max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
Calibration/HcalAlCaRecoProducers/test/AlCaHBHEMuonProducer_cfg.py
ckamtsikis/cmssw
852
12693727
import FWCore.ParameterSet.Config as cms process = cms.Process("AlCaHBHEMuon") process.load('Configuration.StandardSequences.Services_cff') process.load('FWCore.MessageService.MessageLogger_cfi') process.load("Configuration.StandardSequences.GeometryRecoDB_cff") process.load("Configuration.StandardSequences.MagneticField_cff") process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') from Configuration.AlCa.autoCond import autoCond process.GlobalTag.globaltag=autoCond['run2_data'] process.load("Calibration.HcalAlCaRecoProducers.alcahbhemuon_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.source = cms.Source("PoolSource", # replace 'myfile.root' with the source file you want to use fileNames = cms.untracked.vstring( 'file:/afs/cern.ch/user/a/amkalsi/public/RecoFileForAlcaProducer.root' # 'root://xrootd.unl.edu//store/mc/Phys14DR/DYToMuMu_M-50_Tune4C_13TeV-pythia8/GEN-SIM-RECO/PU20bx25_tsg_castor_PHYS14_25_V1-v1/10000/184C1AC9-A775-E411-9196-002590200824.root' ) ) process.load("Calibration.HcalAlCaRecoProducers.ALCARECOHcalHBHEMuon_Output_cff") process.muonOutput = cms.OutputModule("PoolOutputModule", outputCommands = process.OutALCARECOHcalHBHEMuon.outputCommands, fileName = cms.untracked.string('PoolOutput.root'), ) process.p = cms.Path(process.HBHEMuonProd) process.e = cms.EndPath(process.muonOutput)
plugins/dbnd-test-scenarios/src/dbnd_test_scenarios/scenarios_repo.py
busunkim96/dbnd
224
12693758
<reponame>busunkim96/dbnd import datetime import logging from dbnd._core.utils.project.project_fs import abs_join, relative_path from dbnd_test_scenarios.utils.data_chaos_monkey.client_scoring_chaos import ( is_chaos_column_10, ) from targets import target logger = logging.getLogger(__name__) _PLUGIN_ROOT = relative_path(__file__, "..", "..") _PLUGIN_SRC_ROOT = relative_path(__file__) def scenario_root_path(*path): return abs_join(_PLUGIN_ROOT, *path) def scenario_src_path(*path): return abs_join(_PLUGIN_SRC_ROOT, *path) def test_scenario_path(*path): return scenario_root_path("scenarios", *path) def test_scenario_target(*path): return target(test_scenario_path(*path)) def scenario_data_path(*path): return scenario_root_path("data", *path) def scenario_data_target(*path): return target(scenario_data_path(*path)) def scenario_pyspark_path(*path): return scenario_src_path("spark", "pyspark_scripts", *path) class _Scenarios(object): pass class _ScenariosClientScoringData(object): p_g_ingest_data = scenario_data_target("client_scoring/p_g_ready_for_ingest.csv") p_g_ingest_data__no_col_10 = scenario_data_target( "client_scoring/p_g_ready_for_ingest__no_col_10.csv" ) p_g_train_data = scenario_data_target("client_scoring/p_g_ready_for_train.csv") p_a_master_data_bad = scenario_data_target("client_scoring/p_a_master_data_bad.csv") partners = ["autolab", "picsdata", "myp"] partners_big = ["autobig", "picsbig"] def get_ingest_data(self, partner, target_date_str): target_date = datetime.datetime.strptime(target_date_str, "%Y-%m-%d").date() if is_chaos_column_10(partner, target_date): return self.p_g_ingest_data__no_col_10 return self.p_g_ingest_data scenarios = _Scenarios() client_scoring_data = _ScenariosClientScoringData()
models/slimmable/__init__.py
haolibai/dmcp
119
12693769
# -*- coding:utf-8 -*- from models.slimmable.us_resnet import us_resnet18, us_resnet50 from models.slimmable.us_mobilenet import us_mobilenet_v2
tests/formatter/to_python_test.py
terencehonles/bravado-core
122
12693780
# -*- coding: utf-8 -*- from datetime import date from datetime import datetime import six from mock import patch from bravado_core.formatter import SwaggerFormat from bravado_core.formatter import to_python from bravado_core.spec import Spec if not six.PY2: long = int def test_none(minimal_swagger_spec): string_spec = {'type': 'string', 'format': 'date'} assert to_python(minimal_swagger_spec, string_spec, None) is None def test_no_format_returns_value(minimal_swagger_spec): string_spec = {'type': 'string'} assert 'boo' == to_python(minimal_swagger_spec, string_spec, 'boo') def test_date(minimal_swagger_spec): string_spec = {'type': 'string', 'format': 'date'} assert date(2015, 4, 1) == to_python( minimal_swagger_spec, string_spec, '2015-04-01', ) def test_datetime(minimal_swagger_spec): string_spec = {'type': 'string', 'format': 'date-time'} result = to_python( minimal_swagger_spec, string_spec, '2015-03-22T13:19:54', ) assert datetime(2015, 3, 22, 13, 19, 54) == result @patch('bravado_core.spec.warnings.warn') def test_no_registered_format_returns_value_as_is_and_issues_warning(mock_warn, minimal_swagger_spec): string_spec = {'type': 'string', 'format': 'bar'} assert 'baz' == to_python(minimal_swagger_spec, string_spec, 'baz') assert mock_warn.call_count == 1 def test_int64_long(minimal_swagger_spec): integer_spec = {'type': 'integer', 'format': 'int64'} result = to_python(minimal_swagger_spec, integer_spec, long(999)) assert long(999) == result def test_int64_int(minimal_swagger_spec): integer_spec = {'type': 'integer', 'format': 'int64'} result = to_python(minimal_swagger_spec, integer_spec, 999) assert long(999) == result assert isinstance(result, long) def test_int32_long(minimal_swagger_spec): integer_spec = {'type': 'integer', 'format': 'int32'} result = to_python(minimal_swagger_spec, integer_spec, long(999)) assert 999 == result assert isinstance(result, int) def test_int32_int(minimal_swagger_spec): integer_spec = {'type': 'integer', 'format': 'int32'} result = to_python(minimal_swagger_spec, integer_spec, 999) assert 999 == result assert isinstance(result, int) def test_float(minimal_swagger_spec): float_spec = {'type': 'number', 'format': 'float'} result = to_python(minimal_swagger_spec, float_spec, float(3.14)) assert 3.14 == result assert isinstance(result, float) def test_double(minimal_swagger_spec): double_spec = {'type': 'number', 'format': 'double'} result = to_python(minimal_swagger_spec, double_spec, float(3.14)) assert 3.14 == result assert isinstance(result, float) def test_byte(minimal_swagger_spec): byte_spec = {'type': 'string', 'format': 'byte'} result = to_python(minimal_swagger_spec, byte_spec, 'x') assert 'x' == result assert isinstance(result, str) def test_byte_base64(minimal_swagger_dict): swagger_spec = Spec.from_dict( minimal_swagger_dict, config={'use_base64_for_byte_format': True}, ) schema = {'type': 'string', 'format': 'byte'} result = to_python(swagger_spec, schema, 'YWJj/w==') assert b'abc\xff' == result assert isinstance(result, bytes) def test_ref(minimal_swagger_dict): minimal_swagger_dict['definitions']['Int32'] = { 'type': 'integer', 'format': 'int32', } int_ref_spec = {'$ref': '#/definitions/Int32'} swagger_spec = Spec.from_dict(minimal_swagger_dict) result = to_python(swagger_spec, int_ref_spec, 999) assert 999 == result assert isinstance(result, int) def test_override(minimal_swagger_dict): class Byte(object): def __init__(self, x): self.x = x def __str__(self): return str(self.x) def __repr__(self): return '%s(%r)' % (self.__class__, self.x) byteformat = SwaggerFormat( format='byte', to_wire=lambda x: str(x), to_python=lambda x: Byte(x), validate=lambda x: isinstance(x, str), description=None, ) number_spec = {'type': 'string', 'format': 'byte'} swagger_spec = Spec.from_dict(minimal_swagger_dict, config={'formats': [byteformat]}) result = to_python(swagger_spec, number_spec, '8bits') assert '8bits' == str(result) assert repr(Byte('8bits')) == repr(result) assert type(result) is Byte
deployment/docker flask fit predict/train_model.py
Diyago/ML-DL-scripts
142
12693820
<reponame>Diyago/ML-DL-scripts import numpy as np from sklearn import datasets from sklearn.decomposition import PCA np.random.seed(0) # import some data to play with iris_X, iris_y = datasets.load_iris(return_X_y=True) indices = np.random.permutation(len(iris_X)) iris_X_train = iris_X[indices[:-10]] iris_y_train = iris_y[indices[:-10]] # Create and fit a nearest-neighbor classifier from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(iris_X_train, iris_y_train) from sklearn.externals import joblib joblib.dump(knn, "knn.pkl")
saspy/SASLogLexer.py
metllord/saspy
317
12693829
<filename>saspy/SASLogLexer.py # # Copyright SAS Institute # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pygments.lexer import RegexLexer import pygments.token from pygments.style import Style class SASLogStyle(Style): default_style = "" styles = { pygments.token.Comment: '#0000FF', pygments.token.Keyword: 'bold #ff0000', pygments.token.Name: '#008000', pygments.token.String: '#111' } class SASLogLexer(RegexLexer): __all__ = ['SASLogLexer'] name = 'Lexer to Color SAS Logs equivalent to DMS' tokens = { 'root': [ (r'^\d+.*((\n|\t|\n\t)[ ]([^WEN].*)(.*))*', pygments.token.String), (r'^NOTE.*((\n|\t|\n\t)[ ]([^WEN].*)(.*))*', pygments.token.Comment.Multiline, 'note'), (r'^ERROR.*((\n|\t|\n\t)[ ]([^WEN].*)(.*))*', pygments.token.Keyword.Multiline, 'error'), (r'^WARNING.*((\n|\t|\n\t)[ ]([^WEN].*)(.*))*', pygments.token.Name.Multiline, 'warning'), (r'\s', pygments.token.Text) ], 'error': [ (r'^\s+.*$', pygments.token.Keyword.Multiline), (r'^\S+.*$', pygments.token.Keyword.Multiline, '#pop') ], 'note': [ (r'^\s+.*$', pygments.token.Comment.Multiline), (r'^\S+.*$', pygments.token.Comment.Multiline, '#pop') ], 'warning': [ (r'^\s+.*$', pygments.token.Name.Multiline), (r'^\S+.*$', pygments.token.Name.Multiline, '#pop') ] }
setup.py
xlotlu/weresync
206
12693833
#! /usr/bin/env python3 import os from setuptools import setup, find_packages import subprocess import shutil class InvalidSetupError(Exception): pass def create_mo_files(): """Converts .po templates to readble .mo files using msgfmt.""" # Avoids this code running on read the docs, since gettext is not installed # there if os.environ.get("READTHEDOCS") == "True": return [] if shutil.which("msgfmt") is None: # If gettext isn't installed, skip this raise InvalidSetupError("gettext not installed but is required.") localedir = 'src/weresync/resources/locale' po_dirs = [] langs = next(os.walk(localedir))[1] po_dirs = [localedir + '/' + l + '/LC_MESSAGES/' for l in langs] for d in po_dirs: po_files = [ f for f in next(os.walk(d))[2] if os.path.splitext(f)[1] == '.po' ] for po_file in po_files: filename, extension = os.path.splitext(po_file) mo_file = filename + '.mo' msgfmt_cmd = 'msgfmt {} -o {}'.format(d + po_file, d + mo_file) subprocess.call(msgfmt_cmd, shell=True) return ["locale/" + l + "/LC_MESSAGES/*.mo" for l in langs] def read(fname): with open(os.path.join(os.path.dirname(__file__), fname)) as file: return file.read() target_icon_loc = "share/icons/hicolor/scalable/apps" if os.getuid() == 0: # Install is running as root target_icon_loc = "/usr/" + target_icon_loc if __name__ == "__main__": setup( name="WereSync", version="1.1.5", package_dir={"": "src"}, packages=find_packages("src"), install_requires=["parse==1.6.6", "yapsy==1.11.223", "pydbus==0.6.0"], entry_points={ 'console_scripts': [ "weresync = weresync.interface.cli:main", "weresync-daemon = weresync.daemon.daemon:run" ], 'gui_scripts': ["weresync-gui = weresync.interface.gui:start_gui"] }, package_data={ "weresync.resources": ["*.svg", "*.png", "weresync*.*"] + create_mo_files() }, data_files=[(target_icon_loc, ["src/weresync/resources/weresync.svg"])], # Metadata author="<NAME>", author_email="<EMAIL>", description="Incrementally clones Linux drives", long_description=read("README.rst"), license="Apache 2.0", keywords="clone, linux, backup, smaller drive", url="https://github.com/DonyorM/weresync", )
test/test_posetrack.py
collector-m/UniTrack
240
12693858
import os import pdb import os.path as osp import sys sys.path[0] = os.getcwd() import cv2 import copy import json import yaml import logging import argparse from tqdm import tqdm from itertools import groupby import pycocotools.mask as mask_utils import numpy as np import torch from torchvision.transforms import transforms as T from utils.log import logger from utils.meter import Timer from utils.mask import pts2array import data.video as videodataset from utils import visualize as vis from utils.io import mkdir_if_missing from core.association import matching from tracker.mot.pose import PoseAssociationTracker def identical(a, b): if len(a) == len(b): arra = pts2array(a) arrb = pts2array(b) if np.abs(arra-arrb).sum() < 1e-2: return True return False def fuse_result(res, jpath): with open(jpath, 'r') as f: obsj = json.load(f) obsj_fused = copy.deepcopy(obsj) for t, inpj in enumerate(obsj['annolist']): skltns, ids = res[t][2], res[t][3] nobj_ori = len(obsj['annolist'][t]['annorect']) for i in range(nobj_ori): obsj_fused['annolist'][t]['annorect'][i]['track_id'] = [1000] for j, skltn in enumerate(skltns): match = identical(obsj['annolist'][t]['annorect'][i]['annopoints'][0]['point'], skltn) if match: obsj_fused['annolist'][t]['annorect'][i]['track_id'] = [ids[j],] return obsj_fused def eval_seq(opt, dataloader, save_dir=None): if save_dir: mkdir_if_missing(save_dir) tracker = PoseAssociationTracker(opt) timer = Timer() results = [] for frame_id, (img, obs, img0, _) in enumerate(dataloader): # run tracking timer.tic() online_targets = tracker.update(img, img0, obs) online_tlwhs = [] online_ids = [] online_poses = [] for t in online_targets: tlwh = t.tlwh tid = t.track_id online_tlwhs.append(tlwh) online_ids.append(tid) online_poses.append(t.pose) timer.toc() # save results results.append((frame_id + 1, online_tlwhs, online_poses, online_ids)) if save_dir is not None: online_im = vis.plot_tracking(img0, online_tlwhs, online_ids, frame_id=frame_id, fps=1. / timer.average_time) if save_dir is not None: cv2.imwrite(os.path.join( save_dir, '{:05d}.jpg'.format(frame_id)), online_im) return results, timer.average_time, timer.calls def main(opt): logger.setLevel(logging.INFO) result_root = opt.out_root result_json_root = osp.join(result_root, 'json') mkdir_if_missing(result_json_root) transforms= T.Compose([T.ToTensor(), T.Normalize(opt.im_mean, opt.im_std)]) obs_root = osp.join(opt.data_root, 'obs', opt.split, opt.obid) obs_jpaths = [osp.join(obs_root, o) for o in os.listdir(obs_root)] obs_jpaths = sorted([o for o in obs_jpaths if o.endswith('.json')]) # run tracking accs = [] timer_avgs, timer_calls = [], [] for i, obs_jpath in enumerate(obs_jpaths): seqname = obs_jpath.split('/')[-1].split('.')[0] output_dir = osp.join(result_root, 'frame', seqname) dataloader = videodataset.LoadImagesAndPoseObs(obs_jpath, opt) seq_res, ta, tc = eval_seq(opt, dataloader, save_dir=output_dir) seq_json = fuse_result(seq_res, obs_jpath) with open(osp.join(result_json_root, "{}.json".format(seqname)), 'w') as f: json.dump(seq_json, f) timer_avgs.append(ta) timer_calls.append(tc) # eval logger.info('Evaluate seq: {}'.format(seqname)) if opt.save_videos: output_video_path = osp.join(output_dir, '{}.mp4'.format(seqname)) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -c:v copy {}'.format(output_dir, output_video_path) os.system(cmd_str) timer_avgs = np.asarray(timer_avgs) timer_calls = np.asarray(timer_calls) all_time = np.dot(timer_avgs, timer_calls) avg_time = all_time / np.sum(timer_calls) logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(all_time, 1.0 / avg_time)) cmd_str = ('python ./eval/poseval/evaluate.py --groundTruth={}/posetrack_data/annotations/{} ' '--predictions={}/ --evalPoseTracking'.format(opt.data_root, opt.split, result_json_root)) os.system(cmd_str) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--config', default='', required=True, type=str) opt = parser.parse_args() with open(opt.config) as f: common_args = yaml.load(f) for k, v in common_args['common'].items(): setattr(opt, k, v) for k, v in common_args['posetrack'].items(): setattr(opt, k, v) opt.out_root = osp.join('results/pose', opt.exp_name) opt.out_file = osp.join('results/pose', opt.exp_name + '.json') print(opt, end='\n\n') main(opt)
tests/datatypes/totest-anyURI.py
eLBati/pyxb
123
12693871
# -*- coding: utf-8 -*- import logging if __name__ == '__main__': logging.basicConfig() _log = logging.getLogger(__name__) import unittest import pyxb.binding.datatypes as xsd class Test_anyURI (unittest.TestCase): def testRange (self): self.fail("Datatype anyURI test not implemented") if __name__ == '__main__': unittest.main()
localgraphclustering/GraphLocal.py
vishalbelsare/LocalGraphClustering
106
12693873
import networkx as nx import csv from scipy import sparse as sp from scipy.sparse import csgraph import scipy.sparse.linalg as splinalg import numpy as np import pandas as pd import warnings import collections as cole from .cpp import * import random import gzip import bz2 import lzma import multiprocessing as mp import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.collections import LineCollection from mpl_toolkits.mplot3d.art3d import Line3DCollection from matplotlib.colors import to_rgb,to_rgba from matplotlib.colors import LinearSegmentedColormap from matplotlib.colors import Normalize from matplotlib.cm import ScalarMappable from collections import defaultdict from .GraphDrawing import GraphDrawing def _load_from_shared(sabuf, dtype, shape): return np.frombuffer(sabuf, dtype=dtype).reshape(shape) """ Create shared memory that can be passed to a child process, wrapped in a numpy array.""" def _copy_to_shared(a): # determine the numpy type of a. dtype = a.dtype shape = a.shape sabuf = mp.RawArray(ctypes.c_uint8, a.nbytes) sa = _load_from_shared(sabuf, dtype, shape) np.copyto(sa, a) # make a copy return sa, (sabuf, dtype, shape) class GraphLocal: """ This class implements graph loading from an edgelist, gml or graphml and provides methods that operate on the graph. Attributes ---------- adjacency_matrix : scipy csr matrix ai : numpy vector CSC format index pointer array, its data type is determined by "itype" during initialization aj : numpy vector CSC format index array, its data type is determined by "vtype" during initialization _num_vertices : int Number of vertices _num_edges : int Number of edges _weighted : boolean Declares if it is a weighted graph or not d : float64 numpy vector Degrees vector dn : float64 numpy vector Component-wise reciprocal of degrees vector d_sqrt : float64 numpy vector Component-wise square root of degrees vector dn_sqrt : float64 numpy vector Component-wise reciprocal of sqaure root degrees vector vol_G : float64 numpy vector Volume of graph components : list of sets Each set contains the indices of a connected component of the graph number_of_components : int Number of connected components of the graph bicomponents : list of sets Each set contains the indices of a biconnected component of the graph number_of_bicomponents : int Number of connected components of the graph core_numbers : dictionary Core number for each vertex Methods ------- read_graph(filename, file_type='edgelist', separator='\t') Reads the graph from a file compute_statistics() Computes statistics for the graph connected_components() Computes the connected components of the graph is_disconnected() Checks if graph is connected biconnected_components(): Computes the biconnected components of the graph core_number() Returns the core number for each vertex neighbors(vertex) Returns a list with the neighbors of the given vertex list_to_gl(source,target) Create a GraphLocal object from edge list """ def __init__(self, filename = None, file_type='edgelist', separator='\t', remove_whitespace=False,header=False, headerrow=None, vtype=np.uint32,itype=np.uint32): """ Initializes the graph from a gml or a edgelist file and initializes the attributes of the class. Parameters ---------- See read_graph for a description of the parameters. """ if filename != None: self.read_graph(filename, file_type = file_type, separator = separator, remove_whitespace = remove_whitespace, header = header, headerrow = headerrow, vtype=vtype, itype=itype) def __eq__(self,other): if not isinstance(other, GraphLocal): return NotImplemented return np.array_equal(self.ai,other.ai) and np.array_equal(self.aj,other.aj) and np.array_equal(self.adjacency_matrix.data,other.adjacency_matrix.data) def read_graph(self, filename, file_type='edgelist', separator='\t', remove_whitespace=False, header=False, headerrow=None, vtype=np.uint32, itype=np.uint32): """ Reads the graph from an edgelist, gml or graphml file and initializes the class attribute adjacency_matrix. Parameters ---------- filename : string Name of the file, for example 'JohnsHopkins.edgelist', 'JohnsHopkins.gml', 'JohnsHopkins.graphml'. file_type : string Type of file. Currently only 'edgelist', 'gml' and 'graphml' are supported. Default = 'edgelist' separator : string used if file_type = 'edgelist' Default = '\t' remove_whitespace : bool set it to be True when there is more than one kinds of separators in the file Default = False header : bool This lets the first line of the file contain a set of heade information that should be ignore_index Default = False headerrow : int Use which row as column names. This argument takes precidence over the header=True using headerrow = 0 Default = None vtype numpy integer type of CSC format index array Default = np.uint32 itype numpy integer type of CSC format index pointer array Default = np.uint32 """ if file_type == 'edgelist': #dtype = {0:'int32', 1:'int32', 2:'float64'} if header and headerrow is None: headerrow = 0 if remove_whitespace: df = pd.read_csv(filename, header=headerrow, delim_whitespace=remove_whitespace) else: df = pd.read_csv(filename, sep=separator, header=headerrow, delim_whitespace=remove_whitespace) cols = [0,1,2] if header != None: cols = list(df.columns) source = df[cols[0]].values target = df[cols[1]].values if df.shape[1] == 2: weights = np.ones(source.shape[0]) elif df.shape[1] == 3: weights = df[cols[2]].values else: raise Exception('GraphLocal.read_graph: df.shape[1] not in (2, 3)') self._num_vertices = max(source.max() + 1, target.max()+1) #self.adjacency_matrix = source, target, weights self.adjacency_matrix = sp.csr_matrix((weights.astype(np.float64), (source, target)), shape=(self._num_vertices, self._num_vertices)) elif file_type == 'gml': warnings.warn("Loading a gml is not efficient, we suggest using an edgelist format for this API.") G = nx.read_gml(filename).to_undirected() self.adjacency_matrix = nx.adjacency_matrix(G).astype(np.float64) self._num_vertices = nx.number_of_nodes(G) elif file_type == 'graphml': warnings.warn("Loading a graphml is not efficient, we suggest using an edgelist format for this API.") G = nx.read_graphml(filename).to_undirected() self.adjacency_matrix = nx.adjacency_matrix(G).astype(np.float64) self._num_vertices = nx.number_of_nodes(G) else: print('This file type is not supported') return self._weighted = False for i in self.adjacency_matrix.data: if i != 1: self._weighted = True break is_symmetric = (self.adjacency_matrix != self.adjacency_matrix.T).sum() == 0 if not is_symmetric: # Symmetrize matrix, choosing larger weight sel = self.adjacency_matrix.T > self.adjacency_matrix self.adjacency_matrix = self.adjacency_matrix - self.adjacency_matrix.multiply(sel) + self.adjacency_matrix.T.multiply(sel) assert (self.adjacency_matrix != self.adjacency_matrix.T).sum() == 0 self._num_edges = self.adjacency_matrix.nnz self.compute_statistics() self.ai = itype(self.adjacency_matrix.indptr) self.aj = vtype(self.adjacency_matrix.indices) @classmethod def from_networkx(cls,G): """ Create a GraphLocal object from a networkx graph. Paramters --------- G The networkx graph. """ if G.is_directed() == True: raise Exception("from_networkx requires an undirected graph, use G.to_undirected()") rval = cls() rval.adjacency_matrix = nx.adjacency_matrix(G).astype(np.float64) rval._num_vertices = nx.number_of_nodes(G) # TODO, use this in the read_graph rval._weighted = False for i in rval.adjacency_matrix.data: if i != 1: rval._weighted = True break # automatically determine sizes if G.number_of_nodes() < 4294967295: vtype = np.uint32 else: vtype = np.int64 if 2*G.number_of_edges() < 4294967295: itype = np.uint32 else: itype = np.int64 rval._num_edges = rval.adjacency_matrix.nnz rval.compute_statistics() rval.ai = itype(rval.adjacency_matrix.indptr) rval.aj = vtype(rval.adjacency_matrix.indices) return rval @classmethod def from_sparse_adjacency(cls,A): """ Create a GraphLocal object from a sparse adjacency matrix. Paramters --------- A Adjacency matrix. """ self = cls() self.adjacency_matrix = A.copy() self._num_vertices = A.shape[0] self._num_edges = A.nnz # TODO, use this in the read_graph self._weighted = False for i in self.adjacency_matrix.data: if i != 1: self._weighted = True break # automatically determine sizes if self._num_vertices < 4294967295: vtype = np.uint32 else: vtype = np.int64 if 2*self._num_edges < 4294967295: itype = np.uint32 else: itype = np.int64 self.compute_statistics() self.ai = itype(self.adjacency_matrix.indptr) self.aj = vtype(self.adjacency_matrix.indices) return self def renew_data(self,A): """ Update data because the adjacency matrix changed Paramters --------- A Adjacency matrix. """ self._num_edges = A.nnz # TODO, use this in the read_graph self._weighted = False for i in self.adjacency_matrix.data: if i != 1: self._weighted = True break # automatically determine sizes if self._num_vertices < 4294967295: vtype = np.uint32 else: vtype = np.int64 if 2*self._num_edges < 4294967295: itype = np.uint32 else: itype = np.int64 self.compute_statistics() self.ai = itype(self.adjacency_matrix.indptr) self.aj = vtype(self.adjacency_matrix.indices) def list_to_gl(self,source,target,weights,vtype=np.uint32, itype=np.uint32): """ Create a GraphLocal object from edge list. Parameters ---------- source A numpy array of sources for the edges target A numpy array of targets for the edges weights A numpy array of weights for the edges vtype numpy integer type of CSC format index array Default = np.uint32 itype numpy integer type of CSC format index pointer array Default = np.uint32 """ # TODO, fix this up to avoid duplicating code with read... source = np.array(source,dtype=vtype) target = np.array(target,dtype=vtype) weights = np.array(weights,dtype=np.double) self._num_edges = len(source) self._num_vertices = max(source.max() + 1, target.max()+1) self.adjacency_matrix = sp.csr_matrix((weights.astype(np.float64), (source, target)), shape=(self._num_vertices, self._num_vertices)) self._weighted = False for i in self.adjacency_matrix.data: if i != 1: self._weighted = True break is_symmetric = (self.adjacency_matrix != self.adjacency_matrix.T).sum() == 0 if not is_symmetric: # Symmetrize matrix, choosing larger weight sel = self.adjacency_matrix.T > self.adjacency_matrix self.adjacency_matrix = self.adjacency_matrix - self.adjacency_matrix.multiply(sel) + self.adjacency_matrix.T.multiply(sel) assert (self.adjacency_matrix != self.adjacency_matrix.T).sum() == 0 self._num_edges = self.adjacency_matrix.nnz self.compute_statistics() self.ai = itype(self.adjacency_matrix.indptr) self.aj = vtype(self.adjacency_matrix.indices) def discard_weights(self): """ Discard any weights that were loaded from the data file. This sets all the weights associated with each edge to 1.0, which is our "no weight" case.""" self.adjacency_matrix.data.fill(1.0) self._weighted = False self.compute_statistics() def compute_statistics(self): """ Computes statistics for the graph. It updates the class attributes. The user needs to read the graph first before calling this method by calling the read_graph method from this class. """ self.d = np.ravel(self.adjacency_matrix.sum(axis=1)) self.dn = np.zeros(self._num_vertices) self.dn[self.d != 0] = 1.0 / self.d[self.d != 0] self.d_sqrt = np.sqrt(self.d) self.dn_sqrt = np.sqrt(self.dn) self.vol_G = np.sum(self.d) def to_shared(self): """ Re-create the graph data with multiprocessing compatible shared-memory arrays that can be passed to child-processes. This returns a dictionary that allows the graph to be re-created in a child-process from that variable and the method "from_shared" At this moment, this doesn't send any data from components, core_numbers, or biconnected_components """ sgraphvars = {} self.ai, sgraphvars["ai"] = _copy_to_shared(self.ai) self.aj, sgraphvars["aj"] = _copy_to_shared(self.aj) self.d, sgraphvars["d"] = _copy_to_shared(self.d) self.dn, sgraphvars["dn"] = _copy_to_shared(self.dn) self.d_sqrt, sgraphvars["d_sqrt"] = _copy_to_shared(self.d_sqrt) self.dn_sqrt, sgraphvars["dn_sqrt"] = _copy_to_shared(self.dn_sqrt) self.adjacency_matrix.data, sgraphvars["a"] = _copy_to_shared(self.adjacency_matrix.data) # this will rebuild without copying # so that copies should all be accessing exactly the same # arrays for caching self.adjacency_matrix = sp.csr_matrix( (self.adjacency_matrix.data, self.aj, self.ai), shape=(self._num_vertices, self._num_vertices)) # scalars sgraphvars["n"] = self._num_vertices sgraphvars["m"] = self._num_edges sgraphvars["vol"] = self.vol_G sgraphvars["weighted"] = self._weighted return sgraphvars @classmethod def from_shared(cls, sgraphvars): """ Return a graph object from the output of "to_shared". """ g = cls() g._num_vertices = sgraphvars["n"] g._num_edges = sgraphvars["m"] g._weighted = sgraphvars["weighted"] g.vol_G = sgraphvars["vol"] g.ai = _load_from_shared(*sgraphvars["ai"]) g.aj = _load_from_shared(*sgraphvars["aj"]) g.adjacency_matrix = sp.csr_matrix( (_load_from_shared(*sgraphvars["a"]), g.aj, g.ai), shape=(g._num_vertices, g._num_vertices)) g.d = _load_from_shared(*sgraphvars["d"]) g.dn = _load_from_shared(*sgraphvars["dn"]) g.d_sqrt = _load_from_shared(*sgraphvars["d_sqrt"]) g.dn_sqrt = _load_from_shared(*sgraphvars["dn_sqrt"]) return g def connected_components(self): """ Computes the connected components of the graph. It stores the results in class attributes components and number_of_components. The user needs to call read the graph first before calling this function by calling the read_graph function from this class. """ output = csgraph.connected_components(self.adjacency_matrix,directed=False) self.components = output[1] self.number_of_components = output[0] print('There are ', self.number_of_components, ' connected components in the graph') def is_disconnected(self): """ The output can be accessed from the graph object that calls this function. Checks if the graph is a disconnected graph. It prints the result as a comment and returns True if the graph is disconnected, or false otherwise. The user needs to call read the graph first before calling this function by calling the read_graph function from this class. This function calls Networkx. Returns ------- True If connected False If disconnected """ if self.d == []: print('The graph has to be read first.') return self.connected_components() if self.number_of_components > 1: print('The graph is a disconnected graph.') return True else: print('The graph is not a disconnected graph.') return False def biconnected_components(self): """ Computes the biconnected components of the graph. It stores the results in class attributes bicomponents and number_of_bicomponents. The user needs to call read the graph first before calling this function by calling the read_graph function from this class. This function calls Networkx. """ warnings.warn("Warning, biconnected_components is not efficiently implemented.") g_nx = nx.from_scipy_sparse_matrix(self.adjacency_matrix) self.bicomponents = list(nx.biconnected_components(g_nx)) self.number_of_bicomponents = len(self.bicomponents) def core_number(self): """ Returns the core number for each vertex. A k-core is a maximal subgraph that contains nodes of degree k or more. The core number of a node is the largest value k of a k-core containing that node. The user needs to call read the graph first before calling this function by calling the read_graph function from this class. The output can be accessed from the graph object that calls this function. It stores the results in class attribute core_numbers. """ warnings.warn("Warning, core_number is not efficiently implemented.") g_nx = nx.from_scipy_sparse_matrix(self.adjacency_matrix) self.core_numbers = nx.core_number(g_nx) def neighbors(self,vertex): """ Returns a list with the neighbors of the given vertex. """ # this will be faster since we store the arrays ourselves. return self.aj[self.ai[vertex]:self.ai[vertex+1]].tolist() #return self.adjacency_matrix[:,vertex].nonzero()[0].tolist() def compute_conductance(self,R,cpp=True): """ Return conductance of a set of vertices. """ records = self.set_scores(R,cpp=cpp) return records["cond"] def set_scores(self,R,cpp=True): """ Return various metrics of a set of vertices. """ voltrue,cut = 0,0 if cpp: voltrue, cut = set_scores_cpp(self._num_vertices,self.ai,self.aj,self.adjacency_matrix.data,self.d,R,self._weighted) else: voltrue = sum(self.d[R]) v_ones_R = np.zeros(self._num_vertices) v_ones_R[R] = 1 cut = voltrue - np.dot(v_ones_R,self.adjacency_matrix.dot(v_ones_R.T)) voleff = min(voltrue,self.vol_G - voltrue) sizetrue = len(R) sizeeff = sizetrue if voleff < voltrue: sizeeff = self._num_vertices - sizetrue # remove the stuff we don't want returned... del R del self if not cpp: del v_ones_R del cpp edgestrue = voltrue - cut edgeseff = voleff - cut cond = cut / voleff if voleff != 0 else 1 isop = cut / sizeeff if sizeeff != 0 else 1 # make a dictionary out of local variables return locals() def largest_component(self): self.connected_components() if self.number_of_components == 1: #self.compute_statistics() return self else: # find nodes of largest component counter=cole.Counter(self.components) maxccnodes = [] what_key = counter.most_common(1)[0][0] for i in range(self._num_vertices): if what_key == self.components[i]: maxccnodes.append(i) # biggest component by len of it's list of nodes #maxccnodes = max(self.components, key=len) #maxccnodes = list(maxccnodes) warnings.warn("The graph has multiple (%i) components, using the largest with %i / %i nodes"%( self.number_of_components, len(maxccnodes), self._num_vertices)) g_copy = GraphLocal() g_copy.adjacency_matrix = self.adjacency_matrix[maxccnodes,:].tocsc()[:,maxccnodes].tocsr() g_copy._num_vertices = len(maxccnodes) # AHH! g_copy.compute_statistics() g_copy._weighted = self._weighted dt = np.dtype(self.ai[0]) itype = np.int64 if dt.name == 'int64' else np.uint32 dt = np.dtype(self.aj[0]) vtype = np.int64 if dt.name == 'int64' else np.uint32 g_copy.ai = itype(g_copy.adjacency_matrix.indptr) g_copy.aj = vtype(g_copy.adjacency_matrix.indices) g_copy._num_edges = g_copy.adjacency_matrix.nnz return g_copy def local_extrema(self,vals,strict=False,reverse=False): """ Find extrema in a graph based on a set of values. Parameters ---------- vals: Sequence[float] a feature value per node used to find the ex against each other, i.e. conductance strict: bool If True, find a set of vertices where vals(i) < vals(j) for all neighbors N(j) i.e. local minima in the space of the graph If False, find a set of vertices where vals(i) <= vals(j) for all neighbors N(j) i.e. local minima in the space of the graph reverse: bool if True, then find local maxima, if False then find local minima (by default, this is false, so we find local minima) Returns ------- minverts: Sequence[int] the set of vertices minvals: Sequence[float] the set of min values """ n = self.adjacency_matrix.shape[0] minverts = [] ai = self.ai aj = self.aj factor = 1.0 if reverse: factor = -1.0 for i in range(n): vali = factor*vals[i] lmin = True for nzi in range(ai[i],ai[i+1]): v = aj[nzi] if v == i: continue # skip self-loops if strict: if vali < factor*vals[v]: continue else: lmin = False else: if vali <= factor*vals[v]: continue else: lmin = False if lmin == False: break # break out of the loop if lmin: minverts.append(i) minvals = vals[minverts] return minverts, minvals @staticmethod def _plotting(drawing,edgecolor,edgealpha,linewidth,is_3d,**kwargs): """ private function to do the plotting "**kwargs" represents all possible optional parameters of "scatter" function in matplotlib.pyplot """ drawing.scatter(**kwargs) drawing.plot(color=edgecolor,alpha=edgealpha,linewidths=linewidth) axs = drawing.ax axs.autoscale() if is_3d == 3: # Set the initial view axs.view_init(30, angle) def draw(self,coords,alpha=1.0,nodesize=5,linewidth=1, nodealpha=1.0,edgealpha=1.0,edgecolor='k',nodemarker='o', axs=None,fig=None,values=None,cm=None,valuecenter=None,angle=30, figsize=None,nodecolor='r'): """ Standard drawing function when having single cluster Parameters ---------- coords: a n-by-2 or n-by-3 array with coordinates for each node of the graph. Optional parameters ------------------ alpha: float (1.0 by default) the overall alpha scaling of the plot, [0,1] nodealpha: float (1.0 by default) the overall node alpha scaling of the plot, [0, 1] edgealpha: float (1.0 by default) the overall edge alpha scaling of the plot, [0, 1] nodecolor: string or RGB ('r' by default) edgecolor: string or RGB ('k' by default) setcolor: string or RGB ('y' by default) nodemarker: string ('o' by default) nodesize: float (5.0 by default) linewidth: float (1.0 by default) axs,fig: None,None (default) by default it will create a new figure, or this will plot in axs if not None. values: Sequence[float] (None by default) used to determine node colors in a colormap, should have the same length as coords valuecenter: often used with values together to determine vmin and vmax of colormap offset = max(abs(values-valuecenter)) vmax = valuecenter + offset vmin = valuecenter - offset cm: string or colormap object (None by default) figsize: tuple (None by default) angle: float (30 by default) set initial view angle when drawing 3d Returns ------- A GraphDrawing object """ drawing = GraphDrawing(self,coords,ax=axs,figsize=figsize) if values is not None: values = np.asarray(values) if values.ndim == 2: node_color_list = np.reshape(values,len(coords)) else: node_color_list = values vmin = min(node_color_list) vmax = max(node_color_list) if cm is not None: cm = plt.get_cmap(cm) else: if valuecenter is not None: #when both values and valuecenter are provided, use PuOr colormap to determine colors cm = plt.get_cmap("PuOr") offset = max(abs(node_color_list-valuecenter)) vmax = valuecenter + offset vmin = valuecenter - offset else: cm = plt.get_cmap("magma") self._plotting(drawing,edgecolor,edgealpha,linewidth,len(coords[0])==3,c=node_color_list,alpha=alpha*nodealpha, edgecolors='none',s=nodesize,marker=nodemarker,zorder=2,cmap=cm,vmin=vmin,vmax=vmax) else: self._plotting(drawing,edgecolor,edgealpha,linewidth,len(coords[0])==3,c=nodecolor,alpha=alpha*nodealpha, edgecolors='none',s=nodesize,marker=nodemarker,zorder=2) return drawing def draw_groups(self,coords,groups,alpha=1.0,nodesize_list=[],linewidth=1, nodealpha=1.0,edgealpha=0.01,edgecolor='k',nodemarker_list=[],node_color_list=[],nodeorder_list=[],axs=None, fig=None,cm=None,angle=30,figsize=None): """ Standard drawing function when having multiple clusters Parameters ---------- coords: a n-by-2 or n-by-3 array with coordinates for each node of the graph. groups: list[list] or list, for the first case, each sublist represents a cluster for the second case, list must have the same length as the number of nodes and nodes with the number are in the same cluster Optional parameters ------------------ alpha: float (1.0 by default) the overall alpha scaling of the plot, [0,1] nodealpha: float (1.0 by default) the overall node alpha scaling of the plot, [0, 1] edgealpha: float (1.0 by default) the overall edge alpha scaling of the plot, [0, 1] nodecolor_list: list of string or RGB ('r' by default) edgecolor: string or RGB ('k' by default) nodemarker_list: list of strings ('o' by default) nodesize_list: list of floats (5.0 by default) linewidth: float (1.0 by default) axs,fig: None,None (default) by default it will create a new figure, or this will plot in axs if not None. cm: string or colormap object (None by default) figsize: tuple (None by default) angle: float (30 by default) set initial view angle when drawing 3d Returns ------- A GraphDrawing object """ #when values are not provided, use tab20 or gist_ncar colormap to determine colors number_of_colors = 1 l_initial_node_color_list = len(node_color_list) l_initial_nodesize_list = len(nodesize_list) l_initial_nodemarker_list = len(nodemarker_list) l_initial_nodeorder_list = len(nodeorder_list) if l_initial_node_color_list == 0: node_color_list = np.zeros(self._num_vertices) if l_initial_nodesize_list == 0: nodesize_list = 25*np.ones(self._num_vertices) if l_initial_nodemarker_list == 0: nodemarker_list = 'o' if l_initial_nodeorder_list == 0: nodeorder_list = 2 groups = np.asarray(groups) if groups.ndim == 1: #convert 1-d group to a 2-d representation grp_dict = defaultdict(list) for idx,key in enumerate(groups): grp_dict[key].append(idx) groups = np.asarray(list(grp_dict.values())) number_of_colors += len(groups) #separate the color for different groups as far as we can if l_initial_node_color_list == 0: for i,g in enumerate(groups): node_color_list[g] = (1+i)*1.0/(number_of_colors-1) if number_of_colors <= 20: cm = plt.get_cmap("tab20b") else: cm = plt.get_cmap("gist_ncar") vmin = 0.0 vmax = 1.0 drawing = GraphDrawing(self,coords,ax=axs,figsize=figsize) #m = ScalarMappable(norm=Normalize(vmin=vmin,vmax=vmax), cmap=cm) #rgba_list = m.to_rgba(node_color_list,alpha=alpha*nodealpha) self._plotting(drawing,edgecolor,edgealpha,linewidth,len(coords[0])==3,s=nodesize_list,marker=nodemarker_list,zorder=nodeorder_list,cmap=cm,vmin=vmin,vmax=vmax,alpha=alpha*nodealpha,edgecolors='none',c=node_color_list) return drawing """ def draw_2d(self,pos,axs,cm,nodemarker='o',nodesize=5,edgealpha=0.01,linewidth=1, node_color_list=None,edgecolor='k',nodecolor='r',node_list=None,nodelist_in=None, nodelist_out=None,setalpha=1.0,nodealpha=1.0,use_values=False,vmin=0.0,vmax=1.0): if use_values: axs.scatter([p[0] for p in pos[nodelist_in]],[p[1] for p in pos[nodelist_in]],c=node_color_list[nodelist_in], s=nodesize,marker=nodemarker,cmap=cm,norm=Normalize(vmin=vmin,vmax=vmax),alpha=setalpha,zorder=2) axs.scatter([p[0] for p in pos[nodelist_out]],[p[1] for p in pos[nodelist_out]],c=node_color_list[nodelist_out], s=nodesize,marker=nodemarker,cmap=cm,norm=Normalize(vmin=vmin,vmax=vmax),alpha=nodealpha,zorder=2) else: if node_color_list is not None: axs.scatter([p[0] for p in pos],[p[1] for p in pos],c=node_color_list,s=nodesize,marker=nodemarker, cmap=cm,norm=Normalize(vmin=vmin,vmax=vmax),zorder=2) else: axs.scatter([p[0] for p in pos],[p[1] for p in pos],c=nodecolor,s=nodesize,marker=nodemarker,zorder=2) node_list = range(self._num_vertices) if node_list is None else node_list edge_pos = [] for i in node_list: self._push_edges_for_node(i,self.aj[self.ai[i]:self.ai[i+1]],pos,edge_pos) edge_pos = np.asarray(edge_pos) edge_collection = LineCollection(edge_pos,colors=to_rgba(edgecolor,edgealpha),linewidths=linewidth) #make sure edges are at the bottom edge_collection.set_zorder(1) axs.add_collection(edge_collection) axs.autoscale() def draw_3d(self,pos,axs,cm,nodemarker='o',nodesize=5,edgealpha=0.01,linewidth=1, node_color_list=None,angle=30,edgecolor='k',nodecolor='r',node_list=None, nodelist_in=None,nodelist_out=None,setalpha=1.0,nodealpha=1.0,use_values=False,vmin=0.0,vmax=1.0): if use_values: axs.scatter([p[0] for p in pos[nodelist_in]],[p[1] for p in pos[nodelist_in]],[p[2] for p in pos[nodelist_in]],c=node_color_list[nodelist_in], s=nodesize,marker=nodemarker,cmap=cm,norm=Normalize(vmin=vmin,vmax=vmax),zorder=2,alpha=setalpha) axs.scatter([p[0] for p in pos[nodelist_out]],[p[1] for p in pos[nodelist_out]],[p[2] for p in pos[nodelist_out]],c=node_color_list[nodelist_out], s=nodesize,marker=nodemarker,cmap=cm,norm=Normalize(vmin=vmin,vmax=vmax),zorder=2,alpha=nodealpha) else: if node_color_list is not None: axs.scatter([p[0] for p in pos],[p[1] for p in pos],[p[2] for p in pos],c=node_color_list, s=nodesize,marker=nodemarker,cmap=cm,norm=Normalize(vmin=vmin,vmax=vmax),zorder=2) else: axs.scatter([p[0] for p in pos],[p[1] for p in pos],[p[2] for p in pos],c=nodecolor, s=nodesize,marker=nodemarker,zorder=2) node_list = range(self._num_vertices) if node_list is None else node_list edge_pos = [] for i in node_list: self._push_edges_for_node(i,self.aj[self.ai[i]:self.ai[i+1]],pos,edge_pos) edge_pos = np.asarray(edge_pos) edge_collection = Line3DCollection(edge_pos,colors=to_rgba(edgecolor,edgealpha),linewidths=linewidth) #make sure edges are at the bottom edge_collection.set_zorder(1) axs.add_collection(edge_collection) axs.autoscale() # Set the initial view axs.view_init(30, angle) """
