max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
Script/reflect/tool_helper.py
ValtoGameEngines/Fish-Engine
240
12730251
<gh_stars>100-1000 from __future__ import print_function import re import os '''CamelCase -> CamelCase m_fieldOfView -> Field Of View ''' def CamelCaseToReadable(string): # http://stackoverflow.com/questions/1175208/elegant-python-function-to-convert-camelcase-to-snake-case if string.startswith('m_'): string = string[2:] if string[0].islower(): string = string[0].upper() + string[1:] return re.sub('((?<=[a-z0-9])[A-Z]|(?!^)[A-Z](?=[a-z]))', r' \1', string) def unittest_CamelCaseToReadable(): for s in ("m_fieldOfView", "CamelCase", "Camel2Camel2Case", "getHTTPResponseCode", "get2HTTPResponse123Code", "HTTPResponseCodeXYZ"): print(s,'==>', CamelCaseToReadable(s)) def UpdateFile(out_path, content): need_update = True directory = os.path.dirname(out_path) if not os.path.exists(directory): os.makedirs(directory) if os.path.exists(out_path): with open(out_path) as f: old_content = f.read() need_update = (content != old_content) if need_update: print("update", out_path) with open(out_path, 'w') as f: f.write(content) else: print("no update", out_path) if __name__ == "__main__": unittest_CamelCaseToReadable()
examples/package_example.py
ywchiu/flasgger
1,696
12730263
# coding: utf-8 """ This tests the use of a view coming from installed package. """ from flask import Flask, jsonify from flasgger import Swagger from flasgger_package import package_view app = Flask(__name__) swag = Swagger(app) app.add_url_rule( '/v1/decorated/<username>', view_func=package_view ) @app.route('/v2/decorated/<username>') def package_view_2(username): """ This is the summary defined in yaml file First line is the summary All following lines until the hyphens is added to description the format of the first lines until 3 hyphens will be not yaml compliant but everything below the 3 hyphens should be. --- tags: - users import: "flasgger_package/parameters.yml" responses: 200: description: A single user item schema: id: rec_username properties: username: type: string description: The name of the user default: 'steve-harris 2' """ return jsonify({'username': username}) def test_swag(client, specs_data): """ This test is runs automatically in Travis CI :param client: Flask app test client :param specs_data: {'url': {swag_specs}} for every spec in app """ for url, spec in specs_data.items(): assert 'rec_username' in spec['definitions'] assert 'users' in spec['paths'][ '/v1/decorated/{username}' ]['get']['tags'] if __name__ == "__main__": app.run(debug=True)
dirigible/sheet/cell.py
EnoX1/dirigible-spreadsheet
168
12730274
# Copyright (c) 2010 Resolver Systems Ltd, PythonAnywhere LLP # See LICENSE.md # from .formula_interpreter import ( get_dependencies_from_parse_tree, get_python_formula_from_parse_tree ) from .parser import FormulaError, parser class Undefined(object): def __repr__(self): return "<undefined>" undefined = Undefined() class Cell(object): def __init__(self): self.clear() def _set_formula(self, value): self._python_formula = None if value is None: self._formula = None elif type(value) == str or type(value) == unicode: self._formula = value if value.startswith('='): try: parsed_formula = parser.parse(value) self.dependencies = get_dependencies_from_parse_tree(parsed_formula) self._python_formula = get_python_formula_from_parse_tree(parsed_formula) except FormulaError, e: self.dependencies = [] self._python_formula = '_raise(FormulaError("{}"))'.format(e) else: raise TypeError('cell formula must be str or unicode') def _get_formula(self): return self._formula formula = property(_get_formula, _set_formula) def _set_python_formula(self, value): if type(value) == str or type(value) == unicode: self._python_formula = value else: raise TypeError('cell python_formula must be str or unicode') def _get_python_formula(self): return self._python_formula python_formula = property(_get_python_formula, _set_python_formula) def _set_value(self, value): self._value = value if value is undefined: self._set_formatted_value(u'') else: self._set_formatted_value(unicode(value)) def _get_value(self): return self._value value = property(_get_value, _set_value) def clear_value(self): self._value = undefined def _set_formatted_value(self, value): if value is None: self._formatted_value = u'' elif type(value) == str or type(value) == unicode: self._formatted_value = value else: raise TypeError('cell formatted_value must be str or unicode') def _get_formatted_value(self): return self._formatted_value formatted_value = property(_get_formatted_value, _set_formatted_value) def clear(self): self._value = undefined self._formula = None self._python_formula = None self.dependencies = [] self._formatted_value = u'' self.error = None def __repr__(self): error = "" if self.error: error = " error=%r" % (self.error,) return '<Cell formula=%s value=%r formatted_value=%r%s>' % \ (self.formula, self._value, self.formatted_value, error) def __eq__(self, other): return ( isinstance(other, Cell) and self._formula == other.formula and self._value == other.value and self._formatted_value == other.formatted_value and self.error == other.error ) def __ne__(self, other): return not self.__eq__(other)
lpot/experimental/metric/bleu.py
intelkevinputnam/lpot-docs
172
12730293
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Official evaluation script for v1.1 of the SQuAD dataset. https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py """ import re import six import sys import numpy as np import pandas as pd import unicodedata from .bleu_util import compute_bleu from .metric import metric_registry class UnicodeRegex(object): def __init__(self): punctuation = self.property_chars("P") self.nondigit_punct_re = re.compile(r"([^\d])([" + punctuation + r"])") self.punct_nondigit_re = re.compile(r"([" + punctuation + r"])([^\d])") self.symbol_re = re.compile("([" + self.property_chars("S") + "])") def property_chars(self, prefix): return "".join(six.unichr(x) for x in range(sys.maxunicode) if unicodedata.category(six.unichr(x)).startswith(prefix)) uregex = UnicodeRegex() def bleu_tokenize(string): string = uregex.nondigit_punct_re.sub(r"\1 \2 ", string) string = uregex.punct_nondigit_re.sub(r" \1 \2", string) string = uregex.symbol_re.sub(r" \1 ", string) return string.split() @metric_registry('BLEU', 'tensorflow') class BLEU(object): """Computes Bilingual Evaluation Understudy Score BLEU score computation between labels and predictions. An approximate BLEU scoring method since we do not glue word pieces or decode the ids and tokenize the output. By default, we use ngram order of 4 and use brevity penalty. Also, this does not have beam search """ def __init__(self): self.translations = [] self.labels = [] def reset(self): """clear preds and labels storage""" self.translations = [] self.labels = [] def update(self, pred, label): """add preds and labels to storage""" if len(label) != len(pred): raise ValueError("Reference and translation files have different number " "of lines. If training only a few steps (100-200), the " "translation may be empty.") label = [x.lower() for x in label] pred = [x.lower() for x in pred] label = [bleu_tokenize(x) for x in label] pred = [bleu_tokenize(x) for x in pred] self.labels.extend(label) self.translations.extend(pred) def result(self): """calculate metric""" return compute_bleu(self.labels, self.translations) * 100
PS4Joystick/PS4Joystick.py
jensanjo/QuadrupedRobot
545
12730303
import sys import time import subprocess import math from threading import Thread from collections import OrderedDict, deque from ds4drv.actions import ActionRegistry from ds4drv.backends import BluetoothBackend, HidrawBackend from ds4drv.config import load_options from ds4drv.daemon import Daemon from ds4drv.eventloop import EventLoop from ds4drv.exceptions import BackendError from ds4drv.action import ReportAction from ds4drv.__main__ import create_controller_thread class ActionShim(ReportAction): """ intercepts the joystick report""" def __init__(self, *args, **kwargs): super(ActionShim, self).__init__(*args, **kwargs) self.timer = self.create_timer(0.02, self.intercept) self.values = None self.timestamps = deque(range(10), maxlen=10) def enable(self): self.timer.start() def disable(self): self.timer.stop() self.values = None def load_options(self, options): pass def deadzones(self,values): deadzone = 0.14 if math.sqrt( values['left_analog_x'] ** 2 + values['left_analog_y'] ** 2) < deadzone: values['left_analog_y'] = 0.0 values['left_analog_x'] = 0.0 if math.sqrt( values['right_analog_x'] ** 2 + values['right_analog_y'] ** 2) < deadzone: values['right_analog_y'] = 0.0 values['right_analog_x'] = 0.0 return values def intercept(self, report): new_out = OrderedDict() for key in report.__slots__: value = getattr(report, key) new_out[key] = value for key in ["left_analog_x", "left_analog_y", "right_analog_x", "right_analog_y", "l2_analog", "r2_analog"]: new_out[key] = 2*( new_out[key]/255 ) - 1 new_out = self.deadzones(new_out) self.timestamps.append(new_out['timestamp']) if len(set(self.timestamps)) <= 1: self.values = None else: self.values = new_out return True class Joystick: def __init__(self): self.thread = None options = load_options() if options.hidraw: raise ValueError("HID mode not supported") backend = HidrawBackend(Daemon.logger) else: subprocess.run(["hciconfig", "hciX", "up"]) backend = BluetoothBackend(Daemon.logger) backend.setup() self.thread = create_controller_thread(1, options.controllers[0]) self.thread.controller.setup_device(next(backend.devices)) self.shim = ActionShim(self.thread.controller) self.thread.controller.actions.append(self.shim) self.shim.enable() self._color = (None, None, None) self._rumble = (None, None) self._flash = (None, None) # ensure we get a value before returning while self.shim.values is None: pass def close(self): if self.thread is None: return self.thread.controller.exit("Cleaning up...") self.thread.controller.loop.stop() def __del__(self): self.close() @staticmethod def map(val, in_min, in_max, out_min, out_max): """ helper static method that helps with rescaling """ in_span = in_max - in_min out_span = out_max - out_min value_scaled = float(val - in_min) / float(in_span) value_mapped = (value_scaled * out_span) + out_min if value_mapped < out_min: value_mapped = out_min if value_mapped > out_max: value_mapped = out_max return value_mapped def get_input(self): """ returns ordered dict with state of all inputs """ if self.thread.controller.error: raise IOError("Encountered error with controller") if self.shim.values is None: raise TimeoutError("Joystick hasn't updated values in last 200ms") return self.shim.values def led_color(self, red=0, green=0, blue=0): """ set RGB color in range 0-255""" color = (int(red),int(green),int(blue)) if( self._color == color ): return self._color = color self.thread.controller.device.set_led( *self._color ) def rumble(self, small=0, big=0): """ rumble in range 0-255 """ rumble = (int(small),int(big)) if( self._rumble == rumble ): return self._rumble = rumble self.thread.controller.device.rumble( *self._rumble ) def led_flash(self, on=0, off=0): """ flash led: on and off times in range 0 - 255 """ flash = (int(on),int(off)) if( self._flash == flash ): return self._flash = flash if( self._flash == (0,0) ): self.thread.controller.device.stop_led_flash() else: self.thread.controller.device.start_led_flash( *self._flash ) if __name__ == "__main__": j = Joystick() while 1: for key, value in j.get_input().items(): print(key,value) print() time.sleep(0.1)
tests/plugins/trackers/__init__.py
DmitryRibalka/monitorrent
465
12730444
from monitorrent.plugins.trackers import TrackerSettings class TrackerSettingsMock(TrackerSettings): def get_requests_kwargs(self): result = super(TrackerSettingsMock, self).get_requests_kwargs() result.pop('timeout') result['verify'] = False return result
pyjobs/marketing/newsletter.py
Mdslino/PyJobs
132
12730477
from django.conf import settings import requests import json from mailchimp3 import MailChimp def subscribe_user_to_mailer(profile): status = True if not settings.MAILERLITE_API_KEY: return content = json.dumps({"email": profile.user.email}) headers = { "content-type": "application/json", "x-mailerlite-apikey": settings.MAILERLITE_API_KEY, } try: req = requests.post( "https://api.mailerlite.com/api/v2/subscribers", data=content, headers=headers, ) except: # TODO specify which errors can be raised at this point status = False return status def subscribe_user_to_chimp(profile): status = True configs = ( settings.MAILCHIMP_API_KEY, settings.MAILCHIMP_USERNAME, settings.MAILCHIMP_LIST_KEY, ) if not all(configs): return False try: client = MailChimp(settings.MAILCHIMP_API_KEY, settings.MAILCHIMP_USERNAME) client.lists.members.create( settings.MAILCHIMP_LIST_KEY, {"status": "subscribed", "email_address": profile.user.email}, ) except: # TODO specify which errors can be raised at this point status = False return status
tests/commands/test_config.py
kapb14/hatch
2,549
12730483
from click.testing import CliRunner from hatch.cli import hatch from hatch.settings import ( SETTINGS_FILE, copy_default_settings, load_settings, save_settings ) from hatch.utils import temp_chdir, temp_move_path def test_show_location(): with temp_chdir(): runner = CliRunner() result = runner.invoke(hatch, ['config']) assert result.exit_code == 0 assert 'Settings location: ' in result.output assert 'settings.json' in result.output def test_restore(): with temp_chdir() as d: runner = CliRunner() with temp_move_path(SETTINGS_FILE, d): result = runner.invoke(hatch, ['config', '--restore']) assert result.exit_code == 0 assert 'Settings were successfully restored.' in result.output assert load_settings() == copy_default_settings() def test_update(): with temp_chdir() as d: runner = CliRunner() with temp_move_path(SETTINGS_FILE, d): new_settings = copy_default_settings() new_settings.pop('email') new_settings['new setting'] = '' save_settings(new_settings) assert load_settings() == new_settings result = runner.invoke(hatch, ['config', '-u']) updated_settings = load_settings() assert result.exit_code == 0 assert 'Settings were successfully updated.' in result.output assert 'email' in updated_settings assert 'new setting' in updated_settings def test_update_config_not_exist(): with temp_chdir() as d: runner = CliRunner() with temp_move_path(SETTINGS_FILE, d): result = runner.invoke(hatch, ['config', '-u']) assert result.exit_code == 0 assert 'Settings were successfully restored.' in result.output assert load_settings() == copy_default_settings()
tests/test_core_ants_image_io.py
xemio/ANTsPy
338
12730490
<gh_stars>100-1000 """ Test ants_image.py nptest.assert_allclose self.assertEqual self.assertTrue """ import os import unittest from common import run_tests from tempfile import mktemp import numpy as np import nibabel as nib import numpy.testing as nptest import ants class TestModule_ants_image_io(unittest.TestCase): def setUp(self): img2d = ants.image_read(ants.get_ants_data('r16')).clone('float') img3d = ants.image_read(ants.get_ants_data('mni')).clone('float') arr2d = np.random.randn(69,70).astype('float32') arr3d = np.random.randn(69,70,71).astype('float32') vecimg2d = ants.from_numpy(np.random.randn(69,70,4), has_components=True) vecimg3d = ants.from_numpy(np.random.randn(69,70,71,2), has_components=True) self.imgs = [img2d, img3d] self.arrs = [arr2d, arr3d] self.vecimgs = [vecimg2d, vecimg3d] self.pixeltypes = ['unsigned char', 'unsigned int', 'float'] def tearDown(self): pass def test_from_numpy(self): self.setUp() # no physical space info for arr in self.arrs: img = ants.from_numpy(arr) self.assertTrue(img.dimension, arr.ndim) self.assertTrue(img.shape, arr.shape) self.assertTrue(img.dtype, arr.dtype.name) nptest.assert_allclose(img.numpy(), arr) new_origin = tuple([6.9]*arr.ndim) new_spacing = tuple([3.6]*arr.ndim) new_direction = np.eye(arr.ndim)*9.6 img2 = ants.from_numpy(arr, origin=new_origin, spacing=new_spacing, direction=new_direction) self.assertEqual(img2.origin, new_origin) self.assertEqual(img2.spacing, new_spacing) nptest.assert_allclose(img2.direction, new_direction) # test with components arr2d_components = np.random.randn(69,70,4).astype('float32') img = ants.from_numpy(arr2d_components, has_components=True) self.assertEqual(img.components, arr2d_components.shape[-1]) nptest.assert_allclose(arr2d_components, img.numpy()) def test_make_image(self): self.setUp() for arr in self.arrs: voxval = 6. img = ants.make_image(arr.shape, voxval=voxval) self.assertTrue(img.dimension, arr.ndim) self.assertTrue(img.shape, arr.shape) nptest.assert_allclose(img.mean(), voxval) new_origin = tuple([6.9]*arr.ndim) new_spacing = tuple([3.6]*arr.ndim) new_direction = np.eye(arr.ndim)*9.6 img2 = ants.make_image(arr.shape, voxval=voxval, origin=new_origin, spacing=new_spacing, direction=new_direction) self.assertTrue(img2.dimension, arr.ndim) self.assertTrue(img2.shape, arr.shape) nptest.assert_allclose(img2.mean(), voxval) self.assertEqual(img2.origin, new_origin) self.assertEqual(img2.spacing, new_spacing) nptest.assert_allclose(img2.direction, new_direction) for ptype in self.pixeltypes: img = ants.make_image(arr.shape, voxval=1., pixeltype=ptype) self.assertEqual(img.pixeltype, ptype) # test with components img = ants.make_image((69,70,4), has_components=True) self.assertEqual(img.components, 4) self.assertEqual(img.dimension, 2) nptest.assert_allclose(img.mean(), 0.) img = ants.make_image((69,70,71,4), has_components=True) self.assertEqual(img.components, 4) self.assertEqual(img.dimension, 3) nptest.assert_allclose(img.mean(), 0.) # set from image for img in self.imgs: mask = ants.image_clone( img > img.mean(), pixeltype = 'float' ) arr = img[mask] img2 = ants.make_image(mask, voxval=arr) nptest.assert_allclose(img2.numpy(), (img*mask).numpy()) self.assertTrue(ants.image_physical_space_consistency(img2,mask)) # set with arr.ndim > 1 img2 = ants.make_image(mask, voxval=np.expand_dims(arr,-1)) nptest.assert_allclose(img2.numpy(), (img*mask).numpy()) self.assertTrue(ants.image_physical_space_consistency(img2,mask)) #with self.assertRaises(Exception): # # wrong number of non-zero voxels # img3 = ants.make_image(img, voxval=arr) def test_matrix_to_images(self): # def matrix_to_images(data_matrix, mask): for img in self.imgs: imgmask = ants.image_clone( img > img.mean(), pixeltype = 'float' ) data = img[imgmask] dataflat = data.reshape(1,-1) mat = np.vstack([dataflat,dataflat]).astype('float32') imglist = ants.matrix_to_images(mat, imgmask) nptest.assert_allclose((img*imgmask).numpy(), imglist[0].numpy()) nptest.assert_allclose((img*imgmask).numpy(), imglist[1].numpy()) self.assertTrue(ants.image_physical_space_consistency(img,imglist[0])) self.assertTrue(ants.image_physical_space_consistency(img,imglist[1])) # go back to matrix mat2 = ants.images_to_matrix(imglist, imgmask) nptest.assert_allclose(mat, mat2) # test with matrix.ndim > 2 img = img.clone() img.set_direction(img.direction*2) imgmask = ants.image_clone( img > img.mean(), pixeltype = 'float' ) arr = (img*imgmask).numpy() arr = arr[arr>=0.5] arr2 = arr.copy() mat = np.stack([arr,arr2]) imglist = ants.matrix_to_images(mat, imgmask) for im in imglist: self.assertTrue(ants.allclose(im, imgmask*img)) self.assertTrue(ants.image_physical_space_consistency(im, imgmask)) # test for wrong number of voxels #with self.assertRaises(Exception): # arr = (img*imgmask).numpy() # arr = arr[arr>0.5] # arr2 = arr.copy() # mat = np.stack([arr,arr2]) # imglist = ants.matrix_to_images(mat, img) def test_images_to_matrix(self): # def images_to_matrix(image_list, mask=None, sigma=None, epsilon=0): for img in self.imgs: mask = ants.image_clone( img > img.mean(), pixeltype = 'float' ) imglist = [img.clone(),img.clone(),img.clone()] imgmat = ants.images_to_matrix(imglist, mask=mask) self.assertTrue(imgmat.shape[0] == len(imglist)) self.assertTrue(imgmat.shape[1] == (mask>0).sum()) # go back to images imglist2 = ants.matrix_to_images(imgmat, mask) for i1,i2 in zip(imglist,imglist2): self.assertTrue(ants.image_physical_space_consistency(i1,i2)) nptest.assert_allclose(i1.numpy()*mask.numpy(),i2.numpy()) if img.dimension == 2: # with sigma mask = ants.image_clone( img > img.mean(), pixeltype = 'float' ) imglist = [img.clone(),img.clone(),img.clone()] imgmat = ants.images_to_matrix(imglist, mask=mask, sigma=2.) # with no mask mask = ants.image_clone( img > img.mean(), pixeltype = 'float' ) imglist = [img.clone(),img.clone(),img.clone()] imgmat = ants.images_to_matrix(imglist) # with mask of different shape s = [65]*img.dimension mask2 = ants.from_numpy(np.random.randn(*s)) mask2 = mask2 > mask2.mean() imgmat = ants.images_to_matrix(imglist, mask=mask2) def test_image_header_info(self): # def image_header_info(filename): for img in self.imgs: img.set_spacing([6.9]*img.dimension) img.set_origin([3.6]*img.dimension) tmpfile = mktemp(suffix='.nii.gz') ants.image_write(img, tmpfile) info = ants.image_header_info(tmpfile) self.assertEqual(info['dimensions'], img.shape) nptest.assert_allclose(info['direction'], img.direction) self.assertEqual(info['nComponents'], img.components) self.assertEqual(info['nDimensions'], img.dimension) self.assertEqual(info['origin'], img.origin) self.assertEqual(info['pixeltype'], img.pixeltype) self.assertEqual(info['pixelclass'], 'vector' if img.has_components else 'scalar') self.assertEqual(info['spacing'], img.spacing) try: os.remove(tmpfile) except: pass # test on vector image img = ants.from_numpy(np.random.randn(69,60,4).astype('float32'), has_components=True) tmpfile = mktemp(suffix='.nii.gz') ants.image_write(img, tmpfile) info = ants.image_header_info(tmpfile) self.assertEqual(info['dimensions'], img.shape) nptest.assert_allclose(info['direction'], img.direction) self.assertEqual(info['nComponents'], img.components) self.assertEqual(info['nDimensions'], img.dimension) self.assertEqual(info['origin'], img.origin) self.assertEqual(info['pixeltype'], img.pixeltype) self.assertEqual(info['pixelclass'], 'vector' if img.has_components else 'scalar') self.assertEqual(info['spacing'], img.spacing) img = ants.from_numpy(np.random.randn(69,60,70,2).astype('float32'), has_components=True) tmpfile = mktemp(suffix='.nii.gz') ants.image_write(img, tmpfile) info = ants.image_header_info(tmpfile) self.assertEqual(info['dimensions'], img.shape) nptest.assert_allclose(info['direction'], img.direction) self.assertEqual(info['nComponents'], img.components) self.assertEqual(info['nDimensions'], img.dimension) self.assertEqual(info['origin'], img.origin) self.assertEqual(info['pixeltype'], img.pixeltype) self.assertEqual(info['pixelclass'], 'vector' if img.has_components else 'scalar') self.assertEqual(info['spacing'], img.spacing) # non-existant file with self.assertRaises(Exception): tmpfile = mktemp(suffix='.nii.gz') ants.image_header_info(tmpfile) def test_image_clone(self): for img in self.imgs: img = ants.image_clone(img, 'unsigned char') orig_ptype = img.pixeltype for ptype in self.pixeltypes: imgcloned = ants.image_clone(img, ptype) self.assertTrue(ants.image_physical_space_consistency(img,imgcloned)) nptest.assert_allclose(img.numpy(), imgcloned.numpy()) self.assertEqual(imgcloned.pixeltype, ptype) self.assertEqual(img.pixeltype, orig_ptype) for img in self.vecimgs: img = img.clone('unsigned char') orig_ptype = img.pixeltype for ptype in self.pixeltypes: imgcloned = ants.image_clone(img, ptype) self.assertTrue(ants.image_physical_space_consistency(img,imgcloned)) self.assertEqual(imgcloned.components, img.components) nptest.assert_allclose(img.numpy(), imgcloned.numpy()) self.assertEqual(imgcloned.pixeltype, ptype) self.assertEqual(img.pixeltype, orig_ptype) def test_nibabel(self): fn = ants.get_ants_data( 'mni' ) ants_img = ants.image_read( fn ) nii_mni = nib.load( fn ) ants_mni = ants_img.to_nibabel() self.assertTrue( ( ants_mni.get_qform() == nii_mni.get_qform() ).all() ) temp = ants.from_nibabel( nii_mni ) self.assertTrue(ants.image_physical_space_consistency(ants_img,temp)) def test_image_read_write(self): # def image_read(filename, dimension=None, pixeltype='float'): # def image_write(image, filename): # test scalar images for img in self.imgs: img = (img - img.min()) / (img.max() - img.min()) img = img * 255. img = img.clone('unsigned char') for ptype in self.pixeltypes: img = img.clone(ptype) tmpfile = mktemp(suffix='.nii.gz') ants.image_write(img, tmpfile) img2 = ants.image_read(tmpfile) self.assertTrue(ants.image_physical_space_consistency(img,img2)) self.assertEqual(img2.components, img.components) nptest.assert_allclose(img.numpy(), img2.numpy()) # unsupported ptype with self.assertRaises(Exception): ants.image_read(tmpfile, pixeltype='not-suppoted-ptype') # test vector images for img in self.vecimgs: img = (img - img.min()) / (img.max() - img.min()) img = img * 255. img = img.clone('unsigned char') for ptype in self.pixeltypes: img = img.clone(ptype) tmpfile = mktemp(suffix='.nii.gz') ants.image_write(img, tmpfile) img2 = ants.image_read(tmpfile) self.assertTrue(ants.image_physical_space_consistency(img,img2)) self.assertEqual(img2.components, img.components) nptest.assert_allclose(img.numpy(), img2.numpy()) # test saving/loading as npy for img in self.imgs: tmpfile = mktemp(suffix='.npy') ants.image_write(img, tmpfile) img2 = ants.image_read(tmpfile) self.assertTrue(ants.image_physical_space_consistency(img,img2)) self.assertEqual(img2.components, img.components) nptest.assert_allclose(img.numpy(), img2.numpy()) # with no json header arr = img.numpy() tmpfile = mktemp(suffix='.npy') np.save(tmpfile, arr) img2 = ants.image_read(tmpfile) nptest.assert_allclose(img.numpy(), img2.numpy()) # non-existant file with self.assertRaises(Exception): tmpfile = mktemp(suffix='.nii.gz') ants.image_read(tmpfile) if __name__ == '__main__': run_tests()
corehq/apps/auditcare/tests/data/auditcare_migration.py
akashkj/commcare-hq
471
12730513
<gh_stars>100-1000 from datetime import datetime navigation_test_docs = [ { 'description': 'Test User', 'extra': {}, 'status_code': 200, 'user': '<EMAIL>', 'session_key': '14f8fb95aece47d8341dc561dfd108df', 'ip_address': '0.0.0.0', 'request_path': '/a/test-domain/reports/', 'view_kwargs': { 'domain': 'test-domain' }, 'doc_type': 'NavigationEventAudit', 'headers': { 'REQUEST_METHOD': 'GET', 'SERVER_PORT': '443', }, 'base_type': 'AuditEvent', 'user_agent': 'Mozilla/5.0 (Windows NT 5.1)', 'event_date': '2021-06-01T00:13:01Z', 'view': 'corehq.apps.reports.views.default' }, { 'description': 'Test User', 'extra': {}, 'status_code': 200, 'user': '<EMAIL>', 'session_key': '14f8fb95aece47d8341dc561dfd108df', 'ip_address': '0.0.0.0', 'request_path': '/a/test-domain/reports/', 'view_kwargs': { 'domain': 'test-domain' }, 'doc_type': 'NavigationEventAudit', 'headers': { 'REQUEST_METHOD': 'GET', 'SERVER_PORT': '443', }, 'base_type': 'AuditEvent', 'user_agent': 'Mozilla/5.0 (Windows NT 5.1)', 'event_date': '2021-06-01T01:13:01Z', 'view': 'corehq.apps.reports.views.default' }, { 'description': 'Test User', 'extra': {}, 'status_code': 200, 'user': '<EMAIL>', 'session_key': '14f8fb95aece47d8341dc561dfd108df', 'ip_address': '0.0.0.0', 'request_path': '/a/test-domain/reports/', 'view_kwargs': { 'domain': 'test-domain' }, 'doc_type': 'NavigationEventAudit', 'headers': { 'SERVER_NAME': 'www.commcarehq.org', 'HTTP_ACCEPT_LANGUAGE': 'en-US,en;q=0.8', 'REQUEST_METHOD': 'GET', 'HTTP_ACCEPT_ENCODING': 'gzip,deflate,sdch' }, 'base_type': 'AuditEvent', 'user_agent': 'Mozilla/5.0 (Windows NT 5.1)', 'event_date': '2021-06-01T00:01:00Z', 'view': 'corehq.apps.reports.views.default' } ] audit_test_docs = [ { 'http_accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'doc_type': 'AccessAudit', 'description': 'Login Success', 'get_data': [], 'access_type': 'login', 'base_type': 'AuditEvent', 'post_data': [], 'user_agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64)', 'failures_since_start': None, 'event_date': '2021-06-15T04:23:32Z', 'path_info': '/accounts/login/', 'session_key': 'sess_key', 'ip_address': '0.0.0.0', 'user': '<EMAIL>', 'headers': { 'SERVER_NAME': 'www.commcarehq.org', 'HTTP_ACCEPT_LANGUAGE': 'en-US,en;q=0.8', 'REQUEST_METHOD': 'GET', 'HTTP_ACCEPT_ENCODING': 'gzip,deflate,sdch' }, }, { 'access_type': 'logout', 'ip_address': '0.0.0.0', 'session_key': 'sess_key', 'user_agent': None, 'get_data': [], 'post_data': [], 'http_accept': None, 'path_info': None, 'failures_since_start': None, 'doc_type': 'AccessAudit', 'user': '<EMAIL>', 'base_type': 'AuditEvent', 'event_date': '2021-06-24T00:00:00.15Z', 'description': 'Logout test', 'headers': {} } ] failed_docs = [ { 'http_accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'doc_type': 'AccessAudit', 'description': 'Login Success', 'get_data': [], 'access_type': 'login', 'base_type': 'AuditEvent', 'post_data': [], 'user_agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64)', 'failures_since_start': None, 'event_date': '2021-05-15T04:23:32Z', 'path_info': '/accounts/login/', 'session_key': 'sess_key', 'ip_address': '0.0.0.0', 'user': '<EMAIL>', }, { 'description': 'Test User', 'extra': {}, 'status_code': 200, 'user': '<EMAIL>', 'session_key': '14f8fb95aece47d8341dc561dfd108df', 'ip_address': '0.0.0.0', 'request_path': '/a/test-domain/reports/', 'view_kwargs': { 'domain': 'test-domain' }, 'doc_type': 'NavigationEventAudit', 'headers': { 'SERVER_NAME': 'www.commcarehq.org', 'HTTP_ACCEPT_LANGUAGE': 'en-US,en;q=0.8', 'REQUEST_METHOD': 'GET', 'HTTP_ACCEPT_ENCODING': 'gzip,deflate,sdch' }, 'base_type': 'AuditEvent', 'user_agent': 'Mozilla/5.0 (Windows NT 5.1)', 'event_date': '2021-05-01T00:01:00Z', 'view': 'corehq.apps.reports.views.default' } ] task_docs = [ { 'doc_type': 'NavigationEventAudit', 'user': '<EMAIL>', 'event_date': datetime(2021, 1, 1).strftime("%Y-%m-%dT%H:%M:%SZ"), 'description': 'User Name', 'extra': {}, 'headers': { 'REQUEST_METHOD': 'GET', }, 'ip_address': '10.1.2.3', 'request_path': '/a/delmar/phone/restore/?version=2.0&since=...', 'session_key': 'abc123', 'status_code': 200, 'view_kwargs': {'domain': 'delmar'}, 'view': 'corehq.apps.ota.views.restore', }, { 'doc_type': 'NavigationEventAudit', 'user': '<EMAIL>', 'event_date': datetime(2021, 2, 1, 2).strftime("%Y-%m-%dT%H:%M:%SZ"), 'description': 'User Name', 'extra': {}, 'headers': { 'REQUEST_METHOD': 'GET', }, 'ip_address': '10.1.2.3', 'request_path': '/a/test-space/phone/restore/?version=2.0&since=...', 'session_key': 'abc123', 'status_code': 200, 'view_kwargs': {'domain': 'test-space'}, 'view': 'corehq.apps.ota.views.restore', }, { 'doc_type': 'NavigationEventAudit', 'user': '<EMAIL>', 'event_date': datetime(2021, 2, 1, 2, 1).strftime("%Y-%m-%dT%H:%M:%SZ"), 'description': 'User Name', 'extra': {}, 'headers': { 'REQUEST_METHOD': 'GET', }, 'ip_address': '10.1.2.3', 'request_path': '/a/random/phone/restore/?version=2.0&since=...', 'session_key': 'abc123', 'status_code': 200, 'view_kwargs': {'domain': 'random'}, 'view': 'corehq.apps.ota.views.restore', }, { 'doc_type': "AccessAudit", 'user': '<EMAIL>', 'event_date': datetime(2021, 2, 1, 3).strftime("%Y-%m-%dT%H:%M:%SZ"), 'access_type': 'login', 'description': 'Login Success', 'failures_since_start': None, 'get_data': [], 'http_accept': 'text/html', 'ip_address': '10.1.3.2', 'path_info': '/a/delmar/login/', 'post_data': [], 'session_key': 'abc123', 'user_agent': 'Mozilla/5.0', }, { 'doc_type': 'NavigationEventAudit', 'user': '<EMAIL>', 'event_date': datetime(2021, 2, 2).strftime("%Y-%m-%dT%H:%M:%SZ"), 'description': 'User Name', 'extra': {}, 'headers': { 'REQUEST_METHOD': 'GET', }, 'ip_address': '10.1.2.3', 'request_path': '/a/sandwich/phone/restore/?version=2.0&since=...&db=/etc/passwd\x00', 'session_key': 'abc123', 'status_code': 200, 'view_kwargs': {'domain': 'sandwich'}, 'view': 'corehq.apps.ota.views.restore', } ]
memcnn/config/tests/test_config.py
classner/memcnn
224
12730538
import unittest import json import os from memcnn.experiment.factory import load_experiment_config, experiment_config_parser from memcnn.config import Config import memcnn.config class ConfigTestCase(unittest.TestCase): class ConfigTest(Config): @staticmethod def get_filename(): return os.path.join(Config.get_dir(), "config.json.example") def setUp(self): self.config = ConfigTestCase.ConfigTest() self.config_fname = os.path.join(os.path.dirname(__file__), "..", "config.json.example") self.experiments_fname = os.path.join(os.path.dirname(__file__), "..", "experiments.json") def load_json_file(fname): with open(fname, 'r') as f: data = json.load(f) return data self.load_json_file = load_json_file def test_loading_main_config(self): self.assertTrue(os.path.exists(self.config.get_filename())) data = self.config self.assertTrue(isinstance(data, dict)) self.assertTrue("data_dir" in data) self.assertTrue("results_dir" in data) def test_loading_experiments_config(self): self.assertTrue(os.path.exists(self.experiments_fname)) data = self.load_json_file(self.experiments_fname) self.assertTrue(isinstance(data, dict)) def test_experiment_configs(self): data = self.load_json_file(self.experiments_fname) config = self.config keys = data.keys() for key in keys: result = load_experiment_config(self.experiments_fname, [key]) self.assertTrue(isinstance(result, dict)) if "dataset" in result: experiment_config_parser(result, config['data_dir']) def test_config_get_filename(self): self.assertEqual(Config.get_filename(), os.path.join(os.path.dirname(memcnn.config.__file__), "config.json")) def test_config_get_dir(self): self.assertEqual(Config.get_dir(), os.path.dirname(memcnn.config.__file__)) def test_verbose(self): ConfigTestCase.ConfigTest(verbose=True) if __name__ == '__main__': unittest.main()
