max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
somaticseq/utilities/dockered_pipelines/bamSimulator/bamSurgeon/convert_nonStandardBasesInVcfs.py
bioinform/somaticseq
159
12698491
#!/usr/bin/env python3 import sys, re for line_i in sys.stdin: if line_i.startswith('#'): print(line_i, end='') else: item = line_i.rstrip().split('\t') item[3] = re.sub(r'[^gctanGCTAN,0-9]', 'N', item[3]) item[4] = re.sub(r'[^gctanGCTAN,0-9]', 'N', item[4]) line_out = '\t'.join(item) print(line_out)
src/amuse/community/ph4/binary_hist.py
rknop/amuse
131
12698524
from pylab import * import sys import re if __name__ == '__main__': if len(sys.argv) != 3: print("usage: python binary_hist.py <input filename> <time of histogram>") sys.exit(1) else: fname = sys.argv[1] time = float(sys.argv[2]) f = open(fname, "r") inblock = False EkTs = [] for line in f: if re.search("%%% time= (\d+\.\d*)", line): if float(re.search("%%% time= (\d+\.\d*)", line).group(1)) == time: inblock = True if inblock and re.search("%%% .*E/kT=(-?\d+\.\d+)", line): EkTs.append(float(re.search("%%%.*E/kT=(-?\d+\.\d+)", line).group(1))) if inblock and re.search("%%% Emul/E", line): inblock = False f.close() if len(EkTs) > 0: hist(EkTs) show() else: print("No binaries found at time = %f." % time)
xmodaler/modeling/layers/positionwise_feedforward.py
cclauss/xmodaler
830
12698527
""" From original at https://github.com/aimagelab/meshed-memory-transformer/blob/master/models/transformer/utils.py Original copyright of AImageLab code below, modifications by <NAME>, Copyright 2021. """ # Copyright (c) 2019, AImageLab import torch import torch.nn as nn import torch.nn.functional as F __all__ = ["PositionWiseFeedForward"] class PositionWiseFeedForward(nn.Module): ''' Position-wise feed forward layer ''' def __init__( self, *, d_model: int, d_ff: int, dropout: float ): super(PositionWiseFeedForward, self).__init__() #self.identity_map_reordering = identity_map_reordering self.fc1 = nn.Linear(d_model, d_ff) self.fc2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(p=dropout) if dropout > 0. else None self.dropout_2 = nn.Dropout(p=dropout) if dropout > 0. else None self.layer_norm = nn.LayerNorm(d_model) def forward(self, inputs): # if self.identity_map_reordering: # out = self.layer_norm(input) # out = self.fc2(self.dropout_2(F.relu(self.fc1(out)))) # out = input + self.dropout(torch.relu(out)) #else: out = F.relu(self.fc1(inputs)) if self.dropout_2: out = self.dropout_2(out) out = self.fc2(out) if self.dropout: out = self.dropout(out) out = self.layer_norm(inputs + out) return out
ulid/api/microsecond.py
xkortex/ulid
303
12698535
<reponame>xkortex/ulid<gh_stars>100-1000 """ ulid/api/microsecond ~~~~~~~~~~~~~~~~~~~~ Contains the public API of the `ulid` package using the microsecond provider. """ from .. import consts, providers, ulid from . import api API = api.Api(providers.MICROSECOND) create = API.create from_bytes = API.from_bytes from_int = API.from_int from_randomness = API.from_randomness from_str = API.from_str from_timestamp = API.from_timestamp from_uuid = API.from_uuid new = API.new parse = API.parse MIN_TIMESTAMP = consts.MIN_TIMESTAMP MAX_TIMESTAMP = consts.MAX_TIMESTAMP MIN_RANDOMNESS = consts.MIN_RANDOMNESS MAX_RANDOMNESS = consts.MAX_RANDOMNESS MIN_ULID = consts.MIN_ULID MAX_ULID = consts.MAX_ULID Timestamp = ulid.Timestamp Randomness = ulid.Randomness ULID = ulid.ULID __all__ = api.ALL
supervised-oie-benchmark/oie_readers/propsReader.py
acoli-repo/OpenIE_Stanovsky_Dagan
117
12698550
from oie_readers.oieReader import OieReader from oie_readers.extraction import Extraction class PropSReader(OieReader): def __init__(self): self.name = 'PropS' def read(self, fn): d = {} with open(fn) as fin: for line in fin: if not line.strip(): continue data = line.strip().split('\t') confidence, text, rel = data[:3] curExtraction = Extraction(pred = rel, sent = text, confidence = float(confidence)) for arg in data[4::2]: curExtraction.addArg(arg) d[text] = d.get(text, []) + [curExtraction] self.oie = d self.normalizeConfidence() def normalizeConfidence(self): ''' Normalize confidence to resemble probabilities ''' EPSILON = 1e-3 self.confidences = [extraction.confidence for sent in self.oie for extraction in self.oie[sent]] maxConfidence = max(self.confidences) minConfidence = min(self.confidences) denom = maxConfidence - minConfidence + (2*EPSILON) for sent, extractions in self.oie.items(): for extraction in extractions: extraction.confidence = ( (extraction.confidence - minConfidence) + EPSILON) / denom
scripts/external_libs/scapy-2.4.3/scapy/contrib/automotive/uds.py
timgates42/trex-core
956
12698577
#! /usr/bin/env python # This file is part of Scapy # See http://www.secdev.org/projects/scapy for more information # Copyright (C) <NAME> <<EMAIL>> # This program is published under a GPLv2 license # scapy.contrib.description = Unified Diagnostic Service (UDS) # scapy.contrib.status = loads import struct from scapy.fields import ByteEnumField, StrField, ConditionalField, \ BitEnumField, BitField, XByteField, FieldListField, \ XShortField, X3BytesField, XIntField, ByteField, \ ShortField, ObservableDict, XShortEnumField, XByteEnumField from scapy.packet import Packet, bind_layers from scapy.config import conf from scapy.error import log_loading from scapy.utils import PeriodicSenderThread """ UDS """ try: if conf.contribs['UDS']['treat-response-pending-as-answer']: pass except KeyError: log_loading.info("Specify \"conf.contribs['UDS'] = " "{'treat-response-pending-as-answer': True}\" to treat " "a negative response 'requestCorrectlyReceived-" "ResponsePending' as answer of a request. \n" "The default value is False.") conf.contribs['UDS'] = {'treat-response-pending-as-answer': False} class UDS(Packet): services = ObservableDict( {0x10: 'DiagnosticSessionControl', 0x11: 'ECUReset', 0x14: 'ClearDiagnosticInformation', 0x19: 'ReadDTCInformation', 0x22: 'ReadDataByIdentifier', 0x23: 'ReadMemoryByAddress', 0x24: 'ReadScalingDataByIdentifier', 0x27: 'SecurityAccess', 0x28: 'CommunicationControl', 0x2A: 'ReadDataPeriodicIdentifier', 0x2C: 'DynamicallyDefineDataIdentifier', 0x2E: 'WriteDataByIdentifier', 0x2F: 'InputOutputControlByIdentifier', 0x31: 'RoutineControl', 0x34: 'RequestDownload', 0x35: 'RequestUpload', 0x36: 'TransferData', 0x37: 'RequestTransferExit', 0x3D: 'WriteMemoryByAddress', 0x3E: 'TesterPresent', 0x50: 'DiagnosticSessionControlPositiveResponse', 0x51: 'ECUResetPositiveResponse', 0x54: 'ClearDiagnosticInformationPositiveResponse', 0x59: 'ReadDTCInformationPositiveResponse', 0x62: 'ReadDataByIdentifierPositiveResponse', 0x63: 'ReadMemoryByAddressPositiveResponse', 0x64: 'ReadScalingDataByIdentifierPositiveResponse', 0x67: 'SecurityAccessPositiveResponse', 0x68: 'CommunicationControlPositiveResponse', 0x6A: 'ReadDataPeriodicIdentifierPositiveResponse', 0x6C: 'DynamicallyDefineDataIdentifierPositiveResponse', 0x6E: 'WriteDataByIdentifierPositiveResponse', 0x6F: 'InputOutputControlByIdentifierPositiveResponse', 0x71: 'RoutineControlPositiveResponse', 0x74: 'RequestDownloadPositiveResponse', 0x75: 'RequestUploadPositiveResponse', 0x76: 'TransferDataPositiveResponse', 0x77: 'RequestTransferExitPositiveResponse', 0x7D: 'WriteMemoryByAddressPositiveResponse', 0x7E: 'TesterPresentPositiveResponse', 0x83: 'AccessTimingParameter', 0x84: 'SecuredDataTransmission', 0x85: 'ControlDTCSetting', 0x86: 'ResponseOnEvent', 0x87: 'LinkControl', 0xC3: 'AccessTimingParameterPositiveResponse', 0xC4: 'SecuredDataTransmissionPositiveResponse', 0xC5: 'ControlDTCSettingPositiveResponse', 0xC6: 'ResponseOnEventPositiveResponse', 0xC7: 'LinkControlPositiveResponse', 0x7f: 'NegativeResponse'}) name = 'UDS' fields_desc = [ XByteEnumField('service', 0, services) ] def answers(self, other): """DEV: true if self is an answer from other""" if other.__class__ == self.__class__: return (other.service + 0x40) == self.service or \ (self.service == 0x7f and self.requestServiceId == other.service and (self.negativeResponseCode != 0x78 or conf.contribs['UDS']['treat-response-pending-as-answer'])) return 0 def hashret(self): if self.service == 0x7f: return struct.pack('B', self.requestServiceId) return struct.pack('B', self.service & ~0x40) # ########################DSC################################### class UDS_DSC(Packet): diagnosticSessionTypes = { 0x00: 'ISOSAEReserved', 0x01: 'defaultSession', 0x02: 'programmingSession', 0x03: 'extendedDiagnosticSession', 0x04: 'safetySystemDiagnosticSession', 0x7F: 'ISOSAEReserved'} name = 'DiagnosticSessionControl' fields_desc = [ ByteEnumField('diagnosticSessionType', 0, diagnosticSessionTypes) ] bind_layers(UDS, UDS_DSC, service=0x10) class UDS_DSCPR(Packet): name = 'DiagnosticSessionControlPositiveResponse' fields_desc = [ ByteEnumField('diagnosticSessionType', 0, UDS_DSC.diagnosticSessionTypes), StrField('sessionParameterRecord', B"") ] bind_layers(UDS, UDS_DSCPR, service=0x50) # #########################ER################################### class UDS_ER(Packet): resetTypes = { 0x00: 'ISOSAEReserved', 0x01: 'hardReset', 0x02: 'keyOffOnReset', 0x03: 'softReset', 0x04: 'enableRapidPowerShutDown', 0x05: 'disableRapidPowerShutDown', 0x7F: 'ISOSAEReserved'} name = 'ECUReset' fields_desc = [ ByteEnumField('resetType', 0, resetTypes) ] bind_layers(UDS, UDS_ER, service=0x11) class UDS_ERPR(Packet): name = 'ECUResetPositiveResponse' fields_desc = [ ByteEnumField('resetType', 0, UDS_ER.resetTypes), ConditionalField(ByteField('powerDownTime', 0), lambda pkt: pkt.resetType == 0x04) ] bind_layers(UDS, UDS_ERPR, service=0x51) # #########################SA################################### class UDS_SA(Packet): name = 'SecurityAccess' fields_desc = [ ByteField('securityAccessType', 0), ConditionalField(StrField('securityAccessDataRecord', B""), lambda pkt: pkt.securityAccessType % 2 == 1), ConditionalField(StrField('securityKey', B""), lambda pkt: pkt.securityAccessType % 2 == 0) ] bind_layers(UDS, UDS_SA, service=0x27) class UDS_SAPR(Packet): name = 'SecurityAccessPositiveResponse' fields_desc = [ ByteField('securityAccessType', 0), ConditionalField(StrField('securitySeed', B""), lambda pkt: pkt.securityAccessType % 2 == 1), ] bind_layers(UDS, UDS_SAPR, service=0x67) # #########################CC################################### class UDS_CC(Packet): controlTypes = { 0x00: 'enableRxAndTx', 0x01: 'enableRxAndDisableTx', 0x02: 'disableRxAndEnableTx', 0x03: 'disableRxAndTx' } name = 'CommunicationControl' fields_desc = [ ByteEnumField('controlType', 0, controlTypes), BitEnumField('communicationType0', 0, 2, {0: 'ISOSAEReserved', 1: 'normalCommunicationMessages', 2: 'networkManagmentCommunicationMessages', 3: 'networkManagmentCommunicationMessages and ' 'normalCommunicationMessages'}), BitField('communicationType1', 0, 2), BitEnumField('communicationType2', 0, 4, {0: 'Disable/Enable specified communication Type', 1: 'Disable/Enable specific subnet', 2: 'Disable/Enable specific subnet', 3: 'Disable/Enable specific subnet', 4: 'Disable/Enable specific subnet', 5: 'Disable/Enable specific subnet', 6: 'Disable/Enable specific subnet', 7: 'Disable/Enable specific subnet', 8: 'Disable/Enable specific subnet', 9: 'Disable/Enable specific subnet', 10: 'Disable/Enable specific subnet', 11: 'Disable/Enable specific subnet', 12: 'Disable/Enable specific subnet', 13: 'Disable/Enable specific subnet', 14: 'Disable/Enable specific subnet', 15: 'Disable/Enable network'}) ] bind_layers(UDS, UDS_CC, service=0x28) class UDS_CCPR(Packet): name = 'CommunicationControlPositiveResponse' fields_desc = [ ByteEnumField('controlType', 0, UDS_CC.controlTypes) ] bind_layers(UDS, UDS_CCPR, service=0x68) # #########################TP################################### class UDS_TP(Packet): name = 'TesterPresent' fields_desc = [ ByteField('subFunction', 0) ] bind_layers(UDS, UDS_TP, service=0x3E) class UDS_TPPR(Packet): name = 'TesterPresentPositiveResponse' fields_desc = [ ByteField('zeroSubFunction', 0) ] bind_layers(UDS, UDS_TPPR, service=0x7E) # #########################ATP################################### class UDS_ATP(Packet): timingParameterAccessTypes = { 0: 'ISOSAEReserved', 1: 'readExtendedTimingParameterSet', 2: 'setTimingParametersToDefaultValues', 3: 'readCurrentlyActiveTimingParameters', 4: 'setTimingParametersToGivenValues' } name = 'AccessTimingParameter' fields_desc = [ ByteEnumField('timingParameterAccessType', 0, timingParameterAccessTypes), ConditionalField(StrField('timingParameterRequestRecord', B""), lambda pkt: pkt.timingParameterAccessType == 0x4) ] bind_layers(UDS, UDS_ATP, service=0x83) class UDS_ATPPR(Packet): name = 'AccessTimingParameterPositiveResponse' fields_desc = [ ByteEnumField('timingParameterAccessType', 0, UDS_ATP.timingParameterAccessTypes), ConditionalField(StrField('timingParameterResponseRecord', B""), lambda pkt: pkt.timingParameterAccessType == 0x3) ] bind_layers(UDS, UDS_ATPPR, service=0xC3) # #########################SDT################################### class UDS_SDT(Packet): name = 'SecuredDataTransmission' fields_desc = [ StrField('securityDataRequestRecord', B"") ] bind_layers(UDS, UDS_SDT, service=0x84) class UDS_SDTPR(Packet): name = 'SecuredDataTransmissionPositiveResponse' fields_desc = [ StrField('securityDataResponseRecord', B"") ] bind_layers(UDS, UDS_SDTPR, service=0xC4) # #########################CDTCS################################### class UDS_CDTCS(Packet): DTCSettingTypes = { 0: 'ISOSAEReserved', 1: 'on', 2: 'off' } name = 'ControlDTCSetting' fields_desc = [ ByteEnumField('DTCSettingType', 0, DTCSettingTypes), StrField('DTCSettingControlOptionRecord', B"") ] bind_layers(UDS, UDS_CDTCS, service=0x85) class UDS_CDTCSPR(Packet): name = 'ControlDTCSettingPositiveResponse' fields_desc = [ ByteEnumField('DTCSettingType', 0, UDS_CDTCS.DTCSettingTypes) ] bind_layers(UDS, UDS_CDTCSPR, service=0xC5) # #########################ROE################################### # TODO: improve this protocol implementation class UDS_ROE(Packet): eventTypes = { 0: 'doNotStoreEvent', 1: 'storeEvent' } name = 'ResponseOnEvent' fields_desc = [ ByteEnumField('eventType', 0, eventTypes), ByteField('eventWindowTime', 0), StrField('eventTypeRecord', B"") ] bind_layers(UDS, UDS_ROE, service=0x86) class UDS_ROEPR(Packet): name = 'ResponseOnEventPositiveResponse' fields_desc = [ ByteEnumField('eventType', 0, UDS_ROE.eventTypes), ByteField('numberOfIdentifiedEvents', 0), ByteField('eventWindowTime', 0), StrField('eventTypeRecord', B"") ] bind_layers(UDS, UDS_ROEPR, service=0xC6) # #########################LC################################### class UDS_LC(Packet): linkControlTypes = { 0: 'ISOSAEReserved', 1: 'verifyBaudrateTransitionWithFixedBaudrate', 2: 'verifyBaudrateTransitionWithSpecificBaudrate', 3: 'transitionBaudrate' } name = 'LinkControl' fields_desc = [ ByteEnumField('linkControlType', 0, linkControlTypes), ConditionalField(ByteField('baudrateIdentifier', 0), lambda pkt: pkt.linkControlType == 0x1), ConditionalField(ByteField('baudrateHighByte', 0), lambda pkt: pkt.linkControlType == 0x2), ConditionalField(ByteField('baudrateMiddleByte', 0), lambda pkt: pkt.linkControlType == 0x2), ConditionalField(ByteField('baudrateLowByte', 0), lambda pkt: pkt.linkControlType == 0x2) ] bind_layers(UDS, UDS_LC, service=0x87) class UDS_LCPR(Packet): name = 'LinkControlPositiveResponse' fields_desc = [ ByteEnumField('linkControlType', 0, UDS_LC.linkControlTypes) ] bind_layers(UDS, UDS_LCPR, service=0xC7) # #########################RDBI################################### class UDS_RDBI(Packet): dataIdentifiers = ObservableDict() name = 'ReadDataByIdentifier' fields_desc = [ FieldListField("identifiers", [], XShortEnumField('dataIdentifier', 0, dataIdentifiers)) ] bind_layers(UDS, UDS_RDBI, service=0x22) class UDS_RDBIPR(Packet): name = 'ReadDataByIdentifierPositiveResponse' fields_desc = [ XShortEnumField('dataIdentifier', 0, UDS_RDBI.dataIdentifiers), ] bind_layers(UDS, UDS_RDBIPR, service=0x62) # #########################RMBA################################### class UDS_RMBA(Packet): name = 'ReadMemoryByAddress' fields_desc = [ BitField('memorySizeLen', 0, 4), BitField('memoryAddressLen', 0, 4), ConditionalField(XByteField('memoryAddress1', 0), lambda pkt: pkt.memoryAddressLen == 1), ConditionalField(XShortField('memoryAddress2', 0), lambda pkt: pkt.memoryAddressLen == 2), ConditionalField(X3BytesField('memoryAddress3', 0), lambda pkt: pkt.memoryAddressLen == 3), ConditionalField(XIntField('memoryAddress4', 0), lambda pkt: pkt.memoryAddressLen == 4), ConditionalField(XByteField('memorySize1', 0), lambda pkt: pkt.memorySizeLen == 1), ConditionalField(XShortField('memorySize2', 0), lambda pkt: pkt.memorySizeLen == 2), ConditionalField(X3BytesField('memorySize3', 0), lambda pkt: pkt.memorySizeLen == 3), ConditionalField(XIntField('memorySize4', 0), lambda pkt: pkt.memorySizeLen == 4), ] bind_layers(UDS, UDS_RMBA, service=0x23) class UDS_RMBAPR(Packet): name = 'ReadMemoryByAddressPositiveResponse' fields_desc = [ StrField('dataRecord', None, fmt="B") ] bind_layers(UDS, UDS_RMBAPR, service=0x63) # #########################RSDBI################################### class UDS_RSDBI(Packet): name = 'ReadScalingDataByIdentifier' fields_desc = [ XShortField('dataIdentifier', 0) ] bind_layers(UDS, UDS_RSDBI, service=0x24) # TODO: Implement correct scaling here, instead of using just the dataRecord class UDS_RSDBIPR(Packet): name = 'ReadScalingDataByIdentifierPositiveResponse' fields_desc = [ XShortField('dataIdentifier', 0), ByteField('scalingByte', 0), StrField('dataRecord', None, fmt="B") ] bind_layers(UDS, UDS_RSDBIPR, service=0x64) # #########################RDBPI################################### class UDS_RDBPI(Packet): transmissionModes = { 0: 'ISOSAEReserved', 1: 'sendAtSlowRate', 2: 'sendAtMediumRate', 3: 'sendAtFastRate', 4: 'stopSending' } name = 'ReadDataByPeriodicIdentifier' fields_desc = [ ByteEnumField('transmissionMode', 0, transmissionModes), ByteField('periodicDataIdentifier', 0), StrField('furtherPeriodicDataIdentifier', 0, fmt="B") ] bind_layers(UDS, UDS_RDBPI, service=0x2A) # TODO: Implement correct scaling here, instead of using just the dataRecord class UDS_RDBPIPR(Packet): name = 'ReadDataByPeriodicIdentifierPositiveResponse' fields_desc = [ ByteField('periodicDataIdentifier', 0), StrField('dataRecord', None, fmt="B") ] bind_layers(UDS, UDS_RDBPIPR, service=0x6A) # #########################DDDI################################### # TODO: Implement correct interpretation here, # instead of using just the dataRecord class UDS_DDDI(Packet): name = 'DynamicallyDefineDataIdentifier' fields_desc = [ ByteField('definitionMode', 0), StrField('dataRecord', 0, fmt="B") ] bind_layers(UDS, UDS_DDDI, service=0x2C) class UDS_DDDIPR(Packet): name = 'DynamicallyDefineDataIdentifierPositiveResponse' fields_desc = [ ByteField('definitionMode', 0), XShortField('dynamicallyDefinedDataIdentifier', 0) ] bind_layers(UDS, UDS_DDDIPR, service=0x6C) # #########################WDBI################################### class UDS_WDBI(Packet): name = 'WriteDataByIdentifier' fields_desc = [ XShortEnumField('dataIdentifier', 0, UDS_RDBI.dataIdentifiers) ] bind_layers(UDS, UDS_WDBI, service=0x2E) class UDS_WDBIPR(Packet): name = 'WriteDataByIdentifierPositiveResponse' fields_desc = [ XShortEnumField('dataIdentifier', 0, UDS_RDBI.dataIdentifiers), ] bind_layers(UDS, UDS_WDBIPR, service=0x6E) # #########################WMBA################################### class UDS_WMBA(Packet): name = 'WriteMemoryByAddress' fields_desc = [ BitField('memorySizeLen', 0, 4), BitField('memoryAddressLen', 0, 4), ConditionalField(XByteField('memoryAddress1', 0), lambda pkt: pkt.memoryAddressLen == 1), ConditionalField(XShortField('memoryAddress2', 0), lambda pkt: pkt.memoryAddressLen == 2), ConditionalField(X3BytesField('memoryAddress3', 0), lambda pkt: pkt.memoryAddressLen == 3), ConditionalField(XIntField('memoryAddress4', 0), lambda pkt: pkt.memoryAddressLen == 4), ConditionalField(XByteField('memorySize1', 0), lambda pkt: pkt.memorySizeLen == 1), ConditionalField(XShortField('memorySize2', 0), lambda pkt: pkt.memorySizeLen == 2), ConditionalField(X3BytesField('memorySize3', 0), lambda pkt: pkt.memorySizeLen == 3), ConditionalField(XIntField('memorySize4', 0), lambda pkt: pkt.memorySizeLen == 4), StrField('dataRecord', b'\x00', fmt="B"), ] bind_layers(UDS, UDS_WMBA, service=0x3D) class UDS_WMBAPR(Packet): name = 'WriteMemoryByAddressPositiveResponse' fields_desc = [ BitField('memorySizeLen', 0, 4), BitField('memoryAddressLen', 0, 4), ConditionalField(XByteField('memoryAddress1', 0), lambda pkt: pkt.memoryAddressLen == 1), ConditionalField(XShortField('memoryAddress2', 0), lambda pkt: pkt.memoryAddressLen == 2), ConditionalField(X3BytesField('memoryAddress3', 0), lambda pkt: pkt.memoryAddressLen == 3), ConditionalField(XIntField('memoryAddress4', 0), lambda pkt: pkt.memoryAddressLen == 4), ConditionalField(XByteField('memorySize1', 0), lambda pkt: pkt.memorySizeLen == 1), ConditionalField(XShortField('memorySize2', 0), lambda pkt: pkt.memorySizeLen == 2), ConditionalField(X3BytesField('memorySize3', 0), lambda pkt: pkt.memorySizeLen == 3), ConditionalField(XIntField('memorySize4', 0), lambda pkt: pkt.memorySizeLen == 4) ] bind_layers(UDS, UDS_WMBAPR, service=0x7D) # #########################CDTCI################################### class UDS_CDTCI(Packet): name = 'ClearDiagnosticInformation' fields_desc = [ ByteField('groupOfDTCHighByte', 0), ByteField('groupOfDTCMiddleByte', 0), ByteField('groupOfDTCLowByte', 0), ] bind_layers(UDS, UDS_CDTCI, service=0x14) # #########################RDTCI################################### class UDS_RDTCI(Packet): reportTypes = { 0: 'ISOSAEReserved', 1: 'reportNumberOfDTCByStatusMask', 2: 'reportDTCByStatusMask', 3: 'reportDTCSnapshotIdentification', 4: 'reportDTCSnapshotRecordByDTCNumber', 5: 'reportDTCSnapshotRecordByRecordNumber', 6: 'reportDTCExtendedDataRecordByDTCNumber', 7: 'reportNumberOfDTCBySeverityMaskRecord', 8: 'reportDTCBySeverityMaskRecord', 9: 'reportSeverityInformationOfDTC', 10: 'reportSupportedDTC', 11: 'reportFirstTestFailedDTC', 12: 'reportFirstConfirmedDTC', 13: 'reportMostRecentTestFailedDTC', 14: 'reportMostRecentConfirmedDTC', 15: 'reportMirrorMemoryDTCByStatusMask', 16: 'reportMirrorMemoryDTCExtendedDataRecordByDTCNumber', 17: 'reportNumberOfMirrorMemoryDTCByStatusMask', 18: 'reportNumberOfEmissionsRelatedOBDDTCByStatusMask', 19: 'reportEmissionsRelatedOBDDTCByStatusMask', 20: 'reportDTCFaultDetectionCounter', 21: 'reportDTCWithPermanentStatus' } name = 'ReadDTCInformation' fields_desc = [ ByteEnumField('reportType', 0, reportTypes), ConditionalField(XByteField('DTCStatusMask', 0), lambda pkt: pkt.reportType in [0x01, 0x02, 0x0f, 0x11, 0x12, 0x13]), ConditionalField(ByteField('DTCHighByte', 0), lambda pkt: pkt.reportType in [0x3, 0x4, 0x6, 0x10, 0x09]), ConditionalField(ByteField('DTCMiddleByte', 0), lambda pkt: pkt.reportType in [0x3, 0x4, 0x6, 0x10, 0x09]), ConditionalField(ByteField('DTCLowByte', 0), lambda pkt: pkt.reportType in [0x3, 0x4, 0x6, 0x10, 0x09]), ConditionalField(ByteField('DTCSnapshotRecordNumber', 0), lambda pkt: pkt.reportType in [0x3, 0x4, 0x5]), ConditionalField(ByteField('DTCExtendedDataRecordNumber', 0), lambda pkt: pkt.reportType in [0x6, 0x10]), ConditionalField(ByteField('DTCSeverityMask', 0), lambda pkt: pkt.reportType in [0x07, 0x08]), ConditionalField(ByteField('DTCStatusMask', 0), lambda pkt: pkt.reportType in [0x07, 0x08]), ] bind_layers(UDS, UDS_RDTCI, service=0x19) class UDS_RDTCIPR(Packet): name = 'ReadDTCInformationPositiveResponse' fields_desc = [ ByteEnumField('reportType', 0, UDS_RDTCI.reportTypes), ConditionalField(XByteField('DTCStatusAvailabilityMask', 0), lambda pkt: pkt.reportType in [0x01, 0x07, 0x11, 0x12, 0x02, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x13, 0x15]), ConditionalField(ByteEnumField('DTCFormatIdentifier', 0, {0: 'ISO15031-6DTCFormat', 1: 'UDS-1DTCFormat', 2: 'SAEJ1939-73DTCFormat', 3: 'ISO11992-4DTCFormat'}), lambda pkt: pkt.reportType in [0x01, 0x07, 0x11, 0x12]), ConditionalField(ShortField('DTCCount', 0), lambda pkt: pkt.reportType in [0x01, 0x07, 0x11, 0x12]), ConditionalField(StrField('DTCAndStatusRecord', 0), lambda pkt: pkt.reportType in [0x02, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x13, 0x15]), ConditionalField(StrField('dataRecord', 0), lambda pkt: pkt.reportType in [0x03, 0x04, 0x05, 0x06, 0x08, 0x09, 0x10, 0x14]) ] bind_layers(UDS, UDS_RDTCIPR, service=0x59) # #########################RC################################### class UDS_RC(Packet): routineControlTypes = { 0: 'ISOSAEReserved', 1: 'startRoutine', 2: 'stopRoutine', 3: 'requestRoutineResults' } name = 'RoutineControl' fields_desc = [ ByteEnumField('routineControlType', 0, routineControlTypes), XShortField('routineIdentifier', 0), StrField('routineControlOptionRecord', 0, fmt="B"), ] bind_layers(UDS, UDS_RC, service=0x31) class UDS_RCPR(Packet): name = 'RoutineControlPositiveResponse' fields_desc = [ ByteEnumField('routineControlType', 0, UDS_RC.routineControlTypes), XShortField('routineIdentifier', 0), StrField('routineStatusRecord', 0, fmt="B"), ] bind_layers(UDS, UDS_RCPR, service=0x71) # #########################RD################################### class UDS_RD(Packet): dataFormatIdentifiers = { 0: 'noCompressionNoEncryption' } name = 'RequestDownload' fields_desc = [ ByteEnumField('dataFormatIdentifier', 0, dataFormatIdentifiers), BitField('memorySizeLen', 0, 4), BitField('memoryAddressLen', 0, 4), ConditionalField(XByteField('memoryAddress1', 0), lambda pkt: pkt.memoryAddressLen == 1), ConditionalField(XShortField('memoryAddress2', 0), lambda pkt: pkt.memoryAddressLen == 2), ConditionalField(X3BytesField('memoryAddress3', 0), lambda pkt: pkt.memoryAddressLen == 3), ConditionalField(XIntField('memoryAddress4', 0), lambda pkt: pkt.memoryAddressLen == 4), ConditionalField(XByteField('memorySize1', 0), lambda pkt: pkt.memorySizeLen == 1), ConditionalField(XShortField('memorySize2', 0), lambda pkt: pkt.memorySizeLen == 2), ConditionalField(X3BytesField('memorySize3', 0), lambda pkt: pkt.memorySizeLen == 3), ConditionalField(XIntField('memorySize4', 0), lambda pkt: pkt.memorySizeLen == 4) ] bind_layers(UDS, UDS_RD, service=0x34) class UDS_RDPR(Packet): name = 'RequestDownloadPositiveResponse' fields_desc = [ ByteEnumField('routineControlType', 0, UDS_RC.routineControlTypes), BitField('memorySizeLen', 0, 4), BitField('memoryAddressLen', 0, 4), StrField('maxNumberOfBlockLength', 0, fmt="B"), ] bind_layers(UDS, UDS_RDPR, service=0x74) # #########################RU################################### class UDS_RU(Packet): name = 'RequestUpload' fields_desc = [ ByteEnumField('dataFormatIdentifier', 0, UDS_RD.dataFormatIdentifiers), BitField('memorySizeLen', 0, 4), BitField('memoryAddressLen', 0, 4), ConditionalField(XByteField('memoryAddress1', 0), lambda pkt: pkt.memoryAddressLen == 1), ConditionalField(XShortField('memoryAddress2', 0), lambda pkt: pkt.memoryAddressLen == 2), ConditionalField(X3BytesField('memoryAddress3', 0), lambda pkt: pkt.memoryAddressLen == 3), ConditionalField(XIntField('memoryAddress4', 0), lambda pkt: pkt.memoryAddressLen == 4), ConditionalField(XByteField('memorySize1', 0), lambda pkt: pkt.memorySizeLen == 1), ConditionalField(XShortField('memorySize2', 0), lambda pkt: pkt.memorySizeLen == 2), ConditionalField(X3BytesField('memorySize3', 0), lambda pkt: pkt.memorySizeLen == 3), ConditionalField(XIntField('memorySize4', 0), lambda pkt: pkt.memorySizeLen == 4) ] bind_layers(UDS, UDS_RU, service=0x35) class UDS_RUPR(Packet): name = 'RequestUploadPositiveResponse' fields_desc = [ ByteEnumField('routineControlType', 0, UDS_RC.routineControlTypes), BitField('memorySizeLen', 0, 4), BitField('memoryAddressLen', 0, 4), StrField('maxNumberOfBlockLength', 0, fmt="B"), ] bind_layers(UDS, UDS_RUPR, service=0x75) # #########################TD################################### class UDS_TD(Packet): name = 'TransferData' fields_desc = [ ByteField('blockSequenceCounter', 0), StrField('transferRequestParameterRecord', 0, fmt="B") ] bind_layers(UDS, UDS_TD, service=0x36) class UDS_TDPR(Packet): name = 'TransferDataPositiveResponse' fields_desc = [ ByteField('blockSequenceCounter', 0), StrField('transferResponseParameterRecord', 0, fmt="B") ] bind_layers(UDS, UDS_TDPR, service=0x76) # #########################RTE################################### class UDS_RTE(Packet): name = 'RequestTransferExit' fields_desc = [ StrField('transferRequestParameterRecord', 0, fmt="B") ] bind_layers(UDS, UDS_RTE, service=0x37) class UDS_RTEPR(Packet): name = 'RequestTransferExitPositiveResponse' fields_desc = [ StrField('transferResponseParameterRecord', 0, fmt="B") ] bind_layers(UDS, UDS_RTEPR, service=0x77) # #########################IOCBI################################### class UDS_IOCBI(Packet): name = 'InputOutputControlByIdentifier' fields_desc = [ XShortField('dataIdentifier', 0), ByteField('controlOptionRecord', 0), StrField('controlEnableMaskRecord', 0, fmt="B") ] bind_layers(UDS, UDS_IOCBI, service=0x2F) class UDS_IOCBIPR(Packet): name = 'InputOutputControlByIdentifierPositiveResponse' fields_desc = [ XShortField('dataIdentifier', 0), StrField('controlStatusRecord', 0, fmt="B") ] bind_layers(UDS, UDS_IOCBIPR, service=0x6F) # #########################NRC################################### class UDS_NRC(Packet): negativeResponseCodes = { 0x00: 'positiveResponse', 0x10: 'generalReject', 0x11: 'serviceNotSupported', 0x12: 'subFunctionNotSupported', 0x13: 'incorrectMessageLengthOrInvalidFormat', 0x14: 'responseTooLong', 0x20: 'ISOSAEReserved', 0x21: 'busyRepeatRequest', 0x22: 'conditionsNotCorrect', 0x23: 'ISOSAEReserved', 0x24: 'requestSequenceError', 0x25: 'noResponseFromSubnetComponent', 0x26: 'failurePreventsExecutionOfRequestedAction', 0x31: 'requestOutOfRange', 0x33: 'securityAccessDenied', 0x35: 'invalidKey', 0x36: 'exceedNumberOfAttempts', 0x37: 'requiredTimeDelayNotExpired', 0x70: 'uploadDownloadNotAccepted', 0x71: 'transferDataSuspended', 0x72: 'generalProgrammingFailure', 0x73: 'wrongBlockSequenceCounter', 0x78: 'requestCorrectlyReceived-ResponsePending', 0x7E: 'subFunctionNotSupportedInActiveSession', 0x7F: 'serviceNotSupportedInActiveSession', 0x80: 'ISOSAEReserved', 0x81: 'rpmTooHigh', 0x82: 'rpmTooLow', 0x83: 'engineIsRunning', 0x84: 'engineIsNotRunning', 0x85: 'engineRunTimeTooLow', 0x86: 'temperatureTooHigh', 0x87: 'temperatureTooLow', 0x88: 'vehicleSpeedTooHigh', 0x89: 'vehicleSpeedTooLow', 0x8a: 'throttle/PedalTooHigh', 0x8b: 'throttle/PedalTooLow', 0x8c: 'transmissionRangeNotInNeutral', 0x8d: 'transmissionRangeNotInGear', 0x8e: 'ISOSAEReserved', 0x8f: 'brakeSwitch(es)NotClosed', 0x90: 'shifterLeverNotInPark', 0x91: 'torqueConverterClutchLocked', 0x92: 'voltageTooHigh', 0x93: 'voltageTooLow', } name = 'NegativeResponseCode' fields_desc = [ XByteEnumField('requestServiceId', 0, UDS.services), ByteEnumField('negativeResponseCode', 0, negativeResponseCodes) ] bind_layers(UDS, UDS_NRC, service=0x7f) # ################################################################## # ######################## UTILS ################################### # ################################################################## class UDS_TesterPresentSender(PeriodicSenderThread): def __init__(self, sock, pkt=UDS() / UDS_TP(), interval=2): """ Thread to send TesterPresent messages packets periodically Args: sock: socket where packet is sent periodically pkt: packet to send interval: interval between two packets """ PeriodicSenderThread.__init__(self, sock, pkt, interval)
venv/Lib/site-packages/statsmodels/tsa/interp/tests/test_denton.py
EkremBayar/bayar
6,931
12698598
<reponame>EkremBayar/bayar import numpy as np from statsmodels.tsa.interp import dentonm def test_denton_quarterly(): # Data and results taken from IMF paper indicator = np.array([98.2, 100.8, 102.2, 100.8, 99.0, 101.6, 102.7, 101.5, 100.5, 103.0, 103.5, 101.5]) benchmark = np.array([4000.,4161.4]) x_imf = dentonm(indicator, benchmark, freq="aq") imf_stata = np.array([969.8, 998.4, 1018.3, 1013.4, 1007.2, 1042.9, 1060.3, 1051.0, 1040.6, 1066.5, 1071.7, 1051.0]) np.testing.assert_almost_equal(imf_stata, x_imf, 1) def test_denton_quarterly2(): # Test denton vs stata. Higher precision than other test. zQ = np.array([50,100,150,100] * 5) Y = np.array([500,400,300,400,500]) x_denton = dentonm(zQ, Y, freq="aq") x_stata = np.array([64.334796,127.80616,187.82379,120.03526,56.563894, 105.97568,147.50144,89.958987,40.547201,74.445963, 108.34473,76.66211,42.763347,94.14664,153.41596, 109.67405,58.290761,122.62556,190.41409,128.66959]) np.testing.assert_almost_equal(x_denton, x_stata, 5) if __name__ == "__main__": import pytest pytest.main([__file__, '-vvs', '-x', '--pdb'])
unit_testing_course/lesson2/task2/comparison_assertions.py
behzod/pycharm-courses
213
12698605
<gh_stars>100-1000 import random import unittest from tested_code import random_not_42, find_foo, \ random_float_between_inclusive, random_float_between_noninclusive class TestRandomNot42(unittest.TestCase): def test_many_values(self): """call the function 100 times and make sure the result isn't 42""" for n_attempt in range(100): value = random_not_42() self.assertNotEqual(value, 42) class TestFindFoo(unittest.TestCase): """tests for the find_foo() function find_foo(s) returns an object if "foo" is a sub-string of s, and None otherwise. """ # valid_names = [ # 'foo', # 'Bar', # 'foorBar', # 'foo_bar', # '_fooBar', # 'foo1', # 'foo_', # ] # # invalid_names = [ # '1foo', # 'foo-bar', # '$foo', # 'foo bar', # 'foo+bar4ever', # ] strings_with_foo = [ 'foo', 'aaa foo bbb', 'aaa foo', 'foo bbb', 'no foo for you, come back oen year!' ] strings_without_foo = [ 'boo', 'aaa bbb', 'four', ] def test_identical(self): """check that find_foo finds 'foo' in 'foo'""" self.assertIsNotNone(find_foo('foo')) def test_strings_with_foo(self): """check that find_foo finds 'foo' in all of the strings with 'foo'""" for s in self.strings_with_foo: self.assertIsNotNone(find_foo(s)) def test_strings_without_foo(self): """check that find_foo finds 'foo' in all of the strings with 'foo'""" for s in self.strings_without_foo: self.assertIsNone(find_foo(s)) class TestRandomFloatBetweenInclusive(unittest.TestCase): def test_random_values(self): for i in range(100): start = random.random() end = random.random() if start > end: start, end = end, start value = random_float_between_inclusive(start, end) self.assertGreaterEqual(value, start) self.assertLessEqual(value, end) class TestRandomFloatBetweenNoninclusive(unittest.TestCase): def test_random_values(self): for i in range(100): start = random.random() end = random.random() if start > end: start, end = end, start value = random_float_between_noninclusive(start, end) self.assertGreater(value, start) self.assertLess(value, end)
tests/test_reactjs.py
Dhandarah/dukpy
363
12698636
# -*- coding: utf-8 -*- import unittest import dukpy class TestReactJS(unittest.TestCase): def test_hello_world(self): jsx = dukpy.jsx_compile('var react_hello = <h1>Hello, world!</h1>;') jsi = dukpy.JSInterpreter() result = jsi.evaljs([ ''' var React = require('react/react'), ReactDOM = require('react/react-dom-server'); ''', jsx, 'ReactDOM.renderToStaticMarkup(react_hello, null);' ]) assert result == '<h1>Hello, world!</h1>', res def test_jsx_mixed(self): code = ''' var React = require('react/react'), ReactDOM = require('react/react-dom-server'); ReactDOM.renderToStaticMarkup(<h1>Hello, world!</h1>, null); ''' jsx = dukpy.jsx_compile(code) res = dukpy.evaljs(jsx) assert res == '<h1>Hello, world!</h1>', res def test_react_binding(self): code = ''' var React = require('react/react'), ReactDOM = require('react/react-dom-server'); var HelloWorld = React.createClass({ render: function() { return ( <div className="helloworld"> Hello {this.props.data.name} </div> ); } }); ReactDOM.renderToStaticMarkup(<HelloWorld data={dukpy.data}/>, null); ''' jsx = dukpy.jsx_compile(code) res = dukpy.evaljs(jsx, data={'id': 1, 'name': "Alessandro"}) assert res == '<div class="helloworld">Hello Alessandro</div>', res def test_jsx6(self): code = ''' import React from 'react/react'; var ReactDOM = require('react/react-dom-server'); class HelloWorld extends React.Component { render() { return ( <div className="helloworld"> Hello {this.props.data.name} </div> ); } } ReactDOM.renderToStaticMarkup(<HelloWorld data={dukpy.data}/>, null); ''' jsx = dukpy.jsx_compile(code) res = dukpy.evaljs(jsx, data={'id': 1, 'name': "Alessandro"}) assert res == '<div class="helloworld">Hello Alessandro</div>', res
src/lib/error_logger.py
chrismayemba/covid-19-open-data
430
12698639
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import json import logging import os from functools import lru_cache from typing import Callable from pandas import Series from pandas._libs.missing import NAType # Based on recipe for structured logging # https://docs.python.org/3/howto/logging-cookbook.html#implementing-structured-logging class LogEncoder(json.JSONEncoder): # pylint: disable=method-hidden def default(self, o): if isinstance(o, set): return tuple(o) elif isinstance(o, str): return o.encode("unicode_escape").decode("ascii") elif isinstance(o, Series): return o.to_dict() elif isinstance(o, NAType): return None elif isinstance(o, Exception): return f"{o.__class__.__name__}: {str(o)}" return super(LogEncoder, self).default(o) class StructuredMessage: def __init__(self, message, **kwargs): self._kwargs = kwargs self._kwargs["message"] = message @lru_cache() def __str__(self): return LogEncoder().encode(self._kwargs) class ErrorLogger: """ Simple class to be inherited by other classes to add error logging functions. """ name: str """ Name of the logger, defaults to the class name. """ logger: logging.Logger """ Instance of logger which will be used. Each ErrorLogger instance has its own Logger. """ def __init__(self, name: str = None): # Default to the classname self.name = name or self.__class__.__name__ # Create an instance of logger self.logger = logging.getLogger(self.name) # Read logging level from env variable, default to INFO level_name = os.getenv("LOG_LEVEL") or "INFO" self.logger.setLevel(getattr(logging, level_name, logging.INFO)) # Only add a handler if it does not already have one if not self.logger.hasHandlers(): # Configure the handler to use our preferred logging format handler = logging.StreamHandler() handler.setFormatter(logging.Formatter("%(message)s")) self.logger.addHandler(handler) self.log_debug(f"Initialized logger {self.name} with level {level_name}") def timestamp(self) -> str: return datetime.datetime.now().isoformat()[:24] def _log_msg(self, log_func: Callable, msg: str, **kwargs) -> None: log_func( StructuredMessage( msg, logname=self.name, timestamp=self.timestamp(), # TODO: consider whether we should keep classname or if logname is sufficient classname=self.__class__.__name__, loglevel=log_func.__name__, **kwargs, ) ) def log_error(self, msg: str, **kwargs) -> None: self._log_msg(self.logger.error, msg, **kwargs) def log_warning(self, msg: str, **kwargs) -> None: self._log_msg(self.logger.warning, msg, **kwargs) def log_info(self, msg: str, **kwargs) -> None: self._log_msg(self.logger.info, msg, **kwargs) def log_debug(self, msg: str, **kwargs) -> None: self._log_msg(self.logger.debug, msg, **kwargs)
tests/unit/systems/nfs/server_test.py
gamechanger/dusty
421
12698719
<gh_stars>100-1000 import os import tempfile from mock import Mock, patch from dusty.systems.nfs import server from dusty import constants from ....testcases import DustyTestCase class TestNFSServer(DustyTestCase): def setUp(self): super(TestNFSServer, self).setUp() def tearDown(self): super(TestNFSServer, self).tearDown() @patch('dusty.systems.config_file.get_dusty_config_section') def test_get_current_exports(self, fake_get_dusty_config_section): fake_get_dusty_config_section.return_value = 'export numba 1\n/private/etc/some/repo 192.168.59.103 -alldirs -maproot=0:0\n' expected_current_exports = set(['export numba 1\n', '/private/etc/some/repo 192.168.59.103 -alldirs -maproot=0:0\n']) self.assertEqual(expected_current_exports, server._get_current_exports()) def test_maproot_for_repo(self): fake_repo = Mock() fake_repo.local_path = tempfile.mkdtemp() expected_maproot = '{}:{}'.format(os.stat(fake_repo.local_path).st_uid, os.stat(fake_repo.local_path).st_gid) self.assertEqual(expected_maproot, server._maproot_for_repo(fake_repo)) def test_write_exports_config(self): exports_set = set(['export1\n', 'export2\n']) constants.EXPORTS_PATH = tempfile.mkstemp()[1]
finding cycle in linked list/cycle.py
love-ode/cs-algorithms
239
12698739
class Node: # Constructor to initialize the node object def __init__(self, data): self.data = data self.next = None class LinkedList: # Function to initialize head def __init__(self): self.head = None # Function to insert a new node at the beginning def push(self, new_data): new_node = Node(new_data) new_node.next = self.head self.head = new_node # Utility function to prit the linked LinkedList def printList(self): temp = self.head while(temp): print (temp.data), temp = temp.next def detectLoop(self): slow_p = self.head fast_p = self.head while(slow_p and fast_p and fast_p.next): slow_p = slow_p.next fast_p = fast_p.next.next if slow_p == fast_p: print ("Found Loop") return print ("Not Found Loop") # Driver program for testing llist = LinkedList() llist.push(20) llist.push(4) llist.push(15) llist.push(10) # Create a loop for testing llist.head.next.next.next.next = llist.head llist.detectLoop()
gui/rqt_quad_gui/src/rqt_quad_gui/quad_widget_common.py
danielemorra98/rpg_quadrotor_control
419
12698777
#!/usr/bin/env python from python_qt_binding import loadUi qt_version_below_5 = False try: # Starting from Qt 5 QWidget is defined in QtWidgets and not QtGui anymore from python_qt_binding import QtWidgets from python_qt_binding.QtWidgets import QWidget except: from python_qt_binding import QtGui from python_qt_binding.QtGui import QWidget qt_version_below_5 = True from python_qt_binding import QtCore from .quad_name_widget import QuadNameWidget class QuadWidgetCommon(QWidget): def __init__(self): super(QuadWidgetCommon, self).__init__() # the name widget is separate since we need to access it directly self._name_widget = QuadNameWidget(self) if qt_version_below_5: self._column_1 = QtGui.QVBoxLayout() self._column_2 = QtGui.QVBoxLayout() else: self._column_1 = QtWidgets.QVBoxLayout() self._column_2 = QtWidgets.QVBoxLayout() def setup_gui(self, two_columns=True): if qt_version_below_5: widget_layout = QtGui.QHBoxLayout() else: widget_layout = QtWidgets.QHBoxLayout() widget_layout.addLayout(self._column_1) if two_columns: widget_layout.addLayout(self._column_2) if qt_version_below_5: main_layout = QtGui.QHBoxLayout() else: main_layout = QtWidgets.QHBoxLayout() main_layout = QtWidgets.QVBoxLayout() main_layout.addLayout(widget_layout) self._column_1.setAlignment(QtCore.Qt.AlignTop) if two_columns: self._column_2.setAlignment(QtCore.Qt.AlignTop) widget_layout.setAlignment(QtCore.Qt.AlignTop) main_layout.setAlignment(QtCore.Qt.AlignTop) self.setLayout(main_layout) self._update_info_timer = QtCore.QTimer(self) self._update_info_timer.timeout.connect(self.update_gui) self._update_info_timer.start(100) def get_list_of_plugins(self): quad_plugins = [] for i in range(1, self._column_1.count()): quad_plugins.append(self._column_1.itemAt(i).widget()) for i in range(0, self._column_2.count()): quad_plugins.append(self._column_2.itemAt(i).widget()) return quad_plugins def connect(self): quad_name = self._name_widget.getQuadName() self.setWindowTitle(quad_name) for plugin in self.get_list_of_plugins(): plugin.connect(quad_name) def disconnect(self): self.setWindowTitle("RPG Quad Gui") for plugin in self.get_list_of_plugins(): plugin.disconnect() def update_gui(self): for plugin in self.get_list_of_plugins(): plugin.update_gui() def getQuadName(self): return self._name_widget.getQuadName() def setQuadName(self, quadname): self._name_widget.setQuadName(quadname)
synapse_btcv_abdominal_ct_segmentation/train.py
andythai/models
128
12698824
<reponame>andythai/models<filename>synapse_btcv_abdominal_ct_segmentation/train.py # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function import argparse import os import numpy as np import pandas as pd import tensorflow as tf from dltk.core.metrics import dice from dltk.core.losses import sparse_balanced_crossentropy from dltk.networks.segmentation.unet import residual_unet_3d from dltk.networks.segmentation.unet import asymmetric_residual_unet_3d from dltk.networks.segmentation.fcn import residual_fcn_3d from dltk.core.activations import leaky_relu from dltk.io.abstract_reader import Reader from reader import read_fn import json # PARAMS EVAL_EVERY_N_STEPS = 1000 EVAL_STEPS = 1 NUM_CLASSES = 14 NUM_CHANNELS = 1 BATCH_SIZE = 4 SHUFFLE_CACHE_SIZE = 128 MAX_STEPS = 100000 # MODEL def model_fn(features, labels, mode, params): """Summary Args: features (TYPE): Description labels (TYPE): Description mode (TYPE): Description params (TYPE): Description Returns: TYPE: Description """ # 1. create a model and its outputs filters = params["filters"] strides = params["strides"] num_residual_units = params["num_residual_units"] loss_type = params["loss"] net = params["net"] def lrelu(x): return leaky_relu(x, 0.1) if net == 'fcn': net_output_ops = residual_fcn_3d( features['x'], NUM_CLASSES, num_res_units=num_residual_units, filters=filters, strides=strides, activation=lrelu, mode=mode) elif net == 'unet': net_output_ops = residual_unet_3d( features['x'], NUM_CLASSES, num_res_units=num_residual_units, filters=filters, strides=strides, activation=lrelu, mode=mode) elif net == 'asym_unet': net_output_ops = asymmetric_residual_unet_3d( features['x'], NUM_CLASSES, num_res_units=num_residual_units, filters=filters, strides=strides, activation=lrelu, mode=mode) # 1.1 Generate predictions only (for `ModeKeys.PREDICT`) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions=net_output_ops, export_outputs={'out': tf.estimator.export.PredictOutput( net_output_ops)}) # 2. set up a loss function if loss_type == 'ce': ce = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=net_output_ops['logits'], labels=labels['y']) loss = tf.reduce_mean(ce) elif loss_type == 'balce': loss = sparse_balanced_crossentropy( net_output_ops['logits'], labels['y']) # 3. define a training op and ops for updating # moving averages (i.e. for batch normalisation) global_step = tf.train.get_global_step() if params["opt"] == 'adam': optimiser = tf.train.AdamOptimizer( learning_rate=params["learning_rate"], epsilon=1e-5) elif params["opt"] == 'momentum': optimiser = tf.train.MomentumOptimizer( learning_rate=params["learning_rate"], momentum=0.9) elif params["opt"] == 'rmsprop': optimiser = tf.train.RMSPropOptimizer( learning_rate=params["learning_rate"], momentum=0.9) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimiser.minimize(loss, global_step=global_step) # 4.1 (optional) create custom image summaries for tensorboard my_image_summaries = {} my_image_summaries['feat_t1'] = tf.expand_dims( features['x'][:, 0, :, :, 0], 3) my_image_summaries['labels'] = tf.expand_dims( tf.cast(labels['y'], tf.float32)[:, 0, :, :], 3) my_image_summaries['predictions'] = tf.expand_dims( tf.cast(net_output_ops['y_'], tf.float32)[:, 0, :, :], 3) [tf.summary.image(name, image) for name, image in my_image_summaries.items()] # 4.2 (optional) create custom metric summaries for tensorboard dice_tensor = tf.py_func( dice, [net_output_ops['y_'], labels['y'], tf.constant(NUM_CLASSES)], tf.float32) [tf.summary.scalar('dsc_l{}'.format(i), dice_tensor[i]) for i in range(NUM_CLASSES)] # 5. Return EstimatorSpec object return tf.estimator.EstimatorSpec( mode=mode, predictions=net_output_ops, loss=loss, train_op=train_op, eval_metric_ops=None) def train(args): np.random.seed(42) tf.set_random_seed(42) print('Setting up...') with open(args.config) as f: run_config = json.load(f) # Parse csv files for file names train_filenames = pd.read_csv( args.train_csv, dtype=object, keep_default_na=False, na_values=[]).as_matrix() val_filenames = pd.read_csv( args.val_csv, dtype=object, keep_default_na=False, na_values=[]).as_matrix() # Set up a data reader to handle the file i/o. reader_params = { 'n_examples': 32, 'example_size': [64, 64, 64], 'extract_examples': True } reader_example_shapes = { 'features': {'x': reader_params['example_size'] + [NUM_CHANNELS, ]}, 'labels': {'y': reader_params['example_size']}} reader = Reader(read_fn, {'features': {'x': tf.float32}, 'labels': {'y': tf.int32}}) # Get input functions and queue initialisation hooks # for training and validation data train_input_fn, train_qinit_hook = reader.get_inputs( train_filenames, tf.estimator.ModeKeys.TRAIN, example_shapes=reader_example_shapes, batch_size=BATCH_SIZE, shuffle_cache_size=SHUFFLE_CACHE_SIZE, params=reader_params) val_input_fn, val_qinit_hook = reader.get_inputs( val_filenames, tf.estimator.ModeKeys.EVAL, example_shapes=reader_example_shapes, batch_size=BATCH_SIZE, shuffle_cache_size=min(SHUFFLE_CACHE_SIZE, EVAL_STEPS), params=reader_params) config = tf.ConfigProto() # config.gpu_options.allow_growth = True # Instantiate the neural network estimator nn = tf.estimator.Estimator( model_fn=model_fn, model_dir=args.save_path, params=run_config, config=tf.estimator.RunConfig(session_config=config)) # Hooks for validation summaries val_summary_hook = tf.contrib.training.SummaryAtEndHook( os.path.join(args.save_path, 'eval')) step_cnt_hook = tf.train.StepCounterHook( every_n_steps=EVAL_EVERY_N_STEPS, output_dir=args.save_path) print('Starting training...') try: for _ in range(MAX_STEPS // EVAL_EVERY_N_STEPS): nn.train( input_fn=train_input_fn, hooks=[train_qinit_hook, step_cnt_hook], steps=EVAL_EVERY_N_STEPS) results_val = nn.evaluate( input_fn=val_input_fn, hooks=[val_qinit_hook, val_summary_hook], steps=EVAL_STEPS) print('Step = {}; val loss = {:.5f};'.format( results_val['global_step'], results_val['loss'])) except KeyboardInterrupt: pass print('Stopping now.') export_dir = nn.export_savedmodel( export_dir_base=args.save_path, serving_input_receiver_fn=reader.serving_input_receiver_fn(reader_example_shapes)) print('Model saved to {}.'.format(export_dir)) if __name__ == '__main__': # Set up argument parser parser = argparse.ArgumentParser( description='Example: Synapse CT example segmentation training script') parser.add_argument('--resume', default=False, action='store_true') parser.add_argument('--verbose', default=False, action='store_true') parser.add_argument('--cuda_devices', '-c', default='0') parser.add_argument('--save_path', '-p', default='/tmp/synapse_ct_seg/') parser.add_argument('--train_csv', default='train.csv') parser.add_argument('--val_csv', default='val.csv') parser.add_argument('--config', default="config.json") args = parser.parse_args() # Set verbosity if args.verbose: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' tf.logging.set_verbosity(tf.logging.INFO) else: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' tf.logging.set_verbosity(tf.logging.ERROR) # GPU allocation options os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda_devices # Create model save path os.system("rm -rf %s" % args.save_path) os.system("mkdir -p %s" % args.save_path) # Call training train(args)