skidl/netlist_to_skidl_main.py
vkleen/skidl
700
12693878
<reponame>vkleen/skidl # -*- coding: utf-8 -*- # The MIT License (MIT) - Copyright (c) 2016-2021 <NAME>. """ Command-line program to convert a netlist into an equivalent SKiDL program. """ from __future__ import ( # isort:skip absolute_import, division, print_function, unicode_literals, ) import argparse import logging import os import shutil import sys from builtins import open from future import standard_library from .netlist_to_skidl import netlist_to_skidl from .pckg_info import __version__ standard_library.install_aliases() ############################################################################### # Command-line interface. ############################################################################### def main(): parser = argparse.ArgumentParser( description="A Python package for textually describing circuit schematics." ) parser.add_argument( "--version", "-v", action="version", version="skidl " + __version__ ) parser.add_argument( "--input", "-i", nargs=1, type=str, metavar="file.net", help="Netlist input file.", ) parser.add_argument( "--output", "-o", nargs=1, type=str, metavar="file.py", help="Output file for SKiDL code.", ) parser.add_argument( "--overwrite", "-w", action="store_true", help="Overwrite an existing file." ) parser.add_argument( "--nobackup", "-nb", action="store_true", help="Do *not* create backups before modifying files. " + "(Default is to make backup files.)", ) parser.add_argument( "--debug", "-d", nargs="?", type=int, default=0, metavar="LEVEL", help="Print debugging info. (Larger LEVEL means more info.)", ) args = parser.parse_args() logger = logging.getLogger("netlist_to_skidl") if args.debug is not None: log_level = logging.DEBUG + 1 - args.debug handler = logging.StreamHandler(sys.stdout) handler.setLevel(log_level) logger.addHandler(handler) logger.setLevel(log_level) if args.input is None: logger.critical("Hey! Give me some netlist files!") sys.exit(2) if args.output is None: print("Hey! I need some place where I can store the SKiDL code!") sys.exit(1) for file in args.output: if os.path.isfile(file): if not args.overwrite and args.nobackup: logger.critical( "File {} already exists! Use the --overwrite option to " + "allow modifications to it or allow backups.".format(file) ) sys.exit(1) if not args.nobackup: # Create a backup file. index = 1 # Start with this backup file suffix. while True: backup_file = file + ".{}.bak".format(index, file) if not os.path.isfile(backup_file): # Found an unused backup file name, so make backup. shutil.copy(file, backup_file) break # Backup done, so break out of loop. index += 1 # Else keep looking for an unused backup file name. skidl_code = netlist_to_skidl(args.input[0]) open(args.output[0], "w").write(skidl_code) ############################################################################### # Main entrypoint. ############################################################################### if __name__ == "__main__": main()
njunmt/decoders/transformer_decoder.py
whr94621/NJUNMT-tf
111
12693883
<filename>njunmt/decoders/transformer_decoder.py # Copyright 2017 Natural Language Processing Group, Nanjing University, <EMAIL>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Implement transformer decoder as described in https://arxiv.org/abs/1706.03762. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.util import nest from collections import namedtuple from njunmt.utils.constants import ModeKeys from njunmt.decoders.decoder import dynamic_decode from njunmt.decoders.decoder import initialize_cache from njunmt.decoders.decoder import Decoder from njunmt.layers.common_layers import dropout_wrapper from njunmt.layers.common_layers import layer_preprocess from njunmt.layers.common_layers import layer_postprocessing from njunmt.layers.common_layers import transformer_ffn_layer from njunmt.layers.common_attention import MultiHeadAttention from njunmt.layers.common_attention import attention_bias_lower_triangle class TransformerDecoder(Decoder): """ Implement transformer decoder as described in https://arxiv.org/abs/1706.03762. """ def __init__(self, params, mode, name=None, verbose=True): """ Initializes decoder parameters. Args: params: A dictionary of parameters to construct the decoder architecture. mode: A mode. name: The name of this decoder. verbose: Print decoder parameters if set True. """ super(TransformerDecoder, self).__init__(params, mode, name, verbose) self._self_attention_layers = [] self._encdec_attention_layers = [] for layer in range(self.params["num_layers"]): self._self_attention_layers.append( MultiHeadAttention(self.params["selfattention.params"], self.mode)) self._encdec_attention_layers.append( MultiHeadAttention(self.params["attention.params"], self.mode)) if self.mode == ModeKeys.TRAIN: self._DecoderOutputSpec = namedtuple( "TransformerOutput", "decoder_hidden") elif self.mode == ModeKeys.EVAL: self._DecoderOutputSpec = namedtuple( "TransformerOutput", "decoder_hidden decoder_self_attention encoder_decoder_attention") else: self._DecoderOutputSpec = namedtuple( "TransformerOutput", "decoder_hidden encoder_decoder_attention") @staticmethod def default_params(): """ Returns a dictionary of default parameters of TransformerDecoder. """ return { "num_layers": 6, "attention.params": {}, # Arbitrary parameters for the enc-dec attention layer "selfattention.params": {}, # Arbitrary parameters for the self-attention layer "num_filter_units": 2048, "num_hidden_units": 512, "dropout_relu_keep_prob": 0.9, "layer_preprocess_sequence": "n", "layer_postprocess_sequence": "da", "layer_prepostprocess_dropout_keep_prob": 0.9 } @property def output_dtype(self): """ Returns a `collections.namedtuple`, the definition of decoder output types. """ if self.mode == ModeKeys.TRAIN: return self._DecoderOutputSpec( decoder_hidden=tf.float32) elif self.mode == ModeKeys.EVAL: return self._DecoderOutputSpec( decoder_hidden=tf.float32, decoder_self_attention=[tf.float32] * self.params["num_layers"], encoder_decoder_attention=[tf.float32] * self.params["num_layers"]) else: return self._DecoderOutputSpec( decoder_hidden=tf.float32, encoder_decoder_attention=[tf.float32] * self.params["num_layers"]) def merge_top_features(self, decoder_output): """ Merges features of decoder top layers, as the input of softmax layer. Here is the same as the hidden state of the last layer of the transformer decoder. Args: decoder_output: An instance of `collections.namedtuple` whose element types are defined by `output_dtype` property. Returns: A instance of `tf.Tensor`, as the input of softmax layer. """ return decoder_output.decoder_hidden def decode(self, encoder_output, bridge, helper, target_to_embedding_fn, outputs_to_logits_fn, **kwargs): """ Decodes one sample. Args: encoder_output: An instance of `collections.namedtuple` from `Encoder.encode()`. bridge: None. helper: An instance of `Feedback` that samples next symbols from logits. target_to_embedding_fn: A callable, converts target ids to embeddings. outputs_to_logits_fn: A callable, converts decoder outputs to logits. Returns: A tuple `(decoder_output, decoder_status)`. The `decoder_output` is an instance of `collections.namedtuple` whose element types are defined by `output_dtype` property. For mode=INFER, the `decoder_status` is a dict containing hypothesis, log probabilities, beam ids and decoding length. For mode=TRAIN/EVAL, the `decoder_status` is a `tf.Tensor` indicating logits (computed by `target_modality`), of shape [timesteps, batch_size, vocab_size]. """ if bridge is not None and self.verbose: tf.logging.info( "TransformerDecoder ignores bridge: {}".format(bridge.name)) if self.mode == ModeKeys.TRAIN or self.mode == ModeKeys.EVAL: assert hasattr(helper, "label_ids"), ( "helper ({}) for TransformerDecoder when mode=TRAIN/EVAL " "should provide attr \"label_ids\"".format(type(helper))) # prepare decoder input label_ids = getattr(helper, "label_ids") # [batch_size, max_len_trg] batch_size = tf.shape(label_ids)[0] # shift target_sos_ids = tf.tile([helper.vocab.sos_id], [batch_size]) target_sos_ids = tf.reshape(target_sos_ids, [batch_size, 1]) label_ids = tf.concat([target_sos_ids, label_ids], axis=1)[:, :-1] decoder_inputs = target_to_embedding_fn(label_ids) with tf.variable_scope(self.name): cache = self.prepare(encoder_output, None, helper) outputs, decoder_self_attention, encdec_attention \ = self._transform(decoder_inputs, cache) # [batch_size, time, dim] if self.mode == ModeKeys.TRAIN: final_outputs = self._DecoderOutputSpec( decoder_hidden=outputs) else: final_outputs = self._DecoderOutputSpec( decoder_hidden=outputs, # transpose to [length_q, batch_size, num_heads length_k] decoder_self_attention=nest.map_structure( lambda x: tf.transpose(x, [2, 0, 1, 3]), decoder_self_attention), encoder_decoder_attention=nest.map_structure( lambda x: tf.transpose(x, [2, 0, 1, 3]), encdec_attention)) decoder_top_features = self.merge_top_features(final_outputs) # do transpose to fit loss function, [time, batch_size, dim] decoder_top_features = tf.transpose(decoder_top_features, [1, 0, 2]) logits = outputs_to_logits_fn(decoder_top_features) # [time, batch_size, vocab_size] return final_outputs, logits outputs, infer_status = dynamic_decode( decoder=self, encoder_output=encoder_output, bridge=None, helper=helper, target_to_embedding_fn=target_to_embedding_fn, outputs_to_logits_fn=outputs_to_logits_fn, **kwargs) return outputs, infer_status def prepare(self, encoder_output, bridge, helper): """ Prepares for `step()` function. Do 1. acquire attention information from `encoder_output`; Args: encoder_output: An instance of `collections.namedtuple` from `Encoder.encode()`. bridge: None. helper: An instance of `Feedback` that samples next symbols from logits. Returns: A dict containing decoder RNN states, pre-projected attention keys, attention values and attention length, and will be passed to `step()` function. """ _ = bridge attention_values = encoder_output.attention_values attention_length = encoder_output.attention_length if hasattr(encoder_output, "attention_bias"): attention_bias = encoder_output.attention_bias else: attention_bias = MultiHeadAttention.attention_length_to_bias( tf.shape(attention_values)[1], attention_length) # initialize cache if self.mode == ModeKeys.INFER: decoding_states = {} batch_size = tf.shape(attention_values)[0] depth = self._self_attention_layers[0].attention_value_depth if depth < 0: # TODO please check when code goes into this condition depth = tf.shape(attention_values)[2] # initialize decoder self attention keys/values for l in range(self.params["num_layers"]): keys = tf.zeros([batch_size, 0, depth]) values = tf.zeros([batch_size, 0, depth]) # Ensure shape invariance for tf.while_loop. keys.set_shape([None, None, depth]) values.set_shape([None, None, depth]) with tf.variable_scope("layer_%d" % l): with tf.variable_scope("encdec_attention"): with tf.variable_scope(self._encdec_attention_layers[l].name): preproj_keys, preproj_values = self._encdec_attention_layers[l] \ .compute_kv(attention_values) decoding_states["layer_{}".format(l)] = { "self_attention": {"keys": keys, "values": values}, "encdec_attention": {"attention_keys": preproj_keys, "attention_values": preproj_values}} else: decoding_states = None init_cache = initialize_cache( decoding_states=decoding_states, memory=attention_values, memory_bias=attention_bias) return init_cache def step(self, decoder_input, cache): """ Decodes one step. Args: decoder_input: The decoder input for this timestep. A Tensor, with shape [batch_size, dmodel]. cache: A dict containing decoding states at previous timestep, attention values and attention length. Returns: A tuple `(cur_decoder_outputs, cur_cache)` at this timestep. The `cur_decoder_outputs` must be an instance of `collections.namedtuple` whose element types are defined by `output_dtype` property. The `cur_cache` must have the same structure with `cache`. """ # decoder self attention: [batch_size, num_heads, length_q, length_k] outputs, decoder_self_attention, encdec_attention = \ self._transform(tf.expand_dims(decoder_input, axis=1), cache) final_outputs = self._DecoderOutputSpec( decoder_hidden=outputs[:, -1, :], # decoder_self_attention=[tf.squeeze(att, axis=2) for att in decoder_self_attention], encoder_decoder_attention=[tf.squeeze(att, axis=2) for att in encdec_attention]) # loop on decoder_state, actually it is not used return final_outputs, cache def _transform(self, decoder_inputs, cache, pad_remover=None): """ Decodes one step Args: decoder_inputs: The decoder input for this timestep, A Tensor, with shape [batch_size, timesteps, dmodel]. Note that when mode==INFER, timesteps=1. cache: A dict containing decoding states at previous timestep, attention values and attention length. pad_remover: An expert_utils.PadRemover object tracking the padding positions. If provided, the padding is removed before applying the convolution, and restored afterward. This can give a significant speedup (says Google's tensor2tensor code). Returns: A transformed Tensor. """ # [batch_size, max_len_src, dim] encdec_attention_values = cache["memory"] # [batch_size, 1, 1, max_len_src] encdec_attention_bias = cache["memory_bias"] decoder_self_attention_scores = [] encdec_attention_scores = [] # decoder_self_attention_bias: [1, 1, max_len_trg, max_len_trg] decoder_self_attention_bias = attention_bias_lower_triangle( tf.shape(decoder_inputs)[1]) x = dropout_wrapper(decoder_inputs, self.params["layer_prepostprocess_dropout_keep_prob"]) for layer in range(self.params["num_layers"]): layer_name = "layer_{}".format(layer) layer_cache = None if cache["decoding_states"] is None \ else cache["decoding_states"][layer_name] selfatt_cache = None if layer_cache is None \ else layer_cache["self_attention"] encdecatt_cache = None if layer_cache is None \ else layer_cache["encdec_attention"] with tf.variable_scope("layer_%d" % layer): with tf.variable_scope("self_attention"): # self attention layer w_y, y = self._self_attention_layers[layer].build( query=None, memory=layer_preprocess( x=x, process_sequence=self.params["layer_preprocess_sequence"], dropout_keep_prob=self.params["layer_prepostprocess_dropout_keep_prob"]), memory_bias=decoder_self_attention_bias, cache=selfatt_cache) # [batch_size, num_heads, length_q, length_k] decoder_self_attention_scores.append(w_y) # apply dropout, layer norm, residual x = layer_postprocessing( x=y, previous_x=x, process_sequence=self.params["layer_postprocess_sequence"], dropout_keep_prob=self.params["layer_prepostprocess_dropout_keep_prob"]) with tf.variable_scope("encdec_attention"): # encoder-decoder attention w_y, y = self._encdec_attention_layers[layer].build( query=layer_preprocess( x=x, process_sequence=self.params["layer_preprocess_sequence"], dropout_keep_prob=self.params["layer_prepostprocess_dropout_keep_prob"]), memory=encdec_attention_values, memory_bias=encdec_attention_bias, cache=encdecatt_cache) # [batch_size, num_heads, length_q, length_k] encdec_attention_scores.append(w_y) # apply dropout, layer norm, residual x = layer_postprocessing( x=y, previous_x=x, process_sequence=self.params["layer_postprocess_sequence"], dropout_keep_prob=self.params["layer_prepostprocess_dropout_keep_prob"]) with tf.variable_scope("ffn"): y = transformer_ffn_layer( x=layer_preprocess( x=x, process_sequence=self.params["layer_preprocess_sequence"], dropout_keep_prob=self.params["layer_prepostprocess_dropout_keep_prob"]), filter_size=self.params["num_filter_units"], output_size=self.params["num_hidden_units"], pad_remover=pad_remover, dropout_relu_keep_prob=self.params["dropout_relu_keep_prob"]) # apply dropout, layer norm, residual x = layer_postprocessing( x=y, previous_x=x, process_sequence=self.params["layer_postprocess_sequence"], dropout_keep_prob=self.params["layer_prepostprocess_dropout_keep_prob"]) x = layer_preprocess( x=x, process_sequence=self.params["layer_preprocess_sequence"], dropout_keep_prob=self.params["layer_prepostprocess_dropout_keep_prob"]) return x, decoder_self_attention_scores, encdec_attention_scores
migrations/versions/55c778dd35ab_add_default_notebook_to_users.py
snowdensb/braindump
631
12693886
<gh_stars>100-1000 """add default notebook to users Revision ID: <KEY> Revises: <KEY> Create Date: 2016-12-17 21:24:03.788486 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '<KEY>' from alembic import op import sqlalchemy as sa def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('default_notebook', sa.Integer(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('users', 'default_notebook') # ### end Alembic commands ###
src/genie/libs/parser/iosxe/tests/ShowPolicyMapType/empty/golden_output10_expected.py
balmasea/genieparser
204
12693913
expected_output = { "GigabitEthernet0/1/1": { "service_policy": { "output": { "policy_name": { "shape-out": { "class_map": { "class-default": { "bytes": 0, "bytes_output": 0, "match": ["any"], "match_evaluation": "match-any", "no_buffer_drops": 0, "packets": 0, "pkts_output": 0, "queue_depth": 0, "queue_limit_packets": "64", "queueing": True, "rate": { "drop_rate_bps": 0, "interval": 300, "offered_rate_bps": 0, }, "shape_bc_bps": 2000, "shape_be_bps": 2000, "shape_cir_bps": 500000, "shape_type": "average", "target_shape_rate": 500000, "total_drops": 0, } } } } } } } }
starfish/core/spots/DetectPixels/_base.py
haoxusci/starfish
164
12693916
<gh_stars>100-1000 from abc import abstractmethod from typing import Callable, Sequence, Tuple import numpy as np from starfish.core.imagestack.imagestack import ImageStack from starfish.core.intensity_table.decoded_intensity_table import DecodedIntensityTable from starfish.core.pipeline.algorithmbase import AlgorithmBase from starfish.core.types import Number from .combine_adjacent_features import ConnectedComponentDecodingResult class DetectPixelsAlgorithm(metaclass=AlgorithmBase): @abstractmethod def run( self, primary_image: ImageStack, *args, ) -> Tuple[DecodedIntensityTable, ConnectedComponentDecodingResult]: """Finds spots in an ImageStack""" raise NotImplementedError() @staticmethod def _get_measurement_function(measurement_type: str) -> Callable[[Sequence], Number]: try: measurement_function = getattr(np, measurement_type) except AttributeError: raise ValueError( f'measurement_type must be a numpy reduce function such as "max" or "mean". ' f'{measurement_type} not found.') return measurement_function
anima/exc.py
MehmetErer/anima
101
12693928
# -*- coding: utf-8 -*- """This module contains exceptions """ class PublishError(RuntimeError): """Raised when the published version is not matching the quality """ pass
src/losses/center_loss.py
Talgin/facerec
269
12693938
<filename>src/losses/center_loss.py import os # MXNET_CPU_WORKER_NTHREADS must be greater than 1 for custom op to work on CPU #os.environ['MXNET_CPU_WORKER_NTHREADS'] = '2' import mxnet as mx # define metric of accuracy class Accuracy(mx.metric.EvalMetric): def __init__(self, num=None): super(Accuracy, self).__init__('accuracy', num) def update(self, labels, preds): mx.metric.check_label_shapes(labels, preds) if self.num is not None: assert len(labels) == self.num pred_label = mx.nd.argmax_channel(preds[0]).asnumpy().astype('int32') label = labels[0].asnumpy().astype('int32') mx.metric.check_label_shapes(label, pred_label) self.sum_metric += (pred_label.flat == label.flat).sum() self.num_inst += len(pred_label.flat) # define some metric of center_loss class CenterLossMetric(mx.metric.EvalMetric): def __init__(self): super(CenterLossMetric, self).__init__('center_loss') def update(self, labels, preds): self.sum_metric += preds[1].asnumpy()[0] self.num_inst += 1 # see details: # <A Discriminative Feature Learning Approach for Deep Face Recogfnition> class CenterLoss(mx.operator.CustomOp): def __init__(self, ctx, shapes, dtypes, num_class, alpha, scale=1.0): if not len(shapes[0]) == 2: raise ValueError('dim for input_data shoudl be 2 for CenterLoss') self.alpha = alpha self.batch_size = shapes[0][0] self.num_class = num_class self.scale = scale def forward(self, is_train, req, in_data, out_data, aux): labels = in_data[1].asnumpy() diff = aux[0] center = aux[1] # store x_i - c_yi for i in range(self.batch_size): diff[i] = in_data[0][i] - center[int(labels[i])] loss = mx.nd.sum(mx.nd.square(diff)) / self.batch_size / 2 self.assign(out_data[0], req[0], loss) def backward(self, req, out_grad, in_data, out_data, in_grad, aux): diff = aux[0] center = aux[1] sum_ = aux[2] # back grad is just scale * ( x_i - c_yi) grad_scale = float(self.scale/self.batch_size) self.assign(in_grad[0], req[0], diff * grad_scale) # update the center labels = in_data[1].asnumpy() label_occur = dict() for i, label in enumerate(labels): label_occur.setdefault(int(label), []).append(i) for label, sample_index in label_occur.items(): sum_[:] = 0 for i in sample_index: sum_ = sum_ + diff[i] delta_c = sum_ / (1 + len(sample_index)) center[label] += self.alpha * delta_c @mx.operator.register("centerloss") class CenterLossProp(mx.operator.CustomOpProp): def __init__(self, num_class, alpha, scale=1.0, batchsize=64): super(CenterLossProp, self).__init__(need_top_grad=False) # convert it to numbers self.num_class = int(num_class) self.alpha = float(alpha) self.scale = float(scale) self.batchsize = int(batchsize) def list_arguments(self): return ['data', 'label'] def list_outputs(self): return ['output'] def list_auxiliary_states(self): # call them 'bias' for zero initialization return ['diff_bias', 'center_bias', 'sum_bias'] def infer_shape(self, in_shape): data_shape = in_shape[0] label_shape = (in_shape[0][0],) # store diff , same shape as input batch diff_shape = [self.batchsize, data_shape[1]] # store the center of each class , should be ( num_class, d ) center_shape = [self.num_class, diff_shape[1]] # computation buf sum_shape = [diff_shape[1],] output_shape = [1, ] return [data_shape, label_shape], [output_shape], [diff_shape, center_shape, sum_shape] def create_operator(self, ctx, shapes, dtypes): return CenterLoss(ctx, shapes, dtypes, self.num_class, self.alpha, self.scale)
misc/rando.py
jamesray1/casper
752
12693986
<reponame>jamesray1/casper from ethereum.tools import tester from ethereum.utils import sha3, normalize_address c = tester.Chain() x = c.contract(open('rando.v.py').read(), language='vyper') for i in range(10): x.deposit(sender=tester.keys[i], value=(i+1)*10**15) c.mine(1) o = [0] * 10 for i in range(550): addr = normalize_address(x.random_select(sha3(str(i)))) o[tester.accounts.index(addr)] += 1 for i, v in enumerate(o): ev = 10*(i+1) if not ev - 4*ev**0.5 < v < ev + 4*ev**0.5: raise Exception("More than four standard deviations away; something is wrong: %.2f %d %.2f" % (ev - 4*ev**0.5, v, ev + 4*ev**0.5)) print(o)
15Flask/day04/demo/demo6_unit_test.py
HaoZhang95/PythonAndMachineLearning
937
12694000
<filename>15Flask/day04/demo/demo6_unit_test.py import unittest from demo.demo5 import app class DatabaseTestCase(unittest.TestCase): """ 测试数据库的添加i和删除,需要设置一个单独的数据库,不能使用真实的数据库 """ def setUp(self): """单元测试开始之前执行的操作""" app.config['TESTING'] = True app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:mysql@localhost/test0' self.app = app db.create_all() def tearDown(self): """单元测试结束后执行的操作""" # db.session类似于数据库的连接 db.session.remove() db.drop_all() def test_append_data(self): """""" au = Author(name='itcast') bk = Book(info='python') db.session.add_all([au, bk]) db.session.commit() author = Author.query.filter_by(name='itcast').first() book = Book.query.filter_by(info='python').first() #断言数据存在 self.assertIsNotNone(author) self.assertIsNotNone(book)
pypowerbi/imports.py
MoorsTech/pypowerbi
101
12694012
<reponame>MoorsTech/pypowerbi # -*- coding: future_fstrings -*- import requests import json import urllib import re from requests.exceptions import HTTPError from .import_class import Import class Imports: # url snippets groups_snippet = 'groups' imports_snippet = 'imports' dataset_displayname_snippet = 'datasetDisplayName' nameconflict_snippet = 'nameConflict' def __init__(self, client): self.client = client self.base_url = f'{self.client.api_url}/{self.client.api_version_snippet}/{self.client.api_myorg_snippet}' self.upload_file_replace_regex = re.compile('(?![A-z]|[0-9]).') @classmethod def import_from_response(cls, response): response_dict = json.loads(response.text) return Import.from_dict(response_dict) @classmethod def imports_from_response(cls, response): response_list = json.loads(response.text).get(Import.value_key) return [Import.from_dict(x) for x in response_list] def upload_file(self, filename, dataset_displayname, nameconflict=None, group_id=None): if group_id is None: groups_part = '/' else: groups_part = f'/{self.groups_snippet}/{group_id}/' # substitute using the regex pattern prepared_displayname = re.sub(self.upload_file_replace_regex, '-', dataset_displayname) # append the pbix extension (strange yes, but names correctly in powerbi service if so) prepared_displayname = f'{prepared_displayname}.pbix' url = f'{self.base_url}{groups_part}{self.imports_snippet}' \ f'?{urllib.parse.urlencode({self.dataset_displayname_snippet : prepared_displayname})}' if nameconflict is not None: url = url + f'&{self.nameconflict_snippet}={nameconflict}' headers = self.client.auth_header try: with open(filename, 'rb') as file_obj: response = requests.post(url, headers=headers, files={ 'file': file_obj, }) except TypeError: # assume filename is a file-like object already response = requests.post(url, headers=headers, files={ 'file': filename, }) # 200 OK if response.status_code == 200: import_object = self.import_from_response(response) # 202 Accepted elif response.status_code == 202: import_object = self.import_from_response(response) # 490 Conflict (due to name) elif response.status_code == 409: raise NotImplementedError("Name conflict resolution not implemented yet") else: raise HTTPError(response, f"Upload file failed with status code: {response.json()}") return import_object def get_import(self, import_id, group_id=None): if group_id is None: groups_part = '/' else: groups_part = f'/{self.groups_snippet}/{group_id}/' url = f'{self.base_url}{groups_part}{self.imports_snippet}/{import_id}' headers = self.client.auth_header response = requests.get(url, headers=headers) # 200 OK if response.status_code == 200: import_object = self.import_from_response(response) else: raise HTTPError(response, f"Get import failed with status code: {response.json()}") return import_object def get_imports(self, group_id=None): if group_id is None: groups_part = '/' else: groups_part = f'/{self.groups_snippet}/{group_id}/' url = f'{self.base_url}{groups_part}{self.imports_snippet}' headers = self.client.auth_header response = requests.get(url, headers=headers) # 200 OK if response.status_code == 200: import_object = self.imports_from_response(response) else: raise HTTPError(response, f"Get imports failed with status code: {response.json()}") return import_object
tests/__init__.py
robin-173/sayn
105
12694093
from contextlib import contextmanager import os from pathlib import Path import subprocess from jinja2 import Environment, FileSystemLoader, StrictUndefined from ruamel.yaml import YAML from sayn.database.creator import create as create_db @contextmanager def inside_dir(dirpath, fs=dict()): """ Execute code from inside the given directory :param dirpath: String, path of the directory the command is being run. """ old_path = os.getcwd() try: os.chdir(dirpath) for filepath, content in fs.items(): fpath = Path(filepath) fpath.parent.mkdir(parents=True, exist_ok=True) fpath.write_text(content) yield finally: os.chdir(old_path) @contextmanager def create_project(dirpath, settings=None, project=None, groups=dict(), env=dict()): """ Execute code from inside the given directory, creating the sayn project files :param settings: String, yaml for a settings.yaml file :param project: String, yaml for a project.yaml file :param groups: Dict, dict of yaml for the contents of the tasks folder """ old_path = os.getcwd() try: os.chdir(dirpath) if settings is not None: Path(dirpath, "settings.yaml").write_text(settings) if project is not None: Path(dirpath, "project.yaml").write_text(project) if len(groups) > 0: for name, group in groups.items(): Path(dirpath, f"{name}.yaml").write_text(group) if len(env) > 0: os.environ.update(env) yield finally: os.chdir(old_path) for k in env.keys(): del os.environ[k] def run_sayn(*args): return subprocess.check_output( f"sayn {' '.join(args)}", shell=True, stderr=subprocess.STDOUT ) # Task Simulators # create empty tracker class to enable the run to go through class VoidTracker: def set_run_steps(self, steps): pass def start_step(self, step): pass def finish_current_step(self): pass vd = VoidTracker() def simulate_task( task, source_db=None, target_db=None, run_arguments=dict(), task_params=dict() ): task.name = "test_task" # set for compilation output during run task.group = "test_group" # set for compilation output during run task.run_arguments = { "folders": {"sql": "sql", "compile": "compile"}, "command": "run", "debug": False, "full_load": False, **run_arguments, } if target_db is not None: task.connections = { "target_db": create_db("target_db", "target_db", target_db.copy()) } if source_db is not None: task.connections.update( {"source_db": create_db("source_db", "source_db", source_db.copy())} ) task._default_db = "target_db" task.tracker = vd task.jinja_env = Environment( loader=FileSystemLoader(os.getcwd()), undefined=StrictUndefined, keep_trailing_newline=True, ) task.jinja_env.globals.update(**task_params) def validate_table(db, table_name, expected_data): result = db.read_data(f"select * from {table_name}") if len(result) != len(expected_data): return False result = sorted(result, key=lambda x: list(x.values())) expected_data = sorted(expected_data, key=lambda x: list(x.values())) for i in range(len(result)): if result[i] != expected_data[i]: return False return True @contextmanager def tables_with_data(db, tables, extra_tables=list()): tables_to_delete = extra_tables.copy() for table, data in tables.items(): if isinstance(table, tuple): schema = table[0] table = table[1] tables_to_delete.append(f"{schema}.{table}") else: schema = None tables_to_delete.append(table) db.load_data(table, data, schema=schema, replace=True) try: yield finally: clear_tables(db, tables_to_delete) def clear_tables(db, tables): for table in tables: try: db.execute(f"DROP TABLE IF EXISTS {table}") except: pass try: db.execute(f"DROP VIEW IF EXISTS {table}") except: pass
packages/syft/src/syft/core/tensor/smpc/mpc_tensor_ancestor.py
vishalbelsare/PySyft
8,428
12694101
<filename>packages/syft/src/syft/core/tensor/smpc/mpc_tensor_ancestor.py # stdlib from typing import Any from typing import List # relative from ..manager import TensorChainManager from .mpc_tensor import MPCTensor from .utils import ispointer class MPCTensorAncestor(TensorChainManager): def share(self, *parties: List[Any]) -> MPCTensor: # relative from .mpc_tensor import MPCTensor if ispointer(self.child): raise ValueError( "Cannot call share on a remote tensor. Use MPCTensor(remote_secret)" ) return MPCTensor(secret=self.child, parties=list(parties))
glad/lang/volt/loader/gl.py
solarane/glad
2,592
12694134
<filename>glad/lang/volt/loader/gl.py from glad.lang.common.loader import BaseLoader from glad.lang.volt.loader import LOAD_OPENGL_DLL from glad.lang.d.loader.gl import _OPENGL_HAS_EXT as _D_OPENGL_HAS_EXT _OPENGL_LOADER = \ LOAD_OPENGL_DLL % {'pre':'private', 'init':'open_gl', 'proc':'get_proc', 'terminate':'close_gl'} + ''' bool gladLoadGL() { StructToDg structToDg; structToDg.func = cast(void*)get_proc; auto dg = *cast(Loader*)&structToDg; bool status = false; if(open_gl()) { status = gladLoadGL(dg); close_gl(); } return status; } ''' _OPENGL_HAS_EXT = ( 'global int GL_MAJOR = 0;\nglobal int GL_MINOR = 0;' + '\n'.join(l for l in _D_OPENGL_HAS_EXT.replace('@nogc', '').splitlines() if 'struct' not in l) .replace('GLVersion.major', 'GL_MAJOR') + '\n\n' ) class OpenGLVoltLoader(BaseLoader): def write_header_end(self, fobj): pass def write_header(self, fobj): pass def write(self, fobj): fobj.write('import watt.library;\n') if not self.disabled and 'gl' in self.apis: fobj.write(_OPENGL_LOADER) def write_begin_load(self, fobj): fobj.write('\tglGetString = cast(typeof(glGetString))load("glGetString");\n') fobj.write('\tif(glGetString is null) { return false; }\n') fobj.write('\tif(glGetString(GL_VERSION) is null) { return false; }\n\n') def write_end_load(self, fobj): fobj.write('\treturn GL_MAJOR != 0 || GL_MINOR != 0;\n') def write_find_core(self, fobj): fobj.write('\tconst(char)* v = cast(const(char)*)glGetString(GL_VERSION);\n') fobj.write('\tint major = v[0] - \'0\';\n') fobj.write('\tint minor = v[2] - \'0\';\n') fobj.write('\tGL_MAJOR = major; GL_MINOR = minor;\n') def write_has_ext(self, fobj): fobj.write(_OPENGL_HAS_EXT)
builder/compat.py
f1oat/platform-atmelmegaavr
515
12694215
<filename>builder/compat.py # Copyright 2014-present PlatformIO <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from SCons.Script import AlwaysBuild, Import Import("env") # Added in PIO Core 4.4.0 if not hasattr(env, "AddPlatformTarget"): def AddPlatformTarget( env, name, dependencies, actions, title=None, description=None, always_build=True, ): target = env.Alias(name, dependencies, actions) if always_build: AlwaysBuild(target) return target env.AddMethod(AddPlatformTarget)
tests/pytests/unit/states/virt/test_helpers.py
babs/salt
9,425
12694220
from tests.support.mock import call def network_update_call( name, bridge, forward, vport=None, tag=None, ipv4_config=None, ipv6_config=None, connection=None, username=None, password=<PASSWORD>, mtu=None, domain=None, nat=None, interfaces=None, addresses=None, physical_function=None, dns=None, test=False, ): """ Create a call object with the missing default parameters from virt.network_update() """ return call( name, bridge, forward, vport=vport, tag=tag, ipv4_config=ipv4_config, ipv6_config=ipv6_config, mtu=mtu, domain=domain, nat=nat, interfaces=interfaces, addresses=addresses, physical_function=physical_function, dns=dns, test=test, connection=connection, username=username, password=password, ) def domain_update_call( name, cpu=None, mem=None, disk_profile=None, disks=None, nic_profile=None, interfaces=None, graphics=None, connection=None, username=None, password=<PASSWORD>, boot=None, numatune=None, boot_dev=None, hypervisor_features=None, clock=None, serials=None, consoles=None, stop_on_reboot=False, live=True, host_devices=None, test=False, ): """ Create a call object with the missing default parameters from virt.update() """ return call( name, cpu=cpu, mem=mem, disk_profile=disk_profile, disks=disks, nic_profile=nic_profile, interfaces=interfaces, graphics=graphics, live=live, connection=connection, username=username, password=password, boot=boot, numatune=numatune, serials=serials, consoles=consoles, test=test, boot_dev=boot_dev, hypervisor_features=hypervisor_features, clock=clock, stop_on_reboot=stop_on_reboot, host_devices=host_devices, )
tests/views/test_meta_static_pages.py
priyanshu-kumar02/personfinder
561
12694225
# encoding: utf-8 # Copyright 2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import view_tests_base class MetaStaticPagesViewTests(view_tests_base.ViewTestsBase): def setUp(self): super(MetaStaticPagesViewTests, self).setUp() self.data_generator.repo() def test_get_homepage(self): resp = self.client.get('/', secure=True) self.assertTrue('You are now running Person Finder.' in resp.content) # Legacy path for the homepage. resp = self.client.get('/global/home.html', secure=True) self.assertTrue('You are now running Person Finder.' in resp.content) def test_get_responders_page(self): resp = self.client.get('/global/responders.html', secure=True) self.assertTrue('Information for responders' in resp.content) resp = self.client.get('/global/responders.html?lang=ja', secure=True) self.assertTrue('災害対応者向け情報' in resp.content) def test_get_howto_page(self): resp = self.client.get('/global/howto.html', secure=True) self.assertTrue('from a PC or mobile phone.' in resp.content) resp = self.client.get('/global/howto.html?lang=ja', secure=True) self.assertTrue('自分の安否を伝える' in resp.content)
locobot/agent/perception/perception_helpers.py
kandluis/droidlet
669
12694231
<filename>locobot/agent/perception/perception_helpers.py<gh_stars>100-1000 """ Copyright (c) Facebook, Inc. and its affiliates. """ import colorsys import random import numpy as np import base64 import io import torch import torchvision import webcolors from PIL import Image, ImageDraw from torchvision import transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor from collections import defaultdict def random_colors(N, bright=True): """Generate random colors. To get visually distinct colors, generate them in HSV space then convert to RGB. """ brightness = 1.0 if bright else 0.7 hsv = [(i / N, 1, brightness) for i in range(N)] colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) random.shuffle(colors) return colors colors = random_colors(20) def get_random_color(): return colors[0] def get_encoded_image(file): with open(file, "rb") as image: f = base64.b64encode(image.read()) return f def get_decoded_image(fstr): image = base64.b64decode(fstr) return Image.open(io.BytesIO(image)).convert("RGB") def get_np_decoded_image(enc): a = base64.decodebytes(enc) b = np.frombuffer(a, dtype=np.uint8) print("decoded pros {}, {}".format(type(b), b.shape)) return Image.fromarray(b, "RGB") def draw_xyz(img, xyz, cent): d = ImageDraw.Draw(img) d.text(cent, str(xyz[0]) + ",\n" + str(xyz[1]) + ",\n" + str(xyz[2]), fill=(255, 255, 255)) d.point(cent, fill=(255, 0, 0)) return img def get_closest_color_name(requested_colour): min_colours = {} for key, name in webcolors.CSS3_HEX_TO_NAMES.items(): r_c, g_c, b_c = webcolors.hex_to_rgb(key) rd = (r_c - requested_colour[0]) ** 2 gd = (g_c - requested_colour[1]) ** 2 bd = (b_c - requested_colour[2]) ** 2 min_colours[(rd + gd + bd)] = name return min_colours[min(min_colours.keys())] def get_color_tag(img, cent): x = int(cent[0]) y = int(cent[1]) color = get_closest_color_name(img.getpixel((x, y))) return color def get_coords(masked, img, xyz, centers): # decode # xyz is in row-major, centers corresponds to the xy for the image (which is in column major) # xyz = base64.decodebytes(enc_xyz) # coords = np.frombuffer(xyz, dtype=np.float64).reshape((4,-1)) coords = np.around(xyz, decimals=2) # print("Decode success ? {} \n{}".format(coords.shape, coords[:, :5])) # print("Image size {}".format(img.size)) # map each x,y to a an index into coords # img = draw_xyz(img, [0,0,0], (0,0)) marker_dict = defaultdict(int) id = 4 for cent in centers: xyz = coords[:3, cent[1] * img.size[0] + cent[0]] # what should this index be # xyz = coords[:3, cent[0]*img.size[1] + cent[1]] # what should this index be # xyz = [xyz[1], xyz[0], xyz[2]] marker_dict[id] = { "position": [xyz[0], xyz[1], xyz[2]], "color": get_closest_color_name(img.getpixel((int(cent[0]), int(cent[1])))), } masked = draw_xyz(masked, xyz, cent) id += 1 # draw the coords on the img return masked, marker_dict
