max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
code/from-arguments.py
DarkSuniuM/skillshare-downloader
292
12691936
<reponame>DarkSuniuM/skillshare-downloader import sys import re from downloader import Downloader cookie = sys.argv[1] dl = Downloader(cookie=cookie) if len(sys.argv) != 3: raise Exception('Invalid arguments. Usage : {program} <cookie> <url_or_class_id>'.format(program=sys.argv[0])) if re.match(r'^[0-9]+$', sys.argv[2]): dl.download_course_by_class_id(sys.argv[2]) else: dl.download_course_by_url(sys.argv[2])
python/tests/integration/register_test.py
justinforbes/depthcharge
133
12691943
#!/usr/bin/env python3 # # SPDX-License-Identifier: BSD-3-Clause # Depthcharge: <https://github.com/nccgroup/depthcharge> # # pylint: disable=redefined-outer-name,missing-function-docstring,invalid-name # pylint: disable=global-statement # (Like salt and sugar; fine if used sparingly) """ Exercise all available RegisterReader operations for a platform. """ import os import sys from depthcharge.cmdline import ArgumentParser, create_depthcharge_ctx _DEFAULT_ARCH = os.getenv('DEPTHCHARGE_TEST_ARCH', 'arm') def perform_reads(ctx) -> list: reg = ctx.arch.gd_register results = [] # Get ground truth with default reader. expected_value = ctx.read_register(reg) for impl in ctx.register_readers: value = impl.read(reg) success = value == expected_value results.append((impl.name, value, success)) return results def print_results(results): total = len(results) n_pass = 0 print() print(' RegisterReader Value Pass/Fail') print('---------------------------------------------------------') for result in results: if result[2]: state = 'Pass' n_pass += 1 else: state = 'Fail' line = ' {:32s} 0x{:08x} {:s}' print(line.format(result[0], result[1], state)) summary = os.linesep + '{:d} Tested, {:d} passed.' + os.linesep print(summary.format(total, n_pass)) return n_pass == total if __name__ == '__main__': success = False cmdline = ArgumentParser( allow_deploy_default=True, allow_reboot_default=True, arch_default=_DEFAULT_ARCH) args = cmdline.parse_args() ctx = create_depthcharge_ctx(args) if args.config: ctx.save(args.config) try: results = perform_reads(ctx) success = print_results(results) finally: if args.config: ctx.save(args.config) if not success: sys.exit(2)
python_src/exploration/coverage_path_planning/grid_map_lib.py
tkortz/motion_planning_rt
111
12691946
<gh_stars>100-1000 """ Grid map library in python author: <NAME> """ import matplotlib.pyplot as plt import numpy as np class GridMap: """ GridMap class """ def __init__(self, width, height, resolution, center_x, center_y, init_val=0.0): """__init__ :param width: number of grid for width :param height: number of grid for heigt :param resolution: grid resolution [m] :param center_x: center x position [m] :param center_y: center y position [m] :param init_val: initial value for all grid """ self.width = width self.height = height self.resolution = resolution self.center_x = center_x self.center_y = center_y self.left_lower_x = self.center_x - \ (self.width / 2.0) * self.resolution self.left_lower_y = self.center_y - \ (self.height / 2.0) * self.resolution self.ndata = self.width * self.height self.data = [init_val] * int(self.ndata) def get_value_from_xy_index(self, x_ind, y_ind): """get_value_from_xy_index when the index is out of grid map area, return None :param x_ind: x index :param y_ind: y index """ grid_ind = self.calc_grid_index_from_xy_index(x_ind, y_ind) if 0 <= grid_ind <= self.ndata: return self.data[grid_ind] else: return None def get_xy_index_from_xy_pos(self, x_pos, y_pos): """get_xy_index_from_xy_pos :param x_pos: x position [m] :param y_pos: y position [m] """ x_ind = self.calc_xy_index_from_position( x_pos, self.left_lower_x, self.width) y_ind = self.calc_xy_index_from_position( y_pos, self.left_lower_y, self.height) return x_ind, y_ind def set_value_from_xy_pos(self, x_pos, y_pos, val): """set_value_from_xy_pos return bool flag, which means setting value is succeeded or not :param x_pos: x position [m] :param y_pos: y position [m] :param val: grid value """ x_ind, y_ind = self.get_xy_index_from_xy_pos(x_pos, y_pos) if (not x_ind) or (not y_ind): return False # NG flag = self.set_value_from_xy_index(x_ind, y_ind, val) return flag def set_value_from_xy_index(self, x_ind, y_ind, val): """set_value_from_xy_index return bool flag, which means setting value is succeeded or not :param x_ind: x index :param y_ind: y index :param val: grid value """ if (x_ind is None) or (y_ind is None): print(x_ind, y_ind) return False, False grid_ind = int(y_ind * self.width + x_ind) if 0 <= grid_ind < self.ndata: self.data[grid_ind] = val return True # OK else: return False # NG def set_value_from_polygon(self, pol_x, pol_y, val, inside=True): """set_value_from_polygon Setting value inside or outside polygon :param pol_x: x position list for a polygon :param pol_y: y position list for a polygon :param val: grid value :param inside: setting data inside or outside """ # making ring polygon if (pol_x[0] != pol_x[-1]) or (pol_y[0] != pol_y[-1]): pol_x.append(pol_x[0]) pol_y.append(pol_y[0]) # setting value for all grid for x_ind in range(int(self.width)): for y_ind in range(int(self.height)): x_pos, y_pos = self.calc_grid_central_xy_position_from_xy_index( x_ind, y_ind) flag = self.check_inside_polygon(x_pos, y_pos, pol_x, pol_y) if flag is inside: self.set_value_from_xy_index(x_ind, y_ind, val) def calc_grid_index_from_xy_index(self, x_ind, y_ind): grid_ind = int(y_ind * self.width + x_ind) return grid_ind def calc_grid_central_xy_position_from_xy_index(self, x_ind, y_ind): x_pos = self.calc_grid_central_xy_position_from_index( x_ind, self.left_lower_x) y_pos = self.calc_grid_central_xy_position_from_index( y_ind, self.left_lower_y) return x_pos, y_pos def calc_grid_central_xy_position_from_index(self, index, lower_pos): return lower_pos + index * self.resolution + self.resolution / 2.0 def calc_xy_index_from_position(self, pos, lower_pos, max_index): ind = int(np.floor((pos - lower_pos) / self.resolution)) if 0 <= ind <= max_index: return ind else: return None def check_occupied_from_xy_index(self, xind, yind, occupied_val=1.0): val = self.get_value_from_xy_index(xind, yind) if val >= occupied_val: return True else: return False def expand_grid(self): xinds, yinds = [], [] for ix in range(int(self.width)): for iy in range(int(self.height)): if self.check_occupied_from_xy_index(ix, iy): xinds.append(ix) yinds.append(iy) for (ix, iy) in zip(xinds, yinds): self.set_value_from_xy_index(ix + 1, iy, val=1.0) self.set_value_from_xy_index(ix, iy + 1, val=1.0) self.set_value_from_xy_index(ix + 1, iy + 1, val=1.0) self.set_value_from_xy_index(ix - 1, iy, val=1.0) self.set_value_from_xy_index(ix, iy - 1, val=1.0) self.set_value_from_xy_index(ix - 1, iy - 1, val=1.0) @staticmethod def check_inside_polygon(iox, ioy, x, y): npoint = len(x) - 1 inside = False for i1 in range(npoint): i2 = (i1 + 1) % (npoint + 1) if x[i1] >= x[i2]: min_x, max_x = x[i2], x[i1] else: min_x, max_x = x[i1], x[i2] if not min_x < iox < max_x: continue if (y[i1] + (y[i2] - y[i1]) / (x[i2] - x[i1]) * (iox - x[i1]) - ioy) > 0.0: inside = not inside return inside def plot_grid_map(self, ax=None): grid_data = np.reshape(np.array(self.data), (int(self.height), int(self.width))) if not ax: fig, ax = plt.subplots() heat_map = ax.pcolor(grid_data, cmap="Blues", vmin=0.0, vmax=1.0) plt.axis("equal") return heat_map def test_polygon_set(): ox = [0.0, 20.0, 50.0, 100.0, 130.0, 40.0] oy = [0.0, -20.0, 0.0, 30.0, 60.0, 80.0] grid_map = GridMap(600, 290, 0.7, 60.0, 30.5) grid_map.set_value_from_polygon(ox, oy, 1.0, inside=False) grid_map.plot_grid_map() plt.axis("equal") plt.grid(True) def test_position_set(): grid_map = GridMap(100, 120, 0.5, 10.0, -0.5) grid_map.set_value_from_xy_pos(10.1, -1.1, 1.0) grid_map.set_value_from_xy_pos(10.1, -0.1, 1.0) grid_map.set_value_from_xy_pos(10.1, 1.1, 1.0) grid_map.set_value_from_xy_pos(11.1, 0.1, 1.0) grid_map.set_value_from_xy_pos(10.1, 0.1, 1.0) grid_map.set_value_from_xy_pos(9.1, 0.1, 1.0) grid_map.plot_grid_map()
examples/NeurIPS2020-Learning-to-Run-a-Power-Network-Challenge/track2/utils.py
lp2333/PARL
3,172
12691972
<gh_stars>1000+ # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import numpy as np def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) selected_feature = [ 'loads_q', 'loads_v', 'prods_q', 'prods_v', 'rho', 'line_status', 'hour_of_day', 'month' ] inference_info = np.load('./saved_files/inference_info.npz') col = inference_info['col'] mean = inference_info['mean'] std = inference_info['std'] def process(raw_obs): obs = raw_obs.to_dict() x = dict() x['loads_p'] = obs['loads']['p'] x['loads_q'] = obs['loads']['q'] x['loads_v'] = obs['loads']['v'] x['prods_p'] = obs['prods']['p'] x['prods_q'] = obs['prods']['q'] x['prods_v'] = obs['prods']['v'] x['lines_or_p'] = obs['lines_or']['p'] x['lines_or_q'] = obs['lines_or']['q'] x['lines_or_v'] = obs['lines_or']['v'] x['lines_or_a'] = obs['lines_or']['a'] x['lines_ex_p'] = obs['lines_ex']['p'] x['lines_ex_q'] = obs['lines_ex']['q'] x['lines_ex_v'] = obs['lines_ex']['v'] x['lines_ex_a'] = obs['lines_ex']['a'] x['day_of_week'] = raw_obs.day_of_week x['month'] = raw_obs.month x['hour_of_day'] = raw_obs.hour_of_day to_maintain_lines = np.where((raw_obs.time_next_maintenance>0) \ & (raw_obs.time_next_maintenance<2))[0] x['rho'] = np.copy(obs['rho']) x['line_status'] = np.copy(obs['line_status'].astype(float)) line_num = x['line_status'].shape[0] if len(to_maintain_lines): x['rho'][to_maintain_lines] = 0.0 x['line_status'][to_maintain_lines] = 0.0 x['line_status'] += np.array([x * 2 for x in range(line_num)]) x['rho'] = x['rho'] - 1.0 data = [] for feature in selected_feature: col_data = x[feature] if isinstance(col_data, np.int32): col_data = np.array([col_data]) data.append(col_data) data = np.concatenate(data) data = data[col] assert data.shape[0] == mean.shape[0] assert data.shape[0] == std.shape[0] data = (data - mean) / std return data
tf2onnx/tflite_utils.py
LoicDagnas/tensorflow-onnx
1,473
12691985
<reponame>LoicDagnas/tensorflow-onnx # SPDX-License-Identifier: Apache-2.0 """ tf2onnx.tflite_utils - utilities for parsing tflite files into onnx graph """ import collections import importlib import logging import struct from onnx import helper, onnx_pb, numpy_helper from tensorflow.core.framework import types_pb2, tensor_pb2, node_def_pb2 from tensorflow.python.framework import tensor_util import tensorflow as tf import numpy as np from tf2onnx.tflite.TensorType import TensorType as TFLiteTensorType from tf2onnx.tflite.Model import Model from tf2onnx.flexbuffers import read_flexbuffer from tf2onnx.tf_utils import read_tf_node_def_attrs from tf2onnx.graph import Graph from tf2onnx import utils logger = logging.getLogger(__name__) TFLITE_TO_ONNX_DTYPE = { TFLiteTensorType.FLOAT32: onnx_pb.TensorProto.FLOAT, TFLiteTensorType.FLOAT16: onnx_pb.TensorProto.FLOAT16, TFLiteTensorType.INT32: onnx_pb.TensorProto.INT32, TFLiteTensorType.UINT8: onnx_pb.TensorProto.UINT8, TFLiteTensorType.INT64: onnx_pb.TensorProto.INT64, TFLiteTensorType.STRING: onnx_pb.TensorProto.STRING, TFLiteTensorType.BOOL: onnx_pb.TensorProto.BOOL, TFLiteTensorType.INT16: onnx_pb.TensorProto.INT16, TFLiteTensorType.COMPLEX64: onnx_pb.TensorProto.COMPLEX64, TFLiteTensorType.INT8: onnx_pb.TensorProto.INT8, TFLiteTensorType.FLOAT64: onnx_pb.TensorProto.DOUBLE, TFLiteTensorType.COMPLEX128: onnx_pb.TensorProto.COMPLEX128, TFLiteTensorType.UINT64: onnx_pb.TensorProto.UINT64, TFLiteTensorType.UINT32: onnx_pb.TensorProto.UINT32, TFLiteTensorType.RESOURCE: onnx_pb.TensorProto.UNDEFINED, TFLiteTensorType.VARIANT: onnx_pb.TensorProto.UNDEFINED, } TFLITE_TO_TF_DTYPE = { TFLiteTensorType.FLOAT32: types_pb2.DT_FLOAT, TFLiteTensorType.FLOAT16: types_pb2.DT_HALF, TFLiteTensorType.INT32: types_pb2.DT_INT32, TFLiteTensorType.UINT8: types_pb2.DT_UINT8, TFLiteTensorType.INT64: types_pb2.DT_INT64, TFLiteTensorType.STRING: types_pb2.DT_STRING, TFLiteTensorType.BOOL: types_pb2.DT_BOOL, TFLiteTensorType.INT16: types_pb2.DT_INT16, TFLiteTensorType.COMPLEX64: types_pb2.DT_COMPLEX64, TFLiteTensorType.INT8: types_pb2.DT_INT8, TFLiteTensorType.FLOAT64: types_pb2.DT_DOUBLE, TFLiteTensorType.COMPLEX128: types_pb2.DT_COMPLEX128, TFLiteTensorType.UINT64: types_pb2.DT_UINT64, TFLiteTensorType.UINT32: types_pb2.DT_UINT32, TFLiteTensorType.RESOURCE: types_pb2.DT_RESOURCE, TFLiteTensorType.VARIANT: types_pb2.DT_VARIANT, } def map_tflite_dtype_to_onnx(dtype): return TFLITE_TO_ONNX_DTYPE[dtype] def map_tflite_dtype_to_tf(dtype): return TFLITE_TO_TF_DTYPE[dtype] # The tflite schema uses snake case, but the python bindings use proper case def snake_to_proper_case(name): return ''.join(n.capitalize() for n in name.split('_')) def proper_to_snake_case(name): res = '' for c in name: if c.isupper() and res: res += '_' res += c.lower() return res # Pulled from the tflite schema.fbs file. Needed to decode enum numbers into strings. NODE_ATTR_NAME_TO_ENUM_TYPE = { 'fused_activation_function': 'ActivationFunctionType', 'padding': 'Padding', 'type': 'LSHProjectionType', 'weights_format': 'FullyConnectedOptionsWeightsFormat', 'kernel_type': 'LSTMKernelType', 'combiner': 'CombinerType', 'in_data_type': 'TensorType', 'out_data_type': 'TensorType', 'output_type': 'TensorType', 'out_type': 'TensorType', 'mode': 'MirrorPadMode', 'idx_out_type': 'TensorType', } NODE_ATTR_NAME_TO_ENUM_TYPE = {snake_to_proper_case(key): value for key, value in NODE_ATTR_NAME_TO_ENUM_TYPE.items()} # Pulled from the tflite schema.fbs file. FUNCTION_ATTRS = ['then_subgraph_index', 'else_subgraph_index', 'cond_subgraph_index', 'body_subgraph_index', 'subgraph'] FUNCTION_ATTRS = [snake_to_proper_case(attr) for attr in FUNCTION_ATTRS] enum_cache = {} def lookup_enum(idx, enum_name): """Given the name of a tflite enum class and an index, return a string with the name of the enum value""" if enum_name == 'TensorType': return map_tflite_dtype_to_onnx(idx) if enum_name in enum_cache: idx_to_name = enum_cache[enum_name] else: module = importlib.import_module('tf2onnx.tflite.' + enum_name) enum_class = getattr(module, enum_name) idx_to_name = {value: key for key, value in enum_class.__dict__.items() if not key.startswith('_')} enum_cache[enum_name] = idx_to_name utils.make_sure(idx in idx_to_name, "Can't lookup value %s for tflite enum %s. Please update tf2onnx or " "submit an issue on GitHub.", idx, enum_name) return idx_to_name[idx] def get_options_class(name): """Each tflite optype has a flatbuffer Options class (ex: AddOptions). Returns the options class given its name.""" if name == "NONE": return None module = importlib.import_module('tf2onnx.tflite.' + name) return getattr(module, name) def graphs_from_tflite(tflite_path, input_names=None, output_names=None): """ Given the path to a tflite model, returns a tuple (main_graph, subgraphs) of graph.py Graph objects inputs/outputs will be taken from main graph in model if not overridden """ tflite_graphs, opcodes, model, tensor_shapes = read_tflite_model(tflite_path) main_g = None subgraphs = [] for i, tfl_graph in enumerate(tflite_graphs): is_main_g = i == len(tflite_graphs) - 1 prefix = '' if is_main_g else tfl_graph.Name().decode() + '_' tensor_shapes_from_interpreter = None if is_main_g: tensor_shapes_from_interpreter = tensor_shapes onnx_nodes, _, _, output_shapes, dtypes, f_inputs, f_outputs, graph_name = \ parse_tflite_graph(tfl_graph, opcodes, model, prefix, tensor_shapes_from_interpreter) g_inputs = f_inputs g_outputs = f_outputs if is_main_g: # Override IO in main graph utils.check_io(input_names, output_names, output_shapes.keys()) if input_names is not None: g_inputs = input_names if output_names is not None: g_outputs = output_names g = Graph(onnx_nodes, output_shapes, dtypes, input_names=g_inputs, output_names=g_outputs, is_subgraph=not is_main_g, graph_name=graph_name) if is_main_g: main_g = g else: subgraphs.append(g) return main_g, subgraphs def read_tflite_model(tflite_path): """ Given the path to a tflite model, returns tuple (tflite_graphs, opcodes_map, model) Graphs are topologically sorted and the main graph is last Pass these to parse_tflite_graph """ with open(tflite_path, 'rb') as f: buf = f.read() buf = bytearray(buf) model = Model.GetRootAsModel(buf, 0) # To save space, each op in the model indicates its opcode as an index into the model's opcode map. opcodes_map = {} for i in range(model.OperatorCodesLength()): op_code = model.OperatorCodes(i) # TFlite ran out of opcodes since they only used a byte. Old models store opcodes in DeprecatedBuiltinCode. # New models put PLACEHOLDER_FOR_GREATER_OP_CODES in this field to signify that BuiltinCode should be used. code = lookup_enum(op_code.DeprecatedBuiltinCode(), 'BuiltinOperator') if code == 'PLACEHOLDER_FOR_GREATER_OP_CODES': code = lookup_enum(op_code.BuiltinCode(), 'BuiltinOperator') if code == 'CUSTOM': code = op_code.CustomCode().decode() opcodes_map[i] = code # Shapes stored in tflite models are not always reliable so we get them from the interpreter if possible. tensor_shapes = {} try: interpreter = tf.lite.Interpreter(tflite_path) interpreter.allocate_tensors() tensor_cnt = model.Subgraphs(0).TensorsLength() for i in range(tensor_cnt): name = model.Subgraphs(0).Tensors(i).Name().decode() details = interpreter._get_tensor_details(i) # pylint: disable=protected-access if "shape_signature" in details: tensor_shapes[name] = details["shape_signature"].tolist() elif "shape" in details: tensor_shapes[name] = details["shape"].tolist() except Exception as e: # pylint: disable=broad-except logger.warning("Error loading model into tflite interpreter: %s", e) tflite_graphs = get_model_subgraphs(model) return tflite_graphs, opcodes_map, model, tensor_shapes def get_subgraph_dependencies(model, graph_idx): """Returns a list of subgraph indices referenced by the indicated graph""" dependencies = [] g = model.Subgraphs(graph_idx) for i in range(g.OperatorsLength()): op = g.Operators(i) options_type_name = lookup_enum(op.BuiltinOptionsType(), 'BuiltinOptions') option_class = get_options_class(options_type_name) if option_class is not None: options = option_class() options.Init(op.BuiltinOptions().Bytes, op.BuiltinOptions().Pos) for attr in FUNCTION_ATTRS: if hasattr(options, attr): value = getattr(options, attr)() dependencies.append(value) return dependencies def get_model_subgraphs(model): """Returns topologically sorted subgraphs of a model. Guarantees main graph is placed at the end.""" main_g = 0 dependencies = {} idx_to_graph = {} for i in range(model.SubgraphsLength()): idx_to_graph[i] = model.Subgraphs(i) ds = get_subgraph_dependencies(model, i) utils.make_sure(main_g not in ds, "Main graph %s is a dependency of subgraph %s", main_g, i) dependencies[i] = ds ordered = utils.topological_sort(dependencies) return [idx_to_graph[i] for i in ordered] def get_quantization_attr(quant_params): attr = {} attr['scale'] = quant_params.ScaleAsNumpy().tolist() attr['zero_point'] = quant_params.ZeroPointAsNumpy().tolist() attr['quantized_dimension'] = quant_params.QuantizedDimension() if not quant_params.MaxIsNone(): attr['max'] = quant_params.MaxAsNumpy().tolist() if not quant_params.MinIsNone(): attr['min'] = quant_params.MinAsNumpy().tolist() return attr def parse_tflite_string_tensor(buffer_bytes, shape): """Returns an onnx tensor with the string data encoded in the tflite tensor data buffer""" def read_int(offset): return struct.unpack('<i', buffer_bytes[offset:offset+4])[0] offset = 0 count = read_int(offset) offset += 4 offset_list = [] for i in range(count): offset_list.append(read_int(offset)) offset += 4 offset_list.append(len(buffer_bytes)) string_list = [] for i in range(count): string_list.append(buffer_bytes[offset_list[i]:offset_list[i+1]].decode("utf-8")) return numpy_helper.from_array(np.array(string_list, dtype=np.object).reshape(shape)) def op_has_scalar_output(input_shapes, optype, attr): """ TFLite uses [] to denote both scalars and unknown output shapes. Return True if an op can have scalar outputs despite having non-scalar inputs. Otherwise, we will replace [] with None """ if optype in ["TFL_STRIDED_SLICE", "StridedSlice"]: inp_rank = len(input_shapes[0]) return attr['shrink_axis_mask'] == 2 ** inp_rank - 1 if (optype.startswith("TFL_REDUCE") or optype in ['All']) and len(input_shapes) == 2: inp_rank = len(input_shapes[0]) keep_dims = attr.get('keep_dims', True) # axes input can be a scalar for a single axis num_axes = 1 if input_shapes[1] == [] else input_shapes[1][0] return not keep_dims and inp_rank == num_axes if optype == "TFL_RESHAPE": return input_shapes[1] == [0] if optype == "Size": # Op from TF return True return False def parse_tflite_graph(tflite_g, opcodes_map, model, input_prefix='', tensor_shapes_override=None): """ Returns a Graph object along with some op count stats. All tflite op types are prefixed with "TFL_". Names of graph inputs are optionally prefixed with a string to prevent name conflicts in subgraphs. Quantizatized tensors are surrounded with quantize/dequantize ops """ op_cnt = collections.Counter() attr_cnt = collections.Counter() onnx_nodes = [] output_shapes = {} dtypes = {} tensor_names = {} if tensor_shapes_override is None: tensor_shapes_override = {} # Map tensor name to tflite Tensor object so we can fetch quantization info as needed name_to_tensor = {} # If a node takes a quantized tensor as input, we must add a dequantize op after it. # Store a mapping so we only need to make at most one dequantize op per tensor. tensor_name_to_dequant_output = {} # tflite uses generic names (arg0, arg1, etc.) for inputs but full names for other tensors, so # prefixing just the inputs should be fine. Other tensors are prefixed when we do inlining. input_indices = {tflite_g.Inputs(i) for i in range(tflite_g.InputsLength())} for i in range(tflite_g.TensorsLength()): tensor = tflite_g.Tensors(i) name = tensor.Name().decode() if i in input_indices: name = input_prefix + name tensor_names[i] = name name_to_tensor[name] = tensor if name in tensor_shapes_override: output_shapes[name] = tensor_shapes_override[name] elif tensor.ShapeIsNone(): output_shapes[name] = None elif tensor.ShapeSignatureIsNone(): # The shape signature uses -1 to signify unknown dims. Old models don't have this and use Shape instead. output_shapes[name] = tensor.ShapeAsNumpy().tolist() else: output_shapes[name] = tensor.ShapeSignatureAsNumpy().tolist() buf = model.Buffers(tensor.Buffer()) dtypes[name] = map_tflite_dtype_to_onnx(tensor.Type()) if not buf.DataIsNone() and tensor.Buffer() > 0: # For const values we use TF to decode the binary data from the buffer t = tensor_pb2.TensorProto() t.tensor_content = buf.DataAsNumpy().tobytes() if output_shapes[name] is None: output_shapes[name] = [] for d in output_shapes[name]: t.tensor_shape.dim.add().size = d t.dtype = map_tflite_dtype_to_tf(tensor.Type()) if t.dtype == tf.string: onnx_tensor = parse_tflite_string_tensor(t.tensor_content, output_shapes[name]) else: np_data = tensor_util.MakeNdarray(t) onnx_tensor = numpy_helper.from_array(np_data, name=name) onnx_node = helper.make_node("Const", [], outputs=[name], name=name, value=onnx_tensor) onnx_nodes.append(onnx_node) op_cnt["Const"] += 1 def get_dequant(tensor_name): """Creates a dequantize op for the provided tensor if needed and returns the output of the op, or the original tensor name if no dequantization is needed""" quant = name_to_tensor[tensor_name].Quantization() if quant is None or quant.ScaleIsNone() or quant.ZeroPointIsNone(): return tensor_name if tensor_name in tensor_name_to_dequant_output: return tensor_name_to_dequant_output[tensor_name] dequant_name = tensor_name + "_dequant" attr = get_quantization_attr(quant) onnx_node = helper.make_node("TFL_DEQUANTIZE", [tensor_name], [dequant_name], name=dequant_name, **attr) onnx_nodes.append(onnx_node) tensor_name_to_dequant_output[tensor_name] = dequant_name output_shapes[dequant_name] = output_shapes[tensor_name].copy() dtypes[dequant_name] = onnx_pb.TensorProto.FLOAT return dequant_name def get_prequant(tensor_name): """Called by nodes with the name of the tensor they must output. If the output is supposed to be quantized, creates a Quantize op outputting the tensor. Returns the name that should be used for the "prequantized" tensor, or the original tensor if no quantization is needed""" quant = name_to_tensor[tensor_name].Quantization() if quant is None or quant.ScaleIsNone() or quant.ZeroPointIsNone(): return tensor_name prequant_name = tensor_name + "_prequant" quantize_name = tensor_name + "_quantize" attr = get_quantization_attr(quant) onnx_node = helper.make_node("TFL_QUANTIZE", [prequant_name], [tensor_name], name=quantize_name, **attr) onnx_nodes.append(onnx_node) output_shapes[prequant_name] = output_shapes[tensor_name].copy() dtypes[prequant_name] = onnx_pb.TensorProto.FLOAT return prequant_name for i in range(tflite_g.OperatorsLength()): op = tflite_g.Operators(i) optype = 'TFL_' + opcodes_map[op.OpcodeIndex()] op_cnt[optype] += 1 attr = {} options_type_name = lookup_enum(op.BuiltinOptionsType(), 'BuiltinOptions') option_class = get_options_class(options_type_name) wants_dequantized_input = True has_prequantized_output = True if optype == 'TFL_QUANTIZE': out_tensor = tflite_g.Tensors(op.Outputs(0)) quant = out_tensor.Quantization() has_prequantized_output = False if quant is not None and not quant.ScaleIsNone() and not quant.ZeroPointIsNone(): attr.update(get_quantization_attr(quant)) elif optype == 'TFL_DEQUANTIZE': in_tensor = tflite_g.Tensors(op.Inputs(0)) quant = in_tensor.Quantization() wants_dequantized_input = False if quant is not None and not quant.ScaleIsNone() and not quant.ZeroPointIsNone(): attr.update(get_quantization_attr(quant)) input_names = [tensor_names[op.Inputs(i)] for i in range(op.InputsLength()) if op.Inputs(i) != -1] output_names = [tensor_names[op.Outputs(i)] for i in range(op.OutputsLength()) if op.Outputs(i) != -1] if optype.startswith("TFL_Flex"): data = read_flexbuffer(op.CustomOptionsAsNumpy().tobytes(), decode_strings=False) utils.make_sure(isinstance(data, list), "Flex ops are expected to store data as a flexbuffer list") tf_op = data[0].decode("utf-8") tf_node_def = node_def_pb2.NodeDef() tf_node_def.ParseFromString(data[1]) input_tf_dtypes = [map_tflite_dtype_to_tf(name_to_tensor[inp].Type()) for inp in input_names] def shape_to_tf_shape(dims): return [None if d < 0 else d for d in dims] if dims is not None else None input_shapes = [shape_to_tf_shape(output_shapes[inp]) for inp in input_names] tf_attrs, _ = read_tf_node_def_attrs(tf_node_def, input_tf_dtypes, input_shapes) attr.update(tf_attrs) optype = tf_op elif not op.CustomOptionsIsNone(): custom_ops_format = lookup_enum(op.CustomOptionsFormat(), 'CustomOptionsFormat') if custom_ops_format == 'FLEXBUFFERS': data = None try: data = read_flexbuffer(op.CustomOptionsAsNumpy().tobytes()) except Exception as e: # pylint: disable=broad-except logger.warning("Could not parse attributes for custom op '%s': %s", optype, e) if isinstance(data, dict): attr.update(data) if option_class is not None: options = option_class() options.Init(op.BuiltinOptions().Bytes, op.BuiltinOptions().Pos) # All flatbuffer objects have these properties. block_list = [options_type_name + 'BufferHasIdentifier', 'Init', 'GetRootAs' + options_type_name, 'GetRootAs'] # The rest of the properties of the options class provide its attribute names attr_names = {opt for opt in dir(options) if not opt.startswith('_') and opt not in block_list} for a in list(attr_names): # Flatbufffer list properties have 3 functions: *Length, *IsNone, and *AsNumpy if a + 'Length' in attr_names: attr_names.remove(a + 'Length') attr_names.remove(a + 'IsNone') attr_names.remove(a) for a in attr_names: if a.endswith('AsNumpy'): value = getattr(options, a)().tolist() a = a[:-len('AsNumpy')] else: # For enums we use a string with the value name, not enum index value = getattr(options, a)() if a in NODE_ATTR_NAME_TO_ENUM_TYPE: value = lookup_enum(value, NODE_ATTR_NAME_TO_ENUM_TYPE[a]) elif a in FUNCTION_ATTRS: value = model.Subgraphs(value).Name().decode() attr_cnt[a] += 1 attr[proper_to_snake_case(a)] = value if wants_dequantized_input: input_names = [get_dequant(inp) for inp in input_names] if optype == "TFL_TFLite_Detection_PostProcess": # There's a bug in tflite for the output shapes of this op for out, shape in zip(output_names, [[-1, -1, 4], [-1, -1], [-1, -1], [-1]]): if len(output_shapes[out]) != len(shape): output_shapes[out] = shape if all(output_shapes[out] == [] for out in output_names): # tflite uses [] to represent both scalars and completely unknown shapes # If an op has non-scalar inputs and all scalar outputs, it is very likely the shapes are actually unknown. inp_shapes = [output_shapes[inp] for inp in input_names] if not all(s == [] for s in inp_shapes): if any(s is None for s in inp_shapes) or not op_has_scalar_output(inp_shapes, optype, attr): for out in output_names: logger.warning("Replacing scalar output shape of %s with unknown shape", out) output_shapes[out] = None if has_prequantized_output: output_names = [get_prequant(out) for out in output_names] onnx_node = helper.make_node(optype, input_names, output_names, name=output_names[0], **attr) onnx_nodes.append(onnx_node) inputs = [tensor_names[tflite_g.Inputs(i)] for i in range(tflite_g.InputsLength())] outputs = [tensor_names[tflite_g.Outputs(i)] for i in range(tflite_g.OutputsLength())] # TODO: Allow input/outputs to be overridden for inp in inputs: onnx_node = helper.make_node("Placeholder", [], outputs=[inp], name=inp) onnx_nodes.append(onnx_node) graph_name = (tflite_g.Name() or b'tflite graph').decode() return onnx_nodes, op_cnt, attr_cnt, output_shapes, dtypes, inputs, outputs, graph_name
scripts/cspan.py
DevPoetsSociety/congress-legislators
1,629
12691987
#!/usr/bin/env python # Update current cspan IDs using NYT Congress API. import json, urllib.request, urllib.parse, urllib.error from utils import load_data, save_data def run(): # load in current members y = load_data("legislators-current.yaml") for m in y: # retrieve C-SPAN id, if available, from ProPublica API # TODO: use utils.download here response = urllib.request.urlopen("https://projects.propublica.org/represent/api/v1/members/%s.json" % m['id']['bioguide']).read() j = json.loads(response.decode("utf8")) cspan = j['results'][0]['cspan_id'] if not cspan == '': m['id']['cspan'] = int(cspan) save_data(y, "legislators-current.yaml") if __name__ == '__main__': run()
sdk/regionmove/azure-mgmt-regionmove/azure/mgmt/regionmove/models/_region_move_service_api_enums.py
rsdoherty/azure-sdk-for-python
2,728
12692030
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from enum import Enum class DependencyType(str, Enum): """Defines the dependency type. """ required_for_prepare = "RequiredForPrepare" required_for_move = "RequiredForMove" class MoveResourceInputType(str, Enum): """Defines the move resource input type. """ move_resource_id = "MoveResourceId" move_resource_source_id = "MoveResourceSourceId" class MoveState(str, Enum): """Defines the MoveResource states. """ assignment_pending = "AssignmentPending" prepare_pending = "PreparePending" prepare_in_progress = "PrepareInProgress" prepare_failed = "PrepareFailed" move_pending = "MovePending" move_in_progress = "MoveInProgress" move_failed = "MoveFailed" discard_in_progress = "DiscardInProgress" discard_failed = "DiscardFailed" commit_pending = "CommitPending" commit_in_progress = "CommitInProgress" commit_failed = "CommitFailed" committed = "Committed" class ProvisioningState(str, Enum): """Defines the provisioning states. """ succeeded = "Succeeded" updating = "Updating" creating = "Creating" failed = "Failed" class ResolutionType(str, Enum): """Defines the resolution type. """ manual = "Manual" automatic = "Automatic" class ResourceIdentityType(str, Enum): """The type of identity used for the region move service. """ none = "None" system_assigned = "SystemAssigned" user_assigned = "UserAssigned" class TargetAvailabilityZone(str, Enum): """Gets or sets the target availability zone. """ one = "1" two = "2" three = "3" na = "NA" class ZoneRedundant(str, Enum): """Defines the zone redundant resource setting. """ enable = "Enable" disable = "Disable"
annotate/annotate_current_lane.py
zdx3578/self-driving-truck
373
12692034
<reponame>zdx3578/self-driving-truck from __future__ import print_function, division import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from lib import replay_memory from common import GridAnnotationWindow import Tkinter def main(): print("Loading replay memory...") memory = replay_memory.ReplayMemory.create_instance_supervised() win = GridAnnotationWindow.create( memory, current_anno_attribute_name="current_lane_grid", save_to_fp="annotations_current_lane.pickle", every_nth_example=20 ) win.brush_size = 2 win.autosave_every_nth = 100 win.master.wm_title("Annotate current lane") Tkinter.mainloop() if __name__ == "__main__": main()
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/i/import_itself.py
ciskoinch8/vimrc
463
12692048
"""test module importing itself""" # pylint: disable=no-absolute-import,using-constant-test from __future__ import print_function from . import import_itself # [import-self] __revision__ = 0 if __revision__: print(import_itself)
puma/registration/run_icp.py
okryush/puma
239
12692055
<filename>puma/registration/run_icp.py import open3d as o3d from .method_selector import get_te_method def run_icp(src, tgt, trans_init, config): te = get_te_method(config.method) if config.method == "gicp": return o3d.pipelines.registration.registration_generalized_icp( src, tgt, config.threshold, trans_init, te ).transformation return o3d.pipelines.registration.registration_icp( src, tgt, config.threshold, trans_init, te ).transformation
python/paddle/fluid/tests/unittests/test_fleet_private_function.py
zmxdream/Paddle
17,085
12692076
<filename>python/paddle/fluid/tests/unittests/test_fleet_private_function.py # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import os import paddle import socket import threading class TestFleetPrivateFunction(unittest.TestCase): def test_wait_port(self): def init_server(port): import time time.sleep(5) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("127.0.0.1", port)) sock.listen(10) while True: c, addr = sock.accept() c.send("0") c.close() break thr = threading.Thread(target=init_server, args=(9292, )) thr.start() import paddle.distributed.fleet as fleet ep = ["127.0.0.1:9292"] fleet.base.private_helper_function.wait_server_ready(ep) thr.join() if __name__ == "__main__": unittest.main()
design_patterns__examples/Bridge/example_1/main.py
DazEB2/SimplePyScripts
117
12692085
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # SOURCE: Design Patterns: Bridge — Мост # SOURCE: https://ru.wikipedia.org/wiki/Мост_(шаблон_проектирования) # SOURCE: https://refactoring.guru/ru/design-patterns/bridge # SOURCE: https://refactoring.guru/ru/design-patterns/bridge/java/example from devices.radio import Radio from devices.tv import Tv from remotes.basic_remote import BasicRemote from remotes.advanced_remote import AdvancedRemote def test_device(device): print("Tests with basic remote.") basic_remote = BasicRemote(device) basic_remote.power() device.print_status() print("Tests with advanced remote.") advanced_remote = AdvancedRemote(device) advanced_remote.power() advanced_remote.mute() device.print_status() if __name__ == '__main__': test_device(Tv()) test_device(Radio())
Sankey/sankey_with_level_setting.py
pyecharts/pyecharts_gallery
759
12692092
<filename>Sankey/sankey_with_level_setting.py import json from pyecharts import options as opts from pyecharts.charts import Sankey with open("product.json", "r", encoding="utf-8") as f: j = json.load(f) c = ( Sankey() .add( "sankey", nodes=j["nodes"], links=j["links"], pos_top="10%", focus_node_adjacency=True, levels=[ opts.SankeyLevelsOpts( depth=0, itemstyle_opts=opts.ItemStyleOpts(color="#fbb4ae"), linestyle_opts=opts.LineStyleOpts(color="source", opacity=0.6), ), opts.SankeyLevelsOpts( depth=1, itemstyle_opts=opts.ItemStyleOpts(color="#b3cde3"), linestyle_opts=opts.LineStyleOpts(color="source", opacity=0.6), ), opts.SankeyLevelsOpts( depth=2, itemstyle_opts=opts.ItemStyleOpts(color="#ccebc5"), linestyle_opts=opts.LineStyleOpts(color="source", opacity=0.6), ), opts.SankeyLevelsOpts( depth=3, itemstyle_opts=opts.ItemStyleOpts(color="#decbe4"), linestyle_opts=opts.LineStyleOpts(color="source", opacity=0.6), ), ], linestyle_opt=opts.LineStyleOpts(curve=0.5), ) .set_global_opts( title_opts=opts.TitleOpts(title="Sankey-Level Settings"), tooltip_opts=opts.TooltipOpts(trigger="item", trigger_on="mousemove"), ) .render("sankey_with_level_setting.html") )
src/cltk/phonology/lat/transcription.py
yelircaasi/cltk
757
12692139
