max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
lit_nlp/examples/models/glue_models_int_test.py
eichinflo/lit
2,854
12723478
"""Integration tests for lit_nlp.examples.models.glue_models.""" from absl.testing import absltest from lit_nlp.examples.models import glue_models import transformers class GlueModelsIntTest(absltest.TestCase): def test_sst2_model_predict(self): # Create model. model_path = "https://storage.googleapis.com/what-if-tool-resources/lit-models/sst2_tiny.tar.gz" # pylint: disable=line-too-long if model_path.endswith(".tar.gz"): model_path = transformers.file_utils.cached_path( model_path, extract_compressed_file=True) model = glue_models.SST2Model(model_path) # Run prediction to ensure no failure. model_in = [{"sentence": "test sentence"}] model_out = list(model.predict(model_in)) # Sanity-check output vs output spec. self.assertLen(model_out, 1) for key in model.output_spec().keys(): self.assertIn(key, model_out[0].keys()) if __name__ == "__main__": absltest.main()
boltstream/migrations/0004_user_uuid.py
geekpii/boltstream
1,735
12723488
<gh_stars>1000+ # Generated by Django 2.2 on 2019-05-12 18:20 import uuid from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("boltstream", "0003_streamsession")] operations = [ migrations.AddField( model_name="user", name="uuid", field=models.UUIDField( default=uuid.uuid4, editable=False, unique=True, verbose_name="UUID" ), ) ]
code/old-version/restrictedBoltzmannMachine.py
diksha42/erecognition
166
12723500
"""Implementation of restricted boltzmann machine You need to be able to deal with different energy functions This allows you to deal with real valued units. TODO: monitor overfitting """ __author__ = "<NAME>" __contact__ = "<EMAIL>" import numpy as np from common import * EXPENSIVE_CHECKS_ON = False # TODO: different learning rates for weights and biases # TODO: nesterov method for momentum # TODO: rmsprop """ Represents a RBM """ class RBM(object): def __init__(self, nrVisible, nrHidden, trainingFunction, dropout, visibleDropout, activationFun=sigmoid): # dropout = 1 means no dropout, keep all the weights self.dropout = dropout # dropout = 1 means no dropout, keep all the weights self.visibleDropout = visibleDropout self.nrHidden = nrHidden self.nrVisible = nrVisible self.trainingFunction = trainingFunction self.activationFun = activationFun self.initialized = False def train(self, data): # If the network has not been initialized yet, do it now # Ie if this is the time it is traning batch of traning if not self.initialized: self.weights = self.initializeWeights(self.nrVisible, self.nrHidden) self.biases = self.intializeBiases(data, self.nrHidden) # self.data = data # else: # self.data = np.concatenate(self.data, data) self.biases, self.weights = self.trainingFunction(data, self.biases, self.weights, self.activationFun, self.dropout, self.visibleDropout) self.testWeights = self.weights * self.dropout assert self.weights.shape == (self.nrVisible, self.nrHidden) assert self.biases[0].shape[0] == self.nrVisible assert self.biases[1].shape[0] == self.nrHidden """ Reconstructs the data given using this boltzmann machine.""" def reconstruct(self, dataInstances): return reconstruct(self.biases, self.testWeights, dataInstances, self.activationFun) def hiddenRepresentation(self, dataInstances): return updateLayer(Layer.HIDDEN, dataInstances, self.biases, self.testWeights, self.activationFun, True) @classmethod def initializeWeights(cls, nrVisible, nrHidden): return np.random.normal(0, 0.01, (nrVisible, nrHidden)) @classmethod def intializeBiases(cls, data, nrHidden): # get the procentage of data points that have the i'th unit on # and set the visible vias to log (p/(1-p)) percentages = data.mean(axis=0, dtype='float') vectorized = np.vectorize(safeLogFraction, otypes=[np.float]) visibleBiases = vectorized(percentages) hiddenBiases = np.zeros(nrHidden) return np.array([visibleBiases, hiddenBiases]) def reconstruct(biases, weights, dataInstances, activationFun): hidden = updateLayer(Layer.HIDDEN, dataInstances, biases, weights, activationFun, True) visibleReconstructions = updateLayer(Layer.VISIBLE, hidden, biases, weights, activationFun, False) return visibleReconstructions def reconstructionError(biases, weights, data, activationFun): # Returns the rmse of the reconstruction of the data # Good to keep track of it, should decrease trough training # Initially faster, and then slower reconstructions = reconstruct(biases, weights, data, activationFun) return rmse(reconstructions, data) """ Training functions.""" """ Full CD function. Arguments: data: the data to use for traning. A numpy ndarray. biases: Returns: Defaults the mini batch size 1, so normal learning """ # Think of removing the step method all together and keep one to just # optimize the code but also make it easier to change them # rather than have a function that you pass in for every batch # if nice and easy refactoring can be seen then you can do that def contrastiveDivergence(data, biases, weights, activationFun, dropout, visibleDropout, miniBatchSize=10): N = len(data) epochs = N / miniBatchSize # sample the probabily distributions allow you to chose from the # visible units for dropout on = sample(visibleDropout, data.shape) dropoutData = data * on epsilon = 0.01 decayFactor = 0.0002 weightDecay = True reconstructionStep = 50 oldDeltaWeights = np.zeros(weights.shape) oldDeltaVisible = np.zeros(biases[0].shape) oldDeltaHidden = np.zeros(biases[1].shape) batchLearningRate = epsilon / miniBatchSize print "batchLearningRate" print batchLearningRate for epoch in xrange(epochs): batchData = dropoutData[epoch * miniBatchSize: (epoch + 1) * miniBatchSize, :] if epoch < epochs / 100: momentum = 0.5 else: momentum = 0.95 if epoch < (N/7) * 10: cdSteps = 3 elif epoch < (N/9) * 10: cdSteps = 5 else: cdSteps = 10 if EXPENSIVE_CHECKS_ON: if epoch % reconstructionStep == 0: print "reconstructionError" print reconstructionError(biases, weights, data, activationFun) weightsDiff, visibleBiasDiff, hiddenBiasDiff =\ modelAndDataSampleDiffs(batchData, biases, weights, activationFun, dropout, cdSteps) # Update the weights # data - model # Positive phase - negative # Weight decay factor deltaWeights = (batchLearningRate * weightsDiff - epsilon * weightDecay * decayFactor * weights) deltaVisible = batchLearningRate * visibleBiasDiff deltaHidden = batchLearningRate * hiddenBiasDiff deltaWeights += momentum * oldDeltaWeights deltaVisible += momentum * oldDeltaVisible deltaHidden += momentum * oldDeltaHidden oldDeltaWeights = deltaWeights oldDeltaVisible = deltaVisible oldDeltaHidden = deltaHidden # Update the weighths weights += deltaWeights # Update the visible biases biases[0] += deltaVisible # Update the hidden biases biases[1] += deltaHidden print reconstructionError(biases, weights, data, activationFun) return biases, weights def modelAndDataSampleDiffs(batchData, biases, weights, activationFun, dropout, cdSteps): # Reconstruct the hidden weigs from the data hidden = updateLayer(Layer.HIDDEN, batchData, biases, weights, activationFun, binary=True) # Chose the units to be active at this point # different sets for each element in the mini batches on = sample(dropout, hidden.shape) dropoutHidden = on * hidden hiddenReconstruction = dropoutHidden for i in xrange(cdSteps - 1): visibleReconstruction = updateLayer(Layer.VISIBLE, hiddenReconstruction, biases, weights, activationFun, binary=False) hiddenReconstruction = updateLayer(Layer.HIDDEN, visibleReconstruction, biases, weights, activationFun, binary=True) # sample the hidden units active (for dropout) hiddenReconstruction = hiddenReconstruction * on # Do the last reconstruction from the probabilities in the last phase visibleReconstruction = updateLayer(Layer.VISIBLE, hiddenReconstruction, biases, weights, activationFun, binary=False) hiddenReconstruction = updateLayer(Layer.HIDDEN, visibleReconstruction, biases, weights, activationFun, binary=False) hiddenReconstruction = hiddenReconstruction * on # here it should be hidden * on - hiddenreconstruction # also below in the hidden bias weightsDiff = np.dot(batchData.T, dropoutHidden) -\ np.dot(visibleReconstruction.T, hiddenReconstruction) assert weightsDiff.shape == weights.shape visibleBiasDiff = np.sum(batchData - visibleReconstruction, axis=0) assert visibleBiasDiff.shape == biases[0].shape hiddenBiasDiff = np.sum(dropoutHidden - hiddenReconstruction, axis=0) assert hiddenBiasDiff.shape == biases[1].shape return weightsDiff, visibleBiasDiff, hiddenBiasDiff """ Updates an entire layer. This procedure can be used both in training and in testing. Can even take multiple values of the layer, each of them given as rows Uses matrix operations. """ def updateLayer(layer, otherLayerValues, biases, weights, activationFun, binary=False): bias = biases[layer] size = otherLayerValues.shape[0] if layer == Layer.VISIBLE: activation = np.dot(otherLayerValues, weights.T) else: activation = np.dot(otherLayerValues, weights) probs = activationFun(np.tile(bias, (size, 1)) + activation) if binary: # Sample from the distributions return sampleAll(probs) return probs # Another training algorithm. Slower than Contrastive divergence, but # gives better results. Not used in practice as it is too slow. # This is what Hinton said but it is not OK due to NIPS paper # This is huge code copy paste but keep it like this for now def PCD(data, biases, weights, activationFun, dropout, visibleDropout, miniBatchSize=10): N = len(data) epochs = N / miniBatchSize # sample the probabily distributions allow you to chose from the # visible units for dropout # on = sample(visibleDropout, data.shape) # dropoutData = data * on dropoutData = data epsilon = 0.01 decayFactor = 0.0002 weightDecay = True reconstructionStep = 50 oldDeltaWeights = np.zeros(weights.shape) oldDeltaVisible = np.zeros(biases[0].shape) oldDeltaHidden = np.zeros(biases[1].shape) batchLearningRate = epsilon / miniBatchSize print "batchLearningRate" print batchLearningRate # make this an argument or something nrFantasyParticles = miniBatchSize fantVisible = np.random.randint(2, size=(nrFantasyParticles, weights.shape[0])) fantHidden = np.random.randint(2, size=(nrFantasyParticles, weights.shape[1])) fantasyParticles = (fantVisible, fantHidden) steps = 10 for epoch in xrange(epochs): batchData = dropoutData[epoch * miniBatchSize: (epoch + 1) * miniBatchSize, :] if epoch < epochs / 100: momentum = 0.5 else: momentum = 0.95 if EXPENSIVE_CHECKS_ON: if epoch % reconstructionStep == 0: print "reconstructionError" print reconstructionError(biases, weights, data, activationFun) print fantasyParticles[0] print fantasyParticles[1] weightsDiff, visibleBiasDiff, hiddenBiasDiff, fantasyParticles =\ modelAndDataSampleDiffsPCD(batchData, biases, weights, activationFun, dropout, steps, fantasyParticles) # Update the weights # data - model # Positive phase - negative # Weight decay factor deltaWeights = (batchLearningRate * weightsDiff - epsilon * weightDecay * decayFactor * weights) deltaVisible = batchLearningRate * visibleBiasDiff deltaHidden = batchLearningRate * hiddenBiasDiff deltaWeights += momentum * oldDeltaWeights deltaVisible += momentum * oldDeltaVisible deltaHidden += momentum * oldDeltaHidden oldDeltaWeights = deltaWeights oldDeltaVisible = deltaVisible oldDeltaHidden = deltaHidden # Update the weighths weights += deltaWeights # Update the visible biases biases[0] += deltaVisible # Update the hidden biases biases[1] += deltaHidden print reconstructionError(biases, weights, data, activationFun) return biases, weights # Same modelAndDataSampleDiff but for persistent contrastive divergence # First run it without dropout def modelAndDataSampleDiffsPCD(batchData, biases, weights, activationFun, dropout, steps, fantasyParticles): # Reconstruct the hidden weigs from the data hidden = updateLayer(Layer.HIDDEN, batchData, biases, weights, activationFun, binary=True) # Chose the units to be active at this point # different sets for each element in the mini batches # on = sample(dropout, hidden.shape) # dropoutHidden = on * hidden # hiddenReconstruction = dropoutHidden for i in xrange(steps): visibleReconstruction = updateLayer(Layer.VISIBLE, fantasyParticles[1], biases, weights, activationFun, binary=False) hiddenReconstruction = updateLayer(Layer.HIDDEN, visibleReconstruction, biases, weights, activationFun, binary=True) # sample the hidden units active (for dropout) # hiddenReconstruction = hiddenReconstruction * on fantasyParticles = (visibleReconstruction, hiddenReconstruction) # here it should be hidden * on - hiddenReconstruction # also below in the hidden bias weightsDiff = np.dot(batchData.T, hidden) -\ np.dot(visibleReconstruction.T, hiddenReconstruction) assert weightsDiff.shape == weights.shape visibleBiasDiff = np.sum(batchData - visibleReconstruction, axis=0) assert visibleBiasDiff.shape == biases[0].shape hiddenBiasDiff = np.sum(hidden - hiddenReconstruction, axis=0) assert hiddenBiasDiff.shape == biases[1].shape return weightsDiff, visibleBiasDiff, hiddenBiasDiff, fantasyParticles
DynaMaze/DynaQ+.py
nabeelfarooqui98/Reinforcement-Learning-Implementation
116
12723568
<filename>DynaMaze/DynaQ+.py import numpy as np ROWS = 6 COLS = 9 S = (2, 0) G = (0, 8) BLOCKS = [(1, 2), (2, 2), (3, 2), (0, 7), (1, 7), (2, 7), (4, 5)] ACTIONS = ["left", "up", "right", "down"] class Maze: def __init__(self): self.rows = ROWS self.cols = COLS self.start = S self.goal = G self.blocks = BLOCKS self.state = S self.end = False # init maze self.maze = np.zeros((self.rows, self.cols)) for b in self.blocks: self.maze[b] = -1 def nxtPosition(self, action): r, c = self.state if action == "left": c -= 1 elif action == "right": c += 1 elif action == "up": r -= 1 else: r += 1 if (r >= 0 and r <= self.rows - 1) and (c >= 0 and c <= self.cols - 1): if (r, c) not in self.blocks: self.state = (r, c) return self.state def giveReward(self): if self.state == self.goal: self.end = True return 1 else: return 0 def showMaze(self): self.maze[self.state] = 1 for i in range(0, self.rows): print('-------------------------------------') out = '| ' for j in range(0, self.cols): if self.maze[i, j] == 1: token = '*' if self.maze[i, j] == -1: token = 'z' if self.maze[i, j] == 0: token = '0' out += token + ' | ' print(out) print('-------------------------------------') class DynaAgentPlus: def __init__(self, exp_rate=0.3, lr=0.1, n_steps=5, episodes=1, timeWeight=1e-4): self.time = 0 # keep track of the total time self.timeWeight = timeWeight self.maze = Maze() self.state = S self.actions = ACTIONS self.state_actions = [] # state & action track self.exp_rate = exp_rate self.lr = lr self.steps = n_steps self.episodes = episodes # number of episodes going to play self.steps_per_episode = [] self.Q_values = {} # model function self.model = {} for row in range(ROWS): for col in range(COLS): self.Q_values[(row, col)] = {} for a in self.actions: self.Q_values[(row, col)][a] = 0 def chooseAction(self): # epsilon-greedy mx_nxt_reward = -999 action = "" if np.random.uniform(0, 1) <= self.exp_rate: action = np.random.choice(self.actions) else: # greedy action current_position = self.state # if all actions have same value, then select randomly if len(set(self.Q_values[current_position].values())) == 1: action = np.random.choice(self.actions) else: for a in self.actions: nxt_reward = self.Q_values[current_position][a] if nxt_reward >= mx_nxt_reward: action = a mx_nxt_reward = nxt_reward return action def reset(self): self.maze = Maze() self.state = S self.state_actions = [] self.time = 0 def updateModel(self, state, nxtState, action, reward): if state not in self.model.keys(): self.model[state] = {} for a in self.actions: # the initial model for such actions was that they would # lead back to the same state with a reward of 0. if a != action: self.model[state][a] = (0, state, 1) self.model[state][action] = (reward, nxtState, self.time) def play(self): self.steps_per_episode = [] for ep in range(self.episodes): while not self.maze.end: action = self.chooseAction() self.state_actions.append((self.state, action)) nxtState = self.maze.nxtPosition(action) reward = self.maze.giveReward() # update Q-value self.Q_values[self.state][action] += self.lr * (reward + np.max(list(self.Q_values[nxtState].values())) - self.Q_values[self.state][action]) # update model self.updateModel(self.state, nxtState, action, reward) self.state = nxtState self.time += 1 # loop n times to randomly update Q-value for _ in range(self.steps): # randomly choose an state rand_idx = np.random.choice(range(len(self.model.keys()))) _state = list(self.model)[rand_idx] # randomly choose an action rand_idx = np.random.choice(range(len(self.model[_state].keys()))) _action = list(self.model[_state])[rand_idx] _reward, _nxtState, _time = self.model[_state][_action] # update _reward _reward += self.timeWeight * np.sqrt(self.time - _time) self.Q_values[_state][_action] += self.lr * (_reward + np.max(list(self.Q_values[_nxtState].values())) - self.Q_values[_state][_action]) # end of game if ep % 10 == 0: print("episode", ep) self.steps_per_episode.append(len(self.state_actions)) self.reset() if __name__ == "__main__": dap = DynaAgentPlus() dap.play()
__scraping__/centralbankofindia.co.in - scrapy/main.py
dhmo1900/python-examples
140
12723584
# author: Bartlomiej "furas" Burek (https://blog.furas.pl) # date: 2021.10.04 # # title: Scrapy returning None on querying by xpath # url: https://stackoverflow.com/questions/69442962/scrapy-returning-none-on-querying-by-xpath/69443343#69443343 # [Scrapy returning None on querying by xpath](https://stackoverflow.com/questions/69442962/scrapy-returning-none-on-querying-by-xpath/69443343#69443343) import scrapy class MySpider(scrapy.Spider): start_urls = [ # f"https://www.centralbankofindia.co.in/en/branch-locator?field_state_target_id=All&combine=&page={i}" # for i in range(0, 5) # only first page - links to other pages it will find in HTML "https://www.centralbankofindia.co.in/en/branch-locator?field_state_target_id=All&combine=&page=0" ] name = "Central Bank of India" def parse(self, response): print(f'url: {response.url}') all_items = response.xpath('//*[@id="block-cbi-content"]//td[2]//span[2]/text()').extract() for address in all_items: print(address) yield {'address': address} # get link to next page next_page = response.xpath('//a[@rel="next"]/@href').extract_first() if next_page: print(f'Next Page: {next_page}') yield response.follow(next_page) # --- run without project and save in `output.csv` --- from scrapy.crawler import CrawlerProcess c = CrawlerProcess({ 'USER_AGENT': 'Mozilla/5.0', # save in file CSV, JSON or XML 'FEEDS': {'output.csv': {'format': 'csv'}}, # new in 2.1 }) c.crawl(MySpider) c.start()
raiden/tests/benchmark/_codespeed.py
tirkarthi/raiden
2,101
12723603
<filename>raiden/tests/benchmark/_codespeed.py import json import os import warnings import requests try: _CODESPEED_USER = os.environ["CODESPEED_USER"] _CODESPEED_PASSWORD = os.environ["CODESPEED_PASSWORD"] _BENCHMARK_HOST = os.environ["BENCHMARK_HOST"] except KeyError: warnings.warn( "Codespeed environment variables not available, posting results would fail.", RuntimeWarning, ) def post_result(codespeed_url, commit_id, branch, bench_name, value): data = [ { "commitid": commit_id, "project": "raiden", "branch": branch, "executable": "raiden", "benchmark": bench_name, "environment": _BENCHMARK_HOST, "result_value": value, } ] data_ = {"json": json.dumps(data)} url = codespeed_url + "/result/add/json/" resp = requests.post(url, data=data_, auth=(_CODESPEED_USER, _CODESPEED_PASSWORD)) resp.raise_for_status()
container_files/ipython_extra_config.py
kstepanmpmg/mldb
665
12723617
c = get_config() c.NotebookApp.ip = '{{IPYTHON_NB_LISTEN_ADDR}}' c.NotebookApp.port = {{IPYTHON_NB_LISTEN_PORT}} c.NotebookApp.open_browser = False c.NotebookApp.notebook_dir = u'{{IPYTHON_NB_DIR}}' c.NotebookApp.base_url = '{{HTTP_BASE_URL}}/{{IPYTHON_NB_PREFIX}}' c.NotebookApp.tornado_settings = {'static_url_prefix':'{{HTTP_BASE_URL}}/{{IPYTHON_NB_PREFIX}}/static/'} # Disable token auth for now c.NotebookApp.token = '' c.NotebookApp.password = ''
convertor.py
trankha1655/pan_pp.origin
329
12723647
<gh_stars>100-1000 import torch import mmcv import argparse import os.path as osp parser = argparse.ArgumentParser(description='Hyperparams') parser.add_argument('checkpoint', nargs='?', type=str, default=None) args = parser.parse_args() dir_name = args.checkpoint.split("/")[-2] checkpoint = torch.load(args.checkpoint, map_location='cpu') state_dict = checkpoint['state_dict'] for k, v in state_dict.items(): print(k) checkpoint = {'state_dict': state_dict} mmcv.mkdir_or_exist("converted/") try: torch.save(checkpoint, osp.join("converted", dir_name+".pth.tar"), _use_new_zipfile_serialization=False) except: torch.save(checkpoint, osp.join("converted", dir_name+".pth.tar"))
pims/process.py
tsmbland/pims
208
12723694
<filename>pims/process.py from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from slicerator import pipeline, Pipeline import six @pipeline def as_grey(frame): """Convert a 2D image or PIMS reader to greyscale. This weights the color channels according to their typical response to white light. It does nothing if the input is already greyscale. """ if len(frame.shape) == 2: return frame else: red = frame[:, :, 0] green = frame[:, :, 1] blue = frame[:, :, 2] return 0.2125 * red + 0.7154 * green + 0.0721 * blue # "Gray" is the more common spelling as_gray = as_grey # Source of this patch: https://github.com/scikit-image/scikit-image/pull/3556 # See also: https://github.com/numpy/numpy/pull/11966 from distutils.version import LooseVersion if LooseVersion(np.__version__) < LooseVersion('1.16'): from numpy.lib.arraypad import _validate_lengths as validate_lengths else: from numpy.lib.arraypad import _as_pairs def validate_lengths(ar, crop_width): return _as_pairs(crop_width, ar.ndim, as_index=True) def _crop(frame, bbox): return frame[bbox[0]:bbox[2], bbox[1]:bbox[3]] @pipeline class crop(Pipeline): """Crop image or image-reader`reader` by `crop_width` along each dimension. Parameters ---------- ar : array-like of rank N Input array. crop_width : {sequence, int} Number of values to remove from the edges of each axis. ``((before_1, after_1),`` ... ``(before_N, after_N))`` specifies unique crop widths at the start and end of each axis. ``((before, after),)`` specifies a fixed start and end crop for every axis. ``(n,)`` or ``n`` for integer ``n`` is a shortcut for before = after = ``n`` for all axes. order : {'C', 'F', 'A', 'K'}, optional control the memory layout of the copy. See ``np.copy``. Returns ------- cropped : array The cropped array. See Also -------- Source: ``skimage.util.crop`` (v0.12.3) """ def __init__(self, reader, crop_width, order='K'): # We have to know the frame shape that is returned by the reader. try: # In case the reader is a FramesSequence, there is an attribute shape = reader.frame_shape first_frame = np.empty(shape, dtype=bool) except AttributeError: first_frame = reader[0] shape = first_frame.shape # Validate the crop widths on the first frame crops = validate_lengths(first_frame, crop_width) self._crop_slices = tuple([slice(a, shape[i] - b) for i, (a, b) in enumerate(crops)]) self._crop_shape = tuple([shape[i] - b - a for i, (a, b) in enumerate(crops)]) self._crop_order = order # We could pass _crop to proc_func. However this adds an extra copy # operation. Therefore we define our own here. super(self.__class__, self).__init__(None, reader) def _get(self, key): ar = self._ancestors[0][key] return np.array(ar[self._crop_slices], order=self._crop_order, copy=True) @property def frame_shape(self): return self._crop_shape
tests/test_project/app_correct/models.py
christianbundy/django-migration-linter
357
12723722
from django.db import models class A(models.Model): null_field = models.IntegerField(null=True) new_null_field = models.IntegerField(null=True)
ci-scripts/flatten_image.py
nstng/magma
539
12723732
""" Copyright 2022 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import subprocess # noqa: S404 import sys def main() -> None: """Provide command-line options to flatten MAGMA-MME OAI image""" args = _parse_args() status = perform_flattening(args.tag) sys.exit(status) def _parse_args() -> argparse.Namespace: """Parse the command line args Returns: argparse.Namespace: the created parser """ parser = argparse.ArgumentParser(description='Flattening Image') parser.add_argument( '--tag', '-t', action='store', required=True, help='Image Tag in image-name:image tag format', ) return parser.parse_args() def perform_flattening(tag): """Parse the command line args Args: tag: Image Tag in image-name:image tag format Returns: int: pass / fail status """ # First detect which docker/podman command to use cli = '' image_prefix = '' cmd = 'which podman || true' podman_check = subprocess.check_output(cmd, shell=True, universal_newlines=True) # noqa: S602 if podman_check.strip(): cli = 'sudo podman' image_prefix = 'localhost/' else: cmd = 'which docker || true' docker_check = subprocess.check_output(cmd, shell=True, universal_newlines=True) # noqa: S602 if docker_check.strip(): cli = 'docker' image_prefix = '' else: print('No docker / podman installed: quitting') return -1 print(f'Flattening {tag}') # Creating a container cmd = cli + ' run --name test-flatten --entrypoint /bin/true -d ' + tag print(cmd) subprocess.check_call(cmd, shell=True, universal_newlines=True) # noqa: S602 # Export / Import trick cmd = cli + ' export test-flatten | ' + cli + ' import ' # Bizarro syntax issue with podman if cli == 'docker': cmd += ' --change "ENV PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin" ' else: cmd += ' --change "ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin" ' cmd += ' --change "WORKDIR /magma-mme" ' cmd += ' --change "EXPOSE 3870/tcp" ' cmd += ' --change "EXPOSE 5870/tcp" ' cmd += ' --change "EXPOSE 2123/udp" ' cmd += ' --change "CMD [\\"sleep\\", \\"infinity\\"]" ' # noqa: WPS342 cmd += ' - ' + image_prefix + tag print(cmd) subprocess.check_call(cmd, shell=True, universal_newlines=True) # noqa: S602 # Remove container cmd = cli + ' rm -f test-flatten' print(cmd) subprocess.check_call(cmd, shell=True, universal_newlines=True) # noqa: S602 # At this point the original image is a dangling image. # CI pipeline will clean up (`image prune --force`) return 0 if __name__ == '__main__': main()
boost_adaptbx/command_line/inexact.py
dperl-sol/cctbx_project
155
12723786
from __future__ import absolute_import, division, print_function # LIBTBX_SET_DISPATCHER_NAME boost_adaptbx.inexact import boost_adaptbx.boost.python as bp import sys def run(args): assert len(args) == 0 print("Now creating a NaN in C++ as 0/0 ...") sys.stdout.flush() result = bp.ext.divide_doubles(0, 0) print("Result:", result) if (__name__ == "__main__"): run(sys.argv[1:])
torchbenchmark/models/fastNLP/test/modules/decoder/test_seq2seq_decoder.py
Chillee/benchmark
2,693
12723821
import unittest import torch from fastNLP import Vocabulary from fastNLP.embeddings import StaticEmbedding from fastNLP.modules import TransformerSeq2SeqDecoder from fastNLP.modules import LSTMSeq2SeqDecoder from fastNLP import seq_len_to_mask class TestTransformerSeq2SeqDecoder(unittest.TestCase): def test_case(self): vocab = Vocabulary().add_word_lst("This is a test .".split()) vocab.add_word_lst("Another test !".split()) embed = StaticEmbedding(vocab, embedding_dim=10) encoder_output = torch.randn(2, 3, 10) src_seq_len = torch.LongTensor([3, 2]) encoder_mask = seq_len_to_mask(src_seq_len) for flag in [True, False]: with self.subTest(bind_decoder_input_output_embed=flag): decoder = TransformerSeq2SeqDecoder(embed=embed, pos_embed = None, d_model = 10, num_layers=2, n_head = 5, dim_ff = 20, dropout = 0.1, bind_decoder_input_output_embed = True) state = decoder.init_state(encoder_output, encoder_mask) output = decoder(tokens=torch.randint(0, len(vocab), size=(2, 4)), state=state) self.assertEqual(output.size(), (2, 4, len(vocab))) class TestLSTMDecoder(unittest.TestCase): def test_case(self): vocab = Vocabulary().add_word_lst("This is a test .".split()) vocab.add_word_lst("Another test !".split()) embed = StaticEmbedding(vocab, model_dir_or_name=None, embedding_dim=10) encoder_output = torch.randn(2, 3, 10) tgt_words_idx = torch.LongTensor([[1, 2, 3, 4], [2, 3, 0, 0]]) src_seq_len = torch.LongTensor([3, 2]) encoder_mask = seq_len_to_mask(src_seq_len) for flag in [True, False]: for attention in [True, False]: with self.subTest(bind_decoder_input_output_embed=flag, attention=attention): decoder = LSTMSeq2SeqDecoder(embed=embed, num_layers = 2, hidden_size = 10, dropout = 0.3, bind_decoder_input_output_embed=flag, attention=attention) state = decoder.init_state(encoder_output, encoder_mask) output = decoder(tgt_words_idx, state) self.assertEqual(tuple(output.size()), (2, 4, len(vocab)))
python/fate_client/pipeline/interface/data.py
hubert-he/FATE
3,787
12723832
<reponame>hubert-he/FATE<gh_stars>1000+ # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pipeline.backend.config import VERSION class Data(object): def __init__(self, data=None, train_data=None, validate_data=None, test_data=None, predict_input=None): self._data = data self._train_data = train_data self._validate_data = validate_data self._test_data = test_data self._predict_input = predict_input def __getattr__(self, data_key): if data_key == "train_data": return self._train_data elif data_key == "validate_data": return self._validate_data elif data_key == "test_data": return self._test_data elif data_key == "data": return self._data elif data_key == "predict_input": return self._predict_input else: raise ValueError("data key {} not support".format(data_key))
datasets/data_path/gen_bdd100k_mot.py
anonymous4669/MOTR
191
12723857
