max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
models/SemanticSegmentation/LWnet.py
Dou-Yu-xuan/deep-learning-visal
150
12737254
<gh_stars>100-1000 # !/usr/bin/env python # -- coding: utf-8 -- # @Time : 2020/6/28 18:04 # @Author : liumin # @File : LWnet.py import torch import torch.nn as nn import torchvision import torch.nn.functional as F def ConvBNReLU(in_channels,out_channels,kernel_size,stride,padding,dilation=1,groups=1): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding,dilation=dilation,groups=groups, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU6(inplace=True) ) def ConvBN(in_channels,out_channels,kernel_size,stride,padding,dilation=1,groups=1): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding,dilation=dilation,groups=groups, bias=False), nn.BatchNorm2d(out_channels) ) def Conv1x1BNReLU(in_channels,out_channels): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU6(inplace=True) ) def Conv1x1BN(in_channels,out_channels): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(out_channels) ) class LWbottleneck(nn.Module): def __init__(self, in_channels,out_channels,stride): super(LWbottleneck, self).__init__() self.stride = stride self.pyramid_list = nn.ModuleList() self.pyramid_list.append(ConvBNReLU(in_channels, in_channels, kernel_size=[5,1], stride=stride, padding=[2,0])) self.pyramid_list.append(ConvBNReLU(in_channels, in_channels, kernel_size=[1,5], stride=stride, padding=[0,2])) self.pyramid_list.append(ConvBNReLU(in_channels, in_channels, kernel_size=[3,1], stride=stride, padding=[1,0])) self.pyramid_list.append(ConvBNReLU(in_channels, in_channels, kernel_size=[1,3], stride=stride, padding=[0,1])) self.pyramid_list.append(ConvBNReLU(in_channels, in_channels, kernel_size=[2,1], stride=stride, padding=[1,0])) self.pyramid_list.append(ConvBNReLU(in_channels, in_channels, kernel_size=[1,2], stride=stride, padding=[0,1])) self.pyramid_list.append(ConvBNReLU(in_channels, in_channels, kernel_size=2, stride=stride, padding=1)) self.pyramid_list.append(ConvBNReLU(in_channels, in_channels, kernel_size=3, stride=stride, padding=1)) self.shrink = Conv1x1BN(in_channels*8,out_channels) def forward(self, x): b,c,w,h = x.shape if self.stride>1: w, h = w//self.stride,h//self.stride outputs = [] for pyconv in self.pyramid_list: pyconv_x = pyconv(x) if x.shape[2:] != pyconv_x.shape[2:]: pyconv_x = pyconv_x[:,:,:w,:h] outputs.append(pyconv_x) out = torch.cat(outputs, 1) return self.shrink(out) class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.stage1 = nn.Sequential( ConvBNReLU(in_channels=3, out_channels=32, kernel_size=3, stride=2, padding=1), Conv1x1BN(in_channels=32, out_channels=16), ) self.stage2 = nn.Sequential( LWbottleneck(in_channels=16,out_channels=24,stride=2), LWbottleneck(in_channels=24, out_channels=24, stride=1), ) self.stage3 = nn.Sequential( LWbottleneck(in_channels=24, out_channels=32, stride=2), LWbottleneck(in_channels=32, out_channels=32, stride=1), ) self.stage4 = nn.Sequential( LWbottleneck(in_channels=32, out_channels=32, stride=2) ) self.stage5 = nn.Sequential( LWbottleneck(in_channels=32, out_channels=64, stride=2), LWbottleneck(in_channels=64, out_channels=64, stride=1), LWbottleneck(in_channels=64, out_channels=64, stride=1), LWbottleneck(in_channels=64, out_channels=64, stride=1), ) self.conv1 = Conv1x1BN(in_channels=64, out_channels=320) def forward(self, x): x = self.stage1(x) x = self.stage2(x) x = F.pad(x,pad=(0,1,0,1),mode='constant',value=0) out1 = x = self.stage3(x) x = self.stage4(x) x = F.pad(x, pad=(0, 1, 0, 1), mode='constant', value=0) x = self.stage5(x) out2 = self.conv1(x) return out1,out2 class ASPP(nn.Module): def __init__(self, in_channels, out_channels): super(ASPP, self).__init__() self.depthwise1 = ConvBNReLU(in_channels, out_channels, 3, 1, 6, dilation=6) self.depthwise2 = ConvBNReLU(in_channels, out_channels, 3, 1, 12, dilation=12) self.depthwise3 = ConvBNReLU(in_channels, out_channels, 3, 1, 18, dilation=18) self.pointconv = Conv1x1BN(in_channels, out_channels) def forward(self, x): x1 = self.depthwise1(x) x2 = self.depthwise2(x) x3 = self.depthwise3(x) x4 = self.pointconv(x) return torch.cat([x1,x2,x3,x4], dim=1) class Decoder(nn.Module): def __init__(self,num_classes=2): super(Decoder, self).__init__() self.aspp = ASPP(320, 128) self.pconv1 = Conv1x1BN(128*4, 512) self.pconv2 = Conv1x1BN(512+32, 128) self.pconv3 = Conv1x1BN(128, num_classes) def forward(self, x, y): x = self.pconv1(self.aspp(x)) x = F.interpolate(x,y.shape[2:],align_corners=True,mode='bilinear') x = torch.cat([x,y], dim=1) out = self.pconv3(self.pconv2(x)) return out class LW_Network(nn.Module): def __init__(self, num_classes=2): super(LW_Network, self).__init__() self.encoder = Encoder() self.decoder = Decoder(num_classes) def forward(self, x): x1,x2 = self.encoder(x) out = self.decoder(x2,x1) return out if __name__ == '__main__': model = LW_Network() print(model) input = torch.randn(1, 3, 331, 331) output = model(input) print(output.shape)
pynab/categories.py
bigblue/pynab
161
12737266
import regex import pickle import os.path from pynab import log, root_dir # category codes # these are stored in the db, as well CAT_GAME_NDS = 1010 CAT_GAME_PSP = 1020 CAT_GAME_WII = 1030 CAT_GAME_XBOX = 1040 CAT_GAME_XBOX360 = 1050 CAT_GAME_WIIWARE = 1060 CAT_GAME_XBOX360DLC = 1070 CAT_GAME_PS3 = 1080 CAT_MOVIE_FOREIGN = 2010 CAT_MOVIE_OTHER = 2020 CAT_MOVIE_SD = 2030 CAT_MOVIE_HD = 2040 CAT_MOVIE_BLURAY = 2050 CAT_MOVIE_3D = 2060 CAT_MUSIC_MP3 = 3010 CAT_MUSIC_VIDEO = 3020 CAT_MUSIC_AUDIOBOOK = 3030 CAT_MUSIC_LOSSLESS = 3040 CAT_PC_0DAY = 4010 CAT_PC_ISO = 4020 CAT_PC_MAC = 4030 CAT_PC_MOBILEOTHER = 4040 CAT_PC_GAMES = 4050 CAT_PC_MOBILEIOS = 4060 CAT_PC_MOBILEANDROID = 4070 CAT_TV_FOREIGN = 5020 CAT_TV_SD = 5030 CAT_TV_HD = 5040 CAT_TV_OTHER = 5050 CAT_TV_SPORT = 5060 CAT_TV_ANIME = 5070 CAT_TV_DOCU = 5080 CAT_XXX_DVD = 6010 CAT_XXX_WMV = 6020 CAT_XXX_XVID = 6030 CAT_XXX_X264 = 6040 CAT_XXX_PACK = 6050 CAT_XXX_IMAGESET = 6060 CAT_XXX_OTHER = 6070 CAT_BOOK_MAGS = 7010 CAT_BOOK_EBOOK = 7020 CAT_BOOK_COMICS = 7030 CAT_MISC_OTHER = 8010 CAT_PARENT_GAME = 1000 CAT_PARENT_MOVIE = 2000 CAT_PARENT_MUSIC = 3000 CAT_PARENT_PC = 4000 CAT_PARENT_TV = 5000 CAT_PARENT_XXX = 6000 CAT_PARENT_BOOK = 7000 CAT_PARENT_MISC = 8000 CATEGORISER = pickle.load(open(os.path.join(root_dir, 'db/release_categoriser.pkl'), 'rb')) def extract_features(name): def find(reg, str): res = regex.findall(reg, str, regex.I) if res: return '|'.join(sorted(res)) else: return None return { 'length': len(name), 'tokens': len(regex.findall('[\w\']+', name)), 'resolution': find('(720|1080)', name), 'quality': find('(SDTV|HDTV|PDTV|WEB-?DL|WEBRIP|XVID|DIVX|DVDR|DVD-RIP|x264|dvd|XvidHD|AVC|AAC|VC\-?1|wmvhd|web\-dl|BRRIP|HDRIP|HDDVD|bddvd|BDRIP|webscr|bluray|bd?25|bd?50|blu-ray|BDREMUX)', name), '3d': bool(find('(3D)', name)), 'subgroup': find('\[(\w+)\]', name), 'filehash': bool(find('\[([0-9a-fA-F]{8})\]', name)), 'season': bool(find('(S\d{1,2})', name)), 'episode': bool(find('(E\d{1,2})', name)), 'airdate': bool(find('((?:\d{4}[.-/ ]\d{2}[.-/ ]\d{2})|(?:\d{2}[.-/ ]\d{2}[.-/ ]\d{4}))', name)), 'year': bool(find('[.-/ ](\d{4})[.-/ ]', name)), 'versus': bool(find('[.-/ ](vs?)[.-/ ]', name)), 'music': bool(find('((?:^VA(?:\-|\_|\ ))|(?:MP3|VBR|NMR|CDM|FLAC|\-(?:CDR?|EP|LP|SAT|2CD|FM|VINYL|DE|CABLE|TAPE)\-))', name)), 'ebook': bool(find('(e?\-?book|html|epub|pdf|mobi|azw|doc|isbn)', name)), 'comic': bool(find('(cbr|cbz)', name)), 'magazine': bool(find('(mag(?:s|azine?s?))', name)), 'sport': find('(epl|motogp|bellator|supercup|wtcc|bundesliga|uefa|espn|wwe|wwf|wcw|mma|ucf|fia|pga|nfl|ncaa|fifa|mlb|nrl|nhl|afl|nba|wimbledon|cricket)[\. -_]', name), 'xxx': bool(find('(xxx|imageset|porn|erotica)', name)), 'game': find('(PS3|3DS|NDS|PS4|XBOX|XBONE|WII|DLC|CONSOLE|PSP|X360|PS4)', name), 'foreign': bool(find('(seizoen|staffel|danish|flemish|dutch|Deutsch|nl\.?subbed|nl\.?sub|\.NL|\.ITA|norwegian|swedish|swesub|french|german|spanish|icelandic|finnish|Chinese\.Subbed|vostfr|Hebrew\.Dubbed|\.HEB\.|Nordic|Hebdub|NLSubs|NL\-Subs|NLSub|Deutsch| der |German | NL |\.PL\.)', name)), 'pc': bool(find('((?:v?\d\.\d\.)|(?:x64|32bit|64bit|exe))', name)), 'documentary': bool(find('(documentary|national geographic|natgeo)', name)) } def determine_category(name, group_name=''): """Categorise release based on release name and group name.""" features = extract_features(name) features['name'] = name features['group'] = group_name category = int(CATEGORISER.classify(features)) log.debug('category: ({}) [{}]: {}'.format( group_name, name, category )) return category
avionics/motor/motor_client_test.py
leozz37/makani
1,178
12737316
<reponame>leozz37/makani # Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for makani.avionics.motor.motor_client. This module uses snake case for new function names so that test functions can be consistent with cmd.Cmd methods without offending Lint. """ import copy import re import socket import tempfile import textwrap import threading import time import unittest from makani.avionics.common import actuator_types from makani.avionics.common import cmd_client from makani.avionics.common import pack_avionics_messages from makani.avionics.motor import motor_client from makani.avionics.motor.firmware import flags from makani.avionics.network import aio_node from makani.lib.python import test_util import numpy _TIMEOUT = 0.01 _EPS32 = numpy.finfo(numpy.float32).eps class MulticastListener(cmd_client.AioThread): def __init__(self, set_state_callback, command_callback, param_callback): super(MulticastListener, self).__init__( ['kMessageTypeControllerCommand', 'kMessageTypeDynoCommand', 'kMessageTypeMotorSetParam', 'kMessageTypeDynoMotorSetParam', 'kMessageTypeMotorSetState', 'kMessageTypeDynoMotorSetState', 'kMessageTypeMotorGetParam', 'kMessageTypeDynoMotorGetParam'], allowed_sources=['kAioNodeControllerA', 'kAioNodeOperator'], timeout=_TIMEOUT) self._set_state_callback = set_state_callback self._command_callback = command_callback self._param_callback = param_callback def _RunOnce(self): try: _, header, message = self._client.Recv() if header.source == aio_node.kAioNodeOperator: if isinstance(message, pack_avionics_messages.MotorSetStateMessage): self._set_state_callback(message) elif (isinstance(message, pack_avionics_messages.MotorSetParamMessage) or isinstance( message, pack_avionics_messages.DynoMotorSetParamMessage)): self._param_callback(message) elif (isinstance(message, pack_avionics_messages.MotorGetParamMessage) or isinstance( message, pack_avionics_messages.DynoMotorGetParamMessage)): self._param_callback(message) elif isinstance(message, pack_avionics_messages.DynoCommandMessage): self._command_callback(message) elif header.source == aio_node.kAioNodeControllerA: if isinstance(message, pack_avionics_messages.ControllerCommandMessage): self._command_callback(message) except socket.timeout: pass class FakeMotor(cmd_client.AioThread): def __init__(self, nickname): self._node_string = motor_client.AioNodeNameFromMotorNickname(nickname) self._index = motor_client.MOTORS.index(nickname) self._bitmask = 1 << self._index self._status = pack_avionics_messages.MotorStatusMessage() self._status.motor_status = flags.kMotorStatusInit self._status_lock = threading.Lock() self.running = False self.params = {v: 0.0 for v in motor_client.MOTOR_PARAMS.itervalues()} self.torque = 0.0 self.speed_lower = 0.0 self.speed_upper = 0.0 super(FakeMotor, self).__init__(['kMessageTypeMotorStatus', 'kMessageTypeMotorAckParam'], allowed_sources=[self._node_string], timeout=_TIMEOUT) self._multicast_listener = MulticastListener( self._HandleMotorSetStateMessage, self._HandleControllerCommandMessage, self._HandleParamMessage) def GetParam(self, param_name): return self.params[motor_client.MOTOR_PARAMS[param_name]] def __enter__(self): self.start() self._multicast_listener.start() return self def __exit__(self, *args): self._multicast_listener.Exit() self._multicast_listener.join() self.Exit() self.join() def GetStatus(self): with self._status_lock: return copy.copy(self._status) def GetError(self): with self._status_lock: return self._status.motor_error def SetError(self, error): with self._status_lock: self._status.motor_error = error self._status.motor_status |= flags.kMotorStatusError def SetWarning(self, warning): with self._status_lock: self._status.motor_warning = warning self._status.motor_status |= flags.kMotorStatusError def ClearError(self): with self._status_lock: self._status.motor_error = flags.kMotorErrorNone self._status.motor_status &= ~flags.kMotorStatusError def _HandleMotorSetStateMessage(self, message): if (message.selected_motors & self._bitmask and message.command == actuator_types.kActuatorStateCommandArm): with self._status_lock: self._status.motor_status = flags.kMotorStatusArmed def _HandleControllerCommandMessage(self, message): self.torque = message.motor_torque[self._index] self.speed_lower = message.motor_speed_lower_limit[self._index] self.speed_upper = message.motor_speed_upper_limit[self._index] self.running = bool(message.motor_command & flags.kMotorCommandRun) if message.motor_command & flags.kMotorCommandClearError: self.ClearError() if message.motor_command & flags.kMotorCommandDisarm: with self._status_lock: self._status.motor_status &= ~flags.kMotorStatusArmed def _HandleParamMessage(self, message): if message.selected_motors & self._bitmask: if isinstance(message, pack_avionics_messages.MotorSetParamMessage): self.params[message.id] = message.value ack = pack_avionics_messages.MotorAckParamMessage() ack.id = message.id ack.value = self.params[message.id] self._client.Send(ack, 'kMessageTypeMotorAckParam', self._node_string) def _RunOnce(self): with self._status_lock: self._client.Send(self._status, 'kMessageTypeMotorStatus', self._node_string) time.sleep(0.1) class MotorCommandClientTest(unittest.TestCase): def setUp(self): super(MotorCommandClientTest, self).setUp() self.client = motor_client.MotorCommandClient() self.stdout = test_util.StdoutPatch() def tearDown(self): super(MotorCommandClientTest, self).tearDown() with self.stdout: self.client.onecmd('quit') def assert_eventually_true(self, func): num_tries = 30 for i in xrange(num_tries): if func(): return True if i < num_tries - 1: time.sleep(0.1) self.assertTrue(False) # pylint: disable=redundant-unittest-assert def test_do_set_targets(self): with self.stdout: self.client.onecmd('set_targets SBO') self.assertRegexpMatches(self.stdout.Read(), '(?s).*SBO.*') self.client.onecmd('quit') with self.stdout: self.client.onecmd('set_targets SBI PTO') self.assertRegexpMatches(self.stdout.Read(), '(?s).*SBI.*') self.assertRegexpMatches(self.stdout.Read(), '(?s).*PTO.*') def test_do_set_targets_dyno(self): with self.stdout: self.client.onecmd('set_targets_dyno SBO') self.assertRegexpMatches(self.stdout.Read(), '(?s).*SBO.*') self.client.onecmd('quit') with self.stdout: self.client.onecmd('set_targets_dyno SBI PTO') self.assertRegexpMatches(self.stdout.Read(), '(?s).*SBI.*') self.assertRegexpMatches(self.stdout.Read(), '(?s).*PTO.*') def test_do_arm_fail(self): with self.stdout, FakeMotor('SBO'): self.client.onecmd('arm') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Invalid set of targets.*') with self.stdout, FakeMotor('SBO'): self.client.onecmd('set_targets SBO') self.client.onecmd('arm SBO') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Wrong number of arguments.*') def test_do_arm_succeed(self): with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_targets SBO') self.client.onecmd('arm') self.assertEqual(motor.GetStatus().motor_status, flags.kMotorStatusArmed) self.assertRegexpMatches(self.stdout.Read(), '(?s).*Successfully armed.*') def test_do_arm_multiple_motors(self): with self.stdout, FakeMotor('SBI') as sbi, FakeMotor('PTO') as pto: self.client.onecmd('set_targets SBI PTO') self.client.onecmd('arm') self.assertEqual(sbi.GetStatus().motor_status, flags.kMotorStatusArmed) self.assertEqual(pto.GetStatus().motor_status, flags.kMotorStatusArmed) self.assertRegexpMatches(self.stdout.Read(), '(?s).