this distribution and at: # https://confluence.slac.stanford.edu/display/ppareg/LICENSE.html. # No part of 'SLAC Firmware Standard Library', including this file, # may be copied, modified, propagated, or distributed except according to # the terms contained in the LICENSE.txt file. #----------------------------------------------------------------------------- import pyrogue as pr import surf.devices.silabs as silabs import csv import click import fnmatch import rogue class Si5345Lite(pr.Device): def __init__(self, simpleDisplay = True, advanceUser = False, liteVersion = True, **kwargs): self._useVars = rogue.Version.greaterThanEqual('5.4.0') if self._useVars: size = 0 else: size = (0x1000 << 2) # 16KB super().__init__(size=size, **kwargs) self.add(pr.LocalVariable( name = "CsvFilePath", description = "Used if command's argument is empty", mode = "RW", value = "", )) ############################## # Commands ############################## @self.command(value='',description="Load the .CSV from CBPro.",) def LoadCsvFile(arg): # Check if non-empty argument if (arg != ""): path = arg else: # Use the variable path instead path = self.CsvFilePath.get() # Check for .csv file if fnmatch.fnmatch(path, '*.csv'): click.secho( f'{self.path}.LoadCsvFile(): {path}', fg='green') else: click.secho( f'{self.path}.LoadCsvFile(): {path} is not .csv', fg='red') return # Power down during the configuration load self.Page0.PDN.set(True) # Open the .CSV file with open(path) as csvfile: reader = csv.reader(csvfile, delimiter=',', quoting=csv.QUOTE_NONE) # Loop through the rows in the CSV file for row in reader: if (row[0]!='Address'): self._setValue( offset = (int(row[0],16)<<2), data = int(row[1],16), ) # Update local RemoteVariables and verify conflagration self.readBlocks(recurse=True) self.checkBlocks(recurse=True) # Execute the Page5.BW_UPDATE_PLL command self.Page5.BW_UPDATE_PLL() # Power Up after the configuration load self.Page0.PDN.set(False) # Clear the internal error flags self.Page0.ClearIntErrFlag() ############################## # Pages ############################## self._pages = { 0: silabs.Si5345Page0(offset=(0x000<<2),simpleDisplay=simpleDisplay,expand=False), # 0x0000 - 0x03FF 1: silabs.Si5345Page1(offset=(0x100<<2),simpleDisplay=simpleDisplay,expand=False,hidden=not(advanceUser),liteVersion=liteVersion), # 0x0400 - 0x07FF 2: silabs.Si5345Page2(offset=(0x200<<2),simpleDisplay=simpleDisplay,expand=False,hidden=not(advanceUser),liteVersion=liteVersion), # 0x0800 - 0x0BFF 3: silabs.Si5345Page3(offset=(0x300<<2),simpleDisplay=simpleDisplay,expand=False,hidden=not(advanceUser),liteVersion=liteVersion), # 0x0C00 - 0x0FFF 4: silabs.Si5345Page4(offset=(0x400<<2),simpleDisplay=simpleDisplay,expand=False,hidden=not(advanceUser),liteVersion=liteVersion), # 0x1000 - 0x13FF 5: silabs.Si5345Page5(offset=(0x500<<2),simpleDisplay=simpleDisplay,expand=False,hidden=not(advanceUser),liteVersion=liteVersion), # 0x1400 - 0x17FF 6: silabs.Si5345PageBase(name='Page6',offset=(0x600<<2),expand=False,hidden=not(advanceUser)), # 0x1800 - 0x1BFF 7: silabs.Si5345PageBase(name='Page7',offset=(0x700<<2),expand=False,hidden=not(advanceUser)), # 0x1C00 - 0x1FFF 8: silabs.Si5345PageBase(name='Page8',offset=(0x800<<2),expand=False,hidden=not(advanceUser)), # 0x2000 - 0x23FF 9: silabs.Si5345Page9(offset=(0x900<<2),simpleDisplay=simpleDisplay,expand=False,hidden=not(advanceUser),liteVersion=liteVersion), # 0x2400 - 0x27FF 10: silabs.Si5345PageA(offset=(0xA00<<2),simpleDisplay=simpleDisplay,expand=False,hidden=not(advanceUser),liteVersion=liteVersion), # 0x2800 - 0x2BFF 11: silabs.Si5345PageB(offset=(0xB00<<2),simpleDisplay=simpleDisplay,expand=False,hidden=not(advanceUser),liteVersion=liteVersion), # 0x2C00 - 0x2FFF } # Add Pages for k,v in self._pages.items(): self.add(v) self.add(pr.LinkVariable( name = 'Locked', description = 'Inverse of LOL', mode = 'RO', dependencies = [self.Page0.LOL], linkedGet = lambda: (False if self.Page0.LOL.value() else True) )) def _setValue(self,offset,data): if self._useVars: # Note: index is byte index (not word index) self._pages[offset // 0x400].DataBlock.set(value=data,index=(offset%0x400)>>2) else: self._rawWrite(offset,data) # Deprecated
AlphaZero/AlphaMCTS.py
morozig/muzero
111
12689048
<filename>AlphaZero/AlphaMCTS.py """ Contains logic for performing Monte Carlo Tree Search having access to the environment. The class is an adaptation of AlphaZero-General's MCTS search to accommodate non-adversarial environments (MDPs). We utilize the MinMax scaling of backed-up rewards for the UCB formula and (by default) compute the UCB using the formula proposed by the MuZero algorithm. The MCTS returns both the estimated root-value and action probabilities. The MCTS also discounts backed up rewards given that gamma < 1. Notes: - Adapted from https://github.com/suragnair/alpha-zero-general - Base implementation done. - Documentation 15/11/2020 """ import typing import numpy as np from AlphaZero.AlphaNeuralNet import AlphaZeroNeuralNet from utils import DotDict from utils.selfplay_utils import MinMaxStats, GameHistory, GameState EPS = 1e-8 class MCTS: """ This class handles the MCTS tree while having access to the environment logic. """ CANONICAL: bool = False # Whether to compute the UCB formula using AlphaZero's formula (true) or MuZero's formula. def __init__(self, game, neural_net: AlphaZeroNeuralNet, args: DotDict) -> None: """ Initialize all requisite variables for performing MCTS for AlphaZero. :param game: Game Implementation of Game class for environment logic. :param neural_net: AlphaNeuralNet Implementation of AlphaNeuralNet class for inference. :param args: DotDict Data structure containing parameters for the tree search. """ self.game = game self.neural_net = neural_net self.args = args # Static helper variables. self.single_player = game.n_players == 1 self.action_size = game.getActionSize() # Gets reinitialized at every search self.minmax = MinMaxStats(self.args.minimum_reward, self.args.maximum_reward) self.Qsa = {} # stores Q values for s,a (as defined in the paper) self.Ssa = {} # stores state transitions for s, a self.Rsa = {} # stores R values for s,a self.Nsa = {} # stores #times edge s,a was visited self.Ns = {} # stores #times board s was visited self.Ps = {} # stores initial policy (returned by neural net) self.Vs = {} # stores game.getValidMoves for board s def clear_tree(self) -> None: """ Clear all statistics stored in the current search tree """ self.Qsa, self.Ssa, self.Rsa, self.Nsa, self.Ns, self.Ps, self.Vs = [{} for _ in range(7)] def initialize_root(self, state: GameState, trajectory: GameHistory) -> typing.Tuple[bytes, float]: """ Perform initial inference for the root state and perturb the network prior with Dirichlet noise. Additionally mask the illegal moves in the network prior and initialize all statistics for starting the MCTS search. :param state: GameState Data structure containing the current state of the environment. :param trajectory: GameHistory Data structure containing the entire episode trajectory of the agent(s). :return: tuple (hash, root_value) The hash of the environment state and inferred root-value. """ network_input = trajectory.stackObservations(self.neural_net.net_args.observation_length, state.observation) pi_0, v_0 = self.neural_net.predict(network_input) s_0 = self.game.getHash(state) # Add Dirichlet Exploration noise noise = np.random.dirichlet([self.args.dirichlet_alpha] * len(pi_0)) self.Ps[s_0] = noise * self.args.exploration_fraction + (1 - self.args.exploration_fraction) * pi_0 # Mask the prior for illegal moves, and re-normalize accordingly. self.Vs[s_0] = self.game.getLegalMoves(state) self.Ps[s_0] *= self.Vs[s_0] self.Ps[s_0] = self.Ps[s_0] / np.sum(self.Ps[s_0]) # Sum of visit counts of the edges/ children and legal moves. self.Ns[s_0] = 0 return s_0, v_0 def compute_ucb(self, s: bytes, a: int, exploration_factor: float) -> float: """ Compute the UCB for an edge (s, a) within the MCTS tree: PUCT(s, a) = MinMaxNormalize(Q(s, a)) + P(s, a) * sqrt(visits_parent / (1 + visits_s)) * exploration_factor Where the exploration factor is either the exploration term of MuZero (default) or a float c_1. Illegal edges are returned as zeros. The Q values within the tree are MinMax normalized over the accumulated statistics over the current tree search. :param s: hash Key of the current state inside the MCTS tree. :param a: int Action key representing the path to reach the child node from path (s, a) :param exploration_factor: float Pre-computed exploration factor from the MuZero PUCT formula. :return: float Upper confidence bound with neural network prior """ if s in self.Vs and not self.Vs[s][a]: return 0 visit_count = self.Nsa[(s, a)] if (s, a) in self.Nsa else 0 q_value = self.minmax.normalize(self.Qsa[(s, a)]) if (s, a) in self.Qsa else 0 c_children = np.max([self.Ns[s], 1e-8]) # Ensure that prior doesn't collapse to 0 if s is new. # Exploration if self.CANONICAL: # Standard PUCT formula from the AlphaZero paper ucb = self.Ps[s][a] * np.sqrt(c_children) / (1 + visit_count) * self.args.c1 else: # The PUCT formula from the MuZero paper ucb = self.Ps[s][a] * np.sqrt(c_children) / (1 + visit_count) * exploration_factor ucb += q_value # Exploitation return ucb def runMCTS(self, state: GameState, trajectory: GameHistory, temp: int = 1) -> typing.Tuple[np.ndarray, float]: """ This function performs 'num_MCTS_sims' simulations of MCTS starting from the provided root GameState. Before the search we only clear statistics stored inside the MinMax tree. In this way we ensure that reward bounds get refreshed over time/ don't get affected by strong reward scaling in past searches. This implementation, thus, reuses state state transitions from past searches. This may influence memory usage. Our estimation of the root-value of the MCTS tree search is based on a sample average of each backed-up MCTS value. This means that this estimate represents an on-policy estimate V^pi. Illegal moves are masked before computing the action probabilities. :param state: GameState Data structure containing the current state of the environment. :param trajectory: GameHistory Data structure containing the entire episode trajectory of the agent(s). :param temp: float Visit count exponentiation factor. A value of 0 = Greedy, +infinity = uniformly random. :return: tuple (pi, v) The move probabilities of MCTS and the estimated root-value of the policy. """ # Refresh value bounds in the tree self.minmax.refresh() # Initialize the root variables needed for MCTS. s_0, v_0 = self.initialize_root(state, trajectory) # Aggregate root state value over MCTS back-propagated values v_search = sum([self._search(state, trajectory) for _ in range(self.args.num_MCTS_sims - 1)]) v = (v_0 + (v_search if self.single_player else -v_search)) / self.args.num_MCTS_sims # MCTS Visit count array for each edge 'a' from root node 's_0'. counts = np.array([self.Nsa[(s_0, a)] if (s_0, a) in self.Nsa else 0 for a in range(self.action_size)]) if temp == 0: # Greedy selection. One hot encode the most visited paths (randomly break ties). move_probabilities = np.zeros(len(counts)) move_probabilities[np.argmax(counts + np.random.randn(len(counts)) * 1e-8)] = 1 else: counts = np.power(counts, 1. / temp) move_probabilities = counts / np.sum(counts) return move_probabilities, v def _search(self, state: GameState, trajectory: GameHistory, path: typing.Tuple[int, ...] = tuple()) -> float: """ Recursively perform MCTS search inside the actual environments with search-paths guided by the PUCT formula. Selection chooses an action for expanding/ traversing the edge (s, a) within the tree search. The exploration_factor for the PUCT formula is computed within this function for efficiency: exploration_factor = c1 * log(visits_s + c2 + 1) - log(c2) Setting AlphaMCTS.CANONICAL to true sets exploration_factor just to c1. If an edge is expanded, we perform a step within the environment (with action a) and observe the state transition, reward, and infer the new move probabilities, and state value. If an edge is traversed, we simply look up earlier inferred/ observed values from the class dictionaries. During backup we update the current value estimates of an edge Q(s, a) using an average, we additionally update the MinMax statistics to get reward/ value boundaries for the PUCT formula. Note that backed-up values get discounted for gamma < 1. For adversarial games, we negate the backed up value G_k at each backup. The actual search-path 'path' is kept as a debugging-variable, it currently has no practical use. This method may raise a recursion error if the environment creates cycles, this should be highly improbable for most environments. If this does occur, the environment can be altered to terminate after n visits to some cycle. :param state: GameState Numerical prediction of the state by the encoder/ dynamics model. :param trajectory: GameHistory Data structure containing all observations until the current search-depth. :param path: tuple of integers representing the tree search-path of the current function call. :return: float The backed-up discounted/ Monte-Carlo returns (dependent on gamma) of the tree search. :raises RecursionError: When cycles occur within the search path, the search can get stuck *ad infinitum*. """ s = self.game.getHash(state) ### SELECTION # pick the action with the highest upper confidence bound exploration_factor = self.args.c1 + np.log(self.Ns[s] + self.args.c2 + 1) - np.log(self.args.c2) confidence_bounds = np.asarray([self.compute_ucb(s, a, exploration_factor) for a in range(self.action_size)]) a = np.flatnonzero(self.Vs[s])[np.argmax(confidence_bounds[self.Vs[s].astype(bool)])] # Get masked argmax. # Default leaf node value. Future possible future reward is 0. Variable is overwritten if edge is non-terminal. value = 0 if (s, a) not in self.Ssa: ### ROLLOUT for valid moves next_state, reward = self.game.getNextState(state, a, clone=True) s_next = self.game.getHash(next_state) # Transition statistics. self.Rsa[(s, a)], self.Ssa[(s, a)], self.Ns[s_next] = reward, next_state, 0 # Inference for non-terminal nodes. if not next_state.done: # Build network input for inference. network_input = trajectory.stackObservations(self.neural_net.net_args.observation_length, state.observation) prior, value = self.neural_net.predict(network_input) # Inference statistics. Alternate value perspective due to adversary (model predicts for next player). self.Ps[s_next], self.Vs[s_next] = prior, self.game.getLegalMoves(next_state) value = value if self.single_player else -value elif not self.Ssa[(s, a)].done: ### EXPANSION trajectory.observations.append(state.observation) # Build up an observation trajectory inside the tree value = self._search(self.Ssa[(s, a)], trajectory, path + (a,)) trajectory.observations.pop() # Clear tree observation trajectory when backing up ### BACKUP gk = self.Rsa[(s, a)] + self.args.gamma * value # (Discounted) Value of the current node if (s, a) in self.Qsa: self.Qsa[(s, a)] = (self.Nsa[(s, a)] * self.Qsa[(s, a)] + gk) / (self.Nsa[(s, a)] + 1) self.Nsa[(s, a)] += 1 else: self.Qsa[(s, a)] = gk self.Nsa[(s, a)] = 1 self.minmax.update(self.Qsa[(s, a)]) self.Ns[s] += 1 return gk if self.single_player else -gk
optimus/engines/cudf/rows.py
ironmussa/Optimus
1,045
12689049
<filename>optimus/engines/cudf/rows.py import functools import operator from optimus.engines.base.cudf.rows import CUDFBaseRows import cudf import pandas as pd from optimus.engines.base.dataframe.rows import DataFrameBaseRows from optimus.engines.base.cudf.rows import CUDFBaseRows from optimus.engines.base.rows import BaseRows class Rows(DataFrameBaseRows, CUDFBaseRows, BaseRows): pass
pythran/tests/user_defined_import/global_init_alias_main.py
davidbrochart/pythran
1,647
12689086
<reponame>davidbrochart/pythran<filename>pythran/tests/user_defined_import/global_init_alias_main.py import global_init as gi XX = [gi.aa(), 3] #pythran export bb() def bb(): return XX
importer/models.py
juliecentofanti172/juliecentofanti.github.io
134
12689087
<filename>importer/models.py """ See the module-level docstring for implementation details """ from django.core.validators import MinValueValidator from django.db import models # FIXME: these classes should have names which more accurately represent what they do class TaskStatusModel(models.Model): created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) last_started = models.DateTimeField( help_text="Last time when a worker started processing this job", null=True, blank=True, ) completed = models.DateTimeField( help_text="Time when the job completed without error", null=True, blank=True ) failed = models.DateTimeField( help_text="Time when the job failed due to an error", null=True, blank=True ) status = models.TextField( help_text="Status message, if any, from the last worker", blank=True, default="" ) task_id = models.UUIDField( help_text="UUID of the last Celery task to process this record", null=True, blank=True, ) class Meta: abstract = True class ImportJob(TaskStatusModel): """ Represents a request by a user to import item(s) from a remote URL """ created_by = models.ForeignKey("auth.User", null=True, on_delete=models.SET_NULL) project = models.ForeignKey("concordia.Project", on_delete=models.CASCADE) url = models.URLField(verbose_name="Source URL for the entire job") def __str__(self): return "ImportJob(created_by=%s, project=%s, url=%s)" % ( self.created_by.username, self.project.title, self.url, ) class ImportItem(TaskStatusModel): """ Record of the task status for each Item being imported """ job = models.ForeignKey(ImportJob, on_delete=models.CASCADE, related_name="items") url = models.URLField() item = models.ForeignKey("concordia.Item", on_delete=models.CASCADE) class Meta: unique_together = (("job", "item"),) def __str__(self): return "ImportItem(job=%s, url=%s)" % (self.job, self.url) class ImportItemAsset(TaskStatusModel): """ Record of the task status for each Asset being imported """ import_item = models.ForeignKey( ImportItem, on_delete=models.CASCADE, related_name="assets" ) url = models.URLField() sequence_number = models.PositiveIntegerField(validators=[MinValueValidator(1)]) asset = models.ForeignKey("concordia.Asset", on_delete=models.CASCADE) class Meta: unique_together = (("import_item", "sequence_number"), ("import_item", "asset")) def __str__(self): return "ImportItemAsset(import_item=%s, url=%s)" % (self.import_item, self.url)
lightbus/serializers/by_field.py
gcollard/lightbus
178
12689119
""" Serializers suitable for transports which support multiple fields per message These serializers handle moving data to/from a dictionary format. The format looks like this:: # Message metadata first. Each value is implicitly a utf8 string id: 'ZOCTLh1CEeimW3gxwcOTbg==' api_name: 'my_company.auth' procedure_name: 'check_password' return_path: 'redis+key://my_company.auth.check_password:result:ZOCTLh1CEeimW3gxwcOTbg==' # kwargs follow, each encoded with the provided encoder (in this case JSON) kw:username: '"admin"' kw:password: '"<PASSWORD>"' """ from typing import TYPE_CHECKING from lightbus.serializers.base import ( decode_bytes, sanity_check_metadata, MessageSerializer, MessageDeserializer, ) if TYPE_CHECKING: # pylint: disable=unused-import,cyclic-import from lightbus import Message class ByFieldMessageSerializer(MessageSerializer): def __call__(self, message: "Message") -> dict: """Takes a message object and returns a serialised dictionary representation See the module-level docs (above) for further details """ serialized = message.get_metadata() for k, v in message.get_kwargs().items(): serialized[":{}".format(k)] = self.encoder(v) return serialized class ByFieldMessageDeserializer(MessageDeserializer): def __call__(self, serialized: dict, *, native_id=None, **extra): """Takes a dictionary of serialised fields and returns a Message object See the module-level docs (above) for further details """ metadata = {} kwargs = {} for k, v in serialized.items(): k = decode_bytes(k) v = decode_bytes(v) if not k: continue # kwarg fields start with a ':', everything else is metadata if k[0] == ":": # kwarg values need decoding kwargs[k[1:]] = self.decoder(v) else: # metadata args are implicitly strings, so we don't need to decode them metadata[k] = v sanity_check_metadata(self.message_class, metadata) if "native_id" in metadata: native_id = metadata.pop("native_id") return self.message_class.from_dict( metadata=metadata, kwargs=kwargs, native_id=native_id, **extra )
parsl/tests/test_python_apps/test_depfail_propagation.py
cylondata/parsl
323
12689153
<filename>parsl/tests/test_python_apps/test_depfail_propagation.py from parsl import python_app from parsl.dataflow.error import DependencyError @python_app def fails(): raise ValueError("Deliberate failure") @python_app def depends(parent): return 1 def test_depfail_once(): """Test the simplest dependency failure case""" f1 = fails() f2 = depends(f1) assert isinstance(f1.exception(), Exception) assert not isinstance(f1.exception(), DependencyError) assert isinstance(f2.exception(), DependencyError) def test_depfail_chain(): """Test that dependency failures chain""" f1 = fails() f2 = depends(f1) f3 = depends(f2) f4 = depends(f3) assert isinstance(f1.exception(), Exception) assert not isinstance(f1.exception(), DependencyError) assert isinstance(f2.exception(), DependencyError) assert isinstance(f3.exception(), DependencyError) assert isinstance(f4.exception(), DependencyError) def test_depfail_branches(): """Test that dependency failures propagate in the presence of multiple downstream tasks.""" f1 = fails() f2 = depends(f1) f3 = depends(f1) assert isinstance(f1.exception(), Exception) assert not isinstance(f1.exception(), DependencyError) assert isinstance(f2.exception(), DependencyError) assert isinstance(f3.exception(), DependencyError)
env/lib/python3.6/site-packages/py4j/tests/java_tls_test.py
jenngeorge/kafka-practice
111
12689156
""" Created on Feb 2, 2016 @author: <NAME> """ from __future__ import unicode_literals, absolute_import from multiprocessing import Process import subprocess import unittest import ssl import os import sys from py4j.java_gateway import ( JavaGateway, CallbackServerParameters, set_default_callback_accept_timeout, GatewayParameters) from py4j.tests.java_gateway_test import ( PY4J_JAVA_PATH, safe_shutdown, sleep) set_default_callback_accept_timeout(0.125) def start_example_tls_server(): subprocess.call([ "java", "-cp", PY4J_JAVA_PATH, "py4j.examples.ExampleSSLApplication"]) def start_example_tls_process(): p = Process(target=start_example_tls_server) p.start() sleep() return p class Adder(object): def doOperation(self, i, j): return i + j class Java: implements = ["py4j.examples.Operator"] if sys.version_info >= (2, 7): # ssl.SSLContext introduced in Python 2.7 class TestIntegration(unittest.TestCase): """Tests cases borrowed from other files, but executed over a TLS connection. """ def setUp(self): key_file = os.path.join( os.path.dirname(os.path.realpath(__file__)), "selfsigned.pem") client_ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1) client_ssl_context.verify_mode = ssl.CERT_REQUIRED client_ssl_context.check_hostname = True client_ssl_context.load_verify_locations(cafile=key_file) server_ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1) server_ssl_context.load_cert_chain(key_file, password='password') callback_server_parameters = CallbackServerParameters( ssl_context=server_ssl_context) # address must match cert, because we're checking hostnames gateway_parameters = GatewayParameters( address='localhost', ssl_context=client_ssl_context) self.p = start_example_tls_process() self.gateway = JavaGateway( gateway_parameters=gateway_parameters, callback_server_parameters=callback_server_parameters) # It seems SecureServerSocket may need a little more time to # initialize on some platforms/slow machines. sleep(0.500) def tearDown(self): safe_shutdown(self) self.p.join() sleep() def testUnicode(self): sleep() sb = self.gateway.jvm.java.lang.StringBuffer() sb.append("\r\n\tHello\r\n\t") self.assertEqual("\r\n\tHello\r\n\t", sb.toString()) def testMethodConstructor(self): sleep() adder = Adder() oe1 = self.gateway.jvm.py4j.examples.OperatorExample() # Test method oe1.randomBinaryOperator(adder) # Test constructor oe2 = self.gateway.jvm.py4j.examples.OperatorExample(adder) self.assertTrue(oe2 is not None) if __name__ == "__main__": unittest.main()
HunterSense/model/request_log.py
tt9133github/hunter
322
12689165
#!/ usr/bin/env # coding=utf-8 # # Copyright 2019 ztosec & https://www.zto.com/ # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ author: b5mali4 """ import time import datetime from peewee import * from .base_model import BaseModel from .base_model import BaseModelService from common.sqllite_util import SqliteManage class RequestLog(BaseModel): """ To Create Table: >>> if __name__ == "__main__": >>> RequestLog.create_table() ip : 目标IP port: 目标端口 protocol: 协议 time: 时间 plugin: 插件名称 recv_data: 原始请求数据 time_stamp: 时间戳 """ ip = TextField(default='') port = TextField(default='') protocol = TextField(null=True) time_str = DateTimeField(formats='%Y-%m-%d %H:%M:%S', default=datetime.datetime.now) plugin = TextField(default='') recv_data = TextField(default='') time_stamp = FloatField(null=True, default=time.mktime(datetime.datetime.now().timetuple())) class Meta: database = SqliteManage.get_database() class RequestLogService: @staticmethod def get_fields_by_where(**kwargs): """ To use: >>> request_logs = RequestLogService.get_fields_by_where(fields=(RequestLog.port, RequestLog.plugin), where=(RequestLog.protocol == 'udp')) >>> print(request_logs) :param kwargs: :return: """ return BaseModelService.get_fields_by_where(RequestLog, **kwargs) @staticmethod def remove(**kwargs): """ 数据库删除操作 To use: >>> RequestLogService.remove(where=(RequestLog.id == 26)) :param kwargs: :return: """ return BaseModelService.remove(RequestLog, **kwargs) @staticmethod def count(**kwargs): """ 数据数量 To use: >>> RequestLogService.count(where=(RequestLog.id == 26)) :param kwargs: :return: """ return BaseModelService.count(RequestLog, **kwargs) @staticmethod def update(**kwargs): """ 更新操作 To use: >>> RequestLogService.update(fields=({RequestLog.port: "7998" })) :param kwargs: :return: """ return BaseModelService.update(RequestLog, **kwargs) @staticmethod def save(**kwargs): """ 更新操作 To use: >>> RequestLogService.save(ip="127.0.0.1") :param kwargs: :return: """ return BaseModelService.save(RequestLog, **kwargs)
nextgen/bcbio/pipeline/shared.py
bgruening/bcbb
339
12689185
<gh_stars>100-1000 """Pipeline functionality shared amongst multiple analysis types. """ import os import collections from contextlib import closing import pysam from bcbio import broad from bcbio.pipeline.alignment import get_genome_ref from bcbio.utils import file_exists, safe_makedir, save_diskspace from bcbio.distributed.transaction import file_transaction # ## Split/Combine helpers def combine_bam(in_files, out_file, config): """Parallel target to combine multiple BAM files. """ runner = broad.runner_from_config(config) runner.run_fn("picard_merge", in_files, out_file) for in_file in in_files: save_diskspace(in_file, "Merged into {0}".format(out_file), config) runner.run_fn("picard_index", out_file) return out_file def process_bam_by_chromosome(output_ext, file_key, default_targets=None, dir_ext_fn=None): """Provide targets to process a BAM file by individual chromosome regions. output_ext: extension to supply to output files file_key: the key of the BAM file in the input data map default_targets: a list of extra chromosome targets to process, beyond those specified in the BAM file. Useful for retrieval of non-mapped reads. dir_ext_fn: A function to retrieve a directory naming extension from input data map. """ if default_targets is None: default_targets = [] def _do_work(data): bam_file = data[file_key] out_dir = os.path.dirname(bam_file) if dir_ext_fn: out_dir = os.path.join(out_dir, dir_ext_fn(data)) out_file = os.path.join(out_dir, "{base}{ext}".format( base=os.path.splitext(os.path.basename(bam_file))[0], ext=output_ext)) part_info = [] if not file_exists(out_file): work_dir = safe_makedir( "{base}-split".format(base=os.path.splitext(out_file)[0])) with closing(pysam.Samfile(bam_file, "rb")) as work_bam: for chr_ref in list(work_bam.references) + default_targets: chr_out = os.path.join(work_dir, "{base}-{ref}{ext}".format( base=os.path.splitext(os.path.basename(bam_file))[0], ref=chr_ref, ext=output_ext)) part_info.append((chr_ref, chr_out)) return out_file, part_info return _do_work def write_nochr_reads(in_file, out_file): """Write a BAM file of reads that are not on a reference chromosome. This is useful for maintaining non-mapped reads in parallel processes that split processing by chromosome. """ if not file_exists(out_file): with closing(pysam.Samfile(in_file, "rb")) as in_bam: with file_transaction(out_file) as tx_out_file: with closing(pysam.Samfile(tx_out_file, "wb", template=in_bam)) as out_bam: for read in in_bam: if read.tid < 0: out_bam.write(read) return out_file def subset_bam_by_region(in_file, region, out_file_base = None): """Subset BAM files based on specified chromosome region. """ if out_file_base is not None: base, ext = os.path.splitext(out_file_base) else: base, ext = os.path.splitext(in_file) out_file = "%s-subset%s%s" % (base, region, ext) if not file_exists(out_file): with closing(pysam.Samfile(in_file, "rb")) as in_bam: target_tid = in_bam.gettid(region) assert region is not None, \ "Did not find reference region %s in %s" % \ (region, in_file) with file_transaction(out_file) as tx_out_file: with closing(pysam.Samfile(tx_out_file, "wb", template=in_bam)) as out_bam: for read in in_bam: if read.tid == target_tid: out_bam.write(read) return out_file def subset_variant_regions(variant_regions, region, out_file): """Return BED file subset by a specified chromosome region. variant_regions is a BED file, region is a chromosome name. """ if region is None: return variant_regions elif variant_regions is None: return region elif region.find(":") > 0: raise ValueError("Partial chromosome regions not supported") else: # create an ordered subset file for processing subset_file = "{0}-regions.bed".format(os.path.splitext(out_file)[0]) items = [] with open(variant_regions) as in_handle: for line in in_handle: if line.startswith(region) and line.split("\t")[0] == region: start = int(line.split("\t")[1]) items.append((start, line)) if len(items) > 0: if not os.path.exists(subset_file): with open(subset_file, "w") as out_handle: items.sort() for _, line in items: out_handle.write(line) return subset_file else: return region # ## Retrieving file information from configuration variables def configured_ref_file(name, config, sam_ref): """Full path to a reference file specified in the configuration. Resolves non-absolute paths relative to the base genome reference directory. """ ref_file = config["algorithm"].get(name, None) if ref_file: if not os.path.isabs(ref_file): base_dir = os.path.dirname(os.path.dirname(sam_ref)) ref_file = os.path.join(base_dir, ref_file) return ref_file def configured_vrn_files(config, sam_ref): """Full path to all configured files for variation assessment. """ names = ["dbsnp", "train_hapmap", "train_1000g_omni", "train_indels"] VrnFiles = collections.namedtuple("VrnFiles", names) return apply(VrnFiles, [configured_ref_file(n, config, sam_ref) for n in names]) def ref_genome_info(info, config, dirs): """Retrieve reference genome information from configuration variables. """ genome_build = info.get("genome_build", None) (_, sam_ref) = get_genome_ref(genome_build, config["algorithm"]["aligner"], dirs["galaxy"]) return genome_build, sam_ref