<filename>src/cltk/phonology/lat/transcription.py """Convert a word from Latin orthography into its hypothesized pronunciation in the International Phonetic Alphabet (IPA). https://raw.githubusercontent.com/j-duff/cltk/ipa/ cltk/phonology/lat/transcription.py """ import re import unicodedata from typing import List from nltk.tokenize import wordpunct_tokenize from cltk.core.cltk_logger import logger from cltk.prosody.lat import macronizer as m try: # James Tauber's greek_accentuation package from greek_accentuation import characters as chars except ImportError as import_error: message = ( 'Missing "greek_accentuation" package. Install with ' "`pip install greek-accentuation`." ) logger.error(message) logger.error(import_error) raise __author__ = ["<NAME> <<EMAIL>>"] __license__ = "MIT License. See LICENSE." # Dictionaries of phonological reconstructions for use in transcribing. # <NAME>. 1965. Vox Latina. LATIN = { "Classical": { "Allen": { "correspondence": { "p": "p", "t": "t̪", "c": "k", "k": "k", "qu": "kʷ", "b": "b", "d": "d̪", "g": "g", "gu": "gʷ", "ph": "pʰ", "th": "t̪ʰ", "ch": "kʰ", "n": "n̪", "m": "m", "r": "r", "rh": "r", # Voiceless r was spelled but not pronounced. "l": "l", "f": "f", "s": "s", "h": "h", "j": "j", "v": "w", "x": "ks", "z": "z", "ī": "iː", "ū": "uː", "i": "ɪ", "u": "ʊ", "e": "ɛ", "o": "ɔ", "ē": "eː", "ō": "oː", "a": "a", "ā": "aː", "y": "y", "ȳ": "y:", "ae": "aj", "au": "aw", "oe": "oj", "eu": "ew", "ei": "ej", }, "diphthongs": [ # and digraphs "qu", "gu", "ph", "th", "ch", "rh", "ae", "au", "oe", "eu", "ei", ], "punctuation": [ ".", ",", ";", ":", "-", "–", "?", "!", "(", ")", "'", '"', "[", "]", ], "alternations": [ "j_maker", # word initial and intervocalic i is assumed j "w_maker", # word initial and intervocalic u is assumed w "wj_block", # prevents accidental sequence wj "uj_diph_maker", # after w and j have been created, recognizes # <ui> = [uj] "b_devoice", # b devoices before /t/, /s/ "g_n_nasality_assimilation", # only before n "n_place_assimilation", # should also do labial, and # labio-dental before f. "final_m_drop", # m drops and lengthens + nasalizes preceding # vowel word-finally "ns_nf_lengthening", # vowels lengthen before ns or nf "l_darken", # l darkens to ɫ in coda "j_z_doubling", # intervocalic j and z > jj and zz "long_vowel_catcher", # corrects accidental instances of ɪː # and similar. "e_i_closer_before_vowel", # ɛ to ɛ̣, ɪ to ɪ̣ before another vowel "intervocalic_j", # j glide between vowels ], } } } # Unhandled exceptions: preposition "ad" becomes [at̪] not [ad̪] before s and t # subf > suff, subm > summ, subg > sugg, subc > succ, subr > rr # j exceptions like ad*j*ectivum and con*j*unx # All IPA characters used sorted by natural classes. # WILL NEED ADDITIONS AS MORE RECONSTRUCTIONS USED IPA = { "voiced": [ # [+voice] "b", "d̪", "g", "gʷ", "m", "n̪", "ŋ", "ɱ" "l", "ɫ", "r", "z", ], "labial": ["b", "p", "pʰ", "m"], # [+labial, -labiodental] "labiodental": ["f", "ɱ"], # [+labial, +labiodental] "coronal": ["d̪", "t̪", "t̪ʰ", "n̪", "s", "z", "r", "l", "ɫ"], # [+coronal] "velar": ["g", "k", "kʰ", "kʷ", "gʷ", "ŋ"], # [+velar] "nasal": ["m", "ɱ", "n", "ŋ"], # [+consonantal, +nasal] "approximant": ["l", "ɫ", "r", "j", "w"], # [+approximant] "continuant": ["h", "f", "s", "z", "l", "ɫ", "r"], # [+continuant, +consonantal] "vowel": [ # [-consonantal -approximant] "a", "aː", "ɛ", "ɛ̣", "eː", "ɪ", "ɪ̣", "iː", "ɔ", "oː", "ʊ", "u", "uː", "y", "yː", "ãː", "ẽː", "ĩː", "õː", "ũː", ], "high": [ # [-consonantal, +high] "ɪ", "ɪ̣", "iː", "ʊ", "u", "uː", "y", "yː", "ɪ̃", "ɪ̣̃", "ĩː", "ʊ̃", "ũ", "ũː", "ỹ", "ỹː", ], "mid": [ # [-consonantal, -high, -low] "ɛ", "ɛ̣", "eː", "ɔ", "oː", "ɛ̃", "ɛ̣̃", "ẽː", "ɔ̃", "õː", ], "low": ["a", "aː", "ã", "ãː"], # [-consonantal, +low] "front": [ # [-consonantal, +front] "ɪ", "ɪ̣", "iː", "y", "yː", "ɛ", "ɛ̣", "eː", "ɪ̃", "ɪ̣̃", "ĩː", "ỹ", "ỹː", "ɛ̃", "ɛ̣̃", "ẽː", ], "central": ["a", "aː", "ã", "ãː"], # [-consonantal, -front, -back] "back": [ # [-consonantal, +back] "ʊ", "u", "uː", "ɔ", "oː", "ʊ̃", "ũ", "ũː", "ɔ̃", "õː", ], "boundary": ["#"], } class Phone: """A phonological unit to be manipulated and represented as an IPA string.""" # Has a bundle of feature values that help classify it so that it can # trigger contextual pronunciation changes. def __init__(self, ipa_ch: str): """ Analyzes features of phonetic signs :param ipa_ch: phonetic sign from IPA """ # eventually exported to output string self.ipa = unicodedata.normalize("NFC", ipa_ch) # will be assigned once in Word, as the pre-context of this phone self.left = "" # .... as the post-context of this phone self.right = "" # bundle of features, stored as booleans: self.vce = self.ipa in IPA["voiced"] self.lab = self.ipa in IPA["labial"] self.lbd = self.ipa in IPA["labiodental"] self.cor = self.ipa in IPA["coronal"] self.vel = self.ipa in IPA["velar"] self.nas = self.ipa in IPA["nasal"] self.app = self.ipa in IPA["approximant"] self.cont = self.ipa in IPA["continuant"] self.vow = self.ipa in IPA["vowel"] self.hi = self.ipa in IPA["high"] self.mid = self.ipa in IPA["mid"] self.lo = self.ipa in IPA["low"] self.fr = self.ipa in IPA["front"] self.ctr = self.ipa in IPA["central"] self.bk = self.ipa in IPA["back"] self.bound = self.ipa in IPA["boundary"] def __repr__(self): return self.ipa class Word: """Max. phonological unit, contains phones and triggers alternations.""" # An ordered collection of Phones, which are bundles of # features/IPA strings. def __init__(self, ipa_str: str, root: dict): """ :param ipa_str: :param root: """ self.string = unicodedata.normalize("NFC", ipa_str) # Appropriate directory in the reconstruction dictionary self.root = root # list of contextual pronunciation alternations self.alts = self.root["alternations"] # Turns string of IPA characters into list of Phones self.phones = [Phone(c) for c in re.findall(r".[̪̣̃ʷʰ]*ː?", self.string)] self.syllables = [] def _refresh(self): """ Assigns left and right contexts for every phone """ for n in range(len(self.phones)): p = self.phones[n] if n != 0: p.left = self.phones[n - 1] else: p.left = Phone("#") if n != len(self.phones) - 1: p.right = self.phones[n + 1] else: p.right = Phone("#") def _j_maker(self): """ Assume word-initial or intervocalic i to be j """ out_phones = self.phones target = Phone("j") for n in range(len(self.phones)): p = self.phones[n] if p.ipa == "ɪ" and ( (p.left.bound and p.right.vow) or (p.left.vow and p.right.vow) ): out_phones[n] = target self.phones = out_phones self._refresh() def _w_maker(self): """ Assume word-initial or intervocalic u to be w """ out_phones = self.phones target = Phone("w") for n in range(len(self.phones)): p = self.phones[n] if ((p.ipa == "ʊ") or (p.ipa == "u")) and ( (p.left.bound and (p.right.vow or p.right.ipa == "j")) or (p.left.vow and p.right.vow) ): out_phones[n] = target self.phones = out_phones self._refresh() def _wj_block(self): """ Addendum to correct possible 'wj' sequences """ out_phones = self.phones target = Phone("ɪ") for n in range(len(self.phones)): p = self.phones[n] if p.left.ipa == "w" and p.ipa == "j": out_phones[n] = target self.phones = out_phones self._refresh() def _uj_diph_maker(self): """ Find accidental "ʊɪ" instances and treat as diphthong [uj]. """ out_phones = self.phones for n in range(len(self.phones)): p = self.phones[n] if p.left.ipa == "ʊ" and p.ipa == "ɪ": out_phones[n - 1] = Phone("u") out_phones[n] = Phone("j") self.phones = out_phones self._refresh() def _b_devoice(self): """ Pronounce b as p when followed by s or t. """ out_phones = self.phones target = Phone("p") for n in range(len(self.phones)): p = self.phones[n] if p.ipa == "b" and (p.right.ipa == "s" or p.right.ipa == "t̪"): out_phones[n] = target self.phones = out_phones self._refresh() def _final_m_drop(self): """ Final m nasalizes and lengthens nucleus and drops. """ out_phones = self.phones for n in range(len(self.phones)): p = self.phones[n] if p.left.vow and p.ipa == "m" and p.right.bound: out_phones[n - 1] = Phone(p.left.ipa + "̃ː") del out_phones[n] self.phones = out_phones self._refresh() def _n_place_assimilation(self): """ Pronounce n as ŋ when followed by velar. """ out_phones = self.phones target = Phone("ŋ") for n in range(len(self.phones)): p = self.phones[n] if p.ipa == "n̪" and p.right.vel: out_phones[n] = target self.phones = out_phones self._refresh() def _g_n_nasality_assimilation(self): """ Pronounce g as ŋ when followed by n. """ out_phones = self.phones target = Phone("ŋ") for n in range(len(self.phones)): p = self.phones[n] if p.ipa == "g" and p.right.ipa == "n̪": out_phones[n] = target self.phones = out_phones self._refresh() def _ns_nf_lengthening(self): """ Lengthen vowel before ns or nf. """ out_phones = self.phones for n in range(len(self.phones)): p = self.phones[n] if ( p.left.vow and "ː" not in p.left.ipa and p.ipa == "n̪" and (p.right.ipa == "s" or p.right.ipa == "f") ): out_phones[n - 1] = Phone(p.left.ipa + "ː") self.phones = out_phones self._refresh() def _l_darken(self): """ Pronounce l as ɫ in coda. """ out_phones = self.phones target = Phone("ɫ") for n in range(len(self.phones)): p = self.phones[n] if p.ipa == "l" and ((not p.right.vow) or p.right.bound): out_phones[n] = target self.phones = out_phones self._refresh() def _j_z_doubling(self): """ Double j and z between vowels. """ out_phones = self.phones dupl = [] for n in range(len(self.phones)): p = self.phones[n] if p.right.vow and (p.ipa == "j" or p.ipa == "z") and p.left.vow: dupl.append((True, n - len(self.phones), p.ipa)) else: dupl.append((False, n - len(self.phones), None)) for t in sorted(dupl, key=lambda tup: tup[1]): if t[0]: out_phones.insert(t[1], Phone(t[2])) self.phones = out_phones self._refresh() def _long_vowel_catcher(self): """ Replace ɪː with iː, ʊː with uː, and ɛː with eː. """ out_phones = self.phones target_dict = { "ɪː": "iː", "ʊː": "uː", "ɛː": "eː", "ɪ̃ː": "ĩː", "ʊ̃ː": "ũː", "ɛ̃ː": "ẽː", } for n in range(len(self.phones)): p = self.phones[n] if p.ipa in target_dict.keys(): out_phones[n] = Phone(target_dict[p.ipa]) self.phones = out_phones self._refresh() def _e_i_closer_before_vowel(self): """ e and i become closer (̣) when followed by a vowel. """ out_phones = self.phones for n in range(len(self.phones)): p = self.phones[n] if (p.ipa == "ɛ" or p.ipa == "ɪ") and p.right.vow: out_phones[n] = Phone(p.ipa + "̣") self.phones = out_phones self._refresh() def _intervocalic_j(self): """ epenthesize j between vowels """ out_phones = self.phones target = Phone("j") j = [] for n in range(len(self.phones)): p = self.phones[n] if p.left.vow and p.vow: j.append((True, n - len(self.phones))) else: j.append((False, n - len(self.phones))) for t in sorted(j, key=lambda tup: tup[1]): if t[0]: out_phones.insert(t[1], target) self.phones = out_phones self._refresh() # list of all possible alternations ALTERNATIONS = [ ("j_maker", _j_maker), ("w_maker", _w_maker), ("wj_block", _wj_block), ("uj_diph_maker", _uj_diph_maker), ("b_devoice", _b_devoice), ("final_m_drop", _final_m_drop), ("n_place_assimilation", _n_place_assimilation), ("g_n_nasality_assimilation", _g_n_nasality_assimilation), ("ns_nf_lengthening", _ns_nf_lengthening), ("l_darken", _l_darken), ("j_z_doubling", _j_z_doubling), ("long_vowel_catcher", _long_vowel_catcher), ("e_i_closer_before_vowel", _e_i_closer_before_vowel), ("intervocalic_j", _intervocalic_j), ] def _alternate(self): """ After setting left and right contexts for every phone... """ self._refresh() # runs all alternations for a in Word.ALTERNATIONS: if a[0] in self.alts: a[1](self) def syllabify(self) -> List[List[Phone]]: """ Takes Word input and returns a list of syllables as (onset, nucleus, coda) tuples where onset, nucleus, and coda are all lists of Phones. :return: list of syllables """ nuclei = [] for n in range(len(self.phones)): p = self.phones[n] if p.vow: nuclei.append(n) # initialize syllables with a tuple for the first syllable # where onset is everything before the first nucleus # and coda remains unknown. syllables = [[self.phones[0 : nuclei[0]], [self.phones[nuclei[0]]], []]] # continue for every nucleus, assuming that everything between # the previous nucleus and it is the onset. for x in range(len(nuclei) - 1): i = nuclei[x + 1] onset = self.phones[nuclei[x] + 1 : i] nucleus = [self.phones[i]] syllables.append([onset, nucleus, []]) # assume that everything after the final nucleus is final coda. syllables[-1][2] = self.phones[nuclei[-1] + 1 :] # now go through and check onset viability for x in range(len(syllables) - 1): onset = syllables[x + 1][0] nucleus = syllables[x + 1][1] coda = syllables[x + 1][2] # trim all onsets greater than the maximum 2 phones # removing extra phones from the left # and appending them to the previous coda if len(onset) > 2: trim = onset[:-2] del onset[:-2] syllables[x][2] = trim # once onset is 2 phones... if len(onset) == 2: # stop + liquid is the only viable sequence and passes if ( (not onset[0].cont) and (not onset[0].app) and (onset[1].nas or onset[1].app) ): break # otherwise, onset must be right Phone only # the left phone is appended to the previous coda else: trim = onset[0] del onset[0] syllables[x][2] += [trim] self.syllables = syllables return syllables def _print_ipa(self, syllabify, accentuate): """ Depending on the syllabify and accentuate parameters Prints an appropriately marked up version of the transcription :param syllabify: :param accentuate: :return: """ out = "" if syllabify: syllables = self.syllabify() # the ultima is the final syllable ultima = syllables[-1] # identify which syllable has stress and store index as accent if accentuate: # one syllable words have ultimate stress if len(syllables) == 1: accent = -1 # two syllable words have penultimate stress elif len(syllables) == 2: accent = -2 else: # penult is second to last syllable penult = syllables[-2] # if penult is diphthong (long), penultimate stress if len(penult[1]) > 1: accent = -2 # if penult is long vowel, penultimate stress elif "ː" in penult[1][0].ipa: accent = -2 # if penult has coda (closed/long by position), # penultimate stress elif len(penult[2]) > 0: accent = -2 # otherwise (penult is short) antepenultimate stress else: accent = -3 # loop over syllables by index for x in range(len(syllables)): s = syllables[x] # if index matches accent index set above if x - len(syllables) == accent: # precede that syllable with # IPA stress punctuation: ' out += "'" # then, print IPA by syllable segment as usual for n in s: for p in n: out += p.ipa # seperate all syllables with IPA syllable punctuation: . if s != ultima: out += "." # if no accentuation flag, proceed with syllabified printing else: for s in syllables: for n in s: for p in n: out += p.ipa # seperate all syllables with IPA syllable punctuation: . if s != ultima: out += "." # if no syllabification flag, proceed with # unsyllabified IPA printing else: for p in self.phones: out += p.ipa return out class Transcriber: """Uses a reconstruction to transcribe a orthographic string into IPA.""" def __init__(self, dialect: str, reconstruction: str): """ :param dialect: Latin dialect :param reconstruction: reconstruction method """ self.lect = dialect self.recon = reconstruction self.root = LATIN[self.lect][self.recon] self.table = self.root["correspondence"] self.diphs = self.root["diphthongs"] self.punc = self.root["punctuation"] self.macronizer = m.Macronizer("tag_ngram_123_backoff") def _parse_diacritics(self, ch: str) -> str: """ EG: input with base a -> a/LENGTH/DIAERESIS/ :param ch: character :return: a string with separated and organized diacritics for easier access later. """ out = chars.base(ch).lower() # Initialize out as base of character. length = chars.length(ch) dia = chars.diaeresis(ch) out += "/" # Create 1st boundary # If any length, place between 1st and 2nd boundary if length: out += length out += "/" # Create 2nd boundary if dia: # If any diaeresis, out += dia # place between second and final boundary out += "/" # Create final boundary return out def _prep_text(self, text: str): """ Performs preparatory tasks grouping and reordering characters in order to make transcription formulaic. :param text: :return: """ string_in = "".join([self._parse_diacritics(ch) for ch in text]) # searches for diphthongs and treats them as one phone for d in self.diphs: d1 = d[0] d2 = d[1] pattern = r"(" + d1 + r")\/\/\/(" + d2 + r")(\/\/\/)" string_in = re.sub(pattern, r"\1\2\3", string_in) tup_out = re.findall(r"(..?)\/([̄̆]*)\/(¨?)\/", string_in) return tup_out def transcribe( self, text, macronize=True, syllabify=True, accentuate=True, with_squared_brackets=True, ): """ >>> allen_transcriber = Transcriber("Classical", "Allen") >>> example = allen_transcriber.transcribe("Quo usque tandem, O Catilina, " + "abutere nostra patientia?") >>> example "['kʷoː 'ʊs.kʷɛ 't̪an̪.d̪ẽː 'oː ka.t̪ɪ.'liː.n̪aː a.buː.'t̪eː.rɛ 'n̪ɔs.t̪raː pa.t̪ɪ̣.'jɛn̪.t̪ɪ̣.ja]" :param text: text to transcribe :param macronize: if True, macronize result :param syllabify: if True, syllabify result :param accentuate: if True, accentuate result :param with_squared_brackets: if True, put squared brackets around transcription :return: transcribed text """ # if macronize, will first use the tagger to macronize input # otherwise, input will be the raw input string if macronize: text = self.macronizer.macronize_text(text) # input is word-tokenized, stripped of non-diacritic punctuation, # and diphthongs and diacritics are handled inp = [ self._prep_text(w) for w in wordpunct_tokenize(text) if w not in self.punc ] words = [] for w in inp: out = "" for c in w: if "̄" in c[1]: macron_added = c[0] + "̄" ipa = self.table.get(macron_added, macron_added) else: ipa = self.table.get(c[0], c[0]) out += ipa transcription = Word(out, self.root) transcription._alternate() words.append(transcription) # Encloses output in brackets, proper notation for surface form. result = " ".join([w._print_ipa(syllabify, accentuate) for w in words]) if with_squared_brackets: result = "[" + result + "]" return result
chainer-1.4/seg_ffnn.py
ysadamori/chainer_LSTM_seq2seq_example
137
12692142
#!/usr/bin/python3 import my_settings import sys import math import numpy as np from argparse import ArgumentParser from chainer import functions, optimizers import util.generators as gens from util.functions import trace, fill_batch from util.model_file import ModelFile from util.vocabulary import Vocabulary from util.chainer_cpu_wrapper import wrapper #from util.chainer_gpu_wrapper import wrapper class SegmentationModel: def __init__(self): pass def __make_model(self): self.__model = wrapper.make_model( w_xh = functions.EmbedID(2 * self.__n_context * len(self.__vocab), self.__n_hidden), w_hy = functions.Linear(self.__n_hidden, 1), ) @staticmethod def new(vocab, n_context, n_hidden): self = SegmentationModel() self.__vocab = vocab self.__n_context = n_context self.__n_hidden = n_hidden self.__make_model() return self def save(self, filename): with ModelFile(filename, 'w') as fp: self.__vocab.save(fp.get_file_pointer()) fp.write(self.__n_context) fp.write(self.__n_hidden) wrapper.begin_model_access(self.__model) fp.write_embed(self.__model.w_xh) fp.write_linear(self.__model.w_hy) wrapper.end_model_access(self.__model) @staticmethod def load(filename): self = SegmentationModel() with ModelFile(filename) as fp: self.__vocab = Vocabulary.load(fp.get_file_pointer()) self.__n_context = int(fp.read()) self.__n_hidden = int(fp.read()) self.__make_model() wrapper.begin_model_access(self.__model) fp.read_embed(self.__model.w_xh) fp.read_linear(self.__model.w_hy) wrapper.end_model_access(self.__model) return self def init_optimizer(self): self.__opt = optimizers.AdaGrad(lr=0.01) self.__opt.setup(self.__model) def __make_input(self, is_training, text): c = self.__vocab.stoi k = self.__n_context - 1 word_list = text.split() letters = [c('<s>')] * k + [c(x) for x in ''.join(word_list)] + [c('</s>')] * k if is_training: labels = [] for x in word_list: labels += [-1] * (len(x) - 1) + [1] return letters, labels[:-1] else: return letters, None def __forward(self, is_training, text): m = self.__model tanh = functions.tanh letters, labels = self.__make_input(is_training, text) scores = [] accum_loss = wrapper.zeros(()) if is_training else None for n in range(len(letters) - 2 * self.__n_context + 1): s_hu = wrapper.zeros((1, self.__n_hidden)) for k in range(2 * self.__n_context): wid = k * len(self.__vocab) + letters[n + k] s_x = wrapper.make_var([wid], dtype=np.int32) s_hu += m.w_xh(s_x) s_hv = tanh(s_hu) s_y = tanh(m.w_hy(s_hv)) scores.append(float(wrapper.get_data(s_y))) if is_training: s_t = wrapper.make_var([[labels[n]]]) accum_loss += functions.mean_squared_error(s_y, s_t) return scores, accum_loss def train(self, text): self.__opt.zero_grads() scores, accum_loss = self.__forward(True, text) accum_loss.backward() self.__opt.clip_grads(5) self.__opt.update() return scores def predict(self, text): return self.__forward(False, text)[0] def parse_args(): def_vocab = 2500 def_hidden = 100 def_epoch = 100 def_context = 3 p = ArgumentParser(description='Word segmentation using feedforward neural network') p.add_argument('mode', help='\'train\' or \'test\'') p.add_argument('corpus', help='[in] source corpus') p.add_argument('model', help='[in/out] model file') p.add_argument('--vocab', default=def_vocab, metavar='INT', type=int, help='vocabulary size (default: %d)' % def_vocab) p.add_argument('--hidden', default=def_hidden, metavar='INT', type=int, help='hidden layer size (default: %d)' % def_hidden) p.add_argument('--epoch', default=def_epoch, metavar='INT', type=int, help='number of training epoch (default: %d)' % def_epoch) p.add_argument('--context', default=def_context, metavar='INT', type=int, help='width of context window (default: %d)' % def_context) args = p.parse_args() # check args try: if args.mode not in ['train', 'test']: raise ValueError('you must set mode = \'train\' or \'test\'') if args.vocab < 1: raise ValueError('you must set --vocab >= 1') if args.hidden < 1: raise ValueError('you must set --hidden >= 1') if args.epoch < 1: raise ValueError('you must set --epoch >= 1') if args.context < 1: raise ValueError('you must set --context >= 1') except Exception as ex: p.print_usage(file=sys.stderr) print(ex, file=sys.stderr) sys.exit() return args def make_hyp(letters, scores): hyp = letters[0] for w, s in zip(letters[1:], scores): if s >= 0: hyp += ' ' hyp += w return hyp def train_model(args): trace('making vocabularies ...') vocab = Vocabulary.new(gens.letter_list(args.corpus), args.vocab) trace('start training ...') model = SegmentationModel.new(vocab, args.context, args.hidden) for epoch in range(args.epoch): trace('epoch %d/%d: ' % (epoch + 1, args.epoch)) trained = 0 model.init_optimizer() with open(args.corpus) as fp: for text in fp: word_list = text.split() if not word_list: continue text = ' '.join(word_list) letters = ''.join(word_list) scores = model.train(text) trained += 1 hyp = make_hyp(letters, scores) trace(trained) trace(text) trace(hyp) trace(' '.join('%+.1f' % x for x in scores)) if trained % 100 == 0: trace(' %8d' % trained) trace('saveing model ...') model.save(args.model + '.%03d' % (epoch + 1)) trace('finished.') def test_model(args): trace('loading model ...') model = SegmentationModel.load(args.model) trace('generating output ...') with open(args.corpus) as fp: for text in fp: letters = ''.join(text.split()) if not letters: print() continue scores = model.predict(text) hyp = make_hyp(letters, scores) print(hyp) trace('finished.') def main(): args = parse_args() trace('initializing CUDA ...') wrapper.init() if args.mode == 'train': train_model(args) elif args.mode == 'test': test_model(args) if __name__ == '__main__': main()
BloodHoundLoader.py
0xvm/BloodHoundQueries
198
12692168
<filename>BloodHoundLoader.py #!/usr/bin/env python3 import argparse import logging import socket from importlib import util if util.find_spec("neo4j") is None: print('[-] Neo4j library is not installed, please execute the following before: pip3 install neo4j') exit() from neo4j import GraphDatabase parser = argparse.ArgumentParser(description = 'BloodHoundLoader, tool to set attributes in BloodHound for all the items contained in files') parser.add_argument('--dburi', dest = 'databaseUri', help = 'Database URI', default = 'bolt://localhost:7687') parser.add_argument('--dbuser', dest = 'databaseUser', help = 'Database user', default = 'neo4j') parser.add_argument('--dbpassword', dest = 'databasePassword', help = 'Database password', default = '<PASSWORD>') group = parser.add_mutually_exclusive_group(required = True) group.add_argument('-m', '--mode', dest = 'mode', help = 'Mode, h = set to high value, o = set to owned, s = set to no SMB signing', choices = ['h', 'o', 's']) group.add_argument('-o', '--operation', dest = 'operation', help = 'Operation to perform if the mode is not set, for instance "highvalue = true"') parser.add_argument('-c', '--comment', dest = 'comment', help = 'Comment for the log', default = '') parser.add_argument('-v', '--verbose', dest = 'verbose', help = 'Verbose mode', action = 'store_true') parser.add_argument('filePaths', nargs = '+', help = 'Paths of files the to import') arguments = parser.parse_args() loggingLevel = (logging.DEBUG if arguments.verbose else logging.INFO) logger = logging.getLogger('BloodHoundLoader') logger.setLevel(loggingLevel) consoleLogger = logging.StreamHandler() consoleLogger.setLevel(loggingLevel) logger.addHandler(consoleLogger) logger.debug('[*] Arguments: ' + str(arguments)) if arguments.mode == 'h': operation = 'highvalue = true' elif arguments.mode == 'o': operation = 'owned = true' elif arguments.mode == 's': operation = 'hassigning = false' else: operation = arguments.operation logger.debug('[*] Operation: ' + operation) try: driver = GraphDatabase.driver(arguments.databaseUri, auth = (arguments.databaseUser, arguments.databasePassword)) logger.info('[*] Connected to BloodHound Neo4j database') except: logger.error('[-] Connection to BloodHound Neo4j database failed') exit() with driver.session() as session: for filePath in arguments.filePaths: with open(filePath) as file: logger.info('[*] Opened file: ' + filePath) for line in file: item = line.strip() logger.debug('[*] Current item: ' + item) if item: name = item.upper() log = '(file: ' + filePath + ', comment: ' + arguments.comment + ')' query = 'MATCH (a {name: $name}) SET a.' + operation + ', a.BloodHoundLoaderLog = $log RETURN COUNT(*) AS count' results = session.run(query, name = name, log = log) count = results.single()['count'] if count > 0: logger.info('[+] Modified: ' + item) logger.debug('[*] Number of modified entries: ' + str(count)) logger.debug('[*] Stored message: ' + log) else: logger.error('[-] Could not modify: ' + item)
tests/core/test_dispatch.py
ashu96902/Pincer
118
12692175
<filename>tests/core/test_dispatch.py<gh_stars>100-1000 # Copyright Pincer 2021-Present # Full MIT License can be found in `LICENSE` at the project root. from pincer.core.dispatch import GatewayDispatch class TestDispatch: op = 123 data = { "foo": "bar", "bar": "foo" } seq = 456 event_name = "test_event" dispatch_string = ( '{"op": 123, "d": {"foo": "bar", "bar": "foo"}, ' '"s": 456, "t": "test_event"}' ) dispatch = GatewayDispatch(op, data, seq, event_name) def test_string_fmt(self): """ Tests whether or not the dispatch class its string conversion is correct. """ assert str(self.dispatch) == self.dispatch_string def test_from_string(self): """ Tests whether or not the from_string function is properly parsing the string and creating a GatewayDispatch instance. """ assert ( str(GatewayDispatch.from_string(self.dispatch_string)) == self.dispatch_string )
tracardi/process_engine/action/v1/strings/regex_match/model/model.py
bytepl/tracardi
153
12692208
<filename>tracardi/process_engine/action/v1/strings/regex_match/model/model.py from pydantic import BaseModel class Configuration(BaseModel): pattern: str text: str group_prefix: str = "Group"
projects/oak/rustc.py
darkma773r/oss-fuzz
7,629
12692213
<gh_stars>1000+ #!/usr/bin/env python # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import subprocess #Disable coverage for troubling crates. sys.argv[0] = "rustc" if "tokio_util" in sys.argv or "hyper" in sys.argv: try: sys.argv.remove("-Zinstrument-coverage") except: pass print(sys.argv) subprocess.call(sys.argv)
gitlab_runner/tests/test_integration.py
mchelen-gov/integrations-core
663
12692214
<reponame>mchelen-gov/integrations-core # (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import copy import pytest from requests.exceptions import ConnectionError from datadog_checks.gitlab_runner import GitlabRunnerCheck from .common import BAD_CONFIG, CONFIG, CUSTOM_TAGS, GITLAB_RUNNER_VERSION, HOST, assert_check pytestmark = [pytest.mark.usefixtures('dd_environment'), pytest.mark.integration] def test_check(aggregator, dd_run_check): instance = CONFIG['instances'][0] init_config = copy.deepcopy(CONFIG['init_config']) gitlab_runner = GitlabRunnerCheck('gitlab_runner', init_config, instances=[instance]) dd_run_check(gitlab_runner) dd_run_check(gitlab_runner) assert_check(aggregator) aggregator.assert_all_metrics_covered() def test_connection_failure(aggregator): """ Make sure we're failing when the URL isn't right """ gitlab_runner = GitlabRunnerCheck('gitlab', BAD_CONFIG['init_config'], instances=BAD_CONFIG['instances']) with pytest.raises(ConnectionError): gitlab_runner.check(BAD_CONFIG['instances'][0]) # We should get two failed service checks aggregator.assert_service_check( GitlabRunnerCheck.MASTER_SERVICE_CHECK_NAME, status=GitlabRunnerCheck.CRITICAL, tags=['gitlab_host:{}'.format(HOST), 'gitlab_port:1234'] + CUSTOM_TAGS, count=1, ) aggregator.assert_service_check( GitlabRunnerCheck.PROMETHEUS_SERVICE_CHECK_NAME, status=GitlabRunnerCheck.CRITICAL, tags=CUSTOM_TAGS, count=1 ) def test_version_metadata(aggregator, datadog_agent, dd_run_check): check_instance = GitlabRunnerCheck('gitlab_runner', CONFIG['init_config'], instances=[CONFIG['instances'][0]]) check_instance.check_id = 'test:123' dd_run_check(check_instance) raw_version = GITLAB_RUNNER_VERSION major, minor, patch = raw_version.split('.') version_metadata = { 'version.scheme': 'semver', 'version.major': major, 'version.minor': minor, 'version.patch': patch, 'version.raw': raw_version, } datadog_agent.assert_metadata('test:123', version_metadata)
desktop/core/ext-py/ndg_httpsclient-0.4.0/ndg/httpsclient/urllib2_build_opener.py
kokosing/hue
5,079
12692227
"""urllib2 style build opener integrates with HTTPSConnection class from this package. """ __author__ = "<NAME>" __date__ = "21/12/10" __copyright__ = "(C) 2011 Science and Technology Facilities Council" __license__ = "BSD - see LICENSE file in top-level directory" __contact__ = "<EMAIL>" __revision__ = '$Id$' import logging import sys # Py 2 <=> 3 compatibility for class type checking if sys.version_info[0] > 2: class_type_ = type from urllib.request import (ProxyHandler, UnknownHandler, HTTPDefaultErrorHandler, FTPHandler, FileHandler, HTTPErrorProcessor, HTTPHandler, OpenerDirector, HTTPRedirectHandler) else: import types class_type_ = types.ClassType from urllib2 import (ProxyHandler, UnknownHandler, HTTPDefaultErrorHandler, FTPHandler, FileHandler, HTTPErrorProcessor, HTTPHandler, OpenerDirector, HTTPRedirectHandler) from ndg.httpsclient.https import HTTPSContextHandler log = logging.getLogger(__name__) # Copied from urllib2 with modifications for ssl def build_opener(*handlers, **kw): """Create an opener object from a list of handlers. The opener will use several default handlers, including support for HTTP and FTP. If any of the handlers passed as arguments are subclasses of the default handlers, the default handlers will not be used. """ def isclass(obj): return isinstance(obj, class_type_) or hasattr(obj, "__bases__") opener = OpenerDirector() default_classes = [ProxyHandler, UnknownHandler, HTTPHandler, HTTPDefaultErrorHandler, HTTPRedirectHandler, FTPHandler, FileHandler, HTTPErrorProcessor] check_classes = list(default_classes) check_classes.append(HTTPSContextHandler) skip = [] for klass in check_classes: for check in handlers: if isclass(check): if issubclass(check, klass): skip.append(klass) elif isinstance(check, klass): skip.append(klass) for klass in default_classes: if klass not in skip: opener.add_handler(klass()) # Pick up SSL context from keyword settings ssl_context = kw.get('ssl_context') # Add the HTTPS handler with ssl_context if HTTPSContextHandler not in skip: opener.add_handler(HTTPSContextHandler(ssl_context)) for h in handlers: if isclass(h): h = h() opener.add_handler(h) return opener
testing/MLDB-927-null-row-output.py
kstepanmpmg/mldb
665
12692237
# # MLDB-927-null-row-output.py # mldb.ai inc, 2015 # This file is part of MLDB. Copyright 2015 mldb.ai inc. All rights reserved. # import json import datetime import difflib from mldb import mldb dataset_index = 1 def run_transform(when, format): global dataset_index dataset_index += 1 result = mldb.put("/v1/procedures/when_procedure", { "type": "transform", "params": { "inputData": "select * from dataset1 when " + when, "outputDataset": { "id": "dataset_out_" + str(dataset_index), "type":"sparse.mutable" } } }) mldb.post("/v1/procedures/when_procedure/runs") result = mldb.get('/v1/query', q="SELECT * FROM dataset_out_" + str(dataset_index) + " ORDER BY rowHash()", format=format) rows = result.json() return rows def load_test_dataset(): ds1 = mldb.create_dataset({ 'type': 'sparse.mutable', 'id': 'dataset1'}) ds1.record_row('user1', [['x', 1, same_time_tomorrow], ['y', 2, same_time_tomorrow]]) ds1.record_row('user2', [['x', 3, now], ['y', 4, now]]) ds1.commit() def compare_json(json1, json2, format): if json1 != json2: mldb.log("output format differ:\n") for line in difflib.ndiff(json1.splitlines(), json2.splitlines()): mldb.log(line) assert json1 == json2, \ "difference in the way null values are outputted in format %s" \ % format now = datetime.datetime.now() later = now + datetime.timedelta(seconds=1) same_time_tomorrow = now + datetime.timedelta(days=1) load_test_dataset() formats = ['full', 'sparse', 'soa', 'aos', 'table'] for format in formats: result = mldb.get('/v1/query', q="SELECT * FROM dataset1 WHEN value_timestamp() > '%s' ORDER BY rowHash()" % later , format=format) rows1 = json.dumps(result.json(), indent=4, sort_keys=True) result = mldb.get('/v1/query', q = "SELECT * from dataset1 WHEN value_timestamp() > '%s' ORDER BY rowHash()" % later, format=format) rows2 = json.dumps(result.json(), indent=4, sort_keys=True) response = run_transform("value_timestamp() > '%s'" % later, format) rows3 = json.dumps(response, indent=4, sort_keys=True, default=str) compare_json(rows1, rows2, format) compare_json(rows2, rows3, format) request.set_return('success')
xls/synthesis/yosys/yosys_server_test.py
felixzhuologist/xls
687
12692280
<filename>xls/synthesis/yosys/yosys_server_test.py # Lint as: python3 # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests of the synthesis service: client and dummy server.""" import subprocess import portpicker from google.protobuf import text_format from absl.testing import absltest from xls.common import runfiles from xls.synthesis import synthesis_pb2 CLIENT_PATH = runfiles.get_path('xls/synthesis/synthesis_client_main') SERVER_PATH = runfiles.get_path('xls/synthesis/yosys/yosys_server_main') YOSYS_PATH = runfiles.get_path('xls/synthesis/yosys/bogusys') NEXTPNR_PATH = runfiles.get_path('xls/synthesis/yosys/nextpbr') VERILOG = """ module main( input wire [31:0] x, input wire [31:0] y, output wire [31:0] out ); assign out = x + y; endmodule """ class SynthesisServerTest(absltest.TestCase): def _start_server(self): port = portpicker.pick_unused_port() proc = subprocess.Popen([ runfiles.get_path(SERVER_PATH), f'--port={port}', f'--yosys_path={YOSYS_PATH}', f'--nextpnr_path={NEXTPNR_PATH}', '--synthesis_target=ecp5', ]) return port, proc def test_slack(self): port, proc = self._start_server() verilog_file = self.create_tempfile(content=VERILOG) response_text = subprocess.check_output( [CLIENT_PATH, verilog_file.full_path, f'--port={port}', '--ghz=1.0']).decode('utf-8') response = text_format.Parse(response_text, synthesis_pb2.CompileResponse()) # The response is generated by parsing testdata/nextpnr.out. self.assertEqual(response.max_frequency_hz, 180280000) proc.terminate() proc.wait() def test_cell_histogram(self): port, proc = self._start_server() verilog_file = self.create_tempfile(content=VERILOG) response_text = subprocess.check_output( [CLIENT_PATH, verilog_file.full_path, f'--port={port}', '--ghz=1.0']).decode('utf-8') response = text_format.Parse(response_text, synthesis_pb2.CompileResponse()) # The response is generated by parsing bogusys stdout. self.assertLen(response.instance_count.cell_histogram, 2) self.assertIn('CCU2C', response.instance_count.cell_histogram) self.assertEqual(response.instance_count.cell_histogram['CCU2C'], 32) self.assertIn('TRELLIS_FF', response.instance_count.cell_histogram) self.assertEqual(response.instance_count.cell_histogram['TRELLIS_FF'], 192) proc.terminate() proc.wait() if __name__ == '__main__': absltest.main()
oslo/torch/nn/modules/activation.py
lipovsek/oslo
249
12692289
from typing import Optional, Tuple import torch import torch.nn as nn from torch import Tensor from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ from torch.nn.modules.linear import NonDynamicallyQuantizableLinear from torch.nn.parameter import Parameter from oslo.torch.nn.modules.functional import multi_head_attention_forward class MultiheadAttention(nn.Module): r"""Allows the model to jointly attend to information from different representation subspaces as described in the paper: `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_. Multi-Head Attention is defined as: .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. Args: embed_dim: Total dimension of the model. num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``). dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout). bias: If specified, adds bias to input / output projection layers. Default: ``True``. add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``. add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1. Default: ``False``. kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``). vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). use_sequence_parallel: If ``True``, then self attention module is changed self attention ring module. Default: ``False`` Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ __constants__ = ["batch_first"] bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__( self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None, use_sequence_parallel=False, parallel_context=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.batch_first = batch_first self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" # Support sequence parallel self.sequence_parallel_support = True self.use_sequence_parallel = use_sequence_parallel self.parallel_context = parallel_context if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter( torch.empty((embed_dim, embed_dim), **factory_kwargs) ) self.k_proj_weight = Parameter( torch.empty((embed_dim, self.kdim), **factory_kwargs) ) self.v_proj_weight = Parameter( torch.empty((embed_dim, self.vdim), **factory_kwargs) ) self.register_parameter("in_proj_weight", None) else: self.in_proj_weight = Parameter( torch.empty((3 * embed_dim, embed_dim), **factory_kwargs) ) self.register_parameter("q_proj_weight", None) self.register_parameter("k_proj_weight", None) self.register_parameter("v_proj_weight", None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs)) else: self.register_parameter("in_proj_bias", None) self.out_proj = NonDynamicallyQuantizableLinear( embed_dim, embed_dim, bias=bias, **factory_kwargs ) if add_bias_kv: self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.0) constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if "_qkv_same_embed_dim" not in state: state["_qkv_same_embed_dim"] = True super(MultiheadAttention, self).__setstate__(state) def forward( self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, average_attn_weights: bool = True, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False`` or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against key-value pairs to produce the output. See "Attention Is All You Need" for more details. key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False`` or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details. value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details. key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`. Binary and byte masks are supported. For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key`` value will be ignored. need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``. Default: ``True``. attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch. Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the corresponding position is not allowed to attend. For a float mask, the mask values will be added to the attention weight. average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads) Outputs: - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched, :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the embedding dimension ``embed_dim``. - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. If ``average_weights=False``, returns attention weights per head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`. .. note:: `batch_first` argument is ignored for unbatched inputs. """ is_batched = query.dim() == 3 if self.batch_first and is_batched: # make sure that the transpose op does not affect the "is" property if key is value: if query is key: query = key = value = query.transpose(1, 0) else: query, key = [x.transpose(1, 0) for x in (query, key)] value = key else: query, key, value = [x.transpose(1, 0) for x in (query, key, value)] # TODO: When batch first is True, RSA if not self._qkv_same_embed_dim: # TODO: When dimension of qkv is not same, RSA attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, average_attn_weights=average_attn_weights, use_sequence_parallel=self.use_sequence_parallel, parallel_context=self.parallel_context, ) else: attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, average_attn_weights=average_attn_weights, use_sequence_parallel=self.use_sequence_parallel, parallel_context=self.parallel_context, ) if self.batch_first and is_batched: # TODO: When batch first is True, RSA attention output return attn_output.transpose(1, 0), attn_output_weights else: return attn_output, attn_output_weights
lib/oembed/constants.py
goztrk/django-htk
206
12692311
<reponame>goztrk/django-htk<filename>lib/oembed/constants.py<gh_stars>100-1000 OEMBED_URL_SCHEME_REGEXPS = { 'slideshare' : r'https?://(?:www\.)?slideshare\.(?:com|net)/.*', 'soundcloud' : r'https?://soundcloud.com/.*', 'vimeo' : r'https?://(?:www\.)?vimeo\.com/.*', 'youtube' : r'https?://(?:(www\.)?youtube\.com|youtu\.be)/.*', } OEMBED_BASE_URLS = { 'slideshare' : 'https://www.slideshare.net/api/oembed/2?url=%(url)s', 'soundcloud' : 'https://soundcloud.com/oembed?url=%(url)s&format=json', 'vimeo' : 'https://vimeo.com/api/oembed.json?url=%(url)s&maxwidth=400&maxheight=350', 'youtube' : 'https://www.youtube.com/oembed?url=%(url)s&format=json', }
scripts/python/fetch_chromosomes/settings.py
mikiec84/ideogram
229
12692348
<filename>scripts/python/fetch_chromosomes/settings.py import logging def get_logger(output_dir, log_name): """Creates a log file and returns an object to interface with it. """ logger = logging.getLogger(log_name) logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler(output_dir + log_name + '.log') fh.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.ERROR) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger logger.addHandler(fh) logger.addHandler(ch) return logger def init(_fresh_run, _fill_cache, _output_dir, _cache_dir, log_name): """Initializes global variables that are readable from importing modules. """ global fresh_run, fill_cache, output_dir, cache_dir fresh_run = _fresh_run fill_cache = _fill_cache output_dir = _output_dir cache_dir = _cache_dir return get_logger(output_dir, log_name)
examples/FirstReconstruction/FirstReconstruction.py
agravgaard/RTK
167
12692370
#!/usr/bin/env python import sys import itk from itk import RTK as rtk if len ( sys.argv ) < 3: print( "Usage: FirstReconstruction <outputimage> <outputgeometry>" ) sys.exit ( 1 ) # Defines the image type ImageType = itk.Image[itk.F,3] # Defines the RTK geometry object geometry = rtk.ThreeDCircularProjectionGeometry.New() numberOfProjections = 360 firstAngle = 0. angularArc = 360. sid = 600 # source to isocenter distance sdd = 1200 # source to detector distance for x in range(0,numberOfProjections): angle = firstAngle + x * angularArc / numberOfProjections geometry.AddProjection(sid,sdd,angle) # Writing the geometry to disk xmlWriter = rtk.ThreeDCircularProjectionGeometryXMLFileWriter.New() xmlWriter.SetFilename ( sys.argv[2] ) xmlWriter.SetObject ( geometry ) xmlWriter.WriteFile() # Create a stack of empty projection images ConstantImageSourceType = rtk.ConstantImageSource[ImageType] constantImageSource = ConstantImageSourceType.New() origin = [ -127, -127, 0. ] sizeOutput = [ 128, 128, numberOfProjections ] spacing = [ 2.0, 2.0, 2.0 ] constantImageSource.SetOrigin( origin ) constantImageSource.SetSpacing( spacing ) constantImageSource.SetSize( sizeOutput ) constantImageSource.SetConstant(0.) REIType = rtk.RayEllipsoidIntersectionImageFilter[ImageType, ImageType] rei = REIType.New() semiprincipalaxis = [ 50, 50, 50] center = [ 0, 0, 10] # Set GrayScale value, axes, center... rei.SetDensity(2) rei.SetAngle(0) rei.SetCenter(center) rei.SetAxis(semiprincipalaxis) rei.SetGeometry( geometry ) rei.SetInput(constantImageSource.GetOutput()) # Create reconstructed image constantImageSource2 = ConstantImageSourceType.New() sizeOutput = [ 128, 128, 128 ] origin = [ -63.5, -63.5, -63.5 ] spacing = [ 1.0, 1.0, 1.0 ] constantImageSource2.SetOrigin( origin ) constantImageSource2.SetSpacing( spacing ) constantImageSource2.SetSize( sizeOutput ) constantImageSource2.SetConstant(0.) # FDK reconstruction print("Reconstructing...") FDKCPUType = rtk.FDKConeBeamReconstructionFilter[ImageType] feldkamp = FDKCPUType.New() feldkamp.SetInput(0, constantImageSource2.GetOutput()) feldkamp.SetInput(1, rei.GetOutput()) feldkamp.SetGeometry(geometry) feldkamp.GetRampFilter().SetTruncationCorrection(0.0) feldkamp.GetRampFilter().SetHannCutFrequency(0.0) # Field-of-view masking FOVFilterType = rtk.FieldOfViewImageFilter[ImageType, ImageType] fieldofview = FOVFilterType.New() fieldofview.SetInput(0, feldkamp.GetOutput()) fieldofview.SetProjectionsStack(rei.GetOutput()) fieldofview.SetGeometry(geometry) # Writer print("Writing output image...") WriterType = rtk.ImageFileWriter[ImageType] writer = WriterType.New() writer.SetFileName(sys.argv[1]) writer.SetInput(fieldofview.GetOutput()) writer.Update() print("Done!")
