max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
src/probnum/linalg/solvers/_probabilistic_linear_solver.py
alpiges/probnum
226
12719405
"""Probabilistic linear solvers. Iterative probabilistic numerical methods solving linear systems :math:`Ax = b`. """ class ProbabilisticLinearSolver: r"""Compose a custom probabilistic linear solver. Class implementing probabilistic linear solvers. Such (iterative) solvers infer solutions to problems of the form .. math:: Ax=b, where :math:`A \in \mathbb{R}^{n \times n}` and :math:`b \in \mathbb{R}^{n}`. They return a probability measure which quantifies uncertainty in the output arising from finite computational resources or stochastic input. This class unifies and generalizes probabilistic linear solvers as described in the literature. [1]_ [2]_ [3]_ [4]_ Parameters ---------- References ---------- .. [1] <NAME>., Probabilistic Interpretation of Linear Solvers, *SIAM Journal on Optimization*, 2015, 25, 234-260 .. [2] <NAME>. et al., A Bayesian Conjugate Gradient Method, *Bayesian Analysis*, 2019, 14, 937-1012 .. [3] <NAME> al., Probabilistic Linear Solvers: A Unifying View, *Statistics and Computing*, 2019 .. [4] <NAME>. and <NAME>., Probabilistic Linear Solvers for Machine Learning, *Advances in Neural Information Processing Systems (NeurIPS)*, 2020 See Also -------- problinsolve : Solve linear systems in a Bayesian framework. bayescg : Solve linear systems with prior information on the solution. Examples -------- """
27. LeetCode Problems/mini-peaks.py
Ujjawalgupta42/Hacktoberfest2021-DSA
225
12719443
def miniPeaks(nums): result = [] left = 0 right = 0 for i in range(1, len(nums) - 1): left = nums[i - 1] right = nums[i + 1] if nums[i] > left and nums[i] > right: result.append(nums[i]) return result # Time Complexity : O(n) # Space Complexity : O(m), # n = nos of elements # m = nos of peak elements
srcs/python/kungfu/tensorflow/v1/benchmarks/__main__.py
Pandinosaurus/KungFu
291
12719461
""" Usage: kungfu-run -q -np 4 python3 -m kungfu.tensorflow.v1.benchmarks --method CPU kungfu-run -q -np 4 python3 -m kungfu.tensorflow.v1.benchmarks --method NCCL kungfu-run -q -np 4 python3 -m kungfu.tensorflow.v1.benchmarks --method NCCL+CPU mpirun -np 4 python3 -m kungfu.tensorflow.v1.benchmarks --method HOROVOD """ import argparse import os import sys import numpy as np import tensorflow as tf from kungfu._utils import measure, one_based_range from kungfu.python import _get_cuda_index from kungfu.tensorflow.ops import (current_cluster_size, current_rank, group_all_reduce, group_nccl_all_reduce) from kungfu.tensorflow.ops.collective import group_hierarchical_nccl_all_reduce from kungfu.tensorflow.v1.benchmarks import model_sizes from kungfu.tensorflow.v1.helpers.utils import show_rate, show_size from tensorflow.python.util import deprecation deprecation._PRINT_DEPRECATION_WARNINGS = False def _tensor_size(t): return t.shape.num_elements() * t.dtype.size def hvd_init(): import horovod.tensorflow as hvd hvd.init() def hvd_group_all_reduce(ts): import horovod.tensorflow as hvd return [hvd.allreduce(t, average=False) for t in ts] def get_cluster_size(method): if method == 'HOROVOD': import horovod.tensorflow as hvd return hvd.size() else: return current_cluster_size() def get_rank(method): if method == 'HOROVOD': import horovod.tensorflow as hvd return hvd.rank() else: return current_rank() _group_all_reduce_func = { 'CPU': group_all_reduce, 'NCCL': group_nccl_all_reduce, 'NCCL+CPU': group_hierarchical_nccl_all_reduce, 'HOROVOD': hvd_group_all_reduce, } _model_sizes = { 'ResNet50': model_sizes.resnet50_imagenet, 'VGG16': model_sizes.vgg16_imagenet, 'BERT': model_sizes.bert, } def _config(method): config = tf.ConfigProto() config.gpu_options.allow_growth = True if method == 'HOROVOD': import horovod.tensorflow as hvd config.gpu_options.visible_device_list = str(hvd.local_rank()) else: config.gpu_options.visible_device_list = str(_get_cuda_index()) return config def _rank(method): if method == 'HOROVOD': import horovod.tensorflow as hvd return hvd.rank() else: return current_rank() def parse_args(): p = argparse.ArgumentParser(description='Perf Benchmarks.') p.add_argument('--model', type=str, default='ResNet50', help='ResNet50 | VGG16 | BERT') p.add_argument('--method', type=str, default='CPU', help='CPU | NCCL | HOROVOD') p.add_argument('--fuse', action='store_true', default=False, help='') p.add_argument('--max-count', type=int, default=0, help='max grad count') p.add_argument('--steps', type=int, default=10, help='number of steps to run') p.add_argument('--warmup-steps', type=int, default=5, help='number of warmup steps') return p.parse_args() def log_detailed_result(value, error, attrs): import json attr_str = json.dumps(attrs, separators=(',', ':')) # grep -o RESULT.* *.log unit = 'GiB/s' print('RESULT: %f +-%f (%s) %s' % (value, error, unit, attr_str)) def log_final_result(values, args): attrs = { 'method': args.method, 'np': get_cluster_size(args.method), 'model': args.model, 'fuse': args.fuse, } values = np.array(values) if args.method != 'HOROVOD': attrs['strategy'] = os.getenv('KUNGFU_ALLREDUCE_STRATEGY') attrs['nvlink'] = os.getenv('KUNGFU_ALLOW_NVLINK') log_detailed_result(values.mean(), 1.96 * values.std(), attrs) def all_reduce_benchmark(sizes, dtype, args): rank = _rank(args.method) def log(msg): if rank == 0: print(msg) xs = [tf.Variable(tf.ones([n], dtype)) for n in sizes] tot_size = sum(_tensor_size(x) for x in xs) np = get_cluster_size(args.method) multiplier = 4 * (np - 1) log('all reduce %d tensors of total size: %s among %d peers, using %s' % (len(sizes), show_size(tot_size), np, args.method)) ys = _group_all_reduce_func[args.method](xs) init = tf.global_variables_initializer() values = [] with tf.Session(config=_config(args.method)) as sess: duration, _ = measure(lambda: sess.run(init)) log('tensorflow init took %.fs' % (duration)) for step in one_based_range(args.warmup_steps): duration, _ = measure(lambda: sess.run(ys)) log('warmup step %d, took %.2fs, equivalent data rate: %s' % (step, duration, show_rate(tot_size * multiplier, duration))) for step in one_based_range(args.steps): duration, _ = measure(lambda: sess.run(ys)) gi = 1024 * 1024 * 1024 values.append(tot_size * multiplier / gi / duration) log('step %d, took %.2fs, equivalent data rate: %s' % (step, duration, show_rate(tot_size * multiplier, duration))) if get_rank(args.method) == 0: log_final_result(values, args) def main(_): args = parse_args() if args.method == 'HOROVOD': hvd_init() dtype = tf.float32 sizes = _model_sizes[args.model] if args.fuse: sizes = [sum(sizes)] if args.max_count > 0 and len(sizes) > args.max_count: sizes = sizes[:args.max_count] all_reduce_benchmark(sizes, dtype, args) if __name__ == "__main__": main(sys.argv)
netmiko/a10/a10_ssh.py
mtuska/netmiko
2,833
12719565
"""A10 support.""" from netmiko.cisco_base_connection import CiscoSSHConnection class A10SSH(CiscoSSHConnection): """A10 support.""" def session_preparation(self) -> None: """A10 requires to be enable mode to disable paging.""" self._test_channel_read(pattern=r"[>#]") self.set_base_prompt() self.enable() # terminal width ill not do anything without A10 specific command # self.set_terminal_width() self.disable_paging(command="terminal length 0") def save_config( self, cmd: str = "", confirm: bool = False, confirm_response: str = "" ) -> str: """Not Implemented""" raise NotImplementedError
aliyun-python-sdk-domain/aliyunsdkdomain/__init__.py
silent-beaters/aliyun-openapi-python-sdk
1,001
12719570
__version__ = '3.14.6'
atcoder/_math.py
SotaroHattori/ac-library-python
108
12719625
<filename>atcoder/_math.py import typing def _is_prime(n: int) -> bool: ''' Reference: <NAME> and <NAME>, Fast Primality Testing for Integers That Fit into a Machine Word ''' if n <= 1: return False if n == 2 or n == 7 or n == 61: return True if n % 2 == 0: return False d = n - 1 while d % 2 == 0: d //= 2 for a in (2, 7, 61): t = d y = pow(a, t, n) while t != n - 1 and y != 1 and y != n - 1: y = y * y % n t <<= 1 if y != n - 1 and t % 2 == 0: return False return True def _inv_gcd(a: int, b: int) -> typing.Tuple[int, int]: a %= b if a == 0: return (b, 0) # Contracts: # [1] s - m0 * a = 0 (mod b) # [2] t - m1 * a = 0 (mod b) # [3] s * |m1| + t * |m0| <= b s = b t = a m0 = 0 m1 = 1 while t: u = s // t s -= t * u m0 -= m1 * u # |m1 * u| <= |m1| * s <= b # [3]: # (s - t * u) * |m1| + t * |m0 - m1 * u| # <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) # = s * |m1| + t * |m0| <= b s, t = t, s m0, m1 = m1, m0 # by [3]: |m0| <= b/g # by g != b: |m0| < b/g if m0 < 0: m0 += b // s return (s, m0) def _primitive_root(m: int) -> int: if m == 2: return 1 if m == 167772161: return 3 if m == 469762049: return 3 if m == 754974721: return 11 if m == 998244353: return 3 divs = [2] + [0] * 19 cnt = 1 x = (m - 1) // 2 while x % 2 == 0: x //= 2 i = 3 while i * i <= x: if x % i == 0: divs[cnt] = i cnt += 1 while x % i == 0: x //= i i += 2 if x > 1: divs[cnt] = x cnt += 1 g = 2 while True: for i in range(cnt): if pow(g, (m - 1) // divs[i], m) == 1: break else: return g g += 1
examples/run_random.py
Roryoung/realworldrl_suite
284
12719652
<filename>examples/run_random.py<gh_stars>100-1000 # coding=utf-8 # Copyright 2020 The Real-World RL Suite Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs a random policy on realworldrl.""" import os from absl import app from absl import flags import numpy as np import realworldrl_suite.environments as rwrl flags.DEFINE_string('domain_name', 'cartpole', 'domain to solve') flags.DEFINE_string('task_name', 'realworld_balance', 'task to solve') flags.DEFINE_string('save_path', '/tmp/rwrl', 'where to save results') flags.DEFINE_integer('total_episodes', 100, 'number of episodes') FLAGS = flags.FLAGS def random_policy(action_spec): def _act(timestep): del timestep return np.random.uniform( low=action_spec.minimum, high=action_spec.maximum, size=action_spec.shape) return _act def run(): """Runs a random agent on a given environment.""" env = rwrl.load( domain_name=FLAGS.domain_name, task_name=FLAGS.task_name, safety_spec=dict(enable=True), delay_spec=dict(enable=True, actions=20), log_output=os.path.join(FLAGS.save_path, 'log.npz'), environment_kwargs=dict( log_safety_vars=True, log_every=20, flat_observation=True)) policy = random_policy(action_spec=env.action_spec()) rewards = [] for _ in range(FLAGS.total_episodes): timestep = env.reset() total_reward = 0. while not timestep.last(): action = policy(timestep) timestep = env.step(action) total_reward += timestep.reward rewards.append(total_reward) print('Random policy total reward per episode: {:.2f} +- {:.2f}'.format( np.mean(rewards), np.std(rewards))) def main(argv): del argv # Unused. run() if __name__ == '__main__': app.run(main)
bridge/npbackend/bohrium/reorganization.py
bh107/bohrium
236
12719661
<reponame>bh107/bohrium """ Reorganization of Array Elements Routines =========================== """ import warnings import numpy_force as numpy from . import bhary from bohrium_api import _info from ._util import is_scalar from .bhary import fix_biclass_wrapper from . import array_create from . import array_manipulation from . import ufuncs from . import numpy_backport @fix_biclass_wrapper def gather(ary, indexes): """ gather(ary, indexes) Gather elements from 'ary' selected by 'indexes'. The values of 'indexes' are absolute indexed into a flatten 'ary' The shape of the returned array equals indexes.shape. Parameters ---------- ary : array_like The array to gather elements from. indexes : array_like, interpreted as integers Array or list of indexes that will be gather from 'array' Returns ------- r : ndarray The gathered array freshly-allocated. """ from . import _bh ary = array_manipulation.flatten(array_create.array(ary)) # Convert a scalar index to a 1-element array if is_scalar(indexes): indexes = [indexes] indexes = array_create.array(indexes, dtype=numpy.uint64, bohrium=True) ret = array_create.empty(indexes.shape, dtype=ary.dtype, bohrium=True) if ary.size == 0 or indexes.size == 0: return array_create.array([]) _bh.ufunc(_info.op['gather']['id'], (ret, ary, indexes)) return ret @fix_biclass_wrapper def take(a, indices, axis=None, out=None, mode='raise'): """ Take elements from an array along an axis. This function does the same thing as "fancy" indexing (indexing arrays using arrays); however, it can be easier to use if you need elements along a given axis. Parameters ---------- a : array_like The source array. indices : array_like, interpreted as integers The indices of the values to extract. .. versionadded:: 1.8.0 Also allow scalars for indices. axis : int, optional The axis over which to select values. By default, the flattened input array is used. out : ndarray, optional If provided, the result will be placed in this array. It should be of the appropriate shape and dtype. mode : {'raise', 'wrap', 'clip'}, optional Specifies how out-of-bounds indices will behave. * 'raise' -- raise an error (default) * 'wrap' -- wrap around * 'clip' -- clip to the range 'clip' mode means that all indices that are too large are replaced by the index that addresses the last element along that axis. Note that this disables indexing with negative numbers. Returns ------- subarray : ndarray The returned array has the same type as `a`. See Also -------- compress : Take elements using a boolean mask ndarray.take : equivalent method Examples -------- >>> a = [4, 3, 5, 7, 6, 8] >>> indices = [0, 1, 4] >>> np.take(a, indices) array([4, 3, 6]) In this example if `a` is an ndarray, "fancy" indexing can be used. >>> a = np.array(a) >>> a[indices] array([4, 3, 6]) If `indices` is not one dimensional, the output also has these dimensions. >>> np.take(a, [[0, 1], [2, 3]]) array([[4, 3], [5, 7]]) """ if not bhary.check(a): indices = array_create.array(indices, bohrium=False) return numpy.take(a, indices, axis=axis, out=out, mode=mode) if mode != "raise": warnings.warn("Bohrium only supports the 'raise' mode not '%s', " "it will be handled by the original NumPy." % mode, UserWarning, 2) a = array_create.array(a, bohrium=False) indices = array_create.array(indices, bohrium=False) return numpy.take(a, indices, axis=axis, out=out, mode=mode) if axis is not None and a.ndim > 1: warnings.warn("Bohrium does not support the 'axis' argument, " "it will be handled by the original NumPy.", UserWarning, 2) a = array_create.array(a, bohrium=False) indices = array_create.array(indices, bohrium=False) return numpy.take(a, indices, axis=axis, out=out, mode=mode) ret = gather(a, indices) if out is not None: out[...] = ret return out else: return ret @fix_biclass_wrapper def take_using_index_tuple(a, index_tuple, out=None): """ Take elements from the array 'a' specified by 'index_tuple' This function is very similar to take(), but takes a tuple of index arrays rather than a single index array Parameters ---------- a : array_like The source array. index_tuple : tuple of array_like, interpreted as integers Each array in the tuple specified the indices of the values to extract for that axis. The number of arrays in 'index_tuple' must equal the number of dimension in 'a' out : ndarray, optional If provided, the result will be placed in this array. It should be of the appropriate shape and dtype. Returns ------- subarray : ndarray The returned array has the same type as `a`. """ if not bhary.check(a): ret = a[index_tuple] if out is not None: out[...] = ret return out else: return ret assert len(index_tuple) == a.ndim if a.size == 0: return array_create.array([], dtype=a.dtype) if a.ndim == 1: return take(a, index_tuple[0], out=out) # Make sure that all index arrays are uint64 bohrium arrays index_list = [] for index in index_tuple: index_list.append(array_create.array(index, dtype=numpy.uint64, bohrium=True)) if index_list[-1].size == 0: return array_create.empty((0,), dtype=a.dtype) # And then broadcast them into the same shape index_list = array_manipulation.broadcast_arrays(*index_list)[0] # Let's find the absolute index abs_index = index_list[-1].copy() stride = a.shape[-1] for i in range(len(index_list) - 2, -1, -1): # Iterate backwards from index_list[-2] abs_index += index_list[i] * stride stride *= a.shape[i] # take() support absolute indices ret = take(a, abs_index).reshape(index_list[0].shape) if out is not None: out[...] = ret return out else: return ret @fix_biclass_wrapper def scatter(ary, indexes, values): """ scatter(ary, indexes, values) Scatter 'values' into 'ary' selected by 'indexes'. The values of 'indexes' are absolute indexed into a flatten 'ary' The shape of 'indexes' and 'value' must be equal. Parameters ---------- ary : array_like The target array to write the values to. indexes : array_like, interpreted as integers Array or list of indexes that will be written to in 'ary' values : array_like Values to write into 'ary" """ from . import _bh indexes = array_manipulation.flatten(array_create.array(indexes, dtype=numpy.uint64), always_copy=False) values = array_manipulation.flatten(array_create.array(values, dtype=ary.dtype), always_copy=False) assert indexes.shape == values.shape if ary.size == 0 or indexes.size == 0: return # In order to ensure a contiguous array, we do the scatter on a flatten copy flat = array_manipulation.flatten(ary, always_copy=True) _bh.ufunc(_info.op['scatter']['id'], (flat, values, indexes)) ary[...] = flat.reshape(ary.shape) @fix_biclass_wrapper def put(a, ind, v, mode='raise'): """ Replaces specified elements of an array with given values. The indexing works on the flattened target array. `put` is roughly equivalent to: :: a.flat[ind] = v Parameters ---------- a : ndarray Target array. ind : array_like Target indices, interpreted as integers. v : array_like Values to place in `a` at target indices. If `v` is shorter than `ind` it will be repeated as necessary. mode : {'raise', 'wrap', 'clip'}, optional Specifies how out-of-bounds indices will behave. * 'raise' -- raise an error (default) * 'wrap' -- wrap around * 'clip' -- clip to the range 'clip' mode means that all indices that are too large are replaced by the index that addresses the last element along that axis. Note that this disables indexing with negative numbers. See Also -------- putmask, place, take Examples -------- >>> a = np.arange(5) >>> np.put(a, [0, 2], [-44, -55]) >>> a array([-44, 1, -55, 3, 4]) >>> a = np.arange(5) >>> np.put(a, 22, -5, mode='clip') >>> a array([ 0, 1, 2, 3, -5]) """ if ind.size == 0: return # Nothing to insert! if not bhary.check(a): return numpy.put(a, ind.astype(numpy.int64), v, mode=mode) if mode != "raise": warnings.warn("Bohrium only supports the 'raise' mode not '%s', " "it will be handled by the original NumPy." % mode, UserWarning, 2) return numpy.put(a, ind, v, mode=mode) indexes = array_manipulation.flatten(array_create.array(ind, dtype=numpy.uint64), always_copy=False) values = array_manipulation.flatten(array_create.array(v, dtype=a.dtype), always_copy=False) # Now let's make the shape of 'indexes' and 'values' match if indexes.size > values.size: if values.size == 1: # When 'values' is a scalar, we can broadcast it to match 'indexes' values = numpy_backport.as_strided(values, shape=indexes.shape, strides=(0,)) else: # else we repeat 'values' enough times to be larger than 'indexes' values = numpy_backport.as_strided(values, shape=(indexes.size // values.size + 2, values.size), strides=(0, values.itemsize)) values = array_manipulation.flatten(values, always_copy=False) # When 'values' is too large, we simple cut the end off if values.size > indexes.size: values = values[0:indexes.size] # Now that 'indexes' and 'values' have the same shape, we can call 'scatter' scatter(a, indexes, values) @fix_biclass_wrapper def put_using_index_tuple(a, index_tuple, v): """ Replaces specified elements of an array with given values. This function is very similar to put(), but takes a tuple of index arrays rather than a single index array. The indexing works like fancy indexing: :: a[index_tuple] = v Parameters ---------- a : array_like The source array. index_tuple : tuple of array_like, interpreted as integers Each array in the tuple specified the indices of the values to extract for that axis. The number of arrays in 'index_tuple' must equal the number of dimension in 'a' v : array_like Values to place in `a`. Returns ------- subarray : ndarray The returned array has the same type as `a`. """ if not bhary.check(a): a[index_tuple] = array_create.array(v, bohrium=False) return v = array_create.array(v, bohrium=True) assert len(index_tuple) == a.ndim if a.size == 0: return if a.ndim == 1: return put(a, index_tuple[0], v) # Make sure that all index arrays are uint64 bohrium arrays index_list = [] for index in index_tuple: index_list.append(array_create.array(index, dtype=numpy.uint64, bohrium=True)) if index_list[-1].size == 0: return array_create.empty((0,), dtype=a.dtype) # And then broadcast them into the same shape index_list = array_manipulation.broadcast_arrays(*index_list)[0] # Let's find the absolute index abs_index = index_list[-1].copy() stride = a.shape[-1] for i in range(len(index_list) - 2, -1, -1): # Iterate backwards from index_list[-2] abs_index += index_list[i] * stride stride *= a.shape[i] # put() support absolute indices put(a, abs_index, v) @fix_biclass_wrapper def cond_scatter(ary, indexes, values, mask): """ scatter(ary, indexes, values, mask) Scatter 'values' into 'ary' selected by 'indexes' where 'mask' is true. The values of 'indexes' are absolute indexed into a flatten 'ary' The shape of 'indexes', 'value', and 'mask' must be equal. Parameters ---------- ary : array_like The target array to write the values to. indexes : array_like, interpreted as integers Array or list of indexes that will be written to in 'ary' values : array_like Values to write into 'ary' mask : array_like, interpreted as booleans A mask that specifies which indexes and values to include and exclude """ from . import _bh indexes = array_manipulation.flatten(array_create.array(indexes, dtype=numpy.uint64), always_copy=False) values = array_manipulation.flatten(array_create.array(values, dtype=ary.dtype), always_copy=False) mask = array_manipulation.flatten(array_create.array(mask, dtype=numpy.bool), always_copy=False) assert (indexes.shape == values.shape and values.shape == mask.shape) if ary.size == 0 or indexes.size == 0: return # In order to ensure a contiguous array, we do the scatter on a flatten copy flat = array_manipulation.flatten(ary, always_copy=True) _bh.ufunc(_info.op['cond_scatter']['id'], (flat, values, indexes, mask)) ary[...] = flat.reshape(ary.shape) @fix_biclass_wrapper def pack(ary, mask): """ pack(ary, mask) Packing the elements of 'ary' specified by 'mask' into new array that are contiguous The values of 'indexes' are absolute indexed into a flatten 'ary' The shape of 'mask' and 'ary' must be equal. Parameters ---------- ary : array_like, read flatten The array to read from. mask : array_like, interpreted as a flatten boolean array A mask that specifies which indexes of 'ary' to read """ ary = array_manipulation.flatten(array_create.array(ary), always_copy=False) mask = array_manipulation.flatten(array_create.array(mask, dtype=numpy.bool), always_copy=False) assert (ary.shape == mask.shape) if ary.size == 0 or mask.size == 0: return true_indexes = ufuncs.add.accumulate(mask) true_count = int(true_indexes[-1]) if true_count == 0: return array_create.empty((0,), dtype=ary.dtype) else: ret = array_create.empty((true_count,), dtype=ary.dtype) cond_scatter(ret, true_indexes - 1, ary, mask) return ret @fix_biclass_wrapper def flatnonzero(a): """ Return indices that are non-zero in the flattened version of a. This is equivalent to a.ravel().nonzero()[0]. Parameters ---------- a : ndarray Input array. Returns ------- res : ndarray Output array, containing the indices of the elements of `a.ravel()` that are non-zero. See Also -------- nonzero : Return the indices of the non-zero elements of the input array. ravel : Return a 1-D array containing the elements of the input array. Examples -------- >>> x = np.arange(-2, 3) >>> x array([-2, -1, 0, 1, 2]) >>> np.flatnonzero(x) array([0, 1, 3, 4]) Use the indices of the non-zero elements as an index array to extract these elements: >>> x.ravel()[np.flatnonzero(x)] array([-2, -1, 1, 2]) """ if a.dtype is not numpy.bool: a = a != 0 new_indexes = array_create.arange(a.size, dtype=numpy.uint64) return pack(new_indexes, a) @fix_biclass_wrapper def nonzero(a): """ Return the indices of the elements that are non-zero. Returns a tuple of arrays, one for each dimension of `a`, containing the indices of the non-zero elements in that dimension. The values in `a` are always tested and returned in row-major, C-style order. The corresponding non-zero values can be obtained with:: a[nonzero(a)] To group the indices by element, rather than dimension, use:: transpose(nonzero(a)) The result of this is always a 2-D array, with a row for each non-zero element. Parameters ---------- a : array_like Input array. Returns ------- tuple_of_arrays : tuple Indices of elements that are non-zero. See Also -------- flatnonzero : Return indices that are non-zero in the flattened version of the input array. ndarray.nonzero : Equivalent ndarray method. count_nonzero : Counts the number of non-zero elements in the input array. Examples -------- >>> x = np.eye(3) >>> x array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>> np.nonzero(x) (array([0, 1, 2]), array([0, 1, 2])) >>> x[np.nonzero(x)] array([ 1., 1., 1.]) >>> np.transpose(np.nonzero(x)) array([[0, 0], [1, 1], [2, 2]]) A common use for ``nonzero`` is to find the indices of an array, where a condition is True. Given an array `a`, the condition `a` > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the `a` where the condition is true. >>> a = np.array([[1,2,3],[4,5,6],[7,8,9]]) >>> a > 3 array([[False, False, False], [ True, True, True], [ True, True, True]], dtype=bool) >>> np.nonzero(a > 3) (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) The ``nonzero`` method of the boolean array can also be called. >>> (a > 3).nonzero() (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) """ if a.ndim == 1: return (flatnonzero(a),) if not a.flags['C_CONTIGUOUS']: a = a.copy(order='C') nz = flatnonzero(a) ret = [] for stride_in_bytes in a.strides: stride = stride_in_bytes // a.itemsize assert stride_in_bytes % a.itemsize == 0 tmp = nz // stride ret.append(tmp) nz -= tmp * stride return tuple(ret)
qt__pyqt__pyside__pyqode/move_window_on_center__QDesktopWidget.py
gil9red/SimplePyScripts
117
12719681
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from PyQt5.QtWidgets import QApplication, QWidget app = QApplication([]) mw = QWidget() rect = mw.frameGeometry() center = app.desktop().availableGeometry().center() # This is where QDesktopWidget is used rect.moveCenter(center) mw.move(rect.topLeft()) mw.show() app.exec()
sparse_operation_kit/documents/tutorials/utility.py
x-y-z/HugeCTR
130
12719682
<reponame>x-y-z/HugeCTR """ Copyright (c) 2021, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys, os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../unit_test/test_scripts/tf2/"))) from utils import * sys.path.append(os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), "DenseDemo/"))) from models import SOKDenseDemo def TFDataset(filename, batchsize, as_sparse_tensor, repeat=1): samples, labels = restore_from_file(filename) dataset = tf_dataset(keys=samples, labels=labels, batchsize=batchsize, to_sparse_tensor=as_sparse_tensor, repeat=repeat) del samples del labels return dataset def get_dataset(global_batch_size, read_batchsize, iter_num=10, vocabulary_size=1024, slot_num=10, max_nnz=5, use_sparse_mask=False, repeat=1): random_samples, ramdom_labels = generate_random_samples( num_of_samples=global_batch_size * iter_num, vocabulary_size=vocabulary_size, slot_num=slot_num, max_nnz=max_nnz, use_sparse_mask=use_sparse_mask) dataset = tf_dataset(keys=random_samples, labels=ramdom_labels, batchsize=read_batchsize, to_sparse_tensor=use_sparse_mask, repeat=repeat) return dataset
tests/basics/fun_name.py
peterson79/pycom-micropython-sigfox
692
12719684
def Fun(): pass class A: def __init__(self): pass def Fun(self): pass try: print(Fun.__name__) print(A.__init__.__name__) print(A.Fun.__name__) print(A().Fun.__name__) except AttributeError: print('SKIP')
neuralnilm/monitor/monitor.py
ceavelasquezpi/neuralnilm
135
12719767