Python/Interfacing_C_C++_Fortran/Pybind11/Stats/test.py
Gjacquenot/training-material
115
12694271
<reponame>Gjacquenot/training-material #!/usr/bin/env python import numpy as np from stats import Statistics, compute_stats n = 10 data = np.empty(n) my_stats = Statistics() for i in range(n): value = 0.3*i my_stats.add(value) data[i] = value print(my_stats.mean()) my_stats = compute_stats(data) print(my_stats.mean())
webCrawler_scrapy/pipelines.py
lawlite19/PythonCrawler-Scrapy-Mysql-File-Template
197
12694282
<filename>webCrawler_scrapy/pipelines.py # -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html from twisted.enterprise import adbapi import MySQLdb import MySQLdb.cursors import codecs import json from logging import log class JsonWithEncodingPipeline(object): '''保存到文件中对应的class 1、在settings.py文件中配置 2、在自己实现的爬虫类中yield item,会自动执行''' def __init__(self): self.file = codecs.open('info.json', 'w', encoding='utf-8')#保存为json文件 def process_item(self, item, spider): line = json.dumps(dict(item)) + "\n"#转为json的 self.file.write(line)#写入文件中 return item def spider_closed(self, spider):#爬虫结束时关闭文件 self.file.close() class WebcrawlerScrapyPipeline(object): '''保存到数据库中对应的class 1、在settings.py文件中配置 2、在自己实现的爬虫类中yield item,会自动执行''' def __init__(self,dbpool): self.dbpool=dbpool ''' 这里注释中采用写死在代码中的方式连接线程池,可以从settings配置文件中读取,更加灵活 self.dbpool=adbapi.ConnectionPool('MySQLdb', host='127.0.0.1', db='crawlpicturesdb', user='root', passwd='<PASSWORD>', cursorclass=MySQLdb.cursors.DictCursor, charset='utf8', use_unicode=False)''' @classmethod def from_settings(cls,settings): '''1、@classmethod声明一个类方法,而对于平常我们见到的则叫做实例方法。 2、类方法的第一个参数cls(class的缩写,指这个类本身),而实例方法的第一个参数是self,表示该类的一个实例 3、可以通过类来调用,就像C.f(),相当于java中的静态方法''' dbparams=dict( host=settings['MYSQL_HOST'],#读取settings中的配置 db=settings['MYSQL_DBNAME'], user=settings['MYSQL_USER'], passwd=settings['<PASSWORD>_PASSWD'], charset='utf8',#编码要加上,否则可能出现中文乱码问题 cursorclass=MySQLdb.cursors.DictCursor, use_unicode=False, ) dbpool=adbapi.ConnectionPool('MySQLdb',**dbparams)#**表示将字典扩展为关键字参数,相当于host=xxx,db=yyy.... return cls(dbpool)#相当于dbpool付给了这个类,self中可以得到 #pipeline默认调用 def process_item(self, item, spider): query=self.dbpool.runInteraction(self._conditional_insert,item)#调用插入的方法 query.addErrback(self._handle_error,item,spider)#调用异常处理方法 return item #写入数据库中 def _conditional_insert(self,tx,item): #print item['name'] sql="insert into testtable(name,url) values(%s,%s)" params=(item["name"],item["url"]) tx.execute(sql,params) #错误处理方法 def _handle_error(self, failue, item, spider): print '--------------database operation exception!!-----------------' print '-------------------------------------------------------------' print failue
scripts/gt_mots_eval.py
zhuhu00/MOTSFusion_modify
154
12694293
<reponame>zhuhu00/MOTSFusion_modify from file_io.import_utils import import_detections, import_segmentations from file_io.export_utils import export_tracking_result_in_mots_format from eval.mots_eval.eval import run_mots_eval from eval.mots_eval.mots_common.io import load_seqmap from config import Config from tracker.tracked_sequence import TrackedSequence import pycocotools.mask as cocomask from eval.mots_eval.mots_common.io import load_txt def import_gt_file(gt_path): objects_per_frame = load_txt(gt_path) print(sequence) for frame in objects_per_frame.keys(): for object in objects_per_frame.get(frame): if not object.track_id == 10000: track_id = (object.track_id % 1000) det = {'class': object.class_id} while tracks_gt.get_num_ids() <= track_id: tracks_gt.add_empty_track() tracks_gt.add_to_track(frame, track_id, det, object.mask) if __name__ == '__main__': config = Config('./configs/config_default') list_sequences, max_frames = load_seqmap(config.str('mots_seqmap_file')) for sequence in list_sequences: tracks_gt = TrackedSequence(max_frames[sequence]+1) import_gt_file('./data/mots_gt/' + sequence + '.txt') raw_detections = import_detections(config, sequence) segmentations = import_segmentations(config, sequence) tracks_gt_seg = TrackedSequence(max_frames[sequence]+1) while max_frames[sequence]+1 > len(raw_detections): raw_detections.append([]) while max_frames[sequence]+1 > len(segmentations): segmentations.append([]) for step in range(tracks_gt.timesteps): combined_mask_per_frame = {} for gt_id in tracks_gt.get_active_tracks(step): ref_mask = tracks_gt.get_mask(step, gt_id, decode=False) ref_det = tracks_gt.get_detection(step, gt_id) ref_class = ref_det['class'] for mask, det in zip(segmentations[step], raw_detections[step]): # mask based (MOTS) mask_iou = cocomask.area(cocomask.merge([mask, ref_mask], intersect=True)) / cocomask.area(cocomask.merge([mask, ref_mask])) if mask_iou > 0.5: while tracks_gt_seg.get_num_ids() <= gt_id: tracks_gt_seg.add_empty_track() tracks_gt_seg.add_to_track(step, gt_id, det, mask) if step not in combined_mask_per_frame: combined_mask_per_frame[step] = mask else: combined_mask_per_frame[step] = cocomask.merge([combined_mask_per_frame[step], mask], intersect=False) tracks_gt_seg.fix_mask_overlap() export_tracking_result_in_mots_format(tracks_gt_seg, './scripts/gt_mots_eval/' + sequence + '/') run_mots_eval('./scripts/gt_mots_eval/', list_sequences, config.dir('mots_gt_folder'), config.str('mots_seqmap_file'))
torch/testing/_internal/opinfo_helper.py
vuanvin/pytorch
183
12694295
<reponame>vuanvin/pytorch<filename>torch/testing/_internal/opinfo_helper.py import collections import warnings from functools import partial import torch from torch.testing._internal.common_cuda import (TEST_CUDA) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and_complex, all_types_and_half, all_types, complex_types, floating_and_complex_types, floating_types_and_half, floating_types, integral_types, floating_types_and, floating_and_complex_types_and, integral_types_and, all_types_and, _dispatch_dtypes, ) COMPLETE_DTYPES_DISPATCH = ( all_types, all_types_and_complex, all_types_and_half, floating_types, floating_and_complex_types, floating_types_and_half, integral_types, complex_types, ) EXTENSIBLE_DTYPE_DISPATCH = ( all_types_and_complex_and, floating_types_and, floating_and_complex_types_and, integral_types_and, all_types_and, ) # Better way to acquire devices? DEVICES = ['cpu'] + (['cuda'] if TEST_CUDA else []) class _dynamic_dispatch_dtypes(_dispatch_dtypes): # Class to tag the dynamically generated types. pass def get_supported_dtypes(op, sample_inputs_fn, device_type): # Returns the supported dtypes for the given operator and device_type pair. assert device_type in ['cpu', 'cuda'] if not TEST_CUDA and device_type == 'cuda': warnings.warn("WARNING: CUDA is not available, empty_dtypes dispatch will be returned!") return _dynamic_dispatch_dtypes(()) supported_dtypes = set() for dtype in all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half): try: samples = sample_inputs_fn(op, device_type, dtype, False) except RuntimeError: # If `sample_inputs_fn` doesn't support sampling for a given # `dtype`, we assume that the `dtype` is not supported. # We raise a warning, so that user knows that this was the case # and can investigate if there was an issue with the `sample_inputs_fn`. warnings.warn(f"WARNING: Unable to generate sample for device:{device_type} and dtype:{dtype}") continue # We assume the dtype is supported # only if all samples pass for the given dtype. supported = True for sample in samples: try: op(sample.input, *sample.args, **sample.kwargs) except RuntimeError as re: # dtype is not supported supported = False break if supported: supported_dtypes.add(dtype) return _dynamic_dispatch_dtypes(supported_dtypes) def dtypes_dispatch_hint(dtypes): # Function returns the appropriate dispatch function (from COMPLETE_DTYPES_DISPATCH and EXTENSIBLE_DTYPE_DISPATCH) # and its string representation for the passed `dtypes`. return_type = collections.namedtuple('return_type', 'dispatch_fn dispatch_fn_str') # CUDA is not available, dtypes will be empty. if len(dtypes) == 0: return return_type((), str(tuple())) set_dtypes = set(dtypes) for dispatch in COMPLETE_DTYPES_DISPATCH: # Short circuit if we get an exact match. if set(dispatch()) == set_dtypes: return return_type(dispatch, dispatch.__name__ + "()") chosen_dispatch = None chosen_dispatch_score = 0. for dispatch in EXTENSIBLE_DTYPE_DISPATCH: dispatch_dtypes = set(dispatch()) if not dispatch_dtypes.issubset(set_dtypes): continue score = len(dispatch_dtypes) if score > chosen_dispatch_score: chosen_dispatch_score = score chosen_dispatch = dispatch # If user passed dtypes which are lower than the lowest # dispatch type available (not likely but possible in code path). if chosen_dispatch is None: return return_type((), str(dtypes)) return return_type(partial(dispatch, *tuple(set(dtypes) - set(dispatch()))), dispatch.__name__ + str(tuple(set(dtypes) - set(dispatch())))) def is_dynamic_dtype_set(op): # Detect if the OpInfo entry acquired dtypes dynamically # using `get_supported_dtypes`. return op.dynamic_dtypes def str_format_dynamic_dtype(op): fmt_str = """ OpInfo({name}, dtypes={dtypes}, dtypesIfCUDA={dtypesIfCUDA}, ) """.format(name=op.name, dtypes=dtypes_dispatch_hint(op.dtypes).dispatch_fn_str, dtypesIfCUDA=dtypes_dispatch_hint(op.dtypesIfCUDA).dispatch_fn_str) return fmt_str
docs/conf.py
parth-choudhary/drum
265
12694302
<reponame>parth-choudhary/drum from __future__ import unicode_literals # This file is automatically generated via sphinx-me from sphinx_me import setup_conf; setup_conf(globals())
cointrol/core/models.py
fakegit/cointrol
967
12694320
<gh_stars>100-1000 from collections import OrderedDict from django.db import models from django.db.models import Sum from django.db.models.signals import post_save from django.utils import timezone from django.dispatch import receiver from django.contrib.auth.models import AbstractUser from django.utils.functional import cached_property from .castable import CastableModel from .fields import PriceField, AmountField, PercentField ############################################################################### # User models ############################################################################### class User(AbstractUser): """Cointrol user""" class Meta: db_table = 'user' @property def account(self): # TODO: support multiple Bitstamp accounts per user return self.accounts.get() class Account(models.Model): """Bitstamp account""" user = models.ForeignKey(User, related_name='accounts') username = models.CharField(max_length=255, blank=True, help_text='Bitstamp login number') api_key = models.CharField(max_length=255, blank=True) api_secret = models.CharField(max_length=255, blank=True) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Meta: db_table = 'account' def __str__(self): return 'account for {}'.format(self.user) def get_active_trading_session(self): """ Return the current `ACTIVE` and unfinished `TradingSession`, or `None`. This is the exclusive method to get the session. It has side-effects in the form of changing status from `ACTIVE` to `FINISHED`, and from `QUEUED` to `ACTIVE` before return a session. """ ACTIVE, QUEUED, FINISHED = (TradingSession.ACTIVE, TradingSession.QUEUED, TradingSession.FINISHED) try: session = self.trading_sessions.get(status=ACTIVE) except TradingSession.DoesNotExist: try: session = self.trading_sessions\ .filter(status=QUEUED)\ .earliest() except TradingSession.DoesNotExist: session = None while session: if session.status == FINISHED: session = None elif session.status == QUEUED: session.set_status(ACTIVE) elif session.status == ACTIVE: if not session.is_finished(): return session else: session.set_status(FINISHED) try: session = session.get_previous_by_created(account=self) except TradingSession.DoesNotExist: session = None else: raise TypeError('invalid session status: pk={}, {!r}'.format( session.pk, session.status)) ############################################################################### # Trading ############################################################################### class TradingStrategyProfile(CastableModel): """Base trading strategy configuration models class.""" note = models.CharField(max_length=255, blank=True) account = models.ForeignKey(Account) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) @property def type_name(self): if type(self) == TradingStrategyProfile: return self.cast().type_name return type(self).__name__ def __str__(self): return str(self.cast()) class RelativeStrategyProfile(TradingStrategyProfile): """Configuration for relative trading strategy.""" buy = PercentField() sell = PercentField() class Meta: db_table = 'strategy_profile_relative' def __str__(self): return 'relative buy at {buy}%, sell at ${sell}%'.format( buy=self.buy, sell=self.sell) def save(self, *args, **kwargs): min_fee = .2 assert self.buy < 100 - min_fee assert self.sell > 100 + min_fee return super().save(*args, **kwargs) class FixedStrategyProfile(TradingStrategyProfile): """Configuration for fixed trading strategy.""" buy = PriceField() sell = PriceField() class Meta: db_table = 'strategy_profile_fixed' def __str__(self): return 'fixed buy at ${buy}, sell at ${sell}'.format( buy=self.buy, sell=self.sell) class TradingSession(models.Model): QUEUED, ACTIVE, FINISHED = 'queued', 'active', 'finished' STATUSES = [QUEUED, ACTIVE, FINISHED] created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) account = models.ForeignKey(Account, related_name='trading_sessions') status = models.CharField( choices=zip(STATUSES, STATUSES), max_length=255, db_index=True ) became_active = models.DateTimeField(null=True, blank=True) became_finished = models.DateTimeField(null=True, blank=True) note = models.CharField(max_length=255, blank=True) strategy_profile = models.ForeignKey(TradingStrategyProfile) # None - no limit; 1 - one repeat left; 0 - done repeat_times = models.PositiveSmallIntegerField(default=None, null=True, blank=True) # None - no limit repeat_until = models.DateTimeField(null=True, blank=True) class Meta: db_table = 'trading_session' ordering = ['-created'] get_latest_by = 'created' def __str__(self): return '{status} session with {strategy}'.format( status=self.status, strategy=self.strategy_profile, ) def set_status(self, status): if status == self.ACTIVE: assert self.status == self.QUEUED assert self.became_active is None assert self.became_finished is None self.became_active = timezone.now() elif status == self.FINISHED: assert self.status == self.ACTIVE assert self.became_active is not None assert self.became_finished is None self.became_finished = timezone.now() self.status = status self.save() @cached_property def profile(self): """Accessor for casted strategy profile.""" return self.strategy_profile.cast() def is_expired(self): return (self.repeat_until is not None and self.repeat_until > timezone.now()) def is_done(self): return (self.repeat_times is not None and self.repeat_times >= self.orders.count()) def is_finished(self): return self.is_expired() or self.is_done() ############################################################################### # Bitstamp API-based models # https://www.bitstamp.net/api/ ############################################################################### class Ticker(models.Model): """ { high: "704.00", last: "678.57", timestamp: "1393958158", bid: "678.49", vwap: "677.88", volume: "39060.90623024", low: "633.64", ask: "678.57" } """ timestamp = models.DateTimeField() volume = AmountField() vwap = PriceField() last = PriceField() high = PriceField() low = PriceField() bid = PriceField() ask = PriceField() open = PriceField() class Meta: ordering = ['-timestamp'] get_latest_by = 'timestamp' db_table = 'bitstamp_ticker' def __str__(self): return 'last={last}, timestamp={timestamp}'.format(**self.__dict__) class Balance(models.Model): """ usd_balance - USD balance btc_balance - BTC balance usd_reserved - USD reserved in open orders btc_reserved - BTC reserved in open orders usd_available- USD available for trading btc_available - BTC available for trading fee - customer trading fee """ created = models.DateTimeField(auto_now_add=True) account = models.ForeignKey(Account, related_name='balances') inferred = models.BooleanField(default=False) timestamp = models.DateTimeField() # API fields fee = PercentField() usd_balance = AmountField() btc_balance = AmountField() usd_reserved = AmountField() btc_reserved = AmountField() btc_available = AmountField() usd_available = AmountField() eur_balance = AmountField() xrp_balance = AmountField() eur_reserved = AmountField() xrp_reserved = AmountField() eur_available = AmountField() xrp_available = AmountField() class Meta: get_latest_by = 'timestamp' ordering = ['-timestamp'] db_table = 'bitstamp_balance' def __str__(self): return '{usd:0>6} US$ | {btc:0>10} BTC'.format( usd=self.usd_balance, btc=self.btc_balance ) class Order(models.Model): OPEN, CANCELLED, PROCESSED = 'open', 'cancelled', 'processed' STATUSES = [OPEN, CANCELLED, PROCESSED] BUY, SELL = 0, 1 TYPES = OrderedDict([(BUY, 'buy'), (SELL, 'sell')]) updated = models.DateTimeField(auto_now=True) account = models.ForeignKey(Account, related_name='orders') balance = models.ForeignKey(Balance, null=True, on_delete=models.PROTECT) total = AmountField() status = models.CharField( default=None, choices=zip(STATUSES, STATUSES), max_length=255, db_index=True ) status_changed = models.DateTimeField(null=True, blank=True) trading_session = models.ForeignKey( TradingSession, null=True, on_delete=models.SET_NULL, related_name='orders' ) # API fields. price = PriceField() amount = AmountField() type = models.IntegerField(choices=[(BUY, 'buy'), (SELL, 'sell')], db_index=True) datetime = models.DateTimeField() def __str__(self): return '{type} {amount} BTC at {price} US$'.format( type=self.get_type_display(), amount=self.amount, price=self.price ) class Meta: ordering = ['-datetime'] get_latest_by = 'datetime' db_table = 'bitstamp_order' class Transaction(models.Model): DEPOSIT, WITHDRAWAL, MARKET_TRADE = 0, 1, 2 TYPES = [DEPOSIT, WITHDRAWAL, MARKET_TRADE] # MARKET_TRADE subtypes SELL, BUY = 'sell', 'buy' balance = models.ForeignKey(Balance, on_delete=models.PROTECT) account = models.ForeignKey(Account, related_name='transactions') updated = models.DateTimeField(auto_now=True) # API fields. datetime = models.DateTimeField() btc = AmountField() usd = AmountField() fee = AmountField() btc_usd = PriceField() order = models.ForeignKey(Order, related_name='transactions', null=True) type = models.PositiveSmallIntegerField( db_index=True, choices=[ (DEPOSIT, 'deposit'), (WITHDRAWAL, 'withdrawal'), (MARKET_TRADE, 'trade'), ] ) class Meta: ordering = ['-datetime'] get_latest_by = 'datetime' db_table = 'bitstamp_transaction' def __str__(self): return '${usd} | {btc} BTC'.format(usd=self.usd, btc=self.btc) @property def trade_type(self): if self.type == Transaction.MARKET_TRADE: return Transaction.SELL if self.usd > 0 else Transaction.BUY def save(self, *args, **kwargs): if not self.balance_id: self._create_balance() return super().save(*args, **kwargs) def _create_balance(self): assert not self.balance_id older = self.account.transactions.filter(datetime__lte=self.datetime) aggregate = ( {'usd': 0, 'btc': 0, 'fee': 0} if not older.exists() else older.aggregate(usd=Sum('usd'), btc=Sum('btc'), fee=Sum('fee')) ) # Reflect current transaction as well. aggregate['usd'] += self.usd aggregate['fee'] += self.fee aggregate['btc'] += self.btc self.balance = self.account.balances.create( inferred=True, timestamp=self.datetime, usd_balance=aggregate['usd'] - aggregate['fee'], btc_balance=aggregate['btc'], fee=0, ) ############################################################################### # Signal listeners ############################################################################### # noinspection PyUnusedLocal @receiver(post_save, sender=User) def create_default_account(instance, created, **kwargs): if created: instance.accounts.create()
Chapter08/adding_legend_and_annotations.py
carltyndall/Python-Automation-Cookbook-Second-Edition
155
12694369
<gh_stars>100-1000 import matplotlib.pyplot as plt # STEP 2 LEGEND = ('ProductA', 'ProductB', 'ProductC') DATA = ( ('Q1 2017', 100, 30, 3), ('Q2 2017', 105, 32, 15), ('Q3 2017', 125, 29, 40), ('Q4 2017', 115, 31, 80), ) # STEP 3 POS = list(range(len(DATA))) VALUESA = [valueA for label, valueA, valueB, valueC in DATA] VALUESB = [valueB for label, valueA, valueB, valueC in DATA] VALUESC = [valueC for label, valueA, valueB, valueC in DATA] LABELS = [label for label, valueA, valueB, valueC in DATA] # STEP 4 WIDTH = 0.2 valueA = plt.bar([p - WIDTH for p in POS], VALUESA, width=WIDTH) valueB = plt.bar([p for p in POS], VALUESB, width=WIDTH) valueC = plt.bar([p + WIDTH for p in POS], VALUESC, width=WIDTH) plt.ylabel('Sales') plt.xticks(POS, LABELS) # STEP 5 plt.annotate('400% growth', xy=(1.2, 18), xytext=(1.3, 40), horizontalalignment='center', fontsize=9, arrowprops={'facecolor': 'black', 'arrowstyle': "fancy", 'connectionstyle': "angle3", }) # STEP 6 # Draw the legend outside the plot plt.legend(LEGEND, title='Products', bbox_to_anchor=(1, 0.8)) plt.subplots_adjust(right=0.80) # STEP 6 plt.show()
PhysicsTools/NanoAOD/python/btagWeightTable_cff.py
Purva-Chaudhari/cmssw
852
12694383
<filename>PhysicsTools/NanoAOD/python/btagWeightTable_cff.py import FWCore.ParameterSet.Config as cms from PhysicsTools.NanoAOD.common_cff import * from PhysicsTools.NanoAOD.nano_eras_cff import * btagSFdir="PhysicsTools/NanoAOD/data/btagSF/" btagWeightTable = cms.EDProducer("BTagSFProducer", src = cms.InputTag("linkedObjects","jets"), cut = cms.string("pt > 25. && abs(eta) < 2.5"), discNames = cms.vstring( "pfCombinedInclusiveSecondaryVertexV2BJetTags", "pfDeepCSVJetTags:probb+pfDeepCSVJetTags:probbb", #if multiple MiniAOD branches need to be summed up (e.g., DeepCSV b+bb), separate them using '+' delimiter "pfCombinedMVAV2BJetTags" ), discShortNames = cms.vstring( "CSVV2", "DeepCSVB", "CMVA" ), weightFiles = cms.vstring( #default settings are for 2017 94X. toModify function is called later for other eras. btagSFdir+"CSVv2_94XSF_V2_B_F.csv", btagSFdir+"DeepCSV_94XSF_V2_B_F.csv", "unavailable" #if SFs for an algorithm in an era is unavailable, the corresponding branch will not be stored ), operatingPoints = cms.vstring("3","3","3"), #loose = 0, medium = 1, tight = 2, reshaping = 3 measurementTypesB = cms.vstring("iterativefit","iterativefit","iterativefit"), #e.g. "comb", "incl", "ttbar", "iterativefit" measurementTypesC = cms.vstring("iterativefit","iterativefit","iterativefit"), measurementTypesUDSG = cms.vstring("iterativefit","iterativefit","iterativefit"), sysTypes = cms.vstring("central","central","central") ) for modifier in run2_miniAOD_80XLegacy, run2_nanoAOD_94X2016: # to be updated when SF for Summer16MiniAODv3 MC will be available modifier.toModify(btagWeightTable, cut = cms.string("pt > 25. && abs(eta) < 2.4"), #80X corresponds to 2016, |eta| < 2.4 weightFiles = cms.vstring( #80X corresponds to 2016 SFs btagSFdir+"CSVv2_Moriond17_B_H.csv", "unavailable", btagSFdir+"cMVAv2_Moriond17_B_H.csv" ) )
textbox/evaluator/meteor_evaluator.py
StevenTang1998/TextBox
347
12694395
<filename>textbox/evaluator/meteor_evaluator.py # @Time : 2021/4/19 # @Author : <NAME> # @Email : <EMAIL> """ textbox.evaluator.meteor_evaluator ####################################### """ import numpy as np from nltk.translate.meteor_score import meteor_score from textbox.evaluator.abstract_evaluator import AbstractEvaluator class MeteorEvaluator(AbstractEvaluator): def _preprocess(self, input_sentence): return " ".join(input_sentence) def _calc_metrics_info(self, generate_corpus, reference_corpus): generate_corpus = [self._preprocess(generate_sentence) for generate_sentence in generate_corpus] reference_corpus = [self._preprocess(reference_sentence) for reference_sentence in reference_corpus] reference_corpus = [[reference_sentence] for reference_sentence in reference_corpus] result = {} scores = [] for gen, refs in zip(generate_corpus, reference_corpus): score = meteor_score(refs, gen) scores.append(score) result['meteor'] = scores return result
cmsplugin_cascade/admin.py
teklager/djangocms-cascade
139
12694400
<filename>cmsplugin_cascade/admin.py from urllib.parse import urlparse import requests from django.contrib import admin from django.contrib.sites.shortcuts import get_current_site from django.forms import Media, widgets from django.db.models import Q from django.http import JsonResponse, HttpResponseForbidden, HttpResponseNotFound from django.urls import re_path, reverse from django.utils.translation import get_language_from_request from cms.models.pagemodel import Page from cms.extensions import PageExtensionAdmin from cms.utils.page import get_page_from_path from cmsplugin_cascade.models import CascadePage, IconFont from cmsplugin_cascade.link.forms import format_page_link @admin.register(CascadePage) class CascadePageAdmin(PageExtensionAdmin): add_form_template = change_form_template = 'cascade/admin/change_form.html' fields = ['icon_font', 'menu_symbol'] @property def media(self): media = super().media media += Media(css={'all': ['cascade/css/admin/cascadepage.css']}, js=['admin/js/jquery.init.js', 'cascade/js/admin/cascadepage.js']) return media def get_form(self, request, obj=None, **kwargs): options = dict(kwargs, widgets={'menu_symbol': widgets.HiddenInput}) ModelForm = super().get_form(request, obj, **options) return ModelForm def get_urls(self): urls = [ re_path(r'^get_page_sections/$', lambda _: JsonResponse({'element_ids': []}), name='get_page_sections'), # just to reverse re_path(r'^get_page_sections/(?P<page_pk>\d+)$', self.admin_site.admin_view(self.get_page_sections)), re_path(r'^published_pages/$', self.get_published_pagelist, name='get_published_pagelist'), re_path(r'^fetch_fonticons/(?P<iconfont_id>[0-9]+)$', self.fetch_fonticons), re_path(r'^fetch_fonticons/$', self.fetch_fonticons, name='fetch_fonticons'), re_path(r'^validate_exturl/$', self.validate_exturl, name='validate_exturl'), ] urls.extend(super().get_urls()) return urls def get_page_sections(self, request, page_pk=None): choices = [] try: extended_glossary = self.model.objects.get(extended_object_id=page_pk).glossary for key, val in extended_glossary['element_ids'].items(): choices.append((key, val)) except (self.model.DoesNotExist, KeyError): pass return JsonResponse({'element_ids': choices}) def get_published_pagelist(self, request, *args, **kwargs): """ This view is used by the SearchLinkField as the user types to feed the autocomplete drop-down. """ if not request.is_ajax(): return HttpResponseForbidden() data = {'results': []} language = get_language_from_request(request) query_term = request.GET.get('term') if not query_term: return JsonResponse(data) # first, try to resolve by URL if it points to a local resource parse_result = urlparse(query_term) if parse_result.netloc.split(':')[0] == request.META['HTTP_HOST'].split(':')[0]: site = get_current_site(request) path = parse_result.path.lstrip(reverse('pages-root')).rstrip('/') page = get_page_from_path(site, path) if page: data['results'].append(self.get_result_set(language, page)) return JsonResponse(data) # otherwise resolve by search term matching_published_pages = Page.objects.published().public().filter( Q(title_set__title__icontains=query_term, title_set__language=language) | Q(title_set__path__icontains=query_term, title_set__language=language) | Q(title_set__menu_title__icontains=query_term, title_set__language=language) | Q(title_set__page_title__icontains=query_term, title_set__language=language) ).distinct().order_by('title_set__title').iterator() for page in matching_published_pages: data['results'].append(self.get_result_set(language, page)) if len(data['results']) > 15: break return JsonResponse(data) def get_result_set(self, language, page): title = page.get_title(language=language) path = page.get_absolute_url(language=language) return { 'id': page.pk, 'text': format_page_link(title, path), } def fetch_fonticons(self, request, iconfont_id=None): try: icon_font = IconFont.objects.get(id=iconfont_id) except IconFont.DoesNotExist: return HttpResponseNotFound("IconFont with id={} does not exist".format(iconfont_id)) else: data = dict(icon_font.config_data) data.pop('glyphs', None) data['families'] = icon_font.get_icon_families() return JsonResponse(data) def validate_exturl(self, request): """ Perform a GET request onto the given external URL and return its status. """ exturl = request.GET.get('exturl') request_headers = {'User-Agent': 'Django-CMS-Cascade'} try: response = requests.get(exturl, allow_redirects=True, headers=request_headers) except Exception: return JsonResponse({'status_code': 500}) else: return JsonResponse({'status_code': response.status_code}) def changeform_view(self, request, object_id=None, form_url='', extra_context=None): extra_context = dict(extra_context or {}, icon_fonts=IconFont.objects.all()) return super().changeform_view( request, object_id=object_id, form_url=form_url, extra_context=extra_context)
qt_material/resources/__init__.py
5yutan5/qt-material
692
12694405
<reponame>5yutan5/qt-material<gh_stars>100-1000 from .generate import ResourseGenerator, RESOURCES_PATH
test/test_extractor.py
Usama0121/flashtext
5,330
12694453
<reponame>Usama0121/flashtext from flashtext import KeywordProcessor import logging import unittest import json logger = logging.getLogger(__name__) class TestKeywordExtractor(unittest.TestCase): def setUp(self): logger.info("Starting...") with open('test/keyword_extractor_test_cases.json') as f: self.test_cases = json.load(f) def tearDown(self): logger.info("Ending.") def test_extract_keywords(self): """For each of the test case initialize a new KeywordProcessor. Add the keywords the test case to KeywordProcessor. Extract keywords and check if they match the expected result for the test case. """ for test_id, test_case in enumerate(self.test_cases): keyword_processor = KeywordProcessor() keyword_processor.add_keywords_from_dict(test_case['keyword_dict']) keywords_extracted = keyword_processor.extract_keywords(test_case['sentence']) self.assertEqual(keywords_extracted, test_case['keywords'], "keywords_extracted don't match the expected results for test case: {}".format(test_id)) def test_extract_keywords_case_sensitive(self): """For each of the test case initialize a new KeywordProcessor. Add the keywords the test case to KeywordProcessor. Extract keywords and check if they match the expected result for the test case. """ for test_id, test_case in enumerate(self.test_cases): keyword_processor = KeywordProcessor(case_sensitive=True) keyword_processor.add_keywords_from_dict(test_case['keyword_dict']) keywords_extracted = keyword_processor.extract_keywords(test_case['sentence']) self.assertEqual(keywords_extracted, test_case['keywords_case_sensitive'], "keywords_extracted don't match the expected results for test case: {}".format(test_id)) if __name__ == '__main__': unittest.main()
aat/core/data/trade.py
mthomascarcamo/aat
305
12694456
<filename>aat/core/data/trade.py from datetime import datetime from typing import Any, Dict, List, Optional, Type, Union from .cpp import _CPP, _make_cpp_trade from .order import Order from ..instrument import Instrument from ..exchange import ExchangeType from ...config import DataType, Side class Trade(object): __slots__ = [ "__id", "__type", "__price", "__volume", "__maker_orders", "__taker_order", # FIXME hide "__my_order", "__slippage", "__transaction_cost", ] # for convenience Types = DataType def __new__(cls, *args, **kwargs): # type: ignore if _CPP: return _make_cpp_trade(*args, **kwargs) return super(Trade, cls).__new__(cls) def __init__( self, volume: float, price: float, taker_order: Order, maker_orders: Optional[List[Order]] = None, **kwargs: Any, ) -> None: self.__id = kwargs.get( "id", "0" ) # on construction, provide no ID until exchange assigns one self.__type = DataType.TRADE assert isinstance(price, (float, int)) assert isinstance(volume, (float, int)) assert isinstance(taker_order, Order) # assert(len(maker_orders) > 0) # not necessarily assert volume == taker_order.filled self.__price = price self.__volume = volume self.__maker_orders = maker_orders or [] self.__taker_order = taker_order self.__my_order = kwargs.get("my_order", None) self.__slippage = 0.0 self.__transaction_cost = 0.0 # ******** # # Readonly # # ******** # @property def timestamp(self) -> datetime: return self.taker_order.timestamp @property def type(self) -> DataType: return self.__type @property def volume(self) -> float: return self.__volume @property def price(self) -> float: return self.__price @property def instrument(self) -> Instrument: return self.taker_order.instrument @property def exchange(self) -> ExchangeType: return self.taker_order.exchange @property def side(self) -> Side: return self.taker_order.side @property def notional(self) -> float: return self.price * self.volume def finished(self) -> bool: return self.taker_order.finished() # ***********# # Read/write # # ***********# @property def id(self) -> str: return self.__id @id.setter def id(self, id: str) -> None: assert isinstance(id, (str, int)) self.__id = str(id) @property def maker_orders(self) -> List[Order]: # no setter return self.__maker_orders @property def taker_order(self) -> Order: return self.__taker_order @property def my_order(self) -> Order: return self.__my_order @my_order.setter def my_order(self, order: Order) -> None: assert isinstance(order, Order) self.__my_order = order def __repr__(self) -> str: return f"Trade( id={self.id}, timestamp={self.timestamp}, {self.volume}@{self.price}, \n\ttaker_order={self.taker_order},\n\tmaker_orders={self.maker_orders}, )" def __eq__(self, other: object) -> bool: assert isinstance(other, Trade) return self.id == other.id and self.timestamp == other.timestamp def json(self, flat: bool = False) -> Dict[str, Union[str, int, float, dict]]: """convert trade to flat json""" ret: Dict[str, Union[str, int, float, dict]] = { "id": self.id, "timestamp": self.timestamp.timestamp(), "price": self.price, "volume": self.volume, } if flat: # Typings here to enforce flatness of json taker_order: Dict[str, Union[str, int, float, dict]] = { "taker_order." + k: v for k, v in self.taker_order.json(flat=flat).items() } maker_orders: List[Dict[str, Union[str, int, float, dict]]] = [ {"maker_order{}." + k: v for k, v in order.json(flat=flat).items()} for i, order in enumerate(self.maker_orders) ] # update with taker order dict ret.update(taker_order) # update with maker order dicts for maker_order in maker_orders: ret.update(maker_order) else: ret["taker_order"] = self.taker_order.json() # type: ignore ret["maker_orders"] = [m.json() for m in self.maker_orders] # type: ignore return ret @staticmethod def fromJson(jsn: dict) -> "Trade": ret = Trade( jsn["volume"], jsn["price"], Order.fromJson(jsn["taker_order"]), [Order.fromJson(x) for x in jsn["maker_orders"]], ) if "id" in jsn: ret.id = str(jsn.get("id")) return ret @staticmethod def schema() -> Dict[str, Type]: # FIXME # this varies from the json schema return {"id": int, "timestamp": int, "volume": float, "price": float}
.evergreen/ocsp/mock_ocsp_responder.py
tanlisu/mongo-php-library
3,370
12694475