*Successfully armed.*') def test_do_disarm(self): with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_targets SBO') self.client.onecmd('arm') self.client.onecmd('disarm') self.assertEqual(motor.GetStatus().motor_status, flags.kMotorStatusInit) def test_do_set_param(self): with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_param SBO i_kp 3.14') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Setting i_kp to 3.14 on SBO.*') self.assertAlmostEqual(motor.GetParam('i_kp'), 3.14, places=6) def test_do_get_param(self): with self.stdout, FakeMotor('SBO'): self.client.onecmd('get_param SBO i_kp') self.assertRegexpMatches(self.stdout.Read(), '(?s).*SBO i_kp: 0[^0-9]*') def test_do_run_fail(self): with self.stdout, FakeMotor('SBO'): self.client.onecmd('run 1 s') self.assertRegexpMatches( self.stdout.Read(), '(?s).*Invalid set of targets.*') with self.stdout, FakeMotor('SBO'): self.client.onecmd('set_targets SBO') self.client.onecmd('run 1 s') self.assertRegexpMatches( self.stdout.Read(), '(?s).*Invalid(?s).*status.*') @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_run_succeed(self): with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_targets SBO') self.client.onecmd('arm') self.client.onecmd('run 100 s') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Running.*') self.assert_eventually_true(lambda: motor.running) def test_do_stop_fail(self): with self.stdout, FakeMotor('SBO'): self.client.onecmd('stop') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Not running.*') @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_stop_succeed(self): with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_targets SBO') self.client.onecmd('arm') self.client.onecmd('run 100 s') self.assert_eventually_true(lambda: motor.running) self.client.onecmd('stop') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Run stopped.*') self.assert_eventually_true(lambda: not motor.running) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_set_torque(self): with self.stdout, FakeMotor('SBI'), FakeMotor('SBO') as motor: self.client.onecmd('set_targets SBI') self.client.onecmd('set_targets_dyno SBO') self.client.onecmd('set_speed_limits -3.14 3.14') self.client.onecmd('set_torque 3.14') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Torque desired.*') self.assert_eventually_true( lambda: abs(motor.torque - 3.14) / 3.14 < _EPS32) self.assert_eventually_true( lambda: abs(motor.speed_lower + 3.14) / 3.14 < _EPS32) self.assert_eventually_true( lambda: abs(motor.speed_upper - 3.14) / 3.14 < _EPS32) def test_do_set_torque_fail(self): with self.stdout, FakeMotor('SBO'): self.client.onecmd('set_torque 3.14') self.assertRegexpMatches( self.stdout.Read(), 'No dynos selected. Use "set_targets_dyno".') self.client.onecmd('set_targets_dyno SBO') self.client.onecmd('set_torque abc') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Invalid argument.*') self.client.onecmd('set_torque 3.14') self.assertRegexpMatches( self.stdout.Read(), 'Omega limits not set. Use "set_speed_limits".') @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_set_speed_limits(self): with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_targets_dyno SBO') self.client.onecmd('set_speed_limits -3.14 3.14') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Omega limits set.*') self.assert_eventually_true( lambda: abs(motor.speed_lower + 3.14) / 3.14 < _EPS32) self.assert_eventually_true( lambda: abs(motor.speed_upper - 3.14) / 3.14 < _EPS32) def test_do_set_speed_limits_fail(self): with self.stdout, FakeMotor('SBO'): self.client.onecmd('set_targets_dyno SBO') self.client.onecmd('set_speed_limits abc 20') self.assertRegexpMatches( self.stdout.Read(), '(?s).*Invalid argument.*') self.client.onecmd('set_speed_limits 22 20') self.assertRegexpMatches( self.stdout.Read(), '(?s).*Invalid(?s).*i.e. min value.*') @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_set_omega(self): with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_targets SBO') self.client.onecmd('set_omega 3.14') self.assertRegexpMatches(self.stdout.Read(), 'Omega desired: 3.14') self.assert_eventually_true( lambda: abs(motor.speed_lower - motor.speed_upper) / 3.14 < _EPS32) self.assert_eventually_true( lambda: abs(motor.speed_lower - 3.14) / 3.14 < _EPS32) self.assert_eventually_true( lambda: abs(motor.speed_upper - 3.14) / 3.14 < _EPS32) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_ramp_omega(self): with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_targets SBO') self.client.onecmd('ramp_omega 3.14 0.0') self.client.onecmd('arm') self.client.onecmd('run 5s') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Ramping.*') self.assert_eventually_true( lambda: abs(motor.speed_lower - 3.14) / 3.14 < _EPS32) self.assert_eventually_true( lambda: abs(motor.speed_upper - 3.14) / 3.14 < _EPS32) self.client.onecmd('ramp_omega 6.28 0.5') self.assertRegexpMatches(self.stdout.Read(), '(?s).*Ramping.*') self.assert_eventually_true( lambda: abs(motor.speed_lower - 6.28) / 6.28 < _EPS32) self.assert_eventually_true( lambda: abs(motor.speed_upper - 6.28) / 6.28 < _EPS32) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_set_command_function_python_succeed(self): with tempfile.NamedTemporaryFile(suffix='.py') as python_file: data_length = 3*len(motor_client.MOTORS) python_file.write(textwrap.dedent(""" t_step = 0.1 t_end = 1.0 def Cmd(t): command = [0.0] * %d command[0] = 3.14 command[8] = 3.14 command[16] = 3.14 return command""" % data_length)) python_file.flush() with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_targets SBO') self.client.onecmd('set_command_function ' + python_file.name) self.assertRegexpMatches(self.stdout.Read(), r'(?s).*Using %s to generate command ' r'profile.*' % python_file.name) self.client.onecmd('arm') self.client.onecmd('run 10s') self.assert_eventually_true( lambda: abs(motor.torque - 3.14) / 3.14 < _EPS32) self.assert_eventually_true( lambda: abs(motor.speed_lower - 3.14) / 3.14 < _EPS32) self.assert_eventually_true( lambda: abs(motor.speed_upper - 3.14) / 3.14 < _EPS32) def test_do_set_command_function_python_fail(self): with tempfile.NamedTemporaryFile(suffix='.py') as python_file: python_file.write('this will raise a syntax error') python_file.flush() with self.stdout: self.client.onecmd('set_targets SBO') self.client.onecmd('set_command_function ' + python_file.name) self.assertRegexpMatches(self.stdout.Read(), '(?s).*Generation of lookup table from %s ' 'failed.*' % python_file.name) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_set_command_function_text_succeed(self): with tempfile.NamedTemporaryFile(suffix='.txt') as text_file: text_file.write(textwrap.dedent(""" 0.0 3.14 1 1 1 1 1 1 1 3.14 1 1 1 1 1 1 1 3.14 1 1 1 1 1 1 1 100 3.14 1 1 1 1 1 1 1 3.14 1 1 1 1 1 1 1 3.14 1 1 1 1 1 1 1"""[1:])) text_file.flush() with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_targets SBO') self.client.onecmd('set_command_function ' + text_file.name) self.assertRegexpMatches(self.stdout.Read(), r'(?s).*Using interpolated values from %s ' r'for command profile.*' % text_file.name) self.client.onecmd('arm') self.client.onecmd('run 10s') self.assert_eventually_true( lambda: abs(motor.torque - 3.14) / 3.14 < _EPS32) def test_do_set_command_function_text_fail(self): with tempfile.NamedTemporaryFile(suffix='.txt') as text_file: text_file.write('numpy.load will raise ValueError') text_file.flush() with self.stdout: self.client.onecmd('set_targets SBO') self.client.onecmd('set_command_function ' + text_file.name) self.assertRegexpMatches(self.stdout.Read(), '(?s).*Invalid input text file: %s.*' % text_file.name) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_set_command_function_limit_fail(self): with tempfile.NamedTemporaryFile(suffix='.txt') as text_file: text_file.write(textwrap.dedent(""" 0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 2000 1 1 1 1 1 1 1 2000 1 1 1 1 1 1 1 2000 1 1 1 1 1 1 1"""[1:])) text_file.flush() with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('set_command_function ' + text_file.name) self.assertRegexpMatches(self.stdout.Read(), r'(?s).*Extreme(?s).*outside of ' r'limits \[%f, %f\] detected.*' % (motor_client.TORQUE_MIN_LIMIT, motor_client.TORQUE_MAX_LIMIT)) self.client.onecmd('arm') self.client.onecmd('run 1s') self.assert_eventually_true( lambda: abs(motor.torque) < _EPS32) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_print_new_errors_asynchronously(self): regex = re.compile('(?s).*SBO: kMotorErrorOverSpeed' ' | kMotorErrorOverVoltage.*') with FakeMotor('SBO') as motor: motor.SetError(flags.kMotorErrorOverVoltage | flags.kMotorErrorOverSpeed) with self.stdout: self.client.onecmd('set_targets SBO') self.assert_eventually_true(lambda: regex.match(self.stdout.Read())) other_motors = [m for m in motor_client.MOTORS if m != 'SBO'] # Make sure we only print the motor with an error. self.assertFalse(re.match('(?s).*(%s).*' % '|'.join(other_motors), self.stdout.Read())) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_print_new_warnings_asynchronously(self): regex = re.compile('(?s).*SBO: kMotorWarningOverTempBoard' ' | kMotorWarningOverTempStatorCore.*') with FakeMotor('SBO') as motor: motor.SetWarning(flags.kMotorWarningOverTempBoard | flags.kMotorWarningOverTempStatorCore) with self.stdout: self.client.onecmd('set_targets SBO') self.assert_eventually_true(lambda: regex.match(self.stdout.Read())) other_motors = [m for m in motor_client.MOTORS if m != 'SBO'] # Make sure we only print the motor with an error. self.assertFalse(re.match('(?s).*(%s).*' % '|'.join(other_motors), self.stdout.Read())) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_get_errors(self): regex = re.compile('(?s).*SBO: kMotorErrorOverSpeed' ' | kMotorErrorOverVoltage.*') with FakeMotor('SBO') as motor: motor.SetError(flags.kMotorErrorOverVoltage | flags.kMotorErrorOverSpeed) with self.stdout: self.client.onecmd('set_targets SBO') self.assert_eventually_true(lambda: regex.match(self.stdout.Read())) with self.stdout: # Reset stdout contents. self.client.onecmd('get_errors') self.assertRegexpMatches(self.stdout.Read(), regex) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_get_warnings(self): regex = re.compile('(?s).*SBO: kMotorWarningOverTempBoard' ' | kMotorWarningOverTempStatorCore.*') with FakeMotor('SBO') as motor: motor.SetWarning(flags.kMotorWarningOverTempBoard | flags.kMotorWarningOverTempStatorCore) with self.stdout: self.client.onecmd('set_targets SBO') self.assert_eventually_true(lambda: regex.match(self.stdout.Read())) with self.stdout: # Reset stdout contents. self.client.onecmd('get_errors') self.assertRegexpMatches(self.stdout.Read(), regex) @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_do_clear_errors(self): regex = re.compile('(?s).*SBO: kMotorErrorOverVoltage.*') with self.stdout, FakeMotor('SBO') as motor: motor.SetError(flags.kMotorErrorOverVoltage) self.client.onecmd('set_targets SBO') self.assert_eventually_true(lambda: regex.match(self.stdout.Read())) self.client.onecmd('clear_errors') self.assert_eventually_true( lambda: motor.GetError() == flags.kMotorErrorNone) def test_do_source_fail(self): with tempfile.NamedTemporaryFile() as source_file: source_file.write(textwrap.dedent(""" set_targets SBO arm run 100 s"""[1:])) source_file.flush() with self.stdout, FakeMotor('SBO'): self.client.onecmd('source ' + source_file.name) regex = re.compile( '(?s).*Only "set_param"-like commands.*') self.assertRegexpMatches(self.stdout.Read(), regex) def test_do_source_succeed(self): with tempfile.NamedTemporaryFile() as source_file: source_file.write(textwrap.dedent(""" set_param SBO i_kp 3.14 set_param SBO cos_offset 0.2 # This is a comment. set_param SBO iq_lower_limit -1e-3 set_param SBO iq_upper_limit 245""")[1:]) source_file.flush() with self.stdout, FakeMotor('SBO') as motor: self.client.onecmd('source ' + source_file.name) self.assertAlmostEqual(motor.GetParam('i_kp'), 3.14, places=6) self.assertAlmostEqual(motor.GetParam('cos_offset'), 0.2, places=6) self.assertAlmostEqual(motor.GetParam('iq_lower_limit'), -1e-3, places=6) self.assertAlmostEqual(motor.GetParam('iq_upper_limit'), 245, places=6) def test_do_source_track_errors(self): with tempfile.NamedTemporaryFile() as source_file: source_file.write(textwrap.dedent(""" set_param SBO i_kp 3.14 set_param SBO foo 0.2 set_param SBO omega_kp 0.1 set_param SBO bar 0.5""")[1:]) source_file.flush() with self.stdout, FakeMotor('SBO'): self.client.onecmd('source ' + source_file.name) self.assertRegexpMatches( self.stdout.Read(), '(?s).*Errors encountered.*Line 2.*foo.*Line 4.*bar.*') @unittest.skipIf(socket.gethostname().startswith('jenkins-'), 'This test is flaky when run on GCE.') def test_stop_running_on_error(self): regex = re.compile('(?s).*SBO: kMotorErrorOverVoltage.*') with FakeMotor('SBO') as motor: with self.stdout: self.client.onecmd('set_targets SBO') self.client.onecmd('arm') self.client.onecmd('run 1000 s') motor.SetError(flags.kMotorErrorOverVoltage) self.assert_eventually_true(lambda: regex.match(self.stdout.Read())) self.assert_eventually_true(lambda: not motor.running) if __name__ == '__main__': unittest.main()
tox_helpers/test_missing_dependencies.py
sivchand/smart_open
2,047
12737322
<reponame>sivchand/smart_open<gh_stars>1000+ import os import subprocess os.environ['SMART_OPEN_TEST_MISSING_DEPS'] = '1' command = [ 'pytest', 'smart_open/tests/test_package.py', '-v', '--cov', 'smart_open', '--cov-report', 'term-missing', ] subprocess.check_call(command)
alg/dklite/model.py
loramf/mlforhealthlabpub
171
12737362