import os import numpy as np import json import cv2 from tqdm import tqdm from collections import defaultdict def convert(img_dir, split, label_dir, save_label_dir, filter_crowd=False, filter_ignore=False): cat2id = {'train':6, 'car':3, 'bus':5, 'other person': 1, 'rider':2, 'pedestrian':1, 'other vehicle':3, 'motorcycle':7, 'bicycle':8, 'trailer':4, 'truck':4} coco = defaultdict(list) coco["categories"] = [ {"supercategory": "human", "id": 1, "name": "pedestrian"}, {"supercategory": "human", "id": 2, "name": "rider"}, {"supercategory": "vehicle", "id": 3, "name": "car"}, {"supercategory": "vehicle", "id": 4, "name": "truck"}, {"supercategory": "vehicle", "id": 5, "name": "bus"}, {"supercategory": "vehicle", "id": 6, "name": "train"}, {"supercategory": "bike", "id": 7, "name": "motorcycle"}, {"supercategory": "bike", "id": 8, "name": "bicycle"}, ] attr_id_dict = { frame["name"]: frame["id"] for frame in coco["categories"] } all_categories = set() img_dir = os.path.join(img_dir, split) label_dir = os.path.join(label_dir, split) vids = os.listdir(img_dir) for vid in tqdm(vids): txt_label_dir = os.path.join(save_label_dir, split, vid) os.makedirs(txt_label_dir, exist_ok=True) annos = json.load(open(os.path.join(label_dir, vid+'.json'), 'r')) for anno in annos: name = anno['name'] labels = anno['labels'] videoName = anno['videoName'] frameIndex = anno['frameIndex'] img = cv2.imread(os.path.join(img_dir, vid, name)) seq_height, seq_width, _ = img.shape if len(labels) < 1: continue # for label in labels: # category = label['category'] # all_categories.add(category) with open(os.path.join(txt_label_dir, name.replace('jpg', 'txt')), 'w') as f: for label in labels: obj_id = label['id'] category = label['category'] attributes = label['attributes'] is_crowd = attributes['crowd'] if filter_crowd and is_crowd: continue if filter_ignore and (category not in attr_id_dict.keys()): continue box2d = label['box2d'] x1 = box2d['x1'] x2 = box2d['x2'] y1 = box2d['y1'] y2 = box2d['y2'] w = x2-x1 h = y2-y1 cx = (x1+x2) / 2 cy = (y1+y2) / 2 label_str = '{:d} {:d} {:.6f} {:.6f} {:.6f} {:.6f}\n'.format( cat2id[category], int(obj_id), cx / seq_width, cy / seq_height, w / seq_width, h / seq_height) f.write(label_str) # print(f'all categories are {all_categories}.') def generate_txt(img_dir,label_dir,txt_path='bdd100k.train',split='train'): img_dir = os.path.join(img_dir, split) label_dir = os.path.join(label_dir, split) all_vids = os.listdir(img_dir) all_frames = [] for vid in tqdm(all_vids): fids = os.listdir(os.path.join(img_dir, vid)) fids.sort() for fid in fids: if os.path.exists(os.path.join(label_dir, vid, fid.replace('jpg', 'txt'))): all_frames.append(f'images/track/{split}/{vid}/{fid}') with open(txt_path, 'w') as f: for frame in all_frames: f.write(frame+'\n') '''no filter''' # img_dir = '/data/Dataset/bdd100k/bdd100k/images/track' # label_dir = '/data/Dataset/bdd100k/bdd100k/labels/box_track_20' # save_label_dir = '/data/Dataset/bdd100k/bdd100k/labels/track' # split = 'train' # convert(img_dir, split, label_dir, save_label_dir) # img_dir = '/data/Dataset/bdd100k/bdd100k/images/track' # label_dir = '/data/Dataset/bdd100k/bdd100k/labels/box_track_20' # save_label_dir = '/data/Dataset/bdd100k/bdd100k/labels/track' # split = 'val' # convert(img_dir, split, label_dir, save_label_dir) # img_dir = '/data/Dataset/bdd100k/bdd100k/images/track' # label_dir = '/data/Dataset/bdd100k/bdd100k/labels/box_track_20' # save_label_dir = '/data/Dataset/bdd100k/bdd100k/labels/track' # split = 'train' # generate_txt(img_dir,save_label_dir,txt_path='bdd100k.train',split='train') # img_dir = '/data/Dataset/bdd100k/bdd100k/images/track' # label_dir = '/data/Dataset/bdd100k/bdd100k/labels/box_track_20' # save_label_dir = '/data/Dataset/bdd100k/bdd100k/labels/track' # split = 'val' # generate_txt(img_dir,save_label_dir,txt_path='bdd100k.val',split='val') '''for filter''' # img_dir = '/data/Dataset/bdd100k/bdd100k/images/track' # label_dir = '/data/Dataset/bdd100k/bdd100k/labels/box_track_20' # save_label_dir = '/data/Dataset/bdd100k/bdd100k/filter_labels/track' # split = 'train' # convert(img_dir, split, label_dir, save_label_dir, filter_crowd=True, filter_ignore=True) # img_dir = '/data/Dataset/bdd100k/bdd100k/images/track' # label_dir = '/data/Dataset/bdd100k/bdd100k/labels/box_track_20' # save_label_dir = '/data/Dataset/bdd100k/bdd100k/filter_labels/track' # split = 'val' # convert(img_dir, split, label_dir, save_label_dir, filter_crowd=True, filter_ignore=True) # img_dir = '/data/Dataset/bdd100k/bdd100k/images/track' # label_dir = '/data/Dataset/bdd100k/bdd100k/labels/box_track_20' # save_label_dir = '/data/Dataset/bdd100k/bdd100k/filter_labels/track' # split = 'train' # generate_txt(img_dir,save_label_dir,txt_path='filter.bdd100k.train',split='train') # img_dir = '/data/Dataset/bdd100k/bdd100k/images/track' # label_dir = '/data/Dataset/bdd100k/bdd100k/labels/box_track_20' # save_label_dir = '/data/Dataset/bdd100k/bdd100k/filter_labels/track' # split = 'val' # generate_txt(img_dir,save_label_dir,txt_path='filter.bdd100k.val',split='val')
contrib/buildbot/test/test_testutil.py
syedrizwanmy/bitcoin-abc
1,266
12723880
<filename>contrib/buildbot/test/test_testutil.py #!/usr/bin/env python3 # # Copyright (c) 2020 The Bitcoin ABC developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import unittest from testutil import AnyWith class TestObject(): mystr = 'value' mydict = { 'item': 'value', } def TestAnyWith(expected): aw = AnyWith(TestObject, expected) return aw.__eq__(TestObject()) class TestUtilTests(unittest.TestCase): def test_compareWrongType(self): # dict is not a TestObject self.assertRaisesRegex( AssertionError, "Argument class type did not match", AnyWith( TestObject, None).__eq__, {}) def test_happyPaths(self): self.assertRaisesRegex( AssertionError, "Argument missing expected attribute", TestAnyWith, { 'does-not-exist': None}) self.assertRaisesRegex( AssertionError, "Argument missing expected attribute", TestAnyWith, { 'does-not-exist': 'value'}) self.assertRaisesRegex(AssertionError, "Argument missing expected attribute", TestAnyWith, {'does-not-exist': {'item': 'value'}}) TestAnyWith({'mystr': 'value'}) self.assertRaisesRegex( AssertionError, "Argument attribute type did not match", TestAnyWith, { 'mystr': None}) self.assertRaisesRegex( AssertionError, "Argument attribute type did not match", TestAnyWith, { 'mystr': {}}) self.assertRaisesRegex( AssertionError, "Argument attribute value did not match", TestAnyWith, { 'mystr': 'wrong value'}) TestAnyWith({'mydict': { 'item': 'value', }}) self.assertRaisesRegex( AssertionError, "Argument attribute type did not match", TestAnyWith, { 'mydict': 'value'}) self.assertRaisesRegex(AssertionError, "Argument attribute value did not match", TestAnyWith, {'mydict': { 'item-does-not-exist': 'value' }}) self.assertRaisesRegex(AssertionError, "Argument attribute value did not match", TestAnyWith, {'mydict': { 'item': None }}) self.assertRaisesRegex(AssertionError, "Argument attribute value did not match", TestAnyWith, {'mydict': { 'item': 'wrong value' }}) if __name__ == '__main__': unittest.main()
price_analysis/fit.py
kevaundray/research
1,351
12723943
<reponame>kevaundray/research<gh_stars>1000+ import spread import math import random o = spread.declutter(spread.load('diff_txs_price.csv')) diffs = [float(q[2]) for q in o] prices = [float(q[1]) for q in o] txs = [float(q[3]) for q in o] txfees = [float(q[4]) for q in o] def simple_estimator(fac): o = [1] for i in range(1, len(diffs)): o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1] / fac) return o def minimax_estimator(fac): o = [1] for i in range(1, len(diffs)): if diffs[i] * 1.0 / diffs[i-1] > fac: o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1] / fac) elif diffs[i] > diffs[i-1]: o.append(o[-1]) else: o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1]) return o def diff_estimator(fac, dw, mf, exp=1): o = [1] derivs = [0] * 14 for i in range(14, len(diffs)): derivs.append(diffs[i] - diffs[i - 14]) for i in range(0, 14): derivs[i] = derivs[14] vals = [max(diffs[i] + derivs[i] * dw, diffs[i] * mf) for i in range(len(diffs))] for i in range(1, len(diffs)): if vals[i] * 1.0 / vals[i-1] > fac: o.append(o[-1] * 1.0 / fac * (vals[i] / vals[i-1])**exp) elif vals[i] > vals[i-1]: o.append(o[-1]) else: o.append(o[-1] * 1.0 * (vals[i] / vals[i-1])**exp) return o def tx_diff_estimator(fac, dw, mf, lin=1, exp=1): fac = (fac - 1) or 0.000001 o = [1] initavg = sum([txs[i] for i in range(5)]) / 5.0 txavgs = [initavg] * 5 for i in range(5, len(txs)): txavgs.append(txavgs[-1] * 0.8 + txs[i] * 0.2) derivs = [0] * 14 for i in range(14, len(txavgs)): derivs.append(txavgs[i] - txavgs[i - 14]) for i in range(0, 14): derivs[i] = derivs[14] vals = [max(txavgs[i] + derivs[i] * dw, txavgs[i] * mf) for i in range(len(txavgs))] for i in range(1, len(txavgs)): growth = (vals[i] * 1.0 / vals[i-1] - 1) if growth > fac: surplus = (growth / fac) - 1 o.append(o[-1] * (1 + (surplus * lin * fac) ** exp)) elif vals[i] > vals[i-1]: o.append(o[-1]) else: surplus = 1 - growth o.append(o[-1] * (1 - (surplus * lin * fac) ** exp)) if i and o[-1] < o[-2] * mf: o[-1] = o[-2] * mf return o def minimax_fee_estimator(fac, days): o = [1] initavg = sum([txs[i] for i in range(int(days))]) * 1.0 / days txavgs = [initavg] * int(days) for i in range(int(days), len(txs)): txavgs.append(txavgs[-1] * 1.0 * (days-1) / days + txs[i] * 1.0 / days) initavg2 = sum([txfees[i] for i in range(int(days))]) * 1.0 / days txfeeavgs = [initavg2] * int(days) for i in range(int(days), len(txs)): txfeeavgs.append(txfeeavgs[-1] * 1.0 * (days-1) / days + txfees[i] * 1.0 / days) # Calculate inverse fee, invfee ~= price txavgfees = [t / f for f, t in zip(txfeeavgs, txavgs)] for i in range(1, len(txavgfees)): if txavgfees[i] * 1.0 / txavgfees[i-1] > fac: o.append(o[-1] * txavgfees[i] * 1.0 / txavgfees[i-1] / fac) elif txavgfees[i] > txavgfees[i-1]: o.append(o[-1]) else: o.append(o[-1] * txavgfees[i] * 1.0 / txavgfees[i-1]) return o def ndiff_estimator(*args): fac, dws, mf = args[0], args[1:-1], args[-1] o = [1] ds = [diffs] for dw in dws: derivs = [0] * 14 for i in range(14, len(diffs)): derivs.append(ds[-1][i] - ds[-1][i - 14]) for i in range(0, 14): derivs[i] = derivs[14] ds.append(derivs) vals = [] for i in range(len(diffs)): q = ds[0][i] + sum([ds[j+1][i] * dws[j] for j in range(len(dws))]) vals.append(max(q, ds[0][i] * mf)) for i in range(1, len(diffs)): if vals[i] * 1.0 / vals[i-1] > fac: o.append(o[-1] * vals[i] * 1.0 / vals[i-1] / fac) elif vals[i] > vals[i-1]: o.append(o[-1]) else: o.append(o[-1] * vals[i] * 1.0 / vals[i-1]) return o def dual_threshold_estimator(fac1, fac2, dmul): o = [1] derivs = [0] * 14 for i in range(14, len(diffs)): derivs.append(diffs[i] - diffs[i - 14]) for i in range(0, 14): derivs[i] = derivs[14] for i in range(1, len(diffs)): if diffs[i] * 1.0 / diffs[i-1] > fac1 and derivs[i] * 1.0 / derivs[i-1] > fac2: o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1] / fac1 * (1 + (derivs[i] / derivs[i-1] - fac2) * dmul)) elif diffs[i] > diffs[i-1]: o.append(o[-1]) else: o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1]) return o infinity = 2.**1023 infinity *= 2 def evaluate_estimates(estimates, crossvalidate=False): sz = len(prices) if crossvalidate else 780 sqdiffsum = 0 # compute average tot = 0 for i in range(sz): if estimates[i] == infinity or estimates[i] <= 0: return 10**20 tot += math.log(prices[i] / estimates[i]) avg = 2.718281828459 ** (tot * 1.0 / sz) if avg <= 0: return 10**20 for i in range(1, sz): sqdiffsum += math.log(prices[i] / estimates[i] / avg) ** 2 return sqdiffsum # Simulated annealing optimizer def optimize(producer, floors, ceilings, rate=0.7, rounds=5000, tries=1): bestvals, besty = None, 10**21 for t in range(tries): print 'Starting test %d of %d' % (t + 1, tries) vals = [f*0.5+c*0.5 for f, c in zip(floors, ceilings)] y = evaluate_estimates(producer(*vals)) for i in range(1, rounds): stepsizes = [(f*0.5-c*0.5) / i**rate for f, c in zip(floors, ceilings)] steps = [(random.random() * 2 - 1) * s for s in stepsizes] newvals = [max(mi, min(ma, v+s)) for v, s, mi, ma in zip(vals, steps, floors, ceilings)] newy = evaluate_estimates(producer(*newvals)) if newy < y: vals = newvals y = newy if not i % 1000: print i, vals, y if y < besty: bestvals, besty = vals, y return bestvals def score(producer, *vals): return evaluate_estimates(producer(*vals), True)
codigo/Live172/chalice-lambdas/app.py
BrunoPontesLira/live-de-python
572
12723948
from chalice import Chalice, Rate import logging app = Chalice(app_name='chalice-lambdas') app.log.setLevel(logging.DEBUG) @app.route('/') def index(): return {'message': 'Olar Chalice!'} @app.route('/batatinhas') def batatinhas(): return {'message': 'Olar batatinhas!'} @app.route('/query') def query(): return { 'message': 'Olar Query!', 'params': app.current_request.query_params } @app.route('/meu-post', methods=['POST']) def post_func(): return { 'message': 'Olar Query!', 'params': app.current_request.json_body } @app.lambda_function(name='batata-function') def my_lambda(request, context): return {} @app.schedule(Rate(1, unit=Rate.MINUTES)) def scheduler(event): app.log.info('Executei o scheeeeedddddddd!!!!') @app.on_s3_event(bucket='live-de-bucket') def s3_event(event): app.log.info(f'{event.bucket}, {event.key}')
src/lib/_typeAliases.py
t3kt/raytk
108
12724015
from typing import Union, Optional from _stubs import * class StrParamT(Par, Union[Par, str]): def eval(self) -> str: pass class IntParamT(Par, Union[Par, str, int]): def eval(self) -> int: pass class FloatParamT(Par, Union[Par, str, float, int]): def eval(self) -> float: pass class DatParamT(Par, Union[Par, str, DAT]): def eval(self) -> Optional[DAT]: pass class CompParamT(Par, Union[Par, str, COMP]): def eval(self) -> Optional[COMP]: pass class OPParamT(Par, Union[Par, str, OP, COMP, DAT, SOP, TOP, CHOP, MAT]): def eval(self) -> Optional[Union[OP, COMP, DAT, SOP, TOP, CHOP, MAT]]: pass class BoolParamT(Par, Union[Par, bool, int]): def eval(self) -> bool: pass
scripts/data/kitti2bb3txt.py
wuzzh/master_thesis_code
206
12724017
""" Script for translating the KITTI 3D bounding box annotation format into the BB3TXT data format. A BB3TXT file is formatted like this: filename label confidence xmin ymin xmax ymax fblx fbly fbrx fbry rblx rbly ftly filename label confidence xmin ymin xmax ymax fblx fbly fbrx fbry rblx rbly ftly filename label confidence xmin ymin xmax ymax fblx fbly fbrx fbry rblx rbly ftly ... ---------------------------------------------------------------------------------------------------- python kitti2bb3txt.py path_labels path_images outfile.bb3txt ---------------------------------------------------------------------------------------------------- """ __date__ = '03/17/2017' __author__ = '<NAME>' __email__ = '<EMAIL>' import argparse import os import numpy as np import cv2 from mappings.utils import LabelMappingManager from mappings.utils import available_categories from shared.geometry import R3x3_y, t3x1, Rt4x4 #################################################################################################### # DEFINITIONS # #################################################################################################### # IMPORTANT !! # The labels must translate precisely into the numbers in the kitti.yaml mapping file! LABELS = { 'Car': 1, 'Van': 2, 'Truck': 3, 'Pedestrian': 4, 'Person_sitting': 5, 'Cyclist': 6, 'Tram': 7, # Throw away 'Misc' and 'DontCare' } # Initialize the LabelMappingManager LMM = LabelMappingManager() MAPPING = LMM.get_mapping('kitti') #################################################################################################### # FUNCTIONS # #################################################################################################### def read_camera_matrix(line): """ Reads a camera matrix P (3x4) stored in the row-major scheme. Input: line: Row-major stored matrix separated by spaces, first element is the matrix name Returns: camera matrix P 4x4 """ data = line.split(' ') if data[0] != 'P2:': print('ERROR: We need left camera matrix (P2)!') exit(1) P = np.asmatrix([[float(data[1]), float(data[2]), float(data[3]), float(data[4])], [float(data[5]), float(data[6]), float(data[7]), float(data[8])], [float(data[9]), float(data[10]), float(data[11]), float(data[12])]]) return P def extract_3D_bb(data, P): """ Extract 3D bounding box coordinates in the image from the KITTI labels. Input: data: One split line of the label file (line.split(' ')) P: 3x4 camera projection matrix Returns: matrix of corners: fbr, rbr, fbl, rbl, ftr, rtr, ftl, rtl """ # Object dimensions h = float(data[8]) w = float(data[9]) l = float(data[10]) # Position of the center point on the ground plane (xz plane) cx = float(data[11]) cy = float(data[12]) cz = float(data[13]) # Rotation of the object around y ry = float(data[14]) # 3D box corners - careful, the coordinate system of the car is that x points # forward, not z! (It is rotated by 90deg with respect to the camera one) # fbr, rbr, fbl, rbl, ftr, rtr, ftl, rtl X = np.asmatrix([[l/2, -l/2, l/2, -l/2, l/2, -l/2, l/2, -l/2], [0, 0, 0, 0, -h, -h, -h, -h], [-w/2, -w/2, w/2, w/2, -w/2, -w/2, w/2, w/2], [1, 1, 1, 1, 1, 1, 1, 1]]) # Rotate the 3D box around y axis and translate it to the correct position in the camera frame X = Rt4x4(R3x3_y(ry), t3x1(cx, cy, cz)) * X x = P * X # x is in homogeneous coordinates -> get u, v x = x / x[2,:] x = x[0:2,:] # image = cv2.imread(path_image) # # Front # cv2.line(image, (int(x[0,0]), int(x[1,0])), (int(x[0,2]), int(x[1,2])), (0,255,0), 3) # cv2.line(image, (int(x[0,4]), int(x[1,4])), (int(x[0,6]), int(x[1,6])), (0,255,0)) # cv2.line(image, (int(x[0,0]), int(x[1,0])), (int(x[0,4]), int(x[1,4])), (0,255,0)) # cv2.line(image, (int(x[0,2]), int(x[1,2])), (int(x[0,6]), int(x[1,6])), (0,255,0), 3) # # Rear # cv2.line(image, (int(x[0,1]), int(x[1,1])), (int(x[0,3]), int(x[1,3])), (0,0,255)) # cv2.line(image, (int(x[0,5]), int(x[1,5])), (int(x[0,7]), int(x[1,7])), (0,0,255)) # cv2.line(image, (int(x[0,1]), int(x[1,1])), (int(x[0,5]), int(x[1,5])), (0,0,255)) # cv2.line(image, (int(x[0,3]), int(x[1,3])), (int(x[0,7]), int(x[1,7])), (0,0,255)) # # Connections # cv2.line(image, (int(x[0,0]), int(x[1,0])), (int(x[0,1]), int(x[1,1])), (255,0,0)) # cv2.line(image, (int(x[0,2]), int(x[1,2])), (int(x[0,3]), int(x[1,3])), (255,0,0), 3) # cv2.line(image, (int(x[0,4]), int(x[1,4])), (int(x[0,5]), int(x[1,5])), (255,0,0)) # cv2.line(image, (int(x[0,6]), int(x[1,6])), (int(x[0,7]), int(x[1,7])), (255,0,0)) # # Show image # cv2.imshow('img', image) # cv2.waitKey() return x def flip_3D_bb(x, image_width): """ Flips the annotation of the image around y axis. Input: x: coordinates of points fbr, rbr, fbl, rbl, ftr, rtr, ftl, rtl image_width: width of the flipped image Return: x - flipped coordinates """ # First flip the x coordinates of the points x[0,:] = image_width - x[0,:] # Now switch left and right points x_out = np.matrix(np.copy(x)) x_out[:,0] = x[:,2] x_out[:,1] = x[:,3] x_out[:,2] = x[:,0] x_out[:,3] = x[:,1] x_out[:,4] = x[:,6] x_out[:,5] = x[:,7] x_out[:,6] = x[:,4] x_out[:,7] = x[:,5] return x_out def process_image(path_image, path_label_file, path_calib_file, label, flip, filter, outfile): """ Processes one image from the dataset and writes it out to the outfile. Input: path_image: Path to the image file path_label_file: Path to the label file with KITTI labels path_calib_file: Path to the calibration file for this image label: Which class label should be extracted from the dataset (default None) flip: True/False whether the images should also be flipped by this script filter: True/False whether we should filter out very occluded and truncated boxes outfile: File handle of the open output BBTXT file """ if flip: # We have to flip the image and save it image = cv2.imread(path_image) image_width = image.shape[1] filename = os.path.basename(path_image) directory = os.path.dirname(path_image).rstrip('/') + '_flip' path_image = os.path.join(directory, filename) if not os.path.exists(directory): os.makedirs(directory) if not os.path.exists(path_image): image = cv2.flip(image, 1) cv2.imwrite(path_image, image) with open(path_label_file, 'r') as infile_label, open(path_calib_file, 'r') as infile_calib: # Read camera calibration matrices for line in infile_calib: if line[:2] == 'P2': P = read_camera_matrix(line.rstrip('\n')) # Read the objects for line in infile_label: line = line.rstrip('\n') data = line.split(' ') # First element of the data is the label. We don't want to process 'Misc' and # 'DontCare' labels if data[0] == 'Misc' or data[0] == 'DontCare': continue # Check label, if required if label is not None and MAPPING[LABELS[data[0]]] != label: continue # We do not want to include objects, which are occluded or truncated too much if filter and (int(data[2]) >= 2 or float(data[1]) > 0.75): continue # Extract image coordinates (positions) of 3D bounding box corners, the corners are # in the following order: fbr, rbr, fbl, rbl, ftr, rtr, ftl, rtl x = extract_3D_bb(data, P) if flip: x = flip_3D_bb(x, image_width) min_uv = np.min(x, axis=1) # xmin, ymin max_uv = np.max(x, axis=1) # xmax, ymax # The size of an image in KITTI is 1250x375. If the bounding box is significantly # larger, discard it - probably just some large distortion from camera if max_uv[1,0]-min_uv[1,0] > 700 or max_uv[0,0]-min_uv[0,0] > 1500: continue line_out = path_image + ' ' line_out += str(LABELS[data[0]]) + ' ' # For confidence we put one - just to have something line_out += '1 ' # 3D bounding box is specified by the image coordinates of the front bottom left and # right corners, rear bottom left corner and y coordinate of the front top left # corner line_out += str(min_uv[0,0]) + ' ' + str(min_uv[1,0]) + ' ' \ + str(max_uv[0,0]) + ' ' + str(max_uv[1,0]) + ' ' \ + str(x[0,2]) + ' ' + str(x[1,2]) + ' ' + str(x[0,0]) + ' ' \ + str(x[1,0]) + ' ' + str(x[0,3]) + ' ' + str(x[1,3]) + ' ' \ + str(x[1,6]) + '\n' outfile.write(line_out) def translate_file(path_labels, path_images, outfile, label, flip, filter): """ Runs the translation of the KITTI 3d bounding box label format into the BB3TXT format. Input: path_labels: Path to the "label_2" folder of the KITTI dataset path_images: Path to the "image_2" folder with images from the KITTI dataset outfile: File handle of the open output BBTXT file label: Which class label should be extracted from the dataset (default None) flip: True/False whether the images should also be flipped by this script filter: True/False whether we should filter out very occluded and truncated boxes """ print('-- TRANSLATING KITTI TO BB3TXT') # Get the list of all label files in the directory filenames = [f for f in os.listdir(path_labels) if os.path.isfile(os.path.join(path_labels, f))] if len(filenames) != 7481: print('Wrong number (%d) of files in the KITTI dataset! Should be 7481.'%(len(filenames))) return # Read each file and write the labels from it for f in filenames: path_label_file = os.path.join(path_labels, f) path_calib_file = os.path.join(path_labels.rstrip('/').rstrip('label_2'), 'calib', f) if not os.path.exists(path_calib_file): print('ERROR: We need camera calibration matrices "%s"'%(path_calib_file)) exit(1) path_image = os.path.join(path_images, os.path.splitext(f)[0]) + '.png' if not os.path.isfile(path_image): print('WARNING: Image "%s" does not exist!'%(path_image)) process_image(path_image, path_label_file, path_calib_file, label, False, filter, outfile) if flip: # Add also the flipped image process_image(path_image, path_label_file, path_calib_file, label, True, filter, outfile) print('-- TRANSLATION DONE') #################################################################################################### # MAIN # #################################################################################################### def parse_arguments(): """ Parse input options of the script. """ parser = argparse.ArgumentParser(description='Convert KITTI label files into BBTXT.') parser.add_argument('path_labels', metavar='path_labels', type=str, help='Path to the "label_2" folder of the KITTI dataset') parser.add_argument('path_images', metavar='path_images', type=str, help='Path to the "image_2" folder of the KITTI dataset') parser.add_argument('outfile', metavar='path_outfile', type=argparse.FileType('w'), help='Path to the output BBTXT file (including the extension)') parser.add_argument('--label', metavar='label', type=str, default=None, help='Single class of objects that should be separated from the dataset. ' \ 'One from ' + str(available_categories(MAPPING))) parser.add_argument('--flip', dest='flip', action='store_true', default=False, help='If provided, the images will also be flipped') parser.add_argument('--filter', dest='filter', action='store_true', default=False, help='If provided, very occluded and truncated bounding boxes will be ' \ 'filtered out') args = parser.parse_args() if not os.path.exists(args.path_labels): print('Input path "%s" does not exist!'%(args.path_labels)) parser.print_help() exit(1) if not os.path.exists(args.path_images): print('Input path "%s" does not exist!'%(args.path_images)) parser.print_help() exit(1) if args.label is not None and args.label not in available_categories(MAPPING): print('Unknown class label "%s"!'%(args.label)) exit(1) return args def main(): args = parse_arguments() translate_file(args.path_labels, args.path_images, args.outfile, args.label, args.flip, args.filter) args.outfile.close() if __name__ == '__main__': main()
roboticstoolbox/models/ETS/__init__.py
tassos/robotics-toolbox-python
749
12724045
from roboticstoolbox.models.ETS.Panda import Panda from roboticstoolbox.models.ETS.Frankie import Frankie from roboticstoolbox.models.ETS.Puma560 import Puma560 from roboticstoolbox.models.ETS.Planar_Y import Planar_Y from roboticstoolbox.models.ETS.Planar2 import Planar2 from roboticstoolbox.models.ETS.GenericSeven import GenericSeven from roboticstoolbox.models.ETS.Omni import Omni __all__ = ["Panda", "Frankie", "Puma560", "Planar_Y", "Planar2", "GenericSeven", "Omni"]
mentalist/view/adder.py
qkum/mentalist
1,293
12724050
<gh_stars>1000+ import tkinter as Tk from functools import partial import datetime import tkinter.messagebox import locale from .base_words import BaseWordsNode, center_window from .const import NUMBER_LIST, DATE_FORMATS, SPECIAL_CHARACTERS from .. import model class AdderNode(BaseWordsNode): '''Append and Prepend nodes. Inherits the file menu from BaseWordsNode. ''' def __init__(self, controller, master=None, main=None, type_='Append', allow_remove=True, **kwargs): BaseWordsNode.__init__(self, controller, master=master, main=main, title=type_, allow_remove=allow_remove, **kwargs) self.sp_from = None self.sp_to = None self.custom_num_window = None self.entry_string = None self.date_format = Tk.StringVar() self.special_dlg = None self.chk_special = [] def add_upper_button(self): mb = Tk.Menubutton(self.upper_frame, text=" + ", relief="raised", font=("Helvetica", "14")) mb.menu = Tk.Menu(mb, tearoff=0) mb["menu"] = mb.menu label = 'No %s' % self.title mb.menu.add_command(label=label, command=partial(self.controller.add_attr, label=label, node_view=self, attr_class=model.NothingAdderAttr)) # The first few attributes are the same as BaseFile m_words = Tk.Menu(mb, tearoff=0) mb.menu.add_cascade(label='Words', menu=m_words, underline=0) m_words.add_command(label='Custom File...', command=partial(self.open_file_dlg, partial(self.controller.add_attr, label='File:', right_label_text='Calculating...', node_view=self, attr_class=model.FileAttr, controller=self.controller))) m_words.add_command(label='Custom String...', command=partial(self.open_string_popup, 'String')) self.add_file_menu(m_words, m_words) # In addition to BaseFile's attributes, we have numbers, dates, # and special characters m_numbers = Tk.Menu(mb, tearoff=0) mb.menu.add_cascade(label='Numbers', menu=m_numbers, underline=0) m_numbers.add_command(label='User Defined...', command=self.open_custom_number_dlg) for type_, range_str in NUMBER_LIST: range_ = list(map(int, range_str.split('-'))) if type_ != 'years': range_str = '-'.join(['0', locale.format('%d', range_[1], grouping=True)]) range_[1] += 1 m_numbers.add_command(label='{}: {}'.format(type_.capitalize(), range_str), command=partial( self.controller.add_attr, label='Numbers: {} {}'.format(type_.capitalize(), range_str), node_view=self, attr_class=model.RangeAttr, start=range_[0], end=range_[1])) m_numbers.add_command(label='Dates...', command=self.open_date_dlg) mb.menu.add_command(label="Special Characters...", command=self.open_special_dlg) # Area and zip codes from lookup tables for code_type in ['Area', 'Zip']: m_area_zip = Tk.Menu(mb, tearoff=0) mb.menu.add_cascade(label='{} Codes (US)'.format(code_type), menu=m_area_zip, underline=0) for location_type in ['State', 'City']: m_sub = Tk.Menu(m_area_zip, tearoff=0) m_area_zip.add_cascade(label='By {}'.format(location_type), menu=m_sub, underline=0) target_list = sorted(model.location_codes[location_type][code_type].keys()) for st in target_list: label = '{} Codes: {} {}'.format(code_type, st, location_type if location_type == 'State' else '') m_sub.add_command(label=st, command=partial( self.controller.add_attr, label=label, node_view=self, attr_class=model.LocationCodeAttr, code_type=code_type, location=st, location_type=location_type)) mb.pack(side="left", fill="x", padx=10, pady=5) def open_custom_number_dlg(self): '''Opens a popup for defining a custom number range ''' self.custom_num_window = Tk.Toplevel() self.custom_num_window.withdraw() self.custom_num_window.title('{}: Number Selection'.format(self.title)) self.custom_num_window.resizable(width=False, height=False) frame = Tk.Frame(self.custom_num_window) lb = Tk.Label(frame, text='Select Numbers to {}'.format(self.title)) lb.pack(fill='both', side='top') # Boxes for inputting the start and endpoints sp_box = Tk.Frame(frame) lb1 = Tk.Label(sp_box, text='From') lb1.grid(column=0, row=0, padx=5, sticky='E') self.sp_from = Tk.Spinbox(sp_box, width=12, from_=0, to=10000) self.sp_from.grid(column=1, row=0) lb2 = Tk.Label(sp_box, text='To') lb2.grid(column=0, row=1, padx=5, sticky='E') self.sp_to = Tk.Spinbox(sp_box, width=12, from_=0, to=10000) self.sp_to.grid(column=1, row=1) # Optional zero padding lb_zeros = Tk.Label(sp_box, text='Pad with zeros to width:') lb_zeros.grid(column=0, row=2, sticky='E') self.sp_zfill = Tk.Spinbox(sp_box, width=12, from_=0, to=10) self.sp_zfill.grid(column=1, row=2) sp_box.pack(fill='both', side='top', padx=30, pady=20) # Cancel and Ok buttons btn_box = Tk.Frame(frame) btn_cancel = Tk.Button(btn_box, text='Cancel', command=self.cancel_custom_num_window) btn_cancel.pack(side='right', padx=10, pady=20) btn_ok = Tk.Button(btn_box, text='Ok', command=self.on_ok_custom_num_window) btn_ok.pack(side='left', padx=10, pady=20) btn_box.pack() frame.pack(fill='both', padx=10, pady=10) center_window(self.custom_num_window, self.main.master) self.custom_num_window.focus_set() def cancel_custom_num_window(self, *args): '''Cancel was pressed ''' if self.custom_num_window: self.custom_num_window.destroy() self.custom_num_window = None def on_ok_custom_num_window(self, *args): '''Ok was pressed, create the attribute ''' try: val_from = int(self.sp_from.get()) val_to = int(self.sp_to.get()) zfill = int(self.sp_zfill.get()) except ValueError: tkinter.messagebox.showerror('Invalid Number', '"From", "To", and "Pad with zeros to width" must all be integers', parent=self.main) return if val_from > val_to: tkinter.messagebox.showerror('Invalid Range', '"From" value must be less than or equal to "To"', parent=self.main) elif val_to - val_from > 3000000: tkinter.messagebox.showerror('Invalid Range', 'The range must be smaller than 3 million', parent=self.main) else: if zfill == 0: label = 'Numbers: {} - {}'.format(val_from, val_to) else: label = 'Numbers: {} - {}, zero padding width: {}'.format(val_from, val_to, zfill) self.controller.add_attr(label=label, node_view=self, attr_class=model.RangeAttr, start=val_from, end=val_to+1, zfill=zfill) self.cancel_custom_num_window() def open_date_dlg(self): '''Open a popup for defining a range of dates ''' self.custom_num_window = Tk.Toplevel() self.custom_num_window.withdraw() self.custom_num_window.title('{}: Date Selection'.format(self.title)) self.custom_num_window.resizable(width=False, height=False) frame = Tk.Frame(self.custom_num_window) lb = Tk.Label(frame, text='Select Dates to {}'.format(self.title)) lb.pack(fill='both', side='top') # Boxes for inputting the start and endpoints sp_box = Tk.Frame(frame) lb1 = Tk.Label(sp_box, text='From') lb1.pack(side='left', padx=5) cur_year = datetime.date.today().year self.sp_from = Tk.Spinbox(sp_box, width=12, from_=1950, to=cur_year) self.sp_from.pack(side='left') lb2 = Tk.Label(sp_box, text='To') lb2.pack(side='left', padx=(50, 5)) var = Tk.IntVar() var.set(str(cur_year)) self.sp_to = Tk.Spinbox(sp_box, width=12, from_=1950, to=cur_year, textvariable=var) self.sp_to.pack(side='right') sp_box.pack(fill='both', side='top', padx=30, pady=20) # Choose how the dates are formatted (mmddyyyy etc.) drop_down = Tk.OptionMenu(frame, self.date_format, *DATE_FORMATS) drop_down.configure(width=max(map(len, DATE_FORMATS)) + 4) self.date_format.set('mmddyy') drop_down.pack(side='top') self.date_zero_padding = Tk.IntVar() checkbutton = Tk.Checkbutton(frame, text='Leading zero on single-digit d or m', relief=Tk.FLAT, variable=self.date_zero_padding) checkbutton.pack() # Ok and cancel buttons btn_box = Tk.Frame(frame) btn_cancel = Tk.Button(btn_box, text='Cancel', command=self.cancel_custom_num_window) btn_cancel.pack(side='right', padx=10, pady=20) btn_ok = Tk.Button(btn_box, text='Ok', command=self.on_ok_date_window) btn_ok.pack(side='left', padx=10, pady=20) btn_box.pack() frame.pack(fill='both', padx=10, pady=10) center_window(self.custom_num_window, self.main.master) self.custom_num_window.focus_set() def on_ok_date_window(self): '''Ok was pressed, add the date range attribute ''' year_limits = [1, 3000] try: val_from = int(self.sp_from.get()) val_to = int(self.sp_to.get()) except ValueError: tkinter.messagebox.showerror('Invalid Value', '"From" year and "To" year must both be integers', parent=self.main) return if val_from > val_to: tkinter.messagebox.showerror('Invalid Value', '"From" year must be less than or equal to "To" year', parent=self.main) elif val_to - val_from > 200: tkinter.messagebox.showerror('Invalid Value', 'Distance between "From" year and "To" year must be 200 or less', parent=self.main) elif val_from < year_limits[0] or val_to > year_limits[1]: tkinter.messagebox.showerror('Invalid Range', 'The year must be between {} and {}'.format(*year_limits), parent=self.main) else: label = 'Date: {} - {}, format: {}, {}'.format(val_from, val_to, self.date_format.get(), ['no leading zero', 'with leading zero'][self.date_zero_padding.get()==1]) self.controller.add_attr(label=label, node_view=self, attr_class=model.DateRangeAttr, start_year=val_from, end_year=val_to+1, format=self.date_format.get(), zero_padding=self.date_zero_padding.get()==1, controller=self.controller) self.cancel_custom_num_window() def open_special_dlg(self): '''Open a popup for selecting special characters ''' self.special_dlg = Tk.Toplevel() self.special_dlg.withdraw() self.special_dlg.title('Select Special Characters') self.special_dlg.resizable(width=False, height=False) frame = Tk.Frame(self.special_dlg) lb = Tk.Label(frame, text='Select Special Characters'.format(self.title)) lb.pack(fill='both', side='top') box = Tk.Frame(frame) self.chk_special = [] max_column_checks = 15 for v, val in enumerate(SPECIAL_CHARACTERS): var = Tk.IntVar() tmp = Tk.Checkbutton(box, text=val, relief=Tk.FLAT, variable=var) self.chk_special.append(var) tmp.grid(row=v % max_column_checks, column=v // max_column_checks, sticky='W', padx=10) box.pack(fill='both', side='top', padx=30, pady=20) # Ok and Cancel buttons btn_box = Tk.Frame(frame) btn_cancel = Tk.Button(btn_box, text='Cancel', command=self.cancel_special) btn_cancel.pack(side='right', padx=10, pady=20) btn_ok = Tk.Button(btn_box, text='Ok', command=self.on_ok_special_dlg) btn_ok.pack(side='left', padx=10, pady=20) btn_box.pack() frame.pack(fill='both', padx=60, pady=10) center_window(self.special_dlg, self.main.master) self.special_dlg.focus_set() def cancel_special(self, *args): if self.special_dlg: self.special_dlg.destroy() self.special_dlg = None def on_ok_special_dlg(self, *args): '''Ok was pressed, add the special character attribute ''' checked_vals = [SPECIAL_CHARACTERS[i] for i in range(len(SPECIAL_CHARACTERS)) if self.chk_special[i].get() == 1] if len(checked_vals) > 0: label = 'Special Characters: {}'.format(' '.join(checked_vals)) self.controller.add_attr(label=label, node_view=self, attr_class=model.StringListAttr, strings=checked_vals) self.cancel_special()
Logistic Regression with StatsModels/logistic.py
joao-r-santos/DataSciencePython
5,070
12724074
<gh_stars>1000+ """ Created on Wed Sep 09 12:38:16 2015 @author: ujjwal.karn """ import pandas as pd #for handling datasets import statsmodels.api as sm #for statistical modeling import pylab as pl #for plotting import numpy as np #for numerical computation # read the data in dfTrain = pd.read_csv("C:\\Users\\ujjwal.karn\\Desktop\\Python\\train.csv") dfTest = pd.read_csv("C:\\Users\\ujjwal.karn\\Desktop\\Python\\test.csv") # take a look at the dataset print dfTrain.head() # admit gre gpa prestige #0 0 380 3.61 good #1 1 660 3.67 good #2 1 800 4.00 best #3 1 640 3.19 ok #4 0 520 2.93 ok print dfTest.head() # gre gpa prestige #0 640 3.30 veryGood #1 660 3.60 good #2 400 3.15 veryGood #3 680 3.98 veryGood #4 220 2.83 good # summarize the data print dfTrain.describe() # admit gre gpa #count 300.000000 300.000000 300.000000 #mean 0.306667 590.866667 3.386233 #std 0.461880 117.717630 0.374880 #min 0.000000 300.000000 2.260000 #25% 0.000000 515.000000 3.130000 #50% 0.000000 600.000000 3.390000 #75% 1.000000 680.000000 3.642500 #max 1.000000 800.000000 4.000000 # take a look at the standard deviation of each column print dfTrain.std() #admit 0.46188 #gre 117.71763 #gpa 0.37488 # frequency table cutting presitge and whether or not someone was admitted print pd.crosstab(dfTrain['admit'], dfTrain['prestige'], rownames=['dmit']) #prestige best good ok veryGood #admit #0 20 73 47 68 #1 25 19 9 39 #explore data dfTrain.groupby('admit').mean() # gre gpa #admit #0 573.461538 3.336587 #1 630.217391 3.498478 # plot one column dfTrain['gpa'].hist() pl.title('Histogram of GPA') pl.xlabel('GPA') pl.ylabel('Frequency') pl.show() # barplot of gre score grouped by admission status (True or False) pd.crosstab(dfTrain.gre, dfTrain.admit.astype(bool)).plot(kind='bar') pl.title('GRE score by Admission Status') pl.xlabel('GRE score') pl.ylabel('Frequency') pl.show() # dummify prestige dummy_ranks = pd.get_dummies(dfTrain['prestige'], prefix='prestige') print dummy_ranks.head() # prestige_best prestige_good prestige_ok prestige_veryGood #0 0 1 0 0 #1 0 1 0 0 #2 1 0 0 0 #3 0 0 1 0 #4 0 0 1 0 # create a clean data frame for the regression cols_to_keep = ['admit', 'gre', 'gpa'] data = dfTrain[cols_to_keep].join(dummy_ranks.ix[:, 'prestige_good':]) print data.head() # admit gre gpa prestige_good prestige_ok prestige_veryGood #0 0 380 3.61 1 0 0 #1 1 660 3.67 1 0 0 #2 1 800 4.00 0 0 0 #3 1 640 3.19 0 1 0 #4 0 520 2.93 0 1 0 # manually add the intercept data['intercept'] = 1.0 print data.head() train_cols = data.columns[1:] print data.columns[1:] # Index([u'gre', u'gpa', u'prestige_good', u'prestige_ok', u'prestige_veryGood', u'intercept'], dtype='object') #Logistic Regression logit = sm.Logit(data['admit'], data[train_cols]) # fit the model result = logit.fit() print result.summary() # recreate the dummy variables dummy_ranks_test = pd.get_dummies(dfTest['prestige'], prefix='prestige') print dummy_ranks_test #create intercept column dfTest['intercept'] = 1.0 # keep only what we need for making predictions cols_to_keep = ['gre', 'gpa', 'prestige', 'intercept'] dfTest = dfTest[cols_to_keep].join(dummy_ranks_test.ix[:, 'prestige_good':]) dfTest.head() # make predictions on the enumerated dataset dfTest['admit_pred'] = result.predict(dfTest[train_cols]) #see probabilities print dfTest.head() #convert probabilities to 'yes' 'no' dfTest['admit_yn']= np.where(dfTest['admit_pred'] > 0.5,'yes','no') print dfTest.head() cols= ['gre', 'gpa', 'admit_yn'] dfTest[cols].groupby('admit_yn').mean() # gre gpa #admit_yn #no 556.585366 3.324268 #yes 676.666667 3.750000 cols= ['gre', 'gpa', 'admit_yn'] dfTest[cols].groupby('admit_yn').mean() # gre gpa #admit_yn #no 556.585366 3.324268 #yes 676.666667 3.750000 dfTest.to_csv('C:\\Users\\ujjwal.karn\\Desktop\\Python\\output.csv', sep=',')
macropy/experimental/test/pyxl_snippets.py
CyberFlameGO/macropy
2,061
12724087
# -*- coding: utf-8 -*- import re import unittest from xml.etree import ElementTree from macropy.case_classes import macros, case from macropy.experimental.pyxl_strings import macros, p # noqa: F811 from macropy.tracing import macros, require # noqa: F811, F401 from pyxl import html # noqa: F401 def normalize(string): return ElementTree.tostring( ElementTree.fromstring( re.sub("\n *", "", string) ), encoding='utf8', method='xml') class Tests(unittest.TestCase): def test_inline_python(self): image_name = "bolton.png" image = p['<img src="/static/images/{image_name}" />'] text = "<NAME>" block = p['<div>{image}{text}</div>'] element_list = [image, text] block2 = p['<div>{element_list}</div>'] with require: block2.to_string() == '<div><img src="/static/images/bolton.png" /><NAME></div>' def test_dynamic(self): items = ['Puppies', 'Dragons'] nav = p['<ul />'] for text in items: nav.append(p['<li>{text}</li>']) with require: str(nav) == "<ul><li>Puppies</li><li>Dragons</li></ul>" def test_attributes(self): fruit = p['<div data-text="tangerine" />'] with require: fruit.data_text == "tangerine" fruit.set_attr('data-text', 'clementine') with require: fruit.attr('data-text') == "clementine" def test_interpreter(self): safe_value = "<b>Puppies!</b>" unsafe_value = "<script>bad();</script>" unsafe_attr = '">' pyxl_blob = p["""<div class="{unsafe_attr}"> {unsafe_value} {rawhtml(safe_value)} </div>"""] target_blob = '<div class="&quot;&gt;">&lt;script&gt;bad();&lt;/script&gt; <b>Puppies!</b></div>' with require: normalize(pyxl_blob.to_string()) == normalize(target_blob) def test_modules(self): from pyxl.element import x_element @case class User(name, profile_picture): pass class x_user_badge(x_element): __attrs__ = { 'user': object, } def render(self): return p[""" <div> <img src="{self.user.profile_picture}" style="float: left; margin-right: 10px;"/> <div style="display: table-cell;"> <div>{self.user.name}</div> {self.children()} </div> </div>"""] user = User("cowman", "http:/www.google.com") content = p['<div>Any arbitrary content...</div>'] pyxl_blob = p['<user_badge user="{user}">{content}</user_badge>'] target_blob = """ <div> <img src="http:/www.google.com" style="float: left; margin-right: 10px;" /> <div style="display: table-cell;"><div>cowman</div> <div>Any arbitrary content...</div></div> </div>""" with require: normalize(pyxl_blob.to_string()) == normalize(target_blob)
benchmarks/lucasb-eyer-heatmap/examples/customstamps.py
pointhi/benchmarks
206
12724088
#!/usr/bin/env python # heatmap - High performance heatmap creation in C. # # The MIT License (MIT) # # Copyright (c) 2013 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # from os.path import join as pjoin, dirname from ctypes import CDLL, CFUNCTYPE, c_float, c_ulong, c_ubyte import Image # The stamp radius. The stamp will be a 2r+1 x 2r+1 square. r = 15 # Load the heatmap library using ctypes libhm = CDLL(pjoin(dirname(__file__), '..', 'libheatmap.so')) # Create the default (round) stamp of given radius. s_def = libhm.heatmap_stamp_gen(c_ulong(r)) # Create a custom stamp of given radius using a callback to set the stamp's content. # The callback will be called for every pixel of the stamp, and should return the # stamp's value at given distance to the stamp center. # This is a convenient method to create rotationally-symmetric stamps. HM_CB_FUNC = CFUNCTYPE(c_float, c_float) s_fat = libhm.heatmap_stamp_gen_nonlinear(c_ulong(r), HM_CB_FUNC(lambda d: d**4)) s_pty = libhm.heatmap_stamp_gen_nonlinear(c_ulong(r), HM_CB_FUNC(lambda d: d**0.125)) # Create a custom stamp from a raw data array. The data needs to be # laid out linearly in row-major (i.e. C) order. That means that the values # for the pixels are ordered like: # (x0, y0), (x1, y0), ..., (xN, y0), (x0, y1), ..., (xN, y1), ..., (xN, yM) # # Here, I create a "soft rectangle" stamp of fixed 10x5 size. sw, sh = 10, 5 stampbuf = (c_float*(sw*sh))( 0.00, 0.16, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.16, 0.00, 0.16, 0.33, 0.66, 0.66, 0.66, 0.66, 0.66, 0.66, 0.33, 0.16, 0.33, 0.66, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.66, 0.33, 0.16, 0.33, 0.66, 0.66, 0.66, 0.66, 0.66, 0.66, 0.33, 0.16, 0.00, 0.16, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.16, 0.00, ) s_rct = libhm.heatmap_stamp_load(c_ulong(sw), c_ulong(sh), stampbuf) # Create a heatmap object large enough to hold one occurrence of each stamp. d = 2*r+1 w, h = 3*d + 10, d hm = libhm.heatmap_new(w, h) # Add one point with each stamp next to each other; this way we can # see what the stamps look like. libhm.heatmap_add_point_with_stamp(hm, c_ulong( r), c_ulong(r), s_def) libhm.heatmap_add_point_with_stamp(hm, c_ulong( d + r), c_ulong(r), s_fat) libhm.heatmap_add_point_with_stamp(hm, c_ulong(2*d + r), c_ulong(r), s_pty) libhm.heatmap_add_point_with_stamp(hm, c_ulong(3*d + 5), c_ulong(r), s_rct) # As soon as we're done drawing, we can free the stamps. # (Of course, we might as well do that later.) libhm.heatmap_stamp_free(s_def) libhm.heatmap_stamp_free(s_fat) libhm.heatmap_stamp_free(s_pty) libhm.heatmap_stamp_free(s_rct) # This creates an image out of the heatmap. # `rawimg` now contains the image data in 32-bit RGBA. rawimg = (c_ubyte*(w*h*4))() libhm.heatmap_render_default_to(hm, rawimg) # Now that we've got a finished heatmap picture, we don't need the map anymore. libhm.heatmap_free(hm) # Use the PIL (for example) to make a png file out of that. img = Image.frombuffer('RGBA', (w, h), rawimg, 'raw', 'RGBA', 0, 1) img.save('stamps.png')
RecoLocalCalo/Castor/test/castor_cfg.py
ckamtsikis/cmssw
852
12724092
<filename>RecoLocalCalo/Castor/test/castor_cfg.py import FWCore.ParameterSet.Config as cms process = cms.Process("CastorProducts") process.load("FWCore.MessageLogger.MessageLogger_cfi") # specify the correct database tags which contain the updated gains and channelquality flags process.load("CondCore.DBCommon.CondDBSetup_cfi") process.CastorDbProducer = cms.ESProducer("CastorDbProducer") process.es_pool = cms.ESSource( "PoolDBESSource", process.CondDBSetup, timetype = cms.string('runnumber'), connect = cms.string('frontier://cmsfrontier.cern.ch:8000/FrontierProd/CMS_COND_31X_HCAL'), authenticationMethod = cms.untracked.uint32(0), toGet = cms.VPSet( cms.PSet( record = cms.string('CastorPedestalsRcd'), tag = cms.string('CastorPedestals_v2.0_offline') ), cms.PSet( record = cms.string('CastorPedestalWidthsRcd'), tag = cms.string('CastorPedestalWidths_v2.0_offline') ), cms.PSet( record = cms.string('CastorGainsRcd'), tag = cms.string('CastorGains_v2.0_offline') ), cms.PSet( record = cms.string('CastorGainWidthsRcd'), tag = cms.string('CastorGainWidths_v2.0_offline') ), cms.PSet( record = cms.string('CastorQIEDataRcd'), tag = cms.string('CastorQIEData_v2.0_offline') ), cms.PSet( record = cms.string('CastorChannelQualityRcd'), tag = cms.string('CastorChannelQuality_v2.0_offline') ), cms.PSet( record = cms.string('CastorElectronicsMapRcd'), tag = cms.string('CastorElectronicsMap_v2.0_offline') ) ) ) # end of Db configuration process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.source = cms.Source("PoolSource", duplicateCheckMode = cms.untracked.string("noDuplicateCheck"), fileNames = cms.untracked.vstring( 'file:data_RAW2DIGI_L1Reco_RECO.root' # choose your input file here ) ) # load CASTOR default reco chain (from towers on) process.load('RecoLocalCalo.Castor.Castor_cff') # construct the module which executes the RechitCorrector for data reconstructed in releases < 4.2.X process.rechitcorrector = cms.EDProducer("RecHitCorrector", rechitLabel = cms.InputTag("castorreco","","RECO"), # choose the original RecHit collection revertFactor = cms.double(62.5), # this is the factor to go back to the original fC: 1/0.016 doInterCalib = cms.bool(True) # do intercalibration ) # construct the module which executes the RechitCorrector for data reconstructed in releases >= 4.2.X process.rechitcorrector42 = cms.EDProducer("RecHitCorrector", rechitLabel = cms.InputTag("castorreco","","RECO"), # choose the original RecHit collection revertFactor = cms.double(1), # this is the factor to go back to the original fC - not needed when data is already intercalibrated doInterCalib = cms.bool(False) # don't do intercalibration, RecHitCorrector will only correct the EM response and remove BAD channels ) # tell to the CastorCell reconstruction that he should use the new corrected rechits for releases < 4.2.X #process.CastorCellReco.inputprocess = "rechitcorrector" # tell to the CastorTower reconstruction that he should use the new corrected rechits for releases >= 4.2.X process.CastorTowerReco.inputprocess = "rechitcorrector" process.MyOutputModule = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string('rechitcorrector_output.root') # choose your output file ) # execute the rechitcorrector and afterwards do the reco chain again (towers -> jets) process.producer = cms.Path(process.rechitcorrector*process.CastorFullReco) process.end = cms.EndPath(process.MyOutputModule)
river/metrics/multioutput/micro.py
online-ml/creme
1,105
12724096
from river import metrics, utils from river.metrics.multioutput.base import MultiOutputMetric __all__ = ["MicroAverage"] class MicroAverage(MultiOutputMetric, metrics.base.WrapperMetric): """Micro-average wrapper. The provided metric is updated with the value of each output. Parameters ---------- metric A classification or a regression metric. """ def __init__(self, metric): self._metric = metric @property def metric(self): return self._metric def works_with(self, model) -> bool: if isinstance(self.metric, metrics.base.ClassificationMetric): return utils.inspect.ismoclassifier(model) return utils.inspect.ismoregressor(model) def update(self, y_true, y_pred, sample_weight=1.0): for i in y_pred: self.metric.update(y_true[i], y_pred[i], sample_weight) return self def revert(self, y_true, y_pred, sample_weight=1.0): for i in y_pred: self.metric.revert(y_true[i], y_pred[i], sample_weight) return self def get(self): return self.metric.get()
taskwiki/completion.py
Jasha10/taskwiki
465
12724107
<filename>taskwiki/completion.py from functools import reduce, wraps import re from tasklib import TaskWarrior from taskwiki import constants from taskwiki import regexp def complete_last_word(f): @wraps(f) def wrapper(self, arglead): before, sep, after = arglead.rpartition(' ') comps = f(self, after) if comps: return [before + sep + comp for comp in comps] else: return [] return wrapper # TODO(2023-06-27): use functools once python 3.7 is EOL def cached_property(f): @wraps(f) def wrapper(self): k = '_cache_' + f.__name__ if k in self.__dict__: return self.__dict__[k] else: v = f(self) self.__dict__[k] = v return v return wrapper # "must*opt" -> "must(o(p(t)?)?)?" def prefix_regex(s): must, _, opt = s.partition('*') return must + reduce(lambda y, x: f"({x}{y})?", reversed(opt), '') RE_PROJECT = re.compile(prefix_regex('pro*ject')) RE_DATE = re.compile('|'.join( [prefix_regex(r) for r in "du*e un*til wa*it ent*ry end st*art sc*heduled".split()])) RE_RECUR = re.compile(prefix_regex('re*cur')) class Completion(): def __init__(self, tw): self.tw = tw @cached_property def _attributes(self): return sorted(self.tw.execute_command(['_columns'])) @cached_property def _tags(self): if self.tw.version < TaskWarrior.VERSION_2_4_5: return sorted(self.tw.execute_command(['_tags'])) else: return sorted(set( tag for tags in self.tw.execute_command(['_unique', 'tag']) for tag in tags.split(','))) @cached_property def _projects(self): if self.tw.version < TaskWarrior.VERSION_2_4_5: return sorted(self.tw.execute_command(['_projects'])) else: return sorted(self.tw.execute_command(['_unique', 'project'])) def _complete_any(self, w): if w: return [] return ['+', '-'] + [attr + ':' for attr in self._attributes()] def _complete_attributes(self, w): if not w.isalpha(): return [] return [attr + ':' for attr in self._attributes() if attr.startswith(w)] def _complete_tags(self, w): if not w or w[0] not in ['+', '-']: return [] t = w[1:] return [w[0] + tag for tag in self._tags() if tag.startswith(t)] def _comp_words(self, w, pattern, words): before, sep, after = w.partition(':') if not sep or not re.fullmatch(pattern, before): return [] return [before + sep + word for word in words() if word.startswith(after)] def _complete_projects(self, w): return self._comp_words(w, RE_PROJECT, self._projects) def _complete_dates(self, w): return self._comp_words(w, RE_DATE, lambda: constants.COMPLETION_DATE) def _complete_recur(self, w): return self._comp_words(w, RE_RECUR, lambda: constants.COMPLETION_RECUR) @complete_last_word def modify(self, w): return \ self._complete_any(w) or \ self._complete_attributes(w) or \ self._complete_projects(w) or \ self._complete_tags(w) or \ self._complete_dates(w) or \ self._complete_recur(w) or \ [] def omni_modstring_findstart(self, line): m = re.search(regexp.GENERIC_TASK, line) bline = line.encode("utf-8") # omni findstart needs byte offset if m and not m.group('uuid') and b' -- ' in bline: return bline.rfind(b' ') + 1 else: return -1 def omni_modstring(self, w): return \ self._complete_any(w) or \ self._complete_attributes(w) or \ self._complete_projects(w) or \ self._complete_tags(w) or \ self._complete_dates(w) or \ self._complete_recur(w) or \ []
{{cookiecutter.project_slug}}/backend/app/app/api/api_v1/api.py
abnerjacobsen/full-stack
516
12724110
<filename>{{cookiecutter.project_slug}}/backend/app/app/api/api_v1/api.py<gh_stars>100-1000 # Import installed packages # Import app code from app.main import app from app.core import config from app.db.flask_session import db_session from .api_docs import docs from .endpoints import role from .endpoints import token from .endpoints import user from .endpoints import utils
00Python/day12/PoliceVsTheif.py
HaoZhang95/PythonAndMachineLearning
937
12724184
""" 警察vs土匪 """ class Gun(object): def __init__(self, model, damage): # 型号 self.model = model # 杀伤力 self.damage = damage # 子弹数量,默认为0 self.bullet_count = 0 # 重写str def __str__(self): return "型号:%s, 杀伤力:%s, 子弹数量:%s" % ( self.model, self.damage, self.bullet_count ) # 填充子弹 def add_bullets(self, bullet_count): self.bullet_count += bullet_count print("填充子弹完成,当前数量为:%s" % bullet_count) # gun发射子弹打击土匪 def shoot(self, enemy): # 判断当前枪是否有子弹 if self.bullet_count <= 0: print("%s 没有子弹, 请填充子弹" % self.model) else: # 如果有子弹,更新子弹数量 self.bullet_count -= 1 # 判断是否击中土匪 if enemy is not None: enemy.hurt(self) print("发射了一颗子弹 %s 剩余子弹:%d" % (self.model, self.bullet_count)) class Player(object): def __init__(self, name, hp=100): # 玩家名字 self.name = name # 血量 self.hp = hp # 使用的枪械 self.gun = None def __str__(self): # 如果土匪的学量小于0 if self.hp <= 0: return "%s 已经挂掉了..." % self.name else: # 没枪是土匪,只有警察有枪 if self.gun is None: return "%s [%d]没有佩戴枪" % (self.name, self.hp) else: return "%s [%d] 枪:%s" % (self.name, self.hp, self.gun) # 土匪受伤的方法 def hurt(self, enemy_gun): # 击中更新血量 self.hp -= enemy_gun.damage # 判断剩余血量 if self.hp <= 0: print("%s 已经挂掉了..." % self.name) else: print("%s 被 %s 击中,剩余血量: %d" % (self.name, enemy_gun.model, self.hp)) # 警察开火 def fire(self, enemy): # 警察判断自己有无武器 if self.gun is None: print("%s 没有佩戴枪, 请佩戴枪" % self.name) return # 判断有无子弹 if self.gun.bullet_count <= 0: # 自动填充子弹 self.gun.add_bullets(10) # 射击土匪 self.gun.shoot(enemy) print("%s 正在向 %s 开火..." % (self.name, enemy.name)) # 测试main()函数 def main(): # 创建一个警察 police_man = Player("警察") # 创建一个土匪 bad_man = Player("土匪", 70) # 枪打土匪(无枪) police_man.fire(bad_man) # 使用枪类创建一把AK47 ak47 = Gun("AK47", 50) # 给警察配枪 police_man.gun = ak47 # 枪打土匪(有枪) police_man.fire(bad_man) police_man.fire(bad_man) # # 填充子弹 # ak47.add_bullets(50) main()
projects/causal_scene_generation/causal_model/game_characters/procedural_generation/game_character_scene.py
amoskowitz14/causalML
354
12724209
<reponame>amoskowitz14/causalML from PIL import ImageOps, Image import os image_dict = { "Satyr": { "base_path": "../images/satyr/PNG/", "Attacking": "/reference/Attacking/attack.png", "Taunt": "/reference/Taunt/taunt.png", "Walking": "/reference/Walking/walking.png", "Dying": "/reference/Dying/dying.png", "Hurt": "/reference/Hurt/hurt.png", "Idle": "/reference/Idle/idle.png" }, "Golem": { "base_path": "../images/golem/PNG/", "Attacking": "/reference/Attacking/attack.png", "Taunt": "/reference/Taunt/taunt.png", "Walking": "/reference/Walking/walking.png", "Dying": "/reference/Dying/dying.png", "Hurt": "/reference/Hurt/hurt.png", "Idle": "/reference/Idle/idle.png" } } def get_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst def draw_duel(actor, reactor): ''' Loading variables. ''' act_name = actor["name"] rct_name = reactor["name"] action = actor["action"] reaction = reactor["reaction"] act_type = actor["type"] rct_type = reactor["type"] img1 = Image.open(image_dict[act_name]["base_path"]+act_type+image_dict[act_name][action]) img2 = Image.open(image_dict[rct_name]["base_path"]+rct_type+image_dict[rct_name][reaction]) #Flipping the reactor to give the feel of a duel. img2 = ImageOps.mirror(img2) return get_concat_h(img1, img2), img1, img2
flaskblog/auth/models.py
davshen/Flog
202
12724247
<reponame>davshen/Flog from ..models import db class OAuth2Token(db.Model): id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(40)) token_type = db.Column(db.String(40)) access_token = db.Column(db.String(200)) refresh_token = db.Column(db.String(200)) expires_at = db.Column(db.Integer()) user_id = db.Column(db.Integer(), db.ForeignKey("user.id")) user = db.relationship("User", backref=db.backref("tokens", lazy="dynamic")) def to_token(self): return dict( access_token=self.access_token, token_type=self.token_type, refresh_token=self.refresh_token, expires_at=self.expires_at, )
third_party/chromite/cbuildbot/stages/handle_changes_stages_unittest.py
zipated/src
2,151
12724263