# # This file has been modified in 2019 by MongoDB Inc. # # OCSPBuilder is derived from https://github.com/wbond/ocspbuilder # OCSPResponder is derived from https://github.com/threema-ch/ocspresponder # Copyright (c) 2015-2018 <NAME> <<EMAIL>> # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Copyright 2016 Threema GmbH # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals, division, absolute_import, print_function import logging import base64 import inspect import re import enum import sys import textwrap from datetime import datetime, timezone, timedelta from typing import Callable, Tuple, Optional from asn1crypto import x509, keys, core, ocsp from asn1crypto.ocsp import OCSPRequest, OCSPResponse from oscrypto import asymmetric from flask import Flask, request, Response __version__ = '0.10.2' __version_info__ = (0, 10, 2) logger = logging.getLogger(__name__) if sys.version_info < (3,): byte_cls = str else: byte_cls = bytes def _pretty_message(string, *params): """ Takes a multi-line string and does the following: - dedents - converts newlines with text before and after into a single line - strips leading and trailing whitespace :param string: The string to format :param *params: Params to interpolate into the string :return: The formatted string """ output = textwrap.dedent(string) # Unwrap lines, taking into account bulleted lists, ordered lists and # underlines consisting of = signs if output.find('\n') != -1: output = re.sub('(?<=\\S)\n(?=[^ \n\t\\d\\*\\-=])', ' ', output) if params: output = output % params output = output.strip() return output def _type_name(value): """ :param value: A value to get the object name of :return: A unicode string of the object name """ if inspect.isclass(value): cls = value else: cls = value.__class__ if cls.__module__ in set(['builtins', '__builtin__']): return cls.__name__ return '%s.%s' % (cls.__module__, cls.__name__) def _writer(func): """ Decorator for a custom writer, but a default reader """ name = func.__name__ return property(fget=lambda self: getattr(self, '_%s' % name), fset=func) class OCSPResponseBuilder(object): _response_status = None _certificate = None _certificate_status = None _revocation_date = None _certificate_issuer = None _hash_algo = None _key_hash_algo = None _nonce = None _this_update = None _next_update = None _response_data_extensions = None _single_response_extensions = None def __init__(self, response_status, certificate_status_list=[], revocation_date=None): """ Unless changed, responses will use SHA-256 for the signature, and will be valid from the moment created for one week. :param response_status: A unicode string of OCSP response type: - "successful" - when the response includes information about the certificate - "malformed_request" - when the request could not be understood - "internal_error" - when an internal error occured with the OCSP responder - "try_later" - when the OCSP responder is temporarily unavailable - "sign_required" - when the OCSP request must be signed - "unauthorized" - when the responder is not the correct responder for the certificate :param certificate_list: A list of tuples with certificate serial number and certificate status objects. certificate_status: A unicode string of the status of the certificate. Only required if the response_status is "successful". - "good" - when the certificate is in good standing - "revoked" - when the certificate is revoked without a reason code - "key_compromise" - when a private key is compromised - "ca_compromise" - when the CA issuing the certificate is compromised - "affiliation_changed" - when the certificate subject name changed - "superseded" - when the certificate was replaced with a new one - "cessation_of_operation" - when the certificate is no longer needed - "certificate_hold" - when the certificate is temporarily invalid - "remove_from_crl" - only delta CRLs - when temporary hold is removed - "privilege_withdrawn" - one of the usages for a certificate was removed - "unknown" - the responder doesn't know about the certificate being requested :param revocation_date: A datetime.datetime object of when the certificate was revoked, if the response_status is "successful" and the certificate status is not "good" or "unknown". """ self._response_status = response_status self._certificate_status_list = certificate_status_list self._revocation_date = revocation_date self._key_hash_algo = 'sha1' self._hash_algo = 'sha256' self._response_data_extensions = {} self._single_response_extensions = {} @_writer def nonce(self, value): """ The nonce that was provided during the request. """ if not isinstance(value, byte_cls): raise TypeError(_pretty_message( ''' nonce must be a byte string, not %s ''', _type_name(value) )) self._nonce = value @_writer def certificate_issuer(self, value): """ An asn1crypto.x509.Certificate object of the issuer of the certificate. This should only be set if the OCSP responder is not the issuer of the certificate, but instead a special certificate only for OCSP responses. """ if value is not None: is_oscrypto = isinstance(value, asymmetric.Certificate) if not is_oscrypto and not isinstance(value, x509.Certificate): raise TypeError(_pretty_message( ''' certificate_issuer must be an instance of asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate, not %s ''', _type_name(value) )) if is_oscrypto: value = value.asn1 self._certificate_issuer = value @_writer def next_update(self, value): """ A datetime.datetime object of when the response may next change. This should only be set if responses are cached. If responses are generated fresh on every request, this should not be set. """ if not isinstance(value, datetime): raise TypeError(_pretty_message( ''' next_update must be an instance of datetime.datetime, not %s ''', _type_name(value) )) self._next_update = value def build(self, responder_private_key=None, responder_certificate=None): """ Validates the request information, constructs the ASN.1 structure and signs it. The responder_private_key and responder_certificate parameters are onlystr required if the response_status is "successful". :param responder_private_key: An asn1crypto.keys.PrivateKeyInfo or oscrypto.asymmetric.PrivateKey object for the private key to sign the response with :param responder_certificate: An asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate object of the certificate associated with the private key :return: An asn1crypto.ocsp.OCSPResponse object of the response """ if self._response_status != 'successful': return ocsp.OCSPResponse({ 'response_status': self._response_status }) is_oscrypto = isinstance(responder_private_key, asymmetric.PrivateKey) if not isinstance(responder_private_key, keys.PrivateKeyInfo) and not is_oscrypto: raise TypeError(_pretty_message( ''' responder_private_key must be an instance ofthe c asn1crypto.keys.PrivateKeyInfo or oscrypto.asymmetric.PrivateKey, not %s ''', _type_name(responder_private_key) )) cert_is_oscrypto = isinstance(responder_certificate, asymmetric.Certificate) if not isinstance(responder_certificate, x509.Certificate) and not cert_is_oscrypto: raise TypeError(_pretty_message( ''' responder_certificate must be an instance of asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate, not %s ''', _type_name(responder_certificate) )) if cert_is_oscrypto: responder_certificate = responder_certificate.asn1 if self._certificate_status_list is None: raise ValueError(_pretty_message( ''' certificate_status_list must be set if the response_status is "successful" ''' )) def _make_extension(name, value): return { 'extn_id': name, 'critical': False, 'extn_value': value } responses = [] for serial, status in self._certificate_status_list: response_data_extensions = [] single_response_extensions = [] for name, value in self._response_data_extensions.items(): response_data_extensions.append(_make_extension(name, value)) if self._nonce: response_data_extensions.append( _make_extension('nonce', self._nonce) ) if not response_data_extensions: response_data_extensions = None for name, value in self._single_response_extensions.items(): single_response_extensions.append(_make_extension(name, value)) if self._certificate_issuer: single_response_extensions.append( _make_extension( 'certificate_issuer', [ x509.GeneralName( name='directory_name', value=self._certificate_issuer.subject ) ] ) ) if not single_response_extensions: single_response_extensions = None responder_key_hash = getattr(responder_certificate.public_key, self._key_hash_algo) if status == 'good': cert_status = ocsp.CertStatus( name='good', value=core.Null() ) elif status == 'unknown': cert_status = ocsp.CertStatus( name='unknown', value=core.Null() ) else: reason = status if status != 'revoked' else 'unspecified' cert_status = ocsp.CertStatus( name='revoked', value={ 'revocation_time': self._revocation_date, 'revocation_reason': reason, } ) issuer = self._certificate_issuer if self._certificate_issuer else responder_certificate produced_at = datetime.now(timezone.utc).replace(microsecond=0) if self._this_update is None: self._this_update = produced_at if self._next_update is None: self._next_update = (self._this_update + timedelta(days=7)).replace(microsecond=0) response = { 'cert_id': { 'hash_algorithm': { 'algorithm': self._key_hash_algo }, 'issuer_name_hash': getattr(issuer.subject, self._key_hash_algo), 'issuer_key_hash': getattr(issuer.public_key, self._key_hash_algo), 'serial_number': serial, }, 'cert_status': cert_status, 'this_update': self._this_update, 'next_update': self._next_update, 'single_extensions': single_response_extensions } responses.append(response) response_data = ocsp.ResponseData({ 'responder_id': ocsp.ResponderId(name='by_key', value=responder_key_hash), 'produced_at': produced_at, 'responses': responses, 'response_extensions': response_data_extensions }) signature_algo = responder_private_key.algorithm if signature_algo == 'ec': signature_algo = 'ecdsa' signature_algorithm_id = '%s_%s' % (self._hash_algo, signature_algo) if responder_private_key.algorithm == 'rsa': sign_func = asymmetric.rsa_pkcs1v15_sign elif responder_private_key.algorithm == 'dsa': sign_func = asymmetric.dsa_sign elif responder_private_key.algorithm == 'ec': sign_func = asymmetric.ecdsa_sign if not is_oscrypto: responder_private_key = asymmetric.load_private_key(responder_private_key) signature_bytes = sign_func(responder_private_key, response_data.dump(), self._hash_algo) certs = None if self._certificate_issuer and getattr(self._certificate_issuer.public_key, self._key_hash_algo) != responder_key_hash: certs = [responder_certificate] return ocsp.OCSPResponse({ 'response_status': self._response_status, 'response_bytes': { 'response_type': 'basic_ocsp_response', 'response': { 'tbs_response_data': response_data, 'signature_algorithm': {'algorithm': signature_algorithm_id}, 'signature': signature_bytes, 'certs': certs, } } }) # Enums class ResponseStatus(enum.Enum): successful = 'successful' malformed_request = 'malformed_request' internal_error = 'internal_error' try_later = 'try_later' sign_required = 'sign_required' unauthorized = 'unauthorized' class CertificateStatus(enum.Enum): good = 'good' revoked = 'revoked' key_compromise = 'key_compromise' ca_compromise = 'ca_compromise' affiliation_changed = 'affiliation_changed' superseded = 'superseded' cessation_of_operation = 'cessation_of_operation' certificate_hold = 'certificate_hold' remove_from_crl = 'remove_from_crl' privilege_withdrawn = 'privilege_withdrawn' unknown = 'unknown' # API endpoints FAULT_REVOKED = "revoked" FAULT_UNKNOWN = "unknown" app = Flask(__name__) class OCSPResponder: def __init__(self, issuer_cert: str, responder_cert: str, responder_key: str, fault: str, next_update_seconds: int): """ Create a new OCSPResponder instance. :param issuer_cert: Path to the issuer certificate. :param responder_cert: Path to the certificate of the OCSP responder with the `OCSP Signing` extension. :param responder_key: Path to the private key belonging to the responder cert. :param validate_func: A function that - given a certificate serial - will return the appropriate :class:`CertificateStatus` and - depending on the status - a revocation datetime. :param cert_retrieve_func: A function that - given a certificate serial - will return the corresponding certificate as a string. :param next_update_seconds: The ``nextUpdate`` value that will be written into the response. Default: 9 hours. """ # Certs and keys self._issuer_cert = asymmetric.load_certificate(issuer_cert) self._responder_cert = asymmetric.load_certificate(responder_cert) self._responder_key = asymmetric.load_private_key(responder_key) # Next update self._next_update_seconds = next_update_seconds self._fault = fault def _fail(self, status: ResponseStatus) -> OCSPResponse: builder = OCSPResponseBuilder(response_status=status.value) return builder.build() def parse_ocsp_request(self, request_der: bytes) -> OCSPRequest: """ Parse the request bytes, return an ``OCSPRequest`` instance. """ return OCSPRequest.load(request_der) def validate(self): time = datetime(2018, 1, 1, 1, 00, 00, 00, timezone.utc) if self._fault == FAULT_REVOKED: return (CertificateStatus.revoked, time) elif self._fault == FAULT_UNKNOWN: return (CertificateStatus.unknown, None) elif self._fault != None: raise NotImplemented('Fault type could not be found') return (CertificateStatus.good, time) def _build_ocsp_response(self, ocsp_request: OCSPRequest) -> OCSPResponse: """ Create and return an OCSP response from an OCSP request. """ # Get the certificate serial tbs_request = ocsp_request['tbs_request'] request_list = tbs_request['request_list'] if len(request_list) < 1: logger.warning('Received OCSP request with no requests') raise NotImplemented('Empty requests not supported') single_request = request_list[0] # TODO: Support more than one request req_cert = single_request['req_cert'] serial = req_cert['serial_number'].native # Check certificate status try: certificate_status, revocation_date = self.validate() except Exception as e: logger.exception('Could not determine certificate status: %s', e) return self._fail(ResponseStatus.internal_error) certificate_status_list = [(serial, certificate_status.value)] # Build the response builder = OCSPResponseBuilder(**{ 'response_status': ResponseStatus.successful.value, 'certificate_status_list': certificate_status_list, 'revocation_date': revocation_date, }) # Parse extensions for extension in tbs_request['request_extensions']: extn_id = extension['extn_id'].native critical = extension['critical'].native value = extension['extn_value'].parsed # This variable tracks whether any unknown extensions were encountered unknown = False # Handle nonce extension if extn_id == 'nonce': builder.nonce = value.native # That's all we know else: unknown = True # If an unknown critical extension is encountered (which should not # usually happen, according to RFC 6960 4.1.2), we should throw our # hands up in despair and run. if unknown is True and critical is True: logger.warning('Could not parse unknown critical extension: %r', dict(extension.native)) return self._fail(ResponseStatus.internal_error) # If it's an unknown non-critical extension, we can safely ignore it. elif unknown is True: logger.info('Ignored unknown non-critical extension: %r', dict(extension.native)) # Set certificate issuer builder.certificate_issuer = self._issuer_cert # Set next update date now = datetime.now(timezone.utc) builder.next_update = (now + timedelta(seconds=self._next_update_seconds)).replace(microsecond=0) return builder.build(self._responder_key, self._responder_cert) def build_http_response(self, request_der: bytes) -> Response: global app response_der = self._build_ocsp_response(request_der).dump() resp = app.make_response((response_der, 200)) resp.headers['content_type'] = 'application/ocsp-response' return resp responder = None def init_responder(issuer_cert: str, responder_cert: str, responder_key: str, fault: str, next_update_seconds: int): global responder responder = OCSPResponder(issuer_cert=issuer_cert, responder_cert=responder_cert, responder_key=responder_key, fault=fault, next_update_seconds=next_update_seconds) def init(port=8080, debug=False): logger.info('Launching %sserver on port %d', 'debug' if debug else '', port) app.run(port=port, debug=debug) @app.route('/', methods=['GET']) def _handle_root(): return 'ocsp-responder' @app.route('/status/', defaults={'u_path': ''}, methods=['GET']) @app.route('/status/<path:u_path>', methods=['GET']) def _handle_get(u_path): global responder """ An OCSP GET request contains the DER-in-base64 encoded OCSP request in the HTTP request URL. """ der = base64.b64decode(u_path) ocsp_request = responder.parse_ocsp_request(der) return responder.build_http_response(ocsp_request) @app.route('/status', methods=['POST']) def _handle_post(): global responder """ An OCSP POST request contains the DER encoded OCSP request in the HTTP request body. """ ocsp_request = responder.parse_ocsp_request(request.data) return responder.build_http_response(ocsp_request)
posthog/migrations/0051_precalculate_cohorts.py
avoajaugochukwu/posthog
7,409
12694480
<filename>posthog/migrations/0051_precalculate_cohorts.py # Generated by Django 3.0.5 on 2020-05-07 18:22 import django.db.models.deletion import django.utils.timezone from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("posthog", "0050_dashboards"), ] operations = [ migrations.AddField( model_name="cohort", name="created_at", field=models.DateTimeField(blank=True, default=django.utils.timezone.now, null=True), ), migrations.AddField( model_name="cohort", name="created_by", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, ), ), migrations.AddField(model_name="cohort", name="is_calculating", field=models.BooleanField(default=False),), migrations.AddField( model_name="cohort", name="last_calculation", field=models.DateTimeField(blank=True, null=True), ), migrations.CreateModel( name="CohortPeople", fields=[ ("id", models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name="ID",),), ("cohort", models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to="posthog.Cohort"),), ("person", models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to="posthog.Person"),), ], ), migrations.AddField( model_name="cohort", name="people", field=models.ManyToManyField(through="posthog.CohortPeople", to="posthog.Person"), ), migrations.AddIndex( model_name="cohortpeople", index=models.Index(fields=["cohort_id", "person_id"], name="posthog_coh_cohort__89c25f_idx"), ), ]
tripletloss/tripletlosslayer.py
YoungerGao/tripletloss
283
12694502
<reponame>YoungerGao/tripletloss # -------------------------------------------------------- # TRIPLET LOSS # Copyright (c) 2015 Pinguo Tech. # Written by <NAME> # -------------------------------------------------------- """The data layer used during training a VGG_FACE network by triplet loss. """ import caffe import numpy as np from numpy import * import yaml from multiprocessing import Process, Queue from caffe._caffe import RawBlobVec from sklearn import preprocessing class TripletLayer(caffe.Layer): global no_residual_list,margin def setup(self, bottom, top): """Setup the TripletDataLayer.""" assert shape(bottom[0].data) == shape(bottom[1].data) assert shape(bottom[0].data) == shape(bottom[2].data) layer_params = yaml.load(self.param_str_) self.margin = layer_params['margin'] self.a = 1 top[0].reshape(1) def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" anchor_minibatch_db = [] positive_minibatch_db = [] negative_minibatch_db = [] for i in range((bottom[0]).num): anchor_minibatch_db.append(bottom[0].data[i]) positive_minibatch_db.append(bottom[1].data[i]) negative_minibatch_db.append(bottom[2].data[i]) loss = float(0) self.no_residual_list = [] for i in range(((bottom[0]).num)): a = np.array(anchor_minibatch_db[i]) p = np.array(positive_minibatch_db[i]) n = np.array(negative_minibatch_db[i]) a_p = a - p a_n = a - n ap = np.dot(a_p,a_p) an = np.dot(a_n,a_n) dist = (self.margin + ap - an) _loss = max(dist,0.0) if i == 0: print ('loss:'+' ap:'+str(ap)+' '+'an:'+str(an)) if _loss == 0 : self.no_residual_list.append(i) loss += _loss loss = (loss/(2*(bottom[0]).num)) top[0].data[...] = loss def backward(self, top, propagate_down, bottom): count = 0 if propagate_down[0]: for i in range((bottom[0]).num): if not i in self.no_residual_list: x_a = bottom[0].data[i] x_p = bottom[1].data[i] x_n = bottom[2].data[i] #print x_a,x_p,x_n bottom[0].diff[i] = self.a*((x_n - x_p)/((bottom[0]).num)) bottom[1].diff[i] = self.a*((x_p - x_a)/((bottom[0]).num)) bottom[2].diff[i] = self.a*((x_a - x_n)/((bottom[0]).num)) count += 1 else: bottom[0].diff[i] = np.zeros(shape(bottom[0].data)[1]) bottom[1].diff[i] = np.zeros(shape(bottom[0].data)[1]) bottom[2].diff[i] = np.zeros(shape(bottom[0].data)[1]) #print 'select gradient_loss:',bottom[0].diff[0][0] #print shape(bottom[0].diff),shape(bottom[1].diff),shape(bottom[2].diff) def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" pass
sleepypuppy/admin/models.py
hexlism/css_platform
952
12694530
# Copyright 2015 Netflix, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sqlalchemy import Column, Integer, ForeignKey from sleepypuppy import db # Database association models user_associations = db.Table( 'user_associations', Column('user_id', Integer, ForeignKey('users.id')), Column('assessment_id', Integer, ForeignKey('assessments.id')), ) taxonomy = db.Table( 'taxonomy', Column('puppyscript_id', Integer, ForeignKey('puppyscript.id')), Column('payload', Integer, ForeignKey('payloads.id')), )
Algo and DSA/LeetCode-Solutions-master/Python/relative-sort-array.py
Sourav692/FAANG-Interview-Preparation
3,269
12694535
<reponame>Sourav692/FAANG-Interview-Preparation<gh_stars>1000+ # Time: O(nlogn) # Space: O(n) class Solution(object): def relativeSortArray(self, arr1, arr2): """ :type arr1: List[int] :type arr2: List[int] :rtype: List[int] """ lookup = {v: i for i, v in enumerate(arr2)} return sorted(arr1, key=lambda i: lookup.get(i, len(arr2)+i))
corehq/apps/cleanup/management/commands/purge_docs.py
dimagilg/commcare-hq
471
12694543
import sys from django.core.management.base import BaseCommand from corehq.apps.domain.models import Domain from corehq.util.couch import get_db_by_doc_type class Command(BaseCommand): help = "Purge ALL documents of a particular type. E.g. purge_docs MyDocType,AnotherOne" def handle(self, doc_types, *args, **options): user_input = input('\n'.join([ '\n\nReally delete documents of the following types: {}?', 'This operation is not reversible. Enter a number N to delete the first ' 'N found, or type "delete all" to delete everything.', '', ]).format(doc_types)) if user_input == 'delete all': remaining = None else: try: remaining = int(user_input) except ValueError: print('aborting') sys.exit() doc_types = doc_types.split(',') deleted = 0 # unfortunately the only couch view we have for this needs to go by domain # will be a bit slow domain_names = Domain.get_all_names() for doc_type in doc_types: db = get_db_by_doc_type(doc_type) if not db: print("Cannot find db for {}, skipping".format(doc_type)) continue for domain in domain_names: docs = [row['doc'] for row in db.view( 'by_domain_doc_type_date/view', startkey=[domain, doc_type], endkey=[domain, doc_type, {}], reduce=False, include_docs=True, )][:remaining] if docs: count = len(docs) print('deleting {} {}s from {}'.format(count, doc_type, domain)) db.delete_docs(docs) deleted += count if remaining is not None: remaining -= count if remaining <= 0: return print('successfully deleted {} documents'.format(deleted))
scripts/autosample.py
bcnoexceptions/mtgencode
159
12694565
<gh_stars>100-1000 #!/usr/bin/env python import sys import os import subprocess import random def extract_cp_name(name): # "lm_lstm_epoch50.00_0.1870.t7" if not (name[:13] == 'lm_lstm_epoch' and name[-3:] == '.t7'): return None name = name[13:-3] (epoch, vloss) = tuple(name.split('_')) return (float(epoch), float(vloss)) def sample(cp, temp, count, seed = None, ident = 'output'): if seed is None: seed = random.randint(-1000000000, 1000000000) outfile = cp + '.' + ident + '.' + str(temp) + '.txt' cmd = ('th sample.lua ' + cp + ' -temperature ' + str(temp) + ' -length ' + str(count) + ' -seed ' + str(seed) + ' >> ' + outfile) if os.path.exists(outfile): print(outfile + ' already exists, skipping') return False else: # UNSAFE SHELL=TRUE FOR CONVENIENCE subprocess.call('echo "' + cmd + '" | tee ' + outfile, shell=True) subprocess.call(cmd, shell=True) def find_best_cp(cpdir): best = None best_cp = None for path in os.listdir(cpdir): fullpath = os.path.join(cpdir, path) if os.path.isfile(fullpath): extracted = extract_cp_name(path) if not extracted is None: (epoch, vloss) = extracted if best is None or vloss < best: best = vloss best_cp = fullpath return best_cp def process_dir(cpdir, temp, count, seed = None, ident = 'output', verbose = False): if verbose: print('processing ' + cpdir) best_cp = find_best_cp(cpdir) if not best_cp is None: sample(best_cp, temp, count, seed=seed, ident=ident) for path in os.listdir(cpdir): fullpath = os.path.join(cpdir, path) if os.path.isdir(fullpath): process_dir(fullpath, temp, count, seed=seed, ident=ident, verbose=verbose) def main(rnndir, cpdir, temp, count, seed = None, ident = 'output', verbose = False): if not os.path.isdir(rnndir): raise ValueError('bad rnndir: ' + rnndir) if not os.path.isdir(cpdir): raise ValueError('bad cpdir: ' + cpdir) os.chdir(rnndir) process_dir(cpdir, temp, count, seed=seed, ident=ident, verbose=verbose) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('rnndir', #nargs='?'. default=None, help='base rnn directory, must contain sample.lua') parser.add_argument('cpdir', #nargs='?', default=None, help='checkpoint directory, all subdirectories will be processed') parser.add_argument('-t', '--temperature', action='store', default='1.0', help='sampling temperature') parser.add_argument('-c', '--count', action='store', default='1000000', help='number of characters to sample each time') parser.add_argument('-s', '--seed', action='store', default=None, help='fixed seed; if not present, a random seed will be used') parser.add_argument('-i', '--ident', action='store', default='output', help='identifier to include in the output filenames') parser.add_argument('-v', '--verbose', action='store_true', help='verbose output') args = parser.parse_args() if args.seed is None: seed = None else: seed = int(args.seed) main(args.rnndir, args.cpdir, float(args.temperature), int(args.count), seed=seed, ident=args.ident, verbose = args.verbose) exit(0)
tensorflow_addons/rnn/peephole_lstm_cell.py
leondgarse/addons
1,560
12694568
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements PeepholeLSTM Cell.""" import tensorflow as tf @tf.keras.utils.register_keras_serializable(package="Addons") class PeepholeLSTMCell(tf.keras.layers.LSTMCell): """Equivalent to `tf.keras.layers.LSTMCell` class but adds peephole connections. Peephole connections allow the gates to utilize the previous internal state as well as the previous hidden state (which is what LSTMCell is limited to). This allows PeepholeLSTMCell to better learn precise timings over LSTMCell. From [Gers et al., 2002]( http://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf): "We find that LSTM augmented by 'peephole connections' from its internal cells to its multiplicative gates can learn the fine distinction between sequences of spikes spaced either 50 or 49 time steps apart without the help of any short training exemplars." The peephole implementation is based on: [Sak et al., 2014](https://research.google.com/pubs/archive/43905.pdf) Example: >>> inputs = np.random.random([30,23,9]).astype(np.float32) >>> LSTMCell = tfa.rnn.PeepholeLSTMCell(4) >>> rnn = tf.keras.layers.RNN(LSTMCell, return_sequences=True, return_state=True) >>> outputs, memory_state, carry_state = rnn(inputs) >>> outputs.shape TensorShape([30, 23, 4]) >>> memory_state.shape TensorShape([30, 4]) >>> carry_state.shape TensorShape([30, 4]) """ def build(self, input_shape): super().build(input_shape) # The following are the weight matrices for the peephole connections. These # are multiplied with the previous internal state during the computation of # carry and output. self.input_gate_peephole_weights = self.add_weight( shape=(self.units,), name="input_gate_peephole_weights", initializer=self.kernel_initializer, ) self.forget_gate_peephole_weights = self.add_weight( shape=(self.units,), name="forget_gate_peephole_weights", initializer=self.kernel_initializer, ) self.output_gate_peephole_weights = self.add_weight( shape=(self.units,), name="output_gate_peephole_weights", initializer=self.kernel_initializer, ) def _compute_carry_and_output(self, x, h_tm1, c_tm1): x_i, x_f, x_c, x_o = x h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o = h_tm1 i = self.recurrent_activation( x_i + tf.keras.backend.dot(h_tm1_i, self.recurrent_kernel[:, : self.units]) + self.input_gate_peephole_weights * c_tm1 ) f = self.recurrent_activation( x_f + tf.keras.backend.dot( h_tm1_f, self.recurrent_kernel[:, self.units : self.units * 2] ) + self.forget_gate_peephole_weights * c_tm1 ) c = f * c_tm1 + i * self.activation( x_c + tf.keras.backend.dot( h_tm1_c, self.recurrent_kernel[:, self.units * 2 : self.units * 3] ) ) o = self.recurrent_activation( x_o + tf.keras.backend.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3 :]) + self.output_gate_peephole_weights * c ) return c, o def _compute_carry_and_output_fused(self, z, c_tm1): z0, z1, z2, z3 = z i = self.recurrent_activation(z0 + self.input_gate_peephole_weights * c_tm1) f = self.recurrent_activation(z1 + self.forget_gate_peephole_weights * c_tm1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3 + self.output_gate_peephole_weights * c) return c, o
Source/prj/main/ProjectConfigChanger.py
fairhopeweb/Projeny
752
12694574
import mtm.util.YamlSerializer as YamlSerializer from mtm.util.Assert import * import mtm.ioc.Container as Container from mtm.ioc.Inject import Inject from mtm.ioc.Inject import InjectMany import mtm.ioc.IocAssertions as Assertions from mtm.util.Platforms import Platforms from prj.main.ProjenyConstants import ProjectConfigFileName from prj.main.ProjectConfig import ProjectConfig class ProjectConfigChanger: _log = Inject('Logger') _sys = Inject('SystemHelper') _packageManager = Inject('PackageManager') _varMgr = Inject('VarManager') def _getProjectConfigPath(self, projectName): return self._varMgr.expandPath('[UnityProjectsDir]/{0}/{1}'.format(projectName, ProjectConfigFileName)) def _loadProjectConfig(self, projectName): configPath = self._getProjectConfigPath(projectName) yamlData = YamlSerializer.deserialize(self._sys.readFileAsText(configPath)) result = ProjectConfig() for pair in yamlData.__dict__.items(): result.__dict__[pair[0]] = pair[1] return result def _saveProjectConfig(self, projectName, projectConfig): configPath = self._getProjectConfigPath(projectName) self._sys.writeFileAsText(configPath, YamlSerializer.serialize(projectConfig)) def addPackage(self, projectName, packageName, addToAssetsFolder): with self._log.heading('Adding package {0} to project {1}'.format(packageName, projectName)): assertThat(packageName in self._packageManager.getAllPackageNames(), "Could not find the given package '{0}' in the UnityPackages folder", packageName) self._packageManager.setPathsForProjectPlatform(projectName, Platforms.Windows) projConfig = self._loadProjectConfig(projectName) assertThat(packageName not in projConfig.assetsFolder and packageName not in projConfig.pluginsFolder, "Given package '{0}' has already been added to project config", packageName) if addToAssetsFolder: projConfig.assetsFolder.append(packageName) else: projConfig.pluginsFolder.append(packageName) self._saveProjectConfig(projectName, projConfig) self._log.good("Added package '{0}' to file '{1}/{2}'", packageName, projectName, ProjectConfigFileName)
pybotters/models/experimental/__init__.py
maruuuui/pybotters
176
12694581
from typing import Tuple from .bybit import BybitInverseDataStore, BybitUSDTDataStore __all__: Tuple[str, ...] = ( 'BybitInverseDataStore', 'BybitUSDTDataStore', )
tests/test_issue_11.py
alekseyl1992/pyrobuf
578
12694607
def test_before_overflow(): from issue_11_proto import A a = A() a.a0 = 0x7FFFFFFF assert A.FromString(a.SerializeToString()).a0 == 2147483647 def test_after_overflow(): from issue_11_proto import A a = A() a.a0 = 0x80000000 assert A.FromString(a.SerializeToString()).a0 == 2147483648
platypush/plugins/zigbee/mqtt/__init__.py
BlackLight/platypush
228
12694622
import json import threading from queue import Queue from typing import Optional, List, Any, Dict, Union from platypush.message.response import Response from platypush.plugins.mqtt import MqttPlugin, action from platypush.plugins.switch import SwitchPlugin class ZigbeeMqttPlugin(MqttPlugin, SwitchPlugin): # lgtm [py/missing-call-to-init] """ This plugin allows you to interact with Zigbee devices over MQTT through any Zigbee sniffer and `zigbee2mqtt <https://www.zigbee2mqtt.io/>`_. In order to get started you'll need: - A Zigbee USB adapter/sniffer (in this example I'll use the `CC2531 <https://hackaday.io/project/163487-zigbee-cc2531-smart-home-usb-adapter>`_. - A Zigbee debugger/emulator + downloader cable (only to flash the firmware). Instructions: - Install `cc-tool <https://github.com/dashesy/cc-tool>`_ either from sources or from a package manager. - Connect the Zigbee to your PC/RaspberryPi in this way: :: USB -> CC debugger -> downloader cable -> CC2531 -> USB - The debugger and the adapter should be connected *at the same time*. If the later ``cc-tool`` command throws up an error, put the device in sync while connected by pressing the _Reset_ button on the debugger. - Check where the device is mapped. On Linux it will usually be ``/dev/ttyACM0``. - Download the latest `Z-Stack firmware <https://github.com/Koenkk/Z-Stack-firmware/tree/master/coordinator>`_ to your device. Instructions for a CC2531 device: .. code-block:: shell wget https://github.com/Koenkk/Z-Stack-firmware/raw/master/coordinator/Z-Stack_Home_1.2/bin/default/CC2531_DEFAULT_20201127.zip unzip CC2531_DEFAULT_20201127.zip [sudo] cc-tool -e -w CC2531ZNP-Prod.hex - You can disconnect your debugger and downloader cable once the firmware is flashed. - Install ``zigbee2mqtt``. First install a node/npm environment, then either install ``zigbee2mqtt`` manually or through your package manager. **NOTE**: many API breaking changes have occurred on Zigbee2MQTT 1.17.0, therefore this integration will only be compatible with the version 1.17.0 of the service or higher versions. Manual instructions: .. code-block:: shell # Clone zigbee2mqtt repository [sudo] git clone https://github.com/Koenkk/zigbee2mqtt.git /opt/zigbee2mqtt [sudo] chown -R pi:pi /opt/zigbee2mqtt # Or whichever is your user # Install dependencies (as user "pi") cd /opt/zigbee2mqtt npm install - You need to have an MQTT broker running somewhere. If not, you can install `Mosquitto <https://mosquitto.org/>`_ through your package manager on any device in your network. - Edit the ``/opt/zigbee2mqtt/data/configuration.yaml`` file to match the configuration of your MQTT broker: .. code-block:: yaml # MQTT settings mqtt: # MQTT base topic for zigbee2mqtt MQTT messages base_topic: zigbee2mqtt # MQTT server URL server: 'mqtt://localhost' # MQTT server authentication, uncomment if required: # user: my_user # password: <PASSWORD> - Also make sure that ``permit_join`` is set to ``True``, in order to allow Zigbee devices to join the network while you're configuring it. It's equally important to set ``permit_join`` to ``False`` once you have configured your network, to prevent accidental/malignant joins from outer Zigbee devices. - Start the ``zigbee2mqtt`` daemon on your device (the `official documentation <https://www.zigbee2mqtt.io/getting_started/running_zigbee2mqtt.html#5-optional-running-as-a-daemon-with-systemctl>`_ also contains instructions on how to configure it as a ``systemd`` service: .. code-block:: shell cd /opt/zigbee2mqtt npm start - If you have Zigbee devices that are paired to other bridges, unlink them or do a factory reset to pair them to your new bridge. - If it all goes fine, once the daemon is running and a new device is found you should see traces like this in the output of ``zigbee2mqtt``:: zigbee2mqtt:info 2019-11-09T12:19:56: Successfully interviewed '0x00158d0001dc126a', device has successfully been paired - You are now ready to use this integration. Requires: * **paho-mqtt** (``pip install paho-mqtt``) """ def __init__(self, host: str = 'localhost', port: int = 1883, base_topic: str = 'zigbee2mqtt', timeout: int = 10, tls_certfile: Optional[str] = None, tls_keyfile: Optional[str] = None, tls_version: Optional[str] = None, tls_ciphers: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, **kwargs): """ :param host: Default MQTT broker where ``zigbee2mqtt`` publishes its messages (default: ``localhost``). :param port: Broker listen port (default: 1883). :param base_topic: Topic prefix, as specified in ``/opt/zigbee2mqtt/data/configuration.yaml`` (default: '``base_topic``'). :param timeout: If the command expects from a response, then this timeout value will be used (default: 60 seconds). :param tls_cafile: If the connection requires TLS/SSL, specify the certificate authority file (default: None) :param tls_certfile: If the connection requires TLS/SSL, specify the certificate file (default: None) :param tls_keyfile: If the connection requires TLS/SSL, specify the key file (default: None) :param tls_version: If the connection requires TLS/SSL, specify the minimum TLS supported version (default: None) :param tls_ciphers: If the connection requires TLS/SSL, specify the supported ciphers (default: None) :param username: If the connection requires user authentication, specify the username (default: None) :param password: If the connection requires user authentication, specify the password (default: None) """ super().__init__(host=host, port=port, tls_certfile=tls_certfile, tls_keyfile=tls_keyfile, tls_version=tls_version, tls_ciphers=tls_ciphers, username=username, password=password, **kwargs) self.base_topic = base_topic self.timeout = timeout self._info = { 'devices': {}, 'groups': {}, } def _get_network_info(self, **kwargs): self.logger.info('Fetching Zigbee network information') client = None mqtt_args = self._mqtt_args(**kwargs) timeout = 30 if 'timeout' in mqtt_args: timeout = mqtt_args.pop('timeout') info = { 'state': None, 'info': {}, 'config': {}, 'devices': [], 'groups': [], } info_ready_events = {topic: threading.Event() for topic in info.keys()} def _on_message(): def callback(_, __, msg): topic = msg.topic.split('/')[-1] if topic in info: info[topic] = msg.payload.decode() if topic == 'state' else json.loads(msg.payload.decode()) info_ready_events[topic].set() return callback try: host = mqtt_args.pop('host') port = mqtt_args.pop('port') client = self._get_client(**mqtt_args) client.on_message = _on_message() client.connect(host, port, keepalive=timeout) client.subscribe(self.base_topic + '/bridge/#') client.loop_start() for event in info_ready_events.values(): info_ready = event.wait(timeout=timeout) if not info_ready: raise TimeoutError('A timeout occurred while fetching the Zigbee network information') # Cache the new results self._info['devices'] = { device.get('friendly_name', device['ieee_address']): device for device in info.get('devices', []) } self._info['groups'] = { group.get('name'): group for group in info.get('groups', []) } self.logger.info('Zigbee network configuration updated') return info finally: try: client.loop_stop() client.disconnect() except Exception as e: self.logger.warning('Error on MQTT client disconnection: {}'.format(str(e))) def _topic(self, topic): return self.base_topic + '/' + topic @staticmethod def _parse_response(response: Union[dict, Response]) -> dict: if isinstance(response, Response): response = response.output assert response.get('status') != 'error', response.get('error', 'zigbee2mqtt error') return response @action def devices(self, **kwargs) -> List[Dict[str, Any]]: """ Get the list of devices registered to the service. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). :return: List of paired devices. Example output: .. code-block:: json [ { "date_code": "20190608", "friendly_name": "Coordinator", "ieee_address": "0x00123456789abcde", "network_address": 0, "supported": false, "type": "Coordinator", "interviewing": false, "interviewing_completed": true, "definition": null, "endpoints": { "13": { "bindings": [], "clusters": { "input": ["genOta"], "output": [] }, "output": [] } } }, { "date_code": "20180906", "friendly_name": "<NAME>", "ieee_address": "0x00123456789abcdf", "network_address": 52715, "power_source": "Mains (single phase)", "software_build_id": "5.127.1.26581", "model_id": "LCT001", "supported": true, "interviewing": false, "interviewing_completed": true, "type": "Router", "definition": { "description": "Hue white and color ambiance E26/E27/E14", "model": "9290012573A", "vendor": "Philips", "exposes": [ { "features": [ { "access": 7, "description": "On/off state of this light", "name": "state", "property": "state", "type": "binary", "value_off": "OFF", "value_on": "ON", "value_toggle": "TOGGLE" }, { "access": 7, "description": "Brightness of this light", "name": "brightness", "property": "brightness", "type": "numeric", "value_max": 254, "value_min": 0 }, { "access": 7, "description": "Color temperature of this light", "name": "color_temp", "property": "color_temp", "type": "numeric", "unit": "mired", "value_max": 500, "value_min": 150 }, { "description": "Color of this light in the CIE 1931 color space (x/y)", "features": [ { "access": 7, "name": "x", "property": "x", "type": "numeric" }, { "access": 7, "name": "y", "property": "y", "type": "numeric" } ], "name": "color_xy", "property": "color", "type": "composite" } ], "type": "light" }, { "access": 2, "description": "Triggers an effect on the light (e.g. make light blink for a few seconds)", "name": "effect", "property": "effect", "type": "enum", "values": [ "blink", "breathe", "okay", "channel_change", "finish_effect", "stop_effect" ] }, { "access": 1, "description": "Link quality (signal strength)", "name": "linkquality", "property": "linkquality", "type": "numeric", "unit": "lqi", "value_max": 255, "value_min": 0 } ] }, "endpoints": { "11": { "bindings": [], "clusters": { "input": [ "genBasic", "genIdentify", "genGroups", "genScenes", "genOnOff", "genLevelCtrl", "touchlink", "lightingColorCtrl", "manuSpecificUbisysDimmerSetup" ], "output": [ "genOta" ] }, "configured_reportings": [] }, "242": { "bindings": [], "clusters": { "input": [ "greenPower" ], "output": [ "greenPower" ] }, "configured_reportings": [] } } } ] """ return self._get_network_info(**kwargs).get('devices') @action def permit_join(self, permit: bool = True, timeout: Optional[float] = None, **kwargs): """ Enable/disable devices from joining the network. This is not persistent (will not be saved to ``configuration.yaml``). :param permit: Set to True to allow joins, False otherwise. :param timeout: Allow/disallow joins only for this amount of time. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ if timeout: return self._parse_response( self.publish(topic=self._topic('bridge/request/permit_join'), msg={'value': permit, 'time': timeout}, reply_topic=self._topic('bridge/response/permit_join'), **self._mqtt_args(**kwargs))) return self.publish(topic=self._topic('bridge/request/permit_join'), msg={'value': permit}, **self._mqtt_args(**kwargs)) @action def factory_reset(self, **kwargs): """ Perform a factory reset of a device connected to the network, following the procedure required by the particular device (for instance, Hue bulbs require the Zigbee adapter to be close to the device while a button on the back of the bulb is pressed). :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ self.publish(topic=self._topic('bridge/request/touchlink/factory_reset'), msg='', **self._mqtt_args(**kwargs)) @action def log_level(self, level: str, **kwargs): """ Change the log level at runtime. This change will not be persistent. :param level: Possible values: 'debug', 'info', 'warn', 'error'. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/config/log_level'), msg={'value': level}, reply_topic=self._topic('bridge/response/config/log_level'), **self._mqtt_args(**kwargs))) @action def device_set_option(self, device: str, option: str, value: Any, **kwargs): """ Change the options of a device. Options can only be changed, not added or deleted. :param device: Display name of the device. :param option: Option name. :param value: New value. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/device/options'), reply_topic=self._topic('bridge/response/device/options'), msg={ 'id': device, 'options': { option: value, } }, **self._mqtt_args(**kwargs))) @action def device_remove(self, device: str, force: bool = False, **kwargs): """ Remove a device from the network. :param device: Display name of the device. :param force: Force the remove also if the removal wasn't acknowledged by the device. Note: a forced remove only removes the entry from the internal database, but the device is likely to connect again when restarted unless it's factory reset (default: False). :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/device/remove'), msg={'id': device, 'force': force}, reply_topic=self._topic('bridge/response/device/remove'), **self._mqtt_args(**kwargs))) @action def device_ban(self, device: str, **kwargs): """ Ban a device from the network. :param device: Display name of the device. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/device/ban'), reply_topic=self._topic('bridge/response/device/ban'), msg={'id': device}, **self._mqtt_args(**kwargs))) @action def device_whitelist(self, device: str, **kwargs): """ Whitelist a device on the network. Note: once at least a device is whitelisted, all the other non-whitelisted devices will be removed from the network. :param device: Display name of the device. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/device/whitelist'), reply_topic=self._topic('bridge/response/device/whitelist'), msg={'id': device}, **self._mqtt_args(**kwargs))) @action def device_rename(self, name: str, device: Optional[str] = None, **kwargs): """ Rename a device on the network. :param name: New name. :param device: Current name of the device to rename. If no name is specified then the rename will affect the last device that joined the network. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ if name == device: self.logger.info('Old and new name are the same: nothing to do') return # noinspection PyUnresolvedReferences devices = self.devices().output assert not [dev for dev in devices if dev.get('friendly_name') == name], \ 'A device named {} already exists on the network'.format(name) if device: req = { 'from': device, 'to': name, } else: req = { 'last': True, 'to': name, } return self._parse_response( self.publish(topic=self._topic('bridge/request/device/rename'), msg=req, reply_topic=self._topic('bridge/response/device/rename'), **self._mqtt_args(**kwargs))) @staticmethod def build_device_get_request(values: List[Dict[str, Any]]) -> dict: def extract_value(value: dict, root: dict): if not value.get('access', 1) & 0x1: # Property not readable return if 'features' not in value: if 'property' in value: root[value['property']] = 0 if value['type'] == 'numeric' else '' return if 'property' in value: root[value['property']] = root.get(value['property'], {}) root = root[value['property']] for feature in value['features']: extract_value(feature, root) ret = {} for value in values: extract_value(value, root=ret) return ret # noinspection PyShadowingBuiltins @action def device_get(self, device: str, property: Optional[str] = None, **kwargs) -> Dict[str, Any]: """ Get the properties of a device. The returned keys vary depending on the device. For example, a light bulb may have the "``state``" and "``brightness``" properties, while an environment sensor may have the "``temperature``" and "``humidity``" properties, and so on. :param device: Display name of the device. :param property: Name of the property that should be retrieved (default: all). :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). :return: Key->value map of the device properties. """ kwargs = self._mqtt_args(**kwargs) if property: properties = self.publish(topic=self._topic(device) + '/get/' + property, reply_topic=self._topic(device), msg={property: ''}, **kwargs).output assert property in properties, 'No such property: ' + property return {property: properties[property]} if device not in self._info.get('devices', {}): # Refresh devices info self._get_network_info(**kwargs) assert self._info.get('devices', {}).get(device), 'No such device: ' + device exposes = (self._info.get('devices', {}).get(device, {}).get('definition', {}) or {}).get('exposes', []) if not exposes: return {} return self.publish(topic=self._topic(device) + '/get', reply_topic=self._topic(device), msg=self.build_device_get_request(exposes), **kwargs) @action def devices_get(self, devices: Optional[List[str]] = None, **kwargs) -> Dict[str, dict]: """ Get the properties of the devices connected to the network. :param devices: If set, then only the status of these devices (by friendly name) will be retrieved (default: retrieve all). :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). :return: Key->value map of the device properties: .. code-block:: json { "Bulb": { "state": "ON", "brightness": 254 }, "Sensor": { "temperature": 22.5 } } """ kwargs = self._mqtt_args(**kwargs) if not devices: # noinspection PyUnresolvedReferences devices = set([ device['friendly_name'] or device['ieee_address'] for device in self.devices(**kwargs).output ]) def worker(device: str, q: Queue): # noinspection PyUnresolvedReferences q.put(self.device_get(device, **kwargs).output) queues = {} workers = {} response = {} for device in devices: queues[device] = Queue() workers[device] = threading.Thread(target=worker, args=(device, queues[device])) workers[device].start() for device in devices: try: response[device] = queues[device].get(timeout=kwargs.get('timeout')) workers[device].join(timeout=kwargs.get('timeout')) except Exception as e: self.logger.warning('An error while getting the status of the device {}: {}'.format( device, str(e))) return response @action def status(self, device: Optional[str] = None, *args, **kwargs): """ Get the status of a device (by friendly name) or of all the connected devices (it wraps :meth:`.devices_get`). :param device: Device friendly name (default: get all devices). """ return self.devices_get([device], *args, **kwargs) # noinspection PyShadowingBuiltins,DuplicatedCode @action def device_set(self, device: str, property: str, value: Any, **kwargs): """ Set a properties on a device. The compatible properties vary depending on the device. For example, a light bulb may have the "``state``" and "``brightness``" properties, while an environment sensor may have the "``temperature``" and "``humidity``" properties, and so on. :param device: Display name of the device. :param property: Name of the property that should be set. :param value: New value of the property. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ properties = self.publish(topic=self._topic(device + '/set'), reply_topic=self._topic(device), msg={property: value}, **self._mqtt_args(**kwargs)).output if property: assert property in properties, 'No such property: ' + property return {property: properties[property]} return properties @action def device_check_ota_updates(self, device: str, **kwargs) -> dict: """ Check if the specified device has any OTA updates available to install. :param device: Address or friendly name of the device. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). :return: .. code-block:: json { "id": "<device ID>", "update_available": true, "status": "ok" } """ ret = self._parse_response( self.publish(topic=self._topic('bridge/request/device/ota_update/check'), reply_topic=self._topic('bridge/response/device/ota_update/check'), msg={'id': device}, **self._mqtt_args(**kwargs))) return { 'status': ret['status'], 'id': ret.get('data', {}).get('id'), 'update_available': ret.get('data', {}).get('update_available', False), } @action def device_install_ota_updates(self, device: str, **kwargs): """ Install OTA updates for a device if available. :param device: Address or friendly name of the device. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/device/ota_update/update'), reply_topic=self._topic('bridge/response/device/ota_update/update'), msg={'id': device}, **self._mqtt_args(**kwargs))) @action def groups(self, **kwargs) -> List[dict]: """ Get the groups registered on the device. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._get_network_info(**kwargs).get('groups') @action def info(self, **kwargs) -> dict: """ Get the information, configuration and state of the network. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). :return: Example: .. code-block:: json { "state": "online", "commit": "07cdc9d", "config": { "advanced": { "adapter_concurrent": null, "adapter_delay": null, "availability_blacklist": [], "availability_blocklist": [], "availability_passlist": [], "availability_timeout": 0, "availability_whitelist": [], "cache_state": true, "cache_state_persistent": true, "cache_state_send_on_startup": true, "channel": 11, "elapsed": false, "ext_pan_id": [ 221, 221, 221, 221, 221, 221, 221, 221 ], "homeassistant_discovery_topic": "homeassistant", "homeassistant_legacy_triggers": true, "homeassistant_status_topic": "hass/status", "last_seen": "disable", "legacy_api": true, "log_directory": "/opt/zigbee2mqtt/data/log/%TIMESTAMP%", "log_file": "log.txt", "log_level": "debug", "log_output": [ "console", "file" ], "log_rotation": true, "log_syslog": {}, "pan_id": 6754, "report": false, "soft_reset_timeout": 0, "timestamp_format": "YYYY-MM-DD HH:mm:ss" }, "ban": [], "blocklist": [], "device_options": {}, "devices": { "0x00123456789abcdf": { "friendly_name": "My Lightbulb" } }, "experimental": { "output": "json" }, "external_converters": [], "groups": {}, "homeassistant": false, "map_options": { "graphviz": { "colors": { "fill": { "coordinator": "#e04e5d", "enddevice": "#fff8ce", "router": "#4ea3e0" }, "font": { "coordinator": "#ffffff", "enddevice": "#000000", "router": "#ffffff" }, "line": { "active": "#009900", "inactive": "#994444" } } } }, "mqtt": { "base_topic": "zigbee2mqtt", "force_disable_retain": false, "include_device_information": false, "server": "mqtt://localhost" }, "passlist": [], "permit_join": true, "serial": { "disable_led": false, "port": "/dev/ttyUSB0" }, "whitelist": [] }, "coordinator": { "meta": { "maintrel": 3, "majorrel": 2, "minorrel": 6, "product": 0, "revision": 20190608, "transportrev": 2 }, "type": "zStack12" }, "log_level": "debug", "network": { "channel": 11, "extended_pan_id": "0xdddddddddddddddd", "pan_id": 6754 }, "permit_join": true, "version": "1.17.0" } """ info = self._get_network_info(**kwargs) return { 'state': info.get('state'), 'info': info.get('info'), } @action def group_add(self, name: str, id: Optional[int] = None, **kwargs): """ Add a new group. :param name: Display name of the group. :param id: Optional numeric ID (default: auto-generated). :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ payload = name if id is None else { 'id': id, 'friendly_name': name, } return self._parse_response( self.publish(topic=self._topic('bridge/request/group/add'), reply_topic=self._topic('bridge/response/group/add'), msg=payload, **self._mqtt_args(**kwargs)) ) @action def group_get(self, group: str, property: Optional[str] = None, **kwargs) -> dict: """ Get one or more properties of a group. The compatible properties vary depending on the devices on the group. For example, a light bulb may have the "``state``" (with values ``"ON"`` and ``"OFF"``) and "``brightness``" properties, while an environment sensor may have the "``temperature``" and "``humidity``" properties, and so on. :param group: Display name of the group. :param property: Name of the property to retrieve (default: all available properties) :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ msg = {} if property: msg = {property: ''} properties = self.publish(topic=self._topic(group + '/get'), reply_topic=self._topic(group), msg=msg, **self._mqtt_args(**kwargs)).output if property: assert property in properties, 'No such property: ' + property return {property: properties[property]} return properties # noinspection PyShadowingBuiltins,DuplicatedCode @action def group_set(self, group: str, property: str, value: Any, **kwargs): """ Set a properties on a group. The compatible properties vary depending on the devices on the group. For example, a light bulb may have the "``state``" (with values ``"ON"`` and ``"OFF"``) and "``brightness``" properties, while an environment sensor may have the "``temperature``" and "``humidity``" properties, and so on. :param group: Display name of the group. :param property: Name of the property that should be set. :param value: New value of the property. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ properties = self.publish(topic=self._topic(group + '/set'), reply_topic=self._topic(group), msg={property: value}, **self._mqtt_args(**kwargs)).output if property: assert property in properties, 'No such property: ' + property return {property: properties[property]} return properties @action def group_rename(self, name: str, group: str, **kwargs): """ Rename a group. :param name: New name. :param group: Current name of the group to rename. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ if name == group: self.logger.info('Old and new name are the same: nothing to do') return # noinspection PyUnresolvedReferences groups = {group.get('friendly_name'): group for group in self.groups().output} assert name not in groups, 'A group named {} already exists on the network'.format(name) return self._parse_response( self.publish(topic=self._topic('bridge/request/group/rename'), reply_topic=self._topic('bridge/response/group/rename'), msg={'from': group, 'to': name} if group else name, **self._mqtt_args(**kwargs))) @action def group_remove(self, name: str, **kwargs): """ Remove a group. :param name: Display name of the group. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/group/remove'), reply_topic=self._topic('bridge/response/group/remove'), msg=name, **self._mqtt_args(**kwargs))) @action def group_add_device(self, group: str, device: str, **kwargs): """ Add a device to a group. :param group: Display name of the group. :param device: Display name of the device to be added. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/group/members/add'), reply_topic=self._topic('bridge/response/group/members/add'), msg={ 'group': group, 'device': device, }, **self._mqtt_args(**kwargs))) @action def group_remove_device(self, group: str, device: Optional[str] = None, **kwargs): """ Remove a device from a group. :param group: Display name of the group. :param device: Display name of the device to be removed. If none is specified then all the devices registered to the specified group will be removed. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish( topic=self._topic('bridge/request/group/members/remove{}'.format('_all' if device is None else '')), reply_topic=self._topic( 'bridge/response/group/members/remove{}'.format('_all' if device is None else '')), msg={ 'group': group, 'device': device, }, **self._mqtt_args(**kwargs))) @action def bind_devices(self, source: str, target: str, **kwargs): """ Bind two devices. Binding makes it possible that devices can directly control each other without the intervention of zigbee2mqtt or any home automation software. You may want to use this feature to bind for example an IKEA/Philips Hue dimmer switch to a light bulb, or a Zigbee remote to a thermostat. Read more on the `zigbee2mqtt binding page <https://www.zigbee2mqtt.io/information/binding.html>`_. :param source: Name of the source device. It can also be a group name, although the support is `still experimental <https://www.zigbee2mqtt.io/information/binding.html#binding-a-group>`_. You can also bind a specific device endpoint - for example ``MySensor/temperature``. :param target: Name of the target device. You can also bind a specific device endpoint - for example ``MyLight/state``. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/device/bind'), reply_topic=self._topic('bridge/response/device/bind'), msg={'from': source, 'to': target}, **self._mqtt_args(**kwargs))) @action def unbind_devices(self, source: str, target: str, **kwargs): """ Un-bind two devices. :param source: Name of the source device. You can also bind a specific device endpoint - for example ``MySensor/temperature``. :param target: Name of the target device. You can also bind a specific device endpoint - for example ``MyLight/state``. :param kwargs: Extra arguments to be passed to :meth:`platypush.plugins.mqtt.MqttPlugin.publish`` (default: query the default configured device). """ return self._parse_response( self.publish(topic=self._topic('bridge/request/device/unbind'), reply_topic=self._topic('bridge/response/device/unbind'), msg={'from': source, 'to': target}, **self._mqtt_args(**kwargs))) @action def on(self, device, *args, **kwargs) -> dict: """ Implements :meth:`platypush.plugins.switch.plugin.SwitchPlugin.on` and turns on a Zigbee device with a writable binary property. """ switch_info = self._get_switches_info().get(device) assert switch_info, '{} is not a valid switch'.format(device) props = self.device_set(device, switch_info['property'], switch_info['value_on']).output return self._properties_to_switch(device=device, props=props, switch_info=switch_info) @action def off(self, device, *args, **kwargs) -> dict: """ Implements :meth:`platypush.plugins.switch.plugin.SwitchPlugin.off` and turns off a Zigbee device with a writable binary property. """ switch_info = self._get_switches_info().get(device) assert switch_info, '{} is not a valid switch'.format(device) props = self.device_set(device, switch_info['property'], switch_info['value_off']).output return self._properties_to_switch(device=device, props=props, switch_info=switch_info) @action def toggle(self, device, *args, **kwargs) -> dict: """ Implements :meth:`platypush.plugins.switch.plugin.SwitchPlugin.toggle` and toggles a Zigbee device with a writable binary property. """ switch_info = self._get_switches_info().get(device) assert switch_info, '{} is not a valid switch'.format(device) props = self.device_set(device, switch_info['property'], switch_info['value_toggle']).output return self._properties_to_switch(device=device, props=props, switch_info=switch_info) @staticmethod def _properties_to_switch(device: str, props: dict, switch_info: dict) -> dict: return { 'on': props[switch_info['property']] == switch_info['value_on'], 'friendly_name': device, 'name': device, **props, } def _get_switches_info(self) -> dict: def switch_info(device_info: dict) -> dict: exposes = (device_info.get('definition', {}) or {}).get('exposes', []) for exposed in exposes: for feature in exposed.get('features', []): if feature.get('type') == 'binary' and 'value_on' in feature and 'value_off' in feature and \ feature.get('access', 0) & 2: return { 'property': feature['property'], 'value_on': feature['value_on'], 'value_off': feature['value_off'], 'value_toggle': feature.get('value_toggle', None), } return {} # noinspection PyUnresolvedReferences devices = self.devices().output switches_info = {} for device in devices: info = switch_info(device) if not info: continue switches_info[device.get('friendly_name', device.get('ieee_address'))] = info return switches_info @property def switches(self) -> List[dict]: """ Implements the :class:`platypush.plugins.switch.SwitchPlugin.switches` property and returns the state of any device on the Zigbee network identified as a switch (a device is identified as a switch if it exposes a writable ``state`` property that can be set to ``ON`` or ``OFF``). """ switches_info = self._get_switches_info() # noinspection PyUnresolvedReferences return [ self._properties_to_switch(device=name, props=switch, switch_info=switches_info[name]) for name, switch in self.devices_get(list(switches_info.keys())).output.items() ] # vim:sw=4:ts=4:et:
dsebm/svhn_utilities.py
leyiweb/Adversarially-Learned-Anomaly-Detection
125
12694623
# TensorFlow implementation of a DCGAN model for SVHN import tensorflow as tf init_kernel = tf.contrib.layers.xavier_initializer() image_size = 32 learning_rate = 0.003 batch_size = 32 kernel_conv_size = 3 filters_conv = 64 filters_fc = 128 strides_conv = 2 def UnPooling2x2ZeroFilled(x): # https://github.com/tensorflow/tensorflow/issues/2169 out = tf.concat([x, tf.zeros_like(x)], 3) out = tf.concat([out, tf.zeros_like(out)], 2) sh = x.get_shape().as_list() if None not in sh[1:]: out_size = [-1, sh[1] * 2, sh[2] * 2, sh[3]] return tf.reshape(out, out_size) else: shv = tf.shape(x) ret = tf.reshape(out, tf.stack([-1, shv[1] * 2, shv[2] * 2, sh[3]])) return ret def network(x_inp, is_training=False, getter=None, reuse=False): """ Network architecture in tensorflow Discriminates between real data and generated data Note: Provides histogram and distribution tensorflow summaries Args: x_inp (tensor): input data for the encoder. reuse (bool): sharing variables or not Returns: logits (tensor): last activation layer of the discriminator (shape 1) intermediate_layer (tensor): intermediate layer for feature matching """ with tf.variable_scope('network', reuse=reuse, custom_getter=getter): kernel_conv = tf.get_variable('kernel_conv', [kernel_conv_size, kernel_conv_size, 3, filters_conv], initializer=init_kernel) conv_output_size = int(image_size*image_size/4/strides_conv/strides_conv*filters_conv) kernel_dense = tf.get_variable('kernel_dense', [conv_output_size, filters_fc], initializer=init_kernel) bias_dense = tf.get_variable('bias_dense', [filters_fc]) bias_inv_dense = tf.get_variable('bias_inv_dense', [conv_output_size]) x = tf.nn.conv2d(x_inp, kernel_conv, [1, strides_conv, strides_conv, 1], 'SAME') x = tf.nn.softplus(x) x = tf.nn.pool(x, (2, 2), "MAX", "SAME", strides=(2, 2)) x = tf.contrib.layers.flatten(x) x = tf.nn.softplus(tf.matmul(x, kernel_dense) + bias_dense) ###INVERSE LAYERS x = tf.nn.softplus(tf.matmul(x, tf.transpose(kernel_dense)) + bias_inv_dense) new_image_size = int(image_size/2/strides_conv) x = tf.reshape(x, [-1, new_image_size, new_image_size, filters_conv]) x = UnPooling2x2ZeroFilled(x) x = tf.nn.conv2d_transpose(x, kernel_conv, tf.shape(x_inp), [1, strides_conv, strides_conv, 1], 'SAME') x = tf.nn.softplus(x, name='softplus') return x
adb/systrace/catapult/systrace/systrace/monitor_unittest.py
mohanedmoh/TBS
2,151
12694638
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import unittest from systrace import decorators from systrace import update_systrace_trace_viewer SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) STABLE_VIEWER_PATH = os.path.join(SCRIPT_DIR, 'systrace_trace_viewer.html') # Tests presence and content of static HTML files used not only for Python # systrace capture, but also Java-based capture in the android SDK tools. # # NOTE: changes to this file should typically be accompanied by changes to the # Android SDK's method of systrace capture. class MonitorTest(unittest.TestCase): @decorators.HostOnlyTest def test_systrace_trace_viewer(self): self.assertEqual(STABLE_VIEWER_PATH, update_systrace_trace_viewer.SYSTRACE_TRACE_VIEWER_HTML_FILE) update_systrace_trace_viewer.update(force_update=True) with open(STABLE_VIEWER_PATH) as f: content = f.read().strip() # expect big html file self.assertGreater(5 * 1024 * 1024, len(content)) self.assertEqual('<', content[0]) os.remove(f.name) @decorators.HostOnlyTest def test_prefix(self): with open(os.path.join(SCRIPT_DIR, 'prefix.html')) as f: content = f.read().strip() self.assertTrue("<html>" in content) self.assertTrue("<title>Android System Trace</title>" in content) self.assertTrue("{{SYSTRACE_TRACE_VIEWER_HTML}}" in content) @decorators.HostOnlyTest def test_suffix(self): with open(os.path.join(SCRIPT_DIR, 'suffix.html')) as f: content = f.read().strip() self.assertTrue("</html>" in content)
mmd_tools/panels/prop_bone.py
lsr123/PX4-loacl_code
822
12694643
# -*- coding: utf-8 -*- from bpy.types import Panel class MMDBonePanel(Panel): bl_idname = 'BONE_PT_mmd_tools_bone' bl_label = 'MMD Bone Tools' bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = 'bone' @classmethod def poll(cls, context): return context.mode == 'EDIT_ARMATURE' and context.active_bone is not None or context.mode == 'POSE' and context.active_pose_bone is not None def draw(self, context): if context.mode == 'EDIT_ARMATURE': edit_bone = context.active_bone pose_bone = context.active_object.pose.bones[edit_bone.name] else: pose_bone = context.active_pose_bone layout = self.layout c = layout.column(align=True) c.label('Information:') c.prop(pose_bone.mmd_bone, 'name_j') c.prop(pose_bone.mmd_bone, 'name_e') c.label(text='ID: %d'%(pose_bone.mmd_bone.bone_id)) c = layout.column(align=True) row = c.row() row.prop(pose_bone.mmd_bone, 'transform_order') row.prop(pose_bone.mmd_bone, 'transform_after_dynamics') row.prop(pose_bone.mmd_bone, 'is_visible') row = c.row() row.prop(pose_bone.mmd_bone, 'is_controllable') row.prop(pose_bone.mmd_bone, 'is_tip') row.prop(pose_bone.mmd_bone, 'enabled_local_axes') row = c.row() row.prop(pose_bone.mmd_bone, 'enabled_fixed_axis') row.prop(pose_bone.mmd_bone, 'use_tail_location') row = layout.row(align=True) c = row.column() c.prop(pose_bone.mmd_bone, 'local_axis_x') c = row.column() c.prop(pose_bone.mmd_bone, 'local_axis_z') c = layout.column() row = layout.row(align=True) c = row.column() c.prop(pose_bone.mmd_bone, 'fixed_axis') class MMDBoneATPanel(Panel): bl_idname = 'BONE_PT_mmd_tools_bone_at' bl_label = 'MMD Additional Transformation' bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = 'bone' @classmethod def poll(cls, context): return context.mode == 'EDIT_ARMATURE' and context.active_bone is not None or context.mode == 'POSE' and context.active_pose_bone is not None def draw(self, context): if context.mode == 'EDIT_ARMATURE': edit_bone = context.active_bone pose_bone = context.active_object.pose.bones[edit_bone.name] else: pose_bone = context.active_pose_bone layout = self.layout c = layout.column(align=True) if pose_bone.mmd_bone.is_additional_transform_dirty: c.label(text='Changes has not been applied.', icon='ERROR') row = c.row() row.prop(pose_bone.mmd_bone, 'has_additional_rotation', text='Rotation') row.prop(pose_bone.mmd_bone, 'has_additional_location', text='Location') c = layout.column(align=True) c.prop_search(pose_bone.mmd_bone, 'additional_transform_bone', pose_bone.id_data.pose, 'bones', icon='BONE_DATA', text='') # mmd_bone = MMDBone(pose_bone) # if mmd_bone.has_additional_transform_constraint(): # constraint = mmd_bone.get_additional_transform_constraint() # c.prop_search(constraint, 'subtarget', constraint.target.pose, 'bones', icon='BONE_DATA', text='Additional Transform Bone') # else: # c.operator('mmd_tools.bone_add_additional_transform') c.prop(pose_bone.mmd_bone, 'additional_transform_influence', text='Influence')
server/tests-py/test_schema_duplication.py
gh-oss-contributor/graphql-engine-1
27,416
12694646
#!/usrbin/env python3 import pytest from validate import check_query_f @pytest.mark.usefixtures('per_method_tests_db_state') class TestSchemaDuplication: @classmethod def dir(cls): return "queries/schema/duplication/" def test_create_action_followed_by_track_table(self, hge_ctx): check_query_f(hge_ctx, self.dir() + "create_action_and_track_table_fail.yaml") def test_track_table_followed_by_create_action(self, hge_ctx): check_query_f(hge_ctx, self.dir() + "track_table_and_create_action_fail.yaml") def test_track_table_with_conflicting_custom_root_node_names(self, hge_ctx): check_query_f(hge_ctx, self.dir() + 'track_table_with_conflicting_custom_root_node_names_fail.yaml')
phy/cluster/__init__.py
fjflores/phy
118
12694650
# -*- coding: utf-8 -*- # flake8: noqa """Manual clustering facilities.""" from ._utils import ClusterMeta, UpdateInfo from .clustering import Clustering from .supervisor import Supervisor, ClusterView, SimilarityView from .views import * # noqa
sdk/python/pulumi_azure/iot/time_series_insights_event_source_eventhub.py
henriktao/pulumi-azure
109
12694654
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['TimeSeriesInsightsEventSourceEventhubArgs', 'TimeSeriesInsightsEventSourceEventhub'] @pulumi.input_type class TimeSeriesInsightsEventSourceEventhubArgs: def __init__(__self__, *, consumer_group_name: pulumi.Input[str], environment_id: pulumi.Input[str], event_source_resource_id: pulumi.Input[str], eventhub_name: pulumi.Input[str], namespace_name: pulumi.Input[str], shared_access_key: pulumi.Input[str], shared_access_key_name: pulumi.Input[str], location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, timestamp_property_name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a TimeSeriesInsightsEventSourceEventhub resource. :param pulumi.Input[str] consumer_group_name: Specifies the name of the EventHub Consumer Group that holds the partitions from which events will be read. :param pulumi.Input[str] environment_id: Specifies the id of the IoT Time Series Insights Environment that the Event Source should be associated with. Changing this forces a new resource to created. :param pulumi.Input[str] event_source_resource_id: Specifies the resource id where events will be coming from. :param pulumi.Input[str] eventhub_name: Specifies the name of the EventHub which will be associated with this resource. :param pulumi.Input[str] namespace_name: Specifies the EventHub Namespace name. :param pulumi.Input[str] shared_access_key: Specifies the value of the Shared Access Policy key that grants the Time Series Insights service read access to the EventHub. :param pulumi.Input[str] shared_access_key_name: Specifies the name of the Shared Access key that grants the Event Source access to the EventHub. :param pulumi.Input[str] location: Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Azure IoT Time Series Insights EventHub Event Source. Changing this forces a new resource to be created. Must be globally unique. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the resource. :param pulumi.Input[str] timestamp_property_name: Specifies the value that will be used as the event source's timestamp. This value defaults to the event creation time. """ pulumi.set(__self__, "consumer_group_name", consumer_group_name) pulumi.set(__self__, "environment_id", environment_id) pulumi.set(__self__, "event_source_resource_id", event_source_resource_id) pulumi.set(__self__, "eventhub_name", eventhub_name) pulumi.set(__self__, "namespace_name", namespace_name) pulumi.set(__self__, "shared_access_key", shared_access_key) pulumi.set(__self__, "shared_access_key_name", shared_access_key_name) if location is not None: pulumi.set(__self__, "location", location) if name is not None: pulumi.set(__self__, "name", name) if tags is not None: pulumi.set(__self__, "tags", tags) if timestamp_property_name is not None: pulumi.set(__self__, "timestamp_property_name", timestamp_property_name) @property @pulumi.getter(name="consumerGroupName") def consumer_group_name(self) -> pulumi.Input[str]: """ Specifies the name of the EventHub Consumer Group that holds the partitions from which events will be read. """ return pulumi.get(self, "consumer_group_name") @consumer_group_name.setter def consumer_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "consumer_group_name", value) @property @pulumi.getter(name="environmentId") def environment_id(self) -> pulumi.Input[str]: """ Specifies the id of the IoT Time Series Insights Environment that the Event Source should be associated with. Changing this forces a new resource to created. """ return pulumi.get(self, "environment_id") @environment_id.setter def environment_id(self, value: pulumi.Input[str]): pulumi.set(self, "environment_id", value) @property @pulumi.getter(name="eventSourceResourceId") def event_source_resource_id(self) -> pulumi.Input[str]: """ Specifies the resource id where events will be coming from. """ return pulumi.get(self, "event_source_resource_id") @event_source_resource_id.setter def event_source_resource_id(self, value: pulumi.Input[str]): pulumi.set(self, "event_source_resource_id", value) @property @pulumi.getter(name="eventhubName") def eventhub_name(self) -> pulumi.Input[str]: """ Specifies the name of the EventHub which will be associated with this resource. """ return pulumi.get(self, "eventhub_name") @eventhub_name.setter def eventhub_name(self, value: pulumi.Input[str]): pulumi.set(self, "eventhub_name", value) @property @pulumi.getter(name="namespaceName") def namespace_name(self) -> pulumi.Input[str]: """ Specifies the EventHub Namespace name. """ return pulumi.get(self, "namespace_name") @namespace_name.setter def namespace_name(self, value: pulumi.Input[str]): pulumi.set(self, "namespace_name", value) @property @pulumi.getter(name="sharedAccessKey") def shared_access_key(self) -> pulumi.Input[str]: """ Specifies the value of the Shared Access Policy key that grants the Time Series Insights service read access to the EventHub. """ return pulumi.get(self, "shared_access_key") @shared_access_key.setter def shared_access_key(self, value: pulumi.Input[str]): pulumi.set(self, "shared_access_key", value) @property @pulumi.getter(name="sharedAccessKeyName") def shared_access_key_name(self) -> pulumi.Input[str]: """ Specifies the name of the Shared Access key that grants the Event Source access to the EventHub. """ return pulumi.get(self, "shared_access_key_name") @shared_access_key_name.setter def shared_access_key_name(self, value: pulumi.Input[str]): pulumi.set(self, "shared_access_key_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Specifies the name of the Azure IoT Time Series Insights EventHub Event Source. Changing this forces a new resource to be created. Must be globally unique. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A mapping of tags to assign to the resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="timestampPropertyName") def timestamp_property_name(self) -> Optional[pulumi.Input[str]]: """ Specifies the value that will be used as the event source's timestamp. This value defaults to the event creation time. """ return pulumi.get(self, "timestamp_property_name") @timestamp_property_name.setter def timestamp_property_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "timestamp_property_name", value) @pulumi.input_type class _TimeSeriesInsightsEventSourceEventhubState: def __init__(__self__, *, consumer_group_name: Optional[pulumi.Input[str]] = None, environment_id: Optional[pulumi.Input[str]] = None, event_source_resource_id: Optional[pulumi.Input[str]] = None, eventhub_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, shared_access_key: Optional[pulumi.Input[str]] = None, shared_access_key_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, timestamp_property_name: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering TimeSeriesInsightsEventSourceEventhub resources. :param pulumi.Input[str] consumer_group_name: Specifies the name of the EventHub Consumer Group that holds the partitions from which events will be read. :param pulumi.Input[str] environment_id: Specifies the id of the IoT Time Series Insights Environment that the Event Source should be associated with. Changing this forces a new resource to created. :param pulumi.Input[str] event_source_resource_id: Specifies the resource id where events will be coming from. :param pulumi.Input[str] eventhub_name: Specifies the name of the EventHub which will be associated with this resource. :param pulumi.Input[str] location: Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Azure IoT Time Series Insights EventHub Event Source. Changing this forces a new resource to be created. Must be globally unique. :param pulumi.Input[str] namespace_name: Specifies the EventHub Namespace name. :param pulumi.Input[str] shared_access_key: Specifies the value of the Shared Access Policy key that grants the Time Series Insights service read access to the EventHub. :param pulumi.Input[str] shared_access_key_name: Specifies the name of the Shared Access key that grants the Event Source access to the EventHub. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the resource. :param pulumi.Input[str] timestamp_property_name: Specifies the value that will be used as the event source's timestamp. This value defaults to the event creation time. """ if consumer_group_name is not None: pulumi.set(__self__, "consumer_group_name", consumer_group_name) if environment_id is not None: pulumi.set(__self__, "environment_id", environment_id) if event_source_resource_id is not None: pulumi.set(__self__, "event_source_resource_id", event_source_resource_id) if eventhub_name is not None: pulumi.set(__self__, "eventhub_name", eventhub_name) if location is not None: pulumi.set(__self__, "location", location) if name is not None: pulumi.set(__self__, "name", name) if namespace_name is not None: pulumi.set(__self__, "namespace_name", namespace_name) if shared_access_key is not None: pulumi.set(__self__, "shared_access_key", shared_access_key) if shared_access_key_name is not None: pulumi.set(__self__, "shared_access_key_name", shared_access_key_name) if tags is not None: pulumi.set(__self__, "tags", tags) if timestamp_property_name is not None: pulumi.set(__self__, "timestamp_property_name", timestamp_property_name) @property @pulumi.getter(name="consumerGroupName") def consumer_group_name(self) -> Optional[pulumi.Input[str]]: """ Specifies the name of the EventHub Consumer Group that holds the partitions from which events will be read. """ return pulumi.get(self, "consumer_group_name") @consumer_group_name.setter def consumer_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "consumer_group_name", value) @property @pulumi.getter(name="environmentId") def environment_id(self) -> Optional[pulumi.Input[str]]: """ Specifies the id of the IoT Time Series Insights Environment that the Event Source should be associated with. Changing this forces a new resource to created. """ return pulumi.get(self, "environment_id") @environment_id.setter def environment_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "environment_id", value) @property @pulumi.getter(name="eventSourceResourceId") def event_source_resource_id(self) -> Optional[pulumi.Input[str]]: """ Specifies the resource id where events will be coming from. """ return pulumi.get(self, "event_source_resource_id") @event_source_resource_id.setter def event_source_resource_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "event_source_resource_id", value) @property @pulumi.getter(name="eventhubName") def eventhub_name(self) -> Optional[pulumi.Input[str]]: """ Specifies the name of the EventHub which will be associated with this resource. """ return pulumi.get(self, "eventhub_name") @eventhub_name.setter def eventhub_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "eventhub_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Specifies the name of the Azure IoT Time Series Insights EventHub Event Source. Changing this forces a new resource to be created. Must be globally unique. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="namespaceName") def namespace_name(self) -> Optional[pulumi.Input[str]]: """ Specifies the EventHub Namespace name. """ return pulumi.get(self, "namespace_name") @namespace_name.setter def namespace_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "namespace_name", value) @property @pulumi.getter(name="sharedAccessKey") def shared_access_key(self) -> Optional[pulumi.Input[str]]: """ Specifies the value of the Shared Access Policy key that grants the Time Series Insights service read access to the EventHub. """ return pulumi.get(self, "shared_access_key") @shared_access_key.setter def shared_access_key(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "shared_access_key", value) @property @pulumi.getter(name="sharedAccessKeyName") def shared_access_key_name(self) -> Optional[pulumi.Input[str]]: """ Specifies the name of the Shared Access key that grants the Event Source access to the EventHub. """ return pulumi.get(self, "shared_access_key_name") @shared_access_key_name.setter def shared_access_key_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "shared_access_key_name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A mapping of tags to assign to the resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="timestampPropertyName") def timestamp_property_name(self) -> Optional[pulumi.Input[str]]: """ Specifies the value that will be used as the event source's timestamp. This value defaults to the event creation time. """ return pulumi.get(self, "timestamp_property_name") @timestamp_property_name.setter def timestamp_property_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "timestamp_property_name", value) class TimeSeriesInsightsEventSourceEventhub(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, consumer_group_name: Optional[pulumi.Input[str]] = None, environment_id: Optional[pulumi.Input[str]] = None, event_source_resource_id: Optional[pulumi.Input[str]] = None, eventhub_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, shared_access_key: Optional[pulumi.Input[str]] = None, shared_access_key_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, timestamp_property_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Manages an Azure IoT Time Series Insights EventHub Event Source. ## Example Usage ```python import pulumi import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West Europe") example_event_hub_namespace = azure.eventhub.EventHubNamespace("exampleEventHubNamespace", location=example_resource_group.location, resource_group_name=example_resource_group.name, sku="Standard") example_event_hub = azure.eventhub.EventHub("exampleEventHub", namespace_name=example_event_hub_namespace.name, resource_group_name=example_resource_group.name, partition_count=2, message_retention=7) example_consumer_group = azure.eventhub.ConsumerGroup("exampleConsumerGroup", namespace_name=example_event_hub_namespace.name, eventhub_name=example_event_hub.name, resource_group_name=example_resource_group.name) example_authorization_rule = azure.eventhub.AuthorizationRule("exampleAuthorizationRule", namespace_name=example_event_hub_namespace.name, eventhub_name=example_event_hub.name, resource_group_name=example_resource_group.name, listen=True, send=False, manage=False) example_account = azure.storage.Account("exampleAccount", location=example_resource_group.location, resource_group_name=example_resource_group.name, account_tier="Standard", account_replication_type="LRS") example_time_series_insights_gen2_environment = azure.iot.TimeSeriesInsightsGen2Environment("exampleTimeSeriesInsightsGen2Environment", location=example_resource_group.location, resource_group_name=example_resource_group.name, sku_name="L1", id_properties=["id"], storage=azure.iot.TimeSeriesInsightsGen2EnvironmentStorageArgs( name=example_account.name, key=example_account.primary_access_key, )) example_time_series_insights_event_source_eventhub = azure.iot.TimeSeriesInsightsEventSourceEventhub("exampleTimeSeriesInsightsEventSourceEventhub", location=example_resource_group.location, environment_id=example_time_series_insights_gen2_environment.id, eventhub_name=example_event_hub.name, namespace_name=example_event_hub_namespace.name, shared_access_key=example_authorization_rule.primary_key, shared_access_key_name=example_authorization_rule.name, consumer_group_name=example_consumer_group.name, event_source_resource_id=example_event_hub.id) ``` ## Import Azure IoT Time Series Insights EventHub Event Source can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:iot/timeSeriesInsightsEventSourceEventhub:TimeSeriesInsightsEventSourceEventhub example /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/example/providers/Microsoft.TimeSeriesInsights/environments/environment1/eventSources/example ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] consumer_group_name: Specifies the name of the EventHub Consumer Group that holds the partitions from which events will be read. :param pulumi.Input[str] environment_id: Specifies the id of the IoT Time Series Insights Environment that the Event Source should be associated with. Changing this forces a new resource to created. :param pulumi.Input[str] event_source_resource_id: Specifies the resource id where events will be coming from. :param pulumi.Input[str] eventhub_name: Specifies the name of the EventHub which will be associated with this resource. :param pulumi.Input[str] location: Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Azure IoT Time Series Insights EventHub Event Source. Changing this forces a new resource to be created. Must be globally unique. :param pulumi.Input[str] namespace_name: Specifies the EventHub Namespace name. :param pulumi.Input[str] shared_access_key: Specifies the value of the Shared Access Policy key that grants the Time Series Insights service read access to the EventHub. :param pulumi.Input[str] shared_access_key_name: Specifies the name of the Shared Access key that grants the Event Source access to the EventHub. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the resource. :param pulumi.Input[str] timestamp_property_name: Specifies the value that will be used as the event source's timestamp. This value defaults to the event creation time. """ ... @overload def __init__(__self__, resource_name: str, args: TimeSeriesInsightsEventSourceEventhubArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages an Azure IoT Time Series Insights EventHub Event Source. ## Example Usage ```python import pulumi import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West Europe") example_event_hub_namespace = azure.eventhub.EventHubNamespace("exampleEventHubNamespace", location=example_resource_group.location, resource_group_name=example_resource_group.name, sku="Standard") example_event_hub = azure.eventhub.EventHub("exampleEventHub", namespace_name=example_event_hub_namespace.name, resource_group_name=example_resource_group.name, partition_count=2, message_retention=7) example_consumer_group = azure.eventhub.ConsumerGroup("exampleConsumerGroup", namespace_name=example_event_hub_namespace.name, eventhub_name=example_event_hub.name, resource_group_name=example_resource_group.name) example_authorization_rule = azure.eventhub.AuthorizationRule("exampleAuthorizationRule", namespace_name=example_event_hub_namespace.name, eventhub_name=example_event_hub.name, resource_group_name=example_resource_group.name, listen=True, send=False, manage=False) example_account = azure.storage.Account("exampleAccount", location=example_resource_group.location, resource_group_name=example_resource_group.name, account_tier="Standard", account_replication_type="LRS") example_time_series_insights_gen2_environment = azure.iot.TimeSeriesInsightsGen2Environment("exampleTimeSeriesInsightsGen2Environment", location=example_resource_group.location, resource_group_name=example_resource_group.name, sku_name="L1", id_properties=["id"], storage=azure.iot.TimeSeriesInsightsGen2EnvironmentStorageArgs( name=example_account.name, key=example_account.primary_access_key, )) example_time_series_insights_event_source_eventhub = azure.iot.TimeSeriesInsightsEventSourceEventhub("exampleTimeSeriesInsightsEventSourceEventhub", location=example_resource_group.location, environment_id=example_time_series_insights_gen2_environment.id, eventhub_name=example_event_hub.name, namespace_name=example_event_hub_namespace.name, shared_access_key=example_authorization_rule.primary_key, shared_access_key_name=example_authorization_rule.name, consumer_group_name=example_consumer_group.name, event_source_resource_id=example_event_hub.id) ``` ## Import Azure IoT Time Series Insights EventHub Event Source can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:iot/timeSeriesInsightsEventSourceEventhub:TimeSeriesInsightsEventSourceEventhub example /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/example/providers/Microsoft.TimeSeriesInsights/environments/environment1/eventSources/example ``` :param str resource_name: The name of the resource. :param TimeSeriesInsightsEventSourceEventhubArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(TimeSeriesInsightsEventSourceEventhubArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, consumer_group_name: Optional[pulumi.Input[str]] = None, environment_id: Optional[pulumi.Input[str]] = None, event_source_resource_id: Optional[pulumi.Input[str]] = None, eventhub_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, shared_access_key: Optional[pulumi.Input[str]] = None, shared_access_key_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, timestamp_property_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = TimeSeriesInsightsEventSourceEventhubArgs.__new__(TimeSeriesInsightsEventSourceEventhubArgs) if consumer_group_name is None and not opts.urn: raise TypeError("Missing required property 'consumer_group_name'") __props__.__dict__["consumer_group_name"] = consumer_group_name if environment_id is None and not opts.urn: raise TypeError("Missing required property 'environment_id'") __props__.__dict__["environment_id"] = environment_id if event_source_resource_id is None and not opts.urn: raise TypeError("Missing required property 'event_source_resource_id'") __props__.__dict__["event_source_resource_id"] = event_source_resource_id if eventhub_name is None and not opts.urn: raise TypeError("Missing required property 'eventhub_name'") __props__.__dict__["eventhub_name"] = eventhub_name __props__.__dict__["location"] = location __props__.__dict__["name"] = name if namespace_name is None and not opts.urn: raise TypeError("Missing required property 'namespace_name'") __props__.__dict__["namespace_name"] = namespace_name if shared_access_key is None and not opts.urn: raise TypeError("Missing required property 'shared_access_key'") __props__.__dict__["shared_access_key"] = shared_access_key if shared_access_key_name is None and not opts.urn: raise TypeError("Missing required property 'shared_access_key_name'") __props__.__dict__["shared_access_key_name"] = shared_access_key_name __props__.__dict__["tags"] = tags __props__.__dict__["timestamp_property_name"] = timestamp_property_name super(TimeSeriesInsightsEventSourceEventhub, __self__).__init__( 'azure:iot/timeSeriesInsightsEventSourceEventhub:TimeSeriesInsightsEventSourceEventhub', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, consumer_group_name: Optional[pulumi.Input[str]] = None, environment_id: Optional[pulumi.Input[str]] = None, event_source_resource_id: Optional[pulumi.Input[str]] = None, eventhub_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, shared_access_key: Optional[pulumi.Input[str]] = None, shared_access_key_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, timestamp_property_name: Optional[pulumi.Input[str]] = None) -> 'TimeSeriesInsightsEventSourceEventhub': """ Get an existing TimeSeriesInsightsEventSourceEventhub resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] consumer_group_name: Specifies the name of the EventHub Consumer Group that holds the partitions from which events will be read. :param pulumi.Input[str] environment_id: Specifies the id of the IoT Time Series Insights Environment that the Event Source should be associated with. Changing this forces a new resource to created. :param pulumi.Input[str] event_source_resource_id: Specifies the resource id where events will be coming from. :param pulumi.Input[str] eventhub_name: Specifies the name of the EventHub which will be associated with this resource. :param pulumi.Input[str] location: Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Azure IoT Time Series Insights EventHub Event Source. Changing this forces a new resource to be created. Must be globally unique. :param pulumi.Input[str] namespace_name: Specifies the EventHub Namespace name. :param pulumi.Input[str] shared_access_key: Specifies the value of the Shared Access Policy key that grants the Time Series Insights service read access to the EventHub. :param pulumi.Input[str] shared_access_key_name: Specifies the name of the Shared Access key that grants the Event Source access to the EventHub. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the resource. :param pulumi.Input[str] timestamp_property_name: Specifies the value that will be used as the event source's timestamp. This value defaults to the event creation time. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _TimeSeriesInsightsEventSourceEventhubState.__new__(_TimeSeriesInsightsEventSourceEventhubState) __props__.__dict__["consumer_group_name"] = consumer_group_name __props__.__dict__["environment_id"] = environment_id __props__.__dict__["event_source_resource_id"] = event_source_resource_id __props__.__dict__["eventhub_name"] = eventhub_name __props__.__dict__["location"] = location __props__.__dict__["name"] = name __props__.__dict__["namespace_name"] = namespace_name __props__.__dict__["shared_access_key"] = shared_access_key __props__.__dict__["shared_access_key_name"] = shared_access_key_name __props__.__dict__["tags"] = tags __props__.__dict__["timestamp_property_name"] = timestamp_property_name return TimeSeriesInsightsEventSourceEventhub(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="consumerGroupName") def consumer_group_name(self) -> pulumi.Output[str]: """ Specifies the name of the EventHub Consumer Group that holds the partitions from which events will be read. """ return pulumi.get(self, "consumer_group_name") @property @pulumi.getter(name="environmentId") def environment_id(self) -> pulumi.Output[str]: """ Specifies the id of the IoT Time Series Insights Environment that the Event Source should be associated with. Changing this forces a new resource to created. """ return pulumi.get(self, "environment_id") @property @pulumi.getter(name="eventSourceResourceId") def event_source_resource_id(self) -> pulumi.Output[str]: """ Specifies the resource id where events will be coming from. """ return pulumi.get(self, "event_source_resource_id") @property @pulumi.getter(name="eventhubName") def eventhub_name(self) -> pulumi.Output[str]: """ Specifies the name of the EventHub which will be associated with this resource. """ return pulumi.get(self, "eventhub_name") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Specifies the name of the Azure IoT Time Series Insights EventHub Event Source. Changing this forces a new resource to be created. Must be globally unique. """ return pulumi.get(self, "name") @property @pulumi.getter(name="namespaceName") def namespace_name(self) -> pulumi.Output[str]: """ Specifies the EventHub Namespace name. """ return pulumi.get(self, "namespace_name") @property @pulumi.getter(name="sharedAccessKey") def shared_access_key(self) -> pulumi.Output[str]: """ Specifies the value of the Shared Access Policy key that grants the Time Series Insights service read access to the EventHub. """ return pulumi.get(self, "shared_access_key") @property @pulumi.getter(name="sharedAccessKeyName") def shared_access_key_name(self) -> pulumi.Output[str]: """ Specifies the name of the Shared Access key that grants the Event Source access to the EventHub. """ return pulumi.get(self, "shared_access_key_name") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A mapping of tags to assign to the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="timestampPropertyName") def timestamp_property_name(self) -> pulumi.Output[str]: """ Specifies the value that will be used as the event source's timestamp. This value defaults to the event creation time. """ return pulumi.get(self, "timestamp_property_name")
examples/Cuda/ReconstructionSystem/profile/scripts/draw_mc_time.py
devshank3/Open3D
113
12694660
import matplotlib.pyplot as plt import numpy as np def draw_text(ax, x, y): max_y = np.max(y) for i, v in enumerate(y): text = str(y[i]) ax.text(x[i] - 0.045 * len(text), y[i], r'\textbf{' + text + '}') def draw_error_bar(ax, x, xticks, y_gpu, e_gpu, title, ylabel): offset = 0.2 width = offset * 2 bar_gpu = ax.bar(x, y_gpu, width=width, color=(0.86, 0.27, 0.22)) ax.errorbar(x, y_gpu, yerr=e_gpu, fmt='.', color=(0.96, 0.71, 0),capsize=10) ax.yaxis.grid(True) ax.set_xticks(x) ax.set_xticklabels(xticks) ax.set_title(title) ax.set_ylabel(ylabel) if __name__ == '__main__': plt.rc('text', usetex=True) plt.rc('font', family='serif') fig, axs = plt.subplots(figsize=(5, 3)) x = np.array([1, 2, 3, 4, 5]) labels = [r'\textit{fr2\_desktop}', r'\textit{fr3\_household}', r'\textit{lounge}', r'\textit{copyroom}', r'\textit{livingroom1}'] # mean = 8.713374, std = 1.637024 y_gpu_mc = np.array([8.71, 11.63, 6.28, 5.18, 4.07]) e_gpu_mc = np.array([1.64, 3.25, 1.98, 1.94, 1.15]) draw_error_bar(axs, x, labels, y_gpu_mc, e_gpu_mc, r'\textbf{Marching Cubes for Voxels in Frustum}', r'\textbf{Average time per frame} (ms)') fig.tight_layout() # bar_cpu_odom = plt.bar(x + offset, y_cpu_odom, width=width) # plt.errorbar(x + offset, y_cpu_odom, yerr=e_cpu_odom, fmt='.g', capsize=20) # for i, v in enumerate(y_cpu_odom): # plt.text(x[i] + offset + 0.02, y_cpu_odom[i] + 5, str(y_cpu_odom[i])) plt.savefig('mc_time.pdf', bbox_inches='tight') plt.show()
cookbook/gravmag_transform_rtp.py
XuesongDing/fatiando
179
12694664
<gh_stars>100-1000 """ GravMag: Reduction to the pole of a total field anomaly using FFT """ from fatiando import mesher, gridder, utils from fatiando.gravmag import prism, transform from fatiando.vis import mpl # Direction of the Geomagnetic field inc, dec = -60, 0 # Make a model with only induced magnetization model = [mesher.Prism(-100, 100, -100, 100, 0, 2000, {'magnetization': utils.ang2vec(10, inc, dec)})] area = (-5000, 5000, -5000, 5000) shape = (100, 100) z0 = -500 x, y, z = gridder.regular(area, shape, z=z0) tf = utils.contaminate(prism.tf(x, y, z, model, inc, dec), 1, seed=0) # Reduce to the pole using FFT. Since there is only induced magnetization, the # magnetization direction (sinc and sdec) is the same as the geomagnetic field pole = transform.reduce_to_pole(x, y, tf, shape, inc, dec, sinc=inc, sdec=dec) # Calculate the true value at the pole for comparison true = prism.tf(x, y, z, model, 90, 0, pmag=utils.ang2vec(10, 90, 0)) fig, axes = mpl.subplots(1, 3, figsize=(14, 4)) for ax in axes: ax.set_aspect('equal') mpl.sca(axes[0]) mpl.title("Original total field anomaly") mpl.contourf(y, x, tf, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(pad=0).set_label('nT') mpl.m2km() mpl.sca(axes[1]) mpl.title("True value at pole") mpl.contourf(y, x, true, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(pad=0).set_label('nT') mpl.m2km() mpl.sca(axes[2]) mpl.title("Reduced to the pole") mpl.contourf(y, x, pole, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(pad=0).set_label('nT') mpl.m2km() mpl.tight_layout() mpl.show()
legacy/backends/processing/processing_base_backend.py
ParikhKadam/zenml
1,275
12694670
# Copyright (c) ZenML GmbH 2020. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. """Definition of the data Processing Backend""" from typing import Optional, List, Text from zenml.backends import BaseBackend class ProcessingBaseBackend(BaseBackend): """ Use this class to run a ZenML pipeline locally. Every ZenML pipeline runs in backends. A dedicated processing backend can be used to efficiently process large amounts of incoming data in parallel, potentially distributed across multiple machines. This can happen on local processing backends as well as cloud-based variants like Google Cloud Dataflow. More powerful machines with higher core counts and clock speeds can be leveraged to increase processing throughput significantly. """ BACKEND_TYPE = 'processing' def get_beam_args(self, pipeline_name: Text = None, pipeline_root: Text = None) -> \ Optional[List[Text]]: """ Returns a list of beam args for the pipeline. Args: pipeline_name: Name of the pipeline. pipeline_root: Root dir of pipeline. """ # TODO: [LOW] Check if multiprocessing slows pipeline down or not. return [ # '--direct_running_mode=multi_processing', # # 0 means auto-detect based on on the number of CPUs available # # during execution time. # '--direct_num_workers=0', ]
build/util/lastchange.py
zealoussnow/chromium
14,668
12694693
<gh_stars>1000+ #!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ lastchange.py -- Chromium revision fetching utility. """ from __future__ import print_function import argparse import collections import datetime import logging import os import subprocess import sys VersionInfo = collections.namedtuple("VersionInfo", ("revision_id", "revision", "timestamp")) class GitError(Exception): pass # This function exists for compatibility with logic outside this # repository that uses this file as a library. # TODO(eliribble) remove this function after it has been ported into # the repositories that depend on it def RunGitCommand(directory, command): """ Launches git subcommand. Errors are swallowed. Returns: A process object or None. """ command = ['git'] + command # Force shell usage under cygwin. This is a workaround for # mysterious loss of cwd while invoking cygwin's git. # We can't just pass shell=True to Popen, as under win32 this will # cause CMD to be used, while we explicitly want a cygwin shell. if sys.platform == 'cygwin': command = ['sh', '-c', ' '.join(command)] try: proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=directory, shell=(sys.platform=='win32')) return proc except OSError as e: logging.error('Command %r failed: %s' % (' '.join(command), e)) return None def _RunGitCommand(directory, command): """Launches git subcommand. Returns: The stripped stdout of the git command. Raises: GitError on failure, including a nonzero return code. """ command = ['git'] + command # Force shell usage under cygwin. This is a workaround for # mysterious loss of cwd while invoking cygwin's git. # We can't just pass shell=True to Popen, as under win32 this will # cause CMD to be used, while we explicitly want a cygwin shell. if sys.platform == 'cygwin': command = ['sh', '-c', ' '.join(command)] try: logging.info("Executing '%s' in %s", ' '.join(command), directory) proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=directory, shell=(sys.platform=='win32')) stdout, stderr = tuple(x.decode(encoding='utf_8') for x in proc.communicate()) stdout = stdout.strip() logging.debug("returncode: %d", proc.returncode) logging.debug("stdout: %s", stdout) logging.debug("stderr: %s", stderr) if proc.returncode != 0 or not stdout: raise GitError(( "Git command '{}' in {} failed: " "rc={}, stdout='{}' stderr='{}'").format( " ".join(command), directory, proc.returncode, stdout, stderr)) return stdout except OSError as e: raise GitError("Git command 'git {}' in {} failed: {}".format( " ".join(command), directory, e)) def GetMergeBase(directory, ref): """ Return the merge-base of HEAD and ref. Args: directory: The directory containing the .git directory. ref: The ref to use to find the merge base. Returns: The git commit SHA of the merge-base as a string. """ logging.debug("Calculating merge base between HEAD and %s in %s", ref, directory) command = ['merge-base', 'HEAD', ref] return _RunGitCommand(directory, command) def FetchGitRevision(directory, commit_filter, start_commit="HEAD"): """ Fetch the Git hash (and Cr-Commit-Position if any) for a given directory. Args: directory: The directory containing the .git directory. commit_filter: A filter to supply to grep to filter commits start_commit: A commit identifier. The result of this function will be limited to only consider commits before the provided commit. Returns: A VersionInfo object. On error all values will be 0. """ hash_ = '' git_args = ['log', '-1', '--format=%H %ct'] if commit_filter is not None: git_args.append('--grep=' + commit_filter) git_args.append(start_commit) output = _RunGitCommand(directory, git_args) hash_, commit_timestamp = output.split() if not hash_: return VersionInfo('0', '0', 0) revision = hash_ output = _RunGitCommand(directory, ['cat-file', 'commit', hash_]) for line in reversed(output.splitlines()): if line.startswith('Cr-Commit-Position:'): pos = line.rsplit()[-1].strip() logging.debug("Found Cr-Commit-Position '%s'", pos) revision = "{}-{}".format(hash_, pos) break return VersionInfo(hash_, revision, int(commit_timestamp)) def GetHeaderGuard(path): """ Returns the header #define guard for the given file path. This treats everything after the last instance of "src/" as being a relevant part of the guard. If there is no "src/", then the entire path is used. """ src_index = path.rfind('src/') if src_index != -1: guard = path[src_index + 4:] else: guard = path guard = guard.upper() return guard.replace('/', '_').replace('.', '_').replace('\\', '_') + '_' def GetHeaderContents(path, define, version): """ Returns what the contents of the header file should be that indicate the given revision. """ header_guard = GetHeaderGuard(path) header_contents = """/* Generated by lastchange.py, do not edit.*/ #ifndef %(header_guard)s #define %(header_guard)s #define %(define)s "%(version)s" #endif // %(header_guard)s """ header_contents = header_contents % { 'header_guard': header_guard, 'define': define, 'version': version } return header_contents def GetGitTopDirectory(source_dir): """Get the top git directory - the directory that contains the .git directory. Args: source_dir: The directory to search. Returns: The output of "git rev-parse --show-toplevel" as a string """ return _RunGitCommand(source_dir, ['rev-parse', '--show-toplevel']) def WriteIfChanged(file_name, contents): """ Writes the specified contents to the specified file_name iff the contents are different than the current contents. Returns if new data was written. """ try: old_contents = open(file_name, 'r').read() except EnvironmentError: pass else: if contents == old_contents: return False os.unlink(file_name) open(file_name, 'w').write(contents) return True def main(argv=None): if argv is None: argv = sys.argv parser = argparse.ArgumentParser(usage="lastchange.py [options]") parser.add_argument("-m", "--version-macro", help=("Name of C #define when using --header. Defaults to " "LAST_CHANGE.")) parser.add_argument("-o", "--output", metavar="FILE", help=("Write last change to FILE. " "Can be combined with --header to write both files.")) parser.add_argument("--header", metavar="FILE", help=("Write last change to FILE as a C/C++ header. " "Can be combined with --output to write both files.")) parser.add_argument("--merge-base-ref", default=None, help=("Only consider changes since the merge " "base between HEAD and the provided ref")) parser.add_argument("--revision-id-only", action='store_true', help=("Output the revision as a VCS revision ID only (in " "Git, a 40-character commit hash, excluding the " "Cr-Commit-Position).")) parser.add_argument("--revision-id-prefix", metavar="PREFIX", help=("Adds a string prefix to the VCS revision ID.")) parser.add_argument("--print-only", action="store_true", help=("Just print the revision string. Overrides any " "file-output-related options.")) parser.add_argument("-s", "--source-dir", metavar="DIR", help="Use repository in the given directory.") parser.add_argument("--filter", metavar="REGEX", help=("Only use log entries where the commit message " "matches the supplied filter regex. Defaults to " "'^Change-Id:' to suppress local commits."), default='^Change-Id:') args, extras = parser.parse_known_args(argv[1:]) logging.basicConfig(level=logging.WARNING) out_file = args.output header = args.header commit_filter=args.filter while len(extras) and out_file is None: if out_file is None: out_file = extras.pop(0) if extras: sys.stderr.write('Unexpected arguments: %r\n\n' % extras) parser.print_help() sys.exit(2) source_dir = args.source_dir or os.path.dirname(os.path.abspath(__file__)) try: git_top_dir = GetGitTopDirectory(source_dir) except GitError as e: logging.error("Failed to get git top directory from '%s': %s", source_dir, e) return 2 if args.merge_base_ref: try: merge_base_sha = GetMergeBase(git_top_dir, args.merge_base_ref) except GitError as e: logging.error("You requested a --merge-base-ref value of '%s' but no " "merge base could be found between it and HEAD. Git " "reports: %s", args.merge_base_ref, e) return 3 else: merge_base_sha = 'HEAD' try: version_info = FetchGitRevision(git_top_dir, commit_filter, merge_base_sha) except GitError as e: logging.error("Failed to get version info: %s", e) logging.info(("Falling back to a version of 0.0.0 to allow script to " "finish. This is normal if you are bootstrapping a new environment " "or do not have a git repository for any other reason. If not, this " "could represent a serious error.")) version_info = VersionInfo('0', '0', 0) revision_string = version_info.revision if args.revision_id_only: revision_string = version_info.revision_id if args.revision_id_prefix: revision_string = args.revision_id_prefix + revision_string if args.print_only: print(revision_string) else: lastchange_year = datetime.datetime.utcfromtimestamp( version_info.timestamp).year contents_lines = [ "LASTCHANGE=%s" % revision_string, "LASTCHANGE_YEAR=%s" % lastchange_year, ] contents = '\n'.join(contents_lines) + '\n' if not out_file and not args.header: sys.stdout.write(contents) else: if out_file: committime_file = out_file + '.committime' out_changed = WriteIfChanged(out_file, contents) if out_changed or not os.path.exists(committime_file): with open(committime_file, 'w') as timefile: timefile.write(str(version_info.timestamp)) if header: WriteIfChanged(header, GetHeaderContents(header, args.version_macro, revision_string)) return 0 if __name__ == '__main__': sys.exit(main())
Testing/elx_compare_overlap.py
eliseemond/elastix
318
12694700
<reponame>eliseemond/elastix import sys, subprocess import os import os.path import shutil import re import glob from optparse import OptionParser #------------------------------------------------------------------------------- # the main function # Below we deform the moving image segmentation by the current result as well as # by a previous stored result. This makes this test a regression test. # # We could instead compare with a fixed image segmentation, but that would require # the tested registrations to be relatively good, which they are not to save time. def main(): # usage, parse parameters usage = "usage: %prog [options] arg"; parser = OptionParser( usage ); # option to debug and verbose parser.add_option( "-v", "--verbose", action="store_true", dest="verbose" ); # options to control files parser.add_option( "-d", "--directory", dest="directory", help="elastix output directory" ); parser.add_option( "-m", "--movingsegmentation", dest="mseg", help="moving image segmentation" ); parser.add_option( "-b", "--baselinetp", dest="btp", help="baseline transform parameter file" ); parser.add_option( "-p", "--path", dest="path", help="path where executables can be found" ); (options, args) = parser.parse_args(); # Check if option -d and -m and -b are given if options.directory == None : parser.error( "The option directory (-d) should be given" ); if options.mseg == None : parser.error( "The option directory (-m) should be given" ); if options.btp == None : parser.error( "The option directory (-b) should be given" ); # Get the transform parameters files tpFileName_in = os.path.join( options.directory, "TransformParameters.0.txt" ); tpFileName = os.path.join( options.directory, "TransformParameters.seg.txt" ); tpFileName_b_in = options.btp; tpFileName_b = os.path.join( options.directory, "TransformParameters.baseline.seg.txt" ); # Sanity checks if not os.path.exists( tpFileName_in ) : print( "ERROR: the file " + tpFileName_in + " does not exist" ); return 1; # Below we use programs that are compiled with elastix, and are thus available # in the binary directory. The user of this script has to supply the path # to the binary directory via the command line. # In order to make sure that python is able to find these programs we add # the paths to the local environment. _path = os.path.dirname( options.path ); _path += os.pathsep + os.getenv('PATH'); os.environ['PATH'] = _path; # # Deform the moving image segmentation by the current result # print( "Deforming moving image segmentation using " + tpFileName_in ); # Make the transform parameters file suitable for binary images f1 = open( tpFileName_in, 'r' ); f2 = open( tpFileName, 'w' ); for line in f1 : lineout = line.replace( '(FinalBSplineInterpolationOrder 3)', '(FinalBSplineInterpolationOrder 0)' ); lineout = re.sub( "(ResultImageFormat \"mhd\")", "ResultImageFormat \"mha\"", lineout ); lineout = re.sub( "(ResultImagePixelType \"short\")", "ResultImagePixelType \"unsigned char\"", lineout ); lineout = re.sub( "(CompressResultImage \"false\")", "CompressResultImage \"true\"", lineout ); f2.write( lineout ); f1.close(); f2.close(); # Transform the moving image segmentation to mimick the baseline result seg = os.path.join( options.directory, "result.mha" ); seg_defm = os.path.join( options.directory, "segmentation_deformed.mha" ); subprocess.call( [ "transformix", "-in", options.mseg, "-out", options.directory, "-tp", tpFileName ], stdout=subprocess.PIPE ); if( os.path.exists( seg_defm ) ) : os.remove( seg_defm ); shutil.move( seg, seg_defm ); # # Deform the moving image segmentation by the baseline result # print( "Deforming moving image segmentation using " + tpFileName_b_in ); # Make the transform parameters file suitable for binary images f1 = open( tpFileName_b_in, 'r' ); f2 = open( tpFileName_b, 'w' ); for line in f1 : lineout = line.replace( '(FinalBSplineInterpolationOrder 3)', '(FinalBSplineInterpolationOrder 0)' ); lineout = re.sub( "(ResultImageFormat \"mhd\")", "ResultImageFormat \"mha\"", lineout ); lineout = re.sub( "(ResultImagePixelType \"short\")", "ResultImagePixelType \"unsigned char\"", lineout ); lineout = re.sub( "(CompressResultImage \"false\")", "CompressResultImage \"true\"", lineout ); f2.write( lineout ); f1.close(); f2.close(); # Transform the moving image segmentation to mimick the fixed image segmentation seg_defb = os.path.join( options.directory, "segmentation_baseline.mha" ); subprocess.call( [ "transformix", "-in", options.mseg, "-out", options.directory, "-tp", tpFileName_b ], stdout=subprocess.PIPE ); if( os.path.exists( seg_defb ) ) : os.remove( seg_defb ); shutil.move( seg, seg_defb ); # Compute the overlap between baseline segmentation and deformed moving segmentation try : # This will work from python 2.7 on outputAsString = subprocess.check_output( [ "elxComputeOverlap", "-in", seg_defm, seg_defb ] ).decode("utf-8"); except : # Workaround for python 2.6 and lower. For MacMini specifically. outputAsString = subprocess.Popen( [ "elxComputeOverlap", "-in", seg_defm, seg_defb ], stdout=subprocess.PIPE ).communicate()[0].decode("utf-8"); overlap = outputAsString[ outputAsString.find( "Overlap" ) : ].strip( "Overlap: " ); # Report print( "The segmentation overlap between current and baseline is " + overlap ); if float( overlap ) > 0.99 : print( "SUCCESS: overlap is higher than 0.99" ); return 0; else : print( "FAILURE: overlap is lower than 0.99" ); return 1; #------------------------------------------------------------------------------- if __name__ == '__main__': sys.exit(main())
plenum/test/metrics/helper.py
andkononykhin/plenum
148
12694710
<reponame>andkononykhin/plenum from datetime import datetime, timedelta from numbers import Number from random import choice, uniform, gauss, random, randint from typing import List, Union from plenum.common.metrics_collector import MetricsName, MetricsEvent, MetricsCollector from plenum.common.value_accumulator import ValueAccumulator def gen_metrics_name() -> MetricsName: return choice(list(MetricsName)) def gen_next_timestamp(prev=None) -> datetime: def round_ts(ts: datetime) -> datetime: us = round(ts.microsecond - 500, -3) return ts.replace(microsecond=us) if prev is None: return round_ts(datetime.utcnow()) return round_ts(prev + timedelta(seconds=uniform(0.001, 10.0))) def generate_events(num: int, min_ts=None) -> List[MetricsEvent]: ts = gen_next_timestamp(min_ts) result = [] for _ in range(num): ts = gen_next_timestamp(ts) name = gen_metrics_name() if random() > 0.5: value = gauss(0.0, 100.0) else: value = ValueAccumulator([gauss(0.0, 100.0) for _ in range(randint(2, 5))]) result += [MetricsEvent(ts, name, value)] return result class MockEvent: def __init__(self, name, count, sum): self.name = name self.count = count self.sum = sum def __eq__(self, other): if not isinstance(other, MockEvent): return False if self.name != other.name: return False if self.count != other.count: return False return self.sum == other.sum @property def avg(self): return self.sum / self.count class MockMetricsCollector(MetricsCollector): def __init__(self): super().__init__() self.events = [] def store_event(self, name: MetricsName, value: Union[Number, ValueAccumulator]): if isinstance(value, Number): self.events.append(MockEvent(name, 1, value)) else: self.events.append(MockEvent(name, value.count, value.sum))
src/0485.max-consecutive-ones/max-consecutive-ones.py
lyphui/Just-Code
782
12694737
<gh_stars>100-1000 class Solution: def findMaxConsecutiveOnes(self, nums: List[int]) -> int: res = cnt = 0 for i in nums: if i: cnt += 1 else: if cnt: res = max(res, cnt) cnt = 0 return max(res, cnt)
albu/src/carvana_eval.py
chritter/kaggle_carvana_segmentation
447
12694747
<filename>albu/src/carvana_eval.py import os import cv2 import numpy as np from utils import get_config, get_csv_folds from dataset.h5like_interface import H5LikeFileInterface from eval import Evaluator, flip from dataset.carvana_dataset import CarvanaDataset class FullImageEvaluator(Evaluator): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def process_data(self, predicted, model, data, prefix=""): names, samples, masks = self.get_data(data) for i in range(len(names)): self.prev_name = names[i] self.full_pred = np.squeeze(predicted[i,...]) if samples is not None: self.full_image = (samples[i,...] * 255).astype(np.uint8) if masks is not None: self.full_mask = (np.squeeze(masks[i,...]) * 255).astype(np.uint8) self.on_image_constructed(prefix) def save(self, name, prefix=""): cv2.imwrite(os.path.join(self.config.results_dir, 'mask_{}'.format(name)), (self.full_pred * 255).astype(np.uint8)) class CarvanaEval(FullImageEvaluator): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def save(self, name, prefix=""): name, ext = os.path.splitext(name) cv2.imwrite(os.path.join('..', 'results', self.config.folder, "{}{}.png".format(prefix, name)), (self.full_pred[:1280, :1918] * 255).astype(np.uint8)) def eval_config(config_path): test = True config = get_config(config_path) num_workers = 0 if os.name == 'nt' else 3 root = config.dataset_path image_folder_name = 'train_hq' if not test else 'test_hq' c_ds = CarvanaDataset(root, config.img_rows, config.img_cols, image_folder_name=image_folder_name, apply_clahe=config.use_clahe) ds = H5LikeFileInterface(c_ds) if not test: f = 'f04a.csv' if 'f04a' in config.folder else 'fma.csv' folds = get_csv_folds(os.path.join('..', f), os.listdir(os.path.join(root, image_folder_name))) else: folds = [([], list(range(len(c_ds)))) for i in range(5)] keval = CarvanaEval(config, ds, folds, test=test, flips=flip.FLIP_LR, num_workers=num_workers, border=0) keval.need_dice = True skip_folds = [i for i in range(5) if config.fold is not None and i != int(config.fold)] print('skipping folds: ', skip_folds) keval.predict(skip_folds=skip_folds) if __name__ == "__main__": for config in os.listdir('../configs'): eval_config(os.path.join('..', 'configs', config))
plugins/input-syslog/examples/kafka_comsumer.py
andrei-hanciu/open-nti
229
12694764
<gh_stars>100-1000 import argparse import json from kafka import KafkaConsumer, KafkaProducer parser = argparse.ArgumentParser(description='user input') parser.add_argument("--kafka", dest="kafka_addr", help="Provide Kafka Addr : localhost:9092") parser.add_argument("--topic", dest="topic", default='events', help="Specify which topic to listen") parser.add_argument("--event", dest="event", help="Filter a specific topic") args = parser.parse_args() consumer = KafkaConsumer(bootstrap_servers=args.kafka_addr, auto_offset_reset='earliest') consumer.subscribe([args.topic]) for message in consumer: ## Decode JSON msg = json.loads(message.value) if args.event: if msg['event'] and msg['event'] == args.event: print (msg) else: print message
PokerRL/eval/rl_br/_util.py
m0n0l0c0/PokerRL
247
12694795
<reponame>m0n0l0c0/PokerRL<filename>PokerRL/eval/rl_br/_util.py from PokerRL.game._.rl_env.poker_types.DiscretizedPokerEnv import DiscretizedPokerEnv from PokerRL.game._.rl_env.poker_types.LimitPokerEnv import LimitPokerEnv from PokerRL.rl.rl_util import get_builder_from_str, get_env_cls_from_str def get_env_builder_rlbr(t_prof): env_bldr_cls = get_builder_from_str(t_prof.env_builder_cls_str) return env_bldr_cls(env_cls=get_env_cls_from_str(t_prof.game_cls_str), env_args=t_prof.module_args["rlbr"].get_rlbr_env_args( agents_env_args=t_prof.module_args["env"])) def reset_episode_multi_action_space(rlbr_env_wrapper, opponent_agent): ret = rlbr_env_wrapper.reset() opponent_agent.reset(deck_state_dict=rlbr_env_wrapper.env.cards_state_dict()) return ret def notify_agent_multi_action_space(action_int, rlbr_seat_id, rlbr_env_wrapper, opponent_agent): _type = type(rlbr_env_wrapper.env) if issubclass(_type, LimitPokerEnv): opponent_agent.notify_of_action(p_id_acted=rlbr_seat_id, action_he_did=action_int) elif issubclass(_type, DiscretizedPokerEnv): if action_int >= 2: raise_frac = rlbr_env_wrapper.env.bet_sizes_list_as_frac_of_pot[action_int - 2] opponent_agent.notify_of_raise_frac_action(p_id_acted=rlbr_seat_id, frac=raise_frac) else: opponent_agent.notify_of_action(p_id_acted=rlbr_seat_id, action_he_did=action_int) else: raise ValueError(_type) def step_from_opp_action(action_int, opponent, rlbr_env_wrapper): _type = type(rlbr_env_wrapper.env) if issubclass(_type, LimitPokerEnv): return rlbr_env_wrapper.step(action=action_int) elif issubclass(_type, DiscretizedPokerEnv): if action_int >= 2: raise_frac = opponent.env_bldr.env_args.bet_sizes_list_as_frac_of_pot[action_int - 2] return rlbr_env_wrapper.step_raise_pot_frac(pot_frac=raise_frac) else: return rlbr_env_wrapper.step(action=action_int) else: raise ValueError(_type)
flaskblog/md/extensions.py
cnxue/Flog
202
12694803
import re from marko import block, HTMLRenderer class PhotoSet(block.BlockElement): pattern = re.compile( r' {,3}(!\[([^\[\]\n]+)?\]\(([^)\n]+)\))' r'( {,3}(!\[([^\[\]\n]+)?\]\(([^)\n]+)\)))*[^\n\S]*$\n?', re.M ) inline_children = True def __init__(self, match): self.children = match.group() @classmethod def match(cls, source): return source.expect_re(cls.pattern) @classmethod def parse(cls, source): rv = source.match source.consume() return rv class FlogRendererMixin: def render_image(self, element): result = super().render_image(element) result = result.replace( '<img', '<img data-original="{}"'.format(self.escape_url(element.dest)) ) caption = ( '<figcaption>{}</figcaption>'.format(element.title) if element.title else '' ) return '<figure>{}{}</figure>'.format(result, caption) def render_photo_set(self, element): return '<div class="photo-set d-lg-flex">\n{}</div>\n'.format( self.render_children(element) ) def render_fenced_code(self, element): rv = [ '<div class="block-code">\n' '<div class="code-head clearfix">{}<span class="copy-code"' ' title="Copy code">{}</span></div>\n' .format(element.extra, element.lang.upper()), super().render_fenced_code(element), '</div>\n' ] return ''.join(rv) def _open_heading_group(self): return '<div class="list-group">\n' def _close_heading_group(self): return '</div>\n' def _render_toc_item(self, slug, text): return '<a class="list-group-item" href="#{}">{}</a>\n'.format( slug, re.sub(r"<.+?>", "", text) ) def render_toc(self, maxlevel=3): return super().render_toc(maxlevel).replace( '<div class="list-group">', '<div class="list-group" id="table-of-content">', 1 ) def render_html_block(self, element): # Disable tag filter, use the original render function return HTMLRenderer.render_html_block(self, element) class StrictHTMLRendererMixin: def render_html_block(self, element): # Disable tag filter, use the original render function return self.tagfilter.sub(r'&lt;\1', element.children) class Flog: elements = [PhotoSet] renderer_mixins = [FlogRendererMixin] class StrictFlog: renderer_mixins = [StrictHTMLRendererMixin]
tests/cli/test_heartbeat.py
nicolasiltis/prefect
8,633
12694810
<filename>tests/cli/test_heartbeat.py import pytest from click.testing import CliRunner from unittest.mock import MagicMock from prefect.cli.heartbeat import heartbeat, flow_run from prefect.utilities.configuration import set_temporary_config def test_heartbeat_init(): runner = CliRunner() result = runner.invoke(heartbeat) assert result.exit_code == 0 assert "Send heartbeats back to the Prefect API." in result.output def test_heartbeat_help(): runner = CliRunner() result = runner.invoke(heartbeat, ["--help"]) assert result.exit_code == 0 assert "Send heartbeats back to the Prefect API." in result.output def test_heartbeat_flow_run(patch_post, cloud_api): patch_post(dict(data=dict(update_flow_run_heartbeat="success"))) with set_temporary_config({"cloud.heartbeat_interval": 0.1}): runner = CliRunner() result = runner.invoke(heartbeat, ["flow-run", "--id", "id", "--num", "1"]) assert result.exit_code == 0 def test_heartbeat_multiple_flow_run_heartbeats(patch_post, cloud_api): post = patch_post(dict(data=dict(update_flow_run_heartbeat="success"))) with set_temporary_config({"cloud.heartbeat_interval": 0.1}): runner = CliRunner() result = runner.invoke(heartbeat, ["flow-run", "--id", "id", "--num", "2"]) assert result.exit_code == 0 assert post.called assert post.call_count == 2 def test_heartbeat_is_robust_to_exceptions(cloud_api, monkeypatch, caplog): Client = MagicMock() monkeypatch.setattr("prefect.cli.heartbeat.Client", Client) monkeypatch.setattr("prefect.cli.heartbeat.time.sleep", MagicMock()) Client().update_flow_run_heartbeat.side_effect = ValueError("Foo") runner = CliRunner() result = runner.invoke(heartbeat, ["flow-run", "--id", "id", "--num", "2"]) assert result.exit_code == 0 # Called twice despite raising errors assert Client().update_flow_run_heartbeat.call_count == 2 assert ( f"Failed to send heartbeat with exception: {ValueError('Foo')!r}" in caplog.text ) assert "Traceback" in caplog.text def test_heartbeat_does_not_ignore_base_exceptions(cloud_api, monkeypatch, caplog): Client = MagicMock() monkeypatch.setattr("prefect.cli.heartbeat.Client", Client) monkeypatch.setattr("prefect.cli.heartbeat.time.sleep", MagicMock()) Client().update_flow_run_heartbeat.side_effect = KeyboardInterrupt() runner = CliRunner() result = runner.invoke(heartbeat, ["flow-run", "--id", "id", "--num", "2"]) assert result.exit_code == 1 # Called _once_, error caused immediate exit assert Client().update_flow_run_heartbeat.call_count == 1 assert ( "Heartbeat process encountered terminal exception: KeyboardInterrupt()" in caplog.text ) assert "Traceback" in caplog.text @pytest.mark.parametrize("terminal_exc", [True, False]) def test_heartbeat_exceptions_are_logged_to_cloud(cloud_api, monkeypatch, terminal_exc): Client = MagicMock() LOG_MANAGER = MagicMock() monkeypatch.setattr("prefect.cli.heartbeat.Client", Client) monkeypatch.setattr("prefect.utilities.logging.LOG_MANAGER", LOG_MANAGER) monkeypatch.setattr("prefect.cli.heartbeat.time.sleep", MagicMock()) Client().update_flow_run_heartbeat.side_effect = ( KeyboardInterrupt() if terminal_exc else ValueError("Foo") ) runner = CliRunner() runner.invoke(heartbeat, ["flow-run", "--id", "id", "--num", "2"]) # The exception was logged both times log = LOG_MANAGER.enqueue.call_args[0][0] assert log["flow_run_id"] == "id" assert log["name"] == "prefect.subprocess_heartbeat" assert log["level"] == "ERROR" if terminal_exc: assert ( "Heartbeat process encountered terminal exception: KeyboardInterrupt()" in log["message"] ) else: assert ( f"Failed to send heartbeat with exception: {ValueError('Foo')!r}" in log["message"] ) assert "Traceback" in log["message"]