dialogue-engine/test/programytest/security/authorise/test_usergroups.py
cotobadesign/cotoba-agent-oss
104
12730557
<filename>dialogue-engine/test/programytest/security/authorise/test_usergroups.py<gh_stars>100-1000 """ Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unittest from programy.security.authorise.usergroups import User from programy.security.authorise.usergroups import Group from programy.security.authorise.usergroups import Authorisable class UserGroupTests(unittest.TestCase): def test_users(self): user = User("keith") self.assertEqual("keith", user.userid) user.roles.append("admin1") self.assertTrue(user.has_role("admin1")) self.assertFalse(user.has_role("adminx")) group = Group("sysadmin") self.assertFalse(group.has_user("keith")) self.assertEqual([], user.groups) user.add_to_group(group) self.assertTrue(group.has_user("keith")) self.assertEqual([group], user.groups) user.add_to_group(group) self.assertTrue(group.has_user("keith")) self.assertEqual([group], user.groups) def test_groups(self): group = Group("sysadmin") self.assertEqual("sysadmin", group.groupid) self.assertFalse(group.has_role("admin2")) group.roles.append("admin2") self.assertTrue(group.has_role("admin2")) self.assertEqual([], group.users) self.assertFalse(group.has_user("keith")) self.assertFalse(group.has_user("fred")) user = User("keith") group.add_user(user) self.assertEqual([user], group.users) self.assertTrue(group.has_user("keith")) self.assertFalse(group.has_user("fred")) group.add_user(user) self.assertEqual([user], group.users) def test_users_and_groups(self): user1 = User("keith") user1.roles.append("admin1") self.assertTrue(user1.has_role("admin1")) self.assertFalse(user1.has_role("adminx")) group1 = Group("sysadmin") group1.roles.append("admin2") self.assertTrue(group1.has_role("admin2")) group2 = Group("operations") group2.roles.append("audit") group1.groups.append(group2) user2 = User("fred") user2.groups.append(group1) user2.roles.append("admin3") self.assertTrue(user2.has_group("sysadmin")) self.assertTrue(user2.has_role("admin2")) self.assertTrue(user2.has_role("admin3")) self.assertFalse(user2.has_role("adminx")) def test_authorisable(self): authorisable = Authorisable("testid") self.assertEqual("testid", authorisable._id) self.assertEqual([], authorisable.roles) self.assertEqual([], authorisable.groups) self.assertEqual([], authorisable.available_roles()) self.assertFalse(authorisable.has_role("user")) self.assertFalse(authorisable.has_role("admin")) self.assertFalse(authorisable.has_group("sysadmin")) self.assertEqual([], authorisable.roles) authorisable.add_role("user") self.assertEqual(['user'], authorisable.roles) authorisable.add_role("user") self.assertEqual(['user'], authorisable.roles) self.assertTrue(authorisable.has_role("user")) group = Group("sysadmin") group.roles.append("admin") self.assertEqual([], authorisable.groups) authorisable.add_group(group) self.assertEqual([group], authorisable.groups) authorisable.add_group(group) self.assertEqual([group], authorisable.groups) self.assertTrue(authorisable.has_group("sysadmin")) self.assertTrue(authorisable.has_role("admin")) self.assertEqual(['user', 'admin'], authorisable.available_roles()) group2 = Group("root") self.assertFalse(authorisable.has_group("root")) group.add_group(group2) self.assertTrue(authorisable.has_group("root"))
observations/r/morley.py
hajime9652/observations
199
12730598
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def morley(path): """Michelson Speed of Light Data A classical data of Michelson (but not this one with Morley) on measurements done in 1879 on the speed of light. The data consists of five experiments, each consisting of 20 consecutive ‘runs’. The response is the speed of light measurement, suitably coded (km/sec, with `299000` subtracted). A data frame with 100 observations on the following 3 variables. `Expt` The experiment number, from 1 to 5. `Run` The run number within each experiment. `Speed` Speed-of-light measurement. Details ~~~~~~~ The data is here viewed as a randomized block experiment with ‘experiment’ and ‘run’ as the factors. ‘run’ may also be considered a quantitative variate to account for linear (or polynomial) changes in the measurement over the course of a single experiment. <NAME> (1986) *A Genstat Primer*. London: <NAME>. <NAME> (1977) Do robust estimators work with real data? *Annals of Statistics* **5**, 1055–1098. (See Table 6.) <NAME> (1882) Experimental determination of the velocity of light made at the United States Naval Academy, Annapolis. *Astronomic Papers* **1** 135–8. U.S. Nautical Almanac Office. (See Table 24.) Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `morley.csv`. Returns: Tuple of np.ndarray `x_train` with 100 rows and 3 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'morley.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/datasets/morley.csv' maybe_download_and_extract(path, url, save_file_name='morley.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
mayan/apps/documents/tests/test_document_views.py
atitaya1412/Mayan-EDMS
343
12730623
<gh_stars>100-1000 from django.test import override_settings from ..events import event_document_type_changed, event_document_viewed from ..permissions import ( permission_document_properties_edit, permission_document_view ) from .base import GenericDocumentViewTestCase from .mixins.document_mixins import DocumentViewTestMixin class DocumentViewTestCase( DocumentViewTestMixin, GenericDocumentViewTestCase ): auto_upload_test_document = False def setUp(self): super().setUp() self._create_test_document_stub() def test_document_properties_view_no_permission(self): self._clear_events() response = self._request_test_document_properties_view() self.assertEqual(response.status_code, 404) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_properties_view_with_access(self): self.grant_access( obj=self.test_document, permission=permission_document_view ) self._clear_events() response = self._request_test_document_properties_view() self.assertContains( response=response, status_code=200, text=self.test_document.label ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_trashed_document_properties_view_with_access(self): self.grant_access( obj=self.test_document, permission=permission_document_view ) self.test_document.delete() self._clear_events() response = self._request_test_document_properties_view() self.assertEqual(response.status_code, 404) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_properties_edit_get_view_no_permission(self): self._clear_events() response = self._request_test_document_properties_edit_get_view() self.assertEqual(response.status_code, 404) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_properties_edit_get_view_with_access(self): self.grant_access( permission=permission_document_properties_edit, obj=self.test_document_type ) self._clear_events() response = self._request_test_document_properties_edit_get_view() self.assertEqual(response.status_code, 200) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_trashed_document_properties_edit_get_view_with_access(self): self.grant_access( permission=permission_document_properties_edit, obj=self.test_document_type ) self.test_document.delete() self._clear_events() response = self._request_test_document_properties_edit_get_view() self.assertEqual(response.status_code, 404) events = self._get_test_events() self.assertEqual(events.count(), 0) @override_settings(DOCUMENTS_LANGUAGE='fra') def test_document_properties_view_setting_non_us_language_with_access(self): self.grant_access( obj=self.test_document, permission=permission_document_view ) self._clear_events() response = self._request_test_document_properties_view() self.assertContains( response=response, status_code=200, text=self.test_document.label ) self.assertContains( response=response, status_code=200, text='Language:</label>\n \n \n English' ) events = self._get_test_events() self.assertEqual(events.count(), 0) @override_settings(DOCUMENTS_LANGUAGE='fra') def test_document_properties_edit_get_view_setting_non_us_language_with_access(self): self.grant_access( permission=permission_document_properties_edit, obj=self.test_document_type ) self._clear_events() response = self._request_test_document_properties_edit_get_view() self.assertContains( response=response, status_code=200, text='<option value="eng" selected>English</option>', ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_list_view_no_permission(self): self._clear_events() response = self._request_test_document_list_view() self.assertEqual(response.status_code, 200) self.assertEqual(response.context['object_list'].count(), 0) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_list_view_with_access(self): self.grant_access( obj=self.test_document, permission=permission_document_view ) self._clear_events() response = self._request_test_document_list_view() self.assertContains( response=response, status_code=200, text=self.test_document.label ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_trashed_document_list_view_with_access(self): self.grant_access( obj=self.test_document, permission=permission_document_view ) self.test_document.delete() self._clear_events() response = self._request_test_document_list_view() self.assertNotContains( response=response, status_code=200, text=self.test_document.label ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_type_change_post_view_no_permission(self): self._create_test_document_type() document_type = self.test_document.document_type self._clear_events() response = self._request_test_document_type_change_post_view() self.assertEqual(response.status_code, 404) self.test_document.refresh_from_db() self.assertEqual( self.test_document.document_type, document_type ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_type_change_post_view_with_access(self): self._create_test_document_type() document_type = self.test_document.document_type self.grant_access( obj=self.test_document, permission=permission_document_properties_edit ) self._clear_events() response = self._request_test_document_type_change_post_view() self.assertEqual(response.status_code, 302) self.test_document.refresh_from_db() self.assertNotEqual( self.test_document.document_type, document_type ) events = self._get_test_events() self.assertEqual(events.count(), 1) self.assertEqual(events[0].action_object, self.test_document_types[1]) self.assertEqual(events[0].actor, self._test_case_user) self.assertEqual(events[0].target, self.test_document) self.assertEqual(events[0].verb, event_document_type_changed.id) def test_trashed_document_document_type_change_post_view_with_access(self): self._create_test_document_type() document_type = self.test_document.document_type self.grant_access( obj=self.test_document, permission=permission_document_properties_edit ) self.test_document.delete() self._clear_events() response = self._request_test_document_type_change_post_view() self.assertEqual(response.status_code, 404) self.test_document.refresh_from_db() self.assertEqual( self.test_document.document_type, document_type ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_type_change_view_get_no_permission(self): self._create_test_document_type() document_type = self.test_document.document_type self._clear_events() response = self._request_test_document_type_change_get_view() self.assertEqual(response.status_code, 404) self.test_document.refresh_from_db() self.assertEqual( self.test_document.document_type, document_type ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_type_change_view_get_with_access(self): self.grant_access( obj=self.test_document, permission=permission_document_properties_edit ) self._clear_events() response = self._request_test_document_type_change_get_view() self.assertEqual(response.status_code, 200) self.test_document.refresh_from_db() self.assertEqual( self.test_document.document_type, self.test_document_type ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_trashed_document_type_change_view_get_with_access(self): self.grant_access( obj=self.test_document, permission=permission_document_properties_edit ) self._create_test_document_type() document_type = self.test_document.document_type self.test_document.delete() self._clear_events() response = self._request_test_document_type_change_get_view() self.assertEqual(response.status_code, 404) self.test_document.refresh_from_db() self.assertEqual( self.test_document.document_type, document_type ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_multiple_document_type_change_view_no_permission(self): self._create_test_document_type() document_type = self.test_document.document_type self._clear_events() response = self._request_test_document_multiple_type_change() self.assertEqual(response.status_code, 404) self.test_document.refresh_from_db() self.assertEqual( self.test_document.document_type, document_type ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_multiple_document_type_change_view_with_permission(self): self.grant_access( obj=self.test_document, permission=permission_document_properties_edit ) self._create_test_document_type() document_type = self.test_document.document_type self._clear_events() response = self._request_test_document_multiple_type_change() self.assertEqual(response.status_code, 302) self.test_document.refresh_from_db() self.assertNotEqual( self.test_document.document_type, document_type ) events = self._get_test_events() self.assertEqual(events.count(), 1) self.assertEqual(events[0].action_object, self.test_document_types[1]) self.assertEqual(events[0].actor, self._test_case_user) self.assertEqual(events[0].target, self.test_document) self.assertEqual(events[0].verb, event_document_type_changed.id) def test_document_preview_view_no_permission(self): self._clear_events() response = self._request_test_document_preview_view() self.assertEqual(response.status_code, 404) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_document_preview_view_with_access(self): self.grant_access( obj=self.test_document, permission=permission_document_view ) self._clear_events() response = self._request_test_document_preview_view() self.assertContains( response=response, status_code=200, text=self.test_document.label ) events = self._get_test_events() self.assertEqual(events.count(), 1) self.assertEqual(events[0].action_object, None) self.assertEqual(events[0].actor, self._test_case_user) self.assertEqual(events[0].target, self.test_document) self.assertEqual(events[0].verb, event_document_viewed.id) def test_trashed_document_preview_view_with_access(self): self.grant_access( obj=self.test_document, permission=permission_document_view ) self.test_document.delete() self._clear_events() response = self._request_test_document_preview_view() self.assertEqual(response.status_code, 404) events = self._get_test_events() self.assertEqual(events.count(), 0)
test/test_consistency.py
olliethomas/torchtyping
881
12730626
import pytest from torch import rand from torchtyping import TensorType from typeguard import typechecked x = y = None def test_single(): @typechecked def func1(x: TensorType["x"], y: TensorType["x"]): pass @typechecked def func2(x: TensorType["x"], y: TensorType["x"]) -> TensorType["x"]: return x + y @typechecked def func3(x: TensorType["x"], y: TensorType["x"]) -> TensorType["x", "x"]: return x + y @typechecked def func4(x: TensorType["x"], y: TensorType["x"]) -> TensorType["x", "x"]: return x.unsqueeze(0) + y.unsqueeze(1) @typechecked def func5(x: TensorType["x"], y: TensorType["x"]) -> TensorType["x", "y"]: return x @typechecked def func6(x: TensorType["x"], y: TensorType["x"]) -> TensorType["y", "x"]: return x @typechecked def func7(x: TensorType["x"]) -> TensorType["x"]: assert x.shape != (1,) return rand((1,)) func1(rand(2), rand(2)) func2(rand(2), rand(2)) with pytest.raises(TypeError): func3(rand(2), rand(2)) func4(rand(2), rand(2)) with pytest.raises(TypeError): func5(rand(2), rand(2)) with pytest.raises(TypeError): func6(rand(2), rand(2)) with pytest.raises(TypeError): func7(rand(3)) def test_multiple(): # Fun fact, this "wrong" func0 is actually a mistype of func1, that torchtyping # caught for me when I ran the tests! @typechecked def func0(x: TensorType["x"], y: TensorType["y"]) -> TensorType["x", "y"]: return x.unsqueeze(0) + y.unsqueeze(1) @typechecked def func1(x: TensorType["x"], y: TensorType["y"]) -> TensorType["x", "y"]: return x.unsqueeze(1) + y.unsqueeze(0) @typechecked def func2(x: TensorType["x", "x"]): pass @typechecked def func3(x: TensorType["x", "x", "x"]): pass @typechecked def func4(x: TensorType["x"], y: TensorType["x", "y"]): pass @typechecked def func5(x: TensorType["x", "y"], y: TensorType["y", "x"]): pass @typechecked def func6(x: TensorType["x"], y: TensorType["y"]) -> TensorType["x", "y"]: assert not (x.shape == (2,) and y.shape == (3,)) return rand(2, 3) func0(rand(2), rand(2)) # can't catch this with pytest.raises(TypeError): func0(rand(2), rand(3)) with pytest.raises(TypeError): func0(rand(10), rand(0)) func1(rand(2), rand(2)) func1(rand(2), rand(3)) func1(rand(10), rand(0)) func2(rand(0, 0)) func2(rand(2, 2)) func2(rand(9, 9)) with pytest.raises(TypeError): func2(rand(0, 4)) func2(rand(1, 4)) func2(rand(3, 4)) func3(rand(0, 0, 0)) func3(rand(2, 2, 2)) func3(rand(9, 9, 9)) with pytest.raises(TypeError): func3(rand(0, 4, 4)) func3(rand(1, 4, 4)) func3(rand(3, 3, 4)) func4(rand(3), rand(3, 4)) with pytest.raises(TypeError): func4(rand(3), rand(4, 3)) func5(rand(2, 3), rand(3, 2)) func5(rand(0, 5), rand(5, 0)) func5(rand(2, 2), rand(2, 2)) with pytest.raises(TypeError): func5(rand(2, 3), rand(2, 3)) func5(rand(2, 3), rand(2, 2)) with pytest.raises(TypeError): func6(rand(5), rand(3))
03-machine-learning-tabular-crossection/06 - Clustering/01/solutions/solutions/solution_05.py
abefukasawa/datascience_course
331
12730629
<filename>03-machine-learning-tabular-crossection/06 - Clustering/01/solutions/solutions/solution_05.py X, _ = make_blobs(n_samples = 800, centers = clusters, n_features=3)
checkmate/checkmate_schedule.py
stjordanis/MONeT-1
161
12730649
import torch from collections import namedtuple import monet.lm_ops as lm_ops import numpy as np from monet.graph import * from checkmate.checkmate_solver import * from monet.solver_info import * from monet.pipelined_solver_info import * from models.unet import UNet ScheduleType = namedtuple('ScheduleType', 'recompute store_output delete_nodes store_intermediate') KEEP_FWDOP = False class Schedule(Graph): def __init__(self, graph: Graph, info: SolverInfo): self.si = info self._nodes = graph.nodes self.lennodes = len(self.nodes) self._outputs = graph._outputs self._op = [] # List of operations self.bs = -1 # Stored tensors self._stored = [None for i in range(self.lennodes)] self._stored_intermediate = [None for i in range(self.lennodes)] self._bwd_stored = [None for i in range(self.lennodes)] # Parameters list self._args = [] self.args_updated = [] # Preprocessing self.computeInstance = [] for k, n in enumerate(self.nodes): if isinstance(n,ComputeNode) and not n.op=="aten::t": self.computeInstance.append(k) def init_schedule(self, solution: CheckmateSolution, mode): T = len(self.si.nodes) # Create main structures self._op = [None for i in range(self.lennodes)] # List of operations self._fwd_schedule = [[] for i in range(T)] # Forward schedule self._bwd_schedule = [[] for i in range(T)] # Backward schedule self.fwdargs = [None for i in range(self.lennodes)] # Index to forward node input tensor self.bwdargs = [None for i in range(self.lennodes)] # Index to backward node input tensors # Initialize forward pass structures for t in range(T): for i, n in enumerate(self.nodes): if isinstance(n, ComputeNode) and n.op != "aten::t": j = self.si.graph_to_solver[i] ops_list = lm_ops.list_ops(self.si.mode, n.op) if isinstance(self.si, PipelinedSolverInfo) and self.si.nodes[j].has_intermediates: op = ops_list[-1]() # Select intermediate-computing and intermediate-activated operator implementation else: op = ops_list[0]() # Select the default operator implementations if n.is_depthwise: op.is_depthwise = True s = solution.s[t+1][j] if t<T-1 else False r = solution.r[t][j] f = solution.f[t][j] schedule_intermediate = False storage = op.backward_storage if not isinstance(storage, list): storage = [storage] for store in storage: if isinstance(store, lm_ops.IntermediateStorage): schedule_intermediate = True if r or len(f) or s: self._fwd_schedule[t].append((i,ScheduleType(r, s, f, schedule_intermediate), n.op)) self._op[i] = op self.fwdargs[i] = [(a.value,None) if isinstance(a, ComputeNode.V) else (a.index,a.requires_grad) for a in n.args] elif isinstance(n, ComputeNode) and n.op == "aten::t": pass else: # Node represents a parameter self._fwd_schedule[t].append((i,None,None)) self._op[i] = None # Initialize backward pass structures for k, m in reversed(list(enumerate(self.nodes))): # Create backward dependencies if isinstance(m, ComputeNode) and m.op != "aten::t": j = self.si.fwd_to_bwd[self.si.graph_to_solver[k]] n = self.si.nodes[j] assert isinstance(n, BwdNode) self.bwdargs[k] = {'param':[], 'ip':[]} storage_list = self._op[k].backward_storage if not isinstance(storage_list, list): storage_list = [storage_list] for storage in storage_list: if isinstance(storage, lm_ops.InputStorage): for posi, i in enumerate(storage.ids): idx = m.args[i].index if (((m.op == "aten::_convolution" and not m.is_depthwise) or m.op == "aten::addmm") and n.bwd_op == "ip_grad"): self.bwdargs[k]['param'].append((idx, True, False)) if posi == 0: self.bwdargs[k]['ip'].append((idx,False,False)) # Input tensor for conv/addmm ip grad need not be stored else: self.bwdargs[k]['ip'].append((idx,True,False)) else: self.bwdargs[k]['ip'].append((idx,True,False)) elif isinstance(storage, lm_ops.OutputStorage): self.bwdargs[k]['ip'].append((k,True,False)) elif isinstance(storage, lm_ops.IntermediateStorage): self.bwdargs[k]['ip'].append((k,True,True)) # Create backward schedule for t in range(T): if isinstance(m, ComputeNode) and m.op != "aten::t": j = self.si.fwd_to_bwd[self.si.graph_to_solver[k]] n = self.si.nodes[j] assert isinstance(n, BwdNode) s = solution.s[t+1][j] if t<T-1 else False r = solution.r[t][j] f = solution.f[t][j] if (((m.op == "aten::_convolution" and not m.is_depthwise) or m.op == "aten::addmm") and n.bwd_op == "ip_grad"): s1 = solution.s[t+1][j-1] if t<T-1 else False if solution.r[t][j-1] or len(solution.f[t][j-1]) or s1: self._bwd_schedule[t].append((k,ScheduleType(solution.r[t][j-1], s1, solution.f[t][j-1], False),"param")) if r or len(f) or s: self._bwd_schedule[t].append((k,ScheduleType(r, s, f, False),"ip")) elif isinstance(m, ComputeNode) and m.op == "aten::t": pass else: self._bwd_schedule[t].append((k,None,"grad")) self.opshapes = defaultdict() for k in self._outputs: self.opshapes[k] = [self.bs if dim==-1 else dim for dim in self._nodes[k].shape] def _forward(self, t): tensors = self._stored bw_tensors = self._bwd_stored self._stored = [None] * self.lennodes self._bwd_stored = [None] * self.lennodes if len(self._fwd_schedule[t]): for (k,schedule,op_name) in self._fwd_schedule[t]: if schedule == None: tensors[k] = self._args[k] else: recompute, s, f, si = schedule if recompute: args = [a if b==None else tensors[a].requires_grad_(b) for (a,b) in self.fwdargs[k]] # Checkmate does not reuse params for BN if op_name == "aten::batch_norm": self._op[k].params = None if si: tensors[k], self._stored_intermediates[k] = self._op[k].forward(*args) else: tensors[k] = self._op[k].forward(*args) assert tensors[k] is not None del args for u in f: assert u < self.si.loss graphu = self.si.solver_to_graph[u] tensors[graphu] = None if s: self._stored[k] = tensors[k] if len(self._bwd_schedule[t]): for (k,schedule,optype) in self._bwd_schedule[t]: if schedule == None: if bw_tensors[k] is not None and k not in self.args_updated and self._args[k].requires_grad: assert len(bw_tensors[k]) == 1 for u in bw_tensors[k]: self._args[k].backward(bw_tensors[k][u]) bw_tensors[k] = None # self._bwd_stored[k] = None self.args_updated.append(k) else: recompute, s, f, si = schedule if recompute: for (idx, checkNone, intmd) in self.bwdargs[k][optype]: if checkNone: if intmd: assert self._stored_intermediate[idx] is not None else: assert tensors[idx] is not None stored = [tensors[idx] if not intmd else self._stored_intermediates[idx] for (idx,_,intmd) in self.bwdargs[k][optype]] grad_nd = self._op[k] m = self.nodes[k] if ((m.op == "aten::_convolution" and not m.is_depthwise) or m.op == "aten::addmm"): if optype == "param": grad_nd.algorithm = 0 elif optype == "ip": grad_nd.algorithm = 10 # Call backward bwd_in = None if k in self._outputs: s = [val if val>0 else self.bs for val in list(self.opshapes[k])] bw_tensors[k] = {-1: torch.ones(s, device=self._args[0].device)} with torch.no_grad(): assert bw_tensors[k] is not None, "k, t: %d %d " % (k, t) for u in bw_tensors[k]: assert bw_tensors[k][u] is not None, "k, u, t: %d %d %s %d " % (k, u, self.si.nodes[self.si.graph_to_solver[k]], t) if bwd_in == None: bwd_in = bw_tensors[k][u] else: bwd_in += bw_tensors[k][u] assert bwd_in is not None bw_outs = grad_nd.backward(bwd_in, stored) del bwd_in if not isinstance(bw_outs, (list, tuple)): bw_outs = (bw_outs,) assert len(bw_outs) == len(self.nodes[k].dependencies), \ "Require the same number of grad outputs as forward inputs" \ " %s (%d) , %s (%d)" % ( repr(bw_outs), len(bw_outs), repr(self.nodes[k].dependencies), len(self.nodes[k].dependencies)) # Accumulate the backward gradient for (i, r), o in zip(self.nodes[k].dependencies, bw_outs): if r: if o is not None: if bw_tensors[i] is None: bw_tensors[i] = {k: o} else: bw_tensors[i][k] = o del grad_nd, bw_outs, o for u in f: if u < self.si.loss: graphu = self.si.solver_to_graph[u] tensors[graphu] = None elif u == self.si.loss: pass # Do not delete loss nodes else: graphu = self.si.solver_to_graph[self.si.bwd_to_fwd[u]] unode = self.si.nodes[self.si.bwd_to_fwd[u]].gnode for (i,r) in unode.dependencies: if isinstance(self.nodes[i], ComputeNode): bw_tensors[i][graphu] = None if s: for (i,r) in self.nodes[k].dependencies: if r: if isinstance(self._nodes[i], ComputeNode): if optype != "param": assert bw_tensors[i] is not None assert bw_tensors[i][k] is not None, "%d (%s) should have bwd input from %d (%s)" % (self.si.graph_to_solver[i], self.si.nodes[self.si.graph_to_solver[i]], self.si.graph_to_solver[k], self.si.nodes[self.si.graph_to_solver[k]]) if self._bwd_stored[i] is None: self._bwd_stored[i] = {k: bw_tensors[i][k]} else: self._bwd_stored[i][k] = bw_tensors[i][k] del tensors, bw_tensors def forward(self, *args): self._args = args T = self.si.size fwd_output = None for t in range(T): self._forward(t) for k, n in enumerate(self._nodes): if k in self.computeInstance and n.op == "aten::batch_norm": self._op[k].params = None self.args_updated = [] return fwd_output def disable_dropout(model): for m in model.modules(): if isinstance(m, torch.nn.Dropout): m.p = 0.0 def load_solution(filename): import pickle print(f'Loading solver_info, solution from {filename}') with open(filename, 'rb') as f: si, solution = pickle.load(f) return si, solution if __name__ == '__main__': import argparse import torchvision from time import time from pathlib import Path from monet.cvxpy_solver import Solution parser = argparse.ArgumentParser() parser.add_argument('model') parser.add_argument('bs') parser.add_argument('budget') parser.add_argument('mode') parser.add_argument('solver') parser.add_argument( "--solution_file", type=str, default="", help="If specified, load stored solution file.") parser.add_argument( "--check_diff", action="store_true", help="Compute the output (gradient) difference between ours and normal model.") parser.add_argument( "--check_runtime", action="store_true", help="Compute the runtime difference between ours and normal model.") parser.add_argument( "--run_bs", action="store_true", help="Run the given batch size.") parser.add_argument( "--pipeline", action="store_true", help="Pipeline the operator optimization followed by checkpointing") parser.add_argument( "--ablation", action="store_true", help="Do ablation?.") args = parser.parse_args() budget = float(args.budget) import config config.budget = budget bs = int(args.bs) model_name = args.model.split(".")[-1][:-2] mode = args.mode print("Memory budget ", budget, " GB") print("Batch size ", bs) print("Model", model_name) print("Mode", mode) if args.model == 'unet': height, width = 416, 608 model = UNet(n_channels=3, n_classes=1, height=height, width=width) else: height, width = 224, 224 model = eval(args.model, {'torch': torch, 'torchvision': torchvision}) if 'mobilenet_v2' in args.model: model = torch.nn.Sequential( model.features, torch.nn.AdaptiveAvgPool2d((1, 1)), torch.nn.Flatten(start_dim=1), model.classifier[0], model.classifier[1]) if args.check_diff: disable_dropout(model) graph = Graph.create(model, input_shape=(3, height, width)) model.cuda() solvert = -1 if args.check_diff: input_ = torch.randn((bs, 3, height, width)).cuda() if len(args.solution_file) > 0: solver_info, solution = load_solution(args.solution_file) else: solver_info = SolverInfo(bs=bs, model_name=model_name, mode=mode) solver_info.extract(graph, input_, *list(model.state_dict(keep_vars=True).values())) solution = solve_ilp_gurobi(solver_info, budget, approx=False, time_limit=86400) schedule = Schedule(graph, solver_info) schedule.init_schedule(solution, mode) x0 = model(input_) if 'googlenet' in args.model: (-(x0[0]+x0[1]+x0[2])).sum().backward() else: (-x0).sum().backward() KEEP_FWDOP = True x1 = schedule.forward(input_, *list(model.state_dict(keep_vars=True).values())) print('Forward mean absolute difference', abs(x0[0] - x1).mean() if 'googlenet' in args.model else abs(x0 - x1).mean()) print('original output', x0) print('ours output', x1) print('Gradient of normal model', ['{:.5f} {}'.format(float(v.grad.mean()), v.shape) for v in model.parameters() if v.grad is not None]) if args.check_runtime: FORWARD_EMPTY_CACHE = False if len(args.solution_file) > 0: solver_info, solution = load_solution(args.solution_file) else: input_ = torch.randn((bs, 3, height, width)).cuda() if args.pipeline: solver_info = PipelinedSolverInfo(bs=bs, model_name=model_name, mode=mode) else: solver_info = SolverInfo(bs=bs, model_name=model_name, mode=mode) solver_info.extract(graph, input_, *list(model.state_dict(keep_vars=True).values())) solution = solve_ilp_gurobi(solver_info, budget, approx=False, time_limit=86400) # t0 = time() # solution = solver_model.solve() # solvert = time() - t0 del input_ input_ = torch.randn((bs, 3, height, width)).cuda() torch.cuda.reset_max_memory_allocated() torch.cuda.synchronize() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() schedule = Schedule(graph, solver_info) schedule.bs = bs schedule.init_schedule(solution, mode) torch.cuda.synchronize() start_event_monet = torch.cuda.Event(enable_timing=True) end_event_monet = torch.cuda.Event(enable_timing=True) for iterid in range(120): if iterid == 100: start_event_monet.record() x1 = schedule.forward(input_, *list(model.state_dict(keep_vars=True).values())) for v in model.parameters(): v.grad = None end_event_monet.record() torch.cuda.synchronize() del x1 autosave_maxmem = torch.cuda.max_memory_allocated() / 2**20 print("checkmate: %f ms avg, %8.2f MB" % (start_event_monet.elapsed_time(end_event_monet)/20, autosave_maxmem)) exit() solvert = -1 if args.run_bs: bs = int(args.bs) print("Solver trying batch size %d" % bs) if len(args.solution_file) > 0: solver_info, solution = load_solution(args.solution_file) else: input_ = torch.randn((bs, 3, height, width)).cuda() if args.pipeline: solver_info = PipelinedSolverInfo(bs=bs, model_name=model_name, mode=mode) else: solver_info = SolverInfo(bs=bs, model_name=model_name, mode=mode) solver_info.extract(graph, input_, *list(model.state_dict(keep_vars=True).values())) solution = solve_ilp_gurobi(solver_info, budget, approx=False, time_limit=86400) del input_ print("Batch size %d feasible" % bs) print("Solved in %fs with actual opt taking %fs" % (solvert, solution.solve_time)) print("Running schedule for batch size %d" % bs) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() input_ = torch.randn((bs, 3, height, width)).cuda() schedule = Schedule(graph, solver_info) schedule.bs = bs schedule.init_schedule(solution, mode) t0 = time() x1 = schedule.forward(input_, *list(model.state_dict(keep_vars=True).values())) del input_ del x1 torch.cuda.synchronize() t1 = time() - t0 print("Ran schedule for batch %d " % bs) torch.cuda.empty_cache() mem = torch.cuda.max_memory_allocated() / 2**20 print("Ran batch %d with peak memory %8.2fM, %fs" % (bs, mem, t1))