desktop/core/ext-py/urllib2_kerberos-0.1.6/setup.py
kokosing/hue
5,079
12689186
<reponame>kokosing/hue<filename>desktop/core/ext-py/urllib2_kerberos-0.1.6/setup.py<gh_stars>1000+ # Copyright 2008 Lime Nest LLC # Copyright 2008 Lime Spot LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup import hgvers setup( name = "urllib2_kerberos", version = hgvers.version, py_modules = [ 'urllib2_kerberos' ], # install_requires = ['kerberos'], author = "<NAME>", author_email = "<EMAIL>", description = "Kerberos over HTTP Negotiate/SPNEGO support for urllib2", license = "Apache 2.0", url = "http://limedav.com/hg/urllib2_kerberos/", keywords = "urllib2 kerberos http negotiate spnego", classifiers = [ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: System :: Systems Administration :: Authentication/Directory' ] )
python_toolbox/wx_tools/widgets/cute_bitmap_button.py
hboshnak/python_toolbox
119
12689197
# Copyright 2009-2011 <NAME>. # This program is distributed under the LGPL2.1 license. import wx from python_toolbox.wx_tools.widgets.cute_button import CuteButton class CuteBitmapButton(wx.BitmapButton, CuteButton): def __init__(self, parent, id=-1, bitmap=wx.NullBitmap, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.BU_AUTODRAW, validator=wx.DefaultValidator, name=wx.ButtonNameStr, bitmap_disabled=None, tool_tip=None, help_text=None): wx.BitmapButton.__init__(self, parent=parent, id=id, bitmap=bitmap, pos=pos, size=size, style=style, validator=validator, name=name) if bitmap_disabled is not None: self.SetBitmapDisabled(bitmap_disabled) self.set_tool_tip_and_help_text(tool_tip, help_text)
scripts/monitoring/cron-haproxy-close-wait.py
fahlmant/openshift-tools
164
12689230
#!/usr/bin/python # vim: expandtab:tabstop=4:shiftwidth=4 # Disabling invalid-name because pylint doesn't like the naming convention we have. # pylint: disable=invalid-name ''' Tool to detect haproxy processes that have been running longer than the most recent haproxy process and have connection in CLOSE_WAIT state and stop them ''' import argparse import psutil import time # Reason: disable pylint import-error because our libs aren't loaded on jenkins. # Status: temporary until we start testing in a container where our stuff is installed. # pylint: disable=import-error from openshift_tools.monitoring.metric_sender import MetricSender # This script is a mitigation for this bug: # https://bugzilla.redhat.com/show_bug.cgi?id=1364870 ZABBIX_KEY = "openshift.haproxy.close-wait" class HAProxy(object): ''' wrapper for finding and stopping stuck haproxy processes ''' def __init__(self): ''' constructor ''' self.args = None self.current_time = None def dprint(self, msg): ''' wrap printing debug messages ''' if self.args.debug: print msg def parse_args(self): ''' get user args ''' parser = argparse.ArgumentParser(description='haproxy killer') parser.add_argument('--debug', default=False, action='store_true') self.args = parser.parse_args() def get_etimes(self, proc): ''' Return elapsed time for proc in seconds ''' return int(self.current_time - proc.create_time()) def get_all_haproxy_procs(self): ''' build dict of elapsed times mapped to PIDs for all haproxy processes running ''' all_procs = {} for proc in psutil.process_iter(): try: if proc.name() == 'haproxy': elapsed = self.get_etimes(proc) all_procs[elapsed] = proc.pid except psutil.NoSuchProcess: pass return all_procs def kill(self): ''' class entrypoint ''' self.parse_args() self.current_time = time.time() haproxy_procs_etimes = self.get_all_haproxy_procs() # identify most recent haproxy process # and remove it from list of haproxy processes try: youngest_etimes = min(haproxy_procs_etimes.keys()) youngest_pid = haproxy_procs_etimes[youngest_etimes] self.dprint("Youngest haproxy PID: {}".format(youngest_pid)) haproxy_procs_etimes.pop(youngest_etimes) except ValueError: pass # find processes that have connections only in 'CLOSE-WAIT' state kill_list = [] for proc in haproxy_procs_etimes.values(): try: only_close_wait = True process = psutil.Process(proc) for conn in process.connections(): if conn.status != 'CLOSE_WAIT' and conn.status != 'FIN_WAIT2': only_close_wait = False break if only_close_wait: self.dprint("PID: {} marked for removal".format(proc)) kill_list.append(proc) except psutil.NoSuchProcess: pass # stop processes on the kill_list kill_count = 0 for proc in kill_list: try: process = psutil.Process(proc) self.dprint("Stopping PID: {}".format(process.pid)) process.kill() kill_count += 1 except psutil.NoSuchProcess: pass print "Stopped {} haproxy processes".format(kill_count) ms = MetricSender() ms.add_metric({ZABBIX_KEY : kill_count}) ms.send_metrics() if __name__ == '__main__': hap = HAProxy() hap.kill()
test/com/facebook/buck/testutil/endtoend/testdata/fix/fix.py
Unknoob/buck
8,027
12689249
#!/usr/bin/env python from __future__ import print_function import argparse import json import sys if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--build-details", required=True) parser.add_argument("--exit-code", type=int, default=0) parser.add_argument("--wait", action="store_true") args = parser.parse_args() with open(args.build_details, "r") as fin: js = json.load(fin) if args.wait: user_data = sys.stdin.read().strip() print("user entered {}".format(user_data), file=sys.stderr) print("build_id: {}".format(js["build_id"]), file=sys.stderr) print("command: {}".format(js["command"]), file=sys.stderr) print("exit_code: {}".format(js["exit_code"]), file=sys.stderr) print( "jasabi_fix: {}".format(js["buck_provided_scripts"]["jasabi_fix"][0]), file=sys.stderr, ) print("manually_invoked: {}".format(js["manually_invoked"]), file=sys.stderr) sys.exit(args.exit_code)
service_checker.py
nettargets/bern
143
12689264
from datetime import datetime import math import numpy as np import random from utils \ import is_good, is_get_good, send_mail, test_bern_get, test_bern_post, query FROM_GMAIL_ADDR = 'YOUR_GMAIL_ADDR' FROM_GMAIL_ACCOUNT_PASSWORD = '<PASSWORD>' TO_EMAIL_ADDR = 'TO_EMAIL_ADDR' def check_bern(from_gmail, to_email, from_google_account, from_google_password): results = list() # 0. raw text results.append(is_good()) # 1. pmid, json results.append(is_get_good(29446767, 'json', 3, 10)) # 2. pmid, pubtator results.append(is_get_good(29446767, 'pubtator', 3, 10)) # 3. mutiple pmid results.append(is_get_good([29446767, 25681199], 'json', 4, 32)) acceptables = ['success', 'tmtool error'] problems = list() for ridx, r in enumerate(results): if r in acceptables: continue problems.append('{}: {}'.format(ridx, r)) if len(problems) == 0: print(datetime.now(), 'No problem') else: problems_total = ', '.join(problems) print(datetime.now(), 'Found', problems_total) send_mail(from_gmail, to_email, '[BERN] Error(s) {}'.format(problems_total), '\n'.join(problems), from_google_account, from_google_password) def benchmark(tries, batch_size=None, log_interval=100): mutation_times = list() ner_times = list() normalization_times = list() total_times = list() pmids = random.sample(range(0, 31113013), tries) print('pmids[:10]', pmids[:min(10, tries)]) if batch_size is not None: batch_pmids = list() num_batches = math.ceil(len(pmids) / batch_size) for i in range(num_batches): # last if i == num_batches - 1: batch_pmids.append(pmids[i * batch_size:]) else: batch_pmids.append(pmids[i * batch_size:(i+1) * batch_size]) pmids = batch_pmids num_na = 0 num_not_list = 0 num_not_dict = 0 ooi_list = list() num_error_dict = dict() with open('benchmark.tsv', 'w', encoding='utf-8') as f: for pidx, pmid in enumerate(pmids): res_dict_list = query(pmid) if type(res_dict_list) is not list: print('not list', pmid, sep='\t') num_not_list += 1 continue if type(res_dict_list[0]) is not dict: print('not dict', pmid, sep='\t') num_not_dict += 1 continue if 'text' in res_dict_list[0]: if 'out of index range' in res_dict_list[0]['text']: ooi_list.append(pmid) print('out of index range', pmid, sep='\t') elif 'BioC.key' in res_dict_list[0]['text']: num_na += 1 # print(res_dict_list[0]['text'], pmid, sep='\t') elif 'error: ' in res_dict_list[0]['text'] \ and 'elapsed_time' not in res_dict_list[0]: if res_dict_list[0]['text'] in num_error_dict: num_error_dict[res_dict_list[0]['text']] += 1 else: num_error_dict[res_dict_list[0]['text']] = 1 if 'elapsed_time' not in res_dict_list[0]: # print('no elapsed_time', pmid, sep='\t') continue elapsed_time_dict = res_dict_list[0]['elapsed_time'] mutation_times.append(elapsed_time_dict['tmtool']) ner_times.append(elapsed_time_dict['ner']) normalization_times.append(elapsed_time_dict['normalization']) total_times.append(elapsed_time_dict['total']) valid_results = len(mutation_times) if pidx > 0 and (pidx + 1) % log_interval == 0: print(datetime.now(), '{}/{}'.format(pidx + 1, tries), '#valid_results', valid_results, '#N/A', num_na, '#not_list', num_not_list, '#not_dict', num_not_dict, '#ooi', len(ooi_list), ooi_list, '#err', num_error_dict) if valid_results > 0 and valid_results % log_interval == 0: print(datetime.now(), '#valid_results', valid_results) mutation_res = \ '\t'.join(['{:.3f}'.format(v) for v in get_stats(mutation_times, batch_size=batch_size)]) ner_res = \ '\t'.join(['{:.3f}'.format(v) for v in get_stats(ner_times, batch_size=batch_size)]) normalization_res = \ '\t'.join(['{:.3f}'.format(v) for v in get_stats(normalization_times, batch_size=batch_size)]) total_res = \ '\t'.join(['{:.3f}'.format(v) for v in get_stats(total_times, batch_size=batch_size)]) print(valid_results, 'mutation', mutation_res, sep='\t') print(valid_results, 'ner', ner_res, sep='\t') print(valid_results, 'normalization', normalization_res, sep='\t') print(valid_results, 'total', total_res, sep='\t') f.write('{}\t{}\t{}\n'.format(valid_results, 'mutation NER', mutation_res)) f.write('{}\t{}\t{}\n'.format(valid_results, 'NER', ner_res)) f.write('{}\t{}\t{}\n'.format(valid_results, 'normalization', normalization_res)) f.write('{}\t{}\t{}\n'.format(valid_results, 'total', total_res)) f.flush() print('#valid_results', len(mutation_times)) print('mutation', '\t'.join(['{:.3f}'.format(v) for v in get_stats(mutation_times, batch_size=batch_size)]), sep='\t') print('ner', '\t'.join(['{:.3f}'.format(v) for v in get_stats(ner_times, batch_size=batch_size)]), sep='\t') print('normalization', '\t'.join(['{:.3f}'.format(v) for v in get_stats(normalization_times, batch_size=batch_size)]), sep='\t') print('total', '\t'.join(['{:.3f}'.format(v) for v in get_stats(total_times, batch_size=batch_size)]), sep='\t') def get_stats(lst, batch_size=None): if not lst: return None if batch_size is None: return sum(lst) / len(lst), np.std(lst), min(lst), max(lst) else: return (sum(lst) / len(lst)) / batch_size, \ np.std(lst), min(lst) / batch_size, max(lst) / batch_size def stress_test(num_threads, wait_seconds, num_try): test_bern_get(num_threads, wait_seconds, num_try) test_bern_post('CLAPO syndrome: identification of somatic activating ' 'PIK3CA mutations and delineation of the natural history ' 'and phenotype. Purpose CLAPO syndrome is a rare vascular ' 'disorder characterized by capillary malformation of the ' 'lower lip, lymphatic malformation predominant on the face' ' and neck, asymmetry and partial/generalized overgrowth. ' 'Here we tested the hypothesis that, although the genetic ' 'cause is not known, the tissue distribution of the ' 'clinical manifestations in CLAPO seems to follow a ' 'pattern of somatic mosaicism. Methods We clinically ' 'evaluated a cohort of 13 patients with CLAPO and screened' ' 20 DNA blood/tissue samples from 9 patients using ' 'high-throughput, deep sequencing. Results We identified ' 'five activating mutations in the PIK3CA gene in affected ' 'tissues from 6 of the 9 patients studied; one of the ' 'variants (NM_006218.2:c.248T>C; p.Phe83Ser) has not been ' 'previously described in developmental disorders. ' 'Conclusion We describe for the first time the presence ' 'of somatic activating PIK3CA mutations in patients with ' 'CLAPO. We also report an update of the phenotype and ' 'natural history of the syndrome.', num_threads, wait_seconds, num_try) if __name__ == '__main__': check_bern(FROM_GMAIL_ADDR, TO_EMAIL_ADDR, FROM_GMAIL_ADDR, FROM_GMAIL_ACCOUNT_PASSWORD)
nni/experiment/config/utils/internal.py
dutxubo/nni
2,305
12689266
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. """ Utility functions for experiment config classes, internal part. If you are implementing a config class for a training service, it's unlikely you will need these. """ import dataclasses import importlib import json import os.path from pathlib import Path import socket import typeguard import nni.runtime.config from .public import is_missing __all__ = [ 'get_base_path', 'set_base_path', 'unset_base_path', 'resolve_path', 'case_insensitive', 'camel_case', 'is_instance', 'validate_type', 'is_path_like', 'guess_config_type', 'guess_list_config_type', 'training_service_config_factory', 'load_training_service_config', 'get_ipv4_address' ] ## handle relative path ## _current_base_path = None def get_base_path(): if _current_base_path is None: return Path() return _current_base_path def set_base_path(path): global _current_base_path assert _current_base_path is None _current_base_path = path def unset_base_path(): global _current_base_path _current_base_path = None def resolve_path(path, base_path): if path is None: return None # Path.resolve() does not work on Windows when file not exist, so use os.path instead path = os.path.expanduser(path) if not os.path.isabs(path): path = os.path.join(base_path, path) return str(os.path.realpath(path)) # it should be already str, but official doc does not specify it's type ## field name case convertion ## def case_insensitive(key): return key.lower().replace('_', '') def camel_case(key): words = key.strip('_').split('_') return words[0] + ''.join(word.title() for word in words[1:]) ## type hint utils ## def is_instance(value, type_hint): try: typeguard.check_type('_', value, type_hint) except TypeError: return False return True def validate_type(config): class_name = type(config).__name__ for field in dataclasses.fields(config): value = getattr(config, field.name) #check existense if is_missing(value): raise ValueError(f'{class_name}: {field.name} is not set') if not is_instance(value, field.type): raise ValueError(f'{class_name}: type of {field.name} ({repr(value)}) is not {field.type}') def is_path_like(type_hint): # only `PathLike` and `Any` accepts `Path`; check `int` to make sure it's not `Any` return is_instance(Path(), type_hint) and not is_instance(1, type_hint) ## type inference ## def guess_config_type(obj, type_hint): ret = guess_list_config_type([obj], type_hint, _hint_list_item=True) return ret[0] if ret else None def guess_list_config_type(objs, type_hint, _hint_list_item=False): # avoid circular import from ..base import ConfigBase from ..training_service import TrainingServiceConfig # because __init__ of subclasses might be complex, we first create empty objects to determine type candidate_classes = [] for cls in _all_subclasses(ConfigBase): if issubclass(cls, TrainingServiceConfig): # training service configs are specially handled continue empty_list = [cls.__new__(cls)] if _hint_list_item: good_type = is_instance(empty_list[0], type_hint) else: good_type = is_instance(empty_list, type_hint) if good_type: candidate_classes.append(cls) if not candidate_classes: # it does not accept config type return None if len(candidate_classes) == 1: # the type is confirmed, raise error if cannot convert to this type return [candidate_classes[0](**obj) for obj in objs] # multiple candidates available, call __init__ to further verify candidate_configs = [] for cls in candidate_classes: try: configs = [cls(**obj) for obj in objs] except Exception: continue candidate_configs.append(configs) if not candidate_configs: return None if len(candidate_configs) == 1: return candidate_configs[0] # still have multiple candidates, choose the common base class for base in candidate_configs: base_class = type(base[0]) is_base = all(isinstance(configs[0], base_class) for configs in candidate_configs) if is_base: return base return None # cannot detect the type, give up def _all_subclasses(cls): subclasses = set(cls.__subclasses__()) return subclasses.union(*[_all_subclasses(subclass) for subclass in subclasses]) def training_service_config_factory(platform): cls = _get_ts_config_class(platform) if cls is None: raise ValueError(f'Bad training service platform: {platform}') return cls() def load_training_service_config(config): if isinstance(config, dict) and 'platform' in config: cls = _get_ts_config_class(config['platform']) if cls is not None: return cls(**config) return config # not valid json, don't touch def _get_ts_config_class(platform): from ..training_service import TrainingServiceConfig # avoid circular import # import all custom config classes so they can be found in TrainingServiceConfig.__subclasses__() custom_ts_config_path = nni.runtime.config.get_config_file('training_services.json') with custom_ts_config_path.open() as config_file: custom_ts_config = json.load(config_file) for custom_ts_pkg in custom_ts_config.keys(): pkg = importlib.import_module(custom_ts_pkg) _config_class = pkg.nni_training_service_info.config_class for cls in TrainingServiceConfig.__subclasses__(): if cls.platform == platform: return cls return None ## misc ## def get_ipv4_address(): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('192.0.2.0', 80)) addr = s.getsockname()[0] s.close() return addr
examples/inference/python/export/fairseq/native_fs_transformer_export.py
hexisyztem/lightseq
106
12689283
<filename>examples/inference/python/export/fairseq/native_fs_transformer_export.py<gh_stars>100-1000 """ Export native Fairseq Transformer models to protobuf/hdf5 format. Refer to the `examples/training/fairseq` directory for more training details. """ from collections import OrderedDict import torch from export.proto.transformer_pb2 import Transformer from lightseq.training.ops.pytorch.export import ( gather_token_embedding, fill_pb_layer, export_ls_config, ) from lightseq.training.ops.pytorch.util import get_pos_embedding import lightseq.inference as lsi from export.util import parse_args, save_model enc_layer_mapping_dict = OrderedDict( { "multihead_norm_scale": "self_attn_layer_norm weight", "multihead_norm_bias": "self_attn_layer_norm bias", "multihead_project_kernel_qkv": "self_attn q_proj weight&&self_attn k_proj weight&&self_attn v_proj weight&&expression_.transpose(0, 1)", "multihead_project_bias_qkv": "self_attn q_proj bias&&self_attn k_proj bias&&self_attn v_proj bias", "multihead_project_kernel_output": "self_attn out_proj weight&&expression_.transpose(0, 1)", "multihead_project_bias_output": "self_attn out_proj bias", "ffn_norm_scale": "final_layer_norm weight", "ffn_norm_bias": "final_layer_norm bias", "ffn_first_kernel": "fc1 weight&&expression_.transpose(0, 1)", "ffn_first_bias": "fc1 bias", "ffn_second_kernel": "fc2 weight&&expression_.transpose(0, 1)", "ffn_second_bias": "fc2 bias", } ) dec_layer_mapping_dict = OrderedDict( { "self_norm_scale": "self_attn_layer_norm weight", "self_norm_bias": "self_attn_layer_norm bias", "self_project_kernel_qkv": "self_attn q_proj weight&&self_attn k_proj weight&&self_attn v_proj weight&&expression_.transpose(0, 1)", "self_project_bias_qkv": "self_attn q_proj bias&&self_attn k_proj bias&&self_attn v_proj bias", "self_project_kernel_output": "self_attn out_proj weight&&expression_.transpose(0, 1)", "self_project_bias_output": "self_attn out_proj bias", "encdec_norm_scale": "encoder_attn_layer_norm weight", "encdec_norm_bias": "encoder_attn_layer_norm bias", "encdec_project_kernel_q": "encoder_attn q_proj weight&&expression_.transpose(0, 1)", "encdec_project_bias_q": "encoder_attn q_proj bias", "encdec_project_kernel_output": "encoder_attn out_proj weight&&expression_.transpose(0, 1)", "encdec_project_bias_output": "encoder_attn out_proj bias", "ffn_norm_scale": "final_layer_norm weight", "ffn_norm_bias": "final_layer_norm bias", "ffn_first_kernel": "fc1 weight&&expression_.transpose(0, 1)", "ffn_first_bias": "fc1 bias", "ffn_second_kernel": "fc2 weight&&expression_.transpose(0, 1)", "ffn_second_bias": "fc2 bias", } ) src_emb_mapping_dict = OrderedDict( { "norm_scale": "layer_norm weight", "norm_bias": "layer_norm bias", } ) trg_emb_mapping_dict = OrderedDict( { "norm_scale": "layer_norm weight", "norm_bias": "layer_norm bias", } ) def _get_encode_output_mapping_dict(dec_layer_num): encode_output_kernel_pattern = [ "encoder_attn {0} k_proj weight&&encoder_attn {0} v_proj weight".format(ele) for ele in range(dec_layer_num) ] encode_output_bias_pattern = [ "encoder_attn {0} k_proj bias&&encoder_attn {0} v_proj bias".format(ele) for ele in range(dec_layer_num) ] return { "encode_output_project_kernel_kv": "&&".join( encode_output_kernel_pattern + ["expression_.transpose(0, 1)"] ), "encode_output_project_bias_kv": "&&".join(encode_output_bias_pattern), } def export_native_fs_transformer( model_path, pb_path, hdf5_path, hdf5, max_step=300, bos_id=2, eos_id=2, pad_id=1, ): transformer = Transformer() # load var names reloaded = torch.load(model_path, "cpu") args = reloaded["args"] model_dict = reloaded["model"] trg_emb_mapping_dict["shared_bias"] = ( "expression_np.zeros(%d)" % model_dict["decoder.embed_tokens.weight"].numpy().shape[0] ) encoder_state_dict = {} decoder_state_dict = {} for k in model_dict: if k.startswith("encoder."): encoder_state_dict[k] = model_dict[k] if k.startswith("decoder."): decoder_state_dict[k] = model_dict[k] dec_var_name_list = list(decoder_state_dict.keys()) enc_var_name_list = list(encoder_state_dict.keys()) enc_tensor_names = {} for name in enc_var_name_list: name_split = name.split(".") if len(name_split) <= 2 or not name_split[2].isdigit(): continue layer_id = int(name_split[2]) enc_tensor_names.setdefault(layer_id, []).append(name) for layer_id in sorted(enc_tensor_names.keys()): fill_pb_layer( enc_tensor_names[layer_id], encoder_state_dict, transformer.encoder_stack.add(), enc_layer_mapping_dict, ) # fill each decoder layer's params dec_tensor_names = {} for name in dec_var_name_list: name_split = name.split(".") if len(name_split) <= 2 or not name.split(".")[2].isdigit(): continue layer_id = int(name.split(".")[2]) dec_tensor_names.setdefault(layer_id, []).append(name) for layer_id in sorted(dec_tensor_names.keys()): fill_pb_layer( dec_tensor_names[layer_id], decoder_state_dict, transformer.decoder_stack.add(), dec_layer_mapping_dict, ) fill_pb_layer( enc_var_name_list, encoder_state_dict, transformer.src_embedding, src_emb_mapping_dict, ) # encoder token embedding src_tb, _ = gather_token_embedding( enc_var_name_list, encoder_state_dict, "embed_tokens" ) transformer.src_embedding.token_embedding[:] = src_tb.flatten().tolist() # encoder position embedding pos_emb = None if "encoder.embed_positions.weight" in encoder_state_dict: pos_emb = encoder_state_dict["encoder.embed_positions.weight"].numpy() transformer.src_embedding.position_embedding[:] = pos_emb.flatten().tolist() else: pos_emb = get_pos_embedding(max_step + pad_id + 1, src_tb.shape[-1]).numpy() pos_emb_list = ( pos_emb[pad_id + 1 : max_step + pad_id + 1, :].reshape([-1]).tolist() ) transformer.src_embedding.position_embedding[:] = pos_emb_list print( "encoder.embed_positions.weight -> src_embedding.position_embedding, shape: {}, conversion finished!".format( pos_emb.shape ) ) # fill trg_embedding encode_output_mapping_dict = _get_encode_output_mapping_dict(len(dec_tensor_names)) trg_emb_mapping_dict.update(encode_output_mapping_dict) fill_pb_layer( dec_var_name_list, decoder_state_dict, transformer.trg_embedding, trg_emb_mapping_dict, ) # decoder token embedding trg_tb, _ = gather_token_embedding( dec_var_name_list, decoder_state_dict, "embed_tokens" ) transformer.trg_embedding.token_embedding[:] = trg_tb.transpose().flatten().tolist() print( "token_embedding.weight -> trg_embedding.token_embedding, shape: {}, conversion finished!".format( trg_tb.transpose().shape ) ) # decoder position embedding pos_emb = None if "decoder.embed_positions.weight" in decoder_state_dict: pos_emb = decoder_state_dict["decoder.embed_positions.weight"].numpy() transformer.trg_embedding.position_embedding[:] = pos_emb.flatten().tolist() else: pos_emb = get_pos_embedding(max_step + pad_id + 1, trg_tb.shape[-1]).numpy() pos_emb_list = ( pos_emb[pad_id + 1 : max_step + pad_id + 1, :].reshape([-1]).tolist() ) transformer.trg_embedding.position_embedding[:] = pos_emb_list print( "decoder.embed_positions.weight -> trg_embedding.position_embedding, shape: {}, conversion finished!".format( pos_emb.shape ) ) # fill in conf export_ls_config( transformer, args.encoder_attention_heads, pad_id, bos_id, eos_id, args.encoder_layers, args.decoder_layers, save_pb=True, ) save_path = save_model(transformer, pb_path, hdf5_path, hdf5) return save_path if __name__ == "__main__": args = parse_args() model_name = ".".join(args.model.split(".")[:-1]) pb_path = f"{model_name}.pb" hdf5_path = f"{model_name}.hdf5" path = export_native_fs_transformer(args.model, pb_path, hdf5_path, args.hdf5) src = [[63, 47, 65, 1507, 88, 74, 10, 2057, 362, 9, 284, 6, 2, 1, 1, 1]] model = lsi.Transformer(path, 8) output = model.infer(src) # Expected result: [23, 550, 34, 118, 148, 2939, 4, 42, 32, 37, 6, 224, 10, 179, 5, 2] print("results:", output)
flask_reddit/users/forms.py
huhansan666666/flask_reddit
461
12689303
<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Logic handling user specific input forms such as logins and registration. """ from flask_wtf import FlaskForm from wtforms import TextField, PasswordField, BooleanField from flask_wtf.recaptcha import RecaptchaField from wtforms.validators import Required, EqualTo, Email class LoginForm(FlaskForm): email = TextField('Email address', [Required(), Email()]) password = PasswordField('Password', [Required()]) class RegisterForm(FlaskForm): username = TextField('NickName', [Required()]) email = TextField('Email address', [Required(), Email()]) password = PasswordField('Password', [Required()]) confirm = PasswordField('Repeat Password', [ Required(), EqualTo('password', message='Passwords must match') ]) accept_tos = BooleanField('I accept the Terms of Service.', [Required()]) recaptcha = RecaptchaField()
pincer/objects/message/attachment.py
Arthurdw/Pincer
118
12689314
<reponame>Arthurdw/Pincer # Copyright Pincer 2021-Present # Full MIT License can be found in `LICENSE` at the project root. from __future__ import annotations from dataclasses import dataclass from typing import TYPE_CHECKING from ...utils.api_object import APIObject from ...utils.types import MISSING if TYPE_CHECKING: from typing import Optional from ...utils.types import APINullable from ...utils.snowflake import Snowflake @dataclass(repr=False) class Attachment(APIObject): """Represents a Discord Attachment object Attributes ---------- id: :class:`~pincer.utils.snowflake.Snowflake` Attachment id filename: :class:`str` Name of file attached content_type: :class:`int` The attachment's data type size: :class:`str` Size of file in bytes url: :class:`str` Source url of file proxy_url: APINullable[:class:`str`] A proxied url of file height: APINullable[Optional[:class:`int`]] Height of file (if image) width: APINullable[Optional[:class:`int`]] Width of file (if image) """ id: Snowflake filename: str size: int url: str proxy_url: str content_type: APINullable[str] = MISSING height: APINullable[Optional[int]] = MISSING width: APINullable[Optional[int]] = MISSING
tests/test_engine.py
RobertCraigie/prisma-client-py
518
12689322
<gh_stars>100-1000 import asyncio import contextlib from pathlib import Path from typing import Iterator, Optional import pytest from _pytest.monkeypatch import MonkeyPatch from pytest_subprocess import FakeProcess from prisma import Client from prisma.utils import temp_env_update from prisma.binaries import platform from prisma.binaries import BINARIES, ENGINE_VERSION from prisma.engine import errors, utils from prisma.engine.query import QueryEngine from prisma._compat import get_running_loop from .utils import Testdir QUERY_ENGINE = next( # pragma: no branch b for b in BINARIES if b.name == 'query-engine' ) @contextlib.contextmanager def no_event_loop() -> Iterator[None]: try: current: Optional[asyncio.AbstractEventLoop] = get_running_loop() except RuntimeError: current = None try: asyncio.set_event_loop(None) yield finally: asyncio.set_event_loop(current) @pytest.mark.asyncio async def test_engine_connects() -> None: """Can connect to engine""" db = Client() await db.connect() with pytest.raises(errors.AlreadyConnectedError): await db.connect() await db.disconnect() def test_stopping_engine_on_closed_loop() -> None: """Stopping the engine with no event loop available does not raise an error""" with no_event_loop(): engine = QueryEngine(dml='') engine.stop() def test_engine_binary_does_not_exist(monkeypatch: MonkeyPatch) -> None: """No query engine binary found raises an error""" def mock_exists(path: Path) -> bool: return False monkeypatch.setattr(Path, 'exists', mock_exists, raising=True) with pytest.raises(errors.BinaryNotFoundError) as exc: utils.ensure() assert exc.match( r'Expected .* or .* but neither were found\.\nTry running prisma py fetch' ) def test_mismatched_version_error(fake_process: FakeProcess) -> None: """Mismatched query engine versions raises an error""" fake_process.register_subprocess( [QUERY_ENGINE.path, '--version'], # type: ignore[list-item] stdout='query-engine unexpected-hash', ) with pytest.raises(errors.MismatchedVersionsError) as exc: utils.ensure() assert exc.match( f'Expected query engine version `{ENGINE_VERSION}` but got `unexpected-hash`' ) def test_ensure_local_path(testdir: Testdir, fake_process: FakeProcess) -> None: """Query engine in current directory required to be the expected version""" fake_engine = testdir.path / platform.check_for_extension( f'prisma-query-engine-{platform.binary_platform()}' ) fake_engine.touch() fake_process.register_subprocess( [fake_engine, '--version'], # type: ignore[list-item] stdout='query-engine a-different-hash', ) with pytest.raises(errors.MismatchedVersionsError): path = utils.ensure() fake_process.register_subprocess( [fake_engine, '--version'], # type: ignore[list-item] stdout=f'query-engine {ENGINE_VERSION}', ) path = utils.ensure() assert path == fake_engine def test_ensure_env_override(testdir: Testdir, fake_process: FakeProcess) -> None: """Query engine path in environment variable can be any version""" fake_engine = testdir.path / 'my-query-engine' fake_engine.touch() fake_process.register_subprocess( [fake_engine, '--version'], # type: ignore[list-item] stdout='query-engine a-different-hash', ) with temp_env_update({'PRISMA_QUERY_ENGINE_BINARY': str(fake_engine)}): path = utils.ensure() assert path == fake_engine def test_ensure_env_override_does_not_exist() -> None: """Query engine path in environment variable not found raises an error""" with temp_env_update({'PRISMA_QUERY_ENGINE_BINARY': 'foo'}): with pytest.raises(errors.BinaryNotFoundError) as exc: utils.ensure() assert exc.match( r'PRISMA_QUERY_ENGINE_BINARY was provided, but no query engine was found at foo' )