# Copyright 2017 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Module containing the unit tests for handle_changes_stages.""" from __future__ import print_function import itertools import mock from chromite.cbuildbot import relevant_changes from chromite.cbuildbot.stages import handle_changes_stages from chromite.cbuildbot.stages import generic_stages from chromite.cbuildbot.stages import generic_stages_unittest from chromite.cbuildbot.stages import sync_stages from chromite.lib import builder_status_lib from chromite.lib import cidb from chromite.lib import clactions from chromite.lib import config_lib from chromite.lib import constants from chromite.lib import fake_cidb from chromite.lib import hwtest_results from chromite.lib import timeout_util from chromite.lib import tree_status from chromite.lib.const import waterfall # pylint: disable=protected-access class CommitQueueHandleChangesStageTests( generic_stages_unittest.AbstractStageTestCase): """Tests for CommitQueueHandleChangesStag.""" BOT_ID = 'master-paladin' def setUp(self): self._Prepare() self.partial_submit_changes = ['A', 'B'] self.other_changes = ['C', 'D'] self.changes = self.other_changes + self.partial_submit_changes self.PatchObject(builder_status_lib, 'GetFailedMessages') self.PatchObject(relevant_changes.RelevantChanges, '_GetSlaveMappingAndCLActions', return_value=(dict(), [])) self.PatchObject(clactions, 'GetRelevantChangesForBuilds') self.PatchObject(tree_status, 'WaitForTreeStatus', return_value=constants.TREE_OPEN) self.PatchObject(relevant_changes.RelevantChanges, 'GetPreviouslyPassedSlavesForChanges') self.mock_record_metrics = self.PatchObject( handle_changes_stages.CommitQueueHandleChangesStage, '_RecordSubmissionMetrics') self.sync_stage = self._MockSyncStage() self.completion_stage = mock.Mock() def tearDown(self): cidb.CIDBConnectionFactory.ClearMock() def _MockSyncStage(self, tree_was_open=True): sync_stage = sync_stages.CommitQueueSyncStage(self._run) sync_stage.pool = mock.MagicMock() sync_stage.pool.applied = self.changes sync_stage.pool.tree_was_open = tree_was_open sync_stage.pool.handle_failure_mock = self.PatchObject( sync_stage.pool, 'HandleValidationFailure') sync_stage.pool.handle_timeout_mock = self.PatchObject( sync_stage.pool, 'HandleValidationTimeout') sync_stage.pool.submit_pool_mock = self.PatchObject( sync_stage.pool, 'SubmitPool') return sync_stage # pylint: disable=W0221 def ConstructStage(self, sync_stage=None, completion_stage=None): sync_stage = sync_stage or self.sync_stage completion_stage = completion_stage or self.completion_stage return handle_changes_stages.CommitQueueHandleChangesStage( self._run, sync_stage, completion_stage) def test_GetBuildsPassedSyncStage(self): """Test _GetBuildsPassedSyncStage.""" stage = self.ConstructStage() mock_cidb = mock.Mock() mock_cidb.GetSlaveStages.return_value = [ {'build_config': 's_1', 'status': 'pass', 'name': 'CommitQueueSync'}, {'build_config': 's_2', 'status': 'pass', 'name': 'CommitQueueSync'}, {'build_config': 's_3', 'status': 'fail', 'name': 'CommitQueueSync'}] mock_cidb.GetBuildStages.return_value = [ {'status': 'pass', 'name': 'CommitQueueSync'}] builds = stage._GetBuildsPassedSyncStage( 'build_id', mock_cidb, ['id_1', 'id_2']) self.assertItemsEqual(builds, ['s_1', 's_2', 'master-paladin']) def _MockPartialSubmit(self, stage): self.PatchObject(relevant_changes.RelevantChanges, 'GetRelevantChangesForSlaves', return_value={'master-paladin': {mock.Mock()}}) self.PatchObject(relevant_changes.RelevantChanges, 'GetSubsysResultForSlaves') self.PatchObject(handle_changes_stages.CommitQueueHandleChangesStage, '_GetBuildsPassedSyncStage') stage.sync_stage.pool.SubmitPartialPool.return_value = self.changes def testHandleCommitQueueFailureWithOpenTree(self): """Test _HandleCommitQueueFailure with open tree.""" stage = self.ConstructStage() self._MockPartialSubmit(stage) self.PatchObject(tree_status, 'WaitForTreeStatus', return_value=constants.TREE_OPEN) self.PatchObject(generic_stages.BuilderStage, 'GetScheduledSlaveBuildbucketIds', return_value=[]) stage._HandleCommitQueueFailure(set(['test1']), set(), set(), False) stage.sync_stage.pool.handle_failure_mock.assert_called_once_with( mock.ANY, sanity=True, no_stat=set(), changes=self.changes, failed_hwtests=None) def testHandleCommitQueueFailureWithThrottledTree(self): """Test _HandleCommitQueueFailure with throttled tree.""" stage = self.ConstructStage() self._MockPartialSubmit(stage) self.PatchObject(tree_status, 'WaitForTreeStatus', return_value=constants.TREE_THROTTLED) self.PatchObject(generic_stages.BuilderStage, 'GetScheduledSlaveBuildbucketIds', return_value=[]) stage._HandleCommitQueueFailure(set(['test1']), set(), set(), False) stage.sync_stage.pool.handle_failure_mock.assert_called_once_with( mock.ANY, sanity=False, no_stat=set(), changes=self.changes, failed_hwtests=None) def testHandleCommitQueueFailureWithClosedTree(self): """Test _HandleCommitQueueFailure with closed tree.""" stage = self.ConstructStage() self._MockPartialSubmit(stage) self.PatchObject(tree_status, 'WaitForTreeStatus', side_effect=timeout_util.TimeoutError()) self.PatchObject(generic_stages.BuilderStage, 'GetScheduledSlaveBuildbucketIds', return_value=[]) stage._HandleCommitQueueFailure(set(['test1']), set(), set(), False) stage.sync_stage.pool.handle_failure_mock.assert_called_once_with( mock.ANY, sanity=False, no_stat=set(), changes=self.changes, failed_hwtests=None) def testHandleCommitQueueFailureWithFailedHWtests(self): """Test _HandleCommitQueueFailure with failed HWtests.""" stage = self.ConstructStage() self._MockPartialSubmit(stage) master_build_id = stage._run.attrs.metadata.GetValue('build_id') db = fake_cidb.FakeCIDBConnection() slave_build_id = db.InsertBuild( 'slave_1', waterfall.WATERFALL_INTERNAL, 1, 'slave_1', 'bot_hostname', master_build_id=master_build_id, buildbucket_id='123') cidb.CIDBConnectionFactory.SetupMockCidb(db) mock_failed_hwtests = mock.Mock() mock_get_hwtests = self.PatchObject( hwtest_results.HWTestResultManager, 'GetFailedHWTestsFromCIDB', return_value=mock_failed_hwtests) self.PatchObject(tree_status, 'WaitForTreeStatus', return_value=constants.TREE_OPEN) self.PatchObject(generic_stages.BuilderStage, 'GetScheduledSlaveBuildbucketIds', return_value=['123']) stage._HandleCommitQueueFailure(set(['test1']), set(), set(), False) stage.sync_stage.pool.handle_failure_mock.assert_called_once_with( mock.ANY, sanity=True, no_stat=set(), changes=self.changes, failed_hwtests=mock_failed_hwtests) mock_get_hwtests.assert_called_once_with(db, [slave_build_id]) def VerifyStage(self, failing, inflight, no_stat, handle_failure=False, handle_timeout=False, sane_tot=True, stage=None, all_slaves=None, slave_stages=None, fatal=True, self_destructed=False): """Runs and Verifies PerformStage. Args: failing: The names of the builders that failed. inflight: The names of the buiders that timed out. no_stat: The names of the builders that had no status. handle_failure: If True, calls HandleValidationFailure. handle_timeout: If True, calls HandleValidationTimeout. sane_tot: If not true, assumes TOT is not sane. stage: If set, use this constructed stage, otherwise create own. all_slaves: Optional set of all slave configs. slave_stages: Optional list of slave stages. fatal: Optional boolean indicating whether the completion_stage failed with fatal. Default to True. self_destructed: Optional boolean indicating whether the completion_stage self_destructed. Default to False. """ if not stage: stage = self.ConstructStage() stage._run.attrs.metadata.UpdateWithDict( {constants.SELF_DESTRUCTED_BUILD: self_destructed}) # Setup the stage to look at the specified configs. all_slaves = list(all_slaves or set(failing + inflight + no_stat)) all_started_slaves = list(all_slaves or set(failing + inflight)) configs = [config_lib.BuildConfig(name=x) for x in all_slaves] self.PatchObject(stage, '_GetSlaveConfigs', return_value=configs) statuses = {} for x in failing: statuses[x] = builder_status_lib.BuilderStatus( constants.BUILDER_STATUS_FAILED, message=None) for x in inflight: statuses[x] = builder_status_lib.BuilderStatus( constants.BUILDER_STATUS_INFLIGHT, message=None) for x in no_stat: statuses[x] = builder_status_lib.BuilderStatus( constants.BUILDER_STATUS_MISSING, message=None) self.completion_stage.GetSlaveStatuses.return_value = statuses self.completion_stage.GetFatal.return_value = fatal # Setup DB and provide list of slave stages. mock_cidb = mock.MagicMock() cidb.CIDBConnectionFactory.SetupMockCidb(mock_cidb) if slave_stages is None: slave_stages = [] critical_stages = ( relevant_changes.TriageRelevantChanges.STAGE_SYNC) for stage_name, slave in itertools.product( critical_stages, all_started_slaves): slave_stages.append({'name': stage_name, 'build_config': slave, 'status': constants.BUILDER_STATUS_PASSED}) self.PatchObject(mock_cidb, 'GetSlaveStages', return_value=slave_stages) # Set up SubmitPartialPool to provide a list of changes to look at. self.PatchObject(stage.sync_stage.pool, 'SubmitPartialPool', return_value=self.other_changes) # Actually run the stage. stage.PerformStage() if fatal: stage.sync_stage.pool.submit_pool_mock.assert_not_called() self.mock_record_metrics.assert_called_once_with(False) else: stage.sync_stage.pool.submit_pool_mock.assert_called_once_with( reason=constants.STRATEGY_CQ_SUCCESS) self.mock_record_metrics.assert_called_once_with(True) if handle_failure: stage.sync_stage.pool.handle_failure_mock.assert_called_once_with( mock.ANY, no_stat=set(no_stat), sanity=sane_tot, changes=self.other_changes, failed_hwtests=mock.ANY) if handle_timeout: stage.sync_stage.pool.handle_timeout_mock.assert_called_once_with( sanity=mock.ANY, changes=self.other_changes) def testCompletionSuccess(self): """Verify stage when the completion_stage succeeded.""" self.VerifyStage([], [], [], fatal=False) def testCompletionWithInflightSlaves(self): """Verify stage when the completion_stage failed with inflight slaves.""" self.VerifyStage([], ['foo'], [], handle_timeout=True) def testCompletionSelfDestructedWithInflightSlaves(self): """Verify stage when the completion_stage self_destructed with inflight.""" self.VerifyStage([], ['foo'], [], self_destructed=True, handle_failure=True) def testCompletionSelfDestructedWithFailingSlaves(self): """Verify stage when the completion_stage self_destructed with failing.""" self.VerifyStage(['foo'], [], [], self_destructed=True, handle_failure=True) def testCompletionSelfDestructedWithdNoStatSlaves(self): """Verify stage when the completion_stage self_destructed with no_stat.""" self.VerifyStage([], [], ['foo'], self_destructed=True, handle_failure=True)
web/migrations/0014_auto_20200115_2239.py
nonomal/oh-my-rss
270
12724265
# Generated by Django 2.2.7 on 2020-01-15 14:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('web', '0013_auto_20200108_2257'), ] operations = [ migrations.AlterField( model_name='article', name='src_url', field=models.CharField(max_length=1024, unique=True, verbose_name='原始链接'), ), migrations.AlterField( model_name='article', name='title', field=models.CharField(max_length=200, verbose_name='标题'), ), migrations.AlterField( model_name='site', name='creator', field=models.CharField(blank=True, choices=[('system', '系统录入'), ('user', '用户提交'), ('wemp', '微信公众号')], db_index=True, default='system', max_length=20, null=True, verbose_name='创建人'), ), migrations.AlterField( model_name='site', name='link', field=models.CharField(max_length=1024, verbose_name='主页'), ), migrations.AlterField( model_name='site', name='rss', field=models.CharField(blank=True, max_length=1024, null=True, verbose_name='RSS地址'), ), ]
leetcode/138.copy-list-with-random-pointer.py
geemaple/algorithm
177
12724282
<reponame>geemaple/algorithm # Definition for singly-linked list with a random pointer. # class RandomListNode(object): # def __init__(self, x): # self.label = x # self.next = None # self.random = None class Solution(object): def copyRandomList(self, head): """ :type head: RandomListNode :rtype: RandomListNode """ if head is None: return None # append copy node behind its orignal one # 1 -> 1' -> 2 -> 2' -> .... -> n -> n' -> None current = head while (current is not None): node = RandomListNode(current.label) node.next = current.next current.next = node current = current.next.next # copy random pointers current = head while(current is not None): if current.random is not None: current.next.random = current.random.next current = current.next.next # construct new linked list new_head = head.next new_cur = new_head old_cur = head while(new_cur is not None): old_cur.next = new_cur.next if new_cur.next is not None: new_cur.next = new_cur.next.next new_cur = new_cur.next old_cur = old_cur.next return new_head
tests/test_structs.py
avivazran/UnrealEnginePython
2,350
12724320
<filename>tests/test_structs.py import unittest import unreal_engine as ue from unreal_engine.structs import ColorMaterialInput, Key from unreal_engine.structs import StaticMeshSourceModel, MeshBuildSettings class TestStructs(unittest.TestCase): def test_new_struct(self): material_input = ColorMaterialInput() self.assertTrue('MaskR' in material_input.fields()) def test_new_struct_with_kwargs(self): material_input = ColorMaterialInput(Mask=1, MaskR=1, MaskG=1, MaskB=0, MaskA=1) self.assertEqual(material_input.Mask, 1) self.assertEqual(material_input.MaskR, 1) self.assertEqual(material_input.MaskG, 1) self.assertEqual(material_input.MaskB, 0) self.assertEqual(material_input.MaskA, 1) def test_struct_set(self): material_input = ColorMaterialInput() material_input.MaskG = 1 self.assertEqual(material_input.MaskG, 1) def test_struct_clone(self): material_input = ColorMaterialInput(Mask=1, MaskR=0, MaskG=1, MaskB=0, MaskA=1) material_input2 = material_input.clone() self.assertEqual(material_input2.Mask, 1) self.assertEqual(material_input2.MaskR, 0) self.assertEqual(material_input2.MaskG, 1) self.assertEqual(material_input2.MaskB, 0) self.assertEqual(material_input2.MaskA, 1) def test_cmp(self): key1 = Key(KeyName='SpaceBar') key2 = Key(KeyName='SpaceBar') self.assertEqual(key1, key2) def test_ptr(self): source_model = StaticMeshSourceModel() source_model.BuildSettings.bRecomputeNormals=False source_model.BuildSettings.bRecomputeTangents=True source_model.BuildSettings.bUseMikkTSpace=True source_model.BuildSettings.bBuildAdjacencyBuffer=True source_model.BuildSettings.bRemoveDegenerates=True source_model2 = source_model.clone() self.assertEqual(source_model2.BuildSettings.bRecomputeNormals, False) self.assertEqual(source_model2.BuildSettings.bRecomputeTangents, True) self.assertEqual(source_model2.BuildSettings.bUseMikkTSpace, True) self.assertEqual(source_model2.BuildSettings.bBuildAdjacencyBuffer, True) self.assertEqual(source_model2.BuildSettings.bRemoveDegenerates, True)
tests/test_utils.py
hoechenberger/pycircstat
125
12724331
from __future__ import absolute_import import numpy as np from numpy.testing import assert_allclose from pycircstat import utils
python/ql/test/experimental/dataflow/pep_328/package/subpackage2/moduleZ.py
timoles/codeql
4,036
12724332
eggs = "eggs"
backend/storage/async_s3.py
xuantan/viewfinder
645
12724335
# Copyright 2012 Viewfinder Inc. All Rights Reserved. """Async version of Amazon S3 access library. The "boto" open source library supports synchronous operations against S3, but does not have asynchronous support. In a high-scale server environment, this is a real problem, because it is not permissible to block threads waiting on network I/O. This module layers support for non- blocking async operations over the boto library. It re-uses boto functionality whenever possible. """ __author__ = '<EMAIL> (<NAME>)' import logging import socket import urllib from tornado.httpclient import AsyncHTTPClient, HTTPRequest, HTTPError from boto.connection import AWSAuthConnection from boto.s3.connection import SubdomainCallingFormat from viewfinder.backend.base.retry import RetryPolicy, CallWithRetryAsync class S3RetryPolicy(RetryPolicy): """Define a retry policy that is adapted to the Amazon S3 service. Retries will only be attempted for HTTP 500-level errors, or if there was a basic network failure of some kind. By default, a request against S3 will be retried three times, with retries starting after at least 1/2 second, and exponentially backing off from there to a maximum of 10 seconds. """ def __init__(self, max_tries=3, timeout=30, min_delay=.5, max_delay=10): RetryPolicy.__init__(self, max_tries=max_tries, timeout=timeout, min_delay=min_delay, max_delay=max_delay, check_result=self._ShouldRetry) def _ShouldRetry(self, response): """Retry on: 1. HTTP error codes 500 (Internal Server Error) and 503 (Service Unavailable). 2. Tornado HTTP error code 599, which typically indicates some kind of general network failure of some kind. 3. Socket-related errors. """ if response.error: # Check for socket errors. if type(response.error) == socket.error or type(response.error) == socket.gaierror: return True # Check for HTTP errors. if isinstance(response.error, HTTPError): code = response.error.code if code in (500, 503, 599): return True return False class AsyncS3Connection(AWSAuthConnection): """Sub-class that adds support for asynchronous S3 access. Callers provide their Amazon AWS access key and secret key when an instance of the class is created. Then, callers can repeatedly call 'make_request' in order to make asynchronous HTTP calls against the S3 service. Using this API rather than the standard boto API avoids blocking the calling thread until the operation is complete. """ DefaultHost = 's3.amazonaws.com' """By default, connect to this S3 endpoint.""" DefaultCallingFormat = SubdomainCallingFormat() """By default, use the S3 sub-domain format for providing bucket name.""" def __init__(self, host=DefaultHost, aws_access_key_id=None, aws_secret_access_key=None, retry_policy=S3RetryPolicy()): AWSAuthConnection.__init__(self, host, aws_access_key_id, aws_secret_access_key) self.retry_policy = retry_policy def make_request(self, method, bucket='', key='', headers=None, params=None, body=None, request_timeout=20.0, callback=None): """Start an asynchronous HTTP operation against the S3 service. When the operation is complete, the 'callback' function will be invoked, with the HTTP response object as its only parameter. If a failure occurs during execution of the operation, it may be retried, according to the retry policy with which this instance was initialized. """ CallWithRetryAsync(self.retry_policy, self._make_request, method, bucket, key, headers, params, body, request_timeout, callback=callback) def _make_request(self, method, bucket, key, headers, params, body, request_timeout, callback): """Wrapped by CallWithRetryAsync in order to support retry.""" # Build the boto HTTP request in order to create the authorization header. path = AsyncS3Connection.DefaultCallingFormat.build_path_base(bucket, key) auth_path = AsyncS3Connection.DefaultCallingFormat.build_auth_path(bucket, key) host = AsyncS3Connection.DefaultCallingFormat.build_host(self.server_name(), bucket) # Only support byte strings for now. assert not body or type(body) is str, "Only support byte strings (type=%s)." % type(body) boto_request = self.build_base_http_request(method, path, auth_path, {}, headers, body or '', host) boto_request.authorize(connection=self) # Log request for debugging. debug_body = boto_request.body[:256].decode(errors='ignore') if boto_request.body else None logging.debug('%s "%s://%s%s" headers: %s body: %s', boto_request.method, self.protocol, boto_request.host, boto_request.path, boto_request.headers, debug_body) request_url = '%s://%s%s' % (self.protocol, host, path) if params: request_url += '?' + urllib.urlencode(params) # Build the tornado http client request (different version of HTTPRequest class). tornado_request = HTTPRequest(request_url, method=method, headers=boto_request.headers, body=body, request_timeout=request_timeout) # Start the asynchronous request. When it's complete, invoke 'callback', passing the HTTP response object. http_client = AsyncHTTPClient() http_client.fetch(tornado_request, callback=callback) def _required_auth_capability(self): """Called by AWSAuthConnection.__init__ in order to determine which auth handler to construct. In this case, S3 HMAC signing should be used. """ return ['s3']
examples/application_factory/web.py
aronianm/flask-apscheduler
942
12724339
"""Example web view for application factory.""" from flask import Blueprint from .extensions import scheduler from .tasks import task2 web_bp = Blueprint("web_bp", __name__) @web_bp.route("/") def index(): """Say hi!. :url: / :returns: hi! """ return "hi!" @web_bp.route("/add") def add(): """Add a task. :url: /add/ :returns: job """ job = scheduler.add_job( func=task2, trigger="interval", seconds=10, id="test job 2", name="test job 2", replace_existing=True, ) return "%s added!" % job.name
test/test_functions.py
codeclimate-testing/falcon
115
12724372
<reponame>codeclimate-testing/falcon<filename>test/test_functions.py<gh_stars>100-1000 from testing_helpers import wrap @wrap def nested(x): def f(y): return y+y return f(x) def test_nested(): nested(3) nested(3.0) nested([1]) @wrap def nested_closure(x): def f(y): return x + y return f(x) def test_nested_closure(): nested_closure(3) nested_closure(3.0) nested_closure([1]) @wrap def nested_closure_repeat(): for i in xrange(50): temp = nested_closure(i) return temp def test_nested_closure_repeat(): nested_closure_repeat() if __name__ == '__main__': import nose nose.main()
Python/Algorithms/Dynamic-Programming/0-1_knapsack.py
ThunderZ007/Data-Structures-and-Algorithms
245
12724378
# Input Cases t = int(input("\nTotal Test Cases : ")) for i in range(1,t+1): print(f"\n------------ CASE #{i} -------------") n = int(input("\nTotal Items : ")) m = int(input("Max Capacity : ")) v = [int(i) for i in input("\nValues : ").split(" ")] w = [int(i) for i in input("Weights : ").split(" ")] # Tabulation (DP) dp = [[0 for x in range(m+1)] for x in range(n+1)] for i in range(n+1): for j in range(m+1): if i == 0 or j == 0: dp[i][j] = 0 elif w[i-1]<=j: dp[i][j] = max(dp[i-1][j],dp[i-1][j-w[i-1]]+v[i-1]) else: dp[i][j] = dp[i-1][j] print(f"\nMax Value Picked : {dp[n][m]}")
main.py
ssysm/DD_KaoRou2
187
12724417
#!/usr/bin/python3 # -*- coding: utf-8 -*- import os, sys, requests from random import randint from PySide2.QtWidgets import QApplication, QSplashScreen from PySide2.QtGui import QFont, QPixmap, QIcon from PySide2.QtCore import Qt, QThread from utils.main_ui import MainWindow class downloadUpdates(QThread): def __init__(self, parent=None): super(downloadUpdates, self).__init__(parent) self.headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0'} def checkUtils(self): response = requests.get(r'https://github.com/jiafangjun/DD_KaoRou2/tree/master/utils', headers=self.headers) html = response.text.split('\n') return html def downloadSplash(self, html): for line in html: if '/splash_' in line and '.png' in line: splashPage = 'https://github.com/' + line.split('href="')[1].split('"')[0] localSplashPath = r'utils/%s' % splashPage.split('/')[-1] if not os.path.exists(localSplashPath): response = requests.get(splashPage, headers=self.headers) html = response.text.split('\n') for l in html: if localSplashPath + '?raw=true' in l: splashLink = 'https://github.com' + l.split('src="')[1].split('"')[0] response = requests.get(splashLink) img = response.content with open(localSplashPath, 'wb') as f: f.write(img) # 将图片按二进制写入本地文件 def run(self): utilsHtml = self.checkUtils() self.downloadSplash(utilsHtml) if __name__ == '__main__': QApplication.setAttribute(Qt.AA_UseHighDpiPixmaps, True) QApplication.setAttribute(Qt.AA_EnableHighDpiScaling, True) app = QApplication(sys.argv) splashList = [] for f in os.listdir('utils'): if f.endswith('.png') and 'splash_' in f: splashList.append(r'utils\%s' % f) if splashList: splashPath = splashList[randint(0, len(splashList) - 1)] # 随机选择启动封面 else: splashPath = '' splash = QSplashScreen(QPixmap(splashPath)) splash.show() qss = '' try: with open('utils/qdark.qss', 'r') as f: qss = f.read() except: print('警告!找不到QSS文件!请从github项目地址下载完整文件。') app.setStyleSheet(qss) app.setFont(QFont('微软雅黑', 9)) desktop = app.desktop() mainWindow = MainWindow() mainWindow.setWindowIcon(QIcon(r'utils\favicon.ico')) screen = app.primaryScreen().geometry() mainWindow.resize(screen.width() * 0.75, screen.height() * 0.75) size = mainWindow.geometry() mainWindow.move((screen.width() - size.width()) / 2, (screen.height() - size.height()) / 2) mainWindow.showMaximized() mainWindow.show() splash.finish(mainWindow) downloads = downloadUpdates() downloads.start() sys.exit(app.exec_())
brainstorm/layers/mask_layer.py
PyCN/brainstorm
1,473
12724426
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals from collections import OrderedDict from brainstorm.layers.base_layer import Layer from brainstorm.structure.buffer_structure import StructureTemplate from brainstorm.structure.construction import ConstructionWrapper from brainstorm.utils import LayerValidationError, product def Mask(name=None): """Create a Mask layer.""" return ConstructionWrapper.create(MaskLayerImpl, name=name) class MaskLayerImpl(Layer): expected_inputs = {'default': StructureTemplate('T', 'B', '...'), 'mask': StructureTemplate('T', 'B', '...')} computes_no_input_deltas_for = ['mask'] def setup(self, kwargs, in_shapes): in_shape = in_shapes['default'].feature_shape expected_shape = in_shape[:-1] + (1,) if in_shapes['mask'].feature_shape == (1,): self.flatten_dim = 2 elif in_shapes['mask'].feature_shape in [expected_shape, in_shape]: self.flatten_dim = len(in_shape) + 1 else: raise LayerValidationError( "Shape of the mask did not match shape of the default inputs. " "Should be either ('T', 'B', 1) or {} or {}, but was {}" .format(('T', 'B') + expected_shape, in_shapes['default'].shape, in_shapes['mask'])) outputs = OrderedDict() outputs['default'] = in_shapes['default'] return outputs, OrderedDict(), OrderedDict() def flatten_buffer(self, buffer): pre = buffer.shape[:self.flatten_dim] post = buffer.shape[self.flatten_dim:] return buffer.reshape((int(product(pre)), int(product(post)))) def forward_pass(self, buffers, training_pass=True): _h = self.handler flat_inp = self.flatten_buffer(buffers.inputs.default) flat_mask = self.flatten_buffer(buffers.inputs.mask) flat_out = self.flatten_buffer(buffers.outputs.default) _h.mult_mv(flat_inp, flat_mask, out=flat_out) def backward_pass(self, buffers): _h = self.handler flat_out_deltas = self.flatten_buffer(buffers.output_deltas.default) tmp = self.handler.allocate(flat_out_deltas.shape) flat_mask = self.flatten_buffer(buffers.inputs.mask) flat_in_deltas = self.flatten_buffer(buffers.input_deltas.default) _h.mult_mv(flat_out_deltas, flat_mask, tmp) _h.add_tt(tmp, flat_in_deltas, flat_in_deltas)
leonardo/module/search/tasks.py
timgates42/django-leonardo
102
12724427
<gh_stars>100-1000 from __future__ import absolute_import import os from celery import shared_task from django.core import management from leonardo.decorators import catch_result from django.conf import settings @shared_task @catch_result def sync_search_indexes(): management.call_command('rebuild_index', interactive=False) # patch whoosh backend haystack = getattr(settings, 'HAYSTACK_CONNECTIONS', None) if 'default' in haystack and 'whoosh' in haystack['default']['ENGINE']: try: os.remove(os.path.join( haystack['default']['PATH'], 'MAIN_WRITELOCK')) except: pass return {'result': 'Rebuild index OK'}
release/stubs.min/System/__init___parts/HttpStyleUriParser.py
htlcnn/ironpython-stubs
182
12724447
class HttpStyleUriParser(UriParser): """ A customizable parser based on the HTTP scheme. HttpStyleUriParser() """
exercises/de/solution_03_14_03.py
Jette16/spacy-course
2,085
12724472
<filename>exercises/de/solution_03_14_03.py from spacy.lang.de import German nlp = German() people = ["<NAME>", "<NAME>", "<NAME>"] # Erstelle eine Liste von Patterns für den PhraseMatcher patterns = list(nlp.pipe(people))
qf_lib/documents_utils/document_exporting/pdf_exporter.py
webclinic017/qf-lib
198
12724473
# Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from os.path import join, abspath, dirname from typing import List from weasyprint import HTML, CSS from qf_lib.common.utils.logging.qf_parent_logger import qf_logger from qf_lib.documents_utils.document_exporting.document import Document from qf_lib.documents_utils.document_exporting.document_exporter import DocumentExporter from qf_lib.settings import Settings from qf_lib.starting_dir import get_starting_dir_abs_path class PDFExporter(DocumentExporter): """ Stores elements such as the ParagraphElement and ChartElement in order to build a PDF based on them once they have all been added. If there is a "document_css_directory" attribute set in the Settings, then CSS files from that directory will be applied for styling the output page. Otherwise the default styling will be applied. """ DEFAULT_CSS_DIR_NAME = 'default_css' def __init__(self, settings: Settings): super().__init__(settings) if hasattr(settings, 'document_css_directory'): self._document_css_dir = join(get_starting_dir_abs_path(), settings.document_css_directory) else: this_dir_abs_path = abspath(dirname(__file__)) self._document_css_dir = join(this_dir_abs_path, self.DEFAULT_CSS_DIR_NAME) self.logger = qf_logger.getChild(self.__class__.__name__) def set_default_directory_level_up(self): """ Sets the document_css_dir one level above 'default css', to enable applying css classes in other folders. Using the generate function demands inputting css_file_names as paths from newly set level. e.g: 'default_css\main" """ self._document_css_dir = abspath(dirname(__file__)) def generate(self, documents: List[Document], export_dir: str, filename: str, include_table_of_contents=False, css_file_names: List[str] = None) -> str: """ Merged all documents into one and then exports the merged document to a PDF file in the given directory. Allows defining of multiple css files. The base css file will be applied first, followed sequentially by files defined in css_file_names. The CSS files must be placed in the Settings.document_css_directory directory. CSS files placed in Settings.document_css_directory/base will be applied for all exported PDF documents. Parameters ---------- documents list of documents for which files should be generated export_dir relative path to the directory (relative to the output root directory) in which the PDF should be saved filename filename under which the merged document should be saved include_table_of_contents if True then table of contents will be generated at the beginning of the file css_file_names names of css files which should be applied for generating the PDF Returns ------- the absolute path to the output PDF file that was saved """ css_file_paths = [] documents = [self._merge_documents(documents, filename)] # Find the output directory output_dir = self.get_output_dir(export_dir) output_filename = os.path.join(output_dir, filename) for document in documents: if include_table_of_contents: self._add_table_of_contents(document) # Generate the full document HTML self.logger.info("Generating HTML for PDF...") html = document.generate_html() # Automatically include all the css files in the `document_css/base` directory base_css = os.listdir(self._document_css_dir) for name in base_css: path = os.path.join(self._document_css_dir, name) if os.path.isfile(path): css_file_paths.append(CSS(path)) # If we've set custom css files, add them to the pdf if css_file_names is not None: for name in css_file_names: css_file_paths.append(CSS(os.path.join(self._document_css_dir, name + ".css"))) # Parse the HTML. html = HTML(string=html) # Write out the PDF. self.logger.info("Rendering PDF in {}...".format(output_filename)) html.write_pdf(output_filename, css_file_paths) return output_filename
solutions/LeetCode/Python3/22.py
timxor/leetcode-journal
854
12724487
__________________________________________________________________________________________________ 36ms class Solution: def generateParenthesis(self, n: 'int') -> 'List[str]': if n == 0: return [''] ans = [] def backtrack(S = '',left = 0, right = 0): if len(S) == 2 * n: ans.append(S) return if left < n: backtrack(S+'(',left + 1, right) if right < left: backtrack(S+')',left,right + 1) backtrack() return ans __________________________________________________________________________________________________ 40ms class Solution: def generateParenthesis(self, n): """ :type n: int :rtype: List[str] """ res = [] def helper(l_num = 0, r_num = 0, s = ''): if len(s) == 2*n: res.append(s) return if l_num < n: helper(l_num+1,r_num,s+'(') if l_num > r_num: helper(l_num,r_num+1,s+')') helper() return res __________________________________________________________________________________________________ 44ms class Solution: def generateParenthesis(self, n: int) -> List[str]: result = [] if n == 0: return [""] def gene_par(index, present_sum, strs): if index == 2*n: if present_sum == 1: result.append(strs+")") return if present_sum > 0: gene_par(index + 1, present_sum+1, strs+"(") gene_par(index + 1, present_sum-1, strs + ")") else: gene_par(index + 1, present_sum + 1, strs + "(") gene_par(1, 0, "") return result __________________________________________________________________________________________________ 12396 kb class Solution: def generateParenthesis(self, n: 'int') -> 'List[str]': if n <= 0: return [] if n == 1: return ["()"] else: prev = self.generateParenthesis(n-1) fresh = set() for line in prev: fresh.add("()" + line) fresh.add(line + "()") fresh.add("(" + line + ")") for i in range(1,len(line)): fresh.add(line[:i] + "()" + line[i:]) return list(fresh) __________________________________________________________________________________________________ 12424 kb class Solution: def generateParenthesis(self, n: 'int') -> 'List[str]': res=[] def rec(str, iter): if iter == 0 : #print(str) if str not in res: res.append(str) return rec(str+'()', iter-1) rec('()'+str, iter-1) rec('('+str+')', iter-1) #rec('', n) #return res def BT(str, left, right): #print(str,left,right) if(left<0): return if(right<0): return if(left>right ): return if(left==0 and right==0): print(str) res.append(str) return BT(str+'(', left-1, right) BT(str+')', left, right-1) BT('', n,n) return res __________________________________________________________________________________________________
pyretri/datasets/folder/folder_base.py
