max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/conftest.py
timgates42/guv
120
12732799
import pytest from guv.greenio import socket from guv import listen @pytest.fixture(scope='session') def pub_addr(): """A working public address that is considered always available """ return 'gnu.org', 80 @pytest.fixture(scope='session') def fail_addr(): """An address that nothing is listening on """ return '192.0.0.0', 1000 @pytest.fixture(scope='function') def gsock(): return socket() @pytest.fixture(scope='function') def server_sock(): sock = listen(('', 0)) return sock
QUANTAXIS/QAWebServer/schedulehandler.py
B34nK0/QUANTAXIS
6,322
12732805
<reponame>B34nK0/QUANTAXIS import datetime import threading import pymongo from apscheduler.jobstores.mongodb import MongoDBJobStore from apscheduler.schedulers.tornado import TornadoScheduler from qaenv import mongo_ip, mongo_port from QUANTAXIS.QAWebServer.basehandles import QABaseHandler from tornado.ioloop import IOLoop, PeriodicCallback from tornado.web import Application, RequestHandler """ 增加 mongodb 的数据读取 """ scheduler = None job_ids = [] # 初始化 def init_scheduler(database='qascheduler', collection='jobs'): jobstores = { 'default': MongoDBJobStore(database=database, collection=collection, client=pymongo.MongoClient(host=mongo_ip, port=mongo_port)) } global scheduler scheduler = TornadoScheduler(jobstores=jobstores) scheduler.start() print('[QAScheduler Init]Scheduler has been started') return scheduler # 要执行的定时任务在这里 def task1(options): print('{} [QASchedule][Task]-{}'.format( datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f'), options)) # print(threading.enumerate()) class QASchedulerHandler(QABaseHandler): """ http://0.0.0.0:8010/scheduler/map?job_id=1&action=add """ def get(self): global job_ids job_id = self.get_query_argument('job_id', None) action = self.get_query_argument('action', None) if job_id: # add if 'add' == action: if job_id not in job_ids: job_ids.append(job_id) scheduler.add_job(task1, 'interval', seconds=3, id=job_id, args=(job_id,)) self.write('[TASK ADDED] - {}'.format(job_id)) else: self.write('[TASK EXISTS] - {}'.format(job_id)) # remove elif 'remove' == action: if job_id in job_ids: scheduler.remove_job(job_id) job_ids.remove(job_id) self.write('[TASK REMOVED] - {}'.format(job_id)) else: self.write('[TASK NOT FOUND] - {}'.format(job_id)) else: self.write('[INVALID PARAMS] INVALID job_id or action') def format_joboutput(job): return { 'id': job.id, 'name': job.name, 'args': job.args, 'kwards': job.kwargs, 'coalesce': job.coalesce, 'nextruntime': str(job.next_run_time) } class QAScheduleQuery(QABaseHandler): def get(self): action = self.get_argument('action', 'queryall') print(action) if action == 'queryall': jobs = scheduler.get_jobs() print([format_joboutput(x) for x in jobs]) self.write({'res': [format_joboutput(x) for x in jobs]})
sort/merge.py
x899/algorithms
472
12732848
""" Implementation of Merge Sort algorithm """ def merge(data): """ MergeSort is a Divide and Conquer algorithm. It divides input array in two halves, calls itself for the two halves and then merges the two sorted halves. :param array: list of elements that needs to be sorted :type array: list """ if len(data) > 1: mid = len(data) // 2 lefthalf = data[:mid] righthalf = data[mid:] merge(lefthalf) merge(righthalf) i = j = k = 0 while i < len(lefthalf) and j < len(righthalf): if lefthalf[i] < righthalf[j]: data[k] = lefthalf[i] i = i + 1 else: data[k] = righthalf[j] j = j + 1 k = k + 1 while i < len(lefthalf): data[k] = lefthalf[i] i = i + 1 k = k + 1 while j < len(righthalf): data[k] = righthalf[j] j = j + 1 k = k + 1 def main(): """ operational function """ arr = [34, 56, 23, 67, 3, 68] print(f"unsorted array: {arr}") merge(arr) print(f" sorted array: {arr}") if __name__ == "__main__": main()
tests/patterns/test_ParallelPattern.py
josiah-wolf-oberholtzer/supriya
191
12732882
<gh_stars>100-1000 import pytest from supriya.patterns import ( CompositeEvent, EventPattern, GroupAllocateEvent, GroupPattern, NodeFreeEvent, NoteEvent, NullEvent, ParallelPattern, SequencePattern, ) from supriya.patterns.testutils import MockUUID as M from supriya.patterns.testutils import run_pattern_test @pytest.mark.parametrize( "stop_at, patterns, expected, is_infinite", [ ( None, [ EventPattern(frequency=SequencePattern([440, 550, 660])), EventPattern(frequency=SequencePattern([777, 888, 999])), ], [ CompositeEvent( [ NoteEvent(M("A"), delta=0.0, frequency=440), NoteEvent(M("B"), delta=0.0, frequency=777), ], delta=1.0, ), CompositeEvent( [ NoteEvent(M("C"), delta=0.0, frequency=550), NoteEvent(M("D"), delta=0.0, frequency=888), ], delta=1.0, ), CompositeEvent( [ NoteEvent(M("E"), delta=0.0, frequency=660), NoteEvent(M("F"), delta=0.0, frequency=999), ], delta=1.0, ), ], False, ), ( None, [ EventPattern(x=SequencePattern([1, 2, 3]), delta=1.0), EventPattern(y=SequencePattern([1, 2]), delta=1.5), ], [ CompositeEvent( [ NoteEvent(M("A"), delta=0.0, x=1), NoteEvent(M("B"), delta=0.0, y=1), ], delta=1.0, ), NoteEvent(M("C"), delta=0.5, x=2), NoteEvent(M("D"), delta=0.5, y=2), NoteEvent(M("E"), delta=1.0, x=3), ], False, ), ( 1, [ EventPattern(x=SequencePattern([1, 2, 3]), delta=1.0), EventPattern(y=SequencePattern([1, 2]), delta=1.5), ], [ CompositeEvent( [ NoteEvent(M("A"), delta=0.0, x=1), NoteEvent(M("B"), delta=0.0, y=1), ], delta=1.0, ) ], False, ), ( None, [ GroupPattern(EventPattern(x=SequencePattern([1, 2, 3]), delta=1.0)), GroupPattern(EventPattern(y=SequencePattern([1, 2]), delta=1.5)), ], [ CompositeEvent( [ CompositeEvent([GroupAllocateEvent(M("A"))]), NoteEvent(M("B"), delta=0.0, target_node=M("A"), x=1), CompositeEvent([GroupAllocateEvent(M("C"))]), NoteEvent(M("D"), delta=0.0, target_node=M("C"), y=1), ], delta=1.0, ), NoteEvent(M("E"), delta=0.5, target_node=M("A"), x=2), NoteEvent(M("F"), delta=0.5, target_node=M("C"), y=2), NoteEvent(M("G"), delta=1.0, target_node=M("A"), x=3), CompositeEvent( [ CompositeEvent([NullEvent(delta=0.25), NodeFreeEvent(M("A"))]), CompositeEvent([NullEvent(delta=0.25), NodeFreeEvent(M("C"))]), ] ), ], False, ), ( 1, [ GroupPattern(EventPattern(x=SequencePattern([1, 2, 3]), delta=1.0)), GroupPattern(EventPattern(y=SequencePattern([1, 2]), delta=1.5)), ], [ CompositeEvent( [ CompositeEvent([GroupAllocateEvent(M("A"))]), NoteEvent(M("B"), delta=0.0, target_node=M("A"), x=1), CompositeEvent([GroupAllocateEvent(M("C"))]), NoteEvent(M("D"), delta=0.0, target_node=M("C"), y=1), ], delta=1.0, ), CompositeEvent( [NullEvent(delta=0.25), NodeFreeEvent(M("A"))], delta=0.5 ), CompositeEvent([NullEvent(delta=0.25), NodeFreeEvent(M("C"))]), ], False, ), ], ) def test(stop_at, patterns, expected, is_infinite): pattern = ParallelPattern(patterns) run_pattern_test(pattern, expected, is_infinite, stop_at)
hail/python/hail/expr/expressions/__init__.py
tdeboer-ilmn/hail
789
12732921
<filename>hail/python/hail/expr/expressions/__init__.py from .indices import Indices, Aggregation from .base_expression import ExpressionException, Expression, impute_type, \ to_expr, cast_expr, unify_all, unify_types_limited, unify_types, \ unify_exprs from .typed_expressions import ArrayExpression, ArrayStructExpression, \ ArrayNumericExpression, BooleanExpression, CallExpression, \ CollectionExpression, DictExpression, IntervalExpression, LocusExpression, \ NumericExpression, Int32Expression, Int64Expression, Float32Expression, \ Float64Expression, SetExpression, StringExpression, StructExpression, \ TupleExpression, NDArrayExpression, NDArrayNumericExpression, \ SetStructExpression, \ apply_expr, construct_expr, construct_variable, construct_reference from .expression_typecheck import expr_any, expr_int32, expr_int64, \ expr_float32, expr_float64, expr_call, expr_bool, expr_str, expr_locus, \ expr_interval, expr_array, expr_ndarray, expr_set, expr_dict, expr_tuple, \ expr_struct, expr_oneof, expr_numeric, coercer_from_dtype from .expression_utils import analyze, eval_timed, eval, eval_typed, \ extract_refs_by_indices, get_refs, matrix_table_source, table_source, \ check_entry_indexed, check_row_indexed __all__ = ['Indices', 'Aggregation', 'apply_expr', 'construct_expr', 'construct_variable', 'construct_reference', 'impute_type', 'to_expr', 'cast_expr', 'unify_all', 'unify_types_limited', 'unify_types', 'unify_exprs', 'Expression', 'ExpressionException', 'ArrayExpression', 'ArrayStructExpression', 'ArrayNumericExpression', 'BooleanExpression', 'CallExpression', 'CollectionExpression', 'DictExpression', 'IntervalExpression', 'LocusExpression', 'NumericExpression', 'Int32Expression', 'Int64Expression', 'Float32Expression', 'Float64Expression', 'SetExpression', 'SetStructExpression', 'StringExpression', 'StructExpression', 'TupleExpression', 'NDArrayExpression', 'NDArrayNumericExpression', 'analyze', 'check_entry_indexed', 'check_row_indexed', 'get_refs', 'extract_refs_by_indices', 'eval', 'eval_typed', 'eval_timed', 'expr_any', 'expr_int32', 'expr_int64', 'expr_float32', 'expr_float64', 'expr_bool', 'expr_str', 'expr_call', 'expr_locus', 'expr_struct', 'expr_numeric', 'expr_array', 'expr_ndarray', 'expr_set', 'expr_dict', 'expr_struct', 'expr_tuple', 'expr_interval', 'expr_oneof', 'coercer_from_dtype', 'matrix_table_source', 'table_source']
abusehelper/bots/tailbot/tailbot.py
AbuseSA/abusehelper
117
12732923
import os import time import errno import idiokit from abusehelper.core import events, bot, utils def read(fd, amount=4096): try: data = os.read(fd, amount) except OSError as ose: if ose.args[0] != errno.EAGAIN: raise data = "" return data def try_seek(fd, offset): try: if offset is None: os.lseek(fd, 0, os.SEEK_END) elif offset >= 0: os.lseek(fd, offset, os.SEEK_SET) else: os.lseek(fd, offset, os.SEEK_END) except OSError as ose: if ose.args[0] != errno.ESPIPE: raise def follow_file(filename): while True: try: fd = os.open(filename, os.O_RDONLY | os.O_NONBLOCK) except OSError: yield None continue try: inode = os.fstat(fd).st_ino first = True while True: try: stat = os.stat(filename) except OSError: stat = None yield first, time.time(), fd if stat is None or inode != stat.st_ino: break first = False finally: os.close(fd) def tail_file(filename, offset=None): first = True buffer = [] for result in follow_file(filename): if first and result is not None: _, _, fd = result try_seek(fd, offset) first = False if result is None: yield None continue flush, mtime, fd = result if flush and buffer: buffer = [] while True: data = read(fd) if not data: break lines = data.split("\n") if len(lines) <= 1: buffer.extend(lines) continue lines[0] = "".join(buffer) + lines[0] for line in lines[:-1]: if line.endswith("\r"): line = line[:-1] yield mtime, line if not lines[-1]: buffer = [] else: buffer = lines[-1:] yield None class TailBot(bot.FeedBot): path = bot.Param("path to the followed file") offset = bot.IntParam("file offset", default=None) @idiokit.stream def feed(self): for result in tail_file(self.path, self.offset): if result is None: yield idiokit.sleep(2.0) continue mtime, line = result keys = self.parse(line, mtime) if keys is None: continue event = events.Event() for key, value in keys.items(): event.add(key, value) yield idiokit.send(event) def parse(self, line, mtime): line = line.rstrip() if not line: return line = utils.force_decode(line) return {"line": line} if __name__ == "__main__": TailBot.from_command_line().execute()
dlnlputils/__init__.py
Rojanson/stepik-dl-nlp
120
12732947
<filename>dlnlputils/__init__.py from . import data from . import pipeline from . import visualization from . import base
experiments/training/__init__.py
selflein/manifold-flow
199
12732963
<reponame>selflein/manifold-flow from . import losses from .trainer import ForwardTrainer, ConditionalForwardTrainer, AdversarialTrainer, ConditionalAdversarialTrainer, SCANDALForwardTrainer from .alternate import AlternatingTrainer
src/python/e2e-test-runner/e2e_test_runner/main.py
inickles/grapl
313
12732981
<reponame>inickles/grapl import os import sys from pathlib import Path from grapl_common.debugger.vsc_debugger import wait_for_vsc_debugger from grapl_common.grapl_logger import get_module_grapl_logger LOGGER = get_module_grapl_logger() def main() -> None: wait_for_vsc_debugger("grapl_e2e_tests") LOGGER.info("executing pytest") from grapl_tests_common import setup_tests # import here to limit monkeypatch # Change to the parent directory so pytest can find the tests os.chdir(Path(__file__).resolve().parent) result = setup_tests.exec_pytest() LOGGER.info(f"tests completed with status code {result}") sys.exit(result)
moya/command/sub/init.py
moyaproject/moya
129
12732988
from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from ...command import SubCommand from ...console import Cell from ...wsgi import WSGIApplication from ... import namespaces from ... import db try: import readline except ImportError: pass class Init(SubCommand): """initialize a site for first use""" help = """initialize a site for first use""" def add_arguments(self, parser): parser.add_argument( "-l", "--location", dest="location", default=None, metavar="PATH", help="location of the Moya server code", ) parser.add_argument( "-i", "--ini", dest="settings", default=None, metavar="SETTINGSPATH", help="path to project settings", ) def run(self): args = self.args console = self.console application = WSGIApplication( self.location, self.get_settings(), validate_db=True, disable_autoreload=True, master_settings=self.master_settings, ) archive = application.archive self.console.div("syncing database") db.sync_all(archive, self.console, summary=False) commands = [ command for command in archive.get_elements_by_type(namespaces.default, "command") if command._init ] commands.sort(key=lambda c: c._priority, reverse=True) fail = None for command in commands: if fail: break for app_name in archive.apps_by_lib[command.lib.long_name]: app = archive.apps[app_name] app_id = command.get_appid(app=app) # console.div("running 'moya {}'".format(app_id)) console.div(command._synopsis) # console.text(command._synopsis, italic=True) result = self.moya_command.project_invoke( app_id, application=application, root_vars={"init": True} ) if result != 0: fail = result break console.nl() if not fail: msg = """Site is ready for use!\nRun "moya runserver" from the project directory.""" # console.text(msg, fg="green", bold=True) console.table([[Cell(msg, fg="green", bold=True)]]) else: msg = """A command failed to complete -- check above for any error messages.""" console.table([[Cell(msg, fg="red", bold=True)]])
src/recommendationservice/client.py
gzhao408/stackdriver-sandbox
229
12732990
#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import grpc import demo_pb2 import demo_pb2_grpc from opencensus.trace.tracer import Tracer from opencensus.trace.exporters import stackdriver_exporter from opencensus.trace.ext.grpc import client_interceptor as oc_client_interceptor from opentelemetry import trace from opentelemetry.exporter.cloud_trace import CloudTraceSpanExporter from opentelemetry.ext.grpc import client_interceptor from opentelemetry.ext.grpc.grpcext import intercept_channel from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import SimpleExportSpanProcessor from logger import getJSONLogger logger = getJSONLogger('recommendationservice-server') if __name__ == "__main__": # get port if len(sys.argv) > 1: port = sys.argv[1] else: port = "8080" # TODO: remove OpenCensus after conversion to OpenTelemetry try: exporter = stackdriver_exporter.StackdriverExporter() tracer = Tracer(exporter=exporter) oc_interceptor = oc_client_interceptor.OpenCensusClientInterceptor(tracer, host_port='localhost:'+port) except: oc_interceptor = oc_client_interceptor.OpenCensusClientInterceptor() # OpenTelemetry Tracing trace.set_tracer_provider(TracerProvider()) cloud_trace_exporter = CloudTraceSpanExporter() trace.get_tracer_provider().add_span_processor( SimpleExportSpanProcessor(cloud_trace_exporter) ) # set up server stub channel = grpc.insecure_channel('localhost:'+port) channel = intercept_channel(channel, client_interceptor(trace.get_tracer_provider())) stub = demo_pb2_grpc.RecommendationServiceStub(channel) # form request request = demo_pb2.ListRecommendationsRequest(user_id="test", product_ids=["test"]) # make call to server response = stub.ListRecommendations(request) logger.info(response)
baselines/ppo2_rudder/policies.py
jingweiz/baselines-rudder
281
12732992
<reponame>jingweiz/baselines-rudder<filename>baselines/ppo2_rudder/policies.py # -*- coding: utf-8 -*- """policies.py: Adaption of baselines.ppo2.policies.py for RUDDER for atari games Author -- <NAME> Contact -- <EMAIL> """ import numpy as np import tensorflow as tf from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch from baselines.common.distributions import make_pdtype from baselines.ppo2_rudder.reward_redistribution import RewardRedistributionModel, observation_network from TeLL.layers import StopGradientLayer def nature_cnn(unscaled_images): """Convolutional parts of CNN from Nature paper Taken from baselines.ppo2.policies.py Parameters ------- unscaled_images : tensorflow tensor Frame of shape (batchsize, x, y, c) Returns ------- tensorflow tensor Output features of last convolutional layer with flattened x/y/c dimensions """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2))) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2))) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2))) h3 = conv_to_fc(h3) return h3 def lstm(xs, ms, s, scope, nh): """LSTM layer for policy network, using same weight and bias initialization as LSTM in reward redistribution model Based on baselines.ppo2.policies.py; These initializations were taken directly from the redistribution model LSTM and could be optimized; """ nbatch, nin = [v.value for v in xs[0].get_shape()] lstm_w_init = lambda scale: lambda *args, **kwargs: tf.truncated_normal(*args, **kwargs) * scale truncated_normal_init = lambda mean, stddev: \ lambda *args, **kwargs: tf.truncated_normal(mean=mean, stddev=stddev, *args, **kwargs) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): wx_ig = tf.get_variable("wx_ig", initializer=lstm_w_init(0.1)([nin, nh])) wx_og = tf.get_variable("wx_og", initializer=lstm_w_init(0.1)([nin, nh])) wx_ci = tf.get_variable("wx_ci", initializer=lstm_w_init(0.0001)([nin, nh])) wx_fg = tf.get_variable("wx_fg", initializer=lstm_w_init(0.1)([nin, nh])) wh_ig = tf.get_variable("wh_ig", initializer=lstm_w_init(0.001)([nh, nh])) wh_og = tf.get_variable("wh_og", initializer=lstm_w_init(0.001)([nh, nh])) wh_ci = tf.get_variable("wh_ci", initializer=lstm_w_init(0.001)([nh, nh])) wh_fg = tf.get_variable("wh_fg", initializer=lstm_w_init(0.001)([nh, nh])) b_ig = tf.get_variable("b_ig", initializer=truncated_normal_init(mean=-5, stddev=0.1)([nh])) b_fg = tf.get_variable("b_fg", initializer=truncated_normal_init(mean=12, stddev=0.1)([nh])) b_og = tf.get_variable("b_og", initializer=truncated_normal_init(mean=-5, stddev=0.1)([nh])) b_ci = tf.get_variable("b_ci", initializer=truncated_normal_init(mean=0, stddev=0.1)([nh])) wx = tf.concat([wx_ig, wx_fg, wx_og, wx_ci], axis=1) wh = tf.concat([wh_ig, wh_fg, wh_og, wh_ci], axis=1) b = tf.concat([b_ig, b_fg, b_og, b_ci], axis=0) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c *= (1 - m) h *= (1 - m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.identity(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s class LstmPolicy(object): def __init__(self, tf_session, ob_space, ac_space, nbatch, reward_redistribution_config, observation_network_config, lstm_network_config, training_config, exploration_config, nsteps, nlstm=64, reuse=False): """LSTM policy network, as described in RUDDER paper Based on baselines.ppo2.policies.py; LSTM layer sees features from it's own trainable observation network and the features from the reward redistribution observation network; Parameters ------- tf_session : tensorflow session tensorflow session to compute the graph in ob_space Baselines ob_space object (see ppo2_rudder.py); must provide .shape attribute for (x, y, c) shapes; ac_space Baselines ac_space object (see ppo2_rudder.py); must provide .n attribute for number of possible actions; nbatch : int Batchsize nsteps : int Fixed number of timesteps to process at once reward_redistribution_config : dict Dictionary containing config for reward redistribution: ----- lambda_eligibility_trace : float Eligibility trace value for redistributed reward vf_contrib : float Weighting of original value function (vf) vs. redistributed reward (rr), s.t. :math:`reward = vf \cdot vf\_contrib + rr \cdot (1-vf\_contrib)` use_reward_redistribution_quality_threshold : float Quality of reward redistribution has to exceed use_reward_redistribution_quality_threshold to be used; use_reward_redistribution_quality_threshold range is [0,1]; Quality measure is the squared prediction error, as described in RUDDER paper; use_reward_redistribution : bool Use reward redistribution? rr_junksize : int Junksize for reward redistribution; Junks overlap by 1 half each cont_pred_w : float Weighting of continous prediciton loss vs. prediction loss of final return at last timestep intgrd_steps : int Stepsize for integrated gradients intgrd_batchsize : int Integrated gradients is computed batch-wise if intgrd_batchsize > 1 observation_network_config : dict Dictionary containing config for observation network that processes observations and feeds them to LSTM network: ----- show_states : bool Show frames to network? show_statedeltas : bool Show frame deltas to network? prepoc_states : list of dicts Network config to preprocess frames prepoc_deltas : list of dicts Network config to preprocess frame deltas prepoc_observations : list of dicts Network config to preprocess features from frame and frame-delta preprocessing networks lstm_network_config : dict Dictionary containing config for LSTM network: ----- show_actions : bool Show taken actions to LSTM? reversed : bool Process game sequence in reversed order? layers : list of dicts Network config for LSTM network and optional additional dense layers initializations : dict Initialization config for LSTM network timestep_encoding : dict Set "max_value" and "triangle_span" for TeLL.utiltiy.misc_tensorflow.TriangularValueEncoding class training_config : dict Dictionary containing config for training and update procedure: ----- n_no_rr_updates : int Number of updates to perform without training or using reward redistribution network n_pretrain_games : int Number of games to pretrain the reward redistribution network without using it; downscale_lr_policylag : bool Downscale learningrate permanently if policy lag gets too large? optimizer : tf.train optimizer Optimizer in tf.train, e.g. "AdamOptimizer" optimizer_params : dict Kwargs for optimizer l1 : float Weighting for l1 weight regularization l2 : float Weighting for l2 weight regularization clip_gradients : float Threshold for clipping gradients (clipping by norm) exploration_config : dict Dictionary containing config for exploration: ----- sample_actions_from_softmax : bool True: Apply softmax to policy network output and use it as probabilities to pick an action False: Use the max. policy network output as action temporal_safe_exploration : bool User RUDDER safe exploration save_pi_threshold : float Threshold value in range [0,1] for safe actions in RUDDER safe exploration nlstm : int Number of LSTM units (=memory cells) reuse : bool Reuse tensorflow variables? """ # # Shapes # nenv = nbatch // nsteps nh, nw, nc = ob_space.shape ob_shape = (nbatch, nh, nw, nc) seq_ob_shape = (nenv, -1, nh, nw, 1) nact = ac_space.n # # Placeholders for inputs # X = tf.placeholder(tf.uint8, ob_shape) #obs M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states # # Prepare input # single_frames = tf.cast(tf.reshape(X[..., -1:], shape=seq_ob_shape), dtype=tf.float32) delta_frames = single_frames - tf.cast(tf.reshape(X[..., -2:-1], shape=seq_ob_shape), dtype=tf.float32) # # Get observation features from RR model # rr_model = RewardRedistributionModel(reward_redistribution_config=reward_redistribution_config, observation_network_config=observation_network_config, lstm_network_config=lstm_network_config, training_config=training_config, scopename="RR") self.rr_observation_model = rr_model rr_observation_layer = rr_model.get_visual_features(single_frame=single_frames, delta_frame=delta_frames, additional_inputs=[]) # # Build policy network # with tf.variable_scope("model", reuse=reuse): temperature = tf.get_variable(initializer=tf.constant(1, dtype=tf.float32), trainable=False, name='temperature') additional_inputs = [StopGradientLayer(rr_observation_layer)] observation_layers, observation_features = observation_network( single_frame=single_frames, delta_frame=delta_frames, additional_inputs=additional_inputs, observation_network_config=observation_network_config) self.observation_features_shape = observation_features.get_output_shape() xs = [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=tf.reshape(observation_layers[-1].get_output(), [nenv, nsteps, -1]))] ms = batch_to_seq(M, nenv, nsteps) h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm) h5 = seq_to_batch(h5) h6 = h5 pi = fc(h6, 'pi', nact) vf = fc(h6, 'v', 1) self.pdtype = make_pdtype(ac_space) self.pd = self.pdtype.pdfromflat(pi) if exploration_config['sample_actions_from_softmax']: a0 = self.pd.sample_temp(temperature=temperature) else: a0 = tf.argmax(pi, axis=-1) v0 = vf[:, 0] neglogp0 = self.pd.neglogp(a0) self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32) def step(ob, state, mask): a, v, s, neglogp = tf_session.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask}) return a, v, s, neglogp def value(ob, state, mask): return tf_session.run(v0, {X:ob, S:state, M:mask}) def action(ob, state, mask, *_args, **_kwargs): a, s, neglogp = tf_session.run([a0, snew, neglogp0], {X:ob, S:state, M:mask}) return a, s, neglogp # # Placeholders for exploration # n_envs = pi.shape.as_list()[0] exploration_timesteps_pl = tf.placeholder(dtype=tf.float32, shape=(n_envs,)) prev_actions_pl = tf.placeholder(dtype=tf.int64, shape=(n_envs,)) gamelengths_pl = tf.placeholder(dtype=tf.float32, shape=(n_envs,)) keep_prev_action_pl = tf.placeholder(dtype=tf.bool, shape=(n_envs,)) prev_action_count_pl = tf.placeholder(dtype=tf.int64, shape=(n_envs,)) exploration_durations_pl = tf.placeholder(dtype=tf.float32, shape=(n_envs,)) # # Setting up safe exploration # explore = tf.logical_and(tf.logical_and(tf.less_equal(exploration_timesteps_pl, gamelengths_pl), tf.less_equal(gamelengths_pl, exploration_timesteps_pl + exploration_durations_pl)), tf.not_equal(exploration_timesteps_pl, tf.constant(-1, dtype=tf.float32))) safe_pi = pi - tf.reduce_min(pi, axis=-1, keep_dims=True) safe_pi /= tf.reduce_max(safe_pi, axis=-1, keep_dims=True) save_pi_thresholds = (1 - (tf.expand_dims(tf.range(n_envs, dtype=tf.float32), axis=1) / (n_envs + (n_envs == 1) - 1)) * (1 - exploration_config['save_pi_threshold'])) safe_pi = tf.cast(tf.greater_equal(safe_pi, save_pi_thresholds), dtype=tf.float32) safe_pi /= tf.reduce_sum(safe_pi) rand_safe_a = tf.multinomial(safe_pi, 1)[:, 0] safe_pi_flat = tf.reshape(safe_pi, (-1,)) prev_action_is_safe = tf.gather(safe_pi_flat, prev_actions_pl + tf.range(safe_pi.shape.as_list()[0], dtype=tf.int64) * safe_pi.shape.as_list()[1]) prev_action_is_safe = tf.greater(prev_action_is_safe, tf.constant(0, dtype=tf.float32)) a_explore = tf.where(tf.logical_and(tf.logical_and(keep_prev_action_pl, tf.not_equal(gamelengths_pl, exploration_timesteps_pl)), prev_action_is_safe), prev_actions_pl, rand_safe_a) a_explore = tf.where(explore, a_explore, a0) # Make sure the actor doesn't repeat an action too often (otherwise screensaver might start) rand_a = tf.random_uniform(shape=a0.get_shape(), minval=0, maxval=ac_space.n, dtype=a0.dtype) a_explore = tf.where(tf.greater(prev_action_count_pl, tf.constant(20, dtype=tf.int64)), rand_a, a_explore) if not exploration_config['temporal_safe_exploration']: a_explore = a0 neglogp_explore = self.pd.neglogp(a_explore) def action_exploration(ob, state, mask, *_args, exploration_timesteps, prev_actions, gamelengths, keep_prev_action, prev_action_count, exploration_durations, **_kwargs): """Get actions with exploration for long-term reward""" a, s, neglogp = tf_session.run([a_explore, snew, neglogp_explore], {X: ob, S:state, M:mask, exploration_timesteps_pl: exploration_timesteps, prev_actions_pl: prev_actions, gamelengths_pl: gamelengths, exploration_durations_pl: exploration_durations, keep_prev_action_pl: keep_prev_action, prev_action_count_pl: prev_action_count}) return a, s, neglogp self.X = X self.M = M self.S = S self.pi = pi self.vf = vf self.step = step self.value = value self.action = action self.action_exploration = action_exploration self.seq_ob_shape = seq_ob_shape self.exploration_config = exploration_config def get_observation_features(self, frame, delta): """Get output features of observation network (to be fed into reward redistribution network)""" with tf.variable_scope("model", reuse=tf.AUTO_REUSE): _, observation_features = observation_network( single_frame=frame[..., -1:], delta_frame=delta, additional_inputs=[], observation_network_config=self.exploration_config['observation_network_config']) observation_features = observation_features.get_output() return observation_features class LstmPolicyDense(object): def __init__(self, tf_session, ob_space, ac_space, nbatch, reward_redistribution_config, observation_network_config, lstm_network_config, training_config, exploration_config, nsteps, nlstm=64, reuse=False): """LSTM policy network with additional dense layer after LSTM layer, as described in RUDDER paper Based on baselines.ppo2.policies.py; LSTM layer sees features from it's own trainable observation network and the features from the reward redistribution observation network; The additional dense layer after the LSTM layer contains 128 hidden units; Parameters ------- tf_session : tensorflow session tensorflow session to compute the graph in ob_space Baselines ob_space object (see ppo2_rudder.py); must provide .shape attribute for (x, y, c) shapes; ac_space Baselines ac_space object (see ppo2_rudder.py); must provide .n attribute for number of possible actions; nbatch : int Batchsize nsteps : int Fixed number of timesteps to process at once reward_redistribution_config : dict Dictionary containing config for reward redistribution: ----- lambda_eligibility_trace : float Eligibility trace value for redistributed reward vf_contrib : float Weighting of original value function (vf) vs. redistributed reward (rr), s.t. :math:`reward = vf \cdot vf\_contrib + rr \cdot (1-vf\_contrib)` use_reward_redistribution_quality_threshold : float Quality of reward redistribution has to exceed use_reward_redistribution_quality_threshold to be used; use_reward_redistribution_quality_threshold range is [0,1]; Quality measure is the squared prediction error, as described in RUDDER paper; use_reward_redistribution : bool Use reward redistribution? rr_junksize : int Junksize for reward redistribution; Junks overlap by 1 half each cont_pred_w : float Weighting of continous prediciton loss vs. prediction loss of final return at last timestep intgrd_steps : int Stepsize for integrated gradients intgrd_batchsize : int Integrated gradients is computed batch-wise if intgrd_batchsize > 1 observation_network_config : dict Dictionary containing config for observation network that processes observations and feeds them to LSTM network: ----- show_states : bool Show frames to network? show_statedeltas : bool Show frame deltas to network? prepoc_states : list of dicts Network config to preprocess frames prepoc_deltas : list of dicts Network config to preprocess frame deltas prepoc_observations : list of dicts Network config to preprocess features from frame and frame-delta preprocessing networks lstm_network_config : dict Dictionary containing config for LSTM network: ----- show_actions : bool Show taken actions to LSTM? reversed : bool Process game sequence in reversed order? layers : list of dicts Network config for LSTM network and optional additional dense layers initializations : dict Initialization config for LSTM network timestep_encoding : dict Set "max_value" and "triangle_span" for TeLL.utiltiy.misc_tensorflow.TriangularValueEncoding class training_config : dict Dictionary containing config for training and update procedure: ----- n_no_rr_updates : int Number of updates to perform without training or using reward redistribution network n_pretrain_games : int Number of games to pretrain the reward redistribution network without using it; downscale_lr_policylag : bool Downscale learningrate permanently if policy lag gets too large? optimizer : tf.train optimizer Optimizer in tf.train, e.g. "AdamOptimizer" optimizer_params : dict Kwargs for optimizer l1 : float Weighting for l1 weight regularization l2 : float Weighting for l2 weight regularization clip_gradients : float Threshold for clipping gradients (clipping by norm) exploration_config : dict Dictionary containing config for exploration: ----- sample_actions_from_softmax : bool True: Apply softmax to policy network output and use it as probabilities to pick an action False: Use the max. policy network output as action temporal_safe_exploration : bool User RUDDER safe exploration save_pi_threshold : float Threshold value in range [0,1] for safe actions in RUDDER safe exploration nlstm : int Number of LSTM units (=memory cells) reuse : bool Reuse tensorflow variables? """ # # Shapes # nenv = nbatch // nsteps nh, nw, nc = ob_space.shape ob_shape = (nbatch, nh, nw, nc) seq_ob_shape = (nenv, -1, nh, nw, 1) nact = ac_space.n # # Placeholders # X = tf.placeholder(tf.uint8, ob_shape) #obs M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states # # Prepare input # single_frames = tf.cast(tf.reshape(X[..., -1:], shape=seq_ob_shape), dtype=tf.float32) delta_frames = single_frames - tf.cast(tf.reshape(X[..., -2:-1], shape=seq_ob_shape), dtype=tf.float32) # # Get observation features from RR model # rr_model = RewardRedistributionModel(reward_redistribution_config=reward_redistribution_config, observation_network_config=observation_network_config, lstm_network_config=lstm_network_config, training_config=training_config, scopename="RR") self.rr_observation_model = rr_model rr_observation_layer = rr_model.get_visual_features(single_frame=single_frames, delta_frame=delta_frames, additional_inputs=[]) # # Build policy network # with tf.variable_scope("model", reuse=reuse): temperature = tf.get_variable(initializer=tf.constant(1, dtype=tf.float32), trainable=False, name='temperature') additional_inputs = [StopGradientLayer(rr_observation_layer)] observation_layers, observation_features = observation_network( single_frame=single_frames, delta_frame=delta_frames, additional_inputs=additional_inputs, observation_network_config=observation_network_config) self.observation_features_shape = observation_features.get_output_shape() xs = [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=tf.reshape(observation_layers[-1].get_output(), [nenv, nsteps, -1]))] ms = batch_to_seq(M, nenv, nsteps) h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm) h5 = seq_to_batch(h5) h6 = fc(h5, 'fc1', nh=128, init_scale=np.sqrt(2)) pi = fc(h6, 'pi', nact) vf = fc(h6, 'v', 1) self.pdtype = make_pdtype(ac_space) self.pd = self.pdtype.pdfromflat(pi) if exploration_config['sample_actions_from_softmax']: a0 = self.pd.sample_temp(temperature=temperature) else: a0 = tf.argmax(pi, axis=-1) v0 = vf[:, 0] neglogp0 = self.pd.neglogp(a0) self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32) def step(ob, state, mask): a, v, s, neglogp = tf_session.