cctbx/array_family/boost_python/tst_flex.py
dperl-sol/cctbx_project
155
12692371
<reponame>dperl-sol/cctbx_project from __future__ import absolute_import, division, print_function from libtbx.test_utils import approx_equal from cctbx import uctbx from cctbx.array_family import flex from six.moves import range try: from six.moves import cPickle as pickle except ImportError: import pickle def exercise_flex_miller_index(): from scitbx.array_family.flex import exercise_triple exercise_triple(flex_triple=flex.miller_index, flex_order=flex.order) a = flex.miller_index([(1,2,3), (2,3,4)]) assert approx_equal(a.as_vec3_double(), [(1,2,3), (2,3,4)]) h, k, l = [flex.int((0,1,2,3)), flex.int((1,2,3,4)), flex.int((2,3,4,5))] b = flex.miller_index(h, k, l) assert approx_equal(b, ((0,1,2),(1,2,3),(2,3,4),(3,4,5))) # i = flex.miller_index([(1,-2,3), (-2,3,4)]) c = flex.complex_double([3-4j, -7+8j]) x = (0.9284, -1.2845, -0.2293) assert approx_equal( i.fourier_transform_real_part_at_x(fourier_coeffs=c, x=x), 15.4357188164) def exercise_flex_hendrickson_lattman(): a = flex.hendrickson_lattman() assert a.size() == 0 a = flex.hendrickson_lattman(132) for x in a: assert x == (0,0,0,0) a = flex.hendrickson_lattman(((1,2,3,4), (2,3,4,5), (3,4,5,6))) assert a.size() == 3 assert a.count((1,2,3,4)) == 1 assert a.count((0,0,0,0)) == 0 assert tuple(a) == ((1,2,3,4), (2,3,4,5), (3,4,5,6)) assert tuple(a+a) == ((2,4,6,8), (4,6,8,10), (6,8,10,12)) a += a assert tuple(a) == ((2,4,6,8), (4,6,8,10), (6,8,10,12)) p = pickle.dumps(a) b = pickle.loads(p) assert tuple(a) == tuple(b) centric_flags = flex.bool([False, True]) phase_integrals = flex.complex_double([complex(0.5,-0.7), complex(-0.3,0.4)]) a = flex.hendrickson_lattman( centric_flags=centric_flags, phase_integrals=phase_integrals, max_figure_of_merit=1-1.e-6) assert approx_equal(a, [(2.2684820912654264, -3.1758749277715967, 0, 0), (-0.3295836866004328, 0.43944491546724396, 0, 0)]) assert approx_equal( [a.slice(i) for i in range(4)], [[2.2684820912654264, -0.3295836866004328], [-3.1758749277715967, 0.43944491546724396], [0.0, 0.0], [0.0, 0.0]]) a = flex.hendrickson_lattman(3, (1,2,3,4)) assert a.all_eq((1,2,3,4)) assert not a.all_eq((1,2,0,4)) assert approx_equal(a.conj(), [(1,-2,3,-4), (1,-2,3,-4), (1,-2,3,-4)]) assert approx_equal(a.conj().conj(), a) # a = flex.double() h = flex.hendrickson_lattman(a=a, b=a) assert h.size() == 0 a = flex.double([1,2,3]) b = flex.double([-3,4,5]) h = flex.hendrickson_lattman(a=a, b=b) assert approx_equal(h, [(1,-3,0,0), (2,4,0,0), (3,5,0,0)]) assert approx_equal(h == (1,-3,0,0), (True,False,False)) assert approx_equal(h != (1,-3,0,0), (False,True,True)) assert approx_equal(h != (0,0,0,0), (True,True,True)) assert approx_equal(h == h.deep_copy(), (True, True, True)) assert approx_equal( h == flex.hendrickson_lattman(a=b, b=a), (False, False, False)) assert approx_equal( h != flex.hendrickson_lattman(a=b, b=a), (True, True, True)) assert approx_equal( h != flex.hendrickson_lattman(a=b, b=a), (True, True, True)) assert approx_equal( h != h.deep_copy(), (False, False, False)) c = flex.double([4,5,6]) d = flex.double([-4,7,8]) h = flex.hendrickson_lattman(a=a, b=b, c=c, d=d) assert approx_equal(h, [(1,-3,4,-4), (2,4,5,7), (3,5,6,8)]) assert approx_equal(h.as_abcd(), [a, b, c, d]) h = h * 2 assert approx_equal(h, [(2, -6, 8, -8), (4, 8, 10, 14), (6, 10, 12, 16)]) def exercise_flex_xray_scatterer(): from cctbx import uctbx, sgtbx, xray uc = uctbx.unit_cell((10,11,12)) sg = sgtbx.space_group_info("P 2") a = flex.xray_scatterer() assert a.size() == 0 a = flex.xray_scatterer(( xray.scatterer("Si1", (0.1,0.2,0.3)), xray.scatterer("O1", (0.2,0.3,0.4), (1,2,3,-0.1,0.2,-0.3), 0.9), xray.scatterer("K1", (0.3,0.4,0.5), (3,1,2,-0.2,0.3,-0.1), 0.8, fp=5, fdp=7))) assert a.size() == 3 assert a[1].multiplicity() == 0 a[1].apply_symmetry(uc, sg.group()) assert a[1].multiplicity() == 2 assert approx_equal(a[1].weight(), 0.9) a.front().occupancy = 0.8 assert approx_equal(a[0].occupancy, 0.8) a.back().occupancy = 0.7 assert approx_equal(a[-1].occupancy, 0.7) a[0].flags.set_grad_site(state=True) a[1].flags.set_grad_fp(state=True) a[2].flags.param = -234 p = pickle.dumps(a) b = pickle.loads(p) a_ = a.deep_copy() assert a_.n_grad_u_iso() == a_.n_grad_u_aniso() == 0 a_[0].flags.set_grad_u_iso(state=True) a_[1].flags.set_grad_u_aniso(state=True) a_[2].flags.set_grad_u_aniso(state=True) assert a_.n_grad_u_iso() == 1 assert a_.n_grad_u_aniso() == 2 for i,ai in enumerate(a): bi = b[i] assert ai.label == bi.label assert ai.scattering_type == bi.scattering_type assert approx_equal(ai.fp, bi.fp) assert approx_equal(ai.fdp, bi.fdp) assert approx_equal(ai.site, bi.site) assert ai.flags.use_u_aniso() == bi.flags.use_u_aniso() assert ai.u_iso == bi.u_iso assert ai.u_star == bi.u_star assert ai.multiplicity() == bi.multiplicity() assert approx_equal(ai.weight(), bi.weight()) assert ai.flags.bits == bi.flags.bits assert ai.flags.param == bi.flags.param assert b[0].flags.grad_site() assert not b[0].flags.grad_fp() assert not b[1].flags.grad_site() assert b[1].flags.grad_fp() assert b[2].flags.param == -234 assert list(a.extract_labels()) == ["Si1", "O1", "K1"] assert list(a.extract_scattering_types()) == ["Si", "O", "K"] assert approx_equal(a.extract_sites(), ((0.1,0.2,0.3),(0.2,0.3,0.4),(0.3,0.4,0.5))) a.set_sites(sites=flex.vec3_double( ((-0.1,-0.2,-0.3),(-0.2,-0.3,-0.4),(-0.3,-0.4,-0.5)))) assert approx_equal(a.extract_sites(), ((-0.1,-0.2,-0.3),(-0.2,-0.3,-0.4),(-0.3,-0.4,-0.5))) assert approx_equal(a[1].site, (-0.2,-0.3,-0.4)) assert approx_equal(a.extract_occupancies(), (0.8,0.9,0.7)) assert approx_equal(a.extract_fps(), (0.0, 0.0, 5.0)) assert approx_equal(a.extract_fdps(), (0.0, 0.0, 7.0)) a.set_occupancies(occupancies=flex.double((0.1,0.2,0.3))) a.set_fps(fps=flex.double((0.0, 0.0, 1.0))) a.set_fdps(fdps=flex.double((0.0, 0.0, 2.0))) assert approx_equal(a.extract_occupancies(), (0.1,0.2,0.3)) assert approx_equal(a.extract_fps(), (0.0, 0.0, 1.0)) assert approx_equal(a.extract_fdps(), (0.0, 0.0, 2.0)) assert approx_equal(a[1].occupancy, 0.2) assert approx_equal(a[2].fp, 1.0) assert approx_equal(a[2].fdp, 2.0) assert approx_equal(a.extract_u_iso(), (0.0, -1.0, -1.0)) assert approx_equal(a.extract_u_iso_or_u_equiv(unit_cell=uc), (0.0, 258, 236+1/3.)) a.set_u_iso(u_iso=flex.double((3,4,5)), selection=flex.bool(a.size(), True), unit_cell = uc) assert approx_equal(a.extract_u_iso(), (3,-1,-1)) assert approx_equal(a.extract_u_iso_or_u_equiv(unit_cell=uc), (3, 4, 5)) assert approx_equal(a[1].u_iso, -1) u_cart_answer = [(-1.0, -1.0, -1.0, -1.0, -1.0, -1.0), (4, 4, 4, 0, 0, 0), (5, 5, 5, 0, 0, 0)] assert approx_equal(a.extract_u_cart(uc), u_cart_answer) a.set_u_star(u_star=flex.sym_mat3_double( [(-1,-2,-1,-1,-1,-1), (1,2,3,-0.6,0.2,-0.3), (3,1,2,-0.2,0.5,-0.1)])) assert approx_equal(a.extract_u_star(), [(-1,-1,-1,-1,-1,-1), (1,2,3,-0.6,0.2,-0.3), (3,1,2,-0.2,0.5,-0.1)]) assert approx_equal(a[1].u_star, (1,2,3,-0.6,0.2,-0.3)) unit_cell = uctbx.unit_cell((1,1,1,90,90,90)) a.set_u_cart( unit_cell=unit_cell, u_cart=flex.sym_mat3_double( [(-1,-2,-1,-1,-1,-1), (1,2,3,-0.6,0.2,-0.3), (3,1,2,-0.2,0.5,-0.1)])) assert approx_equal(a.extract_u_cart(unit_cell=unit_cell), [(-1,-1,-1,-1,-1,-1), (1,2,3,-0.6,0.2,-0.3), (3,1,2,-0.2,0.5,-0.1)]) # a.set_u_cart(unit_cell = unit_cell, u_cart = flex.sym_mat3_double([(1,2,3,4,5,6), (0,0,0,1,2,3), (1,2,3,0,0,0)]), selection = flex.size_t([1,2])) assert approx_equal(a.extract_u_cart(unit_cell=unit_cell), [(-1,-1,-1,-1,-1,-1), (0,0,0,1,2,3), (1,2,3,0,0,0)]) # unit_cell = uctbx.unit_cell((10,10,10,90,90,90)) a.set_u_cart( unit_cell=unit_cell, u_cart=flex.sym_mat3_double( [(-1,-2,-1,-1,-1,-1), (1,2,3,-0.6,0.2,-0.3), (3,1,2,-0.2,0.5,-0.1)])) assert approx_equal(a.extract_u_star(), [(-1,-1,-1,-1,-1,-1), (0.01, 0.02, 0.03, -0.006, 0.002, -0.003), (0.03, 0.01, 0.02, -0.002, 0.005, -0.001)]) assert approx_equal(a.extract_u_iso(), [3,-1,-1]) a.scale_adps(2.0) assert approx_equal(a.extract_u_star(), [(-1,-1,-1,-1,-1,-1), (0.02, 0.04, 0.06, -0.012, 0.004, -0.006), (0.06, 0.02, 0.04, -0.004, 0.01, -0.002)]) assert approx_equal(a.extract_u_iso(), [6,-1,-1]) assert a.count_anisotropic() == 2 assert a.count_anomalous() == 1 a.convert_to_isotropic(unit_cell=unit_cell) assert a.count_anisotropic() == 0 a.convert_to_anisotropic(unit_cell=unit_cell) assert a.count_anisotropic() == 3 m = a.sites_mod_positive() assert approx_equal(m.extract_sites(), [ (0.9,0.8,0.7), (0.8,0.7,0.6), (0.7,0.6,0.5)]) m[2].site = (0.7,0.6,1.4) # to avoid +-0.5 ambiguity m = m.sites_mod_short() assert approx_equal(m.extract_sites(), [ (-0.1,-0.2,-0.3), (-0.2,-0.3,-0.4), (-0.3,-0.4,0.4)]) # assert a.extract_grad_u_iso().all_eq(False) a[1].flags.set_grad_u_iso(state=True) assert list(a.extract_grad_u_iso()) == [False, True, False] def exercise_extract_u_cart_plus_u_iso(): from cctbx import uctbx, sgtbx, xray uc = uctbx.unit_cell((1,1,1)) sg = sgtbx.space_group_info("P 1") a = flex.xray_scatterer() assert a.size() == 0 s1 = xray.scatterer(label = "C", u = 0.1) s2 = xray.scatterer(label = "C", u = 0.1) s2.flags.set_use_u_iso(False) s3 = xray.scatterer(label = "C", u = (1,1,1,1,1,1)) s4 = xray.scatterer(label = "C", u = (1,1,1,1,1,1)) s4.flags.set_use_u_aniso(False) s5 = xray.scatterer(label = "C", u = 0.1) s5.u_star=(1,1,1,1,1,1) s5.flags.set_use_u_aniso(True) s6 = xray.scatterer(label = "C", u = 0.1) s6.u_star=(1,1,1,1,1,1) s7 = xray.scatterer(label = "C", u = (1,1,1,1,1,1)) s7.u_iso=0.1 s8 = xray.scatterer(label = "C", u = (1,1,1,1,1,1)) s8.u_iso=0.1 s8.flags.set_use_u_iso(True) s9 = xray.scatterer(label = "C") s10 = xray.scatterer(label = "C") s10.flags.set_use_u_iso(False) a = flex.xray_scatterer((s1,s2,s3,s4,s5,s6,s7,s8,s9,s10)) u_cart_total = a.extract_u_cart_plus_u_iso(uc) assert approx_equal(u_cart_total, [(0.1,0.1,0.1,0,0,0), (0,0,0,0,0,0), (1,1,1,1,1,1), (0,0,0,0,0,0), (1.1,1.1,1.1,1,1,1), (0.1,0.1,0.1,0,0,0), (1,1,1,1,1,1), (1.1,1.1,1.1,1,1,1), (0,0,0,0,0,0), (0,0,0,0,0,0)]) def run(): exercise_flex_miller_index() exercise_flex_hendrickson_lattman() exercise_flex_xray_scatterer() exercise_extract_u_cart_plus_u_iso() print("OK") if (__name__ == "__main__"): run()
desktop/core/ext-py/docutils-0.14/test/test_transforms/test___init__.py
kokosing/hue
5,079
12692377
#! /usr/bin/env python # $Id: test___init__.py 5174 2007-05-31 00:01:52Z wiemann $ # Author: <NAME> <<EMAIL>> # Copyright: This module has been placed in the public domain. """ Test module for transforms/__init__.py. """ from __init__ import DocutilsTestSupport # must be imported before docutils from docutils import transforms, utils import unittest class TestTransform(transforms.Transform): default_priority = 100 applied = 0 def apply(self, **kwargs): self.applied += 1 assert kwargs == {'foo': 42} class KwargsTestCase(unittest.TestCase): def test_kwargs(self): transformer = transforms.Transformer(utils.new_document('test data')) transformer.add_transform(TestTransform, foo=42) transformer.apply_transforms() self.assertEqual(len(transformer.applied), 1) self.assertEqual(len(transformer.applied[0]), 4) transform_record = transformer.applied[0] self.assertEqual(transform_record[1], TestTransform) self.assertEqual(transform_record[3], {'foo': 42}) if __name__ == '__main__': unittest.main()
tests/test_pybadges.py
wakatime/pybadges
368
12692381
# Copyright 2018 The pybadge Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for pybadges.""" import base64 import doctest import json import os.path import unittest import pathlib import sys import tempfile import xmldiff.main import pybadges TEST_DIR = os.path.dirname(__file__) PNG_IMAGE_B64 = ( 'iVBORw0KGgoAAAANSUhEUgAAAAIAAAACCAIAAAD91JpzAAAAD0lEQVQI12P4zw' 'AD/xkYAA/+Af8iHnLUAAAAAElFTkSuQmCC') PNG_IMAGE = base64.b64decode(PNG_IMAGE_B64) class TestPybadgesBadge(unittest.TestCase): """Tests for pybadges.badge.""" def test_docs(self): doctest.testmod(pybadges, optionflags=doctest.ELLIPSIS) def test_whole_link_and_left_link(self): with self.assertRaises(ValueError): pybadges.badge(left_text='foo', right_text='bar', left_link='http://example.com/', whole_link='http://example.com/') def test_changes(self): with open(os.path.join(TEST_DIR, 'test-badges.json'), 'r') as f: examples = json.load(f) for example in examples: file_name = example.pop('file_name') with self.subTest(example=file_name): filepath = os.path.join(TEST_DIR, 'golden-images', file_name) with open(filepath, mode="r", encoding="utf-8") as f: golden_image = f.read() pybadge_image = pybadges.badge(**example) diff = xmldiff.main.diff_texts(golden_image, pybadge_image) self.assertFalse(diff) class TestEmbedImage(unittest.TestCase): """Tests for pybadges._embed_image.""" def test_data_url(self): url = 'data:image/png;base64,' + PNG_IMAGE_B64 self.assertEqual(url, pybadges._embed_image(url)) def test_http_url(self): url = 'https://dev.w3.org/SVG/tools/svgweb/samples/svg-files/python.svg' self.assertRegex(pybadges._embed_image(url), r'^data:image/svg(\+xml)?;base64,') def test_not_image_url(self): with self.assertRaisesRegex(ValueError, 'expected an image, got "text"'): pybadges._embed_image('http://www.google.com/') @unittest.skipIf(sys.platform.startswith("win"), "requires Unix filesystem") def test_svg_file_path(self): image_path = os.path.abspath( os.path.join(TEST_DIR, 'golden-images', 'build-failure.svg')) self.assertRegex(pybadges._embed_image(image_path), r'^data:image/svg(\+xml)?;base64,') @unittest.skipIf(sys.platform.startswith("win"), "requires Unix filesystem") def test_png_file_path(self): with tempfile.NamedTemporaryFile() as png: png.write(PNG_IMAGE) png.flush() self.assertEqual(pybadges._embed_image(png.name), 'data:image/png;base64,' + PNG_IMAGE_B64) @unittest.skipIf(sys.platform.startswith("win"), "requires Unix filesystem") def test_unknown_type_file_path(self): with tempfile.NamedTemporaryFile() as non_image: non_image.write(b'Hello') non_image.flush() with self.assertRaisesRegex(ValueError, 'not able to determine file type'): pybadges._embed_image(non_image.name) @unittest.skipIf(sys.platform.startswith("win"), "requires Unix filesystem") def test_text_file_path(self): with tempfile.NamedTemporaryFile(suffix='.txt') as non_image: non_image.write(b'Hello') non_image.flush() with self.assertRaisesRegex(ValueError, 'expected an image, got "text"'): pybadges._embed_image(non_image.name) def test_file_url(self): image_path = os.path.abspath( os.path.join(TEST_DIR, 'golden-images', 'build-failure.svg')) with self.assertRaisesRegex(ValueError, 'unsupported scheme "file"'): pybadges._embed_image(pathlib.Path(image_path).as_uri()) if __name__ == '__main__': unittest.main()
backend/src/utils/alru_cache.py
rutvikpadhiyar000/github-trends
157
12692424
<reponame>rutvikpadhiyar000/github-trends from datetime import datetime, timedelta from functools import wraps from typing import Any, Callable, Dict, List, Tuple # NOTE: return flag = False to avoid caching # considers one optional parameter, no_cache # if true, bypass cache system, otherwise use normally def alru_cache(max_size: int = 128, ttl: timedelta = timedelta(minutes=1)): def decorator(func: Callable[..., Any]) -> Any: cache: Dict[Any, Tuple[datetime, Any]] = {} keys: List[Any] = [] def in_cache(key: Any) -> bool: # key not in cache if key not in cache: return False # key in cache but expired if datetime.now() - cache[key][0] > ttl: return False # key in cache and not expired return True def update_cache_and_return(key: Any, flag: bool, value: Any) -> Any: # if flag = False, do not update cache and return value if not flag: return value # if flag = True, update cache now = datetime.now() cache[key] = (now, value) keys.append(key) # remove oldest key if cache is full if len(keys) > max_size: del cache[keys.pop(0)] # return value from cache return cache[key][1] @wraps(func) async def wrapper(*args: List[Any], **kwargs: Dict[str, Any]) -> Any: key = tuple(args), frozenset( {k: v for k, v in kwargs.items() if k not in ["no_cache"]} ) if "no_cache" in kwargs and kwargs["no_cache"]: (flag, value) = await func(*args, **kwargs) return update_cache_and_return(key, flag, value) if in_cache(key): return cache[key][1] (flag, value) = await func(*args, **kwargs) return update_cache_and_return(key, flag, value) return wrapper return decorator
PhysicsTools/PatAlgos/python/slimming/genParticleAssociation_cff.py
malbouis/cmssw
852
12692426
<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms import SimTracker.TrackAssociation.packedCandidatesGenAssociationDefault_cfi as _mod packedPFCandidateToGenAssociation = _mod.packedCandidatesGenAssociationDefault.clone( trackToGenAssoc = "prunedTrackMCMatch", ) lostTracksToGenAssociation = _mod.packedCandidatesGenAssociationDefault.clone( trackToGenAssoc = "prunedTrackMCMatch", trackToPackedCandidatesAssoc = "lostTracks" ) packedCandidateToGenAssociationTask = cms.Task(packedPFCandidateToGenAssociation,lostTracksToGenAssociation)
qiskit/algorithms/minimum_eigen_solvers/numpy_minimum_eigen_solver.py
Roshan-Thomas/qiskit-terra
1,599
12692431
<filename>qiskit/algorithms/minimum_eigen_solvers/numpy_minimum_eigen_solver.py # This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """The Numpy Minimum Eigensolver algorithm.""" from typing import List, Optional, Union, Callable import logging import numpy as np from qiskit.opflow import OperatorBase from ..eigen_solvers.numpy_eigen_solver import NumPyEigensolver from .minimum_eigen_solver import MinimumEigensolver, MinimumEigensolverResult, ListOrDict logger = logging.getLogger(__name__) class NumPyMinimumEigensolver(MinimumEigensolver): """ The Numpy Minimum Eigensolver algorithm. """ def __init__( self, filter_criterion: Callable[ [Union[List, np.ndarray], float, Optional[ListOrDict[float]]], bool ] = None, ) -> None: """ Args: filter_criterion: callable that allows to filter eigenvalues/eigenstates. The minimum eigensolver is only searching over feasible states and returns an eigenstate that has the smallest eigenvalue among feasible states. The callable has the signature `filter(eigenstate, eigenvalue, aux_values)` and must return a boolean to indicate whether to consider this value or not. If there is no feasible element, the result can even be empty. """ self._ces = NumPyEigensolver(filter_criterion=filter_criterion) self._ret = MinimumEigensolverResult() @property def filter_criterion( self, ) -> Optional[Callable[[Union[List, np.ndarray], float, Optional[ListOrDict[float]]], bool]]: """returns the filter criterion if set""" return self._ces.filter_criterion @filter_criterion.setter def filter_criterion( self, filter_criterion: Optional[ Callable[[Union[List, np.ndarray], float, Optional[ListOrDict[float]]], bool] ], ) -> None: """set the filter criterion""" self._ces.filter_criterion = filter_criterion @classmethod def supports_aux_operators(cls) -> bool: return NumPyEigensolver.supports_aux_operators() def compute_minimum_eigenvalue( self, operator: OperatorBase, aux_operators: Optional[ListOrDict[OperatorBase]] = None ) -> MinimumEigensolverResult: super().compute_minimum_eigenvalue(operator, aux_operators) result_ces = self._ces.compute_eigenvalues(operator, aux_operators) self._ret = MinimumEigensolverResult() if result_ces.eigenvalues is not None and len(result_ces.eigenvalues) > 0: self._ret.eigenvalue = result_ces.eigenvalues[0] self._ret.eigenstate = result_ces.eigenstates[0] if result_ces.aux_operator_eigenvalues: self._ret.aux_operator_eigenvalues = result_ces.aux_operator_eigenvalues[0] logger.debug("MinimumEigensolver:\n%s", self._ret) return self._ret
src/postings/admin.py
zhuguangjun2002/REST-API-Basics-JWT
206
12692441
from django.contrib import admin from .models import BlogPost admin.site.register(BlogPost)
data/tss_dataset.py
Arka161/cnngeometric_pytorch
262
12692456
from __future__ import print_function, division import os import torch from torch.autograd import Variable from skimage import io import pandas as pd import numpy as np from torch.utils.data import Dataset from geotnf.transformation import GeometricTnf from geotnf.flow import read_flo_file class TSSDataset(Dataset): """ TSS image pair dataset http://taniai.space/projects/cvpr16_dccs/ Args: csv_file (string): Path to the csv file with image names and annotation files. dataset_path (string): Directory with the images. output_size (2-tuple): Desired output size transform (callable): Transformation for post-processing the training pair (eg. image normalization) """ def __init__(self, csv_file, dataset_path,output_size=(240,240),transform=None): self.out_h, self.out_w = output_size self.pairs = pd.read_csv(csv_file) self.img_A_names = self.pairs.iloc[:,0] self.img_B_names = self.pairs.iloc[:,1] self.flow_direction = self.pairs.iloc[:, 2].values.astype('int') self.flip_img_A = self.pairs.iloc[:, 3].values.astype('int') self.pair_category = self.pairs.iloc[:, 4].values.astype('int') self.dataset_path = dataset_path self.transform = transform # no cuda as dataset is called from CPU threads in dataloader and produces confilct self.affineTnf = GeometricTnf(out_h=self.out_h, out_w=self.out_w, use_cuda = False) def __len__(self): return len(self.pairs) def __getitem__(self, idx): # get pre-processed images flip_img_A = self.flip_img_A[idx] image_A,im_size_A = self.get_image(self.img_A_names,idx,flip_img_A) image_B,im_size_B = self.get_image(self.img_B_names,idx) # get flow output path flow_path = self.get_GT_flow_relative_path(idx) sample = {'source_image': image_A, 'target_image': image_B, 'source_im_size': im_size_A, 'target_im_size': im_size_B, 'flow_path': flow_path} # # get ground-truth flow # flow = self.get_GT_flow(idx) # sample = {'source_image': image_A, 'target_image': image_B, 'source_im_size': im_size_A, 'target_im_size': im_size_B, 'flow_GT': flow} if self.transform: sample = self.transform(sample) return sample def get_image(self,img_name_list,idx,flip=False): img_name = os.path.join(self.dataset_path, img_name_list[idx]) image = io.imread(img_name) # if grayscale convert to 3-channel image if image.ndim==2: image=np.repeat(np.expand_dims(image,2),axis=2,repeats=3) # flip horizontally if needed if flip: image=np.flip(image,1) # get image size im_size = np.asarray(image.shape) # convert to torch Variable image = np.expand_dims(image.transpose((2,0,1)),0) image = torch.Tensor(image.astype(np.float32)) image_var = Variable(image,requires_grad=False) # Resize image using bilinear sampling with identity affine tnf image = self.affineTnf(image_var).data.squeeze(0) im_size = torch.Tensor(im_size.astype(np.float32)) return (image, im_size) def get_GT_flow(self,idx): img_folder = os.path.dirname(self.img_A_names[idx]) flow_dir = self.flow_direction[idx] flow_file = 'flow'+str(flow_dir)+'.flo' flow_file_path = os.path.join(self.dataset_path, img_folder , flow_file) flow = torch.FloatTensor(read_flo_file(flow_file_path)) return flow def get_GT_flow_relative_path(self,idx): img_folder = os.path.dirname(self.img_A_names[idx]) flow_dir = self.flow_direction[idx] flow_file = 'flow'+str(flow_dir)+'.flo' flow_file_path = os.path.join(img_folder , flow_file) return flow_file_path
formiko/__main__.py
benburrill/formiko
116
12692557
from formiko.main import main exit(main())
rest-service/manager_rest/deployment_update/validator.py
TS-at-WS/cloudify-manager
124
12692567
<reponame>TS-at-WS/cloudify-manager ######### # Copyright (c) 2016 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. from manager_rest.deployment_update import utils from manager_rest.storage import models, get_node from manager_rest.manager_exceptions import UnknownModificationStageError from manager_rest.deployment_update.constants import ENTITY_TYPES, ACTION_TYPES OUTPUT_ENTITY_LEN = 2 WORKFLOW_ENTITY_LEN = 2 OPERATION_ENTITY_LEN = 2 PROPERTY_ENTITY_LEN = 2 RELATIONSHIP_ENTITY_LEN = 4 NODE_ENTITY_LEN = 2 class EntityValidatorBase(object): def __init__(self, sm): self.sm = sm self._validation_mapper = { ACTION_TYPES.ADD: self._validate_add, ACTION_TYPES.MODIFY: self._validate_modify, ACTION_TYPES.REMOVE: self._validate_remove } def validate(self, dep_update, step): try: self._validate_entity(dep_update, step) except UnknownModificationStageError as e: entity_identifier_msg = \ "Entity type {0} with entity id {1}".format(step.entity_type, step.entity_id) err_msg = "{0}: {1}".format(entity_identifier_msg, e.message) raise UnknownModificationStageError(err_msg) def _validate_entity(self, dep_update, step): raise NotImplementedError def _in_old(self, *args, **kwargs): raise NotImplementedError def _in_new(self, *args, **kwargs): raise NotImplementedError def _validate_add(self, entity_id, entity_type, **kwargs): if not (self._in_new(**kwargs) and not self._in_old(**kwargs)): raise UnknownModificationStageError( "The entity either doesn't exist in the deployment update " "blueprint or exists in the original deployment blueprint") def _validate_modify(self, entity_id, entity_type, **kwargs): if not (self._in_new(**kwargs) and self._in_old(**kwargs)): raise UnknownModificationStageError( "The entity either doesn't exist in the deployment update " "blueprint or it doesn't exists in the original deployment " "blueprint") def _validate_remove(self, entity_id, entity_type, **kwargs): if not (not self._in_new(**kwargs) and self._in_old(**kwargs)): raise UnknownModificationStageError( "The entity either exists in the deployment update blueprint " "or doesn't exists in the original deployment blueprint") def _get_storage_node(self, deployment_id, node_id): node = get_node(deployment_id, node_id) return node.to_dict() if node else {} class NodeValidator(EntityValidatorBase): def _validate_entity(self, dep_update, step): entity_keys = utils.get_entity_keys(step.entity_id) if len(entity_keys) != NODE_ENTITY_LEN: return _, node_id = entity_keys validate = self._validation_mapper[step.action] return validate(step.entity_id, step.entity_type, dep_update=dep_update, node_id=node_id) def _in_old(self, dep_update, node_id): storage_node = self._get_storage_node(dep_update.deployment_id, node_id) return bool(storage_node) def _in_new(self, dep_update, node_id): raw_node = utils.get_raw_node(dep_update.deployment_plan, node_id) return bool(raw_node) class RelationshipValidator(EntityValidatorBase): def _validate_entity(self, dep_update, step): entity_keys = utils.get_entity_keys(step.entity_id) if len(entity_keys) < RELATIONSHIP_ENTITY_LEN: return _, source_node_id, relationships, source_relationship_index = \ entity_keys[:RELATIONSHIP_ENTITY_LEN] target_relationship_index = entity_keys[RELATIONSHIP_ENTITY_LEN] \ if len(entity_keys) > RELATIONSHIP_ENTITY_LEN else None # assert the index is indeed readable source_relationship_index = utils.parse_index( source_relationship_index) target_relationship_index = utils.parse_index( target_relationship_index) if not (source_relationship_index or target_relationship_index): return validate = self._validation_mapper[step.action] return validate(step.entity_id, step.entity_type, dep_update=dep_update, source_node_id=source_node_id, relationships=relationships, source_relationship_index=source_relationship_index, target_relationship_index=target_relationship_index) def _in_new(self, dep_update, source_node_id, relationships, source_relationship_index, target_relationship_index): source_node = utils.get_raw_node(dep_update.deployment_plan, source_node_id) if not (source_node and len(source_node[relationships]) > source_relationship_index): return target_node_id = \ source_node[relationships][source_relationship_index]['target_id'] raw_target_node = utils.get_raw_node(dep_update.deployment_plan, target_node_id) return raw_target_node def _in_old(self, dep_update, source_node_id, relationships, source_relationship_index, target_relationship_index): source_node = self._get_storage_node(dep_update.deployment_id, source_node_id) if not (source_node and len(source_node[relationships]) > target_relationship_index): return target_node_id = \ source_node[relationships][target_relationship_index]['target_id'] storage_target_node = self._get_storage_node(dep_update.deployment_id, target_node_id) return storage_target_node class PropertyValidator(EntityValidatorBase): def _validate_entity(self, dep_update, step): property_keys = utils.get_entity_keys(step.entity_id) if len(property_keys) < PROPERTY_ENTITY_LEN: return _, node_id = property_keys[:PROPERTY_ENTITY_LEN] property_id = property_keys[PROPERTY_ENTITY_LEN:] validate = self._validation_mapper[step.action] return validate(step.entity_id, step.entity_type, dep_update=dep_update, node_id=node_id, property_id=property_id) @staticmethod def _in_new(dep_update, node_id, property_id): raw_node = utils.get_raw_node(dep_update.deployment_plan, node_id) return utils.traverse_object(raw_node, property_id) is not None def _in_old(self, dep_update, node_id, property_id): storage_node = self._get_storage_node(dep_update.deployment_id, node_id) return utils.traverse_object(storage_node, property_id) is not None class OperationValidator(EntityValidatorBase): def _validate_entity(self, dep_update, step): operation_keys = utils.get_entity_keys(step.entity_id) if len(operation_keys) < OPERATION_ENTITY_LEN: return _, node_id = operation_keys[:OPERATION_ENTITY_LEN] operation_id = operation_keys[OPERATION_ENTITY_LEN:] validate = self._validation_mapper[step.action] return validate(step.entity_id, step.entity_type, dep_update=dep_update, node_id=node_id, operation_id=operation_id) def _in_new(self, dep_update, node_id, operation_id): raw_node = utils.get_raw_node(dep_update.deployment_plan, node_id) return utils.traverse_object(raw_node, operation_id) is not None def _in_old(self, dep_update, node_id, operation_id): storage_node = self._get_storage_node(dep_update.deployment_id, node_id) return utils.traverse_object(storage_node, operation_id) is not None class WorkflowValidator(EntityValidatorBase): def _validate_entity(self, dep_update, step): workflow_keys = utils.get_entity_keys(step.entity_id) if len(workflow_keys) < WORKFLOW_ENTITY_LEN: return workflows = workflow_keys[0] workflow_id = workflow_keys[1:] validate = self._validation_mapper[step.action] return validate(step.entity_id, step.entity_type, dep_update=dep_update, workflow_id=workflow_id, workflows=workflows) @staticmethod def _in_new(dep_update, workflow_id, workflows): raw_workflows = dep_update.deployment_plan[workflows] return utils.traverse_object(raw_workflows, workflow_id) is not None def _in_old(self, dep_update, workflow_id, workflows): deployment = self.sm.get(models.Deployment, dep_update.deployment_id) storage_workflows = deployment.workflows or {} return utils.traverse_object(storage_workflows, workflow_id) is not None class OutputValidator(EntityValidatorBase): def _validate_entity(self, dep_update, step): output_keys = utils.get_entity_keys(step.entity_id) if len(output_keys) < OUTPUT_ENTITY_LEN: return outputs = output_keys[0] output_id = output_keys[1:] validate = self._validation_mapper[step.action] return validate(step.entity_id, step.entity_type, dep_update=dep_update, output_id=output_id, outputs=outputs) @staticmethod def _in_new(dep_update, output_id, outputs): raw_outputs = dep_update.deployment_plan[outputs] return utils.traverse_object(raw_outputs, output_id) is not None def _in_old(self, dep_update, output_id, outputs): deployment = self.sm.get(models.Deployment, dep_update.deployment_id) storage_outputs = deployment.outputs or {} return utils.traverse_object(storage_outputs, output_id) is not None class DescriptionValidator(EntityValidatorBase): def _validate_entity(self, dep_update, step): description_key = step.entity_id validate = self._validation_mapper[step.action] return validate(step.entity_id, step.entity_type, dep_update=dep_update, description_key=description_key) def _in_new(self, dep_update, description_key): raw_description = dep_update.deployment_plan[description_key] return bool(raw_description) def _in_old(self, dep_update, description_key): deployment = self.sm.get(models.Deployment, dep_update.deployment_id) storage_description = deployment.description or {} return bool(storage_description) class StepValidator(object): def __init__(self, sm): self._validation_mapper = { ENTITY_TYPES.NODE: NodeValidator(sm), ENTITY_TYPES.RELATIONSHIP: RelationshipValidator(sm), ENTITY_TYPES.PROPERTY: PropertyValidator(sm), ENTITY_TYPES.OPERATION: OperationValidator(sm), ENTITY_TYPES.WORKFLOW: WorkflowValidator(sm), ENTITY_TYPES.OUTPUT: OutputValidator(sm), ENTITY_TYPES.DESCRIPTION: DescriptionValidator(sm) } def validate(self, dep_update, step): """ validate an entity id of provided type exists in provided blueprint. raises error if id doesn't exist :param dep_update: the deployment update object. :param step: the deployment update step object :return: None """ if step.entity_type in ENTITY_TYPES: self._validation_mapper[step.entity_type].validate(dep_update, step)
examples/werkzeug_server.py
bcb/jsonrpcserver
144
12692571
<reponame>bcb/jsonrpcserver from jsonrpcserver import method, Result, Success, dispatch from werkzeug.serving import run_simple from werkzeug.wrappers import Request, Response @method def ping() -> Result: return Success("pong") @Request.application def application(request): return Response(dispatch(request.data.decode()), 200, mimetype="application/json") if __name__ == "__main__": run_simple("localhost", 5000, application)
panoramix/utils/supplement.py
git-github-com-warren1990-Github-git/panoramix
259
12692610
import json import logging import lzma import os import sqlite3 import sys import time import urllib.request from pathlib import Path from zipfile import ZipFile from panoramix.utils.helpers import ( COLOR_BLUE, COLOR_BOLD, COLOR_GRAY, COLOR_GREEN, COLOR_HEADER, COLOR_OKGREEN, COLOR_UNDERLINE, COLOR_WARNING, ENDC, FAIL, cache_dir, cached, opcode, ) """ a module for management of bytes4 signatures from the database db schema: hash - 0x12345678 name - transferFrom folded_name - transferFrom(address,address,uint256) cooccurs - comma-dellimeted list of hashes: `0x12312312,0xabababab...` params - json: `[ { "type": "address", "name": "_from" }, { "type": "address", "name": "_to" }, { "type": "uint256", "name": "_value" } ]` """ logger = logging.getLogger(__name__) conn = None def supplements_path(): return cache_dir() / "supplement.db" def check_supplements(): panoramix_supplements = supplements_path() if not panoramix_supplements.is_file(): compressed_supplements = ( Path(__file__).parent.parent / "data" / "supplement.db.xz" ) logger.info( "Decompressing %s into %s...", compressed_supplements, panoramix_supplements ) with lzma.open(compressed_supplements) as inf, panoramix_supplements.open( "wb" ) as outf: while (buf := inf.read(1024 * 1024)) : outf.write(buf) assert panoramix_supplements.is_file() def _cursor(): global conn check_supplements() if conn is None: conn = sqlite3.connect(supplements_path()) # try: c = conn.cursor() # except Exception: # # fails in multi-threading, this should help # conn = sqlite3.connect("supplement.db") # return conn.cursor() return c @cached def fetch_sigs(hash): c = _cursor() c.execute("SELECT * from functions where hash=?", (hash,)) results = c.fetchall() res = [] for row in results: res.append( { "hash": row[0], "name": row[1], "folded_name": row[2], "params": json.loads(row[3]), "cooccurs": row[4].split(","), } ) return res @cached def fetch_sig(hash): if type(hash) == str: hash = int(hash, 16) hash = "{:#010x}".format(hash) c = _cursor() c.execute( "SELECT hash, name, folded_name, params, cooccurs from functions where hash=?", (hash,), ) results = c.fetchall() if len(results) == 0: return None # Take the one that cooccurs with the most things, it's probably the most relevant. row = max(results, key=lambda row: len(row[4])) return { "hash": hash, "name": row[1], "folded_name": row[2], "params": json.loads(row[3]), } """ Abi crawler and parser. used to refill supplement.py with new ABI/func definitions. It's used by scripts that are not a part of panoramix repo. The function is here, so people wanting to parse ABIs on their own can use parse_insert_abi implementation as a reference. It handles some unobvious edge-cases, like arrays of tuples. """ def crawl_abis_from_cache(): # imports here, because this is not used as a part of a regular panoramix run, # and we don't want to import stuff unnecessarily. import json import os import re import sqlite3 import sys import time import urllib import urllib.request try: from web3 import Web3 except Exception: print( "install web3:\n\t`pip install web3`" ) # the only dependency in the project :D conn = sqlite3.connect("supplement.db") cursor = conn.cursor() conn2 = sqlite3.connect("supp2.db") cursor2 = conn2.cursor() def parse_insert_abi(abi): def parse_inputs(func_inputs): inputs = [] params = [] param_counter = 0 for r in func_inputs: param_counter += 1 type_ = r["type"] name_ = r["name"] if len(name_) == 0: name_ = "param" + str(param_counter) if name_[0] != "_": name_ = "_" + name_ params.append({"type": r["type"], "name": name_}) if "tuple" not in type_: inputs.append(type_) else: type_ = f"({parse_inputs(r['components'])[0]})" + type_[5:] inputs.append(type_) return ",".join(inputs), params output = {} for func in abi: if func["type"] in ["constructor", "fallback"]: continue inputs, params = parse_inputs(func["inputs"]) fname = f"{func['name']}({inputs})" sha3 = Web3.sha3(text=fname).hex()[:10] if sha3 in output: print("double declaration for the same hash! {}".format(fname)) continue output[sha3] = { "name": func["name"], "folded_name": fname, "params": params, } for sha3, row in output.items(): row["cooccurs"] = list(output.keys()) insert_row = ( sha3, row["name"], row["folded_name"], json.dumps(row["params"]), ",".join(row["cooccurs"]), ) insert_row2 = ( int(sha3, 16), row["name"], row["folded_name"], json.dumps(row["params"]), ) test_hash, test_cooccurs = insert_row[0], insert_row[4] cursor.execute( "SELECT * from functions where hash=? and cooccurs=?", (test_hash, test_cooccurs), ) results = cursor.fetchall() if len(results) == 0: print("inserting", sha3, row["folded_name"]) cursor.execute( "INSERT INTO functions VALUES (?, ?, ?, ?, ?)", insert_row ) conn.commit() cursor2.execute("SELECT * from functions where hash=?", (insert_row2[0],)) results = cursor2.fetchall() if len(results) == 0: print("inserting2", sha3, row["folded_name"]) cursor2.execute( "INSERT INTO functions VALUES (?, ?, ?, ?)", insert_row2 ) conn2.commit() def crawl_cache(): idx = 0 path = "./cache_abis/" if not os.path.isdir(path): print( "dir cache_abis doesn't exist. it should be there and it should contain abi files" ) return for fname in os.listdir(path): address = fname[:-4] fname = path + fname idx += 1 print(idx, address) with open(fname) as f: abi = json.loads(f.read()) parse_insert_abi(abi) crawl_cache()
flexneuart/io/utils.py
gitter-badger/FlexNeuART
101
12692651
# # Copyright 2014+ Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import gzip, bz2 import json import re import os import tempfile from flexneuart.config import DOCID_FIELD def create_temp_file(): """"Create a temporary file :return temporary file name """ f, file_name = tempfile.mkstemp() os.close(f) return file_name class FileWrapper: def __enter__(self): return self def __init__(self, file_name, flags='r'): """Constructor, which opens a regular or gzipped-file :param file_name a name of the file, it has a '.gz' or '.bz2' extension, we open a compressed stream. :param flags open flags such as 'r' or 'w' """ dir_name = os.path.dirname(file_name) if dir_name: os.makedirs(dir_name, exist_ok=True) if file_name.endswith('.gz'): self._file = gzip.open(file_name, flags) self._is_compr = True elif file_name.endswith('.bz2'): self._file = bz2.open(file_name, flags) self._is_compr = True else: self._file = open(file_name, flags) self._is_compr = False def write(self, s): if self._is_compr: self._file.write(s.encode()) else: self._file.write(s) def read(self, qty): if self._is_compr: return self._file.read(qty).decode() else: return self._file.read(qty) def close(self): self._file.close() def __exit__(self, type, value, tb): self._file.close() def __iter__(self): for line in self._file: yield line.decode() if self._is_compr else line def jsonl_gen(file_name): """A generator that produces parsed doc/query entries one by one. :param file_name: an input file name """ with FileWrapper(file_name) as f: for i, line in enumerate(f): ln = i + 1 line = line.strip() if not line: continue try: data = json.loads(line) except: raise Exception('Error parsing JSON in line: %d' % ln) if not DOCID_FIELD in data: raise Exception('Missing %s field in JSON in line: %d' % (DOCID_FIELD, ln)) yield data def multi_file_linegen(dir_name, pattern): """A generator that reads all files from a given directory matching the pattern and yields their contents line by line. :param dir_name: a source directory name :param pattern: a pattern should match fully (we use fullmatch) """ for fn in os.listdir(dir_name): if re.fullmatch(pattern, fn): full_path = os.path.join(dir_name, fn) print('Processing: ' + full_path) with FileWrapper(full_path) as inp: for line in inp: yield line
data/fbms_data_utils.py
FilippoAleotti/unsupervised_detection
194
12692655