dongan-beta/PyRetri
1,063
12724532
<gh_stars>1000+ # -*- coding: utf-8 -*- import numpy as np from PIL import Image import pickle import os from abc import abstractmethod from ...utils import ModuleBase from typing import Dict, List class FolderBase(ModuleBase): """ The base class of folder function. """ default_hyper_params = dict() def __init__(self, data_json_path: str, transformer: callable or None = None, hps: Dict or None = None): """ Args: data_json_path (str): the path for data json file. transformer (callable): a list of data augmentation operations. hps (dict): default hyper parameters in a dict (keys, values). """ super(FolderBase, self).__init__(hps) with open(data_json_path, "rb") as f: self.data_info = pickle.load(f) self.data_json_path = data_json_path self.transformer = transformer def __len__(self) -> int: pass @abstractmethod def __getitem__(self, idx: int) -> Dict: pass def find_classes(self, info_dicts: Dict) -> (List, Dict): pass def read_img(self, path: str) -> Image: """ Load image. Args: path (str): the path of the image. Returns: image (Image): shape (H, W, C). """ try: img = Image.open(path) img = img.convert("RGB") return img except Exception as e: print('[DataSet]: WARNING image can not be loaded: {}'.format(str(e))) return None
code_examples/cython_spring16/geometry_py.py
mikofski/thw-berkeley
106
12724564
<reponame>mikofski/thw-berkeley<gh_stars>100-1000 import math def sum_circle(data, x, y, r): """Sum array values that fall within the given circle. Parameters ---------- data : numpy.ndarray The array to sum. x, y, r : float The center and radius of circle, in array coordinates. """ imin = math.floor((x - r) + 0.5) imax = math.floor((x + r) + 0.5) jmin = math.floor((y - r) + 0.5) jmax = math.floor((y + r) + 0.5) r2 = r * r sum = 0.0 for j in range(jmin, jmax+1): for i in range(imin, imax+1): if (i - x)**2 + (j - y)**2 < r2: sum += data[j, i] return sum
example_dialogs.py
timeopochin/picotui
739
12724587
from picotui.context import Context from picotui.dialogs import * with Context(): # Feel free to comment out extra dialogs to play with a particular # in detail d = DTextEntry(25, "Hello World", title="Wazzup?") res = d.result() d = DMultiEntry(25, 5, "Hello\nWorld".split("\n"), title="Comment:") res = d.result() print(res)
homura/vision/models/densenet.py
wangjunyan305/homura
102
12724628
<reponame>wangjunyan305/homura """ DenseNet for CIFAR dataset proposed in Gao et al. 2016 https://github.com/liuzhuang13/DenseNet """ import torch from torch import nn from torch.nn import functional as F from homura.vision.models import MODEL_REGISTRY __all__ = ["densenet40", "densenet100", "CIFARDenseNet"] _padding = {"reflect": nn.ReflectionPad2d, "zero": nn.ZeroPad2d} class _DenseLayer(nn.Module): def __init__(self, in_channels, bn_size, growth_rate, dropout_rate, padding): super(_DenseLayer, self).__init__() assert padding in _padding.keys() self.dropout_rate = dropout_rate self.layers = nn.Sequential(nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channels, bn_size * growth_rate, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(bn_size * growth_rate), nn.ReLU(inplace=True), _padding[padding](1), nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, bias=False)) def forward(self, input): x = self.layers(input) if self.dropout_rate > 0: x = F.dropout(x, p=self.dropout_rate, training=self.training) return torch.cat([input, x], dim=1) class _DenseBlock(nn.Module): def __init__(self, num_layers, in_channels, bn_size, growth_rate, dropout_rate, padding): super(_DenseBlock, self).__init__() layers = [_DenseLayer(in_channels + i * growth_rate, bn_size, growth_rate, dropout_rate, padding) for i in range(num_layers)] self.layers = nn.Sequential(*layers) def forward(self, input): return self.layers(input) class _Transition(nn.Module): def __init__(self, in_channels, out_channels): super(_Transition, self).__init__() self.layers = nn.Sequential(nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), nn.AvgPool2d(kernel_size=2, stride=2)) def forward(self, input): return self.layers(input) @MODEL_REGISTRY.register class CIFARDenseNet(nn.Module): """ DenseNet-BC (bottleneck and compactness) for CIFAR dataset. For ImageNet classification, use `torchvision`'s. :param num_classes: (int) number of output classes :param init_channels: (int) output channels which is performed on the input. 16 or 2 * growth_rate :param num_layers: (int) number of layers of each dense block :param growth_rate: (int) growth rate, which is referred as k in the paper :param dropout_rate: (float=0) dropout rate :param bn_size: (int=4) multiplicative factor in bottleneck :param reduction: (int=2) divisional factor in transition """ def __init__(self, num_classes, init_channels, num_layers, growth_rate, dropout_rate=0, bn_size=4, reduction=2, padding="reflect"): super(CIFARDenseNet, self).__init__() # initial conv. num_channels = init_channels layers = [_padding[padding](1), nn.Conv2d(3, num_channels, kernel_size=3, bias=False)] # first and second dense-block+transition for _ in range(2): layers.append(_DenseBlock(num_layers, in_channels=num_channels, bn_size=bn_size, growth_rate=growth_rate, dropout_rate=dropout_rate, padding=padding)) num_channels = num_channels + num_layers * growth_rate layers.append(_Transition(num_channels, num_channels // reduction)) num_channels = num_channels // reduction # third denseblock layers.append(_DenseBlock(num_layers, in_channels=num_channels, bn_size=bn_size, growth_rate=growth_rate, dropout_rate=dropout_rate, padding="reflect")) self.features = nn.Sequential(*layers) self.bn1 = nn.BatchNorm2d(num_channels + num_layers * growth_rate) self.linear = nn.Linear(num_channels + num_layers * growth_rate, num_classes) # initialize parameters self.initialize() def forward(self, input): x = self.features(input) x = F.relu(self.bn1(x), inplace=True) x = F.adaptive_avg_pool2d(x, 1) x = x.view(x.size(0), -1) return self.linear(x) def initialize(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight.data) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() def _cifar_densenet(depth, num_classes, growth_rate=12, **kwargs): n = (depth - 4) // 6 model = CIFARDenseNet(num_classes, init_channels=2 * growth_rate, num_layers=n, growth_rate=growth_rate, padding="reflect", **kwargs) return model @MODEL_REGISTRY.register def densenet100(num_classes, **kwargs): return _cifar_densenet(100, num_classes, **kwargs) @MODEL_REGISTRY.register def densenet40(num_classes, **kwargs): return _cifar_densenet(40, num_classes, **kwargs)
models/ops.py
yhgon/tacotron
242
12724638
import tensorflow as tf from tensorflow.contrib.seq2seq.python.ops.helper import CustomHelper from tensorflow.contrib.rnn import * class InferenceHelper(CustomHelper): def _initialize_fn(self): # we always reconstruct the whole output finished = tf.tile([False], [self._batch_size]) next_inputs = tf.zeros([self._batch_size, self._out_size], dtype=tf.float32) return (finished, next_inputs) def _sample_fn(self, time, outputs, state): # we're not sampling from a vocab so we don't care about this function return tf.zeros(32, dtype=tf.int32) def _next_inputs_fn(self, time, outputs, state, sample_ids): del time, sample_ids finished = tf.tile([False], [self._batch_size]) next_inputs = outputs return (finished, next_inputs, state) def __init__(self, batch_size, out_size): self._batch_size = batch_size self._out_size = out_size def highway(inputs, units=128): # correct input shape if inputs.shape[-1] != units: inputs = tf.layers.dense(inputs, units=units) T = tf.layers.dense( inputs, units=units, activation=tf.nn.sigmoid, ) # TODO update bias initial value H = tf.layers.dense( inputs, units=units, activation=tf.nn.relu ) C = H*T + inputs*(1-T) return C def CBHG(inputs, speaker_embed=None, K=16, c=[128,128,128], gru_units=128, num_highway_layers=4, num_conv_proj=2): with tf.variable_scope('cbhg'): # 1D convolution bank conv_bank = [tf.layers.conv1d( inputs, filters=c[0], kernel_size=k, padding='same', activation=tf.nn.relu ) for k in range(1, K+1)] conv_bank = tf.concat(conv_bank, -1) conv_bank = tf.layers.batch_normalization(conv_bank) conv_bank = tf.layers.max_pooling1d( conv_bank, pool_size=2, strides=1, padding='same' ) tf.summary.histogram('conv_bank', conv_bank) assert num_conv_proj == len(c) - 1 conv_proj = conv_bank for layer in range(num_conv_proj): activation = None if layer == num_conv_proj - 1 else tf.nn.relu # conv projections conv_proj = tf.layers.conv1d( conv_proj, filters=c[layer+1], kernel_size=3, padding='same', activation=activation ) conv_proj = tf.layers.batch_normalization(conv_proj) tf.summary.histogram('conv_proj', conv_proj) # residual connection conv_res = conv_proj + inputs tf.summary.histogram('conv_res', conv_res) # highway feature extraction h = conv_res for layer in range(num_highway_layers): with tf.variable_scope('highway_' + str(layer)): # site specific speaker embedding if speaker_embed is not None: s = tf.layers.dense(speaker_embed, h.shape[-1], activation=tf.nn.relu) s = tf.tile(tf.expand_dims(s, 1), [1, tf.shape(h)[1], 1]) h = tf.concat([h, s], 2) h = highway(h) tf.summary.histogram('highway_out', h) # site specfic speaker embedding if speaker_embed is not None: s = tf.layers.dense(speaker_embed, gru_units, activation=tf.nn.relu) else: s = None # bi-GRU forward_gru_cell = GRUCell(gru_units) backward_gru_cell = GRUCell(gru_units) out, _ = tf.nn.bidirectional_dynamic_rnn( forward_gru_cell, backward_gru_cell, h, initial_state_fw=s, initial_state_bw=s, dtype=tf.float32 ) out = tf.concat(out, 2) tf.summary.histogram('encoded', out) return out
examples/plot_sars.py
skovic/SHARPpy
163
12724658
<reponame>skovic/SHARPpy<gh_stars>100-1000 """ Plotting data from the SARS database ==================================== """ import sharppy.sharptab as tab import sharppy.databases.sars as sars import numpy as np import os import matplotlib.pyplot as plt database_fn = os.path.join( os.path.dirname( sars.__file__ ), 'sars_supercell.txt') supercell_database = np.loadtxt(database_fn, skiprows=1, dtype=bytes, comments="%%%%") magnitude = [] mlcape = [] srh01 = [] for record in supercell_database: magnitude.append(int(record[1])) mlcape.append(float(record[3])) srh01.append(float(record[6])) plt.grid() plt.scatter(mlcape, srh01, c=magnitude, marker='.') plt.colorbar() plt.xlabel("MLCAPE [J/kg]") plt.ylabel(r'0-1 km Storm Relative Helicity [$m^{2}/s^{2}$]') plt.savefig('plot_sars.png', bbox_inches='tight') plt.show()
GCC-paddle/gcc/tasks/__init__.py
S-HuaBomb/Contrib
243
12724659
from gcc.models.emb import ( FromNumpy, FromNumpyAlign, FromNumpyGraph, GraphWave, ProNE, Zero, ) def build_model(name, hidden_size, **model_args): return { "zero": Zero, "from_numpy": FromNumpy, "from_numpy_align": FromNumpyAlign, "from_numpy_graph": FromNumpyGraph, "prone": ProNE, "graphwave": GraphWave, }[name](hidden_size, **model_args)
micro-benchmark/snippets/assignments/chained/main.py
WenJinfeng/PyCG
121
12724689
<filename>micro-benchmark/snippets/assignments/chained/main.py<gh_stars>100-1000 def func1(): pass def func2(): pass a = b = func1 b() a = b = func2 a()
notebook/pandas_ohlc_downsampling.py
vhn0912/python-snippets
174
12724711
<gh_stars>100-1000 import pandas as pd df = pd.read_csv('data/src/aapl_2015_2019.csv', index_col=0, parse_dates=True)['2017'] print(df) # open high low close volume # 2017-01-03 115.80 116.3300 114.760 116.15 28781865 # 2017-01-04 115.85 116.5100 115.750 116.02 21118116 # 2017-01-05 115.92 116.8642 115.810 116.61 22193587 # 2017-01-06 116.78 118.1600 116.470 117.91 31751900 # 2017-01-09 117.95 119.4300 117.940 118.99 33561948 # ... ... ... ... ... ... # 2017-12-22 174.68 175.4240 174.500 175.01 16052615 # 2017-12-26 170.80 171.4700 169.679 170.57 32968167 # 2017-12-27 170.10 170.7800 169.710 170.60 21672062 # 2017-12-28 171.00 171.8500 170.480 171.08 15997739 # 2017-12-29 170.52 170.5900 169.220 169.23 25643711 # # [251 rows x 5 columns] d_ohlc = {'open': 'first', 'high': 'max', 'low': 'min', 'close': 'last'} print(df.resample('MS').agg(d_ohlc)) # open high low close # 2017-01-01 115.80 122.4400 114.76 121.35 # 2017-02-01 127.03 137.4800 127.01 136.99 # 2017-03-01 137.89 144.5000 137.05 143.66 # 2017-04-01 143.71 145.4600 140.06 143.65 # 2017-05-01 145.10 156.6500 144.27 152.76 # 2017-06-01 153.17 155.9800 142.20 144.02 # 2017-07-01 144.88 153.9900 142.41 148.73 # 2017-08-01 149.10 164.5200 148.41 164.00 # 2017-09-01 164.80 164.9400 149.16 154.12 # 2017-10-01 154.26 169.6499 152.46 169.04 # 2017-11-01 169.87 176.2400 165.28 171.85 # 2017-12-01 169.95 177.2000 166.46 169.23 print(df.resample('QS').agg(d_ohlc)) # open high low close # 2017-01-01 115.80 144.50 114.76 143.66 # 2017-04-01 143.71 156.65 140.06 144.02 # 2017-07-01 144.88 164.94 142.41 154.12 # 2017-10-01 154.26 177.20 152.46 169.23 print(df.resample('2W-MON', closed='left', label='left').agg(d_ohlc)) # open high low close # 2017-01-02 115.800 119.9300 114.7600 119.04 # 2017-01-16 118.340 122.4400 118.2200 121.95 # 2017-01-30 120.930 132.9400 120.6200 132.12 # 2017-02-13 133.080 137.4800 132.7500 136.66 # 2017-02-27 137.140 140.2786 136.2800 139.14 # 2017-03-13 138.850 142.8000 138.8200 140.64 # 2017-03-27 139.390 145.4600 138.6200 143.34 # 2017-04-10 143.600 143.8792 140.0600 142.27 # 2017-04-24 143.500 148.9800 143.1800 148.96 # 2017-05-08 149.030 156.6500 149.0300 153.06 # 2017-05-22 154.000 155.4500 152.2200 155.45 # 2017-06-05 154.340 155.9800 142.2000 142.27 # 2017-06-19 143.660 148.2800 142.2800 144.02 # 2017-07-03 144.880 149.3300 142.4100 149.04 # 2017-07-17 148.820 153.9900 147.3000 149.50 # 2017-07-31 149.900 161.8300 148.1300 157.48 # 2017-08-14 159.320 162.5100 155.1101 159.86 # 2017-08-28 160.140 164.9400 158.5300 158.63 # 2017-09-11 160.500 163.9600 150.5600 151.89 # 2017-09-25 149.990 155.4900 149.1600 155.30 # 2017-10-09 155.810 160.8700 155.0200 156.25 # 2017-10-23 156.890 174.2600 155.2700 172.50 # 2017-11-06 172.365 176.2400 168.3800 170.15 # 2017-11-20 170.290 175.5000 167.1600 171.05 # 2017-12-04 172.480 174.1700 166.4600 173.97 # 2017-12-18 174.880 177.2000 169.2200 169.23 d_ohlcv = {'open': 'first', 'high': 'max', 'low': 'min', 'close': 'last', 'volume': 'sum'} print(df.resample('MS').agg(d_ohlcv)) # open high low close volume # 2017-01-01 115.80 122.4400 114.76 121.35 563331160 # 2017-02-01 127.03 137.4800 127.01 136.99 574968547 # 2017-03-01 137.89 144.5000 137.05 143.66 562091214 # 2017-04-01 143.71 145.4600 140.06 143.65 371280180 # 2017-05-01 145.10 156.6500 144.27 152.76 635292989 # 2017-06-01 153.17 155.9800 142.20 144.02 664986406 # 2017-07-01 144.88 153.9900 142.41 148.73 411377229 # 2017-08-01 149.10 164.5200 148.41 164.00 638221161 # 2017-09-01 164.80 164.9400 149.16 154.12 669594016 # 2017-10-01 154.26 169.6499 152.46 169.04 496135305 # 2017-11-01 169.87 176.2400 165.28 171.85 581876496 # 2017-12-01 169.95 177.2000 166.46 169.23 518560008
tests/pki/test_models.py
pythonModule/commandment
138
12724716
<reponame>pythonModule/commandment import pytest import os.path import logging from cryptography import x509 from cryptography.hazmat.primitives.asymmetric import rsa from commandment.pki.models import RSAPrivateKey, CACertificate logger = logging.getLogger(__name__) class TestModels: def test_rsa_privatekey_from_crypto(self, private_key: rsa.RSAPrivateKeyWithSerialization, session): m = RSAPrivateKey.from_crypto(private_key) session.add(m) session.commit() assert m.id is not None assert m.pem_data is not None def test_ca_certificate_from_crypto(self, ca_certificate: x509.Certificate, session): m = CACertificate.from_crypto(ca_certificate) session.add(m) session.commit() assert m.id is not None assert m.pem_data is not None assert m.fingerprint is not None assert m.x509_cn is not None
models/data_manager.py
nawshad/multi-task-NLP
308
12724721
<reponame>nawshad/multi-task-NLP ''' Script to manage datasets for multiple tasks ''' from torch.utils.data import Dataset, DataLoader, BatchSampler from utils.data_utils import TaskType, ModelType import torch import random import logging import json logger = logging.getLogger("multi_task") class allTasksDataset(Dataset): ''' class to make pytorch dataset of the processed data for a specific task taskDict :- list of dictionaries. Each dictioanry belong to the details of a dataset to be created for a task [ {"data_task_id" : "", "data_path" : "", "data_task_type" : ""}, ...] ''' def __init__(self, taskDict, pipeline = False): self.taskDict = taskDict self.pipeline = pipeline self.allTasksData, self.taskIdTypeMap = self.make_all_datasets() def read_data(self, readPath): with open(readPath, 'r', encoding = 'utf-8') as file: logger.info('Reading data from file {}'.format(readPath)) taskData = [] for i, line in enumerate(file): #if i >=1000: #continue sample = json.loads(line) taskData.append(sample) return taskData def make_all_datasets(self): ''' For each dataset entry in the taskDict, this function makes them into corresponding dataset and returns a dictionary mapping like {<task_id> : <dataset>,} ''' allTasksData = {} taskIdTypeMap = {} # mapping from task id to task type for task in self.taskDict: if self.pipeline: logger.info('Reading data for pipeline') data = task["data_"] else: data = self.read_data(task["data_path"]) allTasksData[task["data_task_id"]] = data taskIdTypeMap[task["data_task_id"]] = task["data_task_type"] logger.info('Read Data for Task Id: {} Task Name: {}. Samples {}'.format(task["data_task_id"], task["data_task_name"], len(data))) return allTasksData, taskIdTypeMap # some standard functions which need to be overridden from Dataset #class for item, len etc.. def __len__(self): return sum(len(v) for k, v in self.allTasksData.items()) # get item will be used to fetch a sample when required for the corresponding task id. def __getitem__(self, idx): taskId, sampleId = idx out = {"task": {"task_id": taskId, "task_type": self.taskIdTypeMap[taskId]}, "sample": self.allTasksData[taskId][sampleId]} return out class Batcher(BatchSampler): def __init__(self, dataObj, batchSize, shuffleTask = True, shuffleBatch = True, seed = 42): ''' dataObj :- An instance of allTasksDataset containing data for all tasks ''' self.dataObj = dataObj self.allTasksData = dataObj.allTasksData self.batchSize = batchSize # to shuffle the indices in a batch self.shuffleBatch = shuffleBatch # to shuffle the samples picked up among all the tasks self.shuffleTask = shuffleTask self.seed = seed self.allTasksDataBatchIdxs = [] self.taskIdxId = [] for taskId, data in self.allTasksData.items(): self.allTasksDataBatchIdxs.append(self.make_batches(len(data))) self.taskIdxId.append(taskId) def make_batches(self, dataSize): batchIdxs = [list(range(i, min(i+self.batchSize, dataSize))) for i in range(0, dataSize, self.batchSize)] if self.shuffleBatch: random.seed(self.seed) random.shuffle(batchIdxs) return batchIdxs def make_task_idxs(self): ''' This fn makes task indices for which a corresponding batch is created eg. [0, 0, 1, 3, 0, 2, 3, 1, 1, ..] if task ids are 0,1,2,3 ''' taskIdxs = [] for i in range(len(self.allTasksDataBatchIdxs)): taskIdxs += [i]*len(self.allTasksDataBatchIdxs[i]) if self.shuffleTask: random.seed(self.seed) random.shuffle(taskIdxs) return taskIdxs #over riding BatchSampler functions to generate iterators for all tasks # and iterate def __len__(self): return sum(len(data) for taskId, data in self.allTasksData.items()) def __iter__(self): allTasksIters = [iter(item) for item in self.allTasksDataBatchIdxs] #all_iters = [iter(item) for item in self._train_data_list] allIdxs = self.make_task_idxs() for taskIdx in allIdxs: # this batch belongs to a specific task id batchTaskId = self.taskIdxId[taskIdx] batch = next(allTasksIters[taskIdx]) yield [(batchTaskId, sampleIdx) for sampleIdx in batch] def patch_data(self, batch_info, batch_data, gpu = None): if gpu: for i, part in enumerate(batch_data): if part is not None: if isinstance(part, torch.Tensor): batch_data[i] = part.pin_memory().cuda(non_blocking=True) elif isinstance(part, tuple): batch_data[i] = tuple(sub_part.pin_memory().cuda(non_blocking=True) for sub_part in part) elif isinstance(part, list): batch_data[i] = [sub_part.pin_memory().cuda(non_blocking=True) for sub_part in part] else: raise TypeError("unknown batch data type at %s: %s" % (i, part)) return batch_info, batch_data class batchUtils: ''' This class is supposed to perform function which will help complete the batch data when DataLoader creates batch using allTasksDataset and Batcher. Main function would be 1. A function to make get the various components of input in batch samples and make them into Pytorch Tensors like token_id, type_ids, masks. 2. Collater function :- This function will use the above function to convert the batch into pytorch tensor inputs. As converting all the data into pytorch tensors before might not be a good idea due to space, hence this custom function will be used to convert the batches into tensors on the fly by acting as custom collater function to DataLoader ''' def __init__(self, isTrain, modelType, maxSeqLen, dropout = 0.005): self.isTrain = isTrain self.modelType = modelType self.maxSeqLen = maxSeqLen #self.dropout = dropout def check_samples_len(self, batch): #function to check whether all samples are having the maxSeqLen mentioned for samp in batch: assert len(samp['token_id']) == self.maxSeqLen, "token_id len doesn't match max seq len" # for multiple encoders if samp['type_id'] is not None: assert len(samp['type_id']) == self.maxSeqLen, "type_id len doesn't match max seq len" if samp['mask'] is not None: assert len(samp['mask']) == self.maxSeqLen, "mask len doesn't match max seq len" def make_batch_to_input_tensor(self, batch): #check len in batch data self.check_samples_len(batch) batchSize = len(batch) hasTypeIds = True hasAttnMasks = True if batch[0]['type_id'] is None: hasTypeIds = False if batch[0]['mask'] is None: hasAttnMasks = False #initializing token id, type id, attention mask tensors for this batch tokenIdsBatchTensor = torch.LongTensor(batchSize, self.maxSeqLen).fill_(0) typeIdsBatchTensor = torch.LongTensor(batchSize, self.maxSeqLen).fill_(0) masksBatchTensor = torch.LongTensor(batchSize, self.maxSeqLen).fill_(0) #fillling in data from sample for i, sample in enumerate(batch): tokenIdsBatchTensor[i] = torch.LongTensor(sample['token_id']) if hasTypeIds: typeIdsBatchTensor[i] = torch.LongTensor(sample['type_id']) if hasAttnMasks: masksBatchTensor[i] = torch.LongTensor(sample['mask']) # meta deta will store more things like task id, task type etc. batchMetaData = {"token_id_pos" : 0, "type_id_pos" : 1, "mask_pos" : 2} batchData = [tokenIdsBatchTensor, None, None] #None, None in case type ids, attnMasks not required by model if hasTypeIds: batchData[1] = typeIdsBatchTensor if hasAttnMasks: batchData[2] = masksBatchTensor return batchMetaData, batchData def collate_fn(self, batch): ''' This function will be used by DataLoader to return batches ''' taskId = batch[0]["task"]["task_id"] taskType = batch[0]["task"]["task_type"] orgBatch = [] labels = [] for sample in batch: assert sample["task"]["task_id"] == taskId assert sample["task"]["task_type"] == taskType orgBatch.append(sample["sample"]) labels.append(sample["sample"]["label"]) batch = orgBatch #making tensor batch data batchMetaData, batchData = self.make_batch_to_input_tensor(batch) batchMetaData['task_id'] = taskId batchMetaData['task_type'] = taskType #adding label tensor when training (as they'll used for loss calculatoion and update) # and in evaluation, it won't go with batch data, rather will keep it with meta data for metrics if self.isTrain: if taskType in (TaskType.SingleSenClassification, TaskType.SentencePairClassification, TaskType.NER): batchData.append(torch.LongTensor(labels)) #position for label batchMetaData['label_pos'] = len(batchData) - 1 else: # for test/eval labels won't be added into batch, but kept in meta data # so metric evaluation can be done #batchData :- [tokenIdsBatchTensor, typeIdsBatchTensor, MasksBatchTensor] batchMetaData['label'] = labels batchMetaData['uids'] = [sample['uid'] for sample in batch] # used in scoring return batchMetaData, batchData
conanfile.py
dbacchet/entt
6,792
12724781
#!/usr/bin/env python # -*- coding: utf-8 -*- from conans import ConanFile class EnttConan(ConanFile): name = "entt" description = "Gaming meets modern C++ - a fast and reliable entity-component system (ECS) and much more " topics = ("conan," "entt", "gaming", "entity", "ecs") url = "https://github.com/skypjack/entt" homepage = url author = "<NAME> <<EMAIL>>" license = "MIT" exports = ["LICENSE"] exports_sources = ["src/*"] no_copy_source = True def package(self): self.copy(pattern="LICENSE", dst="licenses") self.copy(pattern="*", dst="include", src="src", keep_path=True) def package_info(self): if not self.in_local_cache: self.cpp_info.includedirs = ["src"] def package_id(self): self.info.header_only()
components/espcoredump/corefile/riscv.py
cablelabs/esp-idf
8,747
12724822
# # Copyright 2021 Espressif Systems (Shanghai) CO., LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from construct import Int16ul, Int32ul, Padding, Struct from corefile import BaseArchMethodsMixin, BaseTargetMethods, ESPCoreDumpLoaderError try: from typing import Any, Optional, Tuple except ImportError: pass RISCV_GP_REGS_COUNT = 32 PRSTATUS_SIZE = 204 PRSTATUS_OFFSET_PR_CURSIG = 12 PRSTATUS_OFFSET_PR_PID = 24 PRSTATUS_OFFSET_PR_REG = 72 ELF_GREGSET_T_SIZE = 128 PrStruct = Struct( Padding(PRSTATUS_OFFSET_PR_CURSIG), 'pr_cursig' / Int16ul, Padding(PRSTATUS_OFFSET_PR_PID - PRSTATUS_OFFSET_PR_CURSIG - Int16ul.sizeof()), 'pr_pid' / Int32ul, Padding(PRSTATUS_OFFSET_PR_REG - PRSTATUS_OFFSET_PR_PID - Int32ul.sizeof()), 'regs' / Int32ul[RISCV_GP_REGS_COUNT], Padding(PRSTATUS_SIZE - PRSTATUS_OFFSET_PR_REG - ELF_GREGSET_T_SIZE) ) class RiscvMethodsMixin(BaseArchMethodsMixin): @staticmethod def get_registers_from_stack(data, grows_down): # type: (bytes, bool) -> Tuple[list[int], Optional[dict[int, int]]] regs = Int32ul[RISCV_GP_REGS_COUNT].parse(data) if not grows_down: raise ESPCoreDumpLoaderError('Growing up stacks are not supported for now!') return regs, None @staticmethod def build_prstatus_data(tcb_addr, task_regs): # type: (int, list[int]) -> Any return PrStruct.build({ 'pr_cursig': 0, 'pr_pid': tcb_addr, 'regs': task_regs, }) class Esp32c3Methods(BaseTargetMethods, RiscvMethodsMixin): TARGET = 'esp32c3'
DEPRECATED_PYTHON_SRC/component/hosts.py
17701253801/firefly-proxy
5,895
12724834
import os import codecs import json import collections from collections import defaultdict from gevent import socket from fnmatch import fnmatch if os.name == 'nt': import win_inet_pton socket.inet_pton = win_inet_pton.inet_pton socket.inet_ntop = win_inet_pton.inet_ntop from gsocks.smart_relay import ForwardDestination from lib.utils import load_file, remote_update_datafile def create_connection_hosts(addrs, port, timeout): for addr in addrs: try: return socket.create_connection((addr, port), timeout=timeout) except: pass raise socket.error("all addrs are failed.") # @UndefinedVariable def create_hosts(rootdir, confdata): f = codecs.open(os.path.join(rootdir, confdata['hosts']['meta']), "r", "utf-8") meta = json.loads(f.read(), object_pairs_hook=collections.OrderedDict) f.close() disabled = load_file(os.path.join(rootdir, confdata['hosts']['disabled'])) data = load_file(os.path.join(rootdir, confdata['hosts']['data'])) enable = int(confdata['hosts']['enable'])!=0 return FireflyHosts(enable, data, meta, disabled) def detect_ipv6(): try: addrinfo = socket.getaddrinfo("www.google.com", 80) af, _, _, _, _ = addrinfo[0] return af == socket.AF_INET6 # @UndefinedVariable except: return False def hosts_info(rootdir, confdata, hosts): return ( os.path.join(rootdir, confdata['hosts']['data']), hosts.enable, hosts.count(), hosts.groups(), hosts.meta['date'], ) def remote_update_hosts(proxies, rootdir, confdata): metafile = os.path.join(rootdir, confdata['hosts']['meta']) metaurl = confdata['hosts']['meta_url'] datafile = os.path.join(rootdir, confdata['hosts']['data']) dataurl = confdata['hosts']['data_url'] f = codecs.open(metafile, "r", "utf-8") meta = json.loads(f.read(), object_pairs_hook=collections.OrderedDict) f.close() return remote_update_datafile(proxies, meta, metafile, metaurl, datafile, dataurl) class FireflyHosts(object): def __init__(self, enable, data, meta, disabled): self.enable = enable self.data = defaultdict(list) self.meta = meta self.disabled = set(disabled) self.has_ipv6 = None for entry in data: try: parts = entry.split() parts = [s.strip() for s in parts] parts = [s for s in parts if not s.startswith("#")] addr, name = parts if "." in addr: socket.inet_pton(socket.AF_INET, addr) # @UndefinedVariable else: socket.inet_pton(socket.AF_INET6, addr) # @UndefinedVariable self.data[name.encode("idna")].append(addr) except Exception, e: pass #print "[Hosts]: ", entry, str(e) def count(self): return len(self.data.keys()) def disable(self, groupname): self.disabled.add(groupname) def match_domain(self, domain, host): if fnmatch(domain, host): return True parts = host.split(".") for i in range(len(parts)-1, -1, -1): if ".".join(parts[i:]) == domain: return True return False def need_redirect(self, method, host): if method != "GET": return False groups = self.meta.get('groups', {}) for (_, domains) in groups.iteritems(): for (domain, redirect) in domains: if self.match_domain(domain, host) and redirect: return True return False def is_disabled(self, host): groups = self.meta.get('groups', {}) for groupname in self.disabled: domains = groups.get(groupname, []) for (domain, _) in domains: if self.match_domain(domain, host): return True return False def __classify(self, addrs): v4 = [] v6 = [] for addr in addrs: if ":" in addr: v6.append(addr) else: v4.append(addr) if self.has_ipv6: # assume ipv4 is always available. return v6 + v4 else: return v4 def find(self, host): if not self.enable: print "hosts disabled ..." return None if self.has_ipv6 == None: self.has_ipv6 = detect_ipv6() for name, addrs in self.data.iteritems(): if name == host and not self.is_disabled(host): addrs = self.__classify(addrs) if addrs: return ForwardDestination("hosts", addrs) else: return None return None def groups(self): ret = [] names = self.meta.get('groups', {}).keys() for name in names: if name in self.disabled: ret.append((name, False)) else: ret.append((name, True)) return ret