Giveme5W1H/examples/evaluation/evaluation.py
bkrrr/Giveme5W
410
12689333
import csv import os """ evaluates results by calculating: - ICR(pairwise intercoder reliability AB, BC, AC) - GP(precision_generalized) Results are global and per category """ filename = 'evaluation_data_how.csv' # change csv column index, if necessary here category_index = 2 coder_a_index = 5 coder_b_index = 6 coder_c_index = 7 # measure_agreement function to keep code more readable def measure_agreement(a, b): if a == b: return 1 else: return 0 # convert ICR rating from 0 to 2 to GP scala 0 - 1 # (done on purpose in easy to read way, aka without normalization ) def to_precision_generalized(a): if a == 0: # not relevant: return 0 elif a == 1: # partial relevant return 0.5 else: # relevant return 1 with open(os.path.dirname(__file__) + '/' + filename, 'r') as csvfile: reader = csv.reader(csvfile) is_header = True ICR = 0 ICR_cat = {} generalized_precision = 0 generalized_precision_cat = {} aggrement = [] for line in reader: if is_header: is_header = False else: category = line[category_index] coder_a = int(line[coder_a_index]) coder_b = int(line[coder_b_index]) coder_c = int(line[coder_c_index]) # measure pairwise agreement AB, AC, CB ab = measure_agreement(coder_a, coder_b) ac = measure_agreement(coder_a, coder_c) cb = measure_agreement(coder_c, coder_b) # measure agreement of the pairs # inter-rater reliability is based on agreement between pairs of raters. line_agreement = (ab + ac + cb) / 3 # irc global ICR = ICR + line_agreement # irc per category ICR_cat[category] = ICR_cat.get(category, 0) + line_agreement # gp global tmp_gp = to_precision_generalized(coder_a) + to_precision_generalized(coder_b) + to_precision_generalized( coder_c) generalized_precision = generalized_precision + tmp_gp # gp per category generalized_precision_cat[category] = generalized_precision_cat.get(category, 0) + tmp_gp # saved, for possible output aggrement.append((category, ab, ac, cb, line_agreement, tmp_gp)) line_count = len(aggrement) cat_count = len(ICR_cat) line_count_cat = line_count / cat_count # for GP: summarize all ratings dividing by the number of all ratings rating_count = line_count * 3 # each doc was rated by 3 coder rating_count_cat = rating_count / cat_count # output print('Global ICR: ' + str(ICR / line_count)) print('Global GP: ' + str(generalized_precision / rating_count)) for cat in ICR_cat: val = ICR_cat[cat] print(cat + ' ICR: ' + str(val / line_count_cat)) val = generalized_precision_cat[cat] print(cat + ' GP: ' + str(val / rating_count_cat))
doc/examples/scripts/structure/normal_modes.py
alex123012/biotite
208
12689340
r""" Visualization of normal modes from an elastic network model =========================================================== The *elastic network model* (ENM) is a fast method to estimate movements in a protein structure, without the need to run time-consuming MD simulations. A protein is modelled as *mass-and-spring* model, with the masses being the :math:`C_\alpha` atoms and the springs being the non-covalent bonds between adjacent residues. Via *normal mode analysis* distinct movements/oscillations can be extracted from the model. An *anisotropic network model* (ANM), is an ENM that includes directional information. Hence, the normal mode analysis yields eigenvectors, where each atom is represented by three vector components (*x*, *y*, *z*). Thus these vectors can be used for 3D representation. In the case of this example a normal mode analysis on an ANM was already conducted. This script merely takes the structure and obtained eigenvectors to add a smooth oscillation of the chosen normal mode to the structure. The newly created structure has multiple models, where each model depicts a different time in the oscillation period. Then the multi-model structure can be used to create a video of the oscillation using a molecular visualization program. The file containing the eigenvectors can be downloaded via this :download:`link </examples/download/glycosylase_anm_vectors.csv>`. """ # Code source: <NAME> # License: BSD 3 clause from tempfile import NamedTemporaryFile from os.path import join import numpy as np from numpy import newaxis import biotite.structure as struc import biotite.structure.io as strucio import biotite.structure.io.mmtf as mmtf import biotite.database.rcsb as rcsb # A CSV file containing the eigenvectors for the CA atoms VECTOR_FILE = "../../download/glycosylase_anm_vectors.csv" # The corresponding structure PDB_ID = "1MUG" # The normal mode to be visualized # '-1' is the last (and most significant) one MODE = -1 # The amount of frames (models) per oscillation FRAMES = 60 # The maximum oscillation amplitude for an atom # (The length of the ANM's eigenvectors make only sense when compared # relative to each other, the absolute values have no significance) MAX_AMPLITUDE = 5 # Load structure mmtf_file = mmtf.MMTFFile.read(rcsb.fetch(PDB_ID, "mmtf")) structure = mmtf.get_structure(mmtf_file, model=1) # Filter first peptide chain protein_chain = structure[ struc.filter_amino_acids(structure) & (structure.chain_id == structure.chain_id[0]) ] # Filter CA atoms ca = protein_chain[protein_chain.atom_name == "CA"] # Load eigenvectors for CA atoms # The first axis indicates the mode, # the second axis indicates the vector component vectors = np.loadtxt(VECTOR_FILE, delimiter=",").transpose() # Discard the last 6 modes, as these are movements of the entire system: # A system with N atoms has only 3N - 6 degrees of freedom # ^^^ vectors = vectors[:-6] # Extract vectors for given mode and reshape to (n,3) array mode_vectors = vectors[MODE].reshape((-1, 3)) # Rescale, so that the largest vector has the length 'MAX_AMPLITUDE' vector_lenghts = np.sqrt(np.sum(mode_vectors**2, axis=-1)) scale = MAX_AMPLITUDE / np.max(vector_lenghts) mode_vectors *= scale # Stepwise application of eigenvectors as smooth sine oscillation time = np.linspace(0, 2*np.pi, FRAMES, endpoint=False) deviation = np.sin(time)[:, newaxis, newaxis] * mode_vectors # Apply oscillation of CA atom to all atoms in the corresponding residue oscillation = np.zeros((FRAMES, len(protein_chain), 3)) residue_starts = struc.get_residue_starts( protein_chain, # The last array element will be the length of the atom array, # i.e. no valid index add_exclusive_stop=True ) for i in range(len(residue_starts) -1): res_start = residue_starts[i] res_stop = residue_starts[i+1] oscillation[:, res_start:res_stop, :] \ = protein_chain.coord[res_start:res_stop, :] + deviation[:, i:i+1, :] # An atom array stack containing all frames oscillating_structure = struc.from_template(protein_chain, oscillation) # Save as PDB for rendering a video with PyMOL temp = NamedTemporaryFile(suffix=".pdb") strucio.save_structure(temp.name, oscillating_structure) # biotite_static_image = normal_modes.gif temp.close()
examples/04_manipulating_images/plot_negate_image.py
SIMEXP/nilearn
827
12689343
<filename>examples/04_manipulating_images/plot_negate_image.py """ Negating an image with math_img =============================== The goal of this example is to illustrate the use of the function :func:`nilearn.image.math_img` on T-maps. We compute a negative image by multiplying its voxel values with -1. """ from nilearn import datasets, plotting, image ############################################################################### # Retrieve the data: the localizer dataset with contrast maps. motor_images = datasets.fetch_neurovault_motor_task() stat_img = motor_images.images[0] ############################################################################### # Multiply voxel values by -1. negative_stat_img = image.math_img("-img", img=stat_img) plotting.plot_stat_map(stat_img, cut_coords=(36, -27, 66), threshold=3, title="t-map", vmax=9 ) plotting.plot_stat_map(negative_stat_img, cut_coords=(36, -27, 66), threshold=3, title="Negative t-map", vmax=9 ) plotting.show()
sdk/python/pulumi_azure/authorization/get_user_assigned_identity.py
henriktao/pulumi-azure
109
12689358
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetUserAssignedIdentityResult', 'AwaitableGetUserAssignedIdentityResult', 'get_user_assigned_identity', 'get_user_assigned_identity_output', ] @pulumi.output_type class GetUserAssignedIdentityResult: """ A collection of values returned by getUserAssignedIdentity. """ def __init__(__self__, client_id=None, id=None, location=None, name=None, principal_id=None, resource_group_name=None, tags=None, tenant_id=None): if client_id and not isinstance(client_id, str): raise TypeError("Expected argument 'client_id' to be a str") pulumi.set(__self__, "client_id", client_id) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if principal_id and not isinstance(principal_id, str): raise TypeError("Expected argument 'principal_id' to be a str") pulumi.set(__self__, "principal_id", principal_id) if resource_group_name and not isinstance(resource_group_name, str): raise TypeError("Expected argument 'resource_group_name' to be a str") pulumi.set(__self__, "resource_group_name", resource_group_name) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if tenant_id and not isinstance(tenant_id, str): raise TypeError("Expected argument 'tenant_id' to be a str") pulumi.set(__self__, "tenant_id", tenant_id) @property @pulumi.getter(name="clientId") def client_id(self) -> str: """ The Client ID of the User Assigned Identity. """ return pulumi.get(self, "client_id") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> str: """ The Azure location where the User Assigned Identity exists. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: return pulumi.get(self, "name") @property @pulumi.getter(name="principalId") def principal_id(self) -> str: """ The Service Principal ID of the User Assigned Identity. """ return pulumi.get(self, "principal_id") @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> str: return pulumi.get(self, "resource_group_name") @property @pulumi.getter def tags(self) -> Mapping[str, str]: """ A mapping of tags assigned to the User Assigned Identity. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="tenantId") def tenant_id(self) -> str: """ The Tenant ID of the User Assigned Identity. """ return pulumi.get(self, "tenant_id") class AwaitableGetUserAssignedIdentityResult(GetUserAssignedIdentityResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetUserAssignedIdentityResult( client_id=self.client_id, id=self.id, location=self.location, name=self.name, principal_id=self.principal_id, resource_group_name=self.resource_group_name, tags=self.tags, tenant_id=self.tenant_id) def get_user_assigned_identity(name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetUserAssignedIdentityResult: """ Use this data source to access information about an existing User Assigned Identity. ## Example Usage ### Reference An Existing) ```python import pulumi import pulumi_azure as azure example = azure.authorization.get_user_assigned_identity(name="name_of_user_assigned_identity", resource_group_name="name_of_resource_group") pulumi.export("uaiClientId", example.client_id) pulumi.export("uaiPrincipalId", example.principal_id) pulumi.export("uaiTenantId", example.tenant_id) ``` :param str name: The name of the User Assigned Identity. :param str resource_group_name: The name of the Resource Group in which the User Assigned Identity exists. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure:authorization/getUserAssignedIdentity:getUserAssignedIdentity', __args__, opts=opts, typ=GetUserAssignedIdentityResult).value return AwaitableGetUserAssignedIdentityResult( client_id=__ret__.client_id, id=__ret__.id, location=__ret__.location, name=__ret__.name, principal_id=__ret__.principal_id, resource_group_name=__ret__.resource_group_name, tags=__ret__.tags, tenant_id=__ret__.tenant_id) @_utilities.lift_output_func(get_user_assigned_identity) def get_user_assigned_identity_output(name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetUserAssignedIdentityResult]: """ Use this data source to access information about an existing User Assigned Identity. ## Example Usage ### Reference An Existing) ```python import pulumi import pulumi_azure as azure example = azure.authorization.get_user_assigned_identity(name="name_of_user_assigned_identity", resource_group_name="name_of_resource_group") pulumi.export("uaiClientId", example.client_id) pulumi.export("uaiPrincipalId", example.principal_id) pulumi.export("uaiTenantId", example.tenant_id) ``` :param str name: The name of the User Assigned Identity. :param str resource_group_name: The name of the Resource Group in which the User Assigned Identity exists. """ ...
kgp/datasets/sysid.py
alshedivat/keras-gp
181
12689369
""" Interface for system identification data (Actuator and Drives). """ from __future__ import print_function import os import sys import zipfile import warnings import numpy as np import scipy.io as sio from six.moves import urllib from six.moves import cPickle as pkl SOURCE_URLS = { 'actuator': 'https://www.cs.cmu.edu/~mshediva/data/actuator.mat', 'drives': 'https://www.cs.cmu.edu/~mshediva/data/NonlinearData.zip', } def maybe_download(data_path, dataset_name, verbose=1): source_url = SOURCE_URLS[dataset_name] datadir_path = os.path.join(data_path, 'sysid') dataset_path = os.path.join(datadir_path, dataset_name + '.mat') # Create directories (if necessary) if not os.path.isdir(datadir_path): os.makedirs(datadir_path) # Download & extract the data (if necessary) if not os.path.isfile(dataset_path): if dataset_name == 'actuator': urllib.request.urlretrieve(source_url, dataset_path) if dataset_name == 'drives': assert source_url.endswith('.zip') archive_path = os.path.join(datadir_path, 'tmp.zip') urllib.request.urlretrieve(source_url, archive_path) with zipfile.ZipFile(archive_path, 'r') as zfp: zfp.extract('DATAPRBS.MAT', datadir_path) os.rename(os.path.join(datadir_path, 'DATAPRBS.MAT'), dataset_path) os.remove(archive_path) if verbose: print("Successfully downloaded `%s` dataset from %s." % (dataset_name, source_url)) return dataset_path def load_data(dataset_name, t_step=1, start=0., stop=100., use_targets=True, batch_size=None, verbose=1): """Load the system identification data. Arguments: ---------- t_step : uint (default: 1) Take data points t_step apart from each other in time. start : float in [0., 100.) (default: 0.) stop : float in (0., 100.] (default: 100.) use_targets : bool (default: True) batch_size : uint or None (default: None) verbose : uint (default: 1) """ if dataset_name not in {'actuator', 'drives'}: raise ValueError("Unknown dataset: %s" % dataset_name) if 'DATA_PATH' not in os.environ: warnings.warn("Cannot find DATA_PATH variable in the environment. " "Using <current_working_directory>/data/ instead.") DATA_PATH = os.path.join(os.getcwd(), 'data') else: DATA_PATH = os.environ['DATA_PATH'] dataset_path = maybe_download(DATA_PATH, dataset_name, verbose=verbose) if not os.path.exists(dataset_path): raise Exception("Cannot find data: %s" % dataset_path) if verbose: sys.stdout.write('Loading data...') sys.stdout.flush() data_mat = sio.loadmat(dataset_path) if dataset_name == 'actuator': X, Y = data_mat['u'], data_mat['p'] if dataset_name == 'drives': X, Y = data_mat['u1'], data_mat['z1'] start = int((start/100.) * len(X)) stop = int((stop/100.) * len(X)) X = X[start:stop:t_step,:] Y = Y[start:stop:t_step,:] if use_targets: X = np.hstack([X, Y]) if batch_size: nb_examples = (len(X) // batch_size) * batch_size X = X[:nb_examples] Y = Y[:nb_examples] if verbose: sys.stdout.write('Done.\n') print('# of loaded points: %d' % len(X)) return X, Y
package_syncing/logger.py
csch0/SublimeText-Package-Syncing
171
12689389
<reponame>csch0/SublimeText-Package-Syncing<gh_stars>100-1000 import sublime import sublime_plugin import logging LOG = False TRACE = 9 BASIC_FORMAT = "[%(asctime)s - %(levelname)s - %(filename)s %(funcName)s] %(message)s" logging.addLevelName("TRACE", TRACE) class CustomLogger(logging.Logger): def isEnabledFor(self, level): if not LOG: return return level >= self.getEffectiveLevel() def trace(self, msg="", *args, **kwargs): if self.isEnabledFor(TRACE): self._log(TRACE, msg, args, **kwargs) def getLogger(name, level=logging.DEBUG): log = CustomLogger(name, level) # Set stream handler h = logging.StreamHandler() h.setFormatter(logging.Formatter(BASIC_FORMAT)) log.addHandler(h) return log
aliyun-python-sdk-cbn/aliyunsdkcbn/request/v20170912/ListTransitRouterRouteTablesRequest.py
leafcoder/aliyun-openapi-python-sdk
1,001
12689394
<filename>aliyun-python-sdk-cbn/aliyunsdkcbn/request/v20170912/ListTransitRouterRouteTablesRequest.py # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkcbn.endpoint import endpoint_data class ListTransitRouterRouteTablesRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Cbn', '2017-09-12', 'ListTransitRouterRouteTables','cbn') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_TransitRouterRouteTableNamess(self): return self.get_query_params().get('TransitRouterRouteTableNames') def set_TransitRouterRouteTableNamess(self, TransitRouterRouteTableNamess): for depth1 in range(len(TransitRouterRouteTableNamess)): if TransitRouterRouteTableNamess[depth1] is not None: self.add_query_param('TransitRouterRouteTableNames.' + str(depth1 + 1) , TransitRouterRouteTableNamess[depth1]) def get_TransitRouterRouteTableType(self): return self.get_query_params().get('TransitRouterRouteTableType') def set_TransitRouterRouteTableType(self,TransitRouterRouteTableType): self.add_query_param('TransitRouterRouteTableType',TransitRouterRouteTableType) def get_TransitRouterRouteTableStatus(self): return self.get_query_params().get('TransitRouterRouteTableStatus') def set_TransitRouterRouteTableStatus(self,TransitRouterRouteTableStatus): self.add_query_param('TransitRouterRouteTableStatus',TransitRouterRouteTableStatus) def get_TransitRouterRouteTableIdss(self): return self.get_query_params().get('TransitRouterRouteTableIds') def set_TransitRouterRouteTableIdss(self, TransitRouterRouteTableIdss): for depth1 in range(len(TransitRouterRouteTableIdss)): if TransitRouterRouteTableIdss[depth1] is not None: self.add_query_param('TransitRouterRouteTableIds.' + str(depth1 + 1) , TransitRouterRouteTableIdss[depth1]) def get_NextToken(self): return self.get_query_params().get('NextToken') def set_NextToken(self,NextToken): self.add_query_param('NextToken',NextToken) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_TransitRouterId(self): return self.get_query_params().get('TransitRouterId') def set_TransitRouterId(self,TransitRouterId): self.add_query_param('TransitRouterId',TransitRouterId) def get_MaxResults(self): return self.get_query_params().get('MaxResults') def set_MaxResults(self,MaxResults): self.add_query_param('MaxResults',MaxResults)
ml/kubeflow-pipelines/keras_tuner/components/kubeflow-resources/bikesw_training/eval_metrics.py
amygdala/code-snippets
146
12689397
<gh_stars>100-1000 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import NamedTuple # from kfp.components import InputPath, OutputPath # An example of how the model eval info could be used to make decisions about whether or not # to deploy the model. def eval_metrics( metrics: str, thresholds: str ) -> NamedTuple('Outputs', [('deploy', str)]): import json import logging def regression_threshold_check(metrics_info): # ... for k, v in thresholds_dict.items(): logging.info('k {}, v {}'.format(k, v)) if k in ['root_mean_squared_error', 'mae']: if metrics_info[k][-1] > v: logging.info('{} > {}; returning False'.format(metrics_info[k][0], v)) return ('False', ) return ('deploy', ) logging.getLogger().setLevel(logging.INFO) # TODO: make level configurable thresholds_dict = json.loads(thresholds) logging.info('thresholds dict: {}'.format(thresholds_dict)) logging.info('metrics: %s', metrics) metrics_dict = json.loads(metrics) logging.info("got metrics info: %s", metrics_dict) res = regression_threshold_check(metrics_dict) logging.info('deploy decision: %s', res) return res if __name__ == '__main__': import kfp kfp.components.func_to_container_op(eval_metrics, output_component_file='../../eval_metrics_component.yaml', base_image='gcr.io/deeplearning-platform-release/tf2-cpu.2-3:latest')
zerver/webhooks/json/tests.py
Pulkit007/zulip
17,004
12689418
<filename>zerver/webhooks/json/tests.py<gh_stars>1000+ import json from zerver.lib.test_classes import WebhookTestCase class JsonHookTests(WebhookTestCase): STREAM_NAME = "json" URL_TEMPLATE = "/api/v1/external/json?api_key={api_key}&stream={stream}" WEBHOOK_DIR_NAME = "json" def test_json_github_push__1_commit_message(self) -> None: """ Tests if json github push 1 commit is handled correctly """ with open("zerver/webhooks/json/fixtures/json_github_push__1_commit.json") as f: original_fixture = json.load(f) expected_topic = "JSON" expected_message = """```json {original_fixture} ```""".format( original_fixture=json.dumps(original_fixture, indent=2) ) self.check_webhook("json_github_push__1_commit", expected_topic, expected_message) def test_json_pingdom_http_up_to_down_message(self) -> None: """ Tests if json pingdom http up to down is handled correctly """ with open("zerver/webhooks/json/fixtures/json_pingdom_http_up_to_down.json") as f: original_fixture = json.load(f) expected_topic = "JSON" expected_message = """```json {original_fixture} ```""".format( original_fixture=json.dumps(original_fixture, indent=2) ) self.check_webhook("json_pingdom_http_up_to_down", expected_topic, expected_message) def test_json_sentry_event_for_exception_js_message(self) -> None: """ Tests if json sentry event for exception js is handled correctly """ with open("zerver/webhooks/json/fixtures/json_sentry_event_for_exception_js.json") as f: original_fixture = json.load(f) expected_topic = "JSON" expected_message = """```json {original_fixture} ```""".format( original_fixture=json.dumps(original_fixture, indent=2) ) self.check_webhook("json_sentry_event_for_exception_js", expected_topic, expected_message)
glucometerutils/support/tests/test_construct_extras.py
Flameeyes/glucometerutils
135
12689429
# -*- coding: utf-8 -*- # # SPDX-FileCopyrightText: © 2018 The glucometerutils Authors # SPDX-License-Identifier: MIT """Tests for the common routines.""" # pylint: disable=protected-access,missing-docstring import datetime import construct from absl.testing import absltest from glucometerutils.support import construct_extras _TEST_DATE1 = datetime.datetime(1970, 1, 2, 0, 0) _TEST_DATE2 = datetime.datetime(1971, 1, 1, 0, 0) _TEST_DATE3 = datetime.datetime(1970, 1, 1, 0, 0) _NEW_EPOCH = 31536000 # datetime.datetime(1971, 1, 1, 0, 0) class TestTimestamp(absltest.TestCase): def test_build_unix_epoch(self): self.assertEqual( construct_extras.Timestamp(construct.Int32ul).build(_TEST_DATE1), b"\x80\x51\x01\x00", ) def test_parse_unix_epoch(self): self.assertEqual( construct_extras.Timestamp(construct.Int32ul).parse(b"\x803\xe1\x01"), _TEST_DATE2, ) def test_build_custom_epoch(self): self.assertEqual( construct_extras.Timestamp(construct.Int32ul, epoch=_NEW_EPOCH).build( _TEST_DATE2 ), b"\x00\x00\x00\x00", ) def test_parse_custom_epoch(self): self.assertEqual( construct_extras.Timestamp(construct.Int32ul, epoch=_NEW_EPOCH).parse( b"\x00\x00\x00\x00" ), _TEST_DATE2, ) def test_build_custom_epoch_negative_failure(self): with self.assertRaises(construct.core.FormatFieldError): construct_extras.Timestamp(construct.Int32ul, epoch=_NEW_EPOCH).build( _TEST_DATE1 ) def test_build_custom_epoch_negative_success(self): self.assertEqual( construct_extras.Timestamp(construct.Int32sl, epoch=_NEW_EPOCH).build( _TEST_DATE1 ), b"\x00\x1e\x20\xfe", ) def test_build_varint(self): self.assertEqual( construct_extras.Timestamp(construct.VarInt).build(_TEST_DATE3), b"\x00" ) def test_invalid_value(self): with self.assertRaises(AssertionError): construct_extras.Timestamp(construct.Int32ul).build("foo")
python/ql/test/experimental/dataflow/tainttracking/defaultAdditionalTaintStep-py3/test_pathlib.py
timoles/codeql
4,036
12689458
# Add taintlib to PATH so it can be imported during runtime without any hassle import sys; import os; sys.path.append(os.path.dirname(os.path.dirname((__file__)))) from taintlib import * # This has no runtime impact, but allows autocomplete to work from typing import Iterable, TYPE_CHECKING if TYPE_CHECKING: from ..taintlib import * # Actual tests import pathlib # pathlib was added in 3.4 def test_basic(): print("\n# test_basic") ts = TAINTED_STRING tainted_path = pathlib.Path(ts) tainted_pure_path = pathlib.PurePath(ts) tainted_pure_posix_path = pathlib.PurePosixPath(ts) tainted_pure_windows_path = pathlib.PureWindowsPath(ts) ensure_tainted( tainted_path, # $ tainted tainted_pure_path, # $ tainted tainted_pure_posix_path, # $ tainted tainted_pure_windows_path, # $ tainted pathlib.Path("foo") / ts, # $ tainted ts / pathlib.Path("foo"), # $ tainted tainted_path.joinpath("foo", "bar"), # $ tainted pathlib.Path("foo").joinpath(tainted_path, "bar"), # $ tainted pathlib.Path("foo").joinpath("bar", tainted_path), # $ tainted str(tainted_path), # $ tainted # TODO: Tainted methods and attributes # https://docs.python.org/3.8/library/pathlib.html#methods-and-properties ) if os.name == "posix": tainted_posix_path = pathlib.PosixPath(ts) ensure_tainted( tainted_posix_path, # $ tainted ) if os.name == "nt": tainted_windows_path = pathlib.WindowsPath(ts) ensure_tainted( tainted_windows_path, # $ tainted ) # Make tests runable test_basic()
t/test_umash_fprint.py
backtrace-labs/umash
108
12689472
""" Test suite for the public fingerprinting function. """ from hypothesis import given, settings import hypothesis.strategies as st from umash import C, FFI from umash_reference import umash, UmashKey U64S = st.integers(min_value=0, max_value=2 ** 64 - 1) FIELD = 2 ** 61 - 1 def repeats(min_size): """Repeats one byte n times.""" return st.builds( lambda count, binary: binary * count, st.integers(min_value=min_size, max_value=1024), st.binary(min_size=1, max_size=1), ) @given( seed=U64S, multipliers=st.lists( st.integers(min_value=0, max_value=FIELD - 1), min_size=2, max_size=2 ), key=st.lists( U64S, min_size=C.UMASH_OH_PARAM_COUNT + C.UMASH_OH_TWISTING_COUNT, max_size=C.UMASH_OH_PARAM_COUNT + C.UMASH_OH_TWISTING_COUNT, ), data=st.binary() | repeats(1), ) def test_public_umash_fprint(seed, multipliers, key, data): """Compare umash_fprint with two calls to the reference.""" expected = [ umash(UmashKey(poly=multipliers[0], oh=key), seed, data, secondary=False), umash(UmashKey(poly=multipliers[1], oh=key), seed, data, secondary=True), ] n_bytes = len(data) block = FFI.new("char[]", n_bytes) FFI.memmove(block, data, n_bytes) params = FFI.new("struct umash_params[1]") for i, multiplier in enumerate(multipliers): params[0].poly[i][0] = (multiplier ** 2) % FIELD params[0].poly[i][1] = multiplier for i, param in enumerate(key): params[0].oh[i] = param actual = C.umash_fprint(params, seed, block, n_bytes) assert [actual.hash[0], actual.hash[1]] == expected @settings(deadline=None) @given( seed=U64S, multipliers=st.lists( st.integers(min_value=0, max_value=FIELD - 1), min_size=2, max_size=2 ), key=st.lists( U64S, min_size=C.UMASH_OH_PARAM_COUNT + C.UMASH_OH_TWISTING_COUNT, max_size=C.UMASH_OH_PARAM_COUNT + C.UMASH_OH_TWISTING_COUNT, ), byte=st.binary(min_size=1, max_size=1), ) def test_public_umash_fprint_repeated(seed, multipliers, key, byte): """Compare umash_fprint with two calls to the reference, for n repetitions of the input byte.""" params = FFI.new("struct umash_params[1]") for i, multiplier in enumerate(multipliers): params[0].poly[i][0] = (multiplier ** 2) % FIELD params[0].poly[i][1] = multiplier for i, param in enumerate(key): params[0].oh[i] = param for i in range(520): data = byte * i expected = [ umash(UmashKey(poly=multipliers[0], oh=key), seed, data, secondary=False), umash(UmashKey(poly=multipliers[1], oh=key), seed, data, secondary=True), ] n_bytes = len(data) block = FFI.new("char[]", n_bytes) FFI.memmove(block, data, n_bytes) actual = C.umash_fprint(params, seed, block, n_bytes) assert [actual.hash[0], actual.hash[1]] == expected
rgb_track/models/wrappers/rgb_simple_wrapper.py
hieuvecto/CASIA-SURF_CeFA
133
12689506
import torch.nn as nn import torch from at_learner_core.models.wrappers.losses import get_loss from at_learner_core.models.wrappers.simple_classifier_wrapper import SimpleClassifierWrapper from at_learner_core.models.architectures import get_backbone class RGBSimpleWrapper(SimpleClassifierWrapper): def __init__(self, wrapper_config): super().__init__(wrapper_config) def _init_modules(self, wrapper_config): self.backbone, feature_size = get_backbone(wrapper_config.backbone, pretrained=wrapper_config.pretrained, get_feature_size=True) self.classifier = nn.Linear(feature_size, wrapper_config.nclasses) def predict(self, x): features = self.backbone(x['data']) output = self.classifier(features) if isinstance(self.loss, (nn.BCELoss, nn.BCEWithLogitsLoss)): output = torch.sigmoid(output) elif isinstance(self.loss, nn.CrossEntropyLoss): output = nn.functional.softmax(output, dim=0)[:, 1] output_dict = {'output': output.detach().cpu()} return output_dict class RGBSimpleInferenceWrapper(RGBSimpleWrapper): def forward(self, x): features = self.backbone(x) output = self.classifier(features) output = torch.sigmoid(output) return output