<reponame>FilippoAleotti/unsupervised_detection """ This File implements the data reader for the FBMS59 Dataset. See the file davis2016_data_utils.py for a more detailed documentation of the functions. The main difference with respect to DAVIS2016 is the fact that the data reader returns the number of images per category (used to explain away the large class imbalance of this dataset in score computation). After the first use, you can speed up the code by commenting pre-processing away (See line 109). """ import numpy as np import os import cv2 import re import tensorflow as tf from data.aug_flips import random_flip_images class DirectoryIterator(object): """ Class for managing data loading.of images and labels We assume that the folder structure is: """ def __init__(self, directory, part='train', for_testing=False, test_temporal_t=1): self.directory = directory self.num_experiments = 0 self.samples_per_cat = {} parsing_dir ={'train': ['Trainingset'], 'val' : ['Testset'], 'trainval': ['Trainingset', 'Testset']} data_dirs = [os.path.join(directory, d) for d in parsing_dir.get(part)] for d in data_dirs: if not os.path.isdir(d): raise IOError("Directory {} file not found".format(d)) # First count how many experiments are out there self.samples = 0 # Each filename is a tuple image / components self.image_filenames = [] self.annotation_filenames = [] for d in data_dirs: if for_testing: self._parse_testtime_dir(d, test_temporal_t) else: self._parse_data_dir(d) if self.samples == 0: raise IOError("Did not find any file in the dataset folder") if not for_testing: self.num_experiments = len(self.image_filenames) print('Found {} images belonging to {} experiments.'.format( self.samples, self.num_experiments)) def _parse_data_dir(self, data_dir): """ This function will read all the files in data_dir and return a list of lists containing the different fnames for each category. """ categories = os.listdir(data_dir) for folder_name in categories: all_fnames_list_fname = os.path.join(data_dir, folder_name, folder_name + ".bmf") if not os.path.isfile(all_fnames_list_fname): raise IOError("Not found file {}".format(all_fnames_list_fname)) all_fnames_list = np.loadtxt(all_fnames_list_fname, dtype=np.str, skiprows=1) # Correct from pgm to jpg all_fnames_list = [f.split('.')[0]+'.jpg' for f in all_fnames_list] all_fnames_list = [os.path.join(data_dir, folder_name, f) for f \ in all_fnames_list] self.samples += len(all_fnames_list) # Append the last self.image_filenames.append(all_fnames_list) def _parse_testtime_dir(self, data_dir, test_temporal_t=1): """ This function will read all the files in data_dir and return a list of lists containing the different fnames for each category. """ self.test_tuples = [] categories = os.listdir(data_dir) for folder_name in categories: all_fnames_list_fname = os.path.join(data_dir, folder_name, folder_name + ".bmf") if not os.path.isfile(all_fnames_list_fname): raise IOError("Not found file {}".format(all_fnames_list_fname)) all_fnames_list = np.loadtxt(all_fnames_list_fname, dtype=np.str, skiprows=1) # Correct from pgm to jpg all_fnames_list = [f.split('.')[0]+'.jpg' for f in all_fnames_list] all_fnames_list = [os.path.join(data_dir, folder_name, f) for f \ in all_fnames_list] # Get ground_truth annotation_fnames, numbers, type_weird = self.find_gt(os.path.join(data_dir, folder_name, 'GroundTruth')) goal_annotation_fnames = [f.split('.')[0] + '.jpg' for f in annotation_fnames] goal_annotation_fnames = [os.path.join(data_dir, folder_name, 'GroundTruth', f) for f \ in goal_annotation_fnames] # NOTE: Run the commented part only once to preprocess GT annotation_fnames = [os.path.join(data_dir, folder_name, 'GroundTruth', f) for f \ in annotation_fnames] for i in range(len(goal_annotation_fnames)): mask = cv2.imread(annotation_fnames[i]) mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) mask = mask / 255.0 if type_weird: mask[mask>0.99] = 0.0 if 'marple7' == folder_name: mask = mask>0.05 elif 'marple2' == folder_name: mask = mask>0.4 else: mask = mask>0.1 mask = np.asarray(mask*255, dtype=np.uint8) cv2.imwrite(goal_annotation_fnames[i], mask) # Create offsets numbers = np.array(numbers) - np.min(numbers) seq_len = np.max(numbers) offsets = numbers + test_temporal_t if offsets[0] < numbers[0]: # test was negative, needs to increase: offsets[0] += 2*abs(test_temporal_t) if offsets[-1] > numbers[-1]: # test was positive, needs to decrease: offsets[-1] -= 2*abs(test_temporal_t) for i in range(len(offsets)): offsets[i] = np.maximum(offsets[i], 0) offsets[i] = np.minimum(offsets[i], seq_len) for i, k in enumerate(numbers): self.test_tuples.append((all_fnames_list[k], all_fnames_list[offsets[i]], goal_annotation_fnames[i], "{}".format(len(annotation_fnames)))) self.samples += len(annotation_fnames) self.samples_per_cat[folder_name] = len(annotation_fnames) self.num_experiments+=1 def find_gt(self, directory): all_files = os.listdir(directory) # Check in which kind of folder you are type_weird=False for file in all_files: if file.endswith('ppm'): type_weird=True break if not type_weird: all_files = [file for file in all_files if file.endswith('pgm')] # Sort them try: all_files = sorted(all_files, key=lambda x: int(x.split('.')[0].split('_')[-1])) numbers = [int(file.split('.')[0].split('_')[-1]) for file in all_files] except: all_files = sorted(all_files, key=lambda x: int(re.search(r'\d+', x).group())) numbers = [int(re.search(r'\d+', file).group()) for file in all_files] return all_files, numbers, type_weird # Solve weird type all_files = [file for file in all_files if file.endswith('ppm') and not 'PROB' in file] all_files = sorted(all_files, key=lambda x: int(x.split('_')[1])) numbers = [int(file.split('_')[1]) for file in all_files] return all_files, numbers, type_weird class FBMS59Reader(object): def __init__(self, root_dir, max_temporal_len=3, min_temporal_len=2, num_threads=6): self.root_dir = root_dir self.max_temporal_len = max_temporal_len self.min_temporal_len = min_temporal_len assert min_temporal_len < max_temporal_len, "Temporal lenghts are not consistent" assert min_temporal_len > 0, "Min temporal len should be positive" self.num_threads = num_threads def get_filenames_list(self, partition): iterator = DirectoryIterator(self.root_dir, partition) filenames, annotation_filenames = iterator.image_filenames, \ iterator.annotation_filenames #Training calls it before, so it will be overwritten self.val_samples = iterator.samples return filenames, annotation_filenames def get_test_tuples(self, partition, test_temporal_t=1): iterator = DirectoryIterator(self.root_dir, partition, for_testing=True, test_temporal_t=test_temporal_t) test_tuples = iterator.test_tuples #Training calls it before, so it will be overwritten self.val_samples = iterator.samples self.samples_per_cat = iterator.samples_per_cat self.num_categories = len(iterator.samples_per_cat.keys()) return test_tuples def preprocess_image(self, img): orig_width = 640 orig_height = 384 img = ( tf.cast(img,tf.float32) / tf.constant(255.0) ) - 0.5 img = tf.image.resize_images(img, [orig_height, orig_width]) return img def preprocess_mask(self, mask): orig_width = 640 orig_height = 384 mask = (tf.cast(mask,tf.float32) / tf.constant(255.0)) mask = tf.image.resize_images(mask, [orig_height, orig_width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) return mask def random_crop_image_pair(self, image_1, image_2, max_cropping_percent=0.9): ''' Produces an (equal) random crop for image_1 and image_2 that is at minimum max_cropping_percent smaller than the original image. The resulting patch is then reshaped to original size ''' rand = tf.random_uniform(shape=[], minval=0, maxval=1, dtype=tf.float32) cropping_percent = max_cropping_percent + rand*(1-max_cropping_percent) image_width = image_1.get_shape().as_list()[1] image_height = image_1.get_shape().as_list()[0] num_channels = image_1.get_shape().as_list()[2] crop_width = tf.cast(image_width*cropping_percent, tf.int32) crop_height = tf.cast(image_height*cropping_percent, tf.int32) image_c = tf.concat((image_1, image_2), axis=-1) image_c = tf.random_crop(image_c, size=[crop_height, crop_width, num_channels*2]) image_c.set_shape([None, None, num_channels*2]) # Resize image_c = tf.image.resize_images(image_c, [image_height, image_width]) image_1 = image_c[:,:,:3] image_2 = image_c[:,:,3:6] return image_1, image_2 def central_cropping(self, img, cropping_percent): orig_height, orig_width = img.get_shape().as_list()[0:2] img = tf.image.central_crop(img, cropping_percent) img = tf.image.resize_images(img, [orig_height, orig_width]) return img def augment_pair(self, image_1, image_2): # Random flips image_1, image_2 = random_flip_images(image_1, image_2) image_1, image_2 = self.random_crop_image_pair(image_1, image_2, self.train_crop) return image_1, image_2 def dataset_map(self, input_queue): fname_number, direction = input_queue[0], input_queue[1] # Take care with the casting when sampling!! t_shift = tf.random_uniform(shape=[], minval=self.min_temporal_len, maxval=self.max_temporal_len+1, dtype=tf.int32) t_shift = tf.cast(t_shift, dtype=tf.float32) img2_fname_number = t_shift * direction + fname_number # Conversions fname_number = tf.cast(fname_number, dtype=tf.int32) img2_fname_number = tf.cast(img2_fname_number, dtype=tf.int32) # Reading fname_1 = tf.gather(self.filenames, fname_number) fname_2 = tf.gather(self.filenames, img2_fname_number) file_content = tf.read_file(fname_1) image_1 = tf.image.decode_jpeg(file_content, channels=3) image_1 = self.preprocess_image(image_1) file_content = tf.read_file(fname_2) image_2 = tf.image.decode_jpeg(file_content, channels=3) image_2 = self.preprocess_image(image_2) # Data augmentation image_1, image_2 = self.augment_pair(image_1, image_2) return image_1, image_2 def image_inputs(self, batch_size=32, partition='train', train_crop=1.0): # Generates input batches for FBMS dataset. t_len = self.max_temporal_len file_list, _ = self.get_filenames_list(partition) self.train_crop = train_crop # Accumulates subsequent filenames, and makes a dataset with # end-points. N = 0 last_fname_numbers = [] # Will be used to calculate flow backward first_fname_numbers = [] # Will be used to calculate flow forward for fnames in file_list: last_fname_numbers.append(np.arange(N + t_len, N + len(fnames), dtype=np.int32)) first_fname_numbers.append(np.arange(N, N + len(fnames) - t_len, dtype=np.int32)) N += len(fnames) self.filenames = np.concatenate(file_list) last_fname_numbers = np.concatenate(last_fname_numbers) last_fname_numbers = np.vstack((last_fname_numbers, -1.0*np.ones_like(last_fname_numbers))).T first_fname_numbers = np.concatenate(first_fname_numbers) first_fname_numbers = np.vstack((first_fname_numbers, 1.0*np.ones_like(first_fname_numbers))).T all_fname_numbers = np.vstack((first_fname_numbers, last_fname_numbers)) all_fname_numbers = np.asarray(all_fname_numbers, dtype=np.float32) np.random.shuffle(all_fname_numbers) # Form training batches dataset = tf.data.Dataset.from_tensor_slices(all_fname_numbers) dataset = dataset.shuffle(buffer_size=all_fname_numbers.shape[0], reshuffle_each_iteration=True) dataset = dataset.repeat(None) dataset = dataset.map(self.dataset_map, num_parallel_calls=self.num_threads) dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.prefetch(buffer_size=3*batch_size) iterator = dataset.make_initializable_iterator() img1s, img2s = iterator.get_next() # Extra arguments returned for compatibility with test functions. return (img1s, img2s, tf.constant(1.0),'f', 1.0), iterator def test_inputs(self, batch_size=32, partition='val', t_len=2, with_fname=False, test_crop=1.0): # Reads test inputs data # The main difference with Davis2016 consists in retuning # the number of elements per category. test_tuples = self.get_test_tuples(partition, t_len) self.test_crop = test_crop self.num_threads = 1 # Form training batches dataset = tf.data.Dataset.from_tensor_slices(test_tuples) dataset = dataset.repeat(None) dataset = dataset.map(self.test_dataset_map, num_parallel_calls=1) dataset = dataset.batch(batch_size, drop_remainder=False) dataset = dataset.prefetch(buffer_size=3*batch_size) iterator = dataset.make_initializable_iterator() img1s, img2s, seg1s, fnames, samples_per_cat = iterator.get_next() if with_fname: return (img1s, img2s, seg1s, fnames, samples_per_cat), iterator return (img1s, img2s, seg1s, samples_per_cat), iterator def test_dataset_map(self, input_queue): fname_1, fname_2, annotation_fname, samples_per_cat = input_queue[0],\ input_queue[1], input_queue[2], input_queue[3] samples_per_cat = tf.string_to_number(samples_per_cat) file_content = tf.read_file(fname_1) image_1 = tf.image.decode_jpeg(file_content, channels=3) image_1 = self.preprocess_image(image_1) file_content = tf.read_file(fname_2) image_2 = tf.image.decode_jpeg(file_content, channels=3) image_2 = self.preprocess_image(image_2) file_content = tf.read_file(annotation_fname) seg_1 = tf.image.decode_jpeg(file_content, channels=1) seg_1 = self.preprocess_mask(seg_1) # Cropping preprocess image_1 = self.central_cropping(image_1, self.test_crop) image_2 = self.central_cropping(image_2, self.test_crop) seg_1 = self.central_cropping(seg_1, self.test_crop) return image_1, image_2, seg_1, fname_1, samples_per_cat def augmented_inputs(self, partition='val', t_len=2, test_crops=[1.0]): (img_1, img_2, seg_1, fname, _), itr = self.test_inputs(batch_size=1, t_len=t_len, partition=partition, with_fname=True, test_crop=1.0) img_1 = tf.squeeze(img_1, axis=0) img_2 = tf.squeeze(img_2, axis=0) seg_1 = tf.squeeze(seg_1, axis=0) batch_dict = {'img_1s': {}, 'img_2s': {}, 'seg_1s': {}} for crop in test_crops: cropped_img_1 = self.central_cropping(img_1, cropping_percent=crop) cropped_img_2 = self.central_cropping(img_2, cropping_percent=crop) cropped_seg_1 = self.central_cropping(seg_1, cropping_percent=crop) batch_dict['seg_1s'][crop] = cropped_seg_1 batch_dict['img_1s'][crop] = cropped_img_1 batch_dict['img_2s'][crop] = cropped_img_2 return batch_dict, fname, itr
docs/source/conf.py
skyhoshi/galaxy-integrations-python-api
1,165
12692665
# Configuration file for the Sphinx documentation builder. # Documentation: # http://www.sphinx-doc.org/en/master/config import os import sys import subprocess # -- Path setup -------------------------------------------------------------- _ROOT = os.path.join('..', '..') sys.path.append(os.path.abspath(os.path.join(_ROOT, 'src'))) # -- Project information ----------------------------------------------------- project = 'GOG Galaxy Integrations API' copyright = '2019, GOG.com' _author, _version = subprocess.check_output( ['python', os.path.join(_ROOT, 'setup.py'), '--author', '--version'], universal_newlines=True).strip().split('\n') author = _author version = _version release = _version # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinxcontrib.asyncio', 'sphinx_autodoc_typehints', 'm2r2' # mdinclude directive for makrdown files ] autodoc_member_order = 'bysource' autodoc_inherit_docstrings = False autodoc_mock_imports = ["aiohttp"] set_type_checking_flag = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # type: ignore # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" html_theme_options = { # 'canonical_url': '', # main page to be serach in google with trailing slash 'display_version': True, 'style_external_links': True, # Toc options 'collapse_navigation': False, 'sticky_navigation': True, 'navigation_depth': 4, } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"] master_doc = 'index'
docs/tutorial_data-13.py
ankitshah009/dcase_util
122
12692685
import dcase_util # Metadata meta = dcase_util.containers.MetaDataContainer([ { 'filename': 'test1.wav', 'event_label': 'cat', 'onset': 1.0, 'offset': 3.0 }, { 'filename': 'test1.wav', 'event_label': 'dog', 'onset': 2.0, 'offset': 6.0 }, { 'filename': 'test1.wav', 'event_label': 'speech', 'onset': 5.0, 'offset': 8.0 }, ]) # Initilize encoder event_roll_encoder = dcase_util.data.EventRollEncoder( label_list=meta.unique_event_labels, time_resolution=0.02 ) # Encode event_roll = event_roll_encoder.encode( metadata_container=meta, length_seconds=10.0 ) # Visualize event_roll.plot()
flexx/app/_session.py
rajjamdar05/flexx
1,662
12692686
""" Definition of the Session class. """ import re import sys import time import json import base64 import random import hashlib import asyncio import weakref import datetime from http.cookies import SimpleCookie from ..event._component import new_type from ._component2 import PyComponent, JsComponent, AppComponentMeta from ._asset import Asset, Bundle, solve_dependencies from ._assetstore import AssetStore, INDEX from ._assetstore import assets as assetstore from ._clientcore import serializer from . import logger from .. import config reprs = json.dumps # Use the system PRNG for session id generation (if possible) # NOTE: secure random string generation implementation is adapted # from the Django project. def get_random_string(length=24, allowed_chars=None): """ Produce a securely generated random string. With a length of 12 with the a-z, A-Z, 0-9 character set returns a 71-bit value. log_2((26+26+10)^12) =~ 71 bits """ allowed_chars = allowed_chars or ('abcdefghijklmnopqrstuvwxyz' + 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789') try: srandom = random.SystemRandom() except NotImplementedError: # pragma: no cover srandom = random logger.warning('Falling back to less secure Mersenne Twister random string.') bogus = "%s%s%s" % (random.getstate(), time.time(), 'sdkhfbsdkfbsdbhf') random.seed(hashlib.sha256(bogus.encode()).digest()) return ''.join(srandom.choice(allowed_chars) for i in range(length)) class Session: """ A connection between Python and the client runtime (JavaScript). The session is what holds together the app widget, the web runtime, and the websocket instance that connects to it. Responsibilities: * Send messages to the client and process messages received by the client. * Keep track of PyComponent instances used by the session. * Keep track of JsComponent instances associated with the session. * Ensure that the client has all the module definitions it needs. """ STATUS = new_type('Enum', (), {'PENDING': 1, 'CONNECTED': 2, 'CLOSED': 0}) def __init__(self, app_name, store=None, request=None): # Allow custom store for testing self._store = store if (store is not None) else assetstore assert isinstance(self._store, AssetStore) self._creation_time = time.time() # used by app manager # Id and name of the app self._id = get_random_string() self._app_name = app_name # To keep track of what modules are defined at the client self._present_classes = set() # Component classes known by the client self._present_modules = set() # module names that, plus deps self._present_assets = set() # names of used associated assets self._assets_to_ignore = set() # user settable # Data for this session (in addition to the data provided by the store) self._data = {} # More vars self._runtime = None # init web runtime, will be set when used self._ws = None # init websocket, will be set when a connection is made self._closing = False # Flag to help with shutdown # PyComponent or JsComponent instance, can be None if app_name is __default__ self._component = None # The session assigns component id's and keeps track of component objects self._component_counter = 0 self._component_instances = weakref.WeakValueDictionary() self._dead_component_ids = set() # Keep track of roundtrips. The _ping_calls elements are: # [ping_count, {objects}, *(callback, args)] self._ping_calls = [] self._ping_counter = 0 self._eval_result = {} self._eval_count = 0 # While the client is not connected, we keep a queue of # commands, which are send to the client as soon as it connects self._pending_commands = [] # request related information self._request = request if request and request.cookies: cookies = request.cookies else: cookies = {} self._set_cookies(cookies) def __repr__(self): t = '<%s for %r (%i) at 0x%x>' return t % (self.__class__.__name__, self.app_name, self.status, id(self)) @property def request(self): """The tornado request that was at the origin of this session. """ return self._request @property def id(self): """ The unique identifier of this session. """ return self._id @property def app_name(self): """ The name of the application that this session represents. """ return self._app_name @property def app(self): """ The root PyComponent or JsComponent instance that represents the app. """ return self._component @property def runtime(self): """ The runtime that is rendering this app instance. Can be None if the client is a browser. """ return self._runtime @property def status(self): """ The status of this session. The lifecycle for each session is: * status 1: pending * status 2: connected * status 0: closed """ if self._ws is None: return self.STATUS.PENDING # not connected yet elif self._ws.close_code is None: return self.STATUS.CONNECTED # alive and kicking else: return self.STATUS.CLOSED # connection closed @property def present_modules(self): """ The set of module names that is (currently) available at the client. """ return set(self._present_modules) @property def assets_to_ignore(self): """ The set of names of assets that should *not* be pushed to the client, e.g. because they are already present on the page. Add names to this set to prevent them from being loaded. """ return self._assets_to_ignore def close(self): """ Close the session: close websocket, close runtime, dispose app. """ # Stop guarding objects to break down any circular refs self._ping_calls = [] self._closing = True # suppress warnings for session being closed. try: # Close the websocket if self._ws: self._ws.close_this() # Close the runtime if self._runtime: self._runtime.close() # Dispose the component and break the circular reference if self._component is not None: self._component.dispose() self._component = None # Discard data self._data = {} finally: self._closing = False ## Hooking up with app, websocket, runtime def _set_ws(self, ws): """ A session is always first created, so we know what page to serve. The client will connect the websocket, and communicate the session_id so it can be connected to the correct Session via this method """ if self._ws is not None: raise RuntimeError('Session is already connected.') # Set websocket object - this is what changes the status to CONNECTED self._ws = ws self._ws.write_command(("PRINT", "Flexx session says hi")) # Send pending commands for command in self._pending_commands: self._ws.write_command(command) self._ws.write_command(('INIT_DONE', )) def _set_cookies(self, cookies=None): """ To set cookies, must be an http.cookie.SimpleCookie object. When the app is loaded as a web app, the cookies are set *before* the main component is instantiated. Otherwise they are set when the websocket is connected. """ self._cookies = cookies if cookies else SimpleCookie() def _set_runtime(self, runtime): if self._runtime is not None: raise RuntimeError('Session already has a runtime.') self._runtime = runtime ## Cookies, mmm def get_cookie(self, name, default=None, max_age_days=31, min_version=None): """ Gets the value of the cookie with the given name, else default. Note that cookies only really work for web apps. """ from tornado.web import decode_signed_value if name in self._cookies: value = self._cookies[name].value value = decode_signed_value(config.cookie_secret, name, value, max_age_days=max_age_days, min_version=min_version) return value.decode() else: return default def set_cookie(self, name, value, expires_days=30, version=None, domain=None, expires=None, path="/", **kwargs): """ Sets the given cookie name/value with the given options. Set value to None to clear. The cookie value is secured using `flexx.config.cookie_secret`; don't forget to set that config value in your server. Additional keyword arguments are set on the Cookie.Morsel directly. """ # This code is taken (in modified form) from the Tornado project # Copyright 2009 Facebook # Licensed under the Apache License, Version 2.0 # Assume tornado is available ... from tornado.escape import native_str from tornado.httputil import format_timestamp from tornado.web import create_signed_value # Clear cookie? if value is None: value = "" expires = datetime.datetime.utcnow() - datetime.timedelta(days=365) else: secret = config.cookie_secret value = create_signed_value(secret, name, value, version=version, key_version=None) # The cookie library only accepts type str, in both python 2 and 3 name = native_str(name) value = native_str(value) if re.search(r"[\x00-\x20]", name + value): # Don't let us accidentally inject bad stuff raise ValueError("Invalid cookie %r: %r" % (name, value)) if name in self._cookies: del self._cookies[name] self._cookies[name] = value morsel = self._cookies[name] if domain: morsel["domain"] = domain if expires_days is not None and not expires: expires = datetime.datetime.utcnow() + datetime.timedelta( days=expires_days) if expires: morsel["expires"] = format_timestamp(expires) if path: morsel["path"] = path for k, v in kwargs.items(): if k == 'max_age': k = 'max-age' # skip falsy values for httponly and secure flags because # SimpleCookie sets them regardless if k in ['httponly', 'secure'] and not v: continue morsel[k] = v self.send_command('EXEC', 'document.cookie = "%s";' % morsel.OutputString().replace('"', '\\"')) ## Data def add_data(self, name, data): """ Add data to serve to the client (e.g. images), specific to this session. Returns the link at which the data can be retrieved. Note that actions can be used to send (binary) data directly to the client (over the websocket). Parameters: name (str): the name of the data, e.g. 'icon.png'. If data has already been set on this name, it is overwritten. data (bytes): the data blob. Returns: str: the (relative) url at which the data can be retrieved. """ if not isinstance(name, str): raise TypeError('Session.add_data() name must be a str.') if name in self._data: raise ValueError('Session.add_data() got existing name %r.' % name) if not isinstance(data, bytes): raise TypeError('Session.add_data() data must be bytes.') self._data[name] = data return 'flexx/data/%s/%s' % (self.id, name) # relative path for export def remove_data(self, name): """ Remove the data associated with the given name. If you need this, consider using actions instead. Note that data is automatically released when the session is closed. """ self._data.pop(name, None) def get_data_names(self): """ Get a list of names of the data provided by this session. """ return list(self._data.keys()) def get_data(self, name): """ Get the data corresponding to the given name. This can be data local to the session, or global data. Returns None if data by that name is unknown. """ if True: data = self._data.get(name, None) if data is None: data = self._store.get_data(name) return data def _dump_data(self): """ Get a dictionary that contains all data specific to this session. The keys represent relative paths, the values are all bytes. Private method, used by App.dump(). """ d = {} for fname in self.get_data_names(): d['flexx/data/{}/{}'.format(self.id, fname)] = self.get_data(fname) return d ## Keeping track of component objects def _register_component(self, component, id=None): """ Called by PyComponent and JsComponent to give them an id and register with the session. """ assert isinstance(component, (PyComponent, JsComponent)) assert component.session is self cls = component.__class__ if self._component is None: self._component = component # register root component (i.e. the app) # Set id if id is None: self._component_counter += 1 id = cls.__name__ + '_' + str(self._component_counter) component._id = id component._uid = self.id + '_' + id # Register the instance using a weakref self._component_instances[component._id] = component # Register the class to that the client has the needed definitions self._register_component_class(cls) self.keep_alive(component) def _unregister_component(self, component): self._dead_component_ids.add(component.id) # self.keep_alive(component) # does not work on pypy; deletion in final # Because we use weak refs, and we want to be able to keep (the id of) # the object so that INVOKE on it can be silently ignored (because it # is disposed). The object id gets removed by the DISPOSE_ACK command. def get_component_instance(self, id): """ Get PyComponent or JsComponent instance that is associated with this session and has the corresponding id. The returned value can be None if it does not exist, and a returned component can be disposed. """ return self._component_instances.get(id, None) ## JIT asset definitions def _register_component_class(self, cls): """ Mark the given PyComponent or JsComponent class as used; ensure that the client knows about the module that it is defined in, dependencies of this module, and associated assets of any of these modules. """ if not (isinstance(cls, type) and issubclass(cls, (PyComponent, JsComponent))): raise TypeError('_register_component_class() needs a PyComponent ' 'or JsComponent class') # Early exit if we know the class already if cls in self._present_classes: return # Make sure that no two Component classes have the same name, or we get problems # that are difficult to debug. Unless classes are defined interactively. # The modules of classes that are re-registered are re-defined. The base # class of such a component is assumed to be either unchanged or defined # in the same module. It can also happen that a class is registered for # which the module was defined earlier (e.g. ui.html). Such modules # are redefined as well. same_name = [c for c in self._present_classes if c.__name__ == cls.__name__] if same_name: is_interactive = self._app_name == '__default__' same_name.append(cls) is_dynamic_cls = all([c.__module__ == '__main__' for c in same_name]) if not (is_interactive and is_dynamic_cls): raise RuntimeError('Cannot have multiple Component classes with ' 'the same name unless using interactive session ' 'and the classes are dynamically defined: %r' % same_name) # Mark the class and the module as used logger.debug('Registering Component class %r' % cls.__name__) self._register_module(cls.__jsmodule__) def _register_module(self, mod_name): """ Register a module with the client, as well as its dependencies, and associated assests of the module and its dependencies. If the module was already defined, it is re-defined. """ if (mod_name.startswith(('flexx.app', 'flexx.event')) and '.examples' not in mod_name): return # these are part of flexx core assets modules = set() assets = [] def collect_module_and_deps(mod): if mod.name.startswith(('flexx.app', 'flexx.event')): return # these are part of flexx core assets if mod.name not in self._present_modules: self._present_modules.add(mod.name) for dep in mod.deps: if dep.startswith(('flexx.app', 'flexx.event')): continue submod = self._store.modules[dep] collect_module_and_deps(submod) modules.add(mod) # Collect module and dependent modules that are not yet defined self._store.update_modules() # Ensure up-to-date module definition mod = self._store.modules[mod_name] collect_module_and_deps(mod) f = lambda m: (m.name.startswith('__main__'), m.name) modules = solve_dependencies(sorted(modules, key=f)) # Collect associated assets for mod in modules: for asset_name in self._store.get_associated_assets(mod.name): if asset_name not in self._present_assets: self._present_assets.add(asset_name) assets.append(self._store.get_asset(asset_name)) # If the module was already defined and thus needs to be re-defined, # we only redefine *this* module, no deps and no assoctated assets. if not modules: modules.append(mod) # Collect CSS and JS assets for mod in modules: if mod.get_css().strip(): assets.append(self._store.get_asset(mod.name + '.css')) for mod in modules: assets.append(self._store.get_asset(mod.name + '.js')) # Mark classes as used for mod in modules: for cls in mod.component_classes: self._present_classes.add(cls) # Push assets over the websocket. Note how this works fine with the # notebook because we turn ws commands into display(HTML()). # JS can be defined via eval() or by adding a <script> to the DOM. # The latter allows assets that do not use strict mode, but sourceURL # does not work on FF. So we only want to eval our own assets. for asset in assets: if asset.name in self._assets_to_ignore: continue logger.debug('Loading asset %s' % asset.name) # Determine command suffix. All our sources come in bundles, # for which we use eval because it makes sourceURL work on FF. # (It does not work in Chrome in either way.) suffix = asset.name.split('.')[-1].upper() if suffix == 'JS' and isinstance(asset, Bundle): suffix = 'JS-EVAL' self.send_command('DEFINE', suffix, asset.name, asset.to_string()) ## Communication with the client def send_command(self, *command): """ Send a command to the other side. Commands consists of at least one argument (a string representing the type of command). """ assert len(command) >= 1 if self._closing: pass elif self.status == self.STATUS.CONNECTED: self._ws.write_command(command) elif self.status == self.STATUS.PENDING: self._pending_commands.append(command) else: #raise RuntimeError('Cannot send commands; app is closed') logger.warning('Cannot send commands; app is closed') def _receive_command(self, command): """ Received a command from JS. """ cmd = command[0] if cmd == 'EVALRESULT': self._eval_result[command[2]] = command[1] elif cmd == 'PRINT': print('JS:', command[1]) elif cmd == 'INFO': logger.info('JS: ' + command[1]) elif cmd == 'WARN': logger.warning('JS: ' + command[1]) elif cmd == 'ERROR': logger.error('JS: ' + command[1] + ' - stack trace in browser console (hit F12).') elif cmd == 'INVOKE': id, name, args = command[1:] ob = self.get_component_instance(id) if ob is None: if id not in self._dead_component_ids: t = 'Cannot invoke %s.%s; session does not know it (anymore).' logger.warning(t % (id, name)) elif ob._disposed: pass # JS probably send something before knowing the object was dead else: func = getattr(ob, name, None) if func: func(*args) elif cmd == 'PONG': self._receive_pong(command[1]) elif cmd == 'INSTANTIATE': modulename, cname, id, args, kwargs = command[1:] # Maybe we still have the instance? c = self.get_component_instance(id) if c and not c._disposed: self.keep_alive(c) return # Try to find the class m, cls, e = None, None, 0 if modulename in assetstore.modules: m = sys.modules[modulename] cls = getattr(m, cname, None) if cls is None: e = 1 elif not (isinstance(cls, type) and issubclass(cls, JsComponent)): cls, e = None, 2 elif cls not in AppComponentMeta.CLASSES: cls, e = None, 3 if cls is None: raise RuntimeError('Cannot INSTANTIATE %s.%s (%i)' % (modulename, cname, e)) # Instantiate kwargs['flx_session'] = self kwargs['flx_id'] = id assert len(args) == 0 c = cls(**kwargs) # calls keep_alive via _register_component() elif cmd == 'DISPOSE': # Gets send from local to proxy id = command[1] c = self.get_component_instance(id) if c and not c._disposed: # no need to warn if component does not exist c._dispose() self.send_command('DISPOSE_ACK', command[1]) self._component_instances.pop(id, None) # Drop local ref now elif cmd == 'DISPOSE_ACK': # Gets send from proxy to local self._component_instances.pop(command[1], None) self._dead_component_ids.discard(command[1]) else: logger.error('Unknown command received from JS:\n%s' % command) def keep_alive(self, ob, iters=1): """ Keep an object alive for a certain amount of time, expressed in Python-JS ping roundtrips. This is intended for making JsComponent (i.e. proxy components) survice the time between instantiation triggered from JS and their attachement to a property, though any type of object can be given. """ ping_to_schedule_at = self._ping_counter + iters el = self._get_ping_call_list(ping_to_schedule_at) el[1][id(ob)] = ob # add to dict of objects to keep alive def call_after_roundtrip(self, callback, *args): """ A variant of ``call_soon()`` that calls a callback after a py-js roundrip. This can be convenient to delay an action until after other things have settled down. """ # The ping_counter represents the ping count that is underway. # Since we want at least a full ping, we want one count further. ping_to_schedule_at = self._ping_counter + 1 el = self._get_ping_call_list(ping_to_schedule_at) el.append((callback, args)) async def co_roundtrip(self): """ Coroutine to wait for one Py-JS-Py roundtrip. """ count = 0 def up(): nonlocal count count += 1 self.call_after_roundtrip(up) while count < 1: await asyncio.sleep(0.02) async def co_eval(self, js): """ Coroutine to evaluate JS in the client, wait for the result, and then return it. It is recomended to use this method only for testing purposes. """ id = self._eval_count self._eval_count += 1 self.send_command('EVALANDRETURN', js, id) while id not in self._eval_result: await asyncio.sleep(0.2) return self._eval_result.pop(id) def _get_ping_call_list(self, ping_count): """ Get an element from _ping_call for the specified ping_count. The element is a list [ping_count, {objects}, *(callback, args)] """ # No pending ping_calls? if len(self._ping_calls) == 0: # Start pinging send_ping_later(self) # Append element el = [ping_count, {}] self._ping_calls.append(el) return el # Try to find existing element, or insert it for i in reversed(range(len(self._ping_calls))): el = self._ping_calls[i] if el[0] == ping_count: return el elif el[0] < ping_count: el = [ping_count, {}] self._ping_calls.insert(i + 1, el) return el else: el = [ping_count, {}] self._ping_calls.insert(0, el) return el def _receive_pong(self, count): # Process ping calls while len(self._ping_calls) > 0 and self._ping_calls[0][0] <= count: _, objects, *callbacks = self._ping_calls.pop(0) objects.clear() del objects for callback, args in callbacks: asyncio.get_event_loop().call_soon(callback, *args) # Continue pinging? if len(self._ping_calls) > 0: send_ping_later(self) def send_ping_later(session): # This is to prevent the prevention of the session from being discarded due # to a ref lingering in an asyncio loop. def x(weaksession): s = weaksession() if s is not None and s.status > 0: s._ping_counter += 1 s.send_command('PING', s._ping_counter) # asyncio.get_event_loop().call_soon(x, weakref.ref(session)) asyncio.get_event_loop().call_later(0.01, x, weakref.ref(session)) ## Functions to get page # These could be methods, but are only for internal use def get_page(session): """ Get the string for the HTML page to render this session's app. Not a lot; all other JS and CSS assets are pushed over the websocket. """ css_assets = [assetstore.get_asset('reset.css')] js_assets = [assetstore.get_asset('flexx-core.js')] return _get_page(session, js_assets, css_assets, 3, False) def get_page_for_export(session, commands, link=0): """ Get the string for an exported HTML page (to run without a server). In this case, there is no websocket to push JS/CSS assets over; these need to be included inside or alongside the main html page. """ # This function basically collects all assets that the session needs, # creates a special -export.js asset that executes the given commands, # and puts it al together using _get_page(). # We start as a normal page ... css_assets = [assetstore.get_asset('reset.css')] js_assets = [assetstore.get_asset('flexx-core.js')] # Get all the used modules modules = [assetstore.modules[name] for name in session.present_modules] f = lambda m: (m.name.startswith('__main__'), m.name) modules = solve_dependencies(sorted(modules, key=f)) # First the associated assets asset_names = set() for mod in modules: for asset_name in assetstore.get_associated_assets(mod.name): if asset_name not in asset_names: asset_names.add(asset_name) asset = assetstore.get_asset(asset_name) if asset.name.lower().endswith('.js'): js_assets.append(asset) else: css_assets.append(asset) # Then the modules themselves for mod in modules: if mod.get_css().strip(): css_assets.append(assetstore.get_asset(mod.name + '.css')) for mod in modules: js_assets.append(assetstore.get_asset(mod.name + '.js')) # Create asset for launching the app (commands that normally get send # over the websocket) lines = [] lines.append('flexx.is_exported = true;\n') lines.append('flexx.run_exported_app = function () {') lines.append(' var commands_b64 = [') for command in commands: if command[0] != 'DEFINE': command_str = base64.encodebytes(serializer.encode(command)).decode() lines.append(' "' + command_str.replace('\n', '') + '",') lines.append(' ];') lines.append(' bb64 = flexx.require("bb64");') lines.append(' for (var i=0; i<commands_b64.length; i++) {') lines.append(' var command = flexx.serializer.decode(' 'bb64.decode(commands_b64[i]));') lines.append(' flexx.s1._receive_command(command);') lines.append(' }\n};\n') # Create a session asset for it, "-export.js" is always embedded export_asset = Asset('flexx-export.js', '\n'.join(lines)) js_assets.append(export_asset) # Combine it all return _get_page(session, js_assets, css_assets, link, True) def _get_page(session, js_assets, css_assets, link, export): """ Compose index page. Depending on the value of link and the types of assets, the assets are either embedded or linked. """ pre_path = 'flexx/assets' if export else '/flexx/assets' # relative / abs codes = [] for assets in [css_assets, js_assets]: for asset in assets: if link in (0, 1): html = asset.to_html('{}', link) else: if asset.name.endswith(('-info.js', '-export.js')): # Special case, is always embedded, see get_page_for_export() html = asset.to_html('', 0) else: html = asset.to_html(pre_path + '/shared/{}', link) codes.append(html) if export and assets is js_assets: codes.append('<script>window.flexx.spin();</script>') codes.append('') # whitespace between css and js assets codes.append('<script>flexx.create_session("%s", "%s");</script>\n' % (session.app_name, session.id)) src = INDEX if link in (0, 1): asset_names = [a.name for a in css_assets + js_assets] toc = '<!-- Contents:\n\n- ' + '\n- '.join(asset_names) + '\n\n-->' codes.insert(0, toc) src = src.replace('ASSET-HOOK', '\n\n\n'.join(codes)) else: src = src.replace('ASSET-HOOK', '\n'.join(codes)) return src
pydocx/openxml/wordprocessing/deleted_run.py
botzill/pydocx
127
12692699
<reponame>botzill/pydocx # coding: utf-8 from __future__ import ( absolute_import, print_function, unicode_literals, ) from pydocx.models import XmlModel, XmlCollection from pydocx.openxml.wordprocessing.run import Run from pydocx.openxml.wordprocessing.smart_tag_run import SmartTagRun class DeletedRun(XmlModel): XML_TAG = 'del' children = XmlCollection( Run, SmartTagRun, 'wordprocessing.DeletedRun', # TODO Needs InsertedRun )
scale/messaging/__init__.py
kaydoh/scale
121
12692745
<reponame>kaydoh/scale default_app_config = 'messaging.apps.MessagingConfig'