src/probflow/data/data_generator.py
chiragnagpal/probflow
134
12698829
<gh_stars>100-1000 import multiprocessing as mp from abc import abstractmethod from probflow.utils.base import BaseDataGenerator class DataGenerator(BaseDataGenerator): """Abstract base class for a data generator, which uses multiprocessing to load the data in parallel. TODO User needs to implement: * :meth:`~__init__` * :meth:`~n_samples` * :meth:`~batch_size` * :meth:`~get_batch` And can optionally implement: * :meth:`~on_epoch_start` * :meth:`~on_epoch_end` """ def __init__(self, num_workers=None): self.num_workers = num_workers @abstractmethod def get_batch(self, index): """Generate one batch of data""" def __getitem__(self, index): """Generate one batch of data""" # No multiprocessing if self.num_workers is None: return self.get_batch(index) # Multiprocessing else: # Start the next worker pid = index + self.num_workers if pid < len(self): self._workers[pid].start() # Return data from the multiprocessing queue return self._queue.get() def __iter__(self): """Get an iterator over batches""" # Multiprocessing? if self.num_workers is not None: def get_data(index, queue): queue.put(self.get_batch(index)) # Create the queue and worker processes self._queue = mp.Queue() self._workers = [ mp.Process(target=get_data, args=(i, self._queue)) for i in range(len(self)) ] # Start the first num_workers workers for i in range(min(self.num_workers, len(self))): self._workers[i].start() # Keep track of what batch we're on self._batch = -1 # Return iterator return self def __next__(self): """Get the next batch""" self._batch += 1 if self._batch < len(self): return self[self._batch] else: raise StopIteration()
deep_sort-master/evaluate_motchallenge.py
riciche/SimpleCVReproduction
923
12698830
# vim: expandtab:ts=4:sw=4 import argparse import os import deep_sort_app def parse_args(): """ Parse command line arguments. """ parser = argparse.ArgumentParser(description="MOTChallenge evaluation") parser.add_argument( "--mot_dir", help="Path to MOTChallenge directory (train or test)", required=True) parser.add_argument( "--detection_dir", help="Path to detections.", default="detections", required=True) parser.add_argument( "--output_dir", help="Folder in which the results will be stored. Will " "be created if it does not exist.", default="results") parser.add_argument( "--min_confidence", help="Detection confidence threshold. Disregard " "all detections that have a confidence lower than this value.", default=0.0, type=float) parser.add_argument( "--min_detection_height", help="Threshold on the detection bounding " "box height. Detections with height smaller than this value are " "disregarded", default=0, type=int) parser.add_argument( "--nms_max_overlap", help="Non-maxima suppression threshold: Maximum " "detection overlap.", default=1.0, type=float) parser.add_argument( "--max_cosine_distance", help="Gating threshold for cosine distance " "metric (object appearance).", type=float, default=0.2) parser.add_argument( "--nn_budget", help="Maximum size of the appearance descriptors " "gallery. If None, no budget is enforced.", type=int, default=100) return parser.parse_args() if __name__ == "__main__": args = parse_args() os.makedirs(args.output_dir, exist_ok=True) sequences = os.listdir(args.mot_dir) for sequence in sequences: print("Running sequence %s" % sequence) sequence_dir = os.path.join(args.mot_dir, sequence) detection_file = os.path.join(args.detection_dir, "%s.npy" % sequence) output_file = os.path.join(args.output_dir, "%s.txt" % sequence) deep_sort_app.run( sequence_dir, detection_file, output_file, args.min_confidence, args.nms_max_overlap, args.min_detection_height, args.max_cosine_distance, args.nn_budget, display=False)
examples/benchmark.py
Cam2337/snap-python
242
12698865
#!/usr/bin/python # benchmark.py # # Author: <NAME>, Spring 2013 # Description: # - Loads SNAP as a Python module. # - Randomly generates a graph of specified size and type, and saves # or loads the graph if it has already been created. # - Benchmarks a number of "is this a good graph?" tests on the graph, # calculating the amount of time required and appends to a file. # # usage: benchmark.py [-h] [-v] [-r RANGE] [-d] [-t GRAPH_TYPES] # [-n NUM_ITERATIONS] [-o OUTPUT_FILE] [-g] # # optional arguments: # -h, --help show this help message and exit # -v, --verbose increase output verbosity # -r RANGE, --range RANGE # range (4-6) (10^4 to 10^6 nodes) # -d, --deterministic deterministic benchmark # -t GRAPH_TYPES, --graph_types GRAPH_TYPES # Graph types, comma separated. Available: rand_ungraph, # rand_ngraph, rmat, pref, sw # -n NUM_ITERATIONS, --num_iterations NUM_ITERATIONS # number of iterations # -o OUTPUT_FILE, --output_file OUTPUT_FILE # file to output results # -g, --generate generate new graphs # # Examples: # 1. Use default arguments. # $ python menchmark.py # 2. Generate deterministic RMAT graphs from 10^2-10^3 nodes, and # run 3 times, outputing to results.txt. # $ python benchmark.py -v -n 3 -g -d -r 2-3 -t rmat -o results/results.txt # import os.path import sys import argparse from socket import gethostname from time import clock from datetime import datetime sys.path.append("../swig") import snap PROPERTY_TYPES = [1, 10] # 1=Triads, 10=BFS # Comma-separated, graph types: # 'rmat' - R-MAT # 'pref' - preferential attachment # 'sw' - small world # 'rand_ungraph' - random undirected # 'rand_ngraph' - random directed # 'rand_neanet' - random directed attribute # 'syn_ngraph' - random directed # 'syn_negraph' - synthetic multi-edge # 'syn_neanet' - synthetic directed multi-edge attribute DEFAULT_TYPES = "rand_neanet" # Average is 1, non-average is 0. DEFAULT_DEGREES = "1-2" # Default is 10x and 100x edges/node DEFAULT_WRITE = False SW_REWIRE_PROB = 0.1 SYNTHETIC_DELTA = 10 # Exponent range (e.g. 10^x to 10^y) DEFAULT_VERBOSE=True DEFAULT_RANGE = '3-4' DEFAULT_ITERATIONS = 1 # Hostname for results HOSTNAME = gethostname() RESULTS_DIR = 'results' DEFAULT_RESULTS_FILE = os.path.join(RESULTS_DIR, 'results%s.txt' % \ datetime.now().strftime('%m%d-%H%M%S')) def benchmark_ngraph(Graph): ''' Perform benchmark tests for Directed Graphs ''' results = {} results['num_nodes'] = Graph.GetNodes() results['num_edges'] = Graph.GetEdges() for degree in range(0, 11): num = snap.NodesGTEDegree_PNGraph(Graph, degree) percent_deg = float(num) / results['num_nodes'] results['deg_gte_%d' % degree] = num results['deg_gte_%d_percent' % degree] = percent_deg # Check for over-weighted nodes results['max_degree'] = snap.GetMxDegNId(Graph) num = snap.NodesGTEDegree_PNGraph(Graph, results['max_degree']) results['max_degree_num'] = num results['max_wcc_percent'] = snap.MxWccSz_PNGraph(Graph) \ / results['num_nodes'] results['max_scc_percent'] = snap.MxSccSz_PNGraph(Graph).GetNodes() \ / results['num_nodes'] return results def benchmark_ungraph(Graph): ''' Perform benchmark tests for Undirected Graphs ''' results = {} results['num_nodes'] = Graph.GetNodes() results['num_edges'] = Graph.GetEdges() for degree in range(0,11): num = snap.NodesGTEDegree_PUNGraph(Graph, degree) percent_deg = float(num) / results['num_nodes'] results['deg_gte_%d' % degree] = num results['deg_gte_%d_percent' % degree] = percent_deg # Check for over-weighted nodes results['max_degree'] = snap.MxDegree_PUNGraph(Graph) num = snap.NodesGTEDegree_PUNGraph(Graph, results['max_degree']) results['max_degree_num'] = num results['max_wcc_percent'] = snap.MxWccSz_PUNGraph(Graph) \ / results['num_nodes'] results['max_scc_percent'] = snap.MxSccSz_PUNGraph(Graph).GetNodes() \ / results['num_nodes'] # TODO: Calculate graph skew return results def benchmark_neanet(Graph): ''' Perform benchmark tests for Directed Attribute Graphs ''' results = {} results['num_nodes'] = Graph.GetNodes() results['num_edges'] = Graph.GetEdges() for degree in range(0, 11): num = snap.NodesGTEDegree(Graph, degree) percent_deg = float(num) / results['num_nodes'] results['deg_gte_%d' % degree] = num results['deg_gte_%d_percent' % degree] = percent_deg # Check for over-weighted nodes results['max_degree'] = snap.MxDegree(Graph) num = snap.NodesGTEDegree(Graph, results['max_degree']) results['max_degree_num'] = num results['max_wcc_percent'] = snap.GetMxWccSz(Graph) \ / results['num_nodes'] results['max_scc_percent'] = snap.GetMxSccSz(Graph).GetNodes() \ / results['num_nodes'] return results def convert_graph(Graph, TypeSrc, TypeDst): ''' Converts a GRAPH from type TYPESRC to a TYPEDST and returns the new graph ''' pass def generate_graph(NNodes, NEdges, Model, Type, Rnd): if Model == 'rand_ungraph': # GnRndGnm returns error, so manually generate #Graph = snap.GenRndGnm_PUNGraph(NNodes, NEdges, 0) Graph = snap.GenRndGnm(snap.PUNGraph, NNodes, NEdges, 0) elif Model == 'rand_ngraph': #Graph = snap.GenRndGnm_PNGraph(NNodes, NEdges, 1) Graph = snap.GenRndGnm(snap.PNGraph, NNodes, NEdges, 1) elif Model == 'rand_neanet': print "1", NNodes, NEdges #Graph = snap.GenRndGnm_PNEANet(NNodes, NEdges, 1) Graph = snap.GenRndGnm(snap.PNEANet, NNodes, NEdges, 1) print "2" print "3", Graph.GetNodes(), Graph.GetEdges() elif Model == 'syn_neanet': Graph = snap.GenSyntheticGraph(NNodes, NEdges/NNodes, SYNTHETIC_DELTA) elif Model == 'syn_ngraph': Graph = snap.GenSyntheticGraph_PNGraph(NNodes, NEdges/NNodes, SYNTHETIC_DELTA) elif Model == 'rmat': Graph = snap.GenRMat(NNodes, NEdges, 0.40, 0.25, 0.2, Rnd) elif Model == 'sw': Graph = snap.GenSmallWorld(NNodes, NNodes/NEdges, 0.1) elif Model == 'pref': Graph = snap.GenPrefAttach(NNodes, NNodes/NEdges) return Graph def run_tests(num_iterations=3, min_nodes_exponent=3, max_nodes_exponent=4): ''' Perform tests with specified exponent range ''' if verbose: print "Running results from %e to %e" % (min_nodes_exponent, max_nodes_exponent) Rnd = snap.TRnd() for exp in range(min_nodes_exponent,max_nodes_exponent+1): for n in range(num_iterations): if verbose: print "Iteration: %d of %d" % (n+1, num_iterations) # Random number of nodes of degree i NNodes = 10**exp; for avg_deg in range(min_degree_edges, max_degree_edges+1): for g in graph_types: if deterministic: if verbose: print "Deterministic mode, putting seed" else: if verbose: print "Non-deterministic mode" Rnd.PutSeed(0) if verbose: print "Using average degree of 10^%d" % avg_deg NEdges = NNodes*(10**avg_deg) Graph = None if g in ['rmat', 'rand_ngraph', 'syn_ngraph','syn_negraph']: Type = "directed" elif g in ['sw', 'pref', 'rand_ungraph']: Type = "undirected" elif g in ['rand_neanet', 'syn_neanet']: Type = "attribute" else: print "Unknown graph type: %s" % g sys.exit(1) StartTime = clock() FName = os.path.join(RESULTS_DIR, "%s_10e%d_deg%d_%d.graph" % (g, exp, NEdges/NNodes, n)) if not generate: if os.path.exists(FName): try: if verbose: print "Loading '%s' from ...'%s'" % (g, FName), sys.stdout.flush() FIn = snap.TFIn(snap.TStr(FName)) if Type == "directed": Graph = snap.PNGraph_New() elif Type == "undirected": Graph = snap.PUNGraph_New() elif Type == "attribute": Graph = snap.PNEANet_New() Graph = Graph.Load(FIn) if verbose: print "done" if verbose: print "Re-loaded graph with %d Nodes and %d Edges" % \ (Graph.GetNodes(), Graph.GetEdges()) except Exception, e: print "Unable to load graph file, '%s': %s" % (FName, str(e)) # else: # print "File not found: %s" % FName if not Graph: try: # User wants to re-generate graph, or no graph data available. if verbose: print "Generating '%s %s' graph with %e nodes, %e edges..." % \ (Type, g, NNodes, NEdges), sys.stdout.flush() Graph = generate_graph(NNodes, NEdges, g, Type, Rnd) if verbose: print "done" if opt_write: # Save the graph if verbose: print "Saving '%s' graph to file '%s'..." % (g, FName), sys.stdout.flush() if Graph: FOut = snap.TFOut(snap.TStr(FName)) Graph.__ref__().Save(FOut) # Save as TUNGraph or TNGraph FOut.Flush() if verbose: print "done" except Exception, e: print "Unable to generate/save graph file, '%s': %s" % \ (FName, str(e)) continue TimeGenerate = clock() - StartTime print "Running tests...", sys.stdout.flush() StartTime = clock() if Type == 'directed': results = benchmark_ngraph(Graph) elif Type == 'undirected': results = benchmark_ungraph(Graph) elif Type == 'attribute': results = benchmark_neanet(Graph) if verbose: print "done" TimeElapsed = clock() - StartTime print "Elapsed Time = %.4f sec" % TimeElapsed row_header = ["Hostname", "Model", "Type", "Nodes", "Edges", "StartTime", "Generation Time", "Run Time"] print "Header: %s" % " ".join(row_header) import csv with open(results_file, 'a+') as csvfile: writer = csv.writer(csvfile) if verbose: print "Writing to '%s'..." % results_file, sys.stdout.flush() row = [HOSTNAME, g, Type, NNodes, NEdges, datetime.now().strftime("%d/%b/%Y:%H:%M:%S"), TimeGenerate, TimeElapsed] if verbose: print "done" print "Time Data: %s" % repr(row) writer.writerow(row) print "-"*75 def main(): global results_dir, verbose, deterministic, generate, graph_types, \ hostname, num_iterations, results_file, \ min_degree_edges, max_degree_edges, opt_write parser = argparse.ArgumentParser() parser.add_argument("-v", "--verbose", default=DEFAULT_VERBOSE, action="store_true", dest="verbose", help="increase output verbosity") parser.add_argument("-r", "--range", default=DEFAULT_RANGE, help="range (4-6) (10^4 to 10^6 nodes)") parser.add_argument("-e", "--edges_deg", default=DEFAULT_DEGREES, help="range of degrees (e.g \"2-3\" => (10^1 to 10^3 edges per node)") parser.add_argument("-d", "--deterministic", default=False, action="store_true", dest="deterministic", help="deterministic benchmark") parser.add_argument("-t", "--graph_types", default=DEFAULT_TYPES, help=''' Graph types, comma separated. Available: rand_ungraph, rand_ngraph, rmat, pref, sw''') parser.add_argument("-n", "--num_iterations", type=int, default=DEFAULT_ITERATIONS, help="number of iterations") parser.add_argument("-o", "--output_file", default=DEFAULT_RESULTS_FILE, help="file to output results") parser.add_argument("-g", "--generate", default=False, action="store_true", dest="generate", help="generate new graphs") parser.add_argument("-w", "--write_graph", default=DEFAULT_WRITE, action="store_true", dest="write", help="save graph") args = parser.parse_args() verbose = args.verbose generate = args.generate deterministic = args.deterministic results_file = args.output_file num_iterations = args.num_iterations graph_types = args.graph_types.split(",") min_degree_edges = int(args.edges_deg.split("-")[0]) max_degree_edges = int(args.edges_deg.split("-")[-1]) opt_write = args.write print "Edge degree = 10^%d to 10^%d edges/node" % \ (min_degree_edges, max_degree_edges) if verbose: print "Hostname: %s" % HOSTNAME min = int(args.range.split("-")[0]) max = int(args.range.split("-")[-1]) print "Node range = 10^%d to 10^%d" % (min, max) if not os.path.exists(RESULTS_DIR): print "Creating results directory %s" % RESULTS_DIR os.makedirs(RESULTS_DIR) run_tests(num_iterations, min, max) if __name__ == "__main__": main()
automation/batch.py
CrackerCat/HexraysToolbox
346
12698878
#!/usr/bin/env python try: from idaapi import * except: import sys, os, argparse, subprocess, logging, threading, time, signal sigint_count = 0 cur_thread_count = 0 def sig_handler(signum, frame): global sigint_count global cur_thread_count msg = "SIGINT: " if not sigint_count: logging.warning("%saborting..." % msg) else: if sigint_count > 2: logging.error("DUDE WHY DON'T YOU JUST CHILL!?!?") logging.warning("%sI am alive and waiting for %d IDA instances to finish" % (msg, cur_thread_count)) sigint_count += 1 return def process_files(ida_path, in_path, out_path, script_path, threads, compress): global cur_thread_count if threads < 1: return input_files = list() for root, dirs, files in os.walk(in_path): for f in files: input_files.append(os.path.join(root, f)) total_files = len(input_files) cur_file = 0 logging.info("Starting to process %d files (max %d concurrent threads)" % (total_files, threads)) lock = threading.Lock() thread_exit_evt = threading.Event() signal.signal(signal.SIGINT, sig_handler) while not sigint_count and len(input_files): with lock: n = cur_thread_count while n < threads: if not len(input_files): break f = input_files.pop(0) cur_file += 1 cmdline = "%s -o\"%s\" -A -c %s -S\"%s\" \"%s\"" % ( ida_path, os.path.join(out_path, os.path.basename(f))+".idb", "-P+" if compress else "", script_path, f) logging.debug("Running %s" % cmdline) logging.info("Thread %d/%d: processing file %d/%d - \"%s\"" % (threading.active_count(), threads, cur_file, total_files, f)) with lock: cur_thread_count += 1 ida_instance(cmdline, thread_exit_evt, lock).start() with lock: n = cur_thread_count logging.debug("Threshold reached / no more files in queue. Waiting...") while not sigint_count and not thread_exit_evt.wait(1.0): pass thread_exit_evt.clear() with lock: n = cur_thread_count while n > 0: logging.info("Waiting for %d more IDA instances to finish" % (n)) while not thread_exit_evt.wait(1): pass thread_exit_evt.clear() with lock: n = cur_thread_count return class ida_instance(threading.Thread): def __init__(self, cmdline, thread_exit_evt, lock): threading.Thread.__init__(self) self.cmdline = cmdline self.thread_exit_evt = thread_exit_evt self.lock = lock return def run_ida_instance(self): global cur_thread_count cp = subprocess.run(self.cmdline) logging.debug("IDA instance terminated (exit code %d)" % (cp.returncode)) with self.lock: cur_thread_count -= 1 self.thread_exit_evt.set() return cp.returncode def run(self): self.run_ida_instance() return def run_batch_mode(): parser = argparse.ArgumentParser() parser.add_argument("idapath", type=str, help="path to IDA executable (ida/ida64/idat/idat64/...)") parser.add_argument("inpath", type=str, help="input path containing files to scan") parser.add_argument("outpath", type=str, help="output path. idb/i64 files and logs will be stored here") parser.add_argument("-t", "--threads", type=int, default=3, help="maximum number of concurrent IDA instances (default=3)") parser.add_argument("-l", "--loglevel", type=str, default="INFO", help="log level: INFO, DEBUG (default: INFO)") parser.add_argument("-c", "--compress", action="store_true", help="compress IDA database") args = parser.parse_args() numeric_level = getattr(logging, args.loglevel.upper(), None) if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % loglevel) logging.basicConfig( format="[%(asctime)s] [%(levelname)s]\t%(message)s", level=numeric_level, datefmt="%H:%M:%S") script_path = os.path.abspath(sys.argv[0]) if " " in script_path: logging.error("This script must not be run from a path that contains whitespace characters!") sys.exit(1) process_files(args.idapath, args.inpath, args.outpath, script_path, args.threads, args.compress) logging.info("Exiting") return run_batch_mode() sys.exit(0) # IDAPython specific code starts here import hxtb import logging def get_callers_to(func_name): """returns list of functions calling 'func_name'""" ea = get_name_ea(BADADDR, func_name) if ea == BADADDR: # return empty list return list() xrefs = CodeRefsTo(ea, False) funcs = [get_func(xref).start_ea for xref in xrefs if get_func(xref)] return list(set(funcs)) def run_query_02(): logging.info("-" * 80) logging.info("Query start: 0x3300") q = lambda func, item: (item.op is cot_num and item.numval() == 0x3300) matches = hxtb.query_db(q) if len(matches): for m in matches: logging.info("Match: %s" % m) else: logging.info("Nothing found") logging.info("Query end: 0x3300") logging.info("-" * 80) return True def run_query_01(): """find calls to WinHttpSetOption() where 2nd argument has the WINHTTP_OPTION_SECURITY_FLAGS flags set """ logging.info("-" * 80) logging.info("Query start: WinHttpSetOption") callsites = get_callers_to("WinHttpSetOption") if len(callsites): q = lambda func, item: (item.op is cot_call and item.x.op is cot_obj and get_name(item.x.obj_ea) == "WinHttpSetOption" and item.a[1].op is cot_num and item.a[1].numval() & 0x1f == 0x1f) matches = hxtb.query(q, ea_list=callsites) if len(matches): for m in matches: logging.info("Match: %s" % m) else: logging.info("No calls resolvable") else: logging.info("No calls resolvable") logging.info("Query end: WinHttpSetOption") logging.info("-" * 80) return True def ida_context_main(): logging.basicConfig( filename="%s.log" % os.path.splitext(get_idb_path())[0], format="[ %(asctime)s ] [%(levelname)s]\t%(message)s", level=logging.DEBUG, datefmt="%Y-%m-%d %H:%M:%S") logging.info("=" * 80) logging.info("Input file: %s" % get_input_file_path()) logging.info("IDA database: %s" % get_idb_path()) if init_hexrays_plugin(): # taken from alysis.idc inf_set_af((inf_get_af() | AF_DODATA | AF_FINAL) & BADADDR) auto_mark_range(0, BADADDR, AU_FINAL) logging.info("Waiting for disassembly to finish") auto_wait() logging.info("Done") logging.info("Running queries now") # queries go here run_query_01() run_query_02() else: logging.error("Decompiler unavailable") logging.info("Scan process completed. Exiting.\n") qexit(0) return ida_context_main()
loggibud/v1/plotting/plot_solution.py
thiagopbueno/loggibud
143
12698892
<reponame>thiagopbueno/loggibud """Plots solution routes""" from typing import List, Iterable, Optional import folium import numpy as np import polyline import requests from loggibud.v1.types import CVRPSolution, Point from loggibud.v1.distances import OSRMConfig # All available map colors MAP_COLORS = ( "black", "blue", "darkred", "purple", "red", "orange", "green", "pink", "darkblue", "beige", "gray", "lightgreen", "lightblue", "lightgray", "cadetblue", ) def plot_cvrp_solution_routes( solution: CVRPSolution, route_indices_to_plot: Optional[List[int]] = None, config: Optional[OSRMConfig] = None, ) -> None: """Plot solution routes in a map along the streets Parameters ---------- solution A solution to any solver with the vehicles routes to plot route_indices_to_plot If specified, selects a smaller subset of routes to plot by their indices. This can be useful to reduce the clutter in case of a solution with too many vehicles config OSRM configuration """ config = config or OSRMConfig() # Initialize map centered at the mean of the origins origins_mean = np.mean( [ (vehicle.origin.lat, vehicle.origin.lng) for vehicle in solution.vehicles ], axis=0, ) m = folium.Map( location=origins_mean, zoom_start=12, tiles="cartodbpositron", ) num_vehicles = len(solution.vehicles) route_indices_to_plot = route_indices_to_plot or range(num_vehicles) vehicles_subset = [solution.vehicles[i] for i in route_indices_to_plot] for i, vehicle in enumerate(vehicles_subset): vehicle_color = MAP_COLORS[i % len(MAP_COLORS)] # Plot origin origin = (vehicle.origin.lat, vehicle.origin.lng) folium.CircleMarker(origin, color="red", radius=3, weight=5).add_to(m) # Plot street outlines wiring = _route_wiring(vehicle.circuit, config) folium.PolyLine( wiring, color=vehicle_color, weight=1.0, popup=f"Vehicle {i}" ).add_to(m) # Plot the deliveries as regular points for delivery in vehicle.deliveries: folium.Circle( location=(delivery.point.lat, delivery.point.lng), radius=10, fill=True, color=vehicle_color, popup=( f"Vehicle {i} ({delivery.point.lat}, {delivery.point.lng})" ), ).add_to(m) return m def _route_wiring(points: Iterable[Point], config): coords_uri = ";".join(f"{point.lng},{point.lat}" for point in points) response = requests.get( f"{config.host}/route/v1/driving/{coords_uri}?overview=simplified", timeout=config.timeout_s, ) data = response.json() line = data["routes"][0]["geometry"] return [(lat, lng) for lat, lng in polyline.decode(line)] def plot_cvrp_solution( solution: CVRPSolution, route_indices_to_plot: Optional[List[int]] = None ) -> None: """Plot solution deliveries in a map This is a simplified version showing only the edges between each delivery. It does not require an OSRM server configuration. Parameters ---------- solution A solution to any solver with the vehicles routes to plot route_indices_to_plot If specified, selects a smaller subset of routes to plot by their indices. This can be useful to reduce the clutter in case of a solution with too many vehicles """ # Initialize map centered at the mean of the origins origins_mean = np.mean( [ (vehicle.origin.lat, vehicle.origin.lng) for vehicle in solution.vehicles ], axis=0, ) m = folium.Map( location=origins_mean, zoom_start=12, tiles="cartodbpositron", ) num_vehicles = len(solution.vehicles) route_indices_to_plot = route_indices_to_plot or range(num_vehicles) vehicles_subset = [solution.vehicles[i] for i in route_indices_to_plot] for i, vehicle in enumerate(vehicles_subset): origin = (vehicle.origin.lat, vehicle.origin.lng) folium.CircleMarker(origin, color="red", radius=3, weight=5).add_to(m) vehicle_color = MAP_COLORS[i % len(MAP_COLORS)] vehicle_coords = [(point.lat, point.lng) for point in vehicle.circuit] folium.Polygon( vehicle_coords, popup=f"Vehicle {i}", color=vehicle_color, weight=1, ).add_to(m) return m
utils/mobjects/DelaunayTrianglation.py
AStarySky/manim_sandbox
366
12698898
# from @有一种悲伤叫颓废 """ 注: 1. 主要用来求三角剖分和维诺图,算法的思路可以看我的这期视频:https://www.bilibili.com/video/BV1Ck4y1z7VT 2. 时间复杂度O(nlogn),一般情况应该够用,如发现bug请联系颓废 3. 只需导入两个函数:DelaunayTrianglation(求德劳内三角剖分), Voronoi(求维诺图) """ import numpy as np from manimlib.mobject.types.vectorized_mobject import VGroup from manimlib.constants import PI from manimlib.utils.config_ops import digest_config from manimlib.mobject.geometry import Dot, Line, Polygon from manimlib.scene.scene import Scene from manimlib.utils.space_ops import normalize #import time #import math #from manimlib.imports import * #from manim_sandbox.utils.imports import * # 以下比例建议2不要乱改,精度大,或者小,都有可能出bug # 小于误差则等 ev = np.exp(1)**PI/1000000000 ev_sq = ev**2 # 无穷大 Infinity = 333 # 判断两个点是否相等,小于误差的平方,则相等,O(1) def point_is_equal(p, q): p, q = np.array(p), np.array(q) # 两点距离的平方小于误差的平方,则相等 if np.dot(q-p, q-p) < ev_sq: return True return False # b在向量pq左为正,右为负,O(1) def cross2(p, q, b): ''' 叉积公式 \begin{align} ToLeft(p, q, b)=\begin{vmatrix} x_p & y_p & 1\\ x_q & y_q & 1\\ x_b & y_b & 1\\ \end{vmatrix}\end{align} ''' return p[0]*q[1] - p[1]*q[0] + \ q[0]*b[1] - q[1]*b[0] + \ b[0]*p[1] - b[1]*p[0] # 忽略误差,b在向量pq左为正,右为负,O(1) def ToLeft(p, q, b): a = cross2(p, q, b) # 小于误差,认为在向量上 if abs(a) < ev: return 0 # 隐含else abs(a) >= ev: return a # 点d在三角形pqb内,返回True,O(1) def InTriangle(p, q, b, d): tl1 = ToLeft(p, q, d) if abs(tl1) < ev: tl2 = ToLeft(q, b, d) tl3 = ToLeft(b, p, d) if tl2 < ev and tl3 < ev or tl2 > -ev and tl3 > -ev: return True return False if tl1 > ev: if ToLeft(q, b, d) > -ev and ToLeft(b, p, d) > -ev: return True return False if tl1 < -ev: if ToLeft(q, b, d) < ev and ToLeft(b, p, d) < ev: return True return False # 点d在三点p,q,b的外接圆内,返回True,O(1) def InCircle(p, q, b, d): ''' 点与三点圆关系 \begin{align} InCircle(p, q, b, d)=\begin{vmatrix} x_p & y_p & x_p^2+y_p^2 & 1\\ x_q & y_q & x_q^2+y_q^2 & 1\\ x_b & y_b & x_b^2+y_b^2 & 1\\ x_d & y_d & x_d^2+y_d^2 & 1\\ \end{vmatrix}\end{align} ''' a13 = p[0]**2+p[1]**2 a23 = q[0]**2+q[1]**2 a33 = b[0]**2+b[1]**2 a43 = d[0]**2+d[1]**2 det = np.linalg.det([ [p[0], p[1], a13, 1], [q[0], q[1], a23, 1], [b[0], b[1], a33, 1], [d[0], d[1], a43, 1], ]) if det < -ev: return True return False # 三点外接圆圆心,O(1) def CircumcircleCenter(p, q, b): ''' \begin{align} &三点外接圆圆心公式\\ &x=\frac{1}{2}\begin{vmatrix} 1 & x_p^2+y_p^2 & y_p\\ 1 & x_q^2+y_q^2 & y_q\\ 1 & x_b^2+y_b^2 & y_b\\ \end{vmatrix}/\begin{vmatrix} 1 & x_p & y_p\\ 1 & x_q & y_q\\ 1 & x_b & y_b\\ \end{vmatrix}\\ &y=\frac{1}{2}\begin{vmatrix} 1 & x_p & x_p^2+y_p^2\\ 1 & x_q & x_q^2+y_q^2\\ 1 & x_b & x_b^2+y_b^2\\ \end{vmatrix}/\begin{vmatrix} 1 & x_p & y_p\\ 1 & x_q & y_q\\ 1 & x_b & y_b\\ \end{vmatrix} \end{align} ''' a1 = p[0]**2+p[1]**2 a2 = q[0]**2+q[1]**2 a3 = b[0]**2+b[1]**2 det1 = np.linalg.det([ [1, p[0], p[1]], [1, q[0], q[1]], [1, b[0], b[1]], ]) if det1 == 0: print("三点共线") return None det2 = np.linalg.det([ [1, a1, p[1]], [1, a2, q[1]], [1, a3, b[1]], ]) det3 = np.linalg.det([ [1, p[0], a1], [1, q[0], a2], [1, b[0], a3], ]) return np.array([det2/det1, det3/det1, 0])/2 # 面 class Face(): def __init__(self, halfedge): # 标记访问面 self.Visit = False # 属于这个面的一个半边 self.HalfEdge = halfedge # 面对应的桶 self.Bucket = None # 外接圆圆心,求维诺图的时候用到 self.Center = None # 顶点 class Vertice(): def __init__(self, point): # 顶点坐标 self.Point = point # 由顶点引出的一条半边 self.HalfEdge = None # 半边 class HalfEdge(): def __init__(self, start, end): # 标记访问 self.Visit = False # 边的起点 self.Start = start # 边的终点 self.End = end # 边的孪生兄弟 self.Twin = None # 半边所在的平面 self.Face = None # 边的前驱 self.Pre = None # 边的后继 self.Suc = None # 桶 class Bucket(): def __init__(self, points): # 桶装的点 self.Points = points # 桶对应的面 self.Face = None # 初始化无穷大的网,O(1) def InitInfNet(points = None): # 初始化无穷远点 # 逆时针 infv1 = Vertice(np.array([Infinity, 0, 0])) infv2 = Vertice(np.array([0, Infinity, 0])) infv3 = Vertice(np.array([-Infinity, -Infinity, 0])) # 初始化无穷远半边 halfedge1 = HalfEdge(infv1, infv2) halfedge2 = HalfEdge(infv2, infv3) halfedge3 = HalfEdge(infv3, infv1) # 初始化点引出的边 infv1.HalfEdge = halfedge1 infv2.HalfEdge = halfedge2 infv3.HalfEdge = halfedge3 # 初始化无穷大面 face1 = Face(halfedge1) # 初始化无穷半边的前驱,后继,和所在的面 halfedge1.Pre = halfedge3 halfedge1.Suc = halfedge2 halfedge1.Face = face1 halfedge2.Pre = halfedge1 halfedge2.Suc = halfedge3 halfedge2.Face = face1 halfedge3.Pre = halfedge2 halfedge3.Suc = halfedge1 halfedge3.Face = face1 # 初始化桶,此桶囊括了所有的点 bucket1 = Bucket(points) bucket1.Face = face1 # 面对应的桶 face1.Bucket = bucket1 return face1 # 得到多边形的带符号面积,对于不自交的多边形,正表示逆时针多边形,负表示顺时针多边形,特殊考虑0,O(n) def get_polygon_directed_area(polygon): a = polygon.get_vertices() l = len(a) return 1 / 2 * sum([a[i][0] * a[(i + 1) % l][1] - a[(i + 1) % l][0] * a[i][1] for i in range(l)]) # 边翻转,O(1) def EdgeFlipping(halfedge): # 记录面的旧visit值 visitvalue = halfedge.Face.Visit # 待翻转边所在的四边形的顶点 v1 = halfedge.Start v2 = halfedge.Twin.Suc.End v3 = halfedge.End v4 = halfedge.Suc.End # 顶点的坐标 p1 = v1.Point p2 = v2.Point p3 = v3.Point p4 = v4.Point # 待翻转边所在的四边形的边,ei由vi引出 e1 = halfedge.Twin.Suc e2 = halfedge.Twin.Pre e3 = halfedge.Suc e4 = halfedge.Pre # 修改顶点引出的边为非翻转的边(待翻转边所在的四边形的边) v1.HalfEdge = e1 v2.HalfEdge = e2 v3.HalfEdge = e3 v4.HalfEdge = e4 # 待翻转边所在的四边形的两个桶中的点 oldpoints = [*halfedge.Face.Bucket.Points, *halfedge.Twin.Face.Bucket.Points] # 重新分桶 newpoints1, newpoints2 = [], [] for oldpoint in oldpoints: if InTriangle(p1, p2, p4, oldpoint): newpoints1.append(oldpoint) else: newpoints2.append(oldpoint) # 重新构造的面,逆时针 newface1, newface2 = Face(e1), Face(e2) newface1.Visit = visitvalue newface2.Visit = visitvalue # 构造翻转后的边 e5, e6 = HalfEdge(v2, v4), HalfEdge(v4, v2) e5.Twin = e6 e6.Twin = e5 e5.Visit = visitvalue e6.Visit = visitvalue # 构造newface1的边 e1.Suc = e5 e5.Suc = e4 e4.Suc = e1 e1.Pre = e4 e4.Pre = e5 e5.Pre = e1 # 构造newface2的边 e2.Suc = e3 e3.Suc = e6 e6.Suc = e2 e2.Pre = e6 e6.Pre = e3 e3.Pre = e2 # 边指向newface1 e1.Face = newface1 e4.Face = newface1 e5.Face = newface1 # 边指向newface2 e2.Face = newface2 e3.Face = newface2 e6.Face = newface2 # 构造两个新桶,并维持桶和面的联系 bucket1 = Bucket(newpoints1) bucket2 = Bucket(newpoints2) bucket1.Face = newface1 bucket2.Face = newface2 newface1.Bucket = bucket1 newface2.Bucket = bucket2 # 点vo撕裂面face,O(1) def ClipFace(face, vo, remainedpoints): visitvalue = face.Visit hf1 = face.HalfEdge hf2 = hf1.Suc hf3 = hf2.Suc # 剪开面 clipface1 = Face(hf1) clipface2 = Face(hf2) clipface3 = Face(hf3) clipface1.Visit = visitvalue clipface2.Visit = visitvalue clipface3.Visit = visitvalue # face1 hf1_pre = HalfEdge(vo, hf1.Start) hf1_suc = HalfEdge(hf1.End, vo) hf1_pre.Visit = visitvalue hf1_suc.Visit = visitvalue hf1.Pre = hf1_pre hf1.Suc = hf1_suc hf1_pre.Pre = hf1_suc hf1_pre.Suc = hf1 hf1_suc.Pre = hf1 hf1_suc.Suc = hf1_pre hf1.Face = clipface1 hf1_pre.Face = clipface1 hf1_suc.Face = clipface1 # face2 hf2_pre = HalfEdge(vo, hf2.Start) hf2_suc = HalfEdge(hf2.End, vo) hf2_pre.Visit = visitvalue hf2_suc.Visit = visitvalue hf2.Pre = hf2_pre hf2.Suc = hf2_suc hf2_pre.Pre = hf2_suc hf2_pre.Suc = hf2 hf2_suc.Pre = hf2 hf2_suc.Suc = hf2_pre hf2.Face = clipface2 hf2_pre.Face = clipface2 hf2_suc.Face = clipface2 # face3 hf3_pre = HalfEdge(vo, hf3.Start) hf3_suc = HalfEdge(hf3.End, vo) hf3_pre.Visit = visitvalue hf3_suc.Visit = visitvalue hf3.Pre = hf3_pre hf3.Suc = hf3_suc hf3_pre.Pre = hf3_suc hf3_pre.Suc = hf3 hf3_suc.Pre = hf3 hf3_suc.Suc = hf3_pre hf3.Face = clipface3 hf3_pre.Face = clipface3 hf3_suc.Face = clipface3 vo.HalfEdge = hf1_pre # twin hf1_pre.Twin = hf3_suc hf3_suc.Twin = hf1_pre hf2_pre.Twin = hf1_suc hf1_suc.Twin = hf2_pre hf3_pre.Twin = hf2_suc hf2_suc.Twin = hf3_pre ## 点放入桶 # 桶所在三角形的顶点 point = vo.Point p1 = hf1.Start.Point p2 = hf2.Start.Point p3 = hf3.Start.Point # 拆分桶 clipbucketps1, clipbucketps2, clipbucketps3 = [], [], [] for eachpoint in remainedpoints: if InTriangle(p1, p2, point, eachpoint): clipbucketps1.append(eachpoint) elif InTriangle(p2, p3, point, eachpoint): clipbucketps2.append(eachpoint) else: clipbucketps3.append(eachpoint) # 撕裂的平面关联桶 clipbucket1 = Bucket(clipbucketps1) clipbucket2 = Bucket(clipbucketps2) clipbucket3 = Bucket(clipbucketps3) clipface1.Bucket = clipbucket1 clipface2.Bucket = clipbucket2 clipface3.Bucket = clipbucket3 clipbucket1.Face = clipface1 clipbucket2.Face = clipface2 clipbucket3.Face = clipface3 return clipface1, clipface2, clipface3 # 访问网,O(n) def VisitNet(face): visitvalue = face.Visit notvisitvalue = not visitvalue faces = [face] # 访问过 face.Visit = notvisitvalue delaunaynet = [] while faces: eachface = faces[-1] faces.pop(-1) # 面所在的三条边 e1 = eachface.HalfEdge e2 = e1.Suc e3 = e2.Suc ## 将正在访问的面的三个相邻的面加入faces eis = [e1, e2, e3] for ei in eis: # ei的孪生兄弟 eiTwin = ei.Twin # ei未被访问过 if ei.Visit == visitvalue: ls, le = ei.Start.Point, ei.End.Point if abs(ls[0]) != Infinity and abs(ls[1]) != Infinity and abs(le[0]) != Infinity and abs(le[1]) != Infinity: delaunaynet.append([ls, le]) ei.Visit = notvisitvalue if eiTwin: faces.append(eiTwin.Face) # 访问过 eiTwin.Face.Visit = notvisitvalue eiTwin.Visit = notvisitvalue return delaunaynet # 访问三角形,O(n) def VisitTriangles(face): # 访问网 visitvalue = face.Visit notvisitvalue = not visitvalue faces = [face] # 访问过 face.Visit = notvisitvalue delaunaynet = VGroup() while faces: eachface = faces[-1] faces.pop(-1) # 面所在的三条边 e1 = eachface.HalfEdge e2 = e1.Suc e3 = e2.Suc # 标记访问过 e1.Visit = notvisitvalue e2.Visit = notvisitvalue e3.Visit = notvisitvalue # 面对三个点 p1 = e1.Start.Point p2 = e2.Start.Point p3 = e3.Start.Point delaunaynet.add(Polygon(p1, p2, p3)) ei = [e1, e2, e3] for each in ei: et = each.Twin if et: etf = et.Face # 未访问过 if etf.Visit == visitvalue: # 访问过 etf.Visit = notvisitvalue faces.append(etf) return delaunaynet # 访问维诺图,O(n) def VisitVoronoi(face): visitvalue = face.Visit notvisitvalue = not visitvalue faces = [face] # 访问过 face.Visit = notvisitvalue voronoi = [] while faces: eachface = faces[-1] faces.pop(-1) # 面所在的三条边 e1 = eachface.HalfEdge e2 = e1.Suc e3 = e2.Suc ## 将正在访问的面的三个相邻的面加入faces eis = [e1, e2, e3] for ei in eis: # ei的孪生兄弟 eiTwin = ei.Twin # ei未被访问过 if ei.Visit == visitvalue: ei.Visit = notvisitvalue if eiTwin: ls, le = ei.Start.Point, ei.End.Point if abs(ls[0]) != Infinity and abs(ls[1]) != Infinity and abs(le[0]) != Infinity and abs(le[1]) != Infinity: efc, etfc = ei.Face.Center, eiTwin.Face.Center ese = eiTwin.Suc.End.Point # 边的对点是无穷点 if abs(ese[0]) == Infinity or abs(ese[1]) == Infinity: eis, eie = np.array(ei.Start.Point), np.array(ei.End.Point) vertical = np.cross(eie - eis, np.array([0, 0, 1])) vertical = normalize(vertical) vertical = Infinity * vertical newle = efc + vertical voronoi.append([efc, newle]) else: voronoi.append([efc, etfc]) faces.append(eiTwin.Face) # 访问过 eiTwin.Face.Visit = notvisitvalue eiTwin.Visit = notvisitvalue return voronoi # 给网加圆心,O(n) def InitNetCircumcircleCenter(face): # 访问网 visitvalue = face.Visit notvisitvalue = not visitvalue faces = [face] # 访问过 face.Visit = notvisitvalue #delaunaynet = VGroup() while faces: eachface = faces[-1] faces.pop(-1) # 面所在的三条边 e1 = eachface.HalfEdge e2 = e1.Suc e3 = e2.Suc # 标记访问过 e1.Visit = notvisitvalue e2.Visit = notvisitvalue e3.Visit = notvisitvalue # 面对三个点 p1 = e1.Start.Point p2 = e2.Start.Point p3 = e3.Start.Point # 赋值圆心 if eachface.Center is None: eachface.Center = CircumcircleCenter(p1, p2, p3) #delaunaynet.add(Polygon(p1, p2, p3)) eis = [e1, e2, e3] for ei in eis: eit = ei.Twin if eit: eitf = eit.Face # 未访问过 if eitf.Visit == visitvalue: # 访问过 eitf.Visit = notvisitvalue faces.append(eitf) # 构造网,O(nlogn) def ConstructNet(points=None): face1 = InitInfNet(points) infedge = face1.HalfEdge buckets = [face1.Bucket] while buckets: # 取桶 bucket = buckets[-1] buckets.pop(-1) # 取桶的点 point = bucket.Points[-1] bucket.Points.pop(-1) vo = Vertice(point) # 桶所在三角形的边 crpface = bucket.Face hf1 = crpface.HalfEdge hf2 = hf1.Suc hf3 = hf2.Suc # 撕裂面 ClipFace(crpface, vo, bucket.Points) # 看看是否要边翻转 edges = [hf1, hf2, hf3] while edges: eachedge = edges[-1] edges.pop(-1) eachedgetwin = eachedge.Twin if eachedgetwin: trip1 = vo.Point trip2 = eachedgetwin.Start.Point trip3 = eachedgetwin.End.Point trip4 = eachedgetwin.Suc.End.Point if InCircle(trip1, trip2, trip3, trip4): etfb = eachedgetwin.Face.Bucket if len(etfb.Points) > 0: buckets.remove(etfb) edges.append(eachedgetwin.Pre) edges.append(eachedgetwin.Suc) EdgeFlipping(eachedge) # 遍历点周围的所有边,把桶加入 ringvisit = vo.HalfEdge currvisit = ringvisit.Twin.Suc while currvisit != ringvisit: currbucket = currvisit.Face.Bucket if len(currbucket.Points) > 0: buckets.append(currbucket) currvisit = currvisit.Twin.Suc currbucket = currvisit.Face.Bucket if len(currbucket.Points) > 0: buckets.append(currbucket) return infedge.Face # 得到某点在网中的面 def get_point_posface(point, net): # 访问网 visitvalue = net.Visit notvisitvalue = not visitvalue faces = [net] # 访问过 net.Visit = notvisitvalue # 位置 #posface = None mark = True while faces: eachface = faces[-1] faces.pop(-1) # 面所在的三条边 e1 = eachface.HalfEdge e2 = e1.Suc e3 = e2.Suc # 标记访问过 e1.Visit = notvisitvalue e2.Visit = notvisitvalue e3.Visit = notvisitvalue # 面对三个点 p1 = e1.Start.Point p2 = e2.Start.Point p3 = e3.Start.Point # 位置未找到 if mark: if InTriangle(p1, p2, p3, point): posface = eachface ei = [e1, e2, e3] for each in ei: et = each.Twin if et: etf = et.Face # 未访问过 if etf.Visit == visitvalue: # 访问过 etf.Visit = notvisitvalue faces.append(etf) return posface # 在网中插入点,O(n) def net_insert_point(point, net): # 点所在的面 posface = get_point_posface(point, net) posface.Bucket.Points.append(point) infedge = posface.HalfEdge buckets = [posface.Bucket] while buckets: # 取桶 bucket = buckets[-1] buckets.pop(-1) # 取桶的点 point = bucket.Points[-1] bucket.Points.pop(-1) vo = Vertice(point) # 桶所在三角形的边 crpface = bucket.Face hf1 = crpface.HalfEdge hf2 = hf1.Suc hf3 = hf2.Suc # 撕裂面 ClipFace(crpface, vo, bucket.Points) # 看看是否要边翻转 edges = [hf1, hf2, hf3] while edges: eachedge = edges[-1] edges.pop(-1) eachedgetwin = eachedge.Twin if eachedgetwin: trip1 = vo.Point trip2 = eachedgetwin.Start.Point trip3 = eachedgetwin.End.Point trip4 = eachedgetwin.Suc.End.Point if InCircle(trip1, trip2, trip3, trip4): etfb = eachedgetwin.Face.Bucket if len(etfb.Points) > 0: buckets.remove(etfb) edges.append(eachedgetwin.Pre) edges.append(eachedgetwin.Suc) EdgeFlipping(eachedge) # 遍历点周围的所有边,把桶加入 ringvisit = vo.HalfEdge currvisit = ringvisit.Twin.Suc while currvisit != ringvisit: currbucket = currvisit.Face.Bucket if len(currbucket.Points) > 0: buckets.append(currbucket) currvisit = currvisit.Twin.Suc currbucket = currvisit.Face.Bucket if len(currbucket.Points) > 0: buckets.append(currbucket) return infedge.Face # 在网中插入点,并设置外心,O(n) def net_insert_point_and_set_circumcirclecenter(point, net): # 点所在的面,O(n) posface = get_point_posface(point, net) vo = Vertice(point) # 桶所在三角形的边 crpface = posface hf1 = crpface.HalfEdge hf2 = hf1.Suc hf3 = hf2.Suc # 撕裂面 ClipFace(crpface, vo, []) # 设置外心 hf1.Face.Center = CircumcircleCenter(hf1.Start.Point, hf1.End.Point, point) hf2.Face.Center = CircumcircleCenter(hf2.Start.Point, hf2.End.Point, point) hf3.Face.Center = CircumcircleCenter(hf3.Start.Point, hf3.End.Point, point) # 看看是否要边翻转,O(6) edges = [hf1, hf2, hf3] while edges: eachedge = edges[-1] edges.pop(-1) eachedgetwin = eachedge.Twin if eachedgetwin: trip1 = vo.Point trip2 = eachedgetwin.Start.Point trip3 = eachedgetwin.End.Point trip4 = eachedgetwin.Suc.End.Point if InCircle(trip1, trip2, trip3, trip4): edges.append(eachedgetwin.Pre) edges.append(eachedgetwin.Suc) efv1 = eachedge.Suc efv2 = eachedgetwin.Suc EdgeFlipping(eachedge) efv1.Face.Center = CircumcircleCenter(trip1, trip2, trip4) efv2.Face.Center = CircumcircleCenter(trip1, trip3, trip4) return vo.HalfEdge.Face # 德劳内三角网,O(nlogn) class DelaunayTrianglation(VGroup): def __init__(self, *points, **kwargs): digest_config(self, kwargs) self.net = ConstructNet(list(points)) self.kwargs = kwargs VGroup.__init__(self, *[Line(*each, **kwargs) for each in self.VisitNet()]) # 获取网的顶点对,即用坐标表示的线 def VisitNet(self): return VisitNet(self.net) def VisitTriangles(self): return VGroup(*VisitTriangles(self.net), **self.kwargs) # 获取网 def GetNet(self): return self.net # 插入节点 def InsertPoint(self, point): net_insert_point(point, self.net) self.become(VGroup(*[Line(*each, **self.kwargs) for each in self.VisitNet()])) return self # 维诺图,O(n)+O(nlogn)=O(nlogn) class Voronoi(VGroup): def __init__(self, *points, **kwargs): digest_config(self, kwargs) self.kwargs = kwargs self.net = DelaunayTrianglation(*points).GetNet() InitNetCircumcircleCenter(self.net) self.voronoi = self.VisitVoronoi() VGroup.__init__(self, *[Line(*each, **kwargs) for each in self.voronoi]) def VisitVoronoi(self): return VisitVoronoi(self.net) # 获取网 def GetNet(self): return self.net # 插入节点 def InsertPoint(self, point): net_insert_point_and_set_circumcirclecenter(point, self.net) self.voronoi = self.VisitVoronoi() self.become(VGroup(*[Line(*each, **self.kwargs) for each in self.voronoi])) return self # 测试类 class test(Scene): def construct(self): np.random.seed(2007) points = [ [np.random.randint(-70000, 70000)/10500, np.random.randint(-38000, 38000)/10500, 0] for i in range(800) ] #points = [UL, UP, UR, LEFT, ORIGIN, RIGHT, DL, DOWN, DR] #points = [UL, DR, UR, DL] dots = [Dot(p).scale(0.5) for p in points] self.add(*dots) start = time.perf_counter() net = Voronoi(*points) self.add(net) end = time.perf_counter() print(end - start) ''' p1, p2, p3 = DL, UL, UR p4 = DR p5 = ORIGIN p6 = UL/2 p7 = UL p8 = UL*2 print(InTriangle(p1, p2, p3, p4)) print(InTriangle(p1, p2, p3, p5)) print(InTriangle(p1, p2, p3, p6)) print(InTriangle(p1, p2, p3, p7)) print(InTriangle(p1, p2, p3, p8)) print(InCircle(p1, p2, p3, p4)) print(InCircle(p1, p2, p3, p5)) print(InCircle(p1, p2, p3, p6)) print(InCircle(p1, p2, p3, p7)) print(InCircle(p1, p2, p3, p8)) ''' ''' infnet = InitInfNet() he1 = infnet.HalfEdge he2 = he1.Suc he3 = he2.Suc print(get_polygon_directed_area(Polygon(he1.Start.Point, he2.Start.Point, he3.Start.Point))) ''' ''' np.random.seed(2007) points = [ [np.random.randint(-70000, 70000)/10500, np.random.randint(-38000, 38000)/10500, 0] for i in range(1000) ] #points = [UL, UP, UR, LEFT, ORIGIN, RIGHT, DL, DOWN, DR] #points = [UL, DR, UR, DL] dots = [Dot(p) for p in points] #self.add(*dots) start = time.perf_counter() delaunay = ConstructNet(self, points) net = VisitNet(delaunay) end = time.perf_counter() print(end - start) self.add(net) ''' ''' np.random.seed(2000007) points = [ [np.random.randint(-70000, 70000)/10000, np.random.randint(-38000, 38000)/10000, 0] for i in range(7) ] dots = [Dot(p) for p in points] self.add(*dots) start = time.perf_counter() delaunay = InitInfNet(points) #print(points[0]) net1, net2, net3 = ClipFace(delaunay, Vertice(points[0]), points[1:]) net = VisitTriangles(net1) end = time.perf_counter() print(end - start) self.add(net) ''' ''' p1, p2, p3, p4 = UL, UR*2, DR, DL*2 v1, v2, v3, v4 = Vertice(p1), Vertice(p2), Vertice(p3), Vertice(p4) he1 = HalfEdge(v1, v2) he2 = HalfEdge(v2, v3) he3 = HalfEdge(v3, v4) he4 = HalfEdge(v4, v1) he5 = HalfEdge(v3, v1) he6 = HalfEdge(v1, v3) he1.Suc = he2 he2.Pre = he1 he2.Suc = he5 he5.Pre = he2 he5.Suc = he1 he1.Pre = he5 he3.Suc = he4 he4.Pre = he3 he4.Suc = he6 he6.Pre = he4 he6.Suc = he3 he3.Pre = he6 bucket1 = Bucket([UR+RIGHT/5, UR+LEFT/5]) bucket2 = Bucket([]) face1 = Face(he1) face1.Bucket = bucket1 bucket1.Face = face1 he1.Face = face1 he2.Face = face1 he5.Face = face1 face2 = Face(he3) face2.Bucket = bucket2 bucket2.Face = face2 he3.Face = face2 he4.Face = face2 he6.Face = face2 he5.Twin = he6 he6.Twin = he5 EdgeFlipping(he5) start = time.perf_counter() net = VisitInfNet(face1) end = time.perf_counter() print(end - start) print(get_polygon_directed_area(Polygon(face1.HalfEdge.Start.Point, face1.HalfEdge.Suc.Start.Point, face1.HalfEdge.Suc.Suc.Start.Point))) print(get_polygon_directed_area(Polygon(face2.HalfEdge.Start.Point, face2.HalfEdge.Suc.Start.Point, face2.HalfEdge.Suc.Suc.Start.Point))) self.add(net) ''' #p1, p2, p3, p4 = UL, UR, DR, DL #print(InTriangle(p1, p2, p3, ORIGIN), InTriangle(p1, p2, p3, UR/2), InTriangle(p1, p2, p3, p4)) ''' start = time.perf_counter() print( InCircle(p1, p2, p3, p4), InCircle(p1, p2, p3, ORIGIN), InCircle(p1, p2, p3, p4+LEFT) ) end = time.perf_counter() print(end - start) start = time.perf_counter() print( InCircle2(p1, p2, p3, p4), InCircle2(p1, p2, p3, ORIGIN), InCircle2(p1, p2, p3, p4+LEFT) ) end = time.perf_counter() print(end - start) ''' self.wait()
zentral/contrib/monolith/migrations/0001_initial.py
janheise/zentral
634
12698901
<reponame>janheise/zentral # -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-02-19 10:55 from __future__ import unicode_literals import django.contrib.postgres.fields.jsonb from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('inventory', '0001_initial'), ] operations = [ migrations.CreateModel( name='Catalog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256, unique=True)), ('priority', models.PositiveIntegerField(default=0)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('archived_at', models.DateTimeField(blank=True, null=True)), ], options={ 'ordering': ('-priority', 'name'), }, ), migrations.CreateModel( name='Manifest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('catalogs', models.ManyToManyField(to='monolith.Catalog')), ('meta_business_unit', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='inventory.MetaBusinessUnit')), ], ), migrations.CreateModel( name='PkgInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('data', django.contrib.postgres.fields.jsonb.JSONField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('archived_at', models.DateTimeField(blank=True, null=True)), ('catalogs', models.ManyToManyField(to='monolith.Catalog')), ], ), migrations.CreateModel( name='PkgInfoCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256, unique=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='PkgInfoName', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256, unique=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='SubManifest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256)), ('description', models.TextField(blank=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('managed_installs', models.ManyToManyField(related_name='_submanifest_managed_installs_+', to='monolith.PkgInfoName')), ('managed_uninstalls', models.ManyToManyField(related_name='_submanifest_managed_uninstalls_+', to='monolith.PkgInfoName')), ('managed_updates', models.ManyToManyField(related_name='_submanifest_managed_updates_+', to='monolith.PkgInfoName')), ('meta_business_unit', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='inventory.MetaBusinessUnit')), ('optional_installs', models.ManyToManyField(related_name='_submanifest_optional_installs_+', to='monolith.PkgInfoName')), ], ), migrations.AddField( model_name='pkginfo', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='monolith.PkgInfoCategory'), ), migrations.AddField( model_name='pkginfo', name='name', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='monolith.PkgInfoName'), ), migrations.AddField( model_name='manifest', name='sub_manifests', field=models.ManyToManyField(to='monolith.SubManifest'), ), ]
posthog/migrations/0161_property_defs_search.py
csmatar/posthog
7,409
12698915
# Generated by Django 3.1.12 on 2021-07-16 13:04 from django.contrib.postgres.indexes import GinIndex from django.contrib.postgres.operations import TrigramExtension from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("posthog", "0160_organization_domain_whitelist"), ] operations = [ TrigramExtension(), migrations.AddIndex( model_name="eventdefinition", index=GinIndex(fields=["name"], name="index_event_definition_name", opclasses=["gin_trgm_ops"]), ), migrations.AddIndex( model_name="propertydefinition", index=GinIndex(fields=["name"], name="index_property_definition_name", opclasses=["gin_trgm_ops"]), ), ]
Algo and DSA/LeetCode-Solutions-master/Python/minimum-skips-to-arrive-at-meeting-on-time.py
Sourav692/FAANG-Interview-Preparation
3,269
12698942
<filename>Algo and DSA/LeetCode-Solutions-master/Python/minimum-skips-to-arrive-at-meeting-on-time.py # Time: O(n^2) # Space: O(n) class Solution(object): def minSkips(self, dist, speed, hoursBefore): """ :type dist: List[int] :type speed: int :type hoursBefore: int :rtype: int """ def ceil(a, b): return (a+b-1)//b dp = [0]*((len(dist)-1)+1) # dp[i]: (min time by i skips) * speed for i, d in enumerate(dist): for j in reversed(xrange(len(dp))): dp[j] = ceil(dp[j]+d, speed)*speed if i < len(dist)-1 else dp[j]+d if j-1 >= 0: dp[j] = min(dp[j], dp[j-1]+d) target = hoursBefore*speed for i in xrange(len(dist)): if dp[i] <= target: return i return -1
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/cuda/cudadrv/error.py
jeikabu/lumberyard
1,738
12698946
<filename>dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/cuda/cudadrv/error.py from __future__ import print_function, absolute_import, division class CudaDriverError(Exception): pass class CudaSupportError(ImportError): pass class NvvmError(Exception): def __str__(self): return '\n'.join(map(str, self.args)) class NvvmSupportError(ImportError): pass
raspberryio/userprofile/admin.py
cvautounix/raspberryio
113
12698947
from django.contrib import admin from raspberryio.userprofile import models as userprofile class ProfileAdmin(admin.ModelAdmin): model = userprofile.Profile admin.site.register(userprofile.Profile, ProfileAdmin)
python/fate_arch/federation/transfer_variable/_transfer_variable.py
hubert-he/FATE
3,787
12698986