from __future__ import print_function, division from time import sleep import pymongo from monary import Monary import numpy as np import pandas as pd import matplotlib.pyplot as plt from neuralnilm.consts import DATA_FOLD_NAMES from neuralnilm.utils import get_colors from neuralnilm.config import config class Monitor(object): def __init__(self, experiment_id, output_path='.', update_period=1, max_num_lines=1000, mongo_db='neuralnilm', mongo_host=None): """ Parameters ---------- max_num_lines : int Number of pixels. """ self.experiment_id = experiment_id self.output_path = output_path self.update_period = update_period self.max_num_lines = max_num_lines self._last_iteration_processed = {'train': 0, 'validation': 0} if mongo_host is None: self.mongo_host = config.get("MongoDB", "address") else: self.mongo_host = mongo_host self.mongo_client = pymongo.MongoClient(self.mongo_host) self.db = self.mongo_client[mongo_db] self.mongo_db = mongo_db self._validation_metric_names = None def start(self): while True: if self._new_scores_available('train'): self._plot_train_scores() if self._new_scores_available('validation'): self._plot_validation_scores() sleep(self.update_period) def _new_costs_available(self, train_or_validation): """Returns True if new training costs are available from DB. Parameters ---------- train_or_validation : str, {'train', 'validation'} """ collection = self.db[train_or_validation + '_scores'] document = collection.find_one( filter={ 'experiment_id': self.experiment_id, 'iteration': { '$gt': self._last_iteration_processed[train_or_validation]} } ) return bool(document) def _get_validation_mse(self): monary = Monary(host=self.mongo_host) def get_mse_for_fold(fold): iterations, loss, source_id = monary.query( db=self.mongo_db, coll='validation_scores', query={'experiment_id': self.experiment_id, 'fold': fold}, fields=['iteration', 'scores.regression.mean_squared_error', 'source_id'], types=['int32', 'float32', 'int8'] ) scores_df = pd.DataFrame( {'loss': loss, 'source_id': source_id}, index=iterations) scores_df = scores_df.sort_index() return scores_df FOLDS = ['unseen_appliances', 'unseen_activations_of_seen_appliances'] scores = {} for fold in FOLDS: scores[fold] = get_mse_for_fold(fold) return scores def _get_train_costs(self): # Get train scores monary = Monary(host=self.mongo_host) iterations, loss, source_id = monary.query( db=self.mongo_db, coll='train_scores', query={'experiment_id': self.experiment_id}, fields=['iteration', 'loss', 'source_id'], types=['int32', 'float32', 'int8'] ) scores_df = pd.DataFrame( {'loss': loss, 'source_id': source_id}, index=iterations) scores_df = scores_df.sort_index() return scores_df def _plot_train_scores(self): train_scores_df = self._get_train_costs() all_scores = self._get_validation_mse() all_scores.update({'train': train_scores_df}) fig, ax = plt.subplots(1) source_names = self.source_names for fold, scores_df in all_scores.iteritems(): sources = scores_df['source_id'].unique() for source_i in sources: # Get losses for just this source mask = scores_df['source_id'] == source_i loss = scores_df[mask]['loss'] # Downsample if necessary loss_for_source = self._downsample(loss) # Plot ax.plot(loss_for_source.index, loss_for_source.values, label='{} : {}'.format(fold, source_names[source_i])) ax.legend() plt.title('Training costs') ax.set_xlabel('Iteration') ax.set_ylabel('Mean squared error') plt.show() try: self._last_iteration_processed['train'] = train_scores_df.index[-1] except IndexError: # No data loaded pass @property def validation_metric_names(self): """ Returns ------- metric_names : list e.g. ['regression.mean_squared_error', 'classification_2_state.f1_score'] """ if self._validation_metric_names is None: scores = self.db.validation_scores.find_one( filter={'experiment_id': self.experiment_id})['scores'] self._validation_metric_names = [] for metric_type, metrics in scores.iteritems(): for metric_name in metrics: self._validation_metric_names.append( metric_type + '.' + metric_name) return self._validation_metric_names @property def source_names(self): """ Returns ------- source_names : dict """ metadata = self.db.experiments.find_one({'_id': self.experiment_id}) sources = metadata['data']['pipeline']['sources'] source_names = {int(i): sources[i]['name'] for i in sources} return source_names def _plot_validation_scores(self): validation_sources = self.db.validation_scores.distinct( key='source_id', filter={'experiment_id': self.experiment_id}) validation_sources.sort() num_cols = len(validation_sources) fig, axes = plt.subplots( nrows=3, ncols=num_cols, sharex="col", sharey=True, squeeze=False) fig.patch.set_facecolor('white') source_names = self.source_names for col, source_id in enumerate(validation_sources): for row, fold in enumerate(DATA_FOLD_NAMES): ax = axes[row, col] self._plot_validation_scores_for_source_and_fold( ax=ax, source_id=source_id, fold=fold, show_axes_labels=(row == 0), show_scales=(col == num_cols-1)) if row == 0: ax.set_title(source_names[source_id], position=(.5, 1.05)) elif row == 2: ax.set_xlabel('Iteration', labelpad=10) if col == 0: ax.set_ylabel(fold.replace("_", " ").title(), labelpad=10) ax.patch.set_facecolor((0.95, 0.95, 0.95)) plt.subplots_adjust( top=0.91, bottom=0.05, left=0.03, right=0.7, hspace=0.15, wspace=0.1) plt.show() def _plot_validation_scores_for_source_and_fold(self, ax, source_id, fold, show_axes_labels, show_scales): fields = ['iteration'] + ['scores.' + metric_name for metric_name in self.validation_metric_names] monary = Monary(host=self.mongo_host) result = monary.query( db=self.mongo_db, coll='validation_scores', query={ 'experiment_id': self.experiment_id, 'source_id': source_id, 'fold': fold }, fields=fields, types=['int32'] + ['float32'] * len(self.validation_metric_names) ) index = result[0] data = {metric_name: result[i+1] for i, metric_name in enumerate(self.validation_metric_names)} df = pd.DataFrame(data, index=index) df = df.sort_index() df = self._downsample(df) # Create multiple independent axes. Adapted from <NAME>'s answer: # http://stackoverflow.com/a/7734614 # Colours n = len(self.validation_metric_names) colors = get_colors(n) # Twin the x-axis to make independent y-axes. axes = [ax] for metric_name in self.validation_metric_names[1:]: axes.append(ax.twinx()) SEP = 0.2 if show_scales: for i, axis in enumerate(axes): axis.yaxis.tick_right() if i != 0: # To make the border of the right-most axis visible, # we need to turn the frame on. This hides the other plots, # however, so we need to turn its fill off. axis.set_frame_on(True) axis.patch.set_visible(False) # Move the last y-axes spines over to the right. axis.spines['right'].set_position( ('axes', 1 + (SEP * i))) else: for axis in axes: axis.tick_params(labelright=False, labelleft=False) axis.yaxis.set_ticks_position('none') axis.spines['right'].set_visible(False) for axis in axes: for spine in ['top', 'left', 'bottom']: axis.spines[spine].set_visible(False) axis.xaxis.set_ticks_position('none') lines = [] for i, (axis, metric_name, color) in enumerate( zip(axes, self.validation_metric_names, colors)): axis.tick_params(axis='y', colors=color, direction='out') label = metric_name.replace("regression.", "") label = label.replace("classification_", "") label = label.replace("_", " ") label = label.replace(".", " ") label = label.replace(" ", "\n") line, = axis.plot( df.index, df[metric_name].values, color=color, label=label) if show_axes_labels and show_scales: axis.set_ylabel( label, color=color, rotation=0, fontsize=8, va='bottom') if i == 0: coords = (1.05, 1.1) else: coords = (1.05 + (SEP * i), 1.1) axis.yaxis.set_label_coords(*coords) lines.append(line) self._last_iteration_processed['validation'] = index[-1] return lines def _downsample(self, data): """Downsample `data` if necessary.""" if len(data) > self.max_num_lines: divisor = int(np.ceil(len(data) / self.max_num_lines)) data = data.groupby(lambda x: x // divisor).mean() data.index *= divisor return data
scripts/visualize.py
nexxt-intelligence/simalign
198
12719773
<filename>scripts/visualize.py import matplotlib.pyplot as plt import numpy as np from typing import List, Text, Tuple def line2matrix(line: Text, n: int, m: int) -> Tuple[np.ndarray, np.ndarray]: ''' converts alignemnt given in the format "0-1 3p4 5-6" to alignment matrices n, m: maximum length of the involved sentences (i.e., dimensions of the alignemnt matrices) ''' def convert(i, j): i, j = int(i), int(j) if i >= n or j >= m: raise ValueError("Error in Gold Standard?") return i, j possibles = np.zeros((n, m)) sures = np.zeros((n, m)) for elem in line.split(" "): if "p" in elem: i, j = convert(*elem.split("p")) possibles[i, j] = 1 elif "-" in elem: i, j = convert(*elem.split("-")) possibles[i, j] = 1 sures[i, j] = 1 return sures, possibles def plot_alignments(e: List[Text], f: List[Text], sures: np.ndarray, possibles: np.ndarray, alignment1: np.ndarray, alignment2: np.ndarray = None, title: Text = None, filename: Text = None): shorter = min(len(e), len(f)) scalefactor = min((4 / shorter), 1) groundtruth = 0.75 * sures + 0.4 * possibles fig, ax = plt.subplots() im = ax.imshow(groundtruth, cmap="Greens", vmin=0, vmax=1.5) # show all ticks... ax.set_xticks(np.arange(len(f))) ax.set_yticks(np.arange(len(e))) # ... and label them ax.set_xticklabels(f, fontsize=25 * scalefactor) ax.set_yticklabels(e, fontsize=25 * scalefactor) for edge, spine in ax.spines.items(): spine.set_visible(False) ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=30, ha="left", rotation_mode="default") plt.setp(ax.get_yticklabels(), rotation=0, ha="right", rotation_mode="anchor") ax.set_xticks(np.arange(groundtruth.shape[1] + 1) - .5, minor=True) ax.set_yticks(np.arange(groundtruth.shape[0] + 1) - .5, minor=True) # set grid ax.grid(which="minor", color="black", linestyle='-', linewidth=1) ax.tick_params(which="minor", bottom=False, left=False) # Loop over data dimensions and create text annotations. circle = dict(boxstyle="circle,pad=0.3", fc=(0, 0, 0, 0.0), ec="black", lw=3) roundthing = dict(boxstyle="square,pad=0.3", fc="black", ec=(0, 0, 0, 0.0), lw=2) # plot alignments for i in range(len(e)): for j in range(len(f)): if alignment1[i, j] > 0: t = ax.text(j, i, "x", ha="center", va="center", size=25 * scalefactor, bbox=circle, color=(0, 0, 0, 0.0)) if alignment2 is not None and alignment2[i, j] > 0: t = ax.text(j, i, "x", ha="center", va="center", size=12 * scalefactor, bbox=roundthing, color=(0, 0, 0, 0.0)) if title: ax.set_title(title) fig.tight_layout() if filename: plt.savefig(filename) else: plt.show() if __name__ == '__main__': line2matrix("0-0 1p1 2-1", 3, 2) plot_alignments(["Testing", "this", "."], ["Hier", "wird", "getestet", "."], np.array([[0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 1]]), np.array([[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]]), np.array([[0, 1, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]), np.array([[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]]), "Example")
pubnub/endpoints/objects_v2/uuid/get_uuid.py
natekspencer/pubnub-python
146
12719794
from pubnub.endpoints.objects_v2.objects_endpoint import ObjectsEndpoint, \ IncludeCustomEndpoint, UuidEndpoint from pubnub.enums import PNOperationType from pubnub.enums import HttpMethod from pubnub.models.consumer.objects_v2.uuid import PNGetUUIDMetadataResult class GetUuid(ObjectsEndpoint, UuidEndpoint, IncludeCustomEndpoint): GET_UID_PATH = "/v2/objects/%s/uuids/%s" def __init__(self, pubnub): ObjectsEndpoint.__init__(self, pubnub) UuidEndpoint.__init__(self) IncludeCustomEndpoint.__init__(self) def build_path(self): return GetUuid.GET_UID_PATH % (self.pubnub.config.subscribe_key, self._effective_uuid()) def validate_specific_params(self): self._validate_uuid() def create_response(self, envelope): return PNGetUUIDMetadataResult(envelope) def operation_type(self): return PNOperationType.PNGetUuidMetadataOperation def name(self): return "Get UUID" def http_method(self): return HttpMethod.GET
hlib/tests/test_math.py
pasqoc/heterocl
236
12719799
<reponame>pasqoc/heterocl import heterocl as hcl import heterocl.tvm as tvm import numpy as np import numpy.testing as tst import hlib dtype = hcl.Float(64) _sum = hcl.reducer(0, lambda x, y: x + y, dtype) _max = hcl.reducer(-100000, lambda x, y: tvm.make.Max(x, y), dtype) _min = hcl.reducer(100000, lambda x, y: tvm.make.Min(x, y), dtype) _prod = hcl.reducer(1, lambda x, y: x * y, dtype) def test_exp(): def _test(in_shape): hcl.init(hcl.Float()) data = hcl.placeholder(in_shape) def math_func(data): return hlib.op.math.exp(data) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = 10 * np.random.random(in_shape) - 5 out = hcl.asarray(np.zeros(in_shape).astype('float32')) real_out = np.exp(_in) f(hcl.asarray(_in), out) tst.assert_almost_equal(out.asnumpy(), real_out, 4) _test((1, 3)) _test((3, 3, 3)) _test((5, 5, 3, 2)) def test_log(): def _test(in_shape): hcl.init(hcl.Float()) data = hcl.placeholder(in_shape) def math_func(data): return hlib.op.math.log(data) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = 10 * np.random.random(in_shape) + 1 out = hcl.asarray(np.zeros(in_shape).astype('float32')) real_out = np.log(_in) f(hcl.asarray(_in), out) tst.assert_almost_equal(out.asnumpy(), real_out, 5) _test((1, 3)) _test((3, 3, 3)) _test((5, 5, 3, 2)) def test_sigmoid(): def _test(in_shape): data = hcl.placeholder(in_shape) def math_func(data): return hlib.op.math.sigmoid(data) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = 10 * np.random.random(in_shape) - 5 out = hcl.asarray(np.zeros(in_shape).astype('float32')) def sigmoid(data): return 1 / (1 + np.exp(-data)) real_out = sigmoid(_in) f(hcl.asarray(_in), out) tst.assert_almost_equal(out.asnumpy(), real_out, 5) _test((1, 3)) _test((3, 3, 3)) _test((5, 5, 3, 2)) def test_sqrt(): def _test(in_shape): data = hcl.placeholder(in_shape) def math_func(data): return hlib.op.math.sqrt(data) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = 100 * np.random.random(in_shape) + 1 out = hcl.asarray(np.zeros(in_shape).astype('float32')) real_out = np.sqrt(_in) f(hcl.asarray(_in), out) tst.assert_almost_equal(out.asnumpy(), real_out, 5) _test((1, 3)) _test((3, 3, 3)) _test((5, 5, 3, 2)) def tanh_test(): def _test(in_shape): hcl.init(hcl.Float()) data = hcl.placeholder(in_shape) def math_func(data): return hlib.op.math.tanh(data) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = 100 * np.random.random(in_shape) - 50 out = hcl.asarray(np.zeros(in_shape).astype('float32')) real_out = np.tanh(_in) f(hcl.asarray(_in), out) tst.assert_almost_equal(out.asnumpy(), real_out, 5) _test((1, 3)) _test((3, 3, 3)) _test((5, 5, 3, 2)) def test_clip(): def _test(in_shape, x_min, x_max): hcl.init(hcl.Float()) data = hcl.placeholder(in_shape) def math_func(data, x_min=x_min, x_max=x_max): return hlib.op.math.clip(data, a_min=x_min, a_max=x_max) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = 10 * np.random.random(in_shape) - 5 out = hcl.asarray(np.zeros(in_shape).astype('float32')) real_out = np.clip(_in, x_min, x_max) f(hcl.asarray(_in), out) tst.assert_almost_equal(out.asnumpy(), real_out) _test((1, 3), 0, 4) _test((1, 3, 3), -4, 4) _test((1, 3), 0, 4) _test((3, 3), 0, 0.01) def test_sum(): def _test(in_shape, axis=None, keepdims=False): hcl.init() new_shape = [] if axis is None: for i in range(len(in_shape)): new_shape.append(1) else: if isinstance(axis, int): if axis < 0: axis = len(in_shape) + axis axis = [axis] for i in range(len(in_shape)): if i in axis: new_shape.append(1) else: new_shape.append(in_shape[i]) data = hcl.placeholder(in_shape) def math_func(data, axis=axis, keepdims=keepdims): return hlib.op.math.sum(data, axis, keepdims) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = np.random.randint(10, size=in_shape) if keepdims: out = hcl.asarray(np.zeros(new_shape)) else: out = hcl.asarray(np.squeeze(np.zeros(new_shape))) f(hcl.asarray(_in), out) real_out = np.sum(_in, axis=axis, keepdims=keepdims) tst.assert_almost_equal(real_out, out.asnumpy()) _test((3, 3), axis=(0,)) _test((3, 3), axis=(0,), keepdims=True) _test((2, 2, 2), axis=(0,)) _test((2, 2, 2), axis=(0,), keepdims=True) _test((2, 2, 2), axis=(1,)) _test((2, 2, 2), axis=(1,), keepdims=True) _test((2, 2, 2), axis=(2,)) _test((2, 2, 2), axis=(2,), keepdims=True) _test((2, 2, 2, 3), axis=(0,)) _test((2, 2, 2, 3), axis=(0,), keepdims=True) _test((2, 2, 2, 3), axis=(1,)) _test((2, 2, 2, 3), axis=(1,), keepdims=True) _test((2, 2, 2, 3), axis=(2,)) _test((2, 2, 2, 3), axis=(2,), keepdims=True) _test((2, 2, 2, 3), axis=(3,)) _test((2, 2, 2, 3), axis=(3,), keepdims=True) _test((2, 2, 2, 3), axis=(0, 1)) _test((2, 2, 2, 3), axis=(0, 1), keepdims=True) _test((2, 2, 2, 3), axis=(0, 2)) _test((2, 2, 2, 3), axis=(0, 2), keepdims=True) _test((5, 2, 4, 3), axis=(3,)) _test((5, 2, 4, 3), axis=(3,), keepdims=True) _test((5, 2, 4, 3), axis=(0, 1)) _test((5, 2, 4, 3), axis=(0, 1), keepdims=True) _test((5, 2, 4, 3), axis=(0, 2)) _test((5, 2, 4, 3), axis=(0, 2), keepdims=True) def test_max(): def _test(in_shape, axis=None, keepdims=True): hcl.init() new_shape = [] if axis is None: for i in range(len(in_shape)): new_shape.append(1) else: if isinstance(axis, int): if axis < 0: axis = len(in_shape) + axis axis = [axis] for i in range(len(in_shape)): if i in axis: new_shape.append(1) else: new_shape.append(in_shape[i]) data = hcl.placeholder(in_shape) def math_func(data, axis=axis, keepdims=keepdims): return hlib.op.math.max(data, axis, keepdims) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = np.random.randint(10, size=in_shape) if keepdims: out = hcl.asarray(np.zeros(new_shape)) else: out = hcl.asarray(np.squeeze(np.zeros(new_shape))) real_out = np.amax(_in, tuple(axis), keepdims=keepdims) f(hcl.asarray(_in), out) tst.assert_almost_equal(out.asnumpy(), real_out) _test((3, 3), axis=(0,)) _test((3, 3), axis=(0,), keepdims=True) _test((2, 2, 2), axis=(0,)) _test((2, 2, 2), axis=(0,), keepdims=True) _test((2, 2, 2), axis=(1,)) _test((2, 2, 2), axis=(1,), keepdims=True) _test((2, 2, 2), axis=(2,)) _test((2, 2, 2), axis=(2,), keepdims=True) _test((2, 2, 2, 3), axis=(0,)) _test((2, 2, 2, 3), axis=(0,), keepdims=True) _test((2, 2, 2, 3), axis=(1,)) _test((2, 2, 2, 3), axis=(1,), keepdims=True) _test((2, 2, 2, 3), axis=(2,)) _test((2, 2, 2, 3), axis=(2,), keepdims=True) _test((2, 2, 2, 3), axis=(3,)) _test((2, 2, 2, 3), axis=(3,), keepdims=True) _test((2, 2, 2, 3), axis=(0, 1)) _test((2, 2, 2, 3), axis=(0, 1), keepdims=True) _test((2, 2, 2, 3), axis=(0, 2)) _test((2, 2, 2, 3), axis=(0, 2), keepdims=True) _test((5, 2, 4, 3), axis=(3,)) _test((5, 2, 4, 3), axis=(3,), keepdims=True) _test((5, 2, 4, 3), axis=(0, 1)) _test((5, 2, 4, 3), axis=(0, 1), keepdims=True) _test((5, 2, 4, 3), axis=(0, 2)) _test((5, 2, 4, 3), axis=(0, 2), keepdims=True) def test_prod(): def _test(in_shape, axis=None, keepdims=True): hcl.init(hcl.Float()) new_shape = [] if axis is None: for i in range(len(in_shape)): new_shape.append(1) else: if isinstance(axis, int): if axis < 0: axis = len(in_shape) + axis axis = [axis] for i in range(len(in_shape)): if i in axis: new_shape.append(1) else: new_shape.append(in_shape[i]) data = hcl.placeholder(in_shape) def math_func(data, axis=axis, keepdims=keepdims): return hlib.op.math.prod(data, axis, keepdims) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = np.random.random(size=in_shape) if keepdims: out = hcl.asarray(np.zeros(new_shape)) else: out = hcl.asarray(np.squeeze(np.zeros(new_shape))) real_out = np.prod(_in, tuple(axis), keepdims=keepdims) f(hcl.asarray(_in), out) tst.assert_almost_equal(out.asnumpy(), real_out) _test((3, 3), axis=(0,)) _test((3, 3), axis=(0,), keepdims=True) _test((2, 2, 2), axis=(0,)) _test((2, 2, 2), axis=(0,), keepdims=True) _test((2, 2, 2), axis=(1,)) _test((2, 2, 2), axis=(1,), keepdims=True) _test((2, 2, 2), axis=(2,)) _test((2, 2, 2), axis=(2,), keepdims=True) _test((2, 2, 2, 3), axis=(0,)) _test((2, 2, 2, 3), axis=(0,), keepdims=True) _test((2, 2, 2, 3), axis=(1,)) _test((2, 2, 2, 3), axis=(1,), keepdims=True) _test((2, 2, 2, 3), axis=(2,)) _test((2, 2, 2, 3), axis=(2,), keepdims=True) _test((2, 2, 2, 3), axis=(3,)) _test((2, 2, 2, 3), axis=(3,), keepdims=True) _test((2, 2, 2, 3), axis=(0, 1)) _test((2, 2, 2, 3), axis=(0, 1), keepdims=True) _test((2, 2, 2, 3), axis=(0, 2)) _test((2, 2, 2, 3), axis=(0, 2), keepdims=True) _test((5, 2, 4, 3), axis=(3,)) _test((5, 2, 4, 3), axis=(3,), keepdims=True) _test((5, 2, 4, 3), axis=(0, 1)) _test((5, 2, 4, 3), axis=(0, 1), keepdims=True) _test((5, 2, 4, 3), axis=(0, 2)) _test((5, 2, 4, 3), axis=(0, 2), keepdims=True) def test_min(): def _test(in_shape, axis=None, keepdims=True): hcl.init() new_shape = [] if axis is None: for i in range(len(in_shape)): new_shape.append(1) else: if isinstance(axis, int): if axis < 0: axis = len(in_shape) + axis axis = [axis] for i in range(len(in_shape)): if i in axis: new_shape.append(1) else: new_shape.append(in_shape[i]) data = hcl.placeholder(in_shape) def math_func(data, axis=axis, keepdims=keepdims): return hlib.op.math.min(data, axis, keepdims) s = hcl.create_schedule(data, math_func) f = hcl.build(s) _in = np.random.randint(10, size=in_shape) if keepdims: out = hcl.asarray(np.zeros(new_shape)) else: out = hcl.asarray(np.squeeze(np.zeros(new_shape))) real_out = np.amin(_in, tuple(axis), keepdims=keepdims) f(hcl.asarray(_in), out) tst.assert_almost_equal(out.asnumpy(), real_out) _test((3, 3), axis=(0,)) _test((3, 3), axis=(0,), keepdims=True) _test((2, 2, 2), axis=(0,)) _test((2, 2, 2), axis=(0,), keepdims=True) _test((2, 2, 2), axis=(1,)) _test((2, 2, 2), axis=(1,), keepdims=True) _test((2, 2, 2), axis=(2,)) _test((2, 2, 2), axis=(2,), keepdims=True) _test((2, 2, 2, 3), axis=(0,)) _test((2, 2, 2, 3), axis=(0,), keepdims=True) _test((2, 2, 2, 3), axis=(1,)) _test((2, 2, 2, 3), axis=(1,), keepdims=True) _test((2, 2, 2, 3), axis=(2,)) _test((2, 2, 2, 3), axis=(2,), keepdims=True) _test((2, 2, 2, 3), axis=(3,)) _test((2, 2, 2, 3), axis=(3,), keepdims=True) _test((2, 2, 2, 3), axis=(0, 1)) _test((2, 2, 2, 3), axis=(0, 1), keepdims=True) _test((2, 2, 2, 3), axis=(0, 2)) _test((2, 2, 2, 3), axis=(0, 2), keepdims=True) _test((5, 2, 4, 3), axis=(3,)) _test((5, 2, 4, 3), axis=(3,), keepdims=True) _test((5, 2, 4, 3), axis=(0, 1)) _test((5, 2, 4, 3), axis=(0, 1), keepdims=True) _test((5, 2, 4, 3), axis=(0, 2)) _test((5, 2, 4, 3), axis=(0, 2), keepdims=True)
viewer_examples/1_collection_viewer.py
ritamonteiroo/scikit
453
12719814
<gh_stars>100-1000 from skimage import data from skimage.viewer import CollectionViewer from skimage.transform import pyramid_gaussian img = data.lena() img_collection = tuple(pyramid_gaussian(img)) view = CollectionViewer(img_collection) view.show()
app/tests/plugins/another_test_plugin/__init__.py
golem4300/quattran
183
12719839
from app.tests import test_kernel @test_kernel.container.register('another_test_plugin', tags=['plugin']) class AnotherTestPlugin(object): pass
apps/molecular_generation/SD_VAE/train_zinc.py
agave233/PaddleHelix
454
12719886
<filename>apps/molecular_generation/SD_VAE/train_zinc.py #!/usr/bin/python3 #-*-coding:utf-8-*- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ train zinc """ from __future__ import print_function from past.builtins import range import os import os.path import sys import numpy as np import math import random from paddle.io import Dataset import paddle import paddle.nn.functional as F import paddle.nn as nn sys.path.append('./mol_common') from cmd_args import cmd_args from pahelix.model_zoo.sd_vae_model import MolVAE import h5py import json def load_zinc_SD_data(): """ tbd """ h5f = h5py.File(cmd_args.smiles_file, 'r') all_true_binary = h5f['x'][:] all_rule_masks = h5f['masks'][:] h5f.close() return all_true_binary, all_rule_masks class CreateDataset(Dataset): """ tbd """ def __init__(self, true_binary, rule_masks): self.data_binary = true_binary self.data_masks = rule_masks def __len__(self): """ Computes a number of objects in the dataset """ return self.data_binary.shape[0] def __getitem__(self, index): true_binary = self.data_binary[index, :, :].astype(np.float32) rule_masks = self.data_masks[index, :, :].astype(np.float32) x_inputs = np.transpose(true_binary, [1, 0]) true_binary = paddle.to_tensor(true_binary) rule_masks = paddle.to_tensor(rule_masks) x_inputs = paddle.to_tensor(x_inputs) return x_inputs, true_binary, rule_masks def _train_epoch(model, data_loader, epoch, kl_weight, optimizer=None): """ tbd """ if optimizer is None: model.eval() else: model.train() kl_loss_values = [] perplexity_loss_values = [] loss_values = [] for batch_id, data in enumerate(data_loader()): # read batch data x_inputs_batch, true_binary_batch, rule_masks_batch = data # transpose the axes of data true_binary_batch = paddle.transpose(true_binary_batch, (1, 0, 2)) rule_masks_batch = paddle.transpose(rule_masks_batch, (1, 0, 2)) # forward loss_list = model(x_inputs_batch, true_binary_batch, rule_masks_batch,) if len(loss_list) == 1: # only perplexity perplexity = loss_list[0] kl_loss = paddle.to_tensor(0) else: perplexity= loss_list[0] kl_loss = loss_list[1] loss = kl_weight * kl_loss + perplexity if optimizer is not None: # backward loss.backward() # optimize optimizer.step() # clear gradients optimizer.clear_grad() # Log kl_loss_values.append(kl_loss.numpy()[0]) perplexity_loss_values.append(perplexity.numpy()[0]) loss_values.append(loss.numpy()[0]) lr = (optimizer.get_lr() if optimizer is not None else 0) if batch_id % 200 == 0 and batch_id > 0: print('batch:%s, kl_loss:%f, perplexity_loss:%f' % (batch_id, float(np.mean(kl_loss_values)), \ float(np.mean(perplexity_loss_values))), flush=True) postfix = { 'epoch': epoch, 'kl_weight': kl_weight, 'lr': lr, 'kl_loss': np.mean(kl_loss_values), 'perplexity_loss': np.mean(perplexity_loss_values), 'loss': np.mean(loss_values), 'mode': 'Eval' if optimizer is None else 'Train'} return postfix def _train(model, train_dataloader): """ tbd """ # train the model n_epoch = cmd_args.num_epochs clip_grad = nn.ClipGradByNorm(clip_norm=cmd_args.clip_grad) optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=cmd_args.learning_rate, grad_clip=clip_grad) # start to train for epoch in range(n_epoch): #kl_weight = kl_annealer(epoch) kl_weight = cmd_args.kl_coeff print('##########################################################################################', flush=True) print('EPOCH:%d' % (epoch), flush=True) postfix = _train_epoch(model, train_dataloader, epoch, kl_weight, optimizer=optimizer) # save state_dict paddle.save(model.state_dict(), cmd_args.save_dir + 'train_model_epoch' + str(epoch)) paddle.save(optimizer.state_dict(), cmd_args.save_dir + 'train_optimizer_epoch' + str(epoch)) print('epoch:%d loss:%f kl_loss:%f perplexity_loss:%f' % \ (epoch, postfix['loss'], postfix['kl_loss'], postfix['perplexity_loss']), flush=True) print('##########################################################################################', flush=True) # lr_annealer.step() return model def main(): """ tbd """ # get model config model_config = json.load(open(cmd_args.model_config, 'r')) # set gpu paddle.set_device(cmd_args.mode) all_true_binary, all_rule_masks = load_zinc_SD_data() all_true_binary = all_true_binary all_rule_masks = all_rule_masks # load the data loader train_dataset = CreateDataset(all_true_binary, all_rule_masks) train_dataloader = paddle.io.DataLoader(train_dataset, batch_size=cmd_args.batch_size, shuffle=True) # load model model = MolVAE(model_config) # train the model _train(model, train_dataloader) if __name__ == '__main__': main()
dress/scripts/readability/getFKGL.py
XingxingZhang/dress
157
12719893
<gh_stars>100-1000 #!/usr/bin/python from readability import Readability import sys if __name__ == '__main__': infile = sys.argv[1] text = open(infile).read() rd = Readability(text) print(rd.FleschKincaidGradeLevel())
modules/dbnd/src/targets/marshalling/numpy.py
ipattarapong/dbnd
224
12719921
from __future__ import absolute_import import numpy as np from targets.marshalling.marshaller import Marshaller from targets.target_config import FileFormat class NumpyArrayMarshaller(Marshaller): type = np.ndarray file_format = FileFormat.numpy def target_to_value(self, target, **kwargs): """ :param obj: object to pickle :return: """ with target.open("rb") as fp: return np.load(fp, **kwargs) def value_to_target(self, value, target, **kwargs): """ :param obj: object to pickle :return: """ target.mkdir_parent() with target.open("wb") as fp: np.save(fp, value, **kwargs) class NumpyArrayPickleMarshaler(NumpyArrayMarshaller): file_format = FileFormat.pickle def target_to_value(self, target, **kwargs): return np.load(target.path, allow_pickle=True, **kwargs) def value_to_target(self, value, target, **kwargs): np.save(target.path, value, allow_pickle=True, **kwargs)
esphome/components/monochromatic/light.py
OttoWinter/esphomeyaml
249
12719962
import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import light, output from esphome.const import CONF_OUTPUT_ID, CONF_OUTPUT monochromatic_ns = cg.esphome_ns.namespace("monochromatic") MonochromaticLightOutput = monochromatic_ns.class_( "MonochromaticLightOutput", light.LightOutput ) CONFIG_SCHEMA = light.BRIGHTNESS_ONLY_LIGHT_SCHEMA.extend( { cv.GenerateID(CONF_OUTPUT_ID): cv.declare_id(MonochromaticLightOutput), cv.Required(CONF_OUTPUT): cv.use_id(output.FloatOutput), } ) async def to_code(config): var = cg.new_Pvariable(config[CONF_OUTPUT_ID]) await light.register_light(var, config) out = await cg.get_variable(config[CONF_OUTPUT]) cg.add(var.set_output(out))
aztk_cli/spark/endpoints/job/submit.py
Geims83/aztk
161
12719977
import argparse import typing import aztk.spark from aztk_cli import config from aztk_cli.config import JobConfig def setup_parser(parser: argparse.ArgumentParser): parser.add_argument( "--id", dest="job_id", required=False, help="The unique id of your Spark Job. Defaults to the id value in .aztk/job.yaml", ) parser.add_argument( "--configuration", "-c", dest="job_conf", required=False, help="Path to the job.yaml configuration file. Defaults to .aztk/job.yaml", ) def execute(args: typing.NamedTuple): spark_client = aztk.spark.Client(config.load_aztk_secrets()) job_conf = JobConfig() job_conf.merge(args.job_id, args.job_conf) # by default, load spark configuration files in .aztk/ spark_configuration = config.load_aztk_spark_config() # overwrite with values in job_conf if they exist if job_conf.spark_defaults_conf: spark_configuration.spark_defaults_conf = job_conf.spark_defaults_conf if job_conf.spark_env_sh: spark_configuration.spark_env_sh = job_conf.spark_env_sh if job_conf.core_site_xml: spark_configuration.core_site_xml = job_conf.core_site_xml job_configuration = aztk.spark.models.JobConfiguration( id=job_conf.id, applications=job_conf.applications, spark_configuration=spark_configuration, vm_size=job_conf.vm_size, toolkit=job_conf.toolkit, max_dedicated_nodes=job_conf.max_dedicated_nodes, max_low_pri_nodes=job_conf.max_low_pri_nodes, subnet_id=job_conf.subnet_id, worker_on_master=job_conf.worker_on_master, scheduling_target=job_conf.scheduling_target, ) # TODO: utils.print_job_conf(job_configuration) spark_client.job.submit(job_configuration)
migrations/20211109_01_xKblp-change-comments-on-black-jack-record.py
zw-g/Funny-Nation
126
12719993
<reponame>zw-g/Funny-Nation<gh_stars>100-1000 """ change comments on black jack record """ from yoyo import step __depends__ = {'20211103_04_Y0xbO-remove-uuid-s-primary-key-on-black-jack-record'} steps = [ step("ALTER TABLE `blackJackGameRecord` CHANGE `status` `status` INT NOT NULL COMMENT '0 represent in progress; 1 represent lose; 2 represent win; 3 represent draw; 4 represent closed; ';") ]
geosnap/tests/test_incs.py
weikang9009/geosnap
148
12720086
from geosnap import analyze linc = analyze.incs.linc def test_linc(): labels_0 = [1, 1, 1, 1, 2, 2, 3, 3, 3, 4] labels_1 = [1, 1, 1, 1, 1, 2, 3, 3, 3, 4] res = linc([labels_0, labels_1]) assert res[4] == 1.0 assert res[7] == 0.0 == res[-1] labels_2 = [1, 1, 1, 1, 1, 2, 3, 3, 3, 4] res = linc([labels_1, labels_2]) assert res[0] == 0.0 res = linc([labels_0, labels_1, labels_2]) assert res[0] == 0.25
Chapter06/extract_contents.py
add54/ADMIN_SYS_PYTHON
116
12720117
<filename>Chapter06/extract_contents.py import tarfile import os os.mkdir('work') with tarfile.open('work.tar', 'r') as t: t.extractall('work') print(os.listdir('work'))
lib/yahoo/oauth.py
goztrk/django-htk
206
12720144
# Python Standard Library Imports import time from rauth import OAuth1Service from rauth.service import process_token_request from rauth.utils import parse_utf8_qsl YAHOO_OAUTH_REQUEST_TOKEN_URL = 'https://api.login.yahoo.com/oauth/v2/get_request_token' YAHOO_OAUTH_ACCESS_TOKEN_URL = 'https://api.login.yahoo.com/oauth/v2/get_token' YAHOO_OAUTH_AUTHORIZE_URL = 'https://api.login.yahoo.com/oauth/v2/request_auth' def refresh_token_if_needed(func): """Decorator to make sure we refresh the token if needed before every query """ def keys_from_response(text): return_array = [] response_array = text.split('&') for e in response_array: pair = e.split('=', 2 ) return_array.append(pair[0]) return return_array def refresh(self, *args, **kwargs): """ `self` is an instance of YahooOAuthClient """ # Let's refresh 5 minutes before the expiration time expires = self.user_social_auth.extra_data['expires'] expires_time = int(expires) - 300 if expires else 0 now = int(time.time()) # print('comparing n: {0} vs expire: {1}'.format(now, expires)) if expires is None or expires < now: #print('------ Refreshing Token ------') r = self.oauth.get_raw_access_token( request_token=self.access_token['oauth_token'], request_token_secret=self.access_token['oauth_token_secret'], params={'oauth_session_handle':self.access_token['oauth_session_handle']}, ) keys = keys_from_response(r.text) access_token = process_token_request(r, parse_utf8_qsl, *keys) for i,k in enumerate(keys): self.access_token[k] = access_token[i] # Save back to UserSocialAuth Model self.user_social_auth.extra_data['access_token'] = self.access_token current_time = int(time.time()) self.user_social_auth.extra_data['expires'] = current_time + int(self.access_token['oauth_expires_in']) # print('current time: {0}, expiring oauth at {1}'.format(current_time, self.user_social_auth.extra_data['expires'])) self.user_social_auth.save() token = (self.access_token['oauth_token'], self.access_token['oauth_token_secret']) self.session = self.oauth.get_session(token) return func(self, *args, **kwargs) return refresh class YahooOAuthClient(object): def __init__(self, app_key, app_secret, user_social_auth): """Constructor for YahooOAuthClient `app_key` - Yahoo App Key `app_secret` - Yahoo App Secret `user_social_auth` - UserSocialAuth model to store refreshed token """ # UserSocialAuth needed to access the access token self.last_error = None self.user_social_auth = user_social_auth self.access_token = user_social_auth.extra_data.get('access_token') self.oauth = OAuth1Service( name='Yahoo', consumer_key=app_key, consumer_secret=app_secret, request_token_url=YAHOO_OAUTH_REQUEST_TOKEN_URL, access_token_url=YAHOO_OAUTH_ACCESS_TOKEN_URL, authorize_url=YAHOO_OAUTH_AUTHORIZE_URL, ) self.session = self.oauth.get_session((self.access_token['oauth_token'], self.access_token['oauth_token_secret']))
social_core/tests/backends/test_stackoverflow.py
sg4e/social-core
745
12720154