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask}) return a, v, s, neglogp def value(ob, state, mask): return tf_session.run(v0, {X:ob, S:state, M:mask}) def action(ob, state, mask, *_args, **_kwargs): a, s, neglogp = tf_session.run([a0, snew, neglogp0], {X:ob, S:state, M:mask}) return a, s, neglogp # # Placeholders for exploration # n_envs = pi.shape.as_list()[0] exploration_timesteps_pl = tf.placeholder(dtype=tf.float32, shape=(n_envs,)) prev_actions_pl = tf.placeholder(dtype=tf.int64, shape=(n_envs,)) gamelengths_pl = tf.placeholder(dtype=tf.float32, shape=(n_envs,)) keep_prev_action_pl = tf.placeholder(dtype=tf.bool, shape=(n_envs,)) prev_action_count_pl = tf.placeholder(dtype=tf.int64, shape=(n_envs,)) exploration_durations_pl = tf.placeholder(dtype=tf.float32, shape=(n_envs,)) # # Setting up safe exploration # explore = tf.logical_and(tf.logical_and(tf.less_equal(exploration_timesteps_pl, gamelengths_pl), tf.less_equal(gamelengths_pl, exploration_timesteps_pl + exploration_durations_pl)), tf.not_equal(exploration_timesteps_pl, tf.constant(-1, dtype=tf.float32))) safe_pi = pi - tf.reduce_min(pi, axis=-1, keep_dims=True) safe_pi /= tf.reduce_max(safe_pi, axis=-1, keep_dims=True) save_pi_thresholds = (1 - (tf.expand_dims(tf.range(n_envs, dtype=tf.float32), axis=1) / (n_envs + (n_envs == 1) - 1)) * (1 - exploration_config['save_pi_threshold'])) safe_pi = tf.cast(tf.greater_equal(safe_pi, save_pi_thresholds), dtype=tf.float32) safe_pi /= tf.reduce_sum(safe_pi) rand_safe_a = tf.multinomial(safe_pi, 1)[:, 0] safe_pi_flat = tf.reshape(safe_pi, (-1,)) prev_action_is_safe = tf.gather(safe_pi_flat, prev_actions_pl + tf.range(safe_pi.shape.as_list()[0], dtype=tf.int64) * safe_pi.shape.as_list()[1]) prev_action_is_safe = tf.greater(prev_action_is_safe, tf.constant(0, dtype=tf.float32)) a_explore = tf.where(tf.logical_and(tf.logical_and(keep_prev_action_pl, tf.not_equal(gamelengths_pl, exploration_timesteps_pl)), prev_action_is_safe), prev_actions_pl, rand_safe_a) a_explore = tf.where(explore, a_explore, a0) # Make sure the actor doesn't repeat an action too often (otherwise screensaver might start) rand_a = tf.random_uniform(shape=a0.get_shape(), minval=0, maxval=ac_space.n, dtype=a0.dtype) a_explore = tf.where(tf.greater(prev_action_count_pl, tf.constant(20, dtype=tf.int64)), rand_a, a_explore) if not exploration_config['temporal_safe_exploration']: a_explore = a0 neglogp_explore = self.pd.neglogp(a_explore) def action_exploration(ob, state, mask, *_args, exploration_timesteps, prev_actions, gamelengths, keep_prev_action, prev_action_count, exploration_durations, **_kwargs): """Get actions with exploration for long-term reward""" a, s, neglogp = tf_session.run([a_explore, snew, neglogp_explore], {X: ob, S:state, M:mask, exploration_timesteps_pl: exploration_timesteps, prev_actions_pl: prev_actions, gamelengths_pl: gamelengths, exploration_durations_pl: exploration_durations, keep_prev_action_pl: keep_prev_action, prev_action_count_pl: prev_action_count}) return a, s, neglogp self.X = X self.M = M self.S = S self.pi = pi self.vf = vf self.step = step self.value = value self.action = action self.action_exploration = action_exploration self.seq_ob_shape = seq_ob_shape self.exploration_config = exploration_config def get_observation_features(self, frame, delta): """Get output features of observation network (to be fed into reward redistribution network)""" with tf.variable_scope("model", reuse=tf.AUTO_REUSE): _, observation_features = observation_network( single_frame=frame[..., -1:], delta_frame=delta, additional_inputs=[], observation_network_config=self.exploration_config['observation_network_config']) observation_features = observation_features.get_output() return observation_features class CnnPolicy(object): def __init__(self, tf_session, ob_space, ac_space, nbatch, reward_redistribution_config, observation_network_config, lstm_network_config, training_config, exploration_config, reuse=False, **kwargs): """CNN policy network, as described in RUDDER paper Based on baselines.ppo2.policies.py; Dense layer sees features from it's own trainable observation network and the features from the reward redistribution observation network; Parameters ------- tf_session : tensorflow session tensorflow session to compute the graph in ob_space Baselines ob_space object (see ppo2_rudder.py); must provide .shape attribute for (x, y, c) shapes; ac_space Baselines ac_space object (see ppo2_rudder.py); must provide .n attribute for number of possible actions; nbatch : int Batchsize reward_redistribution_config : dict Dictionary containing config for reward redistribution: ----- lambda_eligibility_trace : float Eligibility trace value for redistributed reward vf_contrib : float Weighting of original value function (vf) vs. redistributed reward (rr), s.t. :math:`reward = vf \cdot vf\_contrib + rr \cdot (1-vf\_contrib)` use_reward_redistribution_quality_threshold : float Quality of reward redistribution has to exceed use_reward_redistribution_quality_threshold to be used; use_reward_redistribution_quality_threshold range is [0,1]; Quality measure is the squared prediction error, as described in RUDDER paper; use_reward_redistribution : bool Use reward redistribution? rr_junksize : int Junksize for reward redistribution; Junks overlap by 1 half each cont_pred_w : float Weighting of continous prediciton loss vs. prediction loss of final return at last timestep intgrd_steps : int Stepsize for integrated gradients intgrd_batchsize : int Integrated gradients is computed batch-wise if intgrd_batchsize > 1 observation_network_config : dict Dictionary containing config for observation network that processes observations and feeds them to LSTM network: ----- show_states : bool Show frames to network? show_statedeltas : bool Show frame deltas to network? prepoc_states : list of dicts Network config to preprocess frames prepoc_deltas : list of dicts Network config to preprocess frame deltas prepoc_observations : list of dicts Network config to preprocess features from frame and frame-delta preprocessing networks lstm_network_config : dict Dictionary containing config for LSTM network: ----- show_actions : bool Show taken actions to LSTM? reversed : bool Process game sequence in reversed order? layers : list of dicts Network config for LSTM network and optional additional dense layers initializations : dict Initialization config for LSTM network timestep_encoding : dict Set "max_value" and "triangle_span" for TeLL.utiltiy.misc_tensorflow.TriangularValueEncoding class training_config : dict Dictionary containing config for training and update procedure: ----- n_no_rr_updates : int Number of updates to perform without training or using reward redistribution network n_pretrain_games : int Number of games to pretrain the reward redistribution network without using it; downscale_lr_policylag : bool Downscale learningrate permanently if policy lag gets too large? optimizer : tf.train optimizer Optimizer in tf.train, e.g. "AdamOptimizer" optimizer_params : dict Kwargs for optimizer l1 : float Weighting for l1 weight regularization l2 : float Weighting for l2 weight regularization clip_gradients : float Threshold for clipping gradients (clipping by norm) exploration_config : dict Dictionary containing config for exploration: ----- sample_actions_from_softmax : bool True: Apply softmax to policy network output and use it as probabilities to pick an action False: Use the max. policy network output as action temporal_safe_exploration : bool User RUDDER safe exploration save_pi_threshold : float Threshold value in range [0,1] for safe actions in RUDDER safe exploration reuse : bool Reuse tensorflow variables? """ # # Shapes # nh, nw, nc = ob_space.shape activ = tf.nn.relu ob_shape = (nbatch, nh, nw, nc) nact = ac_space.n # # Placeholders # X = tf.placeholder(tf.uint8, ob_shape) #obs M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) # # Prepare input # single_frames = tf.cast(tf.expand_dims(X[..., -1:], axis=1), dtype=tf.float32) delta_frames = single_frames - tf.cast(tf.expand_dims(X[..., -2:-1], axis=1), dtype=tf.float32) delta_frames *= tf.reshape(M, shape=(nbatch, 1, 1, 1, 1)) # # Get observation features from RR model # rr_model = RewardRedistributionModel(reward_redistribution_config=reward_redistribution_config, observation_network_config=observation_network_config, lstm_network_config=lstm_network_config, training_config=training_config, scopename="RR") self.rr_observation_model = rr_model rr_observation_layer = rr_model.get_visual_features(single_frame=single_frames, delta_frame=delta_frames, additional_inputs=[]) # Get output tensor rr_observations = rr_observation_layer.get_output()[:, 0] # # Build policy network # with tf.variable_scope("model", reuse=reuse): temperature = tf.get_variable(initializer=tf.constant(1, dtype=tf.float32), trainable=False, name='temperature') observation_features = nature_cnn(X) self.observation_features_shape = tf.expand_dims(observation_features, axis=0).shape # Concat observation feature from RR model and A2C model h_for_a2c = tf.concat([observation_features, tf.stop_gradient(rr_observations)], axis=-1) with tf.variable_scope("model", reuse=reuse): h_for_a2c = activ(fc(h_for_a2c, 'fc1', nh=512, init_scale=np.sqrt(2))) with tf.variable_scope("model", reuse=reuse): pi = fc(h_for_a2c, 'pi', nact, init_scale=0.01) vf = fc(h_for_a2c, 'v', 1)[:, 0] self.pdtype = make_pdtype(ac_space) self.pd = self.pdtype.pdfromflat(pi) if exploration_config['sample_actions_from_softmax']: a0 = self.pd.sample_temp(temperature=temperature) else: a0 = tf.argmax(pi, axis=-1) neglogp0 = self.pd.neglogp(a0) self.initial_state = None def step(ob, state, mask, *_args, **_kwargs): a, v, neglogp = tf_session.run([a0, vf, neglogp0], {X: ob, M:mask}) return a, v, self.initial_state, neglogp def value(ob, state, mask, *_args, **_kwargs): return tf_session.run(vf, {X: ob, M:mask}) def action(ob, state, mask, *_args, **_kwargs): a, neglogp = tf_session.run([a0, neglogp0], {X:ob, M:mask}) return a, self.initial_state, neglogp # # Placeholders for exploration # n_envs = pi.shape.as_list()[0] exploration_timesteps_pl = tf.placeholder(dtype=tf.float32, shape=(n_envs,)) prev_actions_pl = tf.placeholder(dtype=tf.int64, shape=(n_envs,)) gamelengths_pl = tf.placeholder(dtype=tf.float32, shape=(n_envs,)) keep_prev_action_pl = tf.placeholder(dtype=tf.bool, shape=(n_envs,)) prev_action_count_pl = tf.placeholder(dtype=tf.int64, shape=(n_envs,)) exploration_durations_pl = tf.placeholder(dtype=tf.float32, shape=(n_envs,)) # # Setting up safe exploration # explore = tf.logical_and(tf.logical_and(tf.less_equal(exploration_timesteps_pl, gamelengths_pl), tf.less_equal(gamelengths_pl, exploration_timesteps_pl + exploration_durations_pl)), tf.not_equal(exploration_timesteps_pl, tf.constant(-1, dtype=tf.float32))) safe_pi = pi - tf.reduce_min(pi, axis=-1, keep_dims=True) safe_pi /= tf.reduce_max(safe_pi, axis=-1, keep_dims=True) save_pi_thresholds = (1 - (tf.expand_dims(tf.range(n_envs, dtype=tf.float32), axis=1) / (n_envs + (n_envs == 1) - 1)) * (1 - exploration_config['save_pi_threshold'])) safe_pi = tf.cast(tf.greater_equal(safe_pi, save_pi_thresholds), dtype=tf.float32) safe_pi /= tf.reduce_sum(safe_pi) rand_safe_a = tf.multinomial(safe_pi, 1)[:, 0] safe_pi_flat = tf.reshape(safe_pi, (-1,)) prev_action_is_safe = tf.gather(safe_pi_flat, prev_actions_pl + tf.range(safe_pi.shape.as_list()[0], dtype=tf.int64) * safe_pi.shape.as_list()[1]) prev_action_is_safe = tf.greater(prev_action_is_safe, tf.constant(0, dtype=tf.float32)) a_explore = tf.where(tf.logical_and(tf.logical_and(keep_prev_action_pl, tf.not_equal(gamelengths_pl, exploration_timesteps_pl)), prev_action_is_safe), prev_actions_pl, rand_safe_a) a_explore = tf.where(explore, a_explore, a0) # Make sure the actor doesn't repeat an action too often (otherwise screensaver might start) rand_a = tf.random_uniform(shape=a0.get_shape(), minval=0, maxval=ac_space.n, dtype=a0.dtype) a_explore = tf.where(tf.greater(prev_action_count_pl, tf.constant(20, dtype=tf.int64)), rand_a, a_explore) if not exploration_config['temporal_safe_exploration']: a_explore = a0 neglogp_explore = self.pd.neglogp(a_explore) def action_exploration(ob, state, mask, *_args, exploration_timesteps, prev_actions, gamelengths, keep_prev_action, prev_action_count, exploration_durations, **_kwargs): """Exploration for long-term reward""" a, neglogp = tf_session.run([a_explore, neglogp_explore], {X:ob, M:mask, exploration_timesteps_pl:exploration_timesteps, prev_actions_pl:prev_actions, gamelengths_pl:gamelengths, exploration_durations_pl:exploration_durations, keep_prev_action_pl:keep_prev_action, prev_action_count_pl:prev_action_count}) return a, self.initial_state, neglogp self.X = X self.M = M self.pi = pi self.vf = vf self.step = step self.action = action self.value = value self.action_exploration = action_exploration def get_observation_features(self, frame, delta=None): """Get output features of observation network (to be fed into reward redistribution network)""" with tf.variable_scope("model", reuse=tf.AUTO_REUSE): return tf.expand_dims(nature_cnn(frame[:, 0]), dim=1)
recipes/irrxml/all/conanfile.py
rockandsalt/conan-center-index
562
12733009
<filename>recipes/irrxml/all/conanfile.py import os from conans import ConanFile, CMake, tools class IrrXMLConan(ConanFile): name = "irrxml" license = "ZLIB" homepage = "http://www.ambiera.com/irrxml" url = "https://github.com/conan-io/conan-center-index" description = "irrXML is a simple and fast open source xml parser for C++" topics = ("xml", "xml-parser", "parser", "xml-reader") exports_sources = ["CMakeLists.txt", "patches/*"] generators = "cmake" settings = "os", "compiler", "build_type", "arch" options = {"shared": [True, False], "fPIC": [True, False]} default_options = {"shared": False, "fPIC": True} @property def _source_subfolder(self): return "source_subfolder" @property def _build_subfolder(self): return "build_subfolder" def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def source(self): tools.get(**self.conan_data["sources"][self.version]) extracted_folder = self.name + "-" + self.version os.rename(extracted_folder, self._source_subfolder) def _extract_license(self): header = tools.load(os.path.join(self.package_folder, "include", "irrXML.h")) license_contents = header[header.find(r"\section license License")+25:header.find(r"\section history", 1)] tools.save("LICENSE", license_contents) def _configure_cmake(self): cmake = CMake(self) cmake.configure(build_folder=self._build_subfolder) return cmake def build(self): for patch in self.conan_data["patches"][self.version]: tools.patch(**patch) cmake = self._configure_cmake() cmake.build() def package(self): cmake = self._configure_cmake() cmake.install() self._extract_license() self.copy(pattern="LICENSE", dst="licenses") def package_info(self): self.cpp_info.libs = tools.collect_libs(self) if self.settings.os == "Linux": self.cpp_info.system_libs = ["m"]
posthog/migrations/0122_organization_setup_section_2_completed.py
FarazPatankar/posthog
7,409
12733017
# Generated by Django 3.0.11 on 2021-02-02 15:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("posthog", "0121_person_email_index"), ] operations = [ migrations.AddField( model_name="organization", name="setup_section_2_completed", field=models.BooleanField(default=True), ), ]
Packs/SOCRadar/Integrations/SOCRadarThreatFusion/SOCRadarThreatFusion_test.py
diCagri/content
799
12733023
<gh_stars>100-1000 import json import io import pytest from CommonServerPython import DemistoException, FeedIndicatorType, CommandResults def util_load_json(path): with io.open(path, mode='r', encoding='utf-8') as f: return json.loads(f.read()) SOCRADAR_API_ENDPOINT = 'https://platform.socradar.com/api' CALCULATE_DBOT_SCORE_INPUTS = [ (900, 3), (800, 2), (450, 2), (300, 1), (100, 1), (0, 0), ] def test_test_module(requests_mock): """Tests the test_module validation command. """ from SOCRadarThreatFusion import Client, test_module mock_socradar_api_key = "APIKey" suffix = f'threat/analysis/check/auth?key={mock_socradar_api_key}' mock_response = util_load_json('test_data/check_auth_response.json') requests_mock.get(f'{SOCRADAR_API_ENDPOINT}/{suffix}', json=mock_response) client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) response = test_module(client) assert response == 'ok' def test_test_module_handles_authorization_error(requests_mock): """Tests the test_module validation command authorization error. """ from SOCRadarThreatFusion import Client, test_module, MESSAGES mock_socradar_api_key = "WrongAPIKey" suffix = f'threat/analysis/check/auth?key={mock_socradar_api_key}' mock_response = util_load_json('test_data/check_auth_response_auth_error.json') requests_mock.get(f'{SOCRADAR_API_ENDPOINT}/{suffix}', json=mock_response, status_code=401) client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) with pytest.raises(DemistoException, match=MESSAGES['AUTHORIZATION_ERROR']): test_module(client) def test_ip_command(requests_mock): """Tests the ip_command function. Configures requests_mock instance to generate the appropriate SOCRadar ThreatFusion API response, loaded from a local JSON file. Checks the output of the command function with the expected output. """ from SOCRadarThreatFusion import Client, ip_command mock_socradar_api_key = "APIKey" mock_response = util_load_json('test_data/score_ip_response.json') suffix = 'threat/analysis' requests_mock.get(f'{SOCRADAR_API_ENDPOINT}/{suffix}', json=mock_response) mock_args = {'ip': '1.1.1.1'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) result = ip_command( client=client, args=mock_args, ) expected_output = util_load_json('test_data/score_ip_expected_output.json') expected_context = util_load_json('test_data/score_ip_expected_context_generic_command.json') assert isinstance(result, list) assert result != [] assert '### SOCRadar - Analysis results for IP: 1.1.1.1' in result[0].readable_output assert result[0].outputs == expected_context assert result[0].raw_response == expected_output def test_ip_command_handles_incorrect_entity_type(): """Tests the ip_command function incorrect entity type error. """ from SOCRadarThreatFusion import Client, ip_command mock_socradar_api_key = "APIKey" mock_args = {'ip': 'INCORRECT IP ADDRESS'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) with pytest.raises(ValueError): ip_command( client=client, args=mock_args, ) def test_domain_command(requests_mock): """Tests the domain_command function. Configures requests_mock instance to generate the appropriate SOCRadar ThreatFusion API response, loaded from a local JSON file. Checks the output of the command function with the expected output. """ from SOCRadarThreatFusion import Client, domain_command mock_socradar_api_key = "APIKey" mock_response = util_load_json('test_data/score_domain_response.json') suffix = 'threat/analysis' requests_mock.get(f'{SOCRADAR_API_ENDPOINT}/{suffix}', json=mock_response) mock_args = {'domain': 'paloaltonetworks.com'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) result = domain_command( client=client, args=mock_args, ) expected_output = util_load_json('test_data/score_domain_expected_output.json') expected_context = util_load_json('test_data/score_domain_expected_context_generic_command.json') assert isinstance(result, list) assert result != [] assert '### SOCRadar - Analysis results for domain: paloaltonetworks.com' in result[0].readable_output assert result[0].outputs == expected_context assert result[0].raw_response == expected_output def test_domain_command_handles_incorrect_entity_type(): """Tests the domain_command function incorrect entity type error. """ from SOCRadarThreatFusion import Client, domain_command mock_socradar_api_key = "APIKey" mock_args = {'domain': 'INCORRECT DOMAIN'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) with pytest.raises(ValueError): domain_command( client=client, args=mock_args, ) def test_file_command(requests_mock): """Tests the file_command function. Configures requests_mock instance to generate the appropriate SOCRadar ThreatFusion API response, loaded from a local JSON file. Checks the output of the command function with the expected output. """ from SOCRadarThreatFusion import Client, file_command mock_socradar_api_key = "APIKey" mock_response = util_load_json('test_data/score_hash_response.json') suffix = 'threat/analysis' requests_mock.get(f'{SOCRADAR_API_ENDPOINT}/{suffix}', json=mock_response) mock_args = {'file': '3b7b359ea17ac76341957573e332a2d6bcac363401ac71c8df94dac93df6d792'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) result = file_command( client=client, args=mock_args, ) expected_output = util_load_json('test_data/score_hash_expected_output.json') expected_context = util_load_json('test_data/score_hash_expected_context_generic_command.json') assert isinstance(result, list) assert result != [] assert '### SOCRadar - Analysis results for hash: 3b7b359ea17ac76341957573e332a2d6bcac363401ac71c8df94dac93df6d792' \ in result[0].readable_output assert result[0].outputs == expected_context assert result[0].raw_response == expected_output def test_file_command_handles_incorrect_entity_type(): """Tests the file_command function incorrect entity type error. """ from SOCRadarThreatFusion import Client, file_command mock_socradar_api_key = "APIKey" mock_args = {'file': 'INCORRECT HASH'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) with pytest.raises(ValueError): file_command( client=client, args=mock_args, ) def test_score_ip(requests_mock): """Tests the score_ip_command function. Configures requests_mock instance to generate the appropriate SOCRadar ThreatFusion API response, loaded from a local JSON file. Checks the output of the command function with the expected output. """ from SOCRadarThreatFusion import Client, score_ip_command mock_socradar_api_key = "APIKey" mock_response = util_load_json('test_data/score_ip_response.json') suffix = 'threat/analysis' requests_mock.get(f'{SOCRADAR_API_ENDPOINT}/{suffix}', json=mock_response) mock_args = {'ip': '1.1.1.1'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) result = score_ip_command( client=client, args=mock_args, ) expected_output = util_load_json('test_data/score_ip_expected_output.json') expected_context = util_load_json('test_data/score_ip_expected_context.json') assert isinstance(result, CommandResults) assert '### SOCRadar - Analysis results for IP: 1.1.1.1' in result.readable_output assert result.outputs == expected_context assert result.raw_response == expected_output def test_score_ip_handles_incorrect_entity_type(): """Tests the score_ip_command function incorrect entity type error. """ from SOCRadarThreatFusion import Client, score_ip_command mock_socradar_api_key = "APIKey" mock_args = {'ip': 'INCORRECT IP ADDRESS'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) with pytest.raises(ValueError): score_ip_command( client=client, args=mock_args, ) def test_score_domain(requests_mock): """Tests the score_domain_command function. Configures requests_mock instance to generate the appropriate SOCRadar ThreatFusion API response, loaded from a local JSON file. Checks the output of the command function with the expected output. """ from SOCRadarThreatFusion import Client, score_domain_command mock_socradar_api_key = "APIKey" mock_response = util_load_json('test_data/score_domain_response.json') suffix = 'threat/analysis' requests_mock.get(f'{SOCRADAR_API_ENDPOINT}/{suffix}', json=mock_response) mock_args = {'domain': 'paloaltonetworks.com'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) result = score_domain_command( client=client, args=mock_args, ) expected_output = util_load_json('test_data/score_domain_expected_output.json') expected_context = util_load_json('test_data/score_domain_expected_context.json') assert isinstance(result, CommandResults) assert '### SOCRadar - Analysis results for domain: paloaltonetworks.com' in result.readable_output assert result.outputs == expected_context assert result.raw_response == expected_output def test_score_domain_handles_incorrect_entity_type(): """Tests the score_domain_command function incorrect entity type error. """ from SOCRadarThreatFusion import Client, score_domain_command mock_socradar_api_key = "APIKey" mock_args = {'domain': 'INCORRECT DOMAIN'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) with pytest.raises(ValueError): score_domain_command( client=client, args=mock_args, ) def test_score_hash(requests_mock): """Tests the score_hash_command function. Configures requests_mock instance to generate the appropriate SOCRadar ThreatFusion API response, loaded from a local JSON file. Checks the output of the command function with the expected output. """ from SOCRadarThreatFusion import Client, score_hash_command mock_socradar_api_key = "APIKey" mock_response = util_load_json('test_data/score_hash_response.json') suffix = 'threat/analysis' requests_mock.get(f'{SOCRADAR_API_ENDPOINT}/{suffix}', json=mock_response) mock_args = {'hash': '3b7b359ea17ac76341957573e332a2d6bcac363401ac71c8df94dac93df6d792'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) result = score_hash_command( client=client, args=mock_args ) expected_output = util_load_json('test_data/score_hash_expected_output.json') expected_context = util_load_json('test_data/score_hash_expected_context.json') assert isinstance(result, CommandResults) assert '### SOCRadar - Analysis results for hash: 3b7b359ea17ac76341957573e332a2d6bcac363401ac71c8df94dac93df6d792' \ in result.readable_output assert result.outputs == expected_context assert result.raw_response == expected_output def test_score_hash_handles_incorrect_entity_type(): """Tests the score_hash_command function incorrect entity type error. """ from SOCRadarThreatFusion import Client, score_hash_command mock_socradar_api_key = "APIKey" mock_args = {'hash': 'INCORRECT HASH'} client = Client( base_url=SOCRADAR_API_ENDPOINT, api_key=mock_socradar_api_key, verify=False, proxy=False ) with pytest.raises(ValueError): score_hash_command( client=client, args=mock_args, ) @pytest.mark.parametrize('socradar_score, dbot_score', CALCULATE_DBOT_SCORE_INPUTS) def test_calculate_dbot_score(socradar_score, dbot_score): from SOCRadarThreatFusion import calculate_dbot_score assert calculate_dbot_score(socradar_score) == dbot_score def test_map_indicator_type(): from SOCRadarThreatFusion import map_indicator_type assert FeedIndicatorType.IP == map_indicator_type('ipv4') assert FeedIndicatorType.IPv6 == map_indicator_type('ipv6') assert FeedIndicatorType.Domain == map_indicator_type('hostname') assert FeedIndicatorType.File == map_indicator_type('hash') assert None is map_indicator_type('IP') assert None is map_indicator_type('invalid')
dino/web.py
thenetcircle/dino
150
12733036
#!/usr/bin/env python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from flask import Flask from flask_socketio import SocketIO from werkzeug.contrib.fixers import ProxyFix from dino import environ from dino.config import ConfigKeys __author__ = '<NAME> <<EMAIL>>' logger = logging.getLogger(__name__) logging.getLogger('amqp').setLevel(logging.INFO) logging.getLogger('kafka.conn').setLevel(logging.INFO) logging.getLogger('kafka.client').setLevel(logging.INFO) logging.getLogger('kafka.metrics').setLevel(logging.INFO) class ReverseProxied(object): """ Wrap the application in this middleware and configure the front-end server to add these headers, to let you quietly bind this to a URL other than / and to an HTTP scheme that is different than what is used locally. In nginx: location /myprefix { proxy_pass http://192.168.0.1:5001; proxy_set_header Host $host; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-Scheme $scheme; proxy_set_header X-Script-Name /myprefix; } :param app: the WSGI application """ def __init__(self, app): self.app = app def __call__(self, environ, start_response): script_name = environ.get('HTTP_X_SCRIPT_NAME', '') if script_name: environ['SCRIPT_NAME'] = script_name path_info = environ['PATH_INFO'] if path_info.startswith(script_name): environ['PATH_INFO'] = path_info[len(script_name):] scheme = environ.get('HTTP_X_SCHEME', '') if scheme: environ['wsgi.url_scheme'] = scheme return self.app(environ, start_response) def create_app(): _app = Flask( import_name=__name__, template_folder='admin/templates/', static_folder='admin/static/') # used for encrypting cookies for handling sessions _app.config['SECRET_KEY'] = 'abc492ee-9739-11e6-a174-07f6b92d4a4b' _app.config['ROOT_URL'] = environ.env.config.get(ConfigKeys.ROOT_URL, domain=ConfigKeys.WEB, default='/') message_queue_type = environ.env.config.get(ConfigKeys.TYPE, domain=ConfigKeys.QUEUE, default=None) if message_queue_type is None and not (len(environ.env.config) == 0 or environ.env.config.get(ConfigKeys.TESTING)): raise RuntimeError('no message queue type specified') message_queue = 'redis://%s' % environ.env.config.get(ConfigKeys.HOST, domain=ConfigKeys.CACHE_SERVICE, default='') message_channel = 'dino_%s' % environ.env.config.get(ConfigKeys.ENVIRONMENT, default='test') logger.info('message_queue: %s' % message_queue) _socketio = SocketIO( _app, logger=logger, engineio_logger=os.environ.get('DINO_DEBUG', '0') == '1', async_mode='eventlet', message_queue=message_queue, channel=message_channel) # preferably "emit" should be set during env creation, but the socketio object is not created until after env is environ.env.out_of_scope_emit = _socketio.emit _app.wsgi_app = ReverseProxied(ProxyFix(_app.wsgi_app)) return _app, _socketio app, socketio = create_app() environ.init_web_auth(environ.env) # keep this, otherwise flask won't find any routes import dino.admin.routes
release/stubs.min/Autodesk/Revit/DB/__init___parts/FilterIntegerRule.py
htlcnn/ironpython-stubs
182
12733095
<filename>release/stubs.min/Autodesk/Revit/DB/__init___parts/FilterIntegerRule.py class FilterIntegerRule(FilterNumericValueRule,IDisposable): """ A filter rule that operates on integer values in a Revit project. FilterIntegerRule(valueProvider: FilterableValueProvider,evaluator: FilterNumericRuleEvaluator,ruleValue: int) """ def Dispose(self): """ Dispose(self: FilterRule,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: FilterRule,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,valueProvider,evaluator,ruleValue): """ __new__(cls: type,valueProvider: FilterableValueProvider,evaluator: FilterNumericRuleEvaluator,ruleValue: int) """ pass RuleValue=property(lambda self: object(),lambda self,v: None,lambda self: None) """The user-supplied value against which values from a Revit document will be tested. Get: RuleValue(self: FilterIntegerRule) -> int Set: RuleValue(self: FilterIntegerRule)=value """
chapter5_operations/prediction_log_pattern/src/app/routers/routers.py
sudabon/ml-system-in-actions
133
12733118