<gh_stars>1000+ # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import hashlib import typing from typing import Union from fate_arch.common import Party, profile from fate_arch.common.log import getLogger from fate_arch.federation.transfer_variable._auth import _check_variable_auth_conf from fate_arch.federation.transfer_variable._cleaner import IterationGC from fate_arch.federation.transfer_variable._namespace import FederationTagNamespace from fate_arch.session import get_latest_opened __all__ = ["Variable", "BaseTransferVariables"] LOGGER = getLogger() class Variable(object): """ variable to distinguish federation by name """ __disable_auth_check = False __instances: typing.MutableMapping[str, 'Variable'] = {} @classmethod def _disable_auth_check(cls): """ used in auth conf generation, don't call this in real application """ cls.__disable_auth_check = True @classmethod def get_or_create(cls, name, create_func: typing.Callable[[], 'Variable']) -> 'Variable': if name not in cls.__instances: value = create_func() cls.__instances[name] = value return cls.__instances[name] def __init__(self, name: str, src: typing.Tuple[str, ...], dst: typing.Tuple[str, ...]): if name in self.__instances: raise RuntimeError( f"{self.__instances[name]} with {name} already initialized, which expected to be an singleton object.") if not self.__disable_auth_check: auth_src, auth_dst = _check_variable_auth_conf(name) if set(src) != set(auth_src) or set(dst) != set(auth_dst): raise RuntimeError(f"Variable {name} auth error, " f"acquired: src={src}, dst={dst}, allowed: src={auth_src}, dst={auth_dst}") assert len(name.split(".")) >= 3, "incorrect name format, should be `module_name.class_name.variable_name`" self._name = name self._src = src self._dst = dst self._get_gc = IterationGC() self._remote_gc = IterationGC() self._use_short_name = True self._short_name = self._get_short_name(self._name) @staticmethod def _get_short_name(name): fix_sized = hashlib.blake2b(name.encode('utf-8'), digest_size=10).hexdigest() _, right = name.rsplit('.', 1) return f"hash.{fix_sized}.{right}" # copy never create a new instance def __copy__(self): return self # deepcopy never create a new instance def __deepcopy__(self, memo): return self def set_preserve_num(self, n): self._get_gc.set_capacity(n) self._remote_gc.set_capacity(n) return self def disable_auto_clean(self): self._get_gc.disable() self._remote_gc.disable() return self def clean(self): self._get_gc.clean() self._remote_gc.clean() def remote_parties(self, obj, parties: Union[typing.List[Party], Party], suffix: Union[typing.Any, typing.Tuple] = tuple()): """ remote object to specified parties Parameters ---------- obj: object or table object or table to remote parties: typing.List[Party] parties to remote object/table to suffix: str or tuple of str suffix used to distinguish federation with in variable Returns ------- None """ session = get_latest_opened() if isinstance(parties, Party): parties = [parties] if not isinstance(suffix, tuple): suffix = (suffix,) tag = FederationTagNamespace.generate_tag(*suffix) for party in parties: if party.role not in self._dst: raise RuntimeError(f"not allowed to remote object to {party} using {self._name}") local = session.parties.local_party.role if local not in self._src: raise RuntimeError(f"not allowed to remote object from {local} using {self._name}") name = self._short_name if self._use_short_name else self._name timer = profile.federation_remote_timer(name, self._name, tag, local, parties) session.federation.remote(v=obj, name=name, tag=tag, parties=parties, gc=self._remote_gc) timer.done(session.federation) self._remote_gc.gc() def get_parties(self, parties: Union[typing.List[Party], Party], suffix: Union[typing.Any, typing.Tuple] = tuple()): """ get objects/tables from specified parties Parameters ---------- parties: typing.List[Party] parties to remote object/table to suffix: str or tuple of str suffix used to distinguish federation with in variable Returns ------- list a list of objects/tables get from parties with same order of ``parties`` """ session = get_latest_opened() if not isinstance(parties, list): parties = [parties] if not isinstance(suffix, tuple): suffix = (suffix,) tag = FederationTagNamespace.generate_tag(*suffix) for party in parties: if party.role not in self._src: raise RuntimeError(f"not allowed to get object from {party} using {self._name}") local = session.parties.local_party.role if local not in self._dst: raise RuntimeError(f"not allowed to get object to {local} using {self._name}") name = self._short_name if self._use_short_name else self._name timer = profile.federation_get_timer(name, self._name, tag, local, parties) rtn = session.federation.get(name=name, tag=tag, parties=parties, gc=self._get_gc) timer.done(session.federation) self._get_gc.gc() return rtn def remote(self, obj, role=None, idx=-1, suffix=tuple()): """ send obj to other parties. Args: obj: object to be sent role: role of parties to sent to, use one of ['Host', 'Guest', 'Arbiter', None]. The default is None, means sent values to parties regardless their party role idx: id of party to sent to. The default is -1, which means sent values to parties regardless their party id suffix: additional tag suffix, the default is tuple() """ party_info = get_latest_opened().parties if idx >= 0 and role is None: raise ValueError("role cannot be None if idx specified") # get subset of dst roles in runtime conf if role is None: parties = party_info.roles_to_parties(self._dst, strict=False) else: if isinstance(role, str): role = [role] parties = party_info.roles_to_parties(role) if idx >= 0: parties = parties[idx] return self.remote_parties(obj=obj, parties=parties, suffix=suffix) def get(self, idx=-1, suffix=tuple()): """ get obj from other parties. Args: idx: id of party to get from. The default is -1, which means get values from parties regardless their party id suffix: additional tag suffix, the default is tuple() Returns: object or list of object """ src_parties = get_latest_opened().parties.roles_to_parties(roles=self._src, strict=False) if isinstance(idx, list): rtn = self.get_parties(parties=[src_parties[i] for i in idx], suffix=suffix) elif isinstance(idx, int): rtn = self.get_parties(parties=src_parties, suffix=suffix) if idx < 0 else \ self.get_parties(parties=src_parties[idx], suffix=suffix)[0] else: raise ValueError(f"illegal idx type: {type(idx)}, supported types: int or list of int") return rtn class BaseTransferVariables(object): def __init__(self, *args): pass def __copy__(self): return self def __deepcopy__(self, memo): return self @staticmethod def set_flowid(flowid): """ set global namespace for federations. Parameters ---------- flowid: str namespace Returns ------- None """ FederationTagNamespace.set_namespace(str(flowid)) def _create_variable(self, name: str, src: typing.Iterable[str], dst: typing.Iterable[str]) -> Variable: full_name = f"{self.__module__}.{self.__class__.__name__}.{name}" return Variable.get_or_create(full_name, lambda: Variable(name=full_name, src=tuple(src), dst=tuple(dst))) @staticmethod def all_parties(): """ get all parties Returns ------- list list of parties """ return get_latest_opened().parties.all_parties @staticmethod def local_party(): """ indicate local party Returns ------- Party party this program running on """ return get_latest_opened().parties.local_party
crawler/spiders/cnproxy.py
xelzmm/proxy_server_crawler
112
12699002
from scrapy.spiders import Spider from scrapy.http import Request from scrapy.selector import Selector from crawler.items import ProxyIPItem class CnProxySpider(Spider): name = "cnproxy" allowed_domains = ["cn-proxy.com"] start_urls = [ "http://cn-proxy.com/", "http://cn-proxy.com/archives/218" ] referer = "http://cn-proxy.com/" def start_requests(self): for item in self.start_urls: yield Request(url=item, headers={'Referer': self.referer}) def parse(self, response): ip_list = response.xpath('//table[@class="sortable"]/tbody/tr') for ip in ip_list: item = ProxyIPItem() item['ip'] = ip.xpath('td[1]/text()').extract()[0] item['port'] = ip.xpath('td[2]/text()').extract()[0] item['type'] = 'http' yield item
nebullvm/installers/__init__.py
nebuly-ai/nebullvm
821
12699011
# flake8: noqa from nebullvm.installers.installers import ( install_tvm, install_tensor_rt, install_openvino, install_onnxruntime, ) __all__ = [k for k in globals().keys() if not k.startswith("_")]
clearly/client/client.py
lowercase00/clearly
344
12699023
<gh_stars>100-1000 import functools from collections import namedtuple from datetime import datetime from typing import Any, Callable, Iterable, Optional, Tuple, Union import grpc from about_time import about_time from about_time.core import HandleStats # noinspection PyProtectedMember from celery.states import FAILURE, PROPAGATE_STATES, REJECTED, RETRY, REVOKED, SUCCESS from .code_highlighter import traceback_highlighter_factory, typed_code from .display_modes import ModeTask, ModeWorker, find_mode from ..protos.clearly_pb2 import CaptureRequest, FilterTasksRequest, FilterWorkersRequest, Null, \ PatternFilter, TaskMessage, WorkerMessage from ..protos.clearly_pb2_grpc import ClearlyServerStub from ..utils.colors import Colors from ..utils.env_params import get_env_int_tuple from ..utils.safe_compiler import safe_compile_text from ..utils.worker_states import HEARTBEAT, ONLINE HEADER_SIZE = 8 HEADER_PADDING, HEADER_ALIGN = ' ' * HEADER_SIZE, '>{}'.format(HEADER_SIZE) EMPTY = Colors.DIM(':)') DIM_NONE = Colors.CYAN_DIM('None') TRACEBACK_HIGHLIGHTER = traceback_highlighter_factory() Modes = namedtuple('Modes', 'tasks workers') def set_user_friendly_errors(fn: Callable[..., None]) -> Callable[..., None]: @functools.wraps(fn) def inner(self: 'ClearlyClient', *args, **kwargs): try: fn(self, *args, **kwargs) except grpc.RpcError as e: if self._debug: raise # noinspection PyUnresolvedReferences print('{}: {} ({})'.format( Colors.BOLD('Server communication error'), Colors.RED(e.details()), Colors.DIM(e.code()) )) except UserWarning as e: print(Colors.RED(e)) return inner class ClearlyClient: """Main client object, which interfaces with the Clearly server backend, sends commands and displays captured events. Attributes: _debug: if True, let the ugly errors be seen, humanizes them otherwise _stub: the rpc communication stub instance _modes: the current tasks and workers display modes """ def __init__(self, host: str = 'localhost', port: int = 12223, debug: bool = False): """Construct a Clearly Client instance. Args: host: the hostname of the server port: the port of the server """ self._debug = debug channel = grpc.insecure_channel('{}:{}'.format(host, port)) self._stub = ClearlyServerStub(channel) self._modes = Modes(ModeTask.FAILURE, ModeWorker.WORKER) self._modes = self._get_display_modes(get_env_int_tuple('CLI_DISPLAY_MODES', None)) def capture_tasks(self, tasks: Optional[str] = None, mode: Union[None, int, ModeTask] = None) -> None: """Start capturing task events in real time, so you can instantly see exactly what your publishers and workers are doing. Filter as much as you can to find what you need, and don't worry as the Clearly Server will still seamlessly handle all tasks updates. Currently, you can filter tasks by name, uuid, routing key or state. Insert an '!' in the first position to select those that do not match criteria. This runs in the foreground. Press CTRL+C at any time to stop it. Args: tasks: a simple pattern to filter tasks ex.: 'email' to find values containing that word anywhere 'failure|rejected|revoked' to find tasks with problem '^trigger|^email' to find values starting with any of those words 'trigger.*123456' to find values with those words in that sequence '!^trigger|^email' to filter values not starting with both those words mode: an optional display mode to present data See Also: ClearlyClient#display_modes() """ self.capture(tasks=tasks, modes=mode, workers='!') def capture_workers(self, workers: Optional[str] = None, mode: Union[None, int, ModeWorker] = None) -> None: """Start capturing worker events in real time, so you can instantly see exactly what your workers states are. Filter as much as you can to find what you need, and don't worry as the Clearly Server will still seamlessly handle all tasks and workers updates. Currently, you can filter workers by hostname. Insert an '!' in the first position to select those that do not match criteria. This runs in the foreground. Press CTRL+C at any time to stop it. Args: workers: a simple pattern to filter workers ex.: 'email' to find values containing that word anywhere 'service|priority' to find values containing any of those words '!service|priority' to find values not containing both those words mode: an optional display mode to present data See Also: ClearlyClient#display_modes() """ self.capture(workers=workers, modes=mode, tasks='!') @set_user_friendly_errors def capture(self, tasks: Optional[str] = None, workers: Optional[str] = None, modes: Union[None, int, ModeTask, ModeWorker, Tuple] = None) -> None: """Start capturing all events in real time, so you can instantly see exactly what your publishers and workers are doing. Filter as much as you can to find what you need, and don't worry as the Clearly Server will still seamlessly handle all tasks and workers updates. This runs in the foreground. Press CTRL+C at any time to stop it. Args: tasks: the pattern to filter tasks workers: the pattern to filter workers modes: optional display modes to present data send one or a tuple, as described in display_modes() See Also: ClearlyClient#capture_tasks() ClearlyClient#capture_workers() ClearlyClient#display_modes() """ tasks_filter = ClearlyClient._parse_pattern(tasks) workers_filter = ClearlyClient._parse_pattern(workers) if not tasks_filter and not workers_filter: raise UserWarning('Nothing would be selected.') mode = self._get_display_modes(modes) request = CaptureRequest( tasks_capture=tasks_filter, workers_capture=workers_filter, ) try: for realtime in self._stub.capture_realtime(request): if realtime.HasField('task'): self._display_task(realtime.task, mode.tasks) elif realtime.HasField('worker'): self._display_worker(realtime.worker, mode.workers) else: print('unknown event:', realtime) break except KeyboardInterrupt: # pragma: no cover pass @set_user_friendly_errors def tasks(self, tasks: Optional[str] = None, mode: Union[None, int, ModeTask] = None, limit: Optional[int] = None, reverse: bool = True) -> None: """Fetch current data from past tasks. Note that the `limit` field is just a hint, it may not be accurate. Also, the total number of tasks fetched may be slightly different from the server `max_tasks` setting. Args: tasks: the pattern to filter tasks mode: an optional display mode to present data limit: the maximum number of events to fetch, fetches all if None or 0 (default) reverse: if True (default), shows the most recent first See Also: ClearlyClient#capture_tasks() ClearlyClient#display_modes() """ tasks_filter = ClearlyClient._parse_pattern(tasks) if not tasks_filter: raise UserWarning('Nothing would be selected.') mode = self._get_display_modes(mode) request = FilterTasksRequest( tasks_filter=tasks_filter, limit=limit, reverse=reverse ) at = about_time(self._stub.filter_tasks(request)) for task in at: self._display_task(task, mode.tasks) ClearlyClient._fetched_info(at) @set_user_friendly_errors def workers(self, workers: Optional[str] = None, mode: Union[None, int, ModeWorker] = None) -> None: """Fetch current data from known workers. Args: workers: the pattern to filter workers mode: an optional display mode to present data See Also: ClearlyClient#capture_workers() ClearlyClient#display_modes() """ workers_filter = ClearlyClient._parse_pattern(workers) if not workers_filter: raise UserWarning('Nothing would be selected.') mode = self._get_display_modes(mode) request = FilterWorkersRequest(workers_filter=workers_filter) at = about_time(self._stub.filter_workers(request)) for worker in at: self._display_worker(worker, mode.workers) ClearlyClient._fetched_info(at) @set_user_friendly_errors def seen_tasks(self) -> None: """Fetch a list of seen task types.""" task_types = self._stub.seen_tasks(Null()).task_types for i, task_type in enumerate(task_types, 1): print(Colors.DIM(i), Colors.BLUE(task_type)) @set_user_friendly_errors def reset_tasks(self) -> None: """Reset stored tasks.""" self._stub.reset_tasks(Null()) print(Colors.BLUE('Ok')) @set_user_friendly_errors def metrics(self) -> None: """List some metrics about the celery cluster and Clearly itself. Shows: Tasks processed: actual number of tasks processed, including retries Events processed: total number of events processed Tasks stored: number of currently stored tasks Workers stored: number of workers seen, including offline """ stats = self._stub.get_metrics(Null()) print(Colors.DIM('Processed:'), '\ttasks', Colors.RED(stats.task_count), '\tevents', Colors.RED(stats.event_count)) print(Colors.DIM('Stored:'), '\ttasks', Colors.RED(stats.len_tasks), '\tworkers', Colors.RED(stats.len_workers)) def _get_display_modes(self, modes: Union[None, int, ModeTask, ModeWorker, Tuple] = None) \ -> Modes: if not isinstance(modes, tuple): modes = (modes,) elif len(modes) > 2: raise UserWarning('At most two display modes, was sent {}' .format(len(modes))) modes = sorted(x for x in (find_mode(to) for to in modes) if x) if not modes: return self._modes if len(modes) == 2 and isinstance(modes[0], type(modes[1])): raise UserWarning('Two modes of the same type?') if isinstance(modes[0], ModeTask): return Modes(modes[0], modes[1] if len(modes) == 2 else self._modes.workers) return Modes(self._modes.tasks, modes[0]) @set_user_friendly_errors def display_modes(self, *modes: Union[None, int, ModeTask, ModeWorker, Tuple]) -> None: """Show available display modes, including the currently selected ones, or change the current task/worker modes, sending one or two arguments of any type. See that constant number beside modes? You can rapidly set modes with them! Args: modes: a display mode to set, either task or worker, or its constant number send two to set both display modes in one call """ if modes: self._modes = self._get_display_modes(modes) modes = ('tasks', ModeTask, self._modes.tasks), ('workers', ModeWorker, self._modes.workers) for title, klass, var_mode in modes: print(Colors.BLUE(title)) for d in klass: print(' {} {:8} {}: {}'.format( d == var_mode and '*' or ' ', d.name, Colors.ORANGE_BOLD(d.value, '>2'), Colors.YELLOW(d.description))) @staticmethod def _fetched_info(at: HandleStats) -> None: # pragma: no cover print('{} {} in {} ({})'.format( Colors.DIM('fetched:'), Colors.BOLD(at.count), Colors.GREEN(at.duration_human), Colors.GREEN(at.throughput_human) )) @staticmethod def _parse_pattern(pattern: str) -> PatternFilter: if not isinstance(pattern, (type(None), str)): raise UserWarning('Invalid pattern.') pattern = (pattern or '').strip() negate = pattern.startswith('!') pattern = pattern[negate:].strip() or '.' if negate and pattern == '.': return return PatternFilter(pattern=pattern, negate=negate) @staticmethod def _display_task(task: TaskMessage, mode: ModeTask) -> None: params, success, error = mode.spec ts = datetime.fromtimestamp(task.timestamp) print(Colors.DIM(ts.strftime('%H:%M:%S.%f')[:-3]), end=' ') if not task.state: routing_key = task.routing_key or EMPTY print(Colors.BLUE(task.name), Colors.MAGENTA(routing_key[len(task.name):] or '-' if routing_key.startswith(task.name) else routing_key), Colors.DIM(task.uuid)) else: print(ClearlyClient._task_state(task.state), Colors.BLUE_DIM(task.retries), end=' ') print(Colors.BLUE(task.name), Colors.DIM(task.uuid)) show_outcome = (task.state in PROPAGATE_STATES and error) \ or (task.state == SUCCESS and success) first_seen = bool(params) and not task.state params_outcome = params is not False and show_outcome if first_seen or params_outcome: print(Colors.DIM('args:', HEADER_ALIGN), typed_code(safe_compile_text(task.args), wrap=False) or EMPTY) print(Colors.DIM('kwargs:', HEADER_ALIGN), typed_code(safe_compile_text(task.kwargs), wrap=False) or EMPTY) if show_outcome: if task.state == SUCCESS: result = safe_compile_text(task.result) outcome = ' '.join((Colors.CYAN_DIM('<{}>'.format(task.result_meta)), EMPTY if result is None else typed_code(result))) else: outcome = TRACEBACK_HIGHLIGHTER(task.traceback) \ .replace('\n', '\n' + HEADER_PADDING).strip() print(Colors.DIM('==>', HEADER_ALIGN), outcome) @staticmethod def _display_worker(worker: WorkerMessage, mode: ModeWorker) -> None: stats, = mode.spec if worker.timestamp: ts = datetime.fromtimestamp(worker.timestamp) print(Colors.DIM(ts.strftime('%H:%M:%S.%f')[:-3]), end=' ') print(ClearlyClient._worker_state(worker.state), Colors.CYAN_DIM(worker.hostname), Colors.YELLOW_DIM(str(worker.pid))) if stats: print(Colors.DIM('sw:', HEADER_ALIGN), Colors.CYAN_DIM(' '.join((worker.sw_sys, worker.sw_ident))), Colors.ORANGE(worker.sw_ver)) print(Colors.DIM('load:', HEADER_ALIGN), ClearlyClient._item_list(worker.loadavg), Colors.DIM('processed:'), worker.processed or DIM_NONE) heartbeats = [datetime.fromtimestamp(x).strftime('%H:%M:%S.%f')[:-3] for x in worker.heartbeats or []] print(Colors.DIM('heartb:', HEADER_ALIGN), '{}{}'.format(Colors.ORANGE(worker.freq), Colors.DIM('s')), ClearlyClient._item_list(heartbeats)) @staticmethod def _item_list(items: Iterable[Any], color: Callable[[str], str] = str) -> str: return '{}{}{}'.format( Colors.MAGENTA('['), Colors.MAGENTA(', ').join(map(color, items)), Colors.MAGENTA(']'), ) @staticmethod def _task_state(state: str) -> None: if state == SUCCESS: # final state in BOLD return Colors.GREEN_BOLD(state, HEADER_ALIGN) if state in (FAILURE, REVOKED, REJECTED): # final too return Colors.RED_BOLD(state, HEADER_ALIGN) if state == RETRY: # transient state with a failure. return Colors.ORANGE(state, HEADER_ALIGN) return Colors.YELLOW(state, HEADER_ALIGN) # transient states @staticmethod def _worker_state(state: str) -> None: result = state if state == HEARTBEAT: return Colors.GREEN(result) if state == ONLINE: return Colors.GREEN_BOLD(result) return Colors.RED_BOLD(result)
Find_Stocks/stock_data_sms.py
vhn0912/Finance
441
12699037
import smtplib import datetime import numpy as np import pandas as pd from email.mime.text import MIMEText from yahoo_fin import stock_info as si from pandas_datareader import DataReader from email.mime.multipart import MIMEMultipart from bs4 import BeautifulSoup from urllib.request import urlopen, Request from nltk.sentiment.vader import SentimentIntensityAnalyzer from time import sleep from selenium import webdriver from selenium.webdriver.chrome.options import Options import talib # Define list of stocks stock_list = ['AAPL', 'MSFT', 'AMZN'] # for the tradingview recommendation # options are: '1m', '5m', '15m', '1h', '4h', '1D', '1W', '1M interval = "1M" # Chromedriver Path path = '/Users/shashank/Documents/Code/Python/Finance/chromedriver.exe' # Chromedriver Options options = Options() options.add_argument("--headless") webdriver = webdriver.Chrome(executable_path=path, options=options) # Define start and end dates start = datetime.datetime.now() - datetime.timedelta(days=365) end = datetime.datetime.now() def sendMessage(text): message = text email = "" pas = "" sms_gateway = '' smtp = "smtp.gmail.com" port = 587 server = smtplib.SMTP(smtp,port) server.starttls() server.login(email,pas) msg = MIMEMultipart() msg['From'] = email msg['To'] = sms_gateway msg['Subject'] = "Stock Data\n" body = "{}\n".format(message) msg.attach(MIMEText(body, 'plain')) sms = msg.as_string() server.sendmail(email,sms_gateway,sms) server.quit() print ('done') def getData(list_of_stocks): for stock in list_of_stocks: df = DataReader(stock, 'yahoo', start, end) print (stock) # Current Price price = si.get_live_price('{}'.format(stock)) price = round(price, 2) # Sharpe Ratio x = 5000 y = (x) stock_df = df stock_df['Norm return'] = stock_df['Adj Close'] / stock_df.iloc[0]['Adj Close'] allocation = float(x/y) stock_df['Allocation'] = stock_df['Norm return'] * allocation stock_df['Position'] = stock_df['Allocation'] * x pos = [df['Position']] val = pd.concat(pos, axis=1) val.columns = ['WMT Pos'] val['Total Pos'] = val.sum(axis=1) val.tail(1) val['Daily Return'] = val['Total Pos'].pct_change(1) Sharpe_Ratio = val['Daily Return'].mean() / val['Daily Return'].std() A_Sharpe_Ratio = (252**0.5) * Sharpe_Ratio A_Sharpe_Ratio = round(A_Sharpe_Ratio, 2) # News Sentiment finwiz_url = 'https://finviz.com/quote.ashx?t=' news_tables = {} url = finwiz_url + stock req = Request(url=url,headers={'user-agent': 'my-app/0.0.1'}) response = urlopen(req) html = BeautifulSoup(response, features="lxml") news_table = html.find(id='news-table') news_tables[stock] = news_table parsed_news = [] # Iterate through the news for file_name, news_table in news_tables.items(): for x in news_table.findAll('tr'): text = x.a.get_text() date_scrape = x.td.text.split() if len(date_scrape) == 1: time = date_scrape[0] else: date = date_scrape[0] time = date_scrape[1] ticker = file_name.split('_')[0] parsed_news.append([ticker, date, time, text]) vader = SentimentIntensityAnalyzer() columns = ['ticker', 'date', 'time', 'headline'] dataframe = pd.DataFrame(parsed_news, columns=columns) scores = dataframe['headline'].apply(vader.polarity_scores).tolist() scores_df = pd.DataFrame(scores) dataframe = dataframe.join(scores_df, rsuffix='_right') dataframe['date'] = pd.to_datetime(dataframe.date).dt.date dataframe = dataframe.set_index('ticker') sentiment = round(dataframe['compound'].mean(), 2) # TradingView Recommendation try: #Declare variable analysis = [] #Open tradingview's site webdriver.get("https://s.tradingview.com/embed-widget/technical-analysis/?locale=en#%7B%22interval%22%3A%22{}%22%2C%22width%22%3A%22100%25%22%2C%22isTransparent%22%3Afalse%2C%22height%22%3A%22100%25%22%2C%22symbol%22%3A%22{}%22%2C%22showIntervalTabs%22%3Atrue%2C%22colorTheme%22%3A%22dark%22%2C%22utm_medium%22%3A%22widget_new%22%2C%22utm_campaign%22%3A%22technical-analysis%22%7D".format(interval, ticker)) webdriver.refresh() #Wait for site to load elements while len(webdriver.find_elements_by_class_name("speedometerSignal-pyzN--tL")) == 0: sleep(0.1) #Recommendation recommendation_element = webdriver.find_element_by_class_name("speedometerSignal-pyzN--tL") analysis.append(recommendation_element.get_attribute('innerHTML')) #Counters counter_elements = webdriver.find_elements_by_class_name("counterNumber-3l14ys0C") #Sell analysis.append(int(counter_elements[0].get_attribute('innerHTML'))) #Neutral analysis.append(int(counter_elements[1].get_attribute('innerHTML'))) #Buy analysis.append(int(counter_elements[2].get_attribute('innerHTML'))) signal = analysis[0] except: signal = 'None' # Beta df = DataReader(stock,'yahoo',start, end) dfb = DataReader('^GSPC','yahoo',start, end) rts = df.resample('M').last() rbts = dfb.resample('M').last() dfsm = pd.DataFrame({'s_adjclose' : rts['Adj Close'], 'b_adjclose' : rbts['Adj Close']}, index=rts.index) dfsm[['s_returns','b_returns']] = dfsm[['s_adjclose','b_adjclose']]/\ dfsm[['s_adjclose','b_adjclose']].shift(1) -1 dfsm = dfsm.dropna() covmat = np.cov(dfsm["s_returns"],dfsm["b_returns"]) beta = covmat[0,1]/covmat[1,1] beta = round(beta, 2) # Relative Strength Index df["rsi"] = talib.RSI(df["Close"]) values = df["rsi"].tail(14) value = values.mean() rsi = round(value, 2) output = ("\nTicker: " + str(stock) + "\nCurrent Price : " + str(price) + "\nSharpe Ratio: " + str(A_Sharpe_Ratio) + "\nNews Sentiment: " + str(sentiment) + "\nTradingView Rec for {}: ".format(interval) + str(signal) + "\nRelative Strength Index: " + str(rsi) + "\nBeta Value for 1 Year: " + str(beta)) sendMessage(output) if __name__ == '__main__': getData(stock_list)
larq/snapshots/snap_quantized_variable_test.py
sfalkena/larq
496
12699080
<gh_stars>100-1000 # -*- coding: utf-8 -*- # snapshottest: v1 - https://goo.gl/zC4yUc from __future__ import unicode_literals from snapshottest import Snapshot snapshots = Snapshot() snapshots['test_repr[eager] 1'] = "<QuantizedVariable 'x:0' shape=() dtype=float32 quantizer=<lambda> numpy=0.0>" snapshots['test_repr[eager] 2'] = "<QuantizedVariable 'x:0' shape=() dtype=float32 quantizer=Quantizer numpy=0.0>" snapshots['test_repr[eager] 3'] = "<QuantizedVariable 'x:0' shape=() dtype=float32 precision=1 numpy=0.0>" snapshots['test_repr[graph] 1'] = "<QuantizedVariable 'x:0' shape=() dtype=float32 quantizer=<lambda>>" snapshots['test_repr[graph] 2'] = "<QuantizedVariable 'x:0' shape=() dtype=float32 quantizer=Quantizer>" snapshots['test_repr[graph] 3'] = "<QuantizedVariable 'x:0' shape=() dtype=float32 precision=1>"
examples/logical_interconnects.py
doziya/hpeOneView
107
12699131
# -*- coding: utf-8 -*- ### # (C) Copyright (2012-2017) Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ### from pprint import pprint from hpOneView.oneview_client import OneViewClient from hpOneView.exceptions import HPOneViewException from examples.config_loader import try_load_from_file config = { "ip": "<oneview_ip>", "credentials": { "userName": "<username>", "password": "<password>" } } # To run this example, a logical interconnect name is required logical_interconnect_name = "" # To install the firmware driver, a firmware driver name is required firmware_driver_name = "" # An Enclosure name must be set to create/delete an interconnect at a given location enclosure_name = "" # Define the scope name to add the logical interconnect to it scope_name = "" # Try load config from a file (if there is a config file) config = try_load_from_file(config) oneview_client = OneViewClient(config) # Get by name print("\nGet a logical interconnect by name") logical_interconnect = oneview_client.logical_interconnects.get_by_name(logical_interconnect_name) pprint(logical_interconnect) # Get installed firmware print("\nGet the installed firmware for a logical interconnect that matches the specified name.") firmwares = oneview_client.firmware_drivers.get_by('name', firmware_driver_name) firmware = None if firmwares: firmware = firmwares[0] # Get scope to be added print("\nGet the scope that matches the specified name.") scope = oneview_client.scopes.get_by_name(scope_name) print("\nGet the enclosure that matches the specified name.") enclosures = oneview_client.enclosures.get_by('name', enclosure_name) enclosure = None if enclosures: enclosure = enclosures[0] # Install the firmware to a logical interconnect if firmware: print("\nInstall the firmware to a logical interconnect that matches the specified ID.") firmware_to_install = dict( command="Update", sppUri=firmware['uri'] ) installed_firmware = oneview_client.logical_interconnects.install_firmware(firmware_to_install, logical_interconnect['uri']) pprint(installed_firmware) # Performs a patch operation # Endpoint supported only in api-versions 500 and below. if scope and (oneview_client.api_version <= 500): print("\nPatches the logical interconnect adding one scope to it") updated_logical_interconnect = oneview_client.logical_interconnects.patch(logical_interconnect['uri'], 'replace', '/scopeUris', [scope['uri']]) pprint(updated_logical_interconnect) # Get all logical interconnects print("\nGet all logical interconnects") logical_interconnects = oneview_client.logical_interconnects.get_all() for logical_interconnect in logical_interconnects: print(' Name: {name}').format(**logical_interconnect) logical_interconnect = logical_interconnects[0] # Get a logical interconnect by name logical_interconnect = oneview_client.logical_interconnects.get_by_name(logical_interconnect['name']) print("\nFound logical interconnect by name {name}.\n URI: {uri}").format(**logical_interconnect) print("\nGet the Ethernet interconnect settings for the logical interconnect") ethernet_settings = oneview_client.logical_interconnects.get_ethernet_settings(logical_interconnect['uri']) pprint(ethernet_settings) # Update the Ethernet interconnect settings for the logical interconnect ethernet_settings = logical_interconnect['ethernetSettings'].copy() ethernet_settings['macRefreshInterval'] = 10 logical_interconnect = oneview_client.logical_interconnects.update_ethernet_settings(logical_interconnect['uri'], ethernet_settings, force=True) print("\nUpdated the ethernet settings") print(" with attribute 'macRefreshInterval' = {macRefreshInterval}".format(**logical_interconnect['ethernetSettings'])) # Update the internal networks on the logical interconnect ethernet_network_options = { "name": "OneViewSDK Test Ethernet Network on Logical Interconnect", "vlanId": 200, "ethernetNetworkType": "Tagged", "purpose": "General", "smartLink": False, "privateNetwork": False, "connectionTemplateUri": None, } ethernet_networks = oneview_client.ethernet_networks.get_by('name', ethernet_network_options['name']) if len(ethernet_networks) > 0: ethernet_network = ethernet_networks[0] else: ethernet_network = oneview_client.ethernet_networks.create(ethernet_network_options) logical_interconnect = oneview_client.logical_interconnects.update_internal_networks(logical_interconnect['uri'], [ethernet_network['uri']]) print("\nUpdated internal networks on the logical interconnect") print(" with attribute 'internalNetworkUris' = {internalNetworkUris}".format(**logical_interconnect)) # Get the internal VLAN IDs print("\nGet the internal VLAN IDs for the provisioned networks on the logical interconnect") internal_vlans = oneview_client.logical_interconnects.get_internal_vlans(logical_interconnect['uri']) pprint(internal_vlans) # Update the interconnect settings # End-point supported only in api-versions 500 and below. if oneview_client.api_version <= 500: print("\nUpdates the interconnect settings on the logical interconnect") interconnect_settings = { 'ethernetSettings': logical_interconnect['ethernetSettings'].copy(), 'fcoeSettings': {} } interconnect_settings['ethernetSettings']['macRefreshInterval'] = 7 logical_interconnect = oneview_client.logical_interconnects.update_settings(logical_interconnect['uri'], interconnect_settings) print("Updated interconnect settings on the logical interconnect") print(" with attribute 'macRefreshInterval' = {macRefreshInterval}".format(**logical_interconnect['ethernetSettings'])) pprint(logical_interconnect) # Get the SNMP configuration for the logical interconnect print("\nGet the SNMP configuration for the logical interconnect") snmp_configuration = oneview_client.logical_interconnects.get_snmp_configuration(logical_interconnect['uri']) pprint(snmp_configuration) # Update the SNMP configuration for the logical interconnect try: print("\nUpdate the SNMP configuration for the logical interconnect") snmp_configuration['enabled'] = True logical_interconnect = oneview_client.logical_interconnects.update_snmp_configuration(logical_interconnect['uri'], snmp_configuration) interconnect_snmp = logical_interconnect['snmpConfiguration'] print(" Updated SNMP configuration at uri: {uri}\n with 'enabled': '{enabled}'".format(**interconnect_snmp)) except HPOneViewException as e: print(e.msg) # Get a collection of uplink ports from the member interconnects which are eligible for assignment to an analyzer port print("\nGet a collection of uplink ports from the member interconnects which are eligible for assignment to " "an analyzer port on the logical interconnect") unassigned_uplink_ports = oneview_client.logical_interconnects.get_unassigned_uplink_ports(logical_interconnect['uri']) pprint(unassigned_uplink_ports) # Get the port monitor configuration of a logical interconnect print("\nGet the port monitor configuration of a logical interconnect") monitor_configuration = oneview_client.logical_interconnects.get_port_monitor(logical_interconnect['uri']) pprint(monitor_configuration) # Update port monitor configuration of a logical interconnect try: print("\nUpdate the port monitor configuration of a logical interconnect") monitor_configuration['enablePortMonitor'] = True logical_interconnect = oneview_client.logical_interconnects.update_port_monitor( logical_interconnect['uri'], monitor_configuration) print(" Updated port monitor at uri: {uri}\n with 'enablePortMonitor': '{enablePortMonitor}'".format( **logical_interconnect['portMonitor'])) except HPOneViewException as e: print(e.msg) # Get the telemetry configuration of the logical interconnect print("\nGet the telemetry configuration of the logical interconnect") telemetry_configuration_uri = logical_interconnect['telemetryConfiguration']['uri'] telemetry_configuration = oneview_client.logical_interconnects.get_telemetry_configuration(telemetry_configuration_uri) pprint(telemetry_configuration) print("\nUpdate the telemetry configuration") telemetry_config = { "sampleCount": 12, "enableTelemetry": True, "sampleInterval": 300 } logical_interconnect_updated = oneview_client.logical_interconnects.update_telemetry_configurations( configuration=telemetry_config, tc_id_or_uri=telemetry_configuration_uri) pprint(logical_interconnect_updated) # Update the configuration on the logical interconnect print("\nUpdate the configuration on the logical interconnect") logical_interconnect = oneview_client.logical_interconnects.update_configuration(logical_interconnect['uri']) print(" Done.") # Return the logical interconnect to a consistent state print("\nReturn the logical interconnect to a consistent state") logical_interconnect = oneview_client.logical_interconnects.update_compliance(logical_interconnect['uri']) print(" Done. The current consistency state is {consistencyStatus}.".format(**logical_interconnect)) # Create an interconnect at a specified location if enclosure['uri']: print("\nCreate an interconnect at the specified location") bay = 1 location = { "locationEntries": [ {"type": "Enclosure", "value": enclosure['uri']}, {"type": "Bay", "value": bay} ] } interconnect = oneview_client.logical_interconnects.create_interconnect(location) pprint(interconnect) oneview_client.logical_interconnects.delete_interconnect(enclosure['uri'], bay) print("\nThe interconnect was successfully deleted.") # Generate the forwarding information base dump file for the logical interconnect print("\nGenerate the forwarding information base dump file for the logical interconnect") fwd_info_datainfo = oneview_client.logical_interconnects.create_forwarding_information_base(logical_interconnect['uri']) pprint(fwd_info_datainfo) # Get the forwarding information base data for the logical interconnect print("\nGet the forwarding information base data for the logical interconnect") fwd_information = oneview_client.logical_interconnects.get_forwarding_information_base(logical_interconnect['uri']) pprint(fwd_information) # Get the QoS aggregated configuration for the logical interconnect. print("\nGets the QoS aggregated configuration for the logical interconnect.") qos = oneview_client.logical_interconnects.get_qos_aggregated_configuration(logical_interconnect['uri']) pprint(qos) # Update the QOS aggregated configuration try: print("\nUpdate QoS aggregated settings on the logical interconnect") qos['activeQosConfig']['configType'] = 'Passthrough' li = oneview_client.logical_interconnects.update_qos_aggregated_configuration(logical_interconnect['uri'], qos) pprint(li['qosConfiguration']) except HPOneViewException as e: print(e.msg)
scanners/zap-advanced/scanner/zapclient/context/__init__.py
kevin-yen/secureCodeBox
488
12699148
<reponame>kevin-yen/secureCodeBox # SPDX-FileCopyrightText: 2021 iteratec GmbH # # SPDX-License-Identifier: Apache-2.0 """ context A Python package containing secureCodeBox specific ZAPv2 Client extensions to configure ZAP API contexts. """ __all__ = ['zap_context', 'zap_context_authentication'] from .zap_context import ZapConfigureContext from .zap_context_authentication import ZapConfigureContextAuthentication
ira/configuration.py
ShuaiW/kaggle-heart
182
12699154
<reponame>ShuaiW/kaggle-heart import importlib _config = None _subconfig = None def set_configuration(config_name): global _config _config = importlib.import_module("configurations.%s" % config_name) print "loaded", _config def set_subconfiguration(config_name): global _subconfig _subconfig = importlib.import_module("configurations.%s" % config_name) print "loaded", _subconfig def config(): return _config def subconfig(): return _subconfig
tests/test_commands/test_package_show.py
OliverHofkens/dephell
1,880
12699163
<reponame>OliverHofkens/dephell # built-in import json # external import pytest # project from dephell.commands import PackageShowCommand from dephell.config import Config @pytest.mark.allow_hosts() def test_package_show_command(capsys): config = Config() config.attach({ 'level': 'WARNING', 'silent': True, 'nocolors': True, }) command = PackageShowCommand(argv=['textdistance'], config=config) result = command() assert result is True captured = capsys.readouterr() output = json.loads(captured.out) assert output['name'] == 'textdistance' assert output['license'] == 'MIT'
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/o/old_division_floats.py
ciskoinch8/vimrc
463
12699175
from __future__ import print_function print(float(1) / 2)
stp_core/loop/motor.py
andkononykhin/plenum
148
12699185
<gh_stars>100-1000 from stp_core.common.log import getlogger from stp_core.loop.looper import Prodable from stp_core.loop.startable import Status logger = getlogger() # TODO: move it to plenum-util repo class Motor(Prodable): """ Base class for Prodable that includes status management. Subclasses are responsible for changing status from starting to started. """ def __init__(self): """ Motor is initialized with a status of Stopped. """ self._status = Status.stopped def get_status(self) -> Status: """ Return the current status """ return self._status def set_status(self, value): """ Set the status of the motor to the specified value if not already set. """ if not self._status == value: old = self._status self._status = value logger.info("{} changing status from {} to {}".format(self, old.name, value.name)) self._statusChanged(old, value) status = property(fget=get_status, fset=set_status) def isReady(self): """ Is the status in Status.ready()? """ return self.status in Status.ready() def isGoing(self): """ Is the status in Status.going()? """ return self.status in Status.going() def start(self, loop): """ Set the status to Status.starting """ self.status = Status.starting def stop(self, *args, **kwargs): """ Set the status to Status.stopping and also call `onStopping` with the provided args and kwargs. """ if self.status in (Status.stopping, Status.stopped): logger.debug("{} is already {}".format(self, self.status.name)) else: self.status = Status.stopping self.onStopping(*args, **kwargs) self.status = Status.stopped def _statusChanged(self, old, new): """ Perform some actions based on whether this node is ready or not. :param old: the previous status :param new: the current status """ raise NotImplementedError("{} must implement this method".format(self)) def onStopping(self, *args, **kwargs): """ A series of actions to be performed when stopping the motor. """ raise NotImplementedError("{} must implement this method".format(self)) async def prod(self, limit) -> int: raise NotImplementedError("{} must implement this method".format(self))
src/ralph/data_center/__init__.py
DoNnMyTh/ralph
1,668
12699189
default_app_config = 'ralph.data_center.apps.DataCenterConfig'
setup.py
zwlanpishu/MCD
158
12699211
#!/usr/bin/python """A setuptools-based script for distributing and installing mcd.""" # Copyright 2014, 2015, 2016, 2017 <NAME> # This file is part of mcd. # See `License` for details of license and warranty. import os import numpy as np from setuptools import setup from setuptools.extension import Extension from setuptools.command.sdist import sdist as _sdist cython_locs = [ ('mcd', 'metrics_fast'), ] with open('README.rst') as readme_file: long_description = readme_file.read() requires = [ line.rstrip('\n') for line in open('requirements.txt') ] # see "A note on setup.py" in README.rst for an explanation of the dev file dev_mode = os.path.exists('dev') if dev_mode: from Cython.Distutils import build_ext from Cython.Build import cythonize class sdist(_sdist): """A cythonizing sdist command. This class is a custom sdist command which ensures all cython-generated C files are up-to-date before running the conventional sdist command. """ def run(self): cythonize([ os.path.join(*loc)+'.pyx' for loc in cython_locs ]) _sdist.run(self) cmdclass = {'build_ext': build_ext, 'sdist': sdist} ext_modules = [ Extension('.'.join(loc), [os.path.join(*loc)+'.pyx'], extra_compile_args=['-Wno-unused-but-set-variable', '-O3'], include_dirs=[np.get_include()]) for loc in cython_locs ] else: cmdclass = {} ext_modules = [ Extension('.'.join(loc), [os.path.join(*loc)+'.c'], extra_compile_args=['-Wno-unused-but-set-variable', '-O3'], include_dirs=[np.get_include()]) for loc in cython_locs ] setup( name='mcd', version='0.5.dev1', description='Mel cepstral distortion (MCD) computations in python.', url='http://github.com/MattShannon/mcd', author='<NAME>', author_email='<EMAIL>', license='3-clause BSD (see License file)', packages=['mcd'], install_requires=requires, scripts=[ os.path.join('bin', 'dtw_synth'), os.path.join('bin', 'get_mcd_dtw'), os.path.join('bin', 'get_mcd_plain'), ], long_description=long_description, cmdclass=cmdclass, ext_modules=ext_modules, )
dataflows/helpers/iterable_loader.py
cschloer/dataflows
160
12699220
import itertools import decimal import datetime from datapackage import Package, Resource from tableschema.storage import Storage from .. import DataStreamProcessor class iterable_storage(Storage): SAMPLE_SIZE = 100 def __init__(self, iterable): super(iterable_storage, self).__init__() self.iterable = iterable self.schema = None def connect(self, name): pass def buckets(self): pass def create(self): pass def delete(self): pass def read(self): pass def write(self): pass def field_type(self, values): types = set() for value in values: if isinstance(value, str): types.add('string') elif isinstance(value, bool): types.add('boolean') elif isinstance(value, int): types.add('integer') elif isinstance(value, (float, decimal.Decimal)): types.add('number') elif isinstance(value, list): types.add('array') elif isinstance(value, dict): types.add('object') elif isinstance(value, datetime.datetime): types.add('datetime') elif isinstance(value, datetime.date): types.add('date') elif value is None: pass else: assert 'Unknown Python type: %r' % value if len(types) != 1: return 'any' else: return types.pop() def describe(self, _, descriptor=None): if descriptor is not None: return descriptor if self.schema is None: try: sample = list(itertools.islice(self.iterable, self.SAMPLE_SIZE)) rec = sample[0] self.iterable = itertools.chain(sample, self.iterable) self.schema = dict( fields=[ dict(name=name, type=self.field_type([s.get(name) for s in sample])) for name in rec.keys() ] ) except Exception: self.schema = dict(fields=[]) return self.schema def iter(self, _): return self.iterable class iterable_loader(DataStreamProcessor): def __init__(self, iterable, name=None): super(iterable_loader, self).__init__() self.iterable = iterable self.name = name self.exc = None def handle_iterable(self): mode = None try: for x in self.iterable: if mode is None: assert isinstance(x, (dict, list, tuple)), 'Bad item %r' % x mode = dict if isinstance(x, dict) else list assert isinstance(x, mode) if mode == dict: yield x else: yield dict(zip(('col{}'.format(i) for i in range(len(x))), x)) except Exception as e: self.exc = e raise def process_datapackage(self, dp: Package): name = self.name if name is None: name = 'res_{}'.format(len(dp.resources) + 1) self.res = Resource(dict( name=name, path='{}.csv'.format(name) ), storage=iterable_storage(self.handle_iterable())) self.res.infer() if self.exc is not None: raise self.exc dp.descriptor.setdefault('resources', []).append(self.res.descriptor) return dp def process_resources(self, resources): yield from super(iterable_loader, self).process_resources(resources) yield self.res.iter(keyed=True)
ppgan/models/generators/drn.py
wangna11BD/PaddleGAN
6,852
12699230