<gh_stars>100-1000 import json from urllib.parse import urlencode from .oauth import OAuth2Test class StackoverflowOAuth2Test(OAuth2Test): backend_path = 'social_core.backends.stackoverflow.StackoverflowOAuth2' user_data_url = 'https://api.stackexchange.com/2.1/me' expected_username = 'foobar' access_token_body = urlencode({ 'access_token': 'foobar', 'token_type': 'bearer' }) user_data_body = json.dumps({ 'items': [{ 'user_id': 101010, 'user_type': 'registered', 'creation_date': 1278525551, 'display_name': 'foobar', 'profile_image': 'http: //www.gravatar.com/avatar/' '5280f15cedf540b544eecc30fcf3027c?' 'd=identicon&r=PG', 'reputation': 547, 'reputation_change_day': 0, 'reputation_change_week': 0, 'reputation_change_month': 0, 'reputation_change_quarter': 65, 'reputation_change_year': 65, 'age': 22, 'last_access_date': 1363544705, 'last_modified_date': 1354035327, 'is_employee': False, 'link': 'http: //stackoverflow.com/users/101010/foobar', 'location': 'Fooland', 'account_id': 101010, 'badge_counts': { 'gold': 0, 'silver': 3, 'bronze': 6 } }], 'quota_remaining': 9997, 'quota_max': 10000, 'has_more': False }) def test_login(self): self.do_login() def test_partial_pipeline(self): self.do_partial_pipeline()
tests/runner.py
QIANDY2021/blender-retarget
112
12720159
import sys import unittest import coverage cov = coverage.Coverage( branch=True, source=['animation_retarget'], ) cov.start() suite = unittest.defaultTestLoader.discover('.') if not unittest.TextTestRunner().run(suite).wasSuccessful(): exit(1) cov.stop() cov.xml_report() if '--save-html-report' in sys.argv: cov.html_report()
contrib/pyln-client/pyln/client/gossmap.py
Bladez1753/lightning
2,288
12720190
<gh_stars>1000+ #! /usr/bin/python3 from pyln.spec.bolt7 import (channel_announcement, channel_update, node_announcement) from pyln.proto import ShortChannelId, PublicKey from typing import Any, Dict, List, Optional, Union, cast import io import struct # These duplicate constants in lightning/common/gossip_store.h GOSSIP_STORE_VERSION = 9 GOSSIP_STORE_LEN_DELETED_BIT = 0x80000000 GOSSIP_STORE_LEN_PUSH_BIT = 0x40000000 GOSSIP_STORE_LEN_MASK = (~(GOSSIP_STORE_LEN_PUSH_BIT | GOSSIP_STORE_LEN_DELETED_BIT)) # These duplicate constants in lightning/gossipd/gossip_store_wiregen.h WIRE_GOSSIP_STORE_PRIVATE_CHANNEL = 4104 WIRE_GOSSIP_STORE_PRIVATE_UPDATE = 4102 WIRE_GOSSIP_STORE_DELETE_CHAN = 4103 WIRE_GOSSIP_STORE_ENDED = 4105 WIRE_GOSSIP_STORE_CHANNEL_AMOUNT = 4101 class GossipStoreHeader(object): def __init__(self, buf: bytes): length, self.crc, self.timestamp = struct.unpack('>III', buf) self.deleted = (length & GOSSIP_STORE_LEN_DELETED_BIT) != 0 self.length = (length & GOSSIP_STORE_LEN_MASK) class GossmapHalfchannel(object): """One direction of a GossmapChannel.""" def __init__(self, channel: 'GossmapChannel', direction: int, timestamp: int, cltv_expiry_delta: int, htlc_minimum_msat: int, htlc_maximum_msat: int, fee_base_msat: int, fee_proportional_millionths: int): self.channel = channel self.direction = direction self.source = channel.node1 if direction == 0 else channel.node2 self.destination = channel.node2 if direction == 0 else channel.node1 self.timestamp: int = timestamp self.cltv_expiry_delta: int = cltv_expiry_delta self.htlc_minimum_msat: int = htlc_minimum_msat self.htlc_maximum_msat: Optional[int] = htlc_maximum_msat self.fee_base_msat: int = fee_base_msat self.fee_proportional_millionths: int = fee_proportional_millionths def __repr__(self): return "GossmapHalfchannel[{}x{}]".format(str(self.channel.scid), self.direction) class GossmapNodeId(object): def __init__(self, buf: Union[bytes, str]): if isinstance(buf, str): buf = bytes.fromhex(buf) if len(buf) != 33 or (buf[0] != 2 and buf[0] != 3): raise ValueError("{} is not a valid node_id".format(buf.hex())) self.nodeid = buf def to_pubkey(self) -> PublicKey: return PublicKey(self.nodeid) def __eq__(self, other): if not isinstance(other, GossmapNodeId): return False return self.nodeid.__eq__(other.nodeid) def __lt__(self, other): if not isinstance(other, GossmapNodeId): raise ValueError(f"Cannot compare GossmapNodeId with {type(other)}") return self.nodeid.__lt__(other.nodeid) # yes, that works def __hash__(self): return self.nodeid.__hash__() def __repr__(self): return "GossmapNodeId[{}]".format(self.nodeid.hex()) @classmethod def from_str(cls, s: str): if s.startswith('0x'): s = s[2:] if len(s) != 66: raise ValueError(f"{s} is not a valid hexstring of a node_id") return cls(bytes.fromhex(s)) class GossmapChannel(object): """A channel: fields of channel_announcement are in .fields, optional updates are in .updates_fields, which can be None if there has been no channel update.""" def __init__(self, fields: Dict[str, Any], announce_offset: int, scid, node1: 'GossmapNode', node2: 'GossmapNode', is_private: bool): self.fields = fields self.announce_offset = announce_offset self.is_private = is_private self.scid = scid self.node1 = node1 self.node2 = node2 self.updates_fields: List[Optional[Dict[str, Any]]] = [None, None] self.updates_offset: List[Optional[int]] = [None, None] self.satoshis = None self.half_channels: List[Optional[GossmapHalfchannel]] = [None, None] def _update_channel(self, direction: int, fields: Dict[str, Any], off: int): self.updates_fields[direction] = fields self.updates_offset[direction] = off half = GossmapHalfchannel(self, direction, fields['timestamp'], fields['cltv_expiry_delta'], fields['htlc_minimum_msat'], fields.get('htlc_maximum_msat', None), fields['fee_base_msat'], fields['fee_proportional_millionths']) self.half_channels[direction] = half def get_direction(self, direction: int): """ returns the GossmapHalfchannel if known by channel_update """ if not 0 <= direction <= 1: raise ValueError("direction can only be 0 or 1") return self.half_channels[direction] def __repr__(self): return "GossmapChannel[{}]".format(str(self.scid)) class GossmapNode(object): """A node: fields of node_announcement are in .announce_fields, which can be None of there has been no node announcement. .channels is a list of the GossmapChannels attached to this node. """ def __init__(self, node_id: Union[GossmapNodeId, bytes, str]): if isinstance(node_id, bytes) or isinstance(node_id, str): node_id = GossmapNodeId(node_id) self.announce_fields: Optional[Dict[str, Any]] = None self.announce_offset: Optional[int] = None self.channels: List[GossmapChannel] = [] self.node_id = node_id def __repr__(self): return "GossmapNode[{}]".format(self.node_id.nodeid.hex()) def __eq__(self, other): if not isinstance(other, GossmapNode): return False return self.node_id.__eq__(other.node_id) def __lt__(self, other): if not isinstance(other, GossmapNode): raise ValueError(f"Cannot compare GossmapNode with {type(other)}") return self.node_id.__lt__(other.node_id) class Gossmap(object): """Class to represent the gossip map of the network""" def __init__(self, store_filename: str = "gossip_store"): self.store_filename = store_filename self.store_file = open(store_filename, "rb") self.store_buf = bytes() self.nodes: Dict[GossmapNodeId, GossmapNode] = {} self.channels: Dict[ShortChannelId, GossmapChannel] = {} self._last_scid: Optional[str] = None version = self.store_file.read(1) if version[0] != GOSSIP_STORE_VERSION: raise ValueError("Invalid gossip store version {}".format(int(version))) self.bytes_read = 1 self.refresh() def _new_channel(self, fields: Dict[str, Any], announce_offset: int, scid: ShortChannelId, node1: GossmapNode, node2: GossmapNode, is_private: bool): c = GossmapChannel(fields, announce_offset, scid, node1, node2, is_private) self._last_scid = scid self.channels[scid] = c node1.channels.append(c) node2.channels.append(c) def _del_channel(self, scid: ShortChannelId): c = self.channels[scid] del self.channels[scid] c.node1.channels.remove(c) c.node2.channels.remove(c) # Beware self-channels n1-n1! if len(c.node1.channels) == 0 and c.node1 != c.node2: del self.nodes[c.node1.node_id] if len(c.node2.channels) == 0: del self.nodes[c.node2.node_id] def _add_channel(self, rec: bytes, off: int, is_private: bool): fields = channel_announcement.read(io.BytesIO(rec[2:]), {}) # Add nodes one the fly node1_id = GossmapNodeId(fields['node_id_1']) node2_id = GossmapNodeId(fields['node_id_2']) if node1_id not in self.nodes: self.nodes[node1_id] = GossmapNode(node1_id) if node2_id not in self.nodes: self.nodes[node2_id] = GossmapNode(node2_id) self._new_channel(fields, off, ShortChannelId.from_int(fields['short_channel_id']), self.get_node(node1_id), self.get_node(node2_id), is_private) def _set_channel_amount(self, rec: bytes): """ Sets channel capacity of last added channel """ sats, = struct.unpack(">Q", rec[2:]) self.channels[self._last_scid].satoshis = sats def get_channel(self, short_channel_id: ShortChannelId): """ Resolves a channel by its short channel id """ if isinstance(short_channel_id, str): short_channel_id = ShortChannelId.from_str(short_channel_id) return self.channels.get(short_channel_id) def get_node(self, node_id: Union[GossmapNodeId, str]): """ Resolves a node by its public key node_id """ if isinstance(node_id, str): node_id = GossmapNodeId.from_str(node_id) return self.nodes.get(cast(GossmapNodeId, node_id)) def _update_channel(self, rec: bytes, off: int): fields = channel_update.read(io.BytesIO(rec[2:]), {}) direction = fields['channel_flags'] & 1 c = self.channels[ShortChannelId.from_int(fields['short_channel_id'])] c._update_channel(direction, fields, off) def _add_node_announcement(self, rec: bytes, off: int): fields = node_announcement.read(io.BytesIO(rec[2:]), {}) node_id = GossmapNodeId(fields['node_id']) self.nodes[node_id].announce_fields = fields self.nodes[node_id].announce_offset = off def reopen_store(self): """FIXME: Implement!""" assert False def _remove_channel_by_deletemsg(self, rec: bytes): scidint, = struct.unpack(">Q", rec[2:]) scid = ShortChannelId.from_int(scidint) # It might have already been deleted when we skipped it. if scid in self.channels: self._del_channel(scid) def _pull_bytes(self, length: int) -> bool: """Pull bytes from file into our internal buffer""" if len(self.store_buf) < length: self.store_buf += self.store_file.read(length - len(self.store_buf)) return len(self.store_buf) >= length def _read_record(self) -> Optional[bytes]: """If a whole record is not in the file, returns None. If deleted, returns empty.""" if not self._pull_bytes(12): return None hdr = GossipStoreHeader(self.store_buf[:12]) if not self._pull_bytes(12 + hdr.length): return None self.bytes_read += len(self.store_buf) ret = self.store_buf[12:] self.store_buf = bytes() if hdr.deleted: ret = bytes() return ret def refresh(self): """Catch up with any changes to the gossip store""" while True: off = self.bytes_read rec = self._read_record() # EOF? if rec is None: break # Deleted? if len(rec) == 0: continue rectype, = struct.unpack(">H", rec[:2]) if rectype == channel_announcement.number: self._add_channel(rec, off, False) elif rectype == WIRE_GOSSIP_STORE_PRIVATE_CHANNEL: self._add_channel(rec[2 + 8 + 2:], off + 2 + 8 + 2, True) elif rectype == WIRE_GOSSIP_STORE_CHANNEL_AMOUNT: self._set_channel_amount(rec) elif rectype == channel_update.number: self._update_channel(rec, off) elif rectype == WIRE_GOSSIP_STORE_PRIVATE_UPDATE: self._update_channel(rec[2 + 2:], off + 2 + 2) elif rectype == WIRE_GOSSIP_STORE_DELETE_CHAN: self._remove_channel_by_deletemsg(rec) elif rectype == node_announcement.number: self._add_node_announcement(rec, off) elif rectype == WIRE_GOSSIP_STORE_ENDED: self.reopen_store() else: continue
tests/protocols/mrp/test_mrp_interface.py
Jacobs4/pyatv
532
12720211
"""Unit tests for interface implementations in pyatv.protocols.mrp.""" import math import pytest from pyatv import exceptions from pyatv.protocols.mrp import MrpAudio, messages, protobuf DEVICE_UID = "F2204E63-BCAB-4941-80A0-06C46CB71391" # This mock is _extremely_ basic, so needs to be adjusted heavily when adding # new tests class MrpProtocolMock: def __init__(self): self._listeners = {} self.sent_messages = [] def add_listener(self, listener, message_type, data=None): self._listeners[message_type] = listener async def send(self, message): self.sent_messages.append(message) async def inject(self, message): await self._listeners[message.type](message, None) async def volume_controls_changed(self, device_uid, controls_available): message = messages.create( protobuf.VOLUME_CONTROL_CAPABILITIES_DID_CHANGE_MESSAGE ) message.inner().outputDeviceUID = device_uid message.inner().capabilities.volumeControlAvailable = controls_available await self.inject(message) @pytest.fixture(name="protocol") def protocol_fixture(event_loop): yield MrpProtocolMock() # MrpAudio @pytest.fixture(name="audio") def audio_fixture(protocol): yield MrpAudio(protocol) async def test_audio_volume_control_availability(protocol, audio): assert not audio.is_available await protocol.volume_controls_changed(DEVICE_UID, True) assert audio.is_available await protocol.volume_controls_changed(DEVICE_UID, False) assert not audio.is_available @pytest.mark.parametrize( "device_uid,controls_available,controls_expected", [ (DEVICE_UID, True, True), ], ) async def test_audio_volume_control_capabilities_changed( protocol, audio, device_uid, controls_available, controls_expected ): assert not audio.is_available await protocol.volume_controls_changed(device_uid, controls_available) assert audio.is_available == controls_expected @pytest.mark.parametrize( "device_uid,volume,expected_volume", [ ("foo", 0.2, 0.0), # deviceUID mismatch => no update (DEVICE_UID, 0.2, 20.0), # deviceUID matches => update ], ) async def test_audio_volume_did_change( protocol, audio, device_uid, volume, expected_volume ): await protocol.volume_controls_changed(DEVICE_UID, True) assert math.isclose(audio.volume, 0.0) message = messages.create(protobuf.VOLUME_DID_CHANGE_MESSAGE) message.inner().outputDeviceUID = device_uid message.inner().volume = volume await protocol.inject(message) assert math.isclose(audio.volume, expected_volume) async def test_audio_set_volume(protocol, audio): await protocol.volume_controls_changed(DEVICE_UID, True) await audio.set_volume(0.0) assert len(protocol.sent_messages) == 1 message = protocol.sent_messages.pop() assert message.type == protobuf.SET_VOLUME_MESSAGE assert message.inner().outputDeviceUID == DEVICE_UID assert math.isclose(message.inner().volume, 0.0, rel_tol=1e-02) async def test_audio_set_volume_no_output_device(audio): with pytest.raises(exceptions.ProtocolError): await audio.set_volume(10)
constants.py
AlexRogalskiy/smart-social-distancing
113
12720214
<reponame>AlexRogalskiy/smart-social-distancing PROCESSOR_VERSION = "0.7.0" # Entities AREAS = "areas" CAMERAS = "cameras" ALL_AREAS = "ALL" # Metrics OCCUPANCY = "occupancy" SOCIAL_DISTANCING = "social-distancing" FACEMASK_USAGE = "facemask-usage" IN_OUT = "in-out" DWELL_TIME = "dwell-time"
lib/django-1.4/django/contrib/formtools/tests/wizard/sessionstorage.py
MiCHiLU/google_appengine_sdk
790
12720217
<filename>lib/django-1.4/django/contrib/formtools/tests/wizard/sessionstorage.py<gh_stars>100-1000 from django.test import TestCase from django.contrib.formtools.tests.wizard.storage import TestStorage from django.contrib.formtools.wizard.storage.session import SessionStorage class TestSessionStorage(TestStorage, TestCase): def get_storage(self): return SessionStorage
mayan/apps/checkouts/events.py
eshbeata/open-paperless
2,743
12720223
<reponame>eshbeata/open-paperless from __future__ import absolute_import, unicode_literals from django.utils.translation import ugettext_lazy as _ from events.classes import Event event_document_auto_check_in = Event( name='checkouts_document_auto_check_in', label=_('Document automatically checked in') ) event_document_check_in = Event( name='checkouts_document_check_in', label=_('Document checked in') ) event_document_check_out = Event( name='checkouts_document_check_out', label=_('Document checked out') ) event_document_forceful_check_in = Event( name='checkouts_document_forceful_check_in', label=_('Document forcefully checked in') )
tools/test_eval.py
yoxu515/CFBI
312
12720227
import sys sys.path.append('.') sys.path.append('..') from networks.engine.eval_manager import Evaluator import importlib def main(): import argparse parser = argparse.ArgumentParser(description="Test CFBI") parser.add_argument('--gpu_id', type=int, default=7) parser.add_argument('--config', type=str, default='configs.resnet101_cfbi') parser.add_argument('--ckpt_path', type=str, default='test') args = parser.parse_args() config = importlib.import_module(args.config) cfg = config.cfg cfg.TEST_GPU_ID = args.gpu_id cfg.TEST_DATASET = 'test' cfg.TEST_CKPT_PATH = args.ckpt_path cfg.TEST_MULTISCALE = [0.5, 1] cfg.TEST_FLIP = True evaluator = Evaluator(cfg=cfg) evaluator.evaluating() if __name__ == '__main__': main()
python/lib/qfloatslider.py
Azrod29150/Systematic-LEDs
101
12720237
<gh_stars>100-1000 from PyQt5 import QtCore, QtGui, QtWidgets __all__ = ['QFloatSlider'] class QFloatSlider(QtWidgets.QSlider): """ Subclass of QtWidgets.QSlider Horizontal slider giving floating point values. Usage: QFloatSlider(min, max, step, default) where min = minimum value of slider max = maximum value of slider step = interval between values. Must be a factor of (max-min) default = default (starting) value of slider """ def __init__(self, min_value, max_value, step, default): super().__init__(QtCore.Qt.Horizontal) self.precision = 0.0001 self.min_value = min_value self.max_value = max_value self.step = step self.default = default self.quotient, self.remainder = self._float_divmod(\ self.max_value-self.min_value, self.step) if self.remainder: raise ValueError("{} does not fit evenly between {} and {}"\ .format(step, min_value, max_value)) super().setMinimum(0) super().setMaximum(self.quotient) super().setSingleStep(1) super().setValue(self._float_to_int(self.default)) super().valueChanged.connect(self._value_handler) #self.slider_value = 2.0 def setValue(self, value): super().setValue(self._float_to_int(value)) # This is mostly disgusting python i hate floating points >:( def _float_divmod(self,a,b): """ Basically the divmod function but it works for floats (try 0.3 % 0.1 smh) Returns the quotient, and a remainder. """ a = abs(a) b = abs(b) n = 1 while True: c = a - b c = abs(c) if c < self.precision: return (n, 0) elif c > a: return (n-1, a) a = c n += 1 def _float_to_int(self, a): return int(round(a/self.step)) def _int_to_float(self, a): return self.min_value+a*self.step def _value_handler(self): self.slider_value = self._int_to_float(super().value())
TicTacToe-GUI/TicTacToe.py
avinashkranjan/PraticalPythonProjects
930
12720245
# -*- coding: utf-8 -*- """ Tic Toe Using pygame , numpy and sys with Graphical User Interface """ import pygame import sys from pygame.locals import * import numpy as np # ------ # constants # ------- width = 800 height = 800 #row and columns board_rows = 3 board_columns = 3 cross_width = 25 square_size = width//board_columns # colors in RGB format line_Width = 15 red = (255, 0, 0) bg_color = (28, 170, 156) line_color = (23, 145, 135) circle_color = (239, 231, 200) cross_color = (66, 66, 66) space = square_size//4 # circle circle_radius = square_size//3 circle_width = 14 pygame.init() screen = pygame.display.set_mode((height, width)) pygame.display.set_caption('Tic Tac Toe!') screen.fill(bg_color) # color to display restart white = (255, 255, 255) green = (0, 255, 0) blue = (0, 0, 128) font = pygame.font.Font('freesansbold.ttf', 25) # create a text suface object, # on which text is drawn on it. text = font.render('Press R to restart', True, green, blue) Won = font.render(" Won", True, blue, green) leave = font.render("Press X to Exit", True, white, red) # create a rectangular object for the # text surface object leaveRect = text.get_rect() textRect = text.get_rect() winRect = Won.get_rect() winRect.center = (100, 30) textRect.center = (width-400, 30) leaveRect.center = (width-120, 30) board = np.zeros((board_rows, board_columns)) # print(board) #pygame.draw.line( screen ,red ,(10,10),(300,300),10) def draw_figures(): for row in range(board_rows): for col in range(board_columns): if board[row][col] == 1: pygame.draw.circle(screen, circle_color, (int(col*square_size + square_size//2), int( row*square_size + square_size//2)), circle_radius, circle_width) elif board[row][col] == 2: pygame.draw.line(screen, cross_color, (col*square_size + space, row*square_size + square_size - space), (col*square_size+square_size - space, row*square_size + space), cross_width) pygame.draw.line(screen, cross_color, (col*square_size + space, row*square_size + space), (col*square_size + square_size - space, row*square_size + square_size - space), cross_width) def draw_lines(): pygame.draw.line(screen, line_color, (0, square_size), (width, square_size), line_Width) # 2nd horizontal line pygame.draw.line(screen, line_color, (0, 2*square_size), (width, 2*square_size), line_Width) # 1st verticle pygame.draw.line(screen, line_color, (square_size, 0), (square_size, height), line_Width) # 2nd verticle pygame.draw.line(screen, line_color, (2*square_size, 0), (2*square_size, height), line_Width) # To mark which square player has chosen def mark_square(row, col, player): board[row][col] = player # TO check the availablity of a square def available_square(row, col): return board[row][col] == 0 # check board full or not def is_board_full(): k = False for row in range(board_rows): for col in range(board_columns): if board[row][col] == 0: k = False else: k = True return k def check_win(player): # check verticle win for col in range(board_columns): if board[0][col] == player and board[1][col] == player and board[2][col] == player: draw_vertical_winning_line(col, player) return True # check Horizontal win for row in range(board_rows): if board[row][0] == player and board[row][1] == player and board[row][2] == player: draw_horizontal_winning_line(row, player) return True # check for asc win if board[2][0] == player and board[1][1] == player and board[0][2] == player: draw_asc_diagonal(player) return True if board[0][0] == player and board[1][1] == player and board[2][2] == player: draw_des_diagonal(player) return True def draw_horizontal_winning_line(row, player): posY = row*square_size + square_size//2 if(player == 1): color = circle_color else: color = cross_color pygame.draw.line(screen, color, (15, posY), (width-15, posY), 15) def draw_vertical_winning_line(col, player): posX = col*square_size + square_size//2 if(player == 1): color = circle_color else: color = cross_color pygame.draw.line(screen, color, (posX, 15), (posX, width-15), 15) def draw_asc_diagonal(player): if(player == 1): color = circle_color else: color = cross_color pygame.draw.line(screen, color, (15, height-15), (width-15, 15), 15) def draw_des_diagonal(player): if(player == 1): color = circle_color else: color = cross_color pygame.draw.line(screen, color, (15, 15), (width-15, height-15), 15) def restart(): screen.fill(bg_color) draw_lines() player = 1 for row in range(board_rows): for col in range(board_columns): board[row][col] = 0 draw_lines() # player player = 1 game_over = False while True: # main game loop for event in pygame.event.get(): # constantly looks for the event if event.type == pygame.QUIT: # if user clicks exit pygame.QUIT and sys exits pygame.quit() sys.exit() board_full = is_board_full() if board_full and not game_over: Won = font.render(" It's a Tie ", True, blue, green) screen.blit(Won, winRect) screen.blit(text, textRect) screen.blit(leave, leaveRect) if event.type == pygame.MOUSEBUTTONDOWN and not game_over: mouseX = event.pos[0] # x mouseY = event.pos[1] # y clicked_row = int(mouseY // square_size) clicked_column = int(mouseX // square_size) if available_square(clicked_row, clicked_column): mark_square(clicked_row, clicked_column, player) if(check_win(player)): game_over = True Won = font.render("Player"+str(player) + " Won ", True, blue, green) screen.blit(Won, winRect) screen.blit(text, textRect) screen.blit(leave, leaveRect) player = player % 2 + 1 if not game_over and not board_full: Won = font.render("Player"+str(player) + " Turn ", True, blue, green) screen.blit(Won, winRect) draw_figures() # to restart the game if event.type == pygame.KEYDOWN: if event.key == pygame.K_r: restart() game_over = False elif event.key == pygame.K_x: pygame.quit() sys.exit() # print(board) pygame.display.update()
pypeit/deprecated/waveimage.py
ykwang1/PypeIt
107
12720261
""" Module for guiding construction of the Wavelength Image .. include common links, assuming primary doc root is up one directory .. include:: ../links.rst """ import inspect import numpy as np import os from pypeit import msgs from pypeit import utils from pypeit import datamodel from IPython import embed class WaveImage(datamodel.DataContainer): version = '1.0.0' # I/O output_to_disk = None #('WVTILTS_IMAGE', 'WVTILTS_FULLMASK', 'WVTILTS_DETECTOR_CONTAINER') hdu_prefix = None # Master fun master_type = 'Wave' master_file_format = 'fits' datamodel = { 'image': dict(otype=np.ndarray, atype=np.floating, desc='2D Wavelength image'), 'PYP_SPEC': dict(otype=str, desc='PypeIt spectrograph name'), } def __init__(self, image, PYP_SPEC=None): # Parse args, _, _, values = inspect.getargvalues(inspect.currentframe()) d = dict([(k,values[k]) for k in args[1:]]) # Setup the DataContainer datamodel.DataContainer.__init__(self, d=d) class BuildWaveImage(object): """ Class to generate the Wavelength Image Args: slits (:class:`pypeit.edgetrace.SlitTraceSet`): Object holding the slit edge locations tilts (np.ndarray or None): Tilt image wv_calib (dict or None): wavelength solution dictionary Parameters are read from wv_calib['par'] spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): The `Spectrograph` instance that sets the instrument used to take the observations. Used to set :attr:`spectrograph`. det (int or None): Attributes: image (np.ndarray): Wavelength image steps (list): List of the processing steps performed """ master_type = 'Wave' # @classmethod # def from_master_file(cls, master_file): # """ # # Args: # master_file (str): # # Returns: # waveimage.WaveImage: # # """ # # Spectrograph # spectrograph, extras = masterframe.items_from_master_file(master_file) # head0 = extras[0] # # Master info # master_dir = head0['MSTRDIR'] # master_key = head0['MSTRKEY'] # # Instantiate # slf = cls(None, None, None, spectrograph, None, master_dir=master_dir, # master_key=master_key, reuse_masters=True) # slf.image = slf.load(ifile=master_file) # # Return # return slf # TODO: Is maskslits ever anything besides slits.mask? (e.g., see calibrations.py call) def __init__(self, slits, tilts, wv_calib, spectrograph, det): # MasterFrame #masterframe.MasterFrame.__init__(self, self.master_type, master_dir=master_dir, # master_key=master_key, reuse_masters=reuse_masters) # Required parameters self.spectrograph = spectrograph self.det = det # TODO: Do we need to assign slits to self? self.slits = slits self.tilts = tilts self.wv_calib = wv_calib if self.slits is None: self.slitmask = None self.slit_spat_pos = None else: # NOTE: This uses the pad defined by EdgeTraceSetPar self.slitmask = self.slits.slit_img() # This selects the coordinates for the tweaked edges if # they exist, original otherwise. self.slit_spat_pos = self.slits.spatial_coordinates() # For echelle order, primarily # TODO: only echelle is ever used. Do we need to keep the whole # thing? self.par = wv_calib['par'] if wv_calib is not None else None # Main output self.image = None self.steps = [] def build_wave(self): """ Main algorithm to build the wavelength image Returns: `numpy.ndarray`_: The wavelength image. """ # Loop on slits ok_slits = np.where(np.invert(self.slits.mask))[0] self.image = np.zeros_like(self.tilts) nspec = self.slitmask.shape[0] # Error checking on the wv_calib #if (nspec-1) != int(self.wv_calib[str(0)]['fmax']): # msgs.error('Your wavelength fits used inconsistent normalization. Something is wrong!') # If this is echelle print out a status message and do some error checking if self.par['echelle']: msgs.info('Evaluating 2-d wavelength solution for echelle....') if len(self.wv_calib['fit2d']['orders']) != len(ok_slits): msgs.error('wv_calib and ok_slits do not line up. Something is very wrong!') # Unpack some 2-d fit parameters if this is echelle for slit in ok_slits: thismask = (self.slitmask == slit) if self.par['echelle']: # TODO: Put this in `SlitTraceSet`? order, indx = self.spectrograph.slit2order(self.slit_spat_pos[slit]) # evaluate solution self.image[thismask] = utils.func_val(self.wv_calib['fit2d']['coeffs'], self.tilts[thismask], self.wv_calib['fit2d']['func2d'], x2=np.ones_like(self.tilts[thismask])*order, minx=self.wv_calib['fit2d']['min_spec'], maxx=self.wv_calib['fit2d']['max_spec'], minx2=self.wv_calib['fit2d']['min_order'], maxx2=self.wv_calib['fit2d']['max_order']) self.image[thismask] /= order else: iwv_calib = self.wv_calib[str(slit)] self.image[thismask] = utils.func_val(iwv_calib['fitc'], self.tilts[thismask], iwv_calib['function'], minx=iwv_calib['fmin'], maxx=iwv_calib['fmax']) # Return self.steps.append(inspect.stack()[0][3]) return WaveImage(self.image, PYP_SPEC=self.spectrograph.spectrograph) def __repr__(self): # Generate sets string txt = '<{:s}: >'.format(self.__class__.__name__) return txt
src/poliastro/earth/atmosphere/__init__.py
bryanwweber/poliastro
634
12720282
<filename>src/poliastro/earth/atmosphere/__init__.py from poliastro.earth.atmosphere.coesa62 import COESA62 from poliastro.earth.atmosphere.coesa76 import COESA76 __all__ = ["COESA62", "COESA76"]
hippy/module/standard/misc/funcs.py
jweinraub/hippyvm
289
12720292
<filename>hippy/module/standard/misc/funcs.py<gh_stars>100-1000 from rpython.rlib.rstring import StringBuilder from rpython.rtyper.lltypesystem import lltype, rffi from rpython.rlib.rarithmetic import intmask from rpython.rlib.rrandom import Random from hippy.builtin import wrap, Optional, BoolArg, StringArg from hippy.objects.base import W_Root from hippy.module.date import timelib from hippy.module.phpstruct import _unpack from hippy.phpcompiler import compile_php _random = Random() def connection_aborted(): """ Check whether client disconnected""" return NotImplementedError() def connection_status(): """ Returns connection status bitfield""" return NotImplementedError() def connection_timeout(): """ Check if the script timed out""" return NotImplementedError() def _lookup_constant(interp, constname): i = constname.find(':') if i < 0: return interp.locate_constant(constname, False) elif i + 1 < len(constname) and constname[i + 1] == ':': clsname = constname[:i] realname = constname[i + 2:] klass = interp.lookup_class_or_intf(clsname) if klass is not None: return klass.constants_w.get(realname, None) @wrap(['interp', str]) def constant(interp, constname): """ Returns the value of a constant""" w_obj = _lookup_constant(interp, constname) if w_obj is None: interp.warn("constant(): Couldn't find constant %s" % constname) return interp.space.w_Null return w_obj @wrap(['interp', str, W_Root, Optional(bool)]) def define(interp, name, w_obj, case_insensitive=False): """ Defines a named constant""" if interp.locate_constant(name, False) is not None: interp.notice("Constant %s already defined" % name) return interp.space.w_False interp.declare_new_constant(name, w_obj) return interp.space.w_True @wrap(['interp', str]) def defined(interp, name): """ Checks whether a given named constant exists""" return interp.space.newbool(_lookup_constant(interp, name) is not None) def die(): """ Equivalent to exit""" return NotImplementedError() def exit(): """ Output a message and terminate the current script""" return NotImplementedError() def get_browser(): """ Tells what the user's browser is capable of""" return NotImplementedError() def __halt_compiler(): """ Halts the compiler execution""" return NotImplementedError() def highlight_file(): """ Syntax highlighting of a file""" return NotImplementedError() def highlight_string(): """ Syntax highlighting of a string""" return NotImplementedError() def ignore_user_abort(): """ Set whether a client disconnect should abort script execution""" return NotImplementedError() def pack(): """ Pack data into binary string""" return NotImplementedError() def php_check_syntax(): """ Check the PHP syntax of (and execute) the specified file""" return NotImplementedError() def php_strip_whitespace(): """ Return source with stripped comments and whitespace""" return NotImplementedError() def show_source(): """ Alias of highlight_file""" return NotImplementedError() @wrap(['interp', int], error=False) def sleep(interp, seconds): """ Delay execution""" if seconds < 0: interp.warn("sleep(): Number of seconds must be greater than or equal to 0") return interp.space.w_False import time time.sleep(seconds) # TODO: when a signal is received and a handler is defined, the remaining # number of seconds as float should be returned. return interp.space.newint(0) def sys_getloadavg(): """ Gets system load average""" return NotImplementedError() def time_nanosleep(): """ Delay for a number of seconds and nanoseconds""" return NotImplementedError() def time_sleep_until(): """ Make the script sleep until the specified time""" return NotImplementedError() def _zero_pad(s, c): l = len(s) if l > c: return s return "0" * (c - l) + s @wrap(['space', Optional(str), Optional(BoolArg(None))]) def uniqid(space, prefix='', more_entropy=False): """ Generate a unique ID""" timeval = lltype.malloc(timelib.timeval, flavor='raw') void = lltype.nullptr(rffi.VOIDP.TO) timelib.c_gettimeofday(timeval, void) sec = intmask(timeval.c_tv_sec) usec = intmask(timeval.c_tv_usec) builder = StringBuilder() if prefix: builder.append(prefix) builder.append(_zero_pad(hex(sec)[2:], 8)) builder.append(_zero_pad(hex(usec)[2:], 5)) if more_entropy: builder.append(".") builder.append(str(_random.random())[2:11]) return space.newstr(builder.build()) @wrap(['space', StringArg(None), StringArg(None)]) def unpack(space, formats, string): """ Unpack data from binary string""" return _unpack(space, formats, string) @wrap(['interp', int]) def usleep(interp, microseconds): """ Delay execution in microseconds""" if microseconds < 0: interp.warn("usleep(): Number of microseconds must be greater than or equal to 0") return interp.space.w_False import time time.sleep(microseconds / 1000000.0)