Chapter10/c10_16_straddle.py
John-ye666/Python-for-Finance-Second-Edition
236
12689512
# -*- coding: utf-8 -*- """ Name : c10_16_straddle.py Book : Python for Finance (2nd ed.) Publisher: Packt Publishing Ltd. Author : <NAME> Date : 6/6/2017 email : <EMAIL> <EMAIL> """ import matplotlib.pyplot as plt import numpy as np sT = np.arange(30,80,5) x=50; c=2; p=1 straddle=(abs(sT-x)+sT-x)/2-c + (abs(x-sT)+x-sT)/2-p y0=np.zeros(len(sT)) plt.ylim(-6,20) plt.xlim(40,70) plt.plot(sT,y0) plt.plot(sT,straddle,'r') plt.plot([x,x],[-6,4],'g-.') plt.title("Profit-loss for a Straddle") plt.xlabel('Stock price') plt.ylabel('Profit (loss)') plt.annotate('Point 1='+str(x-c-p), xy=(x-p-c,0), xytext=(x-p-c,10), arrowprops=dict(facecolor='red',shrink=0.01),) plt.annotate('Point 2='+str(x+c+p), xy=(x+p+c,0), xytext=(x+p+c,13), arrowprops=dict(facecolor='blue',shrink=0.01),) plt.annotate('exercise price', xy=(x+1,-5)) plt.annotate('Buy a call and buy a put with the same exercise price',xy=(45,16)) plt.show()
stable_nalu/layer/_abstract_recurrent_cell.py
wlm2019/Neural-Arithmetic-Units
147
12689513
import torch from ..abstract import ExtendedTorchModule class AbstractRecurrentCell(ExtendedTorchModule): def __init__(self, Op, input_size, hidden_size, writer=None, **kwargs): super().__init__('recurrent', writer=writer, **kwargs) self.input_size = input_size self.hidden_size = hidden_size self.op = Op(input_size + hidden_size, hidden_size, writer=self.writer, **kwargs) def reset_parameters(self): self.op.reset_parameters() def forward(self, x_t, h_tm1): return self.op(torch.cat((x_t, h_tm1), dim=1)) def extra_repr(self): return 'input_size={}, hidden_size={}'.format( self.input_size, self.hidden_size )
tests/test_visitors/test_ast/test_complexity/test_jones/test_module_complexity.py
cdhiraj40/wemake-python-styleguide
1,931
12689539
<reponame>cdhiraj40/wemake-python-styleguide import pytest from wemake_python_styleguide.visitors.ast.complexity.jones import ( JonesComplexityVisitor, JonesScoreViolation, ) module_without_nodes = '' module_with_nodes = """ some_value = 1 + 2 other = some_value if some_value > 2 else some_value * 8 + 34 """ module_with_function = """ def some_function(param): return param + param * 2 some_function(12 + 6) """ module_with_class = """ class SomeClass(object): def execute(self): return self some = SomeClass() print(some.execute()) """ @pytest.mark.parametrize('code', [ module_without_nodes, module_with_nodes, module_with_function, module_with_class, ]) def test_module_score( assert_errors, parse_ast_tree, code, default_options, mode, ): """Testing that regular nodes do not raise violations.""" tree = parse_ast_tree(mode(code)) visitor = JonesComplexityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, []) @pytest.mark.parametrize(('code', 'score'), [ (module_without_nodes, 0), (module_with_nodes, 8.5), (module_with_function, 6), (module_with_class, 2), ]) def test_module_score_error( assert_errors, assert_error_text, parse_ast_tree, code, score, options, mode, ): """Testing that regular nodes do raise violations.""" tree = parse_ast_tree(mode(code)) option_values = options(max_jones_score=-1) visitor = JonesComplexityVisitor(option_values, tree=tree) visitor.run() assert_errors(visitor, [JonesScoreViolation]) assert_error_text(visitor, str(score), option_values.max_jones_score)
netaddr/tests/ip/test_ip.py
Rockly/netaddr
416
12689557
import weakref from netaddr import IPAddress, IPNetwork, IPRange def test_ip_classes_are_weak_referencable(): weakref.ref(IPAddress('10.0.0.1')) weakref.ref(IPNetwork('10.0.0.1/8')) weakref.ref(IPRange('10.0.0.1', '10.0.0.10'))
actions/lib/utils.py
mattmiller87/stackstorm-time
164
12689584
<gh_stars>100-1000 import time __all__ = [ 'dt_to_timestamp' ] def dt_to_timestamp(dt): timestamp = int(time.mktime(dt.timetuple())) return timestamp
superset/dashboards/filter_sets/commands/create.py
delorenzosoftware/superset
18,621
12689597
<gh_stars>1000+ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from typing import Any, Dict from flask import g from flask_appbuilder.models.sqla import Model from flask_appbuilder.security.sqla.models import User from superset import security_manager from superset.dashboards.filter_sets.commands.base import BaseFilterSetCommand from superset.dashboards.filter_sets.commands.exceptions import ( DashboardIdInconsistencyError, FilterSetCreateFailedError, UserIsNotDashboardOwnerError, ) from superset.dashboards.filter_sets.consts import ( DASHBOARD_ID_FIELD, DASHBOARD_OWNER_TYPE, OWNER_ID_FIELD, OWNER_TYPE_FIELD, ) from superset.dashboards.filter_sets.dao import FilterSetDAO logger = logging.getLogger(__name__) class CreateFilterSetCommand(BaseFilterSetCommand): # pylint: disable=C0103 def __init__(self, user: User, dashboard_id: int, data: Dict[str, Any]): super().__init__(user, dashboard_id) self._properties = data.copy() def run(self) -> Model: self.validate() self._properties[DASHBOARD_ID_FIELD] = self._dashboard.id filter_set = FilterSetDAO.create(self._properties, commit=True) return filter_set def validate(self) -> None: self._validate_filterset_dashboard_exists() if self._properties[OWNER_TYPE_FIELD] == DASHBOARD_OWNER_TYPE: self._validate_owner_id_is_dashboard_id() self._validate_user_is_the_dashboard_owner() else: self._validate_owner_id_exists() def _validate_owner_id_exists(self) -> None: owner_id = self._properties[OWNER_ID_FIELD] if not (g.user.id == owner_id or security_manager.get_user_by_id(owner_id)): raise FilterSetCreateFailedError( str(self._dashboard_id), "owner_id does not exists" ) def _validate_user_is_the_dashboard_owner(self) -> None: if not self.is_user_dashboard_owner(): raise UserIsNotDashboardOwnerError(str(self._dashboard_id)) def _validate_owner_id_is_dashboard_id(self) -> None: if ( self._properties.get(OWNER_ID_FIELD, self._dashboard_id) != self._dashboard_id ): raise DashboardIdInconsistencyError(str(self._dashboard_id))
src/genie/libs/parser/iosxe/tests/ShowWirelessMobilitySummary/cli/equal/golden_output2_expected.py
balmasea/genieparser
204
12689655
<reponame>balmasea/genieparser expected_output = { "controller_config": { "group_name": "default", "ipv4": "10.9.3.4", "mac_address": "AAAA.BBFF.8888", "multicast_ipv4": "0.0.0.0", "multicast_ipv6": "::", "pmtu": "N/A", "public_ip": "N/A", "status": "N/A", }, "mobility_summary": { "domain_id": "0x34ac", "dscp_value": "48", "group_name": "default", "keepalive": "10/3", "mac_addr": "687d.b4ff.b9e9", "mgmt_ipv4": "10.20.30.40", "mgmt_ipv6": "", "mgmt_vlan": "143", "multi_ipv4": "0.0.0.0", "multi_ipv6": "::", }, }
tutorials/eboutique/microservices/product/src/commands/__init__.py
bhardwajRahul/minos-python
247
12689673
<reponame>bhardwajRahul/minos-python<gh_stars>100-1000 from .services import ( ProductCommandService, )
chitra/import_utils.py
aniketmaurya/Chitra
158
12689693
import importlib def is_installed(module_name: str): return importlib.util.find_spec(module_name) is not None
reinforcement/tensorflow/minigo/tests/test_go.py
mengkai94/training
3,475
12689733
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import coords from go import Position, PlayerMove, LibertyTracker, WHITE, BLACK import go import sgf_wrapper from tests import test_utils EMPTY_ROW = '.' * go.N + '\n' TEST_BOARD = test_utils.load_board(''' .X.....OO X........ ''' + EMPTY_ROW * 7) NO_HANDICAP_SGF = "(;CA[UTF-8]SZ[9]PB[Murakawa Daisuke]PW[Iyama Yuta]KM[6.5]HA[0]RE[W+1.5]GM[1];B[fd];W[cf];B[eg];W[dd];B[dc];W[cc];B[de];W[cd];B[ed];W[he];B[ce];W[be];B[df];W[bf];B[hd];W[ge];B[gd];W[gg];B[db];W[cb];B[cg];W[bg];B[gh];W[fh];B[hh];W[fg];B[eh];W[ei];B[di];W[fi];B[hg];W[dh];B[ch];W[ci];B[bh];W[ff];B[fe];W[hf];B[id];W[bi];B[ah];W[ef];B[dg];W[ee];B[di];W[ig];B[ai];W[ih];B[fb];W[hi];B[ag];W[ab];B[bd];W[bc];B[ae];W[ad];B[af];W[bd];B[ca];W[ba];B[da];W[ie])" def coords_from_gtp_set(string): return frozenset(map(coords.from_gtp, string.split())) class TestBasicFunctions(test_utils.MinigoUnitTest): def test_load_board(self): self.assertEqualNPArray(go.EMPTY_BOARD, np.zeros([go.N, go.N])) self.assertEqualNPArray( go.EMPTY_BOARD, test_utils.load_board('. \n' * go.N ** 2)) def test_neighbors(self): corner = coords.from_gtp('A1') neighbors = [go.EMPTY_BOARD[c] for c in go.NEIGHBORS[corner]] self.assertEqual(len(neighbors), 2) side = coords.from_gtp('A2') side_neighbors = [go.EMPTY_BOARD[c] for c in go.NEIGHBORS[side]] self.assertEqual(len(side_neighbors), 3) def test_is_koish(self): self.assertEqual(go.is_koish( TEST_BOARD, coords.from_gtp('A9')), BLACK) self.assertEqual(go.is_koish(TEST_BOARD, coords.from_gtp('B8')), None) self.assertEqual(go.is_koish(TEST_BOARD, coords.from_gtp('B9')), None) self.assertEqual(go.is_koish(TEST_BOARD, coords.from_gtp('E5')), None) def test_is_eyeish(self): board = test_utils.load_board(''' .XX...XXX X.X...X.X XX.....X. ........X XXXX..... OOOX....O X.OXX.OO. .XO.X.O.O XXO.X.OO. ''') B_eyes = coords_from_gtp_set('A2 A9 B8 J7 H8') W_eyes = coords_from_gtp_set('H2 J1 J3') not_eyes = coords_from_gtp_set('B3 E5') for be in B_eyes: self.assertEqual(go.is_eyeish(board, be), BLACK, str(be)) for we in W_eyes: self.assertEqual(go.is_eyeish(board, we), WHITE, str(we)) for ne in not_eyes: self.assertEqual(go.is_eyeish(board, ne), None, str(ne)) class TestLibertyTracker(test_utils.MinigoUnitTest): def test_lib_tracker_init(self): board = test_utils.load_board('X........' + EMPTY_ROW * 8) lib_tracker = LibertyTracker.from_board(board) self.assertEqual(len(lib_tracker.groups), 1) self.assertNotEqual( lib_tracker.group_index[coords.from_gtp('A9')], go.MISSING_GROUP_ID) self.assertEqual(lib_tracker.liberty_cache[coords.from_gtp('A9')], 2) sole_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'A9')]] self.assertEqual(sole_group.stones, coords_from_gtp_set('A9')) self.assertEqual(sole_group.liberties, coords_from_gtp_set('B9 A8')) self.assertEqual(sole_group.color, BLACK) def test_place_stone(self): board = test_utils.load_board('X........' + EMPTY_ROW * 8) lib_tracker = LibertyTracker.from_board(board) lib_tracker.add_stone(BLACK, coords.from_gtp('B9')) self.assertEqual(len(lib_tracker.groups), 1) self.assertNotEqual( lib_tracker.group_index[coords.from_gtp('A9')], go.MISSING_GROUP_ID) self.assertEqual(lib_tracker.liberty_cache[coords.from_gtp('A9')], 3) self.assertEqual(lib_tracker.liberty_cache[coords.from_gtp('B9')], 3) sole_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'A9')]] self.assertEqual(sole_group.stones, coords_from_gtp_set('A9 B9')) self.assertEqual(sole_group.liberties, coords_from_gtp_set('C9 A8 B8')) self.assertEqual(sole_group.color, BLACK) def test_place_stone_opposite_color(self): board = test_utils.load_board('X........' + EMPTY_ROW * 8) lib_tracker = LibertyTracker.from_board(board) lib_tracker.add_stone(WHITE, coords.from_gtp('B9')) self.assertEqual(len(lib_tracker.groups), 2) self.assertNotEqual( lib_tracker.group_index[coords.from_gtp('A9')], go.MISSING_GROUP_ID) self.assertNotEqual( lib_tracker.group_index[coords.from_gtp('B9')], go.MISSING_GROUP_ID) self.assertEqual(lib_tracker.liberty_cache[coords.from_gtp('A9')], 1) self.assertEqual(lib_tracker.liberty_cache[coords.from_gtp('B9')], 2) black_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'A9')]] white_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'B9')]] self.assertEqual(black_group.stones, coords_from_gtp_set('A9')) self.assertEqual(black_group.liberties, coords_from_gtp_set('A8')) self.assertEqual(black_group.color, BLACK) self.assertEqual(white_group.stones, coords_from_gtp_set('B9')) self.assertEqual(white_group.liberties, coords_from_gtp_set('C9 B8')) self.assertEqual(white_group.color, WHITE) def test_merge_multiple_groups(self): board = test_utils.load_board(''' .X....... X.X...... .X....... ''' + EMPTY_ROW * 6) lib_tracker = LibertyTracker.from_board(board) lib_tracker.add_stone(BLACK, coords.from_gtp('B8')) self.assertEqual(len(lib_tracker.groups), 1) self.assertNotEqual( lib_tracker.group_index[coords.from_gtp('B8')], go.MISSING_GROUP_ID) sole_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'B8')]] self.assertEqual(sole_group.stones, coords_from_gtp_set('B9 A8 B8 C8 B7')) self.assertEqual(sole_group.liberties, coords_from_gtp_set('A9 C9 D8 A7 C7 B6')) self.assertEqual(sole_group.color, BLACK) liberty_cache = lib_tracker.liberty_cache for stone in sole_group.stones: self.assertEqual(liberty_cache[stone], 6, str(stone)) def test_capture_stone(self): board = test_utils.load_board(''' .X....... XO....... .X....... ''' + EMPTY_ROW * 6) lib_tracker = LibertyTracker.from_board(board) captured = lib_tracker.add_stone(BLACK, coords.from_gtp('C8')) self.assertEqual(len(lib_tracker.groups), 4) self.assertEqual( lib_tracker.group_index[coords.from_gtp('B8')], go.MISSING_GROUP_ID) self.assertEqual(captured, coords_from_gtp_set('B8')) def test_capture_many(self): board = test_utils.load_board(''' .XX...... XOO...... .XX...... ''' + EMPTY_ROW * 6) lib_tracker = LibertyTracker.from_board(board) captured = lib_tracker.add_stone(BLACK, coords.from_gtp('D8')) self.assertEqual(len(lib_tracker.groups), 4) self.assertEqual( lib_tracker.group_index[coords.from_gtp('B8')], go.MISSING_GROUP_ID) self.assertEqual(captured, coords_from_gtp_set('B8 C8')) left_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'A8')]] self.assertEqual(left_group.stones, coords_from_gtp_set('A8')) self.assertEqual(left_group.liberties, coords_from_gtp_set('A9 B8 A7')) right_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'D8')]] self.assertEqual(right_group.stones, coords_from_gtp_set('D8')) self.assertEqual(right_group.liberties, coords_from_gtp_set('D9 C8 E8 D7')) top_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'B9')]] self.assertEqual(top_group.stones, coords_from_gtp_set('B9 C9')) self.assertEqual(top_group.liberties, coords_from_gtp_set('A9 D9 B8 C8')) bottom_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'B7')]] self.assertEqual(bottom_group.stones, coords_from_gtp_set('B7 C7')) self.assertEqual(bottom_group.liberties, coords_from_gtp_set('B8 C8 A7 D7 B6 C6')) liberty_cache = lib_tracker.liberty_cache for stone in top_group.stones: self.assertEqual(liberty_cache[stone], 4, str(stone)) for stone in left_group.stones: self.assertEqual(liberty_cache[stone], 3, str(stone)) for stone in right_group.stones: self.assertEqual(liberty_cache[stone], 4, str(stone)) for stone in bottom_group.stones: self.assertEqual(liberty_cache[stone], 6, str(stone)) for stone in captured: self.assertEqual(liberty_cache[stone], 0, str(stone)) def test_capture_multiple_groups(self): board = test_utils.load_board(''' .OX...... OXX...... XX....... ''' + EMPTY_ROW * 6) lib_tracker = LibertyTracker.from_board(board) captured = lib_tracker.add_stone(BLACK, coords.from_gtp('A9')) self.assertEqual(len(lib_tracker.groups), 2) self.assertEqual(captured, coords_from_gtp_set('B9 A8')) corner_stone = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'A9')]] self.assertEqual(corner_stone.stones, coords_from_gtp_set('A9')) self.assertEqual(corner_stone.liberties, coords_from_gtp_set('B9 A8')) surrounding_stones = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'C9')]] self.assertEqual(surrounding_stones.stones, coords_from_gtp_set('C9 B8 C8 A7 B7')) self.assertEqual(surrounding_stones.liberties, coords_from_gtp_set('B9 D9 A8 D8 C7 A6 B6')) liberty_cache = lib_tracker.liberty_cache for stone in corner_stone.stones: self.assertEqual(liberty_cache[stone], 2, str(stone)) for stone in surrounding_stones.stones: self.assertEqual(liberty_cache[stone], 7, str(stone)) def test_same_friendly_group_neighboring_twice(self): board = test_utils.load_board(''' XX....... X........ ''' + EMPTY_ROW * 7) lib_tracker = LibertyTracker.from_board(board) captured = lib_tracker.add_stone(BLACK, coords.from_gtp('B8')) self.assertEqual(len(lib_tracker.groups), 1) sole_group_id = lib_tracker.group_index[coords.from_gtp('A9')] sole_group = lib_tracker.groups[sole_group_id] self.assertEqual(sole_group.stones, coords_from_gtp_set('A9 B9 A8 B8')) self.assertEqual(sole_group.liberties, coords_from_gtp_set('C9 C8 A7 B7')) self.assertEqual(captured, set()) def test_same_opponent_group_neighboring_twice(self): board = test_utils.load_board(''' XX....... X........ ''' + EMPTY_ROW * 7) lib_tracker = LibertyTracker.from_board(board) captured = lib_tracker.add_stone(WHITE, coords.from_gtp('B8')) self.assertEqual(len(lib_tracker.groups), 2) black_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'A9')]] self.assertEqual(black_group.stones, coords_from_gtp_set('A9 B9 A8')) self.assertEqual(black_group.liberties, coords_from_gtp_set('C9 A7')) white_group = lib_tracker.groups[lib_tracker.group_index[coords.from_gtp( 'B8')]] self.assertEqual(white_group.stones, coords_from_gtp_set('B8')) self.assertEqual(white_group.liberties, coords_from_gtp_set('C8 B7')) self.assertEqual(captured, set()) class TestPosition(test_utils.MinigoUnitTest): def test_passing(self): start_position = Position( board=TEST_BOARD, n=0, komi=6.5, caps=(1, 2), ko=coords.from_gtp('A1'), recent=tuple(), to_play=BLACK, ) expected_position = Position( board=TEST_BOARD, n=1, komi=6.5, caps=(1, 2), ko=None, recent=(PlayerMove(BLACK, None),), to_play=WHITE, ) pass_position = start_position.pass_move() self.assertEqualPositions(pass_position, expected_position) def test_flipturn(self): start_position = Position( board=TEST_BOARD, n=0, komi=6.5, caps=(1, 2), ko=coords.from_gtp('A1'), recent=tuple(), to_play=BLACK, ) expected_position = Position( board=TEST_BOARD, n=0, komi=6.5, caps=(1, 2), ko=None, recent=tuple(), to_play=WHITE, ) flip_position = start_position.flip_playerturn() self.assertEqualPositions(flip_position, expected_position) def test_is_move_suicidal(self): board = test_utils.load_board(''' ...O.O... ....O.... XO.....O. OXO...OXO O.XO.OX.O OXO...OOX XO....... ......XXO .....XOO. ''') position = Position( board=board, to_play=BLACK, ) suicidal_moves = coords_from_gtp_set('E9 H5') nonsuicidal_moves = coords_from_gtp_set('B5 J1 A9') for move in suicidal_moves: # sanity check my coordinate input self.assertEqual(position.board[move], go.EMPTY) self.assertTrue(position.is_move_suicidal(move), str(move)) for move in nonsuicidal_moves: # sanity check my coordinate input self.assertEqual(position.board[move], go.EMPTY) self.assertFalse(position.is_move_suicidal(move), str(move)) def test_legal_moves(self): board = test_utils.load_board(''' .O.O.XOX. O..OOOOOX ......O.O OO.....OX XO.....X. .O....... OX.....OO XX...OOOX .....O.X. ''') position = Position(board=board, to_play=BLACK) illegal_moves = coords_from_gtp_set('A9 E9 J9') legal_moves = coords_from_gtp_set('A4 G1 J1 H7') | {None} for move in illegal_moves: with self.subTest(type='illegal', move=move): self.assertFalse(position.is_move_legal(move)) for move in legal_moves: with self.subTest(type='legal', move=move): self.assertTrue(position.is_move_legal(move)) # check that the bulk legal test agrees with move-by-move illegal test. bulk_legality = position.all_legal_moves() for i, bulk_legal in enumerate(bulk_legality): with self.subTest(type='bulk', move=coords.from_flat(i)): self.assertEqual( bulk_legal, position.is_move_legal(coords.from_flat(i))) # flip the colors and check that everything is still (il)legal position = Position(board=-board, to_play=WHITE) for move in illegal_moves: with self.subTest(type='illegal', move=move): self.assertFalse(position.is_move_legal(move)) for move in legal_moves: with self.subTest(type='legal', move=move): self.assertTrue(position.is_move_legal(move)) bulk_legality = position.all_legal_moves() for i, bulk_legal in enumerate(bulk_legality): with self.subTest(type='bulk', move=coords.from_flat(i)): self.assertEqual( bulk_legal, position.is_move_legal(coords.from_flat(i))) def test_move(self): start_position = Position( board=TEST_BOARD, n=0, komi=6.5, caps=(1, 2), ko=None, recent=tuple(), to_play=BLACK, ) expected_board = test_utils.load_board(''' .XX....OO X........ ''' + EMPTY_ROW * 7) expected_position = Position( board=expected_board, n=1, komi=6.5, caps=(1, 2), ko=None, recent=(PlayerMove(BLACK, coords.from_gtp('C9')),), to_play=WHITE, ) actual_position = start_position.play_move(coords.from_gtp('C9')) self.assertEqualPositions(actual_position, expected_position) expected_board2 = test_utils.load_board(''' .XX....OO X.......O ''' + EMPTY_ROW * 7) expected_position2 = Position( board=expected_board2, n=2, komi=6.5, caps=(1, 2), ko=None, recent=(PlayerMove(BLACK, coords.from_gtp('C9')), PlayerMove(WHITE, coords.from_gtp('J8'))), to_play=BLACK, ) actual_position2 = actual_position.play_move(coords.from_gtp('J8')) self.assertEqualPositions(actual_position2, expected_position2) def test_move_with_capture(self): start_board = test_utils.load_board(EMPTY_ROW * 5 + ''' XXXX..... XOOX..... O.OX..... OOXX..... ''') start_position = Position( board=start_board, n=0, komi=6.5, caps=(1, 2), ko=None, recent=tuple(), to_play=BLACK, ) expected_board = test_utils.load_board(EMPTY_ROW * 5 + ''' XXXX..... X..X..... .X.X..... ..XX..... ''') expected_position = Position( board=expected_board, n=1, komi=6.5, caps=(7, 2), ko=None, recent=(PlayerMove(BLACK, coords.from_gtp('B2')),), to_play=WHITE, ) actual_position = start_position.play_move(coords.from_gtp('B2')) self.assertEqualPositions(actual_position, expected_position) def test_ko_move(self): start_board = test_utils.load_board(''' .OX...... OX....... ''' + EMPTY_ROW * 7) start_position = Position( board=start_board, n=0, komi=6.5, caps=(1, 2), ko=None, recent=tuple(), to_play=BLACK, ) expected_board = test_utils.load_board(''' X.X...... OX....... ''' + EMPTY_ROW * 7) expected_position = Position( board=expected_board, n=1, komi=6.5, caps=(2, 2), ko=coords.from_gtp('B9'), recent=(PlayerMove(BLACK, coords.from_gtp('A9')),), to_play=WHITE, ) actual_position = start_position.play_move(coords.from_gtp('A9')) self.assertEqualPositions(actual_position, expected_position) # Check that retaking ko is illegal until two intervening moves with self.assertRaises(go.IllegalMove): actual_position.play_move(coords.from_gtp('B9')) pass_twice = actual_position.pass_move().pass_move() ko_delayed_retake = pass_twice.play_move(coords.from_gtp('B9')) expected_position = Position( board=start_board, n=4, komi=6.5, caps=(2, 3), ko=coords.from_gtp('A9'), recent=( PlayerMove(BLACK, coords.from_gtp('A9')), PlayerMove(WHITE, None), PlayerMove(BLACK, None), PlayerMove(WHITE, coords.from_gtp('B9'))), to_play=BLACK, ) self.assertEqualPositions(ko_delayed_retake, expected_position) def test_is_game_over(self): root = go.Position() self.assertFalse(root.is_game_over()) first_pass = root.play_move(None) self.assertFalse(first_pass.is_game_over()) second_pass = first_pass.play_move(None) self.assertTrue(second_pass.is_game_over()) def test_scoring(self): board = test_utils.load_board(''' .XX...... OOXX..... OOOX...X. OXX...... OOXXXXXX. OOOXOXOXX .O.OOXOOX .O.O.OOXX ......OOO ''') position = Position( board=board, n=54, komi=6.5, caps=(2, 5), ko=None, recent=tuple(), to_play=BLACK, ) expected_score = 1.5 self.assertEqual(position.score(), expected_score) board = test_utils.load_board(''' XXX...... OOXX..... OOOX...X. OXX...... OOXXXXXX. OOOXOXOXX .O.OOXOOX .O.O.OOXX ......OOO ''') position = Position( board=board, n=55, komi=6.5, caps=(2, 5), ko=None, recent=tuple(), to_play=WHITE, ) expected_score = 2.5 self.assertEqual(position.score(), expected_score) def test_replay_position(self): sgf_positions = list(sgf_wrapper.replay_sgf(NO_HANDICAP_SGF)) initial = sgf_positions[0] self.assertEqual(initial.result, go.WHITE) final = sgf_positions[-1].position.play_move( sgf_positions[-1].next_move) # sanity check to ensure we're working with the right position final_board = test_utils.load_board(''' .OXX..... O.OX.X... .OOX..... OOOOXXXXX XOXXOXOOO XOOXOO.O. XOXXXOOXO XXX.XOXXO X..XOO.O. ''') expected_final_position = go.Position( final_board, n=62, komi=6.5, caps=(3, 2), ko=None, recent=tuple(), to_play=go.BLACK ) self.assertEqualPositions(expected_final_position, final) self.assertEqual(final.n, len(final.recent)) replayed_positions = list(go.replay_position(final, 1)) for sgf_pos, replay_pos in zip(sgf_positions, replayed_positions): self.assertEqualPositions(sgf_pos.position, replay_pos.position)
panel/tests/template/test_vanilla_manual.py
datalayer-contrib/holoviz-panel
1,130
12689744
import panel as pn import numpy as np import holoviews as hv LOGO = "https://panel.holoviz.org/_static/logo_horizontal.png" def test_vanilla_with_sidebar(): """Returns an app that uses the vanilla template in various ways. Inspect the app and verify that the issues of [Issue 1641]\ (https://github.com/holoviz/panel/issues/1641) have been solved - Navbar is "sticky"/ fixed to the top - Navbar supports adding header items to left, center and right - There is a nice padding/ margin everywhere - Independent scroll for sidebar and main - Only vertical scrollbars """ vanilla = pn.template.VanillaTemplate( title="Vanilla Template", logo=LOGO, ) xs = np.linspace(0, np.pi) freq = pn.widgets.FloatSlider(name="Frequency", start=0, end=10, value=2) phase = pn.widgets.FloatSlider(name="Phase", start=0, end=np.pi) @pn.depends(freq=freq, phase=phase) def sine(freq, phase): return hv.Curve((xs, np.sin(xs * freq + phase))).opts(responsive=True, min_height=400) @pn.depends(freq=freq, phase=phase) def cosine(freq, phase): return hv.Curve((xs, np.cos(xs * freq + phase))).opts(responsive=True, min_height=400) vanilla.sidebar.append(freq) vanilla.sidebar.append(phase) vanilla.sidebar.append(pn.pane.Markdown(test_vanilla_with_sidebar.__doc__)) vanilla.sidebar.append(pn.pane.Markdown("## Sidebar Item\n" * 50)) vanilla.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title="Sine"), pn.Card(hv.DynamicMap(cosine), title="Cosine"), ) ) vanilla.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title="Sine"), pn.Card(hv.DynamicMap(cosine), title="Cosine"), ) ) vanilla.header[:] = [ pn.Row( pn.widgets.Button(name="Left", sizing_mode="fixed", width=50), pn.layout.HSpacer(), pn.widgets.Button(name="Center", sizing_mode="fixed", width=50), pn.layout.HSpacer(), pn.widgets.Button(name="Right", sizing_mode="fixed", width=50), ) ] vanilla.main_max_width = "600px" return vanilla def test_vanilla_with_no_sidebar(): """Returns an app that uses the vanilla template in various ways. Inspect the app and verify that the issues of [Issue 1641]\ (https://github.com/holoviz/panel/issues/1641) have been solved - Navbar is "sticky"/ fixed to the top - Navbar supports adding header items to left, center and right - There is a nice padding/ margin everywhere - Independent scroll for sidebar and main - Only vertical scrollbars """ vanilla = pn.template.VanillaTemplate( title="Vanilla Template", logo=LOGO, favicon="https://raw.githubusercontent.com/MarcSkovMadsen/awesome-panel/2781d86d4ed141889d633748879a120d7d8e777a/assets/images/favicon.ico", ) xs = np.linspace(0, np.pi) freq = pn.widgets.FloatSlider(name="Frequency", start=0, end=10, value=2) phase = pn.widgets.FloatSlider(name="Phase", start=0, end=np.pi) @pn.depends(freq=freq, phase=phase) def sine(freq, phase): return hv.Curve((xs, np.sin(xs * freq + phase))).opts(responsive=True, min_height=400) @pn.depends(freq=freq, phase=phase) def cosine(freq, phase): return hv.Curve((xs, np.cos(xs * freq + phase))).opts(responsive=True, min_height=400) vanilla.main.append(freq) vanilla.main.append(phase) vanilla.main.append(pn.pane.Markdown(test_vanilla_with_no_sidebar.__doc__)) vanilla.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title="Sine"), pn.Card(hv.DynamicMap(cosine), title="Cosine"), ) ) vanilla.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title="Sine"), pn.Card(hv.DynamicMap(cosine), title="Cosine"), ) ) vanilla.header[:] = [ pn.Row( pn.widgets.Button(name="Left", sizing_mode="fixed", width=50), pn.layout.HSpacer(), pn.widgets.Button(name="Center", sizing_mode="fixed", width=50), pn.layout.HSpacer(), pn.widgets.Button(name="Right", sizing_mode="fixed", width=50), ) ] vanilla.main_max_width = "600px" return vanilla if __name__.startswith("bokeh"): pn.extension(sizing_mode="stretch_width") test_vanilla_with_sidebar().servable() # test_vanilla_with_no_sidebar().servable()
timesynth/signals/car.py
swight-prc/TimeSynth
242
12689761
<reponame>swight-prc/TimeSynth import numpy as np from .base_signal import BaseSignal __all__ = ['CAR'] class CAR(BaseSignal): """Signal generatpr for continuously autoregressive (CAR) signals. Parameters ---------- ar_param : number (default 1.0) Parameter of the AR(1) process sigma : number (default 1.0) Standard deviation of the signal start_value : number (default 0.0) Starting value of the AR process """ def __init__(self, ar_param=1.0, sigma=0.5, start_value=0.01): self.vectorizable = False self.ar_param = ar_param self.sigma = sigma self.start_value = start_value self.previous_value = None self.previous_time = None def sample_next(self, time, samples, errors): """Sample a single time point Parameters ---------- time : number Time at which a sample was required Returns ------- float sampled signal for time t """ if self.previous_value is None: output = self.start_value else: time_diff = time - self.previous_time noise = np.random.normal(loc=0.0, scale=1.0, size=1) output = (np.power(self.ar_param, time_diff))*self.previous_value+\ self.sigma*np.sqrt(1-np.power(self.ar_param, time_diff))*noise self.previous_time = time self.previous_value = output return output
crabageprediction/venv/Lib/site-packages/fontTools/ttLib/tables/_h_e_a_d.py
13rianlucero/CrabAgePrediction
38,667
12689816