tools/odrive/tests/endstop_manualtest.py
deafloo/ODrive
1,068
12730652
<reponame>deafloo/ODrive<gh_stars>1000+ import odrive from odrive.enums import * from odrive.utils import * print("finding an odrive...") odrv0 = odrive.find_any() print('Odrive found') odrv0.axis1.controller.config.vel_limit = 50000 odrv0.axis1.controller.config.control_mode = CONTROL_MODE_POSITION_CONTROL odrv0.axis1.controller.config.input_mode = INPUT_MODE_PASSTHROUGH odrv0.axis1.encoder.config.cpr = 2400 odrv0.axis1.encoder.config.bandwidth = 1000 odrv0.axis1.motor.config.calibration_current = 5 odrv0.axis1.motor.config.current_lim = 5 odrv0.axis1.controller.config.homing_speed = 5000 odrv0.config.brake_resistance = 0 odrv0.axis0.min_endstop.config.gpio_num = 6 odrv0.axis0.min_endstop.config.enabled = True odrv0.axis0.min_endstop.config.offset = -1000 odrv0.axis0.max_endstop.config.gpio_num = 5 odrv0.axis0.max_endstop.config.enabled = True odrv0.axis1.min_endstop.config.gpio_num = 8 odrv0.axis1.min_endstop.config.enabled = True odrv0.axis1.min_endstop.config.offset = -1000 odrv0.axis1.max_endstop.config.gpio_num = 7 odrv0.axis1.max_endstop.config.enabled = True odrv0.axis1.config.startup_encoder_offset_calibration = True odrv0.axis1.config.startup_motor_calibration = True odrv0.axis1.config.startup_homing = True odrv0.axis1.config.startup_closed_loop_control = True
envi/archs/z80/__init__.py
rnui2k/vivisect
716
12730653
''' Z80 architecture base... '''
mods/NERO_Battle/menu.py
SummitChen/opennero
215
12730656
<filename>mods/NERO_Battle/menu.py<gh_stars>100-1000 import os import sys sys.path.append(os.path.join(sys.path[0], os.pardir)) import NERO.menu import NERO.constants try: import wx except: import tkMessageBox tkMessageBox.showwarning('Warning!', 'Could not start the external menu for NERO because wxPython is not installed.') sys.exit() class NeroPanel(NERO.menu.NeroPanel): def __init__(self, parent): NERO.menu.NeroPanel.__init__(self, parent) self._sliders['HP'].Enable() def add_buttons(self): self.add_button('Load Blue Team', self.OnLoad1) self.add_button('Load Red Team', self.OnLoad2) self.add_button('Continue', self.OnPause, disabled=True) self.add_button('Help', self.OnHelp) def add_sliders(self): self.add_slider('Hitpoints', 'HP', span=100, center=0, thumb=NERO.constants.DEFAULT_HITPOINTS) def OnLoad2(self, event): dirname = "" dlg = wx.FileDialog(self, "Red Team: Load Population File", dirname, "", "*.*", wx.FD_OPEN) if dlg.ShowModal() == wx.ID_OK: filename = dlg.GetFilename() dirname = dlg.GetPath() self.send("load2 %s" % dirname) self.loaded2 = True if self.loaded1 and self.loaded2: self._buttons['OnPause'].Enable() if __name__ == '__main__': print 'creating NERO Battle controls' app = wx.App(False) frame = wx.Frame(None, title="NERO Battle Controls", size=(600, 250)) panel = NeroPanel(frame) frame.Show() app.MainLoop()
code/automate-download/auto-download-cu-covid19.py
eycramer/covid19-forecast-hub
428
12730664
# Before executing the script, we need urllib3. Run `pip install urllib3` # A simple script for automatically download the ihme-covid19.zip file and extract it import requests import os import sys import calendar import datetime def download_file_by_date(path, date): # metadata prefix = "https://raw.githubusercontent.com/shaman-lab/COVID-19Projection/master/Projection_" suffix = "/cdc_hosp/state_cdchosp_" raw_list = ["60contact.csv", "70contact.csv", "80contact.csv", "nointerv.csv", "80contact_1x.csv", "80contactw.csv"] # Check all urls if there's new data on specific date working_urls = [] for raw_file in raw_list: url = prefix+date+suffix+raw_file response = requests.get(url) working_urls.append(response.status_code) # Download data savepath = os.path.join(path, "Projection_"+date+"/cdc_hosp/") if 200 in working_urls: if not os.path.exists(savepath): os.makedirs(savepath) for raw_file in raw_list: url = prefix+date+suffix+raw_file response = requests.get(url) if response.status_code == 200: with open(os.path.join(savepath,"state_cdchosp_"+raw_file), "wb") as writer: for chunk in response: writer.write(chunk) writer.close() return True else: return False def download_recent_CU_data(path): # Because the script is run at 1pm everyday, it may miss forecasts that # are uploaded after 1pm if the script only look at the current day. We # set it up to also look at the day before today = datetime.datetime.today() - datetime.timedelta(days=2) today_date_v1 = calendar.month_name[today.month] + today.strftime('%d') today_date_v2 = calendar.month_name[today.month] + today.strftime('%d').strip('0') yesterday = datetime.datetime.today() - datetime.timedelta(days=1) yesterday_date_v1 = calendar.month_name[yesterday.month] + yesterday.strftime('%d') yesterday_date_v2 = calendar.month_name[yesterday.month] + yesterday.strftime('%d').strip('0') # Check for different combination of new data from yesterday (Example: May3 vs May03) download_with_yesterday_v1_is_successful = download_file_by_date(path, yesterday_date_v1) download_with_yesterday_v2_is_successful = download_file_by_date(path, yesterday_date_v2) if (download_with_yesterday_v1_is_successful or download_with_yesterday_v2_is_successful): print('There is new data from CU on '+yesterday_date_v1) else: print('There is no new data from CU on '+yesterday_date_v1) # Check for different combination of new data from today (Example: May4 vs May04) download_with_today_v1_is_successful = download_file_by_date(path, today_date_v1) download_with_today_v2_is_successful = download_file_by_date(path, today_date_v2) if (download_with_today_v1_is_successful or download_with_today_v2_is_successful): print('There is new data from CU on '+today_date_v1) else: print('There is no new data from CU on '+today_date_v1) if __name__ == '__main__': path = sys.argv[1] download_recent_CU_data(path)
examples/stacked_area_examples.py
ahlusar1989/vincent
1,052
12730706
<reponame>ahlusar1989/vincent # -*- coding: utf-8 -*- """ Vincent Stacked Area Examples """ #Build a Stacked Area Chart from scratch from vincent import * import pandas as pd import pandas.io.data as web all_data = {} for ticker in ['AAPL', 'GOOG', 'IBM', 'YHOO', 'MSFT']: all_data[ticker] = web.get_data_yahoo(ticker, '1/1/2010', '1/1/2013') price = pd.DataFrame({tic: data['Adj Close'] for tic, data in all_data.items()}) vis = Visualization(width=500, height=300) vis.padding = {'top': 10, 'left': 50, 'bottom': 50, 'right': 100} data = Data.from_pandas(price) vis.data['table'] = data facets = Transform(type='facet', keys=['data.idx']) stats = Transform(type='stats', value='data.val') stat_dat = Data(name='stats', source='table', transform=[facets, stats]) vis.data['stats'] = stat_dat vis.scales['x'] = Scale(name='x', type='time', range='width', domain=DataRef(data='table', field="data.idx")) vis.scales['y'] = Scale(name='y', range='height', type='linear', nice=True, domain=DataRef(data='stats', field="sum")) vis.scales['color'] = Scale(name='color', type='ordinal', domain=DataRef(data='table', field='data.col'), range='category20') vis.axes.extend([Axis(type='x', scale='x'), Axis(type='y', scale='y')]) facet = Transform(type='facet', keys=['data.col']) stack = Transform(type='stack', point='data.idx', height='data.val') transform = MarkRef(data='table',transform=[facet, stack]) enter_props = PropertySet(x=ValueRef(scale='x', field="data.idx"), y=ValueRef(scale='y', field="y"), interpolate=ValueRef(value='monotone'), y2=ValueRef(field='y2', scale='y'), fill=ValueRef(scale='color', field='data.col')) mark = Mark(type='group', from_=transform, marks=[Mark(type='area', properties=MarkProperties(enter=enter_props))]) vis.marks.append(mark) vis.axis_titles(x='Date', y='Price') vis.legend(title='Tech Stocks') vis.to_json('vega.json') #Convenience method vis = StackedArea(price) vis.axis_titles(x='Date', y='Price') vis.legend(title='Tech Stocks') vis.colors(brew='Paired') vis.to_json('vega.json')
parameter_search.py
LaudateCorpus1/RIDDLE-1
110
12730723
"""parameter_search.py Search for optimal parameters for RIDDLE and various ML classifiers. Requires: Keras, NumPy, scikit-learn, RIDDLE (and their dependencies) Author: <NAME>, Rzhetsky Lab Copyright: 2018, all rights reserved """ from __future__ import print_function import argparse import os import pickle import time import warnings import numpy as np from sklearn.metrics import log_loss from sklearn.model_selection import RandomizedSearchCV from riddle import emr from riddle import tuning from riddle.models import MLP from utils import get_param_path from utils import get_preprocessed_data from utils import recursive_mkdir from utils import select_features from utils import subset_reencode_features from utils import vectorize_features SEED = 109971161161043253 % 8085 TUNING_K = 3 # number of partitions to use to evaluate a parameter config parser = argparse.ArgumentParser( description='Perform parameter search for various classification methods.') parser.add_argument( '--method', type=str, default='riddle', help='Classification method to use.') parser.add_argument( '--data_fn', type=str, default='dummy.txt', help='Filename of text data file.') parser.add_argument( '--prop_missing', type=float, default=0.0, help='Proportion of feature observations to simulate as missing.') parser.add_argument( '--max_num_feature', type=int, default=-1, help='Maximum number of features to use; with the default of -1, use all' 'available features') parser.add_argument( '--feature_selection', type=str, default='random', help='Method to use for feature selection.') parser.add_argument( '--force_run', type=bool, default=False, help='Whether to force parameter search to run even if it has been already' 'performed.') parser.add_argument( '--max_num_sample', type=int, default=10000, help='Maximum number of samples to use during parameter tuning.') parser.add_argument( '--num_search', type=int, default=5, help='Number of parameter settings (searches) to try.') parser.add_argument( '--data_dir', type=str, default='_data', help='Directory of data files.') parser.add_argument( '--cache_dir', type=str, default='_cache', help='Directory where to cache files and outputs.') def loss_scorer(estimator, x, y): """Negative log loss scoring function for scikit-learn model selection.""" loss = log_loss(y, estimator.predict_proba(x)) assert loss >= 0 # we want to minimize loss; since scikit-learn model selection tries to # maximize a given score, return the negative of the loss return -1 * loss def run(method, x_unvec, y, idx_feat_dict, num_feature, max_num_feature, num_class, max_num_sample, feature_selection, k_idx, k, num_search, perm_indices): """Run a parameter search for a single k-fold partitions Arguments: method: string name of classification method; values = {'logit', 'random_forest', 'linear_svm', 'poly_svm', 'rbf_svm', 'gbdt', 'riddle'} x_unvec: [[int]] feature indices that have not been vectorized; each inner list collects the indices of features that are present (binary on) for a sample y: [int] list of class labels as integer indices idx_feat_dict: {int: string} dictionary mapping feature indices to features num_feature: int number of features present in the dataset max_num_feature: int maximum number of features to use num_class: int number of classes present feature_selection: string feature selection method; values = {'random', 'frequency', 'chi2'} k_idx: int index of the k-fold partition to use k: int number of partitions for k-fold cross-validation num_search: int number of searches (parameter configurations) to try perm_indices: np.ndarray, int array of indices representing a permutation of the samples with shape (num_sample, ) Returns: best_param: {string: ?} dictionary mapping parameter names to the best values found """ print('-' * 72) print('Partition k = {}'.format(k_idx)) x_train_unvec, y_train, x_val_unvec, y_val, _, _ = ( emr.get_k_fold_partition(x_unvec, y, k_idx=k_idx, k=k, perm_indices=perm_indices)) if max_num_feature > 0: # select features and re-encode feat_encoding_dict, _ = select_features( x_train_unvec, y_train, idx_feat_dict, method=feature_selection, num_feature=num_feature, max_num_feature=max_num_feature) x_val_unvec = subset_reencode_features(x_val_unvec, feat_encoding_dict) num_feature = max_num_feature # cap number of validation samples if max_num_sample != None and len(x_val_unvec) > max_num_sample: x_val_unvec = x_val_unvec[0:max_num_sample] y_val = y_val[0:max_num_sample] start = time.time() if method == 'riddle': model_class = MLP init_args = {'num_feature': num_feature, 'num_class': num_class} param_dist = { 'num_hidden_layer': 2, # [1, 2] 'num_hidden_node': 512, # [128, 256, 512] 'activation': ['prelu', 'relu'], 'dropout': tuning.Uniform(lo=0.2, hi=0.8), 'learning_rate': tuning.UniformLogSpace(10, lo=-6, hi=-1), } best_param = tuning.random_search( model_class, init_args, param_dist, x_val_unvec, y_val, num_class=num_class, k=TUNING_K, num_search=num_search) else: # scikit-learn methods x_val = vectorize_features(x_val_unvec, num_feature) if method == 'logit': # logistic regression from sklearn.linear_model import LogisticRegression estimator = LogisticRegression(multi_class='multinomial', solver='lbfgs') param_dist = {'C': tuning.UniformLogSpace(base=10, lo=-3, hi=3)} elif method == 'random_forest': from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier() param_dist = { 'max_features': ['sqrt', 'log2', None], 'max_depth': tuning.UniformIntegerLogSpace(base=2, lo=0, hi=7), 'n_estimators': tuning.UniformIntegerLogSpace(base=2, lo=4, hi=8) } elif method == 'linear_svm': from sklearn.svm import SVC # remark: due to a bug in scikit-learn / libsvm, the sparse 'linear' # kernel is much slower than the sparse 'poly' kernel, so we use # the 'poly' kernel with degree=1 over the 'linear' kernel estimator = SVC(kernel='poly', degree=1, coef0=0., gamma=1., probability=True, cache_size=1000) param_dist = { 'C': tuning.UniformLogSpace(base=10, lo=-2, hi=1) } elif method == 'poly_svm': from sklearn.svm import SVC estimator = SVC(kernel='poly', probability=True, cache_size=1000) param_dist = { 'C': tuning.UniformLogSpace(base=10, lo=-2, hi=1), 'degree': [2, 3, 4], 'gamma': tuning.UniformLogSpace(base=10, lo=-5, hi=1) } elif method == 'rbf_svm': from sklearn.svm import SVC estimator = SVC(kernel='rbf', probability=True, cache_size=1000) param_dist = { 'C': tuning.UniformLogSpace(base=10, lo=-2, hi=1), 'gamma': tuning.UniformLogSpace(base=10, lo=-5, hi=1) } elif method == 'gbdt': from xgboost import XGBClassifier estimator = XGBClassifier(objective='multi:softprob') param_dist = { 'max_depth': tuning.UniformIntegerLogSpace(base=2, lo=0, hi=5), 'n_estimators': tuning.UniformIntegerLogSpace(base=2, lo=4, hi=8), 'learning_rate': tuning.UniformLogSpace(base=10, lo=-3, hi=0) } else: raise ValueError('unknown method: {}'.format(method)) param_search = RandomizedSearchCV( estimator, param_dist, refit=False, n_iter=num_search, scoring=loss_scorer) param_search.fit(x_val, y_val) best_param = param_search.best_params_ print('Best parameters for {} for k_idx={}: {} found in {:.3f} s' .format(method, k_idx, best_param, time.time() - start)) return best_param def run_kfold(data_fn, method='logit', prop_missing=0., max_num_feature=-1, feature_selection='random', k=10, max_num_sample=10000, num_search=30, data_dir='_data', cache_dir='_cache', force_run=False): """Run several parameter searches a la k-fold cross-validation. Arguments: data_fn: string data file filename method: string name of classification method; values = {'logit', 'random_forest', 'linear_svm', 'poly_svm', 'rbf_svm', 'gbdt', 'riddle'} prop_missing: float proportion of feature observations which should be randomly masked; values in [0, 1) max_num_feature: int maximum number of features to use feature_selection: string feature selection method; values = {'random', 'frequency', 'chi2'} k: int number of partitions for k-fold cross-validation max_num_sample: int maximum number of samples to use num_search: int number of searches (parameter configurations) to try for each partition data_dir: string directory where data files are located cache_dir: string directory where cached files (e.g., saved parameters) are located out_dir: string directory where outputs (e.g., results) should be saved """ if 'debug' in data_fn: num_search = 3 # check if already did param search, if so, skip param_path = get_param_path(cache_dir, method, data_fn, prop_missing, max_num_feature, feature_selection) if not force_run and os.path.isfile(param_path): warnings.warn('Already did search for {}, skipping the search' .format(method)) return x_unvec, y, idx_feat_dict, idx_class_dict, _, perm_indices = ( get_preprocessed_data(data_dir, data_fn, prop_missing=prop_missing)) num_feature = len(idx_feat_dict) num_class = len(idx_class_dict) params = {} for k_idx in range(0, k): params[k_idx] = run( method, x_unvec, y, idx_feat_dict, num_feature=num_feature, max_num_feature=max_num_feature, num_class=num_class, max_num_sample=max_num_sample, feature_selection=feature_selection, k_idx=k_idx, k=k, num_search=num_search, perm_indices=perm_indices) recursive_mkdir(FLAGS.cache_dir) with open(param_path, 'wb') as f: # save pickle.dump(params, f) print('Finished parameter search for method: {}'.format(method)) def main(): """Main method.""" np.random.seed(SEED) # for reproducibility, must be before Keras imports! run_kfold(data_fn=FLAGS.data_fn, method=FLAGS.method, prop_missing=FLAGS.prop_missing, max_num_feature=FLAGS.max_num_feature, feature_selection=FLAGS.feature_selection, max_num_sample=FLAGS.max_num_sample, num_search=FLAGS.num_search, data_dir=FLAGS.data_dir, cache_dir=FLAGS.cache_dir, force_run=FLAGS.force_run) # if run as script, execute main if __name__ == '__main__': FLAGS, _ = parser.parse_known_args() main()
alembic/versions/2020-01-20_669e9df34ea7_add_new_netloc_tracking_table.py
fake-name/ReadableWebProxy
193
12730840
<gh_stars>100-1000 """add new netloc tracking table Revision ID: 669e9df34ea7 Revises: <KEY> Create Date: 2020-01-20 01:36:51.862767 """ # revision identifiers, used by Alembic. revision = '669e9df34ea7' down_revision = '<KEY>' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa from sqlalchemy_utils.types import TSVectorType from sqlalchemy_searchable import make_searchable import sqlalchemy_utils # Patch in knowledge of the citext type, so it reflects properly. from sqlalchemy.dialects.postgresql.base import ischema_names import citext import queue import datetime from sqlalchemy.dialects.postgresql import ENUM from sqlalchemy.dialects.postgresql import JSON from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.dialects.postgresql import TSVECTOR ischema_names['citext'] = citext.CIText from sqlalchemy.dialects import postgresql def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('seen_netloc_tracker', sa.Column('id', sa.BigInteger(), nullable=False), sa.Column('netloc', citext.CIText(), nullable=False), sa.Column('ignore', sa.Boolean(), nullable=True), sa.Column('have', sa.Boolean(), nullable=True), sa.Column('extra', postgresql.JSONB(astext_type=sa.Text()), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_seen_netloc_tracker_netloc'), 'seen_netloc_tracker', ['netloc'], unique=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_seen_netloc_tracker_netloc'), table_name='seen_netloc_tracker') op.drop_table('seen_netloc_tracker') # ### end Alembic commands ###
src/functionapp/azext_functionapp/_help.py
haroonf/azure-cli-extensions
207
12730843
# coding=utf-8 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.help_files import helps # pylint: disable=unused-import helps['functionapp devops-pipeline'] = """ type: group short-summary: Azure Function specific integration with Azure DevOps. Please visit https://aka.ms/functions-azure-devops for more information. """ helps['functionapp devops-pipeline create'] = """ type: command short-summary: Create an Azure DevOps pipeline for a function app. examples: - name: create an Azure Pipeline to a function app. text: > az functionapp devops-pipeline create --functionapp-name FunctionApp - name: create an Azure Pipeline from a Github function app repository. text: > az functionapp devops-pipeline create --github-repository GithubOrganization/GithubRepository --github-pat GithubPersonalAccessToken - name: create an Azure Pipeline with specific Azure DevOps organization and project text: > az functionapp devops-pipeline create --organization-name AzureDevOpsOrganization --project-name AzureDevOpsProject """
python_web/manage.py
LouisYZK/Frodo
123
12730880
import os import aiofiles import yaml import click import asyncio from datetime import datetime from models.user import create_user from models import Post, User def run_async(coro): asyncio.run(coro) @click.group() def cli(): ... async def _adduser(**kwargs): try: user = await create_user(**kwargs) except Exception as e: print(e) click.echo(str(e)) else: click.echo(f'User {user.name} created!!! ID: {user.id}') async def extract_meta(file_path: str): data = '' data_exist = False content = '' async with aiofiles.open(file_path) as fp: async for line in fp: if line.strip() == '---' and data_exist: data_exist = False continue if line.strip() == '---': data_exist = True continue if data_exist: data += line else: content += line return data, content async def add_post(dct, content, user_id=None): title = dct.get('title', '') tags = dct.get('tags', []) author_id = user_id date = dct.get('date', None) if not title: return post = await Post.async_first(title=title) if post: return if date is None: date = datetime.now() await Post.acreate(title=title, content=content, author_id=author_id, slug=title, summary='', status=Post.STATUS_ONLINE, can_comment=True, type=Post.TYPE_ARTICLE, created_at=date) print(f'{title} save...') async def _hexo_export(dir, uname): user = await User.async_first(name=uname) id = user.get('id', '') if not id: return for article in os.listdir(dir): if not article.endswith('.md'): continue else: file = f'{dir}/{article}' metdata, content = await extract_meta(file) dct = yaml.load(metdata) if 'title' not in dct: title = ' '.join(file.split('-')[3:]) title = title.replace('.md', '') dct.update(title=title) asyncio.create_task(add_post(dct, content, user_id=id)) @cli.command() @click.option('--name', required=True, prompt=True) @click.option('--email', required=False, default=None, prompt=True) @click.option('--password', required=True, prompt=True, hide_input=True, confirmation_prompt=True) def adduser(name, email, password): run_async(_adduser(name=name, password=password, email=email)) @cli.command() @click.option('--dir', required=True) @click.option('--uname', required=True) def hexo_export(dir, uname): run_async(_hexo_export(dir=dir, uname=uname)) click.echo('Export Hexo Finished!') if __name__ == '__main__': cli()
剑指offer/19_MirrorOfBinaryTree(二叉树镜像).py
PegasusWang/python_data_structures_and_algorithms
2,468
12730900
<reponame>PegasusWang/python_data_structures_and_algorithms<filename>剑指offer/19_MirrorOfBinaryTree(二叉树镜像).py """ 请完成一个函数,输入一个二叉树,该函数输出它的镜像。 https://leetcode.com/problems/invert-binary-tree/ """ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class _Solution: def invertTree(self, root): """ :type root: TreeNode :rtype: TreeNode """ if root: root.left, root.right = root.right, root.left self.invertTree(root.left) self.invertTree(root.right) return root # Definition for a binary tree node. class Node: def __init__(self, x, left=None, right=None): self.val = x self.left = left self.right = right def __str__(self): return '{}'.format(self.val) __repr__ = __str__ from collections import deque class Stack: def __init__(self): self.items = deque() def push(self, val): return self.items.append(val) def pop(self): return self.items.pop() def empty(self): return len(self.items) == 0 class Solution: # https://leetcode.com/problems/symmetric-tree/ def isSymmetric(self, root): """ use stack """ if not root: return True s = Stack() s.push((root.left, root.right)) # push a tuple while not s.empty(): top_vals = s.pop() left_node, right_node = top_vals[0], top_vals[1] if left_node and right_node: if left_node.val == right_node.val: s.push((left_node.left, right_node.right)) s.push((left_node.right, right_node.left)) else: return False else: if left_node != right_node: return False return True def isSymmetric_recursive(self, root): """ 判断是否是镜像,使用递归的方式 :type root: TreeNode :rtype: bool """ def _check(left, right): if left and right: if left.val == right.val: flag1 = _check(left.left, right.right) flag2 = _check(left.right, right.left) return flag1 and flag2 else: return False else: return left == right # 这种情况下 left 和 right 要么一个为 None,或者都是 None if root: return _check(root.left, root.right) return True def isSymmetric_layer(self, root): """ 判断是否是镜像,使用层序遍历 :type root: TreeNode :rtype: bool """ if not root: return True curnodes = [root] next_nodes = [] while curnodes or next_nodes: lefts = [] rights = [] for node in curnodes: lefts.append(node.left.val if node.left else None) # NOTE: append val not node rights.append(node.right.val if node.right else None) if node.left: next_nodes.append(node.left) if node.right: next_nodes.append(node.right) if lefts != rights[::-1]: return False curnodes = next_nodes next_nodes = [] return True def test(): t = Node(1, Node(2, Node(3), Node(4)), Node(2, Node(4), Node(3))) s = Solution() assert s.isSymmetric(t) is True test()
tg/__init__.py
JingMatrix/tg
558
12730903
""" Terminal client for telegram """ __version__ = "0.17.0"
boto3_type_annotations_with_docs/boto3_type_annotations/marketplace_entitlement/paginator.py
cowboygneox/boto3_type_annotations
119
12730926
<filename>boto3_type_annotations_with_docs/boto3_type_annotations/marketplace_entitlement/paginator.py from typing import Dict from botocore.paginate import Paginator class GetEntitlements(Paginator): def paginate(self, ProductCode: str, Filter: Dict = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`MarketplaceEntitlementService.Client.get_entitlements`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/entitlement.marketplace-2017-01-11/GetEntitlements>`_ **Request Syntax** :: response_iterator = paginator.paginate( ProductCode='string', Filter={ 'string': [ 'string', ] }, PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Entitlements': [ { 'ProductCode': 'string', 'Dimension': 'string', 'CustomerIdentifier': 'string', 'Value': { 'IntegerValue': 123, 'DoubleValue': 123.0, 'BooleanValue': True|False, 'StringValue': 'string' }, 'ExpirationDate': datetime(2015, 1, 1) }, ], } **Response Structure** - *(dict) --* The GetEntitlementsRequest contains results from the GetEntitlements operation. - **Entitlements** *(list) --* The set of entitlements found through the GetEntitlements operation. If the result contains an empty set of entitlements, NextToken might still be present and should be used. - *(dict) --* An entitlement represents capacity in a product owned by the customer. For example, a customer might own some number of users or seats in an SaaS application or some amount of data capacity in a multi-tenant database. - **ProductCode** *(string) --* The product code for which the given entitlement applies. Product codes are provided by AWS Marketplace when the product listing is created. - **Dimension** *(string) --* The dimension for which the given entitlement applies. Dimensions represent categories of capacity in a product and are specified when the product is listed in AWS Marketplace. - **CustomerIdentifier** *(string) --* The customer identifier is a handle to each unique customer in an application. Customer identifiers are obtained through the ResolveCustomer operation in AWS Marketplace Metering Service. - **Value** *(dict) --* The EntitlementValue represents the amount of capacity that the customer is entitled to for the product. - **IntegerValue** *(integer) --* The IntegerValue field will be populated with an integer value when the entitlement is an integer type. Otherwise, the field will not be set. - **DoubleValue** *(float) --* The DoubleValue field will be populated with a double value when the entitlement is a double type. Otherwise, the field will not be set. - **BooleanValue** *(boolean) --* The BooleanValue field will be populated with a boolean value when the entitlement is a boolean type. Otherwise, the field will not be set. - **StringValue** *(string) --* The StringValue field will be populated with a string value when the entitlement is a string type. Otherwise, the field will not be set. - **ExpirationDate** *(datetime) --* The expiration date represents the minimum date through which this entitlement is expected to remain valid. For contractual products listed on AWS Marketplace, the expiration date is the date at which the customer will renew or cancel their contract. Customers who are opting to renew their contract will still have entitlements with an expiration date. :type ProductCode: string :param ProductCode: **[REQUIRED]** Product code is used to uniquely identify a product in AWS Marketplace. The product code will be provided by AWS Marketplace when the product listing is created. :type Filter: dict :param Filter: Filter is used to return entitlements for a specific customer or for a specific dimension. Filters are described as keys mapped to a lists of values. Filtered requests are *unioned* for each value in the value list, and then *intersected* for each filter key. - *(string) --* - *(list) --* - *(string) --* :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass
contact/forms.py
sreekanth1990/djangoproject.com
1,440
12730936
import logging import django from contact_form.forms import ContactForm from django import forms from django.conf import settings from django.contrib.sites.models import Site from django.utils.encoding import force_bytes from pykismet3 import Akismet, AkismetServerError logger = logging.getLogger(__name__) class BaseContactForm(ContactForm): message_subject = forms.CharField( max_length=100, widget=forms.TextInput(attrs={'class': 'required', 'placeholder': 'Message subject'}), label='Message subject', ) email = forms.EmailField(widget=forms.TextInput(attrs={'class': 'required', 'placeholder': 'E-mail'})) name = forms.CharField(widget=forms.TextInput(attrs={'class': 'required', 'placeholder': 'Name'})) body = forms.CharField(widget=forms.Textarea(attrs={'class': 'required', 'placeholder': 'Your message'})) def subject(self): # Strip all linebreaks from the subject string. subject = ''.join(self.cleaned_data["message_subject"].splitlines()) return "[Contact form] " + subject def message(self): return "From: {name} <{email}>\n\n{body}".format(**self.cleaned_data) def clean_body(self): """ Check spam against Akismet. Backported from django-contact-form pre-1.0; 1.0 dropped built-in Akismet support. """ if 'body' in self.cleaned_data and getattr(settings, 'AKISMET_API_KEY', None): try: akismet_api = Akismet( api_key=settings.AKISMET_API_KEY, blog_url='http://%s/' % Site.objects.get_current().domain, user_agent='Django {}.{}.{}'.format(*django.VERSION) ) akismet_data = { 'user_ip': self.request.META.get('REMOTE_ADDR', ''), 'user_agent': self.request.META.get('HTTP_USER_AGENT', ''), 'referrer': self.request.META.get('HTTP_REFERER', ''), 'comment_content': force_bytes(self.cleaned_data['body']), 'comment_author': self.cleaned_data.get('name', ''), } if getattr(settings, 'AKISMET_TESTING', None): # Adding test argument to the request in order to tell akismet that # they should ignore the request so that test runs affect the heuristics akismet_data['test'] = 1 if akismet_api.check(akismet_data): raise forms.ValidationError("Akismet thinks this message is spam") except AkismetServerError: logger.error('Akismet server error') return self.cleaned_data['body'] class FoundationContactForm(BaseContactForm): recipient_list = ["<EMAIL>"]
tests/resources/test_comment.py
Glushiator/jira
1,639
12730974