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import math import paddle import paddle.nn as nn from .builder import GENERATORS def default_conv(in_channels, out_channels, kernel_size, bias=True): return nn.Conv2D(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias_attr=bias) class MeanShift(nn.Conv2D): def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1): super(MeanShift, self).__init__(3, 3, kernel_size=1) std = paddle.to_tensor(rgb_std) self.weight.set_value(paddle.eye(3).reshape([3, 3, 1, 1])) self.weight.set_value(self.weight / (std.reshape([3, 1, 1, 1]))) mean = paddle.to_tensor(rgb_mean) self.bias.set_value(sign * rgb_range * mean / std) self.weight.trainable = False self.bias.trainable = False class DownBlock(nn.Layer): def __init__(self, negval, n_feats, n_colors, scale, nFeat=None, in_channels=None, out_channels=None): super(DownBlock, self).__init__() if nFeat is None: nFeat = n_feats if in_channels is None: in_channels = n_colors if out_channels is None: out_channels = n_colors dual_block = [ nn.Sequential( nn.Conv2D(in_channels, nFeat, kernel_size=3, stride=2, padding=1, bias_attr=False), nn.LeakyReLU(negative_slope=negval)) ] for _ in range(1, int(math.log2(scale))): dual_block.append( nn.Sequential( nn.Conv2D(nFeat, nFeat, kernel_size=3, stride=2, padding=1, bias_attr=False), nn.LeakyReLU(negative_slope=negval))) dual_block.append( nn.Conv2D(nFeat, out_channels, kernel_size=3, stride=1, padding=1, bias_attr=False)) self.dual_module = nn.Sequential(*dual_block) def forward(self, x): x = self.dual_module(x) return x ## Channel Attention (CA) Layer class CALayer(nn.Layer): def __init__(self, channel, reduction=16): super(CALayer, self).__init__() # global average pooling: feature --> point self.avg_pool = nn.AdaptiveAvgPool2D(1) # feature channel downscale and upscale --> channel weight self.conv_du = nn.Sequential( nn.Conv2D(channel, channel // reduction, 1, padding=0, bias_attr=True), nn.ReLU(), nn.Conv2D(channel // reduction, channel, 1, padding=0, bias_attr=True), nn.Sigmoid()) def forward(self, x): y = self.avg_pool(x) y = self.conv_du(y) return x * y class RCAB(nn.Layer): def __init__(self, conv, n_feat, kernel_size, reduction=16, bias=True, bn=False, act=nn.ReLU(), res_scale=1): super(RCAB, self).__init__() modules_body = [] for i in range(2): modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias)) if bn: modules_body.append(nn.BatchNorm2D(n_feat)) if i == 0: modules_body.append(act) modules_body.append(CALayer(n_feat, reduction)) self.body = nn.Sequential(*modules_body) self.res_scale = res_scale def forward(self, x): res = self.body(x) res += x return res class Upsampler(nn.Sequential): def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True): m = [] if (scale & (scale - 1)) == 0: # Is scale = 2^n? for _ in range(int(math.log(scale, 2))): m.append(conv(n_feats, 4 * n_feats, 3, bias)) m.append(nn.PixelShuffle(2)) if bn: m.append(nn.BatchNorm2D(n_feats)) if act == 'relu': m.append(nn.ReLU()) elif act == 'prelu': m.append(nn.PReLU(n_feats)) elif scale == 3: m.append(conv(n_feats, 9 * n_feats, 3, bias)) m.append(nn.PixelShuffle(3)) if bn: m.append(nn.BatchNorm2D(n_feats)) if act == 'relu': m.append(nn.ReLU()) elif act == 'prelu': m.append(nn.PReLU(n_feats)) else: raise NotImplementedError super(Upsampler, self).__init__(*m) @GENERATORS.register() class DRNGenerator(nn.Layer): """DRNGenerator""" def __init__( self, scale, n_blocks=30, n_feats=16, n_colors=3, rgb_range=255, negval=0.2, kernel_size=3, conv=default_conv, ): super(DRNGenerator, self).__init__() self.scale = scale self.phase = len(scale) act = nn.ReLU() self.upsample = nn.Upsample(scale_factor=max(scale), mode='bicubic', align_corners=False) rgb_mean = (0.4488, 0.4371, 0.4040) rgb_std = (1.0, 1.0, 1.0) self.sub_mean = MeanShift(rgb_range, rgb_mean, rgb_std) self.head = conv(n_colors, n_feats, kernel_size) self.down = [ DownBlock(negval, n_feats, n_colors, 2, n_feats * pow(2, p), n_feats * pow(2, p), n_feats * pow(2, p + 1)) for p in range(self.phase) ] self.down = nn.LayerList(self.down) up_body_blocks = [[ RCAB(conv, n_feats * pow(2, p), kernel_size, act=act) for _ in range(n_blocks) ] for p in range(self.phase, 1, -1)] up_body_blocks.insert(0, [ RCAB(conv, n_feats * pow(2, self.phase), kernel_size, act=act) for _ in range(n_blocks) ]) # The fisrt upsample block up = [[ Upsampler(conv, 2, n_feats * pow(2, self.phase), act=False), conv(n_feats * pow(2, self.phase), n_feats * pow(2, self.phase - 1), kernel_size=1) ]] # The rest upsample blocks for p in range(self.phase - 1, 0, -1): up.append([ Upsampler(conv, 2, 2 * n_feats * pow(2, p), act=False), conv(2 * n_feats * pow(2, p), n_feats * pow(2, p - 1), kernel_size=1) ]) self.up_blocks = nn.LayerList() for idx in range(self.phase): self.up_blocks.append(nn.Sequential(*up_body_blocks[idx], *up[idx])) # tail conv that output sr imgs tail = [conv(n_feats * pow(2, self.phase), n_colors, kernel_size)] for p in range(self.phase, 0, -1): tail.append(conv(n_feats * pow(2, p), n_colors, kernel_size)) self.tail = nn.LayerList(tail) self.add_mean = MeanShift(rgb_range, rgb_mean, rgb_std, 1) def forward(self, x): """Forward function. Args: x (Tensor): Input tensor with shape (n, c, h, w). Returns: Tensor: Forward results. """ # upsample x to target sr size x = self.upsample(x) # preprocess x = self.sub_mean(x) x = self.head(x) # down phases, copies = [] for idx in range(self.phase): copies.append(x) x = self.down[idx](x) # up phases sr = self.tail[0](x) sr = self.add_mean(sr) results = [sr] for idx in range(self.phase): # upsample to SR features x = self.up_blocks[idx](x) # concat down features and upsample features x = paddle.concat((x, copies[self.phase - idx - 1]), 1) # output sr imgs sr = self.tail[idx + 1](x) sr = self.add_mean(sr) results.append(sr) return results
backend/logs/analyze_analytics_logs.py
sleepingAnt/viewfinder
645
12699231
# Copyright 2013 Viewfinder Inc. All Rights Reserved. """Run analysis over all merged user analytics logs. Computes speed percentiles for full asset scans (only those lasting more than 1s for more accurate numbers). Automatically finds the list of merged logs in S3. If --start_date=YYYY-MM-DD is specified, only analyze logs starting from a week before that date (we give user logs that much time to get uploaded). Usage: # Analyze all logs. python -m viewfinder.backend.logs.analyze_analytics_logs # Analyze logs from a specific start date. python -m viewfinder.backend.logs.analyze_analytics_logs --start_date=2012-12-15 Other options: -require_lock: default=True: hold the job:analyze_analytics lock during processing. -smart_scan: default=False: determine the start date from previous run summaries. -hours_between_runs: default=0: don't run if last successful run started less than this many hours ago. """ __author__ = '<EMAIL> (<NAME>)' import cStringIO import json import logging import numpy import os import sys import time import traceback from collections import defaultdict, Counter from tornado import gen, options from viewfinder.backend.base import constants, main, statistics, util from viewfinder.backend.base.dotdict import DotDict from viewfinder.backend.db import db_client from viewfinder.backend.db.job import Job from viewfinder.backend.logs import logs_util from viewfinder.backend.storage.object_store import ObjectStore from viewfinder.backend.storage import store_utils # TODO(marc): automatic date detection (eg: find latest metric entry and process from 30 days before). options.define('start_date', default=None, help='Start date (filename start key). May be overridden by smart_scan.') options.define('dry_run', default=True, help='Do not update dynamodb metrics table') options.define('compute_today', default=False, help='Do not compute statistics for today, logs will be partial') options.define('require_lock', type=bool, default=True, help='attempt to grab the job:analyze_analytics lock before running. Exit if acquire fails.') options.define('smart_scan', type=bool, default=False, help='determine start_date from previous successful runs.') options.define('hours_between_runs', type=int, default=0, help='minimum time since start of last successful run (with dry_run=False)') class DayStats(object): def __init__(self, day): self.day = day self._scan_durations = [] self._long_scan_speeds = [] self._photos_scanned = [] # Number of unique users recording an event on this day. self.event_users = Counter() # Number of occurrences of an event aggregated across all users. self.total_events = Counter() def AddScan(self, version, photos, duration): self._scan_durations.append(duration) self._photos_scanned.append(photos) if duration > 1.0: self._long_scan_speeds.append(photos / duration) def AddEvents(self, counters): for name, count in counters.iteritems(): self.total_events[name] += count self.event_users[name] += 1 def PrintSummary(self): logging.info('Day: %s\n %s' % (self.day, statistics.FormatStats(self._long_scan_speeds, percentiles=[90,95,99]))) def ScanDurationPercentile(self, percentile): return numpy.percentile(self._scan_durations, percentile) def LongScanSpeedPercentile(self, percentile): return numpy.percentile(self._long_scan_speeds, percentile) def PhotosScannedPercentile(self, percentile): return numpy.percentile(self._photos_scanned, percentile) @gen.engine def ProcessFiles(merged_store, filenames, callback): """Fetch and process each file contained in 'filenames'.""" @gen.engine def _ProcessOneFile(contents, day_stats): """Iterate over the contents of a processed file: one entry per line. Increment stats for specific entries.""" buf = cStringIO.StringIO(contents) buf.seek(0) ui_events = Counter() while True: line = buf.readline() if not line: break parsed = json.loads(line) if not parsed: continue if 'version' not in parsed: continue # TODO(marc): lookup the user's device ID in dynamodb and get device model. payload = parsed['payload'] if 'name' in payload: if payload['name'] == '/assets/scan' and payload['type'] == 'full': day_stats.AddScan(parsed['version'], payload['num_scanned'], payload['elapsed']) elif payload['name'].startswith('/ui/'): ui_events[payload['name']] += 1 if ui_events: ui_events['/ui/anything'] += 1 day_stats.AddEvents(ui_events) buf.close() today = util.NowUTCToISO8601() # Group filenames by day. files_by_day = defaultdict(list) for filename in filenames: _, day, user = filename.split('/') if options.options.compute_today or today != day: files_by_day[day].append(filename) # Compute per-day totals. Toss them into a list, we'll want it sorted. stats_by_day = {} for day in sorted(files_by_day.keys()): # We don't really need to process days in-order, but it's nicer. files = files_by_day[day] day_stats = DayStats(day) for f in files: contents = '' try: contents = yield gen.Task(merged_store.Get, f) except Exception as e: logging.error('Error fetching file %s: %r' % (f, e)) continue _ProcessOneFile(contents, day_stats) if len(day_stats._long_scan_speeds) == 0: continue dd = DotDict() for p in [1, 5, 10, 25, 50, 75, 90, 95, 99]: dd['user_analytics.scans_gt1s_speed_percentile.%.2d' % p] = day_stats.LongScanSpeedPercentile(p) dd['user_analytics.scans_duration_percentile.%.2d' % p] = day_stats.ScanDurationPercentile(p) dd['user_analytics.scans_num_photos_percentile.%.2d' % p] = day_stats.PhotosScannedPercentile(p) dd['user_analytics.ui.event_users'] = day_stats.event_users dd['user_analytics.ui.total_events'] = day_stats.total_events stats_by_day[day] = dd callback(stats_by_day) @gen.engine def GetMergedLogsFileList(merged_store, marker, callback): """Fetch the list of file names from S3.""" registry_dir = os.path.join(logs_util.UserAnalyticsLogsPaths.kMergedLogsPrefix, logs_util.UserAnalyticsLogsPaths.kRegistryDir) def _WantFile(filename): return not filename.startswith(registry_dir) base_path = logs_util.UserAnalyticsLogsPaths.kMergedLogsPrefix + '/' marker = os.path.join(base_path, marker) if marker is not None else None file_list = yield gen.Task(store_utils.ListAllKeys, merged_store, prefix=base_path, marker=marker) files = [f for f in file_list if _WantFile(f)] files.sort() logging.info('found %d merged log files, analyzing %d' % (len(file_list), len(files))) callback(files) @gen.engine def RunOnce(client, job, callback): """Get list of files and call processing function.""" merged_store = ObjectStore.GetInstance(logs_util.UserAnalyticsLogsPaths.MERGED_LOGS_BUCKET) start_date = options.options.start_date if options.options.smart_scan: # Search for successful full-scan run in the last week. last_run = yield gen.Task(job.FindLastSuccess, with_payload_key='stats.last_day') if last_run is None: logging.info('No previous successful scan found, rerun with --start_date') callback(None) return last_run_start = last_run['start_time'] if util.HoursSince(last_run_start) < options.options.hours_between_runs: logging.info('Last successful run started at %s, less than %d hours ago; skipping.' % (time.asctime(time.localtime(last_run_start)), options.options.hours_between_runs)) callback(None) return last_day = last_run['stats.last_day'] # Set scan_start to start of previous run - 30d (we need 30 days' worth of data to properly compute # 30-day active users. Add an extra 3 days just in case we had some missing logs during the last run. start_time = util.ISO8601ToUTCTimestamp(last_day, hour=12) - constants.SECONDS_PER_WEEK start_date = util.TimestampUTCToISO8601(start_time) logging.info('Last successful analyze_analytics run (%s) scanned up to %s, setting analysis start date to %s' % (time.asctime(time.localtime(last_run_start)), last_day, start_date)) # Fetch list of merged logs. files = yield gen.Task(GetMergedLogsFileList, merged_store, start_date) day_stats = yield gen.Task(ProcessFiles, merged_store, files) # Write per-day stats to dynamodb. if len(day_stats) > 0: hms = logs_util.kDailyMetricsTimeByLogType['analytics_logs'] yield gen.Task(logs_util.UpdateMetrics, client, day_stats, dry_run=options.options.dry_run, hms_tuple=hms) last_day = sorted(day_stats.keys())[-1] callback(last_day) else: callback(None) @gen.engine def _Start(callback): """Grab a lock on job:analyze_analytics and call RunOnce. If we get a return value, write it to the job summary.""" client = db_client.DBClient.Instance() job = Job(client, 'analyze_analytics') if options.options.require_lock: got_lock = yield gen.Task(job.AcquireLock) if got_lock == False: logging.warning('Failed to acquire job lock: exiting.') callback() return result = None job.Start() try: result = yield gen.Task(RunOnce, client, job) except: # Failure: log run summary with trace. typ, val, tb = sys.exc_info() msg = ''.join(traceback.format_exception(typ, val, tb)) logging.info('Registering failed run with message: %s' % msg) yield gen.Task(job.RegisterRun, Job.STATUS_FAILURE, failure_msg=msg) else: if result is not None and not options.options.dry_run: # Successful run with data processed and not in dry-run mode: write run summary. stats = DotDict() stats['last_day'] = result logging.info('Registering successful run with stats: %r' % stats) yield gen.Task(job.RegisterRun, Job.STATUS_SUCCESS, stats=stats) finally: yield gen.Task(job.ReleaseLock) callback() if __name__ == '__main__': sys.exit(main.InitAndRun(_Start))
src/picktrue/gui/pinry_importer.py
winkidney/PickTrue
118
12699235
<reponame>winkidney/PickTrue<gh_stars>100-1000 import time import tkinter as tk from picktrue.gui.toolkit import ProgressBar, StatusBar, NamedInput, FileBrowse, info, FilePathBrowse, PasswordInput from picktrue.pinry.importer import PinryImporter from picktrue.utils import run_as_thread class PinryImporterGUI(tk.Frame): title = "导入到Pinry" def __init__(self, *args, **kwargs): super(PinryImporterGUI, self).__init__(*args, **kwargs) self._url = NamedInput(self, name="Pinry部署地址") self._min_size = NamedInput(self, name="最小上传大小(KB)(低于此值的文件不上传,不限制请留空)") self._username = NamedInput(self, name="用户名") self._password = PasswordInput(self, name="密码") self._csv_file = FilePathBrowse(self, store_name="import_csv", text_label="CSV文件文件路径") self.btn_group = self.build_buttons() self._importer = None self.progress = ProgressBar(self) self.status = StatusBar(self) self.start_update() def _get_importer(self): min_size = self._min_size.get_input() if min_size: try: min_size = int(min_size) except Exception: info("最小文件上传大小应该是整数") else: min_size = None return PinryImporter( base_url=self._url.get_input(), username=self._username.get_input(), password=self._password.get_input(), min_upload_size_kb=min_size, ) def build_buttons(self): btn_args = dict( height=1, ) btn_group = tk.Frame(self) buttons = [ tk.Button( btn_group, text=text, command=command, **btn_args ) for text, command in ( ("测试登录", self._test_login), ("开始导入", self._start_import), ) ] for index, btn in enumerate(buttons): btn.grid(column=index, row=0, sticky=tk.N) btn_group.pack(fill=tk.BOTH, expand=1) return btn_group def _test_login(self): importer = self._get_importer() if importer.test_login() is True: info("登录成功") else: info("情检查用户名密码以及部署路径是否可访问") def _start_import(self): self._importer = self._get_importer() run_as_thread( self._importer.do_import, self._csv_file.get_path(), name="import2pinry" ) def start_update(self): run_as_thread(self._update_loop) def _update_loop(self): while True: time.sleep(0.1) self.update_progress() def update_progress(self): if self._importer is not None: self.progress.update_progress( self._importer.done_pins, self._importer.total_pins, ) self.status.set(self._importer.status_text()) else: self.progress.update_progress(0, 0) self.status.set("待机...")
datapackage_pipelines/lib/add_resource.py
gperonato/datapackage-pipelines
109
12699238
from datapackage_pipelines.wrapper import ingest, spew import os from datapackage_pipelines.utilities.resources import PATH_PLACEHOLDER, PROP_STREAMED_FROM parameters, datapackage, res_iter = ingest() if datapackage is None: datapackage = {} datapackage.setdefault('resources', []) for param in ['url', 'name']: assert param in parameters, \ "You must define {} in your parameters".format(param) url = parameters.pop('url') if url.startswith('env://'): env_var = url[6:] env_url = os.environ.get(env_var) assert env_url is not None, \ "Missing Value - " \ "Please set your '%s' environment variable" % env_var url = env_url if 'path' not in parameters: parameters['path'] = PATH_PLACEHOLDER parameters[PROP_STREAMED_FROM] = url datapackage['resources'].append(parameters) spew(datapackage, res_iter)
enaml/qt/docking/dock_overlay.py
xtuzy/enaml
1,080
12699254
<filename>enaml/qt/docking/dock_overlay.py<gh_stars>1000+ #------------------------------------------------------------------------------ # Copyright (c) 2013-2017, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. #------------------------------------------------------------------------------ from atom.api import Atom, Bool, Int, Float, Typed from enaml.qt.QtCore import Qt, QPoint, QRect, QTimer, QPropertyAnimation from enaml.qt.QtGui import QPainter from enaml.qt.QtWidgets import QWidget, QStyle, QStyleOption from .q_guide_rose import QGuideRose from .q_dock_bar import QDockBar from .q_dock_container import QDockContainer from .q_dock_splitter import QDockSplitterHandle from .q_dock_tab_widget import QDockTabWidget class QDockRubberBand(QWidget): """ A custom rubber band widget for use with the dock overlay. This class is stylable from Qt style sheets. """ def __init__(self, parent=None): """ Initialize a QDockRubberBand. Parameters ---------- parent : QWidget, optional The parent of the dock rubber band. """ super(QDockRubberBand, self).__init__(parent) self.setWindowFlags(Qt.ToolTip | Qt.FramelessWindowHint) self.setAttribute(Qt.WA_TranslucentBackground) def paintEvent(self, event): """ Handle the paint event for the dock rubber band. """ painter = QPainter(self) opt = QStyleOption() opt.initFrom(self) self.style().drawPrimitive(QStyle.PE_Widget, opt, painter, self) class DockOverlay(Atom): """ An object which manages the overlays for dock widgets. This manager handles the state transitions for the overlays. The transitions are performed on a slightly-delayed timer to provide a more fluid user interaction experience. """ # PySide requires weakrefs for using bound methods as slots. # PyQt doesn't, but executes unsafe code if not using weakrefs. __slots__ = '__weakref__' #: The size of the rubber band when docking on the border, in px. border_size = Int(60) #: The delay to use when triggering the rose timer, in ms. rose_delay = Int(30) #: The delay to use when triggering the band timer, in ms. band_delay = Int(50) #: The target opacity to use when making the band visible. band_target_opacity = Float(1.0) #: The duration of the band visibilty animation, in ms. band_vis_duration = Int(100) #: the duration of the band geometry animation, in ms. band_geo_duration = Int(100) #: The overlayed guide rose. _rose = Typed(QGuideRose, ()) #: The overlayed rubber band. _band = Typed(QDockRubberBand, ()) #: The property animator for the rubber band geometry. _geo_animator = Typed(QPropertyAnimation) #: The property animator for the rubber band visibility. _vis_animator = Typed(QPropertyAnimation) #: The target mode to apply to the rose on timeout. _target_rose_mode = Int(QGuideRose.Mode.NoMode) #: The target geometry to apply to rubber band on timeout. _target_band_geo = Typed(QRect, factory=lambda: QRect()) #: The value of the last guide which was hit in the rose. _last_guide = Int(-1) #: A flag indicating whether it is safe to show the band. _show_band = Bool(False) #: The hover position of the mouse to use for state changes. _hover_pos = Typed(QPoint, factory=lambda: QPoint()) #: The timer for changing the state of the rose. _rose_timer = Typed(QTimer) #: The timer for changing the state of the band. _band_timer = Typed(QTimer) def __init__(self, parent=None): """ Initialize a DockOverlay. Parameters ---------- parent : QWidget, optional The parent of the overlay. This will be used as the parent widget for the dock rubber band. The overlay guides do not have a parent. """ self._band = QDockRubberBand(parent) #-------------------------------------------------------------------------- # Default Value Methods #-------------------------------------------------------------------------- def _default__rose_timer(self): """ Create the default timer for the rose state changes. """ timer = QTimer() timer.setSingleShot(True) timer.timeout.connect(self._on_rose_timer) return timer def _default__band_timer(self): """ Create the default timer for the band state changes. """ timer = QTimer() timer.setSingleShot(True) timer.timeout.connect(self._on_band_timer) return timer def _default__geo_animator(self): """ Create the default property animator for the rubber band. """ p = QPropertyAnimation(self._band, b'geometry') p.setDuration(self.band_geo_duration) return p def _default__vis_animator(self): """ Create the default property animator for the rubber band. """ p = QPropertyAnimation(self._band, b'windowOpacity') p.setDuration(self.band_vis_duration) p.finished.connect(self._on_vis_finished) return p #-------------------------------------------------------------------------- # Timer Handlers #-------------------------------------------------------------------------- def _on_rose_timer(self): """ Handle the timeout event for the internal rose timer. This handler transitions the rose to its new state and updates the position of the rubber band. """ rose = self._rose rose.setMode(self._target_rose_mode) rose.mouseOver(self._hover_pos) self._show_band = True self._update_band_state() def _on_band_timer(self): """ Handle the timeout event for the internal band timer. This handler updates the position of the rubber band. """ self._update_band_state() #-------------------------------------------------------------------------- # Animation Handlers #-------------------------------------------------------------------------- def _on_vis_finished(self): """ Handle the 'finished' signal from the visibility animator. This handle will hide the rubber band when its opacity is 0. """ band = self._band if band.windowOpacity() == 0.0: band.hide() #-------------------------------------------------------------------------- # Private API #-------------------------------------------------------------------------- def _update_band_state(self): """ Refresh the geometry and visible state of the rubber band. The state will be updated using animated properties to provide a nice fluid user experience. """ # A valid geometry indicates that the rubber should be shown on # the screen. An invalid geometry means it should be hidden. If # the validity is changed during animation, the animators are # restarted using the current state as their starting point. band = self._band geo = self._target_band_geo if geo.isValid() and self._show_band: # If the band is already hidden, the geometry animation can # be bypassed since the band can be located anywhere. if band.isHidden(): band.setGeometry(geo) self._start_vis_animator(self.band_target_opacity) self._rose.raise_() else: self._start_vis_animator(self.band_target_opacity) self._start_geo_animator(geo) else: self._start_vis_animator(0.0) def _start_vis_animator(self, opacity): """ (Re)start the visibility animator. Parameters ---------- opacity : float The target opacity of the target object. """ animator = self._vis_animator if animator.state() == animator.Running: animator.stop() target = animator.targetObject() if target.isHidden() and opacity != 0.0: target.setWindowOpacity(0.0) target.show() animator.setStartValue(target.windowOpacity()) animator.setEndValue(opacity) animator.start() def _start_geo_animator(self, geo): """ (Re)start the visibility animator. Parameters ---------- geo : QRect The target geometry for the target object. """ animator = self._geo_animator if animator.state() == animator.Running: animator.stop() target = animator.targetObject() animator.setStartValue(target.geometry()) animator.setEndValue(geo) animator.start() def _band_geometry(self, widget, guide): """ Compute the geometry for an overlay rubber band. Parameters ---------- widget : QWidget The widget to which the band geometry should be fit. guide : Guide The rose guide under the mouse. This determines how the geometry of the band will be fit to the widget. """ Guide = QGuideRose.Guide if guide == Guide.NoGuide: return QRect() # border hits border_size = self.border_size rect = widget.contentsRect() if guide == Guide.BorderNorth: rect.setHeight(border_size) elif guide == Guide.BorderEast: rect.setLeft(rect.right() + 1 - border_size) elif guide == Guide.BorderSouth: rect.setTop(rect.bottom() + 1 - border_size) elif guide == Guide.BorderWest: rect.setWidth(border_size) # For the next 4 conditions `widget` will be a QDockArea elif guide == Guide.BorderExNorth: bar_rect = widget.dockBarGeometry(QDockBar.North) if bar_rect.isValid(): rect = bar_rect else: rect.setHeight(border_size / 2) elif guide == Guide.BorderExEast: bar_rect = widget.dockBarGeometry(QDockBar.East) if bar_rect.isValid(): rect = bar_rect else: rect.setLeft(rect.right() + 1 - border_size / 2) elif guide == Guide.BorderExSouth: bar_rect = widget.dockBarGeometry(QDockBar.South) if bar_rect.isValid(): rect = bar_rect else: rect.setTop(rect.bottom() + 1 - border_size / 2) elif guide == Guide.BorderExWest: bar_rect = widget.dockBarGeometry(QDockBar.West) if bar_rect.isValid(): rect = bar_rect else: rect.setWidth(border_size / 2) # compass hits elif guide == Guide.CompassNorth: rect.setHeight(rect.height() / 3) elif guide == Guide.CompassEast: rect.setLeft(2 * rect.width() / 3) elif guide == Guide.CompassSouth: rect.setTop(2 * rect.height() / 3) elif guide == Guide.CompassWest: rect.setWidth(rect.width() / 3) elif guide == Guide.CompassCenter: pass # nothing to do elif guide == Guide.CompassExNorth: pass # nothing to do elif guide == Guide.CompassExEast: pass # nothing to do elif guide == Guide.CompassExSouth: pass # nothing to do elif guide == Guide.CompassExWest: pass # nothing to do # splitter handle hits elif guide == Guide.SplitHorizontal: wo, r = divmod(border_size - rect.width(), 2) rect.setWidth(2 * (wo + r) + rect.width()) rect.moveLeft(rect.x() - (wo + r)) elif guide == Guide.SplitVertical: ho, r = divmod(border_size - widget.height(), 2) rect.setHeight(2 * (ho + r) + rect.height()) rect.moveTop(rect.y() - (ho + r)) # single center elif guide == Guide.AreaCenter: pass # nothing to do # default no-op else: return QRect() pt = widget.mapToGlobal(rect.topLeft()) return QRect(pt, rect.size()) #-------------------------------------------------------------------------- # Public API #-------------------------------------------------------------------------- def guide_at(self, pos): """ Get the dock guide for a given position. Parameters ---------- pos : QPoint The position of interest, expressed in global coordinates. Returns ------- result : Guide The guide enum which lies under the given point. """ rose = self._rose pos = rose.mapFromGlobal(pos) return rose.guideAt(pos) def hide(self): """ Hide the overlay. This method will stop the timers and set the visibility of the guide rose and the rubber band to False. """ self._rose_timer.stop() self._band_timer.stop() self._rose.hide() self._band.hide() def mouse_over_widget(self, widget, pos, empty=False): """ Update the overlays based on the mouse position. This handler should be invoked when the mouse hovers over a single widget (such as a floating dock container) as opposed to an area of docked widgets. The guide rose will be displayed in the center of the widget with no border guides. Parameters ---------- widget : QWidget The widget under the mouse. pos : QPoint The hover position, expressed in the local coordinates of the widget. empty : bool, optional Whether the widget represents an empty widget. If this is True, a single center guide will be shown instead of the guide rose. """ Mode = QGuideRose.Mode rose = self._rose target_mode = Mode.AreaCenter if empty else Mode.CompassEx self._target_rose_mode = target_mode if rose.mode() != target_mode: rose.setMode(Mode.NoMode) self._rose_timer.start(self.rose_delay) self._band_timer.start(self.band_delay) origin = widget.mapToGlobal(QPoint(0, 0)) geo = QRect(origin, widget.size()) dirty = rose.geometry() != geo if dirty: rose.hide() rose.setMode(Mode.NoMode) rose.setGeometry(geo) guide = rose.guideAt(pos, target_mode) if dirty or guide != self._last_guide: self._last_guide = guide self._target_band_geo = self._band_geometry(widget, guide) self._band_timer.start(self.band_delay) rose.setCenterPoint(QPoint(geo.width() / 2, geo.height() / 2)) rose.mouseOver(pos) rose.show() def mouse_over_area(self, area, widget, pos): """ Update the overlays based on the mouse position. Parameters ---------- area : QDockArea The dock area which contains the dock items onto which the overlay will be displayed. widget : QWidget The dock widget in the area which is under the mouse, or None if there is no relevant widget. pos : QPoint The hover position, expressed in the local coordinates of the overlayed dock area. """ Mode = QGuideRose.Mode Guide = QGuideRose.Guide pane = area.centralPane() pos = pane.mapFrom(area, pos) if widget is None: if area.centralWidget() is None: self.mouse_over_widget(pane, pos, empty=True) return # Compute the target mode for the guide rose based on the dock # widget which lies under the mouse position. target_mode = Mode.Border if isinstance(widget, QDockContainer): target_mode |= Mode.CompassEx elif isinstance(widget, QDockTabWidget): target_mode |= Mode.Compass elif isinstance(widget, QDockSplitterHandle): if widget.orientation() == Qt.Horizontal: target_mode |= Mode.SplitHorizontal else: target_mode |= Mode.SplitVertical # Get the local area coordinates for the center of the widget. center = widget.mapTo(pane, QPoint(0, 0)) center += QPoint(widget.width() / 2, widget.height() / 2) # Update the state of the rose. If it is to be hidden, it is # done so immediately. If the target mode is different from # the current mode, the rose is hidden and the state changes # are collapsed on a timer. rose = self._rose self._hover_pos = pos self._show_band = True self._target_rose_mode = target_mode if target_mode != rose.mode(): rose.setMode(Mode.Border) self._rose_timer.start(self.rose_delay) self._show_band = False # Update the geometry of the rose if needed. This ensures that # the rose does not change geometry while visible. origin = pane.mapToGlobal(QPoint(0, 0)) geo = QRect(origin, pane.size()) dirty = rose.geometry() != geo if dirty: rose.hide() rose.setMode(Mode.NoMode) rose.setGeometry(geo) # Hit test the rose and update the target geometry for the # rubber band if the target guide has changed. rose.setCenterPoint(center) guide = rose.guideAt(pos, target_mode) if dirty or guide != self._last_guide: self._last_guide = guide if guide >= Guide.BorderNorth and guide <= Guide.BorderWest: band_geo = self._band_geometry(pane, guide) elif guide >= Guide.BorderExNorth and guide <= Guide.BorderExWest: band_geo = self._band_geometry(area, guide) else: band_geo = self._band_geometry(widget, guide) self._target_band_geo = band_geo self._band_timer.start(self.band_delay) # Finally, make the rose visible and issue a mouseover command # so that the guides are highlighted. rose.mouseOver(pos) rose.show()
tradingview_ta/__init__.py
fluxguardian/python-tradingview-ta
294
12699310
from .main import TA_Handler, TradingView, Analysis, Interval, Exchange, get_multiple_analysis, __version__ from .technicals import Recommendation, Compute
deploy/app/main/views.py
wuchaohua/WeeklyReport
131
12699321
<reponame>wuchaohua/WeeklyReport #coding:utf-8 from datetime import date from flask import request, Response, redirect, url_for, current_app from flask_admin.model import typefmt from flask_admin.contrib.sqla import ModelView from flask_babelex import lazy_gettext as _ from flask_login import current_user import os from werkzeug.utils import secure_filename from . import main from .. import admin, db from ..models import Permission, User, Role, Report, Department from ..utils import permission_required, is_allowed_file, clean_html from sqlalchemy.exc import OperationalError @main.route('/', methods=['GET', 'POST']) def index(): # check if the database is initialized. try: User.query.all() except OperationalError: db.create_all() Role.insert_roles() Department.insert_departments() if not current_user.is_authenticated: return redirect(url_for('auth.login')) return redirect(url_for('report.read')) @main.route("/upload/", methods=["POST"]) @permission_required(Permission.WRITE_REPORT) def upload(): img = request.files.get('image') if img and is_allowed_file(img.filename): filename = secure_filename(img.filename) img.save(os.path.join(current_app.config['UPLOAD_FOLDER'], filename)) img_url = request.url_root + current_app.config['IMAGE_UPLOAD_DIR'] + filename res = Response(img_url) current_app.logger.info( '{} uploaded image'.format(current_user.email)) else: res = Response(_("Failed Uploading")) res.headers["ContentType"] = "text/html" res.headers["Charset"] = "utf-8" current_app.logger.error( '{} failed uploading image'.format(current_user.email)) return res class WeeklyReportModelView(ModelView): base_template = '/base.html' def is_accessible(self): return current_user.is_admin def inaccessible_callback(self, name, **kwargs): return redirect(url_for('main.index')) class UserAdminView(WeeklyReportModelView): column_labels = dict(email='邮箱', username='姓名', is_ignored='不参与统计', role='角色', department='部门') form_columns = column_list = [ 'email', 'username', 'is_ignored', 'role', 'department'] can_delete = True can_create = False form_widget_args = { 'email': { 'readonly': True }, } def on_model_delete(self, model): current_app.logger.info( '{} deleted user:{}'.format(current_user.email, model)) for report in Report.query.filter_by(author_id=model.id): db.session.delete(report) db.session.commit() class RoleAdminView(WeeklyReportModelView): column_labels = dict(name='名称', users='成员') form_columns = ['name', 'users'] column_list = ['name'] can_create = False can_edit = True can_delete = False form_widget_args = { 'name': { 'readonly': True }, } class DepartmentAdminView(WeeklyReportModelView): column_labels = dict(name='名称', users='成员') form_columns = ['name', 'users'] can_edit = True can_delete = False class ReportAdminView(WeeklyReportModelView): column_labels = dict(year=u'年份', week_count=u'周次', created_at=u'创建时间', last_content=u'上周计划', content=u'内容', author=u'员工', department=u'部门') column_list = ('author', 'department', 'year', 'week_count', 'last_content', 'content', 'created_at') column_default_sort = ('created_at', True) column_searchable_list = ('week_count',) form_columns = ['created_at', 'week_count', 'year', 'content'] list_template = '/admin/model/report_list_template.html' can_edit = True can_export = True export_types=['xls'] form_widget_args = { 'year': { 'readonly': True }, 'last_content': { 'readonly': True }, 'created_at': { 'readonly': True }, } def date_format(view, value): return value.strftime('%Y-%m-%d') def author_format(v, c, m, p): return str(m.author) def department_format(v, c, m, p): return str(m.department) def format_last_content(v, c, m, p): if m.last_content: return clean_html(m.last_content) return '' def format_content(v, c, m, p): if m.content: return clean_html(m.content) return '' def format_created_at(v, c, m, p): return m.created_at.strftime('%Y-%m-%d') REPORT_FORMATTERS = dict(typefmt.BASE_FORMATTERS) REPORT_FORMATTERS.update({ date: date_format, }) column_type_formatters = REPORT_FORMATTERS EXPORT_REPORT_FORMATTERS = dict(typefmt.BASE_FORMATTERS) EXPORT_REPORT_FORMATTERS.update({ "author": author_format, "department": department_format, "last_content": format_last_content, "content": format_content, "created_at":format_created_at, }) column_formatters_export = EXPORT_REPORT_FORMATTERS admin.add_view(UserAdminView(User, db.session, name='用户')) admin.add_view(RoleAdminView(Role, db.session, name='角色')) admin.add_view(ReportAdminView(Report, db.session, name='周报', endpoint="reports")) admin.add_view(DepartmentAdminView(Department, db.session, name='部门'))
monailabel/utils/others/generic.py
IntroAI-termproject/MONAILabel
214
12699340
<reponame>IntroAI-termproject/MONAILabel # Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import logging import mimetypes import os import pathlib import shutil import subprocess import torch.cuda logger = logging.getLogger(__name__) def file_ext(name) -> str: return "".join(pathlib.Path(name).suffixes) def remove_file(path: str) -> None: if path and os.path.exists(path): if os.path.isdir(path): shutil.rmtree(path) else: os.unlink(path) def get_basename(path): """Gets the basename of a file. Ref: https://stackoverflow.com/questions/8384737/extract-file-name-from-path-no-matter-what-the-os-path-format """ head, tail = os.path.split(path) return tail or os.path.basename(head) def run_command(command, args=None, plogger=None): plogger = plogger if plogger else logger cmd = [command] if args: args = [str(a) for a in args] cmd.extend(args) plogger.info("Running Command:: {}".format(" ".join(cmd))) process = subprocess.Popen( cmd, # stderr=subprocess.PIPE, stdout=subprocess.PIPE, universal_newlines=True, env=os.environ.copy(), ) while process.poll() is None: line = process.stdout.readline() line = line.rstrip() if line: plogger.info(line.rstrip()) if plogger else print(line) plogger.info("Return code: {}".format(process.returncode)) process.stdout.close() return process.returncode def init_log_config(log_config, app_dir, log_file): if not log_config or not os.path.exists(log_config): default_log_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) default_config = os.path.realpath(os.path.join(default_log_dir, "logging.json")) log_dir = os.path.join(app_dir, "logs") log_config = os.path.join(log_dir, "logging.json") os.makedirs(log_dir, exist_ok=True) # if not os.path.exists(log_config): shutil.copy(default_config, log_config) with open(log_config, "r") as f: c = f.read() c = c.replace("${LOGDIR}", log_dir.replace("\\", r"\\")) c = c.replace("${LOGFILE}", os.path.join(log_dir, log_file).replace("\\", r"\\")) with open(log_config, "w") as f: f.write(c) return log_config def get_mime_type(file): m_type = mimetypes.guess_type(file, strict=False) logger.debug(f"Guessed Mime Type for Image: {m_type}") if m_type is None or m_type[0] is None: m_type = "application/octet-stream" else: m_type = m_type[0] logger.debug(f"Final Mime Type: {m_type}") return m_type def file_checksum(file, algo="SHA256"): if algo not in ["SHA256", "SHA512", "MD5"]: raise ValueError("unsupported hashing algorithm %s" % algo) with open(file, "rb") as content: hash = hashlib.new(algo) while True: chunk = content.read(8192) if not chunk: break hash.update(chunk) return f"{algo}:{hash.hexdigest()}" def gpu_memory_map(): """Get the current gpu usage. Returns ------- usage: dict Keys are device ids as integers. Values are memory usage as integers in MB. """ logger.info("Using nvidia-smi command") if shutil.which("nvidia-smi") is None: logger.info("nvidia-smi command didn't work! - Using default image size [128, 128, 64]") return {0: 4300} result = subprocess.check_output( ["nvidia-smi", "--query-gpu=memory.free", "--format=csv,nounits,noheader"], encoding="utf-8" ) # Convert lines into a dictionary gpu_memory = [int(x) for x in result.strip().split("\n")] gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory)) return gpu_memory_map def gpu_count(): return torch.cuda.device_count()
src/JPDA_matching.py
reinforcementdriving/JRMOT_ROS
112
12699344
# vim: expandtab:ts=4:sw=4 from __future__ import absolute_import import numpy as np from linear_assignment import min_marg_matching import pdb def get_unmatched(all_idx, matches, i, marginalization=None): assigned = [match[i] for match in matches] unmatched = set(all_idx) - set(assigned) if marginalization is not None: # from 1 for dummy node in_gate_dets = np.nonzero(np.sum( marginalization[:, 1:], axis=0))[0].tolist() unmatched = [d for d in unmatched if d not in in_gate_dets] return list(unmatched) class Matcher: def __init__(self, detections, marginalizations, confirmed_tracks, matching_strategy, assignment_threshold=None): self.detections = detections self.marginalizations = marginalizations self.confirmed_tracks = confirmed_tracks self.assignment_threshold = assignment_threshold self.detection_indices = np.arange(len(detections)) self.matching_strategy = matching_strategy def match(self): self.get_matches() self.get_unmatched_tracks() self.get_unmatched_detections() return self.matches, self.unmatched_tracks, self.unmatched_detections def get_matches(self): if self.matching_strategy == "max_and_threshold": self.max_and_threshold_matching() elif self.matching_strategy == "hungarian": self.hungarian() elif self.matching_strategy == "max_match": self.max_match() elif self.matching_strategy == "none": self.matches = [] else: raise Exception('Unrecognized matching strategy: {}'. format(self.matching_strategy)) def get_unmatched_tracks(self): self.unmatched_tracks = get_unmatched(self.confirmed_tracks, self.matches, 0) def get_unmatched_detections(self): self.unmatched_detections = get_unmatched(self.detection_indices, self.matches, 1, self.marginalizations) def max_match(self): self.matches = [] if self.marginalizations.shape[0] == 0: return detection_map = {} for i, track_idx in enumerate(self.confirmed_tracks): marginalization = self.marginalizations[i,:] detection_id = np.argmax(marginalization) - 1 # subtract one for dummy if detection_id < 0: continue if detection_id not in detection_map.keys(): detection_map[detection_id] = track_idx else: cur_track = detection_map[detection_id] track_update = track_idx if self.marginalizations[track_idx, detection_id] > self.marginalizations[cur_track, detection_id] else cur_track detection_map[detection_id] = track_update threshold_p = marginalization[detection_id + 1] if threshold_p < self.assignment_threshold: continue for detection in detection_map.keys(): self.matches.append((detection_map[detection], detection)) def max_and_threshold_matching(self): self.matches = [] if self.marginalizations.shape[0] == 0: return for i, track_idx in enumerate(self.confirmed_tracks): marginalization = self.marginalizations[i,:] detection_id = np.argmax(marginalization) - 1 # subtract one for dummy if detection_id < 0: continue threshold_p = marginalization[detection_id + 1] if threshold_p < self.assignment_threshold: continue self.matches.append((track_idx, detection_id)) def hungarian(self): self.matches, _, _ = min_marg_matching(self.marginalizations, self.confirmed_tracks, self.assignment_threshold)
CondTools/Hcal/test/HcalInterpolatedPulseDBReader_cfg.py
ckamtsikis/cmssw
852
12699363
<filename>CondTools/Hcal/test/HcalInterpolatedPulseDBReader_cfg.py<gh_stars>100-1000 database = "sqlite_file:hcalPulse.db" tag = "test" outputfile = "hcalPulse_dbread.bbin" import FWCore.ParameterSet.Config as cms process = cms.Process('HcalInterpolatedPulseDBRead') process.source = cms.Source('EmptySource') process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(1)) process.load("CondCore.CondDB.CondDB_cfi") process.CondDB.connect = database process.PoolDBESSource = cms.ESSource("PoolDBESSource", process.CondDB, toGet = cms.VPSet(cms.PSet( record = cms.string("HcalInterpolatedPulseCollRcd"), tag = cms.string(tag) )) ) process.dumper = cms.EDAnalyzer( 'HcalInterpolatedPulseDBReader', outputFile = cms.string(outputfile) ) process.p = cms.Path(process.dumper)
cfgov/v1/management/commands/sync_document_storage.py
Colin-Seifer/consumerfinance.gov
156
12699400
<filename>cfgov/v1/management/commands/sync_document_storage.py from django.core.management.base import BaseCommand from wagtail.documents import get_document_model from ._sync_storage_base import SyncStorageCommandMixin class Command(SyncStorageCommandMixin, BaseCommand): def get_storage_directories(self): return ["documents"] def get_queryset(self): return get_document_model().objects.all()
packages/pyright-internal/src/tests/samples/self5.py
Jasha10/pyright
3,934
12699425
<filename>packages/pyright-internal/src/tests/samples/self5.py # This sample tests the use of `Self` when used within a property # or class property. from typing_extensions import Self class A: @property def one(self) -> Self: ... @classmethod @property def two(cls) -> type[Self]: ... class B(A): ... reveal_type(A().one, expected_text="A") reveal_type(A.two, expected_text="Type[A]") reveal_type(B().one, expected_text="B") reveal_type(B.two, expected_text="Type[B]")
gammapy/scripts/tests/test_main.py
JohannesBuchner/gammapy
155
12699436
# Licensed under a 3-clause BSD style license - see LICENSE.rst from gammapy import __version__ from gammapy.scripts.main import cli from gammapy.utils.testing import run_cli def test_cli_no_args(): # No arguments should print help result = run_cli(cli, []) assert "Usage" in result.output def test_cli_help(): result = run_cli(cli, ["--help"]) assert "Usage" in result.output def test_cli_version(): result = run_cli(cli, ["--version"]) assert f"gammapy version {__version__}" in result.output def test_check_logging(): result = run_cli(cli, ["check", "logging"]) assert f"output" in result.output
utildialog/numinputdialog.py
dragondjf/QMarkdowner
115
12699498
<reponame>dragondjf/QMarkdowner #!/usr/bin/python # -*- coding: utf-8 -*- import os from qframer.qt import QtGui from qframer.qt import QtCore from basedialog import BaseDialog class numinputDialog(BaseDialog): def __init__(self, styleoptions, parent=None): super(numinputDialog, self).__init__(styleoptions, parent) # url内容输入 self.numwidget = QtGui.QWidget() num_mainlayout = QtGui.QGridLayout() self.numLabel = QtGui.QLabel(u'Q的防区个数:') self.numspinbox = QtGui.QSpinBox(self.numwidget) self.ipLabel = QtGui.QLabel(u'Q的下位机IP:') self.ipIn = QtGui.QLineEdit() num_mainlayout.addWidget(self.numLabel, 0, 0) num_mainlayout.addWidget(self.numspinbox, 0, 1) #num_mainlayout.addWidget(self.ipLabel, 1, 0) #num_mainlayout.addWidget(self.ipIn, 1, 1) self.numwidget.setLayout(num_mainlayout) #确认按钮布局 self.enterwidget = QtGui.QWidget() self.pbEnter = QtGui.QPushButton(u'确定', self) self.pbCancel = QtGui.QPushButton(u'取消', self) self.pbEnter.clicked.connect(self.enter) self.pbCancel.clicked.connect(self.reject) enterwidget_mainlayout = QtGui.QGridLayout() enterwidget_mainlayout.addWidget(self.pbEnter, 0, 0) enterwidget_mainlayout.addWidget(self.pbCancel, 0, 1) self.enterwidget.setLayout(enterwidget_mainlayout) self.layout().addWidget(self.numwidget) self.layout().addWidget(self.enterwidget) self.resize(self.width(), self.height()) def enter(self): self.accept() # 关闭对话框并返回1 def numinput(value, start, end, step, options): dialog = numinputDialog(options) dialog.numspinbox.setValue(value) dialog.numspinbox.setRange(start, end) dialog.numspinbox.setSingleStep(step) dialog.numspinbox.setFocusPolicy(QtCore.Qt.NoFocus) if dialog.exec_(): return True, int(dialog.numspinbox.value())#, str(dialog.ipIn.text()) else: return False, int(dialog.numspinbox.value())#, str(dialog.ipIn.text()) if __name__ == '__main__': import sys app = QtGui.QApplication(sys.argv) styleoptions = { 'title': u'退出设置', 'windowicon': os.sep.join([os.path.dirname(__file__), 'utildialogskin', 'images', 'bg.jpg']), 'minsize': (400, 300), 'size': (400, 300), 'logo_title': u'智能光纤云终端管理平台', 'logo_img_url': os.sep.join([os.path.dirname(__file__), 'utildialogskin', 'images', 'bg.jpg']) } print numinput(6, 2, 8, 2, styleoptions) sys.exit(app.exec_())
clib/clib_mininet_test.py
boldsort/faucet
393
12699505
<reponame>boldsort/faucet #!/usr/bin/env python3 """Mininet tests for clib client library functionality. * must be run as root * you can run a specific test case only, by adding the class name of the test case to the command. Eg ./clib_mininet_test.py FaucetUntaggedIPv4RouteTest It is strongly recommended to run these tests via Docker, to ensure you have all dependencies correctly installed. See ../docs/. """ from clib_mininet_test_main import test_main import clib_mininet_tests if __name__ == '__main__': test_main([clib_mininet_tests.__name__])
jraph/examples/basic.py
baskaransri/jraph
871
12699510