from fontTools.misc import sstruct from fontTools.misc.fixedTools import floatToFixedToStr, strToFixedToFloat from fontTools.misc.textTools import safeEval, num2binary, binary2num from fontTools.misc.timeTools import timestampFromString, timestampToString, timestampNow from fontTools.misc.timeTools import epoch_diff as mac_epoch_diff # For backward compat from fontTools.misc.arrayTools import intRect, unionRect from . import DefaultTable import logging log = logging.getLogger(__name__) headFormat = """ > # big endian tableVersion: 16.16F fontRevision: 16.16F checkSumAdjustment: I magicNumber: I flags: H unitsPerEm: H created: Q modified: Q xMin: h yMin: h xMax: h yMax: h macStyle: H lowestRecPPEM: H fontDirectionHint: h indexToLocFormat: h glyphDataFormat: h """ class table__h_e_a_d(DefaultTable.DefaultTable): dependencies = ['maxp', 'loca', 'CFF ', 'CFF2'] def decompile(self, data, ttFont): dummy, rest = sstruct.unpack2(headFormat, data, self) if rest: # this is quite illegal, but there seem to be fonts out there that do this log.warning("extra bytes at the end of 'head' table") assert rest == b"\0\0" # For timestamp fields, ignore the top four bytes. Some fonts have # bogus values there. Since till 2038 those bytes only can be zero, # ignore them. # # https://github.com/fonttools/fonttools/issues/99#issuecomment-66776810 for stamp in 'created', 'modified': value = getattr(self, stamp) if value > 0xFFFFFFFF: log.warning("'%s' timestamp out of range; ignoring top bytes", stamp) value &= 0xFFFFFFFF setattr(self, stamp, value) if value < 0x7C259DC0: # January 1, 1970 00:00:00 log.warning("'%s' timestamp seems very low; regarding as unix timestamp", stamp) value += 0x7C259DC0 setattr(self, stamp, value) def compile(self, ttFont): if ttFont.recalcBBoxes: # For TT-flavored fonts, xMin, yMin, xMax and yMax are set in table__m_a_x_p.recalc(). if 'CFF ' in ttFont: topDict = ttFont['CFF '].cff.topDictIndex[0] self.xMin, self.yMin, self.xMax, self.yMax = intRect(topDict.FontBBox) elif 'CFF2' in ttFont: topDict = ttFont['CFF2'].cff.topDictIndex[0] charStrings = topDict.CharStrings fontBBox = None for charString in charStrings.values(): bounds = charString.calcBounds(charStrings) if bounds is not None: if fontBBox is not None: fontBBox = unionRect(fontBBox, bounds) else: fontBBox = bounds if fontBBox is not None: self.xMin, self.yMin, self.xMax, self.yMax = intRect(fontBBox) if ttFont.recalcTimestamp: self.modified = timestampNow() data = sstruct.pack(headFormat, self) return data def toXML(self, writer, ttFont): writer.comment("Most of this table will be recalculated by the compiler") writer.newline() _, names, fixes = sstruct.getformat(headFormat) for name in names: value = getattr(self, name) if name in fixes: value = floatToFixedToStr(value, precisionBits=fixes[name]) elif name in ("created", "modified"): value = timestampToString(value) elif name in ("magicNumber", "checkSumAdjustment"): if value < 0: value = value + 0x100000000 value = hex(value) if value[-1:] == "L": value = value[:-1] elif name in ("macStyle", "flags"): value = num2binary(value, 16) writer.simpletag(name, value=value) writer.newline() def fromXML(self, name, attrs, content, ttFont): value = attrs["value"] fixes = sstruct.getformat(headFormat)[2] if name in fixes: value = strToFixedToFloat(value, precisionBits=fixes[name]) elif name in ("created", "modified"): value = timestampFromString(value) elif name in ("macStyle", "flags"): value = binary2num(value) else: value = safeEval(value) setattr(self, name, value)
ibis/backends/impala/tests/test_connection_pool.py
GrapeBaBa/ibis
986
12689821
import ibis def test_connection_pool_size(hdfs, env, test_data_db): client = ibis.impala.connect( port=env.impala_port, hdfs_client=hdfs, host=env.impala_host, database=test_data_db, ) # the client cursor may or may not be GC'd, so the connection # pool will contain either zero or one cursor assert len(client.con.connection_pool) in (0, 1) def test_connection_pool_size_after_close(hdfs, env, test_data_db): client = ibis.impala.connect( port=env.impala_port, hdfs_client=hdfs, host=env.impala_host, database=test_data_db, ) client.close() assert not client.con.connection_pool
test/data/70.py
suliveevil/vista.vim
1,764
12689852
<filename>test/data/70.py class Foo: class Bar: def baz(self): pass
test/examples/simple/registers/integration/common/regmodel.py
rodrigomelo9/uvm-python
140
12689855
<gh_stars>100-1000 #// #//------------------------------------------------------------------------------ #// Copyright 2011 Mentor Graphics Corporation #// Copyright 2011 Cadence Design Systems, Inc. #// Copyright 2011 Synopsys, Inc. #// Copyright 2019-2020 <NAME> (tpoikela) #// All Rights Reserved Worldwide #// #// Licensed under the Apache License, Version 2.0 (the #// "License"); you may not use this file except in #// compliance with the License. You may obtain a copy of #// the License at #// #// http://www.apache.org/licenses/LICENSE-2.0 #// #// Unless required by applicable law or agreed to in #// writing, software distributed under the License is #// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR #// CONDITIONS OF ANY KIND, either express or implied. See #// the License for the specific language governing #// permissions and limitations under the License. #//------------------------------------------------------------------------------ from uvm.reg import UVMReg, UVMRegField from uvm.base import sv from uvm.macros import uvm_object_utils from uvm.reg.uvm_mem import UVMMem from uvm.reg.uvm_reg_block import UVMRegBlock from uvm.reg.uvm_reg_model import UVM_NO_COVERAGE, UVM_LITTLE_ENDIAN class dut_ID(UVMReg): def __init__(self, name="dut_ID"): super().__init__(name,32, UVM_NO_COVERAGE) self.REVISION_ID = None self.CHIP_ID = None self.PRODUCT_ID = None def build(self): self.REVISION_ID = UVMRegField.type_id.create("REVISION_ID") self.CHIP_ID = UVMRegField.type_id.create("CHIP_ID") self.PRODUCT_ID = UVMRegField.type_id.create("PRODUCT_ID") self.REVISION_ID.configure(self, 8, 0, "RO", 0, 0x03, 1, 0, 1) self.CHIP_ID.configure(self, 8, 8, "RO", 0, 0x5A, 1, 0, 1) self.PRODUCT_ID.configure(self, 10, 16,"RO", 0, 0x176, 1, 0, 1) uvm_object_utils(dut_ID) class dut_DATA(UVMReg): def __init__(self, name="dut_DATA"): super().__init__(name,32, UVM_NO_COVERAGE) self.value = None def build(self): self.value = UVMRegField.type_id.create("value") self.value.configure(self, 32, 0, "RW", 1, 0x0, 1, 0, 1) uvm_object_utils(dut_DATA) class dut_SOCKET(UVMReg): # rand UVMRegField IP # rand UVMRegField PORT def __init__(self, name="dut_ADDR"): super().__init__(name, 64, UVM_NO_COVERAGE) self.IP = None self.PORT = None def build(self): self.IP = UVMRegField.type_id.create("value") self.PORT = UVMRegField.type_id.create("value") self.IP.configure(self, 48, 0, "RW", 0, 0x0, 1, 0, 1) self.PORT.configure(self, 16, 48, "RW", 0, 0x0, 1, 0, 1) self.rand('IP') self.rand('PORT') uvm_object_utils(dut_SOCKET) class dut_RAM(UVMMem): def __init__(self, name="dut_RAM"): super().__init__(name, 8, 32, "RW", UVM_NO_COVERAGE) uvm_object_utils(dut_RAM) class dut_regmodel(UVMRegBlock): # rand dut_ID ID # rand dut_DATA DATA # rand dut_SOCKET SOCKET[256] # rand dut_RAM RAM def __init__(self, name="slave"): super().__init__(name, UVM_NO_COVERAGE) self.SOCKET = [] self.nsockets = 16 def build(self): # create self.ID = dut_ID.type_id.create("ID") self.DATA = dut_DATA.type_id.create("DATA") for i in range(self.nsockets): socket = dut_SOCKET.type_id.create(sv.sformatf("SOCKET[%0d]", i)) self.SOCKET.append(socket) self.RAM = dut_RAM.type_id.create("DMA_RAM") # configure/build registers self.ID.configure(self, None, "ID") self.ID.build() self.DATA.configure(self, None, "DATA") self.DATA.build() for i in range(len(self.SOCKET)): self.SOCKET[i].configure(self, None, sv.sformatf("SOCKET[%0d]", i)) self.SOCKET[i].build() self.RAM.configure(self, "DMA") # define default map/add register to map self.default_map = self.create_map("default_map", 0x0, 4, UVM_LITTLE_ENDIAN, 1) self.default_map.add_reg(self.ID, 0x0, "RW") self.default_map.add_reg(self.DATA, 0x24, "RW") for i in range(len(self.SOCKET)): self.default_map.add_reg(self.SOCKET[i], 0x1000 + 16 * i, "RW") self.default_map.add_mem(self.RAM, 0x2000, "RW") uvm_object_utils(dut_regmodel)
federatedml/optim/test/activation_test.py
fqiang/FATE
3,787
12689869
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest import numpy as np from federatedml.optim import activation class TestConvergeFunction(unittest.TestCase): def test_numeric_stability(self): x_list = np.linspace(-709, 709, 10000) # Original function # a = 1. / (1. + np.exp(-x)) for x in x_list: a1 = 1. / (1. + np.exp(-x)) a2 = activation.sigmoid(x) self.assertTrue(np.abs(a1 - a2) < 1e-5) if __name__ == '__main__': unittest.main()
docs/conf.py
melonwater211/snorkel
2,906
12689873
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import datetime import os import sys import torch sys.path.insert(0, os.path.abspath("..")) # -- Project information ----------------------------------------------------- project = "Snorkel" copyright = f"{datetime.datetime.now().year}, Snorkel Team" author = "Snorkel Team" master_doc = "index" html_logo = "_static/octopus.png" VERSION = {} with open("../snorkel/version.py", "r") as version_file: exec(version_file.read(), VERSION) # The full version, including alpha/beta/rc tags release = VERSION["VERSION"] # -- General configuration --------------------------------------------------- # Mock imports for troublesome modules (i.e. any that use C code) autosummary_mock_imports = ["dask", "pyspark", "spacy"] # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.napoleon", "sphinx_autodoc_typehints", "sphinx.ext.linkcode", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] autosummary_generate = True # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" html_theme_options = {"navigation_depth": -1, "titles_only": True} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # -- Options for napoleon extension ------------------------------------------- napoleon_google_docstring = False napoleon_numpy_docstring = True napoleon_include_init_with_doc = False napoleon_include_private_with_doc = False napoleon_include_special_with_doc = False napoleon_use_admonition_for_examples = False napoleon_use_admonition_for_notes = False napoleon_use_admonition_for_references = False napoleon_use_ivar = False napoleon_use_param = True napoleon_use_rtype = True # -- Options for autodoc extension ------------------------------------------- # This value selects what content will be inserted into the main body of an autoclass # directive # # http://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#directive-autoclass autoclass_content = "class" # Default options to an ..autoXXX directive. autodoc_default_options = { "members": None, "inherited-members": None, "show-inheritance": None, "special-members": "__call__", } # Subclasses should show parent classes docstrings if they don't override them. autodoc_inherit_docstrings = True # -- Options for linkcode extension ------------------------------------------ def linkcode_resolve(domain, info): if domain != "py": return None if not info["module"]: return None module_path = info["module"].replace(".", "/") # If only one `.`, assume it's a package if info["module"].count(".") == 1: return f"https://github.com/snorkel-team/snorkel/tree/master/{module_path}" # Otherwise, it's a module else: return f"https://github.com/snorkel-team/snorkel/blob/master/{module_path}.py" # -- Exclude PyTorch methods ------------------------------------------------- def skip_torch_module_member(app, what, name, obj, skip, options): skip_torch = "Module." in str(obj) and name in dir(torch.nn.Module) if name == "dump_patches": # Special handling for documented attrib skip_torch = True return skip or skip_torch # -- Run setup --------------------------------------------------------------- def setup(app): app.connect("autodoc-skip-member", skip_torch_module_member)
src/mesh_nerf.py
qway/nerfmeshes
113
12689904
<gh_stars>100-1000 import argparse import os import numpy as np import torch import models from importlib import import_module from pytorch3d.structures import Meshes from skimage import measure from nerf.nerf_helpers import export_obj, batchify from lightning_modules import PathParser def create_mesh(vertices, faces_idx): # We scale normalize and center the target mesh to fit in a sphere of radius 1 centered at (0,0,0). # (scale, center) will be used to bring the predicted mesh to its original center and scale vertices = vertices - vertices.mean(0) scale = max(vertices.abs().max(0)[0]) vertices = vertices / scale # We construct a Meshes structure for the target mesh target_mesh = Meshes(verts=[vertices], faces=[faces_idx]) return target_mesh def extract_radiance(model, args, device, nums): assert (isinstance(nums, tuple) or isinstance(nums, list) or isinstance(nums, int)), \ "Nums arg should be either iterable or int." if isinstance(nums, int): nums = (nums,) * 3 else: assert (len(nums) == 3), "Nums arg should be of length 3, number of axes for 3D" # Create sample tiles tiles = [torch.linspace(-args.limit, args.limit, num) for num in nums] # Generate 3D samples samples = torch.stack(torch.meshgrid(*tiles), -1).view(-1, 3).float() radiance_samples = [] for (samples,) in batchify(samples, batch_size=args.batch_size, device=device): # Query radiance batch radiance_batch = model.sample_points(samples, samples) # Accumulate radiance radiance_samples.append(radiance_batch.cpu()) # Radiance 3D grid (rgb + density) radiance = torch.cat(radiance_samples, 0).view(*nums, 4).contiguous().numpy() return radiance def extract_iso_level(density, args): # Density boundaries min_a, max_a, std_a = density.min(), density.max(), density.std() # Adaptive iso level iso_value = min(max(args.iso_level, min_a + std_a), max_a - std_a) print(f"Min density {min_a}, Max density: {max_a}, Mean density {density.mean()}") print(f"Querying based on iso level: {iso_value}") return iso_value def extract_geometry(model, device, args): # Sample points based on the grid radiance = extract_radiance(model, args, device, args.res) # Density grid density = radiance[..., 3] # Adaptive iso level iso_value = extract_iso_level(density, args) # Extracting iso-surface triangulated results = measure.marching_cubes(density, iso_value) # Use contiguous tensors vertices, triangles, normals, _ = [torch.from_numpy(np.ascontiguousarray(result)) for result in results] # Use contiguous tensors normals = torch.from_numpy(np.ascontiguousarray(normals)) vertices = torch.from_numpy(np.ascontiguousarray(vertices)) triangles = torch.from_numpy(np.ascontiguousarray(triangles)) # Normalize vertices, to the (-limit, limit) vertices = args.limit * (vertices / (args.res / 2.) - 1.) return vertices, triangles, normals, density def extract_geometry_with_super_sampling(model, device, args): raise NotImplementedError try: mcubes = import_module("marching_cubes") except ModuleNotFoundError: print(""" Run the following instructions within your environment: https://github.com/JustusThies/PyMarchingCubes#installation """) # Close process exit(-1) # Sampling resolution per axis nums = np.array([args.res + (args.res - 1) * args.super_sampling, args.res, args.res]) # Radiance per axis, super sampling across each axis radiances = [] for i in range(0, 3): # Roll such that each axis is rich radiance_axis = extract_radiance(model, args, device, np.roll(nums, i))[..., 3] radiances.append(radiance_axis) # accumulate density = np.stack(radiances, axis=0) # Adaptive iso level iso_value = extract_iso_level(density, args) vertices, triangles = mcubes.marching_cubes_super_sampling(*radiances, iso_value) vertices = np.ascontiguousarray(vertices) mcubes.export_obj(vertices, triangles, os.path.join(args.save_dir, "mesh.obj")) def export_marching_cubes(model, args, cfg, device): # Mesh Extraction if args.super_sampling >= 1: print("Generating mesh geometry...") # Extract model geometry with super sampling across each axis extract_geometry_with_super_sampling(model, device, args) return # Cached mesh path containing data mesh_cache_path = os.path.join(args.save_dir, args.cache_name) cached_mesh_exists = os.path.exists(mesh_cache_path) cache_new_mesh = args.use_cached_mesh and not cached_mesh_exists if cache_new_mesh: print(f"Cached mesh does not exist - {mesh_cache_path}") if args.use_cached_mesh and cached_mesh_exists: print("Loading cached mesh geometry...") vertices, triangles, normals, density = torch.load(mesh_cache_path) else: print("Generating mesh geometry...") # Extract model geometry vertices, triangles, normals, density = extract_geometry(model, device, args) if cache_new_mesh or args.override_cache_mesh: torch.save((vertices, triangles, normals, density), mesh_cache_path) print(f"Cached mesh geometry saved to {mesh_cache_path}") # Extracting the mesh appearance # Ray targets and directions targets, directions = vertices, -normals diffuse = [] if args.no_view_dependence: print("Diffuse map query directly without specific-views...") # Query directly without specific-views batch_generator = batchify(targets, directions, batch_size=args.batch_size, device=device) for (pos_batch, dir_batch) in batch_generator: # Diffuse batch queried diffuse_batch = model.sample_points(pos_batch, dir_batch)[..., :3] # Accumulate diffuse diffuse.append(diffuse_batch.cpu()) else: print("Diffuse map query with view dependence...") ray_bounds = torch.tensor([0., args.view_disparity_max_bound], dtype=directions.dtype) # Query with view dependence # Move ray origins slightly towards negative sdf ray_origins = targets - args.view_disparity * directions print("Started ray-casting") batch_generator = batchify(ray_origins, directions, batch_size=args.batch_size, device=device) for (ray_origins, ray_directions) in batch_generator: # View dependent diffuse batch queried output_bundle = model.query((ray_origins, ray_directions, ray_bounds)) # Accumulate diffuse diffuse.append(output_bundle.rgb_map.cpu()) # Query the whole diffuse map diffuse = torch.cat(diffuse, dim=0).numpy() # Target mesh path mesh_path = os.path.join(args.save_dir, args.mesh_name) # Export model export_obj(vertices, triangles, diffuse, normals, mesh_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--log-checkpoint", type=str, default=None, help="Training log path with the config and checkpoints to load existent configuration.", ) parser.add_argument( "--checkpoint", type=str, default="model_last.ckpt", help="Load existent configuration from the latest checkpoint by default.", ) parser.add_argument( "--save-dir", type=str, default=".", help="Save mesh to this directory, if specified.", ) parser.add_argument( "--mesh-name", type=str, default="mesh.obj", help="Mesh name to be generated.", ) parser.add_argument( "--iso-level", type=float, default=32, help="Iso-level value for triangulation", ) parser.add_argument( "--limit", type=float, default=1.2, help="Limits in -xyz to xyz for marching cubes 3D grid.", ) parser.add_argument( "--res", type=int, default=128, help="Sampling resolution for marching cubes, increase it for higher level of detail.", ) parser.add_argument( "--super-sampling", type=int, default=0, help="Add super sampling along the edges.", ) parser.add_argument( "--batch-size", type=int, default=1024, help="Higher batch size results in faster processing but needs more device memory.", ) parser.add_argument( "--no-view-dependence", action="store_true", default=False, help="Disable view dependent appearance, use sampled diffuse color based on the grid" ) parser.add_argument( "--view-disparity", type=float, default=1e-2, help="Ray origins offset from target based on the inverse normal for the view dependent appearance.", ) parser.add_argument( "--view-disparity-max-bound", type=float, default=4e0, help="Far max possible bound, usually set to (cfg.far - cfg.near), lower it for better " "appearance estimation when using higher resolution e.g. at least view_disparity * 2.0.", ) parser.add_argument( "--use-cached-mesh", action="store_true", default=False, help="Use the cached mesh.", ) parser.add_argument( "--override-cache-mesh", action="store_true", default=False, help="Caches the mesh, useful for rapid configuration appearance tweaking.", ) parser.add_argument( "--cache-name", type=str, default="mesh_cache.pt", help="Mesh cache name, allows for multiple unique meshes of different resolutions.", ) config_args = parser.parse_args() # Existent log path path_parser = PathParser() cfg, _ = path_parser.parse(None, config_args.log_checkpoint, None, config_args.checkpoint) # Available device device = "cuda" if torch.cuda.is_available() else "cpu" # Load model checkpoint print(f"Loading model from {path_parser.checkpoint_path}") model = getattr(models, cfg.experiment.model).load_from_checkpoint(path_parser.checkpoint_path) model = model.eval().to(device) with torch.no_grad(): # Perform marching cubes and export the mesh export_marching_cubes(model, config_args, cfg, device)
tests/test_ami.py
ukwa/mrjob
1,538
12689929
<reponame>ukwa/mrjob # -*- coding: utf-8 -*- # Copyright 2018 Yelp # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for AMI utilities""" from mrjob.ami import describe_base_emr_images from tests.mock_boto3 import MockBoto3TestCase class DescribeBaseEMRImagesTestCase(MockBoto3TestCase): # a valid base EMR image. we can make variants of this for testing BASE_EMR_IMAGE = { 'Architecture': 'x86_64', 'BlockDeviceMappings': [ { 'DeviceName': '/dev/xvda', 'Ebs': { 'DeleteOnTermination': True, 'Encrypted': False, 'SnapshotId': 'snap-0ceb5dfba7c0cbd4c', 'VolumeSize': 8, 'VolumeType': 'standard' } } ], 'CreationDate': '2018-08-11T02:33:53.000Z', 'Description': 'Amazon Linux AMI 2018.03.0.20180811 x86_64 HVM EBS', 'EnaSupport': True, 'Hypervisor': 'xen', 'ImageId': 'ami-09c6e771', 'ImageLocation': 'amazon/amzn-ami-hvm-2018.03.0.20180811-x86_64-ebs', 'ImageOwnerAlias': 'amazon', 'ImageType': 'machine', 'Name': 'amzn-ami-hvm-2018.03.0.20180811-x86_64-ebs', 'OwnerId': '137112412989', 'Public': True, 'RootDeviceName': '/dev/xvda', 'RootDeviceType': 'ebs', 'SriovNetSupport': 'simple', 'State': 'available', 'VirtualizationType': 'hvm', } def make_image(self, **kwargs): """Return a copy of BASE_EMR_IMAGE with the given fields added. You can blank out fields by setting them to None.""" image = dict(self.BASE_EMR_IMAGE, **kwargs) return {k: v for k, v in image.items() if v is not None} def test_no_images(self): self.assertEqual(describe_base_emr_images(self.client('ec2')), []) def test_base_emr_image(self): image = self.make_image() self.add_mock_ec2_image(image) self.assertEqual(describe_base_emr_images(self.client('ec2')), [image]) def test_most_recent_image_first(self): image_old = self.make_image(ImageId='ami-old', CreationDate='2010-06-06T00:00:00.000Z') image_new = self.make_image(ImageId='ami-new', CreationDate='2015-05-06T00:00:00.000Z') self.add_mock_ec2_image(image_old) self.add_mock_ec2_image(image_new) self.assertEqual(describe_base_emr_images(self.client('ec2')), [image_new, image_old]) def test_filter_and_sort(self): image_old = self.make_image(ImageId='ami-old', CreationDate='2010-06-06T00:00:00.000Z') image_new = self.make_image(ImageId='ami-new', CreationDate='2015-05-06T00:00:00.000Z') image_null = {} self.add_mock_ec2_image(image_null) self.add_mock_ec2_image(image_old) self.add_mock_ec2_image(image_null) self.add_mock_ec2_image(image_new) self.add_mock_ec2_image(image_null) self.assertEqual(describe_base_emr_images(self.client('ec2')), [image_new, image_old]) def assert_rejects_image(self, **kwargs): image = self.make_image(**kwargs) self.add_mock_ec2_image(image) self.assertNotIn(image, describe_base_emr_images(self.client('ec2'))) def test_owner_must_be_amazon(self): self.assert_rejects_image(ImageOwnerAlias='aws-marketplace', OwnerId='679593333241') def test_architecture_must_be_x86_64(self): self.assert_rejects_image(Architecture='i386') def test_root_device_type_must_be_ebs(self): self.assert_rejects_image(RootDeviceType='instance-store') def test_virtualization_type_must_be_hvm(self): self.assert_rejects_image(VirtualizationType='paravirtual') def test_amazon_linux_1_only(self): self.assert_rejects_image( Name='amzn2-ami-hvm-2017.12.0.20180109-x86_64-ebs') def test_stable_amazon_linux_versions_only(self): # no "testing" or "rc," only dots and numbers, please self.assert_rejects_image( Name='amzn-ami-hvm-2017.03.rc-1.20170327-x86_64-ebs') def test_one_volume_only(self): self.assert_rejects_image( BlockDeviceMappings=[ self.BASE_EMR_IMAGE['BlockDeviceMappings'][0], { 'DeviceName': 'xvdca', 'VirtualName': 'ephemeral0', } ] ) def test_dont_crash_on_missing_name(self): # shouldn't happen in practice, but just in case self.assert_rejects_image(Name=None) def test_dont_crash_on_missing_block_device_mappings(self): # shouldn't happen in practice, but just in case self.assert_rejects_image(BlockDeviceMappings=None) def test_dont_crash_on_missing_creation_date(self): self.assert_rejects_image(CreationDate=None)
eos/core/__init__.py
YSaxon/eos
168
12689935
""" EOS core package. """ from .base import Base, EOSException from .profiler import Profiler from .symfony import Symfony from .engine import Engine from .cookies import RememberMe from .eos import EOS
elastichq/api/clusters.py
billboggs/elasticsearch-HQ
2,026
12689953
<filename>elastichq/api/clusters.py """ .. module:: clusters .. moduleauthor:: <NAME> <<EMAIL>> """ from flask import request, current_app from flask_restful import Resource from requests.exceptions import ConnectionError from elastichq.model import ClusterDTO from . import api from ..common.api_response import APIResponse from ..common.exceptions import BadRequest, request_wrapper from ..common.status_codes import HTTP_Status from ..service import ClusterService, ConnectionNotAuthorized, ConnectionService class ClusterConnection(Resource): """ Manages cluster connection pool. """ @request_wrapper def post(self): """ Creates a connection to a given host/port. Accepts a JSON POST BODY. This will add the connection, if it doesn't already exist, to the pool of connections and save the details in the database. .. :quickref: ClusterConnection; Creates a connection to the cluster. **Example request**: .. sourcecode:: http POST /api/clusters/_connect/ HTTP/1.1 Accept: application/json .. code-block:: json { "ip": "127.0.0.1", "port": "9200", "use_ssl": false } **Request Structure** - *(dict) --* - **ip** *(string) --* IP address or host name - **port** *(string) --* ES REST API port - **use_ssl** *(boolean) --* Whether to use HTTPS or not. **Example response**: .. sourcecode:: http HTTP/1.1 201 Content-Type: application/json .. code-block:: json { "data": [ { "cluster_name": "", "cluster_ip": "", "cluster_port": "9200", "cluster_scheme": "http", "cluster_connected": true, "cluster_host": "http://10.0.0.0:9200", "cluster_version": "2.3.5" } ], "status_code": 200, "message": null, "response_time": 92 } **Response Structure** - *(dict) --* - **cluster_name** *(string) --* cluster name - **cluster_ip** *(string) --* IP or host - **cluster_port** *(string) --* - **cluster_scheme** *(string) --* - **cluster_connected** *(boolean) --* Whether there was a successful connection. - **cluster_host** *(string) --* The complete connection url - **cluster_version** *(string) --* Elasticsearch version :reqheader Accept: application/json :resheader Content-Type: application/json :status 201: connection created :status 400: bad request :status 500: server error """ json_data = request.get_json(force=True) params = request.values.to_dict() params.update(json_data) if params.get('ip', None) is None: raise BadRequest(message='Missing required parameters.') scheme = 'http' if params.get('use_ssl', False) is True: scheme = 'https' try: enable_ssl = current_app.config.get('ENABLE_SSL', False) ca_certs = current_app.config.get('CA_CERTS', None) verify_certs = current_app.config.get('VERIFY_CERTS', None) client_key = current_app.config.get('CLIENT_KEY', None) client_cert = current_app.config.get('CLIENT_CERT', None) print(client_key) print(client_cert) response = ConnectionService().create_connection(ip=params['ip'], port=params.get('port', "9200"), scheme=scheme, username=params.get('username', None), password=params.get('password', None), fail_on_exception=True, enable_ssl=enable_ssl, ca_certs=ca_certs, verify_certs=verify_certs, client_key=client_key, client_cert=client_cert) schema = ClusterDTO(many=False) result = schema.dump(response) return APIResponse(result.data, HTTP_Status.CREATED, None) except ConnectionNotAuthorized as cna: return APIResponse([], HTTP_Status.UNAUTHORIZED, None) except ConnectionError as ce: return APIResponse([], HTTP_Status.NOT_FOUND, None) @request_wrapper def delete(self, cluster_name): """ Deletes a connection from the connection pool and the database, by cluster name. :note: This method does NOT delete your Elasticsearch Cluster, just the connection from HQ to it. **Example request**: .. sourcecode:: http DELETE /clusters/_connect/<CLUSTER_NAME> HTTP/1.1 Accept: application/json :type cluster_name: string :param cluster_name: Name of cluster connection to remove. :returns: List of active clusters. :status 200: Ok :status 400: bad request :status 500: server error """ response = ConnectionService().delete_connection(cluster_name) return APIResponse(response, HTTP_Status.OK, None) class ClusterList(Resource): """ Retrieves a list of all active and inactive cluster connections. """ @request_wrapper def get(self): """Returns a collection of clusters. **Example request**: .. sourcecode:: http GET /api/clusters/ HTTP/1.1 Accept: application/json **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: application/json .. code-block:: json { "status_code": 200, "response_time": 1648, "message": null, "data": [ { "cluster_name": "", "cluster_ip": "", "cluster_port": "9200", "cluster_scheme": "http", "cluster_connected": true, "cluster_host": "http://10.0.0.0:9200", "cluster_version": "2.3.5", "cluster_health": { } } ] } **Response Structure** - *(dict) --* - **cluster_name** *(string) --* cluster name - **cluster_ip** *(string) --* IP or host - **cluster_port** *(string) --* - **cluster_scheme** *(string) --* - **cluster_connected** *(boolean) --* Whether there was a successful connection. - **cluster_host** *(string) --* The complete connection url - **cluster_version** *(string) --* Elasticsearch version :resheader Content-Type: application/json :status 200: OK :status 500: server error """ response = ClusterService().get_clusters() schema = ClusterDTO(many=True) result = schema.dump(response) return APIResponse(result.data, HTTP_Status.OK, None) class ClusterHealth(Resource): """ Wrapper around the Cluster health API https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html """ @request_wrapper def get(self, cluster_name): """ Returns cluster health for one cluster **Example request**: .. sourcecode:: http GET /api/clusters/<cluster_name>/_health HTTP/1.1 :type cluster_name: string :param cluster_name: Name of cluster **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: application/json .. code-block:: json { "status_code": 200, "data": [ { "active_primary_shards": 10, "relocating_shards": 0, "cluster_name": "es_v2", "active_shards": 10, "task_max_waiting_in_queue_millis": 0, "number_of_pending_tasks": 0, "timed_out": false, "number_of_nodes": 1, "unassigned_shards": 10, "number_of_in_flight_fetch": 0, "initializing_shards": 0, "delayed_unassigned_shards": 0, "active_shards_percent_as_number": 50, "status": "yellow", "number_of_data_nodes": 1 } ], "response_time": 38, "message": null } :resheader Content-Type: application/json :status 200: OK :status 500: server error """ response = ClusterService().get_cluster_health(cluster_name) return APIResponse(response, HTTP_Status.OK, None) class ClusterState(Resource): @request_wrapper def get(self, cluster_name): """ Wrapper around https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html """ response = ClusterService().get_cluster_state(cluster_name) return APIResponse(response, HTTP_Status.OK, None) class ClusterSummary(Resource): """ Brief summary for a given cluster name """ @request_wrapper def get(self, cluster_name): """ Given a cluster_name, returns summary information from several ES Cluster APIs. :param cluster_name: :return: """ response = ClusterService().get_cluster_summary(cluster_name) return APIResponse(response, HTTP_Status.OK, None) class ClusterStats(Resource): @request_wrapper def get(self, cluster_name): """ Wrapper around https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-stats.html :param cluster_name: :return: """ response = ClusterService().get_cluster_stats(cluster_name) return APIResponse(response, HTTP_Status.OK, None) class ClusterPendingTasks(Resource): @request_wrapper def get(self, cluster_name): response = ClusterService().get_cluster_pending_tasks(cluster_name) return APIResponse(response, HTTP_Status.OK, None) class ClusterSettings(Resource): @request_wrapper def get(self, cluster_name): response = ClusterService().get_cluster_settings(cluster_name) return APIResponse(response, HTTP_Status.OK, None) @request_wrapper def put(self, cluster_name): json_data = request.get_json(force=True) response = ClusterService().put_cluster_settings(json_data, cluster_name) return APIResponse(response, HTTP_Status.OK, None) api.add_resource(ClusterConnection, '/clusters/_connect', '/clusters/<string:cluster_name>/_connect', endpoint='clusters', methods=['POST', 'DELETE']) api.add_resource(ClusterList, '/clusters', endpoint='clusters_list', methods=['GET']) api.add_resource(ClusterStats, '/clusters/<string:cluster_name>/_stats', endpoint='clusters_stats', methods=['GET']) api.add_resource(ClusterHealth, '/clusters/<string:cluster_name>/_health', endpoint='clusters_health', methods=['GET']) api.add_resource(ClusterSummary, '/clusters/<string:cluster_name>/_summary', endpoint='clusters_summary', methods=['GET']) api.add_resource(ClusterState, '/clusters/<string:cluster_name>/_state', endpoint='clusters_state', methods=['GET']) api.add_resource(ClusterPendingTasks, '/clusters/<string:cluster_name>/_pending_tasks', endpoint='clusters_pending_tasks', methods=['GET']) api.add_resource(ClusterSettings, '/clusters/<string:cluster_name>/_settings', endpoint='clusters_settings', methods=['GET', 'PUT'])