<gh_stars>1000+ from tests.conftest import JiraTestCase class CommentTests(JiraTestCase): def setUp(self): JiraTestCase.setUp(self) self.issue_1 = self.test_manager.project_b_issue1 self.issue_2 = self.test_manager.project_b_issue2 self.issue_3 = self.test_manager.project_b_issue3 def test_comments(self): for issue in [self.issue_1, self.jira.issue(self.issue_2)]: self.jira.issue(issue) comment1 = self.jira.add_comment(issue, "First comment") comment2 = self.jira.add_comment(issue, "Second comment") comments = self.jira.comments(issue) assert comments[0].body == "First comment" assert comments[1].body == "Second comment" comment1.delete() comment2.delete() comments = self.jira.comments(issue) assert len(comments) == 0 def test_expanded_comments(self): comment1 = self.jira.add_comment(self.issue_1, "First comment") comment2 = self.jira.add_comment(self.issue_1, "Second comment") comments = self.jira.comments(self.issue_1, expand="renderedBody") self.assertTrue(hasattr(comments[0], "renderedBody")) ret_comment1 = self.jira.comment( self.issue_1, comment1.id, expand="renderedBody" ) ret_comment2 = self.jira.comment(self.issue_1, comment2.id) comment1.delete() comment2.delete() self.assertTrue(hasattr(ret_comment1, "renderedBody")) self.assertFalse(hasattr(ret_comment2, "renderedBody")) comments = self.jira.comments(self.issue_1) assert len(comments) == 0 def test_add_comment(self): comment = self.jira.add_comment( self.issue_3, "a test comment!", visibility={"type": "role", "value": "Administrators"}, ) self.assertEqual(comment.body, "a test comment!") self.assertEqual(comment.visibility.type, "role") self.assertEqual(comment.visibility.value, "Administrators") comment.delete() def test_add_comment_with_issue_obj(self): issue = self.jira.issue(self.issue_3) comment = self.jira.add_comment( issue, "a new test comment!", visibility={"type": "role", "value": "Administrators"}, ) self.assertEqual(comment.body, "a new test comment!") self.assertEqual(comment.visibility.type, "role") self.assertEqual(comment.visibility.value, "Administrators") comment.delete() def test_update_comment(self): comment = self.jira.add_comment(self.issue_3, "updating soon!") comment.update(body="updated!") self.assertEqual(comment.body, "updated!") # self.assertEqual(comment.visibility.type, 'role') # self.assertEqual(comment.visibility.value, 'Administrators') comment.delete()
performance_tests/storage/test_random_access.py
avkudr/aim
2,195
12730975
<filename>performance_tests/storage/test_random_access.py from parameterized import parameterized from aim import Repo from performance_tests.base import StorageTestBase from performance_tests.utils import get_baseline, write_baseline from performance_tests.storage.utils import random_access_metric_values class TestRandomAccess(StorageTestBase): @parameterized.expand({0: 50, 1: 250, 2: 500}.items()) def test_random_access(self, test_key, density): test_name = f'test_random_access_{test_key}' repo = Repo.default_repo() query = 'metric.name == "metric 0"' execution_time = random_access_metric_values(repo, query, density) baseline = get_baseline(test_name) if baseline: self.assertInRange(execution_time, baseline) else: write_baseline(test_name, execution_time)
common/tests/test_utils.py
krisshol/bach-kmno
248
12730976
<reponame>krisshol/bach-kmno<gh_stars>100-1000 # # Copyright (c) 2013-2018 Quarkslab. # This file is part of IRMA project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License in the top-level directory # of this distribution and at: # # http://www.apache.org/licenses/LICENSE-2.0 # # No part of the project, including this file, may be copied, # modified, propagated, or distributed except according to the # terms contained in the LICENSE file. import logging import unittest from unittest.mock import Mock, patch from irma.common.utils.utils import UUID, bytes_to_utf8, save_to_file from irma.common.base.utils import IrmaFrontendReturn, IrmaTaskReturn, \ IrmaReturnCode, IrmaScanStatus, IrmaValueError, common_celery_options, \ IrmaScanRequest, IrmaProbeType # ================= # Logging options # ================= def enable_logging(level=logging.INFO, handler=None, formatter=None): global log log = logging.getLogger() if formatter is None: formatter = logging.Formatter("%(asctime)s [%(name)s] " + "%(levelname)s: %(message)s") if handler is None: handler = logging.StreamHandler() handler.setFormatter(formatter) log.addHandler(handler) log.setLevel(level) # ============ # Test Cases # ============ class TestCommonUtils(unittest.TestCase): def test_uuid(self): uuid = UUID.generate() self.assertTrue(UUID.validate(uuid)) self.assertEqual(len(uuid), 36) self.assertEqual(uuid.count("-"), 4) def test_uuid_generate(self): uuid = UUID.normalize("01234567-abcd-ef01-2345-deadbeaff00d") self.assertTrue(UUID.validate(uuid)) self.assertEqual(uuid, "01234567-abcd-ef01-2345-deadbeaff00d") def test_uuid_validate(self): self.assertFalse(UUID.validate("not a uuid")) def test_bytes_to_utf8_0(self): result = bytes_to_utf8(b"something") self.assertEqual(result, "something") def test_bytes_to_utf8_1(self): result = bytes_to_utf8("something") self.assertIs(result, "something") def test_bytes_to_utf8_2(self): result = bytes_to_utf8(["foo", b"bar", (b"baz",)]) self.assertEqual(result, ["foo", "bar", ("baz",)]) def test_bytes_to_utf8_3(self): result = bytes_to_utf8({"foo": b"bar", b"baz": None}) self.assertDictEqual(result, {"foo": "bar", "baz": None}) @patch("builtins.open") def test_save_to_file0(self, m_open): Mockfile = type("Mockfile", (Mock, ), {"seek": lambda self, pos: setattr(self, "pos", pos)}) fileobj = Mockfile() fileobj.read.return_value = "" fileobj.pos = 0 dstobj = Mockfile() m_open.return_value.__enter__.return_value = dstobj size = save_to_file(fileobj, "/foo") m_open.assert_called_once_with("/foo", "wb") self.assertEqual(fileobj.pos, 0) self.assertEqual(size, 0) dstobj.write.assert_not_called() @patch("builtins.open") def test_save_to_file1(self, m_open): Mockfile = type("Mockfile", (Mock, ), {"seek": lambda self, pos: setattr(self, "pos", pos), "write": lambda self, buf: setattr( self, "written", self.written + buf)}) fileobj = Mockfile() fileobj.read.side_effect = ["foo", "bar", "baz", ""] fileobj.pos = 0 dstobj = Mockfile() dstobj.written = "" m_open.return_value.__enter__.return_value = dstobj size = save_to_file(fileobj, "/foo") m_open.assert_called_once_with("/foo", "wb") self.assertEqual(dstobj.written, "foobarbaz") self.assertEqual(fileobj.pos, 0) self.assertEqual(size, 9) def test_irma_taskreturn_success(self): ret = IrmaTaskReturn.success("success") self.assertEqual(ret[0], IrmaReturnCode.success) self.assertEqual(ret[1], "success") self.assertEqual(type(ret), tuple) self.assertEqual(type(ret[0]), int) self.assertEqual(type(ret[1]), str) def test_irma_taskreturn_warning(self): ret = IrmaTaskReturn.warning("warning") self.assertEqual(ret[0], IrmaReturnCode.warning) self.assertEqual(ret[1], "warning") self.assertEqual(type(ret), tuple) self.assertEqual(type(ret[0]), int) self.assertEqual(type(ret[1]), str) def test_irma_taskreturn_error(self): ret = IrmaTaskReturn.error("error") self.assertEqual(ret[0], IrmaReturnCode.error) self.assertEqual(ret[1], "error") self.assertEqual(type(ret), tuple) self.assertEqual(type(ret[0]), int) self.assertEqual(type(ret[1]), str) def test_irma_frontendreturn_success(self): f_success = IrmaFrontendReturn.success ret = f_success(optional={'key': 'value'}) self.assertEqual(ret['code'], IrmaReturnCode.success) self.assertEqual(ret['msg'], "success") self.assertEqual(type(ret), dict) self.assertEqual(type(ret['code']), int) self.assertEqual(type(ret['msg']), str) self.assertEqual(type(ret['optional']), dict) self.assertEqual(ret['optional']['key'], 'value') def test_irma_frontendreturn_warning(self): f_warning = IrmaFrontendReturn.warning ret = f_warning("warning", optional={'key': 'value'}) self.assertEqual(ret['code'], IrmaReturnCode.warning) self.assertEqual(ret['msg'], "warning") self.assertEqual(type(ret), dict) self.assertEqual(type(ret['code']), int) self.assertEqual(type(ret['msg']), str) self.assertEqual(type(ret['optional']), dict) self.assertEqual(ret['optional']['key'], 'value') def test_irma_frontendreturn_error(self): f_error = IrmaFrontendReturn.error ret = f_error("error", optional={'key': 'value'}) self.assertEqual(ret['code'], IrmaReturnCode.error) self.assertEqual(ret['msg'], "error") self.assertEqual(type(ret), dict) self.assertEqual(type(ret['code']), int) self.assertEqual(type(ret['msg']), str) self.assertEqual(type(ret['optional']), dict) self.assertEqual(ret['optional']['key'], 'value') def test_irmascanstatus_is_error0(self): self.assertFalse(IrmaScanStatus.is_error(IrmaScanStatus.finished)) def test_irmascanstatus_is_error1(self): self.assertTrue(IrmaScanStatus.is_error(IrmaScanStatus.error)) def test_irmascanstatus_is_error2(self): self.assertTrue(IrmaScanStatus.is_error(IrmaScanStatus.error_probe_na)) def test_irmascanstatus_filter_status0(self): mini, maxi = IrmaScanStatus.launched, IrmaScanStatus.flushed self.assertIs(IrmaScanStatus.filter_status( IrmaScanStatus.processed, mini, maxi), None) def test_irmascanstatus_filter_status1(self): mini, maxi = IrmaScanStatus.launched, IrmaScanStatus.flushed with self.assertRaises(IrmaValueError): IrmaScanStatus.filter_status(IrmaScanStatus.ready, mini, maxi) def test_irmascanstatus_filter_status2(self): mini, maxi = IrmaScanStatus.launched, IrmaScanStatus.flushed with self.assertRaises(IrmaValueError): IrmaScanStatus.filter_status(IrmaScanStatus.cancelled, mini, maxi) def test_irmascanstatus_filter_status3(self): mini, maxi = IrmaScanStatus.launched, IrmaScanStatus.flushed with self.assertRaises(IrmaValueError): IrmaScanStatus.filter_status(25, mini, maxi) def test_irmascanstatus_code_ot_label0(self): self.assertEqual( IrmaScanStatus.code_to_label(IrmaScanStatus.finished), "finished") def test_irmascanstatus_code_ot_label1(self): self.assertEqual( IrmaScanStatus.code_to_label(25), "Unknown status code") def test_irmaprobetype_normalize0(self): self.assertEqual( IrmaProbeType.normalize("external"), IrmaProbeType.external) def test_irmaprobetype_normalize1(self): self.assertEqual( IrmaProbeType.normalize("foo"), IrmaProbeType.unknown) @patch("irma.common.base.utils.UUID.generate") def test_common_celery_options0(self, m_generate): m_generate.return_value = "a-random-uuid" result = common_celery_options("foo", "bar", 0, 50, 100) self.assertEqual(result, [ "--app=foo", "--loglevel=info", "--without-gossip", "--without-mingle", "--without-heartbeat", "--soft-time-limit=50", "--time-limit=100", "--hostname=bar-a-random-uuid"]) @patch("irma.common.base.utils.UUID.generate") def test_common_celery_options1(self, m_generate): m_generate.return_value = "a-random-uuid" result = common_celery_options("foo", "bar", 3, 50, 100) self.assertEqual(result, [ "--app=foo", "--loglevel=info", "--without-gossip", "--without-mingle", "--without-heartbeat", "--concurrency=3", "--soft-time-limit=50", "--time-limit=100", "--hostname=bar-a-random-uuid"]) class TestIrmaScanRequest(unittest.TestCase): def setUp(self): self.isr = IrmaScanRequest() def test_init(self): isr = IrmaScanRequest({"foo": Mock(), "bar": Mock()}) self.assertEqual(isr.nb_files, 2) def test_add_file(self): self.isr.add_file("foo", "probelist", "mimetype") self.assertDictEqual( self.isr.request["foo"], {"probe_list": "probelist", "mimetype": "mimetype"}) self.assertEqual(self.isr.nb_files, 1) def test_del_file0(self): self.isr.add_file("foo", "probelist", "mimetype") self.isr.del_file("foo") self.assertNotIn("foo", self.isr.request) self.assertEqual(self.isr.nb_files, 0) def test_del_file1(self): self.isr.del_file("foo") self.assertNotIn("foo", self.isr.request) self.assertEqual(self.isr.nb_files, 0) def test_get_probelist(self): self.isr.add_file("foo", "bar", "mimetype") result = self.isr.get_probelist("foo") self.assertEqual(result, "bar") self.assertEqual(self.isr.nb_files, 1) def test_set_probelist(self): self.isr.add_file("foo", "bar", "mimetype") self.isr.set_probelist("foo", "baz") self.assertEqual(self.isr.get_probelist("foo"), "baz") self.assertEqual(self.isr.nb_files, 1) def test_get_mimetype(self): self.isr.add_file("foo", "probelist", "bar") result = self.isr.get_mimetype("foo") self.assertEqual(result, "bar") self.assertEqual(self.isr.nb_files, 1) def test_to_dict(self): self.assertIs(self.isr.request, self.isr.to_dict()) def test_files(self): self.assertEqual(self.isr.request.keys(), self.isr.files()) if __name__ == '__main__': enable_logging() unittest.main()
CONFidence CTF 2014/Main event/Memory/solution/disasm.py
IMULMUL/ctf-tasks
581
12730981
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Filename: disasm.py # Author: <NAME> # Task: Memory # Competition: CONFidence CTF 2014 # Category: Reverse engineering # Scoring: 50 pts (easy) # Number of solves: 2 out of 11 participants import struct def Disassemble(program): for offset in xrange(0, len(program), 8): op = struct.unpack("<I", program[offset: offset + 4])[0] op = ["add", "sub", "xor", "neg", "cmp", "exit"][op] idx = ord(program[offset + 4]) arg = ord(program[offset + 5]) if op == "exit": print "[%.8x] exit" % (offset) break elif op == "neg": print "[%.8x] neg [%2d]" % (offset, idx) else: print "[%.8x] %s [%2d], 0x%x" % (offset, op, idx, arg) def main(): with open("unpacked.exe", "rb") as f: file_data = f.read() Disassemble(file_data[0x1440:]) if __name__ == "__main__": main()
hummingbot/connector/exchange/beaxy/beaxy_misc.py
BGTCapital/hummingbot
3,027
12731000
class BeaxyIOError(IOError): def __init__(self, msg, response, result, *args, **kwargs): self.response = response self.result = result super(BeaxyIOError, self).__init__(msg, *args, **kwargs)
wooey/migrations/0030_populate-sv-m2m.py
fridmundklaus/wooey
1,572
12731026
# -*- coding: utf-8 -*- # Generated by Django 1.9.13 on 2018-01-15 15:43 from __future__ import unicode_literals from django.db import migrations def populate_m2m(apps, schema_editor): ScriptParser = apps.get_model('wooey', 'ScriptParser') ScriptParameterGroup = apps.get_model('wooey', 'ScriptParameterGroup') for obj in ScriptParser.objects.all(): obj.new_script_version.add(obj.script_version) for obj in ScriptParameterGroup.objects.all(): obj.new_script_version.add(obj.script_version) class Migration(migrations.Migration): dependencies = [ ('wooey', '0029_add-m2m-sv'), ] operations = [ migrations.RunPython(populate_m2m) ]
tests/test_downloadermiddleware_stats.py
HyunTruth/scrapy
41,267
12731048
<filename>tests/test_downloadermiddleware_stats.py from unittest import TestCase from scrapy.downloadermiddlewares.stats import DownloaderStats from scrapy.http import Request, Response from scrapy.spiders import Spider from scrapy.utils.test import get_crawler class MyException(Exception): pass class TestDownloaderStats(TestCase): def setUp(self): self.crawler = get_crawler(Spider) self.spider = self.crawler._create_spider('scrapytest.org') self.mw = DownloaderStats(self.crawler.stats) self.crawler.stats.open_spider(self.spider) self.req = Request('http://scrapytest.org') self.res = Response('scrapytest.org', status=400) def assertStatsEqual(self, key, value): self.assertEqual( self.crawler.stats.get_value(key, spider=self.spider), value, str(self.crawler.stats.get_stats(self.spider)) ) def test_process_request(self): self.mw.process_request(self.req, self.spider) self.assertStatsEqual('downloader/request_count', 1) def test_process_response(self): self.mw.process_response(self.req, self.res, self.spider) self.assertStatsEqual('downloader/response_count', 1) def test_process_exception(self): self.mw.process_exception(self.req, MyException(), self.spider) self.assertStatsEqual('downloader/exception_count', 1) self.assertStatsEqual( 'downloader/exception_type_count/tests.test_downloadermiddleware_stats.MyException', 1 ) def tearDown(self): self.crawler.stats.close_spider(self.spider, '')
client/verta/tests/registry/model_version/test_log_code.py
fool-sec-review/modeldb
835
12731066
# -*- coding: utf-8 -*- import pytest from verta.code import Git, Notebook pytestmark = pytest.mark.not_oss # skip if run in oss setup. Applied to entire module class TestLogCode: def test_log_code(self, model_version): key1, key2, key3 = "version1", "version2", "version3" version1 = Git( repo_url="<EMAIL>:VertaAI/models.git", commit_hash="52f3d22", autocapture=False, ) version2 = Git( repo_url="<EMAIL>:VertaAI/data-processing.git", commit_hash="26f9787", autocapture=False, ) version3 = Notebook( "conftest.py", # not a notebook, but fine for testing _autocapture=False, ) model_version.log_code_version(key1, version1) model_version.log_code_versions( { key2: version2, key3: version3, }, ) assert model_version.get_code_version(key1) == version1 assert model_version.get_code_version(key2) == version2 assert model_version.get_code_version(key3) == version3 assert model_version.get_code_versions() == { key1: version1, key2: version2, key3: version3, }
ansible/roles/monitoring_agent/files/plugins/check_drive_health.py
thogaw/docker-tools
180
12731092
<reponame>thogaw/docker-tools #!/usr/bin/env python3 """check_drive_health Nagios plugin to check health of SSD and magnetic drives. Examines SMART attributes and software-RAID status. As a drive ages, reallocated sector counts may be recorded in SMART attributes - this plugin provides a way to define per-drive tolerance for nonzero values reported in SMART attributes, and to warn when new events occur. Dependencies: python >= 3.6, smartmontools >=7.0, click >= 6.0, mdstat >= 1.0.4 Usage example: $ check_drive_health.py -w 45 -e drive_tolerate.yaml /dev/sda OK: temp=38 serial=7E3020001587 cap=0.064T /dev/sdb OK: temp=42 serial=1632137A883D cap=1.050T RAID OK: 1 array clean Error-list example: Top-level key in drive_tolerate.yaml is drive serial number, second-level keys are attribute names as reported by smartctl -A: --- PN1338P4J8MT49: Reallocated_Sector_Ct: 20 Reallocated_Event_Count: 45 Setup: # install smartmontools package if 7.1 is available in distro # or download smartmontools-7.1.tar.gz from # https://sourceforge.net/projects/smartmontools/files/smartmontools/7.1/ tar xf smartmontools.7.1.tar.gz cd smartmontools-7.1 && ./configure && make install pip3 install click==7.1.2 mdstat==1.0.4 Grant this plugin sudo (for smartctl) with an entry in /etc/sudoers.d: nagios ALL=NOPASSWD: /usr/local/lib/nagios/check_drive_health.py created 25 oct 2020 by richb at instantlinux.net homepage https://github.com/instantlinux/docker-tools - find this plugin under ansible monitoring_agent role license Apache-2.0 """ import click import json import mdstat import os import sys import yaml __version__ = '0.1.2' STATUS_OK = 0 STATUS_WARN = 1 STATUS_CRIT = 2 STATUS_UNK = 3 SMART_ATTR_CHECKS = { 5: dict(name='Reallocated_Sector_Ct', level=STATUS_WARN), 196: dict(name='Reallocated_Event_Count', level=STATUS_WARN), 197: dict(name='Current_Pending_Sector', level=STATUS_WARN), 198: dict(name='Offline_Uncorrectable', level=STATUS_CRIT)} @click.command(context_settings=dict(help_option_names=['-h', '--help'])) @click.version_option(version=__version__,) @click.option('--device', '-d', default=['all'], type=str, multiple=True, help='Device to check - /dev/xxx or all [default: all]') @click.option('--error-list', '-e', type=click.File('r'), help='Expected errors: list of known problems indexed by ' 'device serial number, in YAML format') @click.option('--raid/--no-raid', default=True, help='Examine RAID devices found in /proc/mdstat [true]') @click.option('--warn-temp', '-w', default=50, type=int, help='Temperature warning threshold [50]') @click.option('--crit-temp', '-c', default=65, type=int, help='Temperature critical threshold [65]') @click.option('--warn-spare', default=50, type=int, help='Spare-percentage warning threshold for nvme [50]') def main(device, error_list, raid, warn_temp, crit_temp, warn_spare): if 'all' in device: # Get all block storage devices except loopback (major=7) device = [item['name'] for item in json.load(os.popen('lsblk -dJ -e 7'))['blockdevices']] error_items = yaml.safe_load(error_list) if error_list else {} retval, messages = STATUS_OK, ([], [], [], []) for drive in device: status, message = check_smart(drive, error_items, warn_temp, crit_temp, warn_spare) messages[status].append(message) retval = max(retval, status) if raid and 'active' in open('/proc/mdstat', 'r').read(): status, message = check_raid() messages[status].append(message) retval = max(retval, status) print('\n'.join([msg for sts in reversed(messages) for msg in sts])) exit(retval) def check_smart(drive, error_items, warn_temp, crit_temp, warn_spare): """Read SMART attributes for a drive, looking for values above 0 or as defined in error_items; also check nvme available-spare blocks Returns: tuple(int, str) - status and message """ if not drive.startswith('/dev/'): drive = '/dev/%s' % drive try: smart = json.load(os.popen('smartctl -AHij %s' % drive)) except json.JSONDecodeError: sys.stderr.write('ERR: Please upgrade smartctl to 7.0 or newer\n') exit(STATUS_UNK) if dot_get(smart, 'smartctl.exit_status') != 0: return STATUS_UNK, 'UNK(%s): %s' % (drive, dot_get( smart, 'smartctl.messages', [{}])[0].get('string')) status, message = STATUS_OK, '' attribs = dot_get(smart, 'ata_smart_attributes.table') capacity = dot_get(smart, 'user_capacity.bytes') nvme_log = smart.get('nvme_smart_health_information_log') serial_num = smart.get('serial_number') temperature = dot_get(smart, 'temperature.current') tolerated = error_items.get(serial_num, {}) if not dot_get(smart, 'smart_status.passed'): return STATUS_CRIT, 'CRIT: serial=%s smart_status not OK' % serial_num if temperature > crit_temp: return STATUS_CRIT, 'CRIT: %s serial=%s temp=%d exceeds threshold' % ( drive, serial_num, temperature) elif temperature > warn_temp: status = STATUS_WARN message = 'WARN: %s serial=%s, temp=%d exceeds threshold' % ( drive, serial_num, temperature) if nvme_log: spare_threshold = max(nvme_log.get('available_spare_threshold', 0), warn_spare) available_spare = nvme_log.get('available_spare', 100) if available_spare < spare_threshold: status = STATUS_WARN message = 'WARN: %s serial=%s low available_spare=%d' % ( drive, serial_num, available_spare) if attribs: values = {} for item in attribs: if item.get('id') in SMART_ATTR_CHECKS.keys(): values[item['name']] = dict( val=dot_get(item, 'raw.value'), level=SMART_ATTR_CHECKS[item['id']]['level']) for key, item in values.items(): if item['val'] > tolerated.get(key, 0): status = max(item['level'], status) message = '%s: %s serial=%s %s: %d' % ( 'CRIT' if status == STATUS_CRIT else 'WARN', drive, serial_num, key, item['val']) if status == STATUS_OK: message = '%s OK: temp=%d serial=%s cap=%.3fT' % ( drive, temperature, serial_num, capacity / 1e12) return status, message def check_raid(): """Check all RAID devices seen in /proc/mdstat Returns: tuple(int, str) - status and message """ status, message, count = STATUS_OK, '', 0 for array, state in mdstat.parse().get('devices', {}).items(): for element, values in state.get('disks').items(): if values.get('faulty'): return STATUS_CRIT, 'CRIT: /dev/%s element=%s faulty' % ( array, element) # unless monthly checkarray is running, warn if out of sync action = open('/sys/block/%s/md/sync_action' % array, 'r').read() if (False in dot_get(state, 'status.synced') or state.get('resync')) and action.strip() != 'check': status = STATUS_WARN message = 'WARN: /dev/%s resync progress=%s finish=%s' % ( array, dot_get(state, 'resync.progress'), dot_get(state, 'resync.finish')) count += 1 if status == STATUS_OK: message = 'RAID OK: %d array%s clean' % (count, 's'[:count - 1]) return status, message def dot_get(_dict, path, default=None): """Fetch item from nested dict; path is a dot-delimited key into the dictionary Returns: obj if found, specified default otherwise """ for key in path.split('.'): try: _dict = _dict[key] except KeyError: return default return _dict if __name__ == "__main__": main()
venv/Lib/site-packages/ipywidgets/widgets/tests/test_docutils.py
ajayiagbebaku/NFL-Model
2,015
12731143
<reponame>ajayiagbebaku/NFL-Model # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. from unittest import TestCase from ipywidgets.widgets.docutils import doc_subst class TestDocSubst(TestCase): def test_substitution(self): snippets = {'key': '62'} @doc_subst(snippets) def f(): """ Docstring with value {key} """ assert f.__doc__ == " Docstring with value 62 " def test_unused_keys(self): snippets = {'key': '62', 'other-key': 'unused'} @doc_subst(snippets) def f(): """ Docstring with value {key} """ assert f.__doc__ == " Docstring with value 62 "
zamiaai/skills/food/food.py
0zAND1z/zamia-ai
129
12731180
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2016, 2017, 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def get_data(k): k.dte.set_prefixes([u'']) k.dte.dt('en', u"what is wine", u"An alcoholic drink made from fermented grape juice.") k.dte.dt('de', u"was ist wein", u"Ein alkoholisches Getränk aus fermentiertem Traubensaft.")
language/orqa/utils/scann_utils_test.py
Xtuden-com/language
1,199
12731190
<reponame>Xtuden-com/language # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for scann_utils.py.""" import os from language.orqa.utils import scann_utils import numpy as np import tensorflow.compat.v1 as tf class ScannUtilsTest(tf.test.TestCase): def test_scann_searcher(self): temp_dir = self.create_tempdir().full_path checkpoint_path = os.path.join(temp_dir, "dummy_db.ckpt") dummy_db = np.random.uniform(size=[1024, 32]).astype(np.float32) scann_utils.write_array_to_checkpoint("dummy_db", dummy_db, checkpoint_path) dummy_queries = np.random.uniform(size=[4, 32]).astype(np.float32) _, searcher = scann_utils.load_scann_searcher( var_name="dummy_db", checkpoint_path=checkpoint_path, num_neighbors=10) distance, index = searcher.search_batched(dummy_queries) self.assertAllEqual(distance.numpy().shape, [4, 10]) self.assertAllEqual(index.numpy().shape, [4, 10]) if __name__ == "__main__": tf.test.main()
examples/notebooks/solutions/cartpole_analytical_derivatives.py
pFernbach/crocoddyl
322
12731194
def cartpole_analytical_derivatives(model, data, x, u=None): if u is None: u = model.unone # Getting the state and control variables y, th, ydot, thdot = x[0].item(), x[1].item(), x[2].item(), x[3].item() f = u[0].item() # Shortname for system parameters m1, m2, l, g = model.m1, model.m2, model.l, model.g s, c = np.sin(th), np.cos(th) m = m1 + m2 mu = m1 + m2 * s**2 w = model.costWeights # derivative of xddot by x, theta, xdot, thetadot # derivative of thddot by x, theta, xdot, thetadot data.Fx[:, :] = np.array( [[0.0, (m2 * g * c * c - m2 * g * s * s - m2 * l * c * thdot) / mu, 0.0, -m2 * l * s / mu], [ 0.0, ((-s * f / l) + (m * g * c / l) - (m2 * c * c * thdot**2) + (m2 * s * s * thdot**2)) / mu, 0.0, -2 * m2 * c * s * thdot ]]) # derivative of xddot and thddot by f data.Fu[:] = np.array([1 / mu, c / (l * mu)]) # first derivative of data.cost by x, theta, xdot, thetadot data.Lx[:] = np.array([y * w[2]**2, s * ((w[0]**2 - w[1]**2) * c + w[1]**2), ydot * w[3]**2, thdot * w[4]**2]) # first derivative of data.cost by f data.Lu[:] = np.array([f * w[5]**2]) # second derivative of data.cost by x, theta, xdot, thetadot data.Lxx[:] = np.array([w[2]**2, w[0]**2 * (c**2 - s**2) + w[1]**2 * (s**2 - c**2 + c), w[3]**2, w[4]**2]) # second derivative of data.cost by f data.Luu[:] = np.array([w[5]**2])
observations/r/nsw74psid_a.py
hajime9652/observations
199
12731205
<reponame>hajime9652/observations # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def nsw74psid_a(path): """A Subset of the nsw74psid1 Data Set The `nsw74psidA` data frame has 252 rows and 10 columns. See `nsw74psid1` for more information. This data frame contains the following columns: trt a numeric vector age a numeric vector educ a numeric vector black a numeric vector hisp a numeric vector marr a numeric vector nodeg a numeric vector re74 a numeric vector re75 a numeric vector re78 a numeric vector Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `nsw74psid_a.csv`. Returns: Tuple of np.ndarray `x_train` with 252 rows and 10 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'nsw74psid_a.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/DAAG/nsw74psidA.csv' maybe_download_and_extract(path, url, save_file_name='nsw74psid_a.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
numba/tests/doc_examples/test_llvm_pass_timings.py
auderson/numba
6,620
12731237
# "magictoken" is used for markers as beginning and ending of example text. import unittest from numba.tests.support import captured_stdout, override_config class DocsLLVMPassTimings(unittest.TestCase): def test_pass_timings(self): with override_config('LLVM_PASS_TIMINGS', True): with captured_stdout() as stdout: # magictoken.ex_llvm_pass_timings.begin import numba @numba.njit def foo(n): c = 0 for i in range(n): for j in range(i): c += j return c foo(10) md = foo.get_metadata(foo.signatures[0]) print(md['llvm_pass_timings']) # magictoken.ex_llvm_pass_timings.end self.assertIn("Finalize object", stdout.getvalue()) if __name__ == '__main__': unittest.main()
tests/unit/alertapi30/test_enums.py
ahertz/pyowm
799
12731241
<reponame>ahertz/pyowm<filename>tests/unit/alertapi30/test_enums.py import unittest from pyowm.alertapi30.enums import AlertChannelsEnum, OperatorsEnum, WeatherParametersEnum class TestAlertChannelsEnum(unittest.TestCase): def test_items(self): alert_channels_enum = AlertChannelsEnum() self.assertEqual(alert_channels_enum.items(), [AlertChannelsEnum.OWM_API_POLLING]) class TestOperatorsEnum(unittest.TestCase): def test_items(self): operators_enum = OperatorsEnum() self.assertEqual(sorted(operators_enum.items()), sorted([operators_enum.GREATER_THAN, operators_enum.GREATER_THAN_EQUAL, operators_enum.LESS_THAN, operators_enum.LESS_THAN_EQUAL, operators_enum.EQUAL, operators_enum.NOT_EQUAL])) class TestWeatherParametersEnum(unittest.TestCase): def test_item(self): weather_parameters_enum = WeatherParametersEnum() self.assertEqual(sorted(weather_parameters_enum.items()), sorted([weather_parameters_enum.CLOUDS, weather_parameters_enum.HUMIDITY, weather_parameters_enum.PRESSURE, weather_parameters_enum.WIND_DIRECTION, weather_parameters_enum.WIND_SPEED, weather_parameters_enum.TEMPERATURE]))
.venv/lib/python3.8/site-packages/seasonal/__init__.py
eo1989/VectorBTanalysis
357
12731369
# -*- coding: utf-8 -*- """ Seasonal Adjustment ========================================== Robustly estimate and remove trend and periodicity in a noisy timeseries. Functions --------- fit_slope -- estimate slope of a timeseries fit_seasons -- estimate periodicity and seasonal offsets for a timeseries adjust_trend -- de-trend a timeseries adjust_seasons -- de-trend and de-seasonalize a timeseries periodogram -- compute a periodogram of the data periodogram_peaks -- return a list of intervals containg high-scoring periods Author ------ <NAME> (<EMAIL>) """ from .version import __version__, VERSION from .trend import fit_trend from .seasonal import fit_seasons, adjust_seasons, rsquared_cv from .periodogram import periodogram, periodogram_peaks
ground_truth_labeling_jobs/multi_modal_parallel_sagemaker_labeling_workflows_with_step_functions/src/lambda_test/api_batch_create/main_test.py
jerrypeng7773/amazon-sagemaker-examples
2,610
12731385
import json import os import unittest from unittest import TestCase from unittest.mock import Mock, patch from api_batch_create.main import lambda_handler from botocore.exceptions import ClientError from test_shared.mock_objects import InputTestData, TestContext class TestCase(TestCase): def mock_sagemaker_api_call(self, operation_name, kwarg): if operation_name == "DescribeLabelingJob": parsed_response = {"Error": {"Code": "500", "Message": "Error Uploading"}} raise ClientError(parsed_response, operation_name) @patch("shared.db.get_batch_metadata") @patch("botocore.client.BaseClient._make_api_call", new=mock_sagemaker_api_call) @patch.dict(os.environ, {"DEFAULT_WORKTEAM_ARN": "TEST"}) def test_lambda_handler_happyCase(self, get_batch_metadata_mock): # Setup event = Mock() event.get.return_value = json.dumps(InputTestData.create_batch_request) get_batch_metadata_mock.return_value = None # Act val = lambda_handler(event, TestContext()) # Assert self.assertEqual(val["statusCode"], 200, "Unexpected status code returned") if __name__ == "__main__": unittest.main()
scvelo/pp.py
WeilerP/scvelo
272
12731422
<gh_stars>100-1000 from scvelo.preprocessing import * # noqa
tests/test_stringsifter.py
digitalsleuth/stringsifter
523
12731457