tools/android/loading/content_classification_lens_unittest.py
google-ar/chromium
2,151
12692748
<filename>tools/android/loading/content_classification_lens_unittest.py<gh_stars>1000+ # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import copy import unittest from content_classification_lens import (ContentClassificationLens, _RulesMatcher) from request_track import Request import test_utils class ContentClassificationLensTestCase(unittest.TestCase): _DOCUMENT_URL = 'http://bla.com' _MAIN_FRAME_ID = '123.1' _REQUEST = Request.FromJsonDict({'url': _DOCUMENT_URL, 'document_url': _DOCUMENT_URL, 'request_id': '1234.1', 'frame_id': _MAIN_FRAME_ID, 'initiator': {'type': 'other'}, 'timestamp': 2, 'status': 200, 'timing': {}, 'resource_type': 'Document'}) _PAGE_EVENTS = [{'method': 'Page.frameStartedLoading', 'frame_id': _MAIN_FRAME_ID}, {'method': 'Page.frameAttached', 'frame_id': '123.13', 'parent_frame_id': _MAIN_FRAME_ID}] _RULES = ['bla.com'] def testGetDocumentUrl(self): trace = test_utils.LoadingTraceFromEvents( [self._REQUEST], self._PAGE_EVENTS) lens = ContentClassificationLens(trace, [], []) self.assertEquals(self._DOCUMENT_URL, lens._GetDocumentUrl()) # Don't be fooled by redirects. request = copy.deepcopy(self._REQUEST) request.status = 302 request.document_url = 'http://www.bla.com' trace = test_utils.LoadingTraceFromEvents( [request, self._REQUEST], self._PAGE_EVENTS) lens = ContentClassificationLens(trace, [], []) self.assertEquals(self._DOCUMENT_URL, lens._GetDocumentUrl()) def testGetDocumentUrlSeveralChanges(self): request = copy.deepcopy(self._REQUEST) request.status = 200 request.document_url = 'http://www.blabla.com' request2 = copy.deepcopy(request) request2.document_url = 'http://www.blablabla.com' trace = test_utils.LoadingTraceFromEvents( [self._REQUEST, request, request2], self._PAGE_EVENTS) lens = ContentClassificationLens(trace, [], []) self.assertEquals(request2.document_url, lens._GetDocumentUrl()) def testNoRules(self): trace = test_utils.LoadingTraceFromEvents( [self._REQUEST], self._PAGE_EVENTS) lens = ContentClassificationLens(trace, [], []) self.assertFalse(lens.IsAdRequest(self._REQUEST)) self.assertFalse(lens.IsTrackingRequest(self._REQUEST)) def testAdRequest(self): trace = test_utils.LoadingTraceFromEvents( [self._REQUEST], self._PAGE_EVENTS) lens = ContentClassificationLens(trace, self._RULES, []) self.assertTrue(lens.IsAdRequest(self._REQUEST)) self.assertFalse(lens.IsTrackingRequest(self._REQUEST)) def testTrackingRequest(self): trace = test_utils.LoadingTraceFromEvents( [self._REQUEST], self._PAGE_EVENTS) lens = ContentClassificationLens(trace, [], self._RULES) self.assertFalse(lens.IsAdRequest(self._REQUEST)) self.assertTrue(lens.IsTrackingRequest(self._REQUEST)) def testMainFrameIsNotAnAdFrame(self): trace = test_utils.LoadingTraceFromEvents( [self._REQUEST], self._PAGE_EVENTS) lens = ContentClassificationLens(trace, self._RULES, []) self.assertFalse(lens.IsAdOrTrackingFrame(self._MAIN_FRAME_ID)) def testAdFrame(self): request = copy.deepcopy(self._REQUEST) request.request_id = '1234.2' request.frame_id = '123.123' trace = test_utils.LoadingTraceFromEvents( [self._REQUEST, request], self._PAGE_EVENTS) lens = ContentClassificationLens(trace, self._RULES, []) self.assertTrue(lens.IsAdOrTrackingFrame(request.frame_id)) def testAdAndTrackingRequests(self): ad_request = copy.deepcopy(self._REQUEST) ad_request.request_id = '1234.2' ad_request.frame_id = '123.123' non_ad_request_non_ad_frame = copy.deepcopy(self._REQUEST) non_ad_request_non_ad_frame.request_id = '1234.3' non_ad_request_non_ad_frame.url = 'http://www.example.com' non_ad_request_non_ad_frame.frame_id = '123.456' non_ad_request_ad_frame = copy.deepcopy(self._REQUEST) non_ad_request_ad_frame.request_id = '1234.4' non_ad_request_ad_frame.url = 'http://www.example.com' non_ad_request_ad_frame.frame_id = ad_request.frame_id trace = test_utils.LoadingTraceFromEvents( [self._REQUEST, ad_request, non_ad_request_non_ad_frame, non_ad_request_ad_frame], self._PAGE_EVENTS) lens = ContentClassificationLens(trace, self._RULES, []) self.assertSetEqual( set([self._REQUEST, ad_request, non_ad_request_ad_frame]), set(lens.AdAndTrackingRequests())) class _MatcherTestCase(unittest.TestCase): _RULES_WITH_WHITELIST = ['/thisisanad.', '@@myadvertisingdomain.com/*', '@@||www.mydomain.com/ads/$elemhide'] _SCRIPT_RULE = 'domainwithscripts.com/*$script' _THIRD_PARTY_RULE = 'domainwithscripts.com/*$third-party' _SCRIPT_REQUEST = Request.FromJsonDict( {'url': 'http://domainwithscripts.com/bla.js', 'resource_type': 'Script', 'request_id': '1234.1', 'frame_id': '123.1', 'initiator': {'type': 'other'}, 'timestamp': 2, 'timing': {}}) def testRemovesWhitelistRules(self): matcher = _RulesMatcher(self._RULES_WITH_WHITELIST, False) self.assertEquals(3, len(matcher._rules)) matcher = _RulesMatcher(self._RULES_WITH_WHITELIST, True) self.assertEquals(1, len(matcher._rules)) def testScriptRule(self): matcher = _RulesMatcher([self._SCRIPT_RULE], False) request = copy.deepcopy(self._SCRIPT_REQUEST) request.resource_type = 'Stylesheet' self.assertFalse(matcher.Matches( request, ContentClassificationLensTestCase._DOCUMENT_URL)) self.assertTrue(matcher.Matches( self._SCRIPT_REQUEST, ContentClassificationLensTestCase._DOCUMENT_URL)) def testGetTldPlusOne(self): self.assertEquals( 'easy.com', _RulesMatcher._GetTldPlusOne('http://www.easy.com/hello/you')) self.assertEquals( 'not-so-easy.co.uk', _RulesMatcher._GetTldPlusOne('http://www.not-so-easy.co.uk/hello/you')) self.assertEquals( 'hard.co.uk', _RulesMatcher._GetTldPlusOne('http://hard.co.uk/')) def testThirdPartyRule(self): matcher = _RulesMatcher([self._THIRD_PARTY_RULE], False) request = copy.deepcopy(self._SCRIPT_REQUEST) document_url = 'http://www.domainwithscripts.com/good-morning' self.assertFalse(matcher.Matches(request, document_url)) document_url = 'http://anotherdomain.com/good-morning' self.assertTrue(matcher.Matches(request, document_url)) if __name__ == '__main__': unittest.main()
saleor/order/migrations/0048_auto_20180629_1055.py
elwoodxblues/saleor
15,337
12692762
<gh_stars>1000+ # Generated by Django 2.0.3 on 2018-06-29 15:55 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("order", "0047_order_line_name_length")] operations = [ migrations.AlterField( model_name="order", name="token", field=models.CharField(blank=True, max_length=36, unique=True), ), migrations.AlterField( model_name="order", name="voucher", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="discount.Voucher", ), ), ]
lib/cmdlib/instance_query.py
modulus-sa/ganeti
396
12692781
<filename>lib/cmdlib/instance_query.py # # # Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Logical units for querying instances.""" import itertools from ganeti import constants from ganeti import locking from ganeti import utils from ganeti.cmdlib.base import NoHooksLU from ganeti.cmdlib.common import ShareAll, GetWantedInstances, \ CheckInstancesNodeGroups, AnnotateDiskParams from ganeti.cmdlib.instance_utils import NICListToTuple from ganeti.hypervisor import hv_base class LUInstanceQueryData(NoHooksLU): """Query runtime instance data. """ REQ_BGL = False def ExpandNames(self): self.needed_locks = {} # Use locking if requested or when non-static information is wanted if not (self.op.static or self.op.use_locking): self.LogWarning("Non-static data requested, locks need to be acquired") self.op.use_locking = True if self.op.instances or not self.op.use_locking: # Expand instance names right here (_, self.wanted_names) = GetWantedInstances(self, self.op.instances) else: # Will use acquired locks self.wanted_names = None if self.op.use_locking: self.share_locks = ShareAll() if self.wanted_names is None: self.needed_locks[locking.LEVEL_INSTANCE] = locking.ALL_SET else: self.needed_locks[locking.LEVEL_INSTANCE] = self.wanted_names self.needed_locks[locking.LEVEL_NODEGROUP] = [] self.needed_locks[locking.LEVEL_NODE] = [] self.needed_locks[locking.LEVEL_NETWORK] = [] self.recalculate_locks[locking.LEVEL_NODE] = constants.LOCKS_REPLACE self.dont_collate_locks[locking.LEVEL_NODEGROUP] = True self.dont_collate_locks[locking.LEVEL_NODE] = True self.dont_collate_locks[locking.LEVEL_NETWORK] = True def DeclareLocks(self, level): if self.op.use_locking: owned_instances = dict(self.cfg.GetMultiInstanceInfoByName( self.owned_locks(locking.LEVEL_INSTANCE))) if level == locking.LEVEL_NODEGROUP: # Lock all groups used by instances optimistically; this requires going # via the node before it's locked, requiring verification later on self.needed_locks[locking.LEVEL_NODEGROUP] = \ frozenset(group_uuid for instance_uuid in owned_instances for group_uuid in self.cfg.GetInstanceNodeGroups(instance_uuid)) elif level == locking.LEVEL_NODE: self._LockInstancesNodes() elif level == locking.LEVEL_NETWORK: self.needed_locks[locking.LEVEL_NETWORK] = \ frozenset(net_uuid for instance_uuid in owned_instances.keys() for net_uuid in self.cfg.GetInstanceNetworks(instance_uuid)) def CheckPrereq(self): """Check prerequisites. This only checks the optional instance list against the existing names. """ owned_instances = frozenset(self.owned_locks(locking.LEVEL_INSTANCE)) owned_groups = frozenset(self.owned_locks(locking.LEVEL_NODEGROUP)) owned_node_uuids = frozenset(self.owned_locks(locking.LEVEL_NODE)) owned_networks = frozenset(self.owned_locks(locking.LEVEL_NETWORK)) if self.wanted_names is None: assert self.op.use_locking, "Locking was not used" self.wanted_names = owned_instances instances = dict(self.cfg.GetMultiInstanceInfoByName(self.wanted_names)) if self.op.use_locking: CheckInstancesNodeGroups(self.cfg, instances, owned_groups, owned_node_uuids, None) else: assert not (owned_instances or owned_groups or owned_node_uuids or owned_networks) self.wanted_instances = list(instances.values()) def _ComputeBlockdevStatus(self, node_uuid, instance, dev): """Returns the status of a block device """ if self.op.static or not node_uuid: return None result = self.rpc.call_blockdev_find(node_uuid, (dev, instance)) if result.offline: return None result.Raise("Can't compute disk status for %s" % instance.name) status = result.payload if status is None: return None return (status.dev_path, status.major, status.minor, status.sync_percent, status.estimated_time, status.is_degraded, status.ldisk_status) def _ComputeDiskStatus(self, instance, node_uuid2name_fn, dev): """Compute block device status. """ (anno_dev,) = AnnotateDiskParams(instance, [dev], self.cfg) return self._ComputeDiskStatusInner(instance, None, node_uuid2name_fn, anno_dev) def _ComputeDiskStatusInner(self, instance, snode_uuid, node_uuid2name_fn, dev): """Compute block device status. @attention: The device has to be annotated already. """ drbd_info = None output_logical_id = dev.logical_id if dev.dev_type in constants.DTS_DRBD: # we change the snode then (otherwise we use the one passed in) if dev.logical_id[0] == instance.primary_node: snode_uuid = dev.logical_id[1] snode_minor = dev.logical_id[4] pnode_minor = dev.logical_id[3] else: snode_uuid = dev.logical_id[0] snode_minor = dev.logical_id[3] pnode_minor = dev.logical_id[4] drbd_info = { "primary_node": node_uuid2name_fn(instance.primary_node), "primary_minor": pnode_minor, "secondary_node": node_uuid2name_fn(snode_uuid), "secondary_minor": snode_minor, "port": dev.logical_id[2], } # replace the secret present at the end of the ids with None output_logical_id = dev.logical_id[:-1] + (None,) dev_pstatus = self._ComputeBlockdevStatus(instance.primary_node, instance, dev) dev_sstatus = self._ComputeBlockdevStatus(snode_uuid, instance, dev) if dev.children: dev_children = [ self._ComputeDiskStatusInner(instance, snode_uuid, node_uuid2name_fn, d) for d in dev.children ] else: dev_children = [] return { "iv_name": dev.iv_name, "dev_type": dev.dev_type, "logical_id": output_logical_id, "drbd_info": drbd_info, "pstatus": dev_pstatus, "sstatus": dev_sstatus, "children": dev_children, "mode": dev.mode, "size": dev.size, "spindles": dev.spindles, "name": dev.name, "uuid": dev.uuid, } def Exec(self, feedback_fn): """Gather and return data""" result = {} cluster = self.cfg.GetClusterInfo() node_uuids = itertools.chain(*(self.cfg.GetInstanceNodes(i.uuid) for i in self.wanted_instances)) nodes = dict(self.cfg.GetMultiNodeInfo(node_uuids)) groups = dict(self.cfg.GetMultiNodeGroupInfo(node.group for node in nodes.values())) for instance in self.wanted_instances: pnode = nodes[instance.primary_node] hvparams = cluster.FillHV(instance, skip_globals=True) if self.op.static or pnode.offline: remote_state = None if pnode.offline: self.LogWarning("Primary node %s is marked offline, returning static" " information only for instance %s" % (pnode.name, instance.name)) else: remote_info = self.rpc.call_instance_info( instance.primary_node, instance.name, instance.hypervisor, cluster.hvparams[instance.hypervisor]) remote_info.Raise("Error checking node %s" % pnode.name) remote_info = remote_info.payload allow_userdown = \ cluster.enabled_user_shutdown and \ (instance.hypervisor != constants.HT_KVM or hvparams[constants.HV_KVM_USER_SHUTDOWN]) if remote_info and "state" in remote_info: if hv_base.HvInstanceState.IsShutdown(remote_info["state"]): if allow_userdown: remote_state = "user down" else: remote_state = "down" else: remote_state = "up" else: if instance.admin_state == constants.ADMINST_UP: remote_state = "down" elif instance.admin_state == constants.ADMINST_DOWN: if instance.admin_state_source == constants.USER_SOURCE: remote_state = "user down" else: remote_state = "down" else: remote_state = "offline" group2name_fn = lambda uuid: groups[uuid].name node_uuid2name_fn = lambda uuid: nodes[uuid].name disk_objects = self.cfg.GetInstanceDisks(instance.uuid) output_disks = [self._ComputeDiskStatus(instance, node_uuid2name_fn, d) for d in disk_objects] secondary_nodes = self.cfg.GetInstanceSecondaryNodes(instance.uuid) snodes_group_uuids = [nodes[snode_uuid].group for snode_uuid in secondary_nodes] result[instance.name] = { "name": instance.name, "config_state": instance.admin_state, "run_state": remote_state, "pnode": pnode.name, "pnode_group_uuid": pnode.group, "pnode_group_name": group2name_fn(pnode.group), "snodes": [node_uuid2name_fn(n) for n in secondary_nodes], "snodes_group_uuids": snodes_group_uuids, "snodes_group_names": [group2name_fn(u) for u in snodes_group_uuids], "os": instance.os, # this happens to be the same format used for hooks "nics": NICListToTuple(self, instance.nics), "disk_template": utils.GetDiskTemplate(disk_objects), "disks": output_disks, "hypervisor": instance.hypervisor, "network_port": instance.network_port, "hv_instance": instance.hvparams, "hv_actual": hvparams, "be_instance": instance.beparams, "be_actual": cluster.FillBE(instance), "os_instance": instance.osparams, "os_actual": cluster.SimpleFillOS(instance.os, instance.osparams), "serial_no": instance.serial_no, "mtime": instance.mtime, "ctime": instance.ctime, "uuid": instance.uuid, } return result
moto/datasync/exceptions.py
gtourkas/moto
5,460
12692818
from moto.core.exceptions import JsonRESTError class DataSyncClientError(JsonRESTError): code = 400 class InvalidRequestException(DataSyncClientError): def __init__(self, msg=None): self.code = 400 super().__init__("InvalidRequestException", msg or "The request is not valid.")
examples/mxnet/scenegraph/utils/metric.py
ketyi/dgl
9,516
12692841
import dgl import mxnet as mx import numpy as np import logging, time from operator import attrgetter, itemgetter from mxnet import nd, gluon from mxnet.gluon import nn from dgl.utils import toindex from dgl.nn.mxnet import GraphConv from gluoncv.model_zoo import get_model from gluoncv.data.batchify import Pad def iou(boxA, boxB): # determine the (x, y)-coordinates of the intersection rectangle xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) interArea = max(0, xB - xA) * max(0, yB - yA) if interArea < 1e-7 : return 0 boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1]) boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1]) if boxAArea + boxBArea - interArea < 1e-7: return 0 iou_val = interArea / float(boxAArea + boxBArea - interArea) return iou_val def object_iou_thresh(gt_object, pred_object, iou_thresh=0.5): obj_iou = iou(gt_object[1:5], pred_object[1:5]) if obj_iou >= iou_thresh: return True return False def triplet_iou_thresh(pred_triplet, gt_triplet, iou_thresh=0.5): sub_iou = iou(gt_triplet[5:9], pred_triplet[5:9]) if sub_iou >= iou_thresh: ob_iou = iou(gt_triplet[9:13], pred_triplet[9:13]) if ob_iou >= iou_thresh: return True return False @mx.metric.register @mx.metric.alias('auc') class AUCMetric(mx.metric.EvalMetric): def __init__(self, name='auc', eps=1e-12): super(AUCMetric, self).__init__(name) self.eps = eps def update(self, labels, preds): mx.metric.check_label_shapes(labels, preds) label_weight = labels[0].asnumpy() preds = preds[0].asnumpy() tmp = [] for i in range(preds.shape[0]): tmp.append((label_weight[i], preds[i][1])) tmp = sorted(tmp, key=itemgetter(1), reverse=True) label_sum = label_weight.sum() if label_sum == 0 or label_sum == label_weight.size: return label_one_num = np.count_nonzero(label_weight) label_zero_num = len(label_weight) - label_one_num total_area = label_zero_num * label_one_num height = 0 width = 0 area = 0 for a, _ in tmp: if a == 1.0: height += 1.0 else: width += 1.0 area += height self.sum_metric += area / total_area self.num_inst += 1 @mx.metric.register @mx.metric.alias('predcls') class PredCls(mx.metric.EvalMetric): '''Metric with ground truth object location and label''' def __init__(self, topk=20, iou_thresh=0.99): super(PredCls, self).__init__('predcls@%d'%(topk)) self.topk = topk self.iou_thresh = iou_thresh def update(self, labels, preds): if labels is None or preds is None: self.num_inst += 1 return preds = preds[preds[:,0].argsort()[::-1]] m = min(self.topk, preds.shape[0]) count = 0 gt_edge_num = labels.shape[0] label_matched = [False for label in labels] for i in range(m): pred = preds[i] for j in range(gt_edge_num): if label_matched[j]: continue label = labels[j] if int(label[2]) == int(pred[2]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += 1 label_matched[j] = True total = labels.shape[0] self.sum_metric += count / total self.num_inst += 1 @mx.metric.register @mx.metric.alias('phrcls') class PhrCls(mx.metric.EvalMetric): '''Metric with ground truth object location and predicted object label from detector''' def __init__(self, topk=20, iou_thresh=0.99): super(PhrCls, self).__init__('phrcls@%d'%(topk)) self.topk = topk self.iou_thresh = iou_thresh def update(self, labels, preds): if labels is None or preds is None: self.num_inst += 1 return preds = preds[preds[:,1].argsort()[::-1]] m = min(self.topk, preds.shape[0]) count = 0 gt_edge_num = labels.shape[0] label_matched = [False for label in labels] for i in range(m): pred = preds[i] for j in range(gt_edge_num): if label_matched[j]: continue label = labels[j] if int(label[2]) == int(pred[2]) and \ int(label[3]) == int(pred[3]) and \ int(label[4]) == int(pred[4]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += 1 label_matched[j] = True total = labels.shape[0] self.sum_metric += count / total self.num_inst += 1 @mx.metric.register @mx.metric.alias('sgdet') class SGDet(mx.metric.EvalMetric): '''Metric with predicted object information by the detector''' def __init__(self, topk=20, iou_thresh=0.5): super(SGDet, self).__init__('sgdet@%d'%(topk)) self.topk = topk self.iou_thresh = iou_thresh def update(self, labels, preds): if labels is None or preds is None: self.num_inst += 1 return preds = preds[preds[:,1].argsort()[::-1]] m = min(self.topk, len(preds)) count = 0 gt_edge_num = labels.shape[0] label_matched = [False for label in labels] for i in range(m): pred = preds[i] for j in range(gt_edge_num): if label_matched[j]: continue label = labels[j] if int(label[2]) == int(pred[2]) and \ int(label[3]) == int(pred[3]) and \ int(label[4]) == int(pred[4]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += 1 label_matched[j] =True total = labels.shape[0] self.sum_metric += count / total self.num_inst += 1 @mx.metric.register @mx.metric.alias('sgdet+') class SGDetPlus(mx.metric.EvalMetric): '''Metric proposed by `Graph R-CNN for Scene Graph Generation`''' def __init__(self, topk=20, iou_thresh=0.5): super(SGDetPlus, self).__init__('sgdet+@%d'%(topk)) self.topk = topk self.iou_thresh = iou_thresh def update(self, labels, preds): label_objects, label_triplets = labels pred_objects, pred_triplets = preds if label_objects is None or pred_objects is None: self.num_inst += 1 return count = 0 # count objects object_matched = [False for obj in label_objects] m = len(pred_objects) gt_obj_num = label_objects.shape[0] for i in range(m): pred = pred_objects[i] for j in range(gt_obj_num): if object_matched[j]: continue label = label_objects[j] if int(label[0]) == int(pred[0]) and \ object_iou_thresh(pred, label, self.iou_thresh): count += 1 object_matched[j] = True # count predicate and triplet pred_triplets = pred_triplets[pred_triplets[:,1].argsort()[::-1]] m = min(self.topk, len(pred_triplets)) gt_triplet_num = label_triplets.shape[0] triplet_matched = [False for label in label_triplets] predicate_matched = [False for label in label_triplets] for i in range(m): pred = pred_triplets[i] for j in range(gt_triplet_num): label = label_triplets[j] if not predicate_matched: if int(label[2]) == int(pred[2]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += label[3] predicate_matched[j] = True if not triplet_matched[j]: if int(label[2]) == int(pred[2]) and \ int(label[3]) == int(pred[3]) and \ int(label[4]) == int(pred[4]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += 1 triplet_matched[j] = True # compute sum total = labels.shape[0] N = gt_obj_num + 2 * total self.sum_metric += count / N self.num_inst += 1 def extract_gt(g, img_size): '''extract prediction from ground truth graph''' if g is None or g.number_of_nodes() == 0: return None, None gt_eids = np.where(g.edata['rel_class'].asnumpy() > 0)[0] if len(gt_eids) == 0: return None, None gt_class = g.ndata['node_class'][:,0].asnumpy() gt_bbox = g.ndata['bbox'].asnumpy() gt_bbox[:, 0] /= img_size[1] gt_bbox[:, 1] /= img_size[0] gt_bbox[:, 2] /= img_size[1] gt_bbox[:, 3] /= img_size[0] gt_objects = np.vstack([gt_class, gt_bbox.transpose(1, 0)]).transpose(1, 0) gt_node_ids = g.find_edges(gt_eids) gt_node_sub = gt_node_ids[0].asnumpy() gt_node_ob = gt_node_ids[1].asnumpy() gt_rel_class = g.edata['rel_class'][gt_eids,0].asnumpy() - 1 gt_sub_class = gt_class[gt_node_sub] gt_ob_class = gt_class[gt_node_ob] gt_sub_bbox = gt_bbox[gt_node_sub] gt_ob_bbox = gt_bbox[gt_node_ob] n = len(gt_eids) gt_triplets = np.vstack([np.ones(n), np.ones(n), gt_rel_class, gt_sub_class, gt_ob_class, gt_sub_bbox.transpose(1, 0), gt_ob_bbox.transpose(1, 0)]).transpose(1, 0) return gt_objects, gt_triplets def extract_pred(g, topk=100, joint_preds=False): '''extract prediction from prediction graph for validation and visualization''' if g is None or g.number_of_nodes() == 0: return None, None pred_class = g.ndata['node_class_pred'].asnumpy() pred_class_prob = g.ndata['node_class_logit'].asnumpy() pred_bbox = g.ndata['pred_bbox'][:,0:4].asnumpy() pred_objects = np.vstack([pred_class, pred_bbox.transpose(1, 0)]).transpose(1, 0) score_pred = g.edata['score_pred'].asnumpy() score_phr = g.edata['score_phr'].asnumpy() score_pred_topk_eids = (-score_pred).argsort()[0:topk].tolist() score_phr_topk_eids = (-score_phr).argsort()[0:topk].tolist() topk_eids = sorted(list(set(score_pred_topk_eids + score_phr_topk_eids))) pred_rel_prob = g.edata['preds'][topk_eids].asnumpy() if joint_preds: pred_rel_class = pred_rel_prob[:,1:].argmax(axis=1) else: pred_rel_class = pred_rel_prob.argmax(axis=1) pred_node_ids = g.find_edges(topk_eids) pred_node_sub = pred_node_ids[0].asnumpy() pred_node_ob = pred_node_ids[1].asnumpy() pred_sub_class = pred_class[pred_node_sub] pred_sub_class_prob = pred_class_prob[pred_node_sub] pred_sub_bbox = pred_bbox[pred_node_sub] pred_ob_class = pred_class[pred_node_ob] pred_ob_class_prob = pred_class_prob[pred_node_ob] pred_ob_bbox = pred_bbox[pred_node_ob] pred_triplets = np.vstack([score_pred[topk_eids], score_phr[topk_eids], pred_rel_class, pred_sub_class, pred_ob_class, pred_sub_bbox.transpose(1, 0), pred_ob_bbox.transpose(1, 0)]).transpose(1, 0) return pred_objects, pred_triplets
bin/basenji_bench_phylopvcf.py
egilbertson-ucsf/basenji
232
12692844
<filename>bin/basenji_bench_phylopvcf.py #!/usr/bin/env python from optparse import OptionParser import joblib import os import pdb import sys import h5py import numpy as np import pysam import pyBigWig from scipy.stats import pearsonr from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import explained_variance_score from sklearn.model_selection import KFold import matplotlib import matplotlib.pyplot as plt import seaborn as sns from basenji import dna_io ''' basenji_bench_phylop.py ''' ################################################################################ # main ################################################################################ def main(): usage = 'usage: %prog [options] <sad_file> <vcf_file>' parser = OptionParser(usage) parser.add_option('-d', dest='n_components', default=None, type='int', help='PCA n_components [Default: %default]') parser.add_option('-e', dest='num_estimators', default=100, type='int', help='Number of random forest estimators [Default: %default]') parser.add_option('-i', dest='iterations', default=1, type='int', help='Cross-validation iterations [Default: %default]') parser.add_option('--msl', dest='msl', default=1, type='int', help='Random forest min_samples_leaf [Default: %default]') parser.add_option('-o', dest='out_dir', default='regr_out') parser.add_option('-p', dest='parallel_threads', default=1, type='int', help='Parallel threads passed to scikit-learn n_jobs [Default: %default]') parser.add_option('-r', dest='random_seed', default=44, type='int') (options,args) = parser.parse_args() if len(args) != 2: parser.error('Must provide ISM scores and PhyloP VCF file.') else: sad_file = args[0] phylop_vcf_file = args[1] np.random.seed(options.random_seed) if not os.path.isdir(options.out_dir): os.mkdir(options.out_dir) ################################################################ # read mutation scores with h5py.File(sad_file, 'r') as h5o: mut_sad = h5o['SAD'][:].astype('float32') num_muts, num_targets = mut_sad.shape ################################################################ # read mutation phylop mut_phylop = [] for line in open(phylop_vcf_file): if not line.startswith('#'): a = line.split() phylop = float(a[-1].replace('PP=','')) mut_phylop.append(phylop) # transform PhyloP mut_phylop = np.array(mut_phylop, dtype='float32') mut_phylop = np.nan_to_num(mut_phylop) mut_phylop = np.clip(mut_phylop, -1.5, 5) # verify? ################################################################ # regression # regressor r2s, pcors = randfor_cv(mut_sad, mut_phylop, iterations=options.iterations, n_estimators=options.num_estimators, msl=options.msl, random_state=options.random_seed, n_jobs=options.parallel_threads) # save np.save('%s/r2.npy' % options.out_dir, r2s) np.save('%s/pcor.npy' % options.out_dir, pcors) # print stats iterations = len(r2s) stats_out = open('%s/stats.txt' % options.out_dir, 'w') print('R2 %.4f (%.4f)' % (r2s.mean(), r2s.std()/np.sqrt(iterations)), file=stats_out) print('pR %.4f (%.4f)' % (pcors.mean(), pcors.std()/np.sqrt(iterations)), file=stats_out) stats_out.close() def randfor_cv(Xs, ys, folds=8, iterations=1, n_estimators=50, msl=1, max_features='log2', random_state=44, n_jobs=8): """Compute random forest regression accuracy statistics, shuffling at the sequence level.""" r2s = [] pcors = [] for i in range(iterations): rs_iter = random_state + i kf = KFold(n_splits=folds, shuffle=True, random_state=rs_iter) for train_index, test_index in kf.split(Xs): X_train = Xs[train_index] y_train = ys[train_index] X_test = Xs[test_index] y_test = ys[test_index] # fit model if random_state is None: rs_rf = None else: rs_rf = rs_iter+test_index[0] model = RandomForestRegressor(n_estimators=n_estimators, max_features=max_features, max_depth=64, min_samples_leaf=msl, min_samples_split=2, random_state=rs_rf, n_jobs=n_jobs) model.fit(X_train, y_train) # predict test set preds = model.predict(X_test) # compute R2 r2s.append(explained_variance_score(y_test, preds)) # compute pearsonr pcors.append(pearsonr(y_test, preds)[0]) r2s = np.array(r2s) pcors = np.array(pcors) return r2s, pcors ################################################################################ # __main__ ################################################################################ if __name__ == '__main__': main()
benches/microbenchmarks/loop_string.py
mainsail-org/RustPython
11,058
12692860
string = "a" * ITERATIONS # --- for char in string: pass
text/symbol.py
zachbarrow/talon_community
125
12692882
from talon.voice import Context, Key ctx = Context("symbol") keymap = { # simple "(question [mark] | questo)": "?", "plus": "+", "tilde": "~", "(bang | exclamation point | clamor)": "!", "(dollar [sign] | dolly)": "$", "(downscore | crunder)": "_", "colon": ":", "(lparen | [left] paren | precorp )": "(", "(rparen | are paren | right paren | precose)": ")", "(brace | left brace | kirksorp)": "{", "(rbrace | are brace | right brace | kirkos)": "}", "(angle | left angle | less than)": "<", "(rangle | are angle | right angle | greater than)": ">", "(star | asterisk)": "*", "(pound | hash [sign] | octo | number sign)": "#", "percent [sign]": "%", "caret": "^", "at sign": "@", "(and sign | ampersand | amper)": "&", "(pipe | spike)": "|", "(dubquote | double quote | quatches)": '"', # compound "mintwice": "--", "plustwice": "++", "minquall": "-=", "pluqual": "+=", "starqual": "*=", "triple quote": "'''", "triple tick": "```", "[forward] dubslash": "//", "coal twice": "::", "(dot dot | dotdot)": "..", "(ellipsis | dot dot dot | dotdotdot)": "...", # unnecessary: use repetition commands? } ctx.keymap(keymap)
functests/test_continuous_queries.py
adulau/Akumuli
1,094
12692884
<reponame>adulau/Akumuli from __future__ import print_function import akumulid_test_tools as att import datetime import itertools import json import math import multiprocessing import os import sys import time import traceback try: from urllib2 import urlopen except ImportError: from urllib import urlopen HOST = '127.0.0.1' TCPPORT = 8282 HTTPPORT = 8181 """ Test plan: Process 1 (reader). - Start process 2 (writer). - Read all data in fwd direction in range [begin, end-window]. Process 2 (writer). - Write data in range [begin, mid] in a loop. - Long pause. - Write data in range (mid, end] in a loop. - Exit. """ def writer(dt, delta, N): try: chan = att.TCPChan(HOST, TCPPORT) # fill data in print("Sending {0} messages through TCP...".format(N)) tags = { "tag": ['Foo'], } print("Generating first {0} messages...".format(N/2)) messages = att.generate_messages(dt, delta, N, 'test', **tags) for it in itertools.islice(messages, N/2): chan.send(it) time.sleep(10) print("Generating last {0} messages...".format(N/2)) for it in messages: chan.send(it) print("{0} messages sent".format(N)) time.sleep(10) except: print("Exception in writer") traceback.print_exc() sys.exit(1) def reader(dtstart, delta, N): # Start writer process wproc = multiprocessing.Process(name='Writer', target=writer, args=[dtstart, delta, N]) wproc.start() try: window = att.get_window_width() end = dtstart + delta*(N-1) - 2*window begin = dtstart timedelta = end - begin points_required = int(math.ceil((timedelta.seconds*1000000.0 + timedelta.microseconds) / (delta.seconds*1000000.0 + delta.microseconds))) + 1 query_params = {"output": { "format": "csv" }} query = att.makequery("test", begin, end, **query_params) queryurl = "http://{0}:{1}/api/query".format(HOST, HTTPPORT) response = urlopen(queryurl, json.dumps(query)) exp_ts = begin exp_value = 0 iterations = 0 print("Test #1 - continuous queries") for line in response: try: columns = line.split(',') tagline = columns[0].strip() timestamp = att.parse_timestamp(columns[1].strip()) value = float(columns[2].strip()) exp_tags = 'test tag=Foo' att.check_values(exp_tags, tagline, 'ENDS', exp_ts, timestamp, exp_value*1.0, value, iterations) exp_ts += delta exp_value += 1 iterations += 1 except: print("Error at line: {0}".format(line)) raise print("Query completed") # Check that we received all values if iterations != points_required: raise ValueError("Expect {0} data points, get {1} data points".format(points_required, iterations)) print("Test #1 passed") finally: wproc.join() def main(path, debug=False): if not os.path.exists(path): print("Path {0} doesn't exists".format(path)) sys.exit(1) akumulid = att.Akumulid(path) if not debug: # Reset database akumulid.delete_database() akumulid.create_database() # start ./akumulid server print("Starting server...") akumulid.serve() time.sleep(5) else: print("Akumulid should be started first") try: dt = datetime.datetime.utcnow() delta = datetime.timedelta(milliseconds=1) nmsgs = 100000 rproc = multiprocessing.Process(name='Reader', target=reader, args=[dt, delta, nmsgs]) rproc.start() rproc.join() except: traceback.print_exc() sys.exit(1) finally: if not debug: print("Stopping server...") akumulid.stop() time.sleep(5) if __name__ == '__main__': print(' '.join(sys.argv)) if len(sys.argv) < 2: print("Not enough arguments") sys.exit(1) main(sys.argv[1], sys.argv[2] == 'debug' if len(sys.argv) == 3 else False) else: raise ImportError("This module shouldn't be imported")
poet/console/commands/init.py
sdispater/poet
367
12692889
<filename>poet/console/commands/init.py # -*- coding: utf-8 -*- import os import re from collections import OrderedDict from pygments import highlight from pygments.formatters.terminal import TerminalFormatter from .index_command import IndexCommand from ...version_parser import VersionParser from ...version_selector import VersionSelector from ...utils.lexers import TOMLLexer from ...utils.helpers import call, template from ...build import Builder class InitCommand(IndexCommand): """ Creates a basic <comment>poetry.toml</> file in current directory. init { template? : Template to use } {--name= : Name of the package} {--description= : Description of the package} {--author= : Author name of the package} {--dependency=* : Package to require with a version constraint, e.g. requests:^2.10.0 or requests==2.11.1} {--dev-dependency=* : Package to require for development with a version constraint, e.g. requests:^2.10.0 or requests==2.11.1} {--l|license= : License of the package} """ help = """ The <info>init</info> command creates a basic <comment>poetry.toml</> file in the current directory. <info>poet init</info> """ def __init__(self): self._git_config = None super(InitCommand, self).__init__() def handle(self): formatter = self.get_helper('formatter') self.line([ '', formatter.format_block('Welcome to the Poet config generator', 'bg=blue;fg=white', True), '' ]) template_name = self.argument('template') if template_name: self.line([ '', 'Using <comment>{}</> template to create ' 'your <info>poetry.toml</> config.'.format(template_name), '' ]) if template_name == 'default': output = template('poetry.toml').render() with open(self.poet_file, 'w') as fd: fd.write(output) return self.line([ '', 'This command will guide you through creating your <info>poetry.toml</> config.', '' ]) poet_file = self.poet_file git_config = self.git_config() name = self.option('name') if not name: name = os.path.basename(os.path.dirname(poet_file)) name = name.lower() question = self.create_question( 'Package name [<comment>{}</comment>]: ' .format(name), default=name ) name = self.ask(question) version = '0.1.0' question = self.create_question( 'Version [<comment>{}</comment>]: '.format(version), default=version ) version = self.ask(question) description = self.option('description') or '' question = self.create_question( 'Description [<comment>{}</comment>]: ' .format(description), default=description ) description = self.ask(question) author = self.option('author') if not author and git_config.get('user.name') and git_config.get('user.email'): author = '{} <{}>'.format(git_config['user.name'], git_config['user.email']) question = self.create_question( 'Author [<comment>{}</comment>, n to skip]: ' .format(author), default=author ) question.validator = lambda v: self._validate_author(v, author) author = self.ask(question) if not author: authors = [] else: authors = [author] license = self.option('license') or '' question = self.create_question( 'License [<comment>{}</comment>]: ' .format(license), default=license ) license = self.ask(question) self.line('') requirements = [] question = 'Would you like to define your dependencies' \ ' (require) interactively?' if self.confirm(question, True): requirements = self._format_requirements( self._determine_requirements(self.option('dependency')) ) dev_requirements = [] question = '<question>Would you like to define your dev dependencies' \ ' (require-dev) interactively' if self.confirm(question, True): dev_requirements = self._format_requirements( self._determine_requirements(self.option('dev-dependency')) ) output = template('poetry.toml.jinja2').render( name=name, version=version, description=description, authors=authors, license=license, dependencies=requirements, dev_dependencies=dev_requirements ) if self.input.is_interactive(): self.line('<info>Generated file</>') if self.output.is_decorated(): self.line([ '', highlight( output, TOMLLexer(), TerminalFormatter() ), '' ]) else: self.line(['', output, '']) if not self.confirm( 'Do you confirm generation?', True ): self.line('<error>Command aborted</error>') return 1 with open(self.poet_file, 'w') as fd: fd.write(output) def _determine_requirements(self, requires): if requires: requires = self._normalize_requirements(requires) result = [] for requirement in requires: if 'version' not in requirement: # determine the best version automatically version = self._find_best_version_for_package(requirement['name']) requirement['version'] = version self.line( 'Using version <info>{}</info> for <info{}</info>' .format(requirement['version'], requirement['name']) ) result.append(requirement['name'] + ' ' + requirement['version']) version_parser = VersionParser() question = self.create_question('Search for a package:') package = self.ask(question) while package is not None: matches = self._find_packages(package) if not matches: self.line('<error>Unable to find package</>') package = False else: exact_match = None choices = [] for found_package in matches: choices.append(found_package['name']) # Removing exact match feature for now # if found_package['name'] == package: # exact_match = True # break if not exact_match: self.line( 'Found <info>{}</info> packages matching <info>{}</info>' .format( len(matches), package ) ) package = self.choice( '\nEnter package # to add, or the complete package name if it is not listed', choices, attempts=3 ) # no constraint yet, determine the best version automatically if package is not False and ' ' not in package: question = self.create_question( 'Enter the version constraint to require ' '(or leave blank to use the latest version):' ) question.attempts = 3 question.validator = lambda x: (x or '').strip() or False constraint = self.ask(question) if constraint is False: constraint = self._find_best_version_for_package(package) self.line( 'Using version <info>{}</info> for <info>{}</info>' .format(constraint, package) ) package += ' {}'.format(constraint) if package is not False: requires.append(package) package = self.ask('\nSearch for a package:') return requires def _validate_author(self, author, default): author = author or default if author in ['n', 'no']: return m = Builder.AUTHOR_REGEX.match(author) if not m: raise ValueError( 'Invalid author string. Must be in the format: ' '<NAME> <<EMAIL>>' ) return author def _find_packages(self, package): return self._repository.search(package, 1) def _find_best_version_for_package(self, package): selector = VersionSelector(self._repository) package = selector.find_best_candidate(package) return selector.find_recommended_require_version(package) def _format_requirements(self, requirements): requires = OrderedDict() requirements = self._normalize_requirements(requirements) for requirement in requirements: requires[requirement['name']] = requirement['version'] return requires def _normalize_requirements(self, requirements): parser = VersionParser() return parser.parse_name_version_pairs(requirements) def git_config(self): config_list = call(['git', 'config', '-l']) git_config = {} m = re.findall('(?ms)^([^=]+)=(.*?)$', config_list) if m: for group in m: git_config[group[0]] = group[1] return git_config
services/ui_backend_service/data/cache/search_artifacts_action.py
Netflix/metaflow-service
103
12692914