test/ios/TestIOSDriver.py
chonty/napalm1
1,752
12689971
<filename>test/ios/TestIOSDriver.py # Copyright 2015 Spotify AB. All rights reserved. # # The contents of this file are licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Tests for IOSDriver.""" import unittest from napalm.ios import ios from napalm.base.test.base import TestConfigNetworkDriver, TestGettersNetworkDriver import re class TestConfigIOSDriver(unittest.TestCase, TestConfigNetworkDriver): """Configuration Tests for IOSDriver. Core file operations: load_replace_candidate Tested load_merge_candidate Tested compare_config Tested commit_config Tested discard_config Tested rollback Tested Internal methods: _enable_confirm Tested _disable_confirm Tested _gen_rollback_cfg Tested as part of rollback _check_file_exists Tested Misc methods: open Tested close Skipped normalize_compare_config Tested (indirectly) scp_file Tested gen_full_path Tested """ @classmethod def setUpClass(cls): """Executed when the class is instantiated.""" ip_addr = "127.0.0.1" username = "vagrant" password = "<PASSWORD>" cls.vendor = "ios" optional_args = {"port": 12204, "dest_file_system": "bootflash:"} cls.device = ios.IOSDriver( ip_addr, username, password, optional_args=optional_args ) cls.device.open() # Setup initial state cls.device.load_replace_candidate(filename="%s/initial.conf" % cls.vendor) cls.device.commit_config() def test_ios_only_confirm(self): """Test _disable_confirm() and _enable_confirm(). _disable_confirm() changes router config so it doesn't prompt for confirmation _enable_confirm() reenables this """ # Set initial device configuration self.device.load_replace_candidate(filename="%s/initial.conf" % self.vendor) self.device.commit_config() # Verify initial state output = self.device.device.send_command("show run | inc file prompt") output = output.strip() self.assertEqual(output, "") # Disable confirmation self.device._disable_confirm() output = self.device.device.send_command("show run | inc file prompt") output = output.strip() self.assertEqual(output, "file prompt quiet") # Reenable confirmation self.device._enable_confirm() output = self.device.device.send_command("show run | inc file prompt") output = output.strip() self.assertEqual(output, "") def test_ios_only_gen_full_path(self): """Test gen_full_path() method.""" output = self.device._gen_full_path(self.device.candidate_cfg) self.assertEqual(output, self.device.dest_file_system + "/candidate_config.txt") output = self.device._gen_full_path(self.device.rollback_cfg) self.assertEqual(output, self.device.dest_file_system + "/rollback_config.txt") output = self.device._gen_full_path(self.device.merge_cfg) self.assertEqual(output, self.device.dest_file_system + "/merge_config.txt") output = self.device._gen_full_path( filename="running-config", file_system="system:" ) self.assertEqual(output, "system:/running-config") def test_ios_only_check_file_exists(self): """Test _check_file_exists() method.""" self.device.load_replace_candidate(filename="%s/initial.conf" % self.vendor) valid_file = self.device._check_file_exists( self.device.dest_file_system + "/candidate_config.txt" ) self.assertTrue(valid_file) invalid_file = self.device._check_file_exists( self.device.dest_file_system + "/bogus_999.txt" ) self.assertFalse(invalid_file) class TestGetterIOSDriver(unittest.TestCase, TestGettersNetworkDriver): """Getters Tests for IOSDriver. Get operations: get_lldp_neighbors get_facts get_interfaces get_bgp_neighbors get_interfaces_counters """ @classmethod def setUpClass(cls): """Executed when the class is instantiated.""" cls.mock = True username = "vagrant" ip_addr = "192.168.0.234" password = "<PASSWORD>" cls.vendor = "ios" optional_args = {} optional_args["dest_file_system"] = "flash:" cls.device = ios.IOSDriver( ip_addr, username, password, optional_args=optional_args ) if cls.mock: cls.device.device = FakeIOSDevice() else: cls.device.open() def test_ios_only_bgp_time_conversion(self): """Verify time conversion static method.""" test_cases = { "1w0d": 604800, "00:14:23": 863, "00:13:40": 820, "00:00:21": 21, "00:00:13": 13, "00:00:49": 49, "1d11h": 126000, "1d17h": 147600, "8w5d": 5270400, "1y28w": 48470400, "never": -1, } for bgp_time, result in test_cases.items(): self.assertEqual(self.device.bgp_time_conversion(bgp_time), result) class FakeIOSDevice: """Class to fake a IOS Device.""" @staticmethod def read_txt_file(filename): """Read a txt file and return its content.""" with open(filename) as data_file: return data_file.read() def send_command_expect(self, command, **kwargs): """Fake execute a command in the device by just returning the content of a file.""" cmd = re.sub(r"[\[\]\*\^\+\s\|]", "_", command) output = self.read_txt_file("ios/mock_data/{}.txt".format(cmd)) return str(output) def send_command(self, command, **kwargs): """Fake execute a command in the device by just returning the content of a file.""" return self.send_command_expect(command) if __name__ == "__main__": unittest.main()
test/vso_tools/copyright_check.py
nbl97/nni
2,305
12689973
<reponame>nbl97/nni<gh_stars>1000+ import os import sys invalid_files = [] copyright_headers = [ '# Copyright (c) Microsoft Corporation.\n# Licensed under the MIT license.', '# Copyright (c) Microsoft Corporation. All rights reserved.\n#\n# MIT License', ] whitelist = [ 'nni/version.py', 'nni/algorithms/hpo/bohb_advisor/config_generator.py', ] for root, dirs, files in os.walk('nni'): for file in files: if not file.endswith('.py'): continue full_path = os.path.join(root, file) if full_path in whitelist: continue content = open(full_path).read() if not content.strip(): # empty file continue if not any(content.startswith(header) for header in copyright_headers): invalid_files.append(full_path) if invalid_files: print("The following files doesn't have a copyright text header.\n") for file in invalid_files: print(' ' + file) print('\nPlease add the following text at the beginning of the file.\n') print('# Copyright (c) Microsoft Corporation.\n# Licensed under the MIT license.') sys.exit(1)
examples/testFile.py
tgolsson/appJar
666
12689989
import sys sys.path.append("../") from appJar import gui def getQuestions(fileName = "questions.txt"): questions = [] data = None with open(fileName, "r") as questionsFile: while True: line = questionsFile.readline().strip() if line == "EOF": break # end of file reached elif line.startswith("-"): continue # ignore these lines elif line.startswith("#"): # start of question # we need to add our last question if data is not None: questions.append(data) data = {"question":"", "options":[], "answer":""} question = line[5:].strip() nextLine = questionsFile.readline().strip() if not nextLine.startswith("------"): question += " " + nextLine data["question"] = question elif line.startswith("*"): # answer option option = line[1:] data["options"].append(option) elif line.startswith("Answer:"): # answer answer = line[8:] data["answer"] = answer return questions def checkAnswer(question): selection = app.getRadioButton(question) answer = questions[int(question[1:])-1]["answer"] if selection == answer: app.infoBox("CORRECT", "You got it!") else: app.infoBox("WRONG", "Try again!") with gui("QUIZ") as app: questions = getQuestions() with app.pagedWindow("QUIZ DEMO"): count = 0 for q in questions: count += 1 title = "Q" + str(count) with app.page(): app.setSticky("EW") app.addLabel(title, title + ": " + q["question"]) app.setLabelBg(title, "green") with app.labelFrame(title, hideTitle=True): for o in q["options"]: app.addRadioButton(title, o) app.addNamedButton("CHECK", title, checkAnswer)
data/logs_model/test/test_combined_model.py
giuseppe/quay
2,027
12690026
<reponame>giuseppe/quay from datetime import date, datetime, timedelta from freezegun import freeze_time from data.logs_model.inmemory_model import InMemoryModel from data.logs_model.combined_model import CombinedLogsModel from test.fixtures import * @pytest.fixture() def first_model(): return InMemoryModel() @pytest.fixture() def second_model(): return InMemoryModel() @pytest.fixture() def combined_model(first_model, second_model, initialized_db): return CombinedLogsModel(first_model, second_model) def test_log_action(first_model, second_model, combined_model, initialized_db): day = date(2019, 1, 1) # Write to the combined model. with freeze_time(day): combined_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) simple_repo = model.repository.get_repository("devtable", "simple") # Make sure it is found in the first model but not the second. assert combined_model.count_repository_actions(simple_repo, day) == 1 assert first_model.count_repository_actions(simple_repo, day) == 1 assert second_model.count_repository_actions(simple_repo, day) == 0 def test_count_repository_actions(first_model, second_model, combined_model, initialized_db): today = date(2019, 1, 1) # Write to the combined model. with freeze_time(today): # Write to each model. first_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) first_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) first_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) second_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) second_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) # Ensure the counts match as expected. simple_repo = model.repository.get_repository("devtable", "simple") assert first_model.count_repository_actions(simple_repo, today) == 3 assert second_model.count_repository_actions(simple_repo, today) == 2 assert combined_model.count_repository_actions(simple_repo, today) == 5 def test_yield_logs_for_export(first_model, second_model, combined_model, initialized_db): now = datetime.now() with freeze_time(now): # Write to each model. first_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) first_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) first_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) second_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) second_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) later = now + timedelta(minutes=60) # Ensure the full set of logs is yielded. first_logs = list(first_model.yield_logs_for_export(now, later))[0] second_logs = list(second_model.yield_logs_for_export(now, later))[0] combined = list(combined_model.yield_logs_for_export(now, later)) full_combined = [] for subset in combined: full_combined.extend(subset) assert len(full_combined) == len(first_logs) + len(second_logs) assert full_combined == (first_logs + second_logs) def test_lookup_logs(first_model, second_model, combined_model, initialized_db): now = datetime.now() with freeze_time(now): # Write to each model. first_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) first_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) first_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) second_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) second_model.log_action( "push_repo", namespace_name="devtable", repository_name="simple", ip="1.2.3.4" ) later = now + timedelta(minutes=60) def _collect_logs(model): page_token = None all_logs = [] while True: paginated_logs = model.lookup_logs(now, later, page_token=page_token) page_token = paginated_logs.next_page_token all_logs.extend(paginated_logs.logs) if page_token is None: break return all_logs first_logs = _collect_logs(first_model) second_logs = _collect_logs(second_model) combined = _collect_logs(combined_model) assert len(combined) == len(first_logs) + len(second_logs) assert combined == (first_logs + second_logs)
tests/unit/test_ignore_list.py
georgettica/URLExtract
184
12690041
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This file contains pytests for exeption URLs () method of URLExtract .. Licence MIT .. codeauthor:: <NAME> <<EMAIL>>, <EMAIL> """ import pytest @pytest.mark.parametrize( "text, expected", [ ("example.com", []), ("ample.com", ["ample.com"]), ("another-url.com", []), ("http://example.com", []), ("http://example.com:1234", []), ("<EMAIL>", []), ("ftp://admin:[email protected]", []), ( "http://subdom.example.com:1234/path/file.html?query=something#hashtag", ["http://subdom.example.com:1234/path/file.html?query=something#hashtag"], ), ("www.example.com", ["www.example.com"]), ("example.net", ["example.net"]), ], ) def test_ignore_list(urlextract, text, expected): """ Testing filtering out URLs on ignore list :param fixture urlextract: fixture holding URLExtract object :param str text: text in which we should find links :param list(str) expected: list of URLs that has to be found in text """ urlextract.ignore_list = {"example.com", "another-url.com"} assert expected == urlextract.find_urls(text)
tests/test_paths.py
JPTIZ/asciimatics
3,197
12690052
import unittest from asciimatics.event import MouseEvent from asciimatics.paths import Path, DynamicPath class TestPaths(unittest.TestCase): def assert_path_equals(self, path, oracle): path.reset() positions = [] while not path.is_finished(): positions.append(path.next_pos()) self.assertEqual(positions, oracle) def test_jump_and_wait(self): """ Check basic movement of cursor works. """ path = Path() path.jump_to(10, 10) path.wait(3) self.assert_path_equals(path, [(10, 10), (10, 10), (10, 10), (10, 10)]) def test_straight_lines(self): """ Check a path works in straight lines. """ # Horizontal path = Path() path.jump_to(10, 10) path.move_straight_to(15, 10, 5) self.assert_path_equals( path, [(10, 10), (11, 10), (12, 10), (13, 10), (14, 10), (15, 10)]) # Vertical path = Path() path.jump_to(5, 5) path.move_straight_to(5, 10, 5) self.assert_path_equals( path, [(5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10)]) # Diagonal spaced path = Path() path.jump_to(5, 5) path.move_straight_to(15, 15, 5) self.assert_path_equals( path, [(5, 5), (7, 7), (9, 9), (11, 11), (13, 13), (15, 15)]) def test_spline(self): """ Check a path works with a spline curve. """ path = Path() path.jump_to(0, 10) path.move_round_to([(0, 10), (20, 0), (40, 10), (20, 20), (0, 10)], 20) self.assert_path_equals( path, [(0, 10), (0, 10), (0, 10), (0, 10), (0, 10), (5, 7), (10, 4), (15, 1), (20, 0), (25, 1), (30, 3), (35, 7), (40, 10), (35, 12), (30, 16), (25, 18), (20, 20), (15, 18), (10, 15), (5, 12), (0, 10)]) def test_dynamic_path(self): """ Check a dynamic path works as expected. """ class TestPath(DynamicPath): def process_event(self, event): # Assume that we're always passing in a MouseEvent. self._x = event.x self._y = event.y # Initial path should start at specified location. path = TestPath(None, 0, 0) self.assertEqual(path.next_pos(), (0, 0)) self.assertFalse(path.is_finished()) # Process event should move location. path.process_event(MouseEvent(10, 5, 0)) self.assertEqual(path.next_pos(), (10, 5)) # Reset should return to original location. path.reset() self.assertEqual(path.next_pos(), (0, 0)) if __name__ == '__main__': unittest.main()
tests/test_settings.py
PaKyong/labelImg
17,641
12690062
<gh_stars>1000+ #!/usr/bin/env python import os import sys import time import unittest __author__ = 'TzuTaLin' dir_name = os.path.abspath(os.path.dirname(__file__)) libs_path = os.path.join(dir_name, '..', 'libs') sys.path.insert(0, libs_path) from settings import Settings class TestSettings(unittest.TestCase): def test_basic(self): settings = Settings() settings['test0'] = 'hello' settings['test1'] = 10 settings['test2'] = [0, 2, 3] self.assertEqual(settings.get('test3', 3), 3) self.assertEqual(settings.save(), True) settings.load() self.assertEqual(settings.get('test0'), 'hello') self.assertEqual(settings.get('test1'), 10) settings.reset() if __name__ == '__main__': unittest.main()
tests/nlu_core_tests/component_tests/pre_processing_tests/stopword_tests.py
milyiyo/nlu
480
12690077
<filename>tests/nlu_core_tests/component_tests/pre_processing_tests/stopword_tests.py<gh_stars>100-1000 import unittest from tests.test_utils import get_sample_pdf_with_labels, get_sample_pdf, get_sample_sdf, get_sample_pdf_with_extra_cols, get_sample_pdf_with_no_text_col ,get_sample_spark_dataframe from nlu import * class TestLem(unittest.TestCase): def test_stopwords_pipe(self): pipe = nlu.load('stopwords', verbose=True ) df = pipe.predict('HELLO WORLD! How are YOU!?!@', output_level='sentence',drop_irrelevant_cols=False, metadata=True, ) for c in df.columns: print(df[c]) if __name__ == '__main__': unittest.main()
deep-rl/lib/python2.7/site-packages/OpenGL/raw/GL/AMD/debug_output.py
ShujaKhalid/deep-rl
210
12690116
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GL import _types as _cs # End users want this... from OpenGL.raw.GL._types import * from OpenGL.raw.GL import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GL_AMD_debug_output' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GL,'GL_AMD_debug_output',error_checker=_errors._error_checker) GL_DEBUG_CATEGORY_API_ERROR_AMD=_C('GL_DEBUG_CATEGORY_API_ERROR_AMD',0x9149) GL_DEBUG_CATEGORY_APPLICATION_AMD=_C('GL_DEBUG_CATEGORY_APPLICATION_AMD',0x914F) GL_DEBUG_CATEGORY_DEPRECATION_AMD=_C('GL_DEBUG_CATEGORY_DEPRECATION_AMD',0x914B) GL_DEBUG_CATEGORY_OTHER_AMD=_C('GL_DEBUG_CATEGORY_OTHER_AMD',0x9150) GL_DEBUG_CATEGORY_PERFORMANCE_AMD=_C('GL_DEBUG_CATEGORY_PERFORMANCE_AMD',0x914D) GL_DEBUG_CATEGORY_SHADER_COMPILER_AMD=_C('GL_DEBUG_CATEGORY_SHADER_COMPILER_AMD',0x914E) GL_DEBUG_CATEGORY_UNDEFINED_BEHAVIOR_AMD=_C('GL_DEBUG_CATEGORY_UNDEFINED_BEHAVIOR_AMD',0x914C) GL_DEBUG_CATEGORY_WINDOW_SYSTEM_AMD=_C('GL_DEBUG_CATEGORY_WINDOW_SYSTEM_AMD',0x914A) GL_DEBUG_LOGGED_MESSAGES_AMD=_C('GL_DEBUG_LOGGED_MESSAGES_AMD',0x9145) GL_DEBUG_SEVERITY_HIGH_AMD=_C('GL_DEBUG_SEVERITY_HIGH_AMD',0x9146) GL_DEBUG_SEVERITY_LOW_AMD=_C('GL_DEBUG_SEVERITY_LOW_AMD',0x9148) GL_DEBUG_SEVERITY_MEDIUM_AMD=_C('GL_DEBUG_SEVERITY_MEDIUM_AMD',0x9147) GL_MAX_DEBUG_LOGGED_MESSAGES_AMD=_C('GL_MAX_DEBUG_LOGGED_MESSAGES_AMD',0x9144) GL_MAX_DEBUG_MESSAGE_LENGTH_AMD=_C('GL_MAX_DEBUG_MESSAGE_LENGTH_AMD',0x9143) @_f @_p.types(None,_cs.GLDEBUGPROCAMD,ctypes.c_void_p) def glDebugMessageCallbackAMD(callback,userParam):pass @_f @_p.types(None,_cs.GLenum,_cs.GLenum,_cs.GLsizei,arrays.GLuintArray,_cs.GLboolean) def glDebugMessageEnableAMD(category,severity,count,ids,enabled):pass @_f @_p.types(None,_cs.GLenum,_cs.GLenum,_cs.GLuint,_cs.GLsizei,arrays.GLcharArray) def glDebugMessageInsertAMD(category,severity,id,length,buf):pass @_f @_p.types(_cs.GLuint,_cs.GLuint,_cs.GLsizei,arrays.GLuintArray,arrays.GLuintArray,arrays.GLuintArray,arrays.GLsizeiArray,arrays.GLcharArray) def glGetDebugMessageLogAMD(count,bufsize,categories,severities,ids,lengths,message):pass
nuplan/common/geometry/test/test_transform.py
motional/nuplan-devkit
128
12690120
import unittest from unittest.mock import Mock, patch import numpy as np import numpy.typing as npt from nuplan.common.actor_state.state_representation import Point2D, StateSE2 from nuplan.common.geometry.transform import ( rotate, rotate_2d, rotate_angle, transform, translate, translate_laterally, translate_longitudinally, translate_longitudinally_and_laterally, ) class TestTransform(unittest.TestCase): """Tests for transform functions""" def test_rotate_2d(self) -> None: """Tests rotation of 2D point""" # Setup point = Point2D(1, 0) rotation_matrix = np.array([[0, 1], [-1, 0]], dtype=np.float32) # type: npt.NDArray[np.float32] # Function call result = rotate_2d(point, rotation_matrix) # Checks self.assertEqual(result, Point2D(0, 1)) def test_translate(self) -> None: """Tests translate""" # Setup pose = StateSE2(3, 5, np.pi / 4) translation = np.array([1, 2], dtype=np.float32) # type: npt.NDArray[np.float32] # Function call result = translate(pose, translation) # Checks self.assertEqual(result, StateSE2(4, 7, np.pi / 4)) def test_rotate(self) -> None: """Tests rotation of SE2 pose by rotation matrix""" # Setup pose = StateSE2(1, 2, np.pi / 4) rotation_matrix = np.array([[0, 1], [-1, 0]], dtype=np.float32) # type: npt.NDArray[np.float32] # Function call result = rotate(pose, rotation_matrix) # Checks self.assertAlmostEqual(result.x, -2) self.assertAlmostEqual(result.y, 1) self.assertAlmostEqual(result.heading, -np.pi / 4) def test_rotate_angle(self) -> None: """Tests rotation of SE2 pose by angle (in radian)""" # Setup pose = StateSE2(1, 2, np.pi / 4) angle = -np.pi / 2 # Function call result = rotate_angle(pose, angle) # Checks self.assertAlmostEqual(result.x, -2) self.assertAlmostEqual(result.y, 1) self.assertAlmostEqual(result.heading, -np.pi / 4) def test_transform(self) -> None: """Tests transformation of SE2 pose""" # Setup pose = StateSE2(1, 2, 0) transform_matrix = np.array( [[-3, -2, 5], [0, -1, 4], [0, 0, 1]], dtype=np.float32 ) # type: npt.NDArray[np.float32] # Function call result = transform(pose, transform_matrix) # Checks self.assertAlmostEqual(result.x, 2) self.assertAlmostEqual(result.y, 0) self.assertAlmostEqual(result.heading, np.pi, places=4) @patch("nuplan.common.geometry.transform.translate") def test_translate_longitudinally(self, mock_translate: Mock) -> None: """Tests longitudinal translation""" # Setup pose = StateSE2(1, 2, np.arctan(1 / 3)) # Function call result = translate_longitudinally(pose, np.sqrt(10)) # Checks np.testing.assert_array_almost_equal(mock_translate.call_args.args[1], np.array([3, 1])) self.assertEqual(result, mock_translate.return_value) @patch("nuplan.common.geometry.transform.translate") def test_translate_laterally(self, mock_translate: Mock) -> None: """Tests lateral translation""" # Setup pose = StateSE2(1, 2, np.arctan(1 / 3)) # Function call result = translate_laterally(pose, np.sqrt(10)) # Checks np.testing.assert_array_almost_equal(mock_translate.call_args.args[1], np.array([-1, 3])) self.assertEqual(result, mock_translate.return_value) @patch("nuplan.common.geometry.transform.translate") def test_translate_longitudinally_and_laterally(self, mock_translate: Mock) -> None: """Tests longitudinal and lateral translation""" # Setup pose = StateSE2(1, 2, np.arctan(1 / 3)) # Function call result = translate_longitudinally_and_laterally(pose, np.sqrt(10), np.sqrt(10)) # Checks np.testing.assert_array_almost_equal(mock_translate.call_args.args[1], np.array([2, 4])) self.assertEqual(result, mock_translate.return_value) if __name__ == "__main__": unittest.main()
deepfence_backend/models/user.py
tuapuikia/ThreatMapper
1,281
12690150
<filename>deepfence_backend/models/user.py<gh_stars>1000+ import datetime import arrow from sqlalchemy.sql import func from flask import current_app as app from werkzeug.security import generate_password_hash, check_password_hash from config.extensions import db from utils.constants import USER_ROLES, INVITE_EXPIRY from utils.custom_exception import MultipleCompaniesFound class User(db.Model): id = db.Column(db.Integer, primary_key=True) first_name = db.Column(db.String(100), nullable=False) last_name = db.Column(db.String(100), nullable=False) email = db.Column(db.String(100), unique=True, nullable=False) role_id = db.Column(db.Integer, db.ForeignKey('role.id'), nullable=False) role = db.relationship('Role', backref=db.backref('users', lazy=True)) company_id = db.Column(db.Integer, db.ForeignKey('company.id'), nullable=False) company = db.relationship('Company', backref=db.backref('users', lazy=True)) notification = db.relationship('Notification', uselist=False, back_populates='user') api_key = db.Column(db.String(100), unique=True, nullable=False) phone_number = db.Column(db.String(100), nullable=True) password_hash = db.Column(db.String(255), nullable=False) created_at = db.Column(db.DateTime(timezone=True), default=func.now()) updated_at = db.Column(db.DateTime(timezone=True), onupdate=func.now()) isActive = db.Column(db.Boolean, default=True, server_default='t', nullable=False) def set_password(self, password): password_hash = generate_password_hash(password) self.password_hash = password_hash def check_password(self, password): return check_password_hash(self.password_hash, password) @property def full_name(self): return self.first_name + " " + self.last_name def get_identity(self): """ Use this to generate access token. """ user_identity = { "id": self.id, "first_name": self.first_name, "last_name": self.last_name, "email": self.email, "company": self.company.name, "role": self.role.name, "api_key": self.api_key, "isActive": self.isActive, "company_license_exists": True, } return user_identity def save(self, commit=True): db.session.add(self) # add a notification for the user. notification = Notification( user=self ) db.session.add(notification) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def delete(self, commit=True): db.session.delete(self) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def __repr__(self): return '<User {}>'.format(self.email) class Role(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100), unique=True, nullable=False) created_at = db.Column(db.DateTime(timezone=True), default=func.now()) updated_at = db.Column(db.DateTime(timezone=True), onupdate=func.now()) @staticmethod def get_all_roles(): return Role.query.all() def save(self, commit=True): db.session.add(self) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def __repr__(self): return '<Role {}>'.format(self.name) class Company(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(255), unique=True, nullable=False) created_at = db.Column(db.DateTime(timezone=True), default=func.now()) updated_at = db.Column(db.DateTime(timezone=True), onupdate=func.now()) def pre_save_checks(self): # There should be only one company count = Company.query.count() if count == 0 and self.id is None: return True return False def pre_save(self): """ Use this method to modify the data before storing in the database. """ self.name = self.name.lower() def save(self, commit=True): if not self.pre_save_checks(): companies = Company.query.all() companies = [company.name for company in companies] app.logger.error("Multiple companies found: [{}]".format(companies)) raise MultipleCompaniesFound() self.pre_save() db.session.add(self) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def delete(self, commit=True): db.session.delete(self) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def get_admins(self): """ Get all admins of a company. """ admins = [] for user in self.users: if user.isActive and user.role.name == USER_ROLES.ADMIN_USER: admins.append(user) return admins def __repr__(self): return '<Company {}>'.format(self.name) class Invite(db.Model): id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(100), nullable=False) code = db.Column(db.String(255), unique=True, nullable=False) created_by = db.relationship('User', backref=db.backref('invites', lazy=True)) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) company = db.relationship('Company', backref=db.backref('invites', lazy=True)) company_id = db.Column(db.Integer, db.ForeignKey('company.id'), nullable=False) role = db.relationship('Role', backref=db.backref('invites', lazy=True)) role_id = db.Column(db.Integer, db.ForeignKey('role.id'), nullable=False) accepted = db.Column(db.Boolean, default=False) created_at = db.Column(db.DateTime(timezone=True), default=func.now()) updated_at = db.Column(db.DateTime(timezone=True), onupdate=func.now()) def save(self, commit=True): db.session.add(self) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def delete(self, commit=True): db.session.delete(self) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def is_expired(self): if arrow.get(self.created_at).datetime \ + datetime.timedelta(seconds=INVITE_EXPIRY) < arrow.now().datetime: return True return False def __repr__(self): return '<Invite {}>'.format(self.id) class PasswordReset(db.Model): id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(100), nullable=False) code = db.Column(db.String(255), unique=True, nullable=False) expiry_timedelta = db.Column(db.Integer, nullable=False) created_at = db.Column(db.DateTime(timezone=True), default=func.now()) updated_at = db.Column(db.DateTime(timezone=True), onupdate=func.now()) def save(self, commit=True): db.session.add(self) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def delete(self, commit=True): db.session.delete(self) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def __repr__(self): return '<PasswordReset {}>'.format(self.id) class Notification(db.Model): id = db.Column(db.Integer, primary_key=True) last_seen = db.Column(db.DateTime(timezone=True), nullable=False, default=func.now()) # One to one mapping with user user_id = db.Column(db.Integer, db.ForeignKey('user.id')) user = db.relationship('User', back_populates='notification') created_at = db.Column(db.DateTime(timezone=True), default=func.now()) updated_at = db.Column(db.DateTime(timezone=True), onupdate=func.now()) def save(self, commit=True): db.session.add(self) if commit: try: db.session.commit() except: db.session.rollback() # Exception block is just for rolling back the transaction # So re raise it. raise def __repr__(self): return '<Notification {}>'.format(self.id)