<reponame>digitalsleuth/stringsifter # Copyright (C) 2019 FireEye, Inc. All Rights Reserved. import os import numpy from io import StringIO import stringsifter.rank_strings as rank_strings test_strings = 'testing text\n' \ 'nagain\n' \ 'wheredoesitgo\n' \ 'testing text\n' \ 'nagain\n' \ 'wheredoesitgo\n' \ 'testing text\n' \ 'nagain\n' \ 'wheredoesitgo\n' \ 'testing text\n' def _get_rank_strings_stdoutput(capsys, kwargs): rank_strings.main(**kwargs) stdout = capsys.readouterr().out return stdout.split('\n')[:-1] def _get_kwargs(input_strings=test_strings, cutoff=None, cutoff_score=numpy.nan, scores=False, batch=False): return {'input_strings': StringIO(input_strings), 'cutoff': cutoff, 'cutoff_score': cutoff_score, 'scores': scores, 'batch': batch} def test_string_length(featurizer): test_set = [['', 0], ['foo', 3], ['everybody', 9]] for s, true_len in test_set: feat_len = featurizer.string_length(s) assert feat_len == true_len def test_default(capsys): """ test default processing flow: # strings in == # strings out """ output_lines = _get_rank_strings_stdoutput(capsys, _get_kwargs()) assert len(output_lines) == 10 def test_scores(capsys): scores_value = True output_lines = _get_rank_strings_stdoutput( capsys, _get_kwargs(scores=scores_value)) split_output_lines = [output_line.split(",") for output_line in output_lines] previous_score = numpy.inf for output_score, output_string in split_output_lines: assert(type(output_string) is str) float_output_score = float(output_score) assert(type(float_output_score) is float) assert(previous_score >= float_output_score) previous_score = float_output_score def test_cutoff(capsys): cutoff_value = 5 output_lines = _get_rank_strings_stdoutput( capsys, _get_kwargs(cutoff=cutoff_value)) assert len(output_lines) == cutoff_value def test_cutoff_score(capsys): scores_value = True cutoff_score_value = 0.0 output_lines = _get_rank_strings_stdoutput( capsys, _get_kwargs(scores=scores_value, cutoff_score=cutoff_score_value)) split_output_lines = [output_line.split(",") for output_line in output_lines] for output_score, output_string in split_output_lines: assert float(output_score) >= cutoff_score_value def test_batch(): batch_value = 'tests/fixtures/' batch_files = [batch_value + batch_file for batch_file in os.listdir(batch_value)] output_lines = rank_strings.main( **_get_kwargs(batch=batch_value)) for batch_file in batch_files: ranking_file = batch_file + '.ranked_strings' assert os.path.isfile(ranking_file) is True os.remove(ranking_file)
src/plugins_/in_file_completions/in_file_completions.py
jcberquist/sublimetext-cfml
130
12731459
from ... import utils, component_index def get_script_completions(cfml_view): completions = component_index.build_file_completions(cfml_view.view_metadata)[ utils.get_setting("cfml_cfc_completions") ] completions = [ make_completion(completion, cfml_view.file_path) for completion in completions["functions"] ] if len(completions) > 0: return cfml_view.CompletionList(completions, 0, False) return None def get_dot_completions(cfml_view): if len(cfml_view.dot_context) == 0: return None for symbol in cfml_view.dot_context: if not symbol.is_function: if symbol.name == "this": completions = component_index.build_file_completions( cfml_view.view_metadata )[utils.get_setting("cfml_cfc_completions")] completions = [ make_completion(completion, cfml_view.file_path) for completion in completions["functions"] ] return cfml_view.CompletionList(completions, 0, False) if len(cfml_view.dot_context) == 1 and symbol.name == "arguments": current_function_body = utils.get_current_function_body( cfml_view.view, cfml_view.position, component_method=False ) if current_function_body: function = cfml_view.get_function(current_function_body.begin() - 1) meta = cfml_view.get_string_metadata( cfml_view.view.substr(function[2]) + "{}" ) if "functions" in meta and function[0] in meta["functions"]: args = meta["functions"][function[0]]["meta"]["parameters"] completions = [ (arg["name"] + "\targuments", arg["name"]) for arg in args ] return cfml_view.CompletionList(completions, 0, False) if ( symbol.name == "super" and cfml_view.project_name and cfml_view.view_metadata["extends"] ): comp = component_index.component_index.get_completions_by_dot_path( cfml_view.project_name, cfml_view.view_metadata["extends"] ) if not comp and cfml_view.file_path: extends_file_path = component_index.component_index.resolve_path( cfml_view.project_name, cfml_view.file_path, cfml_view.view_metadata["extends"], ) comp = component_index.component_index.get_completions_by_file_path( cfml_view.project_name, extends_file_path ) if comp: completions = [ (completion.key + "\t" + completion.hint, completion.content) for completion in comp["functions"] ] return cfml_view.CompletionList(completions, 0, False) return None def make_completion(comp, file_path): hint = "this" if len(comp.file_path) > 0 and comp.file_path != file_path: hint = comp.hint return (comp.key + "\t" + hint, comp.content)
bin/commands/citations_csv.py
davidmcclure/open-syllabus-project
220
12731481
import click import csv from osp.citations.models import Text, Citation, Text_Index from peewee import fn @click.group() def cli(): pass @cli.command() @click.argument('out_file', type=click.File('w')) @click.option('--min_count', default=100) def fuzz(out_file, min_count): """ Write a CSV with title and fuzz. """ cols = [ 'text_id', 'count', 'fuzz', 'surname', 'title', ] writer = csv.DictWriter(out_file, cols) writer.writeheader() count = fn.count(Citation.id) query = ( Text .select(Text, count) .join(Citation) .where(Text.display==True) .having(count > min_count) .group_by(Text.id) .naive() ) texts = list(query) # Sort on fuzz, high -> low. for t in sorted(texts, key=lambda t: t.fuzz, reverse=True): writer.writerow(dict( text_id=t.id, count=t.count, fuzz=t.fuzz, surname=t.surname, title=t.title, )) @cli.command() @click.argument('out_file', type=click.File('w')) @click.option('--depth', default=1000) def ranks(out_file, depth): """ Write the top N text ranks. """ cols = [ 'count', 'title', 'author', ] writer = csv.DictWriter(out_file, cols) writer.writeheader() ranks = Text_Index.rank_texts() ranks = sorted(ranks, key=lambda x: x['rank']) for r in ranks[:depth]: text = r['text'] writer.writerow(dict( count=text.count, title=text.title, author=text.authors[0], ))
example/extensions/lib_custom_op/test_gemm.py
mozga-intel/incubator-mxnet
211
12731555
<filename>example/extensions/lib_custom_op/test_gemm.py #!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 # pylint: disable=arguments-differ # This test checks dynamic loading of custom library into MXNet # and checks end to end compute of a simple 2D gemm custom op import mxnet as mx import os #load library if (os.name=='posix'): path = os.path.abspath('libgemm_lib.so') mx.library.load(path) elif (os.name=='nt'): path = os.path.abspath('libgemm_lib.dll') mx.library.load(path) a = mx.nd.array([[1,2,3],[4,5,6]]) b = mx.nd.array([[7],[8],[9]]) print("--------start ndarray compute---------") print(mx.nd.my_gemm(a,b)) print("--------") print(mx.nd.state_gemm(a,b,test_kw=100)) print("--------start symbolic compute--------") s = mx.sym.Variable('s') t = mx.sym.Variable('t') c = mx.sym.my_gemm(s,t) d = mx.sym.state_gemm(s,t,test_kw=200) e = mx.sym.linalg.gemm2(s,t) out_grad = mx.nd.ones((2,1)) # stateless block = mx.gluon.nn.SymbolBlock(c,[s,t]) with mx.autograd.record(): a_ = mx.nd.array([[1,2,3],[4,5,6]]) b_ = mx.nd.array([[7],[8],[9]]) a_.attach_grad() b_.attach_grad() # foward out = block(a_,b_) print(out) print('+++++') # backward out.backward(out_grad) print(a_.grad) print(b_.grad) print("-------") # stateful block2 = mx.gluon.nn.SymbolBlock(d,[s,t]) block2.hybridize(static_alloc=True, static_shape=True) out2 = block2(a,b) out2 = block2(a,b) print(out2) with mx.autograd.record(): a_ = mx.nd.array([[1,2,3],[4,5,6]]) b_ = mx.nd.array([[7],[8],[9]]) a_.attach_grad() b_.attach_grad() # forward out2 = block2(a_,b_) print('+++++') # backward out2.backward(out_grad) print(a_.grad) print(b_.grad) print("-------") # baseline block3 = mx.gluon.nn.SymbolBlock(e,[s,t]) with mx.autograd.record(): a_ = mx.nd.array([[1,2,3],[4,5,6]]) b_ = mx.nd.array([[7],[8],[9]]) a_.attach_grad() b_.attach_grad() # forward out3 = block3(a_,b_) print(out3) print('+++++') # backward out3.backward(out_grad) print(a_.grad) print(b_.grad)
lib/python2.7/site-packages/samba/netcmd/gpo.py
abankalarm/pth-toolkit
480
12731560
<gh_stars>100-1000 # implement samba_tool gpo commands # # Copyright <NAME> 2010 # Copyright <NAME> 2011-2012 <<EMAIL>> # # based on C implementation by <NAME> and <NAME> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import os import samba.getopt as options import ldb from samba.auth import system_session from samba.netcmd import ( Command, CommandError, Option, SuperCommand, ) from samba.samdb import SamDB from samba import dsdb from samba.dcerpc import security from samba.ndr import ndr_unpack import samba.security import samba.auth from samba.auth import AUTH_SESSION_INFO_DEFAULT_GROUPS, AUTH_SESSION_INFO_AUTHENTICATED, AUTH_SESSION_INFO_SIMPLE_PRIVILEGES from samba.netcmd.common import netcmd_finddc from samba import policy from samba import smb import uuid from samba.ntacls import dsacl2fsacl from samba.dcerpc import nbt from samba.net import Net def samdb_connect(ctx): '''make a ldap connection to the server''' try: ctx.samdb = SamDB(url=ctx.url, session_info=system_session(), credentials=ctx.creds, lp=ctx.lp) except Exception, e: raise CommandError("LDAP connection to %s failed " % ctx.url, e) def attr_default(msg, attrname, default): '''get an attribute from a ldap msg with a default''' if attrname in msg: return msg[attrname][0] return default def gpo_flags_string(value): '''return gpo flags string''' flags = policy.get_gpo_flags(value) if not flags: ret = 'NONE' else: ret = ' '.join(flags) return ret def gplink_options_string(value): '''return gplink options string''' options = policy.get_gplink_options(value) if not options: ret = 'NONE' else: ret = ' '.join(options) return ret def parse_gplink(gplink): '''parse a gPLink into an array of dn and options''' ret = [] a = gplink.split(']') for g in a: if not g: continue d = g.split(';') if len(d) != 2 or not d[0].startswith("[LDAP://"): raise RuntimeError("Badly formed gPLink '%s'" % g) ret.append({ 'dn' : d[0][8:], 'options' : int(d[1])}) return ret def encode_gplink(gplist): '''Encode an array of dn and options into gPLink string''' ret = '' for g in gplist: ret += "[LDAP://%s;%d]" % (g['dn'], g['options']) return ret def dc_url(lp, creds, url=None, dc=None): '''If URL is not specified, return URL for writable DC. If dc is provided, use that to construct ldap URL''' if url is None: if dc is None: try: dc = netcmd_finddc(lp, creds) except Exception, e: raise RuntimeError("Could not find a DC for domain", e) url = 'ldap://' + dc return url def get_gpo_dn(samdb, gpo): '''Construct the DN for gpo''' dn = samdb.get_default_basedn() dn.add_child(ldb.Dn(samdb, "CN=Policies,CN=System")) dn.add_child(ldb.Dn(samdb, "CN=%s" % gpo)) return dn def get_gpo_info(samdb, gpo=None, displayname=None, dn=None, sd_flags=security.SECINFO_OWNER|security.SECINFO_GROUP|security.SECINFO_DACL|security.SECINFO_SACL): '''Get GPO information using gpo, displayname or dn''' policies_dn = samdb.get_default_basedn() policies_dn.add_child(ldb.Dn(samdb, "CN=Policies,CN=System")) base_dn = policies_dn search_expr = "(objectClass=groupPolicyContainer)" search_scope = ldb.SCOPE_ONELEVEL if gpo is not None: search_expr = "(&(objectClass=groupPolicyContainer)(name=%s))" % ldb.binary_encode(gpo) if displayname is not None: search_expr = "(&(objectClass=groupPolicyContainer)(displayname=%s))" % ldb.binary_encode(displayname) if dn is not None: base_dn = dn search_scope = ldb.SCOPE_BASE try: msg = samdb.search(base=base_dn, scope=search_scope, expression=search_expr, attrs=['nTSecurityDescriptor', 'versionNumber', 'flags', 'name', 'displayName', 'gPCFileSysPath'], controls=['sd_flags:1:%d' % sd_flags]) except Exception, e: if gpo is not None: mesg = "Cannot get information for GPO %s" % gpo else: mesg = "Cannot get information for GPOs" raise CommandError(mesg, e) return msg def get_gpo_containers(samdb, gpo): '''lists dn of containers for a GPO''' search_expr = "(&(objectClass=*)(gPLink=*%s*))" % gpo try: msg = samdb.search(expression=search_expr, attrs=['gPLink']) except Exception, e: raise CommandError("Could not find container(s) with GPO %s" % gpo, e) return msg def del_gpo_link(samdb, container_dn, gpo): '''delete GPO link for the container''' # Check if valid Container DN and get existing GPlinks try: msg = samdb.search(base=container_dn, scope=ldb.SCOPE_BASE, expression="(objectClass=*)", attrs=['gPLink'])[0] except Exception, e: raise CommandError("Container '%s' does not exist" % container_dn, e) found = False gpo_dn = str(get_gpo_dn(samdb, gpo)) if 'gPLink' in msg: gplist = parse_gplink(msg['gPLink'][0]) for g in gplist: if g['dn'].lower() == gpo_dn.lower(): gplist.remove(g) found = True break else: raise CommandError("No GPO(s) linked to this container") if not found: raise CommandError("GPO '%s' not linked to this container" % gpo) m = ldb.Message() m.dn = container_dn if gplist: gplink_str = encode_gplink(gplist) m['r0'] = ldb.MessageElement(gplink_str, ldb.FLAG_MOD_REPLACE, 'gPLink') else: m['d0'] = ldb.MessageElement(msg['gPLink'][0], ldb.FLAG_MOD_DELETE, 'gPLink') try: samdb.modify(m) except Exception, e: raise CommandError("Error removing GPO from container", e) def parse_unc(unc): '''Parse UNC string into a hostname, a service, and a filepath''' if unc.startswith('\\\\') and unc.startswith('//'): raise ValueError("UNC doesn't start with \\\\ or //") tmp = unc[2:].split('/', 2) if len(tmp) == 3: return tmp tmp = unc[2:].split('\\', 2) if len(tmp) == 3: return tmp raise ValueError("Invalid UNC string: %s" % unc) def copy_directory_remote_to_local(conn, remotedir, localdir): if not os.path.isdir(localdir): os.mkdir(localdir) r_dirs = [ remotedir ] l_dirs = [ localdir ] while r_dirs: r_dir = r_dirs.pop() l_dir = l_dirs.pop() dirlist = conn.list(r_dir) for e in dirlist: r_name = r_dir + '\\' + e['name'] l_name = os.path.join(l_dir, e['name']) if e['attrib'] & smb.FILE_ATTRIBUTE_DIRECTORY: r_dirs.append(r_name) l_dirs.append(l_name) os.mkdir(l_name) else: data = conn.loadfile(r_name) file(l_name, 'w').write(data) def copy_directory_local_to_remote(conn, localdir, remotedir): if not conn.chkpath(remotedir): conn.mkdir(remotedir) l_dirs = [ localdir ] r_dirs = [ remotedir ] while l_dirs: l_dir = l_dirs.pop() r_dir = r_dirs.pop() dirlist = os.listdir(l_dir) for e in dirlist: l_name = os.path.join(l_dir, e) r_name = r_dir + '\\' + e if os.path.isdir(l_name): l_dirs.append(l_name) r_dirs.append(r_name) conn.mkdir(r_name) else: data = file(l_name, 'r').read() conn.savefile(r_name, data) def create_directory_hier(conn, remotedir): elems = remotedir.replace('/', '\\').split('\\') path = "" for e in elems: path = path + '\\' + e if not conn.chkpath(path): conn.mkdir(path) class cmd_listall(Command): """List all GPOs.""" synopsis = "%prog [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_options = [ Option("-H", "--URL", help="LDB URL for database or target server", type=str, metavar="URL", dest="H") ] def run(self, H=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) samdb_connect(self) msg = get_gpo_info(self.samdb, None) for m in msg: self.outf.write("GPO : %s\n" % m['name'][0]) self.outf.write("display name : %s\n" % m['displayName'][0]) self.outf.write("path : %s\n" % m['gPCFileSysPath'][0]) self.outf.write("dn : %s\n" % m.dn) self.outf.write("version : %s\n" % attr_default(m, 'versionNumber', '0')) self.outf.write("flags : %s\n" % gpo_flags_string(int(attr_default(m, 'flags', 0)))) self.outf.write("\n") class cmd_list(Command): """List GPOs for an account.""" synopsis = "%prog <username> [options]" takes_args = ['username'] takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_options = [ Option("-H", "--URL", help="LDB URL for database or target server", type=str, metavar="URL", dest="H") ] def run(self, username, H=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) samdb_connect(self) try: msg = self.samdb.search(expression='(&(|(samAccountName=%s)(samAccountName=%s$))(objectClass=User))' % (ldb.binary_encode(username),ldb.binary_encode(username))) user_dn = msg[0].dn except Exception: raise CommandError("Failed to find account %s" % username) # check if its a computer account try: msg = self.samdb.search(base=user_dn, scope=ldb.SCOPE_BASE, attrs=['objectClass'])[0] is_computer = 'computer' in msg['objectClass'] except Exception: raise CommandError("Failed to find objectClass for user %s" % username) session_info_flags = ( AUTH_SESSION_INFO_DEFAULT_GROUPS | AUTH_SESSION_INFO_AUTHENTICATED ) # When connecting to a remote server, don't look up the local privilege DB if self.url is not None and self.url.startswith('ldap'): session_info_flags |= AUTH_SESSION_INFO_SIMPLE_PRIVILEGES session = samba.auth.user_session(self.samdb, lp_ctx=self.lp, dn=user_dn, session_info_flags=session_info_flags) token = session.security_token gpos = [] inherit = True dn = ldb.Dn(self.samdb, str(user_dn)).parent() while True: msg = self.samdb.search(base=dn, scope=ldb.SCOPE_BASE, attrs=['gPLink', 'gPOptions'])[0] if 'gPLink' in msg: glist = parse_gplink(msg['gPLink'][0]) for g in glist: if not inherit and not (g['options'] & dsdb.GPLINK_OPT_ENFORCE): continue if g['options'] & dsdb.GPLINK_OPT_DISABLE: continue try: sd_flags=security.SECINFO_OWNER|security.SECINFO_GROUP|security.SECINFO_DACL gmsg = self.samdb.search(base=g['dn'], scope=ldb.SCOPE_BASE, attrs=['name', 'displayName', 'flags', 'nTSecurityDescriptor'], controls=['sd_flags:1:%d' % sd_flags]) secdesc_ndr = gmsg[0]['nTSecurityDescriptor'][0] secdesc = ndr_unpack(security.descriptor, secdesc_ndr) except Exception: self.outf.write("Failed to fetch gpo object with nTSecurityDescriptor %s\n" % g['dn']) continue try: samba.security.access_check(secdesc, token, security.SEC_STD_READ_CONTROL | security.SEC_ADS_LIST | security.SEC_ADS_READ_PROP) except RuntimeError: self.outf.write("Failed access check on %s\n" % msg.dn) continue # check the flags on the GPO flags = int(attr_default(gmsg[0], 'flags', 0)) if is_computer and (flags & dsdb.GPO_FLAG_MACHINE_DISABLE): continue if not is_computer and (flags & dsdb.GPO_FLAG_USER_DISABLE): continue gpos.append((gmsg[0]['displayName'][0], gmsg[0]['name'][0])) # check if this blocks inheritance gpoptions = int(attr_default(msg, 'gPOptions', 0)) if gpoptions & dsdb.GPO_BLOCK_INHERITANCE: inherit = False if dn == self.samdb.get_default_basedn(): break dn = dn.parent() if is_computer: msg_str = 'computer' else: msg_str = 'user' self.outf.write("GPOs for %s %s\n" % (msg_str, username)) for g in gpos: self.outf.write(" %s %s\n" % (g[0], g[1])) class cmd_show(Command): """Show information for a GPO.""" synopsis = "%prog <gpo> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = ['gpo'] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str) ] def run(self, gpo, H=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) samdb_connect(self) try: msg = get_gpo_info(self.samdb, gpo)[0] except Exception: raise CommandError("GPO '%s' does not exist" % gpo) try: secdesc_ndr = msg['nTSecurityDescriptor'][0] secdesc = ndr_unpack(security.descriptor, secdesc_ndr) secdesc_sddl = secdesc.as_sddl() except Exception: secdesc_sddl = "<hidden>" self.outf.write("GPO : %s\n" % msg['name'][0]) self.outf.write("display name : %s\n" % msg['displayName'][0]) self.outf.write("path : %s\n" % msg['gPCFileSysPath'][0]) self.outf.write("dn : %s\n" % msg.dn) self.outf.write("version : %s\n" % attr_default(msg, 'versionNumber', '0')) self.outf.write("flags : %s\n" % gpo_flags_string(int(attr_default(msg, 'flags', 0)))) self.outf.write("ACL : %s\n" % secdesc_sddl) self.outf.write("\n") class cmd_getlink(Command): """List GPO Links for a container.""" synopsis = "%prog <container_dn> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = ['container_dn'] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str) ] def run(self, container_dn, H=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) samdb_connect(self) try: msg = self.samdb.search(base=container_dn, scope=ldb.SCOPE_BASE, expression="(objectClass=*)", attrs=['gPLink'])[0] except Exception: raise CommandError("Container '%s' does not exist" % container_dn) if msg['gPLink']: self.outf.write("GPO(s) linked to DN %s\n" % container_dn) gplist = parse_gplink(msg['gPLink'][0]) for g in gplist: msg = get_gpo_info(self.samdb, dn=g['dn']) self.outf.write(" GPO : %s\n" % msg[0]['name'][0]) self.outf.write(" Name : %s\n" % msg[0]['displayName'][0]) self.outf.write(" Options : %s\n" % gplink_options_string(g['options'])) self.outf.write("\n") else: self.outf.write("No GPO(s) linked to DN=%s\n" % container_dn) class cmd_setlink(Command): """Add or update a GPO link to a container.""" synopsis = "%prog <container_dn> <gpo> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = ['container_dn', 'gpo'] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str), Option("--disable", dest="disabled", default=False, action='store_true', help="Disable policy"), Option("--enforce", dest="enforced", default=False, action='store_true', help="Enforce policy") ] def run(self, container_dn, gpo, H=None, disabled=False, enforced=False, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) samdb_connect(self) gplink_options = 0 if disabled: gplink_options |= dsdb.GPLINK_OPT_DISABLE if enforced: gplink_options |= dsdb.GPLINK_OPT_ENFORCE # Check if valid GPO DN try: msg = get_gpo_info(self.samdb, gpo=gpo)[0] except Exception: raise CommandError("GPO '%s' does not exist" % gpo) gpo_dn = str(get_gpo_dn(self.samdb, gpo)) # Check if valid Container DN try: msg = self.samdb.search(base=container_dn, scope=ldb.SCOPE_BASE, expression="(objectClass=*)", attrs=['gPLink'])[0] except Exception: raise CommandError("Container '%s' does not exist" % container_dn) # Update existing GPlinks or Add new one existing_gplink = False if 'gPLink' in msg: gplist = parse_gplink(msg['gPLink'][0]) existing_gplink = True found = False for g in gplist: if g['dn'].lower() == gpo_dn.lower(): g['options'] = gplink_options found = True break if found: raise CommandError("GPO '%s' already linked to this container" % gpo) else: gplist.insert(0, { 'dn' : gpo_dn, 'options' : gplink_options }) else: gplist = [] gplist.append({ 'dn' : gpo_dn, 'options' : gplink_options }) gplink_str = encode_gplink(gplist) m = ldb.Message() m.dn = ldb.Dn(self.samdb, container_dn) if existing_gplink: m['new_value'] = ldb.MessageElement(gplink_str, ldb.FLAG_MOD_REPLACE, 'gPLink') else: m['new_value'] = ldb.MessageElement(gplink_str, ldb.FLAG_MOD_ADD, 'gPLink') try: self.samdb.modify(m) except Exception, e: raise CommandError("Error adding GPO Link", e) self.outf.write("Added/Updated GPO link\n") cmd_getlink().run(container_dn, H, sambaopts, credopts, versionopts) class cmd_dellink(Command): """Delete GPO link from a container.""" synopsis = "%prog <container_dn> <gpo> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = ['container', 'gpo'] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str), ] def run(self, container, gpo, H=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) samdb_connect(self) # Check if valid GPO try: get_gpo_info(self.samdb, gpo=gpo)[0] except Exception: raise CommandError("GPO '%s' does not exist" % gpo) container_dn = ldb.Dn(self.samdb, container) del_gpo_link(self.samdb, container_dn, gpo) self.outf.write("Deleted GPO link.\n") cmd_getlink().run(container_dn, H, sambaopts, credopts, versionopts) class cmd_listcontainers(Command): """List all linked containers for a GPO.""" synopsis = "%prog <gpo> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = ['gpo'] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str) ] def run(self, gpo, H=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) samdb_connect(self) msg = get_gpo_containers(self.samdb, gpo) if len(msg): self.outf.write("Container(s) using GPO %s\n" % gpo) for m in msg: self.outf.write(" DN: %s\n" % m['dn']) else: self.outf.write("No Containers using GPO %s\n" % gpo) class cmd_getinheritance(Command): """Get inheritance flag for a container.""" synopsis = "%prog <container_dn> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = ['container_dn'] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str) ] def run(self, container_dn, H=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) samdb_connect(self) try: msg = self.samdb.search(base=container_dn, scope=ldb.SCOPE_BASE, expression="(objectClass=*)", attrs=['gPOptions'])[0] except Exception: raise CommandError("Container '%s' does not exist" % container_dn) inheritance = 0 if 'gPOptions' in msg: inheritance = int(msg['gPOptions'][0]) if inheritance == dsdb.GPO_BLOCK_INHERITANCE: self.outf.write("Container has GPO_BLOCK_INHERITANCE\n") else: self.outf.write("Container has GPO_INHERIT\n") class cmd_setinheritance(Command): """Set inheritance flag on a container.""" synopsis = "%prog <container_dn> <block|inherit> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = [ 'container_dn', 'inherit_state' ] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str) ] def run(self, container_dn, inherit_state, H=None, sambaopts=None, credopts=None, versionopts=None): if inherit_state.lower() == 'block': inheritance = dsdb.GPO_BLOCK_INHERITANCE elif inherit_state.lower() == 'inherit': inheritance = dsdb.GPO_INHERIT else: raise CommandError("Unknown inheritance state (%s)" % inherit_state) self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) samdb_connect(self) try: msg = self.samdb.search(base=container_dn, scope=ldb.SCOPE_BASE, expression="(objectClass=*)", attrs=['gPOptions'])[0] except Exception: raise CommandError("Container '%s' does not exist" % container_dn) m = ldb.Message() m.dn = ldb.Dn(self.samdb, container_dn) if 'gPOptions' in msg: m['new_value'] = ldb.MessageElement(str(inheritance), ldb.FLAG_MOD_REPLACE, 'gPOptions') else: m['new_value'] = ldb.MessageElement(str(inheritance), ldb.FLAG_MOD_ADD, 'gPOptions') try: self.samdb.modify(m) except Exception, e: raise CommandError("Error setting inheritance state %s" % inherit_state, e) class cmd_fetch(Command): """Download a GPO.""" synopsis = "%prog <gpo> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = ['gpo'] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str), Option("--tmpdir", help="Temporary directory for copying policy files", type=str) ] def run(self, gpo, H=None, tmpdir=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) # We need to know writable DC to setup SMB connection if H and H.startswith('ldap://'): dc_hostname = H[7:] self.url = H else: dc_hostname = netcmd_finddc(self.lp, self.creds) self.url = dc_url(self.lp, self.creds, dc=dc_hostname) samdb_connect(self) try: msg = get_gpo_info(self.samdb, gpo)[0] except Exception: raise CommandError("GPO '%s' does not exist" % gpo) # verify UNC path unc = msg['gPCFileSysPath'][0] try: [dom_name, service, sharepath] = parse_unc(unc) except ValueError: raise CommandError("Invalid GPO path (%s)" % unc) # SMB connect to DC try: conn = smb.SMB(dc_hostname, service, lp=self.lp, creds=self.creds) except Exception: raise CommandError("Error connecting to '%s' using SMB" % dc_hostname) # Copy GPT if tmpdir is None: tmpdir = "/tmp" if not os.path.isdir(tmpdir): raise CommandError("Temoprary directory '%s' does not exist" % tmpdir) localdir = os.path.join(tmpdir, "policy") if not os.path.isdir(localdir): os.mkdir(localdir) gpodir = os.path.join(localdir, gpo) if os.path.isdir(gpodir): raise CommandError("GPO directory '%s' already exists, refusing to overwrite" % gpodir) try: os.mkdir(gpodir) copy_directory_remote_to_local(conn, sharepath, gpodir) except Exception, e: # FIXME: Catch more specific exception raise CommandError("Error copying GPO from DC", e) self.outf.write('GPO copied to %s\n' % gpodir) class cmd_create(Command): """Create an empty GPO.""" synopsis = "%prog <displayname> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = ['displayname'] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str), Option("--tmpdir", help="Temporary directory for copying policy files", type=str) ] def run(self, displayname, H=None, tmpdir=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) net = Net(creds=self.creds, lp=self.lp) # We need to know writable DC to setup SMB connection if H and H.startswith('ldap://'): dc_hostname = H[7:] self.url = H flags = (nbt.NBT_SERVER_LDAP | nbt.NBT_SERVER_DS | nbt.NBT_SERVER_WRITABLE) cldap_ret = net.finddc(address=dc_hostname, flags=flags) else: flags = (nbt.NBT_SERVER_LDAP | nbt.NBT_SERVER_DS | nbt.NBT_SERVER_WRITABLE) cldap_ret = net.finddc(domain=self.lp.get('realm'), flags=flags) dc_hostname = cldap_ret.pdc_dns_name self.url = dc_url(self.lp, self.creds, dc=dc_hostname) samdb_connect(self) msg = get_gpo_info(self.samdb, displayname=displayname) if msg.count > 0: raise CommandError("A GPO already existing with name '%s'" % displayname) # Create new GUID guid = str(uuid.uuid4()) gpo = "{%s}" % guid.upper() realm = cldap_ret.dns_domain unc_path = "\\\\%s\\sysvol\\%s\\Policies\\%s" % (realm, realm, gpo) # Create GPT if tmpdir is None: tmpdir = "/tmp" if not os.path.isdir(tmpdir): raise CommandError("Temporary directory '%s' does not exist" % tmpdir) localdir = os.path.join(tmpdir, "policy") if not os.path.isdir(localdir): os.mkdir(localdir) gpodir = os.path.join(localdir, gpo) if os.path.isdir(gpodir): raise CommandError("GPO directory '%s' already exists, refusing to overwrite" % gpodir) try: os.mkdir(gpodir) os.mkdir(os.path.join(gpodir, "Machine")) os.mkdir(os.path.join(gpodir, "User")) gpt_contents = "[General]\r\nVersion=0\r\n" file(os.path.join(gpodir, "GPT.INI"), "w").write(gpt_contents) except Exception, e: raise CommandError("Error Creating GPO files", e) # Connect to DC over SMB [dom_name, service, sharepath] = parse_unc(unc_path) try: conn = smb.SMB(dc_hostname, service, lp=self.lp, creds=self.creds) except Exception, e: raise CommandError("Error connecting to '%s' using SMB" % dc_hostname, e) self.samdb.transaction_start() try: # Add cn=<guid> gpo_dn = get_gpo_dn(self.samdb, gpo) m = ldb.Message() m.dn = gpo_dn m['a01'] = ldb.MessageElement("groupPolicyContainer", ldb.FLAG_MOD_ADD, "objectClass") self.samdb.add(m) # Add cn=User,cn=<guid> m = ldb.Message() m.dn = ldb.Dn(self.samdb, "CN=User,%s" % str(gpo_dn)) m['a01'] = ldb.MessageElement("container", ldb.FLAG_MOD_ADD, "objectClass") self.samdb.add(m) # Add cn=Machine,cn=<guid> m = ldb.Message() m.dn = ldb.Dn(self.samdb, "CN=Machine,%s" % str(gpo_dn)) m['a01'] = ldb.MessageElement("container", ldb.FLAG_MOD_ADD, "objectClass") self.samdb.add(m) # Get new security descriptor ds_sd_flags = ( security.SECINFO_OWNER | security.SECINFO_GROUP | security.SECINFO_DACL ) msg = get_gpo_info(self.samdb, gpo=gpo, sd_flags=ds_sd_flags)[0] ds_sd_ndr = msg['nTSecurityDescriptor'][0] ds_sd = ndr_unpack(security.descriptor, ds_sd_ndr).as_sddl() # Create a file system security descriptor domain_sid = security.dom_sid(self.samdb.get_domain_sid()) sddl = dsacl2fsacl(ds_sd, domain_sid) fs_sd = security.descriptor.from_sddl(sddl, domain_sid) # Copy GPO directory create_directory_hier(conn, sharepath) # Set ACL sio = ( security.SECINFO_OWNER | security.SECINFO_GROUP | security.SECINFO_DACL | security.SECINFO_PROTECTED_DACL ) conn.set_acl(sharepath, fs_sd, sio) # Copy GPO files over SMB copy_directory_local_to_remote(conn, gpodir, sharepath) m = ldb.Message() m.dn = gpo_dn m['a02'] = ldb.MessageElement(displayname, ldb.FLAG_MOD_REPLACE, "displayName") m['a03'] = ldb.MessageElement(unc_path, ldb.FLAG_MOD_REPLACE, "gPCFileSysPath") m['a05'] = ldb.MessageElement("0", ldb.FLAG_MOD_REPLACE, "versionNumber") m['a07'] = ldb.MessageElement("2", ldb.FLAG_MOD_REPLACE, "gpcFunctionalityVersion") m['a04'] = ldb.MessageElement("0", ldb.FLAG_MOD_REPLACE, "flags") controls=["permissive_modify:0"] self.samdb.modify(m, controls=controls) except Exception: self.samdb.transaction_cancel() raise else: self.samdb.transaction_commit() self.outf.write("GPO '%s' created as %s\n" % (displayname, gpo)) class cmd_del(Command): """Delete a GPO.""" synopsis = "%prog <gpo> [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_args = ['gpo'] takes_options = [ Option("-H", help="LDB URL for database or target server", type=str), ] def run(self, gpo, H=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) # We need to know writable DC to setup SMB connection if H and H.startswith('ldap://'): dc_hostname = H[7:] self.url = H else: dc_hostname = netcmd_finddc(self.lp, self.creds) self.url = dc_url(self.lp, self.creds, dc=dc_hostname) samdb_connect(self) # Check if valid GPO try: msg = get_gpo_info(self.samdb, gpo=gpo)[0] unc_path = msg['gPCFileSysPath'][0] except Exception: raise CommandError("GPO '%s' does not exist" % gpo) # Connect to DC over SMB [dom_name, service, sharepath] = parse_unc(unc_path) try: conn = smb.SMB(dc_hostname, service, lp=self.lp, creds=self.creds) except Exception, e: raise CommandError("Error connecting to '%s' using SMB" % dc_hostname, e) self.samdb.transaction_start() try: # Check for existing links msg = get_gpo_containers(self.samdb, gpo) if len(msg): self.outf.write("GPO %s is linked to containers\n" % gpo) for m in msg: del_gpo_link(self.samdb, m['dn'], gpo) self.outf.write(" Removed link from %s.\n" % m['dn']) # Remove LDAP entries gpo_dn = get_gpo_dn(self.samdb, gpo) self.samdb.delete(ldb.Dn(self.samdb, "CN=User,%s" % str(gpo_dn))) self.samdb.delete(ldb.Dn(self.samdb, "CN=Machine,%s" % str(gpo_dn))) self.samdb.delete(gpo_dn) # Remove GPO files conn.deltree(sharepath) except Exception: self.samdb.transaction_cancel() raise else: self.samdb.transaction_commit() self.outf.write("GPO %s deleted.\n" % gpo) class cmd_aclcheck(Command): """Check all GPOs have matching LDAP and DS ACLs.""" synopsis = "%prog [options]" takes_optiongroups = { "sambaopts": options.SambaOptions, "versionopts": options.VersionOptions, "credopts": options.CredentialsOptions, } takes_options = [ Option("-H", "--URL", help="LDB URL for database or target server", type=str, metavar="URL", dest="H") ] def run(self, H=None, sambaopts=None, credopts=None, versionopts=None): self.lp = sambaopts.get_loadparm() self.creds = credopts.get_credentials(self.lp, fallback_machine=True) self.url = dc_url(self.lp, self.creds, H) # We need to know writable DC to setup SMB connection if H and H.startswith('ldap://'): dc_hostname = H[7:] self.url = H else: dc_hostname = netcmd_finddc(self.lp, self.creds) self.url = dc_url(self.lp, self.creds, dc=dc_hostname) samdb_connect(self) msg = get_gpo_info(self.samdb, None) for m in msg: # verify UNC path unc = m['gPCFileSysPath'][0] try: [dom_name, service, sharepath] = parse_unc(unc) except ValueError: raise CommandError("Invalid GPO path (%s)" % unc) # SMB connect to DC try: conn = smb.SMB(dc_hostname, service, lp=self.lp, creds=self.creds) except Exception: raise CommandError("Error connecting to '%s' using SMB" % dc_hostname) fs_sd = conn.get_acl(sharepath, security.SECINFO_OWNER | security.SECINFO_GROUP | security.SECINFO_DACL, security.SEC_FLAG_MAXIMUM_ALLOWED) ds_sd_ndr = m['nTSecurityDescriptor'][0] ds_sd = ndr_unpack(security.descriptor, ds_sd_ndr).as_sddl() # Create a file system security descriptor domain_sid = security.dom_sid(self.samdb.get_domain_sid()) expected_fs_sddl = dsacl2fsacl(ds_sd, domain_sid) if (fs_sd.as_sddl(domain_sid) != expected_fs_sddl): raise CommandError("Invalid GPO ACL %s on path (%s), should be %s" % (fs_sd.as_sddl(domain_sid), sharepath, expected_fs_sddl)) class cmd_gpo(SuperCommand): """Group Policy Object (GPO) management.""" subcommands = {} subcommands["listall"] = cmd_listall() subcommands["list"] = cmd_list() subcommands["show"] = cmd_show() subcommands["getlink"] = cmd_getlink() subcommands["setlink"] = cmd_setlink() subcommands["dellink"] = cmd_dellink() subcommands["listcontainers"] = cmd_listcontainers() subcommands["getinheritance"] = cmd_getinheritance() subcommands["setinheritance"] = cmd_setinheritance() subcommands["fetch"] = cmd_fetch() subcommands["create"] = cmd_create() subcommands["del"] = cmd_del() subcommands["aclcheck"] = cmd_aclcheck()