google/colab/html/_html.py
figufema/TesteClone
1,521
12720322
#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """HTML renderable element in notebooks.""" import base64 import json import string import uuid import IPython import six from google.colab import output from google.colab.html import _provide from google.colab.html import _resources _MSG_CHUNK_SIZE = 1 * 1024 * 1024 def _to_html_str(obj): """Renders an object as html string on a best effort basis. IPython allows for registering of formatters. This tries to format the object using that registered text/html formater method. If it cannot and it is a string it returns it unchanged, otherwise it tries to serialize to json. The result should be something that can be html output for the notebook outputcell. Args: obj: An object to try to convert into HTML. Returns: An html string representation of the object. """ ip = IPython.get_ipython() formatter = ip.display_formatter.formatters['text/html'] try: render = formatter.lookup(obj) return render(obj) except KeyError: # No html formatter exists pass if hasattr(obj, '_repr_html_'): html = obj._repr_html_() # pylint: disable=protected-access if html: return html elif isinstance(obj, six.string_types): return obj else: try: return json.dumps(obj) except TypeError: # Not json serializable pass return str(obj) def _call_js_function(js_function, *args): """Evaluates a javascript string with arguments and returns its value.""" serialized = json.dumps(args) if len(serialized) < _MSG_CHUNK_SIZE: return output.eval_js('({})(...{})'.format(js_function, serialized)) name = str(uuid.uuid4()) for i in range(0, len(serialized), _MSG_CHUNK_SIZE): chunk = serialized[i:i + _MSG_CHUNK_SIZE] output.eval_js( """window["{name}"] = (window["{name}"] || "") + atob("{b64_chunk}"); """.format( name=name, b64_chunk=base64.b64encode(chunk.encode()).decode('ascii')), ignore_result=True) return output.eval_js(""" (function() {{ const msg = JSON.parse(window["{name}"]); delete window["{name}"]; return ({js_function})(...msg); }})(); """.format(name=name, js_function=js_function)) def _proxy(guid, msg): """Makes a proxy call on an element.""" template = _resources.get_data(__name__, 'js/_proxy.js') if six.PY3: # pkgutil.get_data returns bytes, but we want a str. template = template.decode('utf8') return _call_js_function(template, guid, msg) def _exists(guid): """Checks if an element with the given guid exists.""" template = _resources.get_data(__name__, 'js/_proxy.js') if six.PY3: # pkgutil.get_data returns bytes, but we want a str. template = template.decode('utf8') return _call_js_function(template, guid, {'method': 'exists'}, False) _utils_ref = None def _utils_url(): """Return the url to the utils script.""" global _utils_ref if not _utils_ref: src = _resources.get_data(__name__, 'js/_html.js') if six.PY3: # pkgutil.get_data returns bytes, but we want a str. src = src.decode('utf8') _utils_ref = _provide.create(content=src, extension='js') return _utils_ref.url _element_template = string.Template(""" $deps <$tag id="$guid"> $children </$tag> <script> (function() { async function init() { const name = '_google_colab_output_html'; let script = document.getElementById(name); if (!script) { script = document.createElement('script'); script.id = name; script._is_loaded = new Promise((resolve, reject) => { script.onload = resolve; script.onerror = reject; }); script.src = '$utils'; document.body.appendChild(script); } await script._is_loaded; await window.google.colab.html._createElement($config); } window.google.colab.output.pauseOutputUntil(init()); })(); </script> """) class Element(object): """Create an object which will render as an html element in output cell.""" def __init__(self, tag, attributes=None, properties=None, src=None): """Initialize the element. Args: tag: Custom element tag name. attributes: Initial attributes to set. properties: Initial properties to set. src: Entry point url of source for element. Should be a dict containing one of the following keys script, html, module. For example: {"script": "data:application/javascript;,"} Raises: ValueError: If invalid deps, attributes, or properites. """ if src: if not ('script' in src or 'module' in src or 'html' in src): raise ValueError('Must provide a valid src.') self._src = src if attributes and not isinstance(attributes, dict): raise ValueError('attributes must be a dict.') if properties and not isinstance(properties, dict): raise ValueError('properties must be a dict.') self._tag = tag self._guid = str(uuid.uuid4()) self._attributes = attributes or {} self._properties = properties or {} self._children = [] self._js_listeners = {} self._py_listeners = {} self._parent = None self._could_exist = False def _exists(self): if not self._could_exist: return False return _exists(self._guid) def get_attribute(self, name): if not self._exists(): return self._attributes.get(name) return _proxy(self._guid, {'method': 'getAttribute', 'name': name}) def set_attribute(self, name, value): if not isinstance(value, six.string_types): raise ValueError('Attribute value must be a string') if not self._exists(): self._attributes[name] = value else: _proxy(self._guid, { 'method': 'setAttribute', 'value': value, 'name': name }) def get_property(self, name): if not self._exists(): return self._properties.get(name) return _proxy(self._guid, {'method': 'getProperty', 'name': name}) def set_property(self, name, value): if not self._exists(): self._properties[name] = value else: _proxy(self._guid, { 'method': 'setProperty', 'value': value, 'name': name }) def call(self, method, *args): if not self._exists(): raise ValueError('Cannot call method on undisplayed element.') return _proxy(self._guid, {'method': 'call', 'value': args, 'name': method}) def add_event_listener(self, name, callback): """Adds an event listener to the element. Args: name: Name of the event. callback: The python function or js string to evaluate when event occurs. Raises: ValueError: If callback is not valid. """ msg = {'name': name} if isinstance(callback, six.string_types): callbacks = self._js_listeners.get(name, {}) if callback in callbacks: raise ValueError('Callback is already added.') callbacks[callback] = callback self._js_listeners[name] = callbacks msg['method'] = 'addJsEventListener' msg['value'] = callback elif callable(callback): callbacks = self._py_listeners.get(name, {}) if callback in callbacks: raise ValueError('Callback is already added.') callback_name = str(uuid.uuid4()) output.register_callback(callback_name, callback) callbacks[callback] = callback_name self._py_listeners[name] = callbacks msg['method'] = 'addPythonEventListener' msg['value'] = callback_name else: raise ValueError('callback must be a js string or callable python') if self._exists(): _proxy(self._guid, msg) def remove_event_listener(self, name, callback): """Removes an event listener from the element. Args: name: String of the event. callback: The callback passed into add_event_listener previously. Raises: ValueError: If the callback was not added previously. """ if isinstance(callback, six.string_types): listener_map = self._js_listeners else: listener_map = self._py_listeners if name not in listener_map: raise ValueError('listener does not exist') callbacks = listener_map[name] if callback not in callbacks: raise ValueError('listener does not exist') callback_name = callbacks[callback] del callbacks[callback] if not callbacks: del listener_map[name] if self._exists(): _proxy(self._guid, { 'method': 'removeEventListener', 'name': name, 'value': callback_name }) def append_child(self, child): """Append child to Element.""" # Child could be anything that can be converted to html. if isinstance(child, Element): child.remove() child._parent = self # pylint: disable=protected-access self._children.append(child) def remove_child(self, child): """Remove child from Element.""" if isinstance(child, Element): if child._parent != self: # pylint: disable=protected-access raise ValueError('Child parent must match.') child._parent = None # pylint: disable=protected-access self._children = [c for c in self._children if c is not child] def remove(self): parent = self._parent if not parent: return parent.remove_child(self) def _repr_html_(self): """Converts element to HTML string.""" self._could_exist = True deps = '' if self._src: if 'script' in self._src: deps = '<script src="{}"></script>'.format(self._src['script']) elif 'module' in self._src: deps = '<script type="module">import "{}";</script>'.format( self._src['module']) elif 'html' in self._src: deps = '<link rel="import" href="{}" />'.format(self._src['html']) return _element_template.safe_substitute({ 'tag': self._tag, 'guid': self._guid, 'deps': deps, 'utils': _utils_url(), 'children': '\n'.join([_to_html_str(c) for c in self._children]), 'config': json.dumps({ 'tag': self._tag, 'guid': self._guid, 'attributes': self._attributes, 'properties': self._properties, 'js_listeners': { k: list(v.values()) for k, v in self._js_listeners.items() }, 'py_listeners': { k: list(v.values()) for k, v in self._py_listeners.items() }, }), })
WBT/PRE/testing.py
Hornbydd/WhiteboxTools-ArcGIS
157
12720395
import whitebox import ast import json import os import sys wbt = whitebox.WhiteboxTools() # wbt.set_verbose_mode(True) # print(wbt.version()) # print(wbt.help()) # tools = wbt.list_tools(['dem']) # for index, tool in enumerate(tools): # print("{}. {}: {}".format(index, tool, tools[tool])) # def get_tool_params(tool_name): # out_str = wbt.tool_parameters(tool_name) # start_index = out_str.index('[') + 1 # end_index = len(out_str.strip()) - 2 # params = out_str[start_index : end_index] # print(params) # sub_params = params.split('{"name"') # param_list = [] # for param in sub_params: # param = param.strip() # if len(param) > 0: # item = '"name"' + param # item = item[ : item.rfind("}")].strip() # param_list.append(item) # params_dict = {} # for item in param_list: # print("{}\n".format(item)) # param_dict = {} # index_name = item.find("name") # index_flags = item.find("flags") # index_description = item.find("description") # index_parameter_type = item.find("parameter_type") # index_default_value = item.find("default_value") # index_optional = item.find("optional") # name = item[index_name - 1 : index_flags - 2].replace('"name":', '') # name = name.replace('"', '') # param_dict['name'] = name # flags = item[index_flags - 1 : index_description -2].replace('"flags":', '') # if "--" in flags: # flags = flags.split('--')[1][: -2] # else: # flags = flags.split('-')[1][: -2] # param_dict['flags'] = flags # desc = item[index_description - 1 : index_parameter_type - 2].replace('"description":', '') # desc = desc.replace('"', '') # param_dict['description'] = desc # param_type = item[index_parameter_type - 1 : index_default_value - 2].replace('"parameter_type":', '') # param_type = ast.literal_eval(param_type) # param_dict['parameter_type'] = param_type # default_value = item[index_default_value - 1 : index_optional - 2].replace('"default_value":', '') # param_dict['default_value'] = default_value # optional = item[index_optional - 1 :].replace('"optional":', '') # param_dict['optional'] = optional # params_dict[flags] = param_dict # return params_dict # tool_name = "BreachDepressions" # print(wbt.tool_parameters(tool_name)) # params = get_tool_params(tool_name) # print(params) # print(params.keys()) # print(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) # lines = wbt.list_tools() # print(lines) # # for line in lines: # # print(line) # print(len(lines)) # parameter_types = [] # for param in params: # param_type = params[param]['parameter_type'] # if param_type not in parameter_types: # parameter_types.append(param_type) # print(parameter_types) # thisset = {"apple", "banana", "cherry"} # thisset.add("orange") # print(thisset) # tools = wbt.list_tools() # for index, tool in enumerate(sorted(tools)): # print("{}: {}".format(index, tool)) # dem = "/media/hdd/Dropbox/git/WhiteboxTools-ArcGIS/testdata/DEM.tif" # output = "/media/hdd/Dropbox/git/WhiteboxTools-ArcGIS/testdata/output.tif" # wbt.run_tool("BreachDepressions", '--dem=dem --output=output') # exe_path = "/home/qiusheng/Downloads/WBT/whitebox_tools" # cmd = exe_path + ' --run=BreachDepressions --dem="/media/hdd/Dropbox/git/WhiteboxTools-ArcGIS/testdata/DEM.tif" --output="/media/hdd/Dropbox/git/WhiteboxTools-ArcGIS/testdata/output.tif" -v' # print(os.popen(cmd).read().rstrip()) # ret = wbt.breach_depressions(dem, output) # print(ret) # print(type(ret)) # def redirect_to_file(text): # original = sys.stdout # sys.stdout = open('/media/hdd/Dropbox/git/WhiteboxTools-ArcGIS/WBT/PRE/redirect.txt', 'w') # # print('This is your redirected text:') # # print(text) # wbt.breach_depressions(dem, output) # sys.stdout = original # print('This string goes to stdout, NOT the file!') # redirect_to_file('Python rocks!') # https://goo.gl/bFo2tD # import sys # if sys.version_info < (3, 0): # from StringIO import StringIO # else: # from io import StringIO # old_stdout = sys.stdout # result = StringIO() # sys.stdout = result # # wbt.breach_depressions(dem, output) # # print("test string") # sys.stdout = old_stdout # result_string = result.getvalue() # print(result_string) # print('--dem="/path/to/DEM.tif" --output="/path/to/output.tif"')
sdk/cwl/tests/federation/arvboxcwl/setup_user.py
rpatil524/arvados
222
12720400
<gh_stars>100-1000 # Copyright (C) The Arvados Authors. All rights reserved. # # SPDX-License-Identifier: Apache-2.0 import arvados import arvados.errors import time import json while True: try: api = arvados.api() break except arvados.errors.ApiError: time.sleep(2) existing = api.users().list(filters=[["email", "=", "<EMAIL>"], ["is_active", "=", True]], limit=1).execute() if existing["items"]: u = existing["items"][0] else: u = api.users().create(body={ 'first_name': 'Test', 'last_name': 'User', 'email': '<EMAIL>', 'is_admin': False }).execute() api.users().activate(uuid=u["uuid"]).execute() tok = api.api_client_authorizations().create(body={ "api_client_authorization": { "owner_uuid": u["uuid"] } }).execute() with open("cwl.output.json", "w") as f: json.dump({ "test_user_uuid": u["uuid"], "test_user_token": "v2/%s/%s" % (tok["uuid"], tok["api_token"]) }, f)
tools/report-converter/codechecker_report_converter/report.py
ryankurte/codechecker
1,601
12720419
<filename>tools/report-converter/codechecker_report_converter/report.py<gh_stars>1000+ # ------------------------------------------------------------------------- # # Part of the CodeChecker project, under the Apache License v2.0 with # LLVM Exceptions. See LICENSE for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # # ------------------------------------------------------------------------- """ Parsers for the analyzer output formats (plist ...) should create this Report which will be stored. Multiple bug identification hash-es can be generated. All hash generation algorithms should be documented and implemented here. """ import logging LOG = logging.getLogger('ReportConverter') def get_line(file_name, line_no, errors='ignore'): """ Return the given line from the file. If line_no is larger than the number of lines in the file then empty string returns. If the file can't be opened for read, the function also returns empty string. Try to encode every file as utf-8 to read the line content do not depend on the platform settings. By default locale.getpreferredencoding() is used which depends on the platform. Changing the encoding error handling can influence the hash content! """ try: with open(file_name, mode='r', encoding='utf-8', errors=errors) as source_file: for line in source_file: line_no -= 1 if line_no == 0: return line return '' except IOError: LOG.error("Failed to open file %s", file_name) return '' def remove_whitespace(line_content, old_col): """ Removes white spaces from the given line content. This function removes white spaces from the line content parameter and calculates the new line location. Returns the line content without white spaces and the new column number. E.g.: line_content = " int foo = 17; sizeof(43); " ^ |- bug_col = 18 content_begin = " int foo = 17; " content_begin_strip = "intfoo=17;" line_strip_len = 18 - 10 => 8 ''.join(line_content.split()) => "intfoo=17;sizeof(43);" ^ |- until_col - line_strip_len 18 - 8 = 10 """ content_begin = line_content[:old_col] content_begin_strip = ''.join(content_begin.split()) line_strip_len = len(content_begin) - len(content_begin_strip) return ''.join(line_content.split()), \ old_col - line_strip_len
examples/pyplot/plot_hexcells.py
kclamar/vedo
836
12720431
"""3D Bar plot of a TOF camera with hexagonal pixels""" from vedo import * import numpy as np settings.defaultFont = "Glasgo" settings.useParallelProjection = True vals = np.abs(np.random.randn(4*6)) # pixel heights cols = colorMap(vals, "summer") k = 0 items = [__doc__] for i in range(4): for j in range(6): val, col= vals[k], cols[k] x, y, z = [i+j%2/2, j/1.155, val+0.01] zbar= Polygon([x,y,0], nsides=6, r=0.55, c=col).extrude(val) line= Polygon([x,y,z], nsides=6, r=0.55, c='k').wireframe().lw(2) txt = Text3D(f"{i}/{j}", [x,y,z], s=.15, c='k', justify='center') items += [zbar, line, txt] k += 1 show(items, axes=7)
pybotters/models/bitflyer.py
maruuuui/pybotters
176
12720440
<filename>pybotters/models/bitflyer.py from __future__ import annotations import asyncio import logging import operator from decimal import Decimal from typing import Awaitable import aiohttp from ..store import DataStore, DataStoreManager from ..typedefs import Item from ..ws import ClientWebSocketResponse logger = logging.getLogger(__name__) class bitFlyerDataStore(DataStoreManager): def _init(self) -> None: self.create('board', datastore_class=Board) self.create('ticker', datastore_class=Ticker) self.create('executions', datastore_class=Executions) self.create('childorderevents', datastore_class=ChildOrderEvents) self.create('childorders', datastore_class=ChildOrders) self.create('parentorderevents', datastore_class=ParentOrderEvents) self.create('parentorders', datastore_class=ParentOrders) self.create('positions', datastore_class=Positions) self._snapshots = set() async def initialize(self, *aws: Awaitable[aiohttp.ClientResponse]) -> None: for f in asyncio.as_completed(aws): resp = await f data = await resp.json() if resp.url.path == '/v1/me/getchildorders': self.childorders._onresponse(data) elif resp.url.path == '/v1/me/getparentorders': self.parentorders._onresponse(data) elif resp.url.path == '/v1/me/getpositions': self.positions._onresponse(data) def _onmessage(self, msg: Item, ws: ClientWebSocketResponse) -> None: if 'error' in msg: logger.warning(msg) if 'params' in msg: channel: str = msg['params']['channel'] message = msg['params']['message'] if channel.startswith('lightning_board_'): if channel.startswith('lightning_board_snapshot_'): asyncio.create_task( ws.send_json( { 'method': 'unsubscribe', 'params': {'channel': channel}, } ) ) product_code = channel.replace('lightning_board_snapshot_', '') self.board._delete(self.board.find({'product_code': product_code})) self._snapshots.add(product_code) else: product_code = channel.replace('lightning_board_', '') if product_code in self._snapshots: self.board._onmessage(product_code, message) elif channel.startswith('lightning_ticker_'): self.ticker._onmessage(message) elif channel.startswith('lightning_executions_'): product_code = channel.replace('lightning_executions_', '') self.executions._onmessage(product_code, message) elif channel == 'child_order_events': self.childorderevents._onmessage(message) self.childorders._onmessage(message) self.positions._onmessage(message) elif channel == 'parent_order_events': self.parentorderevents._onmessage(message) self.parentorders._onmessage(message) @property def board(self) -> 'Board': return self.get('board', Board) @property def ticker(self) -> 'Ticker': return self.get('ticker', Ticker) @property def executions(self) -> 'Executions': return self.get('executions', Executions) @property def childorderevents(self) -> 'ChildOrderEvents': return self.get('childorderevents', ChildOrderEvents) @property def childorders(self) -> 'ChildOrders': return self.get('childorders', ChildOrders) @property def parentorderevents(self) -> 'ParentOrderEvents': return self.get('parentorderevents', ParentOrderEvents) @property def parentorders(self) -> 'ParentOrders': return self.get('parentorders', ParentOrders) @property def positions(self) -> 'Positions': return self.get('positions', Positions) class Board(DataStore): _KEYS = ['product_code', 'side', 'price'] def _init(self) -> None: self.mid_price: dict[str, float] = {} def sorted(self, query: Item = None) -> dict[str, list[Item]]: if query is None: query = {} result = {'SELL': [], 'BUY': []} for item in self: if all(k in item and query[k] == item[k] for k in query): result[item['side']].append(item) result['SELL'].sort(key=lambda x: x['price']) result['BUY'].sort(key=lambda x: x['price'], reverse=True) return result def _onmessage(self, product_code: str, message: Item) -> None: self.mid_price[product_code] = message['mid_price'] for key, side in (('bids', 'BUY'), ('asks', 'SELL')): for item in message[key]: if item['size']: self._insert([{'product_code': product_code, 'side': side, **item}]) else: self._delete([{'product_code': product_code, 'side': side, **item}]) board = self.sorted({'product_code': product_code}) targets = [] for side, ope in (('BUY', operator.le), ('SELL', operator.gt)): for item in board[side]: if ope(item['price'], message['mid_price']): break else: targets.append(item) self._delete(targets) class Ticker(DataStore): _KEYS = ['product_code'] def _onmessage(self, message: Item) -> None: self._update([message]) class Executions(DataStore): _MAXLEN = 99999 def _onmessage(self, product_code: str, message: list[Item]) -> None: for item in message: self._insert([{'product_code': product_code, **item}]) class ChildOrderEvents(DataStore): def _onmessage(self, message: list[Item]) -> None: self._insert(message) class ParentOrderEvents(DataStore): def _onmessage(self, message: list[Item]) -> None: self._insert(message) class ChildOrders(DataStore): _KEYS = ['child_order_acceptance_id'] def _onresponse(self, data: list[Item]) -> None: if data: self._delete(self.find({'product_code': data[0]['product_code']})) for item in data: if item['child_order_state'] == 'ACTIVE': self._insert([item]) def _onmessage(self, message: list[Item]) -> None: for item in message: if item['event_type'] == 'ORDER': self._insert([item]) elif item['event_type'] in ('CANCEL', 'EXPIRE'): self._delete([item]) elif item['event_type'] == 'EXECUTION': if item['outstanding_size']: childorder = self.get(item) if childorder: if isinstance(childorder['size'], int) and isinstance( item['size'], int ): childorder['size'] -= item['size'] else: childorder['size'] = float( Decimal(str(childorder['size'])) - Decimal(str(item['size'])) ) else: self._delete([item]) class ParentOrders(DataStore): _KEYS = ['parent_order_acceptance_id'] def _onresponse(self, data: list[Item]) -> None: if data: self._delete(self.find({'product_code': data[0]['product_code']})) for item in data: if item['parent_order_state'] == 'ACTIVE': self._insert([item]) def _onmessage(self, message: list[Item]) -> None: for item in message: if item['event_type'] == 'ORDER': self._insert([item]) elif item['event_type'] in ('CANCEL', 'EXPIRE'): self._delete([item]) elif item['event_type'] == 'COMPLETE': parentorder = self.get(item) if parentorder: if parentorder['parent_order_type'] in ('IFD', 'IFDOCO'): if item['parameter_index'] >= 2: self._delete([item]) else: self._delete([item]) class Positions(DataStore): _COMMON_KEYS = [ 'product_code', 'side', 'price', 'size', 'commission', 'sfd', ] def _common_keys(self, item: Item) -> Item: return {key: item[key] for key in self._COMMON_KEYS} def _onresponse(self, data: list[Item]) -> None: if data: self._delete(self.find({'product_code': data[0]['product_code']})) for item in data: self._insert([self._common_keys(item)]) def _onmessage(self, message: list[Item]) -> None: for item in message: if item['event_type'] == 'EXECUTION': positions = self._find_with_uuid({'product_code': item['product_code']}) if positions: if positions[next(iter(positions))]['side'] == item['side']: self._insert([self._common_keys(item)]) else: for uid, pos in positions.items(): if pos['size'] > item['size']: if isinstance(pos['size'], int) and isinstance( item['size'], int ): pos['size'] -= item['size'] else: pos['size'] = float( Decimal(str(pos['size'])) - Decimal(str(item['size'])) ) break else: if isinstance(pos['size'], int) and isinstance( item['size'], int ): item['size'] -= pos['size'] else: item['size'] = float( Decimal(str(item['size'])) - Decimal(str(pos['size'])) ) self._remove([uid]) if not pos['size']: break else: try: self._insert([self._common_keys(item)]) except KeyError: pass
research/active_learning/experiments/visualize_feature_maps.py
dnarqq/WildHack
402
12720449
<reponame>dnarqq/WildHack<gh_stars>100-1000 import argparse, random, sys, time import PIL import torch import torchvision.models as models import matplotlib.pyplot as plt from torchvision.transforms import * sys.path.append("..") from DL.utils import * from DL.networks import * from Database.DB_models import * from DL.sqlite_data_loader import SQLDataLoader # class SaveFeatures(): # def __init__(self, module): # self.hook = module.register_forward_hook(self.hook_fn) # def hook_fn(self, module, input, output): # self.features = torch.tensor(output, requires_grad=True).cuda() # def close(self): # self.hook.remove() outputs = [] def hook(module, input, output): outputs.append(output) def main(): parser = argparse.ArgumentParser() parser.add_argument('--db_name', default='missouricameratraps', type=str, help='Name of the training (target) data Postgres DB.') parser.add_argument('--db_user', default='user', type=str, help='Name of the user accessing the Postgres DB.') parser.add_argument('--db_password', default='password', type=str, help='Password of the user accessing the Postgres DB.') parser.add_argument('--num', default=1000, type=int, help='Number of samples to draw from dataset to get embedding features.') parser.add_argument('--crop_dir', type=str, help='Path to directory with cropped images to get embedding features for.') parser.add_argument('--base_model', type=str, help='Path to latest embedding model checkpoint.') parser.add_argument('--random_seed', default=1234, type=int, help='Random seed to get same samples from database.') args = parser.parse_args() random.seed(args.random_seed) np.random.seed(args.random_seed) BASE_MODEL = args.base_model # Load the saved embedding model from the checkpoint checkpoint = load_checkpoint(BASE_MODEL) if checkpoint['loss_type'].lower() == 'center' or checkpoint['loss_type'].lower() == 'softmax': embedding_net = SoftmaxNet(checkpoint['arch'], checkpoint['feat_dim'], checkpoint['num_classes'], False) else: embedding_net = NormalizedEmbeddingNet(checkpoint['arch'], checkpoint['feat_dim'], False) model = torch.nn.DataParallel(embedding_net).cuda() model.load_state_dict(checkpoint['state_dict']) model.eval() # Get a sample from the database, with eval transforms applied, etc. DB_NAME = args.db_name USER = args.db_user PASSWORD = <PASSWORD> # Connect to database and sample a dataset target_db = PostgresqlDatabase(DB_NAME, user=USER, password=PASSWORD, host='localhost') target_db.connect(reuse_if_open=True) db_proxy.initialize(target_db) dataset_query = Detection.select(Detection.image_id, Oracle.label, Detection.kind).join(Oracle).limit(args.num) dataset = SQLDataLoader(args.crop_dir, query=dataset_query, is_training=False, kind=DetectionKind.ModelDetection.value, num_workers=8, limit=args.num) imagepaths = dataset.getallpaths() sample_image_path = '0ca68a6f-6348-4456-8fb5-c067e2cbfe14'#'0a170ee9-166d-45df-8f45-b14550fc124e'#'43e3d2a6-38ea-4d17-a712-1b0feab92d58'#'0ef0f79f-7b58-473d-abbf-75bba59e834d' dataset.image_mode() sample_image = dataset.loader(sample_image_path) sample_image.save('sample_image_for_activations.png') print(sample_image.size) sample_image = dataset.eval_transform(sample_image) print(sample_image.shape) # output = model.forward(sample_image.unsqueeze(0)) # print(output) model_inner_resnet = list(model.children())[0].inner_model model_inner_resnet.eval() model_inner_resnet.layer1[0].conv2.register_forward_hook(hook) output = model.forward(sample_image.unsqueeze(0)) intermediate_output = outputs[0].cpu().detach().numpy() print(intermediate_output.shape) for i in range(intermediate_output.shape[1]): plt.subplot(8,8,i+1) plt.imshow(intermediate_output[0,i,:,:], cmap='viridis') plt.axis('off') plt.suptitle('ResNet Layer1 Conv2 Activations') plt.savefig('temp.png') # with torch.no_grad(): # sample_image_input = sample_image.cuda(non_blocking=True) # _, output = model(sample_image_input) # compute output # print(output) # sample_image = PILImage.open(sample_image_path).convert('RGB') # sample_image = transforms.Compose([Resize([256, 256]), CenterCrop(([[224,224]])), ToTensor(), Normalize([0.369875, 0.388726, 0.347536], [0.136821, 0.143952, 0.145229])])(sample_image) # print(list(model_inner_resnet.children())) # print(model_inner_resnet.fc) # print(model_inner_resnet.fc0) # # print(model_inner_resnet.layer4[0].conv2) # # print(type(model)) # # print(len(list(model_inner_resnet.children()))) # # print(list(model.children())) # # print(list(list(model.children())[0].children())) # img = np.uint8(np.random.uniform(150, 180, (56, 56, 3)))/255 # img_tensor = torch.unsqueeze(torch.from_numpy(img), 0) # full_out = model_inner_resnet.forward(img_tensor) # print(full_out) # model(img_tensor) # activations = SaveFeatures(model_inner_resnet.layer4[0].conv2) # print(activations.features) # print(type(activations.features)) # activations.close() if __name__=='__main__': main()