<gh_stars>100-1000 import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf import warnings warnings.filterwarnings("ignore") import logging logging.getLogger('tensorflow').disabled = True import numpy as np class DKLITE(object): def __init__(self, input_dim, output_dim, num_hidden=50, num_layers =2, learning_rate=0.001, reg_var=1.0,reg_rec=1.0): self.num_layers = num_layers self.output_dim = output_dim self.num_hidden = num_hidden self.input_dim = input_dim self.size_z = num_hidden self.ml_primal = {} self.ker_inv = {} self.params = {} self.mean = {} self.num = {} ''' Initialize parameter weight ''' self.params = self.initialize_weights() self.mu = tf.reduce_mean(self.T) self.Z_train = self.Encoder(self.X) self.Z_test = self.Encoder(self.X_u) self.loss_1 = tf.reduce_mean(tf.reduce_sum(tf.square(self.X - self.Decoder(self.Z_train)),axis=1)) Z_0 = tf.gather(self.Z_train, tf.where(self.T < 0.5)[:, 0]) Y_0 = tf.gather(self.Y, tf.where(self.T < 0.5)[:, 0]) Z_1 = tf.gather(self.Z_train, tf.where(self.T > 0.5)[:, 0]) Y_1 = tf.gather(self.Y, tf.where(self.T > 0.5)[:, 0]) mean_0 = tf.reduce_mean(Y_0) mean_1 = tf.reduce_mean(Y_1) Y_0 = (Y_0-mean_0) Y_1 = (Y_1-mean_1) self.GP_NN(Y_0, Z_0, 0) self.GP_NN(Y_1, Z_1,1) self.var_0 = tf.reduce_mean(tf.diag_part(tf.matmul(Z_1,tf.matmul(self.ker_inv['0'], tf.transpose(Z_1))))) self.var_1 = tf.reduce_mean(tf.diag_part(tf.matmul(Z_0,tf.matmul(self.ker_inv['1'], tf.transpose(Z_0))))) self.ele_var_0_tr = tf.diag_part(tf.matmul(self.Z_train,tf.matmul(self.ker_inv['0'], tf.transpose(self.Z_train)))) self.ele_var_1_tr = tf.diag_part(tf.matmul(self.Z_train,tf.matmul(self.ker_inv['1'], tf.transpose(self.Z_train)))) self.ele_var_0_te = tf.diag_part(tf.matmul(self.Z_test,tf.matmul(self.ker_inv['0'], tf.transpose(self.Z_test)))) self.ele_var_1_te = tf.diag_part(tf.matmul(self.Z_test,tf.matmul(self.ker_inv['1'], tf.transpose(self.Z_test)))) pred_tr_0 = tf.matmul(self.Z_train, self.mean['0']) + mean_0 pred_tr_1 = tf.matmul(self.Z_train, self.mean['1']) + mean_1 pred_te_0 = tf.matmul(self.Z_test, self.mean['0']) + mean_0 pred_te_1 = tf.matmul(self.Z_test, self.mean['1']) + mean_1 self.Y_train = tf.concat([pred_tr_0,pred_tr_1],axis=1) self.Y_test = tf.concat([pred_te_0,pred_te_1],axis=1) self.loss_0 = self.ml_primal['0']+ self.ml_primal['1'] self.prediction_loss = self.ml_primal['0']+ self.ml_primal['1'] + reg_var *(self.var_0 + self.var_1)+ reg_rec * self.loss_1 self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.prediction_loss) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) def element_var(self, X, Y, T, X_u): var_0_tr, var_1_tr,var_0_te, var_1_te = self.sess.run([self.ele_var_0_tr,self.ele_var_1_tr,self.ele_var_0_te,self.ele_var_1_te], feed_dict={self.X: X, self.X_u: X_u, self.Y: Y, self.T: T}) return var_0_tr,var_1_tr,var_0_te,var_1_te def embed(self, X, Y, T): Z= self.sess.run(self.Z_train, feed_dict={self.X: X, self.Y: Y, self.T: T}) return Z def fit(self, X, Y, T, num_iteration): loss_list = [] for i in range(num_iteration): loss, _ = self.sess.run([self.prediction_loss,self.optimizer], feed_dict={self.X: X, self.Y: Y, self.T: T}) loss_list.append(np.sum(loss)) diff_list = np.abs(np.diff(loss_list)) if i>50 and np.abs(np.mean(diff_list[-10:]) - np.mean(diff_list[-40:-10]) )< np.std(diff_list[-40:-10]): break def pred(self, X, Y, T, X_u): Y_hat_train, Y_hat_test = self.sess.run([self.Y_train, self.Y_test], feed_dict={self.X: X, self.X_u: X_u, self.Y: Y, self.T: T}) return Y_hat_train, Y_hat_test def destroy_graph(self): tf.reset_default_graph() def Encoder(self, X): X_h =tf.nn.elu(tf.matmul(X, self.params['e_w_in']) + self.params['e_b_in']) for layer_i in range( self.num_layers): X_h = tf.nn.elu(tf.matmul(X_h, self.params['e_w_' + str(layer_i)])+self.params['e_b_' + str(layer_i)]) Z = tf.nn.elu(tf.matmul(X_h, self.params['e_w_' + str(self.num_layers)])+ self.params['e_b_' + str(self.num_layers)]) return Z def Decoder(self,Z): Z_pred = tf.nn.elu(tf.matmul(Z, self.params['d_w_in']) + self.params['d_b_in']) for layer_i in range(self.num_layers): Z_pred = tf.nn.elu(tf.matmul(Z_pred, self.params['d_w_' + str(layer_i)])+ self.params['d_b_' + str(layer_i)]) X_p = tf.matmul(Z_pred, self.params['d_w_' + str(self.num_layers)]+ self.params['d_b_' + str(self.num_layers)]) return X_p def GP_NN(self, Y_f, Z_f,index): beta = tf.ones([1,1],tf.float32) lam = 1000*tf.ones([1,1],tf.float32) r = beta / lam self.DD = tf.shape(Z_f)[1] phi_phi = tf.matmul(tf.transpose(Z_f), Z_f) Ker = r * phi_phi + tf.eye(tf.shape(Z_f)[1], dtype=tf.float32) L_matrix = tf.cholesky(Ker) L_inv_reduce = tf.linalg.triangular_solve(L_matrix, rhs=tf.eye(self.DD, dtype=tf.float32)) L_y = tf.matmul(L_inv_reduce, tf.matmul(tf.transpose(Z_f), Y_f)) self.ker_inv[str(index)] = tf.matmul(tf.transpose(L_inv_reduce), L_inv_reduce) / lam self.mean[str(index)] = r * tf.matmul(tf.transpose(L_inv_reduce), L_y) term1 = - tf.reduce_mean(tf.square(L_y)) #term2 = tf.log(tf.linalg.diag_part(L_matrix)) / ((1-index)*tf.reduce_sum(1 - self.T) + (index)* tf.reduce_sum(self.T)) self.ml_primal[str(index)] = term1 #+ term2 def initialize_weights(self): self.X = tf.placeholder(tf.float32, [None, self.input_dim]) self.X_u = tf.placeholder(tf.float32, [None, self.input_dim]) self.Y = tf.placeholder(tf.float32, [None, 1]) self.T = tf.placeholder(tf.float32, [None, 1]) all_weights = {} ''' Input layer of the encoder ''' name_wi = 'e_w_in' all_weights[name_wi] = tf.get_variable(name=name_wi, shape=[self.input_dim, self.num_hidden], trainable=True) name_bi = 'e_b_in' all_weights[name_bi] = tf.get_variable(name=name_bi, shape=[self.num_hidden], trainable=True) ''' Hidden layer of the encoder ''' for layer_i in range(self.num_layers): name_wi = 'e_w_' + str(layer_i) all_weights[name_wi ] = tf.get_variable(name =name_wi, shape=[self.num_hidden,self.num_hidden], trainable=True) name_bi = 'e_b_' + str(layer_i) all_weights[name_bi] = tf.get_variable(name =name_bi, shape = [self.num_hidden], trainable=True) ''' Final layer of the encoder ''' name_wi = 'e_w_' + str(self.num_layers) all_weights[name_wi] = tf.get_variable(name=name_wi, shape=[self.num_hidden, self.size_z], trainable=True) name_bi = 'e_b_' + str(self.num_layers) all_weights[name_bi] = tf.get_variable(name=name_bi, shape=[self.size_z], trainable=True) name_wi = 'e_w_out_0' all_weights[name_wi] = tf.get_variable(name=name_wi, shape=[self.size_z, self.output_dim], trainable=True) name_bi = 'e_b_out_0' all_weights[name_bi] = tf.get_variable(name=name_bi, shape=[self.output_dim], trainable=True) name_wi = 'e_w_out_1' all_weights[name_wi] = tf.get_variable(name=name_wi, shape=[self.size_z, self.output_dim], trainable=True) name_bi = 'e_b_out_1' all_weights[name_bi] = tf.get_variable(name=name_bi, shape=[self.output_dim], trainable=True) ''' Input layer of the decoder ''' name_wi = 'd_w_in' all_weights[name_wi] = tf.get_variable(name=name_wi, shape=[self.size_z, self.num_hidden],trainable=True) name_bi = 'd_b_in' all_weights[name_bi] = tf.get_variable(name=name_bi, shape=[self.num_hidden],trainable=True) ''' Hidden layer of the decoder ''' for layer_i in range(self.num_layers): name_wi = 'd_w_' + str(layer_i) all_weights[name_wi ] = tf.get_variable(name =name_wi, shape=[self.num_hidden,self.num_hidden],trainable=True) name_bi = 'd_b_' + str(layer_i) all_weights[name_bi] = tf.get_variable(name =name_bi, shape = [self.num_hidden],trainable=True) ''' Final layer of the decoder ''' name_wi = 'd_w_' + str(self.num_layers) all_weights[name_wi] = tf.get_variable(name=name_wi, shape=[self.num_hidden, self.input_dim],trainable=True) name_bi = 'd_b_' + str(self.num_layers) all_weights[name_bi] = tf.get_variable(name=name_bi, shape=[(self.input_dim)],trainable=True) return all_weights
utils/stop_test_exception_util.py
go000o/POMautomateCodeFramework
207
12737364
''' This utility is for Custom Exceptions. a) Stop_Test_Exception You can raise a generic exceptions using just a string. This is particularly useful when you want to end a test midway based on some condition. ''' class Stop_Test_Exception(Exception): def __init__(self,message): self.message=message def __str__(self): return self.message
PhysicsTools/PatAlgos/python/recoLayer0/jetCorrections_cff.py
ckamtsikis/cmssw
852
12737390
import FWCore.ParameterSet.Config as cms from PhysicsTools.PatAlgos.recoLayer0.jetCorrFactors_cfi import * from JetMETCorrections.Configuration.JetCorrectionServicesAllAlgos_cff import * ## for scheduled mode patJetCorrectionsTask = cms.Task(patJetCorrFactors) patJetCorrections = cms.Sequence(patJetCorrectionsTask)
SimGeneral/TrackingAnalysis/python/trackingParticles_cfi.py
ckamtsikis/cmssw
852
12737402
import FWCore.ParameterSet.Config as cms mergedtruth = cms.EDProducer("TrackingTruthProducer", mixLabel = cms.string('mix'), simHitLabel = cms.string('g4SimHits'), volumeRadius = cms.double(1200.0), vertexDistanceCut = cms.double(0.003), volumeZ = cms.double(3000.0), mergedBremsstrahlung = cms.bool(True), removeDeadModules = cms.bool(False), HepMCDataLabels = cms.vstring('generatorSmeared', 'generator', 'PythiaSource', 'source' ), useMultipleHepMCLabels = cms.bool(False), simHitCollections = cms.PSet( pixel = cms.vstring ( 'g4SimHitsTrackerHitsPixelBarrelLowTof', 'g4SimHitsTrackerHitsPixelBarrelHighTof', 'g4SimHitsTrackerHitsPixelEndcapLowTof', 'g4SimHitsTrackerHitsPixelEndcapHighTof' ), tracker = cms.vstring ( 'g4SimHitsTrackerHitsTIBLowTof', 'g4SimHitsTrackerHitsTIBHighTof', 'g4SimHitsTrackerHitsTIDLowTof', 'g4SimHitsTrackerHitsTIDHighTof', 'g4SimHitsTrackerHitsTOBLowTof', 'g4SimHitsTrackerHitsTOBHighTof', 'g4SimHitsTrackerHitsTECLowTof', 'g4SimHitsTrackerHitsTECHighTof' ), muon = cms.vstring ( 'g4SimHitsMuonDTHits', 'g4SimHitsMuonCSCHits', 'g4SimHitsMuonRPCHits' ) ) ) trackingParticles = cms.Sequence(mergedtruth)
examples/showcase/src/demos_widgets/namedFrame.py
takipsizad/pyjs
739
12737434
""" The ``ui.NamedFrame`` class is a variation of the ``ui.Frame`` which lets you assign a name to the frame. Naming a frame allows you to refer to that frame by name in Javascript code, and as the target for a hyperlink. """ from pyjamas.ui.SimplePanel import SimplePanel from pyjamas.ui.VerticalPanel import VerticalPanel from pyjamas.ui.NamedFrame import NamedFrame from pyjamas.ui.HTML import HTML class NamedFrameDemo(SimplePanel): def __init__(self): SimplePanel.__init__(self) vPanel = VerticalPanel(Spacing=5) frame = NamedFrame("myFrame", Width="100%", Height="200px") vPanel.add(frame) vPanel.add(HTML('<a href="http://google.com" target="myFrame">Google</a>')) vPanel.add(HTML('<a href="http://yahoo.com" target="myFrame">Yahoo</a>')) vPanel.add(HTML('<a href="http://pyjs.org" target="myFrame">Pyjamas</a>')) self.add(vPanel)
src/graph/config_indep_binary.py
AbhinavGopal/ts_tutorial
290
12737451
<reponame>AbhinavGopal/ts_tutorial """Specify the jobs to run via config file. Binomial bridge bandit experiment. Binomial bridge with only binary reward at the end --> no conjugate update. See Figure 9 https://arxiv.org/pdf/1707.02038.pdf """ import collections import functools from base.config_lib import Config from base.experiment import ExperimentNoAction from graph.agent_indep_binary import BootstrapIndependentBBWithBinaryReward from graph.agent_indep_binary import LaplaceIndependentBBWithBinaryReward from graph.agent_indep_binary import StochasticLangevinMCMCIndependentBBWithBinaryReward from graph.agent_indep_binary import EpsilonGreedyIndependentBBWithBinaryReward from graph.env_graph_bandit import IndependentBinomialBridgeWithBinaryReward def get_config(): """Generates the config for the experiment.""" name = 'graph_indep_binary_new' n_stages = 20 shape = 2 scale = 0.5 tol = 0.001 alpha = 0.2 beta = 0.5 langevin_batch_size = 100 langevin_step_count = 200 langevin_step_size = 0.0005 epsilon = 0 agents = collections.OrderedDict( [('Langevin TS', functools.partial(EpsilonGreedyIndependentBBWithBinaryReward, n_stages, epsilon, shape, scale, tol, alpha, beta))]) # agents = collections.OrderedDict( # [('Langevin TS', # functools.partial(StochasticLangevinMCMCIndependentBBWithBinaryReward, # n_stages, shape, scale, tol, alpha, beta, langevin_batch_size, # langevin_step_count, langevin_step_size)), # ('bootstrap TS', # functools.partial(BootstrapIndependentBBWithBinaryReward, # n_stages, shape, scale, tol, alpha, beta)), # ('Laplace TS', # functools.partial(LaplaceIndependentBBWithBinaryReward, # n_stages, shape, scale, tol, alpha, beta))] # ) environments = collections.OrderedDict( [('env', functools.partial(IndependentBinomialBridgeWithBinaryReward, n_stages, shape, scale))] ) experiments = collections.OrderedDict( [(name, ExperimentNoAction)] ) n_steps = 500 n_seeds = 1000 config = Config(name, agents, environments, experiments, n_steps, n_seeds) return config
nn/modules.py
yizt/numpy_neural_network
428
12737511
<filename>nn/modules.py # -*- coding: utf-8 -*- """ @File : modules.py @Time : 2020/4/18 上午8:28 @Author : yizuotian @Description : """ from typing import List from activations import * from layers import fc_forward, fc_backward, global_avg_pooling_forward, flatten_forward, flatten_backward from layers_v2 import conv_forward, conv_backward, max_pooling_forward, max_pooling_backward, \ global_avg_pooling_backward from losses import * from optimizers import * # pyximport.install() # from clayers import * class BaseModule(object): def __init__(self, name=''): """ :param name: 层名 """ self.name = name self.weights = dict() # 权重参数字典 self.gradients = dict() # 梯度字典 self.in_features = None # 输入的feature map def forward(self, x): pass def backward(self, in_gradient): pass def update_gradient(self, lr): pass def load_weights(self, weights): """ 加载权重 :param weights: :return: """ for key in self.weights.keys(): self.weights[key] = weights[key] class Model(BaseModule): """ 网络模型 """ def __init__(self, layers: List[BaseModule], **kwargs): super(Model, self).__init__(**kwargs) self.layers = layers # 收集所有权重和梯度 for l in self.layers: self.weights.update(l.weights) self.gradients.update(l.gradients) def forward(self, x): for l in self.layers: x = l.forward(x) # print('forward layer:{},feature:{}'.format(l.name, np.max(x))) # 网络结果返回 return x def backward(self, in_gradient): # 反向传播 for l in self.layers[::-1]: in_gradient = l.backward(in_gradient) # print('backward layer:{},gradient:{}'.format(l.name, np.max(in_gradient))) def update_gradient(self, lr): for l in self.layers: l.update_gradient(lr) def load_weights(self, weights): """ 加载模型权重 :param weights: :return: """ # 逐层加载权重 for l in self.layers: l.load_weights(weights) class Linear(BaseModule): """ 全连接层 """ def __init__(self, in_units, out_units, **kwargs): """ :param in_units: 输入神经元数 :param out_units: 输出神经元数 """ super(Linear, self).__init__(**kwargs) # 权重参数 weight = np.random.randn(in_units, out_units) * np.sqrt(2 / in_units) bias = np.zeros(out_units) # 权重对应的梯度 g_weight = np.zeros_like(weight) g_bias = np.zeros_like(bias) # 权重和梯度的字典 self.weights = {"{}_weight".format(self.name): weight, "{}_bias".format(self.name): bias} self.gradients = {"{}_weight".format(self.name): g_weight, "{}_bias".format(self.name): g_bias} @property def weight(self): return self.weights["{}_weight".format(self.name)] @property def bias(self): return self.weights["{}_bias".format(self.name)] def set_gradient(self, name, gradient): """ 更新梯度 :param name: weight 或 bias 中一个 :param gradient: :return: """ self.gradients["{}_{}".format(self.name, name)] = gradient def forward(self, x): """ :param x: [B,in_units] :return output: [B,out_units] """ self.in_features = x output = fc_forward(x, self.weight, self.bias) return output def backward(self, in_gradient): """ 梯度反向传播 :param in_gradient: 后一层传递过来的梯度,[B,out_units] :return out_gradient: 传递给前一层的梯度,[B,in_units] """ g_weight, g_bias, out_gradient = fc_backward(in_gradient, self.weight, self.in_features) self.set_gradient('weight', g_weight) self.set_gradient('bias', g_bias) return out_gradient def update_gradient(self, lr): """ 更新梯度 :param lr: :return: """ self.weight -= self.g_weight * lr self.bias -= self.g_bias * lr class Conv2D(BaseModule): """ 2D卷积层 """ def __init__(self, in_filters, out_filters, kernel=(3, 3), padding=(1, 1), stride=(1, 1), **kwargs): super(Conv2D, self).__init__(**kwargs) self.in_filters = in_filters self.out_filters = out_filters self.kernel = kernel self.padding = padding self.stride = stride # 权重参数 fan_in = in_filters * kernel[0] * kernel[1] # 输入参数量 fan_out = out_filters * kernel[0] * kernel[1] # 输入参数量 weight = np.random.randn(in_filters, out_filters, *kernel) * np.sqrt(2 / (fan_in + fan_out)) bias = np.zeros(out_filters) # 梯度 g_weight = np.zeros_like(weight) g_bias = np.zeros_like(bias) # 权重和梯度的字典 self.weights = {"{}_weight".format(self.name): weight, "{}_bias".format(self.name): bias} self.gradients = {"{}_weight".format(self.name): g_weight, "{}_bias".format(self.name): g_bias} @property def weight(self): return self.weights["{}_weight".format(self.name)] @property def bias(self): return self.weights["{}_bias".format(self.name)] def set_gradient(self, name, gradient): """ 更新梯度 :param name: weight 或 bias 中一个 :param gradient: :return: """ self.gradients["{}_{}".format(self.name, name)] = gradient def forward(self, x): """ :param x: [B,in_filters,H,W] :return output: [B,out_filters,H,W] """ self.in_features = x output = conv_forward(x, self.weight, self.bias, self.padding, self.stride) return output def backward(self, in_gradient): """ :param in_gradient: 后一层传递过来的梯度,[B,out_filters,H,W] :return out_gradient: 传递给前一层的梯度,[B,in_filters,H,W] """ g_weight, g_bias, out_gradient = conv_backward(in_gradient, self.weight, self.in_features, self.padding, self.stride) self.set_gradient('weight', g_weight) self.set_gradient('bias', g_bias) return out_gradient def update_gradient(self, lr): self.weight -= self.g_weight * lr self.bias -= self.g_bias * lr class ReLU(BaseModule): def __init__(self, **kwargs): super(ReLU, self).__init__(**kwargs) def forward(self, x): self.in_features = x return relu_forward(x) def backward(self, in_gradient): """ :param in_gradient: 后一层传递过来的梯度 :return out_gradient: 传递给前一层的梯度 """ out_gradient = relu_backward(in_gradient, self.in_features) return out_gradient class MaxPooling2D(BaseModule): """ 最大池化层 """ def __init__(self, kernel=(2, 2), stride=(2, 2), padding=(0, 0), **kwargs): """ :param kernel: 池化尺寸 :param stride: 步长 :param padding: padding :param kwargs: """ super(MaxPooling2D, self).