python/ql/test/library-tests/frameworks/aiohttp/routing_test.py
timoles/codeql
4,036
12731565
# Inspired by https://docs.aiohttp.org/en/stable/web_quickstart.html # and https://docs.aiohttp.org/en/stable/web_quickstart.html#resources-and-routes from aiohttp import web app = web.Application() ## ================================= ## ## Ways to specify routes / handlers ## ## ================================= ## ## Using coroutines if True: # `app.add_routes` with list async def foo(request): # $ requestHandler return web.Response(text="foo") # $ HttpResponse async def foo2(request): # $ requestHandler return web.Response(text="foo2") # $ HttpResponse async def foo3(request): # $ requestHandler return web.Response(text="foo3") # $ HttpResponse app.add_routes([ web.get("/foo", foo), # $ routeSetup="/foo" web.route("*", "/foo2", foo2), # $ routeSetup="/foo2" web.get(path="/foo3", handler=foo3), # $ routeSetup="/foo3" ]) # using decorator routes = web.RouteTableDef() @routes.get("/bar") # $ routeSetup="/bar" async def bar(request): # $ requestHandler return web.Response(text="bar") # $ HttpResponse @routes.route("*", "/bar2") # $ routeSetup="/bar2" async def bar2(request): # $ requestHandler return web.Response(text="bar2") # $ HttpResponse @routes.get(path="/bar3") # $ routeSetup="/bar3" async def bar3(request): # $ requestHandler return web.Response(text="bar3") # $ HttpResponse app.add_routes(routes) # `app.router.add_get` / `app.router.add_route` async def baz(request): # $ requestHandler return web.Response(text="baz") # $ HttpResponse app.router.add_get("/baz", baz) # $ routeSetup="/baz" async def baz2(request): # $ requestHandler return web.Response(text="baz2") # $ HttpResponse app.router.add_route("*", "/baz2", baz2) # $ routeSetup="/baz2" async def baz3(request): # $ requestHandler return web.Response(text="baz3") # $ HttpResponse app.router.add_get(path="/baz3", handler=baz3) # $ routeSetup="/baz3" ## Using classes / views if True: # see https://docs.aiohttp.org/en/stable/web_quickstart.html#organizing-handlers-in-classes class MyCustomHandlerClass: async def foo_handler(self, request): # $ MISSING: requestHandler return web.Response(text="MyCustomHandlerClass.foo") # $ HttpResponse my_custom_handler = MyCustomHandlerClass() app.router.add_get("/MyCustomHandlerClass/foo", my_custom_handler.foo_handler) # $ routeSetup="/MyCustomHandlerClass/foo" # Using `web.View` # --------------- # `app.add_routes` with list class MyWebView1(web.View): async def get(self): # $ requestHandler return web.Response(text="MyWebView1.get") # $ HttpResponse app.add_routes([ web.view("/MyWebView1", MyWebView1) # $ routeSetup="/MyWebView1" ]) # using decorator routes = web.RouteTableDef() @routes.view("/MyWebView2") # $ routeSetup="/MyWebView2" class MyWebView2(web.View): async def get(self): # $ requestHandler return web.Response(text="MyWebView2.get") # $ HttpResponse app.add_routes(routes) # `app.router.add_view` class MyWebView3(web.View): async def get(self): # $ requestHandler return web.Response(text="MyWebView3.get") # $ HttpResponse app.router.add_view("/MyWebView3", MyWebView3) # $ routeSetup="/MyWebView3" # no route-setup class MyWebViewNoRoute(web.View): async def get(self): # $ requestHandler return web.Response(text="MyWebViewNoRoute.get") # $ HttpResponse if len(__name__) < 0: # avoid running, but fool analysis to not consider dead code # no explicit-view subclass (but route-setup) class MyWebViewNoSubclassButRoute(somelib.someclass): async def get(self): # $ requestHandler return web.Response(text="MyWebViewNoSubclassButRoute.get") # $ HttpResponse app.router.add_view("/MyWebViewNoSubclassButRoute", MyWebViewNoSubclassButRoute) # $ routeSetup="/MyWebViewNoSubclassButRoute" # Apparently there is no enforcement that `add_view` is only for views, and vice-versa # for `add_get` only being for async functions. if True: async def no_rules(request): # $ requestHandler return web.Response(text="no_rules") # $ HttpResponse app.router.add_view("/no_rules", no_rules) # $ routeSetup="/no_rules" class NoRulesView(web.View): async def get(self): # $ requestHandler return web.Response(text="NoRulesView.get") # $ HttpResponse app.router.add_get("/NoRulesView", NoRulesView) # $ routeSetup="/NoRulesView" ## =================== ## ## "Routed parameters" ## ## =================== ## if True: # see https://docs.aiohttp.org/en/stable/web_quickstart.html#variable-resources async def matching(request: web.Request): # $ requestHandler name = request.match_info['name'] number = request.match_info['number'] return web.Response(text="matching name={} number={}".format(name, number)) # $ HttpResponse app.router.add_get(r"/matching/{name}/{number:\d+}", matching) # $ routeSetup="/matching/{name}/{number:\d+}" ## ======= ## ## subapps ## ## ======= ## if True: subapp = web.Application() async def subapp_handler(request): # $ requestHandler return web.Response(text="subapp_handler") # $ HttpResponse subapp.router.add_get("/subapp_handler", subapp_handler) # $ routeSetup="/subapp_handler" app.add_subapp("/my_subapp", subapp) # similar behavior is possible with `app.add_domain`, but since I don't think we'll have special handling # for any kind of subapps, I have not created a test for this. ## ================================ ## ## Constructing UrlDispatcher first ## ## ================================ ## if True: async def manual_dispatcher_instance(request): # $ requestHandler return web.Response(text="manual_dispatcher_instance") # $ HttpResponse url_dispatcher = web.UrlDispatcher() url_dispatcher.add_get("/manual_dispatcher_instance", manual_dispatcher_instance) # $ routeSetup="/manual_dispatcher_instance" subapp2 = web.Application(router=url_dispatcher) app.add_subapp("/manual_dispatcher_instance_app", subapp2) ## =========== ## ## Run the app ## ## =========== ## if __name__ == "__main__": print("For auto-reloading server you can use:") print(f"aiohttp-devtools runserver {__file__}") print("after doing `pip install aiohttp-devtools`") print() web.run_app(app)
parallel/1-Async-Q-Learning/worker.py
g6ling/Pytorch-Cartpole
116
12731652
<filename>parallel/1-Async-Q-Learning/worker.py import gym import torch import torch.multiprocessing as mp import numpy as np from model import QNet from memory import Memory from config import env_name, async_update_step, update_target, max_episode, device, log_interval, goal_score class Worker(mp.Process): def __init__(self, online_net, target_net, optimizer, global_ep, global_ep_r, res_queue, name): super(Worker, self).__init__() self.env = gym.make(env_name) self.env.seed(500) self.name = 'w%i' % name self.global_ep, self.global_ep_r, self.res_queue = global_ep, global_ep_r, res_queue self.online_net, self.target_net, self.optimizer = online_net, target_net, optimizer def record(self, score, epsilon, loss): with self.global_ep.get_lock(): self.global_ep.value += 1 with self.global_ep_r.get_lock(): if self.global_ep_r.value == 0.: self.global_ep_r.value = score else: self.global_ep_r.value = 0.99 * self.global_ep_r.value + 0.01 * score if self.global_ep.value % log_interval == 0: print('{} , {} episode | score: {:.2f}, | epsilon: {:.2f}'.format( self.name, self.global_ep.value, self.global_ep_r.value, epsilon)) self.res_queue.put([self.global_ep.value, self.global_ep_r.value, loss]) def update_target_model(self): self.target_net.load_state_dict(self.online_net.state_dict()) def get_action(self, state, epsilon): if np.random.rand() <= epsilon: return self.env.action_space.sample() else: return self.target_net.get_action(state) def run(self): epsilon = 1.0 steps = 0 while self.global_ep.value < max_episode: if self.global_ep_r.value > goal_score: break done = False score = 0 state = self.env.reset() state = torch.Tensor(state).to(device) state = state.unsqueeze(0) memory = Memory(async_update_step) while not done: steps += 1 action = self.get_action(state, epsilon) next_state, reward, done, _ = self.env.step(action) next_state = torch.Tensor(next_state) next_state = next_state.unsqueeze(0) mask = 0 if done else 1 reward = reward if not done or score == 499 else -1 action_one_hot = np.zeros(2) action_one_hot[action] = 1 memory.push(state, next_state, action_one_hot, reward, mask) score += reward state = next_state epsilon -= 0.00001 epsilon = max(epsilon, 0.1) if len(memory) == async_update_step or done: batch = memory.sample() loss = QNet.train_model(self.online_net, self.target_net, self.optimizer, batch) memory = Memory(async_update_step) if done: self.record(score, epsilon, loss) break if steps % update_target == 0: self.update_target_model() score = score if score == 500.0 else score + 1 self.res_queue.put(None)
models/image_recognition/tensorflow/resnet50v1_5/training/mlperf_compliance/_ssd_tags.py
yangw1234/models-1
567
12731674
# Copyright 2018 MLBenchmark Group. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keys which only appear in SSD. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Pretrained classifer model BACKBONE = "backbone" FEATURE_SIZES = "feature_sizes" STEPS = "steps" SCALES = "scales" ASPECT_RATIOS = "aspect_ratios" NUM_DEFAULTS_PER_CELL = "num_defaults_per_cell" LOC_CONF_OUT_CHANNELS = "loc_conf_out_channels" NUM_DEFAULTS = "num_default_boxes" # Overlap threshold for NMS NMS_THRESHOLD = "nms_threshold" NMS_MAX_DETECTIONS = "nms_max_detections" # data pipeline NUM_CROPPING_ITERATIONS = "num_cropping_iterations" RANDOM_FLIP_PROBABILITY = "random_flip_probability" DATA_NORMALIZATION_MEAN = "data_normalization_mean" DATA_NORMALIZATION_STD = "data_normalization_std"
tools/Vitis-AI-Quantizer/vai_q_pytorch/pytorch_binding/pytorch_nndct/utils/__init__.py
bluetiger9/Vitis-AI
848
12731704
from .torch_op_attr import * from .nndct2torch_op_map import * from .op_register import * from .torch_const import * from .tensor_utils import * from .schema import *
tests/test_action_interface_vrrp_vip.py
cognifloyd/stackstorm-vdx
164
12731732
<gh_stars>100-1000 """Generated test for checking pynos based actions """ import xml.etree.ElementTree as ET from st2tests.base import BaseActionTestCase from interface_vrrp_vip import interface_vrrp_vip __all__ = [ 'TestInterfaceVrrpVip' ] class MockCallback(object): # pylint:disable=too-few-public-methods """Class to hold mock callback and result """ returned_data = None def callback(self, call, **kwargs): # pylint:disable=unused-argument """Mock callback method """ xml_result = ET.tostring(call) self.returned_data = xml_result class TestInterfaceVrrpVip(BaseActionTestCase): """Test holder class """ action_cls = interface_vrrp_vip def test_action(self): """Generated test to check action """ action = self.get_action_instance() mock_callback = MockCallback() kwargs = { 'username': '', 'rbridge_id': '224', 'ip': '', 'vrid': '10', 'vip': '10.9.2.1', 'int_type': 'gigabitethernet', 'password': '', 'port': '22', 'name': '10/0/1', 'test': True, 'callback': mock_callback.callback } action.run(**kwargs) expected_xml = ( '<config><interface xmlns="urn:brocade.com:mgmt:brocade-interface"' '><gigabitethernet><name>10/0/1</name><vrrp xmlns="urn:brocade.com' ':mgmt:brocade-vrrp"><vrid>10</vrid><version>3</version><virtual-i' 'p><virtual-ipaddr>10.9.2.1</virtual-ipaddr></virtual-ip></vrrp></' 'gigabitethernet></interface></config>' ) self.assertTrue(expected_xml, mock_callback.returned_data)
tests/test_dithering.py
hamidralmasi/byteps
3,361
12731753
# Copyright 2020 Amazon Technologies, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import copy import itertools import unittest import byteps.mxnet as bps import mxnet as mx import mxnet.ndarray as nd import numpy as np from gluoncv.model_zoo import get_model from mxnet import autograd, gluon from numba import jit from parameterized import parameterized from tqdm import tqdm from meta_test import MetaTest from utils import bernoulli, fake_data @jit(nopython=True) def round_next_pow2(v): v -= np.uint32(1) v |= v >> np.uint32(1) v |= v >> np.uint32(2) v |= v >> np.uint32(4) v |= v >> np.uint32(8) v |= v >> np.uint32(16) v += np.uint32(1) return v def dithering(x, k, state, partition='linear', norm="max"): y = x.flatten() if norm == "max": scale = np.max(np.abs(y)) elif norm == "l2": scale = np.linalg.norm(y.astype(np.float64), ord=2) else: raise ValueError("Unsupported normalization") y /= scale sign = np.sign(y) y = np.abs(y) # stocastic rounding if partition == 'linear': y *= k low = np.floor(y) p = y - low # whether to ceil y = low + bernoulli(p, state) y /= k elif partition == "natural": y *= 2**(k-1) low = round_next_pow2((np.ceil(y).astype(np.uint32))) >> 1 length = copy.deepcopy(low) length[length == 0] = 1 p = (y - low) / length y = low + length * bernoulli(p, state) y = y.astype(np.float32) y /= 2**(k-1) else: raise ValueError("Unsupported partition") y *= sign y *= scale return y.reshape(x.shape) class DitheringTestCase(unittest.TestCase, metaclass=MetaTest): @parameterized.expand(itertools.product([2, 4, 8], ["linear, natural"], ["max", "l2"], np.random.randint(0, 2020, size=3).tolist())) def test_dithering(self, k, ptype, ntype, seed): ctx = mx.gpu(0) net = get_model("resnet18_v2") net.initialize(mx.init.Xavier(), ctx=ctx) net.summary(nd.ones((1, 3, 224, 224), ctx=ctx)) # hyper-params batch_size = 32 optimizer_params = {'momentum': 0, 'wd': 0, 'learning_rate': 0.01} compression_params = { "compressor": "dithering", "k": k, "partition": ptype, "normalize": ntype, "seed": seed } print(compression_params) trainer = bps.DistributedTrainer(net.collect_params( ), "sgd", optimizer_params, compression_params=compression_params) loss_fn = gluon.loss.SoftmaxCrossEntropyLoss() train_data = fake_data(batch_size=batch_size) params = {} rngs = {} rngs_s = {} for i, param in enumerate(trainer._params): if param.grad_req != 'null': params[i] = param._data[0].asnumpy() rngs[i] = np.array([seed, seed], dtype=np.uint64) rngs_s[i] = np.array([seed, seed], dtype=np.uint64) for it, batch in tqdm(enumerate(train_data)): data = batch[0].as_in_context(ctx) label = batch[1].as_in_context(ctx) with autograd.record(): output = net(data) loss = loss_fn(output, label) loss.backward() gs = {} xs = {} for i, param in enumerate(trainer._params): if param.grad_req != 'null': gs[i] = param._grad[0].asnumpy() xs[i] = param._data[0].asnumpy() trainer.step(batch_size) for i, param in enumerate(trainer._params): if param.grad_req != "null": g = gs[i] / (batch_size * bps.size()) c = dithering(g, k, rngs[i], ptype, ntype) cs = dithering(c, k, rngs_s[i], ptype, ntype) c = cs params[i] -= optimizer_params["learning_rate"] * c np_g = c.flatten() mx_g = param._grad[0].asnumpy().flatten() if not np.allclose(np_g, mx_g, atol=np.finfo(np.float32).eps): diff = np.abs(np_g - mx_g) print("np", np_g) print("mx", mx_g) print("diff", diff) print("max diff", np.max(diff)) idx = np.nonzero(diff > 1e-5) print("idx", idx, np_g[idx], mx_g[idx]) input() cnt = 0 tot = 0 for i, param in enumerate(trainer._params): if param.grad_req != "null": x = param._data[0].asnumpy() tot += len(x.flatten()) if not np.allclose(params[i], x, atol=np.finfo(np.float32).eps): diff = np.abs(x.flatten() - params[i].flatten()) idx = np.where(diff > np.finfo(np.float32).eps) cnt += len(idx[0]) assert cnt == 0, "false/tot=%d/%d=%f" % (cnt, tot, cnt/tot) if __name__ == '__main__': unittest.main()
html_parsing/Wikipedia__Timeline_of_release_years/Mortal_Kombat__series.py
DazEB2/SimplePyScripts
117
12731778
<reponame>DazEB2/SimplePyScripts<filename>html_parsing/Wikipedia__Timeline_of_release_years/Mortal_Kombat__series.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # Хронология выхода игр from common import get_parsed_two_column_wikitable def is_match_table_func(table) -> bool: return 'TIMELINE OF RELEASE YEARS' in table.caption.text.strip().upper() url = 'https://en.wikipedia.org/wiki/Mortal_Kombat' for year, name in get_parsed_two_column_wikitable(url, is_match_table_func): print(f'{year}: {name}') # 1992: Mortal Kombat # 1993: Mortal Kombat II # 1995: Mortal Kombat 3 # 1995: Ultimate Mortal Kombat 3 # 1996: Mortal Kombat Trilogy # 1997: Mortal Kombat Mythologies: Sub-Zero # 1997: Mortal Kombat 4 # 1999: Mortal Kombat Gold # 2000: Mortal Kombat: Special Forces # 2002: Mortal Kombat: Deadly Alliance # 2004: Mortal Kombat: Deception # 2005: Mortal Kombat: Shaolin Monks # 2006: Mortal Kombat: Armageddon # 2006: Mortal Kombat: Unchained # 2007: Ultimate Mortal Kombat # 2008: Mortal Kombat vs. DC Universe # 2011: Mortal Kombat # 2011: Mortal Kombat Arcade Kollection # 2012: Mortal Kombat: Komplete Edition # 2015: Mortal Kombat X # 2016: Mortal Kombat XL # 2019: Mortal Kombat 11
src/chime_dash/app/components/intro.py
riverkoko/chime
222
12731832
<gh_stars>100-1000 """components/intro initializes the leading text as of right now currently both classes handle control and view this should be separated with the logic for dynamic text moving to services. """ from typing import List from dash.development.base_component import ComponentMeta from dash_core_components import Markdown from chime_dash.app.components.base import Component class Intro(Component): """ """ localization_file = "intro.yml" def get_html(self) -> List[ComponentMeta]: # pylint: disable=W0613 """Initializes the header dash html """ return [Markdown(id="intro", dangerously_allow_html=True, dedent=True)] def build(self, model, pars): result = None if model and pars: intro = self.content infected_population_warning_str = ( intro["infected-population-warning"] if model.infected > pars.population else "" ) mitigation_rt_str = ( intro["mitigation-rt-less-than-1"] if model.r_t < 1 else intro["mitigation-rt-more-than-equal-1"] ) result = intro["description-total-infection"].format( total_infections=model.infected, current_hosp=pars.current_hospitalized, hosp_rate=pars.hospitalized.rate, S=pars.population, market_share=pars.market_share ) + "\n\n" + infected_population_warning_str + "\n\n" + intro["description-doubling-time"].format( doubling_time=pars.doubling_time, recovery_days=pars.infectious_days, r_naught=model.r_naught, daily_growth=model.daily_growth_rate * 100.0 ) + "\n\n" + mitigation_rt_str.format( relative_contact_rate=pars.relative_contact_rate, doubling_time_t=model.doubling_time_t, r_t=model.r_t, daily_growth_t=model.daily_growth_rate_t * 100.0 ) return [result]
tests/test_models.py
kaaass/BGmi
483
12731838
<filename>tests/test_models.py from bgmi.lib.models import Filter from bgmi.website.model import Episode def test_include(): e = Filter(include="2,3,5").apply_on_episodes( [ Episode(name="1", title="1", download="1", episode=1), Episode(name="1", title="1", download="2", episode=1), Episode(name="2", title="2", download="3", episode=2), Episode(name="2", title="2", download="4", episode=2), Episode(name="3", title="3", download="5", episode=3), Episode(name="5", title="5", download="6", episode=5), ] ) assert len(e) == 4, e assert {x.download for x in e} == set("3456") def test_exclude(): e = Filter(exclude="2,3,5").apply_on_episodes( [ Episode(title="1", download="1", episode=1), Episode(title="1", download="2", episode=2), Episode(title="2", download="3", episode=1), Episode(title="2", download="4", episode=2), Episode(title="3", download="5", episode=3), Episode(title="5", download="6", episode=5), ] ) assert len(e) == 2, e assert {x.download for x in e} == {"1", "2"}
release/stubs.min/System/__init___parts/ResolveEventArgs.py
htlcnn/ironpython-stubs
182
12731863
<filename>release/stubs.min/System/__init___parts/ResolveEventArgs.py class ResolveEventArgs(EventArgs): """ Provides data for loader resolution events,such as the System.AppDomain.TypeResolve,System.AppDomain.ResourceResolve,System.AppDomain.ReflectionOnlyAssemblyResolve,and System.AppDomain.AssemblyResolve events. ResolveEventArgs(name: str) ResolveEventArgs(name: str,requestingAssembly: Assembly) """ @staticmethod def __new__(self,name,requestingAssembly=None): """ __new__(cls: type,name: str) __new__(cls: type,name: str,requestingAssembly: Assembly) """ pass Name=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the name of the item to resolve. Get: Name(self: ResolveEventArgs) -> str """ RequestingAssembly=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the assembly whose dependency is being resolved. Get: RequestingAssembly(self: ResolveEventArgs) -> Assembly """
tridet/data/augmentations/color_transform.py
flipson/dd3d
227
12731923
# Copyright 2021 Toyota Research Institute. All rights reserved. # pylint: disable=unused-argument from fvcore.transforms.transform import BlendTransform from detectron2.data.transforms import RandomBrightness as _RandomBrightness from detectron2.data.transforms import RandomContrast as _RandomContrast from detectron2.data.transforms import RandomSaturation as _RandomSaturation def apply_no_op_intrinsics(blend_tfm, intrinsics): return intrinsics def apply_no_op_depth(blend_tfm, depth): return depth def apply_no_op_box3d(blend_tfm, box3d): return box3d # (dennis.park) Augment ResizeTransform to handle intrinsics, depth BlendTransform.register_type("intrinsics", apply_no_op_intrinsics) BlendTransform.register_type("depth", apply_no_op_depth) BlendTransform.register_type("box3d", apply_no_op_box3d) class RandomContrast(_RandomContrast): def get_transform(self, image): tfm = super().get_transform(image) return BlendTransform(tfm.src_image, tfm.src_weight, tfm.dst_weight) class RandomBrightness(_RandomBrightness): def get_transform(self, image): tfm = super().get_transform(image) return BlendTransform(tfm.src_image, tfm.src_weight, tfm.dst_weight) class RandomSaturation(_RandomSaturation): def get_transform(self, image): tfm = super().get_transform(image) return BlendTransform(tfm.src_image, tfm.src_weight, tfm.dst_weight)
datapackage_pipelines/generators/schedules.py
gperonato/datapackage-pipelines
109
12731981
SCHEDULE_NONE = None SCHEDULE_HOURLY = '0 * * * *' SCHEDULE_DAILY = '0 0 * * *' SCHEDULE_WEEKLY = '0 0 * * 0' SCHEDULE_MONTHLY = '0 0 1 * *' SCHEDULE_YEARLY = '0 0 1 1 *'
indra/util/perm_cache.py
zebulon2/indra
136
12731999
<gh_stars>100-1000 __all__ = ['perm_cache'] import json import pickle from functools import update_wrapper from os.path import exists def perm_cache(cache_type='pkl', cache_file=None): class PermCache(object): _cache_type = cache_type _cache_file = cache_file def __init__(self, func): if self._cache_type not in ['pkl', 'json']: raise ValueError("Invalid cache type: %s" % self._cache_type) self._cache_type = self._cache_type self.func = func if self._cache_file is None: self._cache_file = (func.__code__.co_filename .replace('.py', '.' + self.func.__name__)) self._cache_file += '.cache' if self._cache_file.endswith('.py'): self._cache_file = self._cache_file.replace('.py', '.' + self._cache_type) else: self._cache_file += '.' + self._cache_type if exists(self._cache_file): if self._cache_type == 'pkl': with open(self._cache_file, 'rb') as f: self.cache = pickle.load(f) elif self._cache_type == 'json': with open(self._cache_file, 'r') as f: self.cache = json.load(f) else: self.cache = {} self.__cache_info = dict.fromkeys(['added', 'read', 'total'], 0) update_wrapper(self, func) return def __call__(self, *args, **kwargs): key = ' '.join(args) \ + ' '.join(['%s=%s' % (k, v) for k, v in kwargs.items()]) self.__cache_info['total'] += 1 try: res = self.cache[key] self.__cache_info['read'] += 1 except KeyError: res = self.func(*args, **kwargs) self.cache[key] = res self.__cache_info['added'] += 1 return res def cache_info(self): return self.__cache_info.copy() def stash_cache(self): if self._cache_type == 'pkl': with open(self._cache_file, 'wb') as f: pickle.dump(self.cache, f) elif self._cache_type == 'json': with open(self._cache_file, 'w') as f: json.dump(self.cache, f, indent=2) return return PermCache
toy/visualise-dataset.py
Cyanogenoid/vqa-counting
205
12732035
<reponame>Cyanogenoid/vqa-counting import sys import random import data import torch import matplotlib.pyplot as plt import matplotlib.patches as patches plt.rc('text', usetex=True) plt.rc('font', family='serif', serif='Times') q = float(sys.argv[1]) # guessing seeds for nice looking datasets torch.manual_seed(int(2 * q) + 10) random.seed(int(2 * q) + 16) cm = plt.cm.coolwarm params = [ (0.05, q), (0.1, q), (0.2, q), (0.3, q), (0.4, q), (0.5, q), ] n = 0 plt.figure(figsize=(4, 11.5), dpi=200) for coord, noise in params: dataset = data.ToyTask(10, coord, noise) a, b, c = next(iter(dataset)) ax_true = plt.subplot(len(params), 2, n + 1, aspect='equal') ax_data = plt.subplot(len(params), 2, n + 2, aspect='equal') for i, (weight, box) in enumerate(zip(a, b)): x = box[0] y = box[1] w = box[2] - box[0] h = box[3] - box[1] config = { 'alpha': 0.3, 'linewidth': 0, } ax_true.add_patch(patches.Rectangle( (x, y), w, h, **config, color=cm(1 - float(i < c)) )) ax_data.add_patch(patches.Rectangle( (x, y), w, h, **config, color=cm(1 - weight) )) ax_true.axes.get_xaxis().set_visible(False) ax_data.axes.get_xaxis().set_visible(False) ax_true.axes.get_yaxis().set_major_locator(plt.NullLocator()) ax_data.axes.get_yaxis().set_visible(False) ax_true.set_title('Ground truth: {}'.format(c)) ax_data.set_title('Data') ax_true.set_ylabel('$l = {}$'.format(coord)) n += 2 plt.suptitle('\Large$q = {}$'.format(noise)) plt.subplots_adjust(left=0.1, right=0.9, top=0.96, bottom=0.0, hspace=0) plt.savefig('dataset-{}.pdf'.format(int(round(10 * q))))
pages/cache.py
timbortnik/django-page-cms
113
12732098
# -*- coding: utf-8 -*- from django.core.cache import caches from django.core.cache.backends.base import InvalidCacheBackendError try: cache = caches['pages'] except InvalidCacheBackendError: cache = caches['default']
tests/godagtimed_old.py
flying-sheep/goatools
477
12732122
#!/usr/bin/env python """Test deprecated location of GoDagTimed""" import os import timeit from goatools.test_data.godag_timed import GoDagTimed from goatools.test_data.godag_timed import prt_hms from goatools.base import download_go_basic_obo REPO = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..") def test_deprecatedloc_godagtimed(): """Test deprecated location of GoDagTimed""" tic = timeit.default_timer() prt_hms(tic, 'prt_hms TESTED') fin_go_obo = os.path.join(REPO, "go-basic.obo") download_go_basic_obo(fin_go_obo, loading_bar=None) GoDagTimed(fin_go_obo) if __name__ == '__main__': test_deprecatedloc_godagtimed()
tools/noms/pushd.py
rajeev02101987/noms
8,126
12732137
#!/usr/bin/python # Copyright 2016 <NAME>, Inc. All rights reserved. # Licensed under the Apache License, version 2.0: # http://www.apache.org/licenses/LICENSE-2.0 import os from contextlib import contextmanager @contextmanager def pushd(path): currentDir = os.getcwd() os.chdir(path) yield os.chdir(currentDir)
social/backends/beats.py
raccoongang/python-social-auth
1,987
12732147
<filename>social/backends/beats.py<gh_stars>1000+ from social_core.backends.beats import BeatsOAuth2
gateway/lora/aes-python-lib/LoRaWAN/PhyPayload.py
leavitia/ioticd
654
12732166
<filename>gateway/lora/aes-python-lib/LoRaWAN/PhyPayload.py # # lorawan packet: mhdr(1) mac_payload(1..N) mic(4) # from MalformedPacketException import MalformedPacketException from MHDR import MHDR from Direction import Direction from MacPayload import MacPayload class PhyPayload: def __init__(self, key): self.key = key def read(self, packet): if len(packet) < 12: raise MalformedPacketException("Invalid lorawan packet"); self.mhdr = MHDR(packet[0]) self.set_direction() self.mac_payload = MacPayload() self.mac_payload.read(self.get_mhdr().get_mtype(), packet[1:-4]) self.mic = packet[-4:] def create(self, mhdr, args): self.mhdr = MHDR(mhdr) self.set_direction() self.mac_payload = MacPayload() self.mac_payload.create(self.get_mhdr().get_mtype(), self.key, args) self.mic = None def length(self): return len(self.to_raw()) def to_raw(self): phy_payload = [self.get_mhdr().to_raw()] phy_payload += self.mac_payload.to_raw() phy_payload += self.get_mic() return phy_payload def get_mhdr(self): return self.mhdr; def set_mhdr(self, mhdr): self.mhdr = mhdr def get_direction(self): return self.direction.get() def set_direction(self): self.direction = Direction(self.get_mhdr()) def get_mac_payload(self): return self.mac_payload def set_mac_payload(self, mac_payload): self.mac_payload = mac_payload def get_mic(self): if self.mic == None: self.set_mic(self.compute_mic()) return self.mic def set_mic(self, mic): self.mic = mic def compute_mic(self): return self.mac_payload.frm_payload.compute_mic(self.key, self.get_direction(), self.get_mhdr()) def valid_mic(self): return self.get_mic() == self.mac_payload.frm_payload.compute_mic(self.key, self.get_direction(), self.get_mhdr()) def get_payload(self): return self.mac_payload.frm_payload.decrypt_payload(self.key, self.get_direction())
google-api-client-generator/src/googleapis/codegen/unicode_test.py
cclauss/discovery-artifact-manager
709
12732170
#!/usr/bin/python2.7 # -*- coding: utf-8 -*- # Copyright 2010 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Unicode handling.""" import json import os import gflags as flags from google.apputils import basetest from googleapis.codegen import api FLAGS = flags.FLAGS class UnicodeTest(basetest.TestCase): _TEST_DISCOVERY_DOC = 'unicode.json' def ApiFromDiscoveryDoc(self, path): """Load a discovery doc from a file and creates a library Api. Args: path: (str) The path to the document. Returns: An Api for that document. """ with open(os.path.join(os.path.dirname(__file__), 'testdata', path)) as f: discovery_doc = json.loads(f.read().decode('utf-8')) return api.Api(discovery_doc) def testGiveMeAName(self): an_api = self.ApiFromDiscoveryDoc(self._TEST_DISCOVERY_DOC) accented = u'\xdaRL' # "URL" with an accent # An object which holds a count. This is just to have an object to # increment as a side-effect of a lambda. class Counter(object): value = 0 def Increment(self, expr): self.value += expr or 0 def CheckDescription(counter, x, match): """Does a CodeObject object contain a string in its description.""" counter.Increment(match in (x.values.get('description') or '')) # Look for 'RL' for a baseline rl_counter = Counter() an_api.VisitAll(lambda x: CheckDescription(rl_counter, x, 'RL')) self.assertLess(6, rl_counter.value) url_counter = Counter() an_api.VisitAll(lambda x: CheckDescription(url_counter, x, accented)) self.assertEquals(rl_counter.value, url_counter.value) def CheckEnumDescription(counter, x, match): enum_type = x.values.get('enumType') if enum_type: for _, _, description in enum_type.values.get('pairs') or []: counter.Increment(match in description) enum_counter = Counter() an_api.VisitAll(lambda x: CheckEnumDescription(enum_counter, x, accented)) self.assertEquals(2, enum_counter.value) if __name__ == '__main__': basetest.main()