search/tests/unit/proxy/__init__.py
defendercrypt/amundsen
2,072
12694812
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0
social_auth/backends/contrib/flickr.py
merutak/django-social-auth
863
12694816
<reponame>merutak/django-social-auth from social.backends.flickr import FlickrOAuth as FlickrBackend
modules/nltk_contrib/classifier/basicimports.py
h4ck3rm1k3/NLP-project
123
12694863
<filename>modules/nltk_contrib/classifier/basicimports.py from nltk_contrib.classifier.attribute import Attribute, Attributes from nltk_contrib.classifier.confusionmatrix import ConfusionMatrix from nltk_contrib.classifier.decisionstump import DecisionStump from nltk_contrib.classifier.decisiontree import DecisionTree from nltk_contrib.classifier.featureselect import FeatureSelection from nltk_contrib.classifier.discretise import Discretiser from nltk_contrib.classifier.instances import TrainingInstances, TestInstances, GoldInstances from nltk_contrib.classifier.instance import TrainingInstance, TestInstance, GoldInstance from nltk_contrib.classifier.knn import IB1 from nltk_contrib.classifier.naivebayes import NaiveBayes from nltk_contrib.classifier.oner import OneR from nltk_contrib.classifier.zeror import ZeroR from nltk_contrib.classifier.format import c45
sandbox/grist/test_match_counter.py
nataliemisasi/grist-core
2,667
12694885
import random import string import timeit import unittest from collections import Hashable import six from six.moves import xrange import match_counter from testutil import repeat_until_passes # Here's an alternative implementation. Unlike the simple one, it never constructs a new data # structure, or modifies dictionary keys while iterating, but it is still slower. class MatchCounterOther(object): def __init__(self, _sample): self.sample_counts = {v: 0 for v in _sample} def count_unique(self, iterable): for v in iterable: try: n = self.sample_counts.get(v) if n is not None: self.sample_counts[v] = n + 1 except TypeError: pass matches = 0 for v, n in six.iteritems(self.sample_counts): if n > 0: matches += 1 self.sample_counts[v] = 0 return matches # If not for dealing with unhashable errors, `.intersection(iterable)` would be by far the # fastest. But with the extra iteration and especially checking for Hashable, it's super slow. class MatchCounterIntersection(object): def __init__(self, _sample): self.sample = set(_sample) def count_unique(self, iterable): return len(self.sample.intersection(v for v in iterable if isinstance(v, Hashable))) # This implementation doesn't measure the intersection, but it's interesting to compare its # timings: this is still slower! Presumably because set intersection is native code that's more # optimized than checking membership many times from Python. class MatchCounterSimple(object): def __init__(self, _sample): self.sample = set(_sample) def count_all(self, iterable): return sum(1 for r in iterable if present(r, self.sample)) # This is much faster than using `isinstance(v, Hashable) and v in value_set` def present(v, value_set): try: return v in value_set except TypeError: return False # Set up a predictable random number generator. r = random.Random(17) def random_string(): length = r.randint(10,20) return ''.join(r.choice(string.ascii_letters) for x in xrange(length)) def sample_with_repl(population, n): return [r.choice(population) for x in xrange(n)] # Here's some sample generated data. sample = [random_string() for x in xrange(200)] data1 = sample_with_repl([random_string() for x in xrange(20)] + r.sample(sample, 5), 1000) data2 = sample_with_repl([random_string() for x in xrange(100)] + r.sample(sample, 15), 500) # Include an example with an unhashable value, to ensure all implementation can handle it. data3 = sample_with_repl([random_string() for x in xrange(10)] + sample, 2000) + [[1,2,3]] class TestMatchCounter(unittest.TestCase): def test_match_counter(self): m = match_counter.MatchCounter(sample) self.assertEqual(m.count_unique(data1), 5) self.assertEqual(m.count_unique(data2), 15) self.assertEqual(m.count_unique(data3), 200) m = MatchCounterOther(sample) self.assertEqual(m.count_unique(data1), 5) self.assertEqual(m.count_unique(data2), 15) self.assertEqual(m.count_unique(data3), 200) # Do it again to ensure that we clear out state between counting. self.assertEqual(m.count_unique(data1), 5) self.assertEqual(m.count_unique(data2), 15) self.assertEqual(m.count_unique(data3), 200) m = MatchCounterIntersection(sample) self.assertEqual(m.count_unique(data1), 5) self.assertEqual(m.count_unique(data2), 15) self.assertEqual(m.count_unique(data3), 200) m = MatchCounterSimple(sample) self.assertGreaterEqual(m.count_all(data1), 5) self.assertGreaterEqual(m.count_all(data2), 15) self.assertGreaterEqual(m.count_all(data3), 200) @repeat_until_passes(3) def test_timing(self): setup=''' import match_counter import test_match_counter as t m1 = match_counter.MatchCounter(t.sample) m2 = t.MatchCounterOther(t.sample) m3 = t.MatchCounterSimple(t.sample) m4 = t.MatchCounterIntersection(t.sample) ''' N = 100 t1 = min(timeit.repeat(stmt='m1.count_unique(t.data1)', setup=setup, number=N, repeat=3)) / N t2 = min(timeit.repeat(stmt='m2.count_unique(t.data1)', setup=setup, number=N, repeat=3)) / N t3 = min(timeit.repeat(stmt='m3.count_all(t.data1)', setup=setup, number=N, repeat=3)) / N t4 = min(timeit.repeat(stmt='m4.count_unique(t.data1)', setup=setup, number=N, repeat=3)) / N #print "Timings/iter data1: %.3fus %.3fus %.3fus %.3fus" % (t1 * 1e6, t2 * 1e6, t3*1e6, t4*1e6) self.assertLess(t1, t2) self.assertLess(t1, t3) self.assertLess(t1, t4) t1 = min(timeit.repeat(stmt='m1.count_unique(t.data2)', setup=setup, number=N, repeat=3)) / N t2 = min(timeit.repeat(stmt='m2.count_unique(t.data2)', setup=setup, number=N, repeat=3)) / N t3 = min(timeit.repeat(stmt='m3.count_all(t.data2)', setup=setup, number=N, repeat=3)) / N t4 = min(timeit.repeat(stmt='m4.count_unique(t.data2)', setup=setup, number=N, repeat=3)) / N #print "Timings/iter data2: %.3fus %.3fus %.3fus %.3fus" % (t1 * 1e6, t2 * 1e6, t3*1e6, t4*1e6) self.assertLess(t1, t2) self.assertLess(t1, t3) self.assertLess(t1, t4) t1 = min(timeit.repeat(stmt='m1.count_unique(t.data3)', setup=setup, number=N, repeat=3)) / N t2 = min(timeit.repeat(stmt='m2.count_unique(t.data3)', setup=setup, number=N, repeat=3)) / N t3 = min(timeit.repeat(stmt='m3.count_all(t.data3)', setup=setup, number=N, repeat=3)) / N t4 = min(timeit.repeat(stmt='m4.count_unique(t.data3)', setup=setup, number=N, repeat=3)) / N #print "Timings/iter data3: %.3fus %.3fus %.3fus %.3fus" % (t1 * 1e6, t2 * 1e6, t3*1e6, t4*1e6) self.assertLess(t1, t2) #self.assertLess(t1, t3) # This fails on occasion, but it's a fairly pointless check. self.assertLess(t1, t4) if __name__ == "__main__": unittest.main()
docqa/scripts/show_parameters.py
Willyoung2017/doc-qa
422
12694886
import argparse import tensorflow as tf from docqa.model_dir import ModelDir import numpy as np def main(): parser = argparse.ArgumentParser(description='') parser.add_argument("model") args = parser.parse_args() model_dir = ModelDir(args.model) checkpoint = model_dir.get_best_weights() print(checkpoint) if checkpoint is None: print("Show latest checkpoint") checkpoint = model_dir.get_latest_checkpoint() else: print("Show best weights") reader = tf.train.NewCheckpointReader(checkpoint) param_map = reader.get_variable_to_shape_map() total = 0 for k in sorted(param_map): v = param_map[k] print('%s: %s' % (k, str(v))) total += np.prod(v) print("%d total" % total) if __name__ == "__main__": main()
DS&Algo Programs in Python/prime.py
prathimacode-hub/HacktoberFest-2020
386
12694905
<reponame>prathimacode-hub/HacktoberFest-2020<gh_stars>100-1000 n = int(input("Enter a number: ")) for i in range(1, n+1): count = 0 for j in range(1, n+1): if i%j==0: count= count+1 if count==2: print(i)
lib/passlib/handlers/postgres.py
Rudi9719/booksearch-web
674
12694921
"""passlib.handlers.postgres_md5 - MD5-based algorithm used by Postgres for pg_shadow table""" #============================================================================= # imports #============================================================================= # core from hashlib import md5 import re import logging; log = logging.getLogger(__name__) from warnings import warn # site # pkg from passlib.utils import to_bytes from passlib.utils.compat import b, bytes, str_to_uascii, unicode, u import passlib.utils.handlers as uh # local __all__ = [ "postgres_md5", ] #============================================================================= # handler #============================================================================= class postgres_md5(uh.HasUserContext, uh.StaticHandler): """This class implements the Postgres MD5 Password hash, and follows the :ref:`password-hash-api`. It does a single round of hashing, and relies on the username as the salt. The :meth:`~passlib.ifc.PasswordHash.encrypt`, :meth:`~passlib.ifc.PasswordHash.genhash`, and :meth:`~passlib.ifc.PasswordHash.verify` methods all require the following additional contextual keywords: :type user: str :param user: name of postgres user account this password is associated with. """ #=================================================================== # algorithm information #=================================================================== name = "postgres_md5" _hash_prefix = u("md5") checksum_chars = uh.HEX_CHARS checksum_size = 32 #=================================================================== # primary interface #=================================================================== def _calc_checksum(self, secret): if isinstance(secret, unicode): secret = secret.encode("utf-8") user = to_bytes(self.user, "utf-8", param="user") return str_to_uascii(md5(secret + user).hexdigest()) #=================================================================== # eoc #=================================================================== #============================================================================= # eof #=============================================================================
waymo_open_dataset/latency/examples/2d_challenge/pytorch/wod_latency_submission/__init__.py
mirtaheri/waymo-open-dataset
1,814
12694924
<reponame>mirtaheri/waymo-open-dataset<filename>waymo_open_dataset/latency/examples/2d_challenge/pytorch/wod_latency_submission/__init__.py # Copyright 2021 The Waymo Open Dataset Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Module to load and run a Faster R-CNN model.""" import numpy as np import torch import torchvision model = None DATA_FIELDS = ['FRONT_IMAGE'] def initialize_model(): global model model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) model.eval() def translate_label_to_wod(label): """Translate a single COCO class to its corresponding WOD class. Note: Returns -1 if this COCO class has no corresponding class in WOD. Args: label: int COCO class label Returns: Int WOD class label, or -1. """ label_conversion_map = { 1: 2, # Person is ped 2: 4, # Bicycle is bicycle 3: 1, # Car is vehicle 4: 1, # Motorcycle is vehicle 6: 1, # Bus is vehicle 8: 1, # Truck is vehicle 13: 3, # Stop sign is sign } return label_conversion_map.get(label, -1) # BEGIN-INTERNAL # pylint: disable=invalid-name # END-INTERNAL def run_model(FRONT_IMAGE): """Run the model on the RGB image. Args: FRONT_IMAGE: H x W x 3 numpy ndarray. Returns: Dict from string to numpy ndarray. """ # Convert the image to a PyTorch-friendly format by casting it from uint8 to # float32 (and dividing by 255 to take it from [0, 255] to [0, 1]) and # transposing it from H x W x C to C x H x W. transposed_float_img = np.transpose( FRONT_IMAGE.astype(np.float32) / 255.0, [2, 0, 1]) outputs = model([torch.from_numpy(transposed_float_img)]) corners = outputs[0]['boxes'][0, ...].detach().numpy() scores = outputs[0]['scores'][0, ...].detach().numpy() coco_classes = outputs[0]['labels'][0, ...].detach().numpy() # Convert the classes from COCO classes to WOD classes, and only keep # detections that belong to a WOD class. wod_classes = np.vectorize(translate_label_to_wod)(coco_classes) corners = corners[wod_classes > 0] scores = scores[wod_classes > 0] classes = wod_classes[wod_classes > 0] # Note: Torchvision's pretrained models returns boxes in the format # (ymin, xmin, ymax, xmax). Thus, this function needs to convert them to the # format expected by WOD, namely (center_x, center_y, width, height). boxes = np.zeros_like(corners) boxes[:, 0] = (corners[:, 3] + corners[:, 1]) / 2.0 boxes[:, 1] = (corners[:, 2] + corners[:, 0]) / 2.0 boxes[:, 2] = (corners[:, 3] - corners[:, 1]) boxes[:, 3] = (corners[:, 2] - corners[:, 0]) return { 'boxes': boxes, 'scores': scores, 'classes': classes, } # BEGIN-INTERNAL # pylint: disable=invalid-name # END-INTERNAL
neutron/common/coordination.py
congnt95/neutron
1,080
12694948
<gh_stars>1000+ # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Coordination and locking utilities.""" import inspect import decorator from oslo_concurrency import lockutils from oslo_log import log from oslo_utils import timeutils LOG = log.getLogger(__name__) def synchronized(lock_name): """Synchronization decorator. :param str lock_name: Lock name. Decorating a method like so:: @synchronized('mylock') def foo(self, *args): ... ensures that only one process will execute the foo method at a time. Different methods can share the same lock:: @synchronized('mylock') def foo(self, *args): ... @synchronized('mylock') def bar(self, *args): ... This way only one of either foo or bar can be executing at a time. Lock name can be formatted using Python format string syntax:: @synchronized('{f_name}-{resource.id}-{snap[name]}') def foo(self, resource, snap): ... Available field names are: decorated function parameters and `f_name` as a decorated function name. """ @decorator.decorator def _synchronized(f, *a, **k): sig = inspect.signature(f).bind(*a, **k) sig.apply_defaults() call_args = sig.arguments call_args['f_name'] = f.__name__ lock_format_name = lock_name.format(**call_args) t1 = timeutils.now() t2 = None try: with lockutils.lock(lock_format_name): t2 = timeutils.now() LOG.debug('Lock "%(name)s" acquired by "%(function)s" :: ' 'waited %(wait_secs)0.3fs', {'name': lock_format_name, 'function': f.__name__, 'wait_secs': (t2 - t1)}) return f(*a, **k) finally: t3 = timeutils.now() if t2 is None: held_secs = "N/A" else: held_secs = "%0.3fs" % (t3 - t2) LOG.debug('Lock "%(name)s" released by "%(function)s" :: held ' '%(held_secs)s', {'name': lock_format_name, 'function': f.__name__, 'held_secs': held_secs}) return _synchronized
allennlp/data/dataset_readers/multitask.py
MSLars/allennlp
11,433
12694962
from os import PathLike from typing import Dict, Iterator, Union, Optional from allennlp.data.instance import Instance from allennlp.data.dataset_readers.dataset_reader import ( DatasetReader, WorkerInfo, DatasetReaderInput, ) @DatasetReader.register("multitask") class MultiTaskDatasetReader(DatasetReader): """ This `DatasetReader` simply collects a dictionary of other `DatasetReaders`. It is designed for a different class (the `MultiTaskDataLoader`) to actually read from each of the underlying dataset readers, and so this really is just a glorified dictionary that we can construct as a `DatasetReader`. We throw an error if you try to actually call `read()`, because you should be doing that differently. Registered as a `DatasetReader` with name "multitask". # Parameters readers : `Dict[str, DatasetReader]` A mapping from dataset name to `DatasetReader` objects for reading that dataset. You can use whatever names you want for the datasets, but they have to match the keys you use for data files and in other places in the `MultiTaskDataLoader` and `MultiTaskScheduler`. """ def __init__(self, readers: Dict[str, DatasetReader]) -> None: self.readers = { task: _MultitaskDatasetReaderShim(reader, task) for task, reader in readers.items() } def read( # type: ignore self, file_paths: Union[PathLike, str, Dict[str, Union[PathLike, str]]], *, force_task: Optional[str] = None ) -> Union[Iterator[Instance], Dict[str, Iterator[Instance]]]: if force_task is None: raise RuntimeError("This class is not designed to be called like this.") return self.readers[force_task].read(file_paths) @DatasetReader.register("multitask_shim") class _MultitaskDatasetReaderShim(DatasetReader): """This dataset reader wraps another dataset reader and adds the name of the "task" into each instance as a metadata field. You should not have to use this yourself.""" def __init__(self, inner: DatasetReader, head: str, **kwargs): super().__init__(**kwargs) self.inner = inner self.head = head def _set_worker_info(self, info: Optional[WorkerInfo]) -> None: """ Should only be used internally. """ super()._set_worker_info(info) self.inner._set_worker_info(info) def read(self, file_path: DatasetReaderInput) -> Iterator[Instance]: from allennlp.data.fields import MetadataField for instance in self.inner.read(file_path): instance.add_field("task", MetadataField(self.head)) yield instance def text_to_instance(self, *inputs) -> Instance: from allennlp.data.fields import MetadataField instance = self.inner.text_to_instance(*inputs) instance.add_field("task", MetadataField(self.head)) return instance def apply_token_indexers(self, instance: Instance) -> None: self.inner.apply_token_indexers(instance)
biggan_discovery/there_and_back.py
andreasjansson/OroJaR
199
12694973
<gh_stars>100-1000 """ Functions to smooth-out interpolations performed in Z-space. These are based on <NAME>'s corresponding functions in manim. These are only used for the purpose of visualization; they do not affect training. """ import torch def smooth(t): error = torch.sigmoid(torch.tensor(-5.)) return torch.clamp(torch.sigmoid(10 * (t - 0.5) - error) / (1 - 2 * error), 0, 1) def there_and_back(t): new_t = torch.where(t < 0.5, 2 * t, 2 * (1 - t)) return smooth(new_t) def mid_right_mid_left_mid(steps, round=False): t = torch.linspace(0.0, 1.0, steps) ltr = there_and_back(t) left_to_mid_to_left = ltr / 2 mid_to_right_to_mid = left_to_mid_to_left + 0.5 mid_to_left = torch.flip(left_to_mid_to_left[:steps//2], (0,)) mid_to_left_to_mid = torch.cat([mid_to_left, torch.flip(mid_to_left, (0,))]) out = torch.flip(torch.cat([mid_to_right_to_mid, mid_to_left_to_mid]), (0,)) if round: # [0, steps-1] out = out.mul(steps - 1).round().long() else: # [-1, 1] out = out.add(-0.5).mul(2) return out def left_to_right(steps, round=False): t = torch.linspace(0.0, 1.0, steps) out = there_and_back(t) if round: out.mul_(steps - 1).round().long() else: out.add_(-0.5).mul_(2) return out
desktop/core/ext-py/Django-1.11/tests/messages_tests/test_middleware.py
kokosing/hue
5,079
12695000
import unittest from django import http from django.contrib.messages.middleware import MessageMiddleware class MiddlewareTests(unittest.TestCase): def setUp(self): self.middleware = MessageMiddleware() def test_response_without_messages(self): """ MessageMiddleware is tolerant of messages not existing on request. """ request = http.HttpRequest() response = http.HttpResponse() self.middleware.process_response(request, response)
integration-tests/r_integration_test/deploy_query_test_model.py
DNCoelho/clipper
1,403
12695010
<filename>integration-tests/r_integration_test/deploy_query_test_model.py<gh_stars>1000+ from __future__ import absolute_import, division, print_function import sys import os import time import requests import json import logging import numpy as np if sys.version_info < (3, 0): import subprocess32 as subprocess else: import subprocess cur_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, os.path.abspath("%s/../../clipper_admin" % cur_dir)) sys.path.insert(0, os.path.abspath("%s/.." % cur_dir)) from test_utils import create_docker_connection, headers, BenchmarkException logging.basicConfig( format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', datefmt='%y-%m-%d:%H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) APP_NAME = "rtest-app" APP_DEFAULT_VALUE = "NONE" APP_SLO = 1000000 INPUT_TYPE = "doubles" MODEL_NAME = "rtest-model" MODEL_VERSION = 1 MODEL_IMAGE_NAME = "default-cluster-rtest-model:1" def create_application(clipper_conn): clipper_conn.register_application(APP_NAME, INPUT_TYPE, APP_DEFAULT_VALUE, APP_SLO) time.sleep(1) def deploy_and_link_model(clipper_conn): subprocess.check_call(["Rscript", "build_test_model.R"]) clipper_conn.deploy_model(MODEL_NAME, MODEL_VERSION, INPUT_TYPE, MODEL_IMAGE_NAME) clipper_conn.link_model_to_app(app_name=APP_NAME, model_name=MODEL_NAME) def send_requests(clipper_conn): success = False num_tries = 0 while not success and num_tries < 5: time.sleep(30) num_preds = 25 num_success = 0 addr = clipper_conn.get_query_addr() logger.info("ADDR: {}".format(addr)) for i in range(num_preds): response = requests.post( "http://%s/%s/predict" % (addr, APP_NAME), headers=headers, data=json.dumps({ 'input': list(np.random.random(30)) })) result = response.json() if response.status_code == requests.codes.ok and not result["default"]: num_success += 1 else: logger.warning(result) if num_success < num_preds: logger.error( "Error: %d/%d predictions were default or unsuccessful" % (num_preds - num_success, num_preds)) if num_success > num_preds / 2.0: success = True num_tries += 1 if not success: raise BenchmarkException("Error querying R model") if __name__ == "__main__": try: clipper_conn = create_docker_connection( cleanup=True, start_clipper=True) time.sleep(10) try: logger.info("Running R model deployment test") create_application(clipper_conn) deploy_and_link_model(clipper_conn) time.sleep(5) send_requests(clipper_conn) logger.info("R model deployment completed SUCCESSFULLY!") except BenchmarkException as e: logger.exception("BenchmarkException in R model deployment test") create_docker_connection(cleanup=True, start_clipper=False) sys.exit(1) else: create_docker_connection(cleanup=True, start_clipper=False) except Exception as e: logger.exception("Exception") create_docker_connection(cleanup=True, start_clipper=False) sys.exit(1)
bf3s/algorithms/fewshot/imagenet_lowshot.py
alisure-fork/BF3S
130
12695031
<filename>bf3s/algorithms/fewshot/imagenet_lowshot.py import os import numpy as np import torch from tqdm import tqdm import bf3s.algorithms.fewshot.fewshot as fewshot import bf3s.utils as utils def compute_top1_and_top5_accuracy(scores, labels): _, topk_labels = scores.topk(5, 1, True, True) label_ind = labels.cpu().numpy() topk_ind = topk_labels.cpu().numpy() top1_correct = topk_ind[:, 0] == label_ind top5_correct = np.sum(topk_ind == label_ind.reshape((-1, 1)), axis=1) return top1_correct.astype(float), top5_correct.astype(float) def softmax_with_novel_prior(scores, novel_inds, base_inds, prior_m): scores = torch.exp(scores) scores_novel = scores[:, novel_inds] scores_base = scores[:, base_inds] tol = 0.0000001 scores_novel *= prior_m / ( tol + torch.sum(scores_novel, dim=1, keepdim=True).expand_as(scores_novel) ) scores_base *= (1.0 - prior_m) / ( tol + torch.sum(scores_base, dim=1, keepdim=True).expand_as(scores_base) ) scores[:, novel_inds] = scores_novel scores[:, base_inds] = scores_base return scores class ImageNetLowShot(fewshot.FewShot): """Routines for evaluating a few-shot model on the ImageNet-FS benchmark.""" def __init__(self, opt, _run=None, _log=None): super().__init__(opt, _run, _log) self.keep_best_model_metric_name = "top5_novel" def preprocess_novel_training_data(self, training_data): """Preprocess the novel training data.""" images_train, labels_train, Kids, num_base, num_novel = training_data self.num_base = num_base self.num_novel = num_novel # Insert an extra singleton dimension. images_train = images_train.unsqueeze(dim=0) labels_train = labels_train.unsqueeze(dim=0) Kids = Kids.unsqueeze(dim=0) self.tensors["images_train"].resize_(images_train.size()).copy_(images_train) self.tensors["labels_train"].resize_(labels_train.size()).copy_(labels_train) self.tensors["Kids"].resize_(Kids.size()).copy_(Kids) labels_train = self.tensors["labels_train"] labels_train_1hot_size = list(labels_train.size()) + [ num_novel, ] dim = len(labels_train_1hot_size) - 1 labels_train = labels_train.unsqueeze(dim=labels_train.dim()) self.tensors["labels_train_1hot"].resize_(labels_train_1hot_size).fill_(0).scatter_( dim, labels_train - num_base, 1 ) def add_novel_categories(self, nove_cat_training_data): """Add the training data of the novel categories to the model.""" feature_extractor = self.networks["feature_extractor"] classifier = self.networks["classifier"] feature_extractor.eval() classifier.eval() self.preprocess_novel_training_data(nove_cat_training_data) images = self.tensors["images_train"].detach() labels_train_1hot = self.tensors["labels_train_1hot"].detach() Kids = self.tensors["Kids"].detach() base_ids = None if (self.num_base == 0) else Kids[:, : self.num_base].contiguous() with torch.no_grad(): # ******************************************************************* # ****************** EXTRACT FEATS FROM EXEMPLARS ******************* meta_batch_size = images.size(0) images = utils.convert_from_5d_to_4d(images) features_train = feature_extractor(images) features_train = utils.add_dimension(features_train, meta_batch_size) # ******************************************************************* # ****************** GET CLASSIFICATION WEIGHTS ********************* # The following routine returns the classification weight vectors of # both the base and then novel categories. For the novel categories, # the classification weight vectors are generated using the training # features for those novel cateogories. clsWeights = classifier.get_classification_weights( base_ids=base_ids, features_train=features_train, labels_train=labels_train_1hot, ) # ******************************************************************* self.tensors["clsWeights"] = clsWeights.clone().detach() def evaluate_model_on_test_images( self, data_loader, base_classes, novel_classes, exp_id="", prior_m=0.8 ): """Evaluate the model. It is assumed that the user has already called the routine add_novel_categories() before calling this function. Args: data_loader: data loader that feeds test images and lables in order to evaluatethe model. base_classes: A list with the labels of the base categories that will be used for evaluation. novel_classes: A list with the labels of the novel categories that will be used for evaluation. exp_id: A string with the id of the experiment. prior_m: A scalar in the range [0, 1.0] that represents the prior for whether a test image comes from the novel or base classes. """ feature_extractor = self.networks["feature_extractor"] classifier = self.networks["classifier"] feature_extractor.eval() classifier.eval() clsWeights = self.tensors["clsWeights"] both_classes = base_classes + novel_classes # Not valid classes are those that do not belong neighter to the base # nor the nor the novel classes. nKall = self.num_base + self.num_novel not_valid_classes = list(set(range(nKall)).difference(set(both_classes))) device = self.device not_valid_classes_torch = torch.LongTensor(not_valid_classes).to(device) base_classes_torch = torch.LongTensor(base_classes).to(device) novel_classes_torch = torch.LongTensor(novel_classes).to(device) top1, top1_novel, top1_base, top1_prior = None, None, None, None top5, top5_novel, top5_base, top5_prior = None, None, None, None all_labels = None for idx, batch in enumerate(tqdm(data_loader(0))): images_test, labels_test = batch self.tensors["images_test"].resize_(images_test.size()).copy_(images_test) self.tensors["labels_test"].resize_(labels_test.size()).copy_(labels_test) images_test = self.tensors["images_test"].detach() labels_test = self.tensors["labels_test"].detach() num_test_examples = images_test.size(0) with torch.no_grad(): features = feature_extractor(images_test) features = features.view(1, num_test_examples, -1) scores = classifier.apply_classification_weights(features, clsWeights) scores = scores.view(num_test_examples, -1) scores_prior = softmax_with_novel_prior( scores.clone(), novel_classes_torch, base_classes_torch, prior_m ) scores[:, not_valid_classes_torch] = -1000 top1_this, top5_this = compute_top1_and_top5_accuracy(scores, labels_test) top1 = top1_this if top1 is None else np.concatenate((top1, top1_this)) top5 = top5_this if top5 is None else np.concatenate((top5, top5_this)) scores_prior[:, not_valid_classes_torch] = -1000 top1_this, top5_this = compute_top1_and_top5_accuracy( scores_prior, labels_test ) top1_prior = ( top1_this if top1_prior is None else np.concatenate((top1_prior, top1_this)) ) top5_prior = ( top5_this if top5_prior is None else np.concatenate((top5_prior, top5_this)) ) scores_novel = scores.clone() scores_novel[:, base_classes_torch] = -1000 top1_this, top5_this = compute_top1_and_top5_accuracy( scores_novel, labels_test ) top1_novel = ( top1_this if (top1_novel is None) else np.concatenate((top1_novel, top1_this)) ) top5_novel = ( top5_this if (top5_novel is None) else np.concatenate((top5_novel, top5_this)) ) scores_base = scores.clone() scores_base[:, novel_classes_torch] = -1000 top1_this, top5_this = compute_top1_and_top5_accuracy(scores_base, labels_test) top1_base = ( top1_this if (top1_base is None) else np.concatenate((top1_base, top1_this)) ) top5_base = ( top5_this if (top5_base is None) else np.concatenate((top5_base, top5_this)) ) labels_test_np = labels_test.cpu().numpy() all_labels = ( labels_test_np if (all_labels is None) else np.concatenate((all_labels, labels_test_np)) ) is_novel = np.in1d(all_labels, np.array(novel_classes)) is_base = np.in1d(all_labels, np.array(base_classes)) is_either = is_novel | is_base top1_novel = 100 * np.mean(top1_novel[is_novel]) top1_novel_all = 100 * np.mean(top1[is_novel]) top1_base = 100 * np.mean(top1_base[is_base]) top1_base_all = 100 * np.mean(top1[is_base]) top1_all = 100 * np.mean(top1[is_either]) top1_all_prior = 100 * np.mean(top1_prior[is_either]) top5_novel = 100 * np.mean(top5_novel[is_novel]) top5_novel_all = 100 * np.mean(top5[is_novel]) top5_base = 100 * np.mean(top5_base[is_base]) top5_base_all = 100 * np.mean(top5[is_base]) top5_all = 100 * np.mean(top5[is_either]) top5_all_prior = 100 * np.mean(top5_prior[is_either]) self.logger.info(f"Experiment {exp_id}") self.logger.info( "==> Top 5 Accuracies: [Novel: {:3.2f} | Base: {:3.2f} | All {:3.2f} | Novel vs All {:3.2f} | Base vs All {:3.2f} | All prior {:3.2f}]".format( top5_novel, top5_base, top5_all, top5_novel_all, top5_base_all, top5_all_prior, ) ) self.logger.info( "==> Top 1 Accuracies: [Novel: {:3.2f} | Base: {:3.2f} | All {:3.2f} | Novel vs All {:3.2f} | Base vs All {:3.2f} | All prior {:3.2f}]".format( top1_novel, top1_base, top1_all, top1_novel_all, top1_base_all, top1_all_prior, ) ) results_array = np.array( [ top5_novel, top5_base, top5_all, top5_novel_all, top5_base_all, top5_all_prior, top1_novel, top1_base, top1_all, top1_novel_all, top1_base_all, top1_all_prior, ] ).reshape(1, -1) return results_array def lowshot_avg_results(self, results_all, exp_id=""): results_all = np.concatenate(results_all, axis=0) num_eval_experiments = results_all.shape[0] mu_results = results_all.mean(axis=0) top5_novel = mu_results[0] top5_base = mu_results[1] top5_all = mu_results[2] top5_novel_all = mu_results[3] top5_base_all = mu_results[4] top5_all_prior = mu_results[5] top1_novel = mu_results[6] top1_base = mu_results[7] top1_all = mu_results[8] top1_novel_all = mu_results[9] top1_base_all = mu_results[10] top1_all_prior = mu_results[11] std_results = results_all.std(axis=0) ci95_results = 1.96 * std_results / np.sqrt(results_all.shape[0]) top5_novel_ci95 = ci95_results[0] top5_base_ci95 = ci95_results[1] top5_all_ci95 = ci95_results[2] top5_novel_all_ci95 = ci95_results[3] top5_base_all_ci95 = ci95_results[4] top5_all_prior_ci95 = ci95_results[5] top1_novel_ci95 = ci95_results[6] top1_base_ci95 = ci95_results[7] top1_all_ci95 = ci95_results[8] top1_novel_all_ci95 = ci95_results[9] top1_base_all_ci95 = ci95_results[10] top1_all_prior_ci95 = ci95_results[11] self.logger.info("----------------------------------------------------------------") self.logger.info(f"Average results of {num_eval_experiments} experiments: {exp_id}") self.logger.info( "==> Top 5 Accuracies: [Novel: {:3.2f} | Base: {:3.2f} | All {:3.2f} | Novel vs All {:3.2f} | Base vs All {:3.2f} | All prior {:3.2f}]".format( top5_novel, top5_base, top5_all, top5_novel_all, top5_base_all, top5_all_prior, ) ) self.logger.info( "==> Top 5 conf. intervals: [Novel: {:3.2f} | Base: {:3.2f} | All {:3.2f} | Novel vs All {:3.2f} | Base vs All {:3.2f} | All prior {:3.2f}]".format( top5_novel_ci95, top5_base_ci95, top5_all_ci95, top5_novel_all_ci95, top5_base_all_ci95, top5_all_prior_ci95, ) ) self.logger.info("----------------------------------------------------------------") self.logger.info( "==> Top 1 Accuracies: [Novel: {:3.2f} | Base: {:3.2f} | All {:3.2f} | Novel vs All {:3.2f} | Base vs All {:3.2f} | All prior {:3.2f}]".format( top1_novel, top1_base, top1_all, top1_novel_all, top1_base_all, top1_all_prior, ) ) self.logger.info( "==> Top 1 conf. intervals: [Novel: {:3.2f} | Base: {:3.2f} | All {:3.2f} | Novel vs All {:3.2f} | Base vs All {:3.2f} | All prior {:3.2f}]".format( top1_novel_ci95, top1_base_ci95, top1_all_ci95, top1_novel_all_ci95, top1_base_all_ci95, top1_all_prior_ci95, ) ) self.logger.info("----------------------------------------------------------------") results = { "top5_novel": round(top5_novel, 2), "top5_base": round(top5_base, 2), "top5_all": round(top5_all, 2), "top5_novel_all": round(top5_novel_all, 2), "top5_base_all": round(top5_base_all, 2), "top5_all_prior": round(top5_all_prior, 2), "top5_novel_ci95": round(top5_novel_ci95, 2), "top5_base_ci95": round(top5_base_ci95, 2), "top5_all_ci95": round(top5_all_ci95, 2), "top5_novel_all_ci95": round(top5_novel_all_ci95, 2), "top5_base_all_ci95": round(top5_base_all_ci95, 2), "top5_all_prior_ci95": round(top5_all_prior_ci95, 2), } return results def evaluate(self, dloader, num_eval_exp=20, prior=0.8, suffix=""): self.logger.info("Evaluating: %s" % os.path.basename(self.exp_dir)) self.logger.info("Num exemplars: %d" % dloader.n_exemplars) self.logger.info("Num evaluation experiments: %d" % num_eval_exp) self.logger.info("Prior: %f" % prior) results = [] # Run args_opt.num_exp different number of evaluation experiments (each # time sampling a different set of training images for the the novel # categories). for exp_id in range(num_eval_exp): # Sample training data for the novel categories from the training # set of ImageNet. nove_cat_data = dloader.sample_training_data_for_novel_categories(exp_id=exp_id) # Feed the training data of the novel categories to the algorithm. self.add_novel_categories(nove_cat_data) # Evaluate on the validation images of ImageNet. results_this = self.evaluate_model_on_test_images( data_loader=dloader, base_classes=dloader.base_category_label_indices(), novel_classes=dloader.novel_category_label_indices(), exp_id="Exp_id = " + str(exp_id), prior_m=prior, ) results.append(results_this) # Print the average results. self.logger.info("Evaluating: %s" % os.path.basename(self.exp_dir)) avg_results = self.lowshot_avg_results(results, exp_id="") eval_stats = utils.DAverageMeter("eval", self._run) eval_stats.update(avg_results) eval_stats.log() self.add_stats_to_tensorboard_writer(eval_stats.average(), "test_") return eval_stats
helpers.py
cubean/ImageSimilarityUsingCntk
130
12695041