lib/oembed/utils.py
goztrk/django-htk
206
12724839
# Python Standard Library Imports import re # Third Party (PyPI) Imports import requests import rollbar import six.moves.urllib as urllib # HTK Imports from htk.lib.oembed.cachekeys import OembedResponseCache from htk.lib.oembed.constants import * from htk.utils.request import get_current_request def get_oembed_html(url, autoplay=False): """Gets the oEmbed HTML for a URL, if it is an oEmbed type """ oembed_type = get_oembed_type(url) if oembed_type: if oembed_type == 'youtube': html = youtube_oembed(url, autoplay=autoplay) else: html = get_oembed_html_for_service(url, oembed_type) else: html = None return html def get_oembed_html_for_service(url, service): """Returns the oEmbed HTML for `service` (YouTube, Vimeo, etc) Makes an HTTP request, so we should probably cache its response """ c = OembedResponseCache(prekey=url) html = c.get() if html is None: request = None success = False try: oembed_base_url = OEMBED_BASE_URLS[service] oembed_url = oembed_base_url % { 'url' : urllib.parse.quote(url), } response = requests.get(oembed_url) if response.status_code >= 400: pass else: data = response.json() html = data['html'] c.cache_store(html) success = True except: request = get_current_request() extra_data = { 'message' : 'Bad oembed URL', 'oembed_url' : oembed_url, 'url' : url, 'response' : { 'status_code' : response.status_code, 'content' : response.content, } } rollbar.report_exc_info(level='warning', request=request, extra_data=extra_data) if success: pass else: html = '<a href="%(url)s" target="_blank">%(url)s</a>' % { 'url' : url, } else: pass return html def get_oembed_type(url): """Determines the type of oEmbed this URL is, if it exists """ oembed_type = None for service, pattern in OEMBED_URL_SCHEME_REGEXPS.items(): if re.match(pattern, url, flags=re.I): oembed_type = service break return oembed_type def youtube_oembed(url, autoplay=False): html = get_oembed_html_for_service(url, 'youtube') if autoplay: replacement = '?feature=oembed&autoplay=1&rel=0&modestbranding=1' else: replacement = '?feature=oembed&rel=0&modestbranding=1' html = re.sub( r'\?feature=oembed', replacement, html ) return html def youtube_oembed_autoplay(url): html = youtube_oembed(url, autoplay=True) return html
opts.py
Nitin-Mane/dense-ulearn-vos
157
12724853
""" Copyright (c) 2021 TU Darmstadt Author: <NAME> <<EMAIL>> License: Apache License 2.0 """ from __future__ import print_function import os import torch import argparse from core.config import cfg def add_global_arguments(parser): # # Model details # parser.add_argument("--snapshot-dir", type=str, default='./snapshots', help="Where to save snapshots of the model.") parser.add_argument("--logdir", type=str, default='./logs', help="Where to save log files of the model.") parser.add_argument("--exp", type=str, default="main", help="ID of the experiment (multiple runs)") parser.add_argument("--run", type=str, help="ID of the run") parser.add_argument('--workers', type=int, default=8, metavar='N', help='dataloader threads') parser.add_argument('--seed', default=64, type=int, help='seed for initializing training. ') # # Inference only # parser.add_argument("--infer-list", default="voc12/val.txt", type=str) parser.add_argument('--mask-output-dir', type=str, default=None, help='path where to save masks') parser.add_argument("--resume", type=str, default=None, help="Snapshot \"ID,iter\" to load") # # Configuration # parser.add_argument( '--cfg', dest='cfg_file', required=True, help='Config file for training (and optionally testing)') parser.add_argument( '--set', dest='set_cfgs', help='Set config keys. Key value sequence seperate by whitespace.' 'e.g. [key] [value] [key] [value]', default=[], nargs='+') def maybe_create_dir(path): if not os.path.exists(path): os.makedirs(path) def check_global_arguments(args): args.cuda = torch.cuda.is_available() print("Available threads: ", torch.get_num_threads()) args.logdir = os.path.join(args.logdir, args.exp, args.run) maybe_create_dir(args.logdir) # # Model directories # args.snapshot_dir = os.path.join(args.snapshot_dir, args.exp, args.run) maybe_create_dir(args.snapshot_dir) def get_arguments(args_in): """Parse all the arguments provided from the CLI. Returns: A list of parsed arguments. """ parser = argparse.ArgumentParser(description="Dense Unsupervised Learning for Video Segmentation") add_global_arguments(parser) args = parser.parse_args(args_in) check_global_arguments(args) return args
maro/cli/inspector/visualization.py
yangboz/maro
598
12724866
<reponame>yangboz/maro # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import argparse from maro.cli.inspector.cim_dashboard import start_cim_dashboard from maro.cli.inspector.citi_bike_dashboard import start_citi_bike_dashboard from maro.cli.inspector.params import GlobalScenarios if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--source_path", type=str) parser.add_argument("--scenario", type=str) parser.add_argument("--epoch_num", type=int) parser.add_argument("--prefix", type=str) args = parser.parse_args() source_path = args.source_path scenario = GlobalScenarios(args.scenario) epoch_num = args.epoch_num prefix = args.prefix if scenario == GlobalScenarios.CIM: start_cim_dashboard(source_path, epoch_num, prefix) elif scenario == GlobalScenarios.CITI_BIKE: start_citi_bike_dashboard(source_path, epoch_num, prefix)
ajenti-core/aj/security/verifier.py
ajenti/ajen
3,777
12724876
from jadi import service import aj @service class ClientCertificateVerificator(): def __init__(self, context): self.context = context def verify(self, x509): serial = x509.get_serial_number() digest = x509.digest('sha1') # logging.debug('SSL verify: %s / %s' % (x509.get_subject(), digest)) for c in aj.config.data['ssl']['client_auth']['certificates']: if int(c['serial']) == serial and c['digest'].encode('utf-8') == digest: return c['user']
pandapower/test/loadflow/PF_Results.py
yougnen/pandapower
104
12724904
import numpy as np def get_PF_Results(): results=\ { 10: { 0: { 'delta' : { 'Yyn': np.array ([ #10,0,deltaYyn #BusTr_HV,Tr_LV,Load 1.0000001787261197, 0.9990664471050634, 0.9408623912831601, 0.9999997973033823, 0.9989329879720452, 0.9398981202882926, 1.000000023970535, 0.9990124767159095, 0.9422153531204793, ] ) , 'YNyn': np.array ([ #10,0,deltaYNyn #BusTr_HV,Tr_LV,Load 1.0000001786899793, 0.9990638105447855, 0.9408586320432043, 0.9999997971517767, 0.9989338020819162, 0.9398997093459485, 1.000000024158281, 0.9990142941344189, 0.9422174830541402, ] ) , 'Dyn': np.array ([ #10,0,deltaDyn #BusTr_HV,Tr_LV,Load 1.000000178603741, 0.9990638106892, 0.9408586322473715, 0.9999997971832201, 0.9989338020666364, 0.9398997093074486, 1.000000024213076, 0.9990142940055439, 0.9422174828921106, ] ) , 'Yzn': np.array ([ #10,0,deltaYzn #BusTr_HV,Tr_LV,Load 1.000000178603741, 0.9990638106892, 0.9408586322473715, 0.9999997971832201, 0.9989338020666364, 0.9398997093074486, 1.000000024213076, 0.9990142940055439, 0.9422174828921106, ] ) , }, 'wye' : { 'Yyn': np.array ([ #10,0,wyeYyn #BusTr_HV,Tr_LV,Load 0.9999998021362442, 0.9915031010358111, 0.9206318374527404, 0.9999997791045989, 1.0143417780460269, 0.9616365638634155, 1.000000418759289, 0.9913387390190033, 0.9408558778822637, ] ) , 'YNyn': np.array ([ #10,0,wyeYNyn #BusTr_HV,Tr_LV,Load 0.9999997083766274, 0.9988968962217385, 0.9287452455114519, 1.0000001672319114, 0.999061839981782, 0.9452915718541725, 1.0000001243918462, 0.9990504923797096, 0.9488965582258678, ] ) , 'Dyn': np.array ([ #10,0,wyeDyn #BusTr_HV,Tr_LV,Load 0.9999999599731432, 0.9988963012384348, 0.9287445940341739, 0.999999734429128, 0.9990625733649781, 0.9452923634430362, 1.000000305597812, 0.9990503538577492, 0.9488964199625295, ] ) , 'Yzn': np.array ([ #10,0,wyeYzn #BusTr_HV,Tr_LV,Load 0.9999999599731432, 0.9988963012384348, 0.9287445940341739, 0.999999734429128, 0.9990625733649781, 0.9452923634430362, 1.000000305597812, 0.9990503538577492, 0.9488964199625295, ] ) , }, 'delta_wye' : { 'Yyn': np.array ([ #10,0,delta_wyeYyn #BusTr_HV,Tr_LV,Load 1.000000289039923, 0.9945259444558469, 0.9241479442057374, 0.9999996598061066, 1.0028660964609941, 0.9332827547884484, 1.0000000511540714, 0.9989227003917809, 0.9366758414321353, ] ) , 'YNyn': np.array ([ #10,0,delta_wyeYNyn #BusTr_HV,Tr_LV,Load 1.0000001633660651, 0.9988186334488024, 0.9284513283443013, 0.9999997731436624, 0.9986857571039884, 0.9290168825920521, 1.0000000634904662, 0.9987917974558278, 0.9366076053493121, ] ) , 'Dyn': np.array ([ #10,0,delta_wyeDyn #BusTr_HV,Tr_LV,Load 1.0000002947774138, 0.9988183812973129, 0.928451074375663, 0.9999996601592913, 0.9986859152711799, 0.9290170457925304, 1.0000000450633972, 0.9987918914643369, 0.936607696605823, ] ) , 'Yzn': np.array ([ #10,0,delta_wyeYzn #BusTr_HV,Tr_LV,Load 1.0000002947774138, 0.9988183812973129, 0.928451074375663, 0.9999996601592913, 0.9986859152711799, 0.9290170457925304, 1.0000000450633972, 0.9987918914643369, 0.936607696605823, ] ) , }, 'bal_wye' : { 'Yyn': np.array ([ #10,0,bal_wyeYyn #BusTr_HV,Tr_LV,Load 0.9999999999999879, 0.9990668908275987, 0.9446728357045939, 0.9999999999999739, 0.9990668910254652, 0.9446728363197381, 1.0000000000000384, 0.9990668908667012, 0.9446728362625954, ] ) , 'YNyn': np.array ([ #10,0,bal_wyeYNyn #BusTr_HV,Tr_LV,Load 0.9999999999999863, 0.9990668909016067, 0.9446728357836535, 0.9999999999999772, 0.9990668908990621, 0.9446728361848189, 1.0000000000000362, 0.9990668909190944, 0.9446728363184529, ] ) , 'Dyn': np.array ([ #10,0,bal_wyeDyn #BusTr_HV,Tr_LV,Load 0.999999999999989, 0.999066890901618, 0.9446728357836652, 0.9999999999999737, 0.999066890899081, 0.9446728361848393, 1.0000000000000375, 0.999066890919066, 0.9446728363184226, ] ) , 'Yzn': np.array ([ #10,0,bal_wyeYzn #BusTr_HV,Tr_LV,Load 0.999999999999989, 0.999066890901618, 0.9446728357836652, 0.9999999999999737, 0.999066890899081, 0.9446728361848393, 1.0000000000000375, 0.999066890919066, 0.9446728363184226, ] ) , }, }, 1: { 'delta' : { 'Yyn': np.array ([ #10,1,deltaYyn #BusTr_HV,Tr_LV,Load 1.0000001795040512, 1.0240495841864894, 0.9674397511496959, 0.9999997971910463, 1.0239111614639989, 0.9664923222986317, 1.0000000233049395, 1.0239935208058917, 0.9687543048259518, ] ) , 'YNyn': np.array ([ #10,1,deltaYNyn #BusTr_HV,Tr_LV,Load 1.0000001782704175, 1.0240459468337655, 0.9674352916726019, 0.9999997977852046, 1.0239130527637306, 0.9664952324047731, 1.0000000239444145, 1.023995255504894, 0.9687558295327158, ] ) , 'Dyn': np.array ([ #10,1,deltaDyn #BusTr_HV,Tr_LV,Load 1.0000001782214243, 1.024045946940332, 0.967435291834159, 0.9999997978066542, 1.0239130527420286, 0.9664952323430777, 1.0000000239719584, 1.023995255420507, 0.9687558294364838, ] ) , 'Yzn': np.array ([ #10,1,deltaYzn #BusTr_HV,Tr_LV,Load 1.0000001782214243, 1.024045946940332, 0.967435291834159, 0.9999997978066542, 1.0239130527420286, 0.9664952323430777, 1.0000000239719584, 1.023995255420507, 0.9687558294364838, ] ) , }, 'wye' : { 'Yyn': np.array ([ #10,1,wyeYyn #BusTr_HV,Tr_LV,Load 0.9999998049723338, 1.0163471727161444, 0.9474851372085454, 0.9999997835047069, 1.0396033478524176, 0.9883119194148919, 1.0000004115230865, 1.016177862041642, 0.9670415224711911, ] ) , 'YNyn': np.array ([ #10,1,wyeYNyn #BusTr_HV,Tr_LV,Load 0.9999997111904564, 1.023876123903735, 0.9557104532156954, 1.000000169840967, 1.024045000904823, 0.97172789408756, 1.0000001189689527, 1.024030547850082, 0.9752090807560196, ] ) , 'Dyn': np.array ([ #10,1,wyeDyn #BusTr_HV,Tr_LV,Load 0.9999999610844935, 1.0238755180281829, 0.9557097928361534, 0.9999997396431541, 1.0240457481759326, 0.9717286975282872, 1.0000002992724317, 1.0240304063318828, 0.975208939465858, ] ) , 'Yzn': np.array ([ #10,1,wyeYzn #BusTr_HV,Tr_LV,Load 0.9999999610844935, 1.0238755180281829, 0.9557097928361534, 0.9999997396431541, 1.0240457481759326, 0.9717286975282872, 1.0000002992724317, 1.0240304063318828, 0.975208939465858, ] ) , }, 'delta_wye' : { 'Yyn': np.array ([ #10,1,delta_wyeYyn #BusTr_HV,Tr_LV,Load 1.0000002896605282, 1.0194026014413138, 0.9509830141499932, 0.9999996606572187, 1.0279455302463374, 0.9603073239465667, 1.0000000496823542, 1.0238970684816717, 0.9633884768515291, ] ) , 'YNyn': np.array ([ #10,1,delta_wyeYNyn #BusTr_HV,Tr_LV,Load 1.0000001631049464, 1.0237965435008547, 0.9553922424619002, 0.9999997741736003, 1.0236607923322103, 0.9559358029296258, 1.000000062721646, 1.0237688359303385, 0.9633200580357987, ] ) , 'Dyn': np.array ([ #10,1,delta_wyeDyn #BusTr_HV,Tr_LV,Load 1.0000002940160242, 1.023796285978077, 0.9553919829548445, 0.9999996614657936, 1.0236609541452617, 0.9559359697011912, 1.000000044518284, 1.0237689316654306, 0.9633201512377196, ] ) , 'Yzn': np.array ([ #10,1,delta_wyeYzn #BusTr_HV,Tr_LV,Load 1.0000002940160242, 1.023796285978077, 0.9553919829548445, 0.9999996614657936, 1.0236609541452617, 0.9559359697011912, 1.000000044518284, 1.0237689316654306, 0.9633201512377196, ] ) , }, 'bal_wye' : { 'Yyn': np.array ([ #10,1,bal_wyeYyn #BusTr_HV,Tr_LV,Load 0.99999999999999, 1.02404859308445, 0.971134029249497, 0.9999999999999845, 1.0240485931685195, 0.9711340295967834, 1.0000000000000258, 1.0240485931044616, 0.9711340295607079, ] ) , 'YNyn': np.array ([ #10,1,bal_wyeYNyn #BusTr_HV,Tr_LV,Load 0.9999999999999892, 1.0240485931151249, 0.9711340292823146, 0.9999999999999865, 1.024048593114567, 0.9711340295398108, 1.0000000000000244, 1.0240485931277552, 0.9711340295848808, ] ) , 'Dyn': np.array ([ #10,1,bal_wyeDyn #BusTr_HV,Tr_LV,Load 0.9999999999999902, 1.024048593115119, 0.9711340292823075, 0.9999999999999848, 1.0240485931145844, 0.9711340295398292, 1.0000000000000249, 1.024048593127728, 0.9711340295848522, ] ) , 'Yzn': np.array ([ #10,1,bal_wyeYzn #BusTr_HV,Tr_LV,Load 0.9999999999999902, 1.024048593115119, 0.9711340292823075, 0.9999999999999848, 1.0240485931145844, 0.9711340295398292, 1.0000000000000249, 1.024048593127728, 0.9711340295848522, ] ) , }, }, }, 11: { 0: { 'delta' : { 'Yyn': np.array ([ #11,0,deltaYyn #BusTr_HV,Tr_LV,Load 1.0000001770832512, 1.0991666419999009, 1.046863039382953, 0.9999997998271506, 1.0990478952608114, 1.0459974904307656, 1.0000000230896342, 1.0991196058562567, 1.0480820977965253, ] ) , 'YNyn': np.array ([ #11,0,deltaYNyn #BusTr_HV,Tr_LV,Load 1.000000177064337, 1.0991653032170863, 1.0468611006390927, 0.9999997997417357, 1.0990483460592901, 1.0459983357170173, 1.0000000231939636, 1.0991204912844936, 1.0480831713683516, ] ) , 'Dyn': np.array ([ #11,0,deltaDyn #BusTr_HV,Tr_LV,Load 1.0000001770170086, 1.099165303280019, 1.046861100729514, 0.9999997997589116, 1.0990483460550085, 1.0459983357036897, 1.0000000232241157, 1.0991204912259542, 1.0480831712929268, ] ) , 'Yzn': np.array ([ #11,0,deltaYzn #BusTr_HV,Tr_LV,Load 1.0000001770170086, 1.099165303280019, 1.046861100729514, 0.9999997997589116, 1.0990483460550085, 1.0459983357036897, 1.0000000232241157, 1.0991204912259542, 1.0480831712929268, ] ) , }, 'wye' : { 'Yyn': np.array ([ #11,0,wyeYyn #BusTr_HV,Tr_LV,Load 0.9999998409135958, 1.0924753274233265, 1.0291805067306592, 0.9999997887228856, 1.112638254093763, 1.0649872145063082, 1.0000003703636224, 1.0923417509837368, 1.0468846408299153, ] ) , 'YNyn': np.array ([ #11,0,wyeYNyn #BusTr_HV,Tr_LV,Load 0.9999997198861459, 1.0990179190476412, 1.0362148303868974, 1.0000001764446427, 1.0991669773561135, 1.0507765134998273, 1.0000001036695618, 1.0991473807202723, 1.0539233691792418, ] ) , 'Dyn': np.array ([ #11,0,wyeDyn #BusTr_HV,Tr_LV,Load 0.9999999645965844, 1.0990174387140366, 1.036214314982853, 0.9999997540341666, 1.0991675482923782, 1.0507771199594842, 1.0000002813693196, 1.0991472900387962, 1.0539232794875342, ] ) , 'Yzn': np.array ([ #11,0,wyeYzn #BusTr_HV,Tr_LV,Load 0.9999999645965844, 1.0990174387140366, 1.036214314982853, 0.9999997540341666, 1.0991675482923782, 1.0507771199594842, 1.0000002813693196, 1.0991472900387962, 1.0539232794875342, ] ) , }, 'delta_wye' : { 'Yyn': np.array ([ #11,0,delta_wyeYyn #BusTr_HV,Tr_LV,Load 1.0000002867915057, 1.09511471406464, 1.0320045668742739, 0.9999996655448716, 1.102582851029247, 1.0401766570762196, 1.0000000476637207, 1.0990187740288424, 1.0431968194073924, ] ) , 'YNyn': np.array ([ #11,0,delta_wyeYNyn #BusTr_HV,Tr_LV,Load 1.0000001623852481, 1.0989490480618516, 1.0358488170212126, 0.9999997776678232, 1.098829878782537, 1.0363599386677118, 1.0000000599471168, 1.0989238972185933, 1.0431472226133363, ] ) , 'Dyn': np.array ([ #11,0,delta_wyeDyn #BusTr_HV,Tr_LV,Load 1.000000291479138, 1.0989488469146447, 1.0358486145520418, 0.9999996659434413, 1.0988300000349813, 1.0363600632236267, 1.0000000425775202, 1.098923977128452, 1.0431473008280179, ] ) , 'Yzn': np.array ([ #11,0,delta_wyeYzn #BusTr_HV,Tr_LV,Load 1.000000291479138, 1.0989488469146447, 1.0358486145520418, 0.9999996659434413, 1.0988300000349813, 1.0363600632236267, 1.0000000425775202, 1.098923977128452, 1.0431473008280179, ] ) , }, 'bal_wye' : { 'Yyn': np.array ([ #11,0,bal_wyeYyn #BusTr_HV,Tr_LV,Load 0.999999999999994, 1.0991663222840553, 1.0502483483014522, 0.999999999999986, 1.0991663223629755, 1.0502483485683893, 1.00000000000002, 1.0991663223022374, 1.0502483485566558, ] ) , 'YNyn': np.array ([ #11,0,bal_wyeYNyn #BusTr_HV,Tr_LV,Load 0.9999999999999934, 1.0991663223142185, 1.050248348333234, 0.9999999999999878, 1.0991663223125718, 1.0502483485153113, 1.000000000000019, 1.0991663223224817, 1.0502483485779557, ] ) , 'Dyn': np.array ([ #11,0,bal_wyeDyn #BusTr_HV,Tr_LV,Load 0.9999999999999944, 1.099166322314217, 1.0502483483332314, 0.999999999999986, 1.0991663223125883, 1.050248348515329, 1.0000000000000195, 1.099166322322463, 1.0502483485779364, ] ) , 'Yzn': np.array ([ #11,0,bal_wyeYzn #BusTr_HV,Tr_LV,Load 0.9999999999999944, 1.099166322314217, 1.0502483483332314, 0.999999999999986, 1.0991663223125883, 1.050248348515329, 1.0000000000000195, 1.099166322322463, 1.0502483485779364, ] ) , }, }, 1: { 'delta' : { 'Yyn': np.array ([ #11,1,deltaYyn #BusTr_HV,Tr_LV,Load 1.000000177759738, 1.1266508599188314, 1.075749945733859, 0.9999997996753168, 1.1265276819882335, 1.0748995015125222, 1.0000000225649812, 1.1266018378562361, 1.076934372664356, ] ) , 'YNyn': np.array ([ #11,1,deltaYNyn #BusTr_HV,Tr_LV,Load 1.000000176730594, 1.1266486259211201, 1.0757473443700512, 0.9999998002521623, 1.1265290107226675, 1.0749013345769867, 1.0000000230172796, 1.1266027366684568, 1.0769351304583261, ] ) , 'Dyn': np.array ([ #11,1,deltaDyn #BusTr_HV,Tr_LV,Load 1.0000001767039686, 1.1266486259729462, 1.0757473444450258, 0.9999998002646232, 1.1265290107113315, 1.0749013345478544, 1.0000000230314439, 1.126602736628164, 1.0769351304141572, ] ) , 'Yzn': np.array ([ #11,1,deltaYzn #BusTr_HV,Tr_LV,Load 1.0000001767039686, 1.1266486259729462, 1.0757473444450258, 0.9999998002646232, 1.1265290107113315, 1.0749013345478544, 1.0000000230314439, 1.126602736628164, 1.0769351304141572, ] ) , }, 'wye' : { 'Yyn': np.array ([ #11,1,wyeYyn #BusTr_HV,Tr_LV,Load 0.9999998425139852, 1.1198215550651343, 1.0582701679876008, 0.999999792808548, 1.1404037383383383, 1.0940119347447643, 1.000000364677568, 1.119678656475928, 1.0754147798091545, ] ) , 'YNyn': np.array ([ #11,1,wyeYNyn #BusTr_HV,Tr_LV,Load 0.9999997220234313, 1.1264984365036237, 1.065423794124721, 1.0000001785338588, 1.126651120595415, 1.0795452055229118, 1.0000000994430542, 1.126629015453866, 1.0825891788506536, ] ) , 'Dyn': np.array ([ #11,1,wyeDyn #BusTr_HV,Tr_LV,Load 0.9999999654333293, 1.1264979466596041, 1.0654232703853377, 0.9999997580954444, 1.1266517031402583, 1.079545822405393, 1.0000002764712945, 1.1266289226736226, 1.0825890870214312, ] ) , 'Yzn': np.array ([ #11,1,wyeYzn #BusTr_HV,Tr_LV,Load 0.9999999654333293, 1.1264979466596041, 1.0654232703853377, 0.9999997580954444, 1.1266517031402583, 1.079545822405393, 1.0000002764712945, 1.1266289226736226, 1.0825890870214312, ] ) , }, 'delta_wye' : { 'Yyn': np.array ([ #11,1,delta_wyeYyn #BusTr_HV,Tr_LV,Load 1.0000002872593454, 1.122503013135439, 1.061107915739188, 0.9999996662661563, 1.1301536319129346, 1.069448792307849, 1.0000000464745962, 1.1264944198323028, 1.0721922685731713, ] ) , 'YNyn': np.array ([ #11,1,delta_wyeYNyn #BusTr_HV,Tr_LV,Load 1.0000001621739123, 1.126428316031026, 1.0650458103409908, 0.9999997785161929, 1.1263065012425137, 1.0655375147447366, 1.0000000593100822, 1.12640238251751, 1.0721435619381965, ] ) , 'Dyn': np.array ([ #11,1,delta_wyeDyn #BusTr_HV,Tr_LV,Load 1.0000002908474748, 1.1264281104824707, 1.0650456033928053, 0.9999996670234566, 1.1263066253385652, 1.065537642082384, 1.0000000421291677, 1.126402463985756, 1.0721436418376473, ] ) , 'Yzn': np.array ([ #11,1,delta_wyeYzn #BusTr_HV,Tr_LV,Load 1.0000002908474748, 1.1264281104824707, 1.0650456033928053, 0.9999996670234566, 1.1263066253385652, 1.065537642082384, 1.0000000421291677, 1.126402463985756, 1.0721436418376473, ] ) , }, 'bal_wye' : { 'Yyn': np.array ([ #11,1,bal_wyeYyn #BusTr_HV,Tr_LV,Load 0.9999999999999946, 1.126649305937712, 1.0790357881145098, 0.9999999999999919, 1.1266493059651883, 1.0790357882640247, 1.0000000000000135, 1.1266493059449603, 1.0790357882526134, ] ) , 'YNyn': np.array ([ #11,1,bal_wyeYNyn #BusTr_HV,Tr_LV,Load 0.9999999999999944, 1.126649305947411, 1.079035788124742, 0.9999999999999928, 1.126649305946962, 1.0790357882450081, 1.000000000000013, 1.1266493059535365, 1.079035788261449, ] ) , 'Dyn': np.array ([ #11,1,bal_wyeDyn #BusTr_HV,Tr_LV,Load 0.9999999999999944, 1.1266493059473897, 1.0790357881247188, 0.9999999999999922, 1.1266493059469642, 1.079035788245011, 1.0000000000000133, 1.1266493059535063, 1.0790357882614174, ] ) , 'Yzn': np.array ([ #11,1,bal_wyeYzn #BusTr_HV,Tr_LV,Load 0.9999999999999944, 1.1266493059473897, 1.0790357881247188, 0.9999999999999922, 1.1266493059469642, 1.079035788245011, 1.0000000000000133, 1.1266493059535063, 1.0790357882614174, ] ) , }, }, }, } return results
samples/lightning/lit_mnist.py
elgalu/labml
463
12724927
<reponame>elgalu/labml """ Modified from https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/01-mnist-hello-world.ipynb Added labml logger """ import pytorch_lightning as pl import torch from pytorch_lightning.metrics.functional import accuracy from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader, random_split from torchvision import transforms from torchvision.datasets import MNIST from labml import lab, experiment from labml.utils.lightning import LabMLLightningLogger class LitMNIST(pl.LightningModule): def __init__(self, hidden_size=64, learning_rate=2e-4): super().__init__() # Set our init args as class attributes self.hidden_size = hidden_size self.learning_rate = learning_rate # Hardcode some dataset specific attributes self.num_classes = 10 self.dims = (1, 28, 28) channels, width, height = self.dims self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # Define PyTorch model self.model = nn.Sequential( nn.Flatten(), nn.Linear(channels * width * height, hidden_size), nn.ReLU(), nn.Dropout(0.1), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Dropout(0.1), nn.Linear(hidden_size, self.num_classes) ) def forward(self, x): x = self.model(x) return F.log_softmax(x, dim=1) def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) self.log('loss.train', loss) self.log('accuracy.train', acc) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) # Calling self.log will surface up scalars for you in TensorBoard self.log('loss.valid', loss) self.log('accuracy.valid', acc) return loss def test_step(self, batch, batch_idx): # Here we just reuse the validation_step for testing return self.validation_step(batch, batch_idx) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer #################### # DATA RELATED HOOKS #################### def prepare_data(self): # download MNIST(str(lab.get_data_path()), train=True, download=True) MNIST(str(lab.get_data_path()), train=False, download=True) def setup(self, stage=None): # Assign train/val datasets for use in dataloaders if stage == 'fit' or stage is None: mnist_full = MNIST(str(lab.get_data_path()), train=True, transform=self.transform) self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000]) # Assign test dataset for use in dataloader(s) if stage == 'test' or stage is None: self.mnist_test = MNIST(str(lab.get_data_path()), train=False, transform=self.transform) def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=32) def val_dataloader(self): return DataLoader(self.mnist_val, batch_size=32) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=32) def main(): experiment.create(name='mnist_lit_lightening', disable_screen=True) model = LitMNIST() trainer = pl.Trainer(gpus=1, max_epochs=3, progress_bar_refresh_rate=20, logger=LabMLLightningLogger()) with experiment.start(): trainer.fit(model) if __name__ == '__main__': main()
tests/modules/span_extractors/self_attentive_span_extractor_test.py
MSLars/allennlp
11,433
12724935
import numpy import torch from allennlp.modules.span_extractors import SpanExtractor, SelfAttentiveSpanExtractor from allennlp.common.params import Params class TestSelfAttentiveSpanExtractor: def test_locally_normalised_span_extractor_can_build_from_params(self): params = Params( { "type": "self_attentive", "input_dim": 7, "num_width_embeddings": 5, "span_width_embedding_dim": 3, } ) extractor = SpanExtractor.from_params(params) assert isinstance(extractor, SelfAttentiveSpanExtractor) assert extractor.get_output_dim() == 10 # input_dim + span_width_embedding_dim def test_attention_is_normalised_correctly(self): input_dim = 7 sequence_tensor = torch.randn([2, 5, input_dim]) extractor = SelfAttentiveSpanExtractor(input_dim=input_dim) assert extractor.get_output_dim() == input_dim assert extractor.get_input_dim() == input_dim # In order to test the attention, we'll make the weight which computes the logits # zero, so the attention distribution is uniform over the sentence. This lets # us check that the computed spans are just the averages of their representations. extractor._global_attention._module.weight.data.fill_(0.0) extractor._global_attention._module.bias.data.fill_(0.0) indices = torch.LongTensor( [[[1, 3], [2, 4]], [[0, 2], [3, 4]]] ) # smaller span tests masking. span_representations = extractor(sequence_tensor, indices) assert list(span_representations.size()) == [2, 2, input_dim] # First element in the batch. batch_element = 0 spans = span_representations[batch_element] # First span. mean_embeddings = sequence_tensor[batch_element, 1:4, :].mean(0) numpy.testing.assert_array_almost_equal(spans[0].data.numpy(), mean_embeddings.data.numpy()) # Second span. mean_embeddings = sequence_tensor[batch_element, 2:5, :].mean(0) numpy.testing.assert_array_almost_equal(spans[1].data.numpy(), mean_embeddings.data.numpy()) # Now the second element in the batch. batch_element = 1 spans = span_representations[batch_element] # First span. mean_embeddings = sequence_tensor[batch_element, 0:3, :].mean(0) numpy.testing.assert_array_almost_equal(spans[0].data.numpy(), mean_embeddings.data.numpy()) # Second span. mean_embeddings = sequence_tensor[batch_element, 3:5, :].mean(0) numpy.testing.assert_array_almost_equal(spans[1].data.numpy(), mean_embeddings.data.numpy()) # Now test the case in which we have some masked spans in our indices. indices_mask = torch.tensor([[True, True], [True, False]]) span_representations = extractor(sequence_tensor, indices, span_indices_mask=indices_mask) # First element in the batch. batch_element = 0 spans = span_representations[batch_element] # First span. mean_embeddings = sequence_tensor[batch_element, 1:4, :].mean(0) numpy.testing.assert_array_almost_equal(spans[0].data.numpy(), mean_embeddings.data.numpy()) # Second span. mean_embeddings = sequence_tensor[batch_element, 2:5, :].mean(0) numpy.testing.assert_array_almost_equal(spans[1].data.numpy(), mean_embeddings.data.numpy()) # Now the second element in the batch. batch_element = 1 spans = span_representations[batch_element] # First span. mean_embeddings = sequence_tensor[batch_element, 0:3, :].mean(0) numpy.testing.assert_array_almost_equal(spans[0].data.numpy(), mean_embeddings.data.numpy()) # Second span was masked, so should be completely zero. numpy.testing.assert_array_almost_equal(spans[1].data.numpy(), numpy.zeros([input_dim])) def test_widths_are_embedded_correctly(self): input_dim = 7 max_span_width = 5 span_width_embedding_dim = 3 output_dim = input_dim + span_width_embedding_dim extractor = SelfAttentiveSpanExtractor( input_dim=input_dim, num_width_embeddings=max_span_width, span_width_embedding_dim=span_width_embedding_dim, ) assert extractor.get_output_dim() == output_dim assert extractor.get_input_dim() == input_dim sequence_tensor = torch.randn([2, max_span_width, input_dim]) indices = torch.LongTensor( [[[1, 3], [0, 4], [0, 0]], [[0, 2], [1, 4], [2, 2]]] ) # smaller span tests masking. span_representations = extractor(sequence_tensor, indices) assert list(span_representations.size()) == [2, 3, output_dim] width_embeddings = extractor._span_width_embedding.weight.data.numpy() widths_minus_one = indices[..., 1] - indices[..., 0] for element in range(indices.size(0)): for span in range(indices.size(1)): width = widths_minus_one[element, span].item() width_embedding = span_representations[element, span, input_dim:] numpy.testing.assert_array_almost_equal( width_embedding.data.numpy(), width_embeddings[width] )
tests/__init__.py
iiiusky/Sasila
327
12724938
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import unittest2 as unittest all_suite = unittest.TestLoader().discover(os.path.dirname(__file__), "test_*.py")
test/mitmproxy/proxy/layers/test_socks5_fuzz.py
KarlParkinson/mitmproxy
24,939
12724966
from hypothesis import given from hypothesis.strategies import binary from mitmproxy import options from mitmproxy.connection import Client from mitmproxy.proxy.context import Context from mitmproxy.proxy.events import DataReceived from mitmproxy.proxy.layers.modes import Socks5Proxy opts = options.Options() tctx = Context(Client(("client", 1234), ("127.0.0.1", 8080), 1605699329), opts) @given(binary()) def test_socks5_fuzz(data): layer = Socks5Proxy(tctx) list(layer.handle_event(DataReceived(tctx.client, data)))
elliot/recommender/content_based/VSM/__init__.py
gategill/elliot
175
12724969
from .vector_space_model import VSM
tests/__init__.py
asmeurer/nikola
1,901
12724971
"""Tests for Nikola."""