setup.py
aswinkp/swampdragon
366
12690165
import os from setuptools import setup, find_packages def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="SwampDragon", version="0.4.2.2", author="<NAME>", author_email="<EMAIL>", description=("SwampDragon is a powerful platform making it easy to build real time web applications, combining the power of Django and Tornado"), license="BSD", keywords="SwampDragon, websockets, realtime, sockjs, django, tornado, framework", url="http://swampdragon.net", packages=find_packages(), long_description=read('README.txt'), include_package_data=True, entry_points={'console_scripts': ['dragon-admin = swampdragon.core:run', ]}, install_requires=[ "Django>=1.6,<1.10", "Tornado >= 3.2.2", "sockjs-tornado >= 1.0.0", "tornado-redis >= 2.4.18", "redis >= 2.8", "python-dateutil >= 2.2" ], classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: BSD License", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", ], )
cesium/tests/test_time_series.py
acrellin/cesium
603
12690167
<filename>cesium/tests/test_time_series.py<gh_stars>100-1000 import os from uuid import uuid4 import numpy.testing as npt import numpy as np from cesium import time_series from cesium.time_series import TimeSeries def sample_time_series(size=51, channels=1): times = np.array([np.sort(np.random.random(size)) for i in range(channels)]).squeeze() values = np.array([np.random.normal(size=size) for i in range(channels)]).squeeze() errors = np.array([np.random.exponential(size=size) for i in range(channels)]).squeeze() return times, values, errors def test__compatible_shapes(): compat = time_series._compatible_shapes assert compat(np.arange(5), np.arange(5)) assert not compat(np.arange(5), np.arange(6)) assert compat([np.arange(5)] * 5, [np.arange(5)] * 5) assert not compat([np.arange(5)] * 5, [np.arange(5)] * 6) assert not compat([np.arange(5)] * 5, [np.arange(6)] * 5) assert not compat(np.arange(5), [np.arange(6)] * 5) assert compat([[0, 1], [0, 1]], [[0, 1], [0, 1]]) assert not compat([[0, 1], [0, 1]], [[0], [0, 1]]) assert compat([0, 1], np.arange(2)) def assert_ts_equal(ts1, ts2): for x1, x2 in zip((ts1.time, ts1.measurement, ts1.error), (ts2.time, ts2.measurement, ts2.error)): assert type(x1) == type(x2) if isinstance(x1, np.ndarray): assert np.array_equal(x1, x2) else: assert all(np.array_equal(x1_i, x2_i) for x1_i, x2_i in zip(x1, x2)) assert ts1.label == ts2.label assert ts1.meta_features == ts2.meta_features assert ts1.name == ts2.name def test_time_series_init_1d(): t, m, e = sample_time_series(channels=1) ts = TimeSeries(t, m, e) assert ts.time.shape == t.shape and np.allclose(ts.time, t) assert ts.measurement.shape == m.shape and np.allclose(ts.measurement, m) assert ts.error.shape == e.shape and np.allclose(ts.error, e) assert ts.n_channels == 1 def test_time_series_init_2d(): n_channels = 3 t, m, e = sample_time_series(channels=n_channels) ts = TimeSeries(t, m, e) assert ts.time.shape == t.shape and np.allclose(ts.time, t) assert ts.measurement.shape == m.shape and np.allclose(ts.measurement, m) assert ts.error.shape == e.shape and np.allclose(ts.error, e) assert ts.n_channels == n_channels ts = TimeSeries(t[0], m, e[0]) assert ts.time.shape == m.shape and np.allclose(ts.time[0], t[0]) assert ts.measurement.shape == m.shape and np.allclose(ts.measurement, m) assert ts.error.shape == m.shape and np.allclose(ts.error[0], e[0]) assert ts.n_channels == n_channels def test_time_series_init_ragged(): n_channels = 3 t, m, e = sample_time_series(channels=n_channels) t = [t[i][0:i+2] for i in range(len(t))] m = [m[i][0:i+2] for i in range(len(m))] e = [e[i][0:i+2] for i in range(len(e))] ts = TimeSeries(t, m, e) assert all(np.allclose(ts.time[i], t[i]) for i in range(len(t))) assert all(np.allclose(ts.measurement[i], m[i]) for i in range(len(t))) assert all(np.allclose(ts.error[i], e[i]) for i in range(len(t))) assert ts.n_channels == n_channels def test_time_series_default_values(): n_channels = 3 t, m, e = sample_time_series(channels=n_channels) ts = TimeSeries(None, m[0], None) npt.assert_allclose(ts.time, np.linspace(0., time_series.DEFAULT_MAX_TIME, m.shape[1])) npt.assert_allclose(ts.error, np.repeat(time_series.DEFAULT_ERROR_VALUE, m.shape[1])) assert ts.n_channels == 1 ts = TimeSeries(None, m, None) npt.assert_allclose(ts.time[0], np.linspace(0., time_series.DEFAULT_MAX_TIME, m.shape[1])) npt.assert_allclose(ts.error[0], np.repeat(time_series.DEFAULT_ERROR_VALUE, m.shape[1])) assert ts.n_channels == n_channels t = [t[i][0:i+2] for i in range(len(t))] m = [m[i][0:i+2] for i in range(len(m))] e = [e[i][0:i+2] for i in range(len(e))] ts = TimeSeries(None, m, None) for i in range(n_channels): npt.assert_allclose(ts.time[i], np.linspace(0., time_series.DEFAULT_MAX_TIME, len(m[i]))) npt.assert_allclose(ts.error[i], np.repeat(time_series.DEFAULT_ERROR_VALUE, len(m[i]))) assert ts.n_channels == n_channels def test_channels_iterator(): n_channels = 3 t, m, e = sample_time_series(channels=n_channels) ts = TimeSeries(t[0], m[0], e[0]) for t_i, m_i, e_i in ts.channels(): npt.assert_allclose(t_i, t[0]) npt.assert_allclose(m_i, m[0]) npt.assert_allclose(e_i, e[0]) ts = TimeSeries(t, m, e) for (t_i, m_i, e_i), i in zip(ts.channels(), range(n_channels)): npt.assert_allclose(t_i, t[i]) npt.assert_allclose(m_i, m[i]) npt.assert_allclose(e_i, e[i]) t = [t[i][0:i+2] for i in range(len(t))] m = [m[i][0:i+2] for i in range(len(m))] e = [e[i][0:i+2] for i in range(len(e))] ts = TimeSeries(t, m, e) for (t_i, m_i, e_i), i in zip(ts.channels(), range(n_channels)): npt.assert_allclose(t_i, t[i]) npt.assert_allclose(m_i, m[i]) npt.assert_allclose(e_i, e[i]) def test_time_series_npz(tmpdir): n_channels = 3 t, m, e = sample_time_series(channels=n_channels) ts = TimeSeries(t[0], m[0], e[0]) ts_path = os.path.join(str(tmpdir), str(uuid4()) + '.npz') ts.save(ts_path) ts_loaded = time_series.load(ts_path) assert_ts_equal(ts, ts_loaded) ts = TimeSeries(t[0], m, e[0]) ts_path = os.path.join(str(tmpdir), str(uuid4()) + '.npz') ts.save(ts_path) ts_loaded = time_series.load(ts_path) assert_ts_equal(ts, ts_loaded) t = [t[i][0:i+2] for i in range(len(t))] m = [m[i][0:i+2] for i in range(len(m))] e = [e[i][0:i+2] for i in range(len(e))] ts = TimeSeries(t, m, e) ts_path = os.path.join(str(tmpdir), str(uuid4()) + '.npz') ts.save(ts_path) ts_loaded = time_series.load(ts_path) assert_ts_equal(ts, ts_loaded) def test_time_series_sort(): t, m, e = sample_time_series(channels=1) t[:2] = t[1::-1] ts = TimeSeries(t, m, e) npt.assert_allclose(ts.time, np.sort(t)) npt.assert_allclose(ts.measurement, m[np.argsort(t)]) npt.assert_allclose(ts.error, e[np.argsort(t)]) n_channels = 3 t, m, e = sample_time_series(channels=n_channels) t[:, :2] = t[:, 1::-1] ts = TimeSeries(t, m, e) for i in range(len(m)): npt.assert_allclose(ts.time[i], np.sort(t[i])) npt.assert_allclose(ts.measurement[i], m[i][np.argsort(t[i])]) npt.assert_allclose(ts.error[i], e[i][np.argsort(t[i])]) ts = TimeSeries(t[0], m, e[0]) for i in range(len(m)): npt.assert_allclose(ts.time[i], np.sort(t[0])) npt.assert_allclose(ts.measurement[i], m[i][np.argsort(t[0])]) npt.assert_allclose(ts.error[i], e[0][np.argsort(t[0])])
test_bot/cogs/message_commands.py
Enegg/disnake
290
12690178
<reponame>Enegg/disnake import disnake from disnake.ext import commands class MessageCommands(commands.Cog): def __init__(self, bot): self.bot: commands.Bot = bot @commands.message_command(name="Reverse") async def reverse(self, inter: disnake.MessageCommandInteraction): await inter.response.send_message(inter.target.content[::-1]) def setup(bot): bot.add_cog(MessageCommands(bot)) print(f"> Extension {__name__} is ready\n")
rlgraph/components/neural_networks/actor_component.py
RLGraph/RLGraph
290
12690189
# Copyright 2018/2019 The RLgraph authors, All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import, division, print_function from rlgraph.components.common.container_merger import ContainerMerger from rlgraph.components.component import Component from rlgraph.components.explorations.exploration import Exploration from rlgraph.components.neural_networks.preprocessor_stack import PreprocessorStack from rlgraph.components.policies.policy import Policy from rlgraph.utils.decorators import rlgraph_api class ActorComponent(Component): """ A Component that incorporates an entire pipeline from env state to an action choice. Includes preprocessor, policy and exploration sub-components. """ def __init__(self, preprocessor_spec, policy_spec, exploration_spec=None, **kwargs): """ Args: preprocessor_spec (Union[list,dict,PreprocessorSpec]): - A dict if the state from the Env will come in as a ContainerSpace (e.g. Dict). In this case, each each key in this dict specifies, which value in the incoming dict should go through which PreprocessorStack. - A list with layer specs. - A PreprocessorStack object. policy_spec (Union[dict,Policy]): A specification dict for a Policy object or a Policy object directly. exploration_spec (Union[dict,Exploration]): A specification dict for an Exploration object or an Exploration object directly. """ super(ActorComponent, self).__init__(scope=kwargs.pop("scope", "actor-component"), **kwargs) self.preprocessor = PreprocessorStack.from_spec(preprocessor_spec) self.policy = Policy.from_spec(policy_spec) self.exploration = Exploration.from_spec(exploration_spec) self.tuple_merger = ContainerMerger(is_tuple=True, merge_tuples_into_one=True) self.add_components(self.policy, self.exploration, self.preprocessor, self.tuple_merger) @rlgraph_api def get_preprocessed_state_and_action( self, states, other_nn_inputs=None, time_percentage=None, use_exploration=True ): """ API-method to get the preprocessed state and an action based on a raw state from an Env. Args: states (DataOp): The states coming directly from the environment. other_nn_inputs (Optional[DataOpTuple]): Inputs to the NN that don't have to be pushed through the preprocessor. time_percentage (SingleDataOp): The current consumed time (0.0 to 1.0) with respect to a max timestep value. use_exploration (Optional[DataOp]): Whether to use exploration or not. Returns: dict (3x DataOp): `preprocessed_state` (DataOp): The preprocessed states. `action` (DataOp): The chosen action. #`last_internal_states` (DataOp): If RNN-based, the last internal states after passing through #states. Or None. """ preprocessed_states = self.preprocessor.preprocess(states) nn_inputs = preprocessed_states if other_nn_inputs is not None: # TODO: Do this automatically when using the `+` operator on DataOpRecords. nn_inputs = self.tuple_merger.merge(nn_inputs, other_nn_inputs) out = self.policy.get_action(nn_inputs) actions = self.exploration.get_action(out["action"], time_percentage, use_exploration) return dict( preprocessed_state=preprocessed_states, action=actions, nn_outputs=out["nn_outputs"] ) @rlgraph_api def get_preprocessed_state_action_and_action_probs( self, states, other_nn_inputs=None, time_percentage=None, use_exploration=True ): """ API-method to get the preprocessed state, one action and all possible action's probabilities based on a raw state from an Env. Args: states (DataOp): The states coming directly from the environment. other_nn_inputs (DataOp): Inputs to the NN that don't have to be pushed through the preprocessor. time_percentage (SingleDataOp): The current consumed time (0.0 to 1.0) with respect to a max timestep value. use_exploration (Optional[DataOp]): Whether to use exploration or not. Returns: dict (4x DataOp): `preprocessed_state` (DataOp): The preprocessed states. `action` (DataOp): The chosen action. `action_probs` (DataOp): The different action probabilities. #`last_internal_states` (DataOp): If RNN-based, the last internal states after passing through #states. Or None. """ preprocessed_states = self.preprocessor.preprocess(states) nn_inputs = preprocessed_states # merge preprocessed_states + other_nn_inputs if other_nn_inputs is not None: # TODO: Do this automatically when using the `+` operator on DataOpRecords. nn_inputs = self.tuple_merger.merge(nn_inputs, other_nn_inputs) # TODO: Dynamic Batching problem. State-value is not really needed, but dynamic batching will require us to # TODO: run through the exact same partial-graph as the learner (which does need the extra state-value output). # if isinstance(self.policy, SharedValueFunctionPolicy): # out = self.policy.get_state_values_logits_probabilities_log_probs(preprocessed_states, internal_states) # else: # out = self.policy.get_logits_parameters_log_probs(preprocessed_states, internal_states) # action_sample = self.policy.get_action_from_logits_and_parameters(out["logits"], out["parameters"]) out = self.policy.get_action_and_log_likelihood(nn_inputs) actions = self.exploration.get_action(out["action"], time_percentage, use_exploration) return dict( preprocessed_state=preprocessed_states, action=actions, action_probs=out["action_probabilities"], nn_outputs=out["nn_outputs"] )
2020/03/09/How to Copy Django Model Instance Objects/django_clone_example/clone_object/example/views.py
kenjitagawa/youtube_video_code
492
12690197
<reponame>kenjitagawa/youtube_video_code<gh_stars>100-1000 from django.shortcuts import render from .models import Member def index(request): #member_one = Member(name='Anthony', location='Las Vegas') #member_one.save() member_three = Member.objects.get(pk=1) #member_two = member_one member_three.pk = None member_three.id = None member_three.name = 'Anthony' member_three.location = 'Las Vegas' member_three.save() member_one = Member.objects.get(pk=1) context = { 'member_one' : member_one, 'member_three' : member_three } return render(request, 'index.html', context)
tests/async/test_locators.py
microsoft/playwright-python
6,243
12690200
# Copyright (c) Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from playwright._impl._path_utils import get_file_dirname from playwright.async_api import Error, Page from tests.server import Server _dirname = get_file_dirname() FILE_TO_UPLOAD = _dirname / ".." / "assets/file-to-upload.txt" async def test_locators_click_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/input/button.html") button = page.locator("button") await button.click() assert await page.evaluate("window['result']") == "Clicked" async def test_locators_click_should_work_with_node_removed(page: Page, server: Server): await page.goto(server.PREFIX + "/input/button.html") await page.evaluate("delete window['Node']") button = page.locator("button") await button.click() assert await page.evaluate("window['result']") == "Clicked" async def test_locators_click_should_work_for_text_nodes(page: Page, server: Server): await page.goto(server.PREFIX + "/input/button.html") await page.evaluate( """() => { window['double'] = false; const button = document.querySelector('button'); button.addEventListener('dblclick', event => { window['double'] = true; }); }""" ) button = page.locator("button") await button.dblclick() assert await page.evaluate("double") is True assert await page.evaluate("result") == "Clicked" async def test_locators_should_have_repr(page: Page, server: Server): await page.goto(server.PREFIX + "/input/button.html") button = page.locator("button") await button.click() assert ( str(button) == f"<Locator frame=<Frame name= url='{server.PREFIX}/input/button.html'> selector='button'>" ) async def test_locators_get_attribute_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/dom.html") button = page.locator("#outer") assert await button.get_attribute("name") == "value" assert await button.get_attribute("foo") is None async def test_locators_input_value_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/dom.html") await page.fill("#textarea", "input value") text_area = page.locator("#textarea") assert await text_area.input_value() == "input value" async def test_locators_inner_html_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/dom.html") locator = page.locator("#outer") assert await locator.inner_html() == '<div id="inner">Text,\nmore text</div>' async def test_locators_inner_text_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/dom.html") locator = page.locator("#inner") assert await locator.inner_text() == "Text, more text" async def test_locators_text_content_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/dom.html") locator = page.locator("#inner") assert await locator.text_content() == "Text,\nmore text" async def test_locators_is_hidden_and_is_visible_should_work(page: Page): await page.set_content("<div>Hi</div><span></span>") div = page.locator("div") assert await div.is_visible() is True assert await div.is_hidden() is False span = page.locator("span") assert await span.is_visible() is False assert await span.is_hidden() is True async def test_locators_is_enabled_and_is_disabled_should_work(page: Page): await page.set_content( """ <button disabled>button1</button> <button>button2</button> <div>div</div> """ ) div = page.locator("div") assert await div.is_enabled() is True assert await div.is_disabled() is False button1 = page.locator(':text("button1")') assert await button1.is_enabled() is False assert await button1.is_disabled() is True button1 = page.locator(':text("button2")') assert await button1.is_enabled() is True assert await button1.is_disabled() is False async def test_locators_is_editable_should_work(page: Page): await page.set_content( """ <input id=input1 disabled><textarea></textarea><input id=input2> """ ) input1 = page.locator("#input1") assert await input1.is_editable() is False input2 = page.locator("#input2") assert await input2.is_editable() is True async def test_locators_is_checked_should_work(page: Page): await page.set_content( """ <input type='checkbox' checked><div>Not a checkbox</div> """ ) element = page.locator("input") assert await element.is_checked() is True await element.evaluate("e => e.checked = false") assert await element.is_checked() is False async def test_locators_all_text_contents_should_work(page: Page): await page.set_content( """ <div>A</div><div>B</div><div>C</div> """ ) element = page.locator("div") assert await element.all_text_contents() == ["A", "B", "C"] async def test_locators_all_inner_texts(page: Page): await page.set_content( """ <div>A</div><div>B</div><div>C</div> """ ) element = page.locator("div") assert await element.all_inner_texts() == ["A", "B", "C"] async def test_locators_should_query_existing_element(page: Page, server: Server): await page.goto(server.PREFIX + "/playground.html") await page.set_content( """<html><body><div class="second"><div class="inner">A</div></div></body></html>""" ) html = page.locator("html") second = html.locator(".second") inner = second.locator(".inner") assert ( await page.evaluate("e => e.textContent", await inner.element_handle()) == "A" ) async def test_locators_evaluate_handle_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/dom.html") outer = page.locator("#outer") inner = outer.locator("#inner") check = inner.locator("#check") text = await inner.evaluate_handle("e => e.firstChild") await page.evaluate("1 + 1") assert ( str(outer) == f"<Locator frame=<Frame name= url='{server.PREFIX}/dom.html'> selector='#outer'>" ) assert ( str(inner) == f"<Locator frame=<Frame name= url='{server.PREFIX}/dom.html'> selector='#outer >> #inner'>" ) assert str(text) == "JSHandle@#text=Text,↵more text" assert ( str(check) == f"<Locator frame=<Frame name= url='{server.PREFIX}/dom.html'> selector='#outer >> #inner >> #check'>" ) async def test_locators_should_query_existing_elements(page: Page): await page.set_content( """<html><body><div>A</div><br/><div>B</div></body></html>""" ) html = page.locator("html") elements = await html.locator("div").element_handles() assert len(elements) == 2 result = [] for element in elements: result.append(await page.evaluate("e => e.textContent", element)) assert result == ["A", "B"] async def test_locators_return_empty_array_for_non_existing_elements(page: Page): await page.set_content( """<html><body><div>A</div><br/><div>B</div></body></html>""" ) html = page.locator("html") elements = await html.locator("abc").element_handles() assert len(elements) == 0 assert elements == [] async def test_locators_evaluate_all_should_work(page: Page): await page.set_content( """<html><body><div class="tweet"><div class="like">100</div><div class="like">10</div></div></body></html>""" ) tweet = page.locator(".tweet .like") content = await tweet.evaluate_all("nodes => nodes.map(n => n.innerText)") assert content == ["100", "10"] async def test_locators_evaluate_all_should_work_with_missing_selector(page: Page): await page.set_content( """<div class="a">not-a-child-div</div><div id="myId"></div""" ) tweet = page.locator("#myId .a") nodes_length = await tweet.evaluate_all("nodes => nodes.length") assert nodes_length == 0 async def test_locators_hover_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/input/scrollable.html") button = page.locator("#button-6") await button.hover() assert ( await page.evaluate("document.querySelector('button:hover').id") == "button-6" ) async def test_locators_fill_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/input/textarea.html") button = page.locator("input") await button.fill("some value") assert await page.evaluate("result") == "some value" async def test_locators_check_should_work(page: Page): await page.set_content("<input id='checkbox' type='checkbox'></input>") button = page.locator("input") await button.check() assert await page.evaluate("checkbox.checked") is True async def test_locators_uncheck_should_work(page: Page): await page.set_content("<input id='checkbox' type='checkbox' checked></input>") button = page.locator("input") await button.uncheck() assert await page.evaluate("checkbox.checked") is False async def test_locators_select_option_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/input/select.html") select = page.locator("select") await select.select_option("blue") assert await page.evaluate("result.onInput") == ["blue"] assert await page.evaluate("result.onChange") == ["blue"] async def test_locators_focus_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/input/button.html") button = page.locator("button") assert await button.evaluate("button => document.activeElement === button") is False await button.focus() assert await button.evaluate("button => document.activeElement === button") is True async def test_locators_dispatch_event_should_work(page: Page, server: Server): await page.goto(server.PREFIX + "/input/button.html") button = page.locator("button") await button.dispatch_event("click") assert await page.evaluate("result") == "Clicked" async def test_locators_should_upload_a_file(page: Page, server: Server): await page.goto(server.PREFIX + "/input/fileupload.html") input = page.locator("input[type=file]") file_path = os.path.relpath(FILE_TO_UPLOAD, os.getcwd()) await input.set_input_files(file_path) assert ( await page.evaluate("e => e.files[0].name", await input.element_handle()) == "file-to-upload.txt" ) async def test_locators_should_press(page: Page): await page.set_content("<input type='text' />") await page.locator("input").press("h") await page.eval_on_selector("input", "input => input.value") == "h" async def test_locators_should_scroll_into_view(page: Page, server: Server): await page.goto(server.PREFIX + "/offscreenbuttons.html") for i in range(11): button = page.locator(f"#btn{i}") before = await button.evaluate( "button => button.getBoundingClientRect().right - window.innerWidth" ) assert before == 10 * i await button.scroll_into_view_if_needed() after = await button.evaluate( "button => button.getBoundingClientRect().right - window.innerWidth" ) assert after <= 0 await page.evaluate("window.scrollTo(0, 0)") async def test_locators_should_select_textarea( page: Page, server: Server, browser_name: str ): await page.goto(server.PREFIX + "/input/textarea.html") textarea = page.locator("textarea") await textarea.evaluate("textarea => textarea.value = 'some value'") await textarea.select_text() if browser_name == "firefox": assert await textarea.evaluate("el => el.selectionStart") == 0 assert await textarea.evaluate("el => el.selectionEnd") == 10 else: assert await page.evaluate("window.getSelection().toString()") == "some value" async def test_locators_should_type(page: Page): await page.set_content("<input type='text' />") await page.locator("input").type("hello") await page.eval_on_selector("input", "input => input.value") == "hello" async def test_locators_should_screenshot( page: Page, server: Server, assert_to_be_golden ): await page.set_viewport_size( { "width": 500, "height": 500, } ) await page.goto(server.PREFIX + "/grid.html") await page.evaluate("window.scrollBy(50, 100)") element = page.locator(".box:nth-of-type(3)") assert_to_be_golden( await element.screenshot(), "screenshot-element-bounding-box.png" ) async def test_locators_should_return_bounding_box(page: Page, server: Server): await page.set_viewport_size( { "width": 500, "height": 500, } ) await page.goto(server.PREFIX + "/grid.html") element = page.locator(".box:nth-of-type(13)") box = await element.bounding_box() assert box == { "x": 100, "y": 50, "width": 50, "height": 50, } async def test_locators_should_respect_first_and_last(page: Page): await page.set_content( """ <section> <div><p>A</p></div> <div><p>A</p><p>A</p></div> <div><p>A</p><p>A</p><p>A</p></div> </section>""" ) assert await page.locator("div >> p").count() == 6 assert await page.locator("div").locator("p").count() == 6 assert await page.locator("div").first.locator("p").count() == 1 assert await page.locator("div").last.locator("p").count() == 3 async def test_locators_should_respect_nth(page: Page): await page.set_content( """ <section> <div><p>A</p></div> <div><p>A</p><p>A</p></div> <div><p>A</p><p>A</p><p>A</p></div> </section>""" ) assert await page.locator("div >> p").nth(0).count() == 1 assert await page.locator("div").nth(1).locator("p").count() == 2 assert await page.locator("div").nth(2).locator("p").count() == 3 async def test_locators_should_throw_on_capture_without_nth(page: Page): await page.set_content( """ <section><div><p>A</p></div></section> """ ) with pytest.raises(Error, match="Can't query n-th element"): await page.locator("*css=div >> p").nth(1).click() async def test_locators_should_throw_due_to_strictness(page: Page): await page.set_content( """ <div>A</div><div>B</div> """ ) with pytest.raises(Error, match="strict mode violation"): await page.locator("div").is_visible() async def test_locators_should_throw_due_to_strictness_2(page: Page): await page.set_content( """ <select><option>One</option><option>Two</option></select> """ ) with pytest.raises(Error, match="strict mode violation"): await page.locator("option").evaluate("e => {}") async def test_locators_set_checked(page: Page): await page.set_content("`<input id='checkbox' type='checkbox'></input>`") locator = page.locator("input") await locator.set_checked(True) assert await page.evaluate("checkbox.checked") await locator.set_checked(False) assert await page.evaluate("checkbox.checked") is False async def test_locators_wait_for(page: Page) -> None: await page.set_content("<div></div>") locator = page.locator("div") task = locator.wait_for() await page.eval_on_selector("div", "div => div.innerHTML = '<span>target</span>'") await task assert await locator.text_content() == "target"
test/test_naarad_api.py
richardhsu/naarad
180
12690206
# coding=utf-8 """ Copyright 2013 LinkedIn Corp. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import ConfigParser import os import sys import time sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'src'))) from naarad import Naarad import naarad.naarad_constants as CONSTANTS naarad_obj = None def setup_module(): global naarad_obj naarad_obj = Naarad() def test_naarad_apis(): """ :return: None """ examples_directory = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'examples') config_file = os.path.join(os.path.join(examples_directory, 'conf'), 'config-gc') config_object = ConfigParser.ConfigParser() config_object.optionxform = str config_object.read(config_file) input_directory = os.path.join(examples_directory, 'logs') output_directory = 'test_api_temp' diff_output_directory = 'test_api_temp/diff_location' report1_location = 'test_api_temp/0' report2_location = 'test_api_temp/1' global naarad_obj test_id_1 = naarad_obj.signal_start(config_file) time.sleep(60) naarad_obj.signal_stop(test_id_1) test_id_2 = naarad_obj.signal_start(config_object) time.sleep(60) naarad_obj.signal_stop(test_id_2) if naarad_obj.analyze(input_directory, output_directory) != CONSTANTS.OK: print naarad_obj.get_failed_analyses() naarad_obj.get_sla_data(test_id_1) naarad_obj.get_stats_data(test_id_1) naarad_obj.get_sla_data(test_id_2) naarad_obj.get_stats_data(test_id_2) if naarad_obj.diff(test_id_1, test_id_2, None) != CONSTANTS.OK: print 'Error encountered during diff' if naarad_obj.diff_reports_by_location(report1_location, report2_location, diff_output_directory, None): print 'Error encountered during diff' print 'Please inspect the generated reports manually'
api/allennlp_demo/bidaf_elmo/test_api.py
dragon18456/allennlp-demo
190
12690228
from overrides import overrides import pytest from allennlp_demo.bidaf_elmo.api import BidafElmoModelEndpoint from allennlp_demo.common.testing import RcModelEndpointTestCase class TestBidafElmoModelEndpoint(RcModelEndpointTestCase): endpoint = BidafElmoModelEndpoint() @pytest.mark.skip("Takes too long") @overrides def test_interpret(self): pass @pytest.mark.skip("Takes too long") @overrides def test_attack(self): pass
crabageprediction/venv/Lib/site-packages/fontTools/otlLib/__init__.py
13rianlucero/CrabAgePrediction
38,667
12690244
"""OpenType Layout-related functionality."""