# -*- coding: utf-8 -*- import sys, os, importlib, pdb, random, datetime, collections, pickle, cv2, requests import matplotlib.pyplot as plt, numpy as np, scipy.spatial.distance from sklearn import svm, metrics, calibration from PIL import Image, ExifTags random.seed(0) ################################ # ImageInfo class and helpers ################################ class ImageInfo(object): allFeatures = [] def __init__(self, fname, subdir, parent = None): self.fname = fname self.subdir = subdir self.children = [] self.parent = parent if parent: self.parent = self.shallowCopy(parent) def getFeat(self): if self.allFeatures == []: raise Exception("Need to set/load DNN features first using e.g. this line 'ImageInfo.allFeatures = loadFromPickle(featuresPath)'") key = self.subdir + "/" + self.fname feat = np.array(self.allFeatures[key], np.float32) assert (len(feat) == 4096 or len(feat) == 2048 or len(feat) == 512 or len(feat) == 25088) return feat def getImg(self, rootDir): imgPath = self.getImgPath(rootDir) return imread(imgPath) def getImgPath(self, rootDir): return rootDir + self.subdir + "/" + self.fname def addChild(self, node): node.parent = self self.children.append(node) def isSameClassAsParent(self): return self.subdir == self.parent.subdir def shallowCopy(self, node): return ImageInfo(node.fname, node.subdir, node.parent) def display(self): print("Parent: " + self.node2Str(self)) for childIndex,child in enumerate(self.children): print(" Child {:4} : {}".format(childIndex, self.node2Str(child))) def node2Str(self, node): return("fname = {}, subdir={}".format(node.fname, node.subdir)) #, node.parent) def getImgPaths(imgInfos, rootDir=""): paths = set() for imgInfo in imgInfos: paths.add(rootDir + "/" + imgInfo.subdir + "/" + imgInfo.fname) for child in imgInfo.children: paths.add(rootDir + "/" + child.subdir + "/" + child.fname) return paths def getRandomImgInfo(imgFilenames, subdirToExclude = None): subdirs = list(imgFilenames.keys()) subdir = getRandomListElement(subdirs) while subdir == subdirToExclude: subdir = getRandomListElement(subdirs) imgFilename = getRandomListElement(imgFilenames[subdir]) return ImageInfo(imgFilename, subdir) ################################ # helper functions - svm ################################ def getImgPairsFeatures(imgInfos, metric, boL2Normalize): feats = [] labels = [] for queryImgIndex, queryImgInfo in enumerate(imgInfos): queryFeat = queryImgInfo.getFeat() if boL2Normalize: queryFeat /= np.linalg.norm(queryFeat, 2) for refImgInfo in queryImgInfo.children: refFeat = refImgInfo.getFeat() if boL2Normalize: refFeat /= np.linalg.norm(refFeat, 2) # Evaluate difference between the two images featDiff = queryFeat - refFeat if metric.lower() == 'diff': feat = featDiff elif metric.lower() == 'l1': feat = abs(featDiff) elif metric.lower() == 'l2': feat = featDiff ** 2 else: raise Exception("Unknown metric: " + metric) feats.append(np.float32(feat)) labels.append(int(refImgInfo.isSameClassAsParent())) return feats, labels def mineHardNegatives(learner, imgFilenames, nrAddPerIter, featureDifferenceMetric, boL2Normalize, maxNrRounds, initialThreshold = 1): hardNegatives = [] roundCounterHardNegFound = 0 hardNegThreshold = initialThreshold # Hard negative mining by repeatedly selecting a pair of images and adding to the # training set if they are misclassified by at least a certain threshold. for roundCounter in range(maxNrRounds): roundCounterHardNegFound += 1 if len(hardNegatives) >= nrAddPerIter: break # Reduce threshold if no hard negative found after 1000 rounds if roundCounterHardNegFound > 1000: hardNegThreshold /= 2.0 roundCounterHardNegFound = 0 print(" Hard negative mining sampling round {:6d}: found {:4d} number of hard negatives; reducing hard negative threshold to {:3.3f}.".format( roundCounter, len(hardNegatives), hardNegThreshold)) # Sample two images from different ground truth class ImageInfo1 = getRandomImgInfo(imgFilenames) ImageInfo2 = getRandomImgInfo(imgFilenames, ImageInfo1.subdir) ImageInfo1.addChild(ImageInfo2) # Evaluate svm featCandidate, labelCandidate = getImgPairsFeatures([ImageInfo1], featureDifferenceMetric, boL2Normalize) assert (len(labelCandidate) == 1 and labelCandidate[0] == 0 and ImageInfo1.subdir != ImageInfo2.subdir) score = learner.decision_function(featCandidate) # If confidence is sufficiently high then add to list of hard negatives if score > hardNegThreshold: hardNegatives.append(featCandidate[0]) roundCounterHardNegFound = 0 print(" Hard negatives found: {}, after {} sampling rounds".format(len(hardNegatives), roundCounter+1)) return hardNegatives def getSampleWeights(labels, negPosRatio = 1): indsNegatives = np.where(np.array(labels) == 0)[0] indsPositives = np.where(np.array(labels) != 0)[0] negWeight = float(negPosRatio) * len(indsPositives) / len(indsNegatives) weights = np.array([1.0] * len(labels)) weights[indsNegatives] = negWeight assert (abs(sum(weights[indsNegatives]) - negPosRatio * sum(weights[indsPositives])) < 10 ** -3) return weights def plotScoreVsProbability(learner, feats_train, feats_test): probsTest = learner.predict_proba(feats_test)[:, 1] probsTrain = learner.predict_proba(feats_train)[:, 1] scoresTest = learner.base_estimator.decision_function(feats_test) scoresTrain = learner.base_estimator.decision_function(feats_train) plt.scatter(scoresTrain, probsTrain, c='r', label = 'train') plt.scatter(scoresTest, probsTest, c='b', label = 'test') plt.ylim([-0.02, 1.02]) plt.xlabel('SVM score') plt.ylabel('Probability') plt.title('Calibrated SVM - training set (red), test set (blue)') return plt ################################ # helper functions - general ################################ def getImagePairs(imgFilenames, maxQueryImgsPerSubdir, maxNegImgsPerQueryImg): # Get sub-directories with at least two images in them querySubdirs = [s for s in imgFilenames.keys() if len(imgFilenames[s]) > 1] # Generate pos and neg pairs for each subdir imgInfos = [] for querySubdir in querySubdirs: queryFilenames = randomizeList(imgFilenames[querySubdir]) # Pick at most 'maxQueryImgsPerSubdir' query images at random for queryFilename in queryFilenames[:maxQueryImgsPerSubdir]: queryInfo = ImageInfo(queryFilename, querySubdir) # Add one positive example at random refFilename = getRandomListElement(list(set(queryFilenames) - set([queryFilename]))) queryInfo.children.append(ImageInfo(refFilename, querySubdir, queryInfo)) assert(refFilename != queryFilename) # Add multiple negative examples at random for _ in range(maxNegImgsPerQueryImg): refSubdir = getRandomListElement(list(set(querySubdirs) - set([querySubdir]))) refFilename = getRandomListElement(imgFilenames[refSubdir]) queryInfo.children.append(ImageInfo(refFilename, refSubdir, queryInfo)) assert(refSubdir != querySubdir) # Store queryInfo.children = randomizeList(queryInfo.children) imgInfos.append(queryInfo) print("Generated image pairs for {} query images, each with 1 positive image pair and {} negative image pairs.".format(len(imgInfos), maxNegImgsPerQueryImg)) return imgInfos def getImgLabelMap(imgFilenames, imgDir, lut = None): table = [] for label in imgFilenames.keys(): for imgFilename in imgFilenames[label]: imgPath = imgDir + "/" + str(label) + "/" + imgFilename if lut != None: table.append((imgPath, lut[label])) else: table.append((imgPath, label)) return table def balanceDatasetUsingDuplicates(data): duplicates = [] counts = collections.Counter(getColumn(data,1)) print("Before balancing of training set:") for item in counts.items(): print(" Class {:3}: {:5} exmples".format(*item)) # Get duplicates to balance dataset targetCount = max(getColumn(counts.items(), 1)) while min(getColumn(counts.items(),1)) < targetCount: for imgPath, label in data: if counts[label] < targetCount: duplicates.append((imgPath, label)) counts[label] += 1 # Add duplicates to original dataset print("After balancing: all classes now have {} images; added {} duplicates to the {} original images.".format(targetCount, len(duplicates), len(data))) data += duplicates counts = collections.Counter(getColumn(data,1)) assert(min(counts.values()) == max(counts.values()) == targetCount) return data def printFeatLabelInfo(title, feats, labels, preString = " "): print(title) print(preString + "Number of examples: {}".format(len(feats))) print(preString + "Number of positive examples: {}".format(sum(np.array(labels) == 1))) print(preString + "Number of negative examples: {}".format(sum(np.array(labels) == 0))) print(preString + "Dimension of each example: {}".format(len(feats[0]))) def sklearnAccuracy(learner, feats, gtLabels): estimatedLabels = learner.predict(feats) confusionMatrix = metrics.confusion_matrix(gtLabels, estimatedLabels) return accsConfusionMatrix(confusionMatrix) #################################### # Subset of helper library # used in image similarity tutorial #################################### # Typical meaning of variable names -- Computer Vision: # pt = 2D point (column,row) # img = image # width,height (or w/h) = image dimensions # bbox = bbox object (stores: left, top,right,bottom co-ordinates) # rect = rectangle (order: left, top, right, bottom) # angle = rotation angle in degree # scale = image up/downscaling factor # Typical meaning of variable names -- general: # lines,strings = list of strings # line,string = single string # xmlString = string with xml tags # table = 2D row/column matrix implemented using a list of lists # row,list1D = single row in a table, i.e. single 1D-list # rowItem = single item in a row # list1D = list of items, not necessarily strings # item = single item of a list1D # slotValue = e.g. "terminator" in: play <movie> terminator </movie> # slotTag = e.g. "<movie>" or "</movie>" in: play <movie> terminator </movie> # slotName = e.g. "movie" in: play <movie> terminator </movie> # slot = e.g. "<movie> terminator </movie>" in: play <movie> terminator </movie> def readFile(inputFile): # Reading as binary, to avoid problems with end-of-text characters. # Note that readlines() does not remove the line ending characters with open(inputFile,'rb') as f: lines = f.readlines() for i,s in enumerate(lines): removeLineEndCharacters(s.decode('utf8')) return [removeLineEndCharacters(s.decode('utf8')) for s in lines]; def writeFile(outputFile, lines, header=None): with open(outputFile,'w') as f: if header != None: f.write("%s\n" % header) for line in lines: f.write("%s\n" % line) def writeBinaryFile(outputFile, data): with open(outputFile,'wb') as f: bytes = f.write(data) return bytes def readTable(inputFile, delimiter='\t'): lines = readFile(inputFile); return splitStrings(lines, delimiter) def writeTable(outputFile, table, header=None): lines = tableToList1D(table) writeFile(outputFile, lines, header) def loadFromPickle(inputFile): with open(inputFile, 'rb') as filePointer: data = pickle.load(filePointer) return data def saveToPickle(outputFile, data): p = pickle.Pickler(open(outputFile,"wb")) p.fast = True p.dump(data) def makeDirectory(directory): if not os.path.exists(directory): os.makedirs(directory) def getFilesInDirectory(directory, postfix=""): if not os.path.exists(directory): return [] fileNames = [s for s in os.listdir(directory) if not os.path.isdir(directory + "/" + s)] if not postfix or postfix == "": return fileNames else: return [s for s in fileNames if s.lower().endswith(postfix)] def getDirectoriesInDirectory(directory): return [s for s in os.listdir(directory) if os.path.isdir(directory + "/" + s)] def downloadFromUrl(url, boVerbose = True): data = [] url = url.strip() try: r = requests.get(url, timeout = 1) data = r.content except: if boVerbose: print('Error downloading url {0}'.format(url)) if boVerbose and data == []: # and r.status_code != 200: print('Error {} downloading url {}'.format(r.status_code, url)) return data def removeLineEndCharacters(line): if line.endswith('\r\n'): return line[:-2] elif line.endswith('\n'): return line[:-1] else: return line def splitString(string, delimiter='\t', columnsToKeepIndices=None): if string == None: return None items = string.split(delimiter) if columnsToKeepIndices != None: items = getColumns([items], columnsToKeepIndices) items = items[0] return items def splitStrings(strings, delimiter, columnsToKeepIndices=None): table = [splitString(string, delimiter, columnsToKeepIndices) for string in strings] return table def getColumn(table, columnIndex): column = [] for row in table: column.append(row[columnIndex]) return column def tableToList1D(table, delimiter='\t'): return [delimiter.join([str(s) for s in row]) for row in table] def ToIntegers(list1D): return [int(float(x)) for x in list1D] def mergeDictionaries(dict1, dict2): tmp = dict1.copy() tmp.update(dict2) return tmp def getRandomNumber(low, high): randomNumber = random.randint(low,high) return randomNumber def randomizeList(listND, containsHeader=False): if containsHeader: header = listND[0] listND = listND[1:] random.shuffle(listND) if containsHeader: listND.insert(0, header) return listND def getRandomListElement(listND, containsHeader=False): if containsHeader: index = getRandomNumber(1, len(listND) - 1) else: index = getRandomNumber(0, len(listND) - 1) return listND[index] def accsConfusionMatrix(confMatrix): perClassAccs = [(1.0 * row[rowIndex] / sum(row)) for rowIndex,row in enumerate(confMatrix)] return perClassAccs def computeVectorDistance(vec1, vec2, method, boL2Normalize, weights = [], bias = [], learner = []): # Pre-processing if boL2Normalize: vec1 = vec1 / np.linalg.norm(vec1, 2) vec2 = vec2 / np.linalg.norm(vec2, 2) assert (len(vec1) == len(vec2)) # Distance computation vecDiff = vec1 - vec2 method = method.lower() if method == 'random': dist = random.random() elif method == 'l1': dist = sum(abs(vecDiff)) elif method == 'l2': dist = np.linalg.norm(vecDiff, 2) elif method == 'normalizedl2': a = vec1 / np.linalg.norm(vec1, 2) b = vec2 / np.linalg.norm(vec2, 2) dist = np.linalg.norm(a - b, 2) elif method == "cosine": dist = scipy.spatial.distance.cosine(vec1, vec2) elif method == "correlation": dist = scipy.spatial.distance.correlation(vec1, vec2) elif method == "chisquared": dist = chiSquared(vec1, vec2) elif method == "normalizedchisquared": a = vec1 / sum(vec1) b = vec2 / sum(vec2) dist = chiSquared(a, b) elif method == "hamming": dist = scipy.spatial.distance.hamming(vec1 > 0, vec2 > 0) elif method == "mahalanobis": #assumes covariance matric is provided, e..g. using: sampleCovMat = np.cov(np.transpose(np.array(feats))) dist = scipy.spatial.distance.mahalanobis(vec1, vec2, sampleCovMat) elif method == 'weightedl1': feat = np.float32(abs(vecDiff)) dist = np.dot(weights, feat) + bias dist = -float(dist) # assert(abs(dist - learnerL1.decision_function([feat])) < 0.000001) elif method == 'weightedl2': feat = (vecDiff) ** 2 dist = np.dot(weights, feat) + bias dist = -float(dist) elif method == 'weightedl2prob': feat = (vecDiff) ** 2 dist = learner.predict_proba([feat])[0][1] dist = float(dist) # elif method == 'learnerscore': # feat = (vecDiff) ** 2 # dist = learner.base_estimator.decision_function([feat])[0] # dist = -float(dist) else: raise Exception("Distance method unknown: " + method) assert (not np.isnan(dist)) return dist def rotationFromExifTag(imgPath): TAGSinverted = {v: k for k, v in list(ExifTags.TAGS.items())} orientationExifId = TAGSinverted['Orientation'] try: imageExifTags = Image.open(imgPath)._getexif() except: imageExifTags = None #rotate the image if orientation exif tag is present rotation = 0 if imageExifTags != None and orientationExifId != None and orientationExifId in imageExifTags: orientation = imageExifTags[orientationExifId] if orientation == 1 or orientation == 0: rotation = 0 #no need to do anything elif orientation == 6: rotation = -90 elif orientation == 8: rotation = 90 else: raise Exception("ERROR: orientation = " + str(orientation) + " not_supported!") return rotation def imread(imgPath, boThrowErrorIfExifRotationTagSet = True): if not os.path.exists(imgPath): raise Exception("ERROR: image path does not exist.") rotation = rotationFromExifTag(imgPath) if boThrowErrorIfExifRotationTagSet and rotation != 0: print("Error: exif roation tag set, image needs to be rotated by %d degrees." % rotation) img = cv2.imread(imgPath) if img is None: raise Exception("ERROR: cannot load image " + imgPath) if rotation != 0: img = imrotate(img, -90).copy() # To avoid occassional error: "TypeError: Layout of the output array img is incompatible with cv::Mat" return img def imWidth(input): return imWidthHeight(input)[0] def imHeight(input): return imWidthHeight(input)[1] def imWidthHeight(input): if type(input) is str: #or type(input) is unicode: width, height = Image.open(input).size # This does not load the full image else: width = input.shape[1] height = input.shape[0] return width,height def imconvertCv2Numpy(img): (b,g,r) = cv2.split(img) return cv2.merge([r,g,b]) def imconvertCv2Pil(img): cv2_im = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) pil_im = Image.fromarray(cv2_im) return pil_im def imconvertPil2Cv(pilImg): return imconvertPil2Numpy(pilImg)[:, :, ::-1] def imconvertPil2Numpy(pilImg): rgb = pilImg.convert('RGB') return np.array(rgb).copy() def imresize(img, scale, interpolation = cv2.INTER_LINEAR): return cv2.resize(img, (0,0), fx=scale, fy=scale, interpolation=interpolation) def imresizeMaxDim(img, maxDim, boUpscale = False, interpolation = cv2.INTER_LINEAR): scale = 1.0 * maxDim / max(img.shape[:2]) if scale < 1 or boUpscale: img = imresize(img, scale, interpolation) else: scale = 1.0 return img, scale def imresizeAndPad(img, width, height, padColor): # resize image imgWidth, imgHeight = imWidthHeight(img) scale = min(float(width) / float(imgWidth), float(height) / float(imgHeight)) imgResized = imresize(img, scale) #, interpolation=cv2.INTER_NEAREST) resizedWidth, resizedHeight = imWidthHeight(imgResized) # pad image top = int(max(0, np.round((height - resizedHeight) / 2))) left = int(max(0, np.round((width - resizedWidth) / 2))) bottom = height - top - resizedHeight right = width - left - resizedWidth return cv2.copyMakeBorder(imgResized, top, bottom, left, right, cv2.BORDER_CONSTANT, value=padColor) def imrotate(img, angle): imgPil = imconvertCv2Pil(img) imgPil = imgPil.rotate(angle, expand=True) return imconvertPil2Cv(imgPil) def imshow(img, waitDuration=0, maxDim = None, windowName = 'img'): if isinstance(img, str): # Test if 'img' is a string img = cv2.imread(img) if maxDim is not None: scaleVal = 1.0 * maxDim / max(img.shape[:2]) if scaleVal < 1: img = imresize(img, scaleVal) cv2.imshow(windowName, img) cv2.waitKey(waitDuration)
saas/aiops/api/aiops-server/ai_lib/time_series_prediction/algorithm/preprocess/DataPreprocessor.py
iuskye/SREWorks
407
12695042
<filename>saas/aiops/api/aiops-server/ai_lib/time_series_prediction/algorithm/preprocess/DataPreprocessor.py # -*- coding: utf-8 -*- # @author: 丛戎 # @target: 时序预测算法的预处理逻辑 import sys from ai_lib.time_series_prediction.algorithm.preprocess.data_preprocess_utils import DataPreprocessUtils PY2 = sys.version_info[0] == 2 class DataPreprocessor(object): def data_preprocess(self, kpidata, colname, interval=None, period=None, process_method={}, user_config={}): """ :param kpidata: :param colname: :param interval: 数据点间隔,单位为秒 :param period: 一个周期内的点数 :param process_method: 预处理逻辑的参数,{'fillna':{'startdate': 0, 'enddate':0, 'interval' : '5min', 'fillvalue' :True}} :param user_config: 用户在页面的高级配置 :return: """ preprocessor = DataPreprocessUtils() # 首先对数据进行去重处理 kpidata = kpidata.drop_duplicates(['ts']) # 并按ts进行排序 kpidata = kpidata.sort_values(by=['ts'], ascending=[1]) # 填补缺失值操作 if 'fillna' in process_method.keys(): # 根据数据粒度计算插值频率 interval_seconds = str(interval) + 'S' fillvalue = process_method['fillna']['fillvalue'] if "fillna_withzero" in user_config['advanced_config_map'].keys(): fillvalue = False kpidata = preprocessor.ts_fill_na(kpidata=kpidata, startdate=kpidata['ts'].min(), enddate=kpidata['ts'].max(), freq=interval_seconds, fillvalue=fillvalue) return kpidata
example/geopage_nospatial/models.py
eduardocp/wagtail-geo-widget
105
12695047
from __future__ import absolute_import, unicode_literals from django.db import models from django.utils.functional import cached_property from django.utils.translation import ugettext as _ from wagtail.core.models import Page from wagtail.core.fields import StreamField from wagtail.admin.edit_handlers import StreamFieldPanel from wagtail.core import blocks from wagtail.admin.edit_handlers import FieldPanel, MultiFieldPanel from wagtailgeowidget.edit_handlers import GeoPanel from wagtailgeowidget.blocks import GeoBlock class StandardPage(Page): address = models.CharField(max_length=250, blank=True, null=True) location = models.CharField(max_length=250, blank=True, null=True) content_panels = Page.content_panels + [ MultiFieldPanel([ FieldPanel('address'), GeoPanel('location', address_field='address'), ], _('Geo details')), ] def get_context(self, request): data = super(StandardPage, self).get_context(request) return data @cached_property def point(self): from wagtailgeowidget.helpers import geosgeometry_str_to_struct return geosgeometry_str_to_struct(self.location) @property def lat(self): return self.point['y'] @property def lng(self): return self.point['x'] class StreamPage(Page): body = StreamField([ ('map', GeoBlock()), ('map_struct', blocks.StructBlock([ ('address', blocks.CharBlock(required=True)), # ('map', GeoBlock(address_field='address')), ], icon='user')) ]) content_panels = Page.content_panels + [ StreamFieldPanel('body'), ]
sample.py
sphh/python-colorlog
745
12695058
<gh_stars>100-1000 import logging import colorlog fmt = "{log_color}{levelname} {name}: {message}" colorlog.basicConfig(level=logging.DEBUG, style="{", format=fmt, stream=None) log = logging.getLogger() log.warning("hello")
Python/Collection/CloneList.py
piovezan/SOpt
148
12695071
<reponame>piovezan/SOpt current = [0, 1] someList = [] while True: for n in range(0, 2): current[n] += 1 print(current) someList.append(current[:]) #aqui faz uma cópia da lista e usa referêwncia para esta cópia, não a original if current == [2, 3]: break print(someList) #https://pt.stackoverflow.com/q/425908/101
src/olympia/bandwagon/migrations/0001_initial.py
covariant/addons-server
843
12695084
# Generated by Django 2.2.5 on 2019-09-12 13:35 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import olympia.amo.fields import olympia.amo.models import olympia.translations.fields class Migration(migrations.Migration): initial = True dependencies = [ ('translations', '__first__'), ('addons', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Collection', fields=[ ('created', models.DateTimeField(blank=True, default=django.utils.timezone.now, editable=False)), ('modified', models.DateTimeField(auto_now=True)), ('id', olympia.amo.fields.PositiveAutoField(primary_key=True, serialize=False)), ('uuid', models.UUIDField(blank=True, null=True, unique=True)), ('nickname', models.CharField(blank=True, max_length=30, null=True, unique=True)), ('slug', models.CharField(blank=True, max_length=30, null=True)), ('default_locale', models.CharField(db_column='defaultlocale', default='en-US', max_length=10)), ('type', models.PositiveIntegerField(choices=[(0, 'Normal'), (1, 'Synchronized'), (2, 'Featured'), (3, 'Generated Recommendations'), (4, 'Favorites'), (5, 'Mobile'), (6, 'Anonymous')], db_column='collection_type', default=0)), ('listed', models.BooleanField(default=True, help_text='Collections are either listed or private.')), ('application', models.PositiveIntegerField(blank=True, choices=[(1, 'Firefox'), (61, 'Firefox for Android')], db_column='application_id', null=True)), ('addon_count', models.PositiveIntegerField(db_column='addonCount', default=0)), ], options={ 'db_table': 'collections', 'get_latest_by': 'created', 'abstract': False, 'base_manager_name': 'objects', }, bases=(olympia.amo.models.SearchMixin, olympia.amo.models.SaveUpdateMixin, models.Model), ), migrations.CreateModel( name='FeaturedCollection', fields=[ ('created', models.DateTimeField(blank=True, default=django.utils.timezone.now, editable=False)), ('modified', models.DateTimeField(auto_now=True)), ('id', olympia.amo.fields.PositiveAutoField(primary_key=True, serialize=False)), ('application', models.PositiveIntegerField(choices=[(1, 'Firefox'), (61, 'Firefox for Android')], db_column='application_id')), ('locale', models.CharField(max_length=10, null=True)), ('collection', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='bandwagon.Collection')), ], options={ 'db_table': 'featured_collections', }, bases=(olympia.amo.models.SearchMixin, olympia.amo.models.SaveUpdateMixin, models.Model), ), migrations.CreateModel( name='CollectionAddon', fields=[ ('created', models.DateTimeField(blank=True, default=django.utils.timezone.now, editable=False)), ('modified', models.DateTimeField(auto_now=True)), ('id', olympia.amo.fields.PositiveAutoField(primary_key=True, serialize=False)), ('ordering', models.PositiveIntegerField(default=0, help_text='Add-ons are displayed in ascending order based on this field.')), ('addon', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='addons.Addon')), ('collection', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='bandwagon.Collection')), ('comments', olympia.translations.fields.LinkifiedField(blank=True, db_column='comments', null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='CollectionAddon_comments_set+', require_locale=True, short=True, to='translations.LinkifiedTranslation', to_field='id', unique=True)), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'db_table': 'addons_collections', 'get_latest_by': 'created', 'abstract': False, 'base_manager_name': 'objects', }, bases=(olympia.amo.models.SearchMixin, olympia.amo.models.SaveUpdateMixin, models.Model), ), migrations.AddField( model_name='collection', name='addons', field=models.ManyToManyField(related_name='collections', through='bandwagon.CollectionAddon', to='addons.Addon'), ), migrations.AddField( model_name='collection', name='author', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='collections', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='collection', name='description', field=olympia.translations.fields.NoURLsField(blank=True, db_column='description', null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='Collection_description_set+', require_locale=False, short=True, to='translations.NoURLsTranslation', to_field='id', unique=True), ), migrations.AddField( model_name='collection', name='name', field=olympia.translations.fields.TranslatedField(blank=True, db_column='name', null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='Collection_name_set+', require_locale=False, short=True, to='translations.Translation', to_field='id', unique=True), ), migrations.AddIndex( model_name='featuredcollection', index=models.Index(fields=['application'], name='application_id_idx'), ), migrations.AddIndex( model_name='collectionaddon', index=models.Index(fields=['collection', 'created'], name='created_idx'), ), migrations.AddIndex( model_name='collectionaddon', index=models.Index(fields=['addon'], name='addon_id'), ), migrations.AddIndex( model_name='collectionaddon', index=models.Index(fields=['collection'], name='collection_id'), ), migrations.AddIndex( model_name='collectionaddon', index=models.Index(fields=['user'], name='user_id'), ), migrations.AddConstraint( model_name='collectionaddon', constraint=models.UniqueConstraint(fields=('addon', 'collection'), name='addon_id_2'), ), migrations.AddIndex( model_name='collection', index=models.Index(fields=['application'], name='application_id'), ), migrations.AddIndex( model_name='collection', index=models.Index(fields=['created'], name='created_idx'), ), migrations.AddIndex( model_name='collection', index=models.Index(fields=['listed'], name='listed'), ), migrations.AddIndex( model_name='collection', index=models.Index(fields=['slug'], name='slug_idx'), ), migrations.AddIndex( model_name='collection', index=models.Index(fields=['type'], name='type_idx'), ), migrations.AddConstraint( model_name='collection', constraint=models.UniqueConstraint(fields=('author', 'slug'), name='author_id'), ), ]
xam/model_selection/ordered_cross_validation.py
vishalbelsare/xam
357
12695105
import numpy as np import pandas as pd from sklearn.model_selection import BaseCrossValidator class OrderedCV(BaseCrossValidator): """Cross-validation procedure with order of indexes taken into account. Say you have an interval [a, b] and you want to make n splits with d test indexes at each split -- for example 7 days. Then DatetimeCV will return the n following splits: - [a, b - d], [b - d, b] - [a, b - 2*d], [b - 2*d, b - d] - ... - [a, b - (n-1)*d], [b - (n-1)*d, b - (n-2)*d] - [a, b - n*d], [b - n*d, (n-1)*b] Attributes: n_splits (int): the number of desired splits. delta (int or datetime.timedelta): the step to increase folds by. """ def __init__(self, n_splits, delta): super().__init__() self.n_splits = n_splits self.delta = delta def split(self, X, y=None, groups=None): """ Args: X (pd.DataFrame): a pd.DataFrame. """ if not isinstance(X, pd.DataFrame): raise ValueError('X is not a pandas.DataFrame') min_dt = X.index.min() max_dt = X.index.max() indices = np.arange(len(X)) for i in range(self.n_splits): t0 = min_dt t1 = max_dt - self.delta * (i + 1) t2 = max_dt - self.delta * i train_idxs = indices[(X.index >= t0) & (X.index <= t1)] test_idxs = indices[(X.index > t1) & (X.index <= t2)] if train_idxs.size == 0: raise ValueError('No data found in [{}, {}]'.format(t0, t1)) if test_idxs.size == 0: raise ValueError('No data found in ({}, {}]'.format(t1, t2)) yield train_idxs, test_idxs def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator""" return self.n_splits
Presentations/WG2_11/GlassBR_Code/generated/python/Interpolation.py
Danki567/Drasil
114
12695111
<filename>Presentations/WG2_11/GlassBR_Code/generated/python/Interpolation.py from __future__ import print_function import sys import math def lin_interp(x1, y1, x2, y2, x): y = (((y2 - y1) / (x2 - x1)) * (x - x1)) + y1 return y def indInSeq(arr, v): for i in range(len(arr) - 1): if ((arr[i] <= v) and (v <= arr[i + 1])) : return i raise Exception("Index not found") def matrixCol(mat, c): col = [] for i in range(len(mat)): col.append(mat[i][c]) return col def interpY(x_array, y_array, z_array, x, z): i = indInSeq(z_array, z) x_z1 = matrixCol(x_array, i) y_z1 = matrixCol(y_array, i) x_z2 = matrixCol(x_array, i + 1) y_z2 = matrixCol(y_array, i + 1) try : j = indInSeq(x_z1, x) k = indInSeq(x_z2, x) except Exception as exc : raise Exception("Interpolation of y failed.") y1 = lin_interp(x_z1[j], y_z1[j], x_z1[j + 1], y_z1[j + 1], x) y2 = lin_interp(x_z2[k], y_z2[k], x_z2[k + 1], y_z2[k + 1], x) return lin_interp(z_array[i], y1, z_array[i + 1], y2, z) def interpZ(x_array, y_array, z_array, x, y): for i in range(len(z_array) - 1): x_z1 = matrixCol(x_array, i) y_z1 = matrixCol(y_array, i) x_z2 = matrixCol(x_array, i + 1) y_z2 = matrixCol(y_array, i + 1) try : j = indInSeq(x_z1, x) k = indInSeq(x_z2, x) except Exception as exc : continue y_lower = lin_interp(x_z1[j], y_z1[j], x_z1[j + 1], y_z1[j + 1], x) y_upper = lin_interp(x_z2[k], y_z2[k], x_z2[k + 1], y_z2[k + 1], x) if ((y_lower <= y) and (y <= y_upper)) : return lin_interp(y_lower, z_array[i], y_upper, z_array[i + 1], y) raise Exception("Interpolation of z failed.")
angr/procedures/linux_kernel/brk.py
Kyle-Kyle/angr
6,132
12695122
import angr import logging l = logging.getLogger(name=__name__) class brk(angr.SimProcedure): """ This implements the brk system call. """ #pylint:disable=arguments-differ def run(self, new_brk): r = self.state.posix.set_brk(new_brk) l.debug('brk(%s) = %s', new_brk, r) return r
tests/validation/schema/test_enum_validation.py
maroux/flex
160
12695133
import six import pytest from flex.exceptions import ValidationError from flex.constants import EMPTY from flex.error_messages import MESSAGES from tests.utils import ( generate_validator_from_schema, assert_error_message_equal, ) # # minLength validation tests # @pytest.mark.parametrize( 'letters', ('a', 'b', True, 1, 2), ) def test_enum_with_valid_array(letters): schema = { 'enum': [2, 1, 'a', 'b', 'c', True, False], } validator = generate_validator_from_schema(schema) validator(letters) @pytest.mark.parametrize( 'letters', (None, 1, 0, 2, 'a'), ) def test_enum_with_invalid_items(letters): schema = { 'enum': [True, False, 1.0, 2.0, 'A'], } validator = generate_validator_from_schema(schema) with pytest.raises(ValidationError) as err: validator(letters) assert_error_message_equal( err.value.messages[0]['enum'][0], MESSAGES['enum']['invalid'], ) def test_enum_noop_when_not_required_and_field_not_present(): schema = { 'enum': [True, False, 1.0, 2.0, 'A'], } validator = generate_validator_from_schema(schema) validator(EMPTY) @pytest.mark.parametrize( 'enum_value,value', ( (six.text_type('test'), six.text_type('test')), (six.text_type('test'), b'test'), (b'test', six.text_type('test')), (b'test', b'test'), ) ) def test_enum_disperate_text_types(enum_value, value): schema = { 'enum': [enum_value], } validator = generate_validator_from_schema(schema) validator(value)
tests/em/nsem/inversion/test_Problem1D_Adjoint.py
Prithwijit-Chak/simpeg
358
12695135
from __future__ import print_function from __future__ import absolute_import from __future__ import division import numpy as np import unittest from scipy.constants import mu_0 from SimPEG.electromagnetics import natural_source as nsem from SimPEG import maps TOL = 1e-4 FLR = 1e-20 # "zero", so if residual below this --> pass regardless of order CONDUCTIVITY = 1e1 MU = mu_0 def JvecAdjointTest(sigmaHalf, formulation="PrimSec"): forType = "PrimSec" not in formulation survey, sigma, sigBG, m1d = nsem.utils.test_utils.setup1DSurvey( sigmaHalf, tD=forType, structure=False ) print("Adjoint test of e formulation for {:s} comp \n".format(formulation)) if "PrimSec" in formulation: problem = nsem.Simulation1DPrimarySecondary( m1d, survey=survey, sigmaPrimary=sigBG, sigmaMap=maps.IdentityMap(m1d) ) else: raise NotImplementedError( "Only {} formulations are implemented.".format(formulation) ) m = sigma u = problem.fields(m) np.random.seed(1983) v = np.random.rand(survey.nD,) # print problem.PropMap.PropModel.nP w = np.random.rand(problem.mesh.nC,) vJw = v.ravel().dot(problem.Jvec(m, w, u)) wJtv = w.ravel().dot(problem.Jtvec(m, v, u)) tol = np.max([TOL * (10 ** int(np.log10(np.abs(vJw)))), FLR]) print(" vJw wJtv vJw - wJtv tol abs(vJw - wJtv) < tol") print(vJw, wJtv, vJw - wJtv, tol, np.abs(vJw - wJtv) < tol) return np.abs(vJw - wJtv) < tol class NSEM_1D_AdjointTests(unittest.TestCase): def setUp(self): pass # Test the adjoint of Jvec and Jtvec # def test_JvecAdjoint_zxxr(self):self.assertTrue(JvecAdjointTest(random(1e-2),'zxxr',.1)) # def test_JvecAdjoint_zxxi(self):self.assertTrue(JvecAdjointTest(random(1e-2),'zxxi',.1)) # def test_JvecAdjoint_zxyr(self):self.assertTrue(JvecAdjointTest(random(1e-2),'zxyr',.1)) # def test_JvecAdjoint_zxyi(self):self.assertTrue(JvecAdjointTest(random(1e-2),'zxyi',.1)) # def test_JvecAdjoint_zyxr(self):self.assertTrue(JvecAdjointTest(random(1e-2),'zyxr',.1)) # def test_JvecAdjoint_zyxi(self):self.assertTrue(JvecAdjointTest(random(1e-2),'zyxi',.1)) # def test_JvecAdjoint_zyyr(self):self.assertTrue(JvecAdjointTest(random(1e-2),'zyyr',.1)) # def test_JvecAdjoint_zyyi(self):self.assertTrue(JvecAdjointTest(random(1e-2),'zyyi',.1)) def test_JvecAdjoint_All(self): self.assertTrue(JvecAdjointTest(1e-2)) if __name__ == "__main__": unittest.main()
utils.py
dionysio/haveibeenpwned_lastpass
101
12695139
#!/usr/bin/env python # -*- coding: utf-8 -*- import monkeypatch_lastpass import lastpass def get_lastpass_vault(username, password, multifactor_password=None): return lastpass.Vault.open_remote(username, password, multifactor_password)
tests/xgboost/test_hook_save_scalar_xgboost.py
NRauschmayr/sagemaker-debugger
133
12695154
# Standard Library import os import time from datetime import datetime # Third Party import numpy as np import pytest import xgboost from tests.core.utils import check_tf_events, delete_local_trials, verify_files # First Party from smdebug.core.modes import ModeKeys from smdebug.core.save_config import SaveConfig, SaveConfigMode from smdebug.xgboost import Hook as XG_Hook SMDEBUG_XG_HOOK_TESTS_DIR = "/tmp/test_output/smdebug_xg/tests/" def simple_xg_model(hook, num_round=10, seed=42, with_timestamp=False): np.random.seed(seed) train_data = np.random.rand(5, 10) train_label = np.random.randint(2, size=5) dtrain = xgboost.DMatrix(train_data, label=train_label) test_data = np.random.rand(5, 10) test_label = np.random.randint(2, size=5) dtest = xgboost.DMatrix(test_data, label=test_label) params = {} scalars_to_be_saved = dict() ts = time.time() hook.save_scalar( "xg_num_steps", num_round, sm_metric=True, timestamp=ts if with_timestamp else None ) scalars_to_be_saved["scalar/xg_num_steps"] = (ts, num_round) ts = time.time() hook.save_scalar( "xg_before_train", 1, sm_metric=False, timestamp=ts if with_timestamp else None ) scalars_to_be_saved["scalar/xg_before_train"] = (ts, 1) hook.set_mode(ModeKeys.TRAIN) xgboost.train( params, dtrain, evals=[(dtrain, "train"), (dtest, "test")], num_boost_round=num_round, callbacks=[hook], ) ts = time.time() hook.save_scalar("xg_after_train", 1, sm_metric=False, timestamp=ts if with_timestamp else None) scalars_to_be_saved["scalar/xg_after_train"] = (ts, 1) return scalars_to_be_saved def helper_xgboost_tests(collection, save_config, with_timestamp): coll_name, coll_regex = collection run_id = "trial_" + coll_name + "-" + datetime.now().strftime("%Y%m%d-%H%M%S%f") trial_dir = os.path.join(SMDEBUG_XG_HOOK_TESTS_DIR, run_id) hook = XG_Hook( out_dir=trial_dir, include_collections=[coll_name], save_config=save_config, export_tensorboard=True, ) saved_scalars = simple_xg_model(hook, with_timestamp=with_timestamp) hook.close() verify_files(trial_dir, save_config, saved_scalars) if with_timestamp: check_tf_events(trial_dir, saved_scalars) @pytest.mark.parametrize("collection", [("all", ".*"), ("scalars", "^scalar")]) @pytest.mark.parametrize( "save_config", [ SaveConfig(save_steps=[0, 2, 4, 6, 8]), SaveConfig( { ModeKeys.TRAIN: SaveConfigMode(save_interval=2), ModeKeys.GLOBAL: SaveConfigMode(save_interval=3), ModeKeys.EVAL: SaveConfigMode(save_interval=1), } ), ], ) @pytest.mark.parametrize("with_timestamp", [True, False]) def test_xgboost_save_scalar(collection, save_config, with_timestamp): helper_xgboost_tests(collection, save_config, with_timestamp) delete_local_trials([SMDEBUG_XG_HOOK_TESTS_DIR])
lldb/test/API/lang/swift/foundation_value_types/global/TestSwiftFoundationTypeGlobal.py
LaudateCorpus1/llvm-project
605
12695168
<reponame>LaudateCorpus1/llvm-project import lldb from lldbsuite.test.lldbtest import * from lldbsuite.test.decorators import * import lldbsuite.test.lldbutil as lldbutil import os import unittest2 class TestSwiftFoundationValueTypeGlobal(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): TestBase.setUp(self) @swiftTest @skipUnlessFoundation def test(self): self.build() target = self.dbg.CreateTarget(self.getBuildArtifact()) self.assertTrue(target, VALID_TARGET) # Target variable without a process. # This is not actually expected to work, but also shouldn't crash. self.expect("target variable g_url")
graphene_sqlalchemy/fields.py
oneome-llc/graphene-sqlalchemy
947
12695183
<reponame>oneome-llc/graphene-sqlalchemy import enum import warnings from functools import partial from promise import Promise, is_thenable from sqlalchemy.orm.query import Query from graphene import NonNull from graphene.relay import Connection, ConnectionField from graphene.relay.connection import connection_adapter, page_info_adapter from graphql_relay.connection.arrayconnection import \ connection_from_array_slice from .batching import get_batch_resolver from .utils import EnumValue, get_query class UnsortedSQLAlchemyConnectionField(ConnectionField): @property def type(self): from .types import SQLAlchemyObjectType type_ = super(ConnectionField, self).type nullable_type = get_nullable_type(type_) if issubclass(nullable_type, Connection): return type_ assert issubclass(nullable_type, SQLAlchemyObjectType), ( "SQLALchemyConnectionField only accepts SQLAlchemyObjectType types, not {}" ).format(nullable_type.__name__) assert ( nullable_type.connection ), "The type {} doesn't have a connection".format( nullable_type.__name__ ) assert type_ == nullable_type, ( "Passing a SQLAlchemyObjectType instance is deprecated. " "Pass the connection type instead accessible via SQLAlchemyObjectType.connection" ) return nullable_type.connection @property def model(self): return get_nullable_type(self.type)._meta.node._meta.model @classmethod def get_query(cls, model, info, **args): return get_query(model, info.context) @classmethod def resolve_connection(cls, connection_type, model, info, args, resolved): if resolved is None: resolved = cls.get_query(model, info, **args) if isinstance(resolved, Query): _len = resolved.count() else: _len = len(resolved) def adjusted_connection_adapter(edges, pageInfo): return connection_adapter(connection_type, edges, pageInfo) connection = connection_from_array_slice( array_slice=resolved, args=args, slice_start=0, array_length=_len, array_slice_length=_len, connection_type=adjusted_connection_adapter, edge_type=connection_type.Edge, page_info_type=page_info_adapter, ) connection.iterable = resolved connection.length = _len return connection @classmethod def connection_resolver(cls, resolver, connection_type, model, root, info, **args): resolved = resolver(root, info, **args) on_resolve = partial(cls.resolve_connection, connection_type, model, info, args) if is_thenable(resolved): return Promise.resolve(resolved).then(on_resolve) return on_resolve(resolved) def wrap_resolve(self, parent_resolver): return partial( self.connection_resolver, parent_resolver, get_nullable_type(self.type), self.model, ) # TODO Rename this to SortableSQLAlchemyConnectionField class SQLAlchemyConnectionField(UnsortedSQLAlchemyConnectionField): def __init__(self, type_, *args, **kwargs): nullable_type = get_nullable_type(type_) if "sort" not in kwargs and issubclass(nullable_type, Connection): # Let super class raise if type is not a Connection try: kwargs.setdefault("sort", nullable_type.Edge.node._type.sort_argument()) except (AttributeError, TypeError): raise TypeError( 'Cannot create sort argument for {}. A model is required. Set the "sort" argument' " to None to disabling the creation of the sort query argument".format( nullable_type.__name__ ) ) elif "sort" in kwargs and kwargs["sort"] is None: del kwargs["sort"] super(SQLAlchemyConnectionField, self).__init__(type_, *args, **kwargs) @classmethod def get_query(cls, model, info, sort=None, **args): query = get_query(model, info.context) if sort is not None: if not isinstance(sort, list): sort = [sort] sort_args = [] # ensure consistent handling of graphene Enums, enum values and # plain strings for item in sort: if isinstance(item, enum.Enum): sort_args.append(item.value.value) elif isinstance(item, EnumValue): sort_args.append(item.value) else: sort_args.append(item) query = query.order_by(*sort_args) return query class BatchSQLAlchemyConnectionField(UnsortedSQLAlchemyConnectionField): """ This is currently experimental. The API and behavior may change in future versions. Use at your own risk. """ def wrap_resolve(self, parent_resolver): return partial( self.connection_resolver, self.resolver, get_nullable_type(self.type), self.model, ) @classmethod def from_relationship(cls, relationship, registry, **field_kwargs): model = relationship.mapper.entity model_type = registry.get_type_for_model(model) return cls(model_type.connection, resolver=get_batch_resolver(relationship), **field_kwargs) def default_connection_field_factory(relationship, registry, **field_kwargs): model = relationship.mapper.entity model_type = registry.get_type_for_model(model) return __connectionFactory(model_type, **field_kwargs) # TODO Remove in next major version __connectionFactory = UnsortedSQLAlchemyConnectionField def createConnectionField(type_, **field_kwargs): warnings.warn( 'createConnectionField is deprecated and will be removed in the next ' 'major version. Use SQLAlchemyObjectType.Meta.connection_field_factory instead.', DeprecationWarning, ) return __connectionFactory(type_, **field_kwargs) def registerConnectionFieldFactory(factoryMethod): warnings.warn( 'registerConnectionFieldFactory is deprecated and will be removed in the next ' 'major version. Use SQLAlchemyObjectType.Meta.connection_field_factory instead.', DeprecationWarning, ) global __connectionFactory __connectionFactory = factoryMethod def unregisterConnectionFieldFactory(): warnings.warn( 'registerConnectionFieldFactory is deprecated and will be removed in the next ' 'major version. Use SQLAlchemyObjectType.Meta.connection_field_factory instead.', DeprecationWarning, ) global __connectionFactory __connectionFactory = UnsortedSQLAlchemyConnectionField def get_nullable_type(_type): if isinstance(_type, NonNull): return _type.of_type return _type
examples/plot_calibration_curve.py
leozhoujf/scikit-plot
2,360
12695191
""" An example showing the plot_calibration_curve method used by a scikit-learn classifier """ from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC from sklearn.datasets import make_classification import matplotlib.pyplot as plt import scikitplot as skplt X, y = make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2, random_state=20) X_train, y_train, X_test, y_test = X[:1000], y[:1000], X[1000:], y[1000:] rf_probas = RandomForestClassifier().fit(X_train, y_train).predict_proba(X_test) lr_probas = LogisticRegression().fit(X_train, y_train).predict_proba(X_test) nb_probas = GaussianNB().fit(X_train, y_train).predict_proba(X_test) sv_scores = LinearSVC().fit(X_train, y_train).decision_function(X_test) probas_list = [rf_probas, lr_probas, nb_probas, sv_scores] clf_names=['Random Forest', 'Logistic Regression', 'Gaussian Naive Bayes', 'Support Vector Machine'] skplt.metrics.plot_calibration_curve(y_test, probas_list=probas_list, clf_names=clf_names, n_bins=10) plt.show()