components/isceobj/Util/geo/exceptions.py
vincentschut/isce2
1,133
12724976
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Copyright 2012 California Institute of Technology. ALL RIGHTS RESERVED. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # United States Government Sponsorship acknowledged. This software is subject to # U.S. export control laws and regulations and has been classified as 'EAR99 NLR' # (No [Export] License Required except when exporting to an embargoed country, # end user, or in support of a prohibited end use). By downloading this software, # the user agrees to comply with all applicable U.S. export laws and regulations. # The user has the responsibility to obtain export licenses, or other export # authority as may be required before exporting this software to any 'EAR99' # embargoed foreign country or citizen of those countries. # # Author: <NAME> #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """Some specialized arithmetic exceptions for Vector and Affine Spaces. """ ## \namespace geo::exceptions ## <a href="http://docs.python.org/2/library/exceptions.html">Exceptions</a> ## for Vector and Affines spaces. ## Base class for geometric errors class GeometricException(ArithmeticError): """A base class- not to be raised""" pass ## A reminder to treat geometric objects properly. class NonCovariantOperation(GeometricException): """Raise when you do something that is silly[1], like adding a Scalar to a Vector\. [1]Silly: (adj.) syn: non-covariant""" pass ## A reminder that Affine space are affine, and vector spaces are not. class AffineSpaceError(GeometricException): """Raised when you forget the points in an affine space are not vector in a vector space, and visa versa""" pass ## A catch-all for overlaoded operations getting non-sense. class UndefinedGeometricOperation(GeometricException): """This will raised if you get do an opeation that has been defined for a Tensor/Affine/Coordinate argument, but you just have a non-sense combinabtion, like vector**vector. """ pass ## This function should make a generic error message def error_message(op, left, right): """message = error_message(op, left, right) op is a method or a function left is a geo object right is probably a geo object. message is what did not work """ return "%s(%s, %s)"%(op.__name__, left.__class__.__name__, right.__class__.__name__)
tools/gen_header_v3.py
Kill-Console/xresloader
219
12724987
<reponame>Kill-Console/xresloader<filename>tools/gen_header_v3.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import re import string import glob import sys from subprocess import Popen work_dir = os.getcwd() script_dir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(script_dir) os.chdir(script_dir) os.chdir(os.path.join('..')) project_dir = os.getcwd() proto_dir = os.path.join(project_dir, 'header') proto_file = os.path.join(proto_dir, 'pb_header_v3.proto') extension_proto_file = glob.glob(os.path.join(proto_dir, 'extensions', 'v3', '*.proto')) os.chdir(work_dir) java_out_dir = proto_dir pb_out_file = os.path.join(proto_dir, 'pb_header_v3.pb') from find_protoc import find_protoc common_args = [ "-I", os.path.join(proto_dir, 'extensions', 'v3'), "-I", os.path.join(proto_dir, 'extensions'), "-I", os.path.join(proto_dir) ] # java 文件为非LITE版本 print('[PROCESS] generate java source ... ') Popen( [ find_protoc(), *common_args, '--java_out', java_out_dir, proto_file, *extension_proto_file ], cwd=os.path.join(proto_dir, 'extensions'), shell=False).wait() print('[PROCESS] generate java source done.') # pb 文件为LITE版本 print('[PROCESS] generate proto pb file ... ') Popen( [ find_protoc(), *common_args, '-o', pb_out_file, proto_file ], shell=False).wait() print('[PROCESS] generate proto pb file done.') # pb 文件为LITE版本 print('[PROCESS] generate proto pb file ... ') Popen( [ find_protoc(), "-I", os.path.join(proto_dir, 'extensions', 'v3'), "-I", os.path.join(proto_dir, 'extensions'), '-o', os.path.join(script_dir, 'extensions.pb'), *extension_proto_file, *glob.glob(os.path.join(proto_dir, 'extensions','google', 'protobuf', '*.proto')) ], shell=False).wait() print('[PROCESS] generate protobuf.pb file done.')
Python/ch6-1_b.py
andjor/deep-learning-with-csharp-and-cntk
120
12725039
import time import datetime import os import sys import numpy as np use_cntk = True if use_cntk: try: base_directory = os.path.split(sys.executable)[0] os.environ['PATH'] += ';' + base_directory import cntk os.environ['KERAS_BACKEND'] = 'cntk' except ImportError: print('CNTK not installed') else: os.environ['KERAS_BACKEND'] = 'tensorflow' os.environ['CUDA_VISIBLE_DEVICES'] = '0' import keras def learning_word_embeddings_with_the_embedding_layer(): # Number of words to consider as features max_features = 10000 # Cut texts after this number of words # (among top max_features most common words) maxlen = 20 # Load the data as lists of integers. (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=max_features) # This turns our lists of integers # into a 2D integer tensor of shape `(samples, maxlen)` x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen) x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen) model = keras.models.Sequential() # We specify the maximum input length to our Embedding layer # so we can later flatten the embedded inputs model.add(keras.layers.Embedding(max_features, 8, input_length=maxlen)) # After the Embedding layer, # our activations have shape `(samples, maxlen, 8)`. # We flatten the 3D tensor of embeddings # into a 2D tensor of shape `(samples, maxlen * 8)` model.add(keras.layers.Flatten()) # We add the classifier on top model.add(keras.layers.Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) model.summary() history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_split=0.2) def learning_word_embeddings_with_the_embedding_layer_cntk(): x_train, y_train, x_test, y_test = load_from_files() max_features = 10000 maxlen = 20 embedding_dim = 8 x = cntk.input_variable(shape=(maxlen,), dtype=np.float32) y = cntk.input_variable(shape=(1,), dtype=np.float32) model = cntk.one_hot(x, num_classes=max_features, sparse_output=True) model = cntk.layers.Embedding(embedding_dim)(model) model = cntk.layers.Dense(1, activation=cntk.sigmoid)(model) loss_function = cntk.binary_cross_entropy(model.output, y) round_predictions = cntk.round(model.output) equal_elements = cntk.equal(round_predictions, y) accuracy_function = cntk.reduce_mean(equal_elements, axis=0) max_epochs = 30 batch_size = 32 learner = cntk.adam(model.parameters, cntk.learning_parameter_schedule_per_sample(0.0001), cntk.learning_parameter_schedule_per_sample(0.99)) progress_printer = cntk.logging.ProgressPrinter(tag='Training', num_epochs=max_epochs) trainer = cntk.Trainer(model, (loss_function, accuracy_function), [learner], progress_printer) evaluator = cntk.Evaluator(accuracy_function) cntk_train(x, y, x_train, y_train, max_epochs, batch_size, trainer, evaluator) def cntk_train(x, y, x_train, y_train, max_epochs, batch_size, trainer, evaluator): N = len(x_train) y_train = np.expand_dims(y_train, axis=1) train_features = x_train[:int(N*0.8)] train_labels = y_train[:int(N*0.8)] validation_features = x_train[int(N*0.8):] validation_labels = y_train[int(N*0.8):] for current_epoch in range(max_epochs): epoch_start_time = time.time() train_indices = np.random.permutation(train_features.shape[0]) pos = 0 epoch_training_error = 0 num_batches = 0 while pos < len(train_indices): pos_end = min(pos + batch_size, len(train_indices)) x_train_minibatch = train_features[train_indices[pos:pos_end]] y_train_minibatch = train_labels[train_indices[pos:pos_end]] trainer.train_minibatch({x: x_train_minibatch, y: y_train_minibatch}) epoch_training_error += trainer.previous_minibatch_evaluation_average num_batches += 1 pos = pos_end epoch_training_error /= num_batches epoch_validation_error = 0 num_batches = 0 pos = 0 while pos < len(validation_features): pos_end = min(pos + batch_size, len(validation_features)) x_train_minibatch = validation_features[pos:pos_end] y_train_minibatch = validation_labels[pos:pos_end] previous_minibatch_evaluation_average = evaluator.test_minibatch({x: x_train_minibatch, y: y_train_minibatch}) epoch_validation_error += previous_minibatch_evaluation_average num_batches += 1 pos = pos_end epoch_validation_error /= num_batches print('Epoch Elapsed Time: {0}, training_accuracy={1:.3f}, evaluation_accuracy={2:.3f}'.format( datetime.timedelta(seconds=time.time() - epoch_start_time), epoch_training_error, epoch_validation_error)) def save_to_files(x_train, y_train, x_test, y_test): x_train = np.ascontiguousarray(x_train.astype(np.float32)) y_train = np.ascontiguousarray(y_train.astype(np.float32)) x_test = np.ascontiguousarray(x_test.astype(np.float32)) y_test = np.ascontiguousarray(y_test.astype(np.float32)) print(x_train.shape, y_train.shape, x_test.shape, y_test.shape) x_train.tofile('x_train_imdb.bin') y_train.tofile('y_train_imdb.bin') x_test.tofile('x_test_imdb.bin') y_test.tofile('y_test_imdb.bin') def load_from_files(x_shape=(25000, 20), y_shape=(25000,)): print('Loading .bin files') x_train = np.fromfile('x_train_imdb.bin', dtype=np.float32) y_train = np.fromfile('y_train_imdb.bin', dtype=np.float32) x_test = np.fromfile('x_test_imdb.bin', dtype=np.float32) y_test = np.fromfile('y_test_imdb.bin', dtype=np.float32) x_train = np.reshape(x_train, newshape=x_shape) y_train = np.reshape(y_train, newshape=y_shape) x_test = np.reshape(x_test, newshape=x_shape) y_test = np.reshape(y_test, newshape=y_shape) return x_train, y_train, x_test, y_test class Constants: maxlen = 100 # We will cut reviews after 100 words training_samples = 200 # We will be training on 200 samples validation_samples = 10000 # We will be validating on 10000 samples max_words = 10000 # We will only consider the top 10,000 words in the dataset embedding_dim = 100 imdb_dir = 'C:\\Users\\anastasios\\Downloads\\aclImdb' def load_texts_labels(path): import tqdm labels = [] texts = [] for label_type in ['neg', 'pos']: dir_name = os.path.join(path, label_type) print('\nLoading ', dir_name, '\n', flush=True) for fname in tqdm.tqdm(os.listdir(dir_name)): if fname[-4:] == '.txt': f = open(os.path.join(dir_name, fname), encoding='utf8') texts.append(f.read()) f.close() if label_type == 'neg': labels.append(0) else: labels.append(1) return texts, labels def tokenize_alImdb(): import keras.preprocessing.text train_dir = os.path.join(Constants.imdb_dir, 'train') texts, labels = load_texts_labels(train_dir) tokenizer = keras.preprocessing.text.Tokenizer(num_words=Constants.max_words) print('\n\nRunning tokenizer...', end='', flush=True) tokenizer.fit_on_texts(texts) return tokenizer, texts, labels def from_raw_text_to_word_embeddings(): import numpy as np import keras.preprocessing.sequence tokenizer, texts, labels = tokenize_alImdb() sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = keras.preprocessing.sequence.pad_sequences(sequences, maxlen=Constants.maxlen) data = np.asarray(data, dtype=np.float32) labels = np.asarray(labels, dtype=np.float32) print('Shape of data tensor:', data.shape) print('Shape of label tensor:', labels.shape) # Split the data into a training set and a validation set # But first, shuffle the data, since we started from data # where sample are ordered (all negative first, then all positive). indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] x_train = data[:Constants.training_samples] y_train = labels[:Constants.training_samples] x_val = data[Constants.training_samples: Constants.training_samples + Constants.validation_samples] y_val = labels[Constants.training_samples: Constants.training_samples + Constants.validation_samples] return tokenizer, x_train, y_train, x_val, y_val def preprocess_embeddings(): import numpy as np import tqdm glove_dir = 'C:\\Users\\anastasios\\Downloads\\glove.6B' embeddings_index = {} glove_path = os.path.join(glove_dir, 'glove.6B.100d.txt') f = open(glove_path, encoding='utf8') print('Processing ', glove_path) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() print('Found %s word vectors.' % len(embeddings_index)) return embeddings_index def build_model(): model = keras.models.Sequential() model.add(keras.layers.Embedding(Constants.max_words, Constants.embedding_dim, input_length=Constants.maxlen)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(32, activation='relu')) model.add(keras.layers.Dense(1, activation='sigmoid')) model.summary() return model def use_glove_word_embeddings_cntk(preload_weights=False): tokenizer, x_train, y_train, x_val, y_val = from_raw_text_to_word_embeddings() x = cntk.input_variable(shape=(Constants.maxlen,), dtype=np.float32) y = cntk.input_variable(shape=(1,), dtype=np.float32) model = cntk.one_hot(x, num_classes=Constants.max_words, sparse_output=True) if preload_weights is True: embedding_matrix = compute_embedding_matrix(tokenizer) assert (Constants.embedding_dim == embedding_matrix.shape[0]) or (Constants.embedding_dim == embedding_matrix.shape[1]) model = cntk.layers.Embedding(weights=embedding_matrix)(model) else: model = cntk.layers.Embedding(Constants.embedding_dim)(model) model = cntk.layers.Dense(32, activation=cntk.relu)(model) model = cntk.layers.Dense(1, activation=cntk.sigmoid)(model) loss_function = cntk.binary_cross_entropy(model.output, y) round_predictions = cntk.round(model.output) equal_elements = cntk.equal(round_predictions, y) accuracy_function = cntk.reduce_mean(equal_elements, axis=0) max_epochs = 10 batch_size = 32 learner = cntk.adam(model.parameters, cntk.learning_parameter_schedule_per_sample(0.0001), cntk.learning_parameter_schedule_per_sample(0.99)) progress_printer = cntk.logging.ProgressPrinter(tag='Training', num_epochs=max_epochs) trainer = cntk.Trainer(model, (loss_function, accuracy_function), [learner], progress_printer) evaluator = cntk.Evaluator(accuracy_function) cntk_train(x, y, x_train, y_train, max_epochs, batch_size, trainer, evaluator) def compute_embedding_matrix(tokenizer): embeddings_index = preprocess_embeddings() embedding_matrix = np.zeros((Constants.max_words, Constants.embedding_dim)) for word, i in tokenizer.word_index.items(): embedding_vector = embeddings_index.get(word) if i < Constants.max_words: if embedding_vector is not None: # Words not found in embedding index will be all-zeros. embedding_matrix[i] = embedding_vector return embedding_matrix def use_glove_word_embeddings(preload_weights=True): tokenizer, x_train, y_train, x_val, y_val = from_raw_text_to_word_embeddings() model = build_model() if preload_weights: embedding_matrix = compute_embedding_matrix(tokenizer) model.layers[0].set_weights([embedding_matrix]) model.layers[0].trainable = False model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_val, y_val)) model.save_weights('pre_trained_glove_model.h5') plot_results(history) def plot_results(history): import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() def evaluate_on_test_data(): import numpy as np test_dir = os.path.join(Constants.imdb_dir, 'test') tokenizer, _, _ = tokenize_alImdb() texts, labels = load_texts_labels(test_dir) sequences = tokenizer.texts_to_sequences(texts) x_test = keras.preprocessing.sequence.pad_sequences(sequences, maxlen=Constants.maxlen) y_test = np.asarray(labels) model = build_model() model.load_weights('pre_trained_glove_model.h5') model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) print(model.evaluate(x_test, y_test)) if __name__ == '__main__': learning_word_embeddings_with_the_embedding_layer() # learning_word_embeddings_with_the_embedding_layer_cntk() use_glove_word_embeddings(preload_weights=True) # use_glove_word_embeddings_cntk(preload_weights=True)
angrutils/expr.py
Ashaya123/angr-utils
226
12725040
# Expression evaluation routines import claripy def get_signed_range(se, expr): """ Calculate the range of the expression with signed boundaries """ size = expr.size() umin = umax = smin = smax = None if not sat_zero(se, expr): try: umin = se.min(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 0]) umax = se.max(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 0]) return (umin, umax) except: pass try: smin = -(1 << size) + se.min(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 1]) smax = -(1 << size) + se.max(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 1]) return (smin, smax) except: pass return None else: try: umax = se.max(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 0]) smin = 0 try: smin = -(1 << size) + se.min(expr, extra_constraints=[claripy.Extract(size-1,size-1,expr) == 1]) except: pass return (smin, umax) except: pass return None def sat_zero(se, expr): return se.satisfiable(extra_constraints=([expr == 0])) def sat_negative(se, expr): size = expr.size() return se.satisfiable(extra_constraints=([claripy.Extract(size-1,size-1,expr) == 1])) def sat_positive(se, expr): return se.satisfiable(extra_constraints=([claripy.Extract(size-1,size-1,expr) == 0]))
heath/main.py
121121321/chaoxing_auto_sign
287
12725048
# -*- coding: utf8 -*- import os import re import json import configparser import threading from datetime import datetime from urllib import parse from urllib.parse import quote import requests class HeathReport(object): def __init__(self, user): """ :params username: 手机号或学号 :params password: 密码 :params schoolid: 学校代码,学号登录填写 """ headers = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36', 'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8', 'X-Requested-With': 'XMLHttpRequest', } self._username = user['username'] self._password = user['password'] self._schoolid = user['schoolid'] self._session = requests.session() self._session.headers = headers def _login(self): """ 登录: 支持手机和邮箱登录 """ login_api = "https://passport2.chaoxing.com/api/login" params = { "name": self._username, "pwd": <PASSWORD>, "verify": "0", "schoolid": self._schoolid if self._schoolid else "" } resp = self._session.get(login_api, params=params) if resp.status_code == 403: raise Exception("403,登录请求被拒绝") data = json.loads(resp.text) if data['result'] is False: raise Exception(data['errorMsg']) return data def _get_last_heath_info(self) -> dict: """ 获取上次提交的健康信息 """ params = { "cpage": "1", "formId": "7185", "enc": "f837c93e0de9d9ad82db707b2c27241e", "formAppId": "" } api = 'http://office.chaoxing.com/data/apps/forms/fore/forms/user/last/info' resp = self._session.get(api, params=params) raw_data = json.loads(resp.text) if not raw_data['data']: raise Exception('获取上次提交数据为空,可能为今日已提交') return raw_data def _read_form_data_file(self): with open('./report_template.json', 'r', encoding='utf-8') as f: return f.read() def _set_value(self, last_report_data, form_data_template): def get_val(data: dict, _id: str): return data['data']['formsUser']['formIdValueData'][_id]['groupValues'][0]['values'][0][0] username = get_val(last_report_data, '1')['val'] id_number = get_val(last_report_data, '2')['val'] telephone_number = get_val(last_report_data, '3')['val'] address = get_val(last_report_data, '4') form_data = form_data_template.replace("$cx_username", username). \ replace("$cx_id_number", id_number). \ replace("$cx_telephone_number", telephone_number). \ replace("$cx_address", address['address']). \ replace("$cx_lng", address['lng']). \ replace("$cx_lat", address['lat']) return form_data @staticmethod def form_data_to_urlencoded(params: dict, form_data: str) -> str: """ dict -> urlencoded """ payload = parse.urlencode(params) payload += "&formData=" + quote(form_data, 'utf-8') payload = payload.replace("%2B", "+") return payload def _daily_report(self, check_code: str, form_data: str) -> dict: """ 上报今日信息 """ save_api = "http://office.chaoxing.com/data/apps/forms/fore/user/save?lookuid=127973604" params = { "gatherId": "0", "formId": "7185", "formAppId": "", "version": 6, "checkCode": check_code, "enc": "f837c93e0de9d9ad82db707b2c27241e", "anonymous": 0, "ext": "", "t": 1, "uniqueCondition": [], "gverify": "" } payload = self.form_data_to_urlencoded(params, form_data) resp = self._session.post(save_api, data=payload) return json.loads(resp.text) def _request_form_page(self): """ 请求表单页面 @return: @rtype: """ form_url = "http://office.chaoxing.com/front/web/apps/forms/fore/apply?uid=127973604&code=l5RJsW2w&mappId=4545821&appId=1e354ddb52a743e88ed19a3704b1cf1a&appKey=127G2jhIhl05mw3S&id=7185&enc=f837c93e0de9d9ad82db707b2c27241e&state=39037&formAppId=&fidEnc=b06cba4a51ac2253" return self._session.get(url=form_url) def _get_check_code(self): """ 解析表单界面获取checkCode @return: checkCode @rtype: str """ resp = self._request_form_page() code = re.findall(r"checkCode.*'(.*)'", resp.text) if code: return code[0] else: raise Exception("校验码获取失败") def daily_report(self) -> dict: """ 健康信息上报入口 """ self._login() last_report_data = self._get_last_heath_info() form_data_template = self._read_form_data_file() form_data = self._set_value(last_report_data, form_data_template) check_code = self._get_check_code() return self._daily_report(check_code=check_code, form_data=form_data) def start_report(user): result = HeathReport(user).daily_report() print(f"{user['username']} - 打卡结果: \n {result}") try: sendkey = user['sendkey'] except Exception as exc: sendkey = None if not sendkey: print(f"{user['username']} - 未开启消息推送") return resp = server_chan_send(result, sendkey) try: resp.raise_for_status() print(f"{user['username']} - 本次打卡详情已发送") except Exception as exc: text = exc.response.json() print(f"{user['username']} - 消息发送失败,原因:{text['info']}") def server_chan_send(msg, key): """server酱将消息推送""" params = { 'title': '健康日报打卡消息来啦!\n{}'.format(datetime.now().strftime('%Y年%m月%d日 %H:%M:%D')), 'desp': msg } resp = requests.request( method="GET", url=f"https://sctapi.ftqq.com/{key}.send?title=messagetitle", params=params ) return resp def load_user_config(): """ 加载每个用户的配置 """ config = configparser.ConfigParser() users = [] if os.getenv("cx_env") == "dev": # 加载开发环境配置文件 config.read('./config.dev.ini') else: config.read('./config.ini') for sections in config: section = config[sections] if 'user' not in str(section): continue else: try: open_status = section['open'] except Exception as exc: raise Exception("open字段必填,true 或者 false") from exc if open_status in ("true", "True"): users.append(section) username = os.environ.get('username') if username: users.append({ 'username': os.environ.get('username'), 'password': <PASSWORD>('password'), 'schoolid': os.environ.get('schoolid'), 'sendkey': os.environ.get('schoolid') }) if not users: raise Exception("当前暂无账号执行,请在config.ini 或 环境变量中配置账号密码") return users def main_handler(event=None, context=None): if event is not None: query: dict = event.get("queryString", "") if query: user = dict( username=query.get("name", None), password=query.get("<PASSWORD>", None), schoolid=query.get("schoolid", ""), send_key=query.get("skey", None), ) try: h = HeathReport(user) result = h.daily_report() except Exception as e: result = e return result else: threads = [] for user in load_user_config(): t = threading.Thread(target=start_report, args=(user,)) t.start() threads.append(t) for t in threads: t.join() if __name__ == '__main__': main_handler()
doc/integrations/label-studioAPI/setup.py
novium258/cortx-1
552
12725066
<filename>doc/integrations/label-studioAPI/setup.py from setuptools import setup setup( name='Cortx S3-Label Studio Integration', version='1.0.0', packages=[ '' ], url='', license='MIT ', author='sumit', author_email='<EMAIL>', description='Cortx S3 integration with Label Studio, one of the best open-source data annotation tool used by companies like Nvidia, IBM, Cloudflare. Using Cortx Ecosystem to store world\'s growing unstructured data and making AI/ML tasks faster. Cortx provides scalability, efficiency and security anytime.' )
Python3/862.py
rakhi2001/ecom7
854
12725086
<gh_stars>100-1000 __________________________________________________________________________________________________ sample 856 ms submission class Solution: def shortestSubarray(self, nums: List[int], k: int) -> int: NOT_FOUND = -1 if not nums: return NOT_FOUND n = len(nums) ans = n + 1 total = 0 queue = collections.deque([(-1, 0)]) for i, x in enumerate(nums): total += x if x > 0: while queue and total - queue[0][1] >= k: ans = min(ans, i - queue.popleft()[0]) else: while queue and total <= queue[-1][1]: queue.pop() queue.append((i, total)) return ans if ans <= n else NOT_FOUND __________________________________________________________________________________________________ sample 17160 kb submission class Solution: def shortestSubarray(self, A: List[int], K: int) -> int: if len(A) ==0: return -1 begin=0 end=0 # start with a non-negative number while A[begin]<=0 and begin<len(A): begin +=1 end+=1 c_sum=0 size = len(A) found=False while end <len(A): c_sum += A[end] modified= False if c_sum <K else True if c_sum >= K: found=True # we know the first element won't be negative # if the element is negative try and spread it's value to previous elements if A[end]<0: if begin == end: begin+=1 c_sum=0 else: i=1 to_save = abs(A[end]) while to_save > 0: while A[end-i] ==0 and end-i>=begin: i+=1 if end-i <begin: begin = end+1 c_sum=0 to_save=0 break else: if to_save > A[end-i]: to_save -=A[end-i] A[end-i]=0 else: A[end-i] -= to_save A[end]=0 to_save=0 else: # while the element you are adding compensates # for moving the begin by one to the right and makes/keeps sum >= K while A[end] >= A[begin] + K-(c_sum-A[end]): c_sum-=A[begin] if c_sum <K: c_sum+=A[begin] break else: begin+=1 size = min(size,end-begin+1) if c_sum >=K: size = min(size,end-begin+1) end +=1 if found: return size else: return -1 __________________________________________________________________________________________________
linformer_pytorch/linformer_pytorch.py
tatp22/linformer-pytorch
322
12725097
<filename>linformer_pytorch/linformer_pytorch.py import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.checkpoint import checkpoint def identity(x, *args, **kwargs): return x def get_act(activation): if activation == "gelu": return F.gelu if activation == "relu": return F.relu return None def gen_causal_mask(input_size, dim_k, full_attention=False): """ Generates a causal mask of size (input_size, dim_k) for linformer Else, it generates (input_size, input_size) for full attention """ if full_attention: return (torch.triu(torch.ones(input_size, input_size))==1).transpose(0,1) return (torch.triu(torch.ones(dim_k, input_size))==1).transpose(0,1) def get_EF(input_size, dim, method="learnable", head_dim=None, bias=True): """ Retuns the E or F matrix, initialized via xavier initialization. This is the recommended way to do it according to the authors of the paper. Includes a method for convolution, as well as a method for no additional params. """ assert method == "learnable" or method == "convolution" or method == "no_params", "The method flag needs to be either 'learnable', 'convolution', or 'no_params'!" if method == "convolution": conv = nn.Conv1d(head_dim, head_dim, kernel_size=int(input_size/dim), stride=int(input_size/dim)) return conv if method == "no_params": mat = torch.zeros((input_size, dim)) torch.nn.init.normal_(mat, mean=0.0, std=1/dim) return mat lin = nn.Linear(input_size, dim, bias) torch.nn.init.xavier_normal_(lin.weight) return lin class Residual(nn.Module): """ Implemenation taken from https://github.com/lucidrains/sinkhorn-transformer/blob/master/sinkhorn_transformer/sinkhorn_transformer.py However, I do postnorm instead of prenorm. """ def __init__(self, fn, input_channels=0, output_channels=0): super(Residual, self).__init__() self.fn = fn self.resample = nn.Linear(input_channels, output_channels) if input_channels != output_channels else None self.norm = nn.LayerNorm(output_channels) def forward(self, tensor, **kwargs): if self.resample is not None: tensor = self.resample(tensor) + self.fn(tensor, **kwargs) tensor = self.norm(tensor) return tensor tensor = tensor + self.fn(tensor, **kwargs) tensor = self.norm(tensor) return tensor class PositionalEmbedding(nn.Module): """ Standard positional embedding. From the paper "Attention is all you need". Changed the constant from 10k to 100k, since this may be better for longer sequence lengths. """ def __init__(self, channels): super(PositionalEmbedding, self).__init__() inv_freq = 1. / (100000 ** (torch.arange(0, channels, 2).float() / channels)) self.register_buffer('inv_freq', inv_freq) def forward(self, tensor): pos = torch.arange(tensor.shape[1], device=tensor.device).type(self.inv_freq.type()) sin_inp = torch.einsum("i,j->ij", pos, self.inv_freq) emb = torch.cat((sin_inp.sin(), sin_inp.cos()), dim=-1) return emb[None,:,:] class ProjectInOut(nn.Module): """ Impelemenation taken from https://github.com/lucidrains/sinkhorn-transformer/blob/73da02958965e1a690cb301292c0a3c549687d44/sinkhorn_transformer/sinkhorn_transformer.py#L218 """ def __init__(self, fn, dim_in, dim_out, project_out=True): super(ProjectInOut, self).__init__() self.fn = fn self.project_in = nn.Linear(dim_in, dim_out) self.project_out = nn.Linear(dim_out, dim_in) if project_out else identity def forward(self, tensor, **kwargs): tensor = self.project_in(tensor) tensor = self.fn(tensor, **kwargs) tensor = self.project_out(tensor) return tensor class FeedForward(nn.Module): """ Standard Feed Forward Layer """ def __init__(self, input_channels, output_channels, ff_dim, dropout, activation="gelu"): super(FeedForward, self).__init__() self.w_1 = nn.Linear(input_channels, ff_dim) self.w_2 = nn.Linear(ff_dim, output_channels) self.activation = get_act(activation) self.dropout = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) def forward(self, tensor, **kwargs): tensor = self.w_1(tensor) if self.activation is not None: tensor = self.activation(tensor) tensor = self.dropout(tensor) tensor = self.w_2(tensor) tensor = self.dropout2(tensor) return tensor class LinearAttentionHead(nn.Module): """ Linear attention, as proposed by the linformer paper """ def __init__(self, dim, dropout, E_proj, F_proj, causal_mask, full_attention=False): super(LinearAttentionHead, self).