import hashlib import json from .client import CacheAction from services.utils import get_traceback_str from .utils import (error_event_msg, progress_event_msg, artifact_cache_id, unpack_pathspec_with_attempt_id, MAX_S3_SIZE) from ..refiner.refinery import unpack_processed_value from services.ui_backend_service.api.utils import operators_to_filters from metaflow import DataArtifact class SearchArtifacts(CacheAction): """ Fetches artifacts by pathspecs and performs a search against the object contents. Caches artifacts based on pathspec, and search results based on a combination of query&artifacts searched Parameters ---------- pathspecs : List[str] A list of artifact pathspecs (with attempt id as last component) to fetch and match the search term against: ["FlowId/RunNumber/StepName/TaskId/ArtifactName/0"] searchterm : str A searchterm to match against the fetched S3 artifacts contents. Returns ------- Dict or None example: { "pathspec": { "included": boolean, "matches": boolean } } matches: determines whether object content matched search term included: denotes if the object content was able to be included in the search (accessible or not) """ @classmethod def format_request(cls, pathspecs, searchterm, operator="eq", invalidate_cache=False): msg = { 'pathspecs': list(frozenset(sorted(pathspecs))), 'searchterm': searchterm, 'operator': operator } artifact_keys = [] for pathspec in pathspecs: artifact_keys.append(artifact_cache_id(pathspec)) request_id = lookup_id(pathspecs, searchterm, operator) stream_key = 'search:stream:%s' % request_id result_key = 'search:result:%s' % request_id return msg,\ [result_key, *artifact_keys],\ stream_key,\ [stream_key, result_key],\ invalidate_cache @classmethod def response(cls, keys_objs): """ Action should respond with a dictionary of { "pathspec": { "matches": boolean, "included": boolean } } that tells the client whether the search term matches in the given pathspec, or if performing search was impossible """ return [json.loads(val) for key, val in keys_objs.items() if key.startswith('search:result')][0] @classmethod def stream_response(cls, it): for msg in it: if msg is None: yield msg else: yield {'event': msg} @classmethod def execute(cls, message=None, keys=None, existing_keys={}, stream_output=None, invalidate_cache=False, **kwargs): pathspecs = message['pathspecs'] if invalidate_cache: results = {} pathspecs_to_fetch = [loc for loc in pathspecs] else: # make a copy of already existing results, as the cache action has to produce all keys it promised # in the format_request response. results = {**existing_keys} # Make a list of artifact pathspecs that require fetching (not cached previously) pathspecs_to_fetch = [loc for loc in pathspecs if not artifact_cache_id(loc) in existing_keys] artifact_keys = [key for key in keys if key.startswith('search:artifactdata')] result_key = [key for key in keys if key.startswith('search:result')][0] # Helper functions for streaming status updates. def stream_progress(num): return stream_output(progress_event_msg(num)) def stream_error(err, id, traceback=None): return stream_output(error_event_msg(err, id, traceback)) # Fetch artifacts that are not cached already for idx, pathspec in enumerate(pathspecs_to_fetch): stream_progress((idx + 1) / len(pathspecs_to_fetch)) try: pathspec_without_attempt, attempt_id = unpack_pathspec_with_attempt_id(pathspec) artifact_key = "search:artifactdata:{}".format(pathspec) artifact = DataArtifact(pathspec_without_attempt, attempt=attempt_id) if artifact.size < MAX_S3_SIZE: results[artifact_key] = json.dumps([True, artifact.data]) else: results[artifact_key] = json.dumps( [False, 'artifact-too-large', "{}: {} bytes".format(artifact.pathspec, artifact.size)]) except Exception as ex: stream_error(str(ex), ex.__class__.__name__, get_traceback_str()) results[artifact_key] = json.dumps([False, ex.__class__.__name__, get_traceback_str()]) # Perform search on loaded artifacts. search_results = {} searchterm = message['searchterm'] operator = message['operator'] filter_fn = operators_to_filters[operator] if operator in operators_to_filters else operators_to_filters["eq"] def format_loc(x): "extract pathspec from the artifact cache key" return x[len("search:artifactdata:"):] for key in artifact_keys: if key in results: load_success, value, detail = unpack_processed_value(json.loads(results[key])) else: load_success, value, _ = False, None, None # keep the matching case-insensitive matches = filter_fn(str(value).lower(), searchterm.lower()) search_results[format_loc(key)] = { "included": load_success, "matches": matches, "error": None if load_success else { "id": value or "artifact-handle-failed", "detail": detail or "Unknown error during artifact processing" } } results[result_key] = json.dumps(search_results) return results def lookup_id(locations, searchterm, operator): "construct a unique id to be used with stream_key and result_key" _string = "-".join(list(frozenset(sorted(locations)))) + searchterm + operator return hashlib.sha1(_string.encode('utf-8')).hexdigest()
scripts/feature_matching.py
Soldie/Human-detection-and-Tracking
906
12692924
<filename>scripts/feature_matching.py import numpy as np import cv2 import sys import matplotlib.pyplot as plt img1 = cv2.imread(sys.argv[1], 0) img2 = cv2.imread(sys.argv[2], 0) orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(des1, des2) matches = sorted(matches, key=lambda x: x.distance) img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:10], None, flags=2) cv2.imshow('window', img3) cv2.waitKey(0)
docassemble_webapp/docassemble/webapp/cloud.py
knod/docassemble
568
12692944
<filename>docassemble_webapp/docassemble/webapp/cloud.py from docassemble.base.config import s3_config, S3_ENABLED, azure_config, AZURE_ENABLED def get_cloud(): if S3_ENABLED: import docassemble.webapp.amazon cloud = docassemble.webapp.amazon.s3object(s3_config) elif AZURE_ENABLED: import docassemble.webapp.microsoft cloud = docassemble.webapp.microsoft.azureobject(azure_config) else: cloud = None return cloud def get_custom_cloud(provider, config): if provider is None or config is None: return None if provider == 's3': import docassemble.webapp.amazon cloud = docassemble.webapp.amazon.s3object(config) elif provider == 'azure': import docassemble.webapp.microsoft cloud = docassemble.webapp.microsoft.azureobject(config) else: cloud = None return cloud
pyftdi/tests/backend/mpsse.py
marcjordan2112/pyftdi
345
12692984
<gh_stars>100-1000 """PyUSB virtual FTDI device.""" # Copyright (c) 2020, <NAME> <<EMAIL>> # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from collections import deque from logging import getLogger from struct import unpack as sunpack from typing import Union from pyftdi.tracer import FtdiMpsseEngine, FtdiMpsseTracer class VirtMpsseTracer(FtdiMpsseTracer): """Reuse MPSSE tracer as a MPSSE command decoder engine. """ def __init__(self, port: 'VirtFtdiPort', version: int): super().__init__(version) self.log = getLogger('pyftdi.virt.mpsse.{port.iface}') self._port = port def _get_engine(self, iface: int): iface -= 1 try: self._engines[iface] except IndexError as exc: raise ValueError('No MPSSE engine available on interface %d' % iface) from exc if not self._engines[iface]: self._engines[iface] = VirtMpsseEngine(self, self._port) return self._engines[iface] class VirtMpsseEngine(FtdiMpsseEngine): """Virtual implementation of a MPSSE. Far from being complete for now :-) """ def __init__(self, tracer: VirtMpsseTracer, port: 'VirtFtdiPort'): super().__init__(port.iface) self.log = getLogger(f'pyftdi.virt.mpsse.{port.iface}') self._tracer = tracer self._port = port self._width = port.width self._mask = (1 << self._width) - 1 self._reply_q = deque() def send(self, buf: Union[bytes, bytearray]) -> None: super().send(buf) # cannot post the response before the send() method has completed # see FtdiMpsseEngine.send() for execution steps: expected reply size # is only known (stored) once the command execution has completed self.reply() def reply(self) -> None: """Post the reply to a command back into the virtual FTDI FIFO.""" while self._reply_q: self._port.write_from_mpsse(self, self._reply_q.popleft()) def _cmd_get_bits_low(self): super()._cmd_get_bits_low() byte = self._port.gpio & 0xff buf = bytes([byte]) self._reply_q.append(buf) return True def _cmd_get_bits_high(self): super()._cmd_get_bits_high() byte = (self._port.gpio >> 8) & 0xff buf = bytes([byte]) self._reply_q.append(buf) return True def _cmd_set_bits_low(self): buf = self._trace_tx[1:3] if not super()._cmd_set_bits_low(): return False port = self._port byte, direction = sunpack('BB', buf) gpi = port.gpio & ~direction & self._mask gpo = byte & direction & self._mask msb = port.gpio & ~0xFF gpio = gpi | gpo | msb port.update_gpio(self, False, direction, gpio) self.log.debug('. bbwl %04x: %s', port.gpio, f'{port.gpio:016b}') return True def _cmd_set_bits_high(self): buf = self._trace_tx[1:3] if not super()._cmd_set_bits_high(): return False port = self._port byte, direction = sunpack('BB', buf) byte <<= 8 direction <<= 8 gpi = port.gpio & ~direction & self._mask gpo = byte & direction & self._mask lsb = port.gpio & 0xFF gpio = gpi | gpo | lsb port.update_gpio(self, False, direction, gpio) self.log.debug('. bbwh %04x: %s', port.gpio, f'{port.gpio:016b}') return True
ltc/urls.py
r1990v/JMeter-Control-Center
166
12692994
from django.conf.urls import url, include from django.contrib import admin from django.conf.urls.static import static from . import settings from django.urls import path admin.autodiscover() urlpatterns = [ path('admin', admin.site.urls), path('', include('ltc.web.urls'), name='index'), path('analyzer', include('ltc.analyzer.urls'), name='analyzer'), path('online', include('ltc.online.urls'), name='online'), path('controller', include('ltc.controller.urls'), name='controller'), path('administrator', include('ltc.administrator.urls'), name='administrator') ] + static( settings.STATIC_URL, document_root=settings.STATIC_URL )
afl_utils/afl_cron.py
viniul/afl-utils
438
12693011
""" Copyright 2015-2016 @_rc0r <<EMAIL>> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import datetime try: import simplejson as json except ImportError: import json import sys import time import afl_utils from afl_utils.AflPrettyPrint import clr, print_ok, print_warn, print_err class AflCronDaemon(object): def __init__(self, config_file, quiet=False): self.config = self.load_config(config_file) self.quiet = quiet def load_config(self, config_file): with open(config_file, 'r') as raw_config: config = json.load(raw_config) return config def get_module(self, module_path): module_name = module_path.rsplit('.', 1)[1] try: module = __import__(module_path, fromlist=[module_name]) except ImportError: raise ValueError('Module \'{}\' could not be imported' .format(module_path,)) return module def get_member(self, module, member_name): try: cls = getattr(module, member_name) except AttributeError: raise ValueError('Module \'{}\' has no member \'{}\''.format(module, member_name, )) return cls def run_job(self, job): job_module = self.get_module(job['module']) job_func = self.get_member(job_module, job['function']) job_args = [job['module'].rsplit('.', 1)[1]] + job['params'].split() if not self.quiet: print_ok('Executing \'{}\' ({}.{})'.format(job['name'], job['module'], job['function'])) job_func(job_args) def run(self): doExit = False while not doExit: try: time_start = datetime.datetime.now() for job in self.config['jobs']: self.run_job(job) print_ok('All jobs done [{}]'.format(datetime.datetime.now()-time_start)) if float(self.config['interval']) < 0: doExit = True else: time.sleep(float(self.config['interval']) * 60) except KeyboardInterrupt: print('\b\b') print_ok('Aborted by user. Good bye!') doExit = True def show_info(): print(clr.CYA + 'afl-cron ' + clr.BRI + '%s' % afl_utils.__version__ + clr.RST + ' by %s' % afl_utils.__author__) print('Periodically run tools from the afl-utils collection.') print('') def main(argv): parser = argparse.ArgumentParser(description='Post selected contents of fuzzer_stats to Twitter.', usage='afl-stats [-c config] [-d] [-h] [-q]\n') parser.add_argument('-c', '--config', dest='config_file', help='afl-stats config file (Default: afl-stats.conf)!', default='afl-cron.conf') parser.add_argument('-d', '--daemon', dest='daemon', action='store_const', const=True, help='Daemon mode: run in background', default=False) parser.add_argument('-q', '--quiet', dest='quiet', action='store_const', const=True, help='Suppress any output', default=False) args = parser.parse_args(argv[1:]) if not args.quiet and not args.daemon: show_info() cron = AflCronDaemon(args.config_file, quiet=args.quiet) cron.run() if __name__ == "__main__": main(sys.argv)
src/backend/common/manipulators/match_manipulator.py
ofekashery/the-blue-alliance
266
12693025
<reponame>ofekashery/the-blue-alliance from typing import List from backend.common.cache_clearing import get_affected_queries from backend.common.manipulators.manipulator_base import ManipulatorBase from backend.common.models.cached_model import TAffectedReferences from backend.common.models.match import Match class MatchManipulator(ManipulatorBase[Match]): """ Handle Match database writes. """ @classmethod def getCacheKeysAndQueries( cls, affected_refs: TAffectedReferences ) -> List[get_affected_queries.TCacheKeyAndQuery]: return get_affected_queries.match_updated(affected_refs) """ @classmethod def postDeleteHook(cls, matches): ''' To run after the match has been deleted. ''' for match in matches: try: FirebasePusher.delete_match(match) except Exception: logging.warning("Firebase delete_match failed!") """ """ @classmethod def postUpdateHook(cls, matches, updated_attr_list, is_new_list): ''' To run after the match has been updated. Send push notifications to subscribed users Only if the match is part of an active event ''' unplayed_match_events = [] for (match, updated_attrs, is_new) in zip(matches, updated_attr_list, is_new_list): event = match.event.get() # Only continue if the event is currently happening if event.now: if match.has_been_played: if is_new or 'alliances_json' in updated_attrs: # There is a score update for this match, push a notification logging.info("Sending push notifications for {}".format(match.key_name)) try: NotificationHelper.send_match_score_update(match) except Exception, exception: logging.error("Error sending match updates: {}".format(exception)) logging.error(traceback.format_exc()) try: TBANSHelper.match_score(match) except Exception, exception: logging.error("Error sending match {} updates: {}".format(match.key_name, exception)) logging.error(traceback.format_exc()) else: if is_new or (set(['alliances_json', 'time', 'time_string']).intersection(set(updated_attrs)) != set()): # The match has not been played and we're changing a property that affects the event's schedule # So send a schedule update notification for the parent event if event not in unplayed_match_events: unplayed_match_events.append(event) # Try to send video notifications if '_video_added' in updated_attrs: try: NotificationHelper.send_match_video(match) except Exception, exception: logging.error("Error sending match video updates: {}".format(exception)) logging.error(traceback.format_exc()) try: TBANSHelper.match_video(match) except Exception, exception: logging.error("Error sending match video updates: {}".format(exception)) logging.error(traceback.format_exc()) ''' If we have an unplayed match during an event within a day, send out a schedule update notification ''' for event in unplayed_match_events: try: logging.info("Sending schedule updates for: {}".format(event.key_name)) NotificationHelper.send_schedule_update(event) except Exception, exception: logging.error("Eror sending schedule updates for: {}".format(event.key_name)) try: TBANSHelper.event_schedule(event) except Exception, exception: logging.error("Eror sending schedule updates for: {}".format(event.key_name)) logging.error(traceback.format_exc()) try: # When an event gets a new schedule, we should schedule `match_upcoming` notifications for the first matches for the event TBANSHelper.schedule_upcoming_matches(event) except Exception, exception: logging.error("Eror scheduling match_upcoming for: {}".format(event.key_name)) logging.error(traceback.format_exc()) ''' Enqueue firebase push ''' affected_stats_event_keys = set() for (match, updated_attrs, is_new) in zip(matches, updated_attr_list, is_new_list): # Only attrs that affect stats if is_new or set(['alliances_json', 'score_breakdown_json']).intersection(set(updated_attrs)) != set(): affected_stats_event_keys.add(match.event.id()) try: FirebasePusher.update_match(match, updated_attrs) except Exception: logging.warning("Firebase update_match failed!") logging.warning(traceback.format_exc()) # Enqueue statistics for event_key in affected_stats_event_keys: # Enqueue task to calculate matchstats try: taskqueue.add( url='/tasks/math/do/event_matchstats/' + event_key, method='GET') except Exception: logging.error("Error enqueuing event_matchstats for {}".format(event_key)) logging.error(traceback.format_exc()) # Enqueue task to calculate district points try: taskqueue.add( url='/tasks/math/do/district_points_calc/{}'.format(event_key), method='GET') except Exception: logging.error("Error enqueuing district_points_calc for {}".format(event_key)) logging.error(traceback.format_exc()) # Enqueue task to calculate event team status try: taskqueue.add( url='/tasks/math/do/event_team_status/{}'.format(event_key), method='GET') except Exception: logging.error("Error enqueuing event_team_status for {}".format(event_key)) logging.error(traceback.format_exc()) # Enqueue updating playoff advancement try: taskqueue.add( url='/tasks/math/do/playoff_advancement_update/{}'.format(event_key), method='GET') except Exception: logging.error("Error enqueuing advancement update for {}".format(event_key)) logging.error(traceback.format_exc()) """ @classmethod def updateMerge( cls, new_model: Match, old_model: Match, auto_union: bool = True ) -> Match: # Lets postUpdateHook know if videos went from 0 to >0 added_video = not old_model.has_video and new_model.has_video cls._update_attrs(new_model, old_model, auto_union) if added_video: old_model._updated_attrs.add("_video_added") return old_model
stable_nalu/dataset/simple_function_static_test.py
wlm2019/Neural-Arithmetic-Units
147
12693069
from nose.tools import * import scipy.stats import torch import numpy as np from stable_nalu.dataset import SimpleFunctionStaticDataset def test_solveable_by_linear_algebra(): dataset = SimpleFunctionStaticDataset( operation='add', seed=0 ) dataset_test = iter(dataset.fork(input_range=1).dataloader(batch_size=100)) x_batch, t_batch = next(dataset_test) x_batch_np = np.stack(x_batch) t_batch_np = np.stack(t_batch) w_merged_np = np.linalg.solve(x_batch_np, t_batch_np.ravel()) w_merged_np_int = np.round(w_merged_np, 0).astype('int8') # W is whole numbers np.testing.assert_almost_equal( w_merged_np - w_merged_np_int, np.zeros(100), decimal=4 ) # W is either 0, 1, 2 # NOTE: a different seed might not result in an overlap, thus {2} might # not be present. assert_equal( set(w_merged_np_int.tolist()), {0, 1, 2} ) # Compute a, b range parameters # For seed=0, the b subset, is a subset of the a subset, which is assumed # by the following algorithm. a_start = None a_end = None b_start = None b_end = None previuse_w_value = 0 for w_index, w_value in enumerate(w_merged_np_int.tolist()): if w_value == 1 and previuse_w_value == 0: a_start = w_index elif w_value == 0 and previuse_w_value == 1: a_end = w_index elif w_value == 2 and previuse_w_value == 1: b_start = w_index elif w_value == 1 and previuse_w_value == 2: b_end = w_index previuse_w_value = w_value # Compare a and b range parameters assert_equal(a_start, dataset.a_start) assert_equal(a_end, dataset.a_end) assert_equal(b_start, dataset.b_start) assert_equal(b_end, dataset.b_end) def test_input_range(): dataset = SimpleFunctionStaticDataset( operation='add', vector_size=10000, seed=0 ) x, t = dataset.fork(input_range=5)[0] _, p = scipy.stats.kstest( x, scipy.stats.uniform(loc=0, scale=5).cdf ) assert p > 0.5 def test_output_shape(): dataset = SimpleFunctionStaticDataset( operation='add', seed=0 ) x, t = dataset.fork(input_range=5)[0] assert_equal(x.shape, (100, )) # Note, t.shape should be a 1-long vector, not a scalar. Otherwise # the loss function gets confused about what the observation dimention # is. assert_equal(t.shape, (1, ))
incomplete/rasterizer/rasterizer/examples/e1.py
choosewhatulike/500lines
26,185
12693080
<filename>incomplete/rasterizer/rasterizer/examples/e1.py from .. import * def run(image): scene = Scene() scene.add(Triangle([Vector(0.5, 0.5), Vector(0.8, 0.5), Vector(0.5, 0.8)], Color(1,0,0,1))) scene.draw(image)
graph4nlp/pytorch/modules/utils/logger.py
cminusQAQ/graph4nlp
1,269
12693081
import json import os from . import constants as Constants class Logger: def __init__(self, dirname, config=None, overwrite=False, logging=True): self.logging = logging if os.path.exists(dirname): if not overwrite: raise Exception("Directory already exists: {}".format(dirname)) else: os.makedirs(dirname) if config is not None: self.log_json(config, os.path.join(dirname, Constants._CONFIG_FILE)) if logging: self.fout = open(os.path.join(dirname, Constants._SAVED_METRICS_FILE), "a") def log_json(self, data, filename, mode="w"): with open(filename, mode) as outfile: outfile.write(json.dumps(data, indent=4, ensure_ascii=False)) def write(self, text): if self.logging: self.fout.writelines(text + "\n") self.fout.flush() def close(self): if self.logging: self.fout.close()
api/resources.py
annevandalfsen/screenbird
121
12693106
from django.core.urlresolvers import reverse from djangorestframework.compat import View from djangorestframework.mixins import ResponseMixin from djangorestframework.renderers import JSONRenderer from django.contrib.auth.models import User from djangorestframework.resources import ModelResource from djangorestframework.response import Response from accounts.models import UserProfile from videos.models import Video, Channel def is_allowed(user): """ """ return (user.userprofile.is_paid) or (user.userprofile.is_using_trial) or (user.userprofile.api_key) class VideoResource(ResponseMixin, View): """ Returns all videos under the account of the api_key provided. The format of the response is in JSON. """ renderers = [JSONRenderer,] csrf_exempt = True def get(self, request): key = request.GET.get('api_key', None) account_id = -1 if key: userprofile = None try: userprofile = UserProfile.objects.get(api_key=key) account_id = userprofile.user_id except: pass if userprofile: user = None try: user = User.objects.get(pk=account_id) except: pass if user: if is_allowed(user): videos = Video.objects.filter(uploader__id=account_id) json_videos = [] for video in videos: channel_name = None if video.channel: channel_name = video.channel.name json_videos.append( { 'id':video.id, 'channel':channel_name, 'url':video.get_absolute_url(), 'title':video.title, 'embed_code':video.get_embed_code() } ) response = Response(200, {'success':True,'videos':json_videos} ) else: response = Response(401) else: response = Response(401) else: response = Response(401) else: response = Response(400) return self.render(response) class ChannelVideoResource(ResponseMixin, View): """ Returns all videos under the channel of an account of the api_key provided. The format of the response is in JSON. """ renderers = [JSONRenderer,] csrf_exempt = True def get(self, request): channel_link = request.GET.get('channel_link', None) key = request.GET.get('api_key', None) account_id = -1 if key and channel_link: userprofile = None try: userprofile = UserProfile.objects.get(api_key=key) account_id = userprofile.user_id except: pass channel = None try: channel = Channel.objects.get(api_link=channel_link) except: pass if channel: if (channel.owner.id == account_id) and is_allowed(channel.owner): videos = Video.objects.filter(channel=channel) json_videos = [] for video in videos: channel_name = None if video.channel: channel_name = video.channel.name json_videos.append( { 'id':video.id, 'channel':channel_name, 'url':video.get_absolute_url(), 'title':video.title, 'embed_code':video.get_embed_code() } ) response = Response(200, {'success':True,'videos':json_videos} ) else: response = Response(401) else: response = Response(401) else: response = Response(401) return self.render(response) class LatestVideoResource(ResponseMixin, View): """ Returns the latest video under the account of the api_key provided. The format of the response is in JSON. """ renderers = [JSONRenderer,] csrf_exempt = True def get(self, request): key = request.GET.get('api_key', None) account_id = -1 if key: userprofile = None try: userprofile = UserProfile.objects.get(api_key=key) account_id = userprofile.user_id except: pass if userprofile: user = None try: user = User.objects.get(pk=account_id) except: pass if user: if is_allowed(user): videos = Video.objects.filter(uploader__id=account_id).order_by('-created')[:1:] json_videos = [] for video in videos: channel_name = None if video.channel: channel_name = video.channel.name json_videos.append( { 'id':video.id, 'channel':channel_name, 'url':video.get_absolute_url(), 'title':video.title, 'embed_code':video.get_embed_code() } ) response = Response(200, {'success':True,'videos':json_videos} ) else: response = Response(401) else: response = Response(401) else: response = Response(401) else: response = Response(400) return self.render(response) class LatestChannelVideoResource(ResponseMixin, View): renderers = [JSONRenderer,] csrf_exempt = True def get(self, request): key = request.GET.get('api_key', None) channel_link = request.GET.get('channel_link', None) account_id = -1 if key and channel_link: userprofile = None try: userprofile = UserProfile.objects.get(api_key=key) account_id = userprofile.user_id except: pass channel = None try: channel = Channel.objects.get(api_link=channel_link) except: pass if channel: if (channel.owner.id == account_id) and is_allowed(channel.owner): videos = Video.objects.filter(channel=channel).order_by('-created')[:1:] json_videos = [] for video in videos: channel_name = None if video.channel: channel_name = video.channel.name json_videos.append( { 'id':video.id, 'channel':channel_name, 'url':video.get_absolute_url(), 'title':video.title, 'embed_code':video.get_embed_code() } ) response = Response(200, {'success':True,'videos':json_videos} ) else: response = Response(401) else: response = Response(401) else: response = Response(401) return self.render(response)
google/colab/syntax.py
figufema/TesteClone
1,521
12693120
<reponame>figufema/TesteClone """Utility to add editor syntax highlighting to literal code strings. Example: from google.colab import syntax query = syntax.sql(''' SELECT * from tablename ''') """ def html(s): """Noop function to enable HTML highlighting for its argument.""" return s def javascript(s): """Noop function to enable JavaScript highlighting for its argument.""" return s def sql(s): """Noop function to enable SQL highlighting for its argument.""" return s def css(s): """Noop function to enable CSS highlighting for its argument.""" return s
pythran/tests/cases/calculate_u.py
davidbrochart/pythran
1,647
12693121
# from the paper `using cython to speedup numerical python programs' #pythran export timeloop(float, float, float, float, float, float list list, float list list, float list list) #pythran export timeloop(float, float, float, float, float, int list list, int list list, int list list) #bench A=[list(range(70)) for i in range(100)] ; B=[list(range(70)) for i in range(100)] ; C=[list(range(70)) for i in range(100)] ; timeloop(1.,2.,.01,.1,.18, A,B,C ) #runas A=[list(range(10)) for i in range(5)] ; B=[list(range(10)) for i in range(5)] ; C=[list(range(10)) for i in range(5)] ; timeloop(1.,2.,.1,.1,.2, A,B,C ) def timeloop(t, t_stop, dt, dx, dy, u, um, k): while t <= t_stop: t += dt new_u = calculate_u(dt, dx, dy, u, um, k) um = u u = new_u return u def calculate_u(dt, dx, dy, u, um, k): up = [ [0.]*len(u[0]) for i in range(len(u)) ] "omp parallel for" for i in range(1, len(u)-1): for j in range(1, len(u[0])-1): up[i][j] = 2*u[i][j] - um[i][j] + \ (dt/dx)**2*( (0.5*(k[i+1][j] + k[i][j])*(u[i+1][j] - u[i][j]) - 0.5*(k[i][j] + k[i-1][j])*(u[i][j] - u[i-1][j]))) + \ (dt/dy)**2*( (0.5*(k[i][j+1] + k[i][j])*(u[i][j+1] - u[i][j]) - 0.5*(k[i][j] + k[i][j-1])*(u[i][j] - u[i][j-1]))) return up
datasets/amttl/amttl.py
WojciechKusa/datasets
10,608
12693142
<reponame>WojciechKusa/datasets<filename>datasets/amttl/amttl.py # coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Introduction to AMTTL CWS Dataset""" import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{xing2018adaptive, title={Adaptive multi-task transfer learning for Chinese word segmentation in medical text}, author={<NAME> and <NAME> and <NAME>}, booktitle={Proceedings of the 27th International Conference on Computational Linguistics}, pages={3619--3630}, year={2018} } """ _DESCRIPTION = """\ Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop when dealing with domain text, especially for a domain with lots of special terms and diverse writing styles, such as the biomedical domain. However, building domain-specific CWS requires extremely high annotation cost. In this paper, we propose an approach by exploiting domain-invariant knowledge from high resource to low resource domains. Extensive experiments show that our mode achieves consistently higher accuracy than the single-task CWS and other transfer learning baselines, especially when there is a large disparity between source and target domains. This dataset is the accompanied medical Chinese word segmentation (CWS) dataset. The tags are in BIES scheme. For more details see https://www.aclweb.org/anthology/C18-1307/ """ _URL = "https://raw.githubusercontent.com/adapt-sjtu/AMTTL/master/medical_data/" _TRAINING_FILE = "forum_train.txt" _DEV_FILE = "forum_dev.txt" _TEST_FILE = "forum_test.txt" class AmttlConfig(datasets.BuilderConfig): """BuilderConfig for AMTTL""" def __init__(self, **kwargs): """BuilderConfig for AMTTL. Args: **kwargs: keyword arguments forwarded to super. """ super(AmttlConfig, self).__init__(**kwargs) class Amttl(datasets.GeneratorBasedBuilder): """AMTTL Chinese Word Segmentation dataset.""" BUILDER_CONFIGS = [ AmttlConfig( name="amttl", version=datasets.Version("1.0.0"), description="AMTTL medical Chinese word segmentation dataset", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "B", "I", "E", "S", ] ) ), } ), supervised_keys=None, homepage="https://www.aclweb.org/anthology/C18-1307/", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] tags = [] for line in f: line_stripped = line.strip() if line_stripped == "": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "tags": tags, } guid += 1 tokens = [] tags = [] else: splits = line_stripped.split("\t") if len(splits) == 1: splits.append("O") tokens.append(splits[0]) tags.append(splits[1]) # last example yield guid, { "id": str(guid), "tokens": tokens, "tags": tags, }
examples/simple/stellar_lifetime_vs_mass.py
rknop/amuse
131
12693153
<reponame>rknop/amuse # -*- coding: ascii -*- """ Calculates the stellar lifetime in a range of masses between Mmax and Mmin using SSE (or another stellar evolution code) and an analytic expression. """ from __future__ import print_function import numpy from optparse import OptionParser from amuse.units import units from amuse.datamodel import Particle from amuse.plot import plot from matplotlib import pyplot as plt from amuse.community.sse.interface import SSE se = None def stellar_remnant_state(star): return 10 <= star.stellar_type.value_in(units.stellar_type) < 16 def stellar_lifetime(mZAMS, z=0.02): global se if se is None: se = SSE() se.parameters.metallicity = z se.particles.add_particle(Particle(mass=mZAMS)) while not stellar_remnant_state(se.particles[0]): se.evolve_model() t_end = se.particles[0].age # tpe = se.particles[0].stellar_type se.particles.remove_particle(se.particles[0]) return t_end def power_law_fit_to_main_sequence_lifetime(mZAMS): return 2 + 1.0E+4 / pow(mZAMS.value_in(units.MSun), 2.5) | units.Myr def main(n=10, mmin=1.0, mmax=100, z=0.02): dm = (mmax - mmin) / n mZAMS = numpy.arange(mmin, mmax, dm) | units.MSun mmin = mmin | units.MSun mmax = mmax | units.MSun print(mZAMS) t_sse = [] | units.Myr t_analytic = [] | units.Myr for mi in mZAMS: t_sse.append(stellar_lifetime(mi, z)) t_analytic.append(power_law_fit_to_main_sequence_lifetime(mi)) plot(mZAMS, t_sse, label="sse") plot(mZAMS, t_analytic, label="analytic") plt.loglog() plt.legend() plt.title("comparison between SSE and analytic with z=" + str(z)) plt.show() def new_option_parser(): result = OptionParser() result.add_option("-n", dest="n", type="int", default=10, help="number of stars") result.add_option("-m", dest="mmin", type="float", default=1.0, help="Minimal mass [1.0] MSun") result.add_option("-M", dest="mmax", type="float", default=100.0, help="Maximal mass [100] MSun") result.add_option("-z", dest="z", type="float", default=0.02, help="metalicity [0.02]") return result if __name__ == "__main__": o, arguments = new_option_parser().parse_args() main(**o.__dict__)
common/markdown/markdown.py
ujlbu4/vas3k.club
496
12693161
<reponame>ujlbu4/vas3k.club import mistune from common.markdown.club_renderer import ClubRenderer from common.markdown.email_renderer import EmailRenderer from common.markdown.plain_renderer import PlainRenderer def markdown_text(text, renderer=ClubRenderer): markdown = mistune.create_markdown( escape=True, renderer=renderer(), plugins=["strikethrough", "url"] ) return (markdown(text) or "").strip() def markdown_plain(text): return markdown_text(text, renderer=PlainRenderer) def markdown_email(text): return markdown_text(text, renderer=EmailRenderer)
src/opnsense/scripts/ipsec/vici/test/test_protocol.py
johanneskastl/opnsense-core
2,109
12693183
import pytest from ..protocol import Packet, Message, FiniteStream from ..exception import DeserializationException class TestPacket(object): # test data definitions for outgoing packet types cmd_request = b"\x00\x0c" b"command_type" cmd_request_msg = b"\x00\x07" b"command" b"payload" event_register = b"\x03\x0a" b"event_type" event_unregister = b"\x04\x0a" b"event_type" # test data definitions for incoming packet types cmd_response = b"\x01" b"reply" cmd_unknown = b"\x02" event_confirm = b"\x05" event_unknown = b"\x06" event = b"\x07\x03" b"log" b"message" def test_request(self): assert Packet.request("command_type") == self.cmd_request assert Packet.request("command", b"payload") == self.cmd_request_msg def test_register_event(self): assert Packet.register_event("event_type") == self.event_register def test_unregister_event(self): assert Packet.unregister_event("event_type") == self.event_unregister def test_parse(self): parsed_cmd_response = Packet.parse(self.cmd_response) assert parsed_cmd_response.response_type == Packet.CMD_RESPONSE assert parsed_cmd_response.payload.getvalue() == self.cmd_response parsed_cmd_unknown = Packet.parse(self.cmd_unknown) assert parsed_cmd_unknown.response_type == Packet.CMD_UNKNOWN assert parsed_cmd_unknown.payload.getvalue() == self.cmd_unknown parsed_event_confirm = Packet.parse(self.event_confirm) assert parsed_event_confirm.response_type == Packet.EVENT_CONFIRM assert parsed_event_confirm.payload.getvalue() == self.event_confirm parsed_event_unknown = Packet.parse(self.event_unknown) assert parsed_event_unknown.response_type == Packet.EVENT_UNKNOWN assert parsed_event_unknown.payload.getvalue() == self.event_unknown parsed_event = Packet.parse(self.event) assert parsed_event.response_type == Packet.EVENT assert parsed_event.payload.getvalue() == self.event class TestMessage(object): """Message (de)serialization test.""" # data definitions for test of de(serialization) # serialized messages holding a section ser_sec_unclosed = b"\x01\x08unclosed" ser_sec_single = b"\x01\x07section\x02" ser_sec_nested = b"\x01\x05outer\x01\x0asubsection\x02\x02" # serialized messages holding a list ser_list_invalid = b"\x04\x07invalid\x05\x00\x02e1\x02\x03sec\x06" ser_list_0_item = b"\x04\x05empty\x06" ser_list_1_item = b"\x04\x01l\x05\x00\x02e1\x06" ser_list_2_item = b"\x04\x01l\x05\x00\x02e1\x05\x00\x02e2\x06" # serialized messages with key value pairs ser_kv_pair = b"\<KEY>" ser_kv_zero = b"\x03\x0azerolength\x00\x00" # deserialized messages holding a section des_sec_single = { "section": {} } des_sec_nested = { "outer": { "subsection": {} } } # deserialized messages holding a list des_list_0_item = { "empty": [] } des_list_1_item = { "l": [ b"e1" ] } des_list_2_item = { "l": [ b"e1", b"e2" ] } # deserialized messages with key value pairs des_kv_pair = { "key": b"value" } des_kv_zero = { "zerolength": b"" } def test_section_serialization(self): assert Message.serialize(self.des_sec_single) == self.ser_sec_single assert Message.serialize(self.des_sec_nested) == self.ser_sec_nested def test_list_serialization(self): assert Message.serialize(self.des_list_0_item) == self.ser_list_0_item assert Message.serialize(self.des_list_1_item) == self.ser_list_1_item assert Message.serialize(self.des_list_2_item) == self.ser_list_2_item def test_key_serialization(self): assert Message.serialize(self.des_kv_pair) == self.ser_kv_pair assert Message.serialize(self.des_kv_zero) == self.ser_kv_zero def test_section_deserialization(self): single = Message.deserialize(FiniteStream(self.ser_sec_single)) nested = Message.deserialize(FiniteStream(self.ser_sec_nested)) assert single == self.des_sec_single assert nested == self.des_sec_nested with pytest.raises(DeserializationException): Message.deserialize(FiniteStream(self.ser_sec_unclosed)) def test_list_deserialization(self): l0 = Message.deserialize(FiniteStream(self.ser_list_0_item)) l1 = Message.deserialize(FiniteStream(self.ser_list_1_item)) l2 = Message.deserialize(FiniteStream(self.ser_list_2_item)) assert l0 == self.des_list_0_item assert l1 == self.des_list_1_item assert l2 == self.des_list_2_item with pytest.raises(DeserializationException): Message.deserialize(FiniteStream(self.ser_list_invalid)) def test_key_deserialization(self): pair = Message.deserialize(FiniteStream(self.ser_kv_pair)) zerolength = Message.deserialize(FiniteStream(self.ser_kv_zero)) assert pair == self.des_kv_pair assert zerolength == self.des_kv_zero def test_roundtrip(self): message = { "key1": "value1", "section1": { "sub-section": { "key2": b"value2", }, "list1": [ "item1", "item2" ], }, } serialized_message = FiniteStream(Message.serialize(message)) deserialized_message = Message.deserialize(serialized_message) # ensure that list items and key values remain as undecoded bytes deserialized_section = deserialized_message["section1"] assert deserialized_message["key1"] == b"value1" assert deserialized_section["sub-section"]["key2"] == b"value2" assert deserialized_section["list1"] == [ b"item1", b"item2" ]
src/ralph/reports/factories.py
DoNnMyTh/ralph
1,668
12693211
<reponame>DoNnMyTh/ralph<filename>src/ralph/reports/factories.py # -*- coding: utf-8 -*- import factory from factory.django import DjangoModelFactory from ralph.reports.models import Report, ReportLanguage, ReportTemplate class ReportFactory(DjangoModelFactory): name = factory.Sequence(lambda n: 'Report {}'.format(n)) class Meta: model = Report class ReportLanguageFactory(DjangoModelFactory): name = factory.Sequence(lambda n: 'Report-lang {}'.format(n)) default = False class Meta: model = ReportLanguage class ReportTemplateFactory(DjangoModelFactory): template = factory.django.FileField(filename='the_file.dat') language = factory.SubFactory(ReportLanguageFactory) default = False report = factory.SubFactory(ReportFactory) class Meta: model = ReportTemplate
tests/test_utils.py
upgradvisor/vyper
1,347
12693220
<filename>tests/test_utils.py import pytest from vyper.utils import annotate_source_code, indent TEST_TEXT = """ test lines to indent """[ 1:-1 ] def test_indent_indents_text(): assert ( indent(TEST_TEXT, indent_chars="-", level=1) == """ -test -lines -to -indent """[ 1:-1 ] ) assert ( indent(TEST_TEXT, indent_chars=" ", level=4) == """ test lines to indent """[ 1:-1 ] ) assert ( indent(TEST_TEXT, indent_chars=[" ", "*", "-", "="], level=4) == """ test ****lines ----to ====indent """[ 1:-1 ] ) def test_indent_raises_value_errors(): with pytest.raises( ValueError, match="Must provide indentation chars for each line", ): indent(TEST_TEXT, indent_chars=[" "], level=1) with pytest.raises( ValueError, match="Unrecognized indentation characters value", ): indent(TEST_TEXT, indent_chars=None, level=1) # type: ignore TEST_SOURCE_CODE = r""" # Attempts to display the line and column of violating code. class ParserException(Exception): def __init__(self, message='Error Message not found.', item=None): self.message = message self.lineno = None self.col_offset = None if isinstance(item, tuple): # is a position. self.lineno, self.col_offset = item elif item and hasattr(item, 'lineno'): self.set_err_pos(item.lineno, item.col_offset) if hasattr(item, 'source_code'): self.source_code = item.source_code.splitlines() def set_err_pos(self, lineno, col_offset): if not self.lineno: self.lineno = lineno if not self.col_offset: self.col_offset = col_offset def __str__(self): output = self.message if self.lineno and hasattr(self, 'source_code'): output = f'line {self.lineno}: {output}\n{self.source_code[self.lineno -1]}' if self.col_offset: col = '-' * self.col_offset + '^' output += '\n' + col elif self.lineno is not None and self.col_offset is not None: output = f'line {self.lineno}:{self.col_offset} {output}' return output """[ 1:-1 ] def test_annotate_source_code_marks_positions_in_source_code(): annotation = annotate_source_code( TEST_SOURCE_CODE, 22, col_offset=16, context_lines=0, line_numbers=False, ) assert ( annotation == r""" def __str__(self): ----------------^ """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 22, col_offset=15, context_lines=1, line_numbers=False, ) assert ( annotation == r""" def __str__(self): ---------------^ output = self.message """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 22, col_offset=20, context_lines=2, line_numbers=False, ) assert ( annotation == r""" self.col_offset = col_offset def __str__(self): --------------------^ output = self.message """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 1, col_offset=5, context_lines=3, line_numbers=True, ) assert ( annotation == r""" ---> 1 # Attempts to display the line and column of violating code. ------------^ 2 class ParserException(Exception): 3 def __init__(self, message='Error Message not found.', item=None): 4 self.message = message """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 36, col_offset=8, context_lines=4, line_numbers=True, ) assert ( annotation == r""" 32 33 elif self.lineno is not None and self.col_offset is not None: 34 output = f'line {self.lineno}:{self.col_offset} {output}' 35 ---> 36 return output ----------------^ """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 15, col_offset=8, context_lines=11, line_numbers=True, ) assert ( annotation == r""" 4 self.message = message 5 self.lineno = None 6 self.col_offset = None 7 8 if isinstance(item, tuple): # is a position. 9 self.lineno, self.col_offset = item 10 elif item and hasattr(item, 'lineno'): 11 self.set_err_pos(item.lineno, item.col_offset) 12 if hasattr(item, 'source_code'): 13 self.source_code = item.source_code.splitlines() 14 ---> 15 def set_err_pos(self, lineno, col_offset): ----------------^ 16 if not self.lineno: 17 self.lineno = lineno 18 19 if not self.col_offset: 20 self.col_offset = col_offset 21 22 def __str__(self): 23 output = self.message 24 25 if self.lineno and hasattr(self, 'source_code'): 26 """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 15, col_offset=None, context_lines=3, line_numbers=True, ) assert ( annotation == r""" 12 if hasattr(item, 'source_code'): 13 self.source_code = item.source_code.splitlines() 14 ---> 15 def set_err_pos(self, lineno, col_offset): 16 if not self.lineno: 17 self.lineno = lineno 18 """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 15, col_offset=None, context_lines=2, line_numbers=False, ) assert ( annotation == r""" self.source_code = item.source_code.splitlines() def set_err_pos(self, lineno, col_offset): if not self.lineno: self.lineno = lineno """[ 1:-1 ] ) @pytest.mark.parametrize( "bad_lineno", (-100, -1, 0, 45, 1000), ) def test_annotate_source_code_raises_value_errors(bad_lineno): with pytest.raises( ValueError, match="Line number is out of range", ): annotate_source_code(TEST_SOURCE_CODE, bad_lineno)