src/vbLib/ExecuteCMDSync.py
mehrdad-shokri/macro_pack
1,550
12720452
VBA = \ r""" Function ExecuteCmdSync(targetPath As String) 'Run a shell command, returning the output as a string' ' Using a hidden window, pipe the output of the command to the CLIP.EXE utility... ' Necessary because normal usage with oShell.Exec("cmd.exe /C " & sCmd) always pops a windows Dim instruction As String instruction = "cmd.exe /c " & targetPath & " | clip" On Error Resume Next Err.Clear CreateObject("WScript.Shell").Run instruction, 0, True On Error Goto 0 ' Read the clipboard text using htmlfile object ExecuteCmdSync = CreateObject("htmlfile").ParentWindow.ClipboardData.GetData("text") End Function """
tf_siren/siren_mlp.py
jackietung1219/tf_SIREN
134
12720464
import tensorflow as tf from tf_siren import siren class SIRENModel(tf.keras.Model): def __init__(self, units: int, final_units: int, final_activation: str = "linear", num_layers: int = 1, w0: float = 30.0, w0_initial: float = 30.0, initial_layer_init: str = 'siren_first_uniform', use_bias: bool = True, **kwargs): """ SIREN model from the paper [Implicit Neural Representations with Periodic Activation Functions](https://arxiv.org/abs/2006.09661). Used to create a multi-layer MLP using SinusodialRepresentationDense layers. Args: units: Number of hidden units in the intermediate layers. final_units: Number of hidden units in the final layer. final_activation: Activation function of the final layer. num_layers: Number of layers in the network. w0: w0 in the activation step `act(x; w0) = sin(w0 * x)`. w0_initial: By default, scales `w0` of first layer to 30 (as used in the paper). initial_layer_init: Initialization for the first SIREN layer. Can be any valid keras initialization object or string. For SIREN, use `siren_uniform` for the general initialization, or `siren_first_uniform` which is specific for first layer. use_bias: Boolean whether to use bias or not. # References: - [Implicit Neural Representations with Periodic Activation Functions](https://arxiv.org/abs/2006.09661) """ super(SIRENModel, self).__init__(**kwargs) siren_layers = [siren.SinusodialRepresentationDense(units, w0=w0_initial, use_bias=use_bias, kernel_initializer=initial_layer_init, **kwargs)] for _ in range(num_layers - 1): siren_layers.append(siren.SinusodialRepresentationDense(units, w0=w0, use_bias=use_bias, **kwargs)) self.siren_layers = tf.keras.Sequential(siren_layers) self.final_dense = siren.SinusodialRepresentationDense(final_units, activation=final_activation, use_bias=use_bias, **kwargs) def call(self, inputs, training=None, mask=None): features = self.siren_layers(inputs) output = self.final_dense(features) return output class ScaledSIRENModel(tf.keras.Model): def __init__(self, units: int, final_units: int, final_activation: str = "linear", num_layers: int = 1, w0: float = 30.0, w0_initial: float = 30.0, scale: float = 1.0, scale_initial: float = None, initial_layer_init: str = 'siren_first_uniform', use_bias: bool = True, **kwargs): """ Scaled SIREN model from the paper [Implicit Neural Representations with Periodic Activation Functions](https://arxiv.org/abs/2006.09661). Used to create a multi-layer MLP using ScaledSinusodialRepresentationDense layers. Args: units: Number of hidden units in the intermediate layers. final_units: Number of hidden units in the final layer. final_activation: Activation function of the final layer. num_layers: Number of layers in the network. w0: w0 in the activation step `act(x; w0) = sin(w0 * x)`. w0_initial: By default, scales `w0` of first layer to 30 (as used in the paper). scale: Scale of the kernel matrix prior to matmul. scale_initial: Scale of the kernel matrix prior to matmul, for the first layer. By default, uses the `w0_initial` value if not passed a value. initial_layer_init: Initialization for the first SIREN layer. Can be any valid keras initialization object or string. For SIREN, use `siren_uniform` for the general initialization, or `siren_first_uniform` which is specific for first layer. use_bias: Boolean whether to use bias or not. # References: - [Implicit Neural Representations with Periodic Activation Functions](https://arxiv.org/abs/2006.09661) """ super(ScaledSIRENModel, self).__init__(**kwargs) if scale_initial is None: scale_initial = w0_initial siren_layers = [siren.ScaledSinusodialRepresentationDense(units, scale=scale_initial, w0=w0_initial, use_bias=use_bias, kernel_initializer=initial_layer_init, **kwargs)] for _ in range(num_layers - 1): siren_layers.append(siren.ScaledSinusodialRepresentationDense(units, scale=scale, w0=w0, use_bias=use_bias, **kwargs)) self.siren_layers = tf.keras.Sequential(siren_layers) self.final_dense = siren.ScaledSinusodialRepresentationDense(final_units, scale=scale, activation=final_activation, use_bias=use_bias, **kwargs) def call(self, inputs, training=None, mask=None): features = self.siren_layers(inputs) output = self.final_dense(features) return output
alg/asac/Predictor_G.py
loramf/mlforhealthlabpub
171
12720471
''' ASAC (Active Sensing using Actor-Critic Model) (12/18/2018) Prediction Function only with Selected Samples ''' #%% Necessary packages import tensorflow as tf #%% Prediction Function ''' Inputs: - trainX, train Y (training set) - testX: testing features - trainG: mask vector for selected training samples - trainG: mask vector for selected testing samples Outputs: - Prediction results on testing set ''' def Predictor_G (trainX, testX, trainY, trainG, testG, iterations=5001): # Initialization on the Graph tf.reset_default_graph() #%% Preprocessing Train_No = len(trainY) Test_No = len(trainY) New_trainX = list() for i in range(Train_No): Temp = trainX[i] Temp = Temp * trainG[i] New_trainX.append(Temp) New_testX = list() for i in range(Test_No): Temp = testX[i] Temp = Temp * testG[i] New_testX.append(Temp) #%% Network Parameters seq_length = len(New_trainX[0][:,0]) data_dim = len(New_trainX[0][0,:]) hidden_dim = 5 output_dim = 1 learning_rate = 0.01 #%% Network Build # input place holders X = tf.placeholder(tf.float32, [None, seq_length, data_dim]) Y = tf.placeholder(tf.float32, [None, seq_length]) # build a LSTM network cell = tf.contrib.rnn.BasicLSTMCell(num_units=hidden_dim, state_is_tuple=True, activation=tf.tanh) outputs, _states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32) Y_pred = tf.contrib.layers.fully_connected(outputs, output_dim, activation_fn=None) # We use the last cell's output # cost/loss loss = tf.reduce_sum(tf.square(tf.reshape(Y_pred, [-1,seq_length]) - Y)) # sum of the squares # optimizer optimizer = tf.train.AdamOptimizer(learning_rate) train = optimizer.minimize(loss) #%% Sessions sess = tf.Session() # Initialization sess.run(tf.global_variables_initializer()) #%% Training step for i in range(iterations): _, step_loss = sess.run([train, loss], feed_dict={X: New_trainX, Y: trainY}) if i % 100 == 0: print("[step: {}] loss: {}".format(i, step_loss)) # Test step test_predict = sess.run(Y_pred, feed_dict={X: New_testX}) #%% Output Final = list() for i in range(len(testX)): Final.append(test_predict[i,:,0]) return Final
utils/gap_configs/python/ips/cluster/l1_interleaver.py
00-01/gap_sdk
118
12720474
# # Copyright (C) 2020 GreenWaves Technologies # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import gsystree as st class L1_interleaver(st.Component): def __init__(self, parent, slave, nb_slaves=0, nb_masters=0, stage_bits=0, interleaving_bits=2): super(L1_interleaver, self).__init__(parent, slave) self.add_properties({ 'vp_component': 'pulp.cluster.l1_interleaver_impl', 'nb_slaves': nb_slaves, 'nb_masters': nb_masters, 'stage_bits': stage_bits, 'interleaving_bits': interleaving_bits })
tests/test_provider_hashicorp_time.py
mjuenema/python-terrascript
507
12720505
<filename>tests/test_provider_hashicorp_time.py # tests/test_provider_hashicorp_time.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:28:43 UTC) def test_provider_import(): import terrascript.provider.hashicorp.time def test_resource_import(): from terrascript.resource.hashicorp.time import time_offset from terrascript.resource.hashicorp.time import time_rotating from terrascript.resource.hashicorp.time import time_sleep from terrascript.resource.hashicorp.time import time_static # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.hashicorp.time # # t = terrascript.provider.hashicorp.time.time() # s = str(t) # # assert 'https://github.com/hashicorp/terraform-provider-time' in s # assert '0.7.2' in s
tests/python/correctness/line_properties.py
sid17/weaver
163
12720516
<reponame>sid17/weaver #! /usr/bin/env python # # =============================================================== # Description: Basic test for node/edge properties API. # # Created: 2013-12-17 14:50:18 # # Author: <NAME>, <EMAIL> # # Copyright (C) 2013, Cornell University, see the LICENSE file # for licensing agreement # =============================================================== # import sys import time try: import weaver.client as client except ImportError: import client config_file='' if len(sys.argv) > 1: config_file = sys.argv[1] # creating line graph nodes = [] edges = [] num_nodes = 400 coord_id = 0 c = client.Client('127.0.0.1', 2002, config_file) def line_requests(eprops, exp_reach): num_reach = 0 rp = client.ReachParams(dest=nodes[num_nodes-1], edge_props=eprops) timer = time.time() for i in range(num_nodes-1): prog_args = [(nodes[i], rp)] response = c.run_reach_program(prog_args) #print 'done line req' if response.reachable: num_reach += 1 if exp_reach == 0: print 'bad reach' timer = time.time() - timer assert (num_reach == exp_reach), 'expected reachable ' + str(exp_reach) + ', actually reachable ' + str(num_reach) c.begin_tx() for i in range(num_nodes): nodes.append(c.create_node()) c.end_tx() c.begin_tx() for i in range(num_nodes-1): edges.append(c.create_edge(nodes[i], nodes[i+1])) c.end_tx() node_count = c.get_node_count() print 'Node count:' for cnt in node_count: print str(cnt) #dummy = raw_input('press a key when shard is killed ') print 'Now testing without edge props' line_requests([], num_nodes-1) print 'Done testing without edge props' print 'Now testing with edge props' line_requests([('color','blue')], 0) print 'Done testing with edge props' # adding edge props c.begin_tx() for i in range(num_nodes-1): c.set_edge_property(edges[i], 'color', 'blue', nodes[i]) c.end_tx() print 'Now testing without edge props' line_requests([], num_nodes-1) print 'Now testing with edge props' line_requests([('color','blue')], num_nodes-1) print 'Now testing with WRONG edge props' line_requests([('color','abcd')], 0) print 'Now testing with WRONG edge props' line_requests([('color','abc')], 0) print 'Pass line_properties.'
src/mceditlib/operations/analyze.py
elcarrion06/mcedit2
673
12720518
<gh_stars>100-1000 """ analyze.py Get counts of blocks, entities, and tile entities in a selection. """ from __future__ import absolute_import import logging import numpy from collections import defaultdict from mceditlib.operations import Operation log = logging.getLogger(__name__) class AnalyzeOperation(Operation): def __init__(self, dimension, selection): """ Analyze all blocks in a selection and return counts of block types, entity IDs and tile entity IDs. Counts are returned in `self.blocks`, `self.entityCounts` and `self.tileEntityCounts` :type dimension: WorldEditorDimension :type selection: `~.BoundingBox` """ super(AnalyzeOperation, self).__init__(dimension, selection) self.createSections = False self.blocks = numpy.zeros(65536, dtype='intp') self.selection = selection self.entityCounts = defaultdict(int) self.tileEntityCounts = defaultdict(int) self.skipped = 0 self.sections = 0 log.info("Analyzing %s blocks", selection.volume) def done(self): log.info(u"Analyze: Skipped {0}/{1} sections".format(self.skipped, self.sections)) def operateOnChunk(self, chunk): cx, cz = chunk.cx, chunk.cz for cy in chunk.bounds.sectionPositions(cx, cz): section = chunk.getSection(cy, create=False) if section is None: continue self.sections += 1 sectionMask = self.selection.section_mask(cx, cy, cz) if sectionMask is None: self.skipped += 1 continue maskSize = sectionMask.sum() if maskSize == 0: self.skipped += 1 continue blocks = numpy.array(section.Blocks[sectionMask], dtype='uint16') blocks |= (numpy.array(section.Data[sectionMask], dtype='uint16') << 12) b = numpy.bincount(blocks.ravel()) self.blocks[:b.shape[0]] += b for ref in chunk.Entities: if ref.Position in self.selection: self.entityCounts[ref.id] += 1 for ref in chunk.TileEntities: if ref.Position in self.selection: self.tileEntityCounts[ref.id] += 1
pyvips/vtargetcustom.py
mrpal39/pyvips
142
12720524
<filename>pyvips/vtargetcustom.py from __future__ import division import logging import pyvips from pyvips import ffi, vips_lib logger = logging.getLogger(__name__) class TargetCustom(pyvips.Target): """An output target you can connect action signals to to implement behaviour. """ def __init__(self): """Make a new target you can customise. You can pass this target to (for example) :meth:`write_to_target`. """ target = ffi.cast('VipsTarget*', vips_lib.vips_target_custom_new()) super(TargetCustom, self).__init__(target) def on_write(self, handler): """Attach a write handler. The interface is exactly as io.write(). The handler is given a bytes-like object to write, and should return the number of bytes written. """ def interface_handler(buf): bytes_written = handler(buf) # py2 will often return None for bytes_written ... replace with # the length of the string if bytes_written is None: bytes_written = len(buf) return bytes_written self.signal_connect("write", interface_handler) def on_finish(self, handler): """Attach a finish handler. This optional handler is called at the end of write. It should do any cleaning up necessary. """ self.signal_connect("finish", handler) __all__ = ['TargetCustom']
test/programytest/storage/stores/nosql/mongo/store/test_oobs.py
cdoebler1/AIML2
345
12720542
import unittest from unittest.mock import patch import programytest.storage.engines as Engines from programy.storage.stores.nosql.mongo.config import MongoStorageConfiguration from programy.storage.stores.nosql.mongo.engine import MongoStorageEngine from programy.storage.stores.nosql.mongo.store.oobs import MongoOOBStore from programytest.storage.asserts.store.assert_oobs import OOBsStoreAsserts class MongoOOBStoreTests(OOBsStoreAsserts): @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) def test_initialise(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoOOBStore(engine) self.assertEqual(store.storage_engine, engine) @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) def test_load_oobs(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoOOBStore(engine) self.assert_load(store) @staticmethod def patch_instantiate_class(class_string): raise Exception("Mock Exception") @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) @patch("programy.utils.classes.loader.ClassLoader.instantiate_class", patch_instantiate_class) def test_load_oobs_exception(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoOOBStore(engine) self.assert_load_exception(store) @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) def test_upload_from_file(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoOOBStore(engine) self.assert_upload_from_file(store, verbose=False) @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) def test_upload_from_file_verbose(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoOOBStore(engine) self.assert_upload_from_file(store, verbose=True) def patch_load_oobs_from_file(self, filename, verbose): raise Exception("Mock Exception") @unittest.skipIf(Engines.mongo is False, Engines.mongo_disabled) @patch("programy.storage.stores.nosql.mongo.store.oobs.MongoOOBStore._load_oobs_from_file", patch_load_oobs_from_file) def test_upload_from_file_exception(self): config = MongoStorageConfiguration() engine = MongoStorageEngine(config) engine.initialise() store = MongoOOBStore(engine) self.assert_upload_from_file_exception(store)
evennia/help/models.py
Jaykingamez/evennia
1,544
12720555
""" Models for the help system. The database-tied help system is only half of Evennia's help functionality, the other one being the auto-generated command help that is created on the fly from each command's `__doc__` string. The persistent database system defined here is intended for all other forms of help that do not concern commands, like information about the game world, policy info, rules and similar. """ from django.contrib.contenttypes.models import ContentType from django.db import models from django.urls import reverse from django.utils.text import slugify from evennia.utils.idmapper.models import SharedMemoryModel from evennia.help.manager import HelpEntryManager from evennia.typeclasses.models import Tag, TagHandler, AliasHandler from evennia.locks.lockhandler import LockHandler from evennia.utils.utils import lazy_property __all__ = ("HelpEntry",) # ------------------------------------------------------------ # # HelpEntry # # ------------------------------------------------------------ class HelpEntry(SharedMemoryModel): """ A generic help entry. An HelpEntry object has the following properties defined: key - main name of entry help_category - which category entry belongs to (defaults to General) entrytext - the actual help text permissions - perm strings Method: access """ # # HelpEntry Database Model setup # # # These database fields are all set using their corresponding properties, # named same as the field, but withtout the db_* prefix. # title of the help entry db_key = models.CharField( "help key", max_length=255, unique=True, help_text="key to search for" ) # help category db_help_category = models.CharField( "help category", max_length=255, default="General", help_text="organizes help entries in lists", ) # the actual help entry text, in any formatting. db_entrytext = models.TextField( "help entry", blank=True, help_text="the main body of help text" ) # lock string storage db_lock_storage = models.TextField("locks", blank=True, help_text="normally view:all().") # tags are primarily used for permissions db_tags = models.ManyToManyField( Tag, blank=True, help_text="tags on this object. Tags are simple string markers to identify, group and alias objects.", ) # (deprecated, only here to allow MUX helpfile load (don't use otherwise)). # TODO: remove this when not needed anymore. db_staff_only = models.BooleanField(default=False) # Database manager objects = HelpEntryManager() _is_deleted = False # lazy-loaded handlers @lazy_property def locks(self): return LockHandler(self) @lazy_property def tags(self): return TagHandler(self) @lazy_property def aliases(self): return AliasHandler(self) class Meta(object): "Define Django meta options" verbose_name = "Help Entry" verbose_name_plural = "Help Entries" # # # HelpEntry main class methods # # def __str__(self): return self.key def __repr__(self): return "%s" % self.key def access(self, accessing_obj, access_type="read", default=False): """ Determines if another object has permission to access. accessing_obj - object trying to access this one access_type - type of access sought default - what to return if no lock of access_type was found """ return self.locks.check(accessing_obj, access_type=access_type, default=default) # # Web/Django methods # def web_get_admin_url(self): """ Returns the URI path for the Django Admin page for this object. ex. Account#1 = '/admin/accounts/accountdb/1/change/' Returns: path (str): URI path to Django Admin page for object. """ content_type = ContentType.objects.get_for_model(self.__class__) return reverse( "admin:%s_%s_change" % (content_type.app_label, content_type.model), args=(self.id,) ) @classmethod def web_get_create_url(cls): """ Returns the URI path for a View that allows users to create new instances of this object. ex. Chargen = '/characters/create/' For this to work, the developer must have defined a named view somewhere in urls.py that follows the format 'modelname-action', so in this case a named view of 'character-create' would be referenced by this method. ex. url(r'characters/create/', ChargenView.as_view(), name='character-create') If no View has been created and defined in urls.py, returns an HTML anchor. This method is naive and simply returns a path. Securing access to the actual view and limiting who can create new objects is the developer's responsibility. Returns: path (str): URI path to object creation page, if defined. """ try: return reverse("%s-create" % slugify(cls._meta.verbose_name)) except: return "#" def web_get_detail_url(self): """ Returns the URI path for a View that allows users to view details for this object. ex. Oscar (Character) = '/characters/oscar/1/' For this to work, the developer must have defined a named view somewhere in urls.py that follows the format 'modelname-action', so in this case a named view of 'character-detail' would be referenced by this method. ex. url(r'characters/(?P<slug>[\w\d\-]+)/(?P<pk>[0-9]+)/$', CharDetailView.as_view(), name='character-detail') If no View has been created and defined in urls.py, returns an HTML anchor. This method is naive and simply returns a path. Securing access to the actual view and limiting who can view this object is the developer's responsibility. Returns: path (str): URI path to object detail page, if defined. """ try: return reverse( "%s-detail" % slugify(self._meta.verbose_name), kwargs={"category": slugify(self.db_help_category), "topic": slugify(self.db_key)}, ) except Exception as e: print(e) return "#" def web_get_update_url(self): """ Returns the URI path for a View that allows users to update this object. ex. Oscar (Character) = '/characters/oscar/1/change/' For this to work, the developer must have defined a named view somewhere in urls.py that follows the format 'modelname-action', so in this case a named view of 'character-update' would be referenced by this method. ex. url(r'characters/(?P<slug>[\w\d\-]+)/(?P<pk>[0-9]+)/change/$', CharUpdateView.as_view(), name='character-update') If no View has been created and defined in urls.py, returns an HTML anchor. This method is naive and simply returns a path. Securing access to the actual view and limiting who can modify objects is the developer's responsibility. Returns: path (str): URI path to object update page, if defined. """ try: return reverse( "%s-update" % slugify(self._meta.verbose_name), kwargs={"category": slugify(self.db_help_category), "topic": slugify(self.db_key)}, ) except: return "#" def web_get_delete_url(self): """ Returns the URI path for a View that allows users to delete this object. ex. Oscar (Character) = '/characters/oscar/1/delete/' For this to work, the developer must have defined a named view somewhere in urls.py that follows the format 'modelname-action', so in this case a named view of 'character-detail' would be referenced by this method. ex. url(r'characters/(?P<slug>[\w\d\-]+)/(?P<pk>[0-9]+)/delete/$', CharDeleteView.as_view(), name='character-delete') If no View has been created and defined in urls.py, returns an HTML anchor. This method is naive and simply returns a path. Securing access to the actual view and limiting who can delete this object is the developer's responsibility. Returns: path (str): URI path to object deletion page, if defined. """ try: return reverse( "%s-delete" % slugify(self._meta.verbose_name), kwargs={"category": slugify(self.db_help_category), "topic": slugify(self.db_key)}, ) except: return "#" # Used by Django Sites/Admin get_absolute_url = web_get_detail_url
api_tests/requests/views/test_request_action_list.py
gaybro8777/osf.io
628
12720576
import pytest from api.base.settings.defaults import API_BASE from api_tests.requests.mixins import PreprintRequestTestMixin @pytest.mark.enable_quickfiles_creation @pytest.mark.django_db class TestPreprintRequestActionList(PreprintRequestTestMixin): def url(self, request): return '/{}requests/{}/actions/'.format(API_BASE, request._id) def test_nonmod_nonadmin_nonrequester_cannot_view(self, app, noncontrib, write_contrib, pre_request, post_request, none_request): for request in [pre_request, post_request, none_request]: for user in [noncontrib, write_contrib]: res = app.get(self.url(request), auth=user.auth, expect_errors=True) assert res.status_code == 403 def test_mod_can_view(self, app, moderator, pre_request, post_request, auto_approved_pre_request): for request in [pre_request, post_request]: res = app.get(self.url(request), auth=moderator.auth) assert res.status_code == 200 assert len(res.json['data']) == 1 assert res.json['data'][0]['attributes']['auto'] is False res = app.get(self.url(auto_approved_pre_request), auth=moderator.auth) assert res.status_code == 200 assert len(res.json['data']) == 2 assert res.json['data'][0]['attributes']['auto'] is True def test_admin_can_view(self, app, admin, pre_request, post_request, none_request, auto_approved_pre_request): for request in [pre_request, post_request, none_request]: res = app.get(self.url(request), auth=admin.auth) assert res.status_code == 200 assert len(res.json['data']) == 1 assert res.json['data'][0]['attributes']['auto'] is False res = app.get(self.url(auto_approved_pre_request), auth=admin.auth) assert res.status_code == 200 assert len(res.json['data']) == 2 assert res.json['data'][0]['attributes']['auto'] is True def test_nonadmin_requester_can_view(self, app, requester, nonadmin_pre_request, nonadmin_post_request, nonadmin_none_request, nonadmin_auto_approved_pre_request): for request in [nonadmin_pre_request, nonadmin_post_request, nonadmin_none_request]: res = app.get(self.url(request), auth=requester.auth) assert res.status_code == 200 assert len(res.json['data']) == 1 assert res.json['data'][0]['attributes']['auto'] is False res = app.get(self.url(nonadmin_auto_approved_pre_request), auth=requester.auth) assert res.status_code == 200 assert len(res.json['data']) == 2 assert res.json['data'][0]['attributes']['auto'] is True
packages/core/minos-microservice-common/tests/test_common/test_database/test_locks.py
minos-framework/minos-python
247
12720591
import unittest from minos.common import ( DatabaseLock, Lock, ) from minos.common.testing import ( MockedDatabaseClient, ) class TestDatabaseLock(unittest.IsolatedAsyncioTestCase): def test_base(self): self.assertTrue(issubclass(DatabaseLock, Lock)) async def test_client(self): client = MockedDatabaseClient() lock = DatabaseLock(client, "foo") self.assertEqual(client, lock.client) async def test_key(self): client = MockedDatabaseClient() lock = DatabaseLock(client, "foo") self.assertEqual("foo", lock.key) async def test_key_raises(self): client = MockedDatabaseClient() with self.assertRaises(ValueError): DatabaseLock(client, []) async def test_hashed_key(self): client = MockedDatabaseClient() lock = DatabaseLock(client, "foo") self.assertEqual(hash("foo"), lock.hashed_key) if __name__ == "__main__": unittest.main()
tests/test_coder.py
ohduran/ring
450
12720595
import sys import ring from ring.coder import ( Registry, Coder, JsonCoder, coderize, registry as default_registry) import pytest def test_coder_registry(): registry = Registry() error_coder = None, None registry.register('_error', error_coder) assert registry.get('_error') == (None, None) tuple_coder = lambda x: x, lambda x: x # noqa registry.register('tuple', tuple_coder) class NewStaticCoder(Coder): @staticmethod def encode(d): return d @staticmethod def decode(d): return d registry.register('new_static', NewStaticCoder) registry.register('new_static_obj', NewStaticCoder()) class NewCoder(Coder): def encode(self, x): return x def decode(self, x): return x registry.register('new_obj', NewCoder()) def test_coder_json(): coder = default_registry.get('json') assert b'1' == coder.encode(1) assert 1 == coder.decode(b'1') assert b'{"x": 1}' == coder.encode({'x': 1}) assert {'x': 1} == coder.decode(b'{"x": 1}') def test_coder_pickle(): import memcache import datetime coder = default_registry.get('pickle') mc = memcache.Client(['127.0.0.1:11211']) @ring.memcache(mc, coder='pickle') def now(): return datetime.datetime.now() now.delete() dt_now = now() direct_data = mc.get(now.key()) assert direct_data encoded_data = coder.encode(dt_now) assert encoded_data == direct_data decoded_data = coder.decode(encoded_data) assert decoded_data == dt_now def test_ring_bare_coder(): @ring.dict({}, coder=JsonCoder) def f(): return 10 assert f() == 10 if sys.version_info >= (3, 7): from tests._test_module_py37 import DataClass def test_dataclass_coder(): coder = default_registry.get('dataclass') dataclass = DataClass('name', 1, {'test': 1}) encoded_dataclass = coder.encode(dataclass) assert b'["DataClass", {"name": "name", "my_int": 1, "my_dict": {"test": 1}}]' == encoded_dataclass decoded_dataclass = coder.decode(encoded_dataclass) assert 'DataClass' == type(decoded_dataclass).__name__ assert decoded_dataclass.name == 'name' assert decoded_dataclass.my_int == 1 assert decoded_dataclass.my_dict == {'test': 1} def test_unexisting_coder(): cache = {} with pytest.raises(TypeError): @ring.dict(cache, coder='messed-up') def f(): pass @pytest.mark.parametrize('raw_coder', [ JsonCoder, ]) def test_coderize(raw_coder): assert raw_coder assert isinstance(coderize(raw_coder), Coder) def test_invalid_coderize(): with pytest.raises(TypeError): coderize(1)
src/orders/migrations/0011_NotificationToGiverIsSent.py
denkasyanov/education-backend
151
12720604
# Generated by Django 3.1.4 on 2020-12-31 21:27 from django.db import migrations, models def mark_giver_notification_as_sent_for_all_previous_orders(apps, schema_editor): apps.get_model('orders.Order').objects.filter(giver__isnull=False) \ .update(notification_to_giver_is_sent=True) class Migration(migrations.Migration): dependencies = [ ('orders', '0010_OrderI18n'), ] operations = [ migrations.AddField( model_name='order', name='notification_to_giver_is_sent', field=models.BooleanField(default=False), ), migrations.RunPython(mark_giver_notification_as_sent_for_all_previous_orders), ]
linter.py
phpdude/api-blueprint-sublime-plugin
130
12720617
<filename>linter.py # # linter.py # Linter for SublimeLinter3, a code checking framework for Sublime Text 3 # # Written by <NAME> # Copyright (c) 2013 <NAME> # https://github.com/WMeldon/SublimeLinter-apiblueprint # # Modified by <NAME> # # License: MIT """This module exports the Apiblueprint plugin class.""" def ApiBlueprintFactory(): """ Define API Blueprint Linter Class""" class ApiBlueprint(Linter): """Provides an interface to apiblueprint.""" syntax = 'apiblueprint' cmd = 'drafter --validate' executable = 'drafter' executable = None regex = ( r'(?:(?P<warning>warning)|(?P<error>error)):\s*\((?P<code>\d+)\)' r'(?P<message>.+?)(?::|$)' r'(?P<line>\d+):(?P<col>\d+)(?:.*)' ) multiline = False line_col_base = (0, 0) tempfile_suffix = None error_stream = util.STREAM_BOTH selectors = {} word_re = None defaults = {} inline_settings = None inline_overrides = None comment_re = None def split_match(self, match): """ Run default match. If match is found, convert line variable to line number and adjust col. """ match, line, col, error, warning, message, near = super().split_match(match) if line is not None: line, col = self.view.rowcol((int(line))) line = int(line) - self.line_col_base[0] return match, line, col, error, warning, message, near try: """Attempt to import SublimeLinter3""" from SublimeLinter.lint import Linter, util ApiBlueprintFactory() except ImportError: print("No SublimeLinter3 installed - Install SublimeLinter3 to lint your API blueprints (ST3 Only)")
django_linter/transformers/__init__.py
enefeq/django_linter
101
12720624