__init__(**kwargs) self.kernel = kernel self.stride = stride self.padding = padding def forward(self, x): """ :param x: [B,C,H,W] :return output : [B,C,H',W'] """ self.in_features = x output = max_pooling_forward(x, self.kernel, self.stride, self.padding) return output def backward(self, in_gradient): """ :param in_gradient: 后一层传递过来的梯度 :return out_gradient: 传递给前一层的梯度 """ out_gradient = max_pooling_backward(in_gradient, self.in_features, self.kernel, self.stride, self.padding) return out_gradient class GlobalAvgPooling2D(BaseModule): """ 全局平均池化 """ def __init__(self, **kwargs): super(GlobalAvgPooling2D, self).__init__(**kwargs) def forward(self, x): """ :param x: [B,C,H,W] :return output : [B,C,H',W'] """ self.in_features = x output = global_avg_pooling_forward(x) return output def backward(self, in_gradient): """ :param in_gradient: 后一层传递过来的梯度 :return out_gradient: 传递给前一层的梯度 """ out_gradient = global_avg_pooling_backward(in_gradient, self.in_features) return out_gradient class Flatten(BaseModule): """ 打平层 """ def __init__(self, **kwargs): super(Flatten, self).__init__(**kwargs) def forward(self, x): self.in_features = x return flatten_forward(x) def backward(self, in_gradient): """ :param in_gradient: 后一层传递过来的梯度 :return out_gradient: 传递给前一层的梯度 """ out_gradient = flatten_backward(in_gradient, self.in_features) return out_gradient def test_linear(): # 实际的权重和偏置 W = np.array([[3, 7, 4], [5, 2, 6]]) b = np.array([2, 9, 3]) # 产生训练样本 x_data = np.random.randn(500, 2) y_data = np.dot(x_data, W) + b def next_sample(batch_size=1): idx = np.random.randint(500) return x_data[idx:idx + batch_size], y_data[idx:idx + batch_size] fc_layer = Linear(2, 3, name='fc1') # fc_layer.weights['fc1_weight'] *= 1e-2 # 单层权重初始化要小 m = Model([fc_layer]) sgd = SGD(m.weights, lr=1e-3) i = 0 loss = 1 while loss > 1e-15: x, y_true = next_sample(4) # 获取当前样本 # 前向传播 y = m.forward(x) # 反向传播更新梯度 loss, dy = mean_squared_loss(y, y_true) m.backward(dy) # 更新梯度 sgd.iterate(m) # 更新迭代次数 i += 1 if i % 10000 == 0: print("y_pred:{},y_true:{}".format(y, y_true)) print("\n迭代{}次,当前loss:{}, 当前权重:{},当前偏置{},梯度:{}".format(i, loss, m.layers[0].weight, m.layers[0].bias, m.layers[0].gradients)) # print(m.weights) print('迭代{}次,当前权重:{} '.format(i, m.layers[0].weights)) if __name__ == '__main__': test_linear()
src/visions/backends/python/types/string.py
bhumikapahariapuresoftware/visions
142
12737515
from typing import Sequence from visions.backends.python.series_utils import ( sequence_handle_none, sequence_not_empty, ) from visions.types.string import String @String.contains_op.register @sequence_not_empty @sequence_handle_none def string_contains(sequence: Sequence, state: dict) -> bool: return all(isinstance(v, str) for v in sequence)
f5/bigip/tm/sys/test/functional/test_disk.py
nghia-tran/f5-common-python
272
12737537
<filename>f5/bigip/tm/sys/test/functional/test_disk.py<gh_stars>100-1000 # Copyright 2018 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from f5.bigip.tm.sys.disk import Logical_Disk import pytest from requests import HTTPError class TestLogicalDisk(object): def test_load_refresh(self, mgmt_root): d1 = mgmt_root.tm.sys.disk.logical_disks.logical_disk.load(name='HD1') assert d1.name == 'HD1' assert d1.kind == 'tm:sys:disk:logical-disk:logical-diskstate' assert d1.mode == 'mixed' d2 = mgmt_root.tm.sys.disk.logical_disks.logical_disk.load(name='HD1') assert d2.name == d1.name assert d2.kind == d1.kind assert d2.mode == d1.mode d1.refresh() assert d1.name == d2.name assert d1.kind == d2.kind assert d1.mode == d2.mode def test_load_no_object(self, mgmt_root): rc = mgmt_root.tm.sys.disk.logical_disks with pytest.raises(HTTPError) as err: rc.logical_disk.load(name='not_exists') assert err.value.response.status_code == 404 def test_logical_disks_collection(self, mgmt_root): rc = mgmt_root.tm.sys.disk.logical_disks.get_collection() assert isinstance(rc, list) assert len(rc) assert isinstance(rc[0], Logical_Disk)
src/mylib/torch/nn/modules/dense.py
murez/mobile-semantic-segmentation
713
12737592
from torch import nn from torch.nn.init import xavier_uniform_ from mylib.torch.nn.init import zeros_initializer class Dense(nn.Linear): r"""Fully connected linear layer with activation function. .. math:: y = activation(xW^T + b) Args: in_features (int): number of input feature :math:`x`. out_features (int): number of output features :math:`y`. bias (bool, optional): if False, the layer will not adapt bias :math:`b`. activation (callable, optional): if None, no activation function is used. weight_init (callable, optional): weight initializer from current weight. bias_init (callable, optional): bias initializer from current bias. """ def __init__( self, in_features, out_features, bias=True, activation=None, weight_init=xavier_uniform_, # weight_init=xavier_normal_, bias_init=zeros_initializer, ): self.weight_init = weight_init self.bias_init = bias_init self.activation = activation # initialize linear layer y = xW^T + b super(Dense, self).__init__(in_features, out_features, bias) def reset_parameters(self): """Reinitialize models weight and bias values.""" self.weight_init(self.weight) if self.bias is not None: self.bias_init(self.bias) def forward(self, inputs): """Compute layer output. Args: inputs (dict of torch.Tensor): batch of input values. Returns: torch.Tensor: layer output. """ # compute linear layer y = xW^T + b y = super(Dense, self).forward(inputs) # add activation function if self.activation: y = self.activation(y) return y
python/ray/serve/examples/doc/quickstart_class.py
mgelbart/ray
21,382
12737596
<reponame>mgelbart/ray import requests import ray from ray import serve serve.start() @serve.deployment class Counter: def __init__(self): self.count = 0 def __call__(self, *args): self.count += 1 return {"count": self.count} # Deploy our class. Counter.deploy() # Query our endpoint in two different ways: from HTTP and from Python. assert requests.get("http://127.0.0.1:8000/Counter").json() == {"count": 1} assert ray.get(Counter.get_handle().remote()) == {"count": 2}
tests/unit/test_tty.py
tedivm/dockerpty
129
12737611
<gh_stars>100-1000 # dockerpty: test_tty.py. # # Copyright 2014 <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from expects import expect, equal, be_none, be_true, be_false import dockerpty.tty as tty import tests.util as util import os import pty import termios import tempfile def israw(fd): __, __, __, flags, __, __, __ = termios.tcgetattr(fd) return not flags & termios.ECHO def test_size_returns_none_for_non_tty(): with tempfile.TemporaryFile() as t: expect(tty.size(t)).to(be_none) def test_size_returns_a_tuple_for_a_tty(): fd, __ = pty.openpty() fd = os.fdopen(fd) util.set_pty_size(fd, (43, 120)) expect(tty.size(fd)).to(equal((43, 120))) class TestTerminal(object): def test_start_when_raw(self): fd, __ = pty.openpty() terminal = tty.Terminal(os.fdopen(fd), raw=True) expect(israw(fd)).to(be_false) terminal.start() expect(israw(fd)).to(be_true) def test_start_when_not_raw(self): fd, __ = pty.openpty() terminal = tty.Terminal(os.fdopen(fd), raw=False) expect(israw(fd)).to(be_false) terminal.start() expect(israw(fd)).to(be_false) def test_stop_when_raw(self): fd, __ = pty.openpty() terminal = tty.Terminal(os.fdopen(fd), raw=True) terminal.start() terminal.stop() expect(israw(fd)).to(be_false) def test_raw_with_block(self): fd, __ = pty.openpty() fd = os.fdopen(fd) with tty.Terminal(fd, raw=True): expect(israw(fd)).to(be_true) expect(israw(fd)).to(be_false) def test_start_does_not_crash_when_fd_is_not_a_tty(self): with tempfile.TemporaryFile() as f: terminal = tty.Terminal(f, raw=True) terminal.start() terminal.stop() def test_repr(self): fd = 'some_fd' terminal = tty.Terminal(fd, raw=True) expect(repr(terminal)).to(equal("Terminal(some_fd, raw=True)"))
descarteslabs/workflows/types/geospatial/tests/test_geocontext.py
carderne/descarteslabs-python
167
12737614
import pytest import shapely.geometry from descarteslabs import scenes from .. import GeoContext from descarteslabs.workflows.types.containers import Tuple from descarteslabs.workflows.types.primitives import Int, Float def test_from_scenes_wrong_type(): with pytest.raises( TypeError, match=r"expected a `descarteslabs\.scenes\.GeoContext`" ): GeoContext.from_scenes("foo") def test_from_scenes_aoi(): aoi = scenes.AOI( geometry=shapely.geometry.box(-60.0, 30.0, -50.0, 40.0), resolution=1, crs="EPSG:4326", align_pixels=False, ) ctx = GeoContext.from_scenes(aoi) assert ctx.graft[ctx.graft["returns"]][0] == "wf.GeoContext.create" promoted = GeoContext._promote(aoi) assert promoted.graft[promoted.graft["returns"]][0] == "wf.GeoContext.create" def test_from_scenes_tile(): tile_dict = { "geometry": { "coordinates": [ [ [-100.10534464886125, 59.94175277369993], [-99.91065247366876, 59.943240309707676], [-99.91334037259435, 60.040922421458546], [-100.10860694364838, 60.039429047992876], [-100.10534464886125, 59.94175277369993], ] ], "type": "Polygon", }, "properties": { "cs_code": "EPSG:32614", "geotrans": [438240.0, 20.0, 0, 6656320.0, 0, -20.0], "key": "512:16:20.0:14:-6:649", "outputBounds": [438240.0, 6645440.0, 449120.0, 6656320.0], "pad": 16, "proj4": "+proj=utm +zone=14 +datum=WGS84 +units=m +no_defs ", "resolution": 20.0, "ti": -6, "tilesize": 512, "tj": 649, "zone": 14, }, "type": "Feature", } tile = scenes.DLTile(tile_dict) ctx = GeoContext.from_scenes(tile) assert ctx.graft[ctx.graft["returns"]][0] == "wf.GeoContext.from_dltile_key" promoted = GeoContext._promote(tile) assert ( promoted.graft[promoted.graft["returns"]][0] == "wf.GeoContext.from_dltile_key" ) def test_from_scenes_xyztile(): tile = scenes.XYZTile(3, 5, 4) ctx = GeoContext.from_scenes(tile) assert ctx.graft[ctx.graft["returns"]][0] == "wf.GeoContext.from_xyz_tile" promoted = GeoContext._promote(tile) assert promoted.graft[promoted.graft["returns"]][0] == "wf.GeoContext.from_xyz_tile" def test_promote_dltile_from_key(): ctx = GeoContext.from_dltile_key("500:0:10.0:13:-17:790") assert GeoContext._promote(ctx) is ctx def test_promote_xyztile_from_xyz(): ctx = GeoContext.from_xyz_tile(3, 5, 4) assert GeoContext._promote(ctx) is ctx @pytest.mark.parametrize("attr", ["arr_shape", "gdal_geotrans", "projected_bounds"]) def test_readonly_attributes(attr): type_params = GeoContext._type_params[0] ctx = GeoContext.from_xyz_tile(3, 5, 4) assert isinstance(getattr(ctx, attr), type_params[attr]) def test_index_to_coords(): aoi = scenes.AOI( geometry=shapely.geometry.box(-60.0, 30.0, -50.0, 40.0), resolution=1, crs="EPSG:4326", align_pixels=False, ) ctx = GeoContext.from_scenes(aoi) coords = ctx.index_to_coords(0, 0) assert isinstance(coords, Tuple[Float, Float]) def test_coords_to_index(): aoi = scenes.AOI( geometry=shapely.geometry.box(-60.0, 30.0, -50.0, 40.0), resolution=1, crs="EPSG:4326", align_pixels=False, ) ctx = GeoContext.from_scenes(aoi) ctx = GeoContext._promote(ctx) index = ctx.coords_to_index(0.0, 1.0) assert isinstance(index, Tuple[Int, Int])
nmrglue/util/misc.py
genematx/nmrglue
150
12737639
<filename>nmrglue/util/misc.py """ Misc. functions """ from __future__ import print_function import numpy as np # default tolerences RTOL = 1.001e-01 ATOL = 1.001e-01 DTOL = 5.001e-01 def pair_similar(dic1, data1, dic2, data2, verb=False, atol=ATOL, rtol=RTOL, dtol=DTOL, ignore_pipe_display=False): """ Check a dic, data pair against a second dic, data pair for differences. Parameters ---------- dic1 : dict First dictionary of NMR parameters. data1 : ndarray First array of NMR data dic2 : dict Second dictionary of NMR parameters data2 : ndarray Second array of NMR data verb : bool, optional Set True for verbose reporting. atol : float, optional The absolute tolerent parameter to pass to numpy.allclose. rtol : float, optional The relative tolenance parameter to pass to numpy.allclose. Returns ------- r1 : bool True is data1 and data2 are similar, False if they differ. r2 : bool True is dic1 and dic2 are similar, False if they differ. """ r1 = isdatasimilar(data1, data2, verb, atol, rtol) r2 = isdicsimilar(dict(dic1), dict(dic2), verb, dtol, ignore_pipe_display=ignore_pipe_display) return r1, r2 def isdatasimilar(data1, data2, verb=False, atol=ATOL, rtol=RTOL): """ Check that two sets of NMR data are equal within a tolerance. Parameters ---------- data1 : ndarray First array of NMR data data2 : ndarray Second array of NMR data verb : bool, optional Set True for verbose reporting. atol : float, optional The absolute tolerent parameter to pass to numpy.allclose. rtol : float, optional The relative tolenance parameter to pass to numpy.allclose. Returns ------- r1 : bool True is data1 and data2 are similar, False if they differ. """ r = True if data1.dtype != data2.dtype: r = False if verb: print("Dtypes do not match:", data1.dtype, data2.dtype) if data1.shape != data2.shape: r = False if verb: print("Shapes do not match:", data1.shape, data2.shape) if np.allclose(data1, data2, rtol=rtol, atol=atol) is False: r = False if verb: print("Data does not match") return r def isitemsimilar(v1, v2, verb=False, dtol=DTOL): """ Compare two values for differences See :py:func:`isdicsimilar` for Parameters. """ r = True # type checking if type(v1) != type(v2): r = False if verb: print("Item has different type", type(v1), type(v2)) # iterable checking elif isinstance(v1, dict): r = r and isdicsimilar(v1, v2, verb=verb, dtol=dtol) elif isinstance(v1, list): r = r and islistsimilar(v1, v2, verb=verb, dtol=dtol) # numeric type elif isinstance(v1, (int, float)): if abs(v1 - v2) > dtol: r = False if verb: print("Key mismatch:", v1, v2) # all other types: just check if equal else: if v1 != v2: r = False if verb: print("Key mismatch:", v1, v2) return r def isdicsimilar(dic1, dic2, verb=False, dtol=DTOL, ignore_pipe_display=False): """ Compare two dictionaries for differences Float and int types compared within dtol. Lists and dictionaries are checked recursively all other checked by simple equivalence Parameters ---------- dic1 : dict First dictionary of NMR parameters. dic2 : dict Second dictionary of NMR parameters verb : bool, optional Set True for verbose reporting. dtol : float, optional Maximum allowable difference between int and float elements if dic1 and dic2. Returns ------- r1 : bool True is dic1 and dic2 are similar, False if they differ. """ # create copies of the two dictionaries dic1 = dict(dic1) dic2 = dict(dic2) # set return value to True r = True # create sets kset1 = set(dic1.keys()) kset2 = set(dic2.keys()) dset = set.difference(kset1, kset2) iset = set.intersection(kset1, kset2) if ignore_pipe_display is True: iset.discard('FDMIN') iset.discard('FDMAX') iset.discard('FDDISPMIN') iset.discard('FDDISPMAX') iset.discard('FDSCALEFLAG') # print out any keys not in both dictionaries if len(dset) != 0: r = False if verb: print("Keys not in both dictionaries:", dset) # loop over keys in both sets for k in iset: v1, v2 = dic1[k], dic2[k] if not isitemsimilar(v1, v2, verb=verb, dtol=dtol): print("For key:", k) r = False return r def islistsimilar(l1, l2, verb=False, dtol=DTOL): """ Compare two lists (or iterable) for differences See :py:func:`isdicsimilar` for Parameters. """ # set return value to True r = True # print out any keys not in both dictionaries if len(l1) != len(l2): r = False if verb: print("Lists not of same length:", len(l1), len(l2)) # loop over keys in both sets for v1, v2 in zip(l1, l2): if not isitemsimilar(v1, v2, verb=verb, dtol=dtol): r = False return r
tests/flow/test_tdigest.py
simonprickett/RedisBloom
883
12737643