<reponame>sudabon/ml-system-in-actions<filename>chapter5_operations/prediction_log_pattern/src/app/routers/routers.py import uuid from logging import getLogger from typing import Any, Dict, List from fastapi import APIRouter, HTTPException from src.ml.data import Data from src.ml.outlier_detection import outlier_detector from src.ml.prediction import classifier from src.utils.profiler import log_decorator logger = getLogger(__name__) router = APIRouter() @router.get("/health") def health() -> Dict[str, str]: return {"health": "ok"} @router.get("/metadata") def metadata() -> Dict[str, Any]: return { "data_type": "float32", "data_structure": "(1,4)", "data_sample": Data().data, "prediction_type": "float32", "prediction_structure": "(1,3)", "prediction_sample": [0.97093159, 0.01558308, 0.01348537], "outlier_type": "bool, float32", "outlier_structure": "(1,2)", "outlier_sample": [False, 0.4], } @router.get("/label") def label() -> Dict[int, str]: return classifier.label @log_decorator(endpoint="/predict/test", logger=logger) def _predict_test(job_id: str) -> Dict[str, Any]: logger.info(f"execute: [{job_id}]") prediction = classifier.predict(data=Data().data) is_outlier, outlier_score = outlier_detector.predict(data=Data().data) prediction_list = list(prediction) return { "job_id": job_id, "prediction": prediction_list, "is_outlier": is_outlier, "outlier_score": outlier_score, } @router.get("/predict/test") def predict_test() -> Dict[str, Any]: job_id = str(uuid.uuid4())[:6] return _predict_test(job_id=job_id) @log_decorator(endpoint="/predict/test/label", logger=logger) def _predict_test_label(job_id: str) -> Dict[str, Any]: logger.info(f"execute: [{job_id}]") prediction = classifier.predict_label(data=Data().data) is_outlier, outlier_score = outlier_detector.predict(data=Data().data) return { "job_id": job_id, "prediction": prediction, "is_outlier": is_outlier, "outlier_score": outlier_score, } @router.get("/predict/test/label") def predict_test_label() -> Dict[str, Any]: job_id = str(uuid.uuid4())[:6] return _predict_test_label(job_id=job_id) @log_decorator(endpoint="/predict", logger=logger) def _predict(data: Data, job_id: str) -> Dict[str, Any]: logger.info(f"execute: [{job_id}]") if len(data.data) != 1 or len(data.data[0]) != 4: raise HTTPException(status_code=404, detail="Invalid input data") prediction = classifier.predict(data.data) is_outlier, outlier_score = outlier_detector.predict(data=data.data) prediction_list = list(prediction) return { "job_id": job_id, "prediction": prediction_list, "is_outlier": is_outlier, "outlier_score": outlier_score, } @router.post("/predict") def predict(data: Data) -> Dict[str, Any]: job_id = str(uuid.uuid4())[:6] return _predict(data=data, job_id=job_id) @log_decorator(endpoint="/predict/label", logger=logger) def _predict_label(data: Data, job_id: str) -> Dict[str, str]: logger.info(f"execute: [{job_id}]") if len(data.data) != 1 or len(data.data[0]) != 4: raise HTTPException(status_code=404, detail="Invalid input data") prediction = classifier.predict_label(data.data) is_outlier, outlier_score = outlier_detector.predict(data=data.data) return { "job_id": job_id, "prediction": prediction, "is_outlier": is_outlier, "outlier_score": outlier_score, } @router.post("/predict/label") def predict_label(data: Data) -> Dict[str, Any]: job_id = str(uuid.uuid4())[:6] return _predict_label(data=data, job_id=job_id)
pygears/sim/modules/cosim_base.py
bogdanvuk/pygears
120
12733137
<reponame>bogdanvuk/pygears from dataclasses import dataclass from pygears.sim.sim_gear import SimGear from pygears.sim import delta, timestep, log, clk from pygears.sim.sim import SimPlugin from pygears.conf import Inject, inject from pygears import GearDone, reg from .cosim_port import CosimNoData, InCosimPort, OutCosimPort class CosimBase(SimGear): @inject def __init__(self, gear, timeout=-1, sim_map=Inject('sim/map')): super().__init__(gear) self.timeout = timeout self.in_cosim_ports = [InCosimPort(self, p) for p in gear.in_ports] self.out_cosim_ports = [OutCosimPort(self, p) for p in gear.out_ports] self.eval_needed = False for p in (self.in_cosim_ports + self.out_cosim_ports): sim_map[p.port] = p def cycle(self): raise NotImplementedError() def forward(self): raise NotImplementedError() def back(self): raise NotImplementedError() def read_out(self, port): if not port in self.handlers: raise ConnectionResetError if self.eval_needed: self.forward() self.eval_needed = True hout = self.handlers[port] hout.reset() return hout.read() def ack_out(self, port): if not port in self.handlers: raise ConnectionResetError self.eval_needed = True hout = self.handlers[port] hout.ack() self.activity_monitor = 0 def write_in(self, port, data): if not port in self.handlers: raise ConnectionResetError self.eval_needed = True hin = self.handlers[port] return hin.send(data) def reset_in(self, port): if not port in self.handlers: raise ConnectionResetError self.eval_needed = True hin = self.handlers[port] hin.reset() def ready_in(self, port): if not port in self.handlers: raise ConnectionResetError if self.eval_needed: self.back() self.eval_needed = False hin = self.handlers[port] if hin.ready(): self.activity_monitor = 0 return True else: return False async def func(self, *args, **kwds): self.activity_monitor = 0 self.eval_needed = False try: while True: phase = None while phase != 'back': phase = await delta() if self.eval_needed: self.forward() self.eval_needed = False if self.activity_monitor == self.timeout: raise GearDone self.cycle() self.activity_monitor += 1 except (GearDone, BrokenPipeError): # print(f"SimGear canceling: {self.gear.name}") for p in self.gear.out_ports: p.producer.finish() self._finish() raise GearDone @dataclass class AuxClock: name: str frequency: int class CosimPlugin(SimPlugin): @classmethod def bind(cls): reg.confdef('sim/aux_clock', default=[])
shared-data/python/opentrons_shared_data/module/__init__.py
faliester/opentrons
235
12733205
<filename>shared-data/python/opentrons_shared_data/module/__init__.py """ opentrons_shared_data.module: functions and types for module defs """ import json from pathlib import Path from typing import overload, TYPE_CHECKING from ..load import load_shared_data if TYPE_CHECKING: from .dev_types import ( SchemaVersions, ModuleSchema, SchemaV1, SchemaV2, ModuleDefinitionV1, ModuleDefinitionV2, ModuleModel ) class ModuleNotFoundError(KeyError): def __init__(self, version: str, model_or_loadname: str): super().__init__(model_or_loadname) self.requested_version = version self.requested_module = model_or_loadname def __str__(self) -> str: return f'No such version {self.requested_version} module '\ f'{self.requested_module}' def __repr__(self) -> str: return f'{self.__class__.__name__}: {self.requested_module} '\ f'at version {self.requested_version}' def load_schema(version: 'SchemaVersions') -> 'ModuleSchema': path = Path('module') / 'schemas' / f'{version}.json' return json.loads(load_shared_data(path)) @overload def load_definition( version: 'SchemaV1', model_or_loadname: str) -> 'ModuleDefinitionV1': ... @overload def load_definition( version: 'SchemaV2', model_or_loadname: 'ModuleModel') -> 'ModuleDefinitionV2': ... def load_definition(version, model_or_definition): if version == '1': path = Path('module') / 'definitions' / '1.json' data = json.loads(load_shared_data(path)) try: return data[model_or_definition] except KeyError: raise ModuleNotFoundError('1', model_or_definition) else: path = Path(f'module/definitions/2/{model_or_definition}.json') try: data = load_shared_data(path) except FileNotFoundError: raise ModuleNotFoundError('2', model_or_definition) return json.loads(data)
pocketsphinx-5prealpha/swig/python/test/continuous_test.py
sowmyavasudeva/SmartBookmark
139
12733220
<reponame>sowmyavasudeva/SmartBookmark<gh_stars>100-1000 #!/usr/bin/python from os import environ, path from pocketsphinx.pocketsphinx import * from sphinxbase.sphinxbase import * MODELDIR = "../../../model" DATADIR = "../../../test/data" config = Decoder.default_config() config.set_string('-hmm', path.join(MODELDIR, 'en-us/en-us')) config.set_string('-lm', path.join(MODELDIR, 'en-us/en-us.lm.bin')) config.set_string('-dict', path.join(MODELDIR, 'en-us/cmudict-en-us.dict')) config.set_string('-logfn', '/dev/null') decoder = Decoder(config) stream = open(path.join(DATADIR, 'goforward.raw'), 'rb') #stream = open('10001-90210-01803.wav', 'rb') in_speech_bf = False decoder.start_utt() while True: buf = stream.read(1024) if buf: decoder.process_raw(buf, False, False) if decoder.get_in_speech() != in_speech_bf: in_speech_bf = decoder.get_in_speech() if not in_speech_bf: decoder.end_utt() print 'Result:', decoder.hyp().hypstr decoder.start_utt() else: break decoder.end_utt()
scripts/ci/list-test-executables.py
Luthaf/lumol
147
12733223
#!/usr/bin/env python3 # -*- encoding: utf8 -*- import json import subprocess def list_executables(*command): command = list(command) command.append("--no-run") command.append("--message-format=json") result = subprocess.run(command, check=True, stdout=subprocess.PIPE) # convert successive JSON documents to a list of JSON objects stdout = "[" + result.stdout.decode("utf8").replace("}\n{", "},{") + "]" executables = [] for event in json.loads(stdout): if "profile" in event and event["profile"]["test"]: for path in event["filenames"]: if path.endswith(".dSYM"): continue executables.append(path) return executables def main(): executables = [] executables.extend(list_executables("cargo", "test", "--all", "--lib")) executables.extend( list_executables("cargo", "test", "--package=lumol-input", "--tests") ) for executable in set(executables): if "lumol_tutorial" in executable: continue print(executable) if __name__ == "__main__": main()
examples/reflection/server.py
artificial-aidan/grpclib
754
12733241
<filename>examples/reflection/server.py<gh_stars>100-1000 import asyncio from grpclib.utils import graceful_exit from grpclib.server import Server from grpclib.reflection.service import ServerReflection from helloworld.server import Greeter async def main(*, host: str = '127.0.0.1', port: int = 50051) -> None: services = ServerReflection.extend([Greeter()]) server = Server(services) with graceful_exit([server]): await server.start(host, port) print(f'Serving on {host}:{port}') await server.wait_closed() if __name__ == '__main__': asyncio.run(main())
plaso/analyzers/__init__.py
nflexfo/plaso
1,253
12733275
# -*- coding: utf-8 -*- """This file imports Python modules that register analyzers.""" from plaso.analyzers import hashing_analyzer from plaso.analyzers import yara_analyzer
tests/unit/test_app.py
paulmassen/kibitzr
478
12733297
from ..compat import mock def test_loop_aborts_without_checks(app, settings): assert app.run() == 1 def test_main_executes_all_checks_before_loop(app, settings): with mock.patch.object(app, "check_forever", side_effect=app.on_interrupt) as the_loop: settings.checks.append({ 'name': 'A', 'script': {'python': 'ok, content = True, "ok"'} }) assert app.run() == 1 assert the_loop.call_count == 1 assert the_loop.call_args[0][0][0].check.call_count == 1 def test_main_filters_names(app, settings): with mock.patch.object(app, "check_forever", side_effect=app.on_interrupt) as the_loop: settings.checks.extend([ {'name': 'A', 'url': 'A'}, {'name': 'B', 'url': 'B'}, ]) assert app.run(names=['B']) == 1 assert the_loop.call_count == 1 assert the_loop.call_args[0][0][0].check.call_count == 1
aw_nas/btcs/layer2/controller.py
Harald-R/aw_nas
195
12733364
""" 2-layer controller. """ from aw_nas import utils, assert_rollout_type from aw_nas.utils import DistributedDataParallel from aw_nas.controller.base import BaseController from aw_nas.btcs.layer2.search_space import ( Layer2Rollout, Layer2DiffRollout, DenseMicroRollout, DenseMicroDiffRollout, StagewiseMacroRollout, StagewiseMacroDiffRollout, SinkConnectMacroDiffRollout, ) from collections import OrderedDict import numpy as np import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim try: # from torch.nn.SyncBatchNorm import convert_sync_batch_norm as convert_sync_bn from torch.nn import SyncBatchNorm convert_sync_bn = SyncBatchNorm.convert_sync_batchnorm except ImportError: convert_sync_bn = lambda m: m class Layer2Optimizer(optim.Optimizer): def __init__(self, params, **opt_cfg): super(Layer2Optimizer, self).__init__([torch.tensor([])], defaults={}) macro_opt_type = opt_cfg["macro"].pop("type") micro_opt_type = opt_cfg["micro"].pop("type") # currently width alphas & macro-alpha share the same optimizer self.macro_optimizer = getattr(optim, macro_opt_type)( nn.ParameterList(params[0:2]), **opt_cfg["macro"] ) # after adding width-alphas, as 2nd self.micro_optimizer = getattr(optim, micro_opt_type)( nn.ParameterList(params[2:]), **opt_cfg["micro"] ) def step(self): self.macro_optimizer.step() self.micro_optimizer.step() torch.optim.layer2 = Layer2Optimizer # add patch the torch optim class Layer2DiffController(BaseController, nn.Module): NAME = "layer2-differentiable" def __init__( self, search_space, rollout_type, mode="eval", device="cuda", macro_controller_type="random_sample", macro_controller_cfg={}, micro_controller_type="random_sample", micro_controller_cfg={}, inspect_hessian_every=-1, save_alphas_every=-1, multiprocess=False, schedule_cfg=None, ): super(Layer2DiffController, self).__init__( search_space, rollout_type, schedule_cfg=schedule_cfg ) nn.Module.__init__(self) self.search_space = search_space self.rollout_type = rollout_type self.device = device self.to(self.device) self.inspect_hessian_every = inspect_hessian_every self.inspect_hessian = False self.save_alphas_every = save_alphas_every self.save_alphas = False self.saved_dict = { "macro": [], "micro": [], "width": [], } self.multiprocess = multiprocess # the macro/micro controllers if macro_controller_type == "macro-stagewise-diff": self.macro_controller = MacroStagewiseDiffController( self.search_space.macro_search_space, macro_controller_type, device=self.device, multiprocess=self.multiprocess, **macro_controller_cfg, ) elif macro_controller_type == "macro-sink-connect-diff": self.macro_controller = MacroSinkConnectDiffController( self.search_space.macro_search_space, macro_controller_type, device=self.device, multiprocess=self.multiprocess, **macro_controller_cfg, ) else: raise NotImplementedError() if micro_controller_type == "micro-dense-diff": self.micro_controller = MicroDenseDiffController( self.search_space.micro_search_space, micro_controller_type, device=self.device, multiprocess=self.multiprocess, **micro_controller_cfg, ) else: raise NotImplementedError() object.__setattr__(self, "parallel_model", self) self._parallelize() def _parallelize(self): if self.multiprocess: net = convert_sync_bn(self).to(self.device) object.__setattr__( self, "parallel_model", DistributedDataParallel( self, (self.device,), find_unused_parameters=True ), ) def on_epoch_start(self, epoch): super(Layer2DiffController, self).on_epoch_start(epoch) if self.inspect_hessian_every >= 0 and epoch % self.inspect_hessian_every == 0: self.inspect_hessian = True if self.save_alphas_every >= 0 and epoch % self.save_alphas_every == 0: self.save_alphas = True # save alphas every epoch if self.save_alphas: self.saved_dict["macro"].append( [alpha.data.cpu() for alpha in self.macro_controller.cg_alphas] ) self.saved_dict["micro"].append( [alpha.data.cpu() for alpha in self.micro_controller.cg_alphas] ) self.saved_dict["width"].append( [ width_alpha.cpu() for width_alpha in self.macro_controller.width_alphas ] ) self.macro_controller.on_epoch_start(epoch) self.micro_controller.on_epoch_start(epoch) def set_device(self, device): self.device = device self.to(device) def set_mode(self, mode): super(Layer2DiffController, self).set_mode(mode) if mode == "train": nn.Module.train(self) elif mode == "eval": nn.Module.eval(self) else: raise Exception("Unrecognized mode: {}".format(mode)) def parameters(self, recurse=False): # FIXME: normal nn.module.parameters() use recurse=True to acquire all params param_list = nn.ParameterList([]) param_list.extend(self.macro_controller.parameters()) param_list.extend(self.micro_controller.parameters()) return param_list def _entropy_loss(self): return ( self.macro_controller._entropy_loss() + self.micro_controller._entropy_loss() ) def sample(self, n=1, batch_size=1): if self.multiprocess: return self.parallel_model.forward(n=n, batch_size=batch_size) else: return self.forward(n=n, batch_size=batch_size) def forward(self, n=1, batch_size=1): rollouts = [] macro_rollouts = self.macro_controller.forward(n=n, batch_size=batch_size) micro_rollouts = self.micro_controller.forward(n=n, batch_size=batch_size) for i in range(n): rollouts.append( Layer2DiffRollout( macro_rollouts[i], micro_rollouts[i], self.search_space ) ) return rollouts def gradient(self, loss, return_grads=True, zero_grads=True): if zero_grads: self.zero_grad() if self.inspect_hessian: for name, param in self.named_parameters(): max_eig = utils.torch_utils.max_eig_of_hessian(loss, param) self.logger.info("Max eigenvalue of Hessian of %s: %f", name, max_eig) _loss = loss + self._entropy_loss() _loss.backward() if return_grads: return utils.get_numpy(_loss), [ (k, v.grad.clone()) for k, v in self.named_parameters() ] return utils.get_numpy(_loss) def step_current_gradient(self, optimizer): self.macro_controller.step_current_gradient(optimizer.macro_optimizer) self.micro_controller.step_current_gradient(optimizer.micro_optimizer) def step_gradient(self, gradients, optimizer): self.macro_controller.step_gradient(gradients[0], optimizer.macro_optimizer) self.micro_controller.step_gradient(gradients[1], optimizer.micro_optimizer) def step(self, rollouts, optimizer, perf_name): macro_rollouts = [r.macro for r in rollouts] micro_rollouts = [r.micro for r in rollouts] macro_loss = self.macro_controller.step( macro_rollouts, optimizer.macro_optimizer, perf_name ) micro_loss = self.micro_controller.step( micro_rollouts, optimizer.micro_optimizer, perf_name ) return macro_loss, micro_loss def summary(self, rollouts, log=False, log_prefix="", step=None): macro_rollouts = [r.macro for r in rollouts] micro_rollouts = [r.micro for r in rollouts] self.macro_controller.summary( macro_rollouts, log=log, log_prefix=log_prefix, step=None ) self.micro_controller.summary( micro_rollouts, log=log, log_prefix=log_prefix, step=None ) def save(self, path): """Save the parameters to disk.""" torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path) self.logger.info("Saved controller network to %s", path) """save alphas""" if self.save_alphas_every is not None: # os.path.dirname means the parent path of the `PATH` torch.save( self.saved_dict, os.path.join(os.path.dirname(os.path.dirname(path)), "alphas.pth"), ) def load(self, path): """Load the parameters from disk.""" checkpoint = torch.load(path, map_location=torch.device("cpu")) self.load_state_dict(checkpoint["state_dict"]) self.on_epoch_start(checkpoint["epoch"]) self.logger.info("Loaded controller network from %s", path) # since the layer2controller.parameters() is a list of [macro_parameters(), micro_parameters()], we need to override the zero_grad() since it used model.parameters() def zero_grad(self): for param in self.parameters(): for p in param: if p.grad is not None: p.grad.detach_() p.grad.zero_() @classmethod def supported_rollout_types(cls): return ["layer2", "layer2-differentiable"] class GetArchMacro(torch.autograd.Function): @staticmethod def forward( ctx, search_space, op_weights, device, i_stage, ): stage_conn = torch.zeros( ( search_space.stage_node_nums[i_stage], search_space.stage_node_nums[i_stage], ) ).to(device) stage_conn[search_space.idxes[i_stage]] = op_weights ctx.save_for_backward( torch.as_tensor(op_weights), torch.as_tensor(search_space.idxes[i_stage]) ) return stage_conn @staticmethod def backward(ctx, grad_output): op_weights, idxes = ctx.saved_tensors op_weights_grad = grad_output[idxes[0], idxes[1]] return None, op_weights_grad, None, None, None class MacroStagewiseDiffController(BaseController, nn.Module): NAME = "macro-stagewise-diff" SCHEDULABLE_ATTRS = [ "gumbel_temperature", "entropy_coeff", "force_uniform", "width_gumbel_temperature", "width_entropy_coeff", ] def __init__( self, search_space, rollout_type, mode="eval", device="cuda", use_prob=False, gumbel_hard=False, gumbel_temperature=1.0, use_sigmoid=False, use_edge_normalization=False, entropy_coeff=0.01, max_grad_norm=None, force_uniform=False, full_init=False, # use all-one initialization and big flops reg progressive_pruning_th=None, multiprocess=False, per_stage_width=True, # default use per stage width width_entropy_coeff=0.01, width_gumbel_temperature=1.0, schedule_cfg=None, ): super(MacroStagewiseDiffController, self).__init__( search_space, rollout_type, schedule_cfg=schedule_cfg ) nn.Module.__init__(self) self.device = device # sampling self.use_prob = use_prob self.gumbel_hard = gumbel_hard self.gumbel_temperature = gumbel_temperature self.use_sigmoid = use_sigmoid # use_prob / use_sigmoid should not the True at the same time # if both false use plain gumbel softmax assert not (use_prob and use_sigmoid) # edge normalization self.use_edge_normalization = use_edge_normalization # training self.entropy_coeff = entropy_coeff self.max_grad_norm = max_grad_norm self.force_uniform = force_uniform self.progressive_pruning_th = progressive_pruning_th self.width_choice = self.search_space.width_choice self.multiprocess = multiprocess self.per_stage_width = per_stage_width self.width_gumbel_temperature = width_gumbel_temperature self.width_entropy_coeff = width_entropy_coeff # generate parameters self.full_init = full_init if not self.full_init: init_value = 1.0e-3 else: init_value = 1.0 self.cg_alphas = nn.ParameterList( [ nn.Parameter( init_value * torch.randn(sum(self.search_space.num_possible_edges)) ) ] ) # width choices [#cells , #width_choice] if self.width_choice is not None: if not self.per_stage_width: self.width_alphas = nn.ParameterList( [ nn.Parameter( init_value * torch.randn( len(self.search_space.cell_layout), len(self.width_choice), ) ) ] ) else: self.width_alphas = nn.ParameterList( [ nn.Parameter( init_value * torch.randn( len(self.search_space.stage_node_nums), len(self.width_choice), ) ) ] ) self.stage_num_alphas = ( self.search_space.num_possible_edges ) # used for competible with sink-connecting ss if self.use_edge_normalization: raise NotImplementedError("MacroDiffController does not support edge-norm") else: self.cg_betas = None self.get_arch = GetArchMacro() self.to(self.device) def set_mode(self, mode): super(MacroStagewiseDiffController, self).set_mode(mode) if mode == "train": nn.Module.train(self) elif mode == "eval": nn.Module.eval(self) else: raise Exception("Unrecognized mode: {}".format(mode)) def set_device(self, device): self.device = device self.to(device) def progressive_pruning(self): for alpha in self.cg_alphas: # inpalce replace alphas that smaller than the pruning threshold, no grad alpha.data = alpha * (alpha.gt(self.progressive_pruning_th).float()) def forward(self, n=1, batch_size=1): return self.sample(n=n, batch_size=batch_size) def sample(self, n=1, batch_size=1): if self.progressive_pruning_th is not None: self.progressive_pruning() width_arch, width_logits = self.sample_width(n=n, batch_size=batch_size) rollouts = [] for i_sample in range(n): # op_weights.shape: [num_edges, [batch_size,] num_ops] # edge_norms.shape: [num_edges] do not have batch_size. op_weights_list = [] edge_norms_list = [] sampled_list = [] logits_list = [] for alphas in self.cg_alphas: if ( self.progressive_pruning_th is not None and self.progressive_pruning_th > 0 ): alphas = alphas.clamp(self.progressive_pruning_th, 1.0e4) else: pass if self.force_uniform: # cg_alpha parameters will not be in the graph # NOTE: `force_uniform` config does not affects edge_norms (betas), # if one wants a force_uniform search, keep `use_edge_normalization=False` alphas = torch.zeros_like(alphas) if batch_size > 1: expanded_alpha = ( alphas.reshape([alphas.shape[0], 1, alphas.shape[1]]) .repeat([1, batch_size, 1]) .reshape([-1, alphas.shape[-1]]) ) else: expanded_alpha = alphas if self.use_prob: sampled = F.softmax( expanded_alpha / self.gumbel_temperature, dim=-1 ) elif self.use_sigmoid: sampled = utils.relaxed_bernoulli_sample( expanded_alpha, self.gumbel_temperature ) else: # gumbel sampling sampled, _ = utils.gumbel_softmax( expanded_alpha, self.gumbel_temperature, hard=False ) if self.gumbel_hard: op_weights = utils.straight_through(sampled) else: op_weights = sampled if batch_size > 1: sampled = sampled.reshape([-1, batch_size, op_weights.shape[-1]]) op_weights = op_weights.reshape( [-1, batch_size, op_weights.shape[-1]] ) op_weights_list.append(op_weights) sampled_list.append(utils.get_numpy(sampled)) # logits_list.append(utils.get_numpy(alphas)) logits_list.append(alphas) stage_conns = [] split_op_weights = torch.split(op_weights, self.stage_num_alphas) for i_stage in range(self.search_space.stage_num): stage_conn = self.get_arch.apply( self.search_space, split_op_weights[i_stage], self.device, i_stage, ) stage_conns.append(stage_conn) rollouts.append( StagewiseMacroDiffRollout( arch=stage_conns, sampled=sampled_list, logits=logits_list, width_arch=width_arch[i_sample], width_logits=width_logits[i_sample], search_space=self.search_space, ) ) return rollouts def sample_width(self, n=1, batch_size=1): assert batch_size == 1, "sample_width should not have batch size > 1" width_sampled_list = [] width_logits_list = [] width_op_weights_list = [] for _ in range(n): # sample the width alphas for width_alphas in self.width_alphas: if self.force_uniform: # cg_alpha parameters will not be in the graph # NOTE: `force_uniform` config does not affects edge_norms (betas), # if one wants a force_uniform search, keep `use_edge_normalization=False` width_alphas = torch.zeros_like(width_alphas) if batch_size > 1: expanded_width_alpha = ( width_alphas.reshape( [width_alphas.shape[0], 1, width_alphas.shape[1]] ) .repeat([1, batch_size, 1]) .reshape([-1, width_alphas.shape[-1]]) ) else: expanded_width_alpha = width_alphas if self.use_prob: width_sampled = F.softmax( expanded_width_alpha / self.width_gumbel_temperature, dim=-1 ) elif self.use_sigmoid: width_sampled = utils.relaxed_bernoulli_sample( expanded_width_alpha, self.width_gumbel_temperature ) else: # gumbel sampling width_sampled, _ = utils.gumbel_softmax( expanded_width_alpha, self.width_gumbel_temperature, hard=False ) if self.gumbel_hard: width_op_weights = utils.straight_through(width_sampled) else: width_op_weights = width_sampled if batch_size > 1: width_sampled = width_sampled.reshape( [-1, batch_size, width_op_weights.shape[-1]] ) width_op_weights = width_op_weights.reshape( [-1, batch_size, width_op_weights.shape[-1]] ) if not self.per_stage_width: width_op_weights_full = width_op_weights width_sampled_full = width_sampled width_alphas_full = width_alphas else: # the last stage has one more node node_list = self.search_space.stage_node_nums.copy() # let the 1st stage num_node -1 # to let all reduction cell uses the width-alphas of next stage node_list[0] = node_list[0] - 1 width_op_weights_full = torch.cat( [ width_op_weights[idx_stage].repeat(num_nodes - 1, 1) for idx_stage, num_nodes in enumerate(node_list) ] ) width_sampled_full = torch.cat( [ width_sampled[idx_stage].repeat(num_nodes - 1, 1) for idx_stage, num_nodes in enumerate(node_list) ] ) width_alphas_full = torch.cat( [ width_alphas[idx_stage].repeat(num_nodes - 1, 1) for idx_stage, num_nodes in enumerate(node_list) ] ) width_op_weights_list.append(width_op_weights_full) width_sampled_list.append(utils.get_numpy(width_sampled_full)) # logits_list.append(utils.get_numpy(alphas)) width_logits_list.append(width_alphas_full) return width_op_weights_list, width_logits_list def save(self, path): """Save the parameters to disk.""" torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path) self.logger.info("Saved controller network to %s", path) def load(self, path): """Load the parameters from disk.""" checkpoint = torch.load(path, map_location=torch.device("cpu")) self.load_state_dict(checkpoint["state_dict"]) self.on_epoch_start(checkpoint["epoch"]) self.logger.info("Loaded controller network from %s", path) def _entropy_loss(self): ent_loss = 0.0 if self.entropy_coeff > 0: alphas = self.cg_alphas[0].split( [i - 1 for i in self.search_space.stage_node_nums] ) probs = [F.softmax(alpha, dim=-1) for alpha in self.cg_alphas] ent_loss = ( self.entropy_coeff * sum(-(torch.log(prob) * prob).sum() for prob in probs) + ent_loss ) if self.width_entropy_coeff > 0: width_alphas = self.width_alphas probs = [F.softmax(alpha, dim=-1) for alpha in self.width_alphas] ent_loss = ( self.width_entropy_coeff * sum(-(torch.log(prob) * prob).sum() for prob in probs) + ent_loss ) return ent_loss def gradient(self, loss, return_grads=True, zero_grads=True): raise NotImplementedError( "the grad function is implemented in the layer2diffcontroller.gradient()" ) def step_current_gradient(self, optimizer): if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm) optimizer.step() def step_gradient(self, gradients, optimizer): self.zero_grad() named_params = dict(self.named_parameters()) for k, grad in gradients: named_params[k].grad = grad # clip the gradients if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm) # apply the gradients optimizer.step() def step(self, rollouts, optimizer, perf_name): # very memory inefficient self.zero_grad() losses = [r.get_perf(perf_name) for r in rollouts] optimizer.step() [l.backward() for l in losses] return np.mean([l.detach().cpu().numpy() for l in losses]) def __getstate__(self): state = super(MacroStagewiseDiffController, self).__getstate__().copy() del state["get_arch"] return state def __setstate__(self, state): super(MacroStagewiseDiffController, self).__setstate__(state) self.get_arch = GetArchMacro() def summary(self, rollouts, log=False, log_prefix="", step=None): num = len(rollouts) logits_list = [ [utils.get_numpy(logits) for logits in r.logits] for r in rollouts ] _ss = self.search_space if self.gumbel_hard: cg_logprobs = [0.0 for _ in range(_ss.num_cell_groups)] cg_entros = [0.0 for _ in range(_ss.num_cell_groups)] for rollout, logits in zip(rollouts, logits_list): for cg_idx, (vec, cg_logits) in enumerate(zip(rollout.arch, logits)): prob = utils.softmax(cg_logits) logprob = np.log(prob) if self.gumbel_hard: inds = np.argmax(utils.get_numpy(vec.op_weights), axis=-1) cg_logprobs[cg_idx] += np.sum(logprob[range(len(inds)), inds]) cg_entros[cg_idx] += -(prob * logprob).sum() # mean across rollouts if self.gumbel_hard: cg_logprobs = [s / num for s in cg_logprobs] total_logprob = sum(cg_logprobs) cg_logprobs_str = ",".join(["{:.2f}".format(n) for n in cg_logprobs]) cg_entros = [s / num for s in cg_entros] total_entro = sum(cg_entros) cg_entro_str = ",".join(["{:.2f}".format(n) for n in cg_entros]) if log: # maybe log the summary self.logger.info( "%s%d rollouts: %s ENTROPY: %2f (%s)", log_prefix, num, "-LOG_PROB: %.2f (%s) ;" % (-total_logprob, cg_logprobs_str) if self.gumbel_hard else "", total_entro, cg_entro_str, ) if step is not None and not self.writer.is_none(): if self.gumbel_hard: self.writer.add_scalar("log_prob", total_logprob, step) self.writer.add_scalar("entropy", total_entro, step) stats = [ (n + " ENTRO", entro) for n, entro in zip(_ss.cell_group_names, cg_entros) ] if self.gumbel_hard: stats += [ (n + " LOGPROB", logprob) for n, logprob in zip(_ss.cell_group_names, cg_logprobs) ] return OrderedDict(stats) @classmethod def supported_rollout_types(cls): return ["macro-stagewise", "macro-stagewise-diff", "macro-sink-connect-diff"] class GetArchMacroSinkConnect(torch.autograd.Function): @staticmethod def forward( ctx, search_space, op_weights, device, i_stage, ): stage_conn = torch.zeros( ( search_space.stage_node_nums[i_stage], search_space.stage_node_nums[i_stage], ) ).to(device) stage_conn[np.arange(len(op_weights)) + 1, np.arange(len(op_weights))] = 1 stage_conn[-1, : len(op_weights)] = op_weights ctx.save_for_backward( torch.as_tensor(op_weights), torch.as_tensor(search_space.idxes[i_stage]) ) return stage_conn @staticmethod def backward(ctx, grad_output): op_weights, idxes = ctx.saved_tensors op_weights_grad = grad_output[-1, : len(op_weights)] return None, op_weights_grad, None, None, None class MacroSinkConnectDiffController(MacroStagewiseDiffController): NAME = "macro-sink-connect-diff" # The TF_NAS-like macro search space(sink-based connecting) # during each stage, before the reduction node, a `sinking point` aggregate the output of each node's output with softmax # noted that cg-alpha here should denote whether connected or not def __init__(self, *args, **kwargs): super(MacroSinkConnectDiffController, self).