utils/check-category.py
Belyenochi/apisix
5,886
12693233
<filename>utils/check-category.py #!/usr/bin/env python # coding: utf-8 # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import os import sys from os import path EXT = ".md" try: UNICODE_EXISTS = bool(type(unicode)) except: # Py2 unicode = str def collect_fn(entries, topic): if "id" in topic: fn = topic["id"] entries.append(fn) elif "items" in topic: for item in topic["items"]: if isinstance(item, unicode): entries.append(item) else: collect_fn(entries, item) def check_category(root): index = root + "config.json" with open(index) as f: entries = [] data = json.load(f) for topic in data["sidebar"]: collect_fn(entries, topic) for e in entries: fn = root + e + EXT if not path.exists(fn): print("Entry %s in the sidebar can't be found. Please remove it from %s." % (fn, index)) return False ignore_list = ["examples/plugins-hmac-auth-generate-signature", "config", "README"] entries.extend(ignore_list) existed_files = [] for parent, dirs, files in os.walk(root): for fn in files: existed_files.append(path.join(parent[len(root):], path.splitext(fn)[0])) for fn in existed_files: if fn not in entries: print("File %s%s%s is not indexed. Please add it to %s." % (root, fn, EXT, index)) return False return True roots = ["docs/en/latest/", "docs/zh/latest/"] for r in roots: if not check_category(r): sys.exit(-1)
tests/test_decompressor_stream_reader.py
odidev/python-zstandard
316
12693238
<reponame>odidev/python-zstandard import io import os import unittest import zstandard as zstd from .common import ( CustomBytesIO, ) class TestDecompressor_stream_reader(unittest.TestCase): def test_context_manager(self): dctx = zstd.ZstdDecompressor() with dctx.stream_reader(b"foo") as reader: with self.assertRaisesRegex( ValueError, "cannot __enter__ multiple times" ): with reader as reader2: pass def test_not_implemented(self): dctx = zstd.ZstdDecompressor() with dctx.stream_reader(b"foo") as reader: with self.assertRaises(io.UnsupportedOperation): reader.readline() with self.assertRaises(io.UnsupportedOperation): reader.readlines() with self.assertRaises(io.UnsupportedOperation): iter(reader) with self.assertRaises(io.UnsupportedOperation): next(reader) with self.assertRaises(io.UnsupportedOperation): reader.write(b"foo") with self.assertRaises(io.UnsupportedOperation): reader.writelines([]) def test_constant_methods(self): dctx = zstd.ZstdDecompressor() with dctx.stream_reader(b"foo") as reader: self.assertFalse(reader.closed) self.assertTrue(reader.readable()) self.assertFalse(reader.writable()) self.assertFalse(reader.seekable()) self.assertFalse(reader.isatty()) self.assertFalse(reader.closed) self.assertIsNone(reader.flush()) self.assertFalse(reader.closed) self.assertTrue(reader.closed) def test_read_closed(self): dctx = zstd.ZstdDecompressor() with dctx.stream_reader(b"foo") as reader: reader.close() self.assertTrue(reader.closed) with self.assertRaisesRegex(ValueError, "stream is closed"): reader.read(1) def test_read_sizes(self): cctx = zstd.ZstdCompressor() foo = cctx.compress(b"foo") dctx = zstd.ZstdDecompressor() with dctx.stream_reader(foo) as reader: with self.assertRaisesRegex( ValueError, "cannot read negative amounts less than -1" ): reader.read(-2) self.assertEqual(reader.read(0), b"") self.assertEqual(reader.read(), b"foo") def test_read_buffer(self): cctx = zstd.ZstdCompressor() source = b"".join([b"foo" * 60, b"bar" * 60, b"baz" * 60]) frame = cctx.compress(source) dctx = zstd.ZstdDecompressor() with dctx.stream_reader(frame) as reader: self.assertEqual(reader.tell(), 0) # We should get entire frame in one read. result = reader.read(8192) self.assertEqual(result, source) self.assertEqual(reader.tell(), len(source)) # Read after EOF should return empty bytes. self.assertEqual(reader.read(1), b"") self.assertEqual(reader.tell(), len(result)) self.assertTrue(reader.closed) def test_read_buffer_small_chunks(self): cctx = zstd.ZstdCompressor() source = b"".join([b"foo" * 60, b"bar" * 60, b"baz" * 60]) frame = cctx.compress(source) dctx = zstd.ZstdDecompressor() chunks = [] with dctx.stream_reader(frame, read_size=1) as reader: while True: chunk = reader.read(1) if not chunk: break chunks.append(chunk) self.assertEqual(reader.tell(), sum(map(len, chunks))) self.assertEqual(b"".join(chunks), source) def test_read_stream(self): cctx = zstd.ZstdCompressor() source = b"".join([b"foo" * 60, b"bar" * 60, b"baz" * 60]) frame = cctx.compress(source) dctx = zstd.ZstdDecompressor() with dctx.stream_reader(io.BytesIO(frame)) as reader: self.assertEqual(reader.tell(), 0) chunk = reader.read(8192) self.assertEqual(chunk, source) self.assertEqual(reader.tell(), len(source)) self.assertEqual(reader.read(1), b"") self.assertEqual(reader.tell(), len(source)) self.assertFalse(reader.closed) self.assertTrue(reader.closed) def test_read_stream_small_chunks(self): cctx = zstd.ZstdCompressor() source = b"".join([b"foo" * 60, b"bar" * 60, b"baz" * 60]) frame = cctx.compress(source) dctx = zstd.ZstdDecompressor() chunks = [] with dctx.stream_reader(io.BytesIO(frame), read_size=1) as reader: while True: chunk = reader.read(1) if not chunk: break chunks.append(chunk) self.assertEqual(reader.tell(), sum(map(len, chunks))) self.assertEqual(b"".join(chunks), source) def test_close(self): foo = zstd.ZstdCompressor().compress(b"foo" * 1024) buffer = io.BytesIO(foo) dctx = zstd.ZstdDecompressor() reader = dctx.stream_reader(buffer) reader.read(3) self.assertFalse(reader.closed) self.assertFalse(buffer.closed) reader.close() self.assertTrue(reader.closed) self.assertTrue(buffer.closed) with self.assertRaisesRegex(ValueError, "stream is closed"): reader.read() with self.assertRaisesRegex(ValueError, "stream is closed"): with reader: pass # Context manager exit should not close stream. buffer = io.BytesIO(foo) reader = dctx.stream_reader(buffer) with reader: reader.read(3) self.assertTrue(reader.closed) self.assertTrue(buffer.closed) # Context manager exit should close stream if an exception raised. buffer = io.BytesIO(foo) reader = dctx.stream_reader(buffer) with self.assertRaisesRegex(Exception, "ignore"): with reader: reader.read(3) raise Exception("ignore") self.assertTrue(reader.closed) self.assertTrue(buffer.closed) # Test with non-file source variant. with dctx.stream_reader(foo) as reader: reader.read(3) self.assertFalse(reader.closed) self.assertTrue(reader.closed) def test_close_closefd_false(self): foo = zstd.ZstdCompressor().compress(b"foo" * 1024) buffer = io.BytesIO(foo) dctx = zstd.ZstdDecompressor() reader = dctx.stream_reader(buffer, closefd=False) reader.read(3) self.assertFalse(reader.closed) self.assertFalse(buffer.closed) reader.close() self.assertTrue(reader.closed) self.assertFalse(buffer.closed) with self.assertRaisesRegex(ValueError, "stream is closed"): reader.read() with self.assertRaisesRegex(ValueError, "stream is closed"): with reader: pass # Context manager exit should not close stream. buffer = io.BytesIO(foo) reader = dctx.stream_reader(buffer, closefd=False) with reader: reader.read(3) self.assertTrue(reader.closed) self.assertFalse(buffer.closed) # Context manager exit should close stream if an exception raised. buffer = io.BytesIO(foo) reader = dctx.stream_reader(buffer, closefd=False) with self.assertRaisesRegex(Exception, "ignore"): with reader: reader.read(3) raise Exception("ignore") self.assertTrue(reader.closed) self.assertFalse(buffer.closed) # Test with non-file source variant. with dctx.stream_reader(foo, closefd=False) as reader: reader.read(3) self.assertFalse(reader.closed) self.assertTrue(reader.closed) def test_read_after_exit(self): cctx = zstd.ZstdCompressor() frame = cctx.compress(b"foo" * 60) dctx = zstd.ZstdDecompressor() with dctx.stream_reader(frame) as reader: while reader.read(16): pass self.assertTrue(reader.closed) with self.assertRaisesRegex(ValueError, "stream is closed"): reader.read(10) def test_illegal_seeks(self): cctx = zstd.ZstdCompressor() frame = cctx.compress(b"foo" * 60) dctx = zstd.ZstdDecompressor() with dctx.stream_reader(frame) as reader: with self.assertRaisesRegex( OSError, "cannot seek to negative position" ): reader.seek(-1, os.SEEK_SET) reader.read(1) with self.assertRaisesRegex( OSError, "cannot seek zstd decompression stream backwards" ): reader.seek(0, os.SEEK_SET) with self.assertRaisesRegex( OSError, "cannot seek zstd decompression stream backwards" ): reader.seek(-1, os.SEEK_CUR) with self.assertRaisesRegex( OSError, "zstd decompression streams cannot be seeked with SEEK_END", ): reader.seek(0, os.SEEK_END) reader.close() with self.assertRaisesRegex(ValueError, "stream is closed"): reader.seek(4, os.SEEK_SET) with self.assertRaisesRegex(ValueError, "stream is closed"): reader.seek(0) def test_seek(self): source = b"foobar" * 60 cctx = zstd.ZstdCompressor() frame = cctx.compress(source) dctx = zstd.ZstdDecompressor() with dctx.stream_reader(frame) as reader: reader.seek(3) self.assertEqual(reader.read(3), b"bar") reader.seek(4, os.SEEK_CUR) self.assertEqual(reader.read(2), b"ar") def test_no_context_manager(self): source = b"foobar" * 60 cctx = zstd.ZstdCompressor() frame = cctx.compress(source) dctx = zstd.ZstdDecompressor() reader = dctx.stream_reader(frame) self.assertEqual(reader.read(6), b"foobar") self.assertEqual(reader.read(18), b"foobar" * 3) self.assertFalse(reader.closed) # Calling close prevents subsequent use. reader.close() self.assertTrue(reader.closed) with self.assertRaisesRegex(ValueError, "stream is closed"): reader.read(6) def test_read_after_error(self): source = io.BytesIO(b"") dctx = zstd.ZstdDecompressor() reader = dctx.stream_reader(source) with reader: reader.read(0) with self.assertRaisesRegex(ValueError, "stream is closed"): with reader: pass def test_partial_read(self): # Inspired by https://github.com/indygreg/python-zstandard/issues/71. buffer = io.BytesIO() cctx = zstd.ZstdCompressor() writer = cctx.stream_writer(buffer) writer.write(bytearray(os.urandom(1000000))) writer.flush(zstd.FLUSH_FRAME) buffer.seek(0) dctx = zstd.ZstdDecompressor() reader = dctx.stream_reader(buffer) while True: chunk = reader.read(8192) if not chunk: break def test_read_multiple_frames(self): cctx = zstd.ZstdCompressor() source = io.BytesIO() writer = cctx.stream_writer(source) writer.write(b"foo") writer.flush(zstd.FLUSH_FRAME) writer.write(b"bar") writer.flush(zstd.FLUSH_FRAME) dctx = zstd.ZstdDecompressor() reader = dctx.stream_reader(source.getvalue()) self.assertEqual(reader.read(2), b"fo") self.assertEqual(reader.read(2), b"o") self.assertEqual(reader.read(2), b"ba") self.assertEqual(reader.read(2), b"r") source.seek(0) reader = dctx.stream_reader(source) self.assertEqual(reader.read(2), b"fo") self.assertEqual(reader.read(2), b"o") self.assertEqual(reader.read(2), b"ba") self.assertEqual(reader.read(2), b"r") reader = dctx.stream_reader(source.getvalue()) self.assertEqual(reader.read(3), b"foo") self.assertEqual(reader.read(3), b"bar") source.seek(0) reader = dctx.stream_reader(source) self.assertEqual(reader.read(3), b"foo") self.assertEqual(reader.read(3), b"bar") reader = dctx.stream_reader(source.getvalue()) self.assertEqual(reader.read(4), b"foo") self.assertEqual(reader.read(4), b"bar") source.seek(0) reader = dctx.stream_reader(source) self.assertEqual(reader.read(4), b"foo") self.assertEqual(reader.read(4), b"bar") reader = dctx.stream_reader(source.getvalue()) self.assertEqual(reader.read(128), b"foo") self.assertEqual(reader.read(128), b"bar") source.seek(0) reader = dctx.stream_reader(source) self.assertEqual(reader.read(128), b"foo") self.assertEqual(reader.read(128), b"bar") # Now tests for reads spanning frames. reader = dctx.stream_reader(source.getvalue(), read_across_frames=True) self.assertEqual(reader.read(3), b"foo") self.assertEqual(reader.read(3), b"bar") source.seek(0) reader = dctx.stream_reader(source, read_across_frames=True) self.assertEqual(reader.read(3), b"foo") self.assertEqual(reader.read(3), b"bar") reader = dctx.stream_reader(source.getvalue(), read_across_frames=True) self.assertEqual(reader.read(6), b"foobar") source.seek(0) reader = dctx.stream_reader(source, read_across_frames=True) self.assertEqual(reader.read(6), b"foobar") reader = dctx.stream_reader(source.getvalue(), read_across_frames=True) self.assertEqual(reader.read(7), b"foobar") source.seek(0) reader = dctx.stream_reader(source, read_across_frames=True) self.assertEqual(reader.read(7), b"foobar") reader = dctx.stream_reader(source.getvalue(), read_across_frames=True) self.assertEqual(reader.read(128), b"foobar") source.seek(0) reader = dctx.stream_reader(source, read_across_frames=True) self.assertEqual(reader.read(128), b"foobar") def test_readinto(self): cctx = zstd.ZstdCompressor() foo = cctx.compress(b"foo") dctx = zstd.ZstdDecompressor() # Attempting to readinto() a non-writable buffer fails. # The exact exception varies based on the backend. reader = dctx.stream_reader(foo) with self.assertRaises(Exception): reader.readinto(b"foobar") # readinto() with sufficiently large destination. b = bytearray(1024) reader = dctx.stream_reader(foo) self.assertEqual(reader.readinto(b), 3) self.assertEqual(b[0:3], b"foo") self.assertEqual(reader.readinto(b), 0) self.assertEqual(b[0:3], b"foo") # readinto() with small reads. b = bytearray(1024) reader = dctx.stream_reader(foo, read_size=1) self.assertEqual(reader.readinto(b), 3) self.assertEqual(b[0:3], b"foo") # Too small destination buffer. b = bytearray(2) reader = dctx.stream_reader(foo) self.assertEqual(reader.readinto(b), 2) self.assertEqual(b[:], b"fo") def test_readinto1(self): cctx = zstd.ZstdCompressor() foo = cctx.compress(b"foo") dctx = zstd.ZstdDecompressor() reader = dctx.stream_reader(foo) with self.assertRaises(Exception): reader.readinto1(b"foobar") # Sufficiently large destination. b = bytearray(1024) reader = dctx.stream_reader(foo) self.assertEqual(reader.readinto1(b), 3) self.assertEqual(b[0:3], b"foo") self.assertEqual(reader.readinto1(b), 0) self.assertEqual(b[0:3], b"foo") # readinto() with small reads. b = bytearray(1024) reader = dctx.stream_reader(foo, read_size=1) self.assertEqual(reader.readinto1(b), 3) self.assertEqual(b[0:3], b"foo") # Too small destination buffer. b = bytearray(2) reader = dctx.stream_reader(foo) self.assertEqual(reader.readinto1(b), 2) self.assertEqual(b[:], b"fo") def test_readall(self): cctx = zstd.ZstdCompressor() foo = cctx.compress(b"foo") dctx = zstd.ZstdDecompressor() reader = dctx.stream_reader(foo) self.assertEqual(reader.readall(), b"foo") def test_read1(self): cctx = zstd.ZstdCompressor() foo = cctx.compress(b"foo") dctx = zstd.ZstdDecompressor() b = CustomBytesIO(foo) reader = dctx.stream_reader(b) self.assertEqual(reader.read1(), b"foo") self.assertEqual(b._read_count, 1) b = CustomBytesIO(foo) reader = dctx.stream_reader(b) self.assertEqual(reader.read1(0), b"") self.assertEqual(reader.read1(2), b"fo") self.assertEqual(b._read_count, 1) self.assertEqual(reader.read1(1), b"o") self.assertEqual(b._read_count, 1) self.assertEqual(reader.read1(1), b"") self.assertEqual(b._read_count, 2) def test_read_lines(self): cctx = zstd.ZstdCompressor() source = b"\n".join( ("line %d" % i).encode("ascii") for i in range(1024) ) frame = cctx.compress(source) dctx = zstd.ZstdDecompressor() reader = dctx.stream_reader(frame) tr = io.TextIOWrapper(reader, encoding="utf-8") lines = [] for line in tr: lines.append(line.encode("utf-8")) self.assertEqual(len(lines), 1024) self.assertEqual(b"".join(lines), source) reader = dctx.stream_reader(frame) tr = io.TextIOWrapper(reader, encoding="utf-8") lines = tr.readlines() self.assertEqual(len(lines), 1024) self.assertEqual("".join(lines).encode("utf-8"), source) reader = dctx.stream_reader(frame) tr = io.TextIOWrapper(reader, encoding="utf-8") lines = [] while True: line = tr.readline() if not line: break lines.append(line.encode("utf-8")) self.assertEqual(len(lines), 1024) self.assertEqual(b"".join(lines), source)
tick/base_model/__init__.py
sumau/tick
411
12693279
<gh_stars>100-1000 # License: BSD 3 clause from .model import Model from .model_first_order import ModelFirstOrder from .model_labels_features import ModelLabelsFeatures from .model_second_order import ModelSecondOrder from .model_self_concordant import ModelSelfConcordant from .model_lipschitz import ModelLipschitz from .model_generalized_linear import ModelGeneralizedLinear from .model import LOSS from .model import GRAD from .model import LOSS_AND_GRAD from .model import HESSIAN_NORM from .model import N_CALLS_LOSS from .model import N_CALLS_GRAD from .model import N_CALLS_LOSS_AND_GRAD from .model import N_CALLS_HESSIAN_NORM from .model import PASS_OVER_DATA __all__ = [ "Model", "ModelFirstOrder", "ModelSecondOrder", "ModelLabelsFeatures", "ModelSelfConcordant", "ModelGeneralizedLinear", "ModelLipschitz", ]
carla/recourse_methods/catalog/clue/library/clue_ml/AE_models/AE/fc_gauss_cat.py
jayanthyetukuri/CARLA
140
12693305
<gh_stars>100-1000 from __future__ import division import numpy as np import torch.backends.cudnn as cudnn from torch.distributions import kl_divergence from torch.distributions.normal import Normal from carla import log from carla.recourse_methods.catalog.clue.library.clue_ml.src.gauss_cat import * from carla.recourse_methods.catalog.clue.library.clue_ml.src.probability import ( normal_parse_params, ) from carla.recourse_methods.catalog.clue.library.clue_ml.src.radam import RAdam from carla.recourse_methods.catalog.clue.library.clue_ml.src.utils import ( BaseNet, to_variable, ) from .models import MLP_preact_generator_net, MLP_preact_recognition_net # TODO: implement for std changeable gaussian instead of rms class VAE_gauss_cat(nn.Module): def __init__(self, input_dim_vec, width, depth, latent_dim, pred_sig=False): super(VAE_gauss_cat, self).__init__() input_dim = 0 self.input_dim_vec = input_dim_vec for e in input_dim_vec: input_dim += e self.encoder = MLP_preact_recognition_net(input_dim, width, depth, latent_dim) if pred_sig: raise NotImplementedError() else: self.decoder = MLP_preact_generator_net(input_dim, width, depth, latent_dim) self.rec_loglike = rms_cat_loglike(self.input_dim_vec, reduction="none") self.pred_sig = pred_sig def encode(self, x): """Works with flattened representATION""" approx_post_params = self.encoder(x) approx_post = normal_parse_params(approx_post_params, 1e-3) return approx_post def decode(self, z_sample): """Works with flattened representATION""" rec_params = self.decoder(z_sample) return rec_params def vlb(self, prior, approx_post, x, rec_params): """Works with flattened representATION""" if self.pred_sig: pass else: rec = self.rec_loglike(rec_params, x).view(x.shape[0], -1).sum(-1) kl = kl_divergence(approx_post, prior).view(x.shape[0], -1).sum(-1) return rec - kl def iwlb(self, prior, approx_post, x, K=50): estimates = [] for i in range(K): latent = approx_post.rsample() rec_params = self.decode(latent) if self.pred_sig: pass else: rec_loglike = ( self.rec_loglike(rec_params, x).view(x.shape[0], -1).sum(-1) ) prior_log_prob = prior.log_prob(latent) prior_log_prob = prior_log_prob.view(x.shape[0], -1) prior_log_prob = prior_log_prob.sum(-1) proposal_log_prob = approx_post.log_prob(latent) proposal_log_prob = proposal_log_prob.view(x.shape[0], -1) proposal_log_prob = proposal_log_prob.sum(-1) estimate = rec_loglike + prior_log_prob - proposal_log_prob estimates.append(estimate[:, None]) return torch.logsumexp(torch.cat(estimates, 1), 1) - np.log(K) class VAE_gauss_cat_net(BaseNet): def __init__( self, input_dim_vec, width, depth, latent_dim, pred_sig=False, lr=1e-3, cuda=True, flatten=True, ): super(VAE_gauss_cat_net, self).__init__() log.info("VAE_gauss_net") self.cuda = cuda self.input_dim = 0 self.input_dim_vec = input_dim_vec for e in self.input_dim_vec: self.input_dim += e self.flatten = flatten if not self.flatten: pass self.width = width self.depth = depth self.latent_dim = latent_dim self.lr = lr self.pred_sig = pred_sig self.create_net() self.create_opt() self.epoch = 0 self.schedule = None if self.cuda: self.prior = self.prior = Normal( loc=torch.zeros(latent_dim).cuda(), scale=torch.ones(latent_dim).cuda() ) else: self.prior = Normal( loc=torch.zeros(latent_dim), scale=torch.ones(latent_dim) ) self.vlb_scale = 1 / len( self.input_dim_vec ) # scale for dimensions of input so we can use same LR always def create_net(self): torch.manual_seed(42) torch.cuda.manual_seed(42) self.model = VAE_gauss_cat( self.input_dim_vec, self.width, self.depth, self.latent_dim, self.pred_sig ) if self.cuda: self.model = self.model.cuda() cudnn.benchmark = True log.info("Total params: %.2fM" % (self.get_nb_parameters() / 1000000.0)) def create_opt(self): self.optimizer = RAdam(self.model.parameters(), lr=self.lr) def fit(self, x): self.set_mode_train(train=True) if self.flatten: x_flat = gauss_cat_to_flat(x, self.input_dim_vec) else: x_flat = x x = flat_to_gauss_cat(x, self.input_dim_vec) x, x_flat = to_variable(var=(x, x_flat), cuda=self.cuda) self.optimizer.zero_grad() approx_post = self.model.encode(x_flat) z_sample = approx_post.rsample() rec_params = self.model.decode(z_sample) vlb = self.model.vlb(self.prior, approx_post, x, rec_params) loss = (-vlb * self.vlb_scale).mean() loss.backward() self.optimizer.step() return vlb.mean().item(), rec_params def eval(self, x, sample=False): self.set_mode_train(train=False) if self.flatten: x_flat = gauss_cat_to_flat(x, self.input_dim_vec) else: x_flat = x x = flat_to_gauss_cat(x, self.input_dim_vec) x, x_flat = to_variable(var=(x, x_flat), cuda=self.cuda) approx_post = self.model.encode(x_flat) if sample: z_sample = approx_post.sample() else: z_sample = approx_post.loc rec_params = self.model.decode(z_sample) vlb = self.model.vlb(self.prior, approx_post, x, rec_params) return vlb.mean().item(), rec_params def eval_iw(self, x, k=50): self.set_mode_train(train=False) if self.flatten: x_flat = gauss_cat_to_flat(x, self.input_dim_vec) else: x_flat = x x = flat_to_gauss_cat(x, self.input_dim_vec) x, x_flat = to_variable(var=(x, x_flat), cuda=self.cuda) approx_post = self.model.recognition_encode(x) iw_lb = self.model.iwlb(self.prior, approx_post, x, k) return iw_lb.mean().item() def recongnition(self, x, grad=False, flatten=None): if flatten is None: flatten = self.flatten if flatten and grad: raise Exception("flatten and grad options are not compatible") self.set_mode_train(train=False) if flatten: x = gauss_cat_to_flat(x, self.input_dim_vec) if grad: if not x.requires_grad: x.requires_grad = True else: (x,) = to_variable(var=(x,), volatile=True, cuda=self.cuda) approx_post = self.model.encode(x) return approx_post def regenerate(self, z, grad=False, unflatten=False): if unflatten and grad: raise Exception("flatten and grad options are not compatible") self.set_mode_train(train=False) if grad: if not z.requires_grad: z.requires_grad = True else: (z,) = to_variable(var=(z,), volatile=True, cuda=self.cuda) out = self.model.decode(z) if unflatten: out = flat_to_gauss_cat(out, self.input_dim_vec) else: out = selective_softmax(out, self.input_dim_vec, grad=grad) if self.pred_sig: raise Exception("Not implemented") else: return out
tests/brevitas/test_brevitas_qlinear.py
AlexMontgomerie/finn
283
12693328
<reponame>AlexMontgomerie/finn # Copyright (c) 2021, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import os import numpy as np import torch import brevitas.onnx as bo from brevitas.nn import QuantLinear from brevitas.core.quant import QuantType from finn.core.modelwrapper import ModelWrapper from finn.core.datatype import DataType import finn.core.onnx_exec as oxe from finn.transformation.infer_shapes import InferShapes from finn.util.basic import gen_finn_dt_tensor export_onnx_path = "test_brevitas_qlinear.onnx" @pytest.mark.parametrize("bias", [False, True]) @pytest.mark.parametrize("out_features", [4]) @pytest.mark.parametrize("in_features", [3]) @pytest.mark.parametrize("w_bits", [4]) @pytest.mark.parametrize("i_dtype", [DataType.UINT4]) def test_brevitas_qlinear(bias, out_features, in_features, w_bits, i_dtype): i_shape = (1, in_features) w_shape = (out_features, in_features) b_linear = QuantLinear( out_features=out_features, in_features=in_features, bias=bias, bias_quant_type=QuantType.FP, weight_bit_width=w_bits, weight_quant_type=QuantType.INT, weight_scaling_per_output_channel=True, ) weight_tensor_fp = np.random.uniform(low=-1.0, high=1.0, size=w_shape).astype( np.float32 ) b_linear.weight.data = torch.from_numpy(weight_tensor_fp) b_linear.eval() bo.export_finn_onnx(b_linear, i_shape, export_onnx_path) model = ModelWrapper(export_onnx_path) model = model.transform(InferShapes()) inp_tensor = gen_finn_dt_tensor(i_dtype, i_shape) idict = {model.graph.input[0].name: inp_tensor} odict = oxe.execute_onnx(model, idict, True) produced = odict[model.graph.output[0].name] inp_tensor = torch.from_numpy(inp_tensor).float() expected = b_linear.forward(inp_tensor).detach().numpy() assert np.isclose(produced, expected, atol=1e-3).all() os.remove(export_onnx_path)
image-generation/wgan/train.py
AaratiAkkapeddi/nnabla-examples
228
12693359
<reponame>AaratiAkkapeddi/nnabla-examples<filename>image-generation/wgan/train.py # Copyright 2019,2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import nnabla as nn import nnabla.logger as logger import nnabla.functions as F import nnabla.parametric_functions as PF import nnabla.solvers as S from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed, MonitorImageTile import nnabla.utils.save as save from nnabla.ext_utils import get_extension_context from args import get_args, save_args from helpers import denormalize from models import generator, discriminator, gan_loss from cifar10_data import data_iterator_cifar10 def train(args): # Context ctx = get_extension_context( args.context, device_id=args.device_id, type_config=args.type_config) nn.set_default_context(ctx) # Args latent = args.latent maps = args.maps batch_size = args.batch_size image_size = args.image_size lambda_ = args.lambda_ # Model # generator loss z = nn.Variable([batch_size, latent]) x_fake = generator(z, maps=maps, up=args.up).apply(persistent=True) p_fake = discriminator(x_fake, maps=maps) loss_gen = gan_loss(p_fake).apply(persistent=True) # discriminator loss p_fake = discriminator(x_fake, maps=maps) x_real = nn.Variable([batch_size, 3, image_size, image_size]) p_real = discriminator(x_real, maps=maps) loss_dis = gan_loss(p_fake, p_real).apply(persistent=True) # gradient penalty eps = F.rand(shape=[batch_size, 1, 1, 1]) x_rmix = eps * x_real + (1.0 - eps) * x_fake p_rmix = discriminator(x_rmix, maps=maps) x_rmix.need_grad = True # Enabling gradient computation for double backward grads = nn.grad([p_rmix], [x_rmix]) l2norms = [F.sum(g ** 2.0, [1, 2, 3]) ** 0.5 for g in grads] gp = sum([F.mean((l - 1.0) ** 2.0) for l in l2norms]) loss_dis += lambda_ * gp # generator with fixed value for test z_test = nn.Variable.from_numpy_array(np.random.randn(batch_size, latent)) x_test = generator(z_test, maps=maps, test=True, up=args.up).apply(persistent=True) # Solver solver_gen = S.Adam(args.lrg, args.beta1, args.beta2) solver_dis = S.Adam(args.lrd, args.beta1, args.beta2) with nn.parameter_scope("generator"): params_gen = nn.get_parameters() solver_gen.set_parameters(params_gen) with nn.parameter_scope("discriminator"): params_dis = nn.get_parameters() solver_dis.set_parameters(params_dis) # Monitor monitor = Monitor(args.monitor_path) monitor_loss_gen = MonitorSeries( "Generator Loss", monitor, interval=10) monitor_loss_cri = MonitorSeries( "Negative Critic Loss", monitor, interval=10) monitor_time = MonitorTimeElapsed( "Training Time", monitor, interval=10) monitor_image_tile_train = MonitorImageTile("Image Tile Train", monitor, num_images=batch_size, interval=1, normalize_method=denormalize) monitor_image_tile_test = MonitorImageTile("Image Tile Test", monitor, num_images=batch_size, interval=1, normalize_method=denormalize) # Data Iterator di = data_iterator_cifar10(batch_size, True) # Train loop for i in range(args.max_iter): # Train discriminator x_fake.need_grad = False # no need backward to generator for _ in range(args.n_critic): solver_dis.zero_grad() x_real.d = di.next()[0] / 127.5 - 1.0 z.d = np.random.randn(batch_size, latent) loss_dis.forward(clear_no_need_grad=True) loss_dis.backward(clear_buffer=True) solver_dis.update() # Train generator x_fake.need_grad = True # need backward to generator solver_gen.zero_grad() z.d = np.random.randn(batch_size, latent) loss_gen.forward(clear_no_need_grad=True) loss_gen.backward(clear_buffer=True) solver_gen.update() # Monitor monitor_loss_gen.add(i, loss_gen.d) monitor_loss_cri.add(i, -loss_dis.d) monitor_time.add(i) # Save if i % args.save_interval == 0: monitor_image_tile_train.add(i, x_fake) monitor_image_tile_test.add(i, x_test) nn.save_parameters(os.path.join( args.monitor_path, "params_{}.h5".format(i))) # Last x_test.forward(clear_buffer=True) nn.save_parameters(os.path.join( args.monitor_path, "params_{}.h5".format(i))) monitor_image_tile_train.add(i, x_fake) monitor_image_tile_test.add(i, x_test) def main(): args = get_args() save_args(args, "train") train(args) if __name__ == '__main__': main()
pyEX/options/options.py
adamklaff/pyEX
335
12693368
# ***************************************************************************** # # Copyright (c) 2020, the pyEX authors. # # This file is part of the pyEX library, distributed under the terms of # the Apache License 2.0. The full license can be found in the LICENSE file. # from functools import wraps import pandas as pd from deprecation import deprecated from ..common import _get, _raiseIfNotStr, _toDatetime, _timeseriesWrapper from ..timeseries import timeSeries def optionExpirations(symbol, token="", version="stable", filter="", format="json"): """Returns end of day options data https://iexcloud.io/docs/api/#options 9:30am-5pm ET Mon-Fri Args: symbol (str): Ticker to request token (str): Access token version (str): API version filter (str): filters: https://iexcloud.io/docs/api/#filter-results format (str): return format, defaults to json Returns: dict or DataFrame: result """ _raiseIfNotStr(symbol) return _get( "stock/" + symbol + "/options", token=token, version=version, filter=filter, format=format, ) @deprecated(details="Deprecated: Migrate to `options`") def stockOptions( symbol, expiration, side="", token="", version="stable", filter="", format="json", ): """Returns end of day options data https://iexcloud.io/docs/api/#options 9:30am-5pm ET Mon-Fri Args: symbol (str): Ticker to request expiration (str): Expiration date side (str): Side (optional) token (str): Access token version (str): API version filter (str): filters: https://iexcloud.io/docs/api/#filter-results format (str): return format, defaults to json Returns: dict or DataFrame: result """ _raiseIfNotStr(symbol) if side: return _get( "stock/{symbol}/options/{expiration}/{side}".format( symbol=symbol, expiration=expiration, side=side ), token=token, version=version, filter=filter, format=format, ) return _get( "stock/{symbol}/options/{expiration}/".format( symbol=symbol, expiration=expiration ), token=token, version=version, filter=filter, format=format, ) @wraps(stockOptions) def stockOptionsDF(*args, **kwargs): return _toDatetime(pd.DataFrame(stockOptions(*args, **kwargs)), tcols=["date"]) def options( contract, token="", version="stable", filter="", format="json", **timeseries_kwargs ): """Options EOD prices Args: contract (str): Specific dated option contract, e.g. SPY20210714C00475000 token (str): Access token version (str): API version filter (str): filters: https://iexcloud.io/docs/api/#filter-results format (str): return format, defaults to json Supports all kwargs from `pyEX.timeseries.timeSeries` Returns: dict or DataFrame: result """ _raiseIfNotStr(contract) _timeseriesWrapper(timeseries_kwargs) return timeSeries( id=contract, key="chart", token=token, version=version, overrideBase="options", filter=filter, format=format, **timeseries_kwargs ) @wraps(options) def optionsDF(*args, **kwargs): return _toDatetime( pd.DataFrame(options(*args, **kwargs)), reformatcols=["datetime", "date", "updated"], )
demos/speech_recognition_deepspeech_demo/python/asr_utils/rnn_seq_pipeline.py
APrigarina/open_model_zoo
1,031
12693391
# # Copyright (C) 2019-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # # This file is based in part on deepspeech_openvino_0.5.py by <NAME> at # https://github.com/openvinotoolkit/open_model_zoo/pull/419, commit 529805d011d9b405f142b2b40f4d202bd403a4f1 on Sep 19, 2019. # from copy import deepcopy import numpy as np from asr_utils.pipelines import BlockedSeqPipelineStage class RnnSeqPipelineStage(BlockedSeqPipelineStage): def __init__(self, profile, ie, model, device='CPU'): """ Load/compile to the target device the IE IR file with the network and initialize the pipeline stage. profile (dict), a dict with pre/post-processing parameters, see profiles.py ie (IECore), IECore object for model loading/compilation/inference model (str), filename of .xml IR file device (str), inferemnce device """ self.p = deepcopy(profile) assert self.p['num_context_frames'] % 2 == 1, "num_context_frames must be odd" padding_len = self.p['num_context_frames'] // 2 super().__init__( block_len=16, context_len=self.p['num_context_frames'] - 1, left_padding_len=padding_len, right_padding_len=padding_len, padding_shape=(self.p['num_mfcc_dct_coefs'],), cut_alignment=True) net = ie.read_network(model=model) self.exec_net = ie.load_network(network=net, device_name=device) def _reset_state(self): super()._reset_state() self._rnn_state = None def process_data(self, data, finish=False): if data is not None: assert len(data.shape) == 2 return super().process_data(data, finish=finish) def _process_blocks(self, buffer, finish=False): assert buffer.shape[0] >= self._block_len + self._context_len processed = [] for start_pos in range(self._context_len, buffer.shape[0] - self._block_len + 1, self._block_len): block = buffer[start_pos - self._context_len:start_pos + self._block_len] processed.append(self._process_block(block, finish=finish and start_pos + self._block_len >= buffer.shape[0])) assert not self._cut_alignment or processed[-1].shape[0] == self._block_len, "Networks with stride != 1 are not supported" # Here start_pos is its value on the last iteration of the loop buffer_skip_len = start_pos + self._block_len - self._context_len return processed, buffer_skip_len def _process_block(self, mfcc_features, finish=False): assert mfcc_features.shape[0] == self._block_len + self._context_len, "Wrong data length: _process_block() accepts a single block of data" # Create a view into the array with overlapping strides to simulate convolution with FC. # NB: Replacing this and the first FC layer with conv1d may improve speed a little. mfcc_features = np.lib.stride_tricks.as_strided( mfcc_features, (self._block_len, self._context_len + 1, self.p['num_mfcc_dct_coefs']), (mfcc_features.strides[0], mfcc_features.strides[0], mfcc_features.strides[1]), writeable = False, ) if self._rnn_state is None: state_h = np.zeros(self.exec_net.input_info[self.p['in_state_h']].input_data.shape) state_c = np.zeros(self.exec_net.input_info[self.p['in_state_c']].input_data.shape) else: state_h, state_c = self._rnn_state infer_res = self.exec_net.infer(inputs={ self.p['in_state_c']: state_c, self.p['in_state_h']: state_h, self.p['in_data']: [mfcc_features], }) state_c = infer_res[self.p['out_state_c']] state_h = infer_res[self.p['out_state_h']] self._rnn_state = (state_h, state_c) probs = infer_res[self.p['out_data']].squeeze(1) return probs
desktop/core/ext-py/simplejson/simplejson/tests/test_float.py
vinaymundada27/Hue
550
12693401
<reponame>vinaymundada27/Hue<filename>desktop/core/ext-py/simplejson/simplejson/tests/test_float.py import math from unittest import TestCase import simplejson as json class TestFloat(TestCase): def test_floats(self): for num in [1617161771.7650001, math.pi, math.pi**100, math.pi**-100, 3.1]: self.assertEquals(float(json.dumps(num)), num) self.assertEquals(json.loads(json.dumps(num)), num) def test_ints(self): for num in [1, 1L, 1<<32, 1<<64]: self.assertEquals(json.dumps(num), str(num)) self.assertEquals(int(json.dumps(num)), num)
pytext/models/test/transformer_sentence_encoder_test.py
baronrustamov/pytext
6,199
12693441
<filename>pytext/models/test/transformer_sentence_encoder_test.py #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import torch from pytext.models.representations.transformer_sentence_encoder import ( TransformerSentenceEncoder, ) class TransformerSentenceEncoderTest(unittest.TestCase): def setUp(self): self.batch_size = 10 self.num_tokens = 20 self.embedding_dim = 1024 self.vocab_size = 1000 self.padding_idx = 0 self.num_encoder_layers = 6 # Generate a tensor of token ids as input tokens self.tokens = ( torch.randint(5, 1000, (self.batch_size, self.num_tokens)) ).long() self.lengths = torch.tensor([self.num_tokens]) self.pad_mask = (torch.ones(self.batch_size, self.num_tokens)).long() self.segment_labels = (torch.ones(self.batch_size, self.num_tokens)).long() self.positions = None def test_monolingual_transformer_sentence_encoder(self): input_tuple = (self.tokens, self.pad_mask, self.segment_labels, self.positions) sentence_encoder = TransformerSentenceEncoder.from_config( TransformerSentenceEncoder.Config( embedding_dim=self.embedding_dim, num_encoder_layers=self.num_encoder_layers, multilingual=False, ), output_encoded_layers=True, padding_idx=self.padding_idx, vocab_size=self.vocab_size, ) encoded_layers, pooled_outputs = sentence_encoder(input_tuple) # Check sizes for pooled output self.assertEqual(pooled_outputs.size()[0], self.batch_size) self.assertEqual(pooled_outputs.size()[1], self.embedding_dim) # Check sizes for encoded_layers self.assertEqual(encoded_layers.__len__(), self.num_encoder_layers + 1) self.assertEqual(encoded_layers[-1].size()[0], self.batch_size) self.assertEqual(encoded_layers[-1].size()[1], self.num_tokens) self.assertEqual(encoded_layers[-1].size()[2], self.embedding_dim) def test_multilingual_transformer_sentence_encoder(self): input_tuple = (self.tokens, self.pad_mask, self.segment_labels, self.positions) sentence_encoder = TransformerSentenceEncoder.from_config( TransformerSentenceEncoder.Config( embedding_dim=self.embedding_dim, num_encoder_layers=self.num_encoder_layers, multilingual=True, ), output_encoded_layers=True, padding_idx=self.padding_idx, vocab_size=self.vocab_size, ) encoded_layers, pooled_outputs = sentence_encoder(input_tuple) # Check sizes for pooled output self.assertEqual(pooled_outputs.size()[0], self.batch_size) self.assertEqual(pooled_outputs.size()[1], self.embedding_dim) # Check sizes for encoded_layers self.assertEqual(encoded_layers.__len__(), self.num_encoder_layers + 1) self.assertEqual(encoded_layers[-1].size()[0], self.batch_size) self.assertEqual(encoded_layers[-1].size()[1], self.num_tokens) self.assertEqual(encoded_layers[-1].size()[2], self.embedding_dim)
src/gausskernel/dbmind/tools/ai_manager/module/index_advisor/index_main.py
Yanci0/openGauss-server
360
12693449
#!/usr/bin/env python3 # -*- coding:utf-8 -*- ############################################################################# # Copyright (c): 2012-2021, Huawei Tech. Co., Ltd. # FileName : ad_main.py # Version : V1.0.0 # Date : 2021-03-01 # Description : Main entrance of module anomaly detection ############################################################################# from module.index_advisor.install import Installer from module.index_advisor.uninstall import UnInstaller from config_cabin.config import PROJECT_PATH TASK_MAPPING = { 'install': Installer, 'uninstall': UnInstaller } class IndexAdvisor(object): def __init__(self, **params_dict): self.args_dict = params_dict self.action = self.args_dict.get('action') self.package_path = self.args_dict.get('package_path') self.project_path = PROJECT_PATH self.version = self.args_dict.get('version') self.install_path = self.args_dict.get('install_path') self.task = None def init_globals(self): self.task = TASK_MAPPING[self.action](**self.args_dict) def run(self): self.init_globals() self.task.run()
env/env.py
0xflotus/DeepMimic
1,812
12693452