#!/usr/bin/env python3 import os from random import randint from RLTest import Env from redis import ResponseError import redis import sys import random import math is_valgrind = True if ("VGD" in os.environ or "VALGRIND" in os.environ) else False def parse_tdigest_info(array_reply): reply_dict = {} for pos in range(0, len(array_reply), 2): property_name = array_reply[pos] property_value = array_reply[pos + 1] reply_dict[property_name] = property_value return reply_dict class testTDigest: def __init__(self): self.env = Env(decodeResponses=True) self.assertOk = self.env.assertTrue self.cmd = self.env.cmd self.assertEqual = self.env.assertEqual self.assertRaises = self.env.assertRaises self.assertTrue = self.env.assertTrue self.assertAlmostEqual = self.env.assertAlmostEqual self.assertGreater = self.env.assertGreater self.assertAlmostEqual = self.env.assertAlmostEqual self.restart_and_reload = self.env.restartAndReload def test_tdigest_create(self): for compression in range(100, 1000, 100): self.assertOk(self.cmd("tdigest.create", "tdigest", compression)) self.assertEqual( compression, parse_tdigest_info(self.cmd("tdigest.info", "tdigest"))["Compression"], ) def test_negative_tdigest_create(self): self.cmd("SET", "tdigest", "B") # WRONGTYPE self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.create", "tdigest", 100 ) self.cmd("DEL", "tdigest") # arity lower self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.create", "tdigest" ) # arity upper self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.create", "tdigest", 100, 5, ) # parsing self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.create", "tdigest", "a" ) # compression negative/zero value self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.create", "tdigest", 0 ) # compression negative/zero value self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.create", "tdigest", -1 ) def test_tdigest_reset(self): self.assertOk(self.cmd("tdigest.create", "tdigest", 100)) # reset on empty histogram self.assertOk(self.cmd("tdigest.reset", "tdigest")) # insert datapoints into sketch for x in range(100): self.assertOk(self.cmd("tdigest.add", "tdigest", random.random(), 1.0)) # assert we have 100 unmerged nodes self.assertEqual( 100, parse_tdigest_info(self.cmd("tdigest.info", "tdigest"))["Unmerged nodes"], ) self.assertOk(self.cmd("tdigest.reset", "tdigest")) # assert we have 100 unmerged nodes self.assertEqual( 0, parse_tdigest_info(self.cmd("tdigest.info", "tdigest"))["Unmerged nodes"] ) def test_negative_tdigest_reset(self): self.cmd("SET", "tdigest", "B") # WRONGTYPE self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.reset", "tdigest" ) self.cmd("DEL", "tdigest") # empty key self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.reset", "tdigest" ) self.assertOk(self.cmd("tdigest.create", "tdigest", 100)) # arity lower self.assertRaises(redis.exceptions.ResponseError, self.cmd, "tdigest.reset") # arity upper self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.reset", "tdigest", 100 ) def test_tdigest_add(self): self.assertOk(self.cmd("tdigest.create", "tdigest", 100)) # reset on empty histogram self.assertOk(self.cmd("tdigest.reset", "tdigest")) # insert datapoints into sketch for x in range(10000): self.assertOk( self.cmd( "tdigest.add", "tdigest", random.random() * 10000, random.random() * 500 + 1.0, ) ) def test_negative_tdigest_add(self): self.cmd("SET", "tdigest", "B") # WRONGTYPE self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.add", "tdigest", 100, 100 ) self.cmd("DEL", "tdigest") self.assertOk(self.cmd("tdigest.create", "tdigest", 100)) # arity lower self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.add", "tdigest" ) # arity upper self.assertRaises( ResponseError, self.cmd, "tdigest.add", "tdigest", 100, 5, 100.0 ) # key does not exist self.assertRaises( ResponseError, self.cmd, "tdigest.add", "dont-exist", 100, 100 ) # parsing self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.add", "tdigest", "a", 5 ) self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.add", "tdigest", 5.0, "a" ) def test_tdigest_merge(self): self.assertOk(self.cmd("tdigest.create", "to-tdigest", 100)) self.assertOk(self.cmd("tdigest.create", "from-tdigest", 100)) # insert datapoints into sketch for _ in range(100): self.assertOk(self.cmd("tdigest.add", "from-tdigest", 1.0, 1.0)) for _ in range(100): self.assertOk(self.cmd("tdigest.add", "to-tdigest", 1.0, 10.0)) # merge from-tdigest into to-tdigest self.assertOk(self.cmd("tdigest.merge", "to-tdigest", "from-tdigest")) # we should now have 1100 weight on to-histogram to_info = parse_tdigest_info(self.cmd("tdigest.info", "to-tdigest")) total_weight_to = float(to_info["Merged weight"]) + float( to_info["Unmerged weight"] ) self.assertEqual(1100, total_weight_to) def test_tdigest_merge_to_empty(self): self.assertOk(self.cmd("tdigest.create", "to-tdigest", 100)) self.assertOk(self.cmd("tdigest.create", "from-tdigest", 100)) # insert datapoints into sketch for _ in range(100): self.assertOk(self.cmd("tdigest.add", "from-tdigest", 1.0, 1.0)) # merge from-tdigest into to-tdigest self.assertOk(self.cmd("tdigest.merge", "to-tdigest", "from-tdigest")) # assert we have same merged weight on both histograms ( given the to-histogram was empty ) from_info = parse_tdigest_info(self.cmd("tdigest.info", "from-tdigest")) total_weight_from = float(from_info["Merged weight"]) + float( from_info["Unmerged weight"] ) to_info = parse_tdigest_info(self.cmd("tdigest.info", "to-tdigest")) total_weight_to = float(to_info["Merged weight"]) + float( to_info["Unmerged weight"] ) self.assertEqual(total_weight_from, total_weight_to) def test_negative_tdigest_merge(self): self.cmd("SET", "to-tdigest", "B") self.cmd("SET", "from-tdigest", "B") # WRONGTYPE self.assertRaises( ResponseError, self.cmd, "tdigest.merge", "to-tdigest", "from-tdigest" ) self.cmd("DEL", "to-tdigest") self.assertOk(self.cmd("tdigest.create", "to-tdigest", 100)) self.assertRaises( ResponseError, self.cmd, "tdigest.merge", "to-tdigest", "from-tdigest" ) self.cmd("DEL", "from-tdigest") self.assertOk(self.cmd("tdigest.create", "from-tdigest", 100)) # arity lower self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.merge", "to-tdigest" ) # arity upper self.assertRaises( ResponseError, self.cmd, "tdigest.merge", "to-tdigest", "from-tdigest", "from-tdigest", ) # key does not exist self.assertRaises( ResponseError, self.cmd, "tdigest.merge", "dont-exist", "to-tdigest" ) self.assertRaises( ResponseError, self.cmd, "tdigest.merge", "to-tdigest", "dont-exist" ) def test_tdigest_min_max(self): self.assertOk(self.cmd("tdigest.create", "tdigest", 100)) # test for no datapoints first self.assertEqual(sys.float_info.max, float(self.cmd("tdigest.min", "tdigest"))) self.assertEqual(sys.float_info.min, float(self.cmd("tdigest.max", "tdigest"))) # insert datapoints into sketch for x in range(1, 101): self.assertOk(self.cmd("tdigest.add", "tdigest", x, 1.0)) # min/max self.assertEqual(100, float(self.cmd("tdigest.max", "tdigest"))) self.assertEqual(1, float(self.cmd("tdigest.min", "tdigest"))) def test_negative_tdigest_min_max(self): self.cmd("SET", "tdigest", "B") # WRONGTYPE self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.min", "tdigest" ) self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.max", "tdigest" ) # key does not exist self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.min", "dont-exist" ) self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.max", "dont-exist" ) self.cmd("DEL", "tdigest", "B") self.assertOk(self.cmd("tdigest.create", "tdigest", 100)) # arity lower self.assertRaises(redis.exceptions.ResponseError, self.cmd, "tdigest.min") self.assertRaises(redis.exceptions.ResponseError, self.cmd, "tdigest.max") # arity upper self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.min", "tdigest", 1 ) self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.max", "tdigest", 1 ) def test_tdigest_quantile(self): self.assertOk(self.cmd("tdigest.create", "tdigest", 500)) # insert datapoints into sketch for x in range(1, 10000): self.assertOk(self.cmd("tdigest.add", "tdigest", x * 0.01, 1.0)) # assert min min/max have same result as quantile 0 and 1 self.assertEqual( float(self.cmd("tdigest.max", "tdigest")), float(self.cmd("tdigest.quantile", "tdigest", 1.0)), ) self.assertEqual( float(self.cmd("tdigest.min", "tdigest")), float(self.cmd("tdigest.quantile", "tdigest", 0.0)), ) self.assertAlmostEqual( 1.0, float(self.cmd("tdigest.quantile", "tdigest", 0.01)), 0.01 ) self.assertAlmostEqual( 99.0, float(self.cmd("tdigest.quantile", "tdigest", 0.99)), 0.01 ) def test_negative_tdigest_quantile(self): self.cmd("SET", "tdigest", "B") # WRONGTYPE self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.quantile", "tdigest", 0.9 ) # key does not exist self.assertRaises( ResponseError, self.cmd, "tdigest.quantile", "dont-exist", 0.9 ) self.cmd("DEL", "tdigest", "B") self.assertOk(self.cmd("tdigest.create", "tdigest", 100)) # arity lower self.assertRaises(redis.exceptions.ResponseError, self.cmd, "tdigest.quantile") # arity upper self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.quantile", "tdigest", 1, 1, ) # parsing self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.quantile", "tdigest", "a" ) def test_tdigest_cdf(self): self.assertOk(self.cmd("tdigest.create", "tdigest", 500)) # insert datapoints into sketch for x in range(1, 100): self.assertOk(self.cmd("tdigest.add", "tdigest", x, 1.0)) self.assertAlmostEqual( 0.01, float(self.cmd("tdigest.cdf", "tdigest", 1.0)), 0.01 ) self.assertAlmostEqual( 0.99, float(self.cmd("tdigest.cdf", "tdigest", 99.0)), 0.01 ) def test_negative_tdigest_cdf(self): self.cmd("SET", "tdigest", "B") # WRONGTYPE self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.cdf", "tdigest", 0.9 ) # key does not exist self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.cdf", "dont-exist", 0.9 ) self.cmd("DEL", "tdigest", "B") self.assertOk(self.cmd("tdigest.create", "tdigest", 100)) # arity lower self.assertRaises(redis.exceptions.ResponseError, self.cmd, "tdigest.cdf") # arity upper self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.cdf", "tdigest", 1, 1 ) # parsing self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.cdf", "tdigest", "a" ) def test_negative_tdigest_info(self): self.cmd("SET", "tdigest", "B") # WRONGTYPE self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.info", "tdigest" ) # dont exist self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.info", "dont-exist" ) self.cmd("DEL", "tdigest", "B") self.assertOk(self.cmd("tdigest.create", "tdigest", 100)) # arity lower self.assertRaises(redis.exceptions.ResponseError, self.cmd, "tdigest.info") # arity upper self.assertRaises( redis.exceptions.ResponseError, self.cmd, "tdigest.info", "tdigest", 1 ) def test_save_load(self): self.assertOk(self.cmd("tdigest.create", "tdigest", 500)) # insert datapoints into sketch for _ in range(1, 101): self.assertOk(self.cmd("tdigest.add", "tdigest", 1.0, 1.0)) self.assertEqual(True, self.cmd("SAVE")) mem_usage_prior_restart = self.cmd("MEMORY", "USAGE", "tdigest") self.restart_and_reload() # assert we have 100 unmerged nodes self.assertEqual(1, self.cmd("EXISTS", "tdigest")) self.assertEqual( 100, float( parse_tdigest_info(self.cmd("tdigest.info", "tdigest"))["Merged weight"] ), ) mem_usage_after_restart = self.cmd("MEMORY", "USAGE", "tdigest") self.assertEqual(mem_usage_prior_restart, mem_usage_after_restart)
stanza/utils/datasets/constituency/vtb_convert.py
asears/stanza
3,633
12737644
<gh_stars>1000+ """ Script for processing the VTB files and turning their trees into the desired tree syntax The VTB original trees are stored in the directory: VietTreebank_VLSP_SP73/Kho ngu lieu 10000 cay cu phap The script requires two arguments: 1. Original directory storing the original trees 2. New directory storing the converted trees """ import os import argparse def convert_file(org_dir, new_dir): """ :param org_dir: original directory storing original trees :param new_dir: new directory storing formatted constituency trees This function writes new trees to the corresponding files in new_dir """ with open(org_dir, 'r') as reader, open(new_dir, 'w') as writer: content = reader.readlines() for line in content: line = ' '.join(line.split()) if line == '': continue elif line == '<s>': writer.write('(ROOT ') elif line == '</s>': writer.write(')\n') else: writer.write(line) def main(): """ Main function for the script Process args, loop through each file in the directory and convert to the desired tree format """ parser = argparse.ArgumentParser( description="Script that converts a VTB Tree into the desired format", ) parser.add_argument( 'org_dir', help='The location of the original directory storing original trees ' ) parser.add_argument( 'new_dir', help='The location of new directory storing the new formatted trees' ) args = parser.parse_args() org_dir = args.org_dir new_dir = args.new_dir for filename in os.listdir(org_dir): file_name, file_extension = os.path.splitext(filename) # Only convert .prd files, skip the .raw files if file_extension == '.raw': continue file_path = os.path.join(org_dir, filename) new_path = os.path.join(new_dir, file_name) new_file_path = f'{new_path}.mrg' # Convert the tree and write to new_file_path convert_file(file_path, new_file_path) if __name__ == '__main__': main()
cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.py
CiscoDevNet/ydk-py
177
12737651
""" Cisco_IOS_XR_asr9k_sc_envmon_admin_oper This module contains a collection of YANG definitions for Cisco IOS\-XR asr9k\-sc\-envmon package admin\-plane operational data. This module contains definitions for the following management objects\: environmental\-monitoring\: Admin Environmental Monitoring Operational data space Copyright (c) 2013\-2018 by Cisco Systems, Inc. All rights reserved. """ import sys from collections import OrderedDict from ydk.types import Entity as _Entity_ from ydk.types import EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class EnvironmentalMonitoring(_Entity_): """ Admin Environmental Monitoring Operational data space .. attribute:: racks Table of racks **type**\: :py:class:`Racks <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring, self).__init__() self._top_entity = None self.yang_name = "environmental-monitoring" self.yang_parent_name = "Cisco-IOS-XR-asr9k-sc-envmon-admin-oper" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("racks", ("racks", EnvironmentalMonitoring.Racks))]) self._leafs = OrderedDict() self.racks = EnvironmentalMonitoring.Racks() self.racks.parent = self self._children_name_map["racks"] = "racks" self._segment_path = lambda: "Cisco-IOS-XR-asr9k-sc-envmon-admin-oper:environmental-monitoring" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring, [], name, value) class Racks(_Entity_): """ Table of racks .. attribute:: rack Number **type**\: list of :py:class:`Rack <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks, self).__init__() self.yang_name = "racks" self.yang_parent_name = "environmental-monitoring" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("rack", ("rack", EnvironmentalMonitoring.Racks.Rack))]) self._leafs = OrderedDict() self.rack = YList(self) self._segment_path = lambda: "racks" self._absolute_path = lambda: "Cisco-IOS-XR-asr9k-sc-envmon-admin-oper:environmental-monitoring/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks, [], name, value) class Rack(_Entity_): """ Number .. attribute:: rack (key) Rack number **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: slots Table of slots **type**\: :py:class:`Slots <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack, self).