__init__(*args, **kwargs) if not self.full_init: self.cg_alphas = nn.ParameterList( [ nn.Parameter( 1e-3 * torch.randn( sum([n - 1 for n in self.search_space.stage_node_nums]) ) ) ] ) else: self.cg_alphas = nn.ParameterList( [ nn.Parameter( torch.ones( sum([n - 1 for n in self.search_space.stage_node_nums]) ) ) ] ) assert ( self.use_sigmoid == False ) # sink-connecting should introduce competition in edges self.get_arch = GetArchMacroSinkConnect() self.stage_num_alphas = [n - 1 for n in self.search_space.stage_node_nums] self.to(self.device) # move the newly generated cg_alphas to cuda # The only difference with MacroStageWiseDiffController's sample is that the arch is packed into `sink-connect-diff-rollout` def sample(self, n=1, batch_size=1): # if use progressive pruning if self.progressive_pruning_th is not None: self.progressive_pruning() width_arch, width_logits = self.sample_width(n=n, batch_size=batch_size) rollouts = [] for i_sample in range(n): # op_weights.shape: [num_edges, [batch_size,] num_ops] # edge_norms.shape: [num_edges] do not have batch_size. op_weights_list = [] edge_norms_list = [] sampled_list = [] logits_list = [] for alphas in self.cg_alphas: splits = [i - 1 for i in self.search_space.stage_node_nums] op_weights = [] sampleds = [] for alpha in alphas.split(splits): if ( self.force_uniform ): # cg_alpha parameters will not be in the graph # NOTE: `force_uniform` config does not affects edge_norms (betas), # if one wants a force_uniform search, keep `use_edge_normalization=False` alpha = torch.zeros_like(alpha) if batch_size > 1: expanded_alpha = ( alpha.reshape([alpha.shape[0], 1, alpha.shape[1]]) .repeat([1, batch_size, 1]) .reshape([-1, alpha.shape[-1]]) ) else: expanded_alpha = alpha if self.use_prob: sampled = F.softmax( expanded_alpha / self.gumbel_temperature, dim=-1 ) elif self.use_sigmoid: sampled = utils.relaxed_bernoulli_sample( expanded_alpha, self.gumbel_temperature ) else: # gumbel sampling sampled, _ = utils.gumbel_softmax( expanded_alpha, self.gumbel_temperature, hard=False ) if self.gumbel_hard: op_weight = utils.straight_through(sampled) else: op_weight = sampled if batch_size > 1: sampled = sampled.reshape([-1, batch_size, op_weight.shape[-1]]) op_weight = op_weight.reshape( [-1, batch_size, op_weight.shape[-1]] ) op_weights.append(op_weight) sampleds.append(sampled) op_weights = torch.cat(op_weights) sampleds = torch.cat(sampleds) op_weights_list.append(op_weights) sampled_list.append(utils.get_numpy(sampleds)) logits_list.append(alphas) stage_conns = [] split_op_weights = torch.split(op_weights, self.stage_num_alphas) for i_stage in range(self.search_space.stage_num): stage_conn = self.get_arch.apply( self.search_space, split_op_weights[i_stage], self.device, i_stage, ) stage_conns.append(stage_conn) rollouts.append( SinkConnectMacroDiffRollout( arch=stage_conns, sampled=sampled_list, logits=logits_list, width_arch=width_arch[i_sample], width_logits=width_logits[i_sample], search_space=self.search_space, ) ) return rollouts def __setstate__(self, state): super(MacroSinkConnectDiffController, self).__setstate__(state) self.get_arch = GetArchMacroSinkConnect() class GetArchMicro(torch.autograd.Function): @staticmethod def forward(ctx, search_space, op_weights, device): empty_arch = torch.zeros( ( search_space._num_nodes, search_space._num_nodes, search_space.num_op_choices, ) ).to(device) empty_arch[search_space.idx] = op_weights ctx.save_for_backward( torch.as_tensor(op_weights), torch.as_tensor(search_space.idx) ) return empty_arch @staticmethod def backward(ctx, grad_output): op_weights, idxes = ctx.saved_tensors op_weights_grad = grad_output[idxes[0], idxes[1]] return None, op_weights_grad, None class MicroDenseDiffController(BaseController, nn.Module): NAME = "micro-dense-diff" SCHEDULABLE_ATTRS = ["gumbel_temperature", "entropy_coeff", "force_uniform"] def __init__( self, search_space, rollout_type, mode="eval", device="cuda", use_prob=False, gumbel_hard=False, gumbel_temperature=1.0, use_sigmoid=True, use_edge_normalization=False, entropy_coeff=0.01, max_grad_norm=None, force_uniform=False, full_init=False, progressive_pruning_th=None, multiprocess=False, schedule_cfg=None, ): super(MicroDenseDiffController, self).__init__( search_space, rollout_type, schedule_cfg=schedule_cfg ) nn.Module.__init__(self) self.device = device # sampling self.use_prob = use_prob self.use_sigmoid = use_sigmoid self.gumbel_hard = gumbel_hard self.gumbel_temperature = gumbel_temperature assert not (use_prob and use_sigmoid) # edge normalization self.use_edge_normalization = use_edge_normalization # training self.entropy_coeff = entropy_coeff self.max_grad_norm = max_grad_norm self.force_uniform = force_uniform self.full_init = full_init self.progressive_pruning_th = progressive_pruning_th self.multiprocess = multiprocess _num_init_nodes = self.search_space.num_init_nodes _num_edges_list = [ sum( _num_init_nodes + i for i in range(self.search_space.get_num_steps(i_cg)) ) for i_cg in range(self.search_space.num_cell_groups) ] if not self.full_init: self.cg_alphas = nn.ParameterList( [ nn.Parameter( 1e-3 * torch.randn( _num_edges, len(self.search_space.cell_shared_primitives[i_cg]), ) ) # shape: [num_edges, num_ops] for i_cg, _num_edges in enumerate(_num_edges_list) ] ) else: self.cg_alphas = nn.ParameterList( [ nn.Parameter( 1 * torch.ones( _num_edges, len(self.search_space.cell_shared_primitives[i_cg]), ) ) # shape: [num_edges, num_ops] for i_cg, _num_edges in enumerate(_num_edges_list) ] ) if self.use_edge_normalization: raise NotImplementedError("MicroDenseController does not support edge-norm") else: self.cg_betas = None self.get_arch = GetArchMicro() self.to(self.device) def set_mode(self, mode): super(MicroDenseDiffController, self).set_mode(mode) if mode == "train": nn.Module.train(self) elif mode == "eval": nn.Module.eval(self) else: raise Exception("Unrecognized mode: {}".format(mode)) def set_device(self, device): self.device = device self.to(device) def progressive_pruning(self): for alpha in self.cg_alphas: # inpalce replace alphas that smaller than the pruning threshold, no grad alpha.data = alpha * (alpha.gt(self.progressive_pruning_th).float()) def forward(self, n=1, batch_size=1): # pylint: disable=arguments-differ return self.sample(n=n, batch_size=batch_size) def sample(self, n=1, batch_size=1): if self.progressive_pruning_th is not None: self.progressive_pruning() rollouts = [] for _ in range(n): # op_weights.shape: [num_edges, [batch_size,] num_ops] # edge_norms.shape: [num_edges] do not have batch_size. op_weights_list = [] edge_norms_list = [] sampled_list = [] logits_list = [] for alphas in self.cg_alphas: if self.force_uniform: # cg_alpha parameters will not be in the graph # NOTE: `force_uniform` config does not affects edge_norms (betas), # if one wants a force_uniform search, keep `use_edge_normalization=False` alphas = torch.zeros_like(alphas) if batch_size > 1: expanded_alpha = ( alphas.reshape([alphas.shape[0], 1, alphas.shape[1]]) .repeat([1, batch_size, 1]) .reshape([-1, alphas.shape[-1]]) ) else: expanded_alpha = alphas if self.use_prob: # probability as sample sampled = F.softmax( expanded_alpha / self.gumbel_temperature, dim=-1 ) elif self.use_sigmoid: sampled = utils.relaxed_bernoulli_sample( expanded_alpha, self.gumbel_temperature ) else: # gumbel sampling sampled, _ = utils.gumbel_softmax( expanded_alpha, self.gumbel_temperature, hard=False ) if self.gumbel_hard: op_weights = utils.straight_through(sampled) else: op_weights = sampled if batch_size > 1: sampled = sampled.reshape([-1, batch_size, op_weights.shape[-1]]) op_weights = op_weights.reshape( [-1, batch_size, op_weights.shape[-1]] ) op_weights_list.append(op_weights) sampled_list.append(utils.get_numpy(sampled)) # logits_list.append(utils.get_numpy(alphas)) logits_list.append((alphas)) if self.use_edge_normalization: raise NotImplementedError else: arch_list = [] logits_arch_list = [] for op_weights in op_weights_list: arch = self.get_arch.apply( self.search_space, op_weights, self.device ) arch_list.append(arch) for logits in logits_list: logits_arch = self.get_arch.apply( self.search_space, logits, self.device ) logits_arch_list.append(logits_arch) rollouts.append( DenseMicroDiffRollout( arch_list, sampled_list, logits_list, logits_arch_list, search_space=self.search_space, ) ) return rollouts def save(self, path): """Save the parameters to disk.""" torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path) self.logger.info("Saved controller network to %s", path) def load(self, path): """Load the parameters from disk.""" checkpoint = torch.load(path, map_location=torch.device("cpu")) self.load_state_dict(checkpoint["state_dict"]) self.on_epoch_start(checkpoint["epoch"]) self.logger.info("Loaded controller network from %s", path) def _entropy_loss(self): if self.entropy_coeff > 0: probs = [F.softmax(alpha, dim=-1) for alpha in self.cg_alphas] return self.entropy_coeff * sum( -(torch.log(prob) * prob).sum() for prob in probs ) return 0.0 def gradient(self, loss, return_grads=True, zero_grads=True): raise NotImplementedError( "the grad function is implemented in the layer2diffcontroller.gradient()" ) def step_current_gradient(self, optimizer): if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm) optimizer.step() def step_gradient(self, gradients, optimizer): self.zero_grad() named_params = dict(self.named_parameters()) for k, grad in gradients: named_params[k].grad = grad # clip the gradients if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm) # apply the gradients optimizer.step() def step(self, rollouts, optimizer, perf_name): # very memory inefficient self.zero_grad() losses = [r.get_perf(perf_name) for r in rollouts] optimizer.step() [l.backward() for l in losses] return np.mean([l.detach().cpu().numpy() for l in losses]) def __getstate__(self): state = super(MicroDenseDiffController, self).__getstate__().copy() del state["get_arch"] return state def __setstate__(self, state): super(MicroDenseDiffController, self).__setstate__(state) self.get_arch = GetArchMicro() def summary(self, rollouts, log=False, log_prefix="", step=None): num = len(rollouts) logits_list = [ [utils.get_numpy(logits) for logits in r.logits] for r in rollouts ] _ss = self.search_space if self.gumbel_hard: cg_logprobs = [0.0 for _ in range(_ss.num_cell_groups)] cg_entros = [0.0 for _ in range(_ss.num_cell_groups)] for rollout, logits in zip(rollouts, logits_list): for cg_idx, (vec, cg_logits) in enumerate(zip(rollout.arch, logits)): prob = utils.softmax(cg_logits) logprob = np.log(prob) if self.gumbel_hard: inds = np.argmax(utils.get_numpy(vec), axis=-1) cg_logprobs[cg_idx] += np.sum(logprob[range(len(inds)), inds]) cg_entros[cg_idx] += -(prob * logprob).sum() # mean across rollouts if self.gumbel_hard: cg_logprobs = [s / num for s in cg_logprobs] total_logprob = sum(cg_logprobs) cg_logprobs_str = ",".join(["{:.2f}".format(n) for n in cg_logprobs]) cg_entros = [s / num for s in cg_entros] total_entro = sum(cg_entros) cg_entro_str = ",".join(["{:.2f}".format(n) for n in cg_entros]) if log: # maybe log the summary self.logger.info( "%s%d rollouts: %s ENTROPY: %2f (%s)", log_prefix, num, "-LOG_PROB: %.2f (%s) ;" % (-total_logprob, cg_logprobs_str) if self.gumbel_hard else "", total_entro, cg_entro_str, ) if step is not None and not self.writer.is_none(): if self.gumbel_hard: self.writer.add_scalar("log_prob", total_logprob, step) self.writer.add_scalar("entropy", total_entro, step) stats = [ (n + " ENTRO", entro) for n, entro in zip(_ss.cell_group_names, cg_entros) ] if self.gumbel_hard: stats += [ (n + " LOGPROB", logprob) for n, logprob in zip(_ss.cell_group_names, cg_logprobs) ] return OrderedDict(stats) @classmethod def supported_rollout_types(cls): return ["micro-dense", "micro-dense-diff"]
tg/configuration/mongo/auth.py
sergiobrr/tg2
812
12733392
<gh_stars>100-1000 # -*- coding: utf-8 -*- from tgming.auth import MingAuthenticatorPlugin def create_default_authenticator(user_class, translations=None, **unused): mingauth = MingAuthenticatorPlugin(user_class) return unused, mingauth
tools/polly/bin/detail/timer.py
Kondr11/LABA7
861
12733414
<reponame>Kondr11/LABA7 # Copyright (c) 2015, <NAME> # All rights reserved. import datetime import sys import time perf_counter_available = (sys.version_info.minor >= 3) class Job: def __init__(self, job_name): if perf_counter_available: self.start = time.perf_counter() else: self.start = 0 self.job_name = job_name self.stopped = False def stop(self): if self.stopped: sys.exit('Already stopped') self.stopped = True if perf_counter_available: self.total = time.perf_counter() - self.start else: self.total = 0 def result(self): if not self.stopped: sys.exit("Stop the job before result") print( '{}: {}s'.format(self.job_name, datetime.timedelta(seconds=self.total)) ) class Timer: def __init__(self): self.jobs = [] self.total = Job('Total') def start(self, job_name): if job_name == 'Total': sys.exit('Name reserved') for i in self.jobs: if i.job_name == job_name: sys.exit('Job already exists: {}'.format(job_name)) self.jobs.append(Job(job_name)) def stop(self): if len(self.jobs) == 0: sys.exit("No jobs to stop") self.jobs[-1].stop() def result(self): if not perf_counter_available: print('timer.perf_counter is not available (update to python 3.3+)') return for i in self.jobs: i.result() print('-') self.total.stop() self.total.result()
h2o-py/tests/testdir_algos/glm/pyunit_PUBDEV_8077_binomial_alpha.py
MikolajBak/h2o-3
6,098
12733417
<reponame>MikolajBak/h2o-3 #!/usr/bin/env python # -*- encoding: utf-8 -*- import h2o from h2o.estimators.glm import H2OGeneralizedLinearEstimator from tests import pyunit_utils # test binomial family with generate_scoring_history on, alpha arrays, lambda search on and off def test_binomial_alpha(): training_data = h2o.import_file(pyunit_utils.locate("smalldata/logreg/benign.csv")) Y = 3 X = [0, 1, 2, 4, 5, 6, 7, 8, 9, 10] # test with lambda search on, generate_scoring_history on and off model1 = H2OGeneralizedLinearEstimator(family="binomial", alpha=[0,0.2,0.5,0.8,1], lambda_search=True, generate_scoring_history=True) model1.train(x=X, y=Y, training_frame=training_data) model2 = H2OGeneralizedLinearEstimator(family="binomial", alpha=[0,0.2,0.5,0.8,1], lambda_search=True, generate_scoring_history=True) model2.train(x=X, y=Y, training_frame=training_data) pyunit_utils.assertCoefDictEqual(model1.coef(), model2.coef()) # test with lambda search off, generate_scoring_history on and off model1 = H2OGeneralizedLinearEstimator(family="binomial", alpha=[0,0.2,0.5,0.8,1], lambda_search=False, generate_scoring_history=True, Lambda=[0, 0.1, 0.01, 0.001]) model1.train(x=X, y=Y, training_frame=training_data) model2 = H2OGeneralizedLinearEstimator(family="binomial", alpha=[0,0.2,0.5,0.8,1], lambda_search=False, generate_scoring_history=True, Lambda=[0, 0.1, 0.01, 0.001]) model2.train(x=X, y=Y, training_frame=training_data) pyunit_utils.assertCoefDictEqual(model1.coef(), model2.coef()) # test with lambda search on, generate_scoring_history on and off, cv on model1 = H2OGeneralizedLinearEstimator(family="binomial", alpha=[0,0.2,0.5,0.8,1], lambda_search=True, generate_scoring_history=True, nfolds=2, seed=12345) model1.train(x=X, y=Y, training_frame=training_data) model2 = H2OGeneralizedLinearEstimator(family="binomial", alpha=[0,0.2,0.5,0.8,1], lambda_search=True, generate_scoring_history=True, nfolds=2, seed=12345) model2.train(x=X, y=Y, training_frame=training_data) pyunit_utils.assertCoefDictEqual(model1.coef(), model2.coef()) # test with lambda search off, generate_scoring_history on and off, cv on model1 = H2OGeneralizedLinearEstimator(family="binomial", alpha=[0,0.2,0.5,0.8,1], lambda_search=False, generate_scoring_history=True, nfolds=2, seed=12345, Lambda=[0, 0.1, 0.01, 0.001]) model1.train(x=X, y=Y, training_frame=training_data) model2 = H2OGeneralizedLinearEstimator(family="binomial", alpha=[0,0.2,0.5,0.8,1], lambda_search=False, generate_scoring_history=True, nfolds=2, seed=12345, Lambda=[0, 0.1, 0.01, 0.001]) model2.train(x=X, y=Y, training_frame=training_data) pyunit_utils.assertCoefDictEqual(model1.coef(), model2.coef()) if __name__ == "__main__": pyunit_utils.standalone_test(test_binomial_alpha) else: test_binomial_alpha()
hiddeneye_reborn/core/config.py
Devil4333/HiddenEye
582
12733446
import yaml # TODO u know, work in it...
quspin/basis/_reshape_subsys.py
anton-buyskikh/QuSpin
195
12733449
import numpy as _np import scipy.sparse as _sp from ._basis_utils import _shuffle_sites #################################################### # set of helper functions to implement the partial # # trace of lattice density matrices. They do not # # have any checks and states are assumed to be # # in the non-symmetry reduced basis. # #################################################### def _lattice_partial_trace_pure(psi,sub_sys_A,L,sps,return_rdm="A"): """ This function computes the partial trace of a dense pure state psi over set of sites sub_sys_A and returns reduced DM. Vectorisation available. """ psi_v=_lattice_reshape_pure(psi,sub_sys_A,L,sps) if return_rdm == "A": return _np.squeeze(_np.einsum("...ij,...kj->...ik",psi_v,psi_v.conj())),None elif return_rdm == "B": return None,_np.squeeze(_np.einsum("...ji,...jk->...ik",psi_v.conj(),psi_v)) elif return_rdm == "both": return _np.squeeze(_np.einsum("...ij,...kj->...ik",psi_v,psi_v.conj())),_np.squeeze(_np.einsum("...ji,...jk->...ik",psi_v.conj(),psi_v)) def _lattice_partial_trace_mixed(rho,sub_sys_A,L,sps,return_rdm="A"): """ This function computes the partial trace of a set of dense mixed states rho over set of sites sub_sys_A and returns reduced DM. Vectorisation available. """ rho_v=_lattice_reshape_mixed(rho,sub_sys_A,L,sps) if return_rdm == "A": return _np.einsum("...jlkl->...jk",rho_v),None elif return_rdm == "B": return None,_np.einsum("...ljlk->...jk",rho_v.conj()) elif return_rdm == "both": return _np.einsum("...jlkl->...jk",rho_v),_np.einsum("...ljlk->...jk",rho_v.conj()) def _lattice_partial_trace_sparse_pure(psi,sub_sys_A,L,sps,return_rdm="A"): """ This function computes the partial trace of a sparse pure state psi over set of sites sub_sys_A and returns reduced DM. """ psi=_lattice_reshape_sparse_pure(psi,sub_sys_A,L,sps) if return_rdm == "A": return psi.dot(psi.H),None elif return_rdm == "B": return None,psi.H.dot(psi) elif return_rdm == "both": return psi.dot(psi.H),psi.H.dot(psi) def _lattice_reshape_pure(psi,sub_sys_A,L,sps): """ This function reshapes the dense pure state psi over the Hilbert space defined by sub_sys_A and its complement. Vectorisation available. """ extra_dims = psi.shape[:-1] n_dims = len(extra_dims) sub_sys_B = set(range(L))-set(sub_sys_A) sub_sys_A = tuple(sub_sys_A) sub_sys_B = tuple(sub_sys_B) L_A = len(sub_sys_A) L_B = len(sub_sys_B) Ns_A = (sps**L_A) Ns_B = (sps**L_B) T_tup = sub_sys_A+sub_sys_B psi_v = _shuffle_sites(sps,T_tup,psi) psi_v = psi_v.reshape(extra_dims+(Ns_A,Ns_B)) return psi_v ''' def _lattice_reshape_pure(psi,sub_sys_A,L,sps): """ This function reshapes the dense pure state psi over the Hilbert space defined by sub_sys_A and its complement. Vectorisation available. """ extra_dims = psi.shape[:-1] n_dims = len(extra_dims) sub_sys_B = set(range(L))-set(sub_sys_A) sub_sys_A = tuple(sub_sys_A) sub_sys_B = tuple(sub_sys_B) L_A = len(sub_sys_A) L_B = len(sub_sys_B) Ns_A = (sps**L_A) Ns_B = (sps**L_B) T_tup = sub_sys_A+sub_sys_B T_tup = tuple(range(n_dims)) + tuple(n_dims + s for s in T_tup) R_tup = extra_dims + tuple(sps for i in range(L)) psi_v = psi.reshape(R_tup) # DM where index is given per site as rho_v[i_1,...,i_L,j_1,...j_L] psi_v = psi_v.transpose(T_tup) # take transpose to reshuffle indices psi_v = psi_v.reshape(extra_dims+(Ns_A,Ns_B)) return psi_v ''' def _lattice_reshape_mixed(rho,sub_sys_A,L,sps): """ This function reshapes the dense mixed state psi over the Hilbert space defined by sub_sys_A and its complement. Vectorisation available. """ extra_dims = rho.shape[:-2] n_dims = len(extra_dims) sub_sys_B = set(range(L))-set(sub_sys_A) sub_sys_A = tuple(sub_sys_A) sub_sys_B = tuple(sub_sys_B) L_A = len(sub_sys_A) L_B = len(sub_sys_B) Ns_A = (sps**L_A) Ns_B = (sps**L_B) # T_tup tells numpy how to reshuffle the indices such that when I reshape the array to the # 4-_tensor rho_{ik,jl} i,j are for sub_sys_A and k,l are for sub_sys_B # which means I need (sub_sys_A,sub_sys_B,sub_sys_A+L,sub_sys_B+L) T_tup = sub_sys_A+sub_sys_B T_tup = tuple(T_tup) + tuple(L+s for s in T_tup) rho = rho.reshape(extra_dims+(-1,)) rho_v = _shuffle_sites(sps,T_tup,rho) return rho_v.reshape(extra_dims+(Ns_A,Ns_B,Ns_A,Ns_B)) ''' def _lattice_reshape_mixed(rho,sub_sys_A,L,sps): """ This function reshapes the dense mixed state psi over the Hilbert space defined by sub_sys_A and its complement. Vectorisation available. """ extra_dims = rho.shape[:-2] n_dims = len(extra_dims) sub_sys_B = set(range(L))-set(sub_sys_A) sub_sys_A = tuple(sub_sys_A) sub_sys_B = tuple(sub_sys_B) L_A = len(sub_sys_A) L_B = len(sub_sys_B) Ns_A = (sps**L_A) Ns_B = (sps**L_B) # T_tup tells numpy how to reshuffle the indices such that when I reshape the array to the # 4-_tensor rho_{ik,jl} i,j are for sub_sys_A and k,l are for sub_sys_B # which means I need (sub_sys_A,sub_sys_B,sub_sys_A+L,sub_sys_B+L) T_tup = sub_sys_A+sub_sys_B T_tup = tuple(range(n_dims)) + tuple(s+n_dims for s in T_tup) + tuple(L+n_dims+s for s in T_tup) R_tup = extra_dims + tuple(sps for i in range(2*L)) rho_v = rho.reshape(R_tup) # DM where index is given per site as rho_v[i_1,...,i_L,j_1,...j_L] rho_v = rho_v.transpose(T_tup) # take transpose to reshuffle indices return rho_v.reshape(extra_dims+(Ns_A,Ns_B,Ns_A,Ns_B)) ''' def _lattice_reshape_sparse_pure(psi,sub_sys_A,L,sps): """ This function reshapes the sparse pure state psi over the Hilbert space defined by sub_sys_A and its complement. """ sub_sys_B = set(range(L))-set(sub_sys_A) sub_sys_A = tuple(sub_sys_A) sub_sys_B = tuple(sub_sys_B) L_A = len(sub_sys_A) L_B = len(sub_sys_B) Ns_A = (sps**L_A) Ns_B = (sps**L_B) psi = psi.tocoo() T_tup = sub_sys_A+sub_sys_B # reshuffle indices for the sub-systems. # j = sum( j[i]*(sps**i) for i in range(L)) # this reshuffles the j[i] similar to the transpose operation # on the dense arrays psi_v.transpose(T_tup) if T_tup != tuple(range(L)): indx = _np.zeros(psi.col.shape,dtype=psi.col.dtype) for i_old,i_new in enumerate(T_tup): indx += ((psi.col//(sps**(L-i_new-1))) % sps)*(sps**(L-i_old-1)) else: indx = psi.col # A = _np.array([0,1,2,3,4,5,6,7,8,9,10,11]) # print("make shift way of reshaping array") # print("A = {}".format(A)) # print("A.reshape((3,4)): \n {}".format(A.reshape((3,4)))) # print("rows: A.reshape((3,4))/4: \n {}".format(A.reshape((3,4))/4)) # print("cols: A.reshape((3,4))%4: \n {}".format(A.reshape((3,4))%4)) psi._shape = (Ns_A,Ns_B) psi.row[:] = indx / Ns_B psi.col[:] = indx % Ns_B return psi.tocsr() def _tensor_reshape_pure(psi,sub_sys_A,Ns_l,Ns_r): extra_dims = psi.shape[:-1] if sub_sys_A == "left": return psi.reshape(extra_dims+(Ns_l,Ns_r)) else: n_dims = len(extra_dims) T_tup = tuple(range(n_dims))+(n_dims+1,n_dims) psi_v = psi.reshape(extra_dims+(Ns_l,Ns_r)) return psi_v.transpose(T_tup) def _tensor_reshape_sparse_pure(psi,sub_sys_A,Ns_l,Ns_r): psi = psi.tocoo() # make shift way of reshaping array # j = j_l + Ns_r * j_l # j_l = j / Ns_r # j_r = j % Ns_r if sub_sys_A == "left": psi._shape = (Ns_l,Ns_r) psi.row[:] = psi.col / Ns_r psi.col[:] = psi.col % Ns_r return psi.tocsr() else: psi._shape = (Ns_l,Ns_r) psi.row[:] = psi.col / Ns_r psi.col[:] = psi.col % Ns_r return psi.T.tocsr() def _tensor_reshape_mixed(rho,sub_sys_A,Ns_l,Ns_r): extra_dims = rho.shape[:-2] if sub_sys_A == "left": return rho.reshape(extra_dims+(Ns_l,Ns_r,Ns_l,Ns_r)) else: n_dims = len(extra_dims) T_tup = tuple(range(n_dims))+(n_dims+1,n_dims)+(n_dims+3,n_dims+2) rho_v = rho.reshape(extra_dims+(Ns_l,Ns_r,Ns_l,Ns_r)) return rho_v.transpose(T_tup) def _tensor_partial_trace_pure(psi,sub_sys_A,Ns_l,Ns_r,return_rdm="A"): psi_v = _tensor_reshape_pure(psi,sub_sys_A,Ns_l,Ns_r) if return_rdm == "A": return _np.squeeze(_np.einsum("...ij,...kj->...ik",psi_v,psi_v.conj())),None elif return_rdm == "B": return None,_np.squeeze(_np.einsum("...ji,...jk->...ik",psi_v.conj(),psi_v)) elif return_rdm == "both": return _np.squeeze(_np.einsum("...ij,...kj->...ik",psi_v,psi_v.conj())),_np.squeeze(_np.einsum("...ji,...jk->...ik",psi_v.conj(),psi_v)) def _tensor_partial_trace_sparse_pure(psi,sub_sys_A,Ns_l,Ns_r,return_rdm="A"): psi = _tensor_reshape_sparse_pure(psi,sub_sys_A,Ns_l,Ns_r) if return_rdm == "A": return psi.dot(psi.H),None elif return_rdm == "B": return None,psi.H.dot(psi) elif return_rdm == "both": return psi.dot(psi.H),psi.H.dot(psi) def _tensor_partial_trace_mixed(rho,sub_sys_A,Ns_l,Ns_r,return_rdm="A"): rho_v = _tensor_reshape_mixed(rho,sub_sys_A,Ns_l,Ns_r) if return_rdm == "A": return _np.squeeze(_np.einsum("...ijkj->...ik",rho_v)),None elif return_rdm == "B": return None,_np.squeeze(_np.einsum("...jijk->...ik",rho_v.conj())) elif return_rdm == "both": return _np.squeeze(_np.einsum("...ijkj->...ik",rho_v)),_np.squeeze(_np.einsum("...jijk->...ik",rho_v.conj()))
src/peering/azext_peering/generated/custom.py
Mannan2812/azure-cli-extensions
207
12733459
<gh_stars>100-1000 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- # pylint: disable=too-many-lines, unused-argument import json def peering_legacy_list(cmd, client, peering_location, kind, asn=None): return client.list(peering_location=peering_location, kind=kind, asn=asn) def peering_asn_list(cmd, client): return client.list_by_subscription() def peering_asn_show(cmd, client, peer_asn_name): return client.get(peer_asn_name=peer_asn_name) def peering_asn_create(cmd, client, peer_asn_name, peer_asn=None, peer_contact_detail=None, peer_name=None, validation_state=None): return client.create_or_update(peer_asn_name=peer_asn_name, peer_asn=peer_asn, peer_contact_detail=peer_contact_detail, peer_name=peer_name, validation_state=validation_state) def peering_asn_delete(cmd, client, peer_asn_name): return client.delete(peer_asn_name=peer_asn_name) def peering_location_list(cmd, client, kind, direct_peering_type=None): return client.list(kind=kind, direct_peering_type=direct_peering_type) def peering_registered_asn_list(cmd, client, resource_group_name, peering_name): return client.list_by_peering(resource_group_name=resource_group_name, peering_name=peering_name) def peering_registered_asn_show(cmd, client, resource_group_name, peering_name, registered_asn_name): return client.get(resource_group_name=resource_group_name, peering_name=peering_name, registered_asn_name=registered_asn_name) def peering_registered_asn_create(cmd, client, resource_group_name, peering_name, registered_asn_name, asn=None): return client.create_or_update(resource_group_name=resource_group_name, peering_name=peering_name, registered_asn_name=registered_asn_name, asn=asn) def peering_registered_asn_update(cmd, client, resource_group_name, peering_name, registered_asn_name, asn=None): return client.create_or_update(resource_group_name=resource_group_name, peering_name=peering_name, registered_asn_name=registered_asn_name, asn=asn) def peering_registered_asn_delete(cmd, client, resource_group_name, peering_name, registered_asn_name): return client.delete(resource_group_name=resource_group_name, peering_name=peering_name, registered_asn_name=registered_asn_name) def peering_registered_prefix_list(cmd, client, resource_group_name, peering_name): return client.list_by_peering(resource_group_name=resource_group_name, peering_name=peering_name) def peering_registered_prefix_show(cmd, client, resource_group_name, peering_name, registered_prefix_name): return client.get(resource_group_name=resource_group_name, peering_name=peering_name, registered_prefix_name=registered_prefix_name) def peering_registered_prefix_create(cmd, client, resource_group_name, peering_name, registered_prefix_name, prefix=None): return client.create_or_update(resource_group_name=resource_group_name, peering_name=peering_name, registered_prefix_name=registered_prefix_name, prefix=prefix) def peering_registered_prefix_update(cmd, client, resource_group_name, peering_name, registered_prefix_name, prefix=None): return client.create_or_update(resource_group_name=resource_group_name, peering_name=peering_name, registered_prefix_name=registered_prefix_name, prefix=prefix) def peering_registered_prefix_delete(cmd, client, resource_group_name, peering_name, registered_prefix_name): return client.delete(resource_group_name=resource_group_name, peering_name=peering_name, registered_prefix_name=registered_prefix_name) def peering_peering_list(cmd, client, resource_group_name=None): if resource_group_name is not None: return client.list_by_resource_group(resource_group_name=resource_group_name) return client.list_by_subscription() def peering_peering_show(cmd, client, resource_group_name, peering_name): return client.get(resource_group_name=resource_group_name, peering_name=peering_name) def peering_peering_create(cmd, client, resource_group_name, peering_name, sku, kind, location, tags=None, direct=None, exchange=None, peering_location=None): if isinstance(direct, str): direct = json.loads(direct) if isinstance(exchange, str): exchange = json.loads(exchange) return client.create_or_update(resource_group_name=resource_group_name, peering_name=peering_name, sku=sku, kind=kind, location=location, tags=tags, direct=direct, exchange=exchange, peering_location=peering_location) def peering_peering_update(cmd, client, resource_group_name, peering_name, tags=None): return client.update(resource_group_name=resource_group_name, peering_name=peering_name, tags=tags) def peering_peering_delete(cmd, client, resource_group_name, peering_name): return client.delete(resource_group_name=resource_group_name, peering_name=peering_name) def peering_received_route_list(cmd, client, resource_group_name, peering_name, prefix=None, as_path=None, origin_as_validation_state=None, rpki_validation_state=None, skip_token=None): return client.list_by_peering(resource_group_name=resource_group_name, peering_name=peering_name, prefix=prefix, as_path=as_path, origin_as_validation_state=origin_as_validation_state, rpki_validation_state=rpki_validation_state, skip_token=skip_token) def peering_service_country_list(cmd, client): return client.list() def peering_service_location_list(cmd, client, country=None): return client.list(country=country) def peering_service_prefix_list(cmd, client, resource_group_name, peering_service_name, expand=None): return client.list_by_peering_service(resource_group_name=resource_group_name, peering_service_name=peering_service_name, expand=expand) def peering_service_prefix_show(cmd, client, resource_group_name, peering_service_name, prefix_name, expand=None): return client.get(resource_group_name=resource_group_name, peering_service_name=peering_service_name, prefix_name=prefix_name, expand=expand) def peering_service_prefix_create(cmd, client, resource_group_name, peering_service_name, prefix_name, prefix=None, peering_service_prefix_key=None): return client.create_or_update(resource_group_name=resource_group_name, peering_service_name=peering_service_name, prefix_name=prefix_name, prefix=prefix, peering_service_prefix_key=peering_service_prefix_key) def peering_service_prefix_update(cmd, client, resource_group_name, peering_service_name, prefix_name, prefix=None, peering_service_prefix_key=None): return client.create_or_update(resource_group_name=resource_group_name, peering_service_name=peering_service_name, prefix_name=prefix_name, prefix=prefix, peering_service_prefix_key=peering_service_prefix_key) def peering_service_prefix_delete(cmd, client, resource_group_name, peering_service_name, prefix_name): return client.delete(resource_group_name=resource_group_name, peering_service_name=peering_service_name, prefix_name=prefix_name) def peering_service_provider_list(cmd, client): return client.list() def peering_service_list(cmd, client, resource_group_name=None): if resource_group_name is not None: return client.list_by_resource_group(resource_group_name=resource_group_name) return client.list_by_subscription() def peering_service_show(cmd, client, resource_group_name, peering_service_name): return client.get(resource_group_name=resource_group_name, peering_service_name=peering_service_name) def peering_service_create(cmd, client, resource_group_name, peering_service_name, location, sku=None, tags=None, peering_service_location=None, peering_service_provider=None): return client.create_or_update(resource_group_name=resource_group_name, peering_service_name=peering_service_name, sku=sku, location=location, tags=tags, peering_service_location=peering_service_location, peering_service_provider=peering_service_provider) def peering_service_update(cmd, client, resource_group_name, peering_service_name, tags=None): return client.update(resource_group_name=resource_group_name, peering_service_name=peering_service_name, tags=tags) def peering_service_delete(cmd, client, resource_group_name, peering_service_name): return client.delete(resource_group_name=resource_group_name, peering_service_name=peering_service_name)
pydantic_factories/constraints/constrained_float_handler.py
lyz-code/pydantic-factories
163
12733547
from pydantic import ConstrainedFloat from pydantic_factories.value_generators.constrained_number import ( generate_constrained_number, get_constrained_number_range, ) from pydantic_factories.value_generators.primitives import create_random_float def handle_constrained_float(field: ConstrainedFloat) -> float: """ Handles 'ConstrainedFloat' instances """ multiple_of = field.multiple_of if multiple_of == 0: return 0 minimum, maximum = get_constrained_number_range( gt=field.gt, ge=field.ge, lt=field.lt, le=field.le, t_type=float, multiple_of=multiple_of ) return generate_constrained_number( minimum=minimum, maximum=maximum, multiple_of=multiple_of, method=create_random_float, )
plenum/test/plugin/conftest.py
andkononykhin/plenum
148
12733588
OPERATION_VALIDATION_PLUGIN_PATH_VALUE = "operation_verification" AUCTION_REQ_VALIDATION_PLUGIN_PATH_VALUE = "auction_req_validation" AUCTION_REQ_PROCESSOR_PLUGIN_PATH_VALUE = "auction_req_processor" BANK_REQ_VALIDATION_PLUGIN_PATH_VALUE = "bank_req_validation" BANK_REQ_PROCESSOR_PLUGIN_PATH_VALUE = "bank_req_processor" STATS_CONSUMER_PLUGIN_PATH_VALUE = "stats_consumer"
String/1417. Reformat The String.py
beckswu/Leetcode
138
12733612