<gh_stars>100-1000 # Copyright 2020 DeepMind Technologies Limited. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""A basic graphnet example. This example just explains the bare mechanics of the library. """ import logging from absl import app import jax import jraph import numpy as np MASK_BROKEN_MSG = ("Support for jax.mask is currently broken. This is not a " "jraph error.") def run(): """Runs basic example.""" # Creating graph tuples. # Creates a GraphsTuple from scratch containing a single graph. # The graph has 3 nodes and 2 edges. # Each node has a 4-dimensional feature vector. # Each edge has a 5-dimensional feature vector. # The graph itself has a 6-dimensional feature vector. single_graph = jraph.GraphsTuple( n_node=np.asarray([3]), n_edge=np.asarray([2]), nodes=np.ones((3, 4)), edges=np.ones((2, 5)), globals=np.ones((1, 6)), senders=np.array([0, 1]), receivers=np.array([2, 2])) logging.info("Single graph %r", single_graph) # Creates a GraphsTuple from scratch containing a single graph with nested # feature vectors. # The graph has 3 nodes and 2 edges. # The feature vector can be arbitrary nested types of dict, list and tuple, # or any other type you registered with jax.tree_util.register_pytree_node. nested_graph = jraph.GraphsTuple( n_node=np.asarray([3]), n_edge=np.asarray([2]), nodes={"a": np.ones((3, 4))}, edges={"b": np.ones((2, 5))}, globals={"c": np.ones((1, 6))}, senders=np.array([0, 1]), receivers=np.array([2, 2])) logging.info("Nested graph %r", nested_graph) # Creates a GraphsTuple from scratch containing a 2 graphs using an implicit # batch dimension. # The first graph has 3 nodes and 2 edges. # The second graph has 1 nodes and 1 edges. # Each node has a 4-dimensional feature vector. # Each edge has a 5-dimensional feature vector. # The graph itself has a 6-dimensional feature vector. implicitly_batched_graph = jraph.GraphsTuple( n_node=np.asarray([3, 1]), n_edge=np.asarray([2, 1]), nodes=np.ones((4, 4)), edges=np.ones((3, 5)), globals=np.ones((2, 6)), senders=np.array([0, 1, 3]), receivers=np.array([2, 2, 3])) logging.info("Implicitly batched graph %r", implicitly_batched_graph) # Batching graphs can be challenging. There are in general two approaches: # 1. Implicit batching: Independent graphs are combined into the same # GraphsTuple first, and the padding is added to the combined graph. # 2. Explicit batching: Pad all graphs to a maximum size, stack them together # using an explicit batch dimension followed by jax.vmap. # Both approaches are shown below. # Creates a GraphsTuple from two existing GraphsTuple using an implicit # batch dimension. # The GraphsTuple will contain three graphs. implicitly_batched_graph = jraph.batch( [single_graph, implicitly_batched_graph]) logging.info("Implicitly batched graph %r", implicitly_batched_graph) # Creates multiple GraphsTuples from an existing GraphsTuple with an implicit # batch dimension. graph_1, graph_2, graph_3 = jraph.unbatch(implicitly_batched_graph) logging.info("Unbatched graphs %r %r %r", graph_1, graph_2, graph_3) # Creates a padded GraphsTuple from an existing GraphsTuple. # The padded GraphsTuple will contain 10 nodes, 5 edges, and 4 graphs. # Three graphs are added for the padding. # First an dummy graph which contains the padding nodes and edges and secondly # two empty graphs without nodes or edges to pad out the graphs. padded_graph = jraph.pad_with_graphs( single_graph, n_node=10, n_edge=5, n_graph=4) logging.info("Padded graph %r", padded_graph) # Creates a GraphsTuple from an existing padded GraphsTuple. # The previously added padding is removed. single_graph = jraph.unpad_with_graphs(padded_graph) logging.info("Unpadded graph %r", single_graph) # Creates a GraphsTuple containing a 2 graphs using an explicit batch # dimension. # An explicit batch dimension requires more memory, but can simplify # the definition of functions operating on the graph. # Explicitly batched graphs require the GraphNetwork to be transformed # by jax.vmap. # Using an explicit batch requires padding all feature vectors to # the maximum size of nodes and edges. # The first graph has 3 nodes and 2 edges. # The second graph has 1 nodes and 1 edges. # Each node has a 4-dimensional feature vector. # Each edge has a 5-dimensional feature vector. # The graph itself has a 6-dimensional feature vector. explicitly_batched_graph = jraph.GraphsTuple( n_node=np.asarray([[3], [1]]), n_edge=np.asarray([[2], [1]]), nodes=np.ones((2, 3, 4)), edges=np.ones((2, 2, 5)), globals=np.ones((2, 1, 6)), senders=np.array([[0, 1], [0, -1]]), receivers=np.array([[2, 2], [0, -1]])) logging.info("Explicitly batched graph %r", explicitly_batched_graph) # Running a graph propagation steps. # First define the update functions for the edges, nodes and globals. # In this example we use the identity everywhere. # For Graph neural networks, each update function is typically a neural # network. def update_edge_fn( edge_features, sender_node_features, receiver_node_features, globals_): """Returns the update edge features.""" del sender_node_features del receiver_node_features del globals_ return edge_features def update_node_fn( node_features, aggregated_sender_edge_features, aggregated_receiver_edge_features, globals_): """Returns the update node features.""" del aggregated_sender_edge_features del aggregated_receiver_edge_features del globals_ return node_features def update_globals_fn( aggregated_node_features, aggregated_edge_features, globals_): del aggregated_node_features del aggregated_edge_features return globals_ # Optionally define custom aggregation functions. # In this example we use the defaults (so no need to define them explicitly). aggregate_edges_for_nodes_fn = jraph.segment_sum aggregate_nodes_for_globals_fn = jraph.segment_sum aggregate_edges_for_globals_fn = jraph.segment_sum # Optionally define attention logit function and attention reduce function. # This can be used for graph attention. # The attention function calculates attention weights, and the apply # attention function calculates the new edge feature given the weights. # We don't use graph attention here, and just pass the defaults. attention_logit_fn = None attention_reduce_fn = None # Creates a new GraphNetwork in its most general form. # Most of the arguments have defaults and can be omitted if a feature # is not used. # There are also predefined GraphNetworks available (see models.py) network = jraph.GraphNetwork( update_edge_fn=update_edge_fn, update_node_fn=update_node_fn, update_global_fn=update_globals_fn, attention_logit_fn=attention_logit_fn, aggregate_edges_for_nodes_fn=aggregate_edges_for_nodes_fn, aggregate_nodes_for_globals_fn=aggregate_nodes_for_globals_fn, aggregate_edges_for_globals_fn=aggregate_edges_for_globals_fn, attention_reduce_fn=attention_reduce_fn) # Runs graph propagation on (implicitly batched) graphs. updated_graph = network(single_graph) logging.info("Updated graph from single graph %r", updated_graph) updated_graph = network(nested_graph) logging.info("Updated graph from nested graph %r", nested_graph) updated_graph = network(implicitly_batched_graph) logging.info("Updated graph from implicitly batched graph %r", updated_graph) updated_graph = network(padded_graph) logging.info("Updated graph from padded graph %r", updated_graph) # JIT-compile graph propagation. # Use padded graphs to avoid re-compilation at every step! jitted_network = jax.jit(network) updated_graph = jitted_network(padded_graph) logging.info("(JIT) updated graph from padded graph %r", updated_graph) logging.info("basic.py complete!") def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") run() if __name__ == "__main__": app.run(main)
bikeshed/stringEnum/__init__.py
saschanaz/bikeshed
775
12699516
from .StringEnum import StringEnum
qf_lib/backtesting/contract/contract_to_ticker_conversion/ib_bloomberg_mapper.py
webclinic017/qf-lib
198
12699518
# Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from qf_lib.backtesting.contract.contract import Contract from qf_lib.backtesting.contract.contract_to_ticker_conversion.base import ContractTickerMapper from qf_lib.common.tickers.tickers import BloombergTicker class IB_Bloomberg_ContractTickerMapper(ContractTickerMapper): """ BloombergTicker - IB Contract mapper that can be used for live trading. It is using the "SMART" exchange for all products Parameters ----------- bbg_suffix: str suffix added after the first part of the BBG ticker. For example: "US Equity", "PW Equity", etc security_type: str corresponds to the security type that is used to create Contract. For example: use "STK" for stocks, ETFs and ETNs, use "CMDTY" for commodities, use "BOND" for bonds use "OPT" for options use "FUT" for futures """ def __init__(self, bbg_suffix: str, security_type: str): self.bbg_suffix = bbg_suffix self.security_type = security_type def contract_to_ticker(self, contract: Contract, strictly_to_specific_ticker=True) -> BloombergTicker: return BloombergTicker(ticker=contract.symbol) def ticker_to_contract(self, ticker: BloombergTicker) -> Contract: split_ticker = ticker.ticker.split() return Contract(symbol=split_ticker[0], security_type=self.security_type, exchange="SMART")
ghostwriter/reporting/migrations/0016_auto_20201017_0014.py
bbhunter/Ghostwriter
601
12699553
<reponame>bbhunter/Ghostwriter # Generated by Django 3.0.10 on 2020-10-17 00:14 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('reporting', '0015_auto_20201016_1756'), ] operations = [ migrations.RemoveField( model_name='report', name='template', ), migrations.AddField( model_name='report', name='docx_template', field=models.ForeignKey(help_text='Select the Word template to use for this report', limit_choices_to={'doc_type__iexact': 'docx'}, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='reporttemplate_docx_set', to='reporting.ReportTemplate'), ), migrations.AddField( model_name='report', name='pptx_template', field=models.ForeignKey(help_text='Select the PowerPoint template to use for this report', limit_choices_to={'doc_type__iexact': 'pptx'}, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='reporttemplate_pptx_set', to='reporting.ReportTemplate'), ), migrations.AlterField( model_name='finding', name='finding_guidance', field=models.TextField(blank=True, help_text='Provide notes for your team that describes how the finding is intended to be used or edited during editing', null=True, verbose_name='Finding Guidance'), ), ]
boto3_type_annotations_with_docs/boto3_type_annotations/organizations/paginator.py
cowboygneox/boto3_type_annotations
119
12699555
<gh_stars>100-1000 from typing import Dict from typing import List from botocore.paginate import Paginator class ListAWSServiceAccessForOrganization(Paginator): def paginate(self, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_aws_service_access_for_organization`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListAWSServiceAccessForOrganization>`_ **Request Syntax** :: response_iterator = paginator.paginate( PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'EnabledServicePrincipals': [ { 'ServicePrincipal': 'string', 'DateEnabled': datetime(2015, 1, 1) }, ], } **Response Structure** - *(dict) --* - **EnabledServicePrincipals** *(list) --* A list of the service principals for the services that are enabled to integrate with your organization. Each principal is a structure that includes the name and the date that it was enabled for integration with AWS Organizations. - *(dict) --* A structure that contains details of a service principal that is enabled to integrate with AWS Organizations. - **ServicePrincipal** *(string) --* The name of the service principal. This is typically in the form of a URL, such as: `` *servicename* .amazonaws.com`` . - **DateEnabled** *(datetime) --* The date that the service principal was enabled for integration with AWS Organizations. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListAccounts(Paginator): def paginate(self, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_accounts`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListAccounts>`_ **Request Syntax** :: response_iterator = paginator.paginate( PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Accounts': [ { 'Id': 'string', 'Arn': 'string', 'Email': 'string', 'Name': 'string', 'Status': 'ACTIVE'|'SUSPENDED', 'JoinedMethod': 'INVITED'|'CREATED', 'JoinedTimestamp': datetime(2015, 1, 1) }, ], } **Response Structure** - *(dict) --* - **Accounts** *(list) --* A list of objects in the organization. - *(dict) --* Contains information about an AWS account that is a member of an organization. - **Id** *(string) --* The unique identifier (ID) of the account. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for an account ID string requires exactly 12 digits. - **Arn** *(string) --* The Amazon Resource Name (ARN) of the account. For more information about ARNs in Organizations, see `ARN Formats Supported by Organizations <https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions.html#orgs-permissions-arns>`__ in the *AWS Organizations User Guide* . - **Email** *(string) --* The email address associated with the AWS account. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for this parameter is a string of characters that represents a standard Internet email address. - **Name** *(string) --* The friendly name of the account. The `regex pattern <http://wikipedia.org/wiki/regex>`__ that is used to validate this parameter is a string of any of the characters in the ASCII character range. - **Status** *(string) --* The status of the account in the organization. - **JoinedMethod** *(string) --* The method by which the account joined the organization. - **JoinedTimestamp** *(datetime) --* The date the account became a part of the organization. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListAccountsForParent(Paginator): def paginate(self, ParentId: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_accounts_for_parent`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListAccountsForParent>`_ **Request Syntax** :: response_iterator = paginator.paginate( ParentId='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Accounts': [ { 'Id': 'string', 'Arn': 'string', 'Email': 'string', 'Name': 'string', 'Status': 'ACTIVE'|'SUSPENDED', 'JoinedMethod': 'INVITED'|'CREATED', 'JoinedTimestamp': datetime(2015, 1, 1) }, ], } **Response Structure** - *(dict) --* - **Accounts** *(list) --* A list of the accounts in the specified root or OU. - *(dict) --* Contains information about an AWS account that is a member of an organization. - **Id** *(string) --* The unique identifier (ID) of the account. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for an account ID string requires exactly 12 digits. - **Arn** *(string) --* The Amazon Resource Name (ARN) of the account. For more information about ARNs in Organizations, see `ARN Formats Supported by Organizations <https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions.html#orgs-permissions-arns>`__ in the *AWS Organizations User Guide* . - **Email** *(string) --* The email address associated with the AWS account. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for this parameter is a string of characters that represents a standard Internet email address. - **Name** *(string) --* The friendly name of the account. The `regex pattern <http://wikipedia.org/wiki/regex>`__ that is used to validate this parameter is a string of any of the characters in the ASCII character range. - **Status** *(string) --* The status of the account in the organization. - **JoinedMethod** *(string) --* The method by which the account joined the organization. - **JoinedTimestamp** *(datetime) --* The date the account became a part of the organization. :type ParentId: string :param ParentId: **[REQUIRED]** The unique identifier (ID) for the parent root or organization unit (OU) whose accounts you want to list. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListChildren(Paginator): def paginate(self, ParentId: str, ChildType: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_children`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListChildren>`_ **Request Syntax** :: response_iterator = paginator.paginate( ParentId='string', ChildType='ACCOUNT'|'ORGANIZATIONAL_UNIT', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Children': [ { 'Id': 'string', 'Type': 'ACCOUNT'|'ORGANIZATIONAL_UNIT' }, ], } **Response Structure** - *(dict) --* - **Children** *(list) --* The list of children of the specified parent container. - *(dict) --* Contains a list of child entities, either OUs or accounts. - **Id** *(string) --* The unique identifier (ID) of this child entity. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a child ID string requires one of the following: * Account: a string that consists of exactly 12 digits. * Organizational unit (OU): a string that begins with "ou-" followed by from 4 to 32 lower-case letters or digits (the ID of the root that contains the OU) followed by a second "-" dash and from 8 to 32 additional lower-case letters or digits. - **Type** *(string) --* The type of this child entity. :type ParentId: string :param ParentId: **[REQUIRED]** The unique identifier (ID) for the parent root or OU whose children you want to list. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a parent ID string requires one of the following: * Root: a string that begins with \"r-\" followed by from 4 to 32 lower-case letters or digits. * Organizational unit (OU): a string that begins with \"ou-\" followed by from 4 to 32 lower-case letters or digits (the ID of the root that the OU is in) followed by a second \"-\" dash and from 8 to 32 additional lower-case letters or digits. :type ChildType: string :param ChildType: **[REQUIRED]** Filters the output to include only the specified child type. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListCreateAccountStatus(Paginator): def paginate(self, States: List = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_create_account_status`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListCreateAccountStatus>`_ **Request Syntax** :: response_iterator = paginator.paginate( States=[ 'IN_PROGRESS'|'SUCCEEDED'|'FAILED', ], PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'CreateAccountStatuses': [ { 'Id': 'string', 'AccountName': 'string', 'State': 'IN_PROGRESS'|'SUCCEEDED'|'FAILED', 'RequestedTimestamp': datetime(2015, 1, 1), 'CompletedTimestamp': datetime(2015, 1, 1), 'AccountId': 'string', 'GovCloudAccountId': 'string', 'FailureReason': 'ACCOUNT_LIMIT_EXCEEDED'|'EMAIL_ALREADY_EXISTS'|'INVALID_ADDRESS'|'INVALID_EMAIL'|'CONCURRENT_ACCOUNT_MODIFICATION'|'INTERNAL_FAILURE' }, ], } **Response Structure** - *(dict) --* - **CreateAccountStatuses** *(list) --* A list of objects with details about the requests. Certain elements, such as the accountId number, are present in the output only after the account has been successfully created. - *(dict) --* Contains the status about a CreateAccount or CreateGovCloudAccount request to create an AWS account or an AWS GovCloud (US) account in an organization. - **Id** *(string) --* The unique identifier (ID) that references this request. You get this value from the response of the initial CreateAccount request to create the account. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for an create account request ID string requires "car-" followed by from 8 to 32 lower-case letters or digits. - **AccountName** *(string) --* The account name given to the account when it was created. - **State** *(string) --* The status of the request. - **RequestedTimestamp** *(datetime) --* The date and time that the request was made for the account creation. - **CompletedTimestamp** *(datetime) --* The date and time that the account was created and the request completed. - **AccountId** *(string) --* If the account was created successfully, the unique identifier (ID) of the new account. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for an account ID string requires exactly 12 digits. - **GovCloudAccountId** *(string) --* - **FailureReason** *(string) --* If the request failed, a description of the reason for the failure. * ACCOUNT_LIMIT_EXCEEDED: The account could not be created because you have reached the limit on the number of accounts in your organization. * EMAIL_ALREADY_EXISTS: The account could not be created because another AWS account with that email address already exists. * INVALID_ADDRESS: The account could not be created because the address you provided is not valid. * INVALID_EMAIL: The account could not be created because the email address you provided is not valid. * INTERNAL_FAILURE: The account could not be created because of an internal failure. Try again later. If the problem persists, contact Customer Support. :type States: list :param States: A list of one or more states that you want included in the response. If this parameter is not present, then all requests are included in the response. - *(string) --* :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListHandshakesForAccount(Paginator): def paginate(self, Filter: Dict = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_handshakes_for_account`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListHandshakesForAccount>`_ **Request Syntax** :: response_iterator = paginator.paginate( Filter={ 'ActionType': 'INVITE'|'ENABLE_ALL_FEATURES'|'APPROVE_ALL_FEATURES'|'ADD_ORGANIZATIONS_SERVICE_LINKED_ROLE', 'ParentHandshakeId': 'string' }, PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Handshakes': [ { 'Id': 'string', 'Arn': 'string', 'Parties': [ { 'Id': 'string', 'Type': 'ACCOUNT'|'ORGANIZATION'|'EMAIL' }, ], 'State': 'REQUESTED'|'OPEN'|'CANCELED'|'ACCEPTED'|'DECLINED'|'EXPIRED', 'RequestedTimestamp': datetime(2015, 1, 1), 'ExpirationTimestamp': datetime(2015, 1, 1), 'Action': 'INVITE'|'ENABLE_ALL_FEATURES'|'APPROVE_ALL_FEATURES'|'ADD_ORGANIZATIONS_SERVICE_LINKED_ROLE', 'Resources': [ { 'Value': 'string', 'Type': 'ACCOUNT'|'ORGANIZATION'|'ORGANIZATION_FEATURE_SET'|'EMAIL'|'MASTER_EMAIL'|'MASTER_NAME'|'NOTES'|'PARENT_HANDSHAKE', 'Resources': {'... recursive ...'} }, ] }, ], } **Response Structure** - *(dict) --* - **Handshakes** *(list) --* A list of Handshake objects with details about each of the handshakes that is associated with the specified account. - *(dict) --* Contains information that must be exchanged to securely establish a relationship between two accounts (an *originator* and a *recipient* ). For example, when a master account (the originator) invites another account (the recipient) to join its organization, the two accounts exchange information as a series of handshake requests and responses. **Note:** Handshakes that are CANCELED, ACCEPTED, or DECLINED show up in lists for only 30 days after entering that state After that they are deleted. - **Id** *(string) --* The unique identifier (ID) of a handshake. The originating account creates the ID when it initiates the handshake. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for handshake ID string requires "h-" followed by from 8 to 32 lower-case letters or digits. - **Arn** *(string) --* The Amazon Resource Name (ARN) of a handshake. For more information about ARNs in Organizations, see `ARN Formats Supported by Organizations <https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions.html#orgs-permissions-arns>`__ in the *AWS Organizations User Guide* . - **Parties** *(list) --* Information about the two accounts that are participating in the handshake. - *(dict) --* Identifies a participant in a handshake. - **Id** *(string) --* The unique identifier (ID) for the party. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for handshake ID string requires "h-" followed by from 8 to 32 lower-case letters or digits. - **Type** *(string) --* The type of party. - **State** *(string) --* The current state of the handshake. Use the state to trace the flow of the handshake through the process from its creation to its acceptance. The meaning of each of the valid values is as follows: * **REQUESTED** : This handshake was sent to multiple recipients (applicable to only some handshake types) and not all recipients have responded yet. The request stays in this state until all recipients respond. * **OPEN** : This handshake was sent to multiple recipients (applicable to only some policy types) and all recipients have responded, allowing the originator to complete the handshake action. * **CANCELED** : This handshake is no longer active because it was canceled by the originating account. * **ACCEPTED** : This handshake is complete because it has been accepted by the recipient. * **DECLINED** : This handshake is no longer active because it was declined by the recipient account. * **EXPIRED** : This handshake is no longer active because the originator did not receive a response of any kind from the recipient before the expiration time (15 days). - **RequestedTimestamp** *(datetime) --* The date and time that the handshake request was made. - **ExpirationTimestamp** *(datetime) --* The date and time that the handshake expires. If the recipient of the handshake request fails to respond before the specified date and time, the handshake becomes inactive and is no longer valid. - **Action** *(string) --* The type of handshake, indicating what action occurs when the recipient accepts the handshake. The following handshake types are supported: * **INVITE** : This type of handshake represents a request to join an organization. It is always sent from the master account to only non-member accounts. * **ENABLE_ALL_FEATURES** : This type of handshake represents a request to enable all features in an organization. It is always sent from the master account to only *invited* member accounts. Created accounts do not receive this because those accounts were created by the organization's master account and approval is inferred. * **APPROVE_ALL_FEATURES** : This type of handshake is sent from the Organizations service when all member accounts have approved the ``ENABLE_ALL_FEATURES`` invitation. It is sent only to the master account and signals the master that it can finalize the process to enable all features. - **Resources** *(list) --* Additional information that is needed to process the handshake. - *(dict) --* Contains additional data that is needed to process a handshake. - **Value** *(string) --* The information that is passed to the other party in the handshake. The format of the value string must match the requirements of the specified type. - **Type** *(string) --* The type of information being passed, specifying how the value is to be interpreted by the other party: * ``ACCOUNT`` - Specifies an AWS account ID number. * ``ORGANIZATION`` - Specifies an organization ID number. * ``EMAIL`` - Specifies the email address that is associated with the account that receives the handshake. * ``OWNER_EMAIL`` - Specifies the email address associated with the master account. Included as information about an organization. * ``OWNER_NAME`` - Specifies the name associated with the master account. Included as information about an organization. * ``NOTES`` - Additional text provided by the handshake initiator and intended for the recipient to read. - **Resources** *(list) --* When needed, contains an additional array of ``HandshakeResource`` objects. :type Filter: dict :param Filter: Filters the handshakes that you want included in the response. The default is all types. Use the ``ActionType`` element to limit the output to only a specified type, such as ``INVITE`` , ``ENABLE_ALL_FEATURES`` , or ``APPROVE_ALL_FEATURES`` . Alternatively, for the ``ENABLE_ALL_FEATURES`` handshake that generates a separate child handshake for each member account, you can specify ``ParentHandshakeId`` to see only the handshakes that were generated by that parent request. - **ActionType** *(string) --* Specifies the type of handshake action. If you specify ``ActionType`` , you cannot also specify ``ParentHandshakeId`` . - **ParentHandshakeId** *(string) --* Specifies the parent handshake. Only used for handshake types that are a child of another type. If you specify ``ParentHandshakeId`` , you cannot also specify ``ActionType`` . The `regex pattern <http://wikipedia.org/wiki/regex>`__ for handshake ID string requires \"h-\" followed by from 8 to 32 lower-case letters or digits. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListHandshakesForOrganization(Paginator): def paginate(self, Filter: Dict = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_handshakes_for_organization`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListHandshakesForOrganization>`_ **Request Syntax** :: response_iterator = paginator.paginate( Filter={ 'ActionType': 'INVITE'|'ENABLE_ALL_FEATURES'|'APPROVE_ALL_FEATURES'|'ADD_ORGANIZATIONS_SERVICE_LINKED_ROLE', 'ParentHandshakeId': 'string' }, PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Handshakes': [ { 'Id': 'string', 'Arn': 'string', 'Parties': [ { 'Id': 'string', 'Type': 'ACCOUNT'|'ORGANIZATION'|'EMAIL' }, ], 'State': 'REQUESTED'|'OPEN'|'CANCELED'|'ACCEPTED'|'DECLINED'|'EXPIRED', 'RequestedTimestamp': datetime(2015, 1, 1), 'ExpirationTimestamp': datetime(2015, 1, 1), 'Action': 'INVITE'|'ENABLE_ALL_FEATURES'|'APPROVE_ALL_FEATURES'|'ADD_ORGANIZATIONS_SERVICE_LINKED_ROLE', 'Resources': [ { 'Value': 'string', 'Type': 'ACCOUNT'|'ORGANIZATION'|'ORGANIZATION_FEATURE_SET'|'EMAIL'|'MASTER_EMAIL'|'MASTER_NAME'|'NOTES'|'PARENT_HANDSHAKE', 'Resources': {'... recursive ...'} }, ] }, ], } **Response Structure** - *(dict) --* - **Handshakes** *(list) --* A list of Handshake objects with details about each of the handshakes that are associated with an organization. - *(dict) --* Contains information that must be exchanged to securely establish a relationship between two accounts (an *originator* and a *recipient* ). For example, when a master account (the originator) invites another account (the recipient) to join its organization, the two accounts exchange information as a series of handshake requests and responses. **Note:** Handshakes that are CANCELED, ACCEPTED, or DECLINED show up in lists for only 30 days after entering that state After that they are deleted. - **Id** *(string) --* The unique identifier (ID) of a handshake. The originating account creates the ID when it initiates the handshake. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for handshake ID string requires "h-" followed by from 8 to 32 lower-case letters or digits. - **Arn** *(string) --* The Amazon Resource Name (ARN) of a handshake. For more information about ARNs in Organizations, see `ARN Formats Supported by Organizations <https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions.html#orgs-permissions-arns>`__ in the *AWS Organizations User Guide* . - **Parties** *(list) --* Information about the two accounts that are participating in the handshake. - *(dict) --* Identifies a participant in a handshake. - **Id** *(string) --* The unique identifier (ID) for the party. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for handshake ID string requires "h-" followed by from 8 to 32 lower-case letters or digits. - **Type** *(string) --* The type of party. - **State** *(string) --* The current state of the handshake. Use the state to trace the flow of the handshake through the process from its creation to its acceptance. The meaning of each of the valid values is as follows: * **REQUESTED** : This handshake was sent to multiple recipients (applicable to only some handshake types) and not all recipients have responded yet. The request stays in this state until all recipients respond. * **OPEN** : This handshake was sent to multiple recipients (applicable to only some policy types) and all recipients have responded, allowing the originator to complete the handshake action. * **CANCELED** : This handshake is no longer active because it was canceled by the originating account. * **ACCEPTED** : This handshake is complete because it has been accepted by the recipient. * **DECLINED** : This handshake is no longer active because it was declined by the recipient account. * **EXPIRED** : This handshake is no longer active because the originator did not receive a response of any kind from the recipient before the expiration time (15 days). - **RequestedTimestamp** *(datetime) --* The date and time that the handshake request was made. - **ExpirationTimestamp** *(datetime) --* The date and time that the handshake expires. If the recipient of the handshake request fails to respond before the specified date and time, the handshake becomes inactive and is no longer valid. - **Action** *(string) --* The type of handshake, indicating what action occurs when the recipient accepts the handshake. The following handshake types are supported: * **INVITE** : This type of handshake represents a request to join an organization. It is always sent from the master account to only non-member accounts. * **ENABLE_ALL_FEATURES** : This type of handshake represents a request to enable all features in an organization. It is always sent from the master account to only *invited* member accounts. Created accounts do not receive this because those accounts were created by the organization's master account and approval is inferred. * **APPROVE_ALL_FEATURES** : This type of handshake is sent from the Organizations service when all member accounts have approved the ``ENABLE_ALL_FEATURES`` invitation. It is sent only to the master account and signals the master that it can finalize the process to enable all features. - **Resources** *(list) --* Additional information that is needed to process the handshake. - *(dict) --* Contains additional data that is needed to process a handshake. - **Value** *(string) --* The information that is passed to the other party in the handshake. The format of the value string must match the requirements of the specified type. - **Type** *(string) --* The type of information being passed, specifying how the value is to be interpreted by the other party: * ``ACCOUNT`` - Specifies an AWS account ID number. * ``ORGANIZATION`` - Specifies an organization ID number. * ``EMAIL`` - Specifies the email address that is associated with the account that receives the handshake. * ``OWNER_EMAIL`` - Specifies the email address associated with the master account. Included as information about an organization. * ``OWNER_NAME`` - Specifies the name associated with the master account. Included as information about an organization. * ``NOTES`` - Additional text provided by the handshake initiator and intended for the recipient to read. - **Resources** *(list) --* When needed, contains an additional array of ``HandshakeResource`` objects. :type Filter: dict :param Filter: A filter of the handshakes that you want included in the response. The default is all types. Use the ``ActionType`` element to limit the output to only a specified type, such as ``INVITE`` , ``ENABLE-ALL-FEATURES`` , or ``APPROVE-ALL-FEATURES`` . Alternatively, for the ``ENABLE-ALL-FEATURES`` handshake that generates a separate child handshake for each member account, you can specify the ``ParentHandshakeId`` to see only the handshakes that were generated by that parent request. - **ActionType** *(string) --* Specifies the type of handshake action. If you specify ``ActionType`` , you cannot also specify ``ParentHandshakeId`` . - **ParentHandshakeId** *(string) --* Specifies the parent handshake. Only used for handshake types that are a child of another type. If you specify ``ParentHandshakeId`` , you cannot also specify ``ActionType`` . The `regex pattern <http://wikipedia.org/wiki/regex>`__ for handshake ID string requires \"h-\" followed by from 8 to 32 lower-case letters or digits. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListOrganizationalUnitsForParent(Paginator): def paginate(self, ParentId: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_organizational_units_for_parent`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListOrganizationalUnitsForParent>`_ **Request Syntax** :: response_iterator = paginator.paginate( ParentId='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'OrganizationalUnits': [ { 'Id': 'string', 'Arn': 'string', 'Name': 'string' }, ], } **Response Structure** - *(dict) --* - **OrganizationalUnits** *(list) --* A list of the OUs in the specified root or parent OU. - *(dict) --* Contains details about an organizational unit (OU). An OU is a container of AWS accounts within a root of an organization. Policies that are attached to an OU apply to all accounts contained in that OU and in any child OUs. - **Id** *(string) --* The unique identifier (ID) associated with this OU. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for an organizational unit ID string requires "ou-" followed by from 4 to 32 lower-case letters or digits (the ID of the root that contains the OU) followed by a second "-" dash and from 8 to 32 additional lower-case letters or digits. - **Arn** *(string) --* The Amazon Resource Name (ARN) of this OU. For more information about ARNs in Organizations, see `ARN Formats Supported by Organizations <https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions.html#orgs-permissions-arns>`__ in the *AWS Organizations User Guide* . - **Name** *(string) --* The friendly name of this OU. The `regex pattern <http://wikipedia.org/wiki/regex>`__ that is used to validate this parameter is a string of any of the characters in the ASCII character range. :type ParentId: string :param ParentId: **[REQUIRED]** The unique identifier (ID) of the root or OU whose child OUs you want to list. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a parent ID string requires one of the following: * Root: a string that begins with \"r-\" followed by from 4 to 32 lower-case letters or digits. * Organizational unit (OU): a string that begins with \"ou-\" followed by from 4 to 32 lower-case letters or digits (the ID of the root that the OU is in) followed by a second \"-\" dash and from 8 to 32 additional lower-case letters or digits. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListParents(Paginator): def paginate(self, ChildId: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_parents`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListParents>`_ **Request Syntax** :: response_iterator = paginator.paginate( ChildId='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Parents': [ { 'Id': 'string', 'Type': 'ROOT'|'ORGANIZATIONAL_UNIT' }, ], } **Response Structure** - *(dict) --* - **Parents** *(list) --* A list of parents for the specified child account or OU. - *(dict) --* Contains information about either a root or an organizational unit (OU) that can contain OUs or accounts in an organization. - **Id** *(string) --* The unique identifier (ID) of the parent entity. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a parent ID string requires one of the following: * Root: a string that begins with "r-" followed by from 4 to 32 lower-case letters or digits. * Organizational unit (OU): a string that begins with "ou-" followed by from 4 to 32 lower-case letters or digits (the ID of the root that the OU is in) followed by a second "-" dash and from 8 to 32 additional lower-case letters or digits. - **Type** *(string) --* The type of the parent entity. :type ChildId: string :param ChildId: **[REQUIRED]** The unique identifier (ID) of the OU or account whose parent containers you want to list. Do not specify a root. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a child ID string requires one of the following: * Account: a string that consists of exactly 12 digits. * Organizational unit (OU): a string that begins with \"ou-\" followed by from 4 to 32 lower-case letters or digits (the ID of the root that contains the OU) followed by a second \"-\" dash and from 8 to 32 additional lower-case letters or digits. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListPolicies(Paginator): def paginate(self, Filter: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_policies`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListPolicies>`_ **Request Syntax** :: response_iterator = paginator.paginate( Filter='SERVICE_CONTROL_POLICY', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Policies': [ { 'Id': 'string', 'Arn': 'string', 'Name': 'string', 'Description': 'string', 'Type': 'SERVICE_CONTROL_POLICY', 'AwsManaged': True|False }, ], } **Response Structure** - *(dict) --* - **Policies** *(list) --* A list of policies that match the filter criteria in the request. The output list does not include the policy contents. To see the content for a policy, see DescribePolicy . - *(dict) --* Contains information about a policy, but does not include the content. To see the content of a policy, see DescribePolicy . - **Id** *(string) --* The unique identifier (ID) of the policy. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a policy ID string requires "p-" followed by from 8 to 128 lower-case letters or digits. - **Arn** *(string) --* The Amazon Resource Name (ARN) of the policy. For more information about ARNs in Organizations, see `ARN Formats Supported by Organizations <https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions.html#orgs-permissions-arns>`__ in the *AWS Organizations User Guide* . - **Name** *(string) --* The friendly name of the policy. The `regex pattern <http://wikipedia.org/wiki/regex>`__ that is used to validate this parameter is a string of any of the characters in the ASCII character range. - **Description** *(string) --* The description of the policy. - **Type** *(string) --* The type of policy. - **AwsManaged** *(boolean) --* A boolean value that indicates whether the specified policy is an AWS managed policy. If true, then you can attach the policy to roots, OUs, or accounts, but you cannot edit it. :type Filter: string :param Filter: **[REQUIRED]** Specifies the type of policy that you want to include in the response. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListPoliciesForTarget(Paginator): def paginate(self, TargetId: str, Filter: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_policies_for_target`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListPoliciesForTarget>`_ **Request Syntax** :: response_iterator = paginator.paginate( TargetId='string', Filter='SERVICE_CONTROL_POLICY', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Policies': [ { 'Id': 'string', 'Arn': 'string', 'Name': 'string', 'Description': 'string', 'Type': 'SERVICE_CONTROL_POLICY', 'AwsManaged': True|False }, ], } **Response Structure** - *(dict) --* - **Policies** *(list) --* The list of policies that match the criteria in the request. - *(dict) --* Contains information about a policy, but does not include the content. To see the content of a policy, see DescribePolicy . - **Id** *(string) --* The unique identifier (ID) of the policy. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a policy ID string requires "p-" followed by from 8 to 128 lower-case letters or digits. - **Arn** *(string) --* The Amazon Resource Name (ARN) of the policy. For more information about ARNs in Organizations, see `ARN Formats Supported by Organizations <https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions.html#orgs-permissions-arns>`__ in the *AWS Organizations User Guide* . - **Name** *(string) --* The friendly name of the policy. The `regex pattern <http://wikipedia.org/wiki/regex>`__ that is used to validate this parameter is a string of any of the characters in the ASCII character range. - **Description** *(string) --* The description of the policy. - **Type** *(string) --* The type of policy. - **AwsManaged** *(boolean) --* A boolean value that indicates whether the specified policy is an AWS managed policy. If true, then you can attach the policy to roots, OUs, or accounts, but you cannot edit it. :type TargetId: string :param TargetId: **[REQUIRED]** The unique identifier (ID) of the root, organizational unit, or account whose policies you want to list. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a target ID string requires one of the following: * Root: a string that begins with \"r-\" followed by from 4 to 32 lower-case letters or digits. * Account: a string that consists of exactly 12 digits. * Organizational unit (OU): a string that begins with \"ou-\" followed by from 4 to 32 lower-case letters or digits (the ID of the root that the OU is in) followed by a second \"-\" dash and from 8 to 32 additional lower-case letters or digits. :type Filter: string :param Filter: **[REQUIRED]** The type of policy that you want to include in the returned list. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListRoots(Paginator): def paginate(self, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_roots`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListRoots>`_ **Request Syntax** :: response_iterator = paginator.paginate( PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Roots': [ { 'Id': 'string', 'Arn': 'string', 'Name': 'string', 'PolicyTypes': [ { 'Type': 'SERVICE_CONTROL_POLICY', 'Status': 'ENABLED'|'PENDING_ENABLE'|'PENDING_DISABLE' }, ] }, ], } **Response Structure** - *(dict) --* - **Roots** *(list) --* A list of roots that are defined in an organization. - *(dict) --* Contains details about a root. A root is a top-level parent node in the hierarchy of an organization that can contain organizational units (OUs) and accounts. Every root contains every AWS account in the organization. Each root enables the accounts to be organized in a different way and to have different policy types enabled for use in that root. - **Id** *(string) --* The unique identifier (ID) for the root. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a root ID string requires "r-" followed by from 4 to 32 lower-case letters or digits. - **Arn** *(string) --* The Amazon Resource Name (ARN) of the root. For more information about ARNs in Organizations, see `ARN Formats Supported by Organizations <https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions.html#orgs-permissions-arns>`__ in the *AWS Organizations User Guide* . - **Name** *(string) --* The friendly name of the root. The `regex pattern <http://wikipedia.org/wiki/regex>`__ that is used to validate this parameter is a string of any of the characters in the ASCII character range. - **PolicyTypes** *(list) --* The types of policies that are currently enabled for the root and therefore can be attached to the root or to its OUs or accounts. .. note:: Even if a policy type is shown as available in the organization, you can separately enable and disable them at the root level by using EnablePolicyType and DisablePolicyType . Use DescribeOrganization to see the availability of the policy types in that organization. - *(dict) --* Contains information about a policy type and its status in the associated root. - **Type** *(string) --* The name of the policy type. - **Status** *(string) --* The status of the policy type as it relates to the associated root. To attach a policy of the specified type to a root or to an OU or account in that root, it must be available in the organization and enabled for that root. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListTargetsForPolicy(Paginator): def paginate(self, PolicyId: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Organizations.Client.list_targets_for_policy`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/organizations-2016-11-28/ListTargetsForPolicy>`_ **Request Syntax** :: response_iterator = paginator.paginate( PolicyId='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Targets': [ { 'TargetId': 'string', 'Arn': 'string', 'Name': 'string', 'Type': 'ACCOUNT'|'ORGANIZATIONAL_UNIT'|'ROOT' }, ], } **Response Structure** - *(dict) --* - **Targets** *(list) --* A list of structures, each of which contains details about one of the entities to which the specified policy is attached. - *(dict) --* Contains information about a root, OU, or account that a policy is attached to. - **TargetId** *(string) --* The unique identifier (ID) of the policy target. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a target ID string requires one of the following: * Root: a string that begins with "r-" followed by from 4 to 32 lower-case letters or digits. * Account: a string that consists of exactly 12 digits. * Organizational unit (OU): a string that begins with "ou-" followed by from 4 to 32 lower-case letters or digits (the ID of the root that the OU is in) followed by a second "-" dash and from 8 to 32 additional lower-case letters or digits. - **Arn** *(string) --* The Amazon Resource Name (ARN) of the policy target. For more information about ARNs in Organizations, see `ARN Formats Supported by Organizations <https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions.html#orgs-permissions-arns>`__ in the *AWS Organizations User Guide* . - **Name** *(string) --* The friendly name of the policy target. The `regex pattern <http://wikipedia.org/wiki/regex>`__ that is used to validate this parameter is a string of any of the characters in the ASCII character range. - **Type** *(string) --* The type of the policy target. :type PolicyId: string :param PolicyId: **[REQUIRED]** The unique identifier (ID) of the policy for which you want to know its attachments. The `regex pattern <http://wikipedia.org/wiki/regex>`__ for a policy ID string requires \"p-\" followed by from 8 to 128 lower-case letters or digits. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass
test/test_numpy_utils.py
tirkarthi/mathics-core
1,920
12699567
<reponame>tirkarthi/mathics-core<filename>test/test_numpy_utils.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- import unittest from mathics.builtin.numpy_utils import ( stack, unstack, concat, vectorize, conditional, clip, array, choose, ) from mathics.builtin.numpy_utils import ( minimum, maximum, dot_t, mod, floor, sqrt, allclose, ) @conditional def _test_simple_conditional(t): if t > 0.5: return t + 1.0 else: return -t @conditional def _test_complex_conditional(t): if t > 10: return t * 10 + 1 elif t > 3: return t * 10 elif t <= 3: return -1 class Numpy(unittest.TestCase): def testUnstack(self): # flat lists remain flat lists. self.assertEqualArrays(unstack([1, 2, 3]), [1, 2, 3]) # lists of lists get unstacked. self.assertEqualArrays(unstack([[1, 2], [3, 4]]), [[1, 3], [2, 4]]) # matrices stay matrices, e.g. each r, g, b # components is split into grayscale images. self.assertEqualArrays( unstack([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), [[[1, 4], [7, 10]], [[2, 5], [8, 11]], [[3, 6], [9, 12]]], ) def testStackUnstackIdentity(self): a = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]] b = [1, 2, 3] c = [[1, 2], [3, 4]] for m in (a, b, c): self.assertEqualArrays(stack(*unstack(m)), m) def testConcatSimple(self): # concat concatenates arrays. self.assertEqualArrays(concat([1], [2]), [1, 2]) def testConcatComplex(self): # concat concatenates the most inner axis. a = [[[1, 2], [4, 5]], [[7, 8], [10, 11]]] b = [[[3], [6]], [[9], [12]]] c = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]] self.assertEqualArrays(concat(a, b), c) def testChooseSimple(self): # select a single value from a list of values. options = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] for i in range(len(options)): self.assertEqual(choose(i, *options), options[i]) def testChooseComplex(self): def m(i): return [[10 * i + 0, 10 * i + 1], [10 * i + 2, 10 * i + 3]] selector = [[0, 1], [1, 2]] a = choose(selector, (m(1), m(2), m(3)), (m(4), m(5), m(6)), (m(7), m(8), m(9))) # choose() operates on column after column of the options matrix, i.e. # in the example above, the selector is first applied to (m(1), m(4), m(7)), # then to (m(2), m(5), m(8)), and so on. let's calculate the result for the # first column: # selector (integers indicate from which option to take a value): # [0 1] # [1 2] # option #0 / column 1 (i.e. m(1)): # [10 11] # [12 13] # option #1 / column 1 (i.e. m(4)): # [40 41] # [42 43] # option #2 / column 1 (i.e. m(7)): # [70 71] # [72 73] # choose() now picks the right value from each options depending on selector: # [10 41] # [42 73] self.assertEqual(len(a), 3) self.assertEqualArrays(a[0], [[10, 41], [42, 73]]) self.assertEqualArrays(a[1], [[20, 51], [52, 83]]) self.assertEqualArrays(a[2], [[30, 61], [62, 93]]) def testClip(self): a = array([[[-0.1, 0.6], [-1.8, -0.4]], [[0.1, 0.8], [1.1, 0.5]]]) a = clip(a, 0, 1) self.assertEqualArrays(a, [[[0.0, 0.6], [0.0, 0.0]], [[0.1, 0.8], [1.0, 0.5]]]) def testDot(self): self.assertEqual(dot_t([1, 2, 3], [4, 5, 6]), 32) self.assertEqualArrays( dot_t([1, 2, 3], [[4, 5, 6], [7, 8, 9], [10, 11, 12]]), [32, 50, 68] ) def testMod(self): self.assertEqualArrays( mod(array([[10, 20], [30, 40]]), [[7, 7], [7, 7]]), [[3, 6], [2, 5]] ) def testMaximum(self): self.assertEqualArrays( maximum([[1, 2], [3, 4]], [[-1, 4], [-8, 5]], [[8, -4], [1, 10]]), [[8, 4], [3, 10]], ) def testMinimum(self): self.assertEqualArrays( minimum([[1, 2], [3, 4]], [[-1, 4], [-8, 5]], [[8, -4], [1, 10]]), [[-1, -4], [-8, 4]], ) def testFloor(self): self.assertEqualArrays( floor([[1.2, 5.8], [-1.2, 3.5]]), [[1.0, 5.0], [-2.0, 3.0]] ) def testSqrt(self): self.assertEqualArrays(sqrt([[9, 100], [25, 16]]), [[3, 10], [5, 4]]) def testSimpleConditional(self): a = array([[[0.1, 0.6], [1.8, 0.4]], [[-0.1, -0.8], [1.1, 0.5]]]) a = vectorize(a, 0, _test_simple_conditional) self.assertEqualArrays( a, [[[-0.1, 1.6], [2.8, -0.4]], [[0.1, 0.8], [2.1, -0.5]]] ) def testConditionalComplex(self): a = array([[[1, 2], [4, 5]], [[7, 8], [10, 11]]]) a = vectorize(a, 0, _test_complex_conditional) self.assertEqualArrays(a, [[[-1, -1], [40, 50]], [[70, 80], [100, 111]]]) def assertEqualArrays(self, a, b): self.assertEqual(allclose(a, b), True) if __name__ == "__main__": unittest.main()
tests/conftest.py
BrendaH/django-machina
572
12699572
import os import shutil import pytest from . import settings @pytest.yield_fixture(scope='session', autouse=True) def empty_media(): """ Removes the directories inside the MEDIA_ROOT that could have been filled during tests. """ yield for candidate in os.listdir(settings.MEDIA_ROOT): path = os.path.join(settings.MEDIA_ROOT, candidate) try: shutil.rmtree(path) except OSError: pass
tests/rest/test_api_execute_logs.py
DmitryRibalka/monitorrent