__init__() self.yang_name = "rack" self.yang_parent_name = "racks" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['rack'] self._child_classes = OrderedDict([("slots", ("slots", EnvironmentalMonitoring.Racks.Rack.Slots))]) self._leafs = OrderedDict([ ('rack', (YLeaf(YType.uint32, 'rack'), ['int'])), ]) self.rack = None self.slots = EnvironmentalMonitoring.Racks.Rack.Slots() self.slots.parent = self self._children_name_map["slots"] = "slots" self._segment_path = lambda: "rack" + "[rack='" + str(self.rack) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-asr9k-sc-envmon-admin-oper:environmental-monitoring/racks/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack, ['rack'], name, value) class Slots(_Entity_): """ Table of slots .. attribute:: slot Name **type**\: list of :py:class:`Slot <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots, self).__init__() self.yang_name = "slots" self.yang_parent_name = "rack" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("slot", ("slot", EnvironmentalMonitoring.Racks.Rack.Slots.Slot))]) self._leafs = OrderedDict() self.slot = YList(self) self._segment_path = lambda: "slots" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots, [], name, value) class Slot(_Entity_): """ Name .. attribute:: slot (key) Slot name **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ **config**\: False .. attribute:: modules Table of modules **type**\: :py:class:`Modules <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot, self).__init__() self.yang_name = "slot" self.yang_parent_name = "slots" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = ['slot'] self._child_classes = OrderedDict([("modules", ("modules", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules))]) self._leafs = OrderedDict([ ('slot', (YLeaf(YType.str, 'slot'), ['str'])), ]) self.slot = None self.modules = EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules() self.modules.parent = self self._children_name_map["modules"] = "modules" self._segment_path = lambda: "slot" + "[slot='" + str(self.slot) + "']" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot, ['slot'], name, value) class Modules(_Entity_): """ Table of modules .. attribute:: module Name **type**\: list of :py:class:`Module <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules, self).__init__() self.yang_name = "modules" self.yang_parent_name = "slot" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("module", ("module", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module))]) self._leafs = OrderedDict() self.module = YList(self) self._segment_path = lambda: "modules" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules, [], name, value) class Module(_Entity_): """ Name .. attribute:: module (key) Module name **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ **config**\: False .. attribute:: sensor_types Table of sensor types **type**\: :py:class:`SensorTypes <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes>` **config**\: False .. attribute:: power Module Power Draw **type**\: :py:class:`Power <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module, self).__init__() self.yang_name = "module" self.yang_parent_name = "modules" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = ['module'] self._child_classes = OrderedDict([("sensor-types", ("sensor_types", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes)), ("power", ("power", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power))]) self._leafs = OrderedDict([ ('module', (YLeaf(YType.str, 'module'), ['str'])), ]) self.module = None self.sensor_types = EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes() self.sensor_types.parent = self self._children_name_map["sensor_types"] = "sensor-types" self.power = EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power() self.power.parent = self self._children_name_map["power"] = "power" self._segment_path = lambda: "module" + "[module='" + str(self.module) + "']" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module, ['module'], name, value) class SensorTypes(_Entity_): """ Table of sensor types .. attribute:: sensor_type Type of sensor **type**\: list of :py:class:`SensorType <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes, self).__init__() self.yang_name = "sensor-types" self.yang_parent_name = "module" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("sensor-type", ("sensor_type", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType))]) self._leafs = OrderedDict() self.sensor_type = YList(self) self._segment_path = lambda: "sensor-types" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes, [], name, value) class SensorType(_Entity_): """ Type of sensor .. attribute:: type (key) Sensor type **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ **config**\: False .. attribute:: sensor_names Table of sensors **type**\: :py:class:`SensorNames <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType, self).__init__() self.yang_name = "sensor-type" self.yang_parent_name = "sensor-types" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = ['type'] self._child_classes = OrderedDict([("sensor-names", ("sensor_names", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames))]) self._leafs = OrderedDict([ ('type', (YLeaf(YType.str, 'type'), ['str'])), ]) self.type = None self.sensor_names = EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames() self.sensor_names.parent = self self._children_name_map["sensor_names"] = "sensor-names" self._segment_path = lambda: "sensor-type" + "[type='" + str(self.type) + "']" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType, ['type'], name, value) class SensorNames(_Entity_): """ Table of sensors .. attribute:: sensor_name Name of sensor **type**\: list of :py:class:`SensorName <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames, self).__init__() self.yang_name = "sensor-names" self.yang_parent_name = "sensor-type" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("sensor-name", ("sensor_name", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName))]) self._leafs = OrderedDict() self.sensor_name = YList(self) self._segment_path = lambda: "sensor-names" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames, [], name, value) class SensorName(_Entity_): """ Name of sensor .. attribute:: name (key) Sensor name **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ **config**\: False .. attribute:: thresholds The threshold information **type**\: :py:class:`Thresholds <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds>` **config**\: False .. attribute:: value_detailed Detailed sensor information including the sensor value **type**\: :py:class:`ValueDetailed <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.ValueDetailed>` **config**\: False .. attribute:: value_brief The sensor value **type**\: str **pattern:** [0\-9a\-fA\-F]{1,8} **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName, self).__init__() self.yang_name = "sensor-name" self.yang_parent_name = "sensor-names" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = ['name'] self._child_classes = OrderedDict([("thresholds", ("thresholds", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds)), ("value-detailed", ("value_detailed", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.ValueDetailed))]) self._leafs = OrderedDict([ ('name', (YLeaf(YType.str, 'name'), ['str'])), ('value_brief', (YLeaf(YType.str, 'value-brief'), ['str'])), ]) self.name = None self.value_brief = None self.thresholds = EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds() self.thresholds.parent = self self._children_name_map["thresholds"] = "thresholds" self.value_detailed = EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.ValueDetailed() self.value_detailed.parent = self self._children_name_map["value_detailed"] = "value-detailed" self._segment_path = lambda: "sensor-name" + "[name='" + str(self.name) + "']" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName, ['name', 'value_brief'], name, value) class Thresholds(_Entity_): """ The threshold information .. attribute:: threshold Types of thresholds **type**\: list of :py:class:`Threshold <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds, self).__init__() self.yang_name = "thresholds" self.yang_parent_name = "sensor-name" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("threshold", ("threshold", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold))]) self._leafs = OrderedDict() self.threshold = YList(self) self._segment_path = lambda: "thresholds" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds, [], name, value) class Threshold(_Entity_): """ Types of thresholds .. attribute:: type (key) Threshold type **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ **config**\: False .. attribute:: value_detailed Detailed sensor threshold information **type**\: :py:class:`ValueDetailed <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold.ValueDetailed>` **config**\: False .. attribute:: trap Threshold trap enable flag true\-ENABLE, false\-DISABLE **type**\: bool **config**\: False .. attribute:: value_brief Threshold value for the sensor **type**\: str **pattern:** [0\-9a\-fA\-F]{1,8} **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold, self).__init__() self.yang_name = "threshold" self.yang_parent_name = "thresholds" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = ['type'] self._child_classes = OrderedDict([("value-detailed", ("value_detailed", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold.ValueDetailed))]) self._leafs = OrderedDict([ ('type', (YLeaf(YType.str, 'type'), ['str'])), ('trap', (YLeaf(YType.boolean, 'trap'), ['bool'])), ('value_brief', (YLeaf(YType.str, 'value-brief'), ['str'])), ]) self.type = None self.trap = None self.value_brief = None self.value_detailed = EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold.ValueDetailed() self.value_detailed.parent = self self._children_name_map["value_detailed"] = "value-detailed" self._segment_path = lambda: "threshold" + "[type='" + str(self.type) + "']" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold, ['type', 'trap', 'value_brief'], name, value) class ValueDetailed(_Entity_): """ Detailed sensor threshold information .. attribute:: threshold_severity Indicates minor, major, critical severities **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: threshold_relation Indicates relation between sensor value and threshold **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: threshold_value Value of the configured threshold **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: threshold_evaluation Indicates the result of the most recent evaluation of the thresholD **type**\: bool **config**\: False .. attribute:: threshold_notification_enabled Indicates whether or not a notification should result, in case of threshold violation **type**\: bool **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold.ValueDetailed, self).__init__() self.yang_name = "value-detailed" self.yang_parent_name = "threshold" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('threshold_severity', (YLeaf(YType.uint32, 'threshold-severity'), ['int'])), ('threshold_relation', (YLeaf(YType.uint32, 'threshold-relation'), ['int'])), ('threshold_value', (YLeaf(YType.uint32, 'threshold-value'), ['int'])), ('threshold_evaluation', (YLeaf(YType.boolean, 'threshold-evaluation'), ['bool'])), ('threshold_notification_enabled', (YLeaf(YType.boolean, 'threshold-notification-enabled'), ['bool'])), ]) self.threshold_severity = None self.threshold_relation = None self.threshold_value = None self.threshold_evaluation = None self.threshold_notification_enabled = None self._segment_path = lambda: "value-detailed" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold.ValueDetailed, ['threshold_severity', 'threshold_relation', 'threshold_value', 'threshold_evaluation', 'threshold_notification_enabled'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold.ValueDetailed']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds.Threshold']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.Thresholds']['meta_info'] class ValueDetailed(_Entity_): """ Detailed sensor information including the sensor value .. attribute:: field_validity_bitmap Sensor valid bitmap **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: device_description Device Name **type**\: str **length:** 0..50 **config**\: False .. attribute:: units Units of variable being read **type**\: str **length:** 0..50 **config**\: False .. attribute:: device_id Identifier for this device **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: value Current reading of sensor **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: alarm_type Indicates threshold violation **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: data_type Sensor data type enums **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: scale Sensor scale enums **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: precision Sensor precision range **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: status Sensor operation state enums **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: age_time_stamp Age of the sensor value; set to the current time if directly access the value from sensor **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: update_rate Sensor value update rate;set to 0 if sensor value is updated and evaluated immediately **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: average Average sensor value over time interval **type**\: int **range:** \-2147483648..2147483647 **config**\: False .. attribute:: minimum Minimum Sensor value over time interval **type**\: int **range:** \-2147483648..2147483647 **config**\: False .. attribute:: maximum Maximum Sensor value over time interval **type**\: int **range:** \-2147483648..2147483647 **config**\: False .. attribute:: interval Time Interval over which sensor value is monitored **type**\: int **range:** \-2147483648..2147483647 **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.ValueDetailed, self).__init__() self.yang_name = "value-detailed" self.yang_parent_name = "sensor-name" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('field_validity_bitmap', (YLeaf(YType.uint32, 'field-validity-bitmap'), ['int'])), ('device_description', (YLeaf(YType.str, 'device-description'), ['str'])), ('units', (YLeaf(YType.str, 'units'), ['str'])), ('device_id', (YLeaf(YType.uint32, 'device-id'), ['int'])), ('value', (YLeaf(YType.uint32, 'value'), ['int'])), ('alarm_type', (YLeaf(YType.uint32, 'alarm-type'), ['int'])), ('data_type', (YLeaf(YType.uint32, 'data-type'), ['int'])), ('scale', (YLeaf(YType.uint32, 'scale'), ['int'])), ('precision', (YLeaf(YType.uint32, 'precision'), ['int'])), ('status', (YLeaf(YType.uint32, 'status'), ['int'])), ('age_time_stamp', (YLeaf(YType.uint32, 'age-time-stamp'), ['int'])), ('update_rate', (YLeaf(YType.uint32, 'update-rate'), ['int'])), ('average', (YLeaf(YType.int32, 'average'), ['int'])), ('minimum', (YLeaf(YType.int32, 'minimum'), ['int'])), ('maximum', (YLeaf(YType.int32, 'maximum'), ['int'])), ('interval', (YLeaf(YType.int32, 'interval'), ['int'])), ]) self.field_validity_bitmap = None self.device_description = None self.units = None self.device_id = None self.value = None self.alarm_type = None self.data_type = None self.scale = None self.precision = None self.status = None self.age_time_stamp = None self.update_rate = None self.average = None self.minimum = None self.maximum = None self.interval = None self._segment_path = lambda: "value-detailed" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.ValueDetailed, ['field_validity_bitmap', 'device_description', 'units', 'device_id', 'value', 'alarm_type', 'data_type', 'scale', 'precision', 'status', 'age_time_stamp', 'update_rate', 'average', 'minimum', 'maximum', 'interval'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName.ValueDetailed']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames.SensorName']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType.SensorNames']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes.SensorType']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.SensorTypes']['meta_info'] class Power(_Entity_): """ Module Power Draw .. attribute:: power_bag Detailed power bag information **type**\: :py:class:`PowerBag <ydk.models.cisco_ios_xr.Cisco_IOS_XR_asr9k_sc_envmon_admin_oper.EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power.PowerBag>` **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power, self).