src/unittest/python/install_utils_tests.py
klr8/pybuilder
1,419
12690246
<reponame>klr8/pybuilder # -*- coding: utf-8 -*- # # This file is part of PyBuilder # # Copyright 2011-2020 PyBuilder Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from os.path import normcase as nc, join as jp from pybuilder.core import (Project, Logger, Dependency, RequirementsFile) from pybuilder.install_utils import install_dependencies from pybuilder.pip_utils import PIP_MODULE_STANZA from pybuilder.plugins.python.install_dependencies_plugin import initialize_install_dependencies_plugin from test_utils import Mock, ANY, patch __author__ = "<NAME>" class InstallDependencyTest(unittest.TestCase): def setUp(self): self.project = Project("unittest", ".") self.project.set_property("dir_install_logs", "any_directory") self.project.set_property("dir_target", "/any_target_directory") self.logger = Mock(Logger) self.pyb_env = Mock() self.pyb_env.executable = ["exec"] self.pyb_env.site_paths = [] self.pyb_env.env_dir = "a" self.pyb_env.execute_command.return_value = 0 initialize_install_dependencies_plugin(self.project) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_requirements_file_dependency(self, *_): dependency = RequirementsFile("requirements.txt") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "-r", "requirements.txt"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_dependency_without_version(self, *_): dependency = Dependency("spam") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch", constraints_file_name="constraint_file") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "-c", nc(jp(self.pyb_env.env_dir, "constraint_file")), "spam"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_dependency_without_version_on_windows_derivate(self, *_): dependency = Dependency("spam") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "spam"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_dependency_insecurely_when_property_is_set(self, *_): dependency = Dependency("spam") self.project.set_property("install_dependencies_insecure_installation", ["spam"]) install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "--allow-unverified", "spam", "--allow-external", "spam", "spam"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_dependency_securely_when_property_is_not_set_to_dependency(self, *_): dependency = Dependency("spam") self.project.set_property("install_dependencies_insecure_installation", ["some-other-dependency"]) install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch", constraints_file_name="constraint_file") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "-c", ANY, "--allow-unverified", "some-other-dependency", "--allow-external", "some-other-dependency", "spam"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) # some-other-dependency might be a dependency of "spam" # so we always have to put the insecure dependencies in the command line :-( @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_dependency_using_custom_index_url(self, *_): self.project.set_property("install_dependencies_index_url", "some_index_url") dependency = Dependency("spam") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "--index-url", "some_index_url", "spam"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_use_extra_index_url_when_index_url_is_not_set(self, *_): self.project.set_property("install_dependencies_extra_index_url", "some_extra_index_url") dependency = Dependency("spam") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "--extra-index-url", "some_extra_index_url", "spam"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_use_index_and_extra_index_url_when_index_and_extra_index_url_are_set(self, *_): self.project.set_property("install_dependencies_index_url", "some_index_url") self.project.set_property("install_dependencies_extra_index_url", "some_extra_index_url") dependency = Dependency("spam") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "--index-url", "some_index_url", "--extra-index-url", "some_extra_index_url", "spam"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_dependency_with_version(self, *_): dependency = Dependency("spam", "0.1.2") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "spam>=0.1.2"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_dependency_with_version_and_operator(self, *_): dependency = Dependency("spam", "==0.1.2") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "spam==0.1.2"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) def test_should_install_dependency_with_wrong_version_and_operator(self): self.assertRaises(ValueError, Dependency, "spam", "~=1") @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_dependency_with_url(self, *_): dependency = Dependency("spam", url="some_url") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "--force-reinstall", "some_url"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True) @patch("pybuilder.install_utils.tail_log") @patch("pybuilder.install_utils.open") @patch("pybuilder.install_utils.create_constraint_file") @patch("pybuilder.install_utils.get_packages_info", return_value={}) def test_should_install_dependency_with_url_even_if_version_is_given(self, *_): dependency = Dependency("spam", version="0.1.2", url="some_url") install_dependencies(self.logger, self.project, dependency, self.pyb_env, "install_batch") self.pyb_env.execute_command.assert_called_with( self.pyb_env.executable + PIP_MODULE_STANZA + ["install", "--force-reinstall", "some_url"], cwd=ANY, env=ANY, error_file_name=ANY, outfile_name=ANY, shell=False, no_path_search=True)
tests/brevitas/test_brevitas_validate_mobilenet.py
mmrahorovic/finn
109
12690247
# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import brevitas.onnx as bo import csv import numpy as np import os import torch import torchvision.datasets as datasets import torchvision.transforms as transforms import finn.core.onnx_exec as oxe import finn.transformation.streamline.absorb as absorb import finn.util.imagenet as imagenet_util from finn.core.modelwrapper import ModelWrapper from finn.transformation.fold_constants import FoldConstants from finn.transformation.general import ( GiveReadableTensorNames, GiveUniqueNodeNames, GiveUniqueParameterTensors, RemoveStaticGraphInputs, ) from finn.transformation.infer_data_layouts import InferDataLayouts from finn.transformation.infer_datatypes import InferDataTypes from finn.transformation.infer_shapes import InferShapes from finn.transformation.insert_topk import InsertTopK from finn.transformation.merge_onnx_models import MergeONNXModels from finn.util.basic import make_build_dir from finn.util.pytorch import NormalizePreProc from finn.util.test import get_test_model_trained # normalization (preprocessing) settings for MobileNet-v1 w4a4 mean = [0.485, 0.456, 0.406] std = 0.226 ch = 3 def test_brevitas_mobilenet_preproc(): if "IMAGENET_VAL_PATH" not in os.environ.keys(): pytest.skip("Can't do validation without IMAGENET_VAL_PATH") n_images = 1000 # Brevitas-style: use torchvision pipeline std_arr = [std, std, std] normalize = transforms.Normalize(mean=mean, std=std_arr) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder( os.environ["IMAGENET_VAL_PATH"] + "/../", transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ] ), ), batch_size=1, shuffle=False, num_workers=0, ) # FINN-style: load_resize_crop then normalization as PyTorch graph preproc = NormalizePreProc(mean, std, ch) finn_loader = imagenet_util.get_val_images(n_images) val_loader = iter(val_loader) for i in range(n_images): (img_path, finn_target) = next(finn_loader) finn_img = imagenet_util.load_resize_crop(img_path) finn_img = preproc.forward(torch.from_numpy(finn_img).float()) (pyt_img, pyt_target) = next(val_loader) assert finn_img.shape == pyt_img.shape assert (finn_img == pyt_img).all() @pytest.mark.slow # marked as XFAIL until Brevitas export issues are resolved: # https://github.com/Xilinx/brevitas/issues/173 @pytest.mark.xfail def test_brevitas_compare_exported_mobilenet(): if "IMAGENET_VAL_PATH" not in os.environ.keys(): pytest.skip("Can't do validation without IMAGENET_VAL_PATH") n_images = 10 debug_mode = False export_onnx_path = make_build_dir("test_brevitas_mobilenet-v1_") # export preprocessing preproc_onnx = export_onnx_path + "/quant_mobilenet_v1_4b_preproc.onnx" preproc = NormalizePreProc(mean, std, ch) bo.export_finn_onnx(preproc, (1, 3, 224, 224), preproc_onnx) preproc_model = ModelWrapper(preproc_onnx) preproc_model = preproc_model.transform(InferShapes()) preproc_model = preproc_model.transform(GiveUniqueNodeNames()) preproc_model = preproc_model.transform(GiveUniqueParameterTensors()) preproc_model = preproc_model.transform(GiveReadableTensorNames()) # export the actual MobileNet-v1 finn_onnx = export_onnx_path + "/quant_mobilenet_v1_4b.onnx" mobilenet = get_test_model_trained("mobilenet", 4, 4) if debug_mode: dbg_hook = bo.enable_debug(mobilenet) bo.export_finn_onnx(mobilenet, (1, 3, 224, 224), finn_onnx) model = ModelWrapper(finn_onnx) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(RemoveStaticGraphInputs()) model = model.transform(InsertTopK()) # get initializer from Mul that will be absorbed into topk a0 = model.get_initializer(model.get_nodes_by_op_type("Mul")[-1].input[1]) model = model.transform(absorb.AbsorbScalarMulAddIntoTopK()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) model = model.transform(InferDataLayouts()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveUniqueParameterTensors()) model = model.transform(GiveReadableTensorNames()) model.save(export_onnx_path + "/quant_mobilenet_v1_4b_wo_preproc.onnx") # create merged preprocessing + MobileNet-v1 model model = model.transform(MergeONNXModels(preproc_model)) model.save(export_onnx_path + "/quant_mobilenet_v1_4b.onnx") with open( export_onnx_path + "/mobilenet_validation.csv", "w", newline="" ) as csvfile: writer = csv.writer(csvfile) writer.writerow( [ "goldenID", "brevitasTop5", "brevitasTop5[%]", "finnTop5", "finnTop5[%]", "top5equal", "top5%equal", ] ) csvfile.flush() workload = imagenet_util.get_val_images(n_images, interleave_classes=True) all_inds_ok = True all_probs_ok = True for (img_path, target_id) in workload: img_np = imagenet_util.load_resize_crop(img_path) img_torch = torch.from_numpy(img_np).float() # do forward pass in PyTorch/Brevitas input_tensor = preproc.forward(img_torch) expected = mobilenet.forward(input_tensor).detach().numpy() expected_topk = expected.flatten() expected_top5 = np.argsort(expected_topk)[-5:] expected_top5 = np.flip(expected_top5) expected_top5_prob = [] for index in expected_top5: expected_top5_prob.append(expected_topk[index]) idict = {model.graph.input[0].name: img_np} odict = oxe.execute_onnx(model, idict, return_full_exec_context=True) produced = odict[model.graph.output[0].name] produced_prob = odict["TopK_0_out0"] * a0 inds_ok = (produced.flatten() == expected_top5).all() probs_ok = np.isclose(produced_prob.flatten(), expected_top5_prob).all() all_inds_ok = all_inds_ok and inds_ok all_probs_ok = all_probs_ok and probs_ok writer.writerow( [ str(target_id), str(expected_top5), str(expected_top5_prob), str(produced.flatten()), str(produced_prob.flatten()), str(inds_ok), str(probs_ok), ] ) csvfile.flush() if ((not inds_ok) or (not probs_ok)) and debug_mode: print("Results differ for %s" % img_path) # check all tensors at debug markers names_brevitas = set(dbg_hook.values.keys()) names_finn = set(odict.keys()) names_common = names_brevitas.intersection(names_finn) for dbg_name in names_common: if not np.isclose( dbg_hook.values[dbg_name].detach().numpy(), odict[dbg_name], atol=1e-3, ).all(): print("Tensor %s differs between Brevitas and FINN" % dbg_name) assert all_inds_ok and all_probs_ok
using-python-to-interact-with-the-operating-system/week-five/charfreq.py
veera-raju/google-it-automation-with-python
164
12690250
#!/usr/bin/env python3 def char_frequency(filename): """ Counts the frequency of each character in the given file. """ # First try to open the file try: f = open(filename) # code in the except block is only executed if one of the instructions in the try block raise an error of the matching type except OSError: return None # Now process the file characters = {} for line in f: for char in line: characters[char] = characters.get(char, 0) + 1 f.close() return characters
fast_transformers/feature_maps/__init__.py
SamuelCahyawijaya/fast-transformers
1,171
12690251
<gh_stars>1000+ # # Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/ # Written by <NAME> <<EMAIL>> # """Implementations of feature maps to be used with linear attention and causal linear attention.""" from .base import elu_feature_map, ActivationFunctionFeatureMap from .fourier_features import RandomFourierFeatures, Favor, \ SmoothedRandomFourierFeatures, GeneralizedRandomFeatures
lenstronomy/GalKin/aperture_types.py
heather999/lenstronomy
107
12690255
<filename>lenstronomy/GalKin/aperture_types.py<gh_stars>100-1000 __author__ = 'sibirrer' import numpy as np from lenstronomy.Util.package_util import exporter export, __all__ = exporter() @export class Slit(object): """ Slit aperture description """ def __init__(self, length, width, center_ra=0, center_dec=0, angle=0): """ :param length: length of slit :param width: width of slit :param center_ra: center of slit :param center_dec: center of slit :param angle: orientation angle of slit, angle=0 corresponds length in RA direction """ self._length = length self._width = width self._center_ra, self._center_dec = center_ra, center_dec self._angle = angle def aperture_select(self, ra, dec): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :return: bool, True if photon/ray is within the slit, False otherwise """ return slit_select(ra, dec, self._length, self._width, self._center_ra, self._center_dec, self._angle), 0 @property def num_segments(self): """ number of segments with separate measurements of the velocity dispersion :return: int """ return 1 @export def slit_select(ra, dec, length, width, center_ra=0, center_dec=0, angle=0): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :param length: length of slit :param width: width of slit :param center_ra: center of slit :param center_dec: center of slit :param angle: orientation angle of slit, angle=0 corresponds length in RA direction :return: bool, True if photon/ray is within the slit, False otherwise """ ra_ = ra - center_ra dec_ = dec - center_dec x = np.cos(angle) * ra_ + np.sin(angle) * dec_ y = - np.sin(angle) * ra_ + np.cos(angle) * dec_ if abs(x) < length / 2. and abs(y) < width / 2.: return True else: return False @export class Frame(object): """ rectangular box with a hole in the middle (also rectangular), effectively a frame """ def __init__(self, width_outer, width_inner, center_ra=0, center_dec=0, angle=0): """ :param width_outer: width of box to the outer parts :param width_inner: width of inner removed box :param center_ra: center of slit :param center_dec: center of slit :param angle: orientation angle of slit, angle=0 corresponds length in RA direction """ self._width_outer = width_outer self._width_inner = width_inner self._center_ra, self._center_dec = center_ra, center_dec self._angle = angle def aperture_select(self, ra, dec): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :return: bool, True if photon/ray is within the slit, False otherwise """ return frame_select(ra, dec, self._width_outer, self._width_inner, self._center_ra, self._center_dec, self._angle), 0 @property def num_segments(self): """ number of segments with separate measurements of the velocity dispersion :return: int """ return 1 @export def frame_select(ra, dec, width_outer, width_inner, center_ra=0, center_dec=0, angle=0): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :param width_outer: width of box to the outer parts :param width_inner: width of inner removed box :param center_ra: center of slit :param center_dec: center of slit :param angle: orientation angle of slit, angle=0 corresponds length in RA direction :return: bool, True if photon/ray is within the box with a hole, False otherwise """ ra_ = ra - center_ra dec_ = dec - center_dec x = np.cos(angle) * ra_ + np.sin(angle) * dec_ y = - np.sin(angle) * ra_ + np.cos(angle) * dec_ if abs(x) < width_outer / 2. and abs(y) < width_outer / 2.: if abs(x) < width_inner / 2. and abs(y) < width_inner / 2.: return False else: return True return False @export class Shell(object): """ Shell aperture """ def __init__(self, r_in, r_out, center_ra=0, center_dec=0): """ :param r_in: innermost radius to be selected :param r_out: outermost radius to be selected :param center_ra: center of the sphere :param center_dec: center of the sphere """ self._r_in, self._r_out = r_in, r_out self._center_ra, self._center_dec = center_ra, center_dec def aperture_select(self, ra, dec): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :return: bool, True if photon/ray is within the slit, False otherwise """ return shell_select(ra, dec, self._r_in, self._r_out, self._center_ra, self._center_dec), 0 @property def num_segments(self): """ number of segments with separate measurements of the velocity dispersion :return: int """ return 1 @export def shell_select(ra, dec, r_in, r_out, center_ra=0, center_dec=0): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :param r_in: innermost radius to be selected :param r_out: outermost radius to be selected :param center_ra: center of the sphere :param center_dec: center of the sphere :return: boolean, True if within the radial range, False otherwise """ x = ra - center_ra y = dec - center_dec R = np.sqrt(x ** 2 + y ** 2) if (R >= r_in) and (R < r_out): return True else: return False @export class IFUShells(object): """ class for an Integral Field Unit spectrograph with azimuthal shells where the kinematics are measured """ def __init__(self, r_bins, center_ra=0, center_dec=0): """ :param r_bins: array of radial bins to average the dispersion spectra in ascending order. It starts with the inner-most edge to the outermost edge. :param center_ra: center of the sphere :param center_dec: center of the sphere """ self._r_bins = r_bins self._center_ra, self._center_dec = center_ra, center_dec def aperture_select(self, ra, dec): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :return: bool, True if photon/ray is within the slit, False otherwise, index of shell """ return shell_ifu_select(ra, dec, self._r_bins, self._center_ra, self._center_dec) @property def num_segments(self): """ number of segments with separate measurements of the velocity dispersion :return: int """ return len(self._r_bins) - 1 @export def shell_ifu_select(ra, dec, r_bin, center_ra=0, center_dec=0): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :param r_bin: array of radial bins to average the dispersion spectra in ascending order. It starts with the inner-most edge to the outermost edge. :param center_ra: center of the sphere :param center_dec: center of the sphere :return: boolean, True if within the radial range, False otherwise """ x = ra - center_ra y = dec - center_dec R = np.sqrt(x ** 2 + y ** 2) for i in range(0, len(r_bin) - 1): if (R >= r_bin[i]) and (R < r_bin[i+1]): return True, i return False, None
apprise/plugins/NotifySendGrid.py
linkmauve/apprise
4,764
12690263
# -*- coding: utf-8 -*- # # Copyright (C) 2019 <NAME> <<EMAIL>> # All rights reserved. # # This code is licensed under the MIT License. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and / or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # You will need an API Key for this plugin to work. # From the Settings -> API Keys you can click "Create API Key" if you don't # have one already. The key must have at least the "Mail Send" permission # to work. # # The schema to use the plugin looks like this: # {schema}://{apikey}:{from_email} # # Your {from_email} must be comprissed of your Sendgrid Authenticated # Domain. The same domain must have 'Link Branding' turned on as well or it # will not work. This can be seen from Settings -> Sender Authentication. # If you're (SendGrid) verified domain is example.com, then your schema may # look something like this: # Simple API Reference: # - https://sendgrid.com/docs/API_Reference/Web_API_v3/index.html # - https://sendgrid.com/docs/ui/sending-email/\ # how-to-send-an-email-with-dynamic-transactional-templates/ import requests from json import dumps from .NotifyBase import NotifyBase from ..common import NotifyFormat from ..common import NotifyType from ..utils import parse_list from ..utils import is_email from ..utils import validate_regex from ..AppriseLocale import gettext_lazy as _ # Extend HTTP Error Messages SENDGRID_HTTP_ERROR_MAP = { 401: 'Unauthorized - You do not have authorization to make the request.', 413: 'Payload To Large - The JSON payload you have included in your ' 'request is too large.', 429: 'Too Many Requests - The number of requests you have made exceeds ' 'SendGrid’s rate limitations.', } class NotifySendGrid(NotifyBase): """ A wrapper for Notify SendGrid Notifications """ # The default descriptive name associated with the Notification service_name = 'SendGrid' # The services URL service_url = 'https://sendgrid.com' # The default secure protocol secure_protocol = 'sendgrid' # A URL that takes you to the setup/help of the specific protocol setup_url = 'https://github.com/caronc/apprise/wiki/Notify_sendgrid' # Default to markdown notify_format = NotifyFormat.HTML # The default Email API URL to use notify_url = 'https://api.sendgrid.com/v3/mail/send' # Allow 300 requests per minute. # 60/300 = 0.2 request_rate_per_sec = 0.2 # The default subject to use if one isn't specified. default_empty_subject = '<no subject>' # Define object templates templates = ( '{schema}://{apikey}:{from_email}', '{schema}://{apikey}:{from_email}/{targets}', ) # Define our template arguments template_tokens = dict(NotifyBase.template_tokens, **{ 'apikey': { 'name': _('API Key'), 'type': 'string', 'private': True, 'required': True, 'regex': (r'^[A-Z0-9._-]+$', 'i'), }, 'from_email': { 'name': _('Source Email'), 'type': 'string', 'required': True, }, 'target_email': { 'name': _('Target Email'), 'type': 'string', 'map_to': 'targets', }, 'targets': { 'name': _('Targets'), 'type': 'list:string', }, }) # Define our template arguments template_args = dict(NotifyBase.template_args, **{ 'to': { 'alias_of': 'targets', }, 'cc': { 'name': _('Carbon Copy'), 'type': 'list:string', }, 'bcc': { 'name': _('Blind Carbon Copy'), 'type': 'list:string', }, 'template': { # Template ID # The template ID is 64 characters with one dash (d-uuid) 'name': _('Template'), 'type': 'string', }, }) # Support Template Dynamic Variables (Substitutions) template_kwargs = { 'template_data': { 'name': _('Template Data'), 'prefix': '+', }, } def __init__(self, apikey, from_email, targets=None, cc=None, bcc=None, template=None, template_data=None, **kwargs): """ Initialize Notify SendGrid Object """ super(NotifySendGrid, self).__init__(**kwargs) # API Key (associated with project) self.apikey = validate_regex( apikey, *self.template_tokens['apikey']['regex']) if not self.apikey: msg = 'An invalid SendGrid API Key ' \ '({}) was specified.'.format(apikey) self.logger.warning(msg) raise TypeError(msg) result = is_email(from_email) if not result: msg = 'Invalid ~From~ email specified: {}'.format(from_email) self.logger.warning(msg) raise TypeError(msg) # Store email address self.from_email = result['full_email'] # Acquire Targets (To Emails) self.targets = list() # Acquire Carbon Copies self.cc = set() # Acquire Blind Carbon Copies self.bcc = set() # Now our dynamic template (if defined) self.template = template # Now our dynamic template data (if defined) self.template_data = template_data \ if isinstance(template_data, dict) else {} # Validate recipients (to:) and drop bad ones: for recipient in parse_list(targets): result = is_email(recipient) if result: self.targets.append(result['full_email']) continue self.logger.warning( 'Dropped invalid email ' '({}) specified.'.format(recipient), ) # Validate recipients (cc:) and drop bad ones: for recipient in parse_list(cc): result = is_email(recipient) if result: self.cc.add(result['full_email']) continue self.logger.warning( 'Dropped invalid Carbon Copy email ' '({}) specified.'.format(recipient), ) # Validate recipients (bcc:) and drop bad ones: for recipient in parse_list(bcc): result = is_email(recipient) if result: self.bcc.add(result['full_email']) continue self.logger.warning( 'Dropped invalid Blind Carbon Copy email ' '({}) specified.'.format(recipient), ) if len(self.targets) == 0: # Notify ourselves self.targets.append(self.from_email) return def url(self, privacy=False, *args, **kwargs): """ Returns the URL built dynamically based on specified arguments. """ # Our URL parameters params = self.url_parameters(privacy=privacy, *args, **kwargs) if len(self.cc) > 0: # Handle our Carbon Copy Addresses params['cc'] = ','.join(self.cc) if len(self.bcc) > 0: # Handle our Blind Carbon Copy Addresses params['bcc'] = ','.join(self.bcc) if self.template: # Handle our Template ID if if was specified params['template'] = self.template # Append our template_data into our parameter list params.update( {'+{}'.format(k): v for k, v in self.template_data.items()}) # a simple boolean check as to whether we display our target emails # or not has_targets = \ not (len(self.targets) == 1 and self.targets[0] == self.from_email) return '{schema}://{apikey}:{from_email}/{targets}?{params}'.format( schema=self.secure_protocol, apikey=self.pprint(self.apikey, privacy, safe=''), # never encode email since it plays a huge role in our hostname from_email=self.from_email, targets='' if not has_targets else '/'.join( [NotifySendGrid.quote(x, safe='') for x in self.targets]), params=NotifySendGrid.urlencode(params), ) def send(self, body, title='', notify_type=NotifyType.INFO, **kwargs): """ Perform SendGrid Notification """ headers = { 'User-Agent': self.app_id, 'Content-Type': 'application/json', 'Authorization': 'Bearer {}'.format(self.apikey), } # error tracking (used for function return) has_error = False # A Simple Email Payload Template _payload = { 'personalizations': [{ # Placeholder 'to': [{'email': None}], }], 'from': { 'email': self.from_email, }, # A subject is a requirement, so if none is specified we must # set a default with at least 1 character or SendGrid will deny # our request 'subject': title if title else self.default_empty_subject, 'content': [{ 'type': 'text/plain' if self.notify_format == NotifyFormat.TEXT else 'text/html', 'value': body, }], } if self.template: _payload['template_id'] = self.template if self.template_data: _payload['personalizations'][0]['dynamic_template_data'] = \ {k: v for k, v in self.template_data.items()} targets = list(self.targets) while len(targets) > 0: target = targets.pop(0) # Create a copy of our template payload = _payload.copy() # the cc, bcc, to field must be unique or SendMail will fail, the # below code prepares this by ensuring the target isn't in the cc # list or bcc list. It also makes sure the cc list does not contain # any of the bcc entries cc = (self.cc - self.bcc - set([target])) bcc = (self.bcc - set([target])) # Set our target payload['personalizations'][0]['to'][0]['email'] = target if len(cc): payload['personalizations'][0]['cc'] = \ [{'email': email} for email in cc] if len(bcc): payload['personalizations'][0]['bcc'] = \ [{'email': email} for email in bcc] self.logger.debug('SendGrid POST URL: %s (cert_verify=%r)' % ( self.notify_url, self.verify_certificate, )) self.logger.debug('SendGrid Payload: %s' % str(payload)) # Always call throttle before any remote server i/o is made self.throttle() try: r = requests.post( self.notify_url, data=dumps(payload), headers=headers, verify=self.verify_certificate, timeout=self.request_timeout, ) if r.status_code not in ( requests.codes.ok, requests.codes.accepted): # We had a problem status_str = \ NotifySendGrid.http_response_code_lookup( r.status_code, SENDGRID_HTTP_ERROR_MAP) self.logger.warning( 'Failed to send SendGrid notification to {}: ' '{}{}error={}.'.format( target, status_str, ', ' if status_str else '', r.status_code)) self.logger.debug( 'Response Details:\r\n{}'.format(r.content)) # Mark our failure has_error = True continue else: self.logger.info( 'Sent SendGrid notification to {}.'.format(target)) except requests.RequestException as e: self.logger.warning( 'A Connection error occurred sending SendGrid ' 'notification to {}.'.format(target)) self.logger.debug('Socket Exception: %s' % str(e)) # Mark our failure has_error = True continue return not has_error @staticmethod def parse_url(url): """ Parses the URL and returns enough arguments that can allow us to re-instantiate this object. """ results = NotifyBase.parse_url(url) if not results: # We're done early as we couldn't load the results return results # Our URL looks like this: # {schema}://{apikey}:{from_email}/{targets} # # which actually equates to: # {schema}://{user}:{password}@{host}/{email1}/{email2}/etc.. # ^ ^ ^ # | | | # apikey -from addr- if not results.get('user'): # An API Key as not properly specified return None if not results.get('password'): # A From Email was not correctly specified return None # Prepare our API Key results['apikey'] = NotifySendGrid.unquote(results['user']) # Prepare our From Email Address results['from_email'] = '{}@{}'.format( NotifySendGrid.unquote(results['password']), NotifySendGrid.unquote(results['host']), ) # Acquire our targets results['targets'] = NotifySendGrid.split_path(results['fullpath']) # The 'to' makes it easier to use yaml configuration if 'to' in results['qsd'] and len(results['qsd']['to']): results['targets'] += \ NotifySendGrid.parse_list(results['qsd']['to']) # Handle Carbon Copy Addresses if 'cc' in results['qsd'] and len(results['qsd']['cc']): results['cc'] = \ NotifySendGrid.parse_list(results['qsd']['cc']) # Handle Blind Carbon Copy Addresses if 'bcc' in results['qsd'] and len(results['qsd']['bcc']): results['bcc'] = \ NotifySendGrid.parse_list(results['qsd']['bcc']) # Handle Blind Carbon Copy Addresses if 'template' in results['qsd'] and len(results['qsd']['template']): results['template'] = \ NotifySendGrid.unquote(results['qsd']['template']) # Add any template substitutions results['template_data'] = results['qsd+'] return results