class Solution: def reformat(self, s: str) -> str: str_list = [] digit_list = [] for i in s: if i.isdigit(): digit_list += i, elif i.isalpha(): str_list += i, if abs( len(str_list) - len(digit_list)) > 1: return "" res = "" if len(str_list) < len(digit_list): str_list, digit_list = digit_list, str_list #str_list always bigger than digit_list for i, j in zip(str_list,digit_list): res += i + j return res + ("" if len(str_list) == len(digit_list) else str_list[-1]) class Solution(object): def reformat(self, s): """ :type s: str :rtype: str """ def char_gen(start, end, count): for c in range(ord(start), ord(end)+1): c = chr(c) for i in range(count[c]): yield c yield '' count = collections.defaultdict(int) alpha_cnt = 0 for c in s: count[c] += 1 if c.isalpha(): alpha_cnt += 1 if abs(len(s)-2*alpha_cnt) > 1: return "" result = [] it1, it2 = char_gen('a', 'z', count), char_gen('0', '9', count) if alpha_cnt < len(s)-alpha_cnt: it1, it2 = it2, it1 while len(result) < len(s): result.append(next(it1)) result.append(next(it2)) return "".join(result) class Solution: def reformat(self, s: str) -> str: a, b = [], [] for c in s: if 'a' <= c <= 'z': a.append(c) else: b.append(c) if len(a) < len(b): a, b = b, a if len(a) - len(b) >= 2: return '' ans = '' for i in range(len(a)+len(b)): if i % 2 == 0: ans += a[i//2] else: ans += b[i//2] return ans
tests/unit/compiler/__init__.py
gamechanger/dusty
421
12733618
import os from pkg_resources import resource_isdir, resource_listdir, resource_string import yaml from nose.tools import nottest from dusty.compiler.spec_assembler import get_specs_from_path @nottest def get_all_test_configs(): return resource_listdir(__name__, 'test_configs') @nottest def resources_for_test_config(test_config): resources = {} for key in [constants.CONFIG_BUNDLES_KEY, 'apps', 'libs', 'services']: key_path = 'test_configs/{}/{}'.format(test_config, key) if resource_isdir(__name__, key_path): resources[key] = {resource_name: resource_string(__name__, '{}/{}'.format(key_path, resource_name)) for resource_name in resource_listdir(__name__, key_path)} return resources @nottest def specs_for_test_config(test_config): case_path = '{}/test_configs/{}/'.format(__path__[0], test_config) return get_specs_from_path(case_path) @nottest def assembled_specs_for_test_config(test_config): assembled_file = "{}/test_configs/{}/assembled_spec.yml".format(__path__[0], test_config) with open(assembled_file, 'r') as f: return yaml.load(f.read()) @nottest def nginx_config_for_test_config(test_config): return resource_string(__name__, 'test_configs/{}/nginx.conf'.format(test_config)) @nottest def docker_compose_yaml_for_test_config(test_config): return resource_string(__name__, 'test_configs/{}/docker-compose.yml'.format(test_config))
plydata/tidy/__init__.py
has2k1/plydata
247
12733630
from .tidy_verbs import * # noqa from .. import _get_all_imports __all__ = _get_all_imports(globals())
src/collector/wechat/feddd_start.py
showthesunli/liuli
139
12733679
""" Created by leeorz. Description: 采集器: - 基于 src/collector/wechat_sougou/items/wechat_item.py的公众号采集 - 基于 feedparser,从feeddd解析rss Changelog: all notable changes to this file will be documented """ import asyncio import feedparser from ruia import Response, Spider from ruia_ua import middleware as ua_middleware from src.collector.utils import load_data_to_articlles from src.collector.wechat.items import WechatItem from src.processor import html_to_text_h2t from src.utils.log import LOGGER from src.utils.tools import md5_encryption class WeiXinSpider(Spider): """微信公众号文章抓取爬虫 Args: collect_config (dict, optional): 采集器配置 """ name = "WeiXinSpider" request_config = {"RETRIES": 3, "DELAY": 3, "TIMEOUT": 5} concurrency = 10 wechat_name = "" # aiohttp config aiohttp_kwargs = {} async def parse(self, response: Response): """解析公众号元数据""" html = await response.text() wechat_item: WechatItem = await WechatItem.get_item(html=html) wechat_data = { **wechat_item.results, **{ "doc_id": md5_encryption(f"{wechat_item.doc_name}_{self.wechat_name}"), "doc_keywords": "", "doc_source_name": self.wechat_name, "doc_link": response.url, "doc_source": "liuli_wechat", "doc_source_account_nick": wechat_item.doc_source_account_nick, "doc_source_account_intro": wechat_item.doc_source_account_intro, "doc_content": html_to_text_h2t(html), "doc_html": "", }, } await asyncio.coroutine(load_data_to_articlles)(input_data=wechat_data) def run(collect_config: dict): """rss解析,并使用WeiXinSpider抓取rss条目,并持久化 Args: collect_config (dict, optional): 采集器配置 """ feeds_dict: dict = collect_config.get("feeds_dict") feeds_name: list = list(feeds_dict) delta_time = collect_config.get("delta_time", 3) WeiXinSpider.request_config = { "RETRIES": 3, "DELAY": delta_time, "TIMEOUT": 5, } for name in feeds_name: WeiXinSpider.wechat_name = name LOGGER.info(f"rss源 {name}: {feeds_dict[name]}") fd = feedparser.parse(feeds_dict[name]) urls = [] for entry in fd.entries: LOGGER.info(entry.link) urls.append(entry.link) WeiXinSpider.start_urls = urls WeiXinSpider.start(middleware=ua_middleware)
ai/models/detectron2/_functional/checkpointer.py
MattSkiff/aerial_wildlife_detection
166
12733699
<filename>ai/models/detectron2/_functional/checkpointer.py ''' Subclass of Detectron2's Checkpointer, able to load model states from an in-memory Python dict according to states as saved in AIDE. 2020-21 <NAME> ''' from detectron2.checkpoint import DetectionCheckpointer from typing import List, Optional class DetectionCheckpointerInMem(DetectionCheckpointer): def loadFromObject(self, stateDict: dict, checkpointables: Optional[List[str]] = None) -> object: ''' Customized routine that loads a model state dict from an object, rather than a file path. Most of the remaining code is just copied from https://detectron2.readthedocs.io/_modules/fvcore/common/checkpoint.html#Checkpointer.load ''' if stateDict is None or 'model' not in stateDict: # nothing to load; return return {} incompatible = self._load_model(stateDict) if ( incompatible is not None ): # handle some existing subclasses that returns None self._log_incompatible_keys(incompatible) for key in self.checkpointables if checkpointables is None else checkpointables: if key in stateDict: # pyre-ignore self.logger.info("Loading {} from state dict".format(key)) obj = self.checkpointables[key] obj.load_state_dict(stateDict.pop(key)) # pyre-ignore # return any further checkpoint data return stateDict
util/security/crypto.py
giuseppe/quay
2,027
12733755
<filename>util/security/crypto.py import base64 from cryptography.fernet import Fernet, InvalidToken def encrypt_string(string, key): """ Encrypts a string with the specified key. The key must be 32 raw bytes. """ f = Fernet(key) # Fernet() works only on byte objects. Convert the string to bytes. unencrypted_bytes = string.encode() encrypted_bytes = f.encrypt(unencrypted_bytes) # Fernet() returns a byte object. Convert it to a string before returning. encrypted_string = encrypted_bytes.decode() return encrypted_string def decrypt_string(string, key, ttl=None): """ Decrypts an encrypted string with the specified key. The key must be 32 raw bytes. """ f = Fernet(key) # Fernet() works only on byte objects. Convert the string to bytes before decrypting. encrypted_bytes = string.encode() # str -> bytes try: decrypted_bytes = f.decrypt(encrypted_bytes, ttl=ttl) except InvalidToken: """ From the the Cryptography's library documentation: If the token is in any way invalid, this exception is raised. A token may be invalid for a number of reasons: it is older than the ttl, it is malformed, or it does not have a valid signature. """ return None # TODO(kmullins): Shall we log this case? Is it expected? decrypted_string = decrypted_bytes.decode() # bytes -> str return decrypted_string
tools/traffic_annotation/scripts/traffic_annotation_auditor_tests.py
zipated/src
2,151
12733763
<reponame>zipated/src<filename>tools/traffic_annotation/scripts/traffic_annotation_auditor_tests.py #!/usr/bin/env python # Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Runs tests to ensure annotation tests are working as expected. """ import os import argparse import sys import tempfile from annotation_tools import NetworkTrafficAnnotationTools # If this test starts failing, please set TEST_IS_ENABLED to "False" and file a # bug to get this reenabled, and cc the people listed in # //tools/traffic_annotation/OWNERS. TEST_IS_ENABLED = True class TrafficAnnotationTestsChecker(): def __init__(self, build_path=None): """Initializes a TrafficAnnotationTestsChecker object. Args: build_path: str Absolute or relative path to a fully compiled build directory. """ self.tools = NetworkTrafficAnnotationTools(build_path) def RunAllTests(self): """Runs all tests and returns the result.""" return self.CheckAuditorResults() and self.CheckOutputExpectations() def CheckAuditorResults(self): """Runs auditor using different configurations, expecting to run error free, and having equal results in the exported TSV file in all cases. The TSV file provides a summary of all annotations and their content. Returns: bool True if all results are as expected. """ configs = [ ["--test-only", "--error-resilient"], # Similar to trybot. ["--test-only"], # Failing on any runtime error. ["--test-only", "--no-filtering"] # Not using heuristic filtering. ] last_result = None for config in configs: result = self._RunTest(config) if not result: print("No output for config: %s" % config) return False if last_result and last_result != result: print("Unexpected different results for config: %s" % config) return False last_result = result return True def CheckOutputExpectations(self): # TODO(https://crbug.com/690323): Add tests to check for an expected minimum # number of items for each type of pattern that auditor extracts. E.g., we # should have many annotations of each type (complete, partial, ...), # functions that need annotations, direct assignment to mutable annotations, # etc. return True def _RunTest(self, args): """Runs the auditor test with given |args|, and returns the extracted annotations. Args: args: list of str Arguments to be passed to auditor. Returns: str Content of annotations.tsv file if successful, otherwise None. """ print("Running auditor using config: %s" % args) temp_file = tempfile.NamedTemporaryFile() temp_filename = temp_file.name temp_file.close() _, stderr_text, return_code = self.tools.RunAuditor( args + ["--annotations-file=%s" % temp_filename]) if os.path.exists(temp_filename): annotations = None if (return_code or stderr_text) \ else open(temp_filename).read() os.remove(temp_filename) else: annotations = None if annotations: print("Test PASSED.") else: print("Test FAILED.\n%s" % stderr_text) return annotations def main(): if not TEST_IS_ENABLED: return 0 parser = argparse.ArgumentParser( description="Traffic Annotation Tests checker.") parser.add_argument( '--build-path', help='Specifies a compiled build directory, e.g. out/Debug. If not ' 'specified, the script tries to guess it. Will not proceed if not ' 'found.') args = parser.parse_args() checker = TrafficAnnotationTestsChecker(args.build_path) return 0 if checker.RunAllTests() else 1 if '__main__' == __name__: sys.exit(main())
setup.py
bcicen/docker-replay
191
12733775
from setuptools import setup exec(open('docker_replay/version.py').read()) setup(name='docker-replay', version=version, packages=['docker_replay'], description='Generate docker run commands from running containers', author='<NAME>', author_email='<EMAIL>', url='https://github.com/bcicen/docker-replay', install_requires=['docker>=2.4.2'], license='http://opensource.org/licenses/MIT', classifiers=( 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License ', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', ), keywords='docker docker-py devops', entry_points = { 'console_scripts' : ['docker-replay = docker_replay:main'] } )
menpo_functions.py
konatasick/face-of-art
220
12733777
<gh_stars>100-1000 import os from scipy.io import loadmat from menpo.shape.pointcloud import PointCloud from menpo.transform import ThinPlateSplines import menpo.transform as mt import menpo.io as mio from glob import glob from deformation_functions import * # landmark indices by facial feature jaw_indices = np.arange(0, 17) lbrow_indices = np.arange(17, 22) rbrow_indices = np.arange(22, 27) upper_nose_indices = np.arange(27, 31) lower_nose_indices = np.arange(31, 36) leye_indices = np.arange(36, 42) reye_indices = np.arange(42, 48) outer_mouth_indices = np.arange(48, 60) inner_mouth_indices = np.arange(60, 68) # flipped landmark indices mirrored_parts_68 = np.hstack([ jaw_indices[::-1], rbrow_indices[::-1], lbrow_indices[::-1], upper_nose_indices, lower_nose_indices[::-1], np.roll(reye_indices[::-1], 4), np.roll(leye_indices[::-1], 4), np.roll(outer_mouth_indices[::-1], 7), np.roll(inner_mouth_indices[::-1], 5) ]) def load_bb_files(bb_file_dirs): """load bounding box mat file for challenging, common, full & training datasets""" bb_files_dict = {} for bb_file in bb_file_dirs: bb_mat = loadmat(bb_file)['bounding_boxes'] num_imgs = np.max(bb_mat.shape) for i in range(num_imgs): name = bb_mat[0][i][0][0][0][0] bb_init = bb_mat[0][i][0][0][1] - 1 # matlab indicies bb_gt = bb_mat[0][i][0][0][2] - 1 # matlab indicies if str(name) in bb_files_dict.keys(): print (str(name) + ' already exists') else: bb_files_dict[str(name)] = (bb_init, bb_gt) return bb_files_dict def load_bb_dictionary(bb_dir, mode, test_data='full'): """create bounding box dictionary of input dataset: train/common/full/challenging""" if mode == 'TRAIN': bb_dirs = \ ['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat'] else: if test_data == 'common': bb_dirs = \ ['bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat'] elif test_data == 'challenging': bb_dirs = ['bounding_boxes_ibug.mat'] elif test_data == 'full': bb_dirs = \ ['bounding_boxes_ibug.mat', 'bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat'] elif test_data == 'training': bb_dirs = \ ['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat'] else: bb_dirs = None if mode == 'TEST' and test_data not in ['full', 'challenging', 'common', 'training']: bb_files_dict = None else: bb_dirs = [os.path.join(bb_dir, dataset) for dataset in bb_dirs] bb_files_dict = load_bb_files(bb_dirs) return bb_files_dict def center_margin_bb(bb, img_bounds, margin=0.25): """create new bounding box with input margin""" bb_size = ([bb[0, 2] - bb[0, 0], bb[0, 3] - bb[0, 1]]) margins = (np.max(bb_size) * (1 + margin) - bb_size) / 2 bb_new = np.zeros_like(bb) bb_new[0, 0] = np.maximum(bb[0, 0] - margins[0], 0) bb_new[0, 2] = np.minimum(bb[0, 2] + margins[0], img_bounds[1]) bb_new[0, 1] = np.maximum(bb[0, 1] - margins[1], 0) bb_new[0, 3] = np.minimum(bb[0, 3] + margins[1], img_bounds[0]) return bb_new def crop_to_face_image(img, bb_dictionary=None, gt=True, margin=0.25, image_size=256, normalize=True, return_transform=False): """crop face image using bounding box dictionary, or GT landmarks""" name = img.path.name img_bounds = img.bounds()[1] # if there is no bounding-box dict and GT landmarks are available, use it to determine the bounding box if bb_dictionary is None and img.has_landmarks: grp_name = img.landmarks.group_labels[0] bb_menpo = img.landmarks[grp_name].bounding_box().points bb = np.array([[bb_menpo[0, 1], bb_menpo[0, 0], bb_menpo[2, 1], bb_menpo[2, 0]]]) elif bb_dictionary is not None: if gt: bb = bb_dictionary[name][1] # ground truth else: bb = bb_dictionary[name][0] # init from face detector else: bb = None if bb is not None: # add margin to bounding box bb = center_margin_bb(bb, img_bounds, margin=margin) bb_pointcloud = PointCloud(np.array([[bb[0, 1], bb[0, 0]], [bb[0, 3], bb[0, 0]], [bb[0, 3], bb[0, 2]], [bb[0, 1], bb[0, 2]]])) if return_transform: face_crop, bb_transform = img.crop_to_pointcloud(bb_pointcloud, return_transform=True) else: face_crop = img.crop_to_pointcloud(bb_pointcloud) else: # if there is no bounding box/gt landmarks, use entire image face_crop = img.copy() bb_transform = None # if face crop is not a square - pad borders with mean pixel value h, w = face_crop.shape diff = h - w if diff < 0: face_crop.pixels = np.pad(face_crop.pixels, ((0, 0), (0, -1 * diff), (0, 0)), 'mean') elif diff > 0: face_crop.pixels = np.pad(face_crop.pixels, ((0, 0), (0, 0), (0, diff)), 'mean') if return_transform: face_crop, rescale_transform = face_crop.resize([image_size, image_size], return_transform=True) if bb_transform is None: transform_chain = rescale_transform else: transform_chain = mt.TransformChain(transforms=(rescale_transform, bb_transform)) else: face_crop = face_crop.resize([image_size, image_size]) if face_crop.n_channels == 4: face_crop.pixels = face_crop.pixels[:3, :, :] if normalize: face_crop.pixels = face_crop.rescale_pixels(0., 1.).pixels if return_transform: return face_crop, transform_chain else: return face_crop def augment_face_image(img, image_size=256, crop_size=248, angle_range=30, flip=True): """basic image augmentation: random crop, rotation and horizontal flip""" # taken from MDM: https://github.com/trigeorgis/mdm def mirror_landmarks_68(lms, im_size): return PointCloud(abs(np.array([0, im_size[1]]) - lms.as_vector( ).reshape(-1, 2))[mirrored_parts_68]) # taken from MDM: https://github.com/trigeorgis/mdm def mirror_image(im): im = im.copy() im.pixels = im.pixels[..., ::-1].copy() for group in im.landmarks: lms = im.landmarks[group] if lms.points.shape[0] == 68: im.landmarks[group] = mirror_landmarks_68(lms, im.shape) return im flip_rand = np.random.random() > 0.5 # rot_rand = np.random.random() > 0.5 # crop_rand = np.random.random() > 0.5 rot_rand = True # like ECT: https://github.com/HongwenZhang/ECT-FaceAlignment crop_rand = True # like ECT: https://github.com/HongwenZhang/ECT-FaceAlignment if crop_rand: lim = image_size - crop_size min_crop_inds = np.random.randint(0, lim, 2) max_crop_inds = min_crop_inds + crop_size img = img.crop(min_crop_inds, max_crop_inds) if flip and flip_rand: img = mirror_image(img) if rot_rand: rot_angle = 2 * angle_range * np.random.random_sample() - angle_range img = img.rotate_ccw_about_centre(rot_angle) img = img.resize([image_size, image_size]) return img def augment_menpo_img_ns(img, img_dir_ns, p_ns=0.): """texture style image augmentation using stylized copies in *img_dir_ns*""" img = img.copy() if p_ns > 0.5: ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '_ns*')) num_augs = len(ns_augs) if num_augs > 0: ns_ind = np.random.randint(0, num_augs) ns_aug = mio.import_image(ns_augs[ns_ind]) ns_pixels = ns_aug.pixels img.pixels = ns_pixels return img def augment_menpo_img_geom(img, p_geom=0.): """geometric style image augmentation using random face deformations""" img = img.copy() if p_geom > 0.5: grp_name = img.landmarks.group_labels[0] lms_geom_warp = deform_face_geometric_style(img.landmarks[grp_name].points.copy(), p_scale=p_geom, p_shift=p_geom) img = warp_face_image_tps(img, PointCloud(lms_geom_warp), grp_name) return img def warp_face_image_tps(img, new_shape, lms_grp_name='PTS', warp_mode='constant'): """warp image to new landmarks using TPS interpolation""" tps = ThinPlateSplines(new_shape, img.landmarks[lms_grp_name]) try: img_warp = img.warp_to_shape(img.shape, tps, mode=warp_mode) img_warp.landmarks[lms_grp_name] = new_shape return img_warp except np.linalg.linalg.LinAlgError as err: print ('Error:'+str(err)+'\nUsing original landmarks for:\n'+str(img.path)) return img def load_menpo_image_list( img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25, bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0, augment_geom=False, p_geom=0, verbose=False, return_transform=False): """load images from image dir to create menpo-type image list""" def crop_to_face_image_gt(img): return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size, return_transform=return_transform) def crop_to_face_image_init(img): return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size, return_transform=return_transform) def crop_to_face_image_test(img): return crop_to_face_image(img, bb_dictionary=None, margin=margin, image_size=image_size, return_transform=return_transform) def augment_menpo_img_ns_rand(img): return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture)[0]) def augment_menpo_img_geom_rand(img): return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() < p_geom)[0]) if mode is 'TRAIN': if train_crop_dir is None: img_set_dir = os.path.join(img_dir, 'training') out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) if bb_type is 'gt': out_image_list = out_image_list.map(crop_to_face_image_gt) elif bb_type is 'init': out_image_list = out_image_list.map(crop_to_face_image_init) else: img_set_dir = os.path.join(img_dir, train_crop_dir) out_image_list = mio.import_images(img_set_dir, verbose=verbose) # perform image augmentation if augment_texture and p_texture > 0: out_image_list = out_image_list.map(augment_menpo_img_ns_rand) if augment_geom and p_geom > 0: out_image_list = out_image_list.map(augment_menpo_img_geom_rand) if augment_basic: out_image_list = out_image_list.map(augment_face_image) else: # if mode is 'TEST', load test data if test_data in ['full', 'challenging', 'common', 'training', 'test']: img_set_dir = os.path.join(img_dir, test_data) out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) if bb_type is 'gt': out_image_list = out_image_list.map(crop_to_face_image_gt) elif bb_type is 'init': out_image_list = out_image_list.map(crop_to_face_image_init) else: img_set_dir = os.path.join(img_dir, test_data) out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) out_image_list = out_image_list.map(crop_to_face_image_test) return out_image_list
heraspy/events.py
new-coast-ventures/hc-ai-hera
368
12733802
<reponame>new-coast-ventures/hc-ai-hera<gh_stars>100-1000 TRAIN_BEGIN = 'TRAIN_BEGIN' TRAIN_END = 'TRAIN_END' EPOCH_BEGIN = 'EPOCH_BEGIN' EPOCH_END = 'EPOCH_END' BATCH_BEGIN = 'BATCH_BEGIN' BATCH_END = 'BATCH_END'
tests/test_context.py
Hirni-Meshram5/moderngl
916
12733819
from unittest import TestCase import moderngl import numpy import platform class ContextTests(TestCase): def test_create_destroy(self): """Create and destroy a context""" for _ in range(25): ctx = moderngl.create_context(standalone=True) ctx.release() def test_context_switch(self): """Ensure context switching is working""" ctx1 = moderngl.create_context(standalone=True) ctx2 = moderngl.create_context(standalone=True) with ctx1 as ctx: buffer1 = ctx.buffer(reserve=1024) with ctx2 as ctx: buffer2 = ctx.buffer(reserve=1024) self.assertEqual(buffer1.glo, buffer2.glo) ctx1.release() ctx2.release() def test_exit(self): """Ensure the previous context was activated on exit""" ctx1 = moderngl.create_context(standalone=True) ctx2 = moderngl.create_context(standalone=True) with ctx1 as ctx: ctx.buffer(reserve=1024) # Will error out if no context is active "moderngl.error.Error: cannot create buffer" ctx1.buffer(reserve=1024) ctx1.release() ctx2.release() def test_share(self): """Create resources with shared context""" if platform.system().lower() in ["darwin", "linux"]: self.skipTest('Context sharing not supported on darwin') data1 = numpy.array([1, 2, 3, 4], dtype='u1') data2 = numpy.array([4, 3, 2, 1], dtype='u1') ctx1 = moderngl.create_context(standalone=True) ctx2 = moderngl.create_context(standalone=True, share=True) with ctx1 as ctx: b1 = ctx.buffer(data=data1) with ctx2 as ctx: b2 = ctx.buffer(data=data2) # Because the resources are shared the name should increment self.assertEqual(b1.glo, 1) self.assertEqual(b2.glo, 2) # Ensure we can read the same buffer data in both contexts with ctx1: self.assertEqual(b1.read(), b'\x01\x02\x03\x04') self.assertEqual(b2.read(), b'\x04\x03\x02\x01') with ctx2: self.assertEqual(b1.read(), b'\x01\x02\x03\x04') self.assertEqual(b2.read(), b'\x04\x03\x02\x01') ctx1.release() ctx2.release() def test_extensions(self): ctx = moderngl.create_context(standalone=True) # self.assertTrue("GL_ARB_vertex_array_object" in ctx.extensions) # self.assertTrue("GL_ARB_transform_feedback2" in ctx.extensions) # self.assertTrue("GL_ARB_shader_subroutine" in ctx.extensions) self.assertIsInstance(ctx.extensions, set) self.assertTrue(len(ctx.extensions) > 0) ctx.release() def test_attributes(self): """Ensure enums are present in the context instance""" ctx = moderngl.create_context(standalone=True) # Flags self.assertIsInstance(ctx.NOTHING, int) self.assertIsInstance(ctx.BLEND, int) self.assertIsInstance(ctx.DEPTH_TEST, int) self.assertIsInstance(ctx.CULL_FACE, int) self.assertIsInstance(ctx.RASTERIZER_DISCARD, int) self.assertIsInstance(ctx.PROGRAM_POINT_SIZE, int) # Primitive modes self.assertIsInstance(ctx.POINTS, int) self.assertIsInstance(ctx.LINES, int) self.assertIsInstance(ctx.LINE_LOOP, int) self.assertIsInstance(ctx.LINE_STRIP, int) self.assertIsInstance(ctx.TRIANGLES, int) self.assertIsInstance(ctx.TRIANGLE_STRIP, int) self.assertIsInstance(ctx.TRIANGLE_FAN, int) self.assertIsInstance(ctx.LINES_ADJACENCY, int) self.assertIsInstance(ctx.LINE_STRIP_ADJACENCY, int) self.assertIsInstance(ctx.TRIANGLES_ADJACENCY, int) self.assertIsInstance(ctx.TRIANGLE_STRIP_ADJACENCY, int) self.assertIsInstance(ctx.PATCHES, int) # Texture filters self.assertIsInstance(ctx.LINEAR, int) self.assertIsInstance(ctx.NEAREST, int) self.assertIsInstance(ctx.NEAREST_MIPMAP_NEAREST, int) self.assertIsInstance(ctx.LINEAR_MIPMAP_LINEAR, int) self.assertIsInstance(ctx.LINEAR_MIPMAP_NEAREST, int) self.assertIsInstance(ctx.NEAREST_MIPMAP_LINEAR, int) # Blend functions self.assertIsInstance(ctx.ZERO, int) self.assertIsInstance(ctx.ONE, int) self.assertIsInstance(ctx.SRC_COLOR, int) self.assertIsInstance(ctx.ONE_MINUS_SRC_COLOR, int) self.assertIsInstance(ctx.SRC_ALPHA, int) self.assertIsInstance(ctx.ONE_MINUS_SRC_ALPHA, int) self.assertIsInstance(ctx.DST_ALPHA, int) self.assertIsInstance(ctx.ONE_MINUS_DST_ALPHA, int) self.assertIsInstance(ctx.DST_COLOR, int) self.assertIsInstance(ctx.ONE_MINUS_DST_COLOR, int) # Blend shortcuts self.assertIsInstance(ctx.DEFAULT_BLENDING, tuple) self.assertIsInstance(ctx.ADDITIVE_BLENDING, tuple) self.assertIsInstance(ctx.PREMULTIPLIED_ALPHA, tuple) # Blend equations self.assertIsInstance(ctx.FUNC_ADD, int) self.assertIsInstance(ctx.FUNC_SUBTRACT, int) self.assertIsInstance(ctx.FUNC_REVERSE_SUBTRACT, int) self.assertIsInstance(ctx.MIN, int) self.assertIsInstance(ctx.MAX, int) # Provoking vertex self.assertIsInstance(ctx.FIRST_VERTEX_CONVENTION, int) self.assertIsInstance(ctx.LAST_VERTEX_CONVENTION, int) def test_enable_direct(self): ctx = moderngl.create_context(standalone=True) ctx.error # consume error during initialization # We already support this, but it's a safe value GL_PROGRAM_POINT_SIZE = 0x8642 ctx.enable_direct(GL_PROGRAM_POINT_SIZE) self.assertEqual(ctx.error, "GL_NO_ERROR") ctx.disable_direct(GL_PROGRAM_POINT_SIZE) self.assertEqual(ctx.error, "GL_NO_ERROR")
scripts/artifacts/appGrouplisting.py
xperylabhub/iLEAPP
325
12733834
<filename>scripts/artifacts/appGrouplisting.py import biplist import pathlib import plistlib import sys from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, tsv, is_platform_windows def get_appGrouplisting(files_found, report_folder, seeker): data_list = [] for file_found in files_found: file_found = str(file_found) with open(file_found, "rb") as fp: if sys.version_info >= (3, 9): plist = plistlib.load(fp) else: plist = biplist.readPlist(fp) bundleid = plist['MCMMetadataIdentifier'] p = pathlib.Path(file_found) appgroupid = p.parent.name fileloc = str(p.parents[1]) typedir = str(p.parents[1].name) data_list.append((bundleid, typedir, appgroupid, fileloc)) if len(data_list) > 0: filelocdesc = 'Path column in the report' description = 'List can included once installed but not present apps. Each file is named .com.apple.mobile_container_manager.metadata.plist' report = ArtifactHtmlReport('Bundle ID by AppGroup & PluginKit IDs') report.start_artifact_report(report_folder, 'Bundle ID by AppGroup & PluginKit IDs', description) report.add_script() data_headers = ('Bundle ID','Type','Directory GUID','Path') report.write_artifact_data_table(data_headers, data_list, filelocdesc) report.end_artifact_report() tsvname = 'Bundle ID - AppGroup ID - PluginKit ID' tsv(report_folder, data_headers, data_list, tsvname) else: logfunc('No data on Bundle ID - AppGroup ID - PluginKit ID')
src/python/loadGraph.py
neoremind/luceneutil
164
12733837
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os import re import cPickle import responseTimeGraph logPoints = ((50, 2), (75, 4), (90, 10), (95, 20), (97.5, 40), (99, 100), (99.9, 1000), (99.99, 10000), (99.999, 100000), (99.9999, 1000000), (99.99999, 10000000)) def graph(rowPoint, logsDir, warmupSec, names, fileName, maxQPS=None): allQPS = set() points = {} for name in names: reQPS = re.compile(r'^%s\.qps(\d+)$' % re.escape(name)) for f in os.listdir(logsDir): m = reQPS.match(f) resultsFile = '%s/%s/results.pk' % (logsDir, f) if not os.path.exists(resultsFile): resultsFile = '%s/%s/results.bin' % (logsDir, f) if m is not None and os.path.exists(resultsFile): qps = int(m.group(1)) if maxQPS is not None and qps > maxQPS: print 'SKIPPING %s qps' % qps continue allQPS.add(qps) results = responseTimeGraph.loadResults(resultsFile) # Discard first warmupSec seconds: upto = 0 while results[upto][0] < warmupSec: upto += 1 results = results[upto:] responseTimes = [x[2] for x in results] responseTimes.sort() if rowPoint == 'min': t = responseTimes[0] elif rowPoint == 'max': t = responseTimes[-1] else: pct, minCount = logPoints[rowPoint] if len(responseTimes) < minCount: raise RuntimeError('%s doesn\'t have enough enough data' % name) idx = int(((100.0-pct)/100.0)*len(responseTimes)) # TODO: should we take linear blend of the two points...? Else # we have a sparseness problem... t = responseTimes[-idx-1] points[(name, qps)] = t if sla is not None and t <= sla: passesSLA.add(name) qpsList = list(allQPS) qpsList.sort() cleanName = {'OracleCMS': 'CMS', 'OracleCMSMMap': 'CMS + MMap', 'OracleCMSMMapDir': 'CMS + MMap'} print 'names: %s; cleaned %s' % (names, (', '.join("'%s'" % cleanName.get(x, x) for x in names))) l = [] w = l.append w("['QPS', %s],\n" % (', '.join("'%s'" % cleanName.get(x, x) for x in names))) for qps in qpsList: row = ['%d' % qps] for name in names: try: s = '%.1f' % points[(name, qps)] except KeyError: s = '' row.append(s) w('[%s],\n' % ','.join(row)) if rowPoint == 'max': p = 'Max' elif rowPoint == 'min': p = 'Min' else: p = '%g%%' % logPoints[rowPoint][0] html = graphHeader + ''.join(l) + graphFooter % p open(fileName, 'wb').write(html) print ' saved %s' % fileName graphHeader = '''<html> <head> <script type="text/javascript" src="https://www.google.com/jsapi"></script> <script type="text/javascript"> google.load("visualization", "1", {packages:["corechart"]}); google.setOnLoadCallback(drawChart); function drawChart() { var data = google.visualization.arrayToDataTable([ ''' graphFooter = ''' ]); var options = { title: '%s Response Time vs QPS', hAxis: {'title': 'QPS'}, vAxis: {'title': 'Response Time (msec)'}, }; var chart = new google.visualization.LineChart(document.getElementById('chart_div')); chart.draw(data, options); } </script> </head> <body> <div id="chart_div" style="width: 1200px; height: 600px;"></div> </body> </html> ''' if __name__ == '__main__': logsDir = sys.argv[1] warmupSec = float(sys.argv[2]) reportDir = sys.argv[3] for idx in xrange(len(logPoints)): graph(idx, logsDir, warmupSec, sys.argv[4:], '%s/load%spct.html' % (reportDir, logPoints[idx][0])) graph('max', logsDir, warmupSec, sys.argv[4:], '%s/loadmax.html' % reportDir)
x2paddle/project_convertor/pytorch/torch2paddle/__init__.py
usertianqin/X2Paddle
559
12733853
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .io import * from .layer import * from .tensor import * from .optimizer import * from .nn import * from .nn_utils import * from .nn_functional import * from .nn_init import * from .varbase import * from .vision_transforms import * from .device import * from .vision_utils import * from .vision_datasets import * from .ops import * from .learning_rate_scheduler import * from .parambase import *
amazon-ml-hyperparameter-optimization/fold.py
meghanaravikumar/sigopt-examples
213
12733871