__init__() self.yang_name = "power" self.yang_parent_name = "module" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("power-bag", ("power_bag", EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power.PowerBag))]) self._leafs = OrderedDict() self.power_bag = EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power.PowerBag() self.power_bag.parent = self self._children_name_map["power_bag"] = "power-bag" self._segment_path = lambda: "power" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power, [], name, value) class PowerBag(_Entity_): """ Detailed power bag information .. attribute:: power_value Current Power Value of the Unit **type**\: int **range:** \-2147483648..2147483647 **config**\: False .. attribute:: power_max_value Max Power Value of the Unit **type**\: int **range:** \-2147483648..2147483647 **config**\: False .. attribute:: power_unit_multiplier Unit Multiplier of Power **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: power_accuracy Accuracy of the Power Value **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: power_measure_caliber Measure Caliber **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: power_current_type Current Type of the Unit **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: power_origin The Power Origin of the Unit **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: power_admin_state Admin Status of the Unit **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: power_oper_state Oper Status of the Unit **type**\: int **range:** 0..4294967295 **config**\: False .. attribute:: power_state_enter_reason Enter Reason for the State **type**\: str **length:** 0..50 **config**\: False """ _prefix = 'asr9k-sc-envmon-admin-oper' _revision = '2017-01-19' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power.PowerBag, self).__init__() self.yang_name = "power-bag" self.yang_parent_name = "power" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('power_value', (YLeaf(YType.int32, 'power-value'), ['int'])), ('power_max_value', (YLeaf(YType.int32, 'power-max-value'), ['int'])), ('power_unit_multiplier', (YLeaf(YType.uint32, 'power-unit-multiplier'), ['int'])), ('power_accuracy', (YLeaf(YType.uint32, 'power-accuracy'), ['int'])), ('power_measure_caliber', (YLeaf(YType.uint32, 'power-measure-caliber'), ['int'])), ('power_current_type', (YLeaf(YType.uint32, 'power-current-type'), ['int'])), ('power_origin', (YLeaf(YType.uint32, 'power-origin'), ['int'])), ('power_admin_state', (YLeaf(YType.uint32, 'power-admin-state'), ['int'])), ('power_oper_state', (YLeaf(YType.uint32, 'power-oper-state'), ['int'])), ('power_state_enter_reason', (YLeaf(YType.str, 'power-state-enter-reason'), ['str'])), ]) self.power_value = None self.power_max_value = None self.power_unit_multiplier = None self.power_accuracy = None self.power_measure_caliber = None self.power_current_type = None self.power_origin = None self.power_admin_state = None self.power_oper_state = None self.power_state_enter_reason = None self._segment_path = lambda: "power-bag" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power.PowerBag, ['power_value', 'power_max_value', 'power_unit_multiplier', 'power_accuracy', 'power_measure_caliber', 'power_current_type', 'power_origin', 'power_admin_state', 'power_oper_state', 'power_state_enter_reason'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power.PowerBag']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module.Power']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules.Module']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot.Modules']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots.Slot']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack.Slots']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks.Rack']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring.Racks']['meta_info'] def clone_ptr(self): self._top_entity = EnvironmentalMonitoring() return self._top_entity @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_asr9k_sc_envmon_admin_oper as meta return meta._meta_table['EnvironmentalMonitoring']['meta_info']
services/web/manage.py
asomsiko/flask-on-docker
207
12737665
<reponame>asomsiko/flask-on-docker<filename>services/web/manage.py from flask.cli import FlaskGroup from project import app, db, User cli = FlaskGroup(app) @cli.command("create_db") def create_db(): db.drop_all() db.create_all() db.session.commit() @cli.command("seed_db") def seed_db(): db.session.add(User(email="<EMAIL>")) db.session.commit() if __name__ == "__main__": cli()
astropy/wcs/wcsapi/__init__.py
jayvdb/astropy
445
12737691
from .low_level_api import * from .high_level_api import * from .high_level_wcs_wrapper import * from .utils import * from .sliced_low_level_wcs import *
moto/apigateway/integration_parsers/unknown_parser.py
gtourkas/moto
5,460
12737697
class TypeUnknownParser: """ Parse invocations to a APIGateway resource with an unknown integration type """ def invoke(self, request, integration): _type = integration["type"] raise NotImplementedError("The {0} type has not been implemented".format(_type))
src/dispatch/plugins/dispatch_opsgenie/plugin.py
axellaurelut/dispatch
3,417
12737700
""" .. module: dispatch.plugins.dispatch_opsgenie.plugin :platform: Unix :copyright: (c) 2019 by Netflix Inc., see AUTHORS for more :license: Apache, see LICENSE for more details. """ import logging from pydantic import Field, SecretStr from dispatch.config import BaseConfigurationModel from dispatch.decorators import apply, counter, timer from dispatch.plugins.bases import OncallPlugin from .service import get_oncall, page_oncall __version__ = "0.1.0" log = logging.getLogger(__name__) class OpsgenieConfiguration(BaseConfigurationModel): """Opsgenie configuration description.""" api_key: SecretStr = Field( title="API Key", description="This is the key used to talk to the Opsgenine API." ) @apply(counter, exclude=["__init__"]) @apply(timer, exclude=["__init__"]) class OpsGenieOncallPlugin(OncallPlugin): title = "OpsGenie Plugin - Oncall Management" slug = "opsgenie-oncall" author = "stefanm8" author_url = "https://github.com/Netflix/dispatch" description = "Uses Opsgenie to resolve and page oncall teams." version = __version__ def __init__(self): self.configuration_schema = OpsgenieConfiguration def get(self, service_id: str, **kwargs): return get_oncall(self.configuration.api_key, service_id) def page( self, service_id: str, incident_name: str, incident_title: str, incident_description: str, **kwargs, ): return page_oncall( self.configuration.api_key, service_id, incident_name, incident_title, incident_description, )
tests/observes/test_dynamic_relationship.py
tteaka/sqlalchemy-utils
879
12737709
import pytest import sqlalchemy as sa from sqlalchemy.orm import dynamic_loader from sqlalchemy_utils.observer import observes @pytest.fixture def Director(Base): class Director(Base): __tablename__ = 'director' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.String) movies = dynamic_loader('Movie', back_populates='director') return Director @pytest.fixture def Movie(Base, Director): class Movie(Base): __tablename__ = 'movie' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.String) director_id = sa.Column(sa.Integer, sa.ForeignKey(Director.id)) director = sa.orm.relationship(Director, back_populates='movies') director_name = sa.Column(sa.String) @observes('director') def director_observer(self, director): self.director_name = director.name return Movie @pytest.fixture def init_models(Director, Movie): pass @pytest.mark.usefixtures('postgresql_dsn') class TestObservesForDynamicRelationship: def test_add_observed_object(self, session, Director, Movie): steven = Director(name='<NAME>') session.add(steven) jaws = Movie(name='Jaws', director=steven) session.add(jaws) session.commit() assert jaws.director_name == '<NAME>' def test_add_observed_object_from_backref(self, session, Director, Movie): jaws = Movie(name='Jaws') steven = Director(name='<NAME>', movies=[jaws]) session.add(steven) session.add(jaws) session.commit() assert jaws.director_name == '<NAME>'
nlgeval/utils.py
h4ste/nlg-eval
1,088
12737712
import click import json import os from xdg import XDG_CONFIG_HOME class InvalidDataDirException(Exception): pass def get_data_dir(): if os.environ.get('NLGEVAL_DATA'): if not os.path.exists(os.environ.get('NLGEVAL_DATA')): click.secho("NLGEVAL_DATA variable is set but points to non-existent path.", fg='red', err=True) raise InvalidDataDirException() return os.environ.get('NLGEVAL_DATA') else: try: cfg_file = os.path.join(XDG_CONFIG_HOME, 'nlgeval', 'rc.json') with open(cfg_file, 'rt') as f: rc = json.load(f) if not os.path.exists(rc['data_path']): click.secho("Data path found in {} does not exist: {} " % (cfg_file, rc['data_path']), fg='red', err=True) click.secho("Run `nlg-eval --setup DATA_DIR' to download or set $NLGEVAL_DATA to an existing location", fg='red', err=True) raise InvalidDataDirException() return rc['data_path'] except: click.secho("Could not determine location of data.", fg='red', err=True) click.secho("Run `nlg-eval --setup DATA_DIR' to download or set $NLGEVAL_DATA to an existing location", fg='red', err=True) raise InvalidDataDirException()
binding/python/util.py
ledoufre/porcupine
1,034
12737719
<filename>binding/python/util.py<gh_stars>1000+ # # Copyright 2020-2021 Picovoice Inc. # # You may not use this file except in compliance with the license. A copy of the license is located in the "LICENSE" # file accompanying this source. # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # import logging import os import platform import subprocess log = logging.getLogger('PPN') log.setLevel(logging.WARNING) def _pv_linux_machine(machine): if machine == 'x86_64': return machine elif machine == 'aarch64': arch_info = '-' + machine elif machine in ['armv7l', 'armv6l']: arch_info = '' else: raise NotImplementedError("Unsupported CPU architecture: '%s'" % machine) cpu_info = '' try: cpu_info = subprocess.check_output(['cat', '/proc/cpuinfo']).decode() cpu_part_list = [x for x in cpu_info.split('\n') if 'CPU part' in x] cpu_part = cpu_part_list[0].split(' ')[-1].lower() except Exception as error: raise RuntimeError("Failed to identify the CPU with '%s'\nCPU info: %s" % (error, cpu_info)) if '0xb76' == cpu_part: return 'arm11' + arch_info elif '0xc07' == cpu_part: return 'cortex-a7' + arch_info elif '0xd03' == cpu_part: return 'cortex-a53' + arch_info elif '0xd07' == cpu_part: return 'cortex-a57' + arch_info elif '0xd08' == cpu_part: return 'cortex-a72' + arch_info elif '0xc08' == cpu_part: return 'beaglebone' + arch_info elif machine == 'armv7l': log.warning( 'WARNING: Please be advised that this device (CPU part = %s) is not officially supported by Picovoice. ' 'Falling back to the armv6-based (Raspberry Pi Zero) library. This is not tested nor optimal.' % cpu_part) return 'arm11' else: raise NotImplementedError("Unsupported CPU: '%s'." % cpu_part) def _pv_platform(): pv_system = platform.system() if pv_system not in {'Darwin', 'Linux', 'Windows'}: raise ValueError("Unsupported system '%s'." % pv_system) if pv_system == 'Linux': pv_machine = _pv_linux_machine(platform.machine()) else: pv_machine = platform.machine() return pv_system, pv_machine _PV_SYSTEM, _PV_MACHINE = _pv_platform() _RASPBERRY_PI_MACHINES = {'arm11', 'cortex-a7', 'cortex-a53', 'cortex-a72', 'cortex-a53-aarch64', 'cortex-a72-aarch64'} _JETSON_MACHINES = {'cortex-a57-aarch64'} def pv_library_path(relative): if _PV_SYSTEM == 'Darwin': if _PV_MACHINE == 'x86_64': return os.path.join(os.path.dirname(__file__), relative, 'lib/mac/x86_64/libpv_porcupine.dylib') elif _PV_MACHINE == "arm64": return os.path.join(os.path.dirname(__file__), relative, 'lib/mac/arm64/libpv_porcupine.dylib') elif _PV_SYSTEM == 'Linux': if _PV_MACHINE == 'x86_64': return os.path.join(os.path.dirname(__file__), relative, 'lib/linux/x86_64/libpv_porcupine.so') elif _PV_MACHINE in _JETSON_MACHINES: return os.path.join( os.path.dirname(__file__), relative, 'lib/jetson/%s/libpv_porcupine.so' % _PV_MACHINE) elif _PV_MACHINE in _RASPBERRY_PI_MACHINES: return os.path.join( os.path.dirname(__file__), relative, 'lib/raspberry-pi/%s/libpv_porcupine.so' % _PV_MACHINE) elif _PV_MACHINE == 'beaglebone': return os.path.join(os.path.dirname(__file__), relative, 'lib/beaglebone/libpv_porcupine.so') elif _PV_SYSTEM == 'Windows': return os.path.join(os.path.dirname(__file__), relative, 'lib/windows/amd64/libpv_porcupine.dll') raise NotImplementedError('Unsupported platform.') def pv_model_path(relative): return os.path.join(os.path.dirname(__file__), relative, 'lib/common/porcupine_params.pv') def pv_keyword_files_subdir(): if _PV_SYSTEM == 'Darwin': return 'mac' elif _PV_SYSTEM == 'Linux': if _PV_MACHINE == 'x86_64': return 'linux' elif _PV_MACHINE in _JETSON_MACHINES: return 'jetson' elif _PV_MACHINE in _RASPBERRY_PI_MACHINES: return 'raspberry-pi' elif _PV_MACHINE == 'beaglebone': return 'beaglebone' elif _PV_SYSTEM == 'Windows': return 'windows' raise NotImplementedError('Unsupported platform') def pv_keyword_paths(relative): keyword_files_dir = \ os.path.join(os.path.dirname(__file__), relative, 'resources/keyword_files', pv_keyword_files_subdir()) res = dict() for x in os.listdir(keyword_files_dir): res[x.rsplit('_')[0]] = os.path.join(keyword_files_dir, x) return res
tests/importer/test_importer.py
pie-pie-kakaoent/uvicorn
5,012
12737726
import pytest from uvicorn.importer import ImportFromStringError, import_from_string def test_invalid_format() -> None: with pytest.raises(ImportFromStringError) as exc_info: import_from_string("example:") expected = 'Import string "example:" must be in format "<module>:<attribute>".' assert expected in str(exc_info.value) def test_invalid_module() -> None: with pytest.raises(ImportFromStringError) as exc_info: import_from_string("module_does_not_exist:myattr") expected = 'Could not import module "module_does_not_exist".' assert expected in str(exc_info.value) def test_invalid_attr() -> None: with pytest.raises(ImportFromStringError) as exc_info: import_from_string("tempfile:attr_does_not_exist") expected = 'Attribute "attr_does_not_exist" not found in module "tempfile".' assert expected in str(exc_info.value) def test_internal_import_error() -> None: with pytest.raises(ImportError): import_from_string("tests.importer.raise_import_error:myattr") def test_valid_import() -> None: instance = import_from_string("tempfile:TemporaryFile") from tempfile import TemporaryFile assert instance == TemporaryFile def test_no_import_needed() -> None: from tempfile import TemporaryFile instance = import_from_string(TemporaryFile) assert instance == TemporaryFile
ecosystem_tools/mindconverter/mindconverter/graph_based_converter/mapper/aten/prim/broadcast_to_mapper.py
mindspore-ai/mindinsight
216
12737738