from abc import ABC, abstractmethod import numpy as np from enum import Enum from learning.normalizer import Normalizer class Env(ABC): class Terminate(Enum): Null = 0 Fail = 1 Succ = 2 def __init__(self, args, enable_draw): self.enable_draw = enable_draw return @abstractmethod def update(self, timestep): pass @abstractmethod def reset(self): pass @abstractmethod def get_time(self): pass @abstractmethod def get_name(self): pass # rendering and UI interface def draw(self): pass def keyboard(self, key, x, y): pass def mouse_click(self, button, state, x, y): pass def mouse_move(self, x, y): pass def reshape(self, w, h): pass def shutdown(self): pass def is_done(self): return False def set_playback_speed(self, speed): pass def set_updates_per_sec(self, updates_per_sec): pass @abstractmethod def get_win_width(self): pass @abstractmethod def get_win_height(self): pass def get_num_update_substeps(self): return 1 # rl interface @abstractmethod def is_rl_scene(self): return False @abstractmethod def get_num_agents(self): return 0 @abstractmethod def need_new_action(self, agent_id): return False @abstractmethod def record_state(self, agent_id): pass @abstractmethod def record_goal(self, agent_id): pass @abstractmethod def set_action(self, agent_id): pass @abstractmethod def get_action_space(self, agent_id): pass @abstractmethod def get_state_size(self, agent_id): pass @abstractmethod def get_goal_size(self, agent_id): pass @abstractmethod def get_action_size(self, agent_id): pass @abstractmethod def get_num_actions(self, agent_id): pass @abstractmethod def log_val(self, agent_id, val): pass def build_state_offset(self, agent_id): state_size = self.get_state_size(agent_id) return np.zeros(state_size) def build_state_scale(self, agent_id): state_size = self.get_state_size(agent_id) return np.ones(state_size) def build_goal_offset(self, agent_id): goal_size = self.get_goal_size(agent_id) return np.zeros(goal_size) def build_goal_scale(self, agent_id): goal_size = self.get_goal_size(agent_id) return np.ones(goal_size) def build_action_offset(self, agent_id): action_size = self.get_action_size() return np.zeros(action_size) def build_action_scale(self, agent_id): action_size = self.get_action_size() return np.ones(action_size) def build_action_bound_min(self, agent_id): action_size = self.get_action_size() return -inf * np.ones(action_size) def build_action_bound_max(self, agent_id): action_size = self.get_action_size() return inf * np.ones(action_size) def build_state_norm_groups(self, agent_id): state_size = self.get_state_size(agent_id) return Normalizer.NORM_GROUP_SINGLE * np.ones(state_size, dtype=np.int32) def build_goal_norm_groups(self, agent_id): goal_size = self.get_goal_size(agent_id) return Normalizer.NORM_GROUP_SINGLE * np.ones(goal_size, dtype=np.int32) @abstractmethod def calc_reward(self, agent_id): return 0 @abstractmethod def get_reward_min(self, agent_id): return 0 @abstractmethod def get_reward_max(self, agent_id): return 1 @abstractmethod def get_reward_fail(self, agent_id): return self.get_reward_min(agent_id) @abstractmethod def get_reward_succ(self, agent_id): return self.get_reward_max(agent_id) @abstractmethod def is_episode_end(self): return False @abstractmethod def check_terminate(self, agent_id): return Terminate.Null @abstractmethod def check_valid_episode(self): return True @abstractmethod def set_sample_count(self, count): pass @abstractmethod def set_mode(self, mode): pass
docs/sections/section2/solutions/sol7.py
lingcog/2019-CS109A
442
12693453
# Confidence Interval using Stats Model Summary thresh = 0.05 intervals = results.conf_int(alpha=thresh) # Renaming column names first_col = str(thresh/2*100)+"%" second_col = str((1-thresh/2)*100)+"%" intervals = intervals.rename(columns={0:first_col,1:second_col}) display(intervals)
ptgnn/neuralmodels/reduceops/varsizedsummary.py
mir-am/ptgnn
319
12693474
from typing_extensions import Literal import torch from abc import abstractmethod from math import sqrt from torch import nn from torch_scatter import scatter, scatter_log_softmax, scatter_sum from typing import NamedTuple, Union class ElementsToSummaryRepresentationInput(NamedTuple): """Input to AbstractVarSizedElementReduce layers.""" element_embeddings: torch.Tensor # float tensor of shape [num_elements, D], the representation of each node in all graphs. element_to_sample_map: torch.Tensor # int tensor of shape [num_elements] with values in range [0, num_sampless-1], mapping each node to a sample ID. num_samples: Union[torch.Tensor, int] # scalar, specifying the number of sets. class AbstractVarSizedElementReduce(nn.Module): """Interface for computing summary representations from multiple variable-sized sets of representations.""" @abstractmethod def forward(self, inputs: ElementsToSummaryRepresentationInput) -> torch.Tensor: """Returns: float tensor of shape [num_samples, D']""" class SimpleVarSizedElementReduce(AbstractVarSizedElementReduce): def __init__(self, summarization_type: Literal["sum", "mean", "max", "min"]): super().__init__() assert summarization_type in {"sum", "mean", "max", "min"} self.__summarization_type = summarization_type def forward(self, inputs: ElementsToSummaryRepresentationInput) -> torch.Tensor: return scatter( src=inputs.element_embeddings, index=inputs.element_to_sample_map, dim=0, dim_size=inputs.num_samples, reduce=self.__summarization_type, ) class NormalizedWeightsVarSizedElementReduce(AbstractVarSizedElementReduce): def __init__(self, input_representation_size: int, output_representation_size: int): super().__init__() self.__attention_layer = nn.Linear(input_representation_size, 1, bias=False) self.__output_layer = nn.Linear( input_representation_size, output_representation_size, bias=False ) def forward(self, inputs: ElementsToSummaryRepresentationInput) -> torch.Tensor: attention_scores = self.__attention_layer(inputs.element_embeddings).squeeze( -1 ) # [num_elements] attention_probs = torch.exp( scatter_log_softmax(attention_scores, index=inputs.element_to_sample_map, dim=0, eps=0) ) # [num_elements] return scatter_sum( self.__output_layer(inputs.element_embeddings) * attention_probs.unsqueeze(-1), index=inputs.num_samples, dim=0, dim_size=inputs.num_samples, ) # [num_samples, D'] class WeightedSumVarSizedElementReduce(AbstractVarSizedElementReduce): def __init__(self, representation_size: int): super().__init__() self.__weights_layer = nn.Linear(representation_size, 1, bias=False) def forward(self, inputs: ElementsToSummaryRepresentationInput) -> torch.Tensor: weights = torch.sigmoid( self.__weights_layer(inputs.element_embeddings).squeeze(-1) ) # [num_elements] return scatter_sum( inputs.element_embeddings * weights.unsqueeze(-1), index=inputs.element_to_sample_map, dim=0, dim_size=inputs.num_samples, ) # [num_samples, D'] class SelfAttentionVarSizedElementReduce(AbstractVarSizedElementReduce): def __init__( self, input_representation_size: int, hidden_size: int, output_representation_size: int, query_representation_summarizer: AbstractVarSizedElementReduce, ): super().__init__() self.__query_layer = query_representation_summarizer self.__key_layer = nn.Linear(input_representation_size, hidden_size, bias=False) self.__output_layer = nn.Linear( input_representation_size, output_representation_size, bias=False ) def forward(self, inputs: ElementsToSummaryRepresentationInput) -> torch.Tensor: queries = self.__query_layer(inputs) # [num_samples, H] queries_all = queries[inputs.element_to_sample_map] # [num_elements, H] keys = self.__key_layer(inputs.element_embeddings) # [num_elements, H] attention_scores = torch.einsum("vh,vh->v", queries_all, keys) # [num_elements] attention_probs = torch.exp( scatter_log_softmax(attention_scores, index=inputs.element_to_sample_map, dim=0, eps=0) ) # [num_elements] return scatter_sum( self.__output_layer(inputs.element_embeddings) * attention_probs.unsqueeze(-1), index=inputs.element_to_sample_map, dim=0, dim_size=inputs.num_samples, ) # [num_samples, D'] class MultiheadSelfAttentionVarSizedElementReduce(AbstractVarSizedElementReduce): def __init__( self, input_representation_size: int, hidden_size: int, output_representation_size: int, num_heads: int, query_representation_summarizer: AbstractVarSizedElementReduce, use_value_layer: bool = False, ): super().__init__() self.__query_layer = query_representation_summarizer self.__key_layer = nn.Linear(input_representation_size, hidden_size, bias=False) assert hidden_size % num_heads == 0, "Hidden size must be divisible by the number of heads." self.__use_value_layer = use_value_layer if use_value_layer: self.__value_layer = nn.Linear(input_representation_size, hidden_size, bias=False) self.__output_layer = nn.Linear(hidden_size, output_representation_size, bias=False) else: self.__output_layer = nn.Linear( input_representation_size * num_heads, output_representation_size, bias=False ) self.__num_heads = num_heads def forward(self, inputs: ElementsToSummaryRepresentationInput) -> torch.Tensor: queries = self.__query_layer(inputs) # [num_samples, H] queries_per_element = queries[inputs.element_to_sample_map] # [num_elements, H] queries_per_element = queries_per_element.reshape( ( queries_per_element.shape[0], self.__num_heads, queries_per_element.shape[1] // self.__num_heads, ) ) keys = self.__key_layer(inputs.element_embeddings) # [num_elements, H] keys = keys.reshape((keys.shape[0], self.__num_heads, keys.shape[1] // self.__num_heads)) attention_scores = torch.einsum("bhk,bhk->bh", queries_per_element, keys) / sqrt( keys.shape[-1] ) # [num_elements, num_heads] attention_probs = torch.exp( scatter_log_softmax(attention_scores, index=inputs.element_to_sample_map, dim=0, eps=0) ) # [num_elements, num_heads] if self.__use_value_layer: values = self.__value_layer(inputs.element_embeddings) # [num_elements, hidden_size] values = values.reshape( (values.shape[0], self.__num_heads, values.shape[1] // self.__num_heads) ) outputs = attention_probs.unsqueeze(-1) * values else: outputs = attention_probs.unsqueeze(-1) * inputs.element_embeddings.unsqueeze( 1 ) # [num_elements, num_heads, D'] outputs = outputs.reshape((outputs.shape[0], -1)) # [num_elements, num_heads * D'] per_sample_outputs = scatter_sum( outputs, index=inputs.element_to_sample_map, dim=0, dim_size=inputs.num_samples ) # [num_samples, num_heads, D'] return self.__output_layer(per_sample_outputs) # [num_samples, D']
webapp/tests/test_readers_rrd.py
romanek-adam/graphite-web
4,281
12693485
<reponame>romanek-adam/graphite-web<filename>webapp/tests/test_readers_rrd.py from .base import TestCase import os from os.path import join, isdir import rrdtool import shutil import six import time from django.conf import settings from graphite.readers import RRDReader from graphite.wsgi import application # NOQA makes sure we have a working WSGI app class RRDReaderTests(TestCase): test_dir = join(settings.RRD_DIR) start_ts = 0 step = 60 points = 100 # Create/wipe test whisper files hostcpu = os.path.join(test_dir, 'hosts/worker1/cpu.rrd') # TODO Fix this! def create_rrd(self): if not isdir(self.test_dir): os.makedirs(self.test_dir) try: os.makedirs(self.hostcpu.replace('cpu.rrd', '')) except OSError: pass self.start_ts = int(time.time()) rrdtool.create(self.hostcpu, '--start', str(self.start_ts), '--step', str(self.step), 'RRA:AVERAGE:0.5:1:{}'.format(self.points), 'DS:cpu:GAUGE:60:U:U') def wipe_rrd(self): try: shutil.rmtree(self.test_dir) except OSError: pass # Confirm the reader object is not none def test_RRDReader_init(self): self.create_rrd() self.addCleanup(self.wipe_rrd) reader = RRDReader(self.hostcpu, 'cpu') self.assertIsNotNone(reader) # must return a 'str' object on both py2 and py3 independent of the type of # the argument (which is a 'unicode' on py2) def test_RRDReader_convert_fs_path(self): path = RRDReader._convert_fs_path(six.u(self.hostcpu)) self.assertIsInstance(path, str) # Confirm the intervals def test_RRDReader_get_intervals(self): self.create_rrd() self.addCleanup(self.wipe_rrd) reader = RRDReader(self.hostcpu, 'cpu') # Intervals are calculated on the actual time so tolerate a 2 second # deviation for delays caused between file creation and test. for interval in reader.get_intervals(): self.assertAlmostEqual(interval.start, self.start_ts - self.points * self.step, delta=2) self.assertAlmostEqual(interval.end, self.start_ts, delta=2) # Confirm fetch works. def test_RRDReader_fetch(self): self.create_rrd() self.addCleanup(self.wipe_rrd) # insert some data for ts in range(self.start_ts + 60, self.start_ts + 10 * self.step, self.step): rrdtool.update(self.hostcpu, '{}:42'.format(ts)) reader = RRDReader(self.hostcpu, 'cpu') (time_info, values) = reader.fetch(self.start_ts + self.step, self.start_ts + self.step * 2) self.assertEqual(list(values), [42.0]) def test_RRDReader_get_datasources(self): self.create_rrd() self.addCleanup(self.wipe_rrd) datasource = RRDReader.get_datasources(self.hostcpu) self.assertEqual(datasource, ['cpu']) def test_RRDReader_get_retention(self): self.create_rrd() self.addCleanup(self.wipe_rrd) retentions = RRDReader.get_retention(self.hostcpu) self.assertEqual(retentions, self.points * self.step)
xt/agent/__init__.py
TianQi-777/xingtian
240
12693497
#!/usr/bin/env python """ DESC: The agent module is used to explore and test in the environment for a specialized task. The module receives the raw data from the environment as the input, and transfers the raw data into the training state for RL model , and then outputs an action by some exploration policy to the environment, finally the next training state and corresponding reward is obtained. During this process, the tuples needed for RL training have to be returned. You can also define your specialized reward function, explosion policy, training state and so on. """ import zeus.common.util.common as common from xt.agent.agent import Agent __ALL__ = ["Agent", "AsyncAgent", "agent_builder"] from zeus.common.util.register import Registers def agent_builder(agent_name, env, alg, agent_config, **kwargs): """ Build an agent instance. :param agent_name: :param env: :param alg: :param agent_config: :param kwargs: :return: """ return Registers.agent[agent_name](env, alg, agent_config, **kwargs)
examples/two_grids_example.py
RensDimmendaal/streamlit-aggrid
287
12693517
<reponame>RensDimmendaal/streamlit-aggrid<gh_stars>100-1000 import streamlit as st import numpy as np import pandas as pd from st_aggrid import AgGrid, DataReturnMode, GridUpdateMode, GridOptionsBuilder @st.cache() def get_data_ex4(): df = pd.DataFrame( np.random.randint(0, 100, 50).reshape(-1, 5), columns=list("abcde") ) return df df = get_data_ex4() st.markdown(""" ### Two grids As in other streamlit components, it is possible to render two components for the same data using distinct ```key``` parameters. """) st.subheader("Input data") st.dataframe(df) st.subheader("Editable Grids") c1, c2 = st.beta_columns(2) with c1: grid_return1 = AgGrid(df, key='grid1', editable=True) st.text("Grid 1 Return") st.write(grid_return1['data']) with c2: grid_return2 = AgGrid(df, key='grid2', editable=True) st.text("Grid 2 Return") st.write(grid_return2['data'])
utils/examples_tests/xdist_util.py
payoto/graphcore_examples
260
12693529
<filename>utils/examples_tests/xdist_util.py # Copyright (c) 2021 Graphcore Ltd. All rights reserved. from filelock import FileLock from contextlib import contextmanager @contextmanager def lock(lock_path): with FileLock(lock_path): yield
Chapter15/train_lm.py
holestine/Deep-Reinforcement-Learning-Hands-On-Second-Edition
621
12693534
<filename>Chapter15/train_lm.py<gh_stars>100-1000 #!/usr/bin/env python3 import gym import ptan import pathlib import argparse import itertools import numpy as np from typing import List from textworld.gym import register_games from textworld import EnvInfos from lib import preproc, model, common import torch import torch.optim as optim from ignite.engine import Engine GAMMA = 0.9 BATCH_SIZE = 16 LEARNING_RATE_LM = 1e-5 LEARNING_RATE = 1e-5 # have to be less or equal to env.action_space.max_length LM_MAX_TOKENS = 4 LM_MAX_COMMANDS = 10 LM_STOP_AVG_REWARD = -1.0 EXTRA_GAME_INFO = { "inventory": True, "description": True, "intermediate_reward": True, "admissible_commands": True, "policy_commands": True, "last_command": True, } def unpack_batch(batch: List[ptan.experience.ExperienceFirstLast], prep: preproc.Preprocessor): states = [] rewards = [] not_done_idx = [] next_states = [] for idx, exp in enumerate(batch): states.append(exp.state['obs']) rewards.append(exp.reward) if exp.last_state is not None: not_done_idx.append(idx) next_states.append(exp.last_state['obs']) return prep.encode_sequences(states) def batch_generator(exp_source: ptan.experience.ExperienceSourceFirstLast, batch_size: int): batch = [] for exp in exp_source: batch.append(exp) if len(batch) == batch_size: yield batch batch.clear() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-g", "--game", default="simple", help="Game prefix to be used during training, default=simple") parser.add_argument("--params", choices=list(common.PARAMS.keys()), default='small', help="Training params, could be one of %s" % (list(common.PARAMS.keys()))) parser.add_argument("-s", "--suffices", type=int, default=1, help="Count of game indices to use during training, default=1") parser.add_argument("-v", "--validation", default='-val', help="Suffix for game used for validation, default=-val") parser.add_argument("--cuda", default=False, action='store_true', help="Use cuda for training") parser.add_argument("-r", "--run", required=True, help="Run name") parser.add_argument("--load-cmd", help="If specified, command generator will be loaded " "from given prefix, otherwise it will be trained") args = parser.parse_args() device = torch.device("cuda" if args.cuda else "cpu") params = common.PARAMS[args.params] game_files = ["games/%s%s.ulx" % (args.game, s) for s in range(1, args.suffices+1)] val_game_file = "games/%s%s.ulx" % (args.game, args.validation) if not all(map(lambda p: pathlib.Path(p).exists(), game_files)): raise RuntimeError(f"Some game files from {game_files} not found! Probably you need to run make_games.sh") action_space, observation_space = common.get_games_spaces(game_files + [val_game_file]) env_id = register_games(game_files, request_infos=EnvInfos(**EXTRA_GAME_INFO), name=args.game, action_space=action_space, observation_space=observation_space) print("Registered env %s for game files %s" % (env_id, game_files)) val_env_id = register_games([val_game_file], request_infos=EnvInfos(**EXTRA_GAME_INFO), name=args.game, action_space=action_space, observation_space=observation_space) print("Game %s, with file %s will be used for validation" % (val_env_id, val_game_file)) env = gym.make(env_id) env = preproc.TextWorldPreproc(env, use_admissible_commands=False, keep_admissible_commands=True, reward_wrong_last_command=-0.1) prep = preproc.Preprocessor( dict_size=env.observation_space.vocab_size, emb_size=params.embeddings, num_sequences=env.num_fields, enc_output_size=params.encoder_size).to(device) cmd = model.CommandModel(prep.obs_enc_size, env.observation_space.vocab_size, prep.emb, max_tokens=LM_MAX_TOKENS, max_commands=LM_MAX_COMMANDS, start_token=env.action_space.BOS_id, sep_token=env.action_space.EOS_id).to(device) if args.load_cmd is not None: load_path = pathlib.Path(args.load_cmd) prep.load_state_dict(torch.load(load_path/"prep.dat")) cmd.load_state_dict(torch.load(load_path/"cmd.dat")) print("Preprocessor and command generator are loaded from %s" % load_path) else: agent = model.CmdAgent(env, cmd, prep, device=device) exp_source = ptan.experience.ExperienceSourceFirstLast( env, agent, gamma=GAMMA, steps_count=1) buffer = ptan.experience.ExperienceReplayBuffer( exp_source, params.replay_size) optimizer = optim.RMSprop(itertools.chain(prep.parameters(), cmd.parameters()), lr=LEARNING_RATE_LM, eps=1e-5) def process_batch(engine, batch): optimizer.zero_grad() obs_t = unpack_batch(batch, prep) commands = [] for s in batch: cmds = [] for c in s.state['admissible_commands']: t = env.action_space.tokenize(c) if len(t)-2 <= LM_MAX_TOKENS: cmds.append(t) commands.append(cmds) loss_t = model.pretrain_loss(cmd, commands, obs_t) loss_t.backward() optimizer.step() if engine.state.metrics.get('avg_reward', LM_STOP_AVG_REWARD) > LM_STOP_AVG_REWARD: print("Mean reward reached %.2f, stop pretraining" % LM_STOP_AVG_REWARD) engine.should_terminate = True return { "loss": loss_t.item(), } engine = Engine(process_batch) run_name = f"lm-{args.params}_{args.run}" save_path = pathlib.Path("saves") / run_name save_path.mkdir(parents=True, exist_ok=True) common.setup_ignite(engine, exp_source, run_name) try: engine.run(common.batch_generator(buffer, BATCH_SIZE, BATCH_SIZE)) except KeyboardInterrupt: print("Interrupt got, saving the model...") torch.save(prep.state_dict(), save_path/"prep.dat") torch.save(cmd.state_dict(), save_path/"cmd.dat") print("Using preprocessor and command generator") prep.train(False) cmd.train(False) val_env = gym.make(val_env_id) val_env = preproc.TextWorldPreproc(val_env, use_admissible_commands=False, keep_admissible_commands=True, reward_wrong_last_command=-0.1) net = model.DQNModel(obs_size=prep.obs_enc_size, cmd_size=prep.obs_enc_size).to(device) tgt_net = ptan.agent.TargetNet(net) cmd_encoder = preproc.Encoder(params.embeddings, prep.obs_enc_size).to(device) tgt_cmd_encoder = ptan.agent.TargetNet(cmd_encoder) agent = model.CmdDQNAgent(env, net, cmd, cmd_encoder, prep, epsilon=1, device=device) exp_source = ptan.experience.ExperienceSourceFirstLast( env, agent, gamma=GAMMA, steps_count=1) buffer = ptan.experience.ExperienceReplayBuffer( exp_source, params.replay_size) optimizer = optim.RMSprop(itertools.chain(net.parameters(), cmd_encoder.parameters()), lr=LEARNING_RATE, eps=1e-5) def process_batch(engine, batch): optimizer.zero_grad() loss_t = model.calc_loss_dqncmd( batch, prep, cmd, cmd_encoder, tgt_cmd_encoder.target_model, net, tgt_net.target_model, GAMMA, env, device) loss_t.backward() optimizer.step() eps = 1 - engine.state.iteration / params.epsilon_steps agent.epsilon = max(params.epsilon_final, eps) if engine.state.iteration % params.sync_nets == 0: tgt_net.sync() tgt_cmd_encoder.sync() return { "loss": loss_t.item(), "epsilon": agent.epsilon, } engine = Engine(process_batch) run_name = f"dqn-{args.params}_{args.run}" save_path = pathlib.Path("saves") / run_name save_path.mkdir(parents=True, exist_ok=True) common.setup_ignite(engine, exp_source, run_name, extra_metrics=('val_reward', 'val_steps')) @engine.on(ptan.ignite.PeriodEvents.ITERS_100_COMPLETED) @torch.no_grad() def validate(engine): reward = 0.0 steps = 0 obs = val_env.reset() while True: obs_t = prep.encode_sequences([obs['obs']]).to(device) cmds = cmd.commands(obs_t)[0] cmd_embs_t = prep._apply_encoder(cmds, cmd_encoder) q_vals = net.q_values_cmd(obs_t[0], cmd_embs_t) act = np.argmax(q_vals) best_cmd = cmds[act] tokens = [ env.action_space.id2w[t] for t in best_cmd if t not in {cmd.sep_token, cmd.start_token} ] action = " ".join(tokens) obs, r, is_done, _ = val_env.step(action) steps += 1 reward += r if is_done: break engine.state.metrics['val_reward'] = reward engine.state.metrics['val_steps'] = steps print("Validation got %.3f reward in %d steps" % (reward, steps)) best_val_reward = getattr(engine.state, "best_val_reward", None) if best_val_reward is None: engine.state.best_val_reward = reward elif best_val_reward < reward: print("Best validation reward updated: %s -> %s" % (best_val_reward, reward)) save_net_name = save_path / ("best_val_%.3f.dat" % reward) torch.save(net.state_dict(), save_net_name) engine.state.best_val_reward = reward @engine.on(ptan.ignite.EpisodeEvents.BEST_REWARD_REACHED) def best_reward_updated(trainer: Engine): reward = trainer.state.metrics['avg_reward'] if reward > 0: save_net_name = save_path / ("best_train_%.3f_.dat" % reward) torch.save(net.state_dict(), save_net_name) print("%d: best avg training reward: %.3f, saved" % ( trainer.state.iteration, reward)) engine.run(common.batch_generator(buffer, 100 + 0*params.replay_initial, BATCH_SIZE))
samtranslator/public/models.py
hawflau/serverless-application-model
1,279
12693544
# flake8: noqa from samtranslator.model.resource_policies import ResourcePolicies, PolicyTypes
scipy/optimize/tests/test_lbfgsb_setulb.py
Ennosigaeon/scipy
9,095
12693623
import numpy as np from scipy.optimize import _lbfgsb def objfun(x): """simplified objective func to test lbfgsb bound violation""" x0 = [0.8750000000000278, 0.7500000000000153, 0.9499999999999722, 0.8214285714285992, 0.6363636363636085] x1 = [1.0, 0.0, 1.0, 0.0, 0.0] x2 = [1.0, 0.0, 0.9889733043149325, 0.0, 0.026353554421041155] x3 = [1.0, 0.0, 0.9889917442915558, 0.0, 0.020341986743231205] f0 = 5163.647901211178 f1 = 5149.8181642072905 f2 = 5149.379332309634 f3 = 5149.374490771297 g0 = np.array([-0.5934820547965749, 1.6251549718258351, -71.99168459202559, 5.346636965797545, 37.10732723092604]) g1 = np.array([-0.43295349282641515, 1.008607936794592, 18.223666726602975, 31.927010036981997, -19.667512518739386]) g2 = np.array([-0.4699874455100256, 0.9466285353668347, -0.016874360242016825, 48.44999161133457, 5.819631620590712]) g3 = np.array([-0.46970678696829116, 0.9612719312174818, 0.006129809488833699, 48.43557729419473, 6.005481418498221]) if np.allclose(x, x0): f = f0 g = g0 elif np.allclose(x, x1): f = f1 g = g1 elif np.allclose(x, x2): f = f2 g = g2 elif np.allclose(x, x3): f = f3 g = g3 else: raise ValueError( 'Simplified objective function not defined ' 'at requested point') return (np.copy(f), np.copy(g)) def test_setulb_floatround(): """test if setulb() violates bounds checks for violation due to floating point rounding error """ n = 5 m = 10 factr = 1e7 pgtol = 1e-5 maxls = 20 iprint = -1 nbd = np.full((n,), 2) low_bnd = np.zeros(n, np.float64) upper_bnd = np.ones(n, np.float64) x0 = np.array( [0.8750000000000278, 0.7500000000000153, 0.9499999999999722, 0.8214285714285992, 0.6363636363636085]) x = np.copy(x0) f = np.array(0.0, np.float64) g = np.zeros(n, np.float64) fortran_int = _lbfgsb.types.intvar.dtype wa = np.zeros(2*m*n + 5*n + 11*m*m + 8*m, np.float64) iwa = np.zeros(3*n, fortran_int) task = np.zeros(1, 'S60') csave = np.zeros(1, 'S60') lsave = np.zeros(4, fortran_int) isave = np.zeros(44, fortran_int) dsave = np.zeros(29, np.float64) task[:] = b'START' for n_iter in range(7): # 7 steps required to reproduce error f, g = objfun(x) _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave, maxls) assert (x <= upper_bnd).all() and (x >= low_bnd).all(), ( "_lbfgsb.setulb() stepped to a point outside of the bounds")
contrib/python/examples/ldns-mx1.py
elindsey/ldns
178
12693633
#!/usr/bin/python # # MX is a small program that prints out the mx records for a particular domain # import ldns dname = ldns.ldns_dname("nic.cz") print dname resolver = ldns.ldns_resolver.new_frm_file("/etc/resolv.conf") pkt = resolver.query(dname, ldns.LDNS_RR_TYPE_MX,ldns.LDNS_RR_CLASS_IN) if (pkt): mx = pkt.rr_list_by_type(ldns.LDNS_RR_TYPE_MX, ldns.LDNS_SECTION_ANSWER) if (mx): mx.sort() print mx
pscript/tests/test_stdlib.py
JesusZerpa/pscript
190
12693641
""" Most of the stuff from the stdlib will be tested via test_parser3. That will mostly test if the implemenation is correct. This module does some meta tests. """ import sys from pscript.testing import run_tests_if_main, raises from pscript import py2js, evaljs, evalpy, Parser3, stdlib def test_stdlib_full_and_partial(): code = stdlib.get_full_std_lib() assert isinstance(code, str) assert 'var %shasattr =' % stdlib.FUNCTION_PREFIX in code assert 'var %slist =' % stdlib.FUNCTION_PREFIX in code assert code.count('var') > 10 code = stdlib.get_partial_std_lib(['hasattr'], [], []) assert isinstance(code, str) assert 'var %shasattr =' % stdlib.FUNCTION_PREFIX in code assert 'var %slist =' % stdlib.FUNCTION_PREFIX not in code assert code.count('var') == 1 assert '_hasattr = function' in py2js('hasattr(x, "foo")') assert '_hasattr = function' not in py2js('hasattr(x, "foo")', inline_stdlib=False) def test_stdlib_has_all_list_methods(): method_names = [m for m in dir(list) if not m.startswith('_')] for method_name in method_names: assert method_name in stdlib.METHODS def test_stdlib_has_all_dict_methods(): method_names = [m for m in dir(dict) if not m.startswith('_')] if sys.version_info[0] == 2: ignore = 'fromkeys has_key viewitems viewkeys viewvalues iteritems iterkeys itervalues' else: ignore = 'fromkeys' for name in ignore.split(' '): method_names.remove(name) for method_name in method_names: assert method_name in stdlib.METHODS def test_stdlib_has_all_str_methods(): method_names = [m for m in dir(str) if not m.startswith('_')] if sys.version_info[0] == 2: ignore = 'encode decode' else: ignore = 'encode format_map isprintable maketrans isascii removeprefix removesuffix' for name in ignore.split(' '): if name in method_names: method_names.remove(name) for method_name in method_names: assert method_name in stdlib.METHODS run_tests_if_main()
Python/Tests/TestData/Ipc.Json/socket_handle_request.py
techkey/PTVS
404
12693642
<gh_stars>100-1000 import os import sys import ptvsd.ipcjson as _ipc class SocketIpcChannel(_ipc.SocketIO, _ipc.IpcChannel): def __init__(self, *args, **kwargs): super(SocketIpcChannel, self).__init__(*args, **kwargs) def on_testRequest(self, request, args): self.send_response( request, success=True, message='', requestText=args['dataText'], responseText='test response text' ) def on_disconnect(self, request, args): self.send_response(request) self.__exit = True def main(): from optparse import OptionParser parser = OptionParser() parser.add_option('-r', '--result-port', type='int') (opts, _) = parser.parse_args() channel = SocketIpcChannel(port = opts.result_port) channel.process_messages() channel.close() sys.exit(0) if __name__ == '__main__': main()
recipes/Python/577482_Easy_property/recipe-577482.py
tdiprima/code
2,023
12693698
<gh_stars>1000+ #! /usr/bin/env python ###################################################################### # Written by <NAME> on 2008-05-03 # This code may be used pursuant to the MIT License. ###################################################################### """ Property ======== The Property class provides basic functionality that allows class level control over how a particular attribute is managed. In its simplest form a Property attribute works exactly like a regular attribute on an instance while providing documentation details about the attribute accessible via the declaring class. This class modifies how properties are created on a class. The Python documentation contains the following example: class C(object): def __init__(self): self._x = None def getx(self): return self._x def setx(self, value): self._x = value def delx(self): del self._x x = property(getx, setx, delx, 'the "x" property.') The equivalent using Property is as follows: class C(object): x = Property('x', None) >>> x = C() >>> repr(x.x) 'None' >>> C.x.__doc__ 'the "x" property' Need a read-only property? Here is the Python example: class Parrot(object): def __init__(self): self._voltage = 100000 @property def voltage(self): 'Get the current voltage.' return self._voltage And here is the equivalent: class Parrot(object): voltage = Property('voltage', 100000, Property.Mode.READ_ONLY, 'Get the current voltage') If your class needs to write to a property that is intended to be public read-only you can use the set_property() function. """ __all__ = ( 'Enum', 'Property' ) def Enum(*names): """See immutable symbolic enumeration types by <NAME> (see http://code.activestate.com/recipes/413486-first-class-enums-in-python/) - Enums are immutable; attributes cannot be added, deleted or changed. - Enums are iterable. - Enum value access is symbolic and qualified, ex. Days.Monday (like in C#). - Enum values are true constants. - Enum values are comparable. - Enum values are invertible (useful for 2-valued enums, like Enum('no', 'yes'). - Enum values are usable as truth values (in a C tradition, but this is debatable). - Enum values are reasonably introspective (by publishing their enum type and numeric value) Changed slightly to add '__doc__' tags to the generated enumeration types. So to the above author's comments we add: - Enums and Enum values are documented. - enumeration values are type-checked during comparisons. """ assert names, "Empty enums are not supported" # <- Don't like empty enums? Uncomment! class EnumClass(object): __slots__ = names def __contains__(self, v): return v in constants def __getitem__(self, i): return constants[i] def __iter__(self): return iter(constants) def __len__(self): return len(constants) def __repr__(self): return 'Enum' + str(names) def __str__(self): return 'enum ' + str(constants) class EnumValue(object): __slots__ = ('__value') def __init__(self, value): self.__value = value value = property(lambda self: self.__value) type = property(lambda self: EnumType) def __hash__(self): return hash(self.__value) def __cmp__(self, other): try: if self.type is other.type: return cmp(self.__value, other.__value) else: raise TypeError, "requires a '%s' object but received a '%s'" % ( self.type.__class__.__name__, other.type.__class__.__name__ ) except AttributeError: raise TypeError, "requires a '%s' object but received a '%s'" % ( self.type.__class__.__name__, other.__class__.__name__ ) def __invert__(self): return constants[maximum - self.__value] def __nonzero__(self): return bool(self.__value) def __repr__(self): return str(names[self.__value]) maximum = len(names) - 1 constants = [None] * len(names) for i, each in enumerate(names): val = type(EnumValue)( 'EnumValue', (EnumValue,), { '__doc__': 'Enumeration value "%s"' % each } )(i) setattr(EnumClass, each, val) constants[i] = val constants = tuple(constants) EnumType = type(EnumClass)( 'EnumClass', (EnumClass,), { '__doc__': 'Enumeration of %s' % repr(constants) } )() return EnumType class Property(object): """Construct a data descriptor suitable for associating documentation with an attribute value. Attribute values are instance specific and are stored within the instance dictionary (so property values go away when the instance is garbage collected). Properties have a class-wide default value used if the property has not been specified on an instance. The class has the ability to indicate the access mode of the resulting attribute. The possible access modes may be specified using exactly one of the following enumeration values: Mode.READ_ONLY ================== The attribute may only be read. The instance property effectively becomes a class constant (as the attribute may not be written). A READ_ONLY attribute must have the default value specified when the Property is constructed. Unlike an Enum class, the resulting Property is still accessable through the declaring class (to provide access to the attribute documentation). This has the side effect that the constant value is only accessable through instances of the declaring class. Mode.READ_WRITE =================== The READ_WRITE mode is the default mode on Property instances and is used to provide attributes with all the normal behaviors of typical class attributes with supporting documentation and optional default values. Mode.WRITE_ONCE =================== The WRITE_ONCE mode builds a data descriptor that allows every instance of the declaring class to set the resulting attribute one time. A default value may be specified that will be returned if the attribute is accessed prior to the write; but the default does not prevent the one-time write from occuring. Additionally you may supply a documentation string so your class properties may expose usage information. """ #### # Special value used to mark an undefined default value. #### __NONE = object() Mode = Enum('READ_ONLY', 'READ_WRITE', 'WRITE_ONCE') def __init__(self, name, default = __NONE, mode = Mode.READ_WRITE, doc = None): """Construct a new Property data descriptor. \var{name} the name of the attribute being created. \var{default} the (optional) default value to use when retrieving the attribute if it hasn't already been set. \var{mode} the mode of the constructed Property. \var{doc} the documentation string to use. This string is accessed through the declaring class. """ self.__name = name self.__key = '__property__' + name if mode.__class__ not in (i.__class__ for i in self.Mode): raise TypeError, "the mode parameter requires a member of the 'Property.Mode' enumeration but received a '%s'" % mode.__class__.__name__ self.__mode = mode if default is not self.__NONE: self.__default = default elif mode is self.Mode.READ_ONLY: raise ValueError, 'read only attributes require a default value' if doc is None: self.__doc__ = 'the "%s" property' % name else: self.__doc__ = doc def __get__(self, obj, objType = None): """Get the attribute value. """ try: return obj.__dict__[self.__key] except AttributeError: return self except KeyError: pass try: return objType.__dict__[self.__key] except KeyError: pass try: return self.__default except AttributeError: raise AttributeError, "'%s' object has no attribute '%s'" % ( obj.__class__.__name__, self.__name ) def __set__(self, obj, value): """Set the attribute value. """ if self.__mode is self.Mode.READ_ONLY: raise AttributeError, "can't set attribute \"%s\"" % self.__name elif self.__mode is self.Mode.WRITE_ONCE: if self.__key in obj.__dict__: raise AttributeError, "can't set attribute \"%s\"" % self.__name obj.__dict__[self.__key] = value def __delete__(self, obj): """Delete the attribute value. """ if self.__mode is not self.Mode.READ_WRITE: raise AttributeError, "can't delete attribute \"%s\"" % self.__name del(obj.__dict__[self.__key]) def set_property(obj, name, value): """Set or reset the property 'name' to 'value' on 'obj'. This function may be used to modify the value of a WRITE_ONCE or READ_ONLY property. Therefore use of this function should be limited to the implementation class. """ obj.__dict__['__property__' + name] = value if __name__ == '__main__': from types import FloatType, ComplexType def assertEquals( exp, got, msg = None ): """assertEquals( exp, got[, message] ) Two objects test as "equal" if: * they are the same object as tested by the 'is' operator. * either object is a float or complex number and the absolute value of the difference between the two is less than 1e-8. * applying the equals operator ('==') returns True. """ if exp is got: r = True elif ( type( exp ) in ( FloatType, ComplexType ) or type( got ) in ( FloatType, ComplexType ) ): r = abs( exp - got ) < 1e-8 else: r = ( exp == got ) if not r: print >>sys.stderr, "Error: expected <%s> but got <%s>%s" % ( repr( exp ), repr( got ), colon( msg ) ) traceback.print_stack() def assertException( exceptionType, f, msg = None ): """Assert that an exception of type \var{exceptionType} is thrown when the function \var{f} is evaluated. """ try: f() except exceptionType: assert True else: print >>sys.stderr, "Error: expected <%s> to be thrown by function%s" % ( exceptionType.__name__, colon( msg ) ) traceback.print_stack() def assertNone( x, msg = None ): assertSame( None, x, msg ) def assertSame( exp, got, msg = None ): if got is not exp: print >>sys.stderr, "Error: expected <%s> to be the same object as <%s>%s" % ( repr( exp ), repr( got ), colon( msg ) ) traceback.print_stack() def assertTrue( b, msg = None ): if not b: print >>sys.stderr, "Error: expected value to be True%s" % colon( msg ) traceback.print_stack() #### # Test Property #### class Test( object ): ro_value = Property( 'ro_value', 'test', mode = Property.Mode.READ_ONLY ) assertException( ValueError, lambda: Property( 'ro_undef', mode = Property.Mode.READ_ONLY ), 'read-only attributes should require default' ) rw_undef = Property( 'rw_undef' ) rw_default = Property( 'rw_default', None ) rw_doc = Property( 'rw_default', doc = 'alternate documentation' ) assertException( TypeError, lambda: Property( 'bad_mode', mode = None ), 'bad Property mode should raise an exception' ) wo_undef = Property( 'wo_undef', mode = Property.Mode.WRITE_ONCE ) wo_default = Property( 'wo_default', 'test', mode = Property.Mode.WRITE_ONCE ) a = Test() b = Test() #### # Mode.READ_ONLY assertEquals( 'test', a.ro_value ) assertEquals( 'test', b.ro_value ) assertException( AttributeError, lambda: setattr( a, 'ro_value', 5 ), 'unexpected write to a read-only attribute' ) # assertException( AttributeError, lambda: del( b.ro_value ), 'unexpected del() on a read-only attribute' ) set_property( a, 'ro_value', 'tset' ) assertEquals( 'tset', a.ro_value ) assertEquals( 'test', b.ro_value ) #### # Mode.READ_WRITE assertException( AttributeError, lambda: getattr( a, 'rw_undef' ), 'unexpected read of an undefined attribute' ) assertNone( a.rw_default ) a.rw_undef = 5 assertEquals( 5, a.rw_undef ) assertTrue( '__property__rw_undef' in a.__dict__ ) assertEquals( 5, a.__dict__['__property__rw_undef'] ) assertEquals( 'the "rw_undef" property', Test.rw_undef.__doc__ ) assertSame( int, type( a.rw_undef ) ) assertSame( Property, type( Test.rw_undef ) ) assertEquals( 'alternate documentation', Test.rw_doc.__doc__ ) #### # Mode.READ_WRITE: changes to 'a' should not affect 'b' assertException( AttributeError, lambda: getattr( b, 'rw_undef' ), 'invalid state change via a different instance' ) assertNone( b.rw_default ) #### # Mode.WRITE_ONCE assertException( AttributeError, lambda: getattr( a, 'wo_undef' ), 'unexpected read of an undefined attribute' ) assertException( AttributeError, lambda: delattr( a, 'wo_undef' ), 'unexpected del() on a write-once attribute' ) a.wo_undef = 'write_once' assertEquals( 'write_once', a.wo_undef ) assertException( AttributeError, lambda: setattr( a, 'wo_undef', 'write_twice' ), 'unexpected secondary write on a write-once attribute' ) assertEquals( 'write_once', a.wo_undef ) assertException( AttributeError, lambda: delattr( a, 'wo_value' ), 'unexpected del() on a write-once attribute' ) assertEquals( 'test', a.wo_default ) a.wo_default = 'write_once' assertEquals( 'write_once', a.wo_default ) assertEquals( 'test', b.wo_default )