#!/usr/bin/env python # Amazon Machine Learning Samples # Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Amazon Software License (the "License"). You may not use # this file except in compliance with the License. A copy of the License is # located at # # http://aws.amazon.com/asl/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or # implied. See the License for the specific language governing permissions and # limitations under the License. import base64 import boto3 import json import os import logging import config logger = logging.getLogger(config.APP_NAME) class Fold(object): """ This class represents a 'Fold' in K-fold Cross-validation. A fold understands the ordinal number in its sequence of Fold objects, so that it is able to draw the splitting range, and the splitting complement flag for DataRearrangement string. The instance of a fold can use Amazon ML's API to create an evaluation datasource, and a training datasource. """ def __init__(self, data_spec=None, this_fold=None, kfolds=None): """ Construct this instance of Fold. Args: data_spec: the named tuple object that wraps dataset related parameters. this_fold: the integer number indicating the ordinal number of this instance in its sequence of Fold objects. kfolds: the integer number representing the number of folds. """ self.data_spec = data_spec self.this_fold = this_fold self.kfolds = kfolds self.fold_ordinal = self.this_fold + 1 # fold_ordinal counting from 1 self.train_ds_id = None self.train_ds_rearrange = None self.eval_ds_id = None self.eval_ds_rearrange = None def build(self): """ Builds the necessary entities on Amazon ML. """ self._ml = boto3.client('machinelearning', region_name='us-east-1') self.create_datasources() def cleanup(self): self._ml.delete_data_source(DataSourceId=self.train_ds_id) logger.info("Deleted Training Datasource " + self.train_ds_id) self._ml.delete_data_source(DataSourceId=self.eval_ds_id) logger.info("Deleted Evaluation Datasource " + self.eval_ds_id) def __str__(self): """ Returns the string representing this fold object. The string includes the IDs of entities newly created on Amazon ML. """ return """\n\ Fold {fold_ordinal} of {kfolds}: - Training Datasource ID: {train_ds_id} - Evaluation Datasource ID: {eval_ds_id}""".format(**self.__dict__) def create_datasources(self): """ Creates datasource for model training and evaluation on Amazon ML. """ # create training datasource for this fold self.train_ds_id = "ds-" + base64.b32encode(os.urandom(10)).decode( "ascii") self.train_ds_rearrange = self.build_rearrangement_str( is_complement=True) self.train_ds_name = self.build_datasource_name( self.data_spec.name, self.train_ds_rearrange) self._ml.create_data_source_from_s3( DataSourceId=self.train_ds_id, DataSourceName=self.train_ds_name, DataSpec=dict( DataLocationS3=self.data_spec.data_s3_url, DataSchema=self.data_spec.schema, DataRearrangement=self.train_ds_rearrange, ), ComputeStatistics=True, ) logger.info("Created Training Datasource " + self.train_ds_id) # create evaluation datasource for this fold self.eval_ds_id = "ds-" + base64.b32encode(os.urandom(10)).decode( "ascii") self.eval_ds_rearrange = self.build_rearrangement_str( is_complement=False) self.eval_ds_name = self.build_datasource_name( self.data_spec.name, self.eval_ds_rearrange) self._ml.create_data_source_from_s3( DataSourceId=self.eval_ds_id, DataSourceName=self.eval_ds_name, DataSpec=dict( DataLocationS3=self.data_spec.data_s3_url, DataSchema=self.data_spec.schema, DataRearrangement=self.eval_ds_rearrange, ), ComputeStatistics=True, ) logger.info("Created Evaluation Datasource " + self.eval_ds_id) def build_rearrangement_str(self, is_complement): """ Returns the DataRearrangement string. Args: is_complement: the boolean flag to indicate whether the datasource takes the given splitting range, or the complement of it. Returns: a string of the DataRearrangement """ # Use integer division as rearrange API only support percentage # in integer. Casting self.kfolds to integer for Python 2 # compatibility. percent_begin = self.this_fold * (100 // int(self.kfolds)) percent_end = (self.this_fold + 1) * (100 // int(self.kfolds)) return json.dumps({ "splitting": { "percentBegin": percent_begin, "percentEnd": percent_end, "complement": is_complement, "strategy": config.STRATEGY, "strategyParams": { "randomSeed": config.RANDOM_STRATEGY_RANDOM_SEED } } }) def build_datasource_name(self, name, rearrangement_str): """ Builds the name of datasource to create Args: name: the user-provided name of entities on Amazon ML rearrangement_str: the rearrangement JSON string Returns: a string representing the name of datasource to create """ rearrangement = json.loads(rearrangement_str) percent_begin = rearrangement["splitting"]["percentBegin"] percent_end = rearrangement["splitting"]["percentEnd"] is_complement = rearrangement["splitting"]["complement"] return "{name} [percentBegin={pb}, percentEnd={pe}, complement={c}]"\ .format(name=name, pb=percent_begin, pe=percent_end, c=is_complement)
Home Automation/Part 5/homeSecPi.py
NAzT/ESP8266
101
12733905
<reponame>NAzT/ESP8266 #!/usr/bin/python import sys import os import paho.mqtt.client as mqtt import smtplib import string #var to track the current status of the system (armed or disarmed) securityEnStatus = None #enable/disable email notifications - disable when testing/enable when in normal use sendEmail = False #This is like the confirm topic for the security system - it notifies other nodes about the status of the system statusTopic = "/house/secStatus" #this is the control topic that this script listens to for messages telling it to arm or disarm enableTopic = "/house/secEn" def on_connect(mqttc, obj, flags, rc): print("rc: "+str(rc)) def on_message(mqttc, obj, msg): global securityEnStatus global breachesSinceReset #if the topic is the enable topic and its to enable the system (1) #publish to the state topic that the system is armed and enable status to on if(str(msg.topic) == enableTopic and int(msg.payload) == 1): securityEnStatus = True mqttc.publish(statusTopic, "armed_away") print("Security Enabled") #if the topic is the enable topic and its to disable the system (0) #then set the enable status to off #and publish to the state topic that were disabled and publish the number of breaches elif(str(msg.topic) == enableTopic and int(msg.payload) == 0): securityEnStatus = False mqttc.publish(statusTopic, "disarmed") print("Security Disabled") #all other topics are detector nodes such as motion detectors and door sensors #so as long as the security system is enabled (armed), if one of the detector nodes is triggered #send out an alert elif(securityEnStatus == True and int(msg.payload) == 1): mqttc.publish(statusTopic, "triggered") securityAlert(str(msg.topic)) def on_publish(mqttc, obj, mid): print("mid: "+str(mid)) def on_subscribe(mqttc, obj, mid, granted_qos): print("Subscribed: "+str(mid)+" "+str(granted_qos)) def on_log(mqttc, obj, level, string): print(string) def securityAlert(alertLoc): global sendEmail print("Breach at: " + alertLoc) print("Sending Alert!\n") if(sendEmail == True): #to and from addresses fromaddr = '-----YOUR EMAIL ADDRESS-----' toaddrs = '-----EMAIL ADDRESS TO ALERT-----' #form the email header+body header = 'To:' + toaddrs + '\n' + 'From: ' + fromaddr + '\n' + 'Subject:Home Security Breach! \n' msg = header + "\nBreach Location: " + alertLoc + "\n\n" #login credentials username = '-----YOUR EMAIL ADDRESS USERNAME-----' password = '-----<PASSWORD>-----' # send the email server = smtplib.SMTP('smtp.gmail.com:587') server.ehlo() server.starttls() server.ehlo() server.login(username,password) server.sendmail(fromaddr, toaddrs, msg) server.quit() mqttc = mqtt.Client() mqttc.on_message = on_message mqttc.on_connect = on_connect mqttc.on_publish = on_publish mqttc.on_subscribe = on_subscribe mqttc.connect("127.0.0.1", 1883, 60) #Enable Monitor mqttc.subscribe(enableTopic, 0) #detector nodes mqttc.subscribe("/house/door1", 0) mqttc.loop_forever()
functions/setting/artificial_generation_setting.py
hsokooti/RegNet
187
12733945
<filename>functions/setting/artificial_generation_setting.py<gh_stars>100-1000 import copy def load_deform_exp_setting(selected_deform_exp): def_setting = dict() if selected_deform_exp == '3D_max20_D14': def_setting = dict() def_setting['MaxDeform'] = 20 # The maximum amplitude of deformations def_setting['DeformMethods'] = ['respiratory_motion', 'respiratory_motion', 'respiratory_motion', 'respiratory_motion', 'single_frequency', 'single_frequency', 'single_frequency', 'single_frequency', 'single_frequency', 'mixed_frequency', 'mixed_frequency', 'mixed_frequency', 'mixed_frequency', 'zero'] def_setting['UseLungMask'] = True # The peaks of synthetic deformation can only be inside the mask def_setting['verbose_image'] = False # Detailed writing of images: writing the DVF of the nextFixedImage def_setting['DVFNormalization'] = True def_setting['MaskToZero'] = 'Torso' def_setting['WriteIntermediateIntensityAugmentation'] = False # stages def_setting['DeleteStage1Images'] = True # After downsampling, delete all images in the original resolution. # images def_setting['Canny_LowerThreshold'] = 50.0 def_setting['Canny_UpperThreshold'] = 100.0 def_setting['Im_NoiseSigma'] = 10 # Sigma for adding noise after deformation def_setting['Im_NoiseAverage'] = 10 # Mean for adding noise after deformation # occlusion def_setting['Occlusion'] = True def_setting['Occlusion_NumberOfEllipse'] = 10 def_setting['Occlusion_IntensityRange'] = [-800, -780] def_setting['Occlusion_Max_a'] = 15 def_setting['Occlusion_Max_b'] = 15 def_setting['Occlusion_Max_c'] = 15 # NextIm def_setting['NextIm_SigmaN'] = 2 # The intensity noise is less than normal Defomred Images in order to prevent accumulating noise. # Since we are going to generate several deformed images on the NextIm def_setting['NextIm_MaxDeform'] = 15 # Single Frequency def_setting['SingleFrequency_BSplineGridSpacing'] = [[80, 80, 80], [70, 70, 70], [60, 60, 60], [50, 50, 50], [45, 45, 45]] # in mm approximately def_setting['SingleFrequency_SetGridBorderToZero'] = [[1, 1, 1], [1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2]] def_setting['SingleFrequency_GridSmoothingSigma'] = [[0.8, 0.8, 0.8], [0.8, 0.8, 0.8], [0.8, 0.8, 0.8], [0.8, 0.8, 0.8], [0.8, 0.8, 0.8]] # in voxel not in mm def_setting['SingleFrequency_BackgroundSmoothingSigma'] = [8, 8, 8, 8, 8] # in voxel not in mm def_setting['SingleFrequency_MaxDeformRatio'] = [1, 1, 1, 1, 1] # Mixed Frequency def_setting['MixedFrequency_BlockRadius'] = 20 # in voxel not in mm def_setting['MixedFrequency_Np'] = [200, 150, 150, 150] def_setting['MixedFrequency_BSplineGridSpacing'] = [[80, 80, 80], [60, 60, 60], [50, 50, 50], [45, 45, 60]] def_setting['MixedFrequency_SigmaRange'] = [[10, 15], [10, 15], [10, 15], [10, 15]] # in voxel not in mm def_setting['MixedFrequency_GridSmoothingSigma'] = [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5], [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]] # in voxel not in mm def_setting['MixedFrequency_SetGridBorderToZero'] = [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]] # in voxel not in mm def_setting['MixedFrequency_MaxDeformRatio'] = [1, 1, 1, 1] # Respiratory Motion def_setting['RespiratoryMotion_t0'] = [30, 30, 30, 30, 30] # in mm def_setting['RespiratoryMotion_s0'] = [0.12, 0.12, 0.12, 0.12, 0.12] def_setting['RespiratoryMotion_BSplineGridSpacing'] = [[80, 80, 80], [70, 70, 70], [60, 60, 60], [50, 50, 50], [45, 45, 45]] # in mm approximately def_setting['RespiratoryMotion_SetGridBorderToZero'] = [[1, 1, 1], [1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2]] def_setting['RespiratoryMotion_GridSmoothingSigma'] = [[0.8, 0.8, 0.8], [0.8, 0.8, 0.8], [0.8, 0.8, 0.8], [0.8, 0.8, 0.8], [0.8, 0.8, 0.8]] # in voxel not in mm def_setting['RespiratoryMotion_BackgroundSmoothingSigma'] = [8, 8, 8, 8, 8] # in voxel not in mm def_setting['RespiratoryMotion_MaxDeformRatio'] = [1, 1, 1, 1, 1] def_setting['RespiratoryMotion_SingleFrequency_MaxDeformRatio'] = [0.5, 0.5, 0.5, 0.5, 0.5] # translation def_setting['Translation_MaxDeformRatio'] = [1, 1, 1, 1] # translation_old def_setting['BsplineGridSpacing_translation'] = [[40, 40, 40], [40, 40, 40], [40, 40, 40], [40, 40, 40]] def_setting['setGridBorderToZero_translation'] = [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]] elif selected_deform_exp == '3D_max20_D14_K': deform_exp_setting_temp = load_deform_exp_setting('3D_max20_D14') def_setting = copy.deepcopy(deform_exp_setting_temp) elif selected_deform_exp in ['3D_max7_D14_K']: deform_exp_setting_temp = load_deform_exp_setting('3D_max20_D14') def_setting = copy.deepcopy(deform_exp_setting_temp) def_setting['MaxDeform'] = 7 def_setting['SingleFrequency_BSplineGridSpacing'] = [[50, 50, 50], [45, 45, 45], [35, 35, 35], [25, 25, 25], [20, 20, 20]] def_setting['SingleFrequency_MaxDeformRatio'] = [0.5, 1, 1, 1, 1] def_setting['MixedFrequency_BSplineGridSpacing'] = [[50, 50, 50], [40, 40, 40], [25, 25, 35], [20, 20, 30]] def_setting['MixedFrequency_SigmaRange'] = [[5, 10], [5, 10], [5, 10], [5, 10]] def_setting['MixedFrequency_MaxDeformRatio'] = [1, 1, 1, 1] def_setting['RespiratoryMotion_t0'] = [15, 15, 15, 15, 15] # in mm def_setting['RespiratoryMotion_s0'] = [0.12, 0.12, 0.12, 0.12, 0.12] def_setting['RespiratoryMotion_BSplineGridSpacing'] = [[50, 50, 50], [45, 45, 45], [35, 35, 35], [25, 25, 25], [20, 20, 20]] def_setting['RespiratoryMotion_MaxDeformRatio'] = [1, 1, 1, 1, 1] def_setting['RespiratoryMotion_SingleFrequency_MaxDeformRatio'] = [0.5, 0.5, 0.5, 0.5, 0.5] elif selected_deform_exp in ['3D_max15_D14_K']: deform_exp_setting_temp = load_deform_exp_setting('3D_max20_D14') def_setting = copy.deepcopy(deform_exp_setting_temp) def_setting['MaxDeform'] = 15 def_setting['SingleFrequency_BSplineGridSpacing'] = [[60, 60, 60], [50, 50, 50], [45, 45, 45], [40, 40, 40], [35, 35, 35]] def_setting['SingleFrequency_MaxDeformRatio'] = [0.5, 1, 1, 1, 1] def_setting['MixedFrequency_BSplineGridSpacing'] = [[60, 60, 60], [50, 50, 40], [40, 40, 80], [35, 35, 80]] def_setting['MixedFrequency_SigmaRange'] = [[7, 12], [7, 12], [7, 12], [7, 12]] def_setting['MixedFrequency_MaxDeformRatio'] = [1, 1, 1, 1] def_setting['RespiratoryMotion_t0'] = [22, 22, 22, 22, 22] # in mm def_setting['RespiratoryMotion_s0'] = [0.12, 0.12, 0.12, 0.12, 0.12] def_setting['RespiratoryMotion_BSplineGridSpacing'] = [[60, 60, 60], [50, 50, 50], [45, 45, 45], [40, 40, 40], [35, 35, 35]] def_setting['RespiratoryMotion_MaxDeformRatio'] = [1, 1, 1, 1, 1] def_setting['RespiratoryMotion_SingleFrequency_MaxDeformRatio'] = [0.5, 0.5, 0.5, 0.5, 0.5] else: print('warning: -------- selected_deform_exp not found') return def_setting
codigo/Live54/exemplo_1.py
cassiasamp/live-de-python
572
12733952
<gh_stars>100-1000 from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ProcessPoolExecutor from requests import get from functools import partial from os import getpid l_urls = ['https://google.com'] * 6 # executor = ThreadPoolExecutor(max_workers=3) # result = executor.map(get, l_urls) # print(result) print('Threads') with ThreadPoolExecutor(max_workers=3) as executor: """ executor.__enter__ -> self (ThreadPoolExecutor) executor.__exit__ -> executor.shutdown(wait=True) """ result = executor.map(get, l_urls) print(result) print(list(result)) print('Processo') with ProcessPoolExecutor() as executor: result = executor.map(partial(print, getpid())) print(result) print(list(result))
mmflow/models/flow_estimators/liteflownet.py
hologerry/mmflow
481
12733957
# Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, Optional, Sequence, Tuple from numpy import ndarray from torch import Tensor from ..builder import FLOW_ESTIMATORS from .pwcnet import PWCNet @FLOW_ESTIMATORS.register_module() class LiteFlowNet(PWCNet): """LiteFlowNet model.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def extract_feat( self, imgs: Tensor ) -> Tuple[Tensor, Tensor, Dict[str, Tensor], Dict[str, Tensor]]: """Extract features from images. Args: imgs (Tensor): The concatenated input images. Returns: Tuple[Tensor, Tensor, Dict[str, Tensor], Dict[str, Tensor]]: The first input image, the second input image, the feature pyramid of the first input image and the feature pyramid of secode input image. """ in_channels = self.encoder.in_channels # take from github.com:sniklaus/pytorch-liteflownet.git imgs_mean = [0.411618, 0.434631, 0.454253] for ich in range(in_channels): imgs[:, ich, :, :] = imgs[:, ich, :, :] - imgs_mean[ich] imgs[:, ich + in_channels, :, :] = ( imgs[:, ich + in_channels, :, :] - imgs_mean[ich]) img1 = imgs[:, :in_channels, ...] img2 = imgs[:, in_channels:, ...] return img1, img2, self.encoder(img1), self.encoder(img2) def forward_train( self, imgs: Tensor, flow_gt: Tensor, valid: Optional[Tensor] = None, img_metas: Optional[Sequence[dict]] = None) -> Dict[str, Tensor]: """Forward function for LiteFlowNet when model training. Args: imgs (Tensor): The concatenated input images. flow_gt (Tensor): The ground truth of optical flow. Defaults to None. valid (Tensor, optional): The valid mask. Defaults to None. img_metas (Sequence[dict], optional): meta data of image to revert the flow to original ground truth size. Defaults to None. Returns: Dict[str, Tensor]: The losses of output. """ img1, img2, feat1, feat2 = self.extract_feat(imgs) return self.decoder.forward_train( img1, img2, feat1, feat2, flow_gt=flow_gt, valid=valid) def forward_test( self, imgs: Tensor, img_metas: Optional[Sequence[dict]] = None) -> Sequence[ndarray]: """Forward function for LiteFlowNet when model testing. Args: imgs (Tensor): The concatenated input images. img_metas (Sequence[dict], optional): meta data of image to revert the flow to original ground truth size. Defaults to None. Returns: Sequence[Dict[str, ndarray]]: the batch of predicted optical flow with the same size of images after augmentation. """ img1, img2, feat1, feat2 = self.extract_feat(imgs) return self.decoder.forward_test( img1, img2, feat1, feat2, img_metas=img_metas)
zoo/policies/cross-rl-agent/cross_rl_agent/train/utils.py
idsc-frazzoli/SMARTS
554
12734045
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # The author of this file is: https://github.com/mg2015started import numpy as np def get_split_batch(batch): """memory.sample() returns a batch of experiences, but we want an array for each element in the memory (s, a, r, s', done)""" states_mb = np.array([each[0][0] for each in batch]) # print(states_mb.shape) actions_mb = np.array([each[0][1] for each in batch]) # print(actions_mb.shape) rewards_mb = np.array([each[0][2] for each in batch]) # print(rewards_mb.shape) next_states_mb = np.array([each[0][3] for each in batch]) # print(next_states_mb.shape) dones_mb = np.array([each[0][4] for each in batch]) return states_mb, actions_mb, rewards_mb, next_states_mb, dones_mb def OU(action, mu=0, theta=0.15, sigma=0.3): # noise = np.ones(action_dim) * mu noise = theta * (mu - action) + sigma * np.random.randn(1) # noise = noise + d_noise return noise def calculate_angle(ego_location, goal_location, ego_direction): # calculate vector direction goal_location = np.array(goal_location) ego_location = np.array(ego_location) goal_vector = goal_location - ego_location L_g_vector = np.sqrt(goal_vector.dot(goal_vector)) ego_vector = np.array( [np.cos(ego_direction * np.pi / 180), np.sin(ego_direction * np.pi / 180)] ) L_e_vector = np.sqrt(ego_vector.dot(ego_vector)) cos_angle = goal_vector.dot(ego_vector) / (L_g_vector * L_e_vector) angle = (np.arccos(cos_angle)) * 180 / np.pi if np.cross(goal_vector, ego_vector) > 0: angle = -angle return angle def calculate_distance(location_a, location_b): """ calculate distance between a and b""" return np.linalg.norm(location_a - location_b)
recipes/Python/473881_splitandjoinpy/recipe-473881.py
tdiprima/code
2,023
12734048
<gh_stars>1000+ import os # give access to os.path & os.remove import md5 # allows md5.md5(arg).digest() for file signature import time # gives access to time.sleep import random # gives access to random.randrange import thread # to start new threads import cPickle # to pickle and unpickle the index import Tkinter # provides GUI tools import tkFileDialog # provides some GUI dialogs THREAD_FLAG = False # we'll use this to control the flag class Application: # this is the main class / [function] FILE_SIZE = 1024 * 1024 # this is an approximate size of output files PART_SIZE = 1024 # this is used to tune the "disguising" engine # main class function def __init__(self): self.__root = Tkinter.Tk() # open the main window self.__root.title('Split & Join') # give it a name self.__root.resizable(False, False) # disable resizing # starts the splitter engine split = Tkinter.Button(self.__root, text='Split', font='Courier 8', command=self.split) split.grid(row=0, column=0, padx=15, pady=5) # starts the joiner engine join = Tkinter.Button(self.__root, text='Join', font='Courier 8', command=self.join) join.grid(row=0, column=1, padx=15, pady=5) # used for saving / opening files self.__open = tkFileDialog.Open() self.__save = tkFileDialog.Directory() # don't forget to execute! self.__root.mainloop() # wrap the splitter engine def split(self): global THREAD_FLAG if not THREAD_FLAG: self.__root.withdraw() self.__start() try: self.__do_split() self.__stop('SPLIT - DONE') except: self.__stop('SPLIT - FAIL') self.__root.deiconify() # wrap the joiner engine def join(self): global THREAD_FLAG if not THREAD_FLAG: self.__root.withdraw() self.__start() try: self.__do_join() self.__stop('JOIN - DONE') except: self.__stop('JOIN - FAIL') self.__root.deiconify() # remind the user that the program is working def __working(self): global THREAD_FLAG state, key = 0, ['|', '/', '-', '\\'] while THREAD_FLAG: os.system('cls') print '.' * (state / 8) + key[state % 4] state += 1 time.sleep(0.125) # start the reminder thread def __start(self): global THREAD_FLAG THREAD_FLAG = True thread.start_new_thread(self.__working, ()) # stop the reminder thread def __stop(self, message): global THREAD_FLAG THREAD_FLAG = False time.sleep(0.25) os.system('cls') print message # get the signature of the file specified by path def __signature(self, path): return md5.md5(file(path, 'rb').read()).digest() # split string so len(part) == size def __partition(self, string, size): if len(string) % size: parts = len(string) / size + 1 else: parts = len(string) / size return [string[index*size:index*size+size] for index in range(parts)] # get a source file and a destination folder def __get_source_and_destination(self): return open(self.__open.show(), 'rb'), self.__save.show() # create a random key def __new_key(self): data = range(256) key = '' while data: index = random.randrange(len(data)) key += chr(data[index]) del data[index] return key # encode a string def __s2c(self, string): '''s2c(str string) Convert from string to code.''' self.__assert_type((str, string)) return self.__n2c(self.__s2n(string)) # convert number to code def __n2c(self, number): self.__assert_type((long, number)) code = '' while number: code = chr(number % 255 + 1) + code number /= 255 return code # convert string to number def __s2n(self, string): self.__assert_type((str, string)) number = 1L for character in string: number <<= 8 number += ord(character) return number # make sure that type checking passes def __assert_type(self, *tuples): for types, objects in tuples: if type(objects) is not types: raise TypeError # this is the splitter engine def __do_split(self): # get file and folder source, destination = self.__get_source_and_destination() # make sure that there is a destination assert destination != '' # index will be the master file to the many files, key will be for mangling index = [os.path.basename(source.name), self.__new_key()] # devide the source for the individual files data = self.__partition(source.read(), self.FILE_SIZE) # all source data has been collected, so close it source.close() # write the individual files for num, part in enumerate(data): # figure out what the filename will be dest_path = os.path.join(destination, '%s.%s.part' % (num, os.path.basename(source.name))) # open the file for writing dest_file = open(dest_path, 'wb') # mangle part to be indistiguishable part = part.translate(index[1]) # partition part for futher mangling part = self.__partition(part, self.PART_SIZE) # mangle each part again part = [self.__s2c(x) for x in part] # write the joined parts after mangling dest_file.write(chr(0).join(part).translate(index[1])) # close the destination dest_file.close() # add the signature to index index.append(self.__signature(dest_path)) # write the index cPickle.dump(index, file(os.path.join(destination, '%s.part' % os.path.basename(source.name)), 'wb')) # return an inverted key def __inverse(self, key): array = range(256) for num, char in enumerate(key): array[ord(char)] = chr(num) return ''.join(array) # verify unpacking def __check_index(self, index, dirname, source): all_path = list() for num, signature in enumerate(index): all_path.append(os.path.join(dirname, '%s.%s' % (num, source))) present = self.__signature(all_path[-1]) assert signature == present return all_path # convert from code to string def __c2s(self, code): '''c2s(str code) Convert from code to string.''' self.__assert_type((str, code)) return self.__n2s(self.__c2n(code)) # convert from code to number def __c2n(self, code): self.__assert_type((str, code)) number = 0L for character in code: number *= 255 number += ord(character) - 1 return number # convert from number to string def __n2s(self, number): self.__assert_type((long, number)) string = '' while number > 1: string = chr(number & 0xFF) + string number >>= 8 return string # this is the joiner engine def __do_join(self): # get the source file and destination folder source, destination = self.__get_source_and_destination() # make sure that there is a destination assert destination != '' # reload the index index = cPickle.load(source) # close the source source.close() # make sure that the name of the source agrees with itself assert index[0] == os.path.basename(source.name)[:-5] # save the key key = index[1] # do a mild check of the key assert len(key) == 256 # invert the key for decoding purposes key = self.__inverse(key) # get the dirname from source dirname = os.path.dirname(source.name) # verify that all files are present and valid all_path = self.__check_index(index[2:], dirname, os.path.basename(source.name)) # if all files were verfied, they just need to put together now [file] dest_file = open(os.path.join(destination, index[0]), 'wb') # go through all of the files for path in all_path: # open the source source2 = open(path, 'rb') # get the source data data = source2.read() # close the source source2.close() # automatically clean up the source os.remove(path) # translate the data data = data.translate(key) # get the parts parts = data.split(chr(0)) # decode the parts parts = [self.__c2s(part) for part in parts] # calculate the string to be written final = ''.join(parts).translate(key) # write the data dest_file.write(final) # close the destination dest_file.close() # cleanup the index os.remove(source.name) if __name__ == '__main__': Application()
tests/integration_tests/colors.py
trailofbits/mcsema
1,301
12734053
# Copyright (c) 2020 Trail of Bits, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. class Colors: class c: green = '\033[92m' yellow = '\033[93m' red = '\033[91m' magneta = '\033[95m' bg_yellow = '\033[43m' orange = '\033[38;5;202m' RESET = '\033[0m' def get_result_color(total, success): if total == 0: return Colors.c.magneta if total == success: return Colors.c.green if success == 0: return Colors.c.red return Colors.c.yellow def get_bin_result(result): if result == 1: return Colors.c.green if result == 0: return Colors.c.red return Colors.c.magneta def clean(): return Colors.RESET def c(color, message): return color + message + clean() def fail(): return Colors.c.red def succ(): return Colors.c.green #TODO: Not sure if it's worth to generate these for each color from attrs dynamically def green(message): return c(Colors.c.green, message) def red(message): return c(Colors.c.red, message) def yellow(message): return c(Colors.c.yellow, message) def magneta(message): return c(Colors.c.magneta, message) def bg_yellow(message): return c(Colors.c.bg_yellow, message) def orange(message): return c(Colors.c.orange, message) def id(message): return message
typed_python/compiler/type_wrappers/compiler_introspection_wrappers.py
APrioriInvestments/typed_python
105
12734097
# Copyright 2017-2019 typed_python Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typed_python.internals import ( isCompiled, typeKnownToCompiler, localVariableTypesKnownToCompiler ) from typed_python.compiler.type_wrappers.wrapper import Wrapper import typed_python.compiler.native_ast as native_ast import typed_python class IsCompiledWrapper(Wrapper): is_pod = True is_empty = False is_pass_by_ref = False def __init__(self): super().__init__(isCompiled) def getNativeLayoutType(self): return native_ast.Type.Void() def convert_call(self, context, expr, args, kwargs): if args or kwargs: context.pushException(TypeError, "isCompiled() accepts no arguments") return context.constant(True) class TypeKnownToCompiler(Wrapper): is_pod = True is_empty = False is_pass_by_ref = False def __init__(self): super().__init__(typeKnownToCompiler) def getNativeLayoutType(self): return native_ast.Type.Void() def convert_call(self, context, expr, args, kwargs): if len(args) != 1 or kwargs: context.pushException(TypeError, "typeKnownToCompiler() accepts 1 positional argument") return typed_python.compiler.python_object_representation.pythonObjectRepresentation( context, args[0].expr_type.typeRepresentation ) class LocalVariableTypesKnownToCompiler(Wrapper): is_pod = True is_empty = False is_pass_by_ref = False def __init__(self): super().__init__(localVariableTypesKnownToCompiler) def getNativeLayoutType(self): return native_ast.Type.Void() def convert_call(self, context, expr, args, kwargs): if args or kwargs: context.pushException(TypeError, "localVariableTypesKnownToCompiler() accepts no arguments") return context.constant(dict(context.variableStates._types), allowArbitrary=True)
glazier/lib/terminator.py
ItsMattL/glazier
1,233
12734110
<reponame>ItsMattL/glazier # Lint as: python3 # Copyright 2021 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Terminates currently running Glazier processes.""" import logging import os import sys import traceback from typing import Optional from glazier.lib import actions from glazier.lib import buildinfo from glazier.lib import constants from glazier.lib import logs from glazier.lib import winpe def log_and_exit(msg: str, build_info: buildinfo.BuildInfo, code: int = 4000, exception: Optional[Exception] = None, collect: bool = True): """Logs a user-facing error message and exits. This function handles all Glazier Exceptions by sequentially: - (Optional) Collecting logs to a zip folder on disk - Logging the full traceback to the debug log - Constructing the user-facing failure string, consisting of: * The message to accompany the failure * (Optional) The exception object, and if available, the file and line number of the root exception * The user-facing help message containing where to look for logs and where to go for further assistance. - Log the user-facing failure string - Exit Glazier with code 1 Args: msg: The error message to accompany the failure. build_info: The active BuildInfo class. code: Error code to append to the failure message. exception: The exception object. collect: Whether to collect log files. """ if collect: try: logs.Collect(os.path.join(build_info.CachePath(), r'\glazier_logs.zip')) except logs.LogError as e: logging.error('logs collection failed with %s', e) # Log the full traceback to _BUILD_LOG to assist in troubleshooting logging.debug(traceback.format_exc()) string = f'{msg}\n\n' if exception: # Index 2 contains the traceback from the sys.exc_info() tuple trace = sys.exc_info()[2] if trace: # Index -1 contains the traceback object of the root exception trace_obj = traceback.extract_tb(trace)[-1] # The trace object contains the full file path, grab just the file name file = os.path.split(trace_obj.filename)[1] lineno = trace_obj.lineno string += f'Exception: {file}:{lineno}] {exception}\n\n' else: string += f'Exception] {exception}\n\n' build_log = constants.SYS_BUILD_LOG if winpe.check_winpe(): build_log = constants.WINPE_BUILD_LOG string += (f'See {build_log} for more info. ' f'Need help? Visit {constants.HELP_URI}#{code}') logging.critical(string) sys.exit(1)
setup.py
cbalfour/python-qrcode
2,651
12734133
<filename>setup.py #!/usr/bin/env python from setuptools import setup # See setup.cfg for configuration. setup( data_files=[('share/man/man1', ['doc/qr.1'])], )
tests/functional/test_cisco_iosxe.py
verbosemode/scrapli
404
12734140
<reponame>verbosemode/scrapli<gh_stars>100-1000 def test_non_standard_default_desired_privilege_level(iosxe_conn): # purpose of this test is to ensure that when a user sets a non-standard default desired priv # level, that there is nothing in genericdriver/networkdriver that will prevent that from # actually being set as the default desired priv level iosxe_conn.close() iosxe_conn.default_desired_privilege_level = "configuration" iosxe_conn.open() current_prompt = iosxe_conn.get_prompt() assert current_prompt == "csr1000v(config)#" iosxe_conn.close()
mozi/cost.py
hycis/Mozi
122
12734156
import theano.tensor as T import theano from mozi.utils.utils import theano_unique from mozi.utils.theano_utils import asfloatX floatX = theano.config.floatX if floatX == 'float64': epsilon = 1.0e-8 else: epsilon = 1.0e-6 def accuracy(y, y_pred): L = T.eq(y_pred.argmax(axis=1), y.argmax(axis=1)) return T.mean(L) # L = T.eq(y_pred.argmax(axis=1), y.argmax(axis=1)) # return T.sum(L) / y.shape[0].astype(floatX) def mse(y, y_pred): return T.mean(T.sqr(y-y_pred)) def entropy(y, y_pred): y_pred = T.clip(y_pred, epsilon, 1.0 - epsilon) L = -(y * T.log(y_pred) + (1-y) * T.log(1-y_pred)) return T.mean(L) # L = - T.sum(y * T.log(y_pred) + (1-y) * T.log(1-y_pred), axis=1) # return T.mean(L) def error(y, y_pred): L = T.neq(y_pred.argmax(axis=1), y.argmax(axis=1)) return T.mean(L) def recall(y, y_pred): L = T.eq(y_pred.argmax(axis=1), y.argmax(axis=1)) return T.sum(L) / y.shape[0].astype(floatX) def precision(y, y_pred): L = T.eq(y_pred.argmax(axis=1), y.argmax(axis=1)) return T.sum(L) / y_pred.shape[0].astype(floatX) def f1(y, y_pred): r = recall(y, y_pred) p = precision(y, y_pred) return 2 * p * r / (p + r) def hingeloss(y, y_pred): y_pred = T.clip(y_pred, 0., 1.0) L = T.max(0, 1 - y * y_pred) return T.mean(L) def abs(y, y_pred): return T.mean(T.abs_(y-y_pred)) def SGVB_bin(y, y_pred): ''' This cost function is for variational autoencoder with binary inputs ''' ypred, miu_e, logsig_e = y_pred ypred = T.clip(ypred, epsilon, 1.0 - epsilon) logpxz = -T.nnet.binary_crossentropy(ypred, y).sum(axis=1) L = logpxz + 0.5 * (1 + 2*logsig_e - miu_e**2 - T.exp(2*logsig_e)).sum(axis=1) return L.mean()