tests/test_tower.py
theosech/ec
290
12732191
<gh_stars>100-1000 import unittest class TestTowerMain(unittest.TestCase): def test_imports(self): try: from dreamcoder.domains.tower.main import ( Flatten, TowerCNN, tower_options, dreamOfTowers, visualizePrimitives, main ) except Exception: self.fail('Unable to import tower module') if __name__ == '__main__': unittest.main()
shynet/core/migrations/0006_service_hide_referrer_regex.py
f97/shynet
1,904
12732201
# Generated by Django 3.0.6 on 2020-05-07 21:23 from django.db import migrations, models import core.models class Migration(migrations.Migration): dependencies = [ ("core", "0005_service_ignored_ips"), ] operations = [ migrations.AddField( model_name="service", name="hide_referrer_regex", field=models.TextField( blank=True, default="", validators=[core.models._validate_regex] ), ), ]
lithops/util/joblib/lithops_backend.py
kpavel/lithops
158
12732237
# # (C) Copyright Cloudlab URV 2021 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import gc import logging import pickle import diskcache from joblib._parallel_backends import ParallelBackendBase, PoolManagerMixin from joblib.parallel import register_parallel_backend from numpy import ndarray from concurrent.futures import ThreadPoolExecutor from lithops.multiprocessing import Pool from lithops.storage import Storage logger = logging.getLogger(__name__) def register_lithops(): """ Register Lithops Backend to be called with parallel_backend("lithops"). """ register_parallel_backend("lithops", LithopsBackend) class LithopsBackend(ParallelBackendBase, PoolManagerMixin): """A ParallelBackend which will use a multiprocessing.Pool. Will introduce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. However, does not suffer from the Python Global Interpreter Lock. """ def __init__(self, nesting_level=None, inner_max_num_threads=None, **pool_kwargs): super().__init__(nesting_level, inner_max_num_threads, **{}) self.__pool_kwargs = pool_kwargs # Environment variables to protect against bad situations when nesting JOBLIB_SPAWNED_PROCESS = "__JOBLIB_SPAWNED_PARALLEL__" supports_timeout = True supports_sharedmem = False def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel. This also checks if we are attempting to create a nested parallel loop. """ # this must be 1 as we only want to create 1 LithopsExecutor() return 1 def configure(self, n_jobs=1, parallel=None, prefer=None, require=None, **memmappingpool_args): """Build a process or thread pool and return the number of workers""" n_jobs = self.effective_n_jobs(n_jobs) already_forked = int(os.environ.get(self.JOBLIB_SPAWNED_PROCESS, 0)) if already_forked: raise ImportError( '[joblib] Attempting to do parallel computing ' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect your main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information') # Set an environment variable to avoid infinite loops os.environ[self.JOBLIB_SPAWNED_PROCESS] = '1' # Make sure to free as much memory as possible before forking gc.collect() self._pool = Pool() self.parallel = parallel return n_jobs def terminate(self): """Shutdown the process or thread pool""" super().terminate() if self.JOBLIB_SPAWNED_PROCESS in os.environ: del os.environ[self.JOBLIB_SPAWNED_PROCESS] def compute_batch_size(self): return int(1e6) def apply_async(self, func, callback=None): """Schedule a func to be run""" # return self._get_pool().map_async(handle_call, func.items, callback=callback) # bypass mem_opt_calls = find_shared_objects(func.items) return self._get_pool().starmap_async(handle_call, mem_opt_calls) def find_shared_objects(calls): # find and annotate repeated arguments record = {} for i, call in enumerate(calls): for j, arg in enumerate(call[1]): if id(arg) in record: record[id(arg)].append((i, j)) else: record[id(arg)] = [arg, (i, j)] for k, v in call[2].items(): if id(v) in record: record[id(v)].append((i, k)) else: record[id(v)] = [v, (i, k)] # If we found multiple occurrences of one object, then # store it in shared memory, pass a proxy as a value calls = [list(item) for item in calls] storage = Storage() thread_pool = ThreadPoolExecutor(max_workers=len(record)) def put_arg_obj(positions): obj = positions.pop(0) if len(positions) > 1 and consider_sharing(obj): logger.debug('Proxying {}'.format(type(obj))) obj_bin = pickle.dumps(obj) cloud_object = storage.put_cloudobject(obj_bin) for pos in positions: call_n, idx_or_key = pos call = calls[call_n] if isinstance(idx_or_key, str): call[2][idx_or_key] = cloud_object else: args_as_list = list(call[1]) args_as_list[idx_or_key] = cloud_object call[1] = tuple(args_as_list) try: call[3].append(idx_or_key) except IndexError: call.append([idx_or_key]) fut = [] for positions in record.values(): f = thread_pool.submit(put_arg_obj, positions) fut.append(f) [f.result() for f in fut] return [tuple(item) for item in calls] def handle_call(func, args, kwargs, proxy_positions=[]): if len(proxy_positions) > 0: args, kwargs = replace_with_values(args, kwargs, proxy_positions) return func(*args, **kwargs) def replace_with_values(args, kwargs, proxy_positions): args_as_list = list(args) thread_pool = ThreadPoolExecutor(max_workers=len(proxy_positions)) cache = diskcache.Cache('/tmp/lithops/cache') def get_arg_obj(idx_or_key): if isinstance(idx_or_key, str): obj_id = kwargs[idx_or_key] else: obj_id = args_as_list[idx_or_key] if obj_id in cache: logger.debug('Get {} (arg {}) from cache'.format(obj_id, idx_or_key)) obj = cache[obj_id] else: logger.debug('Get {} (arg {}) from storage'.format(obj_id, idx_or_key)) storage = Storage() obj_bin = storage.get_cloudobject(obj_id) obj = pickle.loads(obj_bin) cache[obj_id] = obj if isinstance(idx_or_key, str): kwargs[idx_or_key] = obj else: args_as_list[idx_or_key] = obj fut = [] for idx_or_key in proxy_positions: f = thread_pool.submit(get_arg_obj, idx_or_key) fut.append(f) [f.result() for f in fut] return args_as_list, kwargs def consider_sharing(obj): if isinstance(obj, (ndarray, list)): # TODO: some heuristic return True return False
gammapy/astro/darkmatter/utils.py
Rishank2610/gammapy
155
12732238
<filename>gammapy/astro/darkmatter/utils.py # Licensed under a 3-clause BSD style license - see LICENSE.rst """Utilities to compute J-factor maps.""" import astropy.units as u __all__ = ["JFactory"] class JFactory: """Compute J-Factor maps. All J-Factors are computed for annihilation. The assumed dark matter profiles will be centered on the center of the map. Parameters ---------- geom : `~gammapy.maps.WcsGeom` Reference geometry profile : `~gammapy.astro.darkmatter.profiles.DMProfile` Dark matter profile distance : `~astropy.units.Quantity` Distance to convert angular scale of the map """ def __init__(self, geom, profile, distance): self.geom = geom self.profile = profile self.distance = distance def compute_differential_jfactor(self): r"""Compute differential J-Factor. .. math:: \frac{\mathrm d J}{\mathrm d \Omega} = \int_{\mathrm{LoS}} \mathrm d r \rho(r) """ # TODO: Needs to be implemented more efficiently separation = self.geom.separation(self.geom.center_skydir) rmin = separation.rad * self.distance rmax = self.distance val = [self.profile.integral(_, rmax) for _ in rmin.flatten()] jfact = u.Quantity(val).to("GeV2 cm-5").reshape(rmin.shape) return jfact / u.steradian def compute_jfactor(self): r"""Compute astrophysical J-Factor. .. math:: J(\Delta\Omega) = \int_{\Delta\Omega} \mathrm d \Omega^{\prime} \frac{\mathrm d J}{\mathrm d \Omega^{\prime}} """ diff_jfact = self.compute_differential_jfactor() return diff_jfact * self.geom.to_image().solid_angle()
iCaRL-Tensorflow/main_resnet_tf.py
augustoolucas/iCaRL
215
12732314
<filename>iCaRL-Tensorflow/main_resnet_tf.py<gh_stars>100-1000 import tensorflow as tf config = tf.ConfigProto() config.gpu_options.allow_growth = True import numpy as np import scipy import os import scipy.io import sys try: import cPickle except: import _pickle as cPickle # Syspath for the folder with the utils files #sys.path.insert(0, "/media/data/srebuffi") import utils_resnet import utils_icarl import utils_data ######### Modifiable Settings ########## batch_size = 128 # Batch size nb_val = 50 # Validation samples per class nb_cl = 10 # Classes per group nb_groups = 10 # Number of groups nb_proto = 20 # Number of prototypes per class: total protoset memory/ total number of classes epochs = 60 # Total number of epochs lr_old = 2. # Initial learning rate lr_strat = [20,30,40,50] # Epochs where learning rate gets decreased lr_factor = 5. # Learning rate decrease factor gpu = '0' # Used GPU wght_decay = 0.00001 # Weight Decay ######################################## ######### Paths ########## # Working station devkit_path = '/home/srebuffi' train_path = '/data/datasets/imagenets72' save_path = '/data/srebuffi/backup/' ########################### ##################################################################################################### ### Initialization of some variables ### class_means = np.zeros((512,nb_groups*nb_cl,2,nb_groups)) loss_batch = [] files_protoset =[] for _ in range(nb_groups*nb_cl): files_protoset.append([]) ### Preparing the files for the training/validation ### # Random mixing print("Mixing the classes and putting them in batches of classes...") np.random.seed(1993) order = np.arange(nb_groups * nb_cl) mixing = np.arange(nb_groups * nb_cl) np.random.shuffle(mixing) # Loading the labels labels_dic, label_names, validation_ground_truth = utils_data.parse_devkit_meta(devkit_path) # Or you can just do like this # define_class = ['apple', 'banana', 'cat', 'dog', 'elephant', 'forg'] # labels_dic = {k: v for v, k in enumerate(define_class)} # Preparing the files per group of classes print("Creating a validation set ...") files_train, files_valid = utils_data.prepare_files(train_path, mixing, order, labels_dic, nb_groups, nb_cl, nb_val) # Pickle order and files lists and mixing with open(str(nb_cl)+'mixing.pickle','wb') as fp: cPickle.dump(mixing,fp) with open(str(nb_cl)+'settings_resnet.pickle','wb') as fp: cPickle.dump(order,fp) cPickle.dump(files_valid,fp) cPickle.dump(files_train,fp) ### Start of the main algorithm ### for itera in range(nb_groups): # Files to load : training samples + protoset print('Batch of classes number {0} arrives ...'.format(itera+1)) # Adding the stored exemplars to the training set if itera == 0: files_from_cl = files_train[itera] else: files_from_cl = files_train[itera][:] for i in range(itera*nb_cl): nb_protos_cl = int(np.ceil(nb_proto*nb_groups*1./itera)) # Reducing number of exemplars of the previous classes tmp_var = files_protoset[i] files_from_cl += tmp_var[0:min(len(tmp_var),nb_protos_cl)] ## Import the data reader ## image_train, label_train = utils_data.read_data(train_path, labels_dic, mixing, files_from_cl=files_from_cl) image_batch, label_batch_0 = tf.train.batch([image_train, label_train], batch_size=batch_size, num_threads=8) label_batch = tf.one_hot(label_batch_0,nb_groups*nb_cl) ## Define the objective for the neural network ## if itera == 0: # No distillation variables_graph,variables_graph2,scores,scores_stored = utils_icarl.prepare_networks(gpu,image_batch, nb_cl, nb_groups) # Define the objective for the neural network: 1 vs all cross_entropy with tf.device('/gpu:0'): scores = tf.concat(scores,0) l2_reg = wght_decay * tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES, scope='ResNet18')) loss_class = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=label_batch, logits=scores)) loss = loss_class + l2_reg learning_rate = tf.placeholder(tf.float32, shape=[]) opt = tf.train.MomentumOptimizer(learning_rate, 0.9) train_step = opt.minimize(loss,var_list=variables_graph) if itera > 0: # Distillation variables_graph,variables_graph2,scores,scores_stored = utils_icarl.prepare_networks(gpu,image_batch, nb_cl, nb_groups) # Copying the network to use its predictions as ground truth labels op_assign = [(variables_graph2[i]).assign(variables_graph[i]) for i in range(len(variables_graph))] # Define the objective for the neural network : 1 vs all cross_entropy + distillation with tf.device('/gpu:0'): scores = tf.concat(scores,0) scores_stored = tf.concat(scores_stored,0) old_cl = (order[range(itera*nb_cl)]).astype(np.int32) new_cl = (order[range(itera*nb_cl,nb_groups*nb_cl)]).astype(np.int32) label_old_classes = tf.sigmoid(tf.stack([scores_stored[:,i] for i in old_cl],axis=1)) label_new_classes = tf.stack([label_batch[:,i] for i in new_cl],axis=1) pred_old_classes = tf.stack([scores[:,i] for i in old_cl],axis=1) pred_new_classes = tf.stack([scores[:,i] for i in new_cl],axis=1) l2_reg = wght_decay * tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES, scope='ResNet18')) loss_class = tf.reduce_mean(tf.concat([tf.nn.sigmoid_cross_entropy_with_logits(labels=label_old_classes, logits=pred_old_classes),tf.nn.sigmoid_cross_entropy_with_logits(labels=label_new_classes, logits=pred_new_classes)],1)) loss = loss_class + l2_reg learning_rate = tf.placeholder(tf.float32, shape=[]) opt = tf.train.MomentumOptimizer(learning_rate, 0.9) train_step = opt.minimize(loss,var_list=variables_graph) ## Run the learning phase ## with tf.Session(config=config) as sess: # Launch the data reader coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) sess.run(tf.global_variables_initializer()) lr = lr_old # Run the loading of the weights for the learning network and the copy network if itera > 0: void0 = sess.run([(variables_graph[i]).assign(save_weights[i]) for i in range(len(variables_graph))]) void1 = sess.run(op_assign) for epoch in range(epochs): print("Batch of classes {} out of {} batches".format( itera + 1, nb_groups)) print('Epoch %i' % epoch) for i in range(int(np.ceil(len(files_from_cl)/batch_size))): loss_class_val, _ ,sc,lab = sess.run([loss_class, train_step,scores,label_batch_0], feed_dict={learning_rate: lr}) loss_batch.append(loss_class_val) # Plot the training error every 10 batches if len(loss_batch) == 10: print(np.mean(loss_batch)) loss_batch = [] # Plot the training top 1 accuracy every 80 batches if (i+1)%80 == 0: stat = [] stat += ([ll in best for ll, best in zip(lab, np.argsort(sc, axis=1)[:, -1:])]) stat =np.average(stat) print('Training accuracy %f' %stat) # Decrease the learning by 5 every 10 epoch after 20 epochs at the first learning rate if epoch in lr_strat: lr /= lr_factor coord.request_stop() coord.join(threads) # copy weights to store network save_weights = sess.run([variables_graph[i] for i in range(len(variables_graph))]) utils_resnet.save_model(save_path+'model-iteration'+str(nb_cl)+'-%i.pickle' % itera, scope='ResNet18', sess=sess) # Reset the graph tf.reset_default_graph() ## Exemplars management part ## nb_protos_cl = int(np.ceil(nb_proto*nb_groups*1./(itera+1))) # Reducing number of exemplars for the previous classes files_from_cl = files_train[itera] inits,scores,label_batch,loss_class,file_string_batch,op_feature_map = utils_icarl.reading_data_and_preparing_network(files_from_cl, gpu, itera, batch_size, train_path, labels_dic, mixing, nb_groups, nb_cl, save_path) with tf.Session(config=config) as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) void3 = sess.run(inits) # Load the training samples of the current batch of classes in the feature space to apply the herding algorithm Dtot,processed_files,label_dico = utils_icarl.load_class_in_feature_space(files_from_cl, batch_size, scores, label_batch, loss_class, file_string_batch, op_feature_map, sess) processed_files = np.array([x.decode() for x in processed_files]) # Herding procedure : ranking of the potential exemplars print('Exemplars selection starting ...') for iter_dico in range(nb_cl): ind_cl = np.where(label_dico == order[iter_dico+itera*nb_cl])[0] D = Dtot[:,ind_cl] files_iter = processed_files[ind_cl] mu = np.mean(D,axis=1) w_t = mu step_t = 0 while not(len(files_protoset[itera*nb_cl+iter_dico]) == nb_protos_cl) and step_t<1.1*nb_protos_cl: tmp_t = np.dot(w_t,D) ind_max = np.argmax(tmp_t) w_t = w_t + mu - D[:,ind_max] step_t += 1 if files_iter[ind_max] not in files_protoset[itera*nb_cl+iter_dico]: files_protoset[itera*nb_cl+iter_dico].append(files_iter[ind_max]) coord.request_stop() coord.join(threads) # Reset the graph tf.reset_default_graph() # Class means for iCaRL and NCM print('Computing theoretical class means for NCM and mean-of-exemplars for iCaRL ...') for iteration2 in range(itera+1): files_from_cl = files_train[iteration2] inits,scores,label_batch,loss_class,file_string_batch,op_feature_map = utils_icarl.reading_data_and_preparing_network(files_from_cl, gpu, itera, batch_size, train_path, labels_dic, mixing, nb_groups, nb_cl, save_path) with tf.Session(config=config) as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) void2 = sess.run(inits) Dtot,processed_files,label_dico = utils_icarl.load_class_in_feature_space(files_from_cl, batch_size, scores, label_batch, loss_class, file_string_batch, op_feature_map, sess) processed_files = np.array([x.decode() for x in processed_files]) for iter_dico in range(nb_cl): ind_cl = np.where(label_dico == order[iter_dico+iteration2*nb_cl])[0] D = Dtot[:,ind_cl] files_iter = processed_files[ind_cl] current_cl = order[range(iteration2*nb_cl,(iteration2+1)*nb_cl)] # Normal NCM mean class_means[:,order[iteration2*nb_cl+iter_dico],1,itera] = np.mean(D,axis=1) class_means[:,order[iteration2*nb_cl+iter_dico],1,itera] /= np.linalg.norm(class_means[:,order[iteration2*nb_cl+iter_dico],1,itera]) # iCaRL approximated mean (mean-of-exemplars) # use only the first exemplars of the old classes: nb_protos_cl controls the number of exemplars per class ind_herding = np.array([np.where(files_iter == files_protoset[iteration2*nb_cl+iter_dico][i])[0][0] for i in range(min(nb_protos_cl,len(files_protoset[iteration2*nb_cl+iter_dico])))]) D_tmp = D[:,ind_herding] class_means[:,order[iteration2*nb_cl+iter_dico],0,itera] = np.mean(D_tmp,axis=1) class_means[:,order[iteration2*nb_cl+iter_dico],0,itera] /= np.linalg.norm(class_means[:,order[iteration2*nb_cl+iter_dico],0,itera]) coord.request_stop() coord.join(threads) # Reset the graph tf.reset_default_graph() # Pickle class means and protoset with open(str(nb_cl)+'class_means.pickle','wb') as fp: cPickle.dump(class_means,fp) with open(str(nb_cl)+'files_protoset.pickle','wb') as fp: cPickle.dump(files_protoset,fp)
quarkc/test/ffi/expected/py/dependencies/docs/conf.py
datawire/quark
112
12732336
# -*- coding: utf-8 -*- # # dependencies documentation build configuration file, created by Quark extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon' ] templates_path = ['_templates'] source_suffix = '.rst' master_doc = 'index' project = u'dependencies' copyright = u'2015, dependencies authors' author = u'dependencies authors' version = '0.0.1' release = '0.0.1' language = None exclude_patterns = ['_build'] pygments_style = 'sphinx' todo_include_todos = False html_theme = 'alabaster' html_static_path = ['_static'] htmlhelp_basename = 'dependenciesdoc' latex_elements = {} latex_documents = [ (master_doc, 'dependencies.tex', u'dependencies Documentation', u'dependencies authors', 'manual'), ] man_pages = [ (master_doc, 'dependencies', u'dependencies Documentation', [author], 1) ] texinfo_documents = [ (master_doc, 'dependencies', u'dependencies Documentation', author, 'dependencies', 'One line description of dependencies.', 'Miscellaneous'), ]
misc/update/python/backfill_threaded.py
sy3kic/nZEDb
472
12732351
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import sys, os, time import threading try: import queue except ImportError: import Queue as queue import subprocess import string import signal import datetime import lib.info as info from lib.info import bcolors conf = info.readConfig() cur = info.connect() start_time = time.time() pathname = os.path.abspath(os.path.dirname(sys.argv[0])) print(bcolors.HEADER + "\nBackfill Threaded Started at {}".format(datetime.datetime.now().strftime("%H:%M:%S")) + bcolors.ENDC) #get values from db cur[0].execute("SELECT (SELECT value FROM settings WHERE setting = 'backfillthreads') as a, (SELECT value FROM tmux WHERE setting = 'backfill') as c, (SELECT value FROM tmux WHERE setting = 'backfill_groups') as d, (SELECT value FROM tmux WHERE setting = 'backfill_order') as e, (SELECT value FROM tmux WHERE setting = 'backfill_days') as f") dbgrab = cur[0].fetchall() run_threads = int(dbgrab[0][0]) type = int(dbgrab[0][1]) groups = int(dbgrab[0][2]) intorder = int(dbgrab[0][3]) intbackfilltype = int(dbgrab[0][4]) #get the correct oder by for the query if intorder == 1: group = "ORDER BY first_record_postdate DESC" elif intorder == 2: group = "ORDER BY first_record_postdate ASC" elif intorder == 3: group = "ORDER BY name ASC" elif intorder == 4: group = "ORDER BY name DESC" elif intorder == 5: group = "ORDER BY first_record DESC" else: group = "ORDER BY first_record ASC" #backfill days or safe backfill date if intbackfilltype == 1: backfilldays = "backfill_target" elif intbackfilltype == 2: backfilldays = "datediff(curdate(),(SELECT value FROM settings WHERE setting = 'safebackfilldate'))" #exit is set to safe backfill if len(sys.argv) == 1 and type == 4: print(bcolors.ERROR + "Tmux is set for Safe Backfill, no groups to process." + bcolors.ENDC) info.disconnect(cur[0], cur[1]) sys.exit() #query to grab backfill groups if len(sys.argv) > 1 and sys.argv[1] == "all": # Using string formatting is not the correct way to do this, but using +group is even worse # removing the % before the variables at the end of the query adds quotes/escapes strings cur[0].execute("SELECT name, first_record FROM groups WHERE first_record != 0 AND backfill = 1 %s" % (group)) else: if conf['DB_SYSTEM'] == "mysql": cur[0].execute("SELECT name, first_record FROM groups WHERE first_record != 0 AND first_record_postdate IS NOT NULL AND backfill = 1 AND (NOW() - interval %s DAY) < first_record_postdate %s LIMIT %s" % (backfilldays, group, groups)) elif conf['DB_SYSTEM'] == "pgsql": cur[0].execute("SELECT name, first_record FROM groups WHERE first_record != 0 AND first_record_postdate IS NOT NULL AND backfill = 1 AND (NOW() - interval '%s DAYS') < first_record_postdate %s LIMIT %s" % (backfilldays, group, groups)) datas = cur[0].fetchall() #close connection to mysql info.disconnect(cur[0], cur[1]) if not datas: print(bcolors.ERROR + "No Groups enabled for backfill" + bcolors.ENDC) sys.exit() my_queue = queue.Queue() time_of_last_run = time.time() class queue_runner(threading.Thread): def __init__(self, my_queue): threading.Thread.__init__(self) self.my_queue = my_queue def run(self): global time_of_last_run while True: try: my_id = self.my_queue.get(True, 1) except: if time.time() - time_of_last_run > 3: return else: if my_id: time_of_last_run = time.time() if len(sys.argv) > 1 and sys.argv[1] == "all": subprocess.call(["php", pathname+"/../nix/multiprocessing/.do_not_run/switch.php", "python backfill_all_quick "+my_id]) else: subprocess.call(["php", pathname+"/../nix/multiprocessing/.do_not_run/switch.php", "python backfill "+my_id]) time.sleep(.03) self.my_queue.task_done() def main(args): global time_of_last_run time_of_last_run = time.time() print(bcolors.HEADER + "We will be using a max of {} threads, a queue of {} groups".format(run_threads, "{:,}".format(len(datas))) + bcolors.ENDC) time.sleep(2) def signal_handler(signal, frame): sys.exit() signal.signal(signal.SIGINT, signal_handler) if True: #spawn a pool of place worker threads for i in range(run_threads): p = queue_runner(my_queue) p.setDaemon(False) p.start() #now load some arbitrary jobs into the queue for gnames in datas: time.sleep(.03) my_queue.put("%s %s" % (gnames[0], type)) my_queue.join() print(bcolors.HEADER + "\nBackfill Threaded Completed at {}".format(datetime.datetime.now().strftime("%H:%M:%S")) + bcolors.ENDC) print(bcolors.HEADER + "Running time: {}\n\n".format(str(datetime.timedelta(seconds=time.time() - start_time))) + bcolors.ENDC) if __name__ == '__main__': main(sys.argv[1:])
modules/nltk_contrib/mit/six863/tagging/tagparse.py
h4ck3rm1k3/NLP-project
123
12732377
<reponame>h4ck3rm1k3/NLP-project<filename>modules/nltk_contrib/mit/six863/tagging/tagparse.py from nltk.parse import chart from nltk import cfg from drawchart import ChartDemo from nltk.tokenize.regexp import wordpunct #from nltk_contrib.mit.six863.kimmo import * import re, pickle def chart_tagger(tagger): def insert_tags(thechart, tokens): """ Initialize a chart parser based on the results of a tagger. """ tagged_tokens = list(tagger.tag(tokens)) for i in range(len(tagged_tokens)): word, tag = tagged_tokens[i] leafedge = chart.LeafEdge(word, i) thechart.insert(chart.TreeEdge((i, i+1), cfg.Nonterminal(tag), [word], dot=1), [leafedge]) return insert_tags def chart_kimmo(kimmorules): def insert_tags(thechart, tokens): for i in range(len(tokens)): word = tokens[i] results = kimmorules.recognize(word.lower()) for surface, feat in results: match = re.match(r"PREFIX\('.*?'\)(.*?)\(.*", feat) if match: pos = match.groups()[0] else: pos = feat.split('(')[0] print surface, pos leafedge = chart.LeafEdge(word, i) thechart.insert(chart.TreeEdge((i, i+1), cfg.Nonterminal(pos), [word], dot=1), [leafedge]) return insert_tags def tagged_chart_parse(sentence, grammar, tagger): tokens = list(wordpunct(sentence)) demo = ChartDemo(grammar, tokens, initfunc=chart_tagger(tagger)) demo.mainloop() def kimmo_chart_parse(sentence, grammar, kimmo): tokens = list(wordpunct(sentence)) demo = ChartDemo(grammar, tokens, initfunc=chart_kimmo(kimmo)) demo.mainloop() def read(filename): f = open(filename) return f.read() def main(): sentence = 'The quick brown fox jumped over the lazy dog' grammar = cfg.parse_grammar(read('demo.cfg')) # load from pickle so it's faster tagger = pickle.load(open('demo_tagger.pickle')) tagged_chart_parse(sentence, grammar, tagger) #kimmo = load('english.yaml') #kimmo_chart_parse(sentence, grammar, kimmo) if __name__ == '__main__': main()
ai_economist/foundation/base/base_agent.py
sarahlc888/ai-economist
795
12732385
# Copyright (c) 2020, salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root # or https://opensource.org/licenses/BSD-3-Clause import random import numpy as np from ai_economist.foundation.base.registrar import Registry class BaseAgent: """Base class for Agent classes. Instances of Agent classes are created for each agent in the environment. Agent instances are stateful, capturing location, inventory, endogenous variables, and any additional state fields created by environment components during construction (see BaseComponent.get_additional_state_fields in base_component.py). They also provide a simple API for getting/setting actions for each of their registered action subspaces (which depend on the components used to build the environment). Args: idx (int or str): Index that uniquely identifies the agent object amongst the other agent objects registered in its environment. multi_action_mode (bool): Whether to allow the agent to take one action for each of its registered action subspaces each timestep (if True), or to limit the agent to take only one action each timestep (if False). """ name = "" def __init__(self, idx=None, multi_action_mode=None): assert self.name if idx is None: idx = 0 if multi_action_mode is None: multi_action_mode = False if isinstance(idx, str): self._idx = idx else: self._idx = int(idx) self.multi_action_mode = bool(multi_action_mode) self.single_action_map = ( {} ) # Used to convert single-action-mode actions to the general format self.action = dict() self.action_dim = dict() self._action_names = [] self._multi_action_dict = {} self._unique_actions = 0 self._total_actions = 0 self.state = dict(loc=[0, 0], inventory={}, escrow={}, endogenous={}) self._registered_inventory = False self._registered_endogenous = False self._registered_components = False self._noop_action_dict = dict() # Special flag to allow logic for multi-action-mode agents # that are not given any actions. self._passive_multi_action_agent = False # If this gets set to true, we can make masks faster self._one_component_single_action = False self._premask = None @property def idx(self): """Index used to identify this agent. Must be unique within the environment.""" return self._idx def register_inventory(self, resources): """Used during environment construction to populate inventory/escrow fields.""" assert not self._registered_inventory for entity_name in resources: self.inventory[entity_name] = 0 self.escrow[entity_name] = 0 self._registered_inventory = True def register_endogenous(self, endogenous): """Used during environment construction to populate endogenous state fields.""" assert not self._registered_endogenous for entity_name in endogenous: self.endogenous[entity_name] = 0 self._registered_endogenous = True def _incorporate_component(self, action_name, n): extra_n = ( 1 if self.multi_action_mode else 0 ) # Each sub-action has a NO-OP in multi action mode) self.action[action_name] = 0 self.action_dim[action_name] = n + extra_n self._action_names.append(action_name) self._multi_action_dict[action_name] = False self._unique_actions += 1 if self.multi_action_mode: self._total_actions += n + extra_n else: for action_n in range(1, n + 1): self._total_actions += 1 self.single_action_map[int(self._total_actions)] = [ action_name, action_n, ] def register_components(self, components): """Used during environment construction to set up state/action spaces.""" assert not self._registered_components for component in components: n = component.get_n_actions(self.name) if n is None: continue # Most components will have a single action-per-agent, so n is an int if isinstance(n, int): if n == 0: continue self._incorporate_component(component.name, n) # They can also internally handle multiple actions-per-agent, # so n is an tuple or list elif isinstance(n, (tuple, list)): for action_sub_name, n_ in n: if n_ == 0: continue if "." in action_sub_name: raise NameError( "Sub-action {} of component {} " "is illegally named.".format( action_sub_name, component.name ) ) self._incorporate_component( "{}.