from __future__ import (absolute_import, division, print_function, unicode_literals) from astroid import MANAGER, Class, CallFunc from .models import transform_model_class from .testing import transform_test_response from .factories import transform_factory_return def register(linter): MANAGER.register_transform(Class, transform_model_class) MANAGER.register_transform(Class, transform_test_response) MANAGER.register_transform(CallFunc, transform_factory_return)
tests/test_api.py
Sunkist-Cherry/Spam-Filter
433
12720635
import unittest from unittest import mock import cherry class ApiTest(unittest.TestCase): def setUp(self): self.model = 'foo' self.text = 'random string' @mock.patch('cherry.api.Classify') def test_classify_api(self, mock_classify): cherry.classify(model=self.model, text=self.text) mock_classify.assert_called_once_with(model=self.model, text=self.text) @mock.patch('cherry.api.Trainer') def test_train_api(self, mock_train): cherry.train(model=self.model) mock_train.assert_called_once_with( self.model, categories=None, clf=None, clf_method='MNB', encoding='utf-8', language='English', preprocessing=None, vectorizer=None, vectorizer_method='Count', x_data=None, y_data=None) @mock.patch('cherry.api.Trainer') def test_api_call_model_clf_vectorizer(self, mock_trainer): cherry.train('foo', clf='clf', vectorizer='vectorizer') mock_trainer.assert_called_with( 'foo', preprocessing=None, categories=None, encoding='utf-8', clf='clf', clf_method='MNB', language='English', vectorizer='vectorizer', vectorizer_method='Count', x_data=None, y_data=None) @mock.patch('cherry.api.Performance') def test_performance_api(self, mock_performance): cherry.performance(model=self.model) mock_performance.assert_called_once_with( self.model, categories=None, clf=None, clf_method='MNB', encoding='utf-8', language='English', n_splits=10, output='Stdout', preprocessing=None, vectorizer=None, vectorizer_method='Count', x_data=None, y_data=None) @mock.patch('cherry.api.Performance') def test_performance_api_model_clf_vectorizer(self, mock_performance): cherry.performance('foo', clf='clf', vectorizer='vectorizer') mock_performance.assert_called_with( 'foo', categories=None, clf='clf', clf_method='MNB', encoding='utf-8', language='English', n_splits=10, output='Stdout', preprocessing=None, vectorizer='vectorizer', vectorizer_method='Count', x_data=None, y_data=None) @mock.patch('cherry.api.Search') def test_api_call(self, mock_search): cherry.search('foo', {'foo': 'bar'}) mock_search.assert_called_with( 'foo', {'foo': 'bar'}, categories=None, clf=None, clf_method='MNB', cv=3, encoding='utf-8', language='English', method='RandomizedSearchCV', n_jobs=-1, preprocessing=None, vectorizer=None, vectorizer_method='Count', x_data=None, y_data=None) @mock.patch('cherry.api.Display') def test_display_api(self, mock_display): cherry.display(model=self.model) mock_display.assert_called_once_with( self.model, categories=None, clf=None, clf_method='MNB', encoding='utf-8', language='English', preprocessing=None, vectorizer=None, vectorizer_method='Count', x_data=None, y_data=None)
sdk/python/ekuiper/runtime/sink.py
MonicaisHer/ekuiper
250
12720640
# Copyright 2021 EMQ Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import traceback from . import reg from .connection import SinkChannel from .symbol import SymbolRuntime, parse_context from ..sink import Sink class SinkRuntime(SymbolRuntime): def __init__(self, ctrl: dict, s: Sink): ctx = parse_context(ctrl) config = {} if 'config' in ctrl: config = ctrl['config'] s.configure(config) ch = SinkChannel(ctrl['meta']) self.s = s self.ctx = ctx self.ch = ch self.running = False self.key = f"{ctrl['meta']['ruleId']}_{ctrl['meta']['opId']}" \ f"_{ctrl['meta']['instanceId']}_{ctrl['symbolName']}" def run(self): logging.info('start running sink') # noinspection PyBroadException try: self.s.open(self.ctx) self.running = True reg.setr(self.key, self) while True: msg = self.ch.recv() self.s.collect(self.ctx, msg) except Exception: """two occasions: normal stop will close socket to raise an error OR stopped by unexpected error""" if self.running: logging.error(traceback.format_exc()) finally: if self.running: self.stop() def stop(self): self.running = False # noinspection PyBroadException try: self.s.close(self.ctx) self.ch.close() reg.delete(self.key) except Exception: logging.error(traceback.format_exc()) def is_running(self) -> bool: return self.running
cryptodetector/method.py
nondejus/crypto-detector
109
12720649
<gh_stars>100-1000 """ Copyright (c) 2017 Wind River Systems, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ from abc import ABCMeta, abstractmethod from cryptodetector.exceptions import InvalidMethodException class MethodFactory(ABCMeta): """Meta class creating a method class. Keeps track of all child classes that inherit from Method for later reference. """ def __new__(mcs, clsname, bases, dct): if not hasattr(MethodFactory, "method_classes"): MethodFactory.method_classes = [] method_class = super(MethodFactory, mcs).__new__(mcs, clsname, bases, dct) if bases: if not hasattr(method_class, "method_id"): raise InvalidMethodException("Method " + clsname + " requires " \ + "'method_id' attribute.") if method_class.method_id in [mc.method_id for mc in MethodFactory.method_classes]: raise InvalidMethodException("Method " + clsname + " has duplicate method_id '" \ + method_class.method_id \ + "'. method_id must be unique across all available methods.") MethodFactory.method_classes.append(method_class) return method_class class Method(metaclass=MethodFactory): """Abstract base class providing the interface for a method """ # list of evidence types that all methods should ignore ignore_evidence_types = [] @abstractmethod def supports_scanning_file(self, language): """Indicates whether this method supports scanning a file in the given language Args: language: language of the content (see langauges.py) Returns: (bool) whether it supports scanning a file in the given language """ pass @abstractmethod def search(self, content, language): """Search and find all matches in the content Args: content: the content to be scanned. Its type is string for text files and raw byte array for binary files. language: language of the content (see langauges.py) Returns: (list) list of matches. A match is a dict object containing all the output fields. """ pass @abstractmethod def quick_search(self, content, language): """Quick search the content in the given language Args: content: the content to be scanned. Its type is string for text files and raw byte array for binary files. language: language of the content (see langauges.py) Returns: (bool) whether it found any matches in the content """ pass
tapiriik/services/BeginnerTriathlete/__init__.py
prohfesor/tapiriik
1,445
12720655
from .beginnertriathlete import *
utils/accumulators.py
iam-sr13/attention-cnn
974
12720661
<filename>utils/accumulators.py import torch from copy import deepcopy class Mean: """ Running average of the values that are 'add'ed """ def __init__(self, update_weight=1): """ :param update_weight: 1 for normal, 2 for t-average """ self.average = None self.counter = 0 self.update_weight = update_weight def add(self, value, weight=1): """Add a value to the accumulator""" self.counter += weight if self.average is None: self.average = deepcopy(value) else: delta = value - self.average self.average += delta * self.update_weight * weight / (self.counter + self.update_weight - 1) if isinstance(self.average, torch.Tensor): self.average.detach() def value(self): """Access the current running average""" return self.average class Max: """ Keeps track of the max of all the values that are 'add'ed """ def __init__(self): self.max = None def add(self, value): """ Add a value to the accumulator. :return: `true` if the provided value became the new max """ if self.max is None or value > self.max: self.max = deepcopy(value) return True else: return False def value(self): """Access the current running average""" return self.max
examples/list_documents.py
MrTeferi/photoshop-python-api
270
12720668
"""List current photoshop all documents.""" # Import local modules import photoshop.api as ps app = ps.Application() doc = app.documents[0] print(doc.name) for doc in app.documents: print(doc.name)
sdk/servicefabric/azure-servicefabric/azure/servicefabric/operations/__init__.py
rsdoherty/azure-sdk-for-python
2,728
12720690
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from ._mesh_secret_operations import MeshSecretOperations from ._mesh_secret_value_operations import MeshSecretValueOperations from ._mesh_volume_operations import MeshVolumeOperations from ._mesh_network_operations import MeshNetworkOperations from ._mesh_application_operations import MeshApplicationOperations from ._mesh_service_operations import MeshServiceOperations from ._mesh_code_package_operations import MeshCodePackageOperations from ._mesh_service_replica_operations import MeshServiceReplicaOperations from ._mesh_gateway_operations import MeshGatewayOperations from ._service_fabric_client_ap_is_operations import ServiceFabricClientAPIsOperationsMixin __all__ = [ 'MeshSecretOperations', 'MeshSecretValueOperations', 'MeshVolumeOperations', 'MeshNetworkOperations', 'MeshApplicationOperations', 'MeshServiceOperations', 'MeshCodePackageOperations', 'MeshServiceReplicaOperations', 'MeshGatewayOperations', 'ServiceFabricClientAPIsOperationsMixin', ]
examples/xml/soap12-mtom/soap12_mtom.py
edustaff/spyne
786
12720765
<gh_stars>100-1000 #!/usr/bin/env python import logging logger = logging.getLogger(__name__) import os logging.basicConfig(level=logging.DEBUG) logging.getLogger('spyne.protocol.xml').setLevel(logging.DEBUG) from spyne.application import Application from spyne.decorator import rpc from spyne.service import ServiceBase from spyne.model.complex import ComplexModel from spyne.model.binary import ByteArray from spyne.model.primitive import Unicode from spyne.server.wsgi import WsgiApplication from spyne.protocol.soap import Soap12 tns = 'http://gib.gov.tr/vedop3/eFatura' class documentResponse(ComplexModel): msg = Unicode hash = ByteArray class GIBSoapService(ServiceBase): @rpc(Unicode(sub_name="fileName"), ByteArray(sub_name='binaryData'), ByteArray(sub_name="hash"), _returns=documentResponse) def documentRequest(ctx, file_name, file_data, data_hash): incoming_invoice_dir = os.getcwd() logger.info("file_name %r" % file_name) logger.info("file_hash: %r" % data_hash) path = os.path.join(incoming_invoice_dir, file_name) f = open(path, 'wb') for data in file_data: f.write(data) logger.info("File written: %r" % file_name) f.close() resp = documentResponse() resp.msg = "Document was written successfully" resp.hash = data_hash return resp application = Application([GIBSoapService], tns=tns, in_protocol=Soap12(), out_protocol=Soap12()) gib_application = WsgiApplication(application) from wsgiref.simple_server import make_server server = make_server('0.0.0.0', 8000, gib_application) server.serve_forever()
recipes/Python/576977_Context_manager_restoring/recipe-576977.py
tdiprima/code
2,023
12720772
<gh_stars>1000+ from __future__ import with_statement from contextlib import contextmanager import sys __docformat__ = "restructuredtext" @contextmanager def restoring(expr, clone=None): '''A context manager that evaluates an expression when entering the runtime context and restores its value when exiting. This context manager makes .. python:: with restoring(expr, clone) as value: BODY a shortcut for .. python:: value = EXPR __cloned = clone(value) if clone is not None else value try: BODY finally: EXPR = __cloned del __cloned where ``__cloned`` is a temporary hidden name and ``EXPR`` is ``expr`` substituted textually in the code snippet. Therefore ``expr`` can only be an assignable expression, i.e. an expression that is allowed on the left hand side of '=' (e.g. identifier, subscription, attribute reference, etc.). :param expr: The expression whose value is to be evaluated and restored. :type expr: str :param clone: A callable that takes the object ``expr`` evaluates to and returns an appropriate copy to be used for restoring. If None, the original object is used. :type clone: callable or None ''' f = sys._getframe(2) # bypass the contextmanager frame # evaluate the expression and make a clone of the value to be restored value = eval(expr, f.f_globals, f.f_locals) restored_value = clone(value) if clone is not None else value try: yield value finally: if expr in f.f_locals: # local or nonlocal name _update_locals(f, {expr:restored_value}) elif expr in f.f_globals: # global name f.f_globals[expr] = restored_value else: # make a copy of f_locals and bind restored_value to a new name tmp_locals = dict(f.f_locals) tmp_name = '__' + min(tmp_locals) tmp_locals[tmp_name] = restored_value exec '%s = %s' % (expr, tmp_name) in f.f_globals, tmp_locals def _update_locals(frame, new_locals, clear=False): # XXX: obscure, most likely implementation-dependent fact: # f_locals can be modified (only?) from within a trace function f_trace = frame.f_trace try: sys_trace = sys.gettrace() except AttributeError: # sys.gettrace() not available before 2.6 sys_trace = None def update_tracer(frm, event, arg): # Update the frame's locals and restore both the local and the system's #trace function assert frm is frame if clear: frm.f_locals.clear() frm.f_locals.update(new_locals) frm.f_trace = f_trace sys.settrace(sys_trace) # Force tracing on with setting the global tracing function and set # the frame's local trace function sys.settrace(lambda frame, event, arg: None) frame.f_trace = update_tracer def test_restoring_immutable(): x = 'b' foo = {'a':3, 'b':4} with restoring('foo[x]') as y: assert y == foo[x] == 4 foo[x] = y = None assert y == foo[x] == None assert foo[x] == 4 and y == None assert sorted(locals()) == ['foo', 'x', 'y'] def test_restoring_mutable(): orig_path = sys.path[:] with restoring('sys.path', clone=list) as path: assert path is sys.path path += ['foo'] assert path == orig_path + ['foo'] assert sys.path == orig_path assert path == orig_path + ['foo'] assert sorted(locals()) == ['orig_path', 'path'] x = 1 def test_restoring_global(): global y; y = 2 global x with restoring('x'): x = None with restoring('y'): y += 3 assert x == None and y == 5 assert y == 2 assert x == 1 assert not locals() def test_restoring_local(): x = 5 with restoring('x'): x = None assert x == 5 assert sorted(locals()) == ['x'] def test_restoring_nonlocal(): a = [] def nested(): with restoring('a', list): a.append(1) assert a == [1] assert a == [] nested() assert a == [] if __name__ == '__main__': test_restoring_immutable() test_restoring_mutable() test_restoring_global() test_restoring_local() test_restoring_nonlocal()
okta/exceptions/__init__.py
corylevine/okta-sdk-python
145
12720821
<filename>okta/exceptions/__init__.py from . exceptions import HTTPException, OktaAPIException # noqa
tmtoolkit/__main__.py
samir-joshi/tmtoolkit
167
12720842
""" tmtoolkit – Text Mining and Topic Modeling Toolkit for Python CLI module <NAME> <<EMAIL>> """ if __name__ == '__main__': import sys import subprocess import json from tmtoolkit.preprocess import DEFAULT_LANGUAGE_MODELS def _setup(args): try: import spacy from spacy.cli.download import download except ImportError: print('error: required package "spacy" is not installed', file=sys.stderr) exit(1) if not args: print('error: you must pass a list of two-letter ISO 639-1 language codes to install the respective ' 'language models or the string "all" to install all available language models', file=sys.stderr) exit(2) else: try: args.pop(args.index('--no-update')) no_update = True except ValueError: no_update = False if args == ['all']: install_languages = list(DEFAULT_LANGUAGE_MODELS.keys()) else: install_languages = [] for arg in args: install_languages.extend([l for l in map(str.strip, arg.split(',')) if l]) print('checking if required spaCy data packages are installed...') try: piplist_str = subprocess.check_output([sys.executable, '-m', 'pip', 'list', '--disable-pip-version-check', '--format', 'json']) except subprocess.CalledProcessError as exc: print('error: calling pip failed with the following error message\n' + str(exc), file=sys.stderr) exit(3) piplist = json.loads(piplist_str) installed_pkgs = set(item['name'] for item in piplist) model_pkgs = dict(zip(DEFAULT_LANGUAGE_MODELS.keys(), map(lambda x: x.replace('_', '-') + '-sm', DEFAULT_LANGUAGE_MODELS.values()))) for lang in install_languages: if lang not in DEFAULT_LANGUAGE_MODELS.keys(): print('error: no language model for language code "%s"' % lang, file=sys.stderr) exit(4) lang_model_pkg = model_pkgs[lang] if no_update and lang_model_pkg in installed_pkgs: print('language model package "%s" for language code "%s" is already installed -- skipping' % (lang_model_pkg, lang)) continue lang_model = DEFAULT_LANGUAGE_MODELS[lang] + '_sm' print('installing language model "%s" for language code "%s"...' % (lang_model, lang)) download(lang_model) print('done.') commands = { 'setup': _setup } if len(sys.argv) <= 1: print('available commands: ' + ', '.join(commands.keys())) exit(1) cmd = sys.argv[1] if cmd in commands.keys(): commands[cmd](sys.argv[2:]) else: print('command not supported:', cmd, file=sys.stderr) exit(2)
tests/test_data_table.py
figufema/TesteClone
1,521
12720845
# Copyright 2019 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for google.colab.data_table.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import IPython import pandas as pd from google.colab import data_table # pylint:disable=g-import-not-at-top try: from unittest import mock # pylint:disable=g-importing-member except ImportError: import mock # pylint:enable=g-import-not-at-top class DataTableTest(unittest.TestCase): def setUp(self): super(DataTableTest, self).setUp() self.ip_patcher = mock.patch.object(IPython, 'get_ipython', autospec=True) get_ipython = self.ip_patcher.start() get_ipython.return_value = IPython.InteractiveShell() def tearDown(self): self.ip_patcher.stop() super(DataTableTest, self).tearDown() def testDataTable(self): df = pd.DataFrame({ 'x': [12345, 23456, 34567], 'y': ['abcde', 'bcdef', 'cdefg'] }) dt = data_table.DataTable(df) html = dt._repr_html_() for col in df.columns: for val in df[col]: self.assertIn('{}'.format(val), html) def testFormatterEnableDisable(self): def get_formatter(): key = data_table._JAVASCRIPT_MODULE_MIME_TYPE formatters = IPython.get_ipython().display_formatter.formatters if key in formatters: return formatters[key].for_type_by_name('pandas.core.frame', 'DataFrame') else: return None # default formatter is None. self.assertIsNone(get_formatter()) # enabling changes the formatter. data_table.enable_dataframe_formatter() # classmethod identity is not preserved; compare reprs: self.assertEqual( repr(get_formatter()), repr(data_table.DataTable.formatter)) # disabling restores the default. data_table.disable_dataframe_formatter() self.assertIsNone(get_formatter())
keystone/credential/schema.py
ferag/keystone
615
12720860
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. _credential_properties = { 'blob': { 'type': 'string' }, 'project_id': { 'type': 'string' }, 'type': { 'type': 'string' }, 'user_id': { 'type': 'string' } } credential_create = { 'type': 'object', 'properties': _credential_properties, 'additionalProperties': True, 'oneOf': [ { 'title': 'ec2 credential requires project_id', 'required': ['blob', 'type', 'user_id', 'project_id'], 'properties': { 'type': { 'enum': ['ec2'] } } }, { 'title': 'non-ec2 credential does not require project_id', 'required': ['blob', 'type', 'user_id'], 'properties': { 'type': { 'not': { 'enum': ['ec2'] } } } } ] } credential_update = { 'type': 'object', 'properties': _credential_properties, 'minProperties': 1, 'additionalProperties': True }
rman_operators/rman_operators_editors/rman_operators_editors_vol_aggregates.py
prman-pixar/RenderManForBlender
432
12720865
<gh_stars>100-1000 from bpy.props import (StringProperty, BoolProperty, EnumProperty, IntProperty) from ...rman_ui.rman_ui_base import CollectionPanel from ...rfb_logger import rfb_log from ...rman_operators.rman_operators_collections import return_empty_list from ...rman_config import __RFB_CONFIG_DICT__ as rfb_config from ...rfb_utils import object_utils from ...rfb_utils import scene_utils import bpy import re class RENDERMAN_UL_Volume_Aggregates_List(bpy.types.UIList): def draw_item(self, context, layout, data, item, icon, active_data, active_propname, index): custom_icon = 'OBJECT_DATAMODE' layout.context_pointer_set("selected_obj", item.ob_pointer) op = layout.operator('renderman.remove_from_vol_aggregate', text='', icon='REMOVE') label = item.ob_pointer.name layout.label(text=label, icon=custom_icon) class PRMAN_OT_Renderman_Open_Volume_Aggregates_Editor(CollectionPanel, bpy.types.Operator): bl_idname = "scene.rman_open_vol_aggregates_editor" bl_label = "RenderMan Volume Aggregates Editor" bl_description = "Volume Aggregates Editor" def updated_object_selected_name(self, context): ob = context.scene.objects.get(self.selected_obj_name, None) if not ob: return if context.view_layer.objects.active: context.view_layer.objects.active.select_set(False) ob.select_set(True) context.view_layer.objects.active = ob def obj_list_items(self, context): pattern = re.compile(self.object_search_filter) scene = context.scene rm = scene.renderman if self.do_object_filter and self.object_search_filter == '': return return_empty_list(label='No Objects Found') group = rm.vol_aggregates[rm.vol_aggregates_index] objs_in_group = [] for member in group.members: objs_in_group.append(member.ob_pointer.name) items = [] for ob in scene_utils.get_all_volume_objects(scene): ob_name = ob.name if ob_name not in objs_in_group: if self.do_object_filter and not re.match(pattern, ob_name): continue items.append((ob_name, ob_name, '')) if not items: return return_empty_list(label='No Objects Found') elif self.do_object_filter: items.insert(0, ('0', 'Results (%d)' % len(items), '', '', 0)) else: items.insert(0, ('0', 'Select Object', '', '', 0)) return items def update_do_object_filter(self, context): self.selected_obj_name = '0' do_object_filter: BoolProperty(name="Object Filter", description="Search and add multiple objects", default=False, update=update_do_object_filter) object_search_filter: StringProperty(name="Object Filter Search", default="") selected_obj_name: EnumProperty(name="", items=obj_list_items, update=updated_object_selected_name) def execute(self, context): return{'FINISHED'} def draw(self, context): layout = self.layout scene = context.scene rm = scene.renderman layout.separator() self._draw_collection(context, layout, rm, "Volume Aggregates", "renderman.add_remove_volume_aggregates", "scene.renderman", "vol_aggregates", "vol_aggregates_index", default_name='VolumeAggreagte_%d' % len(rm.vol_aggregates)) def draw_objects_item(self, layout, context, item): row = layout.row() scene = context.scene rm = scene.renderman vol_aggregate = rm.vol_aggregates[rm.vol_aggregates_index] row = layout.row() row.separator() row.prop(self, 'do_object_filter', text='', icon='FILTER', icon_only=True) if not self.do_object_filter: row.prop(self, 'selected_obj_name', text='') col = row.column() if self.selected_obj_name == '0' or self.selected_obj_name == '': col.enabled = False op = col.operator("renderman.add_to_vol_aggregate", text='', icon='ADD') op.open_editor = False else: col.context_pointer_set('op_ptr', self) col.context_pointer_set('selected_obj', scene.objects[self.selected_obj_name]) op = col.operator("renderman.add_to_vol_aggregate", text='', icon='ADD') op.vol_aggregates_index = rm.vol_aggregates_index op.do_scene_selected = False op.open_editor = False else: row.prop(self, 'object_search_filter', text='', icon='VIEWZOOM') row = layout.row() row.prop(self, 'selected_obj_name') col = row.column() if self.selected_obj_name == '0' or self.selected_obj_name == '': col.enabled = False op = col.operator("renderman.add_to_vol_aggregate", text='', icon='ADD') op.open_editor = False else: col.context_pointer_set('op_ptr', self) col.context_pointer_set('selected_obj', scene.objects[self.selected_obj_name]) op = col.operator("renderman.add_to_vol_aggregate", text='', icon='ADD') op.vol_aggregates_index = rm.vol_aggregates_index op.do_scene_selected = False op.open_editor = False row = layout.row() row.template_list('RENDERMAN_UL_Volume_Aggregates_List', "", vol_aggregate, "members", vol_aggregate, 'members_index', rows=6) def draw_item(self, layout, context, item): self.draw_objects_item(layout, context, item) def cancel(self, context): if self.event and self.event.type == 'LEFTMOUSE': bpy.ops.scene.rman_open_vol_aggregates_editor('INVOKE_DEFAULT') def __init__(self): self.event = None def invoke(self, context, event): wm = context.window_manager width = rfb_config['editor_preferences']['vol_aggregates_editor']['width'] self.event = event return wm.invoke_props_dialog(self, width=width) classes = [ PRMAN_OT_Renderman_Open_Volume_Aggregates_Editor, RENDERMAN_UL_Volume_Aggregates_List ] def register(): for cls in classes: bpy.utils.register_class(cls) def unregister(): for cls in classes: try: bpy.utils.unregister_class(cls) except RuntimeError: rfb_log().debug('Could not unregister class: %s' % str(cls)) pass
envs/real_net_env.py
zongzefang/deeprl_signal_control
194
12720876
""" Particular class of real traffic network @author: <NAME> """ import configparser import logging import numpy as np import matplotlib.pyplot as plt import os import seaborn as sns import time from envs.env import PhaseMap, PhaseSet, TrafficSimulator from real_net.data.build_file import gen_rou_file sns.set_color_codes() STATE_NAMES = ['wave'] # node: (phase key, neighbor list) NODES = {'10026': ('6.0', ['9431', '9561', 'cluster_9563_9597', '9531']), '8794': ('4.0', ['cluster_8985_9609', '9837', '9058', 'cluster_9563_9597']), '8940': ('2.1', ['9007', '9429']), '8996': ('2.2', ['cluster_9389_9689', '9713']), '9007': ('2.3', ['9309', '8940']), '9058': ('4.0', ['cluster_8985_9609', '8794', 'joinedS_0']), '9153': ('2.0', ['9643']), '9309': ('4.0', ['9466', '9007', 'cluster_9043_9052']), '9413': ('2.3', ['9721', '9837']), '9429': ('5.0', ['cluster_9043_9052', 'joinedS_1', '8940']), '9431': ('2.4', ['9721', '9884', '9561', '10026']), '9433': ('2.5', ['joinedS_1']), '9466': ('4.0', ['9309', 'joinedS_0', 'cluster_9043_9052']), '9480': ('2.3', ['8996', '9713']), '9531': ('2.6', ['joinedS_1', '10026']), '9561': ('4.0', ['cluster_9389_9689', '10026', '9431', '9884']), '9643': ('2.3', ['9153']), '9713': ('3.0', ['9721', '9884', '8996']), '9721': ('6.0', ['9431', '9713', '9413']), '9837': ('3.1', ['9413', '8794', 'cluster_8985_9609']), '9884': ('2.7', ['9713', '9431', 'cluster_9389_9689', '9561']), 'cluster_8751_9630': ('4.0', ['cluster_9389_9689']), 'cluster_8985_9609': ('4.0', ['9837', '8794', '9058']), 'cluster_9043_9052': ('4.1', ['cluster_9563_9597', '9466', '9309', '10026', 'joinedS_1']), 'cluster_9389_9689': ('4.0', ['9884', '9561', 'cluster_8751_9630', '8996']), 'cluster_9563_9597': ('4.2', ['10026', '8794', 'joinedS_0', 'cluster_9043_9052']), 'joinedS_0': ('6.1', ['9058', 'cluster_9563_9597', '9466']), 'joinedS_1': ('3.2', ['9531', '9429'])} PHASES = {'4.0': ['GGgrrrGGgrrr', 'rrrGGgrrrGGg', 'rrGrrrrrGrrr', 'rrrrrGrrrrrG'], '4.1': ['GGgrrGGGrrr', 'rrGrrrrrrrr', 'rrrGgrrrGGg', 'rrrrGrrrrrG'], '4.2': ['GGGGrrrrrrrr', 'GGggrrGGggrr', 'rrrGGGGrrrrr', 'grrGGggrrGGg'], '2.0': ['GGrrr', 'ggGGG'], '2.1': ['GGGrrr', 'rrGGGg'], '2.2': ['Grr', 'gGG'], '2.3': ['GGGgrr', 'GrrrGG'], '2.4': ['GGGGrr', 'rrrrGG'], '2.5': ['Gg', 'rG'], '2.6': ['GGGg', 'rrrG'], '2.7': ['GGg', 'rrG'], '3.0': ['GGgrrrGGg', 'rrGrrrrrG', 'rrrGGGGrr'], '3.1': ['GgrrGG', 'rGrrrr', 'rrGGGr'], '3.2': ['GGGGrrrGG', 'rrrrGGGGr', 'GGGGrrGGr'], '5.0': ['GGGGgrrrrGGGggrrrr', 'grrrGrrrrgrrGGrrrr', 'GGGGGrrrrrrrrrrrrr', 'rrrrrrrrrGGGGGrrrr', 'rrrrrGGggrrrrrggGg'], '6.0': ['GGGgrrrGGGgrrr', 'rrrGrrrrrrGrrr', 'GGGGrrrrrrrrrr', 'rrrrrrrrrrGGGG', 'rrrrGGgrrrrGGg', 'rrrrrrGrrrrrrG'], '6.1': ['GGgrrGGGrrrGGGgrrrGGGg', 'rrGrrrrrrrrrrrGrrrrrrG', 'GGGrrrrrGGgrrrrGGgrrrr', 'GGGrrrrrrrGrrrrrrGrrrr', 'rrrGGGrrrrrrrrrrrrGGGG', 'rrrGGGrrrrrGGGgrrrGGGg']} class RealNetPhase(PhaseMap): def __init__(self): self.phases = {} for key, val in PHASES.items(): self.phases[key] = PhaseSet(val) class RealNetController: def __init__(self, node_names, nodes): self.name = 'greedy' self.node_names = node_names self.nodes = nodes def forward(self, obs): actions = [] for ob, node_name in zip(obs, self.node_names): actions.append(self.greedy(ob, node_name)) return actions def greedy(self, ob, node_name): # get the action space phases = PHASES[NODES[node_name][0]] flows = [] node = self.nodes[node_name] # get the green waves for phase in phases: wave = 0 visited_ilds = set() for i, signal in enumerate(phase): if signal == 'G': # find controlled lane lane = node.lanes_in[i] # ild = 'ild:' + lane ild = lane # if it has not been counted, add the wave if ild not in visited_ilds: j = node.ilds_in.index(ild) wave += ob[j] visited_ilds.add(ild) flows.append(wave) return np.argmax(np.array(flows)) class RealNetEnv(TrafficSimulator): def __init__(self, config, port=0, output_path='', is_record=False, record_stat=False): self.flow_rate = config.getint('flow_rate') super().__init__(config, output_path, is_record, record_stat, port=port) def _get_node_phase_id(self, node_name): return self.phase_node_map[node_name] def _init_neighbor_map(self): return dict([(key, val[1]) for key, val in NODES.items()]) def _init_map(self): self.neighbor_map = self._init_neighbor_map() self.phase_map = RealNetPhase() self.phase_node_map = dict([(key, val[0]) for key, val in NODES.items()]) self.state_names = STATE_NAMES def _init_sim_config(self, seed): # comment out to call build_file.py return gen_rou_file(self.data_path, self.flow_rate, seed=seed, thread=self.sim_thread) def plot_stat(self, rewards): self.state_stat['reward'] = rewards for name, data in self.state_stat.items(): fig = plt.figure(figsize=(8, 6)) plot_cdf(data) plt.ylabel(name) fig.savefig(self.output_path + self.name + '_' + name + '.png') def plot_cdf(X, c='b', label=None): sorted_data = np.sort(X) yvals = np.arange(len(sorted_data))/float(len(sorted_data)-1) plt.plot(sorted_data, yvals, color=c, label=label) if __name__ == '__main__': logging.basicConfig(format='%(asctime)s [%(levelname)s] %(message)s', level=logging.INFO) config = configparser.ConfigParser() config.read('./config/config_test_real.ini') base_dir = './output_result/' if not os.path.exists(base_dir): os.mkdir(base_dir) env = RealNetEnv(config['ENV_CONFIG'], 2, base_dir, is_record=True, record_stat=True) env.train_mode = False time.sleep(1) # ob = env.reset(gui=True) controller = RealNetController(env.node_names, env.nodes) env.init_test_seeds(list(range(10000, 100001, 10000))) rewards = [] for i in range(10): ob = env.reset(test_ind=i) global_rewards = [] cur_step = 0 while True: next_ob, reward, done, global_reward = env.step(controller.forward(ob)) # for node_name, node_ob in zip(env.node_names, next_ob): # logging.info('%d, %s:%r\n' % (cur_step, node_name, node_ob)) global_rewards.append(global_reward) rewards += list(reward) cur_step += 1 if done: break ob = next_ob env.terminate() logging.info('step: %d, avg reward: %.2f' % (cur_step, np.mean(global_rewards))) time.sleep(1) env.plot_stat(np.array(rewards)) env.terminate() time.sleep(2) env.collect_tripinfo() env.output_data()
software/glasgow/support/logging.py
electroniceel/Glasgow
1,014
12720879