phasing/utils/plotPhaseCount.py
ArthurDondi/cDNA_Cupcake
205
12734157
# -*- coding: utf-8 -*- """ Created on Thu Dec 17 13:14:28 2020 @author: derek.bickhart-adm """ import matplotlib from matplotlib import pyplot as plt matplotlib.use('Agg') from matplotlib.collections import BrokenBarHCollection from matplotlib import cm from itertools import cycle from collections import defaultdict import argparse import pandas import numpy as np import pysam def arg_parse(): parser = argparse.ArgumentParser( description = "A tool to plot bin and contig level read depth differences in strain assignment" ) parser.add_argument('-f', '--fai', help="Input reference fasta index file for the bin", required=True, type=str ) parser.add_argument('-o', '--output', help="Output file basename. Output files are {output}.wins and {output}.pdf", required=True, type=str, ) parser.add_argument('-b', '--bam', help="Input CCS read depth bam file", required=True, type=str ) parser.add_argument('-h', '--human', help="Input human-readable variant call file", required=True, type=str ) parser.add_argument('-i', '--binsize', help="Bin size in bases [5000 bp]", type = int, default=5000 ) return parser.parse_args(), parser def main(args, parser): # Get the contig length list ctglens = dict() with open(args.fai, 'r') as fai: for l in fai: s = l.rstrip().split() ctglens[s[0]] = s[1] # Create windows winlist = defaultdict(list) # offset bp to add for stitching contigs together in one line ctgoffset = dict() lastbp = 0 for c in ctglens: ctgoffset[c] = lastbp + 100 for i in range(0, ctglens[c], args.binsize): winlist[c].append(window(c, i, i + args.binsize)) lastbp += ctglens[c] # read each sam region and count the reads with pysam.AlignmentFile(args.bam, 'rb') as bamfile: for c, w in winlist.items(): for i, win in enumerate(w): count = 0 for s in bamfile.fetch(c, win.start, win.end): if s.is_secondary: continue count += 1 winlist = updateWin(winlist, c, i, count) # Now, read in the human readable text file and process that hapset = set() with open(args.human, 'r') as human: human.readline() for l in human: s = l.rstrip().split() # determine where the contig start falls for i, win in enumerate(winlist[s[2]]): if int(s[3]) < win.end and int(s[3]) >= win.start: winlist = updateWin(winlist, s[2], i, int(s[6]), s[4]) print(f'Updating window: {s[2]} {win.start} {win.end} to {s[6]} for Hap {s[4]}') hapset.add(s[4]) # OK, data is in! Let's try plotting raw = defaultdict(list) bars = list() for c, w in winlist.items(): bars.append([ctgoffset[c], ctglens[c]]) for win in winlist: for h in hapset: raw["contig"].append(c) raw["start"].append(win.start + ctgoffset[c]) raw["end"].append(win.end + ctgoffset[c]) raw["hap"].append(h) raw["count"].append(win.getCount(h)) df = pandas.DataFrame(raw) df.to_csv(args.output + '.wins', sep='\t', header=True) fig = plt.figure(figsize=(6,8)) ax = df[['start', 'hap', 'count']].plot.area(x='start', y='count', colormap='viridis') ax.add_collection(BrokenBarHCollection(bars, [-1, 1], facecolors=plt.get_cmap('tab20'))) ax.axis('tight') plt.savefig(args.output + '.pdf') def updateWin(winlist, contig, winidx, count, haplotype = 'REF'): winlist[contig].count[haplotype] = count return winlist class window: def __init__(self, contig, start, end): self.contig = contig self.start = start self.end = end self.count = defaultdict(int) def getCount(self, hap): if hap in self.count: return self.count[hap] else: return 0 if __name__ == "__main__": args, parser = arg_parse() main(args, parser)
octodns/processor/awsacm.py
h3rj4n/octodns
369
12734167
<filename>octodns/processor/awsacm.py<gh_stars>100-1000 # # Ignores AWS ACM validation CNAME records. # from __future__ import absolute_import, division, print_function, \ unicode_literals from logging import getLogger from .base import BaseProcessor class AwsAcmMangingProcessor(BaseProcessor): ''' processors: awsacm: class: octodns.processor.acme.AwsAcmMangingProcessor ... zones: something.com.: ... processors: - awsacm ... ''' log = getLogger('AwsAcmMangingProcessor') def _ignore_awsacm_cnames(self, zone): for r in zone.records: if r._type == 'CNAME' and \ r.name.startswith('_') \ and r.value.endswith('.acm-validations.aws.'): self.log.info('_process: ignoring %s', r.fqdn) zone.remove_record(r) return zone def process_source_zone(self, desired, *args, **kwargs): return self._ignore_awsacm_cnames(desired) def process_target_zone(self, existing, *args, **kwargs): return self._ignore_awsacm_cnames(existing)
test_pyspin.py
crunchex/py-spin
196
12734187
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import time from pyspin import spin def test_spinner(): spinner = spin.Spinner(spin.Spin9) assert spinner.length == 4 assert spinner.frames == spin.Spin9 assert spinner.current() == u'←' assert spinner.next() == u'←' assert spinner.next() == u'↑' assert spinner.next() == u'→' assert spinner.next() == u'↓' assert spinner.next() == u'←' assert spinner.next() == u'↑' spinner.reset() assert spinner.position == 0 def test_make_spin(): @spin.make_spin(spin.Default, 'Downloading...') def fake_download(): time.sleep(2) fake_download() def test_make_spin_with_args(): @spin.make_spin(spin.Default, 'Downloading...') def fake_download(url, retry_times=3): print("Downloading {0}, will retry {1} times".format(url, retry_times)) time.sleep(2) fake_download("https://www.example.com/text.txt", retry_times=5) def test_stop_on_exception(): @spin.make_spin(spin.Default, 'Downloading...') def fake_download(): 1 / 0 try: fake_download() except ZeroDivisionError: print("We catched the exception! Yeah!") def test_several_calls(): @spin.make_spin(spin.Default, 'Downloading...') def fake_download(): time.sleep(2) print("Begin the first download.") fake_download() print("Begin the second download.") fake_download()
semseg/__init__.py
Genevievekim/semantic-segmentation-1
196
12734204
<gh_stars>100-1000 from tabulate import tabulate from semseg import models from semseg import datasets from semseg.models import backbones, heads def show_models(): model_names = models.__all__ numbers = list(range(1, len(model_names)+1)) print(tabulate({'No.': numbers, 'Model Names': model_names}, headers='keys')) def show_backbones(): backbone_names = backbones.__all__ variants = [] for name in backbone_names: try: variants.append(list(eval(f"backbones.{name.lower()}_settings").keys())) except: variants.append('-') print(tabulate({'Backbone Names': backbone_names, 'Variants': variants}, headers='keys')) def show_heads(): head_names = heads.__all__ numbers = list(range(1, len(head_names)+1)) print(tabulate({'No.': numbers, 'Heads': head_names}, headers='keys')) def show_datasets(): dataset_names = datasets.__all__ numbers = list(range(1, len(dataset_names)+1)) print(tabulate({'No.': numbers, 'Datasets': dataset_names}, headers='keys'))
scripts/elasticsearch/search-reindex.py
ZMaratovna/cloud-pipeline
126
12734214
<gh_stars>100-1000 # Copyright 2017-2020 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # touch all root tree entities # touch docker registry # TODO: touch runs starting from date from pipeline import PipelineAPI import os import json ROLE = 'SEARCH_UPDATE' def touch_item(api, id, acl_class): print('Processing %s [%s]' % (str(id), acl_class)) permissions = {'id': id, 'aclClass': acl_class, 'mask': 0, 'principal': False, 'userName': ROLE} try: api.execute_request(str(api.api_url) + '/grant', method='post', data=json.dumps(permissions)) api.execute_request(str(api.api_url) + '/grant?id={id}&aclClass={aclClass}&user={userName}&isPrincipal=false' .format(**permissions), method='delete') except BaseException as e: print(str(e.message)) def run(): api = PipelineAPI(os.environ['API'], 'logs') result = api.execute_request(str(api.api_url) + '/folder/loadTree', method='get') children = ['pipelines', 'childFolders', 'storages', 'configurations'] for child_type in children: if child_type in result: for item in result[child_type]: touch_item(api, item['id'], item['aclClass']) registries = api.docker_registry_load_all() for registry in registries: touch_item(api, registry['id'], registry['aclClass']) if __name__ == '__main__': run()
skmultilearn/ext/__init__.py
emrecncelik/scikit-multilearn
763
12734255
""" The :mod:`skmultilearn.ext` provides wrappers for other multi-label classification libraries. Currently it provides a wrapper for: Currently the available classes include: +--------------------------------------------+------------------------------------------------------------------+ | Name | Description | +============================================+==================================================================+ | :class:`~skmultilearn.ext.Meka` | Wrapper for the Multilabel Extension to WEKA - | | | `MEKA <http://meka.sf.net>`_ library | +--------------------------------------------+------------------------------------------------------------------+ | :class:`~skmultilearn.ext.Keras` | Wrapper for the Python Deep Learning library - | | | `KERAS <http://https://keras.io/>`_ | +--------------------------------------------+------------------------------------------------------------------+ | :func:`~skmultilearn.ext.download_meka` | Helper function for installing MEKA | +--------------------------------------------+------------------------------------------------------------------+ """ import sys, platform from .meka import Meka, download_meka __all__ = ["Meka", 'download_meka'] if not (sys.version_info[0] == 2 or platform.architecture()[0]=='32bit'): from .keras import Keras __all__ += ['Keras']
alipay/aop/api/domain/CloudbusStop.py
antopen/alipay-sdk-python-all
213
12734267
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class CloudbusStop(object): def __init__(self): self._latitude = None self._longitude = None self._station_id = None self._station_name = None self._station_num = None self._station_space = None self._station_volume = None @property def latitude(self): return self._latitude @latitude.setter def latitude(self, value): self._latitude = value @property def longitude(self): return self._longitude @longitude.setter def longitude(self, value): self._longitude = value @property def station_id(self): return self._station_id @station_id.setter def station_id(self, value): self._station_id = value @property def station_name(self): return self._station_name @station_name.setter def station_name(self, value): self._station_name = value @property def station_num(self): return self._station_num @station_num.setter def station_num(self, value): self._station_num = value @property def station_space(self): return self._station_space @station_space.setter def station_space(self, value): self._station_space = value @property def station_volume(self): return self._station_volume @station_volume.setter def station_volume(self, value): self._station_volume = value def to_alipay_dict(self): params = dict() if self.latitude: if hasattr(self.latitude, 'to_alipay_dict'): params['latitude'] = self.latitude.to_alipay_dict() else: params['latitude'] = self.latitude if self.longitude: if hasattr(self.longitude, 'to_alipay_dict'): params['longitude'] = self.longitude.to_alipay_dict() else: params['longitude'] = self.longitude if self.station_id: if hasattr(self.station_id, 'to_alipay_dict'): params['station_id'] = self.station_id.to_alipay_dict() else: params['station_id'] = self.station_id if self.station_name: if hasattr(self.station_name, 'to_alipay_dict'): params['station_name'] = self.station_name.to_alipay_dict() else: params['station_name'] = self.station_name if self.station_num: if hasattr(self.station_num, 'to_alipay_dict'): params['station_num'] = self.station_num.to_alipay_dict() else: params['station_num'] = self.station_num if self.station_space: if hasattr(self.station_space, 'to_alipay_dict'): params['station_space'] = self.station_space.to_alipay_dict() else: params['station_space'] = self.station_space if self.station_volume: if hasattr(self.station_volume, 'to_alipay_dict'): params['station_volume'] = self.station_volume.to_alipay_dict() else: params['station_volume'] = self.station_volume return params @staticmethod def from_alipay_dict(d): if not d: return None o = CloudbusStop() if 'latitude' in d: o.latitude = d['latitude'] if 'longitude' in d: o.longitude = d['longitude'] if 'station_id' in d: o.station_id = d['station_id'] if 'station_name' in d: o.station_name = d['station_name'] if 'station_num' in d: o.station_num = d['station_num'] if 'station_space' in d: o.station_space = d['station_space'] if 'station_volume' in d: o.station_volume = d['station_volume'] return o
reid/trainers.py
nuannuanhcc/DomainAdaptiveReID
200
12734273
<filename>reid/trainers.py from __future__ import print_function, absolute_import import time import torch from torch.autograd import Variable from .evaluation_metrics import accuracy from .loss import OIMLoss, TripletLoss from .utils.meters import AverageMeter class BaseTrainer(object): def __init__(self, model, criterions, print_freq=1): super(BaseTrainer, self).__init__() self.model = model self.criterions = criterions self.print_freq = print_freq def train(self, epoch, data_loader, optimizer): self.model.train() # for name, param in self.model.named_parameters(): # if 'classifier' in name: # param.requires_grad = False batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() precisions = AverageMeter() end = time.time() for i, inputs in enumerate(data_loader): data_time.update(time.time() - end) inputs, targets = self._parse_data(inputs) loss, prec1 = self._forward(inputs, targets, epoch) losses.update(loss.data[0], targets.size(0)) precisions.update(prec1, targets.size(0)) optimizer.zero_grad() loss.backward() #add gradient clip for lstm for param in self.model.parameters(): try: param.grad.data.clamp(-1., 1.) except: continue optimizer.step() batch_time.update(time.time() - end) end = time.time() if (i + 1) % self.print_freq == 0: print('Epoch: [{}][{}/{}]\t' 'Time {:.3f} ({:.3f})\t' 'Data {:.3f} ({:.3f})\t' 'Loss {:.3f} ({:.3f})\t' 'Prec {:.2%} ({:.2%})\t' .format(epoch, i + 1, len(data_loader), batch_time.val, batch_time.avg, data_time.val, data_time.avg, losses.val, losses.avg, precisions.val, precisions.avg)) def _parse_data(self, inputs): raise NotImplementedError def _forward(self, inputs, targets): raise NotImplementedError class Trainer(BaseTrainer): def _parse_data(self, inputs): imgs, _, pids, _ = inputs inputs = [Variable(imgs)] targets = Variable(pids.cuda()) return inputs, targets def _forward(self, inputs, targets, epoch): outputs = self.model(*inputs) #outputs=[x1,x2,x3] #new added by wc # x1 triplet loss loss_tri, prec_tri = self.criterions[0](outputs[0], targets, epoch) # x2 triplet loss loss_global, prec_global = self.criterions[1](outputs[1], targets, epoch) return loss_tri+loss_global, prec_global
saleor/order/migrations/0043_auto_20180322_0655.py
elwoodxblues/saleor
15,337
12734324
<gh_stars>1000+ # Generated by Django 2.0.3 on 2018-03-22 11:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("order", "0042_auto_20180227_0436")] operations = [ migrations.AlterModelOptions( name="order", options={ "ordering": ("-pk",), "permissions": ( ("view_order", "Can view orders"), ("edit_order", "Can edit orders"), ), }, ), migrations.AlterField( model_name="order", name="language_code", field=models.CharField(default="en", max_length=35), ), ]
moonlight/training/clustering/staffline_patches_dofn.py
lithomas1/moonlight
288
12734348
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Extracts non-empty patches of extracted stafflines. Extracts vertical slices of the image where glyphs are expected (see `staffline_extractor.py`), and takes horizontal windows of the slice which will be clustered. Some patches will have a glyph roughly in their center, and the corresponding cluster centroids will be labeled as such. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import apache_beam as beam from apache_beam import metrics from moonlight.staves import staffline_extractor from moonlight.util import more_iter_tools import numpy as np from six.moves import filter import tensorflow as tf def _filter_patch(patch, min_num_dark_pixels=10): unused_patch_name, patch = patch return np.greater_equal(np.sum(np.less(patch, 0.5)), min_num_dark_pixels) class StafflinePatchesDoFn(beam.DoFn): """Runs the staffline patches graph.""" def __init__(self, patch_height, patch_width, num_stafflines, timeout_ms, max_patches_per_page): self.patch_height = patch_height self.patch_width = patch_width self.num_stafflines = num_stafflines self.timeout_ms = timeout_ms self.max_patches_per_page = max_patches_per_page self.total_pages_counter = metrics.Metrics.counter(self.__class__, 'total_pages') self.failed_pages_counter = metrics.Metrics.counter(self.__class__, 'failed_pages') self.successful_pages_counter = metrics.Metrics.counter( self.__class__, 'successful_pages') self.empty_pages_counter = metrics.Metrics.counter(self.__class__, 'empty_pages') self.total_patches_counter = metrics.Metrics.counter( self.__class__, 'total_patches') self.emitted_patches_counter = metrics.Metrics.counter( self.__class__, 'emitted_patches') def start_bundle(self): self.extractor = staffline_extractor.StafflinePatchExtractor( patch_height=self.patch_height, patch_width=self.patch_width, run_options=tf.RunOptions(timeout_in_ms=self.timeout_ms)) self.session = tf.Session(graph=self.extractor.graph) def process(self, png_path): self.total_pages_counter.inc() try: with self.session.as_default(): patches_iter = self.extractor.page_patch_iterator(png_path) # pylint: disable=broad-except except Exception: logging.exception('Skipping failed music score (%s)', png_path) self.failed_pages_counter.inc() return patches_iter = filter(_filter_patch, patches_iter) if 0 < self.max_patches_per_page: # Subsample patches. patches = more_iter_tools.iter_sample(patches_iter, self.max_patches_per_page) else: patches = list(patches_iter) if not patches: self.empty_pages_counter.inc() self.total_patches_counter.inc(len(patches)) # Serialize each patch as an Example. for patch_name, patch in patches: example = tf.train.Example() example.features.feature['name'].bytes_list.value.append( patch_name.encode('utf-8')) example.features.feature['features'].float_list.value.extend( patch.ravel()) example.features.feature['height'].int64_list.value.append(patch.shape[0]) example.features.feature['width'].int64_list.value.append(patch.shape[1]) yield example self.successful_pages_counter.inc() # Patches are sub-sampled by this point. self.emitted_patches_counter.inc(len(patches)) def finish_bundle(self): self.session.close() del self.extractor del self.session
Lib/parallel/test/thread_scratch.py
pyparallel/pyparallel
652
12734396
<filename>Lib/parallel/test/thread_scratch.py import ujson import parallel import datetime from parallel import ( timer, thread, gmtime, sys_stats, socket_stats, memory_stats, context_stats, thread_seq_id, ) from parallel.http.server import ( quote_html, text_response, html_response, json_serialization, HttpServer, ) thr = thread(interval=8, thread_characteristics="Low Latency") class RateLimitedServer(HttpServer): http11 = True rate_limit = datetime.timedelta(milliseconds=16) def hello(self, transport, data): return b'Hello, World!' def stats(self, transport, data): return t.data or b'' def uni(self, transport, data): return '<html><body>Works!</body></html>' def bytearr(self, transport, data): return bytearray(b'abcd') def res(self, transport, data): return thr.system_responsiveness server1 = parallel.server('0.0.0.0', 8081) parallel.register(server1, RateLimitedServer) import parallel def gmtime(): return parallel.gmtime() t = parallel.thread(func=gmtime, interval=1000, thread_characteristics="Low Latency") import parallel import datetime def gmtime(): return parallel.gmtime() t = parallel.timer(func=gmtime, duetime=datetime.timedelta(milliseconds=1000), period=1000)
examples/grating_two_level/grating_coupler_2D_apodized.py
jbellevi/lumopt
101
12734421
<reponame>jbellevi/lumopt """ Copyright (c) 2019 Lumerical Inc. """ ######## IMPORTS ######## # General purpose imports import os import numpy as np import scipy as sp # Optimization specific imports from lumopt.utilities.load_lumerical_scripts import load_from_lsf from lumopt.utilities.wavelengths import Wavelengths from lumopt.geometries.polygon import FunctionDefinedPolygon from lumopt.figures_of_merit.modematch import ModeMatch from lumopt.optimizers.generic_optimizers import ScipyOptimizers from lumopt.optimization import Optimization from lumopt.utilities.materials import Material from numpy.random import rand def runGratingOptimization(bandwidth_in_nm, etch_depth, n_grates, params): bounds = [(0.1, 1)]*4 bounds[0] = (-3,3) #< Starting position bounds[1] = (0,0.1) #< Scaling parameter R bounds[2] = (1.5,3) #< Parameter a bounds[3] = (0,2) #< Parameter b def grating_params_pos(params, output_waveguide_length = 0.5e-6, height = 220e-9, y0 = 0): x_begin = -3e-6 y3 = y0+height y1 = y3-etch_depth x_start = params[0]*1e-6 #< First parameter is the starting position x0 = x_start R = params[1]*1e6 #< second parameter (unit is 1/um) a = params[2] #< Third parameter (dim-less) b = params[3] #< Fourth parameter (dim-less) verts = np.array( [ [x_begin,y0],[x_begin,y3],[x0,y3],[x0,y1] ] ) lambda_c = 1.55e-6 F0 = 0.95 ## Iterate over all but the last for i in range(n_grates-1): F = F0-R*(x0-x_start) Lambda = lambda_c / (a+F*b) x1 = x0 + (1-F)*Lambda #< Width of the etched region x2 = x0 + Lambda #< Rest of cell verts = np.concatenate((verts,[[x1,y1],[x1,y3],[x2,y3],[x2,y1]]),axis=0) x0 = x2 F = F0-R*(x0-x_start) Lambda = lambda_c / (a+F*b) x1 = x0 + (1-F)*Lambda #< Width of the etched region x_end = x1+output_waveguide_length verts = np.concatenate((verts,[[x1,y1],[x1,y3],[x_end,y3],[x_end,y0]]),axis=0) return verts geometry = FunctionDefinedPolygon(func = grating_params_pos, initial_params = params, bounds = bounds, z = 0.0, depth = 110e-9, eps_out = 1.44 ** 2, eps_in = 3.47668 ** 2, edge_precision = 5, dx = 1e-3) ######## DEFINE FIGURE OF MERIT ######## fom = ModeMatch(monitor_name = 'fom', mode_number = 1, direction = 'Backward', target_T_fwd = lambda wl: np.ones(wl.size), norm_p = 1) ######## DEFINE OPTIMIZATION ALGORITHM ######## optimizer = ScipyOptimizers(max_iter = 25, method = 'L-BFGS-B', scaling_factor = 1, pgtol = 1e-6) ######## DEFINE BASE SIMULATION ######## base_script = load_from_lsf(os.path.join(os.path.dirname(__file__), 'grating_coupler_2D_2etch.lsf')) ######## PUT EVERYTHING TOGETHER ######## lambda_start = 1550 - bandwidth_in_nm/2 lambda_end = 1550 + bandwidth_in_nm/2 lambda_pts = int(bandwidth_in_nm/10)+1 wavelengths = Wavelengths(start = lambda_start*1e-9, stop = lambda_end*1e-9, points = lambda_pts) opt = Optimization(base_script = base_script, wavelengths = wavelengths, fom = fom, geometry = geometry, optimizer = optimizer, hide_fdtd_cad = True, use_deps = True) ######## RUN THE OPTIMIZER ######## opt.run() if __name__ == "__main__": bandwidth_in_nm = 0 #< Only optimiza for center frequency of 1550nm initial_params = [0, 0.03, 2.4, 0.5369] runGratingOptimization(bandwidth_in_nm=bandwidth_in_nm, etch_depth=80e-9, n_grates = 25, params=initial_params)
shopyo/shopyoapi/assets.py
Bnseamster/shopyo
235
12734425
<reponame>Bnseamster/shopyo from flask import url_for from flask import current_app def get_static(boxormodule, filename): if current_app.config["DEBUG"] == True: return url_for("devstatic", boxormodule=boxormodule, filename=filename) else: return url_for( "static", filename="modules/{}/{}".format(boxormodule, filename) )
Code/KafkaProducer.py
dong-yf/100-Days-Of-ML-Code
17,496
12734462
#!/usr/bin/python from kafka import KafkaProducer kafkaHosts=["kafka01.paas.longfor.sit:9092" ,"kafka02.paas.longfor.sit:9092" ,"kafka03.paas.longfor.sit:9092"] producer = KafkaProducer(bootstrap_servers=kafkaHosts); for _ in range(20): producer.send("testapplog_plm-prototype",b"Hello....") producer.flush();
pretrain/pri3d/main.py
kudo1026/Pri3D
103
12734476
<reponame>kudo1026/Pri3D #!/usr/bin/env python3 import hydra import os from common.distributed import multi_proc_run def single_proc_run(config): from common.pretrain import Pretrain #dir_path = os.path.dirname(os.path.realpath(__file__)) trainer = Pretrain(config) trainer.train() @hydra.main(config_path='config', config_name='default.yaml') def main(config): if config.distributed.num_gpus > 1: multi_proc_run(config.distributed.num_gpus, fun=single_proc_run, fun_args=(config,)) else: single_proc_run(config) if __name__ == '__main__': #os.environ["CUDA_VISIBLE_DEVICES"]="5" os.environ["OMP_NUM_THREADS"]="12" main()
backend/apps/marquees/admin.py
FroggyTaipei/froggy-service
174
12734486
from django.contrib import admin from django.forms import TextInput, ModelForm from suit.admin import SortableModelAdmin from .models import MarqueeMessage class MarqueeMessageForm(ModelForm): class Meta: widgets = { 'message': TextInput(attrs={'class': 'input-xxlarge'}), } class MarqueeMessageAdmin(SortableModelAdmin): form = MarqueeMessageForm sortable = 'order' list_editable = ('display', 'order') list_display = ('message', 'display', 'order') admin.site.register(MarqueeMessage, MarqueeMessageAdmin)
config/base_station/gs_gps.py
leozz37/makani
1,178
12734514
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GS GPS parameters.""" from makani.config import mconfig from makani.control import system_types import numpy as np @mconfig.Config(deps={ 'gs_model': 'base_station.gs_model', 'test_site': 'common.test_site', }) def MakeParams(params): """Make ground station gps parameters.""" if params['gs_model'] == system_types.kGroundStationModelTopHat: gps_primary_antenna_dir = [0.0, 0.0, -1.0] gps_primary_pos = [1.418, -1.657, -2.417] # TopHat doesn't actually have a secondary gps. gps_secondary_antenna_dir = gps_primary_antenna_dir gps_secondary_pos = gps_primary_pos # Angle [rad] from the GPS compass baseline to the zero-azimuth # reference of the perch frame. Note: The TopHat does not have a # GPS compass, but this value is set for historical consistency. gps_compass_to_perch_azi = -2.440 elif params['gs_model'] == system_types.kGroundStationModelGSv1: gps_primary_antenna_dir = [0.0, 0.0, -1.0] # Position measured on 2015-06-15. gps_primary_pos = [0.0, 0.0, -2.94] # GSv1 doesn't actually have a secondary gps. gps_secondary_antenna_dir = gps_primary_antenna_dir gps_secondary_pos = gps_primary_pos # Angle [rad] from the GPS compass baseline to the zero-azimuth # reference of the perch frame gps_compass_to_perch_azi = -2.440 elif params['gs_model'] == system_types.kGroundStationModelGSv2: gps_primary_antenna_dir = [0.0, 0.0, -1.0] gps_secondary_antenna_dir = [0.0, 0.0, -1.0] if params['test_site'] == system_types.kTestSiteParkerRanch: # See b/137283974 for details. gps_primary_pos = [-0.002, 0.011, -6.7] gps_secondary_pos = [-2.450, -0.428, -6.827] elif params['test_site'] == system_types.kTestSiteNorway: # See b/137660975 for details. gps_primary_pos = [-0.002, 0.011, -6.7] gps_secondary_pos = [-2.450, -0.428, -6.757] else: assert False, 'Unsupported test site.' # Angle [rad] from the GPS compass baseline to the zero-azimuth # reference of the platform frame. See b/118710931. gps_compass_to_perch_azi = np.deg2rad(169.84) else: assert False, 'Unsupported ground station model.' return { # Position [m] of the GS GPS antenna in the platform frame. # NOTE: The direction of the antennae is currently not used. 'primary_antenna_p': { 'antenna_dir': gps_primary_antenna_dir, 'pos': gps_primary_pos, }, 'secondary_antenna_p': { 'antenna_dir': gps_secondary_antenna_dir, 'pos': gps_secondary_pos, }, # Calibration for the ground station compass ([#], [rad], [#]). # The bias is used to account for the angle between the perch # frame and the NovAtel differential GPS receiver. # TODO: Remove this parameter once the computation of # compass heading from the primary and secondary antennae is implemented. 'heading_cal': { 'scale': 1.0, 'bias': gps_compass_to_perch_azi, 'bias_count': 0} }
options/test_options.py
Yijunmaverick/Im2Pencil
176
12734532
<filename>options/test_options.py<gh_stars>100-1000 from .base_options import BaseOptions class TestOptions(BaseOptions): def initialize(self): BaseOptions.initialize(self) self.parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.') self.parser.add_argument('--outline_style', type=int, default=0, help='which edge style') self.parser.add_argument('--shading_style', type=int, default=0, help='which shading style') self.parser.add_argument('--Sigma', type=float, default=2.5, help='sigma for XDoG') self.parser.add_argument('--pad', type=int, default=10) self.parser.add_argument('--r', type=int, default=11) self.parser.add_argument('--eps', type=float, default=0.1) self.isTrain = False
fewshot/configs/cnn_config_pb2.py
renmengye/inc-few-shot-attractor-public
122
12734545
<reponame>renmengye/inc-few-shot-attractor-public # -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: fewshot/configs/cnn_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='fewshot/configs/cnn_config.proto', package='fewshot.configs', syntax='proto2', serialized_options=None, serialized_pb=_b('\n fewshot/configs/cnn_config.proto\x12\x0f\x66\x65wshot.configs\"\xa1\x01\n\tCNNConfig\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x13\n\x0bnum_channel\x18\x03 \x01(\x05\x12\x13\n\x0bnum_filters\x18\x04 \x03(\x05\x12\x0f\n\x07strides\x18\x05 \x03(\x05\x12\x0f\n\x07pool_fn\x18\x06 \x03(\t\x12\x14\n\x0cpool_strides\x18\x07 \x03(\x05\x12\x13\n\x0b\x63onv_act_fn\x18\x08 \x03(\t') ) _CNNCONFIG = _descriptor.Descriptor( name='CNNConfig', full_name='fewshot.configs.CNNConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='height', full_name='fewshot.configs.CNNConfig.height', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='width', full_name='fewshot.configs.CNNConfig.width', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_channel', full_name='fewshot.configs.CNNConfig.num_channel', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_filters', full_name='fewshot.configs.CNNConfig.num_filters', index=3, number=4, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='strides', full_name='fewshot.configs.CNNConfig.strides', index=4, number=5, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pool_fn', full_name='fewshot.configs.CNNConfig.pool_fn', index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pool_strides', full_name='fewshot.configs.CNNConfig.pool_strides', index=6, number=7, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='conv_act_fn', full_name='fewshot.configs.CNNConfig.conv_act_fn', index=7, number=8, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=54, serialized_end=215, ) DESCRIPTOR.message_types_by_name['CNNConfig'] = _CNNCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) CNNConfig = _reflection.GeneratedProtocolMessageType('CNNConfig', (_message.Message,), dict( DESCRIPTOR = _CNNCONFIG, __module__ = 'fewshot.configs.cnn_config_pb2' # @@protoc_insertion_point(class_scope:fewshot.configs.CNNConfig) )) _sym_db.RegisterMessage(CNNConfig) # @@protoc_insertion_point(module_scope)
xknx/telegram/__init__.py
iligiddi/xknx
179
12734565
<gh_stars>100-1000 """ Module for handling KNX primitves. * KNX Addresses * KNX Telegrams """ # flake8: noqa from .address import GroupAddress, GroupAddressType, IndividualAddress from .address_filter import AddressFilter from .telegram import Telegram, TelegramDirection __all__ = [ "AddressFilter", "GroupAddress", "GroupAddressType", "IndividualAddress", "Telegram", "TelegramDirection", ]
resources/lib/ambilight_controller.py
metbosch/script.kodi.http.ambilight
172
12734571
import lights from tools import xbmclog class AmbilightController(lights.Controller): def __init__(self, *args, **kwargs): super(AmbilightController, self).__init__(*args, **kwargs) def on_playback_start(self): if self.settings.ambilight_start_dim_enable: self.save_state_as_initial() xbmclog('Kodi Hue: In AmbilightController.on_playback_start() ' 'dimming ambilight group') self.set_state( bri=self.settings.ambilight_start_dim, force_on=self.settings.force_light_on, ) def on_playback_pause(self): if self.settings.ambilight_start_dim_enable: xbmclog('Kodi Hue: In AmbilightController.on_playback_pause() ' 'undimming ambilight group') if self.settings.ambilight_pause_bri_override: bri = self.settings.ambilight_pause_bri self.set_state( bri=bri, force_on=self.settings.force_light_on, ) else: self.restore_initial_state( force_on=self.settings.force_light_on, ) def on_playback_stop(self): if self.settings.ambilight_start_dim_enable: xbmclog('Kodi Hue: In AmbilightController.on_playback_stop() ' 'undimming ambilight group') if self.settings.ambilight_stop_bri_override: self.set_state( bri=self.settings.ambilight_stop_bri, force_on=self.settings.force_light_on, ) else: self.restore_initial_state( force_on=self.settings.force_light_on, ) else: self.restore_initial_state( force_on=self.settings.force_light_on, )
gobigger/agents/__init__.py
luanshaotong/GoBigger
189
12734649
from .base_agent import BaseAgent from .bot_agent import BotAgent
integration_test/test_m_flag.py
robintw/recipy
451
12734659