{}".format(component.name, action_sub_name), n_ ) # If that's not what we got something is funky. else: raise TypeError( "Received unexpected type ({}) from {}.get_n_actions('{}')".format( type(n), component.name, self.name ) ) for k, v in component.get_additional_state_fields(self.name).items(): self.state[k] = v # Currently no actions are available to this agent. Give it a placeholder. if len(self.action) == 0 and self.multi_action_mode: self._incorporate_component("PassiveAgentPlaceholder", 0) self._passive_multi_action_agent = True elif len(self.action) == 1 and not self.multi_action_mode: self._one_component_single_action = True self._premask = np.ones(1 + self._total_actions, dtype=np.float32) self._registered_components = True self._noop_action_dict = {k: v * 0 for k, v in self.action.items()} verbose = False if verbose: print(self.name, self.idx, "constructed action map:") for k, v in self.single_action_map.items(): print("single action map:", k, v) for k, v in self.action.items(): print("action:", k, v) for k, v in self.action_dim.items(): print("action_dim:", k, v) @property def action_spaces(self): """ if self.multi_action_mode == True: Returns an integer array with length equal to the number of action subspaces that the agent registered. The i'th element of the array indicates the number of actions associated with the i'th action subspace. In multi_action_mode, each subspace includes a NO-OP. Note: self._action_names describes which action subspace each element of the array refers to. Example: >> self.multi_action_mode True >> self.action_spaces [2, 5] >> self._action_names ["Build", "Gather"] # [1 Build action + Build NO-OP, 4 Gather actions + Gather NO-OP] if self.multi_action_mode == False: Returns a single integer equal to the total number of actions that the agent can take. Example: >> self.multi_action_mode False >> self.action_spaces 6 >> self._action_names ["Build", "Gather"] # 1 NO-OP + 1 Build action + 4 Gather actions. """ if self.multi_action_mode: action_dims = [] for m in self._action_names: action_dims.append(np.array(self.action_dim[m]).reshape(-1)) return np.concatenate(action_dims).astype(np.int32) n_actions = 1 # (NO-OP) for m in self._action_names: n_actions += self.action_dim[m] return n_actions @property def loc(self): """2D list of [row, col] representing agent's location in the environment.""" return self.state["loc"] @property def endogenous(self): """Dictionary representing endogenous quantities (i.e. "Labor"). Example: >> self.endogenous {"Labor": 30.25} """ return self.state["endogenous"] @property def inventory(self): """Dictionary representing quantities of resources in agent's inventory. Example: >> self.inventory {"Wood": 3, "Stone": 20, "Coin": 1002.83} """ return self.state["inventory"] @property def escrow(self): """Dictionary representing quantities of resources in agent's escrow. https://en.wikipedia.org/wiki/Escrow Escrow is used to manage any portion of the agent's inventory that is reserved for a particular purpose. Typically, something enters escrow as part of a contractual arrangement to disburse that something when another condition is met. An example is found in the ContinuousDoubleAuction Component class (see ../components/continuous_double_auction.py). When an agent creates an order to sell a unit of Wood, for example, the component moves one unit of Wood from the agent's inventory to its escrow. If another agent buys the Wood, it is moved from escrow to the other agent's inventory. By placing the Wood in escrow, it prevents the first agent from using it for something else (i.e. building a house). Notes: The inventory and escrow share the same keys. An agent's endowment refers to the total quantity it has in its inventory and escrow. Escrow is provided to simplify inventory management but its intended semantics are not enforced directly. It is up to Component classes to enforce these semantics. Example: >> self.inventory {"Wood": 0, "Stone": 1, "Coin": 3} """ return self.state["escrow"] def inventory_to_escrow(self, resource, amount): """Move some amount of a resource from agent inventory to agent escrow. Amount transferred is capped to the amount of resource in agent inventory. Args: resource (str): The name of the resource to move (i.e. "Wood", "Coin"). amount (float): The amount to be moved from inventory to escrow. Must be positive. Returns: Amount of resource actually transferred. Will be less than amount argument if amount argument exceeded the amount of resource in the inventory. Calculated as: transferred = np.minimum(self.state["inventory"][resource], amount) """ assert amount >= 0 transferred = float(np.minimum(self.state["inventory"][resource], amount)) self.state["inventory"][resource] -= transferred self.state["escrow"][resource] += transferred return float(transferred) def escrow_to_inventory(self, resource, amount): """Move some amount of a resource from agent escrow to agent inventory. Amount transferred is capped to the amount of resource in agent escrow. Args: resource (str): The name of the resource to move (i.e. "Wood", "Coin"). amount (float): The amount to be moved from escrow to inventory. Must be positive. Returns: Amount of resource actually transferred. Will be less than amount argument if amount argument exceeded the amount of resource in escrow. Calculated as: transferred = np.minimum(self.state["escrow"][resource], amount) """ assert amount >= 0 transferred = float(np.minimum(self.state["escrow"][resource], amount)) self.state["escrow"][resource] -= transferred self.state["inventory"][resource] += transferred return float(transferred) def total_endowment(self, resource): """Get the combined inventory+escrow endowment of resource. Args: resource (str): Name of the resource Returns: The amount of resource in the agents inventory and escrow. """ return self.inventory[resource] + self.escrow[resource] def reset_actions(self, component=None): """Reset all actions to the NO-OP action (the 0'th action index). If component is specified, only reset action(s) for that component. """ if not component: self.action.update(self._noop_action_dict) else: for k, v in self.action.items(): if "." in component: if k.lower() == component.lower(): self.action[k] = v * 0 else: base_component = k.split(".")[0] if base_component.lower() == component.lower(): self.action[k] = v * 0 def has_component(self, component_name): """Returns True if the agent has component_name as a registered subaction.""" return bool(component_name in self.action) def get_random_action(self): """ Select a component at random and randomly choose one of its actions (other than NO-OP). """ random_component = random.choice(self._action_names) component_action = random.choice( list(range(1, self.action_dim[random_component])) ) return {random_component: component_action} def get_component_action(self, component_name, sub_action_name=None): """ Return the action(s) taken for component_name component, or None if the agent does not use that component. """ if sub_action_name is not None: return self.action.get(component_name + "." + sub_action_name, None) matching_names = [ m for m in self._action_names if m.split(".")[0] == component_name ] if len(matching_names) == 0: return None if len(matching_names) == 1: return self.action.get(matching_names[0], None) return [self.action.get(m, None) for m in matching_names] def set_component_action(self, component_name, action): """Set the action(s) taken for component_name component.""" if component_name not in self.action: raise KeyError( "Agent {} of type {} does not have {} registered as a subaction".format( self.idx, self.name, component_name ) ) if self._multi_action_dict[component_name]: self.action[component_name] = np.array(action, dtype=np.int32) else: self.action[component_name] = int(action) def populate_random_actions(self): """Fill the action buffer with random actions. This is for testing.""" for component, d in self.action_dim.items(): if isinstance(d, int): self.set_component_action(component, np.random.randint(0, d)) else: d_array = np.array(d) self.set_component_action( component, np.floor(np.random.rand(*d_array.shape) * d_array) ) def parse_actions(self, actions): """Parse the actions array to fill each component's action buffers.""" if self.multi_action_mode: assert len(actions) == self._unique_actions if len(actions) == 1: self.set_component_action(self._action_names[0], actions[0]) else: for action_name, action in zip(self._action_names, actions): self.set_component_action(action_name, int(action)) # Single action mode else: # Action was supplied as an index of a specific subaction. # No need to do any lookup. if isinstance(actions, dict): if len(actions) == 0: return assert len(actions) == 1 action_name = list(actions.keys())[0] action = list(actions.values())[0] if action == 0: return self.set_component_action(action_name, action) # Action was supplied as an index into the full set of combined actions else: action = int(actions) # Universal NO-OP if action == 0: return action_name, action = self.single_action_map.get(action) self.set_component_action(action_name, action) def flatten_masks(self, mask_dict): """Convert a dictionary of component action masks into a single mask vector.""" if self._one_component_single_action: self._premask[1:] = mask_dict[self._action_names[0]] return self._premask no_op_mask = [1] if self._passive_multi_action_agent: return np.array(no_op_mask).astype(np.float32) list_of_masks = [] if not self.multi_action_mode: list_of_masks.append(no_op_mask) for m in self._action_names: if m not in mask_dict: raise KeyError("No mask provided for {} (agent {})".format(m, self.idx)) if self.multi_action_mode: list_of_masks.append(no_op_mask) list_of_masks.append(mask_dict[m]) return np.concatenate(list_of_masks).astype(np.float32) agent_registry = Registry(BaseAgent) """The registry for Agent classes. This creates a registry object for Agent classes. This registry requires that all added classes are subclasses of BaseAgent. To make an Agent class available through the registry, decorate the class definition with @agent_registry.add. Example: from ai_economist.foundation.base.base_agent import BaseAgent, agent_registry @agent_registry.add class ExampleAgent(BaseAgent): name = "Example" pass assert agent_registry.has("Example") AgentClass = agent_registry.get("Example") agent = AgentClass(...) assert isinstance(agent, ExampleAgent) Notes: The foundation package exposes the agent registry as: foundation.agents An Agent class that is defined and registered following the above example will only be visible in foundation.agents if defined/registered in a file that is imported in ../agents/__init__.py. """
test/tests/test_compatibility.py
nolim1t/specter-diy
279
12732407
<filename>test/tests/test_compatibility.py from unittest import TestCase from apps.compatibility import * import json from io import BytesIO WALLET_SOFTWARE = b'{"label": "blah", "blockheight": 0, "descriptor": "wsh(sortedmulti(1,[fb7c1f11/48h/1h/0h/2h]tpubDExnGppazLhZPNadP8Q5Vgee2QcvbyAf9GvGaEY7ALVJREaG2vdTqv1MHRoDtPaYP3y1DGVx7wrKKhsLhs26GY263uE6Wi3qNbi71AHZ6p7/0/*,[33a2bf0c/48h/1h/0h/2h]tpubDF4cAhFDn6XSPhQtFECSkQm35oEzVyHHAiPa4Qy83fBtPw9nFJAodN6xF6nY7y2xKMGc5nbDFZfAac88oaurVzrCUxyhmc9J8W5tg3N5NkS/0/*))#vk844svv", "devices": [{"type": "specter", "label": "ability"}, {"type": "coldcard", "label": "hox"}]}' COLDCARD_FILE = """ # Coldcard Multisig setup file (created on Specter Desktop) # Name: blah Policy: 1 of 2 Derivation: m/48'/1'/0'/2' Format: P2WSH FB7C1F11: tpubDExnGppazLhZPNadP8Q5Vgee2QcvbyAf9GvGaEY7ALVJREaG2vdTqv1MHRoDtPaYP3y1DGVx7wrKKhsLhs26GY263uE6Wi3qNbi71AHZ6p7 33A2BF0C: tpubDF4cAhFDn6XSPhQtFECSkQm35oEzVyHHAiPa4Qy83fBtPw9nFJAodN6xF6nY7y2xKMGc5nbDFZfAac88oaurVzrCUxyhmc9J8W5tg3N5NkS """ EXPECTED = ('blah', 'wsh(sortedmulti(1,[fb7c1f11/48h/1h/0h/2h]tpubDExnGppazLhZPNadP8Q5Vgee2QcvbyAf9GvGaEY7ALVJREaG2vdTqv1MHRoDtPaYP3y1DGVx7wrKKhsLhs26GY263uE6Wi3qNbi71AHZ6p7/{0,1}/*,[33a2bf0c/48h/1h/0h/2h]tpubDF4cAhFDn6XSPhQtFECSkQm35oEzVyHHAiPa4Qy83fBtPw9nFJAodN6xF6nY7y2xKMGc5nbDFZfAac88oaurVzrCUxyhmc9J8W5tg3N5NkS/{0,1}/*))') class CompatibilityTest(TestCase): def test_import(self): self.assertEqual(EXPECTED, parse_software_wallet_json(json.load(BytesIO(WALLET_SOFTWARE)))) self.assertEqual(EXPECTED, parse_cc_wallet_txt(BytesIO(COLDCARD_FILE.encode())))
plenum/test/metrics/conftest.py
andkononykhin/plenum
148
12732411
<gh_stars>100-1000 import pytest from plenum.common.constants import KeyValueStorageType from storage.helper import initKeyValueStorage from storage.kv_store import KeyValueStorage db_no = 0 @pytest.yield_fixture(params=[KeyValueStorageType.Rocksdb, KeyValueStorageType.Leveldb, KeyValueStorageType.BinaryFile]) def storage(request, tdir) -> KeyValueStorage: global db_no db = initKeyValueStorage(request.param, tdir, 'metrics_db_{}'.format(db_no)) db_no += 1 yield db db.close()
scitbx/source_generators/lbfgs_fem.py
rimmartin/cctbx_project
155
12732419
from __future__ import absolute_import, division, print_function import os def run(): import libtbx.load_env src_dir = libtbx.env.under_dist( module_name="scitbx", path="lbfgs", test=os.path.isdir) import fable.read all_fprocs = fable.read.process( file_names=[os.path.join(src_dir, f) for f in ["sdrive.f", "lbfgs.f"]]) namespace = "scitbx::lbfgs_fem" functions_public = set(["lbfgs", "blockdata_lb2"]) functions_detail = set(["lb1", "daxpy", "ddot", "mcstep", "mcsrch"]) functions_program = set(["one_pass"]) import fable.cout functions_hpp = fable.cout.process( all_fprocs=all_fprocs, namespace=namespace, fem_do_safe=False, suppress_program=True, suppress_common=False, suppress_functions=functions_detail.union(functions_program), suppress_function_definitions=functions_public) functions_cpp = fable.cout.process( all_fprocs=all_fprocs, namespace=namespace, fem_do_safe=False, suppress_program=True, suppress_common=True, suppress_functions=functions_program) functions_cpp[0] = "#include <scitbx/lbfgs_fem.hpp>" sdrive_cpp = fable.cout.process( all_fprocs=all_fprocs, namespace=namespace, fem_do_safe=False, suppress_common=True, suppress_functions=functions_detail.union(functions_public)) sdrive_cpp[0] = functions_cpp[0] # def make_target_dir(path): result = libtbx.env.under_build(path=path) if (not os.path.isdir(result)): os.makedirs(result) assert os.path.isdir(result) return result target_dir = make_target_dir(path="include/scitbx") with open(os.path.join(target_dir, "lbfgs_fem.hpp"), "w") as fh: fh.write("\n".join(functions_hpp)) target_dir = make_target_dir(path="scitbx/lbfgs") with open(os.path.join(target_dir, "lbfgs_fem.cpp"), "w") as fh: fh.write("\n".join(functions_cpp)) with open(os.path.join(target_dir, "sdrive_fem.cpp"), "w") as fh: fh.write("\n".join(sdrive_cpp)) if __name__ == "__main__": run()
python_toolbox/wx_tools/widgets/hue_selection_dialog/textual.py
hboshnak/python_toolbox
119
12732495
<reponame>hboshnak/python_toolbox # Copyright 2009-2011 <NAME>. # This program is distributed under the LGPL2.1 license. ''' Defines the `Textual` class. See its documentation for more details. ''' from __future__ import division import wx from python_toolbox import freezing from python_toolbox import wx_tools from python_toolbox.wx_tools.widgets.cute_panel import CutePanel def ratio_to_round_degrees(ratio): return int(ratio * 360) def degrees_to_ratio(degrees): return degrees / 360 class Textual(CutePanel): '''Display (and allow modifying) the hue as a number 0-359.''' def __init__(self, hue_selection_dialog): wx.Panel.__init__(self, parent=hue_selection_dialog, size=(75, 100)) self.set_good_background_color() self.SetHelpText( 'Set the hue in angles (0°-359°).' ) self.hue_selection_dialog = hue_selection_dialog self.hue = hue_selection_dialog.hue self.main_v_sizer = wx.BoxSizer(wx.VERTICAL) self.hue_static_text = wx.StaticText(self, label='&Hue:') self.main_v_sizer.Add(self.hue_static_text, 0, wx.ALIGN_LEFT | wx.BOTTOM, border=5) self.h_sizer = wx.BoxSizer(wx.HORIZONTAL) self.main_v_sizer.Add(self.h_sizer, 0) self.spin_ctrl = wx.SpinCtrl(self, min=0, max=359, initial=ratio_to_round_degrees(self.hue), size=(70, -1), style=wx.SP_WRAP) if wx_tools.is_mac: self.spin_ctrl.SetValue(ratio_to_round_degrees(self.hue)) self.h_sizer.Add(self.spin_ctrl, 0) self.degree_static_text = wx.StaticText(self, label=unichr(176)) self.h_sizer.Add(self.degree_static_text, 0) self.SetSizerAndFit(self.main_v_sizer) self.Bind(wx.EVT_SPINCTRL, self._on_spin, source=self.spin_ctrl) self.Bind(wx.EVT_TEXT, self._on_text, source=self.spin_ctrl) value_freezer = freezing.FreezerProperty() def update(self): '''Update to show the new hue.''' if not self.value_freezer.frozen and \ self.hue != self.hue_selection_dialog.hue: self.hue = self.hue_selection_dialog.hue self.spin_ctrl.SetValue(ratio_to_round_degrees(self.hue)) def _on_spin(self, event): self.hue_selection_dialog.setter( degrees_to_ratio(self.spin_ctrl.Value) ) def _on_text(self, event): with self.value_freezer: self.hue_selection_dialog.setter( degrees_to_ratio(self.spin_ctrl.Value) ) def set_focus_on_spin_ctrl_and_select_all(self): ''' The "select all" part works only on Windows and generic `wx.SpinCtrl` implementations. ''' self.spin_ctrl.SetFocus() self.spin_ctrl.SetSelection(-1, -1)
dataflows/processors/conditional.py
cschloer/dataflows
160
12732500
from .. import DataStreamProcessor class conditional(DataStreamProcessor): def __init__(self, predicate, flow): super().__init__() self.predicate = predicate self.flow = flow def _process(self): ds = self.source._process() if self.predicate(ds.dp): if callable(self.flow): flow = self.flow(ds.dp) else: flow = self.flow return flow.datastream(ds) else: return ds
caffe2/python/operator_test/string_ops_test.py
KevinKecc/caffe2
585
12732522
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np def _string_lists(alphabet=None): return st.lists( elements=st.text(alphabet=alphabet, average_size=3), min_size=0, max_size=3) class TestStringOps(hu.HypothesisTestCase): @given(strings=_string_lists()) def test_string_prefix(self, strings): length = 3 # although we are utf-8 encoding below to avoid python exceptions, # StringPrefix op deals with byte-length prefixes, which may produce # an invalid utf-8 string. The goal here is just to avoid python # complaining about the unicode -> str conversion. strings = np.array( [a.encode('utf-8') for a in strings], dtype=np.object ) def string_prefix_ref(strings): return ( np.array([a[:length] for a in strings], dtype=object), ) op = core.CreateOperator( 'StringPrefix', ['strings'], ['stripped'], length=length) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_prefix_ref) @given(strings=_string_lists()) def test_string_suffix(self, strings): length = 3 strings = np.array( [a.encode('utf-8') for a in strings], dtype=np.object ) def string_suffix_ref(strings): return ( np.array([a[-length:] for a in strings], dtype=object), ) op = core.CreateOperator( 'StringSuffix', ['strings'], ['stripped'], length=length) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_suffix_ref) @given(strings=st.text(alphabet=['a', 'b'], average_size=3)) def test_string_starts_with(self, strings): prefix = 'a' strings = np.array( [str(a) for a in strings], dtype=np.object ) def string_starts_with_ref(strings): return ( np.array([a.startswith(prefix) for a in strings], dtype=bool), ) op = core.CreateOperator( 'StringStartsWith', ['strings'], ['bools'], prefix=prefix) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_starts_with_ref) @given(strings=st.text(alphabet=['a', 'b'], average_size=3)) def test_string_ends_with(self, strings): suffix = 'a' strings = np.array( [str(a) for a in strings], dtype=np.object ) def string_ends_with_ref(strings): return ( np.array([a.endswith(suffix) for a in strings], dtype=bool), ) op = core.CreateOperator( 'StringEndsWith', ['strings'], ['bools'], suffix=suffix) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_ends_with_ref) if __name__ == "__main__": import unittest unittest.main()
tests/integration/cartography/intel/pagerduty/test_schedules.py
ramonpetgrave64/cartography
2,322
12732614
<reponame>ramonpetgrave64/cartography import cartography.intel.pagerduty.schedules import tests.data.pagerduty.schedules TEST_UPDATE_TAG = 123456789 def test_load_schedule_data(neo4j_session): schedule_data = tests.data.pagerduty.schedules.LIST_SCHEDULES_DATA cartography.intel.pagerduty.schedules.load_schedule_data( neo4j_session, schedule_data, TEST_UPDATE_TAG, ) expected_nodes = { "PI7DH85", } nodes = neo4j_session.run( """ MATCH (n:PagerDutySchedule) RETURN n.id; """, ) actual_nodes = {n['n.id'] for n in nodes} assert actual_nodes == expected_nodes expected_layers = { "PI7DH85-Night Shift", } layers = neo4j_session.run( """ MATCH (:PagerDutySchedule{id:"PI7DH85"})-[:HAS_LAYER]->(n:PagerDutyScheduleLayer) RETURN n.id; """, ) actual_layers = {n['n.id'] for n in layers} assert actual_layers == expected_layers
pyclue/tf1/models/engine/__init__.py
CLUEbenchmark/PyCLUE
122
12732618
<reponame>CLUEbenchmark/PyCLUE #!/usr/bin/python3 """ @Author: <NAME> @Site: https://github.com/liushaoweihua """ from __future__ import absolute_import from __future__ import division from __future__ import print_function
utils/ngworead.py
haygcao/UnicomDailyTask
148
12732621
<reponame>haygcao/UnicomDailyTask # -*- coding: utf8 -*- from utils.config import BASE_DIR from Crypto.Cipher import AES from Crypto.Util.Padding import unpad, pad from hashlib import md5 import base64 import execjs import json def auth_sign(appId, timestamp, key='<KEY>'): return md5(''.join([appId, key, str(timestamp)]).encode('utf8')).hexdigest() def encrypt(plaintext, accesstoken): key = accesstoken[16:].encode('utf8') iv = '16-Bytes--String'.encode('utf8') data = json.dumps(plaintext, ensure_ascii=False, separators=(',', ':',)).encode('utf8') data = pad(data, 16) cipher = AES.new(key, AES.MODE_CBC, iv) buf = cipher.encrypt(data).hex().encode('utf8') return base64.b64encode(buf).decode('utf8') def decrypt(ciphertext, accesstoken): key = accesstoken[16:].encode('utf8') iv = '16-Bytes--String'.encode('utf8') data = bytes.fromhex(base64.b64decode(ciphertext).decode('utf8')) cipher = AES.new(key, AES.MODE_CBC, iv) buf = cipher.decrypt(data) buf = unpad(buf, 16) return json.loads(buf) def cryptojs_encrypt(plaintext): key = 'null' iv = '16-Bytes--String' with open(BASE_DIR + '/utils/crypto-js.js', 'r', encoding='utf8') as fp: script = fp.read() ctx = execjs.compile(script) result = ctx.call('encrypt', key, iv, plaintext) return result def cryptojs_decrypt(ciphertext): key = 'null' iv = '16-Bytes--String' with open(BASE_DIR + '/utils/crypto-js.js', 'r', encoding='utf8') as fp: script = fp.read() ctx = execjs.compile(script) result = ctx.call('decrypt', key, iv, ciphertext) return result if __name__ == '__main__': pass
machina/models/__init__.py
AswinRetnakumar/Machina
302
12732625
from machina.models.base import BaseModel from machina.models.deterministic_state_model import DeterministicSModel
scripts/staging/sklearn/tests/util.py
mgd-hin/systemds
372
12732636
# ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- import sys import os import subprocess import difflib import logging def get_systemds_root(): try: return os.environ['SYSTEMDS_ROOT'] except KeyError as error: raise KeyError(f"SYSTEMDS_ROOT is not set.\nError\n{error}") def get_sklearn_root(): return f'{get_systemds_root()}/scripts/staging/sklearn' def invoke_systemds(path): root = get_systemds_root() try: script_path = os.path.relpath(path, os.getcwd()) result = subprocess.run([root + "/bin/systemds", script_path, '-nvargs input_X=tests/input_X.csv input_Y=tests/input_Y.csv'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=10000) logging.debug('*' * 100) logging.debug('\n' + result.stdout.decode('utf-8')) logging.debug('\n' + result.stderr.decode('utf-8')) logging.debug('*' * 100) # It looks like python does not notice systemds errors # Is 0 returned in error cases? # Check if there is any error and raise manually. if len(result.stderr) != 0 or 'error' in str(result.stdout).lower(): raise subprocess.CalledProcessError(returncode=result.returncode, cmd=result.args, stderr=result.stderr, output=result.stdout) except subprocess.CalledProcessError as systemds_error: logging.error("Failed to run systemds!") logging.error("Error code: " + str(systemds_error.returncode)) logging.error("Stdout:") logging.error(systemds_error.output.decode("utf-8")) logging.error("Stderr:") logging.error(systemds_error.stderr.decode("utf-8")) return False logging.info("Successfully executed script.") return True def test_script(path): logging.info('#' * 30) logging.info('Running generated script on systemds.') result = invoke_systemds(path) logging.info('Finished test.') return result # Compares two script using diff def compare_script(actual, expected): try: f_expected = open(f'{get_sklearn_root()}/tests/expected/{expected}') f_actual = open(f'{get_sklearn_root()}/{actual}') diff = difflib.ndiff(f_actual.readlines(), f_expected.readlines()) changes = [l.strip() for l in diff if not l.startswith(' ')] logging.info('#' * 30) if len(changes) == 0: logging.info('Actual script matches expected script.') return True else: logging.info('Actual script does not match expected script.') logging.info('Legend:') logging.info(' "+ " ... line unique to actual script') logging.info(' "- " ... line unique to expected script') logging.info(' "? " ... linue not present in either script') logging.info('#' * 30) logging.info('\n' + '\n'.join(changes)) logging.info('#' * 30) return False except Exception as e: logging.error('Failed to compare script.') logging.error(e) return False
tests/integration/workflows/go_modules/utils.py
ekmixon/aws-lambda-builders
180
12732678
from elftools.elf.elffile import ELFFile def get_executable_arch(path): """ Returns the architecture of an executable binary Parameters ---------- path : str path to the Go binaries generated Returns ------- str Architecture type of the generated binaries """ with open(str(path), "rb") as f: e = ELFFile(f) return e.get_machine_arch()
tests/core/wrapper/test_solc_wrapper.py
Jonasmpi/py-solc
153
12732681
from __future__ import unicode_literals import pytest import json import os from solc import get_solc_version from solc.wrapper import ( solc_wrapper, ) def is_benign(err): return not err or err in ( 'Warning: This is a pre-release compiler version, please do not use it in production.\n', ) def test_help(): output, err, _, _ = solc_wrapper(help=True, success_return_code=1) assert output assert 'Solidity' in output assert is_benign(err) def test_version(): output, err, _, _ = solc_wrapper(version=True) assert output assert 'Version' in output assert is_benign(err) def test_providing_stdin(FOO_SOURCE): output, err, _, _ = solc_wrapper(stdin=FOO_SOURCE, bin=True) assert output assert 'Foo' in output assert is_benign(err) def test_providing_single_source_file(contracts_dir, FOO_SOURCE): source_file_path = os.path.join(contracts_dir, 'Foo.sol') with open(source_file_path, 'w') as source_file: source_file.write(FOO_SOURCE) output, err, _, _ = solc_wrapper(source_files=[source_file_path], bin=True) assert output assert 'Foo' in output assert is_benign(err) def test_providing_multiple_source_files(contracts_dir, FOO_SOURCE, BAR_SOURCE): source_file_a_path = os.path.join(contracts_dir, 'Foo.sol') source_file_b_path = os.path.join(contracts_dir, 'Bar.sol') with open(source_file_a_path, 'w') as source_file: source_file.write(FOO_SOURCE) with open(source_file_b_path, 'w') as source_file: source_file.write(BAR_SOURCE) output, err, _, _ = solc_wrapper(source_files=[source_file_a_path, source_file_b_path], bin=True) assert output assert 'Foo' in output assert 'Bar' in output assert is_benign(err) @pytest.mark.requires_standard_json def test_providing_standard_json_input(FOO_SOURCE, BAR_SOURCE): stdin = json.dumps({ "language": "Solidity", "sources": { "Foo.sol": { "content": FOO_SOURCE }, "Bar.sol": { "content": BAR_SOURCE } }, "settings": { "outputSelection": { "*": { "*": [ "abi", "evm.bytecode.link_references", "evm.bytecode.object", "devdoc", "metadata", "userdoc" ] } } } }) output, err, _, _ = solc_wrapper(stdin=stdin, standard_json=True) output = json.loads(output) assert output assert 'Foo.sol' in output['contracts'] assert 'Bar.sol' in output['contracts'] assert is_benign(err)
examples/property_prediction/MTL/model/__init__.py
siboehm/dgl-lifesci
390
12732683
<filename>examples/property_prediction/MTL/model/__init__.py from .gcn import GCNRegressor, GCNRegressorBypass from .gat import GATRegressor, GATRegressorBypass from .mpnn import MPNNRegressor, MPNNRegressorBypass from .attentivefp import AttentiveFPRegressor, AttentiveFPRegressorBypass
nautobot/core/runner/importer.py
psmware-ltd/nautobot
384
12732698
<filename>nautobot/core/runner/importer.py<gh_stars>100-1000 """ logan.importer ~~~~~~~~~~~~~~ :copyright: (c) 2012 <NAME>. :license: Apache License 2.0, see LICENSE for more details. """ from __future__ import absolute_import, unicode_literals try: unicode except NameError: basestring = unicode = str # Python 3 try: execfile except NameError: # Python3 def execfile(afile, globalz=None, localz=None): with open(afile, "r") as fh: exec(fh.read(), globalz, localz) import sys try: from django.utils.importlib import import_module # django<=1.9 except ImportError: from importlib import import_module from .settings import load_settings, create_module installed = False def install(name, config_path, default_settings, **kwargs): """Install our custom module importer logic. Args: name (str): Module name to handle specially (e.g., "nautobot_config") config_path (str): Absolute path to the module in question (e.g., "/opt/nautobot/nautobot_config.py") default_settings (str): Settings module name to inherit settings from (e.g., "nautobot.core.settings") """ global installed if installed: # TODO: reinstall return # Ensure that our custom importer for the config module takes precedence over standard Python import machinery sys.meta_path.insert(0, LoganImporter(name, config_path, default_settings, **kwargs)) installed = True class ConfigurationError(Exception): pass class LoganImporter(object): """Implementation of importlib.abc.MetaPathFinder interface.""" def __init__(self, name, config_path, default_settings=None, allow_extras=True, callback=None): """Instantiate the custom meta path finder. Args: name (str): Module name to handle specially (e.g., "nautobot_config") config_path (str): Absolute path to the module in question (e.g., "/opt/nautobot/nautobot_config.py") default_settings (str): Settings module name to inherit settings from (e.g., "nautobot.core.settings") allow_extras (bool): Whether to allow extension of settings variables via "EXTRA_<setting>" values callback (func): Callback function to invoke after loading the module into settings """ self.name = name self.config_path = config_path self.default_settings = default_settings self.allow_extras = allow_extras self.callback = callback self.validate() def __repr__(self): return "<%s for '%s' (%s)>" % (type(self), self.name, self.config_path) def validate(self): # TODO(dcramer): is there a better way to handle validation so it # is lazy and actually happens in LoganLoader? try: execfile(self.config_path, {"__file__": self.config_path}) except Exception as e: exc_info = sys.exc_info() raise ConfigurationError(unicode(e), exc_info[2]) def find_module(self, fullname, path=None): """Meta path finder API function implementation. Ref: https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder.find_module TODO: find_module() API is deprecated, convert this to find_spec() instead. """ # Only find/load the module matching self.name - otherwise let the standard Python import machinery handle it if fullname != self.name: return return LoganLoader( name=self.name, config_path=self.config_path, default_settings=self.default_settings, allow_extras=self.allow_extras, callback=self.callback, ) class LoganLoader(object): """Implementation of importlib.abc.Loader interface.""" def __init__(self, name, config_path, default_settings=None, allow_extras=True, callback=None): self.name = name self.config_path = config_path self.default_settings = default_settings self.allow_extras = allow_extras self.callback = callback def load_module(self, fullname): """Loader API function implementation. TODO: load_module() API is deprecated, convert this to create_module()/exec_module() instead. """ try: return self._load_module(fullname) except Exception as e: exc_info = sys.exc_info() raise ConfigurationError(unicode(e), exc_info[2]) def _load_module(self, fullname): # TODO: is this needed? if fullname in sys.modules: return sys.modules[fullname] # pragma: no cover if self.default_settings: default_settings_mod = import_module(self.default_settings) else: default_settings_mod = None settings_mod = create_module(self.name) # Django doesn't play too nice without the config file living as a real file, so let's fake it. settings_mod.__file__ = self.config_path # install the default settings for this app load_settings(default_settings_mod, allow_extras=self.allow_extras, settings=settings_mod) # install the custom settings for this app load_settings(self.config_path, allow_extras=self.allow_extras, settings=settings_mod) if self.callback: self.callback(settings_mod) return settings_mod
pollbot/display/__init__.py
tigerdar004/RweddingPoll
112
12732703
<reponame>tigerdar004/RweddingPoll # Import for easier re-export from .poll import * # noqa from .settings import * # noqa
train.py
DoranLyong/person-reid-tiny-baseline
202
12732779
import os from torch.backends import cudnn from config import Config from utils.logger import setup_logger from datasets import make_dataloader from model import make_model from solver import make_optimizer, WarmupMultiStepLR from loss import make_loss from processor import do_train if __name__ == '__main__': cfg = Config() if not os.path.exists(cfg.LOG_DIR): os.mkdir(cfg.LOG_DIR) logger = setup_logger('{}'.format(cfg.PROJECT_NAME), cfg.LOG_DIR) logger.info("Running with config:\n{}".format(cfg.CFG_NAME)) os.environ['CUDA_VISIBLE_DEVICES'] = cfg.DEVICE_ID cudnn.benchmark = True # This flag allows you to enable the inbuilt cudnn auto-tuner to find the best algorithm to use for your hardware. train_loader, val_loader, num_query, num_classes = make_dataloader(cfg) model = make_model(cfg, num_class=num_classes) loss_func, center_criterion = make_loss(cfg, num_classes=num_classes) optimizer, optimizer_center = make_optimizer(cfg, model, center_criterion) scheduler = WarmupMultiStepLR(optimizer, cfg.STEPS, cfg.GAMMA, cfg.WARMUP_FACTOR, cfg.WARMUP_EPOCHS, cfg.WARMUP_METHOD) do_train( cfg, model, center_criterion, train_loader, val_loader, optimizer, optimizer_center, scheduler, # modify for using self trained model loss_func, num_query )