<gh_stars>1000+ import operator from .lazy import * from .bits import bits __all__ = ["dump_hex", "dump_bin", "dump_seq", "dump_mapseq"] def dump_hex(data): def to_hex(data): try: data = memoryview(data) except TypeError: data = memoryview(bytes(data)) if dump_hex.limit is None or len(data) < dump_hex.limit: return data.hex() else: return "{}... ({} bytes total)".format( data[:dump_hex.limit].hex(), len(data)) return lazy(lambda: to_hex(data)) dump_hex.limit = 64 def dump_bin(data): def to_bin(data): data = bits(data) if dump_bin.limit is None or len(data) < dump_bin.limit: return str(data)[::-1] else: return "{}... ({} bits total)".format( str(data[:dump_bin.limit])[::-1], len(data)) return lazy(lambda: to_bin(data)) dump_bin.limit = 64 def dump_seq(joiner, data): def to_seq(data): try: data_length = len(data) except TypeError: try: data_length = data.__length_hint__() except AttributeError: data_length = None if dump_seq.limit is None or (data_length is not None and data_length < dump_seq.limit): return joiner.join(data) else: return "{}... ({} elements total)".format( joiner.join(elem for elem, _ in zip(data, range(dump_seq.limit))), data_length or "?") return lazy(lambda: to_seq(data)) dump_seq.limit = 16 def dump_mapseq(joiner, mapper, data): def to_mapseq(data): try: data_length = len(data) except TypeError: try: data_length = data.__length_hint__() except AttributeError: data_length = None if dump_mapseq.limit is None or (data_length is not None and data_length < dump_mapseq.limit): return joiner.join(map(mapper, data)) else: return "{}... ({} elements total)".format( joiner.join(mapper(elem) for elem, _ in zip(data, range(dump_mapseq.limit))), data_length or "?") return lazy(lambda: to_mapseq(data)) dump_mapseq.limit = 16
migrations/versions/1fe582999fec_.py
muellermartin/moa
238
12720891
"""empty message Revision ID: 1fe582999fec Revises: <PASSWORD> Create Date: 2019-11-19 11:12:38.940614 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '1fe582999fec' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('settings', 'conditional_posting_old') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('settings', sa.Column('conditional_posting_old', sa.BOOLEAN(), nullable=False)) # ### end Alembic commands ###
jcvi/utils/console.py
paradoxcell/jcvi
517
12720920
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # # console.py # utils # # Created by <NAME> on 01/09/21 # Copyright © 2021 <NAME>. All rights reserved. # """ We create a singleton console instance at the module level or as an attribute of your top-level object. """ from rich.console import Console console = Console() printf = console.print
django_cassandra_engine/base/validation.py
Saurabh-Singh-00/django-cassandra-engine
334
12720953
<filename>django_cassandra_engine/base/validation.py<gh_stars>100-1000 from django.db.backends.base.validation import BaseDatabaseValidation class CassandraDatabaseValidation(BaseDatabaseValidation): pass
test/cprofile_rust_cython_complex.py
utapyngo/simplification
113
12720960
<gh_stars>100-1000 # this tests numpy array simplification using RDP # 216804 --> 3061 points (98.5% reduction) # 50ms per VW operation on MBA Core i7 # Note that for the equivalent VW output we should reduce tolerance by an order of magnitude, then divide by 2 # e.g. 0.01 -> 0.0005 from simplification.cutil import simplify_coords import json import numpy as np with open("test/coords_complex.json", "r") as f: coords = np.array(json.load(f)) for x in range(50): simplify_coords(coords, 0.01)
samples/vsphere/logforwarding/log_forwarding.py
restapicoding/VMware-SDK
589
12720962
#!/usr/bin/env python """ * ******************************************************* * Copyright (c) VMware, Inc. 2017, 2018, 2018. All Rights Reserved. * SPDX-License-Identifier: MIT * ******************************************************* * * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """ __author__ = 'VMware, Inc.' __vcenter_version__ = '6.7+' from samples.vsphere.common import sample_cli from samples.vsphere.common import sample_util from samples.vsphere.common import vapiconnect from com.vmware.appliance.logging_client import Forwarding class LogForwarding(object): """ Demonstrates log forwarding API operations Prerequisites: - vCenter - Log host listening to syslog packets over any of the supported protocols UDP/TCP/TLS """ def __init__(self): self.loghost = None self.protocol = None self.port = None self.stub_config = None self.log_forwarding_client = None def setup(self): parser = sample_cli.build_arg_parser() parser.add_argument( '--loghost', required=True, action='store', help='The log host') parser.add_argument( '--port', required=True, action='store', help='The log host port number') parser.add_argument( '--protocol', required=True, action='store', help='The log host protocol (TCP/UDP/TLS)') args = sample_util.process_cli_args(parser.parse_args()) self.loghost = args.loghost self.protocol = args.protocol self.port = int(args.port) # Connect to vAPI services self.stub_config = vapiconnect.connect( host=args.server, user=args.username, pwd=<PASSWORD>, skip_verification=args.skipverification) self.log_forwarding_client = Forwarding(self.stub_config) def run(self): # Set log forwarding configuration self.set_log_forwarding() # Get log forwarding configuration self.get_log_forwarding() # Test log forwarding configuration self.test_log_forwarding() # Update log forwarding configuration self.update_log_forwarding() def set_log_forwarding(self): log_forwarding_config = [ Forwarding.Config( hostname=self.loghost, port=self.port, protocol=self.protocol) ] self.log_forwarding_client.set(log_forwarding_config) def get_log_forwarding(self): configs = self.log_forwarding_client.get() for cfg in configs: print('Loghost: {}, Port: {}, Protocol: {}'.format( cfg.hostname, cfg.port, cfg.protocol)) def test_log_forwarding(self): test_response = self.log_forwarding_client.test(True) print("\nLog forwarding test response:") for resp in test_response: print('Loghost: {}, State: {}, Message: {}'.format( resp.hostname, resp.state, resp.message.default_message if resp.message else None)) def update_log_forwarding(self): # Read log forwarding configuration log_forwarding_config = self.log_forwarding_client.get() # Delete the newly added configuration log_forwarding_config = list( filter(lambda cfg: cfg.hostname != self.loghost, log_forwarding_config)) # Apply the modified log forwarding configuration self.log_forwarding_client.set(log_forwarding_config) def main(): log_forwarding = LogForwarding() log_forwarding.setup() log_forwarding.run() if __name__ == '__main__': main()
bootstrap.py/txtmark.py
onesty-dev/txtmark
361
12720978
<gh_stars>100-1000 #!/usr/bin/env python # vim:fileencoding=utf-8 :et:ts=4:sts=4 # # Copyright 2015 <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import errno import urllib2 import sys import subprocess group_id = "com.github.rjeschke" artifact = "txtmark" jar_dest = os.path.join(os.path.expanduser("~"), ".txtmark_jar", "txtmark.jar") oss_snapshots = "https://oss.sonatype.org/content/repositories/snapshots" maven_repo1 = "https://repo1.maven.org/maven2" snap_url = oss_snapshots + "/" + group_id.replace(".", "/") + "/" + artifact rel_url = maven_repo1 + "/" + group_id.replace(".", "/") + "/" + artifact def mkdirs(path): """mkdir -p""" try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST or not os.path.isdir(path): raise def read_mvn_infos(url): response = urllib2.urlopen(url + "/maven-metadata.xml") latest = None version = None last_modified = 0 for line in response.read().split("\n"): line = line.strip() if re.match("^<latest>.+</latest>$", line): latest = line[8:-9] elif re.match("^<lastUpdated>.+</lastUpdated>$", line): last_modified = long(line[13:-14]) elif not latest and re.match("^<version>.+</version>$", line): version = line[9:-10] if latest: return [latest, last_modified] return [version, last_modified] def get_snapshot_version(url, version): response = urllib2.urlopen(url + "/maven-metadata.xml") timestamp = None build_number = 0 for line in response.read().split("\n"): line = line.strip() if not timestamp and re.match("^<timestamp>.*</timestamp>$", line): timestamp = line[11:-12] elif build_number == 0 and re.match("^<buildNumber>.*</buildNumber>$", line): build_number = int(line[13:-14]) return url + "/" + artifact + "-" + version[:version.find("-")] + "-" + timestamp + "-" + str(build_number) + ".jar" def download(is_snap, version): u = None if is_snap: u = get_snapshot_version(snap_url + "/" + version, version) else: u = rel_url + "/" + version + "/" + artifact + "-" + version + ".jar" response = urllib2.urlopen(u) with open(jar_dest, "wb") as fd: fd.write(response.read()) def fetch_artifact(force_update): if force_update or not os.path.exists(jar_dest): mkdirs(os.path.dirname(jar_dest)) rel = read_mvn_infos(rel_url) snp = read_mvn_infos(snap_url) if snp[1] > rel[1]: download(True, snp[0]) else: download(False, rel[0]) if __name__ == "__main__": force_update = False if len(sys.argv) > 1: force_update = sys.argv[1] == "-u" or sys.argv[1] == "--update" fetch_artifact(force_update) cmd = ["java", "-cp", jar_dest, "com.github.rjeschke.txtmark.cmd.Run"] cmd.extend(sys.argv[2 if force_update else 1:]) exit(subprocess.call(cmd))
examples/interfaces/multiple.py
dmytrostriletskyi/design-kit
107
12720989
<reponame>dmytrostriletskyi/design-kit from accessify import implements class HumanSoulInterface: def love(self, who, *args, **kwargs): pass class HumanBasicsInterface: @staticmethod def eat(food, *args, allergy=None, **kwargs): pass if __name__ == '__main__': @implements(HumanSoulInterface, HumanBasicsInterface) class Human: def love(self, who, *args, **kwargs): pass
scripts/coverage.py
lishoujun/pysimdjson
531
12720991
""" This is a backport and modernization of Cython's coverage.py support from the 3.* branch to the stable 0.29.* branch. Most importantly for us, it includes support for coverage.py's `exclude_lines` configuration option, allowing us to filter things like MemoryError from the coverage reports. It is standalone, and does not require Cython itself. The complete license for this file can be found at: https://github.com/cython/cython/blob/0.29.22/LICENSE.txt Changelog --------- 1.0.0 ^^^^^ - Support for excluded_lines - Fixed inconsistent quotations, PEP8'd. """ import io import re import os.path import sys from collections import defaultdict from coverage.plugin import CoveragePlugin, FileTracer, FileReporter from coverage.files import canonical_filename C_FILE_EXTENSIONS = {'.c', '.cpp', '.cc', '.cxx'} MODULE_FILE_EXTENSIONS = {'.py', '.pyx', '.pxd'} | C_FILE_EXTENSIONS def is_package_dir(dir_path): for filename in ('__init__.py', '__init__.pyc', '__init__.pyx', '__init__.pxd'): path = os.path.join(dir_path, filename) if path_exists(path): return 1 _match_file_encoding = re.compile(br'(\w*coding)[:=]\s*([-\w.]+)').search def detect_opened_file_encoding(f): # PEPs 263 and 3120 # Most of the time the first two lines fall in the first couple of hundred # chars, and this bulk read/split is much faster. lines = () start = b'' while len(lines) < 3: data = f.read(500) start += data lines = start.split(b'\n') if not data: break m = _match_file_encoding(lines[0]) if m and m.group(1) != b'c_string_encoding': return m.group(2).decode('iso8859-1') elif len(lines) > 1: m = _match_file_encoding(lines[1]) if m: return m.group(2).decode('iso8859-1') return 'UTF-8' def path_exists(path): # try on the filesystem first if os.path.exists(path): return True # figure out if a PEP 302 loader is around try: loader = __loader__ # XXX the code below assumes a 'zipimport.zipimporter' instance # XXX should be easy to generalize, but too lazy right now to write it archive_path = getattr(loader, 'archive', None) if archive_path: normpath = os.path.normpath(path) if normpath.startswith(archive_path): arcname = normpath[len(archive_path)+1:] try: loader.get_data(arcname) return True except IOError: return False except NameError: pass return False def find_root_package_dir(file_path): dir = os.path.dirname(file_path) if file_path == dir: return dir elif is_package_dir(dir): return find_root_package_dir(dir) else: return dir def open_source_file(source_filename, encoding=None, error_handling=None): stream = None try: if encoding is None: # Most of the time the encoding is not specified, so try hard to # open the file only once. f = io.open(source_filename, 'rb') encoding = detect_opened_file_encoding(f) f.seek(0) stream = io.TextIOWrapper( f, encoding=encoding, errors=error_handling ) else: stream = io.open( source_filename, encoding=encoding, errors=error_handling ) except OSError: if os.path.exists(source_filename): raise # File is there, but something went wrong reading from it. # Allow source files to be in zip files etc. try: loader = __loader__ if source_filename.startswith(loader.archive): stream = open_source_from_loader( loader, source_filename, encoding, error_handling) except (NameError, AttributeError): pass if stream is None: raise FileNotFoundError(source_filename) if stream.read(1) != u'\uFEFF': stream.seek(0) return stream def _find_c_source(base_path): file_exists = os.path.exists for ext in C_FILE_EXTENSIONS: file_name = base_path + ext if file_exists(file_name): return file_name return None def _find_dep_file_path(main_file, file_path, relative_path_search=False): abs_path = os.path.abspath(file_path) if not os.path.exists(abs_path) and (file_path.endswith('.pxi') or relative_path_search): # files are looked up relative to the main source file rel_file_path = os.path.join(os.path.dirname(main_file), file_path) if os.path.exists(rel_file_path): abs_path = os.path.abspath(rel_file_path) # search sys.path for external locations if a valid file hasn't been found if not os.path.exists(abs_path): for sys_path in sys.path: test_path = os.path.realpath(os.path.join(sys_path, file_path)) if os.path.exists(test_path): return canonical_filename(test_path) return canonical_filename(abs_path) class Plugin(CoveragePlugin): # map from traced file paths to absolute file paths _file_path_map = None # map from traced file paths to corresponding C files _c_files_map = None # map from parsed C files to their content _parsed_c_files = None # map from traced files to lines that are excluded from coverage _excluded_lines_map = None # list of regex patterns for lines to exclude _excluded_line_patterns = () def sys_info(self): return [] def configure(self, config): # Entry point for coverage "configurer". # Read the regular expressions from the coverage config that match # lines to be excluded from coverage. self._excluded_line_patterns = config.get_option( 'report:exclude_lines' ) def file_tracer(self, filename): """ Try to find a C source file for a file path found by the tracer. """ if filename.startswith('<') or filename.startswith('memory:'): return None c_file = py_file = None filename = canonical_filename(os.path.abspath(filename)) if self._c_files_map and filename in self._c_files_map: c_file = self._c_files_map[filename][0] if c_file is None: c_file, py_file = self._find_source_files(filename) if not c_file: return None # unknown file # parse all source file paths and lines from C file # to learn about all relevant source files right away (pyx/pxi/pxd) # FIXME: this might already be too late if the first executed line # is not from the main .pyx file but a file with a different # name than the .c file (which prevents us from finding the # .c file) _, code = self._read_source_lines(c_file, filename) if code is None: return None # no source found if self._file_path_map is None: self._file_path_map = {} return CythonModuleTracer( filename, py_file, c_file, self._c_files_map, self._file_path_map ) def file_reporter(self, filename): # TODO: let coverage.py handle .py files itself # ext = os.path.splitext(filename)[1].lower() # if ext == '.py': # from coverage.python import PythonFileReporter # return PythonFileReporter(filename) filename = canonical_filename(os.path.abspath(filename)) if self._c_files_map and filename in self._c_files_map: c_file, rel_file_path, code = self._c_files_map[filename] else: c_file, _ = self._find_source_files(filename) if not c_file: return None # unknown file rel_file_path, code = self._read_source_lines(c_file, filename) if code is None: return None # no source found return CythonModuleReporter( c_file, filename, rel_file_path, code, self._excluded_lines_map.get(rel_file_path, frozenset()) ) def _find_source_files(self, filename): basename, ext = os.path.splitext(filename) ext = ext.lower() if ext in MODULE_FILE_EXTENSIONS: pass elif ext == '.pyd': # Windows extension module platform_suffix = re.search( r'[.]cp[0-9]+-win[_a-z0-9]*$', basename, re.I ) if platform_suffix: basename = basename[:platform_suffix.start()] elif ext == '.so': # Linux/Unix/Mac extension module platform_suffix = re.search( r'[.](?:cpython|pypy)-[0-9]+[-_a-z0-9]*$', basename, re.I ) if platform_suffix: basename = basename[:platform_suffix.start()] elif ext == '.pxi': # if we get here, it means that the first traced line of a Cython # module was not in the main module but in an include file, so try # a little harder to find the main source file self._find_c_source_files(os.path.dirname(filename), filename) if filename in self._c_files_map: return self._c_files_map[filename][0], None else: # none of our business return None, None if ext in C_FILE_EXTENSIONS: c_file = filename else: c_file = _find_c_source(basename) if c_file is None: # a module "pkg/mod.so" can have a source file "pkg/pkg.mod.c" package_root = find_root_package_dir(filename) package_path = os.path.relpath( basename, package_root ).split(os.path.sep) if len(package_path) > 1: test_basepath = os.path.join( os.path.dirname(filename), '.'.join(package_path) ) c_file = _find_c_source(test_basepath) py_source_file = None if c_file: py_source_file = os.path.splitext(c_file)[0] + '.py' if not os.path.exists(py_source_file): py_source_file = None try: with open(c_file, 'rb') as f: if b'/* Generated by Cython ' not in f.read(30): return None, None # not a Cython file except (IOError, OSError): c_file = None return c_file, py_source_file def _find_c_source_files(self, dir_path, source_file): """ Desperately parse all C files in the directory or its package parents (not re-descending) to find the (included) source file in one of them. """ if not os.path.isdir(dir_path): return splitext = os.path.splitext for filename in os.listdir(dir_path): ext = splitext(filename)[1].lower() if ext in C_FILE_EXTENSIONS: self._read_source_lines( os.path.join(dir_path, filename), source_file ) if source_file in self._c_files_map: return # not found? then try one package up if is_package_dir(dir_path): self._find_c_source_files(os.path.dirname(dir_path), source_file) def _read_source_lines(self, c_file, sourcefile): """ Parse a Cython generated C/C++ source file and find the executable lines. Each executable line starts with a comment header that states source file and line number, as well as the surrounding range of source code lines. """ if self._parsed_c_files is None: self._parsed_c_files = {} if c_file in self._parsed_c_files: code_lines = self._parsed_c_files[c_file] else: code_lines = self._parse_cfile_lines(c_file) self._parsed_c_files[c_file] = code_lines if self._c_files_map is None: self._c_files_map = {} for filename, code in code_lines.items(): abs_path = _find_dep_file_path(c_file, filename, relative_path_search=True) self._c_files_map[abs_path] = (c_file, filename, code) if sourcefile not in self._c_files_map: return (None,) * 2 # e.g. shared library file return self._c_files_map[sourcefile][1:] def _parse_cfile_lines(self, c_file): """ Parse a C file and extract all source file lines that generated executable code. """ match_source_path_line = re.compile(r' */[*] +"(.*)":([0-9]+)$').match match_current_code_line = re.compile(r' *[*] (.*) # <<<<<<+$').match match_comment_end = re.compile(r' *[*]/$').match match_trace_line = re.compile(r' *__Pyx_TraceLine\(([0-9]+),').match not_executable = re.compile( r'\s*c(?:type)?def\s+' r'(?:(?:public|external)\s+)?' r'(?:struct|union|enum|class)' r'(\s+[^:]+|)\s*:' ).match line_is_excluded = None if self._excluded_line_patterns: line_is_excluded = re.compile( '|'.join([ '(?:{0})'.format(regex) for regex in self._excluded_line_patterns ]) ).search code_lines = defaultdict(dict) executable_lines = defaultdict(set) current_filename = None if self._excluded_lines_map is None: self._excluded_lines_map = defaultdict(set) with open(c_file) as lines: lines = iter(lines) for line in lines: match = match_source_path_line(line) if not match: if ('__Pyx_TraceLine(' in line and current_filename is not None): trace_line = match_trace_line(line) if trace_line: executable_lines[current_filename].add( int(trace_line.group(1)) ) continue filename, lineno = match.groups() current_filename = filename lineno = int(lineno) for comment_line in lines: match = match_current_code_line(comment_line) if match: code_line = match.group(1).rstrip() if not_executable(code_line): break if (line_is_excluded is not None and line_is_excluded(code_line)): self._excluded_lines_map[filename].add(lineno) break code_lines[filename][lineno] = code_line break elif match_comment_end(comment_line): # unexpected comment format - false positive? break # Remove lines that generated code but are not traceable. for filename, lines in code_lines.items(): dead_lines = set(lines).difference( executable_lines.get(filename, ()) ) for lineno in dead_lines: del lines[lineno] return code_lines class CythonModuleTracer(FileTracer): """ Find the Python/Cython source file for a Cython module. """ def __init__(self, module_file, py_file, c_file, c_files_map, file_path_map): super(CythonModuleTracer, self).__init__() self.module_file = module_file self.py_file = py_file self.c_file = c_file self._c_files_map = c_files_map self._file_path_map = file_path_map def has_dynamic_source_filename(self): return True def dynamic_source_filename(self, filename, frame): """ Determine source file path. Called by the function call tracer. """ source_file = frame.f_code.co_filename try: return self._file_path_map[source_file] except KeyError: pass abs_path = _find_dep_file_path(filename, source_file) if self.py_file and source_file[-3:].lower() == '.py': # always let coverage.py handle this case itself self._file_path_map[source_file] = self.py_file return self.py_file assert self._c_files_map is not None if abs_path not in self._c_files_map: self._c_files_map[abs_path] = (self.c_file, source_file, None) self._file_path_map[source_file] = abs_path return abs_path class CythonModuleReporter(FileReporter): """ Provide detailed trace information for one source file to coverage.py. """ def __init__(self, c_file, source_file, rel_file_path, code, excluded_lines): super(CythonModuleReporter, self).__init__(source_file) self.name = rel_file_path self.c_file = c_file self._code = code self._excluded_lines = excluded_lines def lines(self): """ Return set of line numbers that are possibly executable. """ return set(self._code) def excluded_lines(self): """ Return set of line numbers that are excluded from coverage. """ return self._excluded_lines def _iter_source_tokens(self): current_line = 1 for line_no, code_line in sorted(self._code.items()): while line_no > current_line: yield [] current_line += 1 yield [('txt', code_line)] current_line += 1 def source(self): """ Return the source code of the file as a string. """ if os.path.exists(self.filename): with open_source_file(self.filename) as f: return f.read() else: return '\n'.join( (tokens[0][1] if tokens else '') for tokens in self._iter_source_tokens()) def source_token_lines(self): """ Iterate over the source code tokens. """ if os.path.exists(self.filename): with open_source_file(self.filename) as f: for line in f: yield [('txt', line.rstrip('\n'))] else: for line in self._iter_source_tokens(): yield [('txt', line)] def coverage_init(reg, options): plugin = Plugin() reg.add_configurer(plugin) reg.add_file_tracer(plugin)
tests/test_schema.py
center-for-threat-informed-defense/attack-flow
165
12721009
<reponame>center-for-threat-informed-defense/attack-flow import json from pathlib import Path from tempfile import NamedTemporaryFile from textwrap import dedent import pytest from attack_flow.schema import ( anchor, generate_html, get_properties, html_name, insert_html, InvalidRelationshipsError, SchemaProperty, validate_docs, validate_rules, ) PROJECT_ROOT = Path(__file__).resolve().parent.parent SCHEMA_PATH = PROJECT_ROOT / "schema" / "attack-flow-2022-01-05-draft.json" def test_validate_docs(): doc1_json = { "flow": { "type": "attack-flow", "id": "https://flow-v1/doc1", "name": "Test Attack Flow", "created": "2021-12-17T08:31:22.320133-05:00" }, "actions": [], "assets": [], "relationships": [], "object_properties": [], "data_properties": [], } doc2_json = { # Missing required name field: "flow": { "type": "attack-flow", "id": "https://flow-v1/doc1", "created": "bogus date", }, "actions": [], "assets": [], "relationships": [], "object_properties": [], "data_properties": [], } with SCHEMA_PATH.open() as schema_file, \ NamedTemporaryFile('w+') as doc1_file, \ NamedTemporaryFile('w+') as doc2_file: json.dump(doc1_json, doc1_file) json.dump(doc2_json, doc2_file) schema_file.seek(0) doc1_file.seek(0) doc2_file.seek(0) results_one_file = validate_docs(schema_file.name, doc1_file.name) results_two_files = validate_docs(schema_file.name, [doc1_file.name, doc2_file.name]) assert results_one_file[0] is None assert results_two_files[0] is None assert isinstance(results_two_files[1], Exception) def test_schema_property_string(): sp = SchemaProperty('test-prop', False, { 'description': 'My description :>', 'type': 'string', }) assert sp.name == 'test-prop' assert sp.type == 'string' assert not sp.required assert sp.html_type == 'string' assert sp.html_description == 'My description :&gt;' def test_schema_property_uuid(): sp = SchemaProperty('test-uuid', True, { 'description': 'My description :>', 'type': 'string', 'format': 'uuid', }) assert sp.name == 'test-uuid' assert sp.type == 'string' assert sp.required assert sp.html_type == 'uuid' assert sp.html_description == 'My description :&gt;' def test_schema_property_datetime(): sp = SchemaProperty('test-datetime', True, { 'description': 'My description', 'type': 'string', 'format': 'date-time', }) assert sp.name == 'test-datetime' assert sp.type == 'string' assert sp.required assert sp.html_type == 'date-time' assert sp.html_description == \ 'My description (RFC-3339 format, e.g. YYYY-MM-DDThh:mm:ssZ)' def test_schema_property_array_of_string(): sp = SchemaProperty('test-array', True, { 'description': 'My description', 'type': 'array', 'items': {'type': 'string'} }) assert sp.name == 'test-array' assert sp.type == 'array' assert sp.subtype == 'string' assert sp.required assert sp.html_type == 'array of string' assert sp.html_description == 'My description' def test_schema_property_array_of_object(): sp = SchemaProperty('test-array2', True, { 'description': 'My description', 'type': 'array', 'items': {'type': 'object'} }) assert sp.name == 'test-array2' assert sp.type == 'array' assert sp.subtype == 'object' assert sp.required assert sp.html_type == 'array of <a href="#testarray2">test-array2</a>' assert sp.html_description == 'My description' def test_schema_property_object(): sp = SchemaProperty('test-object', True, { 'description': 'My description', 'type': 'object', 'properties': {'foo': 'string'} }) assert sp.name == 'test-object' assert sp.type == 'object' assert sp.subtype == '' assert sp.required assert sp.html_type == '<a href="#testobject">test-object</a> object' assert sp.html_description == 'My description' def test_schema_property_enum(): sp = SchemaProperty('test-enum', True, { 'description': 'My description', 'type': 'string', 'enum': ['foo', 'bar'] }) assert sp.name == 'test-enum' assert sp.type == 'string' assert sp.required assert sp.html_type == 'enum' assert sp.html_description == 'My description (Enum values: "foo", "bar")' def test_get_properties(): schema = { 'type': 'object', 'properties': { 'name': { 'description': 'My name', 'type': 'string' }, 'hobbies': { 'description': 'My hobbies', 'type': 'array', 'items': {'type': 'string'} }, 'cars': { 'description': 'My cars', 'type': 'array', 'items': { 'type': 'object', 'properties': { 'make': { 'description': 'The auto manufacturer', 'type': 'string', }, 'model': { 'description': 'The model name', 'type': 'string', }, } } }, 'address': { 'description': 'My address', 'type': 'object', 'properties': { 'city': { 'description': 'My city', 'type': 'string' }, 'state': { 'description': 'My state', 'type': 'string' } } } } } props = get_properties(schema, node='root') assert 'root' in props root = props['root'] assert root['name'].type == 'string' assert 'address' in props address = props['address'] assert address['city'].type == 'string' def test_generate_html(): actual_html = generate_html({ '__root__': { 'prop1': SchemaProperty('prop1', False, { 'description': 'prop1 description', 'type': 'string', }), 'prop2': SchemaProperty('prop2', True, { 'description': 'prop2 description', 'type': 'string', }) }, 'subtype': { 'prop3': SchemaProperty('prop3', True, { 'description': 'prop3 description', 'type': 'string' }) } }) expected_html = [ '<h3 id="TopLevel">Top Level Fields</h3>', '<table>', ' <tr>', ' <th>Name</th>', ' <th>Type</th>', ' <th>Required</th>', ' <th>Description</th>', ' </tr>', ' <tr>', ' <td>prop1</td>', ' <td>string</td>', ' <td>No</td>', ' <td>prop1 description</td>', ' </tr>', ' <tr>', ' <td>prop2</td>', ' <td>string</td>', ' <td>Yes</td>', ' <td>prop2 description</td>', ' </tr>', '</table>', '', '<h3 id="subtype">Subtype Fields</h3>', '<table>', ' <tr>', ' <th>Name</th>', ' <th>Type</th>', ' <th>Required</th>', ' <th>Description</th>', ' </tr>', ' <tr>', ' <td>prop3</td>', ' <td>string</td>', ' <td>Yes</td>', ' <td>prop3 description</td>', ' </tr>', '</table>', '', ] assert actual_html == expected_html def test_anchor(): assert anchor('? ASDF; 123 ') == 'ASDF123' def test_insert_html(): old_doc = iter([ 'old text 1', 'old text 2', '<!--JSON_SCHEMA-->', 'old html 1', 'old html 2', '<!--/JSON_SCHEMA-->', 'old text 3', 'old text 4', ]) html = [ 'new html 1', 'new html 2', ] actual = iter(insert_html(old_doc, html).splitlines()) assert next(actual) == 'old text 1' assert next(actual) == 'old text 2' assert next(actual).startswith('<!--JSON_SCHEMA') assert next(actual) == 'new html 1' assert next(actual) == 'new html 2' assert next(actual) == '<!--/JSON_SCHEMA-->' assert next(actual) == 'old text 3' assert next(actual) == 'old text 4' def test_insert_html_no_start_tag(): old_doc = iter([ 'old text 1', 'old text 2', '<!--/JSON_SCHEMA-->', 'old text 3', 'old text 4', ]) with pytest.raises(Exception): insert_html(old_doc, []).splitlines() def test_insert_html_no_end_tag(): old_doc = iter([ 'old text 1', 'old text 2', '<!--JSON_SCHEMA-->', 'old text 3', 'old text 4', ]) with pytest.raises(Exception): insert_html(old_doc, []).splitlines() def test_validate_rules(): flow = { "flow": { "type": "attack-flow", "id": "https://flow-v1", "name": "Test Attack Flow", "created": "2021-12-17T08:31:22.320133-05:00" }, "actions": [ { "id": "action1", "name": "action-one", }, ], "assets": [ {"id": "asset1"}, ], "relationships": [ { "source": "action1", "target": "asset1", }, { "source": "asset1", "target": "action2", }, { "source": "action2", "target": "asset2", }, ], } with pytest.raises(InvalidRelationshipsError) as exc_info: validate_rules(flow) exc = exc_info.value assert str(exc) == dedent("""\ - Relationship target ID "action2" does not exist. - Relationship source ID "action2" does not exist. - Relationship target ID "asset2" does not exist.""") def test_html_name(): assert html_name("foo") == "Foo" assert html_name("foo_bar") == "Foo Bar"
networkx/classes/tests/test_graph_historical.py
jebogaert/networkx
10,024
12721033
"""Original NetworkX graph tests""" import networkx import networkx as nx from .historical_tests import HistoricalTests class TestGraphHistorical(HistoricalTests): @classmethod def setup_class(cls): HistoricalTests.setup_class() cls.G = nx.Graph
turbo/register.py
wecatch/app-turbo
157
12721051