465
12699579
<filename>tests/rest/test_api_execute_logs.py from builtins import range import json import falcon from mock import MagicMock from ddt import ddt, data from tests import RestTestBase from monitorrent.rest.execute_logs import ExecuteLogs class ExecuteLogsTest(RestTestBase): def test_get_all(self): entries = [{}, {}, {}] count = 3 log_manager = MagicMock() log_manager.get_log_entries = MagicMock(return_value=(entries, count)) # noinspection PyTypeChecker execute_logs = ExecuteLogs(log_manager) self.api.add_route('/api/execute/logs', execute_logs) body = self.simulate_request('/api/execute/logs', query_string='take=10', decode='utf-8') self.assertEqual(self.srmock.status, falcon.HTTP_OK) self.assertTrue('application/json' in self.srmock.headers_dict['Content-Type']) result = json.loads(body) self.assertEqual(entries, result['data']) self.assertEqual(count, result['count']) def test_get_paged(self): # count should be less than 30 count = 23 entries = [{'i': i} for i in range(count)] def get_log_entries(skip, take): return entries[skip:skip + take], count log_manager = MagicMock() log_manager.get_log_entries = MagicMock(side_effect=get_log_entries) # noinspection PyTypeChecker execute_logs = ExecuteLogs(log_manager) self.api.add_route('/api/execute/logs', execute_logs) body = self.simulate_request('/api/execute/logs', query_string='take=10', decode='utf-8') self.assertEqual(self.srmock.status, falcon.HTTP_OK) self.assertTrue('application/json' in self.srmock.headers_dict['Content-Type']) result = json.loads(body) self.assertEqual(entries[0:10], result['data']) self.assertEqual(count, result['count']) body = self.simulate_request('/api/execute/logs', query_string='take=10&skip=0', decode='utf-8') self.assertEqual(self.srmock.status, falcon.HTTP_OK) self.assertTrue('application/json' in self.srmock.headers_dict['Content-Type']) result = json.loads(body) self.assertEqual(entries[0:10], result['data']) self.assertEqual(count, result['count']) body = self.simulate_request('/api/execute/logs', query_string='take=10&skip=10', decode='utf-8') self.assertEqual(self.srmock.status, falcon.HTTP_OK) self.assertTrue('application/json' in self.srmock.headers_dict['Content-Type']) result = json.loads(body) self.assertEqual(entries[10:20], result['data']) self.assertEqual(count, result['count']) body = self.simulate_request('/api/execute/logs', query_string='take=10&skip=20', decode='utf-8') self.assertEqual(self.srmock.status, falcon.HTTP_OK) self.assertTrue('application/json' in self.srmock.headers_dict['Content-Type']) result = json.loads(body) # assume that count is less then 30 self.assertEqual(entries[20:count], result['data']) self.assertEqual(count, result['count']) def test_bad_requests(self): entries = [{}, {}, {}] count = 3 log_manager = MagicMock() log_manager.get_log_entries = MagicMock(return_value=(entries, count)) # noinspection PyTypeChecker execute_logs = ExecuteLogs(log_manager) self.api.add_route('/api/execute/logs', execute_logs) self.simulate_request('/api/execute/logs') self.assertEqual(self.srmock.status, falcon.HTTP_BAD_REQUEST, 'take is required') self.simulate_request('/api/execute/logs', query_string='take=abcd') self.assertEqual(self.srmock.status, falcon.HTTP_BAD_REQUEST, 'take should be int') self.simulate_request('/api/execute/logs', query_string='take=10&skip=abcd') self.assertEqual(self.srmock.status, falcon.HTTP_BAD_REQUEST, 'skip should be int') self.simulate_request('/api/execute/logs', query_string='take=101') self.assertEqual(self.srmock.status, falcon.HTTP_BAD_REQUEST, 'take should be less or equal to 100') self.simulate_request('/api/execute/logs', query_string='take=-10') self.assertEqual(self.srmock.status, falcon.HTTP_BAD_REQUEST, 'take should be greater than 0') self.simulate_request('/api/execute/logs', query_string='take=0') self.assertEqual(self.srmock.status, falcon.HTTP_BAD_REQUEST, 'take should be greater than 0') self.simulate_request('/api/execute/logs', query_string='take=10&skip=-1') self.assertEqual(self.srmock.status, falcon.HTTP_BAD_REQUEST, 'skip should be greater or equal to 0')
_old/BeetlejuiceMachine/beetlejuicemachine.py
tigefa4u/reddit
444
12699584
#/u/GoldenSights import praw # simple interface to the reddit API, also handles rate limiting of requests import time import sqlite3 '''USER CONFIGURATION''' APP_ID = "" APP_SECRET = "" APP_URI = "" APP_REFRESH = "" # https://www.reddit.com/comments/3cm1p8/how_to_make_your_bot_use_oauth2/ USERAGENT = "" #This is a short description of what the bot does. For example "/u/GoldenSights' Newsletter bot" SUBREDDIT = "GoldTesting" #This is the sub or list of subs to scan for new posts. For a single sub, use "sub1". For multiple subreddits, use "sub1+sub2+sub3+..." PARENTSTRING = "beetlejuice" #This is the string you're looking for REPLYSTRING = "We are deeply sorry, but <NAME> can't join you in this comment thread right now. Would you like to leave a message?" #This will be put in reply DEPTHREQ = 3 #How many comments down to take action MAXPOSTS = 100 #This is how many posts you want to retrieve all at once. PRAW can download 100 at a time. WAIT = 20 #This is how many seconds you will wait between cycles. The bot is completely inactive during this time. '''All done!''' WAITS = str(WAIT) try: import bot USERAGENT = bot.aG except ImportError: pass sql = sqlite3.connect('sql.db') print('Loaded SQL Database') cur = sql.cursor() cur.execute('CREATE TABLE IF NOT EXISTS oldposts(ID TEXT, DEPTH INT)') cur.execute('CREATE INDEX IF NOT EXISTS oldpost_index ON oldposts(id)') print('Loaded Completed table') sql.commit() r = praw.Reddit(USERAGENT) r.set_oauth_app_info(APP_ID, APP_SECRET, APP_URI) r.refresh_access_information(APP_REFRESH) def scanSub(): print('Scanning ' + SUBREDDIT) subreddit = r.get_subreddit(SUBREDDIT) comments = list(subreddit.get_comments(limit=MAXPOSTS)) comments.reverse() for comment in comments: cid = comment.fullname cur.execute('SELECT * FROM oldposts WHERE ID=?', [cid]) if not cur.fetchone(): try: cauthor = comment.author.name if cauthor.lower() != r.user.name.lower(): cbody = comment.body.lower() if PARENTSTRING.lower() in cbody: if 't3_' in comment.parent_id: #is a root comment on the post cdepth = 0 else: cur.execute('SELECT * FROM oldposts WHERE ID=?', [comment.parent_id]) fetch = cur.fetchone() if not fetch: cdepth = 0 else: cdepth = fetch[1] + 1 print(cid, '- Depth:', cdepth) if cdepth >= DEPTHREQ-1: print('\tAttempting to reply') cur.execute('SELECT * FROM oldposts WHERE ID=?', [comment.link_id]) if cur.fetchone(): print('\tAlready posted in this thread') else: comment.reply(REPLYSTRING) print('\tSuccess') cur.execute('INSERT INTO oldposts VALUES(?, ?)', [comment.link_id, 0]) else: #Does not contain interest cdepth = -1 print(cid, '- Depth:', cdepth) else: #Will not reply to self cdepth=-1 pass except AttributeError: #Author is deleted cdepth = 0 cur.execute('INSERT INTO oldposts VALUES(?, ?)', [cid, cdepth]) sql.commit() while True: try: scanSub() except Exception as e: print('An error has occured:', e) print('Running again in ' + WAITS + ' seconds \n') sql.commit() time.sleep(WAIT)
pyfacebook/api/instagram_business/resource/comment.py
sns-sdks/python-facebook
181
12699588
""" Apis for comment. """ from typing import Dict, Optional, Union import pyfacebook.utils.constant as const from pyfacebook.api.base_resource import BaseResource from pyfacebook.models.ig_business_models import IgBusComment, IgBusReply, IgBusReplies from pyfacebook.utils.params_utils import enf_comma_separated class IGBusinessComment(BaseResource): def get_info( self, comment_id: str, fields: Optional[Union[str, list, tuple]] = None, return_json: bool = False, ) -> Union[IgBusComment, dict]: """ Get information about a Business comment. :param comment_id: ID for Comment. :param fields: Comma-separated id string for data fields which you want. You can also pass this with an id list, tuple. :param return_json: Set to false will return a dataclass for IgBusComment. Or return json data. Default is false. :return: Business comment information. """ if fields is None: fields = const.IG_BUSINESS_MEDIA_PUBLIC_FIELDS data = self.client.get_object( object_id=comment_id, fields=enf_comma_separated(field="fields", value=fields), ) if return_json: return data else: return IgBusComment.new_from_json_dict(data=data) def get_batch( self, ids: Optional[Union[str, list, tuple]], fields: Optional[Union[str, list, tuple]] = None, return_json: bool = False, ) -> Union[Dict[str, IgBusComment], dict]: """ Get batch business comment information by ids :param ids: IDs for the comments. :param fields: Comma-separated id string for data fields which you want. You can also pass this with an id list, tuple. :param return_json: Set to false will return a dict of dataclass for IgBusComment. Or return json data. Default is false. :return: Business medias information. """ ids = enf_comma_separated(field="ids", value=ids) if fields is None: fields = const.IG_BUSINESS_COMMENT_PUBLIC_FIELDS data = self.client.get_objects( ids=ids, fields=enf_comma_separated(field="fields", value=fields) ) if return_json: return data else: return { comment_id: IgBusComment.new_from_json_dict(item) for comment_id, item in data.items() } def get_replies( self, comment_id: str, fields: Optional[Union[str, list, tuple]] = None, count: Optional[int] = 10, limit: Optional[int] = 10, return_json: bool = False, ) -> Union[IgBusReplies, dict]: """ Getting All Replies (Comments) on a Comment :param comment_id: ID for the comment. :param fields: Comma-separated id string for data fields which you want. You can also pass this with an id list, tuple. :param count: The total count for you to get data. :param limit: Each request retrieve objects count. It should no more than 100. Default is None will use api default limit. :param return_json: Set to false will return a dataclass for IgBusReplies. Or return json data. Default is false. :return: Comment replies response information. """ if fields is None: fields = const.IG_BUSINESS_REPLY_PUBLIC_FIELDS data = self.client.get_full_connections( object_id=comment_id, connection="replies", fields=enf_comma_separated(field="fields", value=fields), count=count, limit=limit, ) if return_json: return data else: return IgBusReplies.new_from_json_dict(data) class IGBusinessReply(BaseResource): def get_info( self, reply_id: str, fields: Optional[Union[str, list, tuple]] = None, return_json: bool = False, ) -> Union[IgBusReply, dict]: """ Get information about a Business reply. :param reply_id: ID for reply. :param fields: Comma-separated id string for data fields which you want. You can also pass this with an id list, tuple. :param return_json: Set to false will return a dataclass for IgBusReply. Or return json data. Default is false. :return: Business reply information. """ if fields is None: fields = const.IG_BUSINESS_REPLY_PUBLIC_FIELDS data = self.client.get_object( object_id=reply_id, fields=enf_comma_separated(field="fields", value=fields), ) if return_json: return data else: return IgBusComment.new_from_json_dict(data=data) def get_batch( self, ids: Optional[Union[str, list, tuple]], fields: Optional[Union[str, list, tuple]] = None, return_json: bool = False, ) -> Union[Dict[str, IgBusReply], dict]: """ Get batch business replies information by ids :param ids: IDs for the replies. :param fields: Comma-separated id string for data fields which you want. You can also pass this with an id list, tuple. :param return_json: Set to false will return a dict of dataclass for IgBusReply. Or return json data. Default is false. :return: Business replies information. """ ids = enf_comma_separated(field="ids", value=ids) if fields is None: fields = const.IG_BUSINESS_REPLY_PUBLIC_FIELDS data = self.client.get_objects( ids=ids, fields=enf_comma_separated(field="fields", value=fields) ) if return_json: return data else: return { reply_id: IgBusReply.new_from_json_dict(item) for reply_id, item in data.items() }
cassandra_snapshotter/utils.py
kadamanas93/cassandra_snapshotter
203
12699592
import sys try: from cStringIO import StringIO except ImportError: from StringIO import StringIO import argparse import functools import subprocess LZOP_BIN = 'lzop' PV_BIN = 'pv' S3_CONNECTION_HOSTS = { 'us-east-1': 's3.amazonaws.com', 'us-east-2': 's3-us-east-2.amazonaws.com', 'us-west-2': 's3-us-west-2.amazonaws.com', 'us-west-1': 's3-us-west-1.amazonaws.com', 'eu-central-1': 's3-eu-central-1.amazonaws.com', 'eu-west-1': 's3-eu-west-1.amazonaws.com', 'ap-southeast-1': 's3-ap-southeast-1.amazonaws.com', 'ap-southeast-2': 's3-ap-southeast-2.amazonaws.com', 'ap-northeast-1': 's3-ap-northeast-1.amazonaws.com', 'ap-south-1': 's3.ap-south-1.amazonaws.com', 'sa-east-1': 's3-sa-east-1.amazonaws.com', 'cn-north-1': 's3.cn-north-1.amazonaws.com.cn' } base_parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__) base_parser.add_argument('-v', '--verbose', action='store_true', help='increase output verbosity') def add_s3_arguments(arg_parser): """ Adds common S3 argument to a parser """ arg_parser.add_argument('--aws-access-key-id', help="public AWS access key.") arg_parser.add_argument('--aws-secret-access-key', help="S3 secret access key.") arg_parser.add_argument('--s3-bucket-region', default='us-east-1', help="S3 bucket region (default us-east-1)") arg_parser.add_argument('--s3-ssenc', action='store_true', help="Enable AWS S3 server-side encryption") arg_parser.add_argument('--s3-bucket-name', required=True, help="S3 bucket name for backups.") arg_parser.add_argument('--s3-base-path', required=True, help="S3 base path for backups.") return arg_parser def get_s3_connection_host(s3_bucket_region): return S3_CONNECTION_HOSTS[s3_bucket_region] def map_wrap(f): """ Fix annoying multiprocessing.imap bug when sending *args and **kwargs """ @functools.wraps(f) def wrapper(*args, **kwargs): return apply(f, *args, **kwargs) return wrapper def _check_bin(bin_name): try: subprocess.check_call("{} --version > /dev/null 2>&1".format(bin_name), shell=True) except subprocess.CalledProcessError: sys.exit("{} not found on path".format(bin_name)) def check_lzop(): _check_bin(LZOP_BIN) def check_pv(): _check_bin(PV_BIN) def compressed_pipe(path, size, rate_limit, quiet): """ Returns a generator that yields compressed chunks of the given file_path compression is done with lzop """ lzop = subprocess.Popen( (LZOP_BIN, '--stdout', path), bufsize=size, stdout=subprocess.PIPE ) if rate_limit > 0: pv_cmd = [PV_BIN, '--rate-limit', '{}k'.format(rate_limit)] if quiet: pv_cmd.insert(1, '--quiet') pv = subprocess.Popen( pv_cmd, stdin=lzop.stdout, stdout=subprocess.PIPE ) while True: if rate_limit > 0: chunk = pv.stdout.read(size) else: chunk = lzop.stdout.read(size) if not chunk: break yield StringIO(chunk) def decompression_pipe(path): lzop = subprocess.Popen( (LZOP_BIN, '-d', '-o', path), stdin=subprocess.PIPE ) return lzop
test/integration/test_multiple_model_endpoint.py
ipanepen/sagemaker-scikit-learn-container
105
12699599
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import encodings import json import os import subprocess import sys import time import pytest import requests PING_URL = 'http://localhost:8080/ping' INVOCATION_URL = 'http://localhost:8080/models/{}/invoke' MODELS_URL = 'http://localhost:8080/models' DELETE_MODEL_URL = 'http://localhost:8080/models/{}' path = os.path.abspath(__file__) resource_path = os.path.join(os.path.dirname(path), '..', 'resources') @pytest.fixture(scope='session', autouse=True) def volume(): try: model_dir = os.path.join(resource_path, 'models') subprocess.check_call( 'docker volume create --name dynamic_endpoint_model_volume --opt type=none ' '--opt device={} --opt o=bind'.format(model_dir).split()) yield model_dir finally: subprocess.check_call('docker volume rm dynamic_endpoint_model_volume'.split()) @pytest.fixture(scope='session', autouse=True) def modulevolume(): try: module_dir = os.path.join(resource_path, 'module') subprocess.check_call( 'docker volume create --name dynamic_endpoint_module_volume --opt type=none ' '--opt device={} --opt o=bind'.format(module_dir).split()) yield module_dir finally: subprocess.check_call('docker volume rm dynamic_endpoint_module_volume'.split()) @pytest.fixture(scope='module', autouse=True) def container(request, docker_base_name, tag): test_name = 'sagemaker-sklearn-serving-test' try: command = ( 'docker run --name {} -p 8080:8080' ' --mount type=volume,source=dynamic_endpoint_model_volume,target=/opt/ml/model,readonly' ' --mount type=volume,source=dynamic_endpoint_module_volume,target=/user_module,readonly' ' -e SAGEMAKER_BIND_TO_PORT=8080' ' -e SAGEMAKER_SAFE_PORT_RANGE=9000-9999' ' -e SAGEMAKER_MULTI_MODEL=true' ' -e SAGEMAKER_PROGRAM={}' ' -e SAGEMAKER_SUBMIT_DIRECTORY={}' ' {}:{} serve' ).format(test_name, 'script.py', "/user_module/user_code.tar.gz", docker_base_name, tag) proc = subprocess.Popen(command.split(), stdout=sys.stdout, stderr=subprocess.STDOUT) attempts = 0 while attempts < 5: time.sleep(3) try: requests.get('http://localhost:8080/ping') break except Exception: attempts += 1 pass yield proc.pid finally: subprocess.check_call('docker rm -f {}'.format(test_name).split()) def make_invocation_request(data, model_name, content_type='text/csv'): headers = { 'Content-Type': content_type, } response = requests.post(INVOCATION_URL.format(model_name), data=data, headers=headers) return response.status_code, json.loads(response.content.decode(encodings.utf_8.getregentry().name)) def make_list_model_request(): response = requests.get(MODELS_URL) return response.status_code, json.loads(response.content.decode(encodings.utf_8.getregentry().name)) def make_get_model_request(model_name): response = requests.get(MODELS_URL + '/{}'.format(model_name)) return response.status_code, json.loads(response.content.decode(encodings.utf_8.getregentry().name)) def make_load_model_request(data, content_type='application/json'): headers = { 'Content-Type': content_type } response = requests.post(MODELS_URL, data=data, headers=headers) return response.status_code, response.content.decode(encodings.utf_8.getregentry().name) def make_unload_model_request(model_name): response = requests.delete(DELETE_MODEL_URL.format(model_name)) return response.status_code, response.content.decode(encodings.utf_8.getregentry().name) def test_ping(): res = requests.get(PING_URL) assert res.status_code == 200 def test_list_models_empty(): code, res = make_list_model_request() # assert code == 200 assert res == {'models': []} def test_delete_unloaded_model(): # unloads the given model/version, no-op if not loaded model_name = 'non-existing-model' code, res = make_unload_model_request(model_name) assert code == 404 def test_load_and_unload_model(): model_name = 'pickled-model-1' model_data = { 'model_name': model_name, 'url': '/opt/ml/model/{}'.format(model_name) } code, res = make_load_model_request(json.dumps(model_data)) assert code == 200, res res_json = json.loads(res) assert res_json['status'] == 'Workers scaled' code, res = make_invocation_request('0.0, 0.0, 0.0, 0.0, 0.0, 0.0', model_name) assert code == 200, res code, res = make_unload_model_request(model_name) assert code == 200, res res_json = json.loads(res) assert res_json['status'] == "Model \"{}\" unregistered".format(model_name), res code, res = make_invocation_request('0.0, 0.0, 0.0, 0.0, 0.0, 0.0', model_name) assert code == 404, res assert res['message'] == "Model not found: {}".format(model_name), res def test_load_and_unload_two_models(): model_name_0 = 'pickled-model-1' model_data_0 = { 'model_name': model_name_0, 'url': '/opt/ml/model/{}'.format(model_name_0) } code, res = make_load_model_request(json.dumps(model_data_0)) assert code == 200, res res_json = json.loads(res) assert res_json['status'] == 'Workers scaled' model_name_1 = 'pickled-model-2' model_data_1 = { 'model_name': model_name_1, 'url': '/opt/ml/model/{}'.format(model_name_1) } code, res = make_load_model_request(json.dumps(model_data_1)) assert code == 200, res res_json = json.loads(res) assert res_json['status'] == 'Workers scaled' code, res = make_invocation_request('0.0, 0.0, 0.0, 0.0, 0.0, 0.0', model_name_0) assert code == 200, res code, res = make_invocation_request('0.0, 0.0, 0.0, 0.0, 0.0, 0.0', model_name_1) assert code == 200, res code, res = make_unload_model_request(model_name_0) assert code == 200, res res_json = json.loads(res) assert res_json['status'] == "Model \"{}\" unregistered".format(model_name_0), res code, res = make_unload_model_request(model_name_1) assert code == 200, res res_json = json.loads(res) assert res_json['status'] == "Model \"{}\" unregistered".format(model_name_1), res def test_container_start_invocation_fail(): x = { 'instances': [1.0, 2.0, 5.0] } code, res = make_invocation_request(json.dumps(x), 'half_plus_three') assert code == 404 assert res['message'] == "Model not found: {}".format('half_plus_three') def test_load_one_model_two_times(): model_name = 'pickled-model-1' model_data = { 'model_name': model_name, 'url': '/opt/ml/model/{}'.format(model_name) } code_load, res = make_load_model_request(json.dumps(model_data)) assert code_load == 200, res res_json = json.loads(res) assert res_json['status'] == 'Workers scaled' code_load, res = make_load_model_request(json.dumps(model_data)) assert code_load == 409 res_json = json.loads(res) assert res_json['message'] == 'Model {} is already registered.'.format(model_name)
data/transcoder_evaluation_gfg/python/SUBARRAYS_DISTINCT_ELEMENTS.py
mxl1n/CodeGen
241
12699605
<gh_stars>100-1000 # Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( arr , n ) : s = [ ] j = 0 ans = 0 for i in range ( n ) : while ( j < n and ( arr [ j ] not in s ) ) : s.append ( arr [ j ] ) j += 1 ans += ( ( j - i ) * ( j - i + 1 ) ) // 2 s.remove ( arr [ i ] ) return ans #TOFILL if __name__ == '__main__': param = [ ([3, 4, 5, 6, 12, 15, 16, 17, 20, 20, 22, 24, 24, 27, 28, 34, 37, 39, 39, 41, 43, 49, 49, 51, 55, 62, 63, 67, 71, 74, 74, 74, 77, 84, 84, 89, 89, 97, 99],24,), ([-8, 54, -22, 18, 20, 44, 0, 54, 90, -4, 4, 40, -74, -16],13,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],28,), ([36, 71, 36, 58, 38, 90, 17],4,), ([-90, -32, -16, 18, 38, 82],5,), ([1, 0, 1],2,), ([3, 11, 21, 25, 28, 28, 38, 42, 48, 53, 55, 55, 55, 58, 71, 75, 79, 80, 80, 94, 96, 99],20,), ([-16, -52, -4, -46, 54, 0, 8, -64, -82, -10, -62, -10, 58, 44, -28, 86, -24, 16, 44, 22, -28, -42, -52, 8, 76, -44, -34, 2, 88, -88, -14, -84, -36, -68, 76, 20, 20, -50],35,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],27,), ([19, 13, 61, 32, 92, 90, 12, 81, 52],5,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
tests/test_resolvers/test_environment_variable.py
dennisconrad/sceptre
493
12699606
# -*- coding: utf-8 -*- from mock import patch from sceptre.resolvers.environment_variable import EnvironmentVariable class TestEnvironmentVariableResolver(object): def setup_method(self, test_method): self.environment_variable_resolver = EnvironmentVariable( argument=None ) @patch("sceptre.resolvers.environment_variable.os") def test_resolving_with_set_environment_variable(self, mock_os): mock_os.environ = {"VARIABLE": "value"} self.environment_variable_resolver.argument = "VARIABLE" response = self.environment_variable_resolver.resolve() assert response == "value" def test_resolving_with_unset_environment_variable(self): self.environment_variable_resolver.argument = "UNSETVARIABLE" response = self.environment_variable_resolver.resolve() assert response is None def test_resolving_with_environment_variable_name_as_none(self): self.environment_variable_resolver.argument = None response = self.environment_variable_resolver.resolve() assert response is None
utils/ema.py
yoxu515/aot-benchmark
105
12699623
<reponame>yoxu515/aot-benchmark from __future__ import division from __future__ import unicode_literals import torch def get_param_buffer_for_ema(model, update_buffer=False, required_buffers=['running_mean', 'running_var']): params = model.parameters() all_param_buffer = [p for p in params if p.requires_grad] if update_buffer: named_buffers = model.named_buffers() for key, value in named_buffers: for buffer_name in required_buffers: if buffer_name in key: all_param_buffer.append(value) break return all_param_buffer class ExponentialMovingAverage: """ Maintains (exponential) moving average of a set of parameters. """ def __init__(self, parameters, decay, use_num_updates=True): """ Args: parameters: Iterable of `torch.nn.Parameter`; usually the result of `model.parameters()`. decay: The exponential decay. use_num_updates: Whether to use number of updates when computing averages. """ if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.decay = decay self.num_updates = 0 if use_num_updates else None self.shadow_params = [p.clone().detach() for p in parameters] self.collected_params = [] def update(self, parameters): """ Update currently maintained parameters. Call this every time the parameters are updated, such as the result of the `optimizer.step()` call. Args: parameters: Iterable of `torch.nn.Parameter`; usually the same set of parameters used to initialize this object. """ decay = self.decay if self.num_updates is not None: self.num_updates += 1 decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates)) one_minus_decay = 1.0 - decay with torch.no_grad(): for s_param, param in zip(self.shadow_params, parameters): s_param.sub_(one_minus_decay * (s_param - param)) def copy_to(self, parameters): """ Copy current parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. """ for s_param, param in zip(self.shadow_params, parameters): param.data.copy_(s_param.data) def store(self, parameters): """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters] def restore(self, parameters): """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): param.data.copy_(c_param.data) del (self.collected_params)
needl/adapters/__init__.py
NeuroWinter/Needl
413
12699624
import requests from requests.packages.urllib3 import poolmanager __all__ = ( 'poolmanager' )
bodymocap/utils/geometry.py
Paultool/frankmocap
1,612
12699637
<filename>bodymocap/utils/geometry.py # Original code from SPIN: https://github.com/nkolot/SPIN import torch from torch.nn import functional as F import numpy as np import torchgeometry """ Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR """ def batch_rodrigues(theta): """Convert axis-angle representation to rotation matrix. Args: theta: size = [B, 3] Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1) angle = torch.unsqueeze(l1norm, -1) normalized = torch.div(theta, angle) angle = angle * 0.5 v_cos = torch.cos(angle) v_sin = torch.sin(angle) quat = torch.cat([v_cos, v_sin * normalized], dim = 1) return quat_to_rotmat(quat) def quat_to_rotmat(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: size = [B, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = quat norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w*x, w*y, w*z xy, xz, yz = x*y, x*z, y*z rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz, 2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx, 2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) return rotMat def cross_product(u, v): batch = u.shape[0] i = u[:, 1] * v[:, 2] - u[:, 2] * v[:, 1] j = u[:, 2] * v[:, 0] - u[:, 0] * v[:, 2] k = u[:, 0] * v[:, 1] - u[:, 1] * v[:, 0] out = torch.cat((i.view(batch, 1), j.view(batch, 1), k.view(batch, 1)), 1) return out def normalize_vector(v): batch = v.shape[0] v_mag = torch.sqrt(v.pow(2).sum(1)) # batch v_mag = torch.max(v_mag, v.new([1e-8])) v_mag = v_mag.view(batch, 1).expand(batch, v.shape[1]) v = v/v_mag return v #Code from def rot6d_to_rotmat(x): """Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Input: (B,6) Batch of 6-D rotation representations Output: (B,3,3) Batch of corresponding rotation matrices """ x = x.view(-1,3,2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) b3 = torch.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) def perspective_projection(points, rotation, translation, focal_length, camera_center): """ This function computes the perspective projection of a set of points. Input: points (bs, N, 3): 3D points rotation (bs, 3, 3): Camera rotation translation (bs, 3): Camera translation focal_length (bs,) or scalar: Focal length camera_center (bs, 2): Camera center """ batch_size = points.shape[0] K = torch.zeros([batch_size, 3, 3], device=points.device) K[:,0,0] = focal_length K[:,1,1] = focal_length K[:,2,2] = 1. K[:,:-1, -1] = camera_center # Transform points points = torch.einsum('bij,bkj->bki', rotation, points) points = points + translation.unsqueeze(1) # Apply perspective distortion projected_points = points / points[:,:,-1].unsqueeze(-1) # Apply camera intrinsics projected_points = torch.einsum('bij,bkj->bki', K, projected_points) return projected_points[:, :, :-1] def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000, img_size=224): """Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (25, 3) 3D joint locations joints: (25, 3) 2D joint locations and confidence Returns: (3,) camera translation vector """ num_joints = S.shape[0] # focal length f = np.array([focal_length,focal_length]) # optical center center = np.array([img_size/2., img_size/2.]) # transformations Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1) XY = np.reshape(S[:,0:2],-1) O = np.tile(center,num_joints) F = np.tile(f,num_joints) weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1) # least squares Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T c = (np.reshape(joints_2d,-1)-O)*Z - F*XY # weighted least squares W = np.diagflat(weight2) Q = np.dot(W,Q) c = np.dot(W,c) # square matrix A = np.dot(Q.T,Q) b = np.dot(Q.T,c) # solution trans = np.linalg.solve(A, b) return trans def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): """Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (B, 49, 3) 3D joint locations joints: (B, 49, 3) 2D joint locations and confidence Returns: (B, 3) camera translation vectors """ device = S.device # Use only joints 25:49 (GT joints) S = S[:, 25:, :].cpu().numpy() joints_2d = joints_2d[:, 25:, :].cpu().numpy() joints_conf = joints_2d[:, :, -1] joints_2d = joints_2d[:, :, :-1] trans = np.zeros((S.shape[0], 3), dtype=np.float32) # Find the translation for each example in the batch for i in range(S.shape[0]): S_i = S[i] joints_i = joints_2d[i] conf_i = joints_conf[i] trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size) return torch.from_numpy(trans).to(device) def weakProjection_gpu(skel3D, scale, trans2D ): # if len(skel3D.shape)==1: # skel3D = np.reshape(skel3D, (-1,3)) skel3D = skel3D.view((skel3D.shape[0],-1,3)) trans2D = trans2D.view((trans2D.shape[0],1,2)) scale = scale.view((scale.shape[0],1,1)) skel3D_proj = scale* skel3D[:,:,:2] + trans2D return skel3D_proj#skel3D_proj.view((skel3D.shape[0],-1)) #(N, 19*2) o #(57) (1) (2) def weakProjection(skel3D, scale, trans2D ): skel3D_proj = scale* skel3D[:,:2] + trans2D return skel3D_proj#skel3D_proj.view((skel3D.shape[0],-1)) #(N, 19*2) o def rotmat_to_angleaxis(init_pred_rotmat): """ init_pred_rotmat: torch.tensor with (24,3,3) dimension """ device = init_pred_rotmat.device ones = torch.tensor([0,0,1], dtype=torch.float32,).view(1, 3, 1).expand(init_pred_rotmat.shape[1], -1, -1).to(device) pred_rotmat_hom = torch.cat([ init_pred_rotmat.view(-1, 3, 3),ones ], dim=-1) #24,3,4 pred_aa = torchgeometry.rotation_matrix_to_angle_axis(pred_rotmat_hom).contiguous().view(1, -1) #[1,72] # tgm.rotation_matrix_to_angle_axis returns NaN for 0 rotation, so manually hack it pred_aa[torch.isnan(pred_aa)] = 0.0 #[1,72] pred_aa = pred_aa.view(1,24,3) return pred_aa
baselines/CACB/.old/build-cacb-tree.py
sordonia/HierarchicalEncoderDecoder
116
12699665
""" __author__ <NAME> """ import logging import cPickle import os import sys import argparse import cacb logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('cluster_file', type=str, help='Pickled cluster file') parser.add_argument('sessions', type=str, help='Session file') args = parser.parse_args() assert os.path.isfile(args.sessions) \ and os.path.isfile(args.cluster_file) cacbt = cacb.CACB(4) cacbt.with_cluster(args.cluster_file) cluster_coverage = 0 f = open(args.sessions, 'r') for num, session in enumerate(f): cluster_coverage += cacbt.add_session(session) if num % 1000 == 0: print '{} sessions / {} cc / {} nodes in the PST'.format(num, cluster_coverage, cacbt.num_nodes) f.close() # print '{} nodes final'.format(cacbt.num_nodes) cacbt.prune() # print '{} nodes after pruning'.format(cacbt.num_nodes) cacbt.save(args.sessions + "_CACB.pkl")
07_compiling/cffi/diffusion_2d_cffi.py
siddheshmhatre/high_performance_python
698
12699687
#!/usr/bin/env python2.7 import numpy as np import time from cffi import FFI, verifier grid_shape = (512, 512) ffi = FFI() ffi.cdef( r''' void evolve(int Nx, int Ny, double **in, double **out, double D, double dt); ''') lib = ffi.dlopen("../diffusion.so") def evolve(grid, dt, out, D=1.0): X, Y = grid_shape pointer_grid = ffi.cast('double**', grid.ctypes.data) pointer_out = ffi.cast('double**', out.ctypes.data) lib.evolve(X, Y, pointer_grid, pointer_out, D, dt) def run_experiment(num_iterations): scratch = np.zeros(grid_shape, dtype=np.double) grid = np.zeros(grid_shape, dtype=np.double) block_low = int(grid_shape[0] * .4) block_high = int(grid_shape[0] * .5) grid[block_low:block_high, block_low:block_high] = 0.005 start = time.time() for i in range(num_iterations): evolve(grid, 0.1, scratch) grid, scratch = scratch, grid return time.time() - start if __name__ == "__main__": t = run_experiment(500) print t verifier.cleanup_tmpdir()
grappa/empty.py
sgissinger/grappa
137
12699700
# -*- coding: utf-8 -*- class Empty(object): """ Empty object represents emptyness state in `grappa`. """ def __repr__(self): return 'Empty' def __len__(self): return 0 # Object reference representing emptpyness empty = Empty()
animalai/animalai/communicator_objects/__init__.py
southpawac/AnimalAI-Olympics
607
12699725
from .arenas_configurations_proto_pb2 import * from .arena_configuration_proto_pb2 import * from .items_to_spawn_proto_pb2 import * from .vector_proto_pb2 import * from .__init__ import *
slybot/slybot/fieldtypes/url.py
rmcwilliams2004/PAscrape
6,390
12699774
import re from six.moves.urllib.parse import urljoin from scrapely.extractors import url as strip_url from scrapy.utils.url import safe_download_url from scrapy.utils.markup import unquote_markup from slybot.baseurl import get_base_url disallowed = re.compile('[\x00-\x1F\x7F]') class UrlFieldTypeProcessor(object): """Renders URLs as links""" name = 'url' description = 'URL' limit = 80 def extract(self, text): if text is not None: return strip_url(text) return '' def adapt(self, text, htmlpage=None): if htmlpage is None: return text if text is None: return encoding = getattr(htmlpage, 'encoding', 'utf-8') text = text.encode(encoding) unquoted = unquote_markup(text, encoding=encoding) cleaned = strip_url(disallowed.sub('', unquoted)) base = get_base_url(htmlpage).encode(encoding) base_url = strip_url(unquote_markup(base, encoding=encoding)) joined = urljoin(base_url, cleaned) return safe_download_url(joined)
utility/audiosegment.py
jasonaidm/Speech_emotion_recognition_BLSTM
245
12699791
<reponame>jasonaidm/Speech_emotion_recognition_BLSTM """ This module simply exposes a wrapper of a pydub.AudioSegment object. """ from __future__ import division from __future__ import print_function import collections import functools import itertools import math import numpy as np import pickle import pydub import os import random import scipy.signal as signal import subprocess import sys import tempfile import warnings import webrtcvad MS_PER_S = 1000 S_PER_MIN = 60 MS_PER_MIN = MS_PER_S * S_PER_MIN def deprecated(func): """ Deprecator decorator. """ @functools.wraps(func) def new_func(*args, **kwargs): warnings.warn("Call to deprecated function {}.".format(func.__name__), category=DeprecationWarning, stacklevel=2) return func(*args, **kwargs) return new_func class AudioSegment: """ This class is a wrapper for a pydub.AudioSegment that provides additional methods. """ def __init__(self, pydubseg, name): self.seg = pydubseg self.name = name def __getattr__(self, attr): orig_attr = self.seg.__getattribute__(attr) if callable(orig_attr): def hooked(*args, **kwargs): result = orig_attr(*args, **kwargs) if result == self.seg: return self elif type(result) == pydub.AudioSegment: return AudioSegment(result, self.name) else: return result return hooked else: return orig_attr def __len__(self): return len(self.seg) def __eq__(self, other): return self.seg == other def __ne__(self, other): return self.seg != other def __iter__(self, other): return (x for x in self.seg) def __getitem__(self, millisecond): return AudioSegment(self.seg[millisecond], self.name) def __add__(self, arg): if type(arg) == AudioSegment: self.seg._data = self.seg._data + arg.seg._data else: self.seg = self.seg + arg return self def __radd__(self, rarg): return self.seg.__radd__(rarg) def __repr__(self): return str(self) def __str__(self): s = "%s: %s channels, %s bit, sampled @ %s kHz, %.3fs long" %\ (self.name, str(self.channels), str(self.sample_width * 8),\ str(self.frame_rate / 1000.0), self.duration_seconds) return s def __sub__(self, arg): if type(arg) == AudioSegment: self.seg = self.seg - arg.seg else: self.seg = self.seg - arg return self def __mul__(self, arg): if type(arg) == AudioSegment: self.seg = self.seg * arg.seg else: self.seg = self.seg * arg return self @property def spl(self): """ Sound Pressure Level - defined as 20 * log10(abs(value)). Returns a numpy array of SPL dB values. """ return 20.0 * np.log10(np.abs(self.to_numpy_array() + 1E-9)) def _bandpass_filter(self, data, low, high, fs, order=5): """ :param data: The data (numpy array) to be filtered. :param low: The low cutoff in Hz. :param high: The high cutoff in Hz. :param fs: The sample rate (in Hz) of the data. :param order: The order of the filter. The higher the order, the tighter the roll-off. :returns: Filtered data (numpy array). """ nyq = 0.5 * fs low = low / nyq high = high / nyq b, a = signal.butter(order, [low, high], btype='band') y = signal.lfilter(b, a, data) return y def auditory_scene_analysis(self): """ Algorithm based on paper: Auditory Segmentation Based on Onset and Offset Analysis, by Hu and Wang, 2007. """ def lowpass_filter(data, cutoff, fs, order=5): """ """ nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = signal.butter(order, normal_cutoff, btype='low', analog=False) y = signal.lfilter(b, a, data) return y import matplotlib.pyplot as plt def visualize_time_domain(seg, title=""): plt.plot(seg) plt.title(title) plt.show() plt.clf() def visualize(spect, frequencies, title=""): i = 0 for freq, (index, row) in zip(frequencies[::-1], enumerate(spect[::-1, :])): plt.subplot(spect.shape[0], 1, index + 1) if i == 0: plt.title(title) i += 1 plt.ylabel("{0:.0f}".format(freq)) plt.plot(row) plt.show() plt.clf() # Normalize self into 25dB average SPL normalized = self.normalize_spl_by_average(db=25) visualize_time_domain(normalized.to_numpy_array(), "Normalized") # Do a band-pass filter in each frequency data = normalized.to_numpy_array() start_frequency = 50 stop_frequency = 8000 start = np.log10(start_frequency) stop = np.log10(stop_frequency) frequencies = np.logspace(start, stop, num=10, endpoint=True, base=10.0) print("Dealing with the following frequencies:", frequencies) rows = [self._bandpass_filter(data, freq*0.8, freq*1.2, self.frame_rate) for freq in frequencies] rows = np.array(rows) spect = np.vstack(rows) visualize(spect, frequencies, "After bandpass filtering (cochlear model)") # Half-wave rectify each frequency channel spect[spect < 0] = 0 visualize(spect, frequencies, "After half-wave rectification in each frequency") # Low-pass filter each frequency channel spect = np.apply_along_axis(lowpass_filter, 1, spect, 30, self.frame_rate, 6) visualize(spect, frequencies, "After low-pass filtering in each frequency") # Downsample each frequency to 400 Hz downsample_freq_hz = 400 if self.frame_rate > downsample_freq_hz: step = int(round(self.frame_rate / downsample_freq_hz)) spect = spect[:, ::step] visualize(spect, frequencies, "After downsampling in each frequency") # Now you have the temporal envelope of each frequency channel # Smoothing scales = [(6, 1/4), (6, 1/14), (1/2, 1/14)] thetas = [0.95, 0.95, 0.85] ## For each (sc, st) scale, smooth across time using st, then across frequency using sc gaussian = lambda x, mu, sig: np.exp(-np.power(x - mu, 2.0) / (2 * np.power(sig, 2.0))) gaussian_kernel = lambda sig: gaussian(np.linspace(-10, 10, len(frequencies) / 2), 0, sig) spectrograms = [] for sc, st in scales: time_smoothed = np.apply_along_axis(lowpass_filter, 1, spect, 1/st, downsample_freq_hz, 6) visualize(time_smoothed, frequencies, "After time smoothing with scale: " + str(st)) freq_smoothed = np.apply_along_axis(np.convolve, 0, spect, gaussian_kernel(sc)) spectrograms.append(freq_smoothed) visualize(freq_smoothed, frequencies, "After time and frequency smoothing with scales (freq) " + str(sc) + " and (time) " + str(st)) ## Now we have a set of scale-space spectrograms of different scales (sc, st) # Onset/Offset Detection and Matching def theta_on(spect): return np.nanmean(spect) + np.nanstd(spect) def compute_peaks_or_valleys_of_first_derivative(s, do_peaks=True): """ Takes a spectrogram and returns a 2D array of the form: 0 0 0 1 0 0 1 0 0 0 1 <-- Frequency 0 0 0 1 0 0 0 0 0 0 1 0 <-- Frequency 1 0 0 0 0 0 0 1 0 1 0 0 <-- Frequency 2 *** Time axis ******* Where a 1 means that the value in that time bin in the spectrogram corresponds to a peak/valley in the first derivative. """ gradient = np.nan_to_num(np.apply_along_axis(np.gradient, 1, s), copy=False) half_window = 4 if do_peaks: indexes = [signal.argrelextrema(gradient[i, :], np.greater, order=half_window) for i in range(gradient.shape[0])] else: indexes = [signal.argrelextrema(gradient[i, :], np.less, order=half_window) for i in range(gradient.shape[0])] extrema = np.zeros(s.shape) for row_index, index_array in enumerate(indexes): # Each index_array is a list of indexes corresponding to all the extrema in a given row for col_index in index_array: extrema[row_index, col_index] = 1 return extrema for spect, (sc, st) in zip(spectrograms, scales): # Compute sudden upward changes in spect, these are onsets of events onsets = compute_peaks_or_valleys_of_first_derivative(spect) # Compute sudden downward changes in spect, these are offsets of events offsets = compute_peaks_or_valleys_of_first_derivative(spect, do_peaks=False) print("TOTAL ONSETS:", np.sum(onsets, axis=1)) print("TOTAL OFFSETS:", np.sum(offsets, axis=1)) exit() # onsets and offsets are 2D arrays ## Determine the offset time for each onset: ### If t_on[c, i] represents the time of the ith onset in frequency channel c, the corresponding offset ### must occur between t_on[c, i] and t_on[c, i+1] ### If there are more than one offsets candidates in this range, choose the one with largest intensity decrease. ## Create onset/offset fronts by connecting onsets across frequency channels (connect two onsets ## if they occur within 20ms of each other). Start over whenever a frequency band does not contain an offset ## in this range. Do the same procedure for offsets. Now you have onset and offset fronts. ## Now hook up the onsets with the offsets to form segments: ## For each onset front, (t_on[c, i1, t_on[c + 1, i2], ..., t_on[c + m - 1, im]): ## matching_offsets = (t_off[c, i1], t_off[c + 1, i2], ..., t_off[c + m - 1, im]) ## Get all offset fronts which contain at least one of offset time found in matching_offsets ## Among these offset fronts, the one that crosses the most of matching_offsets is chosen, ## - call this offset front: matching_offset_front ## Update all t_offs in matching_offsets whose 'c's are in matching_offset_front to be 'matched', and ## - update their times to the corresponding channel offset in matching_offset_front. ## If all t_offs in matching_offsets are 'matched', continue to next onset front ## Now go through all the segments you have created and break them up along frequencies if the temporal ## envelopes don't match well enough. That is, if we have two adjacent channels c and c+1, and they ## are part of the same segment as determined above, break this segment into two along these lines ## if the correlation between them is below theta_c. Theta_c is thetas[i] where i depends on the scale. # Multiscale Integration ## ## TODO def detect_voice(self, prob_detect_voice=0.5): """ Returns self as a list of tuples: [('v', voiced segment), ('u', unvoiced segment), (etc.)] The overall order of the AudioSegment is preserved. :param prob_detect_voice: The raw probability that any random 20ms window of the audio file contains voice. :returns: The described list. """ assert self.frame_rate in (48000, 32000, 16000, 8000), "Try resampling to one of the allowed frame rates." assert self.sample_width == 2, "Try resampling to 16 bit." assert self.channels == 1, "Try resampling to one channel." class model_class: def __init__(self, aggressiveness): self.v = webrtcvad.Vad(int(aggressiveness)) def predict(self, vector): if self.v.is_speech(vector.raw_data, vector.frame_rate): return 1 else: return 0 model = model_class(aggressiveness=1) pyesno = 0.3 # Probability of the next 20 ms being unvoiced given that this 20 ms was voiced pnoyes = 0.2 # Probability of the next 20 ms being voiced given that this 20 ms was unvoiced p_realyes_outputyes = 0.4 # WebRTCVAD has a very high FP rate - just because it says yes, doesn't mean much p_realyes_outputno = 0.05 # If it says no, we can be very certain that it really is a no p_yes_raw = prob_detect_voice filtered = self.detect_event(model=model, ms_per_input=20, transition_matrix=(pyesno, pnoyes), model_stats=(p_realyes_outputyes, p_realyes_outputno), event_length_s=0.25, prob_raw_yes=p_yes_raw) ret = [] for tup in filtered: t = ('v', tup[1]) if tup[0] == 'y' else ('u', tup[1]) ret.append(t) return ret def dice(self, seconds, zero_pad=False): """ Cuts the AudioSegment into `seconds` segments (at most). So for example, if seconds=10, this will return a list of AudioSegments, in order, where each one is at most 10 seconds long. If `zero_pad` is True, the last item AudioSegment object will be zero padded to result in `seconds` seconds. :param seconds: The length of each segment in seconds. Can be either a float/int, in which case `self.duration_seconds` / `seconds` are made, each of `seconds` length, or a list-like can be given, in which case the given list must sum to `self.duration_seconds` and each segment is specified by the list - e.g. the 9th AudioSegment in the returned list will be `seconds[8]` seconds long. :param zero_pad: Whether to zero_pad the final segment if necessary. Ignored if `seconds` is a list-like. :returns: A list of AudioSegments, each of which is the appropriate number of seconds long. :raises: ValueError if a list-like is given for `seconds` and the list's durations do not sum to `self.duration_seconds`. """ try: total_s = sum(seconds) if not (self.duration_seconds <= total_s + 1 and self.duration_seconds >= total_s - 1): raise ValueError("`seconds` does not sum to within one second of the duration of this AudioSegment.\ given total seconds: %s and self.duration_seconds: %s" % (total_s, self.duration_seconds)) starts = [] stops = [] time_ms = 0 for dur in seconds: starts.append(time_ms) time_ms += dur * MS_PER_S stops.append(time_ms) zero_pad = False except TypeError: # `seconds` is not a list starts = range(0, int(round(self.duration_seconds * MS_PER_S)), int(round(seconds * MS_PER_S))) stops = (min(self.duration_seconds * MS_PER_S, start + seconds * MS_PER_S) for start in starts) outs = [self[start:stop] for start, stop in zip(starts, stops)] out_lens = [out.duration_seconds for out in outs] # Check if our last slice is within one ms of expected - if so, we don't need to zero pad if zero_pad and not (out_lens[-1] <= seconds * MS_PER_S + 1 and out_lens[-1] >= seconds * MS_PER_S - 1): num_zeros = self.frame_rate * (seconds * MS_PER_S - out_lens[-1]) outs[-1] = outs[-1].zero_extend(num_samples=num_zeros) return outs def detect_event(self, model, ms_per_input, transition_matrix, model_stats, event_length_s, start_as_yes=False, prob_raw_yes=0.5): """ A list of tuples of the form [('n', AudioSegment), ('y', AudioSegment), etc.] is returned, where tuples of the form ('n', AudioSegment) are the segments of sound where the event was not detected, while ('y', AudioSegment) tuples were the segments of sound where the event was detected. .. code-block:: python # Example usage import audiosegment import keras import keras.models import numpy as np import sys class Model: def __init__(self, modelpath): self.model = keras.models.load_model(modelpath) def predict(self, seg): _bins, fft_vals = seg.fft() fft_vals = np.abs(fft_vals) / len(fft_vals) predicted_np_form = self.model.predict(np.array([fft_vals]), batch_size=1) prediction_as_int = int(round(predicted_np_form[0][0])) return prediction_as_int modelpath = sys.argv[1] wavpath = sys.argv[2] model = Model(modelpath) seg = audiosegment.from_file(wavpath).resample(sample_rate_Hz=32000, sample_width=2, channels=1) pyes_to_no = 0.3 # The probability of one 30 ms sample being an event, and the next one not pno_to_yes = 0.2 # The probability of one 30 ms sample not being an event, and the next one yes ptrue_pos_rate = 0.8 # The true positive rate (probability of a predicted yes being right) pfalse_neg_rate = 0.3 # The false negative rate (probability of a predicted no being wrong) raw_prob = 0.7 # The raw probability of seeing the event in any random 30 ms slice of this file events = seg.detect_event(model, ms_per_input=30, transition_matrix=[pyes_to_no, pno_to_yes], model_stats=[ptrue_pos_rate, pfalse_neg_rate], event_length_s=0.25, prob_raw_yes=raw_prob) nos = [event[1] for event in events if event[0] == 'n'] yeses = [event[1] for event in events if event[0] == 'y'] if len(nos) > 1: notdetected = nos[0].reduce(nos[1:]) notdetected.export("notdetected.wav", format="WAV") if len(yeses) > 1: detected = yeses[0].reduce(yeses[1:]) detected.export("detected.wav", format="WAV") :param model: The model. The model must have a predict() function which takes an AudioSegment of `ms_per_input` number of ms and which outputs 1 if the audio event is detected in that input, and 0 if not. Make sure to resample the AudioSegment to the right values before calling this function on it. :param ms_per_input: The number of ms of AudioSegment to be fed into the model at a time. If this does not come out even, the last AudioSegment will be zero-padded. :param transition_matrix: An iterable of the form: [p(yes->no), p(no->yes)]. That is, the probability of moving from a 'yes' state to a 'no' state and the probability of vice versa. :param model_stats: An iterable of the form: [p(reality=1|output=1), p(reality=1|output=0)]. That is, the probability of the ground truth really being a 1, given that the model output a 1, and the probability of the ground truth being a 1, given that the model output a 0. :param event_length_s: The typical duration of the event you are looking for in seconds (can be a float). :param start_as_yes: If True, the first `ms_per_input` will be in the 'y' category. Otherwise it will be in the 'n' category. :param prob_raw_yes: The raw probability of finding the event in any given `ms_per_input` vector. :returns: A list of tuples of the form [('n', AudioSegment), ('y', AudioSegment), etc.], where over the course of the list, the AudioSegment in tuple 3 picks up where the one in tuple 2 left off. :raises: ValueError if `ms_per_input` is negative or larger than the number of ms in this AudioSegment; if `transition_matrix` or `model_stats` do not have a __len__ attribute or are not length 2; if the values in `transition_matrix` or `model_stats` are not in the closed interval [0.0, 1.0]. """ if ms_per_input < 0 or ms_per_input / MS_PER_S > self.duration_seconds: raise ValueError("ms_per_input cannot be negative and cannot be longer than the duration of the AudioSegment."