__init__() self.E = E_proj self.F = F_proj self.dim = dim self.dropout = nn.Dropout(dropout) self.P_bar = None self.full_attention = full_attention self.causal_mask = causal_mask self.is_proj_tensor = isinstance(E_proj, torch.Tensor) def forward(self, Q, K, V, **kwargs): """ Assume Q, K, V have same dtype E, F are `nn.Linear` modules """ input_mask = kwargs["input_mask"] if "input_mask" in kwargs else None embeddings_mask = kwargs["embeddings_mask"] if "embeddings_mask" in kwargs else None # Instead of classic masking, we have to do this, because the classic mask is of size nxn if input_mask is not None: # This is for k, v mask = input_mask[:,:,None] K = K.masked_fill_(~mask, 0.0) V = V.masked_fill_(~mask, 0.0) del mask if embeddings_mask is not None: mask = embeddings_mask[:,:,None] Q = Q.masked_fill_(~mask, 0.0) del mask K = K.transpose(1,2) if not self.full_attention: if self.is_proj_tensor: self.E = self.E.to(K.device) K = torch.matmul(K, self.E) else: K = self.E(K) Q = torch.matmul(Q, K) P_bar = Q/torch.sqrt(torch.tensor(self.dim).type(Q.type())).to(Q.device) if self.causal_mask is not None: self.causal_mask = self.causal_mask.to(Q.device) P_bar = P_bar.masked_fill_(~self.causal_mask, float('-inf')) P_bar = P_bar.softmax(dim=-1) # Only save this when visualizing if "visualize" in kwargs and kwargs["visualize"] == True: self.P_bar = P_bar P_bar = self.dropout(P_bar) if not self.full_attention: V = V.transpose(1,2) if self.is_proj_tensor: self.F = self.F.to(V.device) V = torch.matmul(V, self.F) else: V = self.F(V) V = V.transpose(1,2) out_tensor = torch.matmul(P_bar, V) return out_tensor class MHAttention(nn.Module): """ Multihead attention, with each head being a Linformer Head This feeds directly into a feed forward head """ def __init__(self, input_size, dim, channels, dim_k, nhead, dropout, checkpoint_level, parameter_sharing, E_proj, F_proj, full_attention, causal_mask, w_o_intermediate_dim=None, decoder_mode=False, method="learnable"): super(MHAttention, self).__init__() self.heads = nn.ModuleList() self.input_size = input_size self.dim_k = dim_k self.channels = channels self.causal_mask = causal_mask self.checkpoint_level = checkpoint_level self.w_o_intermediate_dim = w_o_intermediate_dim if parameter_sharing != "layerwise": E_proj = get_EF(input_size, dim_k, method, dim) F_proj = get_EF(input_size, dim_k, method, dim) if parameter_sharing == "none" or parameter_sharing == "headwise" else E_proj self.decoder_mode = decoder_mode self.to_q = nn.ModuleList() self.to_k = nn.ModuleList() self.to_v = nn.ModuleList() for _ in range(nhead): if parameter_sharing == "none": E_proj = get_EF(input_size, dim_k, method, dim) F_proj = get_EF(input_size, dim_k, method, dim) attn = LinearAttentionHead(dim, dropout, E_proj, F_proj, causal_mask, full_attention) self.heads.append(attn) self.to_q.append(nn.Linear(channels, dim, bias=False)) self.to_k.append(nn.Linear(channels, dim, bias=False)) self.to_v.append(nn.Linear(channels, dim, bias=False)) if w_o_intermediate_dim is None: self.w_o = nn.Linear(dim*nhead, channels) else: self.w_o_1 = nn.Linear(dim*nhead, w_o_intermediate_dim) self.w_o_2 = nn.Linear(w_o_intermediate_dim, channels) self.mh_dropout = nn.Dropout(dropout) def forward(self, tensor, **kwargs): batch_size, input_len, channels = tensor.shape assert not (self.decoder_mode and "embeddings" not in kwargs), "Embeddings must be supplied if decoding" assert not ("embeddings" in kwargs and (kwargs["embeddings"].shape[0], kwargs["embeddings"].shape[1], kwargs["embeddings"].shape[2]) != (batch_size, input_len, channels)), "Embeddings size must be the same as the input tensor" head_outputs = [] for index, head in enumerate(self.heads): Q = self.to_q[index](tensor) K = self.to_k[index](tensor) if not self.decoder_mode else self.to_k[index](kwargs["embeddings"]) V = self.to_v[index](tensor) if not self.decoder_mode else self.to_v[index](kwargs["embeddings"]) if self.checkpoint_level == "C2": head_outputs.append(checkpoint(head,Q,K,V)) else: head_outputs.append(head(Q,K,V,**kwargs)) out = torch.cat(head_outputs, dim=-1) if self.w_o_intermediate_dim is None: out = self.w_o(out) else: out = self.w_o_1(out) out = self.w_o_2(out) out = self.mh_dropout(out) return out class Linformer(nn.Module): """ My attempt at reproducing the Linformer Paper https://arxiv.org/pdf/2006.04768.pdf """ def __init__(self, input_size, channels, dim_k, dim_ff=256, dim_d=None, dropout_ff=0.15, nhead=4, depth=1, dropout=0.1, activation="gelu", checkpoint_level="C0", parameter_sharing="layerwise", k_reduce_by_layer=0, full_attention=False, include_ff=True, w_o_intermediate_dim=None, decoder_mode=False, causal=False, method="learnable", ff_intermediate=None): super(Linformer, self).__init__() assert activation == "gelu" or activation == "relu", "Only gelu and relu activations supported for now" assert checkpoint_level == "C0" or checkpoint_level == "C1" or checkpoint_level == "C2", "Checkpoint level has to be either C0, C1, or C2." assert parameter_sharing == "none" or parameter_sharing == "headwise" or parameter_sharing == "kv" or parameter_sharing == "layerwise", "The `parameter_sharing` flag has to be either 'none', 'headwise', 'kv', or 'layerwise'." assert channels % nhead == 0 if dim_d is None else True, "If `dim_d` is not set to a custom value, `channels` must be divisible by `nhead`!" assert not (ff_intermediate and parameter_sharing=="layerwise"), "Parameter sharing must not be layerwise if ff_intermediate is enabled!" assert not (ff_intermediate and decoder_mode), "Raising the dimension in the middle cannot be done in the decoder!" layers = nn.ModuleList() self.decoder_mode = decoder_mode self.input_size = input_size self.channels = channels self.checkpoint_level = checkpoint_level self.depth = depth self.nhead = nhead head_dim = channels // nhead if dim_d is None else dim_d E_proj = get_EF(input_size, dim_k, method, head_dim) causal_mask = gen_causal_mask(input_size, dim_k, full_attention) if causal else None # If we want causal but only with the encoder causal_enc = gen_causal_mask(input_size, dim_k, full_attention) if (causal and not decoder_mode) else None get_attn = lambda attn_channels, curr_dim_k: MHAttention(input_size, head_dim, attn_channels, curr_dim_k, nhead, dropout, checkpoint_level, parameter_sharing, E_proj, E_proj, full_attention, causal_enc, w_o_intermediate_dim, decoder_mode=False, method=method) get_attn_context = lambda attn_channels, curr_dim_k: MHAttention(input_size, head_dim, attn_channels, curr_dim_k, nhead, dropout, checkpoint_level, parameter_sharing, E_proj, E_proj, full_attention, causal_mask, w_o_intermediate_dim, decoder_mode=True, method=method) get_ff = lambda input_channels, output_channels: FeedForward(input_channels, output_channels, dim_ff, dropout_ff, activation) for index in range(depth): input_channels = ff_intermediate if (index != 0 and ff_intermediate is not None) and not decoder_mode else channels output_channels = ff_intermediate if (index != depth-1 and ff_intermediate is not None) and not decoder_mode else channels # TODO: Change the input and output channels here attn_layer = get_attn(input_channels, max(1, dim_k - index*k_reduce_by_layer)) ff_layer = get_ff(input_channels, output_channels) attn_layer, ff_layer = map(lambda res_ch_in, res_ch_out, fn: Residual(fn, res_ch_in, res_ch_out), (input_channels, input_channels), (input_channels, output_channels), (attn_layer, ff_layer)) if include_ff: layers.extend([attn_layer, ff_layer]) else: layers.extend([attn_layer]) if not self.decoder_mode: continue attn_context = get_attn_context(channels, max(1, dim_k - index*k_reduce_by_layer)) ff_context = get_ff(channels, channels) attn_context, ff_context = map(lambda fn: Residual(fn, channels, channels), (attn_context, ff_context)) if include_ff: layers.extend([attn_context, ff_context]) else: layers.extend([attn_context]) self.seq = layers def forward(self, tensor, **kwargs): """ Input is (batch_size, seq_len, channels) """ bt, n, c = tensor.shape assert n == self.input_size, "This tensor is of the wrong size. Dimension 1 has to match the `input_size` flag" assert c == self.channels, "This tensor is of the wrong size. Dimension 2 has to match the `channels` flag" assert self.checkpoint_level == "C0" if kwargs else True, "Cannot run checkpointing when using kwargs. Please set the checkpoint level to `C0`" assert "embeddings" not in kwargs or self.decoder_mode, "If decoding, needs to be initialized with `decoder_mode=True`" for layer in self.seq: if self.checkpoint_level != "C0": tensor = checkpoint(layer, tensor) else: tensor = layer(tensor, **kwargs) return tensor class LinformerLM(nn.Module): """ A wrapper function to accept LM tasks, inspired by https://github.com/lucidrains/sinkhorn-transformer """ def __init__(self, num_tokens, input_size, channels, dim_k=64, dim_ff=1024, dim_d=None, dropout_ff=0.1, dropout_tokens=0.1, nhead=4, depth=2, ff_intermediate=None, dropout=0.05, activation="gelu", checkpoint_level="C0", parameter_sharing="layerwise", k_reduce_by_layer=0, full_attention=False, include_ff=True, w_o_intermediate_dim=None, emb_dim=None, return_emb=False, decoder_mode=False, causal=False, method="learnable"): super(LinformerLM, self).__init__() emb_dim = channels if emb_dim is None else emb_dim self.input_size = input_size self.to_token_emb = nn.Embedding(num_tokens, emb_dim) self.pos_emb = PositionalEmbedding(emb_dim) self.linformer = Linformer(input_size, channels, dim_k=dim_k, dim_ff=dim_ff, dim_d=dim_d, dropout_ff=dropout_ff, nhead=nhead, depth=depth, dropout=dropout, ff_intermediate=ff_intermediate, activation=activation, checkpoint_level=checkpoint_level, parameter_sharing=parameter_sharing, k_reduce_by_layer=k_reduce_by_layer, full_attention=full_attention, include_ff=include_ff, w_o_intermediate_dim=w_o_intermediate_dim, decoder_mode=decoder_mode, causal=causal, method=method) if emb_dim != channels: self.linformer = ProjectInOut(self.linformer, emb_dim, channels) self.to_logits = identity if return_emb else nn.Linear(emb_dim, num_tokens) self.dropout_tokens = nn.Dropout(dropout_tokens) def forward(self, tensor, **kwargs): """ Input is (batch_size, seq_len), and all items are ints from [0, num_tokens-1] """ tensor = self.to_token_emb(tensor) tensor = self.pos_emb(tensor).type(tensor.type()) + tensor tensor = self.dropout_tokens(tensor) tensor = self.linformer(tensor, **kwargs) tensor = self.to_logits(tensor) return tensor class LinformerEncDec(nn.Module): """ A complete seq -> seq translation task. Complete with an encoder and a decoder module. """ def __init__(self, enc_num_tokens, enc_input_size, enc_channels, dec_num_tokens, dec_input_size, dec_channels, enc_dim_k=64, enc_dim_ff=1024, enc_dim_d=None, enc_ff_intermediate=None, dec_ff_intermediate=None, enc_dropout_ff=0.1, enc_nhead=4, enc_depth=2, enc_dropout=0.05, enc_parameter_sharing="layerwise", enc_k_reduce_by_layer=0, enc_full_attention=False, enc_include_ff=True, enc_w_o_intermediate_dim=None, enc_emb_dim=None, enc_method="learnable", dec_dim_k=64, dec_dim_ff=1024, dec_dim_d=None, dec_dropout_ff=0.1, dec_nhead=4, dec_depth=2, dec_dropout=0.05, dec_parameter_sharing="layerwise", dec_k_reduce_by_layer=0, dec_full_attention=False, dec_include_ff=True, dec_w_o_intermediate_dim=None, dec_emb_dim=None, dec_method="learnable", activation="gelu", checkpoint_level="C0"): super(LinformerEncDec, self).__init__() self.encoder = LinformerLM(num_tokens=enc_num_tokens, input_size=enc_input_size, channels=enc_channels, dim_d=enc_dim_d, dim_ff=enc_dim_ff, dim_k=enc_dim_k, dropout_ff=enc_dropout_ff, nhead=enc_nhead, depth=enc_depth, dropout=enc_dropout, parameter_sharing=enc_parameter_sharing, k_reduce_by_layer=enc_k_reduce_by_layer, ff_intermediate=enc_ff_intermediate, full_attention=enc_full_attention, include_ff=enc_include_ff, w_o_intermediate_dim=enc_w_o_intermediate_dim, emb_dim=enc_emb_dim, return_emb=True, activation=activation, checkpoint_level=checkpoint_level, method=enc_method) self.decoder = LinformerLM(num_tokens=dec_num_tokens, input_size=dec_input_size, channels=dec_channels, dim_d=dec_dim_d, dim_ff=dec_dim_ff, dim_k=dec_dim_k, dropout_ff=dec_dropout_ff, nhead=dec_nhead, depth=dec_depth, dropout=dec_dropout, ff_intermediate=dec_ff_intermediate, parameter_sharing=dec_parameter_sharing, k_reduce_by_layer=dec_k_reduce_by_layer, method=dec_method, full_attention=dec_full_attention, include_ff=dec_include_ff, w_o_intermediate_dim=dec_w_o_intermediate_dim, emb_dim=dec_emb_dim, decoder_mode=True, causal=True, activation=activation, checkpoint_level=checkpoint_level) def forward(self, x, y=None, **kwargs): """ Input is (batch_size, seq_len), and all items are ints from [0, num_tokens-1] """ encoder_output = self.encoder(x, **kwargs) y = y if y is not None else x return self.decoder(y, embeddings=encoder_output)
src/genie/libs/parser/iosxe/tests/ShowCdpNeighbors/cli/equal/device_output_5_expected.py
balmasea/genieparser
204
12725099
expected_output = { "cdp": { "index": { 1: { "capability": "R S C", "device_id": "Device_With_A_Particularly_Long_Name", "hold_time": 134, "local_interface": "GigabitEthernet1", "platform": "N9K-9000v", "port_id": "Ethernet0/0", }, 2: { "capability": "S I", "device_id": "another_device_with_a_long_name", "hold_time": 141, "local_interface": "TwentyFiveGigE1/0/3", "platform": "WS-C3850-", "port_id": "TenGigabitEthernet1/1/4", }, } } }
LeetCode/python3/394.py
ZintrulCre/LeetCode_Archiver
279
12725105
class Solution: def decodeString(self, s: str) -> str: stack = [] stack.append([1, ""]) num = 0 for l in s: if l.isdigit(): num = num * 10 + ord(l) - ord('0') elif l == '[': stack.append([num, ""]) num = 0 elif l == ']': stack[-2][1] += stack[-1][0] * stack[-1][1] stack.pop() else: stack[-1][1] += l return stack[0][1]
Algo and DSA/LeetCode-Solutions-master/Python/number-of-rectangles-that-can-form-the-largest-square.py
Sourav692/FAANG-Interview-Preparation
3,269
12725110
<filename>Algo and DSA/LeetCode-Solutions-master/Python/number-of-rectangles-that-can-form-the-largest-square.py # Time: O(n) # Space: O(1) class Solution(object): def countGoodRectangles(self, rectangles): """ :type rectangles: List[List[int]] :rtype: int """ result = mx = 0 for l, w in rectangles: side = min(l, w) if side > mx: result, mx = 1, side elif side == mx: result += 1 return result
tools/SDKTool/src/ui/tree/ui_tree/over_node_info.py
Passer-D/GameAISDK
1,210
12725127
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making GameAISDK available. This source code file is licensed under the GNU General Public License Version 3. For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package. Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. """ import logging from .base_node_info import BaseNodeInfo from ....config_manager.ui.ui_manager import UIType from ....config_manager.ui.ui_action import ROI from ..project_data_manager import ProjectDataManager from ...utils import get_value from ....common.define import DEFAULT_TEMPLATE_THRESHOLD logger = logging.getLogger("sdktool") class OverNodeInfo(BaseNodeInfo): def __init__(self): super(OverNodeInfo, self).__init__(UIType.OVER_UI.value) def init(self, config_value): self._node_cfg.clear() self._node_cfg["name"] = config_value.get("name") self._node_cfg["id"] = config_value.get("id") or -1 self._node_cfg["actionType"] = config_value.get("actionType") or "click" self._node_cfg["desc"] = config_value.get("desc") or "" self._node_cfg["imgPath"] = config_value.get("imgPath") or "" if len(self._node_cfg["imgPath"]) > 0: self._node_cfg["imgPath"] = ProjectDataManager().change_to_tool_path(self._node_cfg["imgPath"]) self._node_cfg["ROI"] = self.int_roi(config_value) if self._node_cfg["actionType"] == 'click': self._node_cfg["action"] = self.init_click_action(config_value) elif self._node_cfg["actionType"] == 'drag': self._node_cfg["action"] = self.init_drag_action(config_value) return self._node_cfg def change_to_data_cfg(self): data_cfg = dict() rois = self._node_cfg.get('ROI') if rois is None: logger.error("not have over item") return data_cfg data_cfg["element_id"] = int(self._node_cfg.get("id") or -1) data_cfg["element_name"] = self._node_cfg.get('name') data_cfg['description'] = self._node_cfg.get('desc') data_cfg["action_type"] = self._node_cfg.get('actionType') data_cfg['img_path'] = self._node_cfg.get('imgPath') data_cfg["img_path"] = ProjectDataManager().change_to_sdk_path(data_cfg["img_path"]) # rois = self._node_cfg.get('ROI') # if rois is not None: roi = rois[0] x = int(get_value(roi, 'x', 0)) y = int(get_value(roi, 'y', 0)) w = int(get_value(roi, 'w', 0)) h = int(get_value(roi, 'h', 0)) threshold = float(roi.get('templateThreshold', DEFAULT_TEMPLATE_THRESHOLD)) data_cfg['roi'] = ROI(x, y, w, h, threshold) if data_cfg["action_type"] == 'click': data_cfg['action'] = self.get_click_action() elif data_cfg['action_type'] == 'drag': data_cfg['drag_start'], data_cfg['drag_end'] = self.get_drag_action() return data_cfg
examples/multiline_plot.py
ATayls/DnaFeaturesViewer
391
12725130
"""In this example we plot a record fragment with sequence over multiple lines. """ from dna_features_viewer import BiopythonTranslator translator = BiopythonTranslator() graphic_record = translator.translate_record("example_sequence.gb") subrecord = graphic_record.crop((1700, 2000)) fig, axes = subrecord.plot_on_multiple_lines( nucl_per_line=70, plot_sequence=True ) fig.savefig("multiline_plot.png")
L1Trigger/GlobalTriggerAnalyzer/python/L1ExtraInputTagSet_cff.py
ckamtsikis/cmssw
852
12725147
# Set of input tags for L1Extra in agreement with L1Reco_cff # # <NAME> 2012-05-22 import FWCore.ParameterSet.Config as cms L1ExtraInputTagSet = cms.PSet( L1ExtraInputTags=cms.PSet( TagL1ExtraMuon=cms.InputTag("l1extraParticles"), TagL1ExtraIsoEG=cms.InputTag("l1extraParticles", "Isolated"), TagL1ExtraNoIsoEG=cms.InputTag("l1extraParticles", "NonIsolated"), TagL1ExtraCenJet=cms.InputTag("l1extraParticles", "Central"), TagL1ExtraForJet=cms.InputTag("l1extraParticles", "Forward"), TagL1ExtraTauJet=cms.InputTag("l1extraParticles", "Tau"), TagL1ExtraEtMissMET=cms.InputTag("l1extraParticles", "MET"), TagL1ExtraEtMissHTM=cms.InputTag("l1extraParticles", "MHT"), TagL1ExtraHFRings=cms.InputTag("l1extraParticles") ) )
attic/iterables/CACM/less_more.py
matteoshen/example-code
5,651
12725166
<reponame>matteoshen/example-code """ <NAME> - The Curse of the Excluded Middle DOI:10.1145/2605176 CACM vol.57 no.06 """ def less_than_30(n): check = n < 30 print('%d < 30 : %s' % (n, check)) return check def more_than_20(n): check = n > 20 print('%d > 20 : %s' % (n, check)) return check l = [1, 25, 40, 5, 23] q0 = (n for n in l if less_than_30(n)) q1 = (n for n in q0 if more_than_20(n)) for n in q1: print('-> %d' % n)
src/quicknlp/metrics.py
jalajthanaki/quick-nlp
287
12725175
<reponame>jalajthanaki/quick-nlp import torch from fastai.core import to_np import numpy as np from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction def token_accuracy(preds, targs): preds = torch.max(preds, dim=-1)[1] return (preds[:-1] == targs.data).float().mean() def perplexity(preds, targs): return torch.exp(-preds.mean()) def bleu_score(preds, targs, stoi=None): sf = SmoothingFunction().method1 preds = torch.max(preds, dim=-1)[1][:-1] bleus = np.zeros(targs.size(1)) for res in zip(to_np(targs, preds)): if len(res[1]) > 2: bleu = sentence_bleu([res[1]], res[2], smoothing_function=sf, weights=(1 / 3., 1 / 3., 1 / 3.)) elif len(res[1]) == 2: bleu = sentence_bleu([res[1]], res[2], smoothing_function=sf, weights=(0.5, 0.5)) else: bleu = sentence_bleu([res[1]], res[2], smoothing_function=sf, weights=(1.0,)) bleus.append(bleu) return
modelvshuman/datasets/info_mappings.py
TizianThieringer/model-vs-human
158
12725346
from abc import ABC class ImagePathToInformationMapping(ABC): def __init__(self): pass def __call__(self, full_path): pass class ImageNetInfoMapping(ImagePathToInformationMapping): """ For ImageNet-like directory structures without sessions/conditions: .../{category}/{img_name} """ def __call__(self, full_path): session_name = "session-1" img_name = full_path.split("/")[-1] condition = "NaN" category = full_path.split("/")[-2] return session_name, img_name, condition, category class ImageNetCInfoMapping(ImagePathToInformationMapping): """ For the ImageNet-C Dataset with path structure: ...{corruption function}/{corruption severity}/{category}/{img_name} """ def __call__(self, full_path): session_name = "session-1" parts = full_path.split("/") img_name = parts[-1] category = parts[-2] severity = parts[-3] corruption = parts[-4] condition = "{}-{}".format(corruption, severity) return session_name, img_name, condition, category class InfoMappingWithSessions(ImagePathToInformationMapping): """ Directory/filename structure: .../{session_name}/{something}_{something}_{something}_{condition}_{category}_{img_name} """ def __call__(self, full_path): session_name = full_path.split("/")[-2] img_name = full_path.split("/")[-1] condition = img_name.split("_")[3] category = img_name.split("_")[4] return session_name, img_name, condition, category
etc/base_config.py
yandexdataschool/everware
130
12725350
# Basic configuration, you should not use this directly # instead checkout local_config.py or local_dockermacine_config.py # spawn with custom docker containers c.JupyterHub.spawner_class = 'everware.CustomDockerSpawner' c.Spawner.tls = False c.Spawner.debug = True c.Spawner.start_timeout = 1000 c.Spawner.http_timeout = 60 c.Spawner.poll_interval = 5 c.Spawner.remove_containers = True c.Spawner.tls_assert_hostname = False c.Spawner.use_docker_client_env = True # give users an opportunity to restore any images via docker or not. Default: True # c.Spawner.share_user_images = False # c.Authenticator.admin_users = {'anaderi', 'astiunov'} # The docker containers need access to the Hub API, so the default # loopback address doesn't work from jupyter_client.localinterfaces import public_ips c.JupyterHub.hub_ip = public_ips()[0] c.JupyterHub.data_files_path = 'share' c.JupyterHub.template_paths = ['share/static/html']
third_party/WebKit/Tools/Scripts/webkitpy/layout_tests/models/testharness_results_unittest.py
wenfeifei/miniblink49
5,964
12725381
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest from webkitpy.layout_tests.models import testharness_results class TestHarnessResultCheckerTest(unittest.TestCase): def test_is_testharness_output(self): test_data = [ {'content': 'foo', 'result': False}, {'content': '', 'result': False}, {'content': ' ', 'result': False}, {'content': 'This is a testharness.js-based test.\nHarness: the test ran to completion.', 'result': True}, {'content': '\n \r This is a testharness.js-based test. \n \r \n \rHarness: the test ran to completion. \n\n', 'result': True}, {'content': ' This \nis a testharness.js-based test.\nHarness: the test ran to completion.', 'result': False}, {'content': 'This is a testharness.js-based test. Harness: the test ran to completion.', 'result': False}, {'content': 'This is a testharness.js-based test.\nFoo bar \n Harness: the test ran to completion.', 'result': True}, {'content': 'This is a testharness.js-based test.\nFAIL: bah \n Harness: the test ran to completion.\n\n\n', 'result': True}, ] for data in test_data: self.assertEqual(data['result'], testharness_results.is_testharness_output(data['content'])) def test_is_testharness_output_passing(self): test_data = [ {'content': 'This is a testharness.js-based test.\n Harness: the test ran to completion.', 'result': True}, {'content': 'This is a testharness.js-based test.\n \n Harness: the test ran to completion.', 'result': False}, {'content': 'This is a testharness.js-based test.\n PASS: foo bar \n Harness: the test ran to completion.', 'result': True}, {'content': 'This is a testharness.js-based test.\n PASS: foo bar FAIL \n Harness: the test ran to completion.', 'result': True}, {'content': 'This is a testharness.js-based test.\n PASS: foo bar \nFAIL \n Harness: the test ran to completion.', 'result': False}, {'content': 'This is a testharness.js-based test.\n CONSOLE ERROR: BLAH \n Harness: the test ran to completion.', 'result': True}, {'content': 'This is a testharness.js-based test.\n CONSOLE WARNING: BLAH \n Harness: the test ran to completion.', 'result': True}, {'content': 'This is a testharness.js-based test.\n Foo bar \n Harness: the test ran to completion.', 'result': False}, {'content': 'This is a testharness.js-based test.\n FAIL: bah \n Harness: the test ran to completion.', 'result': False}, {'content': 'This is a testharness.js-based test.\n TIMEOUT: bah \n Harness: the test ran to completion.', 'result': False}, {'content': 'This is a testharness.js-based test.\n NOTRUN: bah \n Harness: the test ran to completion.', 'result': False}, {'content': 'CONSOLE LOG: error.\nThis is a testharness.js-based test.\nPASS: things are fine.\nHarness: the test ran to completion.\n\n', 'result': True}, {'content': 'CONSOLE ERROR: error.\nThis is a testharness.js-based test.\nPASS: things are fine.\nHarness: the test ran to completion.\n\n', 'result': True}, {'content': 'CONSOLE WARNING: error.\nThis is a testharness.js-based test.\nPASS: things are fine.\nHarness: the test ran to completion.\n\n', 'result': True}, {'content': 'RANDOM TEXT.\nThis is a testharness.js-based test.\nPASS: things are fine.\n.Harness: the test ran to completion.\n\n', 'result': False}, ] for data in test_data: self.assertEqual(data['result'], testharness_results.is_testharness_output_passing(data['content'])) def test_is_testharness_output_with_console_errors_and_warnings(self): test_data = [ {'content': 'This is a testharness.js-based test.\nCONSOLE ERROR: This is an error.\nTest ran to completion.', 'result': True}, {'content': 'This is a testharness.js-based test.\nCONSOLE WARNING: This is a warning.\nTest ran to completion.', 'result': True}, {'content': 'CONSOLE ERROR: This is an error.\nTest ran to completion.', 'result': True}, {'content': 'CONSOLE WARNING: This is a warning.\nTest ran to completion.', 'result': True}, {'content': 'This is a testharness.js-based test.\nCONSOLE ERROR: This is an error.', 'result': True}, {'content': 'CONSOLE ERROR: This is an error.', 'result': True}, {'content': 'CONSOLE WARNING: This is a warning.', 'result': True}, {'content': 'This is a testharness.js-based test.\nCONSOLE MESSAGE: This is not error.', 'result': False}, {'content': 'This is a testharness.js-based test.\nNo errors here.', 'result': False}, {'content': 'This is not a CONSOLE ERROR, sorry.', 'result': False}, {'content': 'This is not a CONSOLE WARNING, sorry.', 'result': False}, ] for data in test_data: self.assertEqual(data['result'], testharness_results.is_testharness_output_with_console_errors_or_warnings(data['content']))
src/oscar_accounts/management/commands/oscar_accounts_init.py
n8snyder/django-oscar-accounts
149
12725438
from django.core.management.base import BaseCommand from oscar_accounts.setup import create_default_accounts class Command(BaseCommand): help = "Initialize oscar accounts default structure" def handle(self, *args, **options): create_default_accounts()
utils/font_tool.py
gregbugaj/TextGenerator
166
12725462
<gh_stars>100-1000 from fontTools.fontBuilder import TTFont fonts = {} def check(char, font_path): if font_path in fonts: font = fonts.get(font_path) else: font = TTFont(font_path) fonts[font_path] = font utf8_char = char.encode("unicode_escape").decode('utf-8') if utf8_char.startswith('\\u'): uc = "uni" + utf8_char[2:].upper() f = font.getGlyphSet().get(uc) if f and f._glyph.numberOfContours: return True else: return False return True
lnbits/extensions/lnurlpos/migrations.py
blackcoffeexbt/lnbits-legend
258
12725469
async def m001_initial(db): """ Initial lnurlpos table. """ await db.execute( f""" CREATE TABLE lnurlpos.lnurlposs ( id TEXT NOT NULL PRIMARY KEY, key TEXT NOT NULL, title TEXT NOT NULL, wallet TEXT NOT NULL, currency TEXT NOT NULL, timestamp TIMESTAMP NOT NULL DEFAULT {db.timestamp_now} ); """ ) await db.execute( f""" CREATE TABLE lnurlpos.lnurlpospayment ( id TEXT NOT NULL PRIMARY KEY, posid TEXT NOT NULL, payhash TEXT, payload TEXT NOT NULL, pin INT, sats INT, timestamp TIMESTAMP NOT NULL DEFAULT {db.timestamp_now} ); """ )
Chapter 05/crack_zip.py
Prakshal2607/Effective-Python-Penetration-Testing
346
12725477
import zipfile filename = 'test.zip' dictionary = 'passwordlist.txt' password = None file_to_open = zipfile.ZipFile(filename) with open(dictionary, 'r') as f: for line in f.readlines(): password = line.strip('\n') try: file_to_open.extractall(pwd=password) password = '<PASSWORD>' % password print password except: pass
notebook/random_random.py
vhn0912/python-snippets
174
12725509
import random print(random.random()) # 0.4496839011176701 random.seed(0) print(random.random()) # 0.8444218515250481 print(random.random()) # 0.7579544029403025 random.seed(0) print(random.random()) # 0.8444218515250481 print(random.random()) # 0.7579544029403025
dreamplace/ops/density_overflow/density_overflow.py
xiefei1026/DREAMPlace
323
12725524
## # @file density_overflow.py # @author <NAME> # @date Jun 2018 # @brief Compute density overflow # import math import torch from torch import nn from torch.autograd import Function from dreamplace.ops.density_map.density_map import DensityMap as DensityMap import pdb class DensityOverflow(DensityMap): """ @brief Compute density overflow for both movable and fixed cells. The density map for fixed cells is pre-computed. Each call will only compute the density map for movable cells. """ def __init__(self, node_size_x, node_size_y, bin_center_x, bin_center_y, target_density, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_terminals, num_filler_nodes): """ @brief initialization @param node_size_x cell width array consisting of movable cells, fixed cells, and filler cells in order @param node_size_y cell height array consisting of movable cells, fixed cells, and filler cells in order @param bin_center_x bin center x locations @param bin_center_y bin center y locations @param target_density target density @param xl left boundary @param yl bottom boundary @param xh right boundary @param yh top boundary @param bin_size_x bin width @param bin_size_y bin height @param num_movable_nodes number of movable cells @param num_terminals number of fixed cells @param num_filler_nodes number of filler cells """ super(DensityOverflow, self).__init__(node_size_x=node_size_x, node_size_y=node_size_y, bin_center_x=bin_center_x, bin_center_y=bin_center_y, xl=xl, yl=yl, xh=xh, yh=yh, bin_size_x=bin_size_x, bin_size_y=bin_size_y, num_movable_nodes=num_movable_nodes, num_terminals=num_terminals, num_filler_nodes=num_filler_nodes) self.target_density = target_density def forward(self, pos): """ @brief API @param pos cell locations. The array consists of x locations of movable cells, fixed cells, and filler cells, then y locations of them """ density_map = super(DensityOverflow, self).forward(pos) bin_area = self.bin_size_x * self.bin_size_y density_cost = (density_map - self.target_density * bin_area).clamp_(min=0.0).sum() return density_cost, density_map.max() / bin_area
tests/deployment/sagemaker/sagemaker_moto/__init__.py
Shumpei-Kikuta/BentoML
3,451
12725594
<reponame>Shumpei-Kikuta/BentoML<gh_stars>1000+ from moto.core.models import base_decorator from tests.deployment.sagemaker.sagemaker_moto.model import sagemaker_backends moto_mock_sagemaker = base_decorator(sagemaker_backends)