<filename>turbo/register.py<gh_stars>100-1000 from __future__ import absolute_import, division, print_function, with_statement import os from turbo.conf import app_config from turbo.util import get_base_dir, import_object def _install_app(package_space): for app in getattr(import_object('apps.settings', package_space), 'INSTALLED_APPS'): import_object('.'.join(['apps', app]), package_space) def register_app(app_name, app_setting, web_application_setting, mainfile, package_space): """insert current project root path into sys path """ from turbo import log app_config.app_name = app_name app_config.app_setting = app_setting app_config.project_name = os.path.basename(get_base_dir(mainfile, 2)) app_config.web_application_setting.update(web_application_setting) if app_setting.get('session_config'): app_config.session_config.update(app_setting['session_config']) log.getLogger(**app_setting.log) _install_app(package_space) def register_url(url, handler, name=None, kwargs=None): """insert url into tornado application handlers group :arg str url: url :handler object handler: url mapping handler :name reverse url name :kwargs dict tornado handler initlize args """ if name is None and kwargs is None: app_config.urls.append((url, handler)) return if name is None: app_config.urls.append((url, handler, kwargs)) return app_config.urls.append((url, handler, kwargs, name)) def register_group_urls(prefix, urls): for item in urls: url, handler = item[0:2] register_url(prefix + url, handler, *item[2:])
test/run/t143.py
timmartin/skulpt
2,671
12721059
print repr((1,2,3)) print repr([1,2,3]) print repr({1:'ok', 2:'stuff'}) print repr("weewaa")
tests/links_tests/connection_tests/test_graph_mlp.py
pfnet/chainerchem
184
12721087
<filename>tests/links_tests/connection_tests/test_graph_mlp.py from chainer import cuda from chainer import gradient_check import numpy import pytest from chainer_chemistry.links.connection.graph_mlp import GraphMLP # NOQA in_size = 3 atom_size = 5 out_size = 4 channels = [16, out_size] batch_size = 2 @pytest.fixture def model(): l = GraphMLP(channels, in_channels=in_size) l.cleargrads() return l @pytest.fixture def data(): x_data = numpy.random.uniform( -1, 1, (batch_size, atom_size, in_size)).astype(numpy.float32) y_grad = numpy.random.uniform( -1, 1, (batch_size, atom_size, out_size)).astype(numpy.float32) return x_data, y_grad def test_forward_cpu(model, data): # only testing shape for now... x_data = data[0] y_actual = model(x_data) assert y_actual.shape == (batch_size, atom_size, out_size) assert len(model.layers) == len(channels) @pytest.mark.gpu def test_forward_gpu(model, data): x_data = cuda.to_gpu(data[0]) model.to_gpu() y_actual = model(x_data) assert y_actual.shape == (batch_size, atom_size, out_size) assert len(model.layers) == len(channels) def test_backward_cpu(model, data): x_data, y_grad = data gradient_check.check_backward(model, x_data, y_grad, list(model.params()), atol=1e-3, rtol=1e-3) @pytest.mark.gpu def test_backward_gpu(model, data): x_data, y_grad = [cuda.to_gpu(d) for d in data] model.to_gpu() gradient_check.check_backward(model, x_data, y_grad, list(model.params()), atol=1e-3, rtol=1e-3) if __name__ == '__main__': pytest.main([__file__, '-v', '-s'])
scripts/mvmc_driver.py
dumpmemory/ners
156
12721090
""" Script for running over all instances of MVMC. Since running the script can take a long time, it is possible to parallelize across different machines using the --index and --skip arguments. Examples: python scripts/mvmc_driver.py --mvmc_path data/mvmc --index 0 --skip 1 """ import argparse import os import subprocess from tqdm.auto import tqdm def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--mvmc_path", type=str, default="data/mvmc") parser.add_argument( "--index", default=0, type=int, help="Initial index to start at." ) parser.add_argument( "--skip", default=1, type=int, help="Number of instances to skip at a time." ) parser.add_argument( "--force", action="store_true", help="Re-run even if output exists." ) return parser def main(args): instance_ids = sorted(os.listdir(args.mvmc_path)) base_cmd = [ "python", "main.py", "--mvmc", "--symmetrize", "--export-mesh", "--predict-illumination", ] if args.force: base_cmd.append("--force") for instance_id in tqdm(instance_ids[args.index :: args.skip]): cmd = base_cmd + [ "--instance-dir", os.path.join(args.mvmc_path, instance_id), ] print("Running:", " ".join(cmd)) subprocess.call(cmd) if __name__ == "__main__": args = get_parser().parse_args() main(args)
sdk/python/pulumi_gcp/logging/billing_account_exclusion.py
sisisin/pulumi-gcp
121
12721135
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['BillingAccountExclusionArgs', 'BillingAccountExclusion'] @pulumi.input_type class BillingAccountExclusionArgs: def __init__(__self__, *, billing_account: pulumi.Input[str], filter: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, disabled: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a BillingAccountExclusion resource. :param pulumi.Input[str] billing_account: The billing account to create the exclusion for. :param pulumi.Input[str] filter: The filter to apply when excluding logs. Only log entries that match the filter are excluded. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced-filters) for information on how to write a filter. :param pulumi.Input[str] description: A human-readable description. :param pulumi.Input[bool] disabled: Whether this exclusion rule should be disabled or not. This defaults to false. :param pulumi.Input[str] name: The name of the logging exclusion. """ pulumi.set(__self__, "billing_account", billing_account) pulumi.set(__self__, "filter", filter) if description is not None: pulumi.set(__self__, "description", description) if disabled is not None: pulumi.set(__self__, "disabled", disabled) if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter(name="billingAccount") def billing_account(self) -> pulumi.Input[str]: """ The billing account to create the exclusion for. """ return pulumi.get(self, "billing_account") @billing_account.setter def billing_account(self, value: pulumi.Input[str]): pulumi.set(self, "billing_account", value) @property @pulumi.getter def filter(self) -> pulumi.Input[str]: """ The filter to apply when excluding logs. Only log entries that match the filter are excluded. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced-filters) for information on how to write a filter. """ return pulumi.get(self, "filter") @filter.setter def filter(self, value: pulumi.Input[str]): pulumi.set(self, "filter", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A human-readable description. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def disabled(self) -> Optional[pulumi.Input[bool]]: """ Whether this exclusion rule should be disabled or not. This defaults to false. """ return pulumi.get(self, "disabled") @disabled.setter def disabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "disabled", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the logging exclusion. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @pulumi.input_type class _BillingAccountExclusionState: def __init__(__self__, *, billing_account: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, disabled: Optional[pulumi.Input[bool]] = None, filter: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering BillingAccountExclusion resources. :param pulumi.Input[str] billing_account: The billing account to create the exclusion for. :param pulumi.Input[str] description: A human-readable description. :param pulumi.Input[bool] disabled: Whether this exclusion rule should be disabled or not. This defaults to false. :param pulumi.Input[str] filter: The filter to apply when excluding logs. Only log entries that match the filter are excluded. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced-filters) for information on how to write a filter. :param pulumi.Input[str] name: The name of the logging exclusion. """ if billing_account is not None: pulumi.set(__self__, "billing_account", billing_account) if description is not None: pulumi.set(__self__, "description", description) if disabled is not None: pulumi.set(__self__, "disabled", disabled) if filter is not None: pulumi.set(__self__, "filter", filter) if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter(name="billingAccount") def billing_account(self) -> Optional[pulumi.Input[str]]: """ The billing account to create the exclusion for. """ return pulumi.get(self, "billing_account") @billing_account.setter def billing_account(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "billing_account", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A human-readable description. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def disabled(self) -> Optional[pulumi.Input[bool]]: """ Whether this exclusion rule should be disabled or not. This defaults to false. """ return pulumi.get(self, "disabled") @disabled.setter def disabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "disabled", value) @property @pulumi.getter def filter(self) -> Optional[pulumi.Input[str]]: """ The filter to apply when excluding logs. Only log entries that match the filter are excluded. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced-filters) for information on how to write a filter. """ return pulumi.get(self, "filter") @filter.setter def filter(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "filter", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the logging exclusion. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) class BillingAccountExclusion(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, billing_account: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, disabled: Optional[pulumi.Input[bool]] = None, filter: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, __props__=None): """ ## Import Billing account logging exclusions can be imported using their URI, e.g. ```sh $ pulumi import gcp:logging/billingAccountExclusion:BillingAccountExclusion my_exclusion billingAccounts/my-billing_account/exclusions/my-exclusion ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] billing_account: The billing account to create the exclusion for. :param pulumi.Input[str] description: A human-readable description. :param pulumi.Input[bool] disabled: Whether this exclusion rule should be disabled or not. This defaults to false. :param pulumi.Input[str] filter: The filter to apply when excluding logs. Only log entries that match the filter are excluded. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced-filters) for information on how to write a filter. :param pulumi.Input[str] name: The name of the logging exclusion. """ ... @overload def __init__(__self__, resource_name: str, args: BillingAccountExclusionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ ## Import Billing account logging exclusions can be imported using their URI, e.g. ```sh $ pulumi import gcp:logging/billingAccountExclusion:BillingAccountExclusion my_exclusion billingAccounts/my-billing_account/exclusions/my-exclusion ``` :param str resource_name: The name of the resource. :param BillingAccountExclusionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(BillingAccountExclusionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, billing_account: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, disabled: Optional[pulumi.Input[bool]] = None, filter: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = BillingAccountExclusionArgs.__new__(BillingAccountExclusionArgs) if billing_account is None and not opts.urn: raise TypeError("Missing required property 'billing_account'") __props__.__dict__["billing_account"] = billing_account __props__.__dict__["description"] = description __props__.__dict__["disabled"] = disabled if filter is None and not opts.urn: raise TypeError("Missing required property 'filter'") __props__.__dict__["filter"] = filter __props__.__dict__["name"] = name super(BillingAccountExclusion, __self__).__init__( 'gcp:logging/billingAccountExclusion:BillingAccountExclusion', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, billing_account: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, disabled: Optional[pulumi.Input[bool]] = None, filter: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None) -> 'BillingAccountExclusion': """ Get an existing BillingAccountExclusion resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] billing_account: The billing account to create the exclusion for. :param pulumi.Input[str] description: A human-readable description. :param pulumi.Input[bool] disabled: Whether this exclusion rule should be disabled or not. This defaults to false. :param pulumi.Input[str] filter: The filter to apply when excluding logs. Only log entries that match the filter are excluded. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced-filters) for information on how to write a filter. :param pulumi.Input[str] name: The name of the logging exclusion. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _BillingAccountExclusionState.__new__(_BillingAccountExclusionState) __props__.__dict__["billing_account"] = billing_account __props__.__dict__["description"] = description __props__.__dict__["disabled"] = disabled __props__.__dict__["filter"] = filter __props__.__dict__["name"] = name return BillingAccountExclusion(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="billingAccount") def billing_account(self) -> pulumi.Output[str]: """ The billing account to create the exclusion for. """ return pulumi.get(self, "billing_account") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ A human-readable description. """ return pulumi.get(self, "description") @property @pulumi.getter def disabled(self) -> pulumi.Output[Optional[bool]]: """ Whether this exclusion rule should be disabled or not. This defaults to false. """ return pulumi.get(self, "disabled") @property @pulumi.getter def filter(self) -> pulumi.Output[str]: """ The filter to apply when excluding logs. Only log entries that match the filter are excluded. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced-filters) for information on how to write a filter. """ return pulumi.get(self, "filter") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the logging exclusion. """ return pulumi.get(self, "name")
src/genie/libs/parser/iosxe/tests/ShowEnvTemperature/cli/equal/golden_output_expected.py
balmasea/genieparser
204
12721233
<reponame>balmasea/genieparser expected_output = { 'switch': { "1": { 'system_temperature_state': 'ok', } } }
tests/test_status.py
johnashu/dataplicity-lomond
225
12721234
from lomond.status import Status def test_constants(): expected_constants = { 'BAD_DATA', 'DATA_NOT_UNDERSTOOD', 'EXTENSION_FAILED', 'GOING_AWAY', 'MESSAGE_TOO_LARGE', 'NORMAL', 'POLICY_VIOLATION', 'PROTOCOL_ERROR', 'UNEXPECTED_CONDITION' } assert expected_constants == set(filter( lambda constant: constant.isupper(), dir(Status) ))
plenum/test/view_change/test_master_primary_different_from_previous.py
jandayanan/indy-plenum
148
12721362
import types import pytest from plenum.test.helper import checkViewNoForNodes, \ sdk_send_random_and_check, countDiscarded from plenum.test.malicious_behaviors_node import slow_primary from plenum.test.test_node import getPrimaryReplica, ensureElectionsDone from plenum.test.view_change.helper import provoke_and_wait_for_view_change, ensure_view_change from stp_core.common.log import getlogger logger = getlogger() def test_master_primary_different_from_previous(txnPoolNodeSet, looper, sdk_pool_handle, sdk_wallet_client): """ After a view change, primary must be different from previous primary for master instance, it does not matter for other instance. The primary is benign and does not vote for itself. """ pr = slow_primary(txnPoolNodeSet, 0, delay=10) old_pr_node_name = pr.node.name # View change happens ensure_view_change(looper, txnPoolNodeSet) logger.debug("VIEW HAS BEEN CHANGED!") # Elections done ensureElectionsDone(looper=looper, nodes=txnPoolNodeSet) # New primary is not same as old primary assert getPrimaryReplica(txnPoolNodeSet, 0).node.name != old_pr_node_name pr.outBoxTestStasher.resetDelays() # The new primary can still process requests sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, 5)
moto/polly/resources.py
jonnangle/moto-1
5,460
12721427
<filename>moto/polly/resources.py # -*- coding: utf-8 -*- VOICE_DATA = [ { "Id": "Joanna", "LanguageCode": "en-US", "LanguageName": "US English", "Gender": "Female", "Name": "Joanna", }, { "Id": "Mizuki", "LanguageCode": "ja-JP", "LanguageName": "Japanese", "Gender": "Female", "Name": "Mizuki", }, { "Id": "Filiz", "LanguageCode": "tr-TR", "LanguageName": "Turkish", "Gender": "Female", "Name": "Filiz", }, { "Id": "Astrid", "LanguageCode": "sv-SE", "LanguageName": "Swedish", "Gender": "Female", "Name": "Astrid", }, { "Id": "Tatyana", "LanguageCode": "ru-RU", "LanguageName": "Russian", "Gender": "Female", "Name": "Tatyana", }, { "Id": "Maxim", "LanguageCode": "ru-RU", "LanguageName": "Russian", "Gender": "Male", "Name": "Maxim", }, { "Id": "Carmen", "LanguageCode": "ro-RO", "LanguageName": "Romanian", "Gender": "Female", "Name": "Carmen", }, { "Id": "Ines", "LanguageCode": "pt-PT", "LanguageName": "Portuguese", "Gender": "Female", "Name": "Inês", }, { "Id": "Cristiano", "LanguageCode": "pt-PT", "LanguageName": "Portuguese", "Gender": "Male", "Name": "Cristiano", }, { "Id": "Vitoria", "LanguageCode": "pt-BR", "LanguageName": "Brazilian Portuguese", "Gender": "Female", "Name": "Vitória", }, { "Id": "Ricardo", "LanguageCode": "pt-BR", "LanguageName": "Brazilian Portuguese", "Gender": "Male", "Name": "Ricardo", }, { "Id": "Maja", "LanguageCode": "pl-PL", "LanguageName": "Polish", "Gender": "Female", "Name": "Maja", }, { "Id": "Jan", "LanguageCode": "pl-PL", "LanguageName": "Polish", "Gender": "Male", "Name": "Jan", }, { "Id": "Ewa", "LanguageCode": "pl-PL", "LanguageName": "Polish", "Gender": "Female", "Name": "Ewa", }, { "Id": "Ruben", "LanguageCode": "nl-NL", "LanguageName": "Dutch", "Gender": "Male", "Name": "Ruben", }, { "Id": "Lotte", "LanguageCode": "nl-NL", "LanguageName": "Dutch", "Gender": "Female", "Name": "Lotte", }, { "Id": "Liv", "LanguageCode": "nb-NO", "LanguageName": "Norwegian", "Gender": "Female", "Name": "Liv", }, { "Id": "Giorgio", "LanguageCode": "it-IT", "LanguageName": "Italian", "Gender": "Male", "Name": "Giorgio", }, { "Id": "Carla", "LanguageCode": "it-IT", "LanguageName": "Italian", "Gender": "Female", "Name": "Carla", }, { "Id": "Karl", "LanguageCode": "is-IS", "LanguageName": "Icelandic", "Gender": "Male", "Name": "Karl", }, { "Id": "Dora", "LanguageCode": "is-IS", "LanguageName": "Icelandic", "Gender": "Female", "Name": "Dóra", }, { "Id": "Mathieu", "LanguageCode": "fr-FR", "LanguageName": "French", "Gender": "Male", "Name": "Mathieu", }, { "Id": "Celine", "LanguageCode": "fr-FR", "LanguageName": "French", "Gender": "Female", "Name": "Céline", }, { "Id": "Chantal", "LanguageCode": "fr-CA", "LanguageName": "Canadian French", "Gender": "Female", "Name": "Chantal", }, { "Id": "Penelope", "LanguageCode": "es-US", "LanguageName": "US Spanish", "Gender": "Female", "Name": "Penélope", }, { "Id": "Miguel", "LanguageCode": "es-US", "LanguageName": "US Spanish", "Gender": "Male", "Name": "Miguel", }, { "Id": "Enrique", "LanguageCode": "es-ES", "LanguageName": "Castilian Spanish", "Gender": "Male", "Name": "Enrique", }, { "Id": "Conchita", "LanguageCode": "es-ES", "LanguageName": "Castilian Spanish", "Gender": "Female", "Name": "Conchita", }, { "Id": "Geraint", "LanguageCode": "en-GB-WLS", "LanguageName": "Welsh English", "Gender": "Male", "Name": "Geraint", }, { "Id": "Salli", "LanguageCode": "en-US", "LanguageName": "US English", "Gender": "Female", "Name": "Salli", }, { "Id": "Kimberly", "LanguageCode": "en-US", "LanguageName": "US English", "Gender": "Female", "Name": "Kimberly", }, { "Id": "Kendra", "LanguageCode": "en-US", "LanguageName": "US English", "Gender": "Female", "Name": "Kendra", }, { "Id": "Justin", "LanguageCode": "en-US", "LanguageName": "US English", "Gender": "Male", "Name": "Justin", }, { "Id": "Joey", "LanguageCode": "en-US", "LanguageName": "US English", "Gender": "Male", "Name": "Joey", }, { "Id": "Ivy", "LanguageCode": "en-US", "LanguageName": "US English", "Gender": "Female", "Name": "Ivy", }, { "Id": "Raveena", "LanguageCode": "en-IN", "LanguageName": "Indian English", "Gender": "Female", "Name": "Raveena", }, { "Id": "Emma", "LanguageCode": "en-GB", "LanguageName": "British English", "Gender": "Female", "Name": "Emma", }, { "Id": "Brian", "LanguageCode": "en-GB", "LanguageName": "British English", "Gender": "Male", "Name": "Brian", }, { "Id": "Amy", "LanguageCode": "en-GB", "LanguageName": "British English", "Gender": "Female", "Name": "Amy", }, { "Id": "Russell", "LanguageCode": "en-AU", "LanguageName": "Australian English", "Gender": "Male", "Name": "Russell", }, { "Id": "Nicole", "LanguageCode": "en-AU", "LanguageName": "Australian English", "Gender": "Female", "Name": "Nicole", }, { "Id": "Vicki", "LanguageCode": "de-DE", "LanguageName": "German", "Gender": "Female", "Name": "Vicki", }, { "Id": "Marlene", "LanguageCode": "de-DE", "LanguageName": "German", "Gender": "Female", "Name": "Marlene", }, { "Id": "Hans", "LanguageCode": "de-DE", "LanguageName": "German", "Gender": "Male", "Name": "Hans", }, { "Id": "Naja", "LanguageCode": "da-DK", "LanguageName": "Danish", "Gender": "Female", "Name": "Naja", }, { "Id": "Mads", "LanguageCode": "da-DK", "LanguageName": "Danish", "Gender": "Male", "Name": "Mads", }, { "Id": "Gwyneth", "LanguageCode": "cy-GB", "LanguageName": "Welsh", "Gender": "Female", "Name": "Gwyneth", }, { "Id": "Jacek", "LanguageCode": "pl-PL", "LanguageName": "Polish", "Gender": "Male", "Name": "Jacek", }, ] # {...} is also shorthand set syntax LANGUAGE_CODES = { "cy-GB", "da-DK", "de-DE", "en-AU", "en-GB", "en-GB-WLS", "en-IN", "en-US", "es-ES", "es-US", "fr-CA", "fr-FR", "is-IS", "it-IT", "ja-JP", "nb-NO", "nl-NL", "pl-PL", "pt-BR", "pt-PT", "ro-RO", "ru-RU", "sv-SE", "tr-TR", } VOICE_IDS = { "Geraint", "Gwyneth", "Mads", "Naja", "Hans", "Marlene", "Nicole", "Russell", "Amy", "Brian", "Emma", "Raveena", "Ivy", "Joanna", "Joey", "Justin", "Kendra", "Kimberly", "Salli", "Conchita", "Enrique", "Miguel", "Penelope", "Chantal", "Celine", "Mathieu", "Dora", "Karl", "Carla", "Giorgio", "Mizuki", "Liv", "Lotte", "Ruben", "Ewa", "Jacek", "Jan", "Maja", "Ricardo", "Vitoria", "Cristiano", "Ines", "Carmen", "Maxim", "Tatyana", "Astrid", "Filiz", }
grin-py/services/NEED_dosWatcher.py
hunternsk/grin-pool
130
12721458
#!/usr/bin/python # Copyright 2018 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Watches both the pool and grin logs and tries to identify cases of denial of service, # abuse, or badly misbehaving workers. Add them to mysql banned_workers table. # Maybe include a code for the reason so bans can be lifted after appropriate time? # # Examples: Too many rapid connect/disconnects without shares submitted # Idle disconnect too long too many times # Submitting too many bad shares # Etc.... import sys import subprocess import re import glob xxx XXX THIS IS NOT WRITTEN YET
corporate/migrations/0014_customerplan_end_date.py
dumpmemory/zulip
17,004
12721480
# Generated by Django 3.2.6 on 2021-09-17 10:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("corporate", "0013_alter_zulipsponsorshiprequest_org_website"), ] operations = [ migrations.AddField( model_name="customerplan", name="end_date", field=models.DateTimeField(null=True), ), ]
src/zapv2/ajaxSpider.py
thc202/zap-api-python
146
12721491
<filename>src/zapv2/ajaxSpider.py # Zed Attack Proxy (ZAP) and its related class files. # # ZAP is an HTTP/HTTPS proxy for assessing web application security. # # Copyright 2017 the ZAP development team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file was automatically generated. """ import six class ajaxSpider(object): def __init__(self, zap): self.zap = zap @property def allowed_resources(self): """ Gets the allowed resources. The allowed resources are always fetched even if out of scope, allowing to include necessary resources (e.g. scripts) from 3rd-parties. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/allowedResources/'))) @property def status(self): """ Gets the current status of the crawler. Actual values are Stopped and Running. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/status/'))) def results(self, start=None, count=None): """ Gets the current results of the crawler. This component is optional and therefore the API will only work if it is installed """ params = {} if start is not None: params['start'] = start if count is not None: params['count'] = count return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/results/', params))) @property def number_of_results(self): """ Gets the number of resources found. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/numberOfResults/'))) @property def full_results(self): """ Gets the full crawled content detected by the AJAX Spider. Returns a set of values based on 'inScope' URLs, 'outOfScope' URLs, and 'errors' encountered during the last/current run of the AJAX Spider. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/fullResults/'))) @property def option_browser_id(self): """ Gets the configured browser to use for crawling. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionBrowserId/'))) @property def option_event_wait(self): """ Gets the time to wait after an event (in milliseconds). For example: the wait delay after the cursor hovers over an element, in order for a menu to display, etc. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionEventWait/'))) @property def option_max_crawl_depth(self): """ Gets the configured value for the max crawl depth. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionMaxCrawlDepth/'))) @property def option_max_crawl_states(self): """ Gets the configured value for the maximum crawl states allowed. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionMaxCrawlStates/'))) @property def option_max_duration(self): """ Gets the configured max duration of the crawl, the value is in minutes. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionMaxDuration/'))) @property def option_number_of_browsers(self): """ Gets the configured number of browsers to be used. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionNumberOfBrowsers/'))) @property def option_reload_wait(self): """ Gets the configured time to wait after reloading the page, this value is in milliseconds. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionReloadWait/'))) @property def option_click_default_elems(self): """ Gets the configured value for 'Click Default Elements Only', HTML elements such as 'a', 'button', 'input', all associated with some action or links on the page. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionClickDefaultElems/'))) @property def option_click_elems_once(self): """ Gets the value configured for the AJAX Spider to know if it should click on the elements only once. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionClickElemsOnce/'))) @property def option_random_inputs(self): """ Gets if the AJAX Spider will use random values in form fields when crawling, if set to true. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/view/optionRandomInputs/'))) def scan(self, url=None, inscope=None, contextname=None, subtreeonly=None, apikey=''): """ Runs the AJAX Spider against a given target. This component is optional and therefore the API will only work if it is installed """ params = {'apikey': apikey} if url is not None: params['url'] = url if inscope is not None: params['inScope'] = inscope if contextname is not None: params['contextName'] = contextname if subtreeonly is not None: params['subtreeOnly'] = subtreeonly return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/scan/', params))) def scan_as_user(self, contextname, username, url=None, subtreeonly=None, apikey=''): """ Runs the AJAX Spider from the perspective of a User of the web application. This component is optional and therefore the API will only work if it is installed """ params = {'contextName': contextname, 'userName': username, 'apikey': apikey} if url is not None: params['url'] = url if subtreeonly is not None: params['subtreeOnly'] = subtreeonly return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/scanAsUser/', params))) def stop(self, apikey=''): """ Stops the AJAX Spider. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/stop/', {'apikey': apikey}))) def add_allowed_resource(self, regex, enabled=None, apikey=''): """ Adds an allowed resource. This component is optional and therefore the API will only work if it is installed """ params = {'regex': regex, 'apikey': apikey} if enabled is not None: params['enabled'] = enabled return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/addAllowedResource/', params))) def remove_allowed_resource(self, regex, apikey=''): """ Removes an allowed resource. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/removeAllowedResource/', {'regex': regex, 'apikey': apikey}))) def set_enabled_allowed_resource(self, regex, enabled, apikey=''): """ Sets whether or not an allowed resource is enabled. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setEnabledAllowedResource/', {'regex': regex, 'enabled': enabled, 'apikey': apikey}))) def set_option_browser_id(self, string, apikey=''): """ Sets the configuration of the AJAX Spider to use one of the supported browsers. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionBrowserId/', {'String': string, 'apikey': apikey}))) def set_option_click_default_elems(self, boolean, apikey=''): """ Sets whether or not the the AJAX Spider will only click on the default HTML elements. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionClickDefaultElems/', {'Boolean': boolean, 'apikey': apikey}))) def set_option_click_elems_once(self, boolean, apikey=''): """ When enabled, the crawler attempts to interact with each element (e.g., by clicking) only once. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionClickElemsOnce/', {'Boolean': boolean, 'apikey': apikey}))) def set_option_event_wait(self, integer, apikey=''): """ Sets the time to wait after an event (in milliseconds). For example: the wait delay after the cursor hovers over an element, in order for a menu to display, etc. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionEventWait/', {'Integer': integer, 'apikey': apikey}))) def set_option_max_crawl_depth(self, integer, apikey=''): """ Sets the maximum depth that the crawler can reach. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionMaxCrawlDepth/', {'Integer': integer, 'apikey': apikey}))) def set_option_max_crawl_states(self, integer, apikey=''): """ Sets the maximum number of states that the crawler should crawl. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionMaxCrawlStates/', {'Integer': integer, 'apikey': apikey}))) def set_option_max_duration(self, integer, apikey=''): """ The maximum time that the crawler is allowed to run. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionMaxDuration/', {'Integer': integer, 'apikey': apikey}))) def set_option_number_of_browsers(self, integer, apikey=''): """ Sets the number of windows to be used by AJAX Spider. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionNumberOfBrowsers/', {'Integer': integer, 'apikey': apikey}))) def set_option_random_inputs(self, boolean, apikey=''): """ When enabled, inserts random values into form fields. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionRandomInputs/', {'Boolean': boolean, 'apikey': apikey}))) def set_option_reload_wait(self, integer, apikey=''): """ Sets the time to wait after the page is loaded before interacting with it. This component is optional and therefore the API will only work if it is installed """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'ajaxSpider/action/setOptionReloadWait/', {'Integer': integer, 'apikey': apikey})))