\ " The given value was " + str(ms_per_input)) elif not hasattr(transition_matrix, "__len__") or len(transition_matrix) != 2: raise ValueError("transition_matrix must be an iterable of length 2.") elif not hasattr(model_stats, "__len__") or len(model_stats) != 2: raise ValueError("model_stats must be an iterable of length 2.") elif any([True for prob in transition_matrix if prob > 1.0 or prob < 0.0]): raise ValueError("Values in transition_matrix are probabilities, and so must be in the range [0.0, 1.0].") elif any([True for prob in model_stats if prob > 1.0 or prob < 0.0]): raise ValueError("Values in model_stats are probabilities, and so must be in the range [0.0, 1.0].") elif prob_raw_yes > 1.0 or prob_raw_yes < 0.0: raise ValueError("`prob_raw_yes` is a probability, and so must be in the range [0.0, 1.0]") # Get the yeses or nos for when the filter is triggered (when the event is on/off) filter_indices = [yes_or_no for yes_or_no in self._get_filter_indices(start_as_yes, prob_raw_yes, ms_per_input, model, transition_matrix, model_stats)] # Run a homogeneity filter over the values to make local regions more self-similar (reduce noise) ret = self._homogeneity_filter(filter_indices, window_size=int(round(0.25 * MS_PER_S / ms_per_input))) # Group the consecutive ones together ret = self._group_filter_values(ret, ms_per_input) # Take the groups and turn them into AudioSegment objects real_ret = self._reduce_filtered_segments(ret) return real_ret def _get_filter_indices(self, start_as_yes, prob_raw_yes, ms_per_input, model, transition_matrix, model_stats): """ This has been broken out of the `filter` function to reduce cognitive load. """ filter_triggered = 1 if start_as_yes else 0 prob_raw_no = 1.0 - prob_raw_yes for segment, _timestamp in self.generate_frames_as_segments(ms_per_input): yield filter_triggered observation = int(round(model.predict(segment))) assert observation == 1 or observation == 0, "The given model did not output a 1 or a 0, output: "\ + str(observation) prob_hyp_yes_given_last_hyp = 1.0 - transition_matrix[0] if filter_triggered else transition_matrix[1] prob_hyp_no_given_last_hyp = transition_matrix[0] if filter_triggered else 1.0 - transition_matrix[1] prob_hyp_yes_given_data = model_stats[0] if observation == 1 else model_stats[1] prob_hyp_no_given_data = 1.0 - model_stats[0] if observation == 1 else 1.0 - model_stats[1] hypothesis_yes = prob_raw_yes * prob_hyp_yes_given_last_hyp * prob_hyp_yes_given_data hypothesis_no = prob_raw_no * prob_hyp_no_given_last_hyp * prob_hyp_no_given_data # make a list of ints - each is 0 or 1. The number of 1s is hypotheis_yes * 100 # the number of 0s is hypothesis_no * 100 distribution = [1 for i in range(int(round(hypothesis_yes * 100)))] distribution.extend([0 for i in range(int(round(hypothesis_no * 100)))]) # shuffle random.shuffle(distribution) filter_triggered = random.choice(distribution) def _group_filter_values(self, filter_indices, ms_per_input): """ This has been broken out of the `filter` function to reduce cognitive load. """ ret = [] for filter_value, (_segment, timestamp) in zip(filter_indices, self.generate_frames_as_segments(ms_per_input)): if filter_value == 1: if len(ret) > 0 and ret[-1][0] == 'n': ret.append(['y', timestamp]) # The last one was different, so we create a new one elif len(ret) > 0 and ret[-1][0] == 'y': ret[-1][1] = timestamp # The last one was the same as this one, so just update the timestamp else: ret.append(['y', timestamp]) # This is the first one else: if len(ret) > 0 and ret[-1][0] == 'n': ret[-1][1] = timestamp elif len(ret) > 0 and ret[-1][0] == 'y': ret.append(['n', timestamp]) else: ret.append(['n', timestamp]) return ret def _homogeneity_filter(self, ls, window_size): """ This has been broken out of the `filter` function to reduce cognitive load. ls is a list of 1s or 0s for when the filter is on or off """ k = window_size i = k while i <= len(ls) - k: # Get a window of k items window = [ls[i + j] for j in range(k)] # Change the items in the window to be more like the mode of that window mode = 1 if sum(window) >= k / 2 else 0 for j in range(k): ls[i+j] = mode i += k return ls def _reduce_filtered_segments(self, ret): """ This has been broken out of the `filter` function to reduce cognitive load. """ real_ret = [] for i, (this_yesno, next_timestamp) in enumerate(ret): if i > 0: _next_yesno, timestamp = ret[i - 1] else: timestamp = 0 data = self[timestamp * MS_PER_S:next_timestamp * MS_PER_S].raw_data seg = AudioSegment(pydub.AudioSegment(data=data, sample_width=self.sample_width, frame_rate=self.frame_rate, channels=self.channels), self.name) real_ret.append((this_yesno, seg)) return real_ret def filter_silence(self, duration_s=1, threshold_percentage=1, console_output=False): """ Returns a copy of this AudioSegment, but whose silence has been removed. .. note:: This method requires that you have the program 'sox' installed. .. warning:: This method uses the program 'sox' to perform the task. While this is very fast for a single function call, the IO may add up for a large numbers of AudioSegment objects. :param duration_s: The number of seconds of "silence" that must be present in a row to be stripped. :param threshold_percentage: Silence is defined as any samples whose absolute value is below `threshold_percentage * max(abs(samples in this segment))`. :param console_output: If True, will pipe all sox output to the console. :returns: A copy of this AudioSegment, but whose silence has been removed. """ tmp = tempfile.NamedTemporaryFile() othertmp = tempfile.NamedTemporaryFile() self.export(tmp.name, format="WAV") command = "sox " + tmp.name + " -t wav " + othertmp.name + " silence -l 1 0.1 "\ + str(threshold_percentage) + "% -1 " + str(float(duration_s)) + " " + str(threshold_percentage) + "%" stdout = stderr = subprocess.PIPE if console_output else subprocess.DEVNULL res = subprocess.run(command.split(' '), stdout=stdout, stderr=stderr) assert res.returncode == 0, "Sox did not work as intended, or perhaps you don't have Sox installed?" other = AudioSegment(pydub.AudioSegment.from_wav(othertmp.name), self.name) tmp.close() othertmp.close() return other def fft(self, start_s=None, duration_s=None, start_sample=None, num_samples=None, zero_pad=False): """ Transforms the indicated slice of the AudioSegment into the frequency domain and returns the bins and the values. If neither `start_s` or `start_sample` is specified, the first sample of the slice will be the first sample of the AudioSegment. If neither `duration_s` or `num_samples` is specified, the slice will be from the specified start to the end of the segment. .. code-block:: python # Example for plotting the FFT using this function import matplotlib.pyplot as plt import numpy as np seg = audiosegment.from_file("furelise.wav") # Just take the first 3 seconds hist_bins, hist_vals = seg[1:3000].fft() hist_vals_real_normed = np.abs(hist_vals) / len(hist_vals) plt.plot(hist_bins / 1000, hist_vals_real_normed) plt.xlabel("kHz") plt.ylabel("dB") plt.show() .. image:: images/fft.png :param start_s: The start time in seconds. If this is specified, you cannot specify `start_sample`. :param duration_s: The duration of the slice in seconds. If this is specified, you cannot specify `num_samples`. :param start_sample: The zero-based index of the first sample to include in the slice. If this is specified, you cannot specify `start_s`. :param num_samples: The number of samples to include in the slice. If this is specified, you cannot specify `duration_s`. :param zero_pad: If True and the combination of start and duration result in running off the end of the AudioSegment, the end is zero padded to prevent this. :returns: np.ndarray of frequencies, np.ndarray of amount of each frequency :raises: ValueError If `start_s` and `start_sample` are both specified and/or if both `duration_s` and `num_samples` are specified. """ if start_s is not None and start_sample is not None: raise ValueError("Only one of start_s and start_sample can be specified.") if duration_s is not None and num_samples is not None: raise ValueError("Only one of duration_s and num_samples can be specified.") if start_s is None and start_sample is None: start_sample = 0 if duration_s is None and num_samples is None: num_samples = len(self.get_array_of_samples()) - int(start_sample) if duration_s is not None: num_samples = int(round(duration_s * self.frame_rate)) if start_s is not None: start_sample = int(round(start_s * self.frame_rate)) end_sample = start_sample + num_samples # end_sample is excluded if end_sample > len(self.get_array_of_samples()) and not zero_pad: raise ValueError("The combination of start and duration will run off the end of the AudioSegment object.") elif end_sample > len(self.get_array_of_samples()) and zero_pad: arr = np.array(self.get_array_of_samples()) zeros = np.zeros(end_sample - len(arr)) arr = np.append(arr, zeros) else: arr = np.array(self.get_array_of_samples()) audioslice = np.array(arr[start_sample:end_sample]) fft_result = np.fft.fft(audioslice)[range(int(round(num_samples/2)) + 1)] bins = np.arange(0, int(round(num_samples/2)) + 1, 1.0) * (self.frame_rate / num_samples) return bins, fft_result def generate_frames(self, frame_duration_ms, zero_pad=True): """ Yields self's data in chunks of frame_duration_ms. This function adapted from pywebrtc's example [https://github.com/wiseman/py-webrtcvad/blob/master/example.py]. :param frame_duration_ms: The length of each frame in ms. :param zero_pad: Whether or not to zero pad the end of the AudioSegment object to get all the audio data out as frames. If not, there may be a part at the end of the Segment that is cut off (the part will be <= `frame_duration_ms` in length). :returns: A Frame object with properties 'bytes (the data)', 'timestamp (start time)', and 'duration'. """ Frame = collections.namedtuple("Frame", "bytes timestamp duration") # (samples/sec) * (seconds in a frame) * (bytes/sample) bytes_per_frame = int(self.frame_rate * (frame_duration_ms / 1000) * self.sample_width) offset = 0 # where we are so far in self's data (in bytes) timestamp = 0.0 # where we are so far in self (in seconds) # (bytes/frame) * (sample/bytes) * (sec/samples) frame_duration_s = (bytes_per_frame / self.frame_rate) / self.sample_width while offset + bytes_per_frame < len(self.raw_data): yield Frame(self.raw_data[offset:offset + bytes_per_frame], timestamp, frame_duration_s) timestamp += frame_duration_s offset += bytes_per_frame if zero_pad: rest = self.raw_data[offset:] if len(rest) >= bytes_per_frame and len(rest) % bytes_per_frame: zeros = bytes(bytes_per_frame - len(rest)) yield Frame(rest + zeros, timestamp, frame_duration_s) def generate_frames_as_segments(self, frame_duration_ms, zero_pad=True): """ Does the same thing as `generate_frames`, but yields tuples of (AudioSegment, timestamp) instead of Frames. """ for frame in self.generate_frames(frame_duration_ms, zero_pad=zero_pad): seg = AudioSegment(pydub.AudioSegment(data=frame.bytes, sample_width=self.sample_width, frame_rate=self.frame_rate, channels=self.channels), self.name) yield seg, frame.timestamp def normalize_spl_by_average(self, db): """ Normalize the values in the AudioSegment so that its average dB value is `db`. The dB of a value is calculated as 20 * log10(abs(value + 1E-9)). :param db: The decibels to normalize average to. :returns: A new AudioSegment object whose values are changed so that their average is `db`. """ def inverse_spl(val): """Calculates the (positive) 'PCM' value for the given SPl val""" return 10 ** (val / 20.0) # Convert dB into 'PCM' db_pcm = inverse_spl(db) # Calculate current 'PCM' average curavg = np.abs(np.mean(self.to_numpy_array())) # Calculate ratio of dB_pcm / curavg_pcm ratio = db_pcm / curavg # Multiply all values by ratio dtype_dict = {1: np.int8, 2: np.int16, 4: np.int32} dtype = dtype_dict[self.sample_width] new_seg = from_numpy_array(np.array(self.to_numpy_array() * ratio, dtype=dtype), self.frame_rate) # Check SPL average to see if we are right #assert math.isclose(np.mean(new_seg.spl), db), "new = " + str(np.mean(new_seg.spl)) + " != " + str(db) return new_seg def reduce(self, others): """ Reduces others into this one by concatenating all the others onto this one and returning the result. Does not modify self, instead, makes a copy and returns that. :param others: The other AudioSegment objects to append to this one. :returns: The concatenated result. """ ret = AudioSegment(self.seg, self.name) selfdata = [self.seg._data] otherdata = [o.seg._data for o in others] ret.seg._data = b''.join(selfdata + otherdata) return ret def resample(self, sample_rate_Hz=None, sample_width=None, channels=None, console_output=False): """ Returns a new AudioSegment whose data is the same as this one, but which has been resampled to the specified characteristics. Any parameter left None will be unchanged. .. note:: This method requires that you have the program 'sox' installed. .. warning:: This method uses the program 'sox' to perform the task. While this is very fast for a single function call, the IO may add up for a large numbers of AudioSegment objects. :param sample_rate_Hz: The new sample rate in Hz. :param sample_width: The new sample width in bytes, so sample_width=2 would correspond to 16 bit (2 byte) width. :param channels: The new number of channels. :param console_output: Will print the output of sox to the console if True. :returns: The newly sampled AudioSegment. """ if sample_rate_Hz is None: sample_rate_Hz = self.frame_rate if sample_width is None: sample_width = self.sample_width if channels is None: channels = self.channels infile, outfile = tempfile.NamedTemporaryFile(), tempfile.NamedTemporaryFile() self.export(infile.name, format="wav") command = "sox " + infile.name + " -b" + str(sample_width * 8) + " -r " + str(sample_rate_Hz) + " -t wav " + outfile.name + " channels " + str(channels) # stdout = stderr = subprocess.PIPE if console_output else subprocess.DEVNULL # res = subprocess.run(command.split(' '), stdout=stdout, stderr=stderr) res = subprocess.call(command.split(' ')) if res: raise subprocess.CalledProcessError(res, cmd=command) other = AudioSegment(pydub.AudioSegment.from_wav(outfile.name), self.name) infile.close() outfile.close() return other def serialize(self): """ Serializes into a bytestring. :returns: An object of type Bytes. """ d = {'name': self.name, 'seg': pickle.dumps(self.seg, protocol=-1)} return pickle.dumps(d, protocol=-1) def spectrogram(self, start_s=None, duration_s=None, start_sample=None, num_samples=None, window_length_s=None, window_length_samples=None, overlap=0.5): """ Does a series of FFTs from `start_s` or `start_sample` for `duration_s` or `num_samples`. Effectively, transforms a slice of the AudioSegment into the frequency domain across different time bins. .. code-block:: python # Example for plotting a spectrogram using this function import audiosegment import matplotlib.pyplot as plt #... seg = audiosegment.from_file("somebodytalking.wav") freqs, times, amplitudes = seg.spectrogram(window_length_s=0.03, overlap=0.5) amplitudes = 10 * np.log10(amplitudes + 1e-9) # Plot plt.pcolormesh(times, freqs, amplitudes) plt.xlabel("Time in Seconds") plt.ylabel("Frequency in Hz") plt.show() .. image:: images/spectrogram.png :param start_s: The start time. Starts at the beginning if neither this nor `start_sample` is specified. :param duration_s: The duration of the spectrogram in seconds. Goes to the end if neither this nor `num_samples` is specified. :param start_sample: The index of the first sample to use. Starts at the beginning if neither this nor `start_s` is specified. :param num_samples: The number of samples in the spectrogram. Goes to the end if neither this nor `duration_s` is specified. :param window_length_s: The length of each FFT in seconds. If the total number of samples in the spectrogram is not a multiple of the window length in samples, the last window will be zero-padded. :param window_length_samples: The length of each FFT in number of samples. If the total number of samples in the spectrogram is not a multiple of the window length in samples, the last window will be zero-padded. :param overlap: The fraction of each window to overlap. :returns: Three np.ndarrays: The frequency values in Hz (the y-axis in a spectrogram), the time values starting at start time and then increasing by `duration_s` each step (the x-axis in a spectrogram), and the dB of each time/frequency bin as a 2D array of shape [len(frequency values), len(duration)]. :raises ValueError: If `start_s` and `start_sample` are both specified, if `duration_s` and `num_samples` are both specified, if the first window's duration plus start time lead to running off the end of the AudioSegment, or if `window_length_s` and `window_length_samples` are either both specified or if they are both not specified. """ if start_s is not None and start_sample is not None: raise ValueError("Only one of start_s and start_sample may be specified.") if duration_s is not None and num_samples is not None: raise ValueError("Only one of duration_s and num_samples may be specified.") if window_length_s is not None and window_length_samples is not None: raise ValueError("Only one of window_length_s and window_length_samples may be specified.") if window_length_s is None and window_length_samples is None: raise ValueError("You must specify a window length, either in window_length_s or in window_length_samples.") if start_s is None and start_sample is None: start_sample = 0 if duration_s is None and num_samples is None: num_samples = len(self.get_array_of_samples()) - int(start_sample) if duration_s is not None: num_samples = int(round(duration_s * self.frame_rate)) if start_s is not None: start_sample = int(round(start_s * self.frame_rate)) if window_length_s is not None: window_length_samples = int(round(window_length_s * self.frame_rate)) if start_sample + num_samples > len(self.get_array_of_samples()): raise ValueError("The combination of start and duration will run off the end of the AudioSegment object.") f, t, sxx = signal.spectrogram(self.to_numpy_array(), self.frame_rate, scaling='spectrum', nperseg=window_length_samples, noverlap=int(round(overlap * window_length_samples)), mode='magnitude') return f, t, sxx def to_numpy_array(self): """ Convenience function for `np.array(self.get_array_of_samples())` while keeping the appropriate dtype. """ dtype_dict = { 1: np.int8, 2: np.int16, 4: np.int32 } dtype = dtype_dict[self.sample_width] return np.array(self.get_array_of_samples(), dtype=dtype) @deprecated def trim_to_minutes(self, strip_last_seconds=False): """ Returns a list of minute-long (at most) Segment objects. .. note:: This function has been deprecated. Use the `dice` function instead. :param strip_last_seconds: If True, this method will return minute-long segments, but the last three seconds of this AudioSegment won't be returned. This is useful for removing the microphone artifact at the end of the recording. :returns: A list of AudioSegment objects, each of which is one minute long at most (and only the last one - if any - will be less than one minute). """ outs = self.dice(seconds=60, zero_pad=False) # Now cut out the last three seconds of the last item in outs (it will just be microphone artifact) # or, if the last item is less than three seconds, just get rid of it if strip_last_seconds: if outs[-1].duration_seconds > 3: outs[-1] = outs[-1][:-MS_PER_S * 3] else: outs = outs[:-1] return outs def zero_extend(self, duration_s=None, num_samples=None): """ Adds a number of zeros (digital silence) to the AudioSegment (returning a new one). :param duration_s: The number of seconds of zeros to add. If this is specified, `num_samples` must be None. :param num_samples: The number of zeros to add. If this is specified, `duration_s` must be None. :returns: A new AudioSegment object that has been zero extended. :raises: ValueError if duration_s and num_samples are both specified. """ if duration_s is not None and num_samples is not None: raise ValueError("`duration_s` and `num_samples` cannot both be specified.") elif duration_s is not None: num_samples = self.frame_rate * duration_s seg = AudioSegment(self.seg, self.name) zeros = silent(duration=num_samples / self.frame_rate, frame_rate=self.frame_rate) return zeros.overlay(seg) def deserialize(bstr): """ Attempts to deserialize a bytestring into an audiosegment. :param bstr: The bytestring serialized via an audiosegment's serialize() method. :returns: An AudioSegment object deserialized from `bstr`. """ d = pickle.loads(bstr) seg = pickle.loads(d['seg']) return AudioSegment(seg, d['name']) def empty(): """ Creates a zero-duration AudioSegment object. :returns: An empty AudioSegment object. """ dubseg = pydub.AudioSegment.empty() return AudioSegment(dubseg, "") def from_file(path): """ Returns an AudioSegment object from the given file based on its file extension. If the extension is wrong, this will throw some sort of error. :param path: The path to the file, including the file extension. :returns: An AudioSegment instance from the file. """ _name, ext = os.path.splitext(path) ext = ext.lower()[1:] seg = pydub.AudioSegment.from_file(path, ext) return AudioSegment(seg, path) def from_mono_audiosegments(*args): """ Creates a multi-channel AudioSegment out of multiple mono AudioSegments (two or more). Each mono AudioSegment passed in should be exactly the same number of samples. :returns: An AudioSegment of multiple channels formed from the given mono AudioSegments. """ return AudioSegment(pydub.AudioSegment.from_mono_audiosegments(*args), "") def from_numpy_array(nparr, framerate): """ Returns an AudioSegment created from the given numpy array. The numpy array must have shape = (num_samples, num_channels). :param nparr: The numpy array to create an AudioSegment from. :returns: An AudioSegment created from the given array. """ # interleave the audio across all channels and collapse if nparr.dtype.itemsize not in (1, 2, 4): raise ValueError("Numpy Array must contain 8, 16, or 32 bit values.") if len(nparr.shape) == 1: arrays = [nparr] elif len(nparr.shape) == 2: arrays = [nparr[i,:] for i in range(nparr.shape[0])] else: raise ValueError("Numpy Array must be one or two dimensional. Shape must be: (num_samples, num_channels).") interleaved = np.vstack(arrays).reshape((-1,), order='F') dubseg = pydub.AudioSegment(interleaved.tobytes(), frame_rate=framerate, sample_width=interleaved.dtype.itemsize, channels=len(interleaved.shape) ) return AudioSegment(dubseg, "") def silent(duration=1000, frame_rate=11025): """ Creates an AudioSegment object of the specified duration/frame_rate filled with digital silence. :param duration: The duration of the returned object in ms. :param frame_rate: The samples per second of the returned object. :returns: AudioSegment object filled with pure digital silence. """ seg = pydub.AudioSegment.silent(duration=duration, frame_rate=frame_rate) return AudioSegment(seg, "")
PyOpenGLExample/mouse.py
DazEB2/SimplePyScripts
117
12699800
<reponame>DazEB2/SimplePyScripts from OpenGL.GL import * from OpenGL.GLUT import * from OpenGL.GLU import * """ Mouse interaction This piece of code will capture mouse clicks by the user. Every time the user presses the left mouse the current point is pushed onto an array, when the right mouse button is pressed the last element is removed from the array. After a click a glutPostRedisplay() is called to trigger a call to the display function which creates a line strip out of all created points. http://www.de-brauwer.be/wiki/wikka.php?wakka=PyOpenGLMouse """ class Point: def __init__(self, x, y): self.x = x self.y = y points = [] def initFun(): glClearColor(1.0, 1.0, 1.0, 0.0) glColor3f(0.0, 0.0, 0.0) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluOrtho2D(0.0, 640.0, 0.0, 480.0) def displayFun(): global points glClear(GL_COLOR_BUFFER_BIT) glBegin(GL_LINE_STRIP) glColor3f(0, 0, 0) for p in points: glVertex2i(p.x, p.y) glEnd() glFlush() def mouseFun(button, state, x, y): global points if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN: p = Point(x, 480 - y) points.append(p) if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN: if points: points = points[:-1] glutPostRedisplay() if __name__ == '__main__': glutInit() glutInitWindowSize(640, 480) glutCreateWindow(b"Polyline") glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) glutDisplayFunc(displayFun) glutMouseFunc(mouseFun) initFun() glutMainLoop()
autotest/test_gwf_auxvars02.py
MODFLOW-USGS/modflow6
102
12699805
import os import pytest import sys import numpy as np try: import pymake except: msg = "Error. Pymake package is not available.\n" msg += "Try installing using the following command:\n" msg += " pip install https://github.com/modflowpy/pymake/zipball/master" raise Exception(msg) try: import flopy except: msg = "Error. FloPy package is not available.\n" msg += "Try installing using the following command:\n" msg += " pip install flopy" raise Exception(msg) from framework import testing_framework from simulation import Simulation ex = ["aux02"] exdirs = [] for s in ex: exdirs.append(os.path.join("temp", s)) def build_model(idx, dir): nlay, nrow, ncol = 1, 10, 10 nper = 3 perlen = [1.0, 1.0, 1.0] nstp = [10, 10, 10] tsmult = [1.0, 1.0, 1.0] lenx = 300.0 delr = delc = lenx / float(nrow) strt = 100.0 nouter, ninner = 100, 300 hclose, rclose, relax = 1e-9, 1e-3, 0.97 tdis_rc = [] for i in range(nper): tdis_rc.append((perlen[i], nstp[i], tsmult[i])) name = ex[idx] # build MODFLOW 6 files ws = dir sim = flopy.mf6.MFSimulation( sim_name=name, version="mf6", exe_name="mf6", sim_ws=ws ) # create tdis package tdis = flopy.mf6.ModflowTdis(sim, time_units="DAYS", nper=nper, perioddata=tdis_rc) # create gwf model gwf = flopy.mf6.ModflowGwf(sim, modelname=name) # create iterative model solution and register the gwf model with it ims = flopy.mf6.ModflowIms( sim, print_option="SUMMARY", outer_dvclose=hclose, outer_maximum=nouter, under_relaxation="DBD", inner_maximum=ninner, inner_dvclose=hclose, rcloserecord=rclose, linear_acceleration="BICGSTAB", scaling_method="NONE", reordering_method="NONE", relaxation_factor=relax, ) sim.register_ims_package(ims, [gwf.name]) dis = flopy.mf6.ModflowGwfdis( gwf, nlay=nlay, nrow=nrow, ncol=ncol, delr=delr, delc=delc, top=90.0, botm=0.0, ) # initial conditions ic = flopy.mf6.ModflowGwfic(gwf, strt=strt) # node property flow npf = flopy.mf6.ModflowGwfnpf(gwf, save_flows=True, icelltype=1, k=1.0, k33=0.01) # chd files chdlist0 = [] chdlist0.append([(0, 0, 0), 100.0] + [a for a in range(100)]) chdlist0.append([(0, nrow - 1, ncol - 1), 95.0] + [a for a in range(100)]) chdspdict = {0: chdlist0} chd = flopy.mf6.ModflowGwfchd( gwf, stress_period_data=chdspdict, save_flows=True, auxiliary=[f"aux{i}" for i in range(100)], pname="CHD-1", ) # output control oc = flopy.mf6.ModflowGwfoc( gwf, budget_filerecord="{}.bud".format(name), head_filerecord="{}.hds".format(name), headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")], saverecord=[("HEAD", "ALL"), ("BUDGET", "ALL")], printrecord=[("HEAD", "ALL"), ("BUDGET", "ALL")], filename="{}.oc".format(name), ) return sim, None def eval_model(sim): print("evaluating model...") # maw budget aux variables fpth = os.path.join(sim.simpath, "aux02.bud") bobj = flopy.utils.CellBudgetFile(fpth, precision="double") records = bobj.get_data(text="CHD") for r in records: for a in range(100): aname = f"AUX{a}" assert np.allclose(r[aname], a) return # - No need to change any code below @pytest.mark.parametrize( "idx, dir", list(enumerate(exdirs)), ) def test_mf6model(idx, dir): # initialize testing framework test = testing_framework() # build the model test.build_mf6_models(build_model, idx, dir) # run the test model test.run_mf6(Simulation(dir, exfunc=eval_model, idxsim=idx)) def main(): # initialize testing framework test = testing_framework() # run the test model for idx, dir in enumerate(exdirs): test.build_mf6_models(build_model, idx, dir) sim = Simulation(dir, exfunc=eval_model, idxsim=idx) test.run_mf6(sim) if __name__ == "__main__": # print message print("standalone run of {}".format(os.path.basename(__file__))) # run main routine main()
kernel_tuner/kernelbuilder.py
cffbots/kernel_tuner
104
12699806
import numpy as np from kernel_tuner import core from kernel_tuner.interface import Options, _kernel_options from kernel_tuner.integration import TuneResults class PythonKernel(object): def __init__(self, kernel_name, kernel_string, problem_size, arguments, params=None, inputs=None, outputs=None, device=0, platform=0, block_size_names=None, grid_div_x=None, grid_div_y=None, grid_div_z=None, verbose=True, lang=None, results_file=None): """ Construct Python helper object to compile and call the kernel from Python This object compiles a GPU kernel parameterized using the parameters in params. GPU memory is allocated for each argument using its size and type as listed in arguments. The object can be called directly as a function with the kernel arguments as function arguments. Kernel arguments marked as inputs will be copied to the GPU on every kernel launch. Only the kernel arguments marked as outputs will be returned, note that the result is always returned in a list, even when there is only one output. Most of the arguments to this function are the same as with tune_kernel or run_kernel in Kernel Tuner, and are therefore not duplicated here. The two new arguments are: :param inputs: a boolean list of length arguments to signal whether an argument is input to the kernel :type inputs: list(bool) :param outputs: a boolean list of length arguments to signal whether an argument is output of the kernel :type outputs: list(bool) """ #construct device interface kernel_source = core.KernelSource(kernel_name, kernel_string, lang) self.dev = core.DeviceInterface(kernel_source, device=device, quiet=True) if not params: params = {} #if results_file is passed use the results file to lookup tunable parameters if results_file: results = TuneResults(results_file) params.update(results.get_best_config(self.dev.name, problem_size)) self.params = params #construct kernel_options to hold information about the kernel opts = locals() kernel_options = Options([(k, opts[k]) for k in _kernel_options.keys() if k in opts.keys()]) #instantiate the kernel given the parameters in params self.kernel_instance = self.dev.create_kernel_instance(kernel_source, kernel_options, params, verbose) #compile the kernel self.func = self.dev.compile_kernel(self.kernel_instance, verbose) #setup GPU memory self.gpu_args = self.dev.ready_argument_list(arguments) if inputs: self.inputs = inputs else: self.inputs = [True for _ in arguments] if outputs: self.outputs = outputs else: self.outputs = [True for _ in arguments] def update_gpu_args(self, args): for i, arg in enumerate(args): if self.inputs[i]: if isinstance(args[i], np.ndarray): self.dev.dev.memcpy_htod(self.gpu_args[i], arg) else: self.gpu_args[i] = arg return self.gpu_args def get_gpu_result(self, args): results = [] for i, _ in enumerate(self.gpu_args): if self.outputs[i] and isinstance(args[i], np.ndarray): res = np.zeros_like(args[i]) self.dev.memcpy_dtoh(res, self.gpu_args[i]) results.append(res) return results def run_kernel(self, args): """Run the GPU kernel Copy the arguments marked as inputs to the GPU Call the GPU kernel Copy the arguments marked as outputs from the GPU Return the outputs in a list of numpy arrays :param args: A list with the kernel arguments as numpy arrays or numpy scalars :type args: list(np.ndarray or np.generic) """ self.update_gpu_args(args) self.dev.run_kernel(self.func, self.gpu_args, self.kernel_instance) return self.get_gpu_result(args) def __call__(self, *args): """Run the GPU kernel Copy the arguments marked as inputs to the GPU Call the GPU kernel Copy the arguments marked as outputs from the GPU Return the outputs in a list of numpy arrays :param *args: A variable number of kernel arguments as numpy arrays or numpy scalars :type *args: np.ndarray or np.generic """ return self.run_kernel(args) def __del__(self): if hasattr(self, 'dev'): self.dev.__exit__([None, None, None])
test/optimizers/test_optimizers.py
dynamicslab/pysindy
613
12699891
""" Unit tests for optimizers. """ import numpy as np import pytest from numpy.linalg import norm from scipy.integrate import odeint from sklearn.base import BaseEstimator from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import NotFittedError from sklearn.linear_model import ElasticNet from sklearn.linear_model import Lasso from sklearn.utils.validation import check_is_fitted from pysindy import FiniteDifference from pysindy import PolynomialLibrary from pysindy import SINDy from pysindy.feature_library import CustomLibrary from pysindy.optimizers import ConstrainedSR3 from pysindy.optimizers import SINDyOptimizer from pysindy.optimizers import SR3 from pysindy.optimizers import STLSQ from pysindy.optimizers import TrappingSR3 from pysindy.utils import supports_multiple_targets def lorenz(z, t): return 10 * (z[1] - z[0]), z[0] * (28 - z[2]) - z[1], z[0] * z[1] - 8 / 3 * z[2] class DummyLinearModel(BaseEstimator): # Does not natively support multiple targets def fit(self, x, y): self.coef_ = np.ones(x.shape[1]) self.intercept_ = 0 return self def predict(self, x): return x class DummyEmptyModel(BaseEstimator): # Does not have fit or predict methods def __init__(self): self.fit_intercept = False self.normalize = False class DummyModelNoCoef(BaseEstimator): # Does not set the coef_ attribute def fit(self, x, y): self.intercept_ = 0 return self def predict(self, x): return x @pytest.mark.parametrize( "cls, support", [ (Lasso, True), (STLSQ, True), (SR3, True), (ConstrainedSR3, True), (TrappingSR3, True), (DummyLinearModel, False), ], ) def test_supports_multiple_targets(cls, support): assert supports_multiple_targets(cls()) == support @pytest.fixture(params=["data_derivative_1d", "data_derivative_2d"]) def data(request): return request.getfixturevalue(request.param) @pytest.mark.parametrize( "optimizer", [ STLSQ(), SR3(), ConstrainedSR3(), TrappingSR3(), Lasso(fit_intercept=False), ElasticNet(fit_intercept=False), DummyLinearModel(), ], ) def test_fit(data, optimizer): x, x_dot = data if len(x.shape) == 1: x = x.reshape(-1, 1) opt = SINDyOptimizer(optimizer, unbias=False) opt.fit(x, x_dot) check_is_fitted(opt) assert opt.complexity >= 0 if len(x_dot.shape) > 1: assert opt.coef_.shape == (x.shape[1], x_dot.shape[1]) else: assert opt.coef_.shape == (1, x.shape[1]) @pytest.mark.parametrize( "optimizer", [STLSQ(), SR3()], ) def test_not_fitted(optimizer): with pytest.raises(NotFittedError): optimizer.predict(np.ones((1, 3))) @pytest.mark.parametrize("optimizer", [STLSQ(), SR3()]) def test_complexity_not_fitted(optimizer, data_derivative_2d): with pytest.raises(NotFittedError): optimizer.complexity x, _ = data_derivative_2d optimizer.fit(x, x) assert optimizer.complexity > 0 @pytest.mark.parametrize( "kwargs", [{"normalize": True}, {"fit_intercept": True}, {"copy_X": False}] ) def test_alternate_parameters(data_derivative_1d, kwargs): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) model = STLSQ(**kwargs) model.fit(x, x_dot) model.fit(x, x_dot, sample_weight=x[:, 0]) check_is_fitted(model) @pytest.mark.parametrize("optimizer", [STLSQ, SR3, ConstrainedSR3]) @pytest.mark.parametrize("params", [dict(threshold=-1), dict(max_iter=0)]) def test_general_bad_parameters(optimizer, params): with pytest.raises(ValueError): optimizer(**params) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) @pytest.mark.parametrize( "params", [dict(nu=0), dict(tol=0), dict(trimming_fraction=-1), dict(trimming_fraction=2)], ) def test_sr3_bad_parameters(optimizer, params): with pytest.raises(ValueError): optimizer(**params) @pytest.mark.parametrize( "params", [ dict(eta=-1), dict(tol=0), dict(tol_m=0), dict(eps_solver=0), dict(alpha_m=-1), dict(alpha_A=-1), dict(gamma=1), dict(evolve_w=False, relax_optim=False), dict(thresholder="l0"), dict(threshold=-1), dict(max_iter=0), dict(eta=10, alpha_m=20), dict(eta=10, alpha_A=20), ], ) def test_trapping_bad_parameters(params): with pytest.raises(ValueError): TrappingSR3(**params) @pytest.mark.parametrize( "params", [dict(PL=np.random.rand(3, 3, 3, 9)), dict(PQ=np.random.rand(3, 3, 3, 3, 9))], ) def test_trapping_bad_tensors(params): x = np.random.standard_normal((10, 9)) x_dot = np.random.standard_normal((10, 3)) with pytest.raises(ValueError): model = TrappingSR3(**params) model.fit(x, x_dot) @pytest.mark.parametrize( "params", [dict(PL=np.ones((3, 3, 3, 9)), PQ=np.ones((3, 3, 3, 3, 9)))], ) def test_trapping_quadratic_library(params): x = np.random.standard_normal((10, 3)) library_functions = [ lambda x: x, lambda x, y: x * y, lambda x: x ** 2, ] library_function_names = [ lambda x: str(x), lambda x, y: "{} * {}".format(x, y), lambda x: "{}^2".format(x), ] sindy_library = CustomLibrary( library_functions=library_functions, function_names=library_function_names ) opt = TrappingSR3(**params) model = SINDy(optimizer=opt, feature_library=sindy_library) model.fit(x) assert opt.PL.shape == (3, 3, 3, 9) assert opt.PQ.shape == (3, 3, 3, 3, 9) check_is_fitted(model) @pytest.mark.parametrize( "params", [dict(PL=np.ones((3, 3, 3, 9)), PQ=np.ones((3, 3, 3, 3, 9)))], ) def test_trapping_cubic_library(params): x = np.random.standard_normal((10, 3)) library_functions = [ lambda x: x, lambda x, y: x * y, lambda x: x ** 2, lambda x, y, z: x * y * z, lambda x, y: x ** 2 * y, lambda x: x ** 3, ] library_function_names = [ lambda x: str(x), lambda x, y: "{} * {}".format(x, y), lambda x: "{}^2".format(x), lambda x, y, z: "{} * {} * {}".format(x, y, z), lambda x, y: "{}^2 * {}".format(x, y), lambda x: "{}^3".format(x), ] sindy_library = CustomLibrary( library_functions=library_functions, function_names=library_function_names ) with pytest.raises(ValueError): opt = TrappingSR3(**params) model = SINDy(optimizer=opt, feature_library=sindy_library) model.fit(x) @pytest.mark.parametrize( "error, optimizer, params", [ (ValueError, STLSQ, dict(alpha=-1)), (NotImplementedError, SR3, dict(thresholder="l2")), (NotImplementedError, ConstrainedSR3, dict(thresholder="l2")), (ValueError, ConstrainedSR3, dict(thresholder="weighted_l0", thresholds=None)), (ValueError, ConstrainedSR3, dict(thresholder="weighted_l0", thresholds=None)), (ValueError, ConstrainedSR3, dict(thresholds=-np.ones((5, 5)))), ], ) def test_specific_bad_parameters(error, optimizer, params): with pytest.raises(error): optimizer(**params) def test_bad_optimizers(data_derivative_1d): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) with pytest.raises(AttributeError): opt = SINDyOptimizer(DummyEmptyModel()) with pytest.raises(AttributeError): opt = SINDyOptimizer(DummyModelNoCoef()) opt.fit(x, x_dot) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) def test_initial_guess_sr3(optimizer): x = np.random.standard_normal((10, 3)) x_dot = np.random.standard_normal((10, 2)) control_model = optimizer(max_iter=1).fit(x, x_dot) initial_guess = np.random.standard_normal((x_dot.shape[1], x.shape[1])) guess_model = optimizer(max_iter=1, initial_guess=initial_guess).fit(x, x_dot) assert np.any(np.not_equal(control_model.coef_, guess_model.coef_)) # The different capitalizations are intentional; # I want to make sure different versions are recognized @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) @pytest.mark.parametrize("thresholder", ["L0", "l1"]) def test_prox_functions(data_derivative_1d, optimizer, thresholder): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) model = optimizer(thresholder=thresholder) model.fit(x, x_dot) check_is_fitted(model) def test_cad_prox_function(data_derivative_1d): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) model = SR3(thresholder="cAd") model.fit(x, x_dot) check_is_fitted(model) @pytest.mark.parametrize("thresholder", ["weighted_l0", "weighted_l1"]) def test_weighted_prox_functions(data, thresholder): x, x_dot = data if x.ndim == 1: x = x.reshape(-1, 1) thresholds = np.ones((1, 1)) else: thresholds = np.ones((x_dot.shape[1], x.shape[1])) model = ConstrainedSR3(thresholder=thresholder, thresholds=thresholds) model.fit(x, x_dot) check_is_fitted(model) @pytest.mark.parametrize("thresholder", ["L0", "l1"]) def test_constrained_sr3_prox_functions(data_derivative_1d, thresholder): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) model = ConstrainedSR3(thresholder=thresholder) model.fit(x, x_dot) check_is_fitted(model) def test_unbias(data_derivative_1d): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) optimizer_biased = SINDyOptimizer( STLSQ(threshold=0.01, alpha=0.1, max_iter=1), unbias=False ) optimizer_biased.fit(x, x_dot) optimizer_unbiased = SINDyOptimizer( STLSQ(threshold=0.01, alpha=0.1, max_iter=1), unbias=True ) optimizer_unbiased.fit(x, x_dot) assert ( norm(optimizer_biased.coef_ - optimizer_unbiased.coef_) / norm(optimizer_unbiased.coef_) > 1e-9 ) def test_unbias_external(data_derivative_1d): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) optimizer_biased = SINDyOptimizer( Lasso(alpha=0.1, fit_intercept=False, max_iter=1), unbias=False ) optimizer_biased.fit(x, x_dot) optimizer_unbiased = SINDyOptimizer( Lasso(alpha=0.1, fit_intercept=False, max_iter=1), unbias=True ) optimizer_unbiased.fit(x, x_dot) assert ( norm(optimizer_biased.coef_ - optimizer_unbiased.coef_) / (norm(optimizer_unbiased.coef_) + 1e-5) > 1e-9 ) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) def test_sr3_trimming(optimizer, data_linear_oscillator_corrupted): X, X_dot, trimming_array = data_linear_oscillator_corrupted optimizer_without_trimming = SINDyOptimizer(optimizer(), unbias=False) optimizer_without_trimming.fit(X, X_dot) optimizer_trimming = SINDyOptimizer(optimizer(trimming_fraction=0.15), unbias=False) optimizer_trimming.fit(X, X_dot) # Check that trimming found the right samples to remove np.testing.assert_array_equal( optimizer_trimming.optimizer.trimming_array, trimming_array ) # Check that the coefficients found by the optimizer with trimming # are closer to the true coefficients than the coefficients found by the # optimizer without trimming true_coef = np.array([[-2.0, 0.0], [0.0, 1.0]]) assert norm(true_coef - optimizer_trimming.coef_) < norm( true_coef - optimizer_without_trimming.coef_ ) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) def test_sr3_disable_trimming(optimizer, data_linear_oscillator_corrupted): x, x_dot, _ = data_linear_oscillator_corrupted model_plain = optimizer() model_plain.fit(x, x_dot) model_trimming = optimizer(trimming_fraction=0.5) model_trimming.disable_trimming() model_trimming.fit(x, x_dot) np.testing.assert_allclose(model_plain.coef_, model_trimming.coef_) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) def test_sr3_enable_trimming(optimizer, data_linear_oscillator_corrupted): x, x_dot, _ = data_linear_oscillator_corrupted model_plain = optimizer() model_plain.enable_trimming(trimming_fraction=0.5) model_plain.fit(x, x_dot) model_trimming = optimizer(trimming_fraction=0.5) model_trimming.fit(x, x_dot) np.testing.assert_allclose(model_plain.coef_, model_trimming.coef_) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3, TrappingSR3]) def test_sr3_warn(optimizer, data_linear_oscillator_corrupted): x, x_dot, _ = data_linear_oscillator_corrupted model = optimizer(max_iter=1, tol=1e-10) with pytest.warns(ConvergenceWarning): model.fit(x, x_dot) @pytest.mark.parametrize( "optimizer", [ STLSQ(max_iter=1), SR3(max_iter=1), ConstrainedSR3(max_iter=1), TrappingSR3(max_iter=1), ], ) def test_fit_warn(data_derivative_1d, optimizer): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) with pytest.warns(ConvergenceWarning): optimizer.fit(x, x_dot) @pytest.mark.parametrize("optimizer", [ConstrainedSR3, TrappingSR3]) @pytest.mark.parametrize("target_value", [0, -1, 3]) def test_row_format_constraints(data_linear_combination, optimizer, target_value): # Solution is x_dot = x.dot(np.array([[1, 1, 0], [0, 1, 1]])) x, x_dot = data_linear_combination constraint_rhs = target_value * np.ones(2) constraint_lhs = np.zeros((2, x.shape[1] * x_dot.shape[1])) # Should force corresponding entries of coef_ to be target_value constraint_lhs[0, 0] = 1 constraint_lhs[1, 3] = 1 model = optimizer( constraint_lhs=constraint_lhs, constraint_rhs=constraint_rhs, constraint_order="feature", ) model.fit(x, x_dot) np.testing.assert_allclose( np.array([model.coef_[0, 0], model.coef_[1, 1]]), target_value, atol=1e-8 ) @pytest.mark.parametrize("optimizer", [ConstrainedSR3, TrappingSR3]) @pytest.mark.parametrize("target_value", [0, -1, 3]) def test_target_format_constraints(data_linear_combination, optimizer, target_value): x, x_dot = data_linear_combination constraint_rhs = target_value * np.ones(2) constraint_lhs = np.zeros((2, x.shape[1] * x_dot.shape[1])) # Should force corresponding entries of coef_ to be target_value constraint_lhs[0, 1] = 1 constraint_lhs[1, 4] = 1 model = optimizer(constraint_lhs=constraint_lhs, constraint_rhs=constraint_rhs) model.fit(x, x_dot) np.testing.assert_allclose(model.coef_[:, 1], target_value, atol=1e-8) @pytest.mark.parametrize("thresholds", [0.005, 0.05]) @pytest.mark.parametrize("relax_optim", [False, True]) @pytest.mark.parametrize("noise_levels", [0.0, 0.05, 0.5]) def test_trapping_inequality_constraints(thresholds, relax_optim, noise_levels): t = np.arange(0, 40, 0.05) x = odeint(lorenz, [-8, 8, 27], t) x = x + np.random.normal(0.0, noise_levels, x.shape) # if order is "feature" constraint_rhs = np.array([-10.0, -2.0]) constraint_matrix = np.zeros((2, 30)) constraint_matrix[0, 6] = 1.0 constraint_matrix[1, 17] = 1.0 feature_names = ["x", "y", "z"] opt = TrappingSR3( threshold=thresholds, constraint_lhs=constraint_matrix, constraint_rhs=constraint_rhs, constraint_order="feature", inequality_constraints=True, relax_optim=relax_optim, ) poly_lib = PolynomialLibrary(degree=2) model = SINDy( optimizer=opt, feature_library=poly_lib, differentiation_method=FiniteDifference(drop_endpoints=True), feature_names=feature_names, ) model.fit(x, t=t[1] - t[0]) assert np.all( np.dot(constraint_matrix, (model.coefficients()).flatten("F")) <= constraint_rhs ) or np.allclose( np.dot(constraint_matrix, (model.coefficients()).flatten("F")), constraint_rhs ) def test_inequality_constraints_reqs(): constraint_rhs = np.array([-10.0, -2.0]) constraint_matrix = np.zeros((2, 30)) constraint_matrix[0, 6] = 1.0 constraint_matrix[1, 17] = 1.0 with pytest.raises(ValueError): TrappingSR3( threshold=0.0, constraint_lhs=constraint_matrix, constraint_rhs=constraint_rhs, constraint_order="feature", inequality_constraints=True, relax_optim=True, )
rman_sg_nodes/rman_sg_emitter.py
N500/RenderManForBlender
432
12699922
from .rman_sg_node import RmanSgNode class RmanSgEmitter(RmanSgNode): def __init__(self, rman_scene, sg_node, db_name): super().__init__(rman_scene, sg_node, db_name) self.matrix_world = None self.npoints = -1 self.render_type = '' self.sg_particles_node = None @property def matrix_world(self): return self.__matrix_world @matrix_world.setter def matrix_world(self, mtx): self.__matrix_world = mtx @property def npoints(self): return self.__npoints @npoints.setter def npoints(self, npoints): self.__npoints = npoints @property def render_type(self): return self.__render_type @render_type.setter def render_type(self, render_type): self.__render_type = render_type
windows_packages_gpu/torch/utils/__init__.py
codeproject/DeepStack
353
12699928
from __future__ import absolute_import, division, print_function, unicode_literals from .throughput_benchmark import ThroughputBenchmark import os.path as _osp # Set the module for a given object for nicer printing def set_module(obj, mod): if not isinstance(mod, str): raise TypeError("The mod argument should be a string") obj.__module__ = mod #: Path to folder containing CMake definitions for Torch package cmake_prefix_path = _osp.join(_osp.dirname(_osp.dirname(__file__)), 'share', 'cmake')
analysis/regex_test.py
maxwellyin/arxiv-public-datasets
217
12699929
<gh_stars>100-1000 """ regex_test.py author: <NAME> date: 2019-03-16 This module samples the fulltext of the arxiv, pulls out some arxiv IDs, and then checks these IDs against valid ones in our set of metadata, producing a report of bad id's found so that we can improve the citation extraction. """ import os import re import numpy as np import arxiv_public_data.regex_arxiv as ra RE_FLEX = re.compile(ra.REGEX_ARXIV_FLEXIBLE) def strip_version(name): return name.split('v')[0] def format_cat(name): """ Strip subcategory, add hyphen to category if missing """ if '/' in name: # OLD ID, names contains subcategory catsubcat, aid = name.split('/') cat = catsubcat.split('.')[0] return ra.dashdict.get(cat, cat) + "/" + aid else: return name def zeropad_1501(name): """ Arxiv IDs after yymm=1501 are padded to 5 zeros """ if not '/' in name: # new ID yymm, num = name.split('.') if int(yymm) > 1500 and len(num) < 5: return yymm + ".0" + num return name def clean(name): funcs = [strip_version, format_cat, zeropad_1501] for func in funcs: name = func(name) return name def get_alltxt(directory='/pool0/arxiv/full-text'): out = [] for root, dirs, files in os.walk(directory): for f in files: if 'txt' in f: out.append(os.path.join(root, f)) return out def sample(out, num): return [out[s] for s in np.random.randint(0, len(out)-1, num)] def all_matches(filename, pattern=RE_FLEX): out = [] matches = pattern.findall(open(filename, 'r').read()) for match in matches: for group in match: if group: out.append(group) return out def all_matches_context(filename, pattern=RE_FLEX, pad=10): out = [] contents = open(filename, 'r').read() match = pattern.search(contents) while match is not None: s, e = match.start(), match.end() out.append(contents[max(s-pad,0):e+pad]) contents = contents[e:] match = pattern.search(contents) return out def test_samples(samples, valid_ids, directory='/pool0/arxiv/full-text', pattern=RE_FLEX, showpasses=False): failures = dict() n_matches = 0 n_failures = 0 for i, s in enumerate(samples): matches = all_matches(s, pattern) n_matches += len(matches) valid = [clean(m) in valid_ids for m in matches] if not all(valid): failures[s] = all_matches_context(s, RE_FLEX) print("{}: BAD match in {}".format(i, s)) for v, c in zip(valid, failures[s]): if not v: n_failures += 1 print("\t{}".format(c)) else: if showpasses: print("{}: {} had no match errors".format(i, s)) error_rate = n_failures/n_matches print("Error rate from {} matches is {}".format(n_matches, error_rate)) return failures if __name__=="__main__": from arxiv_public_data.oai_metadata import load_metadata md_file = 'data/oai-arxiv-metadata-2019-03-01.json.gz' valid_ids = [m['id'] for m in load_metadata(md_file)] samples = sample(get_alltxt(), 10000) failures = test_samples(samples, valid_ids)