""" Tests of 'python -m recipy' usage. This script uses a Python script (run_numpy_no_recipy.py) about which the following assumptions are made: * Co-located with this test script, in the same directory. * Expects two arguments via the command-line: an input file name and an output file name. * Reads the input file and creates the output file using a library which recipy is configured to log. """ # Copyright (c) 2016 University of Edinburgh. import os import os.path import shutil import tempfile from integration_test import helpers from integration_test import recipy_environment as recipyenv class TestMflag: """ Tests of 'python -m recipy' usage. """ SCRIPT_NAME = "run_numpy_no_recipy.py" """ Test script assumed to be in same directory as this class. """ script = "" """ Absolute path to test script. """ original_script = "" """ Absolute path to original copy of test script. """ directory = "" """ Absolute path to temporary directory for these tests. """ def setup_method(self, method): """ py.test setup function, creates test directory in $TEMP, sets 'script' with path to SCRIPT_NAME and copies script from 'script' to 'original_script'. :param method: Test method :type method: function """ TestMflag.directory = tempfile.mkdtemp(TestMflag.__name__) TestMflag.script = os.path.join(os.path.dirname(__file__), TestMflag.SCRIPT_NAME) TestMflag.original_script = TestMflag.script + ".orig" shutil.copy(TestMflag.script, TestMflag.original_script) def teardown_method(self, method): """ py.test teardown function, deletes test directory in $TEMP, and moves 'original_script' to 'script'. """ if os.path.isdir(TestMflag.directory): shutil.rmtree(TestMflag.directory) os.remove(TestMflag.script) os.rename(TestMflag.original_script, TestMflag.script) def test_m_recipy(self): """ Running 'python -m recipy script' and the same script that inclues 'import recipy' should give the same results in the log (aside from their 'unique_id', 'diff', 'date', 'exit_date', 'command_args', 'inputs' and 'outputs'). """ input_file = os.path.join(TestMflag.directory, "input.csv") with open(input_file, "w") as csv_file: csv_file.write("1,4,9,16\n") output_file = os.path.join(TestMflag.directory, "output.csv") exit_code, _ = helpers.execute_python( ["-m", "recipy", TestMflag.script, input_file, output_file]) assert exit_code == 0, ("Unexpected exit code " + str(exit_code)) module_log, _ = helpers.get_log(recipyenv.get_recipydb()) helpers.enable_recipy(TestMflag.original_script, TestMflag.script) exit_code, _ = helpers.execute_python( ["-m", "recipy", TestMflag.script, input_file, output_file]) assert exit_code == 0, ("Unexpected exit code " + str(exit_code)) import_log, _ = helpers.get_log(recipyenv.get_recipydb()) for key in ["inputs", "outputs"]: assert len(module_log[key]) == len(import_log[key]),\ ("Expected same number of " + key + " files") for index in range(0, len(module_log[key])): [import_file, _] = module_log[key][index] [module_file, _] = import_log[key][index] assert os.path.basename(import_file) ==\ os.path.basename(module_file),\ "Expected local file names to be equal" # Remove fields that are specific to a run. for key in ["unique_id", "diff", "date", "exit_date", "command_args", "inputs", "outputs"]: if key in module_log: del module_log[key] del import_log[key] assert module_log == import_log,\ ("Expected " + str(module_log) + " to equal " + str(import_log))
source/test_proxe_s2.py
jiyeonkim127/PSI
138
12734681
<gh_stars>100-1000 from __future__ import absolute_import from __future__ import print_function from __future__ import division import sys, os, glob import json import argparse import numpy as np import open3d as o3d import pickle import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init import torch.optim as optim from torch.optim import lr_scheduler import smplx from human_body_prior.tools.model_loader import load_vposer import chamfer_pytorch.dist_chamfer as ext from cvae import BodyParamParser, HumanCVAES2, GeometryTransformer from batch_gen import BatchGeneratorTest class TestOP: def __init__(self, testconfig): for key, val in testconfig.items(): setattr(self, key, val) if not os.path.exists(self.ckpt_dir): print('--[ERROR] checkpoints do not exist') sys.exit() if self.use_cont_rot: n_dim_body=72+3 else: n_dim_body=72 self.model_h_latentD = 256 self.model_h = HumanCVAES2(latentD_g=self.model_h_latentD, latentD_l=self.model_h_latentD, n_dim_body=n_dim_body, n_dim_scene=self.model_h_latentD, test=True) ### body mesh model self.vposer, _ = load_vposer(self.vposer_ckpt_path, vp_model='snapshot') self.body_mesh_model = smplx.create(self.human_model_path, model_type='smplx', gender='neutral', ext='npz', num_pca_comps=12, create_global_orient=True, create_body_pose=True, create_betas=True, create_left_hand_pose=True, create_right_hand_pose=True, create_expression=True, create_jaw_pose=True, create_leye_pose=True, create_reye_pose=True, create_transl=True, batch_size=self.n_samples ) def test(self, batch_gen): self.model_h.eval() self.model_h.to(self.device) self.vposer.to(self.device) self.body_mesh_model.to(self.device) ## load checkpoints ckp_list = sorted(glob.glob(os.path.join(self.ckpt_dir,'epoch-*.ckp')), key=os.path.getmtime) ckp_path = ckp_list[-1] checkpoint = torch.load(ckp_path) print('[INFO] load checkpoints: ' + ckp_path) self.model_h.load_state_dict(checkpoint['model_h_state_dict']) ## get a batch of data for testing batch_gen.reset() test_data = batch_gen.next_batch(batch_size=1) depth_batch = test_data[0] seg_batch = test_data[1] max_d_batch = test_data[2] cam_int_batch = test_data[3] cam_ext_batch = test_data[4] ## pass data to network xs = torch.cat([depth_batch, seg_batch],dim=1) xs_n = xs.repeat(self.n_samples, 1,1,1) noise_batch_g = torch.randn([self.n_samples, self.model_h_latentD], dtype=torch.float32, device=self.device) noise_batch_l = torch.randn([self.n_samples, self.model_h_latentD], dtype=torch.float32, device=self.device) if self.use_cont_rot: xhnr_gen = self.model_h.sample(xs_n, noise_batch_g, noise_batch_l) xhn_gen = GeometryTransformer.convert_to_3D_rot(xhnr_gen) else: xhnr_gen = self.model_h.sample(xs_n, noise_batch_g, noise_batch_l) xh_gen = GeometryTransformer.recover_global_T(xhn_gen, cam_int_batch, max_d_batch) body_param_list = BodyParamParser.body_params_encapsulate(xh_gen) scene_name = os.path.abspath(self.scene_file_path).split("/")[-2].split("_")[0] outdir = os.path.join(self.output_dir, scene_name) if not os.path.exists(outdir): os.makedirs(outdir) print('[INFO] save results to: '+outdir) for ii, body_param in enumerate(body_param_list): body_param['cam_ext'] = cam_ext_batch.detach().cpu().numpy() body_param['cam_int'] = cam_int_batch.detach().cpu().numpy() outfilename = os.path.join(outdir, 'body_gen_{:06d}.pkl'.format(ii+900)) outfile = open(outfilename, 'wb') pickle.dump(body_param, outfile) outfile.close() if __name__ == '__main__': proxe_path = '/is/cluster/yzhang/PROXE' test_file_list = ['MPH16_00157_01', 'N0SittingBooth_00162_01', 'MPH1Library_00034_01', 'N3OpenArea_00157_01'] for fileid in range(len(test_file_list)): testconfig={ 'human_model_path': '/is/ps2/yzhang/body_models/VPoser', 'scene_3d_path': os.path.join(proxe_path, 'scenes/'), 'vposer_ckpt_path': '/is/ps2/yzhang/body_models/VPoser/vposer_v1_0', 'device': torch.device("cuda" if torch.cuda.is_available() else "cpu"), 'ckpt_dir': 'checkpoints/checkpoints_virtualcams3_modelS2_batch32_epoch30_LRS0.0003_LRH0.0003_LossVposer0.001_LossKL0.1_LossContact0.001_LossCollision0.01', 'test_data_path': os.path.join(proxe_path, 'snapshot/'+test_file_list[fileid]), 'scene_file_path':os.path.join(proxe_path, 'snapshot/'+test_file_list[fileid]+'/rec_000000.mat'), 'n_samples': 300, 'use_cont_rot':True, 'output_dir': 'results_proxe_stage2_sceneloss/virtualcams' } batch_gen = BatchGeneratorTest(dataset_path=testconfig['test_data_path'], device=testconfig['device']) test_op = TestOP(testconfig) test_op.test(batch_gen)
NAS-Models/lib/models/nas_net.py
zhangting2020/AutoDL
155
12734691
import paddle import paddle.fluid as fluid from .operations import OPS def AuxiliaryHeadCIFAR(inputs, C, class_num): print('AuxiliaryHeadCIFAR : inputs-shape : {:}'.format(inputs.shape)) temp = fluid.layers.relu(inputs) temp = fluid.layers.pool2d( temp, pool_size=5, pool_stride=3, pool_padding=0, pool_type='avg') temp = fluid.layers.conv2d( temp, filter_size=1, num_filters=128, stride=1, padding=0, act=None, bias_attr=False) temp = fluid.layers.batch_norm(input=temp, act='relu', bias_attr=None) temp = fluid.layers.conv2d( temp, filter_size=1, num_filters=768, stride=2, padding=0, act=None, bias_attr=False) temp = fluid.layers.batch_norm(input=temp, act='relu', bias_attr=None) print('AuxiliaryHeadCIFAR : last---shape : {:}'.format(temp.shape)) predict = fluid.layers.fc(input=temp, size=class_num, act='softmax') return predict def InferCell(name, inputs_prev_prev, inputs_prev, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev): print( '[{:}] C_prev_prev={:} C_prev={:}, C={:}, reduction_prev={:}, reduction={:}'. format(name, C_prev_prev, C_prev, C, reduction_prev, reduction)) print('inputs_prev_prev : {:}'.format(inputs_prev_prev.shape)) print('inputs_prev : {:}'.format(inputs_prev.shape)) inputs_prev_prev = OPS['skip_connect'](inputs_prev_prev, C_prev_prev, C, 2 if reduction_prev else 1) inputs_prev = OPS['skip_connect'](inputs_prev, C_prev, C, 1) print('inputs_prev_prev : {:}'.format(inputs_prev_prev.shape)) print('inputs_prev : {:}'.format(inputs_prev.shape)) if reduction: step_ops, concat = genotype.reduce, genotype.reduce_concat else: step_ops, concat = genotype.normal, genotype.normal_concat states = [inputs_prev_prev, inputs_prev] for istep, operations in enumerate(step_ops): op_a, op_b = operations # the first operation #print ('-->>[{:}/{:}] [{:}] + [{:}]'.format(istep, len(step_ops), op_a, op_b)) stride = 2 if reduction and op_a[1] < 2 else 1 tensor1 = OPS[op_a[0]](states[op_a[1]], C, C, stride) stride = 2 if reduction and op_b[1] < 2 else 1 tensor2 = OPS[op_b[0]](states[op_b[1]], C, C, stride) state = fluid.layers.elementwise_add(x=tensor1, y=tensor2, act=None) assert tensor1.shape == tensor2.shape, 'invalid shape {:} vs. {:}'.format( tensor1.shape, tensor2.shape) print('-->>[{:}/{:}] tensor={:} from {:} + {:}'.format( istep, len(step_ops), state.shape, tensor1.shape, tensor2.shape)) states.append(state) states_to_cat = [states[x] for x in concat] outputs = fluid.layers.concat(states_to_cat, axis=1) print('-->> output-shape : {:} from concat={:}'.format(outputs.shape, concat)) return outputs # NASCifarNet(inputs, 36, 6, 3, 10, 'xxx', True) def NASCifarNet(ipt, C, N, stem_multiplier, class_num, genotype, auxiliary): # cifar head module C_curr = stem_multiplier * C stem = fluid.layers.conv2d( ipt, filter_size=3, num_filters=C_curr, stride=1, padding=1, act=None, bias_attr=False) stem = fluid.layers.batch_norm(input=stem, act=None, bias_attr=None) print('stem-shape : {:}'.format(stem.shape)) # N + 1 + N + 1 + N cells layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N C_prev_prev, C_prev, C_curr = C_curr, C_curr, C reduction_prev = False auxiliary_pred = None cell_results = [stem, stem] for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): xstr = '{:02d}/{:02d}'.format(index, len(layer_channels)) cell_result = InferCell(xstr, cell_results[-2], cell_results[-1], genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev) reduction_prev = reduction C_prev_prev, C_prev = C_prev, cell_result.shape[1] cell_results.append(cell_result) if auxiliary and reduction and C_curr == C * 4: auxiliary_pred = AuxiliaryHeadCIFAR(cell_result, C_prev, class_num) global_P = fluid.layers.pool2d( input=cell_results[-1], pool_size=8, pool_type='avg', pool_stride=1) predicts = fluid.layers.fc(input=global_P, size=class_num, act='softmax') print('predict-shape : {:}'.format(predicts.shape)) if auxiliary_pred is None: return predicts else: return [predicts, auxiliary_pred]
tests/test_statistics.py
MORE-EU/matrixprofile
262
12734720
<reponame>MORE-EU/matrixprofile<filename>tests/test_statistics.py #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals range = getattr(__builtins__, 'xrange', range) # end of py2 compatability boilerplate import os import pytest import numpy as np from matrixprofile.algorithms.statistics import statistics def test_invalid_ts_not_1d(): ts = np.array([[1, 1], [1, 1]]) w = 2 with pytest.raises(ValueError) as excinfo: statistics(ts, w) assert 'The time series must be 1D' in str(excinfo.value) def test_invalid_ts_not_array(): ts = None w = 2 with pytest.raises(ValueError) as excinfo: statistics(ts, w) assert 'ts must be array like' in str(excinfo.value) def test_invalid_window_size_not_int(): ts = np.arange(10) w = 's' with pytest.raises(ValueError) as excinfo: statistics(ts, w) assert 'Expecting int for window_size' in str(excinfo.value) def test_invalid_window_size_too_large(): ts = np.arange(10) w = 11 with pytest.raises(ValueError) as excinfo: statistics(ts, w) assert 'Window size cannot be greater than len(ts)' in str(excinfo.value) def test_invalid_window_size_too_small(): ts = np.arange(10) w = 2 with pytest.raises(ValueError) as excinfo: statistics(ts, w) assert 'Window size cannot be less than 3' in str(excinfo.value) def test_valid(): ts = np.array([1, 3, 2, 4, 5, 1, 1, 1, 2, 4, 9, 7]) w = 4 ts_stats = statistics(ts, w) assert(ts_stats['min'] == 1) assert(ts_stats['max'] == 9) np.testing.assert_almost_equal(ts_stats['mean'], 3.3333333) np.testing.assert_almost_equal(ts_stats['std'], 2.494438257) assert(ts_stats['median'] == 2.5) np.testing.assert_almost_equal(ts_stats['moving_min'], np.array([1, 2, 1, 1, 1, 1, 1, 1, 2])) np.testing.assert_almost_equal(ts_stats['moving_max'], np.array([4, 5, 5, 5, 5, 2, 4, 9, 9])) np.testing.assert_almost_equal(ts_stats['moving_mean'], np.array([2.5, 3.5, 3.0, 2.75, 2.0, 1.25, 2.0, 4.0, 5.5])) np.testing.assert_almost_equal(ts_stats['moving_std'], np.array([1.11803399, 1.11803399, 1.58113883, 1.78535711, 1.73205081, 0.4330127, 1.22474487, 3.082207, 2.6925824])) np.testing.assert_almost_equal(ts_stats['moving_median'], np.array([2.5, 3.5, 3.0, 2.5, 1.0, 1.0, 1.5, 3.0, 5.5])) np.testing.assert_equal(ts_stats['ts'], ts) assert(ts_stats['window_size'] == w) assert(ts_stats['class'] == 'Statistics')
combinations/solution.py
mahimadubey/leetcode-python
528
12734723
""" Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For example, If n = 4 and k = 2, a solution is: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ] """ class Solution(object): def combine(self, n, k): """ :type n: int :type k: int :rtype: List[List[int]] """ a = range(1, n + 1) return self.combine_aux(a, k) def combine_aux(self, a, k): if k == 0: return [[]] else: res = [] for i, e in enumerate(a): rest_comb = self.combine_aux(a[i + 1:], k - 1) for comb in rest_comb: comb.insert(0, e) res += rest_comb return res
tests/syntax/unmatched_closing_bracket_2.py
matan-h/friendly
287
12734771
<filename>tests/syntax/unmatched_closing_bracket_2.py """Should raise SyntaxError: invalid syntax""" x = (1, 2, 3]
bumpversion/__main__.py
jaap3/bump2version
1,289
12734803
<filename>bumpversion/__main__.py<gh_stars>1000+ __import__('bumpversion').main()
release/scripts/presets/framerate/50.py
rbabari/blender
365
12734815
import bpy bpy.context.scene.render.fps = 50 bpy.context.scene.render.fps_base = 1
ci/bootstrap_dockerignore.py
decentral1se/purerpc
143
12734843
#! /usr/bin/env python import os def main(): if os.path.exists(".dockerignore"): print(".dockerignore already exists, remove it to proceed") exit(-1) with open(".gitignore", "r") as fin, open(".dockerignore", "w") as fout: fout.write("# This file was automatically generated by ./ci/bootstrap_dockerignore.py\n") fout.write("# based on the contents of .gitignore\n\n") for line in fin: if line[0] in "#!/\n": fout.write(line) else: fout.write("**/" + line) if __name__ == "__main__": main()
src/python/e2e-test-runner/e2e_test_runner/test_web_auth.py
inickles/grapl
313
12734863
""" TODO (wimax July 2020): I don't see anything in here that indicates that screams "e2e test", this certainly seems like more of an integration test. There's nothing here that does anything cross-service. Perhaps it's just "does it work in AWS?" """ from grapl_tests_common.clients.grapl_web_client import GraplWebClient def test_real_user_fake_password() -> None: # Exercises the PasswordVerification case in grapl-web-ui login.rs resp = GraplWebClient().real_user_fake_password() assert resp.status_code == 401 def test_nonexistent_user() -> None: # Exercises the UserRecordNotFound case in grapl-web-ui login.rs resp = GraplWebClient().nonexistent_user() assert resp.status_code == 401 def test_check__empty_creds() -> None: resp = GraplWebClient().empty_creds() assert resp.status_code == 500 # TODO: https://github.com/grapl-security/issue-tracker/issues/686 # Add a `test_no_content_type()` (it currently 200s for some reason)
scripts/data/kitti_extract_ground_plane.py
wuzzh/master_thesis_code
206
12734928
""" Script for extracting the ground plane from the KITTI dataset. We need to determine the ground plane position and orientation in order to be able to reconstruct points on it, which we are trying to detect. We will collect all the points on the ground plane from the dataset and then fit a plane to them with RANSAC. ---------------------------------------------------------------------------------------------------- python kitti_extract_ground_plane.py path_labels ---------------------------------------------------------------------------------------------------- """ __date__ = '04/13/2017' __author__ = '<NAME>' __email__ = '<EMAIL>' import argparse import os import numpy as np import random # import matplotlib # matplotlib.use('Agg') # Prevents from using X interface for plotting from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from shared.geometry import R3x3_y, t3x1, Rt4x4 #################################################################################################### # DEFINITIONS # #################################################################################################### # Parameter for RANSAC # Distance from the plane (in meters), which is considered as an inlier region INLIER_TRHESHOLD = 1.0 # Number of estimation iterations carried out by RANSAC RANSAC_ITERS = 10000 #################################################################################################### # FUNCTIONS # #################################################################################################### def plane_3p(p1, p2, p3): """ Computes the equation of a plane passing through the 3 given points. Input: p1, p2, p3: 3x1 np.matrix coordinates of points in the plane Returns: [a, b, c, d] coefficients as a 1x4 np.matrix """ l1 = p2 - p1 l2 = p3 - p1 normal = np.cross(l1, l2, axis=0) d = - (normal[0,0]*p1[0,0] + normal[1,0]*p1[1,0] + normal[2,0]*p1[2,0]) return np.asmatrix([normal[0,0], normal[1,0], normal[2,0], d]) def show_X_and_gp(gp_X_4xn, gp_1x4): """ Show a 3D plot of the estimated ground plane. """ fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_aspect('equal') ax.scatter(np.array(gp_X_4xn[2,0:1000]), np.array(gp_X_4xn[0,0:1000]), np.array(-gp_X_4xn[1,0:1000]), color='red') X = np.arange(-20, 20, 1) Y = np.arange(-1, 10, 1) X, Y = np.meshgrid(X, Y) Z = - (gp_1x4[0,0]*X + gp_1x4[0,1]*Y + gp_1x4[0,3]) / gp_1x4[0,2] ax.plot_surface(Z, X, -Y, linewidth=0, alpha=0.5, antialiased=True) # Bounding box of the car ax.plot([3,3,3,3,3], [1.5, 1.5, -1.5, -1.5, 1.5], [0,-1.9,-1.9,0,0], color='green') ax.plot([-3,-3,-3,-3,-3], [1.5, 1.5, -1.5, -1.5, 1.5], [0,-1.9,-1.9,0,0], color='red') ax.plot([3, -3], [1.5, 1.5], [0,0], color='blue') ax.plot([3, -3], [1.5, 1.5], [-1.9,-1.9], color='blue') ax.plot([3, -3], [-1.5, -1.5], [0,0], color='blue') ax.plot([3, -3], [-1.5, -1.5], [-1.9,-1.9], color='blue') ax.set_xlim(-100, 100) ax.set_ylim(-100, 100) ax.set_zlim(-100, 100) ax.set_xlabel('Z') ax.set_ylabel('X') ax.set_zlabel('Y') plt.show() #################################################################################################### # CLASSES # #################################################################################################### class GroundPlaneEstimator(object): """ Takes care of the estimation of the ground plane position in the KITTI dataset. """ def __init__(self, path_labels): """ Input: path_labels: Path to the "label_2" folder of the KITTI dataset """ super(GroundPlaneEstimator, self).__init__() self.path_labels = path_labels self.gp_points = [] def run_estimation(self): """ Runs the whole process of estimating the ground plane. """ print('-- ESTIMATING GROUND PLANE POSITION') # Read label files and get all ground plane points print('-- Reading label files') self._read_label_files() print('-- Label files contain ' + str(len(self.gp_points)) + ' points') # Create a matrix from all the points for easier computation self.gp_X_4xn = np.asmatrix(np.ones((4, len(self.gp_points)))) for i in xrange(len(self.gp_points)): self.gp_X_4xn[0:3,i] = self.gp_points[i] # plt.scatter(self.gp_X_4xn[2,:], self.gp_X_4xn[1,:]) # plt.show() # Run RANSAC on those points print('-- Running RANSAC plane estimation') self._ransac_plane() def _read_label_files(self): """ Reads all label files and extract the points on the ground plane. """ filenames = [f for f in os.listdir(self.path_labels) if os.path.isfile(os.path.join(self.path_labels, f))] if len(filenames) != 7481: print('Wrong number (%d) of files in the KITTI dataset! Should be 7481.'%(len(filenames))) exit(1) # Read each label file # i = 0 for f in filenames: path_label_file = os.path.join(self.path_labels, f) self._process_label_file(path_label_file) # i += 1 # if i == 1000: break def _process_label_file(self, path_label_file): """ Processes one label file. Input: path_label_file: Path to the TXT label file in KITTI format to be processed. """ with open(path_label_file, 'r') as infile_label: # Read the objects for line in infile_label: line = line.rstrip('\n') data = line.split(' ') # First element of the data is the label. We don't want to process 'Misc' and # 'DontCare' labels if data[0] == 'Misc' or data[0] == 'DontCare': continue # Extract the points of this object on the ground plane self._extract_ground_plane_pts(data) def _extract_ground_plane_pts(self, data): """ Extract 3D points from the object bounding box, which lie on the ground plane. Input: data: One split line of the label file (line.split(' ')) """ # Object dimensions h = float(data[8]) w = float(data[9]) l = float(data[10]) # Position of the center point on the ground plane (xz plane) cx = float(data[11]) cy = float(data[12]) cz = float(data[13]) # Rotation of the object around y ry = float(data[14]) # 3D box corners on the ground plane. Careful, the coordinate system of the car is that # x points forward, not z! (It is rotated by 90deg with respect to the camera one) # fbr, rbr, fbl, rbl X = np.asmatrix([[l/2, -l/2, l/2, -l/2], [0, 0, 0, 0 ], [-w/2, -w/2, w/2, w/2 ], [1, 1, 1, 1 ]]) # Rotate the 3D box around y axis and translate it to the correct position in the cam. frame X = Rt4x4(R3x3_y(ry), t3x1(cx, cy, cz)) * X self.gp_points.append(X[0:3,0]) self.gp_points.append(X[0:3,1]) self.gp_points.append(X[0:3,2]) self.gp_points.append(X[0:3,3]) def _ransac_plane(self): """ Finds "optimal" ground plane position given the points. Returns: [a, b, c, d] plane equation ax+by+cz+d=0 coefficients as a 1x4 np.matrix """ num_points = len(self.gp_points) # Variables for storing minimum distance sum from the estimated plane dist2_sum_min = 99999999999999999 gp_1x4_max = np.asmatrix(np.zeros((1,4))) for i in range(RANSAC_ITERS): rp = random.sample(range(0, num_points), 3) # Compute the equation of the ground plane gp_1x4 = plane_3p(self.gp_points[rp[0]], self.gp_points[rp[1]], self.gp_points[rp[2]]) # Check that the plane gives small errors on the original points - when we have some # close to singular situation we have to be careful if gp_1x4 * self.gp_X_4xn[:,rp[0]] > 0.000000001 or \ gp_1x4 * self.gp_X_4xn[:,rp[1]] > 0.000000001 or \ gp_1x4 * self.gp_X_4xn[:,rp[2]] > 0.000000001: print('WARNING: Solution not precise, skipping...') continue # Compute the sum of distances from this plane distances2 = np.power(gp_1x4 * self.gp_X_4xn, 2) dist2_sum = np.sum(distances2, axis=1) if dist2_sum[0,0] < dist2_sum_min: print('New min distance sum: ' + str(dist2_sum[0,0])) dist2_sum_min = dist2_sum[0,0] gp_1x4_max = gp_1x4 print('-- RANSAC FINISHED') print('Estimated ground plane: ' + str(gp_1x4_max)) print('Sum of distances: ' + str(dist2_sum_min) + ', ' + str(dist2_sum_min/num_points) + ' per point') # Show a plot of the plane show_X_and_gp(self.gp_X_4xn, gp_1x4_max) return gp_1x4_max #################################################################################################### # MAIN # #################################################################################################### def parse_arguments(): """ Parse input options of the script. """ parser = argparse.ArgumentParser(description='Convert KITTI label files into BBTXT.') parser.add_argument('path_labels', metavar='path_labels', type=str, help='Path to the "label_2" folder of the KITTI dataset') args = parser.parse_args() if not os.path.exists(args.path_labels): print('Input path "%s" does not exist!'%(args.path_labels)) parser.print_help() exit(1) return args def main(): args = parse_arguments() gpe = GroundPlaneEstimator(args.path_labels) gpe.run_estimation() if __name__ == '__main__': main()
corehq/ex-submodules/fluff/exceptions.py
dimagilg/commcare-hq
471
12734932
<reponame>dimagilg/commcare-hq class EmitterTypeError(Exception): pass class EmitterValidationError(Exception): pass
.modules/.CMSeeK/cmseekdb/header.py
termux-one/EasY_HaCk
1,103
12734975
<gh_stars>1000+ #!/usr/bin/python3 # -*- coding: utf-8 -*- # This is a part of CMSeeK, check the LICENSE file for more information # Copyright (c) 2018 Tuhinshubhra # This file contains all the methods of detecting cms via http Headers # Version: 1.0.0 # Return a list with ['1'/'0','ID of CMS'/'na'] 1 = detected 0 = not detected import re def check(h): if h == "": return ['0', 'na'] else: hstring = h # harray = h.split("\n") # will use whenever necessary #### START DETECTION FROM HERE if '/wp-json/' in hstring: ## WordPress return ['1','wp'] elif 'X-Drupal-' in hstring or '19 Nov 1978 05' in hstring: ## Drupal [the date is interesting isn't it? just google for it ;) ] return ['1', 'dru'] elif 'Expires: Wed, 17 Aug 2005 00:00:00 GMT' in hstring: ## This is the only weird but common header i noticed in joomla Sites return ['1', 'joom'] elif 'X-Wix-' in hstring: return ['1', 'wix'] elif 'Set-Cookie: ushahidi' in hstring: return ['1', 'ushahidi'] elif 'X-Generated-By: UMI.CMS' in hstring: return ['1', 'umi'] elif 'x-generator: Sulu' in hstring: return ['1', 'sulu'] elif 'X-Powered-CMS: Subrion CMS' in hstring: return ['1', 'subcms'] elif 'Set-Cookie: SQ_SYSTEM_SESSION' in hstring or 'squizedge.net' in hstring: return ['1', 'sqm'] elif 'spincms' in hstring: return ['1', 'spin'] elif 'solodev_session' in hstring: return ['1', 'sdev'] elif 'SC_ANALYTICS_GLOBAL_COOKIE' in hstring: return ['1', 'score'] elif 'X-ServedBy: simplebo' in hstring or '_simplebo_tool_session' in hstring: return ['1', 'spb'] elif 'X-Blog: Serendipity' in hstring or 'Set-Cookie: serendipity[' in hstring or 'Set-Cookie: s9y_' in hstring: return ['1', 'spity'] elif 'Set-Cookie: SEAMLESS_IDENTIFIER' in hstring: return ['1', 'slcms'] elif 'X-Powered-By: Roadiz CMS' in hstring: return ['1', 'roadz'] elif 'X-Powered-By: pimcore' in hstring: return ['1', 'pcore'] elif 'x-powered-by: PencilBlue' in hstring: return ['1', 'pblue'] elif 'x-powered-by: Ophal' in hstring: return ['1', 'ophal'] elif 'Server: OpenCms' in hstring: return ['1', 'ocms'] elif 'X-Odoo-' in hstring: return ['1', 'odoo'] elif 'X-SharePointHealthScore' in hstring or 'SPIisLatency' in hstring or 'SPRequestGuid' in hstring or 'MicrosoftSharePointTeamServices' in hstring or 'SPRequestDuration' in hstring: return ['1', 'share'] elif 'october_session' in hstring: return ['1', 'octcms'] elif 'Generator: Mura CMS' in hstring: return ['1', 'mura'] elif 'X-Powered-By: MODX' in hstring: return ['1', 'modx'] elif 'X-KoobooCMS-Version' in hstring: return ['1', 'kbcms'] elif 'X-Jimdo-' in hstring: return ['1', 'jimdo'] elif 'Set-Cookie: ndxz_' in hstring: return ['1', 'ibit'] elif 'X-Jcms-Ajax-Id' in hstring: return ['1', 'jcms'] elif 'Set-Cookie: grav-site-' in hstring: return ['1', 'grav'] elif 'X-Powered-By: FlexCMP' in hstring or 'X-Flex-Tag:' in hstring or 'X-Flex-Lang:' in hstring or 'X-Flex-Lastmod:' in hstring or 'X-Flex-Community:' in hstring or 'X-Flex-Evstart' in hstring: return ['1', 'flex'] elif 'X-Powered-By: eZ Publish' in hstring or 'Set-Cookie: eZSESSID' in hstring: return ['1', 'ezpu'] elif 'Set-Cookie: exp_tracker' in hstring or 'Set-Cookie: exp_last_activity' in hstring or 'Set-Cookie: exp_last_visit' in hstring or 'Set-Cookie: exp_csrf_token=' in hstring: return ['1', 'exen'] elif 'X-Powered-By: e107' in hstring or 'Set-Cookie: SESSE107COOKIE' in hstring: return ['1', 'e107'] elif 'Set-Cookie: dnn_IsMobile' in hstring or 'DNNOutputCache' in hstring or 'DotNetNuke' in hstring: return ['1', 'dnn'] elif 'X-Powered-By: CMS Danneo' in hstring: return ['1', 'dncms'] elif 'X-Powered-By: Craft CMS' in hstring or 'Set-Cookie: CraftSessionId' in hstring: return ['1', 'craft'] elif 'X-Powered-By: Dragonfly CMS' in hstring: return ['1', 'dragon'] elif 'X-Generator: Orchard' in hstring: return ['1', 'orchd'] elif 'X-Powered-By: ContentBox' in hstring or 'Set-Cookie: LIGHTBOXSESSION' in hstring: return ['1', 'cbox'] elif 'Set-Cookie: CONCRETE5' in hstring: return ['1', 'con5'] elif 'X-Discourse-Route' in hstring: return ['1', 'dscrs'] elif 'Set-Cookie: flarum_session=' in hstring: return ['1', 'flarum'] elif 'IPSSessionFront' in hstring or 'ipbWWLmodpids' in hstring or 'ipbWWLsession_id' in hstring: return ['1', 'ipb'] elif 'X-Powered-By: NodeBB' in hstring: return ['1', 'nodebb'] elif 'X-Garden-Version: Vanilla' in hstring or 'Maybe you should be reading this instead: https://www.vanillaforums.com/en/careers' in hstring: return ['1', 'vanilla'] elif 'Set-Cookie: xf_session=' in hstring or 'Set-Cookie: xf_csrf=' in hstring: return ['1', 'xf'] elif '[aefsid]' in hstring: return ['1', 'aef'] elif 'Set-Cookie: fud_session_' in hstring: return ['1', 'fudf'] elif 'Set-Cookie: phorum_session' in hstring: return ['1', 'phorum'] elif 'Set-Cookie: yazdLastVisited=' in hstring: return ['1', 'yazd'] elif 'Set-Cookie: ubbt_' in hstring: return ['1', 'ubbt'] #################################################### # REGEX DETECTIONS STARTS FROM HERE # #################################################### ybb_regex = re.search(r'Set-Cookie: (YaBBusername=|YaBBpassword=|YaBBSession|Y2User-(\d.*?)|Y2Pass-(\d.*?)|Y2Sess-(\d.*?))=', hstring) if ybb_regex != None: return ['1', 'yabb'] xmb_regex = re.search(r'Set-Cookie: xmblv(a|b)=(\d.*?)\n',hstring) if xmb_regex != None: return ['1', 'xmb'] wind_regex = re.search(r'Set-Cookie: [a-zA-Z0-9]{5}_(lastpos|lastvisit)=', hstring) if wind_regex != None: return ['1', 'pwind'] myb_regex = re.search(r'Set-Cookie: mybb\[(.*?)\]=', hstring) if myb_regex != None: return ['1', 'mybb'] bb_regex = re.search(r'Set-Cookie: wcf(.*?)_cookieHash=', hstring) if bb_regex != None: return ['1', 'bboard'] epis_regex = re.search(r'X-XRDS-Location: (.*?)EPiServerCommunity', hstring) if epis_regex != None: return ['1', 'epis'] lep_regex = re.search(r'lep(.*?)sessionid', hstring) if lep_regex != None: return ['1', 'lepton'] pb_regex = re.search(r'Set-Cookie: phpbb(.*?)=', hstring) if pb_regex != None: return ['1', 'phpbb'] ses_regex = re.search(r'Set-Cookie: ses(\d+)=', hstring) if ses_regex != None: return ['1', 'impage'] else: return ['0', 'na']
src/encoded/tests/test_upgrade_atac_alignment_enrichment_quality_metric.py
procha2/encoded
102
12735006
def test_upgrade_atac_alignment_enrichment_quality_metric_1_2( upgrader, atac_alignment_enrichment_quality_metric_1 ): value = upgrader.upgrade( 'atac_alignment_enrichment_quality_metric', atac_alignment_enrichment_quality_metric_1, current_version='1', target_version='2', ) assert value['schema_version'] == '2' assert 'fri_blacklist' not in value assert value['fri_exclusion_list'] == 0.0013046877081284722
examples/i18nurls/__init__.py
adityavs/werkzeug
4,200
12735014
from .application import Application as make_app
2020/06/24/How to Create a Celery Task Progress Bar in Django/djangoprogressbar/progress/example/tasks.py
kenjitagawa/youtube_video_code
492
12735028
from celery import shared_task from celery_progress.backend import ProgressRecorder from time import sleep @shared_task(bind=True) def go_to_sleep(self, duration): progress_recorder = ProgressRecorder(self) for i in range(100): sleep(duration) progress_recorder.set_progress(i + 1, 100, f'On iteration {i}') return 'Done'
tests/test_day_periods.py
PLSV/babel
5,079
12735031
# -- encoding: UTF-8 -- from datetime import time import babel.dates as dates import pytest @pytest.mark.parametrize("locale, time, expected_period_id", [ ("de", time(7, 42), "morning1"), # (from, before) ("de", time(3, 11), "night1"), # (after, before) ("fi", time(0), "midnight"), # (at) ("en_US", time(12), "noon"), # (at) ("agq", time(10), "am"), # no periods defined ("agq", time(22), "pm"), # no periods defined ("am", time(14), "afternoon1"), # (before, after) ]) def test_day_period_rules(locale, time, expected_period_id): assert dates.get_period_id(time, locale=locale) == expected_period_id