rkqc/tools/gui/items/TransformationBasedSynthesisItem.py
clairechingching/ScaffCC
158
12699932
# RevKit: A Toolkit for Reversible Circuit Design (www.revkit.org) # Copyright (C) 2009-2011 The RevKit Developers <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from PyQt4.QtCore import SIGNAL, pyqtProperty from core.BaseItem import * from revkit import circuit, reed_muller_synthesis_func, swop, transformation_based_synthesis_func, gate_costs, quantum_costs, transistor_costs from helpers.RevKitHelper import * from ui.DesignerWidget import DesignerWidget from ui.TransformationBasedSynthesis import Ui_TransformationBasedSynthesis class TransformationBasedSynthesis( DesignerWidget ): def __init__( self, parent = None ): DesignerWidget.__init__( self, Ui_TransformationBasedSynthesis, parent ) self.connect( self.swop, SIGNAL( 'currentIndexChanged(int)' ), self.swopChanged ) def swopChanged( self, index ): self.cost_function.setEnabled( index > 0 ) self.cost_function_label.setEnabled( index > 0 ) @item( "Transformation-based Synthesis", requires = "Truth Table", provides = "Circuit", properties = [ "variant", "bidi_synthesis", "swop", "cost_function" ], widget = { 'class': TransformationBasedSynthesis, 'size': (300, 175) } ) class TransformationBasedSynthesisItem( BaseItem ): """This item provides the transformation-based synthesis method as well as the corresponding synthesis with output permutation method. The respective synthesis approach can be selected in the pull-down menu (in case of synthesis with output permutation additionally the optimization criteria can be defined). Furthermore, it can be specified whether bi-directional synthesis should be applied or not. After the item has been processed, the enlarged item reports the run-time needed to perform the synthesis.""" def onCreate( self ): self.setState( self.CONFIGURED ) def executeEvent( self, inputs ): circ = circuit() cf = [ gate_costs, quantum_costs, transistor_costs ][int( self.cost_function )]() synthesis = [ transformation_based_synthesis_func, reed_muller_synthesis_func ][int( self.variant )] res = swop( circ, inputs[0], enable = int( self.swop ) > 0, exhaustive = int( self.swop ) == 1, synthesis = synthesis( bidirectional = bool( int( self.bidi_synthesis ) ) ), cf = cf ) if type( res ) == dict: try: circ.circuit_name = inputs[0].name except: pass self.widget.runtime.setText( "%.2f s" % res['runtime'] ) circuit_add_runtime( circ, res['runtime'] ) else: return res return [ circ ] def onVariantChanged( self, value ): suffix = [ "TT", "RMS" ][int( value )] self.setText( "Transformation-based (%s)" % suffix )
sprocket/speech/synthesizer.py
zhouming-hfut/sprocket
500
12699941
# -*- coding: utf-8 -*- import numpy as np import pyworld import pysptk from pysptk.synthesis import MLSADF class Synthesizer(object): """ Speech synthesizer with several acoustic features Parameters ---------- fs: int, optional Sampling frequency Default set to 16000 fftl: int, optional Frame Length of STFT Default set to 1024 shiftms: int, optional Shift size for STFT Default set to 5 """ def __init__(self, fs=16000, fftl=1024, shiftms=5): self.fs = fs self.fftl = fftl self.shiftms = shiftms return def synthesis(self, f0, mcep, ap, rmcep=None, alpha=0.42): """synthesis generates waveform from F0, mcep, aperiodicity Parameters ---------- f0 : array, shape (`T`, `1`) array of F0 sequence mcep : array, shape (`T`, `dim`) array of mel-cepstrum sequence ap : array, shape (`T`, `fftlen / 2 + 1`) or (`T`, `dim_codeap`) array of aperiodicity or code aperiodicity rmcep : array, optional, shape (`T`, `dim`) array of reference mel-cepstrum sequence Default set to None alpha : int, optional Parameter of all-path transfer function Default set to 0.42 Returns ---------- wav: array, Synethesized waveform """ if rmcep is not None: # power modification mcep = mod_power(mcep, rmcep, alpha=alpha) if ap.shape[1] < self.fftl // 2 + 1: # decode codeap to ap ap = pyworld.decode_aperiodicity(ap, self.fs, self.fftl) # mcep into spc spc = pysptk.mc2sp(mcep, alpha, self.fftl) # generate waveform using world vocoder with f0, spc, ap wav = pyworld.synthesize(f0, spc, ap, self.fs, frame_period=self.shiftms) return wav def synthesis_diff(self, x, diffmcep, rmcep=None, alpha=0.42): """filtering with a differential mel-cesptrum Parameters ---------- x : array, shape (`samples`) array of waveform sequence diffmcep : array, shape (`T`, `dim`) array of differential mel-cepstrum sequence rmcep : array, shape (`T`, `dim`) array of reference mel-cepstrum sequence Default set to None alpha : float, optional Parameter of all-path transfer function Default set to 0.42 Return ---------- wav: array, shape (`samples`) Synethesized waveform """ x = x.astype(np.float64) dim = diffmcep.shape[1] - 1 shiftl = int(self.fs / 1000 * self.shiftms) if rmcep is not None: # power modification diffmcep = mod_power(rmcep + diffmcep, rmcep, alpha=alpha) - rmcep b = np.apply_along_axis(pysptk.mc2b, 1, diffmcep, alpha) assert np.isfinite(b).all() mlsa_fil = pysptk.synthesis.Synthesizer( MLSADF(dim, alpha=alpha), shiftl) wav = mlsa_fil.synthesis(x, b) return wav def synthesis_spc(self, f0, spc, ap): """synthesis generates waveform from F0, mcep, ap Parameters ---------- f0 : array, shape (`T`, `1`) array of F0 sequence spc : array, shape (`T`, `fftl // 2 + 1`) array of mel-cepstrum sequence ap : array, shape (`T`, `fftl // 2 + 1`) array of aperiodicity Return ------ wav: vector, shape (`samples`) Synethesized waveform """ # generate waveform using world vocoder with f0, spc, ap wav = pyworld.synthesize(f0, spc, ap, self.fs, frame_period=self.shiftms) return wav def mod_power(cvmcep, rmcep, alpha=0.42, irlen=1024): """Power modification based on inpulse responce Parameters ---------- cvmcep : array, shape (`T`, `dim`) array of converted mel-cepstrum rmcep : array, shape (`T`, `dim`) array of reference mel-cepstrum alpha : float, optional All-path filter transfer function Default set to 0.42 irlen : int, optional Length for IIR filter Default set to 1024 Return ------ modified_cvmcep : array, shape (`T`, `dim`) array of power modified converted mel-cepstrum """ if rmcep.shape != cvmcep.shape: raise ValueError("The shapes of the converted and \ reference mel-cepstrum are different: \ {} / {}".format(cvmcep.shape, rmcep.shape)) cv_e = pysptk.mc2e(cvmcep, alpha=alpha, irlen=irlen) r_e = pysptk.mc2e(rmcep, alpha=alpha, irlen=irlen) dpow = np.log(r_e / cv_e) / 2 modified_cvmcep = np.copy(cvmcep) modified_cvmcep[:, 0] += dpow return modified_cvmcep
pyabc/sampler/redis_eps/work.py
ICB-DCM/pyABC
144
12699943
"""Function to work on a population in dynamic mode.""" import sys from redis import StrictRedis import cloudpickle as pickle from time import sleep, time import logging from ..util import any_particle_preliminary from .cmd import ( N_EVAL, N_ACC, N_REQ, N_FAIL, ALL_ACCEPTED, N_WORKER, N_LOOKAHEAD_EVAL, SSA, QUEUE, BATCH_SIZE, IS_LOOK_AHEAD, ANALYSIS_ID, MAX_N_EVAL_LOOK_AHEAD, SLEEP_TIME, DONE_IXS, idfy) from .cli import KillHandler logger = logging.getLogger("ABC.Sampler") def work_on_population_dynamic( analysis_id: str, t: int, redis: StrictRedis, catch: bool, start_time: float, max_runtime_s: float, kill_handler: KillHandler): """Work on population in dynamic mode. Here the actual sampling happens. """ # short-form ana_id = analysis_id def get_int(var: str): """Convenience function to read an int variable.""" return int(redis.get(idfy(var, ana_id, t)).decode()) # set timers population_start_time = time() cumulative_simulation_time = 0 # read from pipeline pipeline = redis.pipeline() # extract bytes (ssa_b, batch_size_b, all_accepted_b, is_look_ahead_b, max_eval_look_ahead_b) = ( pipeline.get(idfy(SSA, ana_id, t)) .get(idfy(BATCH_SIZE, ana_id, t)) .get(idfy(ALL_ACCEPTED, ana_id, t)) .get(idfy(IS_LOOK_AHEAD, ana_id, t)) .get(idfy(MAX_N_EVAL_LOOK_AHEAD, ana_id, t)).execute()) # if the ssa object does not exist, something went wrong, return if ssa_b is None: return # notify sign up as worker n_worker = redis.incr(idfy(N_WORKER, ana_id, t)) logger.info( f"Begin generation {t}, I am worker {n_worker}") # only allow stopping the worker at particular points kill_handler.exit = False # convert from bytes simulate_one, sample_factory = pickle.loads(ssa_b) batch_size = int(batch_size_b.decode()) all_accepted = bool(int(all_accepted_b.decode())) is_look_ahead = bool(int(is_look_ahead_b.decode())) max_n_eval_look_ahead = float(max_eval_look_ahead_b.decode()) # counter for number of simulations internal_counter = 0 # create empty sample sample = sample_factory(is_look_ahead=is_look_ahead) # loop until no more particles required # all numbers are re-loaded in each iteration as they can dynamically # update while get_int(N_ACC) < get_int(N_REQ) and ( not all_accepted or get_int(N_EVAL) - get_int(N_FAIL) < get_int(N_REQ)): # check whether the process was externally asked to stop if kill_handler.killed: logger.info( f"Worker {n_worker} received stop signal. " "Terminating in the middle of a population " f"after {internal_counter} samples.") # notify quit redis.decr(idfy(N_WORKER, ana_id, t)) sys.exit(0) # check whether time's up current_runtime = time() - start_time if current_runtime > max_runtime_s: logger.info( f"Worker {n_worker} stops during population because " f"runtime {current_runtime} exceeds " f"max runtime {max_runtime_s}") # notify quit redis.decr(idfy(N_WORKER, ana_id, t)) # return to task queue return # check whether the analysis was terminated or replaced by a new one ana_id_new_b = redis.get(ANALYSIS_ID) if ana_id_new_b is None or str(ana_id_new_b.decode()) != ana_id: logger.info( f"Worker {n_worker} stops during population because " "the analysis seems to have been stopped.") # notify quit redis.decr(idfy(N_WORKER, ana_id, t)) # return to task queue return # check if the analysis left the look-ahead mode if is_look_ahead and not bool(int( redis.get(idfy(IS_LOOK_AHEAD, ana_id, t)).decode())): # reload SSA object ssa_b = redis.get(idfy(SSA, ana_id, t)) simulate_one, sample_factory = pickle.loads(ssa_b) # cache is_look_ahead = False # create new empty sample for clean split sample = sample_factory(is_look_ahead=is_look_ahead) # check if in look-ahead mode and should sleep if is_look_ahead and get_int(N_EVAL) >= max_n_eval_look_ahead: # sleep ... seconds sleep(SLEEP_TIME) continue # increase global evaluation counter (before simulation!) particle_max_id: int = redis.incr( idfy(N_EVAL, ana_id, t), batch_size) if is_look_ahead: # increment look-ahead evaluation counter redis.incr(idfy(N_LOOKAHEAD_EVAL, ana_id, t), batch_size) # timer for current simulation until batch_size acceptances this_sim_start = time() # collect accepted particles accepted_samples = [] # whether any particle in this iteration is preliminary any_prel = False # make batch_size attempts for n_batched in range(batch_size): # increase evaluation counter internal_counter += 1 try: # simulate new_sim = simulate_one() except Exception as e: logger.warning(f"Redis worker number {n_worker} failed. " f"Error message is: {e}") # increment the failure counter redis.incr(idfy(N_FAIL, ana_id, t), 1) if not catch: raise e continue # append to current sample sample.append(new_sim) # check for acceptance if new_sim.accepted: # The order of the IDs is reversed, but this does not # matter. Important is only that the IDs are specified # before the simulation starts # append to accepted list accepted_samples.append( pickle.dumps((particle_max_id - n_batched, sample))) any_prel = any_prel or any_particle_preliminary(sample) # initialize new sample sample = sample_factory(is_look_ahead=is_look_ahead) # update total simulation-specific time cumulative_simulation_time += time() - this_sim_start # new pipeline pipeline = redis.pipeline() # push to pipeline if at least one sample got accepted if len(accepted_samples) > 0: # update particles counter if nothing is preliminary, # otherwise final acceptance is done by the sampler if not any_prel: pipeline.incr(idfy(N_ACC, ana_id, t), len(accepted_samples)) # note: samples are appended 1-by-1 pipeline.rpush(idfy(QUEUE, ana_id, t), *accepted_samples) # append to list of done simulations pipeline.rpush( idfy(DONE_IXS, ana_id, t), *range(particle_max_id - batch_size + 1, particle_max_id + 1), ) # execute all commands pipeline.execute() # end of sampling loop # notify quit redis.decr(idfy(N_WORKER, ana_id, t)) kill_handler.exit = True population_total_time = time() - population_start_time logger.info( f"Finished generation {t}, did {internal_counter} samples. " f"Simulation time: {cumulative_simulation_time:.2f}s, " f"total time {population_total_time:.2f}.")
opytimizer/optimizers/swarm/pso.py
gugarosa/opytimizer
528
12700032
<reponame>gugarosa/opytimizer """Particle Swarm Optimization-based algorithms. """ import copy import numpy as np import opytimizer.math.random as r import opytimizer.utils.constant as c import opytimizer.utils.exception as e import opytimizer.utils.logging as l from opytimizer.core import Optimizer logger = l.get_logger(__name__) class PSO(Optimizer): """A PSO class, inherited from Optimizer. This is the designed class to define PSO-related variables and methods. References: <NAME>, <NAME> and <NAME>. Swarm intelligence. Artificial Intelligence (2001). """ def __init__(self, params=None): """Initialization method. Args: params (dict): Contains key-value parameters to the meta-heuristics. """ logger.info('Overriding class: Optimizer -> PSO.') # Overrides its parent class with the receiving params super(PSO, self).__init__() # Inertia weight self.w = 0.7 # Cognitive constant self.c1 = 1.7 # Social constant self.c2 = 1.7 # Builds the class self.build(params) logger.info('Class overrided.') @property def w(self): """float: Inertia weight. """ return self._w @w.setter def w(self, w): if not isinstance(w, (float, int)): raise e.TypeError('`w` should be a float or integer') if w < 0: raise e.ValueError('`w` should be >= 0') self._w = w @property def c1(self): """float: Cognitive constant. """ return self._c1 @c1.setter def c1(self, c1): if not isinstance(c1, (float, int)): raise e.TypeError('`c1` should be a float or integer') if c1 < 0: raise e.ValueError('`c1` should be >= 0') self._c1 = c1 @property def c2(self): """float: Social constant. """ return self._c2 @c2.setter def c2(self, c2): if not isinstance(c2, (float, int)): raise e.TypeError('`c2` should be a float or integer') if c2 < 0: raise e.ValueError('`c2` should be >= 0') self._c2 = c2 @property def local_position(self): """np.array: Array of velocities. """ return self._local_position @local_position.setter def local_position(self, local_position): if not isinstance(local_position, np.ndarray): raise e.TypeError('`local_position` should be a numpy array') self._local_position = local_position @property def velocity(self): """np.array: Array of velocities. """ return self._velocity @velocity.setter def velocity(self, velocity): if not isinstance(velocity, np.ndarray): raise e.TypeError('`velocity` should be a numpy array') self._velocity = velocity def compile(self, space): """Compiles additional information that is used by this optimizer. Args: space (Space): A Space object containing meta-information. """ # Arrays of local positions and velocities self.local_position = np.zeros((space.n_agents, space.n_variables, space.n_dimensions)) self.velocity = np.zeros((space.n_agents, space.n_variables, space.n_dimensions)) def evaluate(self, space, function): """Evaluates the search space according to the objective function. Args: space (Space): A Space object that will be evaluated. function (Function): A Function object that will be used as the objective function. """ # Iterates through all agents for i, agent in enumerate(space.agents): # Calculates the fitness value of current agent fit = function(agent.position) # If fitness is better than agent's best fit if fit < agent.fit: # Updates its current fitness to the newer one agent.fit = fit # Also updates the local best position to current's agent position self.local_position[i] = copy.deepcopy(agent.position) # If agent's fitness is better than global fitness if agent.fit < space.best_agent.fit: # Makes a deep copy of agent's local best position and fitness to the best agent space.best_agent.position = copy.deepcopy(self.local_position[i]) space.best_agent.fit = copy.deepcopy(agent.fit) def update(self, space): """Wraps Particle Swarm Optimization over all agents and variables. Args: space (Space): Space containing agents and update-related information. """ # Iterates through all agents for i, agent in enumerate(space.agents): # Generates random numbers r1 = r.generate_uniform_random_number() r2 = r.generate_uniform_random_number() # Updates agent's velocity (p. 294) self.velocity[i] = self.w * self.velocity[i] + \ self.c1 * r1 * (self.local_position[i] - agent.position) + \ self.c2 * r2 * (space.best_agent.position - agent.position) # Updates agent's position (p. 294) agent.position += self.velocity[i] class AIWPSO(PSO): """An AIWPSO class, inherited from PSO. This is the designed class to define AIWPSO-related variables and methods. References: <NAME>, <NAME> and <NAME>. A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing (2011). """ def __init__(self, params=None): """Initialization method. Args: params (dict): Contains key-value parameters to the meta-heuristics. """ logger.info('Overriding class: PSO -> AIWPSO.') # Minimum inertia weight self.w_min = 0.1 # Maximum inertia weight self.w_max = 0.9 # Overrides its parent class with the receiving params super(AIWPSO, self).__init__(params) logger.info('Class overrided.') @property def w_min(self): """float: Minimum inertia weight. """ return self._w_min @w_min.setter def w_min(self, w_min): if not isinstance(w_min, (float, int)): raise e.TypeError('`w_min` should be a float or integer') if w_min < 0: raise e.ValueError('`w_min` should be >= 0') self._w_min = w_min @property def w_max(self): """float: Maximum inertia weight. """ return self._w_max @w_max.setter def w_max(self, w_max): if not isinstance(w_max, (float, int)): raise e.TypeError('`w_max` should be a float or integer') if w_max < 0: raise e.ValueError('`w_max` should be >= 0') if w_max < self.w_min: raise e.ValueError('`w_max` should be >= `w_min`') self._w_max = w_max @property def fitness(self): """list: List of fitnesses. """ return self._fitness @fitness.setter def fitness(self, fitness): if not isinstance(fitness, list): raise e.TypeError('`fitness` should be a list') self._fitness = fitness def _compute_success(self, agents): """Computes the particles' success for updating inertia weight (eq. 16). Args: agents (list): List of agents. """ # Initial counter p = 0 # Iterates through every agent for i, agent in enumerate(agents): # If current agent fitness is smaller than its best if agent.fit < self.fitness[i]: # Increments the counter p += 1 # Replaces fitness with current agent's fitness self.fitness[i] = agent.fit # Update inertia weight value self.w = (self.w_max - self.w_min) * (p / len(agents)) + self.w_min def update(self, space, iteration): """Wraps Adaptive Inertia Weight Particle Swarm Optimization over all agents and variables. Args: space (Space): Space containing agents and update-related information. iteration (int): Current iteration. """ # Checks if it is the first iteration if iteration == 0: # Creates a list of initial fitnesses self.fitness = [agent.fit for agent in space.agents] # Iterates through all agents for i, agent in enumerate(space.agents): # Generates random numbers r1 = r.generate_uniform_random_number() r2 = r.generate_uniform_random_number() # Updates agent's velocity self.velocity[i] = self.w * self.velocity[i] + \ self.c1 * r1 * (self.local_position[i] - agent.position) + \ self.c2 * r2 * (space.best_agent.position - agent.position) # Updates agent's position agent.position += self.velocity[i] # Computing particle's success and updating inertia weight self._compute_success(space.agents) class RPSO(PSO): """An RPSO class, inherited from Optimizer. This is the designed class to define RPSO-related variables and methods. References: <NAME>, <NAME>, <NAME>, <NAME> and <NAME>. Harnessing Particle Swarm Optimization Through Relativistic Velocity. IEEE Congress on Evolutionary Computation (2020). """ def __init__(self, params=None): """Initialization method. Args: params (dict): Contains key-value parameters to the meta-heuristics. """ logger.info('Overriding class: PSO -> RPSO.') # Overrides its parent class with the receiving params super(RPSO, self).__init__(params) logger.info('Class overrided.') @property def mass(self): """np.array: Array of masses. """ return self._mass @mass.setter def mass(self, mass): if not isinstance(mass, np.ndarray): raise e.TypeError('`mass` should be a numpy array') self._mass = mass def compile(self, space): """Compiles additional information that is used by this optimizer. Args: space (Space): A Space object containing meta-information. """ # Arrays of local positions, velocities and masses self.local_position = np.zeros((space.n_agents, space.n_variables, space.n_dimensions)) self.velocity = np.zeros((space.n_agents, space.n_variables, space.n_dimensions)) self.mass = r.generate_uniform_random_number(size=(space.n_agents, space.n_variables, space.n_dimensions)) def update(self, space): """Wraps Relativistic Particle Swarm Optimization over all agents and variables. Args: space (Space): Space containing agents and update-related information. """ # Calculates the maximum velocity max_velocity = np.max(self.velocity) # Iterates through all agents for i, agent in enumerate(space.agents): # Generates rnadom number r1 = r.generate_uniform_random_number() r2 = r.generate_uniform_random_number() # Updates current agent velocity (eq. 11) gamma = 1 / np.sqrt(1 - (max_velocity ** 2 / c.LIGHT_SPEED ** 2)) self.velocity[i] = self.mass[i] * self.velocity[i] * gamma + \ self.c1 * r1 * (self.local_position[i] - agent.position) + \ self.c2 * r2 * (space.best_agent.position - agent.position) # Updates current agent position agent.position += self.velocity[i] class SAVPSO(PSO): """An SAVPSO class, inherited from Optimizer. This is the designed class to define SAVPSO-related variables and methods. References: <NAME> and <NAME>. Self-adaptive velocity particle swarm optimization for solving constrained optimization problems. Journal of global optimization (2008). """ def __init__(self, params=None): """Initialization method. Args: params (dict): Contains key-value parameters to the meta-heuristics. """ logger.info('Overriding class: PSO -> SAVPSO.') # Overrides its parent class with the receiving params super(SAVPSO, self).__init__(params) logger.info('Class overrided.') def update(self, space): """Wraps Self-adaptive Velocity Particle Swarm Optimization over all agents and variables. Args: space (Space): Space containing agents and update-related information. """ # Creates an array of positions positions = np.zeros((space.agents[0].position.shape[0], space.agents[0].position.shape[1])) # For every agent for agent in space.agents: # Sums up its position positions += agent.position # Divides by the number of agents positions /= len(space.agents) # Iterates through all agents for i, agent in enumerate(space.agents): # Generates a random index for selecting an agent idx = r.generate_integer_random_number(0, len(space.agents)) # Updates current agent's velocity (eq. 8) r1 = r.generate_uniform_random_number() self.velocity[i] = self.w * np.fabs(self.local_position[idx] - self.local_position[i]) * \ np.sign(self.velocity[i]) + r1 * (self.local_position[i] - agent.position) + \ (1 - r1) * (space.best_agent.position - agent.position) # Updates current agent's position agent.position += self.velocity[i] # For every decision variable for j in range(agent.n_variables): # Generates a random number r4 = r.generate_uniform_random_number(0, 1) # If position is greater than upper bound if agent.position[j] > agent.ub[j]: # Replaces its value agent.position[j] = positions[j] + 1 * r4 * (agent.ub[j] - positions[j]) # If position is smaller than lower bound if agent.position[j] < agent.lb[j]: # Replaces its value agent.position[j] = positions[j] + 1 * r4 * (agent.lb[j] - positions[j]) class VPSO(PSO): """A VPSO class, inherited from Optimizer. This is the designed class to define VPSO-related variables and methods. References: <NAME>. Vertical particle swarm optimization algorithm and its application in soft-sensor modeling. International Conference on Machine Learning and Cybernetics (2007). """ def __init__(self, params=None): """Initialization method. Args: params (dict): Contains key-value parameters to the meta-heuristics. """ logger.info('Overriding class: PSO -> VPSO.') # Overrides its parent class with the receiving params super(VPSO, self).__init__(params) logger.info('Class overrided.') @property def v_velocity(self): """np.array: Array of vertical velocities. """ return self._v_velocity @v_velocity.setter def v_velocity(self, v_velocity): if not isinstance(v_velocity, np.ndarray): raise e.TypeError('`v_velocity` should be a numpy array') self._v_velocity = v_velocity def compile(self, space): """Compiles additional information that is used by this optimizer. Args: space (Space): A Space object containing meta-information. """ # Arrays of local positions, velocities and vertical velocities self.local_position = np.zeros((space.n_agents, space.n_variables, space.n_dimensions)) self.velocity = np.zeros((space.n_agents, space.n_variables, space.n_dimensions)) self.v_velocity = np.ones((space.n_agents, space.n_variables, space.n_dimensions)) def update(self, space): """Wraps Vertical Particle Swarm Optimization over all agents and variables. Args: space (Space): Space containing agents and update-related information. """ # Iterates through all agents for i, agent in enumerate(space.agents): # Generates uniform random numbers r1 = r.generate_uniform_random_number() r2 = r.generate_uniform_random_number() # Updates current agent velocity (eq. 3) self.velocity[i] = self.w * self.velocity[i] + self.c1 * r1 * (self.local_position[i] - agent.position) + \ self.c2 * r2 * (space.best_agent.position - agent.position) # Updates current agent vertical velocity (eq. 4) self.v_velocity[i] -= (np.dot(self.velocity[i].T, self.v_velocity[i]) / (np.dot(self.velocity[i].T, self.velocity[i]) + c.EPSILON)) * self.velocity[i] # Updates current agent position (eq. 5) r1 = r.generate_uniform_random_number() agent.position += r1 * self.velocity[i] + (1 - r1) * self.v_velocity[i]
effdet/data/dataset.py
AgentVi/efficientdet-pytorch
1,386
12700034
<gh_stars>1000+ """ Detection dataset Hacked together by <NAME> """ import torch.utils.data as data import numpy as np from PIL import Image from .parsers import create_parser class DetectionDatset(data.Dataset): """`Object Detection Dataset. Use with parsers for COCO, VOC, and OpenImages. Args: parser (string, Parser): transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.ToTensor`` """ def __init__(self, data_dir, parser=None, parser_kwargs=None, transform=None): super(DetectionDatset, self).__init__() parser_kwargs = parser_kwargs or {} self.data_dir = data_dir if isinstance(parser, str): self._parser = create_parser(parser, **parser_kwargs) else: assert parser is not None and len(parser.img_ids) self._parser = parser self._transform = transform def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, annotations (target)). """ img_info = self._parser.img_infos[index] target = dict(img_idx=index, img_size=(img_info['width'], img_info['height'])) if self._parser.has_labels: ann = self._parser.get_ann_info(index) target.update(ann) img_path = self.data_dir / img_info['file_name'] img = Image.open(img_path).convert('RGB') if self.transform is not None: img, target = self.transform(img, target) return img, target def __len__(self): return len(self._parser.img_ids) @property def parser(self): return self._parser @property def transform(self): return self._transform @transform.setter def transform(self, t): self._transform = t class SkipSubset(data.Dataset): r""" Subset of a dataset at specified indices. Arguments: dataset (Dataset): The whole Dataset n (int): skip rate (select every nth) """ def __init__(self, dataset, n=2): self.dataset = dataset assert n >= 1 self.indices = np.arange(len(dataset))[::n] def __getitem__(self, idx): return self.dataset[self.indices[idx]] def __len__(self): return len(self.indices) @property def parser(self): return self.dataset.parser @property def transform(self): return self.dataset.transform @transform.setter def transform(self, t): self.dataset.transform = t
zentral/contrib/santa/migrations/0022_auto_20210121_1745.py
gwhitehawk/zentral
634
12700061
# Generated by Django 2.2.17 on 2021-01-21 17:45 from django.db import migrations POLICY_DICT = { "BLACKLIST": 2, "WHITELIST": 1, "SILENT_BLACKLIST": 3, } def convert_santa_probes(apps, schema_editor): ProbeSource = apps.get_model("probes", "ProbeSource") Tag = apps.get_model("inventory", "Tag") Configuration = apps.get_model("santa", "Configuration") Rule = apps.get_model("santa", "Rule") Target = apps.get_model("santa", "Target") configurations = list(Configuration.objects.all()) if not configurations: return for ps in ProbeSource.objects.filter(model="SantaProbe", status="ACTIVE"): body = ps.body if not body: continue rules = body.get("rules", []) if not rules: continue tag_ids = set([]) for inv_filter in body.get("filters", {}).get("inventory", []): for tag_id in inv_filter.get("tag_ids", []): tag_ids.add(tag_id) tags = [] if tag_ids: tags = list(Tag.objects.filter(pk__in=tag_ids)) for rule in rules: policy = rule.get("policy") if policy == "REMOVE": continue defaults = {} try: defaults["policy"] = POLICY_DICT[policy] except KeyError: continue custom_msg = rule.get("custom_msg") if custom_msg: defaults["custom_msg"] = custom_msg else: defaults["custom_msg"] = "" target_type = rule.get("rule_type") if target_type not in ("CERTIFICATE", "BINARY"): continue sha256 = rule.get("sha256") if not sha256: continue target, _ = Target.objects.get_or_create(type=target_type, sha256=sha256) for configuration in configurations: r, _ = Rule.objects.update_or_create(configuration=configuration, target=target, defaults=defaults) for tag in tags: r.tags.add(tag) ProbeSource.objects.filter(model="SantaProbe").delete() class Migration(migrations.Migration): dependencies = [ ('santa', '0021_delete_collectedapplication'), ] operations = [ migrations.RunPython(convert_santa_probes), ]
third_party/catapult/experimental/qbot/qbot/api.py
zipated/src
2,151
12700083
<reponame>zipated/src # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import httplib2 import json from oauth2client import service_account # pylint: disable=no-name-in-module import os import sys DEFAULT_SCOPES = ['https://www.googleapis.com/auth/userinfo.email'] MILO_ENDPOINT = 'https://luci-milo.appspot.com/prpc/milo.Buildbot/' LOGDOG_ENDPOINT = 'https://luci-logdog.appspot.com/prpc/logdog.Logs/' class _MiloLogdogConfig(object): """Config class used to hold credentials shared by all API resquests.""" credentials = None class RequestError(Exception): pass def IsOkStatus(status): return 200 <= int(status) <= 299 def SetCredentials(json_keyfile, scopes=None): """Configure the credentials used to access the milo/logdog API.""" filepath = os.path.expanduser(json_keyfile) if not os.path.isfile(filepath): sys.stderr.write('Credentials not found: %s\n' % json_keyfile) sys.stderr.write('You need a json keyfile for a service account with ' 'milo/logdog access.\n') sys.exit(1) if scopes is None: scopes = DEFAULT_SCOPES _MiloLogdogConfig.credentials = ( service_account.ServiceAccountCredentials.from_json_keyfile_name( filepath, scopes)) def _Request(url, params): if _MiloLogdogConfig.credentials is None: # Try to use some default credentials if they haven't been explicitly set. SetCredentials('~/.default_service_credentials.json') http = _MiloLogdogConfig.credentials.authorize(httplib2.Http()) body = json.dumps(params).encode('utf-8') response, content = http.request(url, 'POST', body, headers={ 'Accept': 'application/json', 'Content-Type': 'application/json'}) if not IsOkStatus(response['status']): raise RequestError('Server returned %s response' % response['status']) # Need to skip over the 4 characters jsonp header. return json.loads(content[4:].decode('utf-8')) def MiloRequest(method, params): return _Request(MILO_ENDPOINT + method, params) def LogdogRequest(method, params): return _Request(LOGDOG_ENDPOINT + method, params)
lib/python/treadmill/cli/run.py
krcooke/treadmill
133
12700085
"""Manage Treadmill app manifest. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import os import shlex import click import six from six.moves import urllib_parse from treadmill import cli from treadmill import context from treadmill import restclient from treadmill import yamlwrapper as yaml _LOGGER = logging.getLogger(__name__) _DEFAULT_MEM = '100M' _DEFAULT_DISK = '100M' _DEFAULT_CPU = '10%' def _run(apis, count, manifest, memory, cpu, disk, tickets, traits, service, restart_limit, restart_interval, endpoint, debug, debug_services, appname, command): """Run Treadmill app.""" # too many branches # # pylint: disable=R0912 app = {} if manifest: app = yaml.load(stream=manifest) if endpoint: app['endpoints'] = [{'name': name, 'port': port} for name, port in endpoint] if tickets: app['tickets'] = tickets if traits: app['traits'] = traits if command: if not service: # Take the basename of the command, always assume / on all # platforms. service = os.path.basename(shlex.split(command[0])[0]) services_dict = {svc['name']: svc for svc in app.get('services', [])} if service: if service not in services_dict: services_dict[service] = { 'name': service, 'restart': { 'limit': restart_limit, 'interval': restart_interval, } } if command: services_dict[service]['command'] = ' '.join(list(command)) if services_dict: app['services'] = list(six.itervalues(services_dict)) if app: # Ensure defaults are set. if 'memory' not in app: app['memory'] = _DEFAULT_MEM if 'disk' not in app: app['disk'] = _DEFAULT_DISK if 'cpu' not in app: app['cpu'] = _DEFAULT_CPU # Override if requested. if memory is not None: app['memory'] = str(memory) if disk is not None: app['disk'] = str(disk) if cpu is not None: app['cpu'] = str(cpu) url = '/instance/' + appname query = {} if count: query['count'] = count if debug: query['debug'] = 'true' if debug_services: query['debug_services'] = ','.join(debug_services) if query: url = '{}?{}'.format( url, urllib_parse.urlencode(query) ) response = restclient.post(apis, url, payload=app) for instance_id in response.json()['instances']: cli.out(instance_id) def init(): """Return top level command handler.""" @click.command() @click.option('--api-service-principal', required=False, envvar='TREADMILL_API_SERVICE_PRINCIPAL', callback=cli.handle_context_opt, help='API service principal for SPNEGO auth (default HTTP)', expose_value=False) @click.option('--cell', required=True, envvar='TREADMILL_CELL', callback=cli.handle_context_opt, expose_value=False) @click.option('--count', help='Number of instances to start', default=1) @click.option('-m', '--manifest', help='App manifest file (stream)', type=click.File('rb')) @click.option('--memory', help='Memory demand, default %s.' % _DEFAULT_MEM, metavar='G|M', callback=cli.validate_memory) @click.option('--cpu', help='CPU demand, default %s.' % _DEFAULT_CPU, metavar='XX%', callback=cli.validate_cpu) @click.option('--disk', help='Disk demand, default %s.' % _DEFAULT_DISK, metavar='G|M', callback=cli.validate_disk) @click.option('--tickets', help='Tickets.', type=cli.LIST) @click.option('--traits', help='Traits.', type=cli.LIST) @click.option('--service', help='Service name.', type=str) @click.option('--restart-limit', type=int, default=0, help='Service restart limit.') @click.option('--restart-interval', type=int, default=60, help='Service restart limit interval.') @click.option('--endpoint', help='Network endpoint.', type=(str, int), multiple=True) @click.option('--debug/--no-debug', help='Do not start services.', is_flag=True, default=False) @click.option('--debug-services', help='Do not start specified services.', type=cli.LIST) @click.argument('appname') @click.argument('command', nargs=-1) @cli.handle_exceptions(restclient.CLI_REST_EXCEPTIONS) def run(count, manifest, memory, cpu, disk, tickets, traits, service, restart_limit, restart_interval, endpoint, debug, debug_services, appname, command): """Schedule Treadmill app. With no options, will schedule already configured app, fail if app is not configured. When manifest (or other options) are specified, they will be merged on top of existing manifest if it exists. """ apis = context.GLOBAL.cell_api() return _run( apis, count, manifest, memory, cpu, disk, tickets, traits, service, restart_limit, restart_interval, endpoint, debug, debug_services, appname, command) return run
pyexcel/internal/utils.py
quis/pyexcel
1,045
12700105
def default_getter(attribute=None): """a default method for missing renderer method for example, the support to write data in a specific file type is missing but the support to read data exists """ def none_presenter(_, **__): """docstring is assigned a few lines down the line""" raise NotImplementedError("%s getter is not defined." % attribute) none_presenter.__doc__ = "%s getter is not defined." % attribute return none_presenter def default_setter(attribute=None): """a default method for missing parser method for example, the support to read data in a specific file type is missing but the support to write data exists """ def none_importer(_x, _y, **_z): """docstring is assigned a few lines down the line""" raise NotImplementedError("%s setter is not defined." % attribute) none_importer.__doc__ = "%s setter is not defined." % attribute return none_importer def make_a_property( cls, attribute, doc_string, getter_func=default_getter, setter_func=default_setter, ): """ create custom attributes for each class """ getter = getter_func(attribute) setter = setter_func(attribute) attribute_property = property( # note: # without fget, fset, pypy 5.4.0 crashes randomly. fget=getter, fset=setter, doc=doc_string, ) if "." in attribute: attribute = attribute.replace(".", "_") else: attribute = attribute setattr(cls, attribute, attribute_property) setattr(cls, "get_%s" % attribute, getter) setattr(cls, "set_%s" % attribute, setter)
aliyun-python-sdk-moguan-sdk/aliyunsdkmoguan_sdk/request/v20210415/RegisterDeviceRequest.py
yndu13/aliyun-openapi-python-sdk
1,001
12700121
<reponame>yndu13/aliyun-openapi-python-sdk # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkmoguan_sdk.endpoint import endpoint_data class RegisterDeviceRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'moguan-sdk', '2021-04-15', 'RegisterDevice') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_UserDeviceId(self): return self.get_body_params().get('UserDeviceId') def set_UserDeviceId(self,UserDeviceId): self.add_body_params('UserDeviceId', UserDeviceId) def get_Extend(self): return self.get_body_params().get('Extend') def set_Extend(self,Extend): self.add_body_params('Extend', Extend) def get_SdkCode(self): return self.get_body_params().get('SdkCode') def set_SdkCode(self,SdkCode): self.add_body_params('SdkCode', SdkCode) def get_AppKey(self): return self.get_body_params().get('AppKey') def set_AppKey(self,AppKey): self.add_body_params('AppKey', AppKey) def get_DeviceId(self): return self.get_body_params().get('DeviceId') def set_DeviceId(self,DeviceId): self.add_body_params('DeviceId', DeviceId)
dialogue-engine/test/programytest/rdf/test_creation.py
cotobadesign/cotoba-agent-oss
104
12700160
<gh_stars>100-1000 """ Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unittest import os from programy.storage.stores.file.config import FileStorageConfiguration from programy.storage.stores.file.engine import FileStorageEngine from programy.storage.stores.file.config import FileStoreConfiguration from programy.storage.factory import StorageFactory from programy.rdf.collection import RDFCollection class RDFCollectionCreationTests(unittest.TestCase): def test_add_collection(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACCOUNT", "hasSize", "0", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) def test_add_multi_object_collection(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACTOR", "ISA", "PERSON", "TEST") collection.add_entity("ACTOR", "ISA", "MAN", "TEST") self.assertTrue(collection.has_subject('ACTOR')) self.assertTrue(collection.has_predicate('ACTOR', 'ISA')) self.assertTrue(collection.has_object('ACTOR', 'ISA', "PERSON")) self.assertTrue(collection.has_object('ACTOR', 'ISA', "MAN")) def test_delete_collection_subject(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACCOUNT", "hasSize", "0", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) collection.delete_entity("ACCOUNT") self.assertFalse(collection.has_subject('ACCOUNT')) def test_delete_collection_subject_predicate(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACCOUNT", "hasSize", "0", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) collection.delete_entity("ACCOUNT", "hasSize") self.assertFalse(collection.has_subject('ACCOUNT')) def test_delete_collection_subject_predicate_object(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACCOUNT", "hasSize", "0", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) collection.delete_entity("ACCOUNT", "hasSize", "0") self.assertFalse(collection.has_subject('ACCOUNT')) self.assertFalse(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertFalse(collection.has_object('ACCOUNT', 'hasSize', "0")) def test_delete_collection_subject_predicate_diff_object(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACCOUNT", "hasSize", "0", "BANKING", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) collection.delete_entity("ACCOUNT", "hasSize", "1") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) def test_delete_collection_diff_subject(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACCOUNT", "hasSize", "0", "BANKING", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) collection.delete_entity("ACCOUNT1", "hasSize", "0") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) def test_delete_collection_diff_predicate(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACCOUNT", "hasSize", "0", "BANKING", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) collection.delete_entity("ACCOUNT", "hasSize1", "1") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) def test_delete_collection_diff_predicate_none_obj(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACCOUNT", "hasSize", "0", "BANKING", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) collection.delete_entity("ACCOUNT", "hasSize1", None) self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) def test_collection_update_to_updates_file(self): config = FileStorageConfiguration() tmpdir = os.path.dirname(__file__) + os.sep + "rdf_updates" config.rdf_updates_storage._dirs = [tmpdir] config.rdf_updates_storage._has_single_file = True factory = StorageFactory() storage_engine = FileStorageEngine(config) factory._storage_engines[StorageFactory.RDF_UPDATES] = storage_engine factory._store_to_engine_map[StorageFactory.RDF_UPDATES] = storage_engine updates_engine = factory.entity_storage_engine(StorageFactory.RDF_UPDATES) updates_store = updates_engine.rdf_updates_store() updates_store.empty() collection = RDFCollection() self.assertIsNotNone(collection) collection._storage_factory = factory collection.add_entity("ACCOUNT", "hasSize", "0", "BANKING", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) collection.delete_entity("ACCOUNT", "hasSize", "0") self.assertFalse(collection.has_subject('ACCOUNT')) updates_store.empty() def test_collection_others(self): collection = RDFCollection() self.assertIsNotNone(collection) collection.add_entity("ACCOUNT", "hasSize", "0", "BANKING", "BANIKING") self.assertTrue(collection.has_subject('ACCOUNT')) self.assertTrue(collection.has_predicate('ACCOUNT', 'hasSize')) self.assertTrue(collection.has_object('ACCOUNT', 'hasSize', "0")) self.assertIsNone(collection.storename("BANKING1")) self.assertEqual(0, len(collection.predicates("account1"))) self.assertEqual(0, len(collection.objects("ACCOUNT1", "hasSize"))) self.assertEqual(0, len(collection.objects("ACCOUNT", "hasSize1"))) self.assertFalse(collection.has_object("ACCOUNT", "hasSize", "1"))
count.py
kamata1729/shiftresnet-cifar
132
12700183
<reponame>kamata1729/shiftresnet-cifar<gh_stars>100-1000 from models import ResNet20 from models import ShiftResNet20 from models import ResNet56 from models import ShiftResNet56 from models import ResNet110 from models import ShiftResNet110 import torch from torch.autograd import Variable import numpy as np import argparse all_models = { 'resnet20': ResNet20, 'shiftresnet20': ShiftResNet20, 'resnet56': ResNet56, 'shiftresnet56': ShiftResNet56, 'resnet110': ResNet110, 'shiftresnet110': ShiftResNet110, } parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') parser.add_argument('--arch', choices=all_models.keys(), help='Architecture to count parameters for', default='shiftresnet110') parser.add_argument('--expansion', type=int, default=1, help='expansion for shift layers') parser.add_argument('--reduction', type=float, default=1, help='reduction for resnet') parser.add_argument('--reduction-mode', choices=('block', 'net', 'depthwise', 'shuffle', 'mobile'), help='"block" reduces inner representation for BasicBlock, "net" reduces for all layers', default='net') args = parser.parse_args() def count_params(net): return sum([np.prod(param.size()) for name, param in net.named_parameters()]) def count_flops(net): """Approximately count number of FLOPs""" dummy = Variable(torch.randn(1, 3, 32, 32)).cuda() # size is specific to cifar10, cifar100! net.cuda().forward(dummy) return net.flops() original = all_models[args.arch.replace('shift', '')]() original_count = count_params(original) original_flops = count_flops(original) cls = all_models[args.arch] assert 'shift' not in args.arch or args.reduction == 1, \ 'Only default resnet supports reductions' if args.reduction != 1: print('==> %s with reduction %.2f' % (args.arch, args.reduction)) net = cls(reduction=args.reduction, reduction_mode=args.reduction_mode) else: net = cls() if 'shift' not in args.arch else cls(expansion=args.expansion) new_count = count_params(net) new_flops = count_flops(net) print('Parameters: (new) %d (original) %d (reduction) %.2f' % ( new_count, original_count, float(original_count) / new_count)) print('FLOPs: (new) %d (original) %d (reduction) %.2f' % ( new_flops, original_flops, float(original_flops) / new_flops))
test_models/create.py
nktch1/tfgo
2,010
12700219
# Copyright (C) 2017-2020 <NAME> <<EMAIL>> # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, you can obtain one at http://mozilla.org/MPL/2.0/. # Exhibit B is not attached; this software is compatible with the # licenses expressed under Section 1.12 of the MPL v2. import sys import tensorflow as tf def keras(): """Define a trivial module for image (28x28x1) classification. Export it as a SavedModel without even training it. Rawly serialize an uninitialized Keras Sequential model.""" model = tf.keras.Sequential( [ tf.keras.layers.Conv2D( 8, (3, 3), strides=(2, 2), padding="valid", input_shape=(28, 28, 1), activation=tf.nn.relu, name="inputs", ), # 14x14x8 tf.keras.layers.Conv2D( 16, (3, 3), strides=(2, 2), padding="valid", activation=tf.nn.relu ), # 7x716 tf.keras.layers.Flatten(), tf.keras.layers.Dense(10, name="logits"), # linear ] ) tf.saved_model.save(model, "output/keras") def tf_function(): pass def main(): tf.io.gfile.makedirs("output") keras() tf_function() if __name__ == "__main__": sys.exit(main())
tests/transformers/xslt_test.py
elifesciences/sciencebeam
272
12700224
<filename>tests/transformers/xslt_test.py from lxml import etree from sciencebeam.transformers.xslt import _to_xslt_input class TestToXsltInput: def test_should_tolerate_duplicate_ids(self): result: etree.ElementBase = _to_xslt_input( ''' <xml> <item xml:id="id1">item 1</item> <item xml:id="id1">item 2</item> </xml> ''' ) items = result.findall('item') assert len(items) == 2 assert [item.text for item in items] == ['item 1', 'item 2']
tests/basics/tuple_compare.py
peterson79/pycom-micropython-sigfox
303
12700226
<reponame>peterson79/pycom-micropython-sigfox print(() == ()) print(() > ()) print(() < ()) print(() == (1,)) print((1,) == ()) print(() > (1,)) print((1,) > ()) print(() < (1,)) print((1,) < ()) print(() >= (1,)) print((1,) >= ()) print(() <= (1,)) print((1,) <= ()) print((1,) == (1,)) print((1,) != (1,)) print((1,) == (2,)) print((1,) == (1, 0,)) print((1,) > (1,)) print((1,) > (2,)) print((2,) > (1,)) print((1, 0,) > (1,)) print((1, -1,) > (1,)) print((1,) > (1, 0,)) print((1,) > (1, -1,)) print((1,) < (1,)) print((2,) < (1,)) print((1,) < (2,)) print((1,) < (1, 0,)) print((1,) < (1, -1,)) print((1, 0,) < (1,)) print((1, -1,) < (1,)) print((1,) >= (1,)) print((1,) >= (2,)) print((2,) >= (1,)) print((1, 0,) >= (1,)) print((1, -1,) >= (1,)) print((1,) >= (1, 0,)) print((1,) >= (1, -1,)) print((1,) <= (1,)) print((2,) <= (1,)) print((1,) <= (2,)) print((1,) <= (1, 0,)) print((1,) <= (1, -1,)) print((1, 0,) <= (1,)) print((1, -1,) <= (1,)) print((10, 0) > (1, 1)) print((10, 0) < (1, 1)) print((0, 0, 10, 0) > (0, 0, 1, 1)) print((0, 0, 10, 0) < (0, 0, 1, 1))