# Copyright 2021 Huawei Technologies Co., Ltd.All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Mapper module.""" from mindconverter.graph_based_converter.common.utils import reset_template_and_exchange_msg from mindconverter.graph_based_converter.constant import WeightType from mindconverter.graph_based_converter.mapper.base import AtenToMindSporeMapper class BroadcastToMapper(AtenToMindSporeMapper): """BroadcastTo mapper.""" @staticmethod def _operation_name_in_ms(*args, **kwargs): return "broadcast_to" @staticmethod def _convert_trained_weights(**kwargs): weights = kwargs.get("weights", list()) args_name = ["input", "shape", "implicit"] args_name_list = BroadcastToMapper.get_args_name_list(**kwargs, args_name=args_name) trainable_params = dict() for weight in weights: trainable_params[args_name_list[weight.location]] = {"data": weight.value, "location": weight.location, "type": WeightType.PARAMETER.value, "onnx_name": weight.name} return trainable_params @staticmethod def _generate_snippet_template(**kwargs): template, exchange_msg, outputs_list, outputs_mapping = AtenToMindSporeMapper._generate_snippet_template( **kwargs) raw_params = kwargs.get("raw_params") if not raw_params: return template, exchange_msg, outputs_list, outputs_mapping op = kwargs.get("operation") trainable_params = kwargs.get("trainable_params", dict()) output_shape = raw_params.get("output_shape", tuple()) variable_slot = "var_0" args_name = ["input", "shape", "implicit"] inputs, args, group_inputs = BroadcastToMapper._params_parser(raw_params=raw_params, args_name=args_name, trainable_params=trainable_params) args = BroadcastToMapper._get_args(variable_slot=variable_slot, inputs=inputs, args=args, output_shape=output_shape) init_template_list = [f"self.{{{variable_slot}}}_{arg_name} = {{{arg_name}}}" for arg_name in args] parameters_declared = dict() for name, trainable_param in trainable_params.copy().items(): value = trainable_param["data"] if BroadcastToMapper.is_tensor(value): variable_slot_param_name = f"{variable_slot}/{name}" init_template_list.append(f"self.{{{variable_slot}}}_{name} = {{{variable_slot_param_name}}}") parameters_declared[name] = "" else: args[name] = value.tolist() init_template_list.append(f"self.{{{variable_slot}}}_{name} = {{{name}}}") trainable_params.pop(name) construct_template = f"opt_{{{variable_slot}}} = ms_np.{op}({inputs[0]}, ({', '.join(inputs[1:-1])}))" template, exchange_msg = reset_template_and_exchange_msg(template, exchange_msg, variable_slot, init_template_list, [construct_template], args, trainable_params, parameters_declared, group_inputs) return template, exchange_msg, outputs_list, outputs_mapping @staticmethod def _get_args(**kwargs): """Get args from params_parser.""" variable_slot = kwargs.get("variable_slot") inputs = kwargs.get("inputs", list()) args = kwargs.get("args", dict()) output_shape = kwargs.get("output_shape", tuple()) shape_name_list = [ipt.replace(f"self.{{{variable_slot}}}_", "") for ipt in inputs[1:-1]] for idx, shape_name in enumerate(shape_name_list): if isinstance(args.get(shape_name), int) and args.get(shape_name) == -1: args[shape_name] = output_shape[idx] args.pop("implicit") return args
pyvista/utilities/geometric_objects.py
basnijholt/pyvista
1,107
12737742
"""Provides an easy way of generating several geometric objects. CONTAINS -------- vtkArrowSource vtkCylinderSource vtkSphereSource vtkPlaneSource vtkLineSource vtkCubeSource vtkConeSource vtkDiskSource vtkRegularPolygonSource vtkPyramid vtkPlatonicSolidSource vtkSuperquadricSource as well as some pure-python helpers. """ import numpy as np import pyvista from pyvista import _vtk from pyvista.utilities import check_valid_vector NORMALS = { 'x': [1, 0, 0], 'y': [0, 1, 0], 'z': [0, 0, 1], '-x': [-1, 0, 0], '-y': [0, -1, 0], '-z': [0, 0, -1], } def translate(surf, center=[0., 0., 0.], direction=[1., 0., 0.]): """Translate and orient a mesh to a new center and direction. By default, the input mesh is considered centered at the origin and facing in the x direction. """ normx = np.array(direction)/np.linalg.norm(direction) normz = np.cross(normx, [0, 1.0, 0.0000001]) normz /= np.linalg.norm(normz) normy = np.cross(normz, normx) trans = np.zeros((4, 4)) trans[:3, 0] = normx trans[:3, 1] = normy trans[:3, 2] = normz trans[3, 3] = 1 surf.transform(trans) if not np.allclose(center, [0., 0., 0.]): surf.points += np.array(center) def Cylinder(center=(0.0, 0.0, 0.0), direction=(1.0, 0.0, 0.0), radius=0.5, height=1.0, resolution=100, capping=True): """Create the surface of a cylinder. See also :func:`pyvista.CylinderStructured`. Parameters ---------- center : sequence, optional Location of the centroid in ``[x, y, z]``. direction : sequence, optional Direction cylinder points to in ``[x, y, z]``. radius : float, optional Radius of the cylinder. height : float, optional Height of the cylinder. resolution : int, optional Number of points on the circular face of the cylinder. capping : bool, optional Cap cylinder ends with polygons. Default ``True``. Returns ------- pyvista.PolyData Cylinder surface. Examples -------- >>> import pyvista >>> import numpy as np >>> cylinder = pyvista.Cylinder(center=[1, 2, 3], direction=[1, 1, 1], ... radius=1, height=2) >>> cylinder.plot(show_edges=True, line_width=5, cpos='xy') """ cylinderSource = _vtk.vtkCylinderSource() cylinderSource.SetRadius(radius) cylinderSource.SetHeight(height) cylinderSource.SetCapping(capping) cylinderSource.SetResolution(resolution) cylinderSource.Update() surf = pyvista.wrap(cylinderSource.GetOutput()) surf.rotate_z(-90, inplace=True) translate(surf, center, direction) return surf def CylinderStructured(radius=0.5, height=1.0, center=(0.,0.,0.), direction=(1.,0.,0.), theta_resolution=32, z_resolution=10): """Create a cylinder mesh as a :class:`pyvista.StructuredGrid`. The end caps are left open. This can create a surface mesh if a single value for the ``radius`` is given or a 3D mesh if multiple radii are given as a list/array in the ``radius`` argument. Parameters ---------- radius : float, sequence, optional Radius of the cylinder. If a sequence, then describes the radial coordinates of the cells as a range of values as specified by the ``radius``. height : float, optional Height of the cylinder along its Z-axis. center : sequence Location of the centroid in ``[x, y, z]``. direction : sequence Direction cylinder Z-axis in ``[x, y, z]``. theta_resolution : int, optional Number of points on the circular face of the cylinder. Ignored if ``radius`` is an iterable. z_resolution : int, optional Number of points along the height (Z-axis) of the cylinder. Returns ------- pyvista.StructuredGrid Structured cylinder. Examples -------- Default structured cylinder >>> import pyvista >>> mesh = pyvista.CylinderStructured() >>> mesh.plot(show_edges=True) Structured cylinder with an inner radius of 1, outer of 2, with 5 segments. >>> import numpy as np >>> mesh = pyvista.CylinderStructured(radius=np.linspace(1, 2, 5)) >>> mesh.plot(show_edges=True) """ # Define grid in polar coordinates r = np.array([radius]).ravel() nr = len(r) theta = np.linspace(0, 2*np.pi, num=theta_resolution) radius_matrix, theta_matrix = np.meshgrid(r, theta) # Transform to cartesian space X = radius_matrix * np.cos(theta_matrix) Y = radius_matrix * np.sin(theta_matrix) # Make all the nodes in the grid xx = np.array([X] * z_resolution).ravel() yy = np.array([Y] * z_resolution).ravel() dz = height / (z_resolution - 1) zz = np.empty(yy.size) zz = np.full((X.size, z_resolution), dz) zz *= np.arange(z_resolution) zz = zz.ravel(order='f') # Create the grid grid = pyvista.StructuredGrid() grid.points = np.c_[xx, yy, zz] grid.dimensions = [nr, theta_resolution, z_resolution] # Orient properly in user direction vx = np.array([0., 0., 1.]) if not np.allclose(vx, direction): direction /= np.linalg.norm(direction) vx -= vx.dot(direction) * direction vx /= np.linalg.norm(vx) vy = np.cross(direction, vx) rmtx = np.array([vx, vy, direction]) grid.points = grid.points.dot(rmtx) # Translate to given center grid.points -= np.array(grid.center) grid.points += np.array(center) return grid def Arrow(start=(0., 0., 0.), direction=(1., 0., 0.), tip_length=0.25, tip_radius=0.1, tip_resolution=20, shaft_radius=0.05, shaft_resolution=20, scale=None): """Create an arrow. Parameters ---------- start : iterable, optional Start location in ``[x, y, z]``. direction : iterable, optional Direction the arrow points to in ``[x, y, z]``. tip_length : float, optional Length of the tip. tip_radius : float, optional Radius of the tip. tip_resolution : int, optional Number of faces around the tip. shaft_radius : float, optional Radius of the shaft. shaft_resolution : int, optional Number of faces around the shaft. scale : float or str, optional Scale factor of the entire object, default is ``None`` (i.e. scale of 1). ``'auto'`` scales to length of direction array. Returns ------- pyvista.PolyData Arrow mesh. Examples -------- Plot a default arrow. >>> import pyvista >>> mesh = pyvista.Arrow() >>> mesh.plot(show_edges=True) """ # Create arrow object arrow = _vtk.vtkArrowSource() arrow.SetTipLength(tip_length) arrow.SetTipRadius(tip_radius) arrow.SetTipResolution(tip_resolution) arrow.SetShaftRadius(shaft_radius) arrow.SetShaftResolution(shaft_resolution) arrow.Update() surf = pyvista.wrap(arrow.GetOutput()) if scale == 'auto': scale = float(np.linalg.norm(direction)) if isinstance(scale, float) or isinstance(scale, int): surf.points *= scale elif scale is not None: raise TypeError("Scale must be either float, int or 'auto'.") translate(surf, start, direction) return surf def Sphere(radius=0.5, center=(0, 0, 0), direction=(0, 0, 1), theta_resolution=30, phi_resolution=30, start_theta=0, end_theta=360, start_phi=0, end_phi=180): """Create a vtk Sphere. Parameters ---------- radius : float, optional Sphere radius. center : np.ndarray or list, optional Center in ``[x, y, z]``. direction : list or tuple or np.ndarray, optional Direction the top of the sphere points to in ``[x, y, z]``. theta_resolution : int , optional Set the number of points in the longitude direction (ranging from ``start_theta`` to ``end_theta``). phi_resolution : int, optional Set the number of points in the latitude direction (ranging from ``start_phi`` to ``end_phi``). start_theta : float, optional Starting longitude angle. end_theta : float, optional Ending longitude angle. start_phi : float, optional Starting latitude angle. end_phi : float, optional Ending latitude angle. Returns ------- pyvista.PolyData Sphere mesh. Examples -------- Create a sphere using default parameters. >>> import pyvista >>> sphere = pyvista.Sphere() >>> sphere.plot(show_edges=True) Create a quarter sphere by setting ``end_theta``. >>> sphere = pyvista.Sphere(end_theta=90) >>> out = sphere.plot(show_edges=True) """ sphere = _vtk.vtkSphereSource() sphere.SetRadius(radius) sphere.SetThetaResolution(theta_resolution) sphere.SetPhiResolution(phi_resolution) sphere.SetStartTheta(start_theta) sphere.SetEndTheta(end_theta) sphere.SetStartPhi(start_phi) sphere.SetEndPhi(end_phi) sphere.Update() surf = pyvista.wrap(sphere.GetOutput()) surf.rotate_y(-90, inplace=True) translate(surf, center, direction) return surf def Plane(center=(0, 0, 0), direction=(0, 0, 1), i_size=1, j_size=1, i_resolution=10, j_resolution=10): """Create a plane. Parameters ---------- center : list or tuple or np.ndarray Location of the centroid in ``[x, y, z]``. direction : list or tuple or np.ndarray Direction of the plane's normal in ``[x, y, z]``. i_size : float Size of the plane in the i direction. j_size : float Size of the plane in the j direction. i_resolution : int Number of points on the plane in the i direction. j_resolution : int Number of points on the plane in the j direction. Returns ------- pyvista.PolyData Plane mesh. Examples -------- Create a default plane. >>> import pyvista >>> mesh = pyvista.Plane() >>> mesh.point_data.clear() >>> mesh.plot(show_edges=True) """ planeSource = _vtk.vtkPlaneSource() planeSource.SetXResolution(i_resolution) planeSource.SetYResolution(j_resolution) planeSource.Update() surf = pyvista.wrap(planeSource.GetOutput()) surf.points[:, 0] *= i_size surf.points[:, 1] *= j_size surf.rotate_y(-90, inplace=True) translate(surf, center, direction) return surf def Line(pointa=(-0.5, 0., 0.), pointb=(0.5, 0., 0.), resolution=1): """Create a line. Parameters ---------- pointa : np.ndarray or list, optional Location in ``[x, y, z]``. pointb : np.ndarray or list, optional Location in ``[x, y, z]``. resolution : int, optional Number of pieces to divide line into. Returns ------- pyvista.PolyData Line mesh. Examples -------- Create a line between ``(0, 0, 0)`` and ``(0, 0, 1)``. >>> import pyvista >>> mesh = pyvista.Line((0, 0, 0), (0, 0, 1)) >>> mesh.plot(color='k', line_width=10) """ if resolution <= 0: raise ValueError('Resolution must be positive') if np.array(pointa).size != 3: raise TypeError('Point A must be a length three tuple of floats.') if np.array(pointb).size != 3: raise TypeError('Point B must be a length three tuple of floats.') src = _vtk.vtkLineSource() src.SetPoint1(*pointa) src.SetPoint2(*pointb) src.SetResolution(resolution) src.Update() line = pyvista.wrap(src.GetOutput()) # Compute distance of every point along line compute = lambda p0, p1: np.sqrt(np.sum((p1 - p0)**2, axis=1)) distance = compute(np.array(pointa), line.points) line['Distance'] = distance return line def Tube(pointa=(-0.5, 0., 0.), pointb=(0.5, 0., 0.), resolution=1, radius=1.0, n_sides=15): """Create a tube. Parameters ---------- pointa : np.ndarray or list, optional Location in ``[x, y, z]``. pointb : np.ndarray or list, optional Location in ``[x, y, z]``. resolution : int, optional Number of pieces to divide tube into. radius : float, optional Minimum tube radius (minimum because the tube radius may vary). n_sides : int, optional Number of sides for the tube. Returns ------- pyvista.PolyData Tube mesh. Examples -------- Create a tube between ``(0, 0, 0)`` and ``(0, 0, 1)``. >>> import pyvista >>> mesh = pyvista.Tube((0, 0, 0), (0, 0, 1)) >>> mesh.plot() """ if resolution <= 0: raise ValueError('Resolution must be positive.') if np.array(pointa).size != 3: raise TypeError('Point A must be a length three tuple of floats.') if np.array(pointb).size != 3: raise TypeError('Point B must be a length three tuple of floats.') line_src = _vtk.vtkLineSource() line_src.SetPoint1(*pointa) line_src.SetPoint2(*pointb) line_src.SetResolution(resolution) line_src.Update() if n_sides < 3: raise ValueError('Number of sides `n_sides` must be >= 3') tube_filter = _vtk.vtkTubeFilter() tube_filter.SetInputConnection(line_src.GetOutputPort()) tube_filter.SetRadius(radius) tube_filter.SetNumberOfSides(n_sides) tube_filter.Update() return pyvista.wrap(tube_filter.GetOutput()) def Cube(center=(0.0, 0.0, 0.0), x_length=1.0, y_length=1.0, z_length=1.0, bounds=None, clean=True): """Create a cube. It's possible to specify either the center and side lengths or just the bounds of the cube. If ``bounds`` are given, all other arguments are ignored. .. versionchanged:: 0.33.0 The cube is created using ``vtk.vtkCubeSource``. For compatibility with :func:`pyvista.PlatonicSolid`, face indices are also added as cell data. For full compatibility with :func:`PlatonicSolid() <pyvista.PlatonicSolid>`, one has to use ``x_length = y_length = z_length = 2 * radius / 3**0.5``. The cube points are also cleaned by default now, leaving only the 8 corners and a watertight (manifold) mesh. Parameters ---------- center : sequence, optional Center in ``[x, y, z]``. x_length : float, optional Length of the cube in the x-direction. y_length : float, optional Length of the cube in the y-direction. z_length : float, optional Length of the cube in the z-direction. bounds : sequence, optional Specify the bounding box of the cube. If given, all other size arguments are ignored. ``(xMin, xMax, yMin, yMax, zMin, zMax)``. clean : bool, optional Whether to clean the raw points of the mesh, making the cube manifold. Note that this will degrade the texture coordinates that come with the mesh, so if you plan to map a texture on the cube, consider setting this to ``False``. .. versionadded:: 0.33.0 Returns ------- pyvista.PolyData Mesh of the cube. Examples -------- Create a default cube. >>> import pyvista >>> mesh = pyvista.Cube() >>> mesh.plot(show_edges=True, line_width=5) """ src = _vtk.vtkCubeSource() if bounds is not None: if np.array(bounds).size != 6: raise TypeError('Bounds must be given as length 6 tuple: (xMin, xMax, yMin, yMax, zMin, zMax)') src.SetBounds(bounds) else: src.SetCenter(center) src.SetXLength(x_length) src.SetYLength(y_length) src.SetZLength(z_length) src.Update() cube = pyvista.wrap(src.GetOutput()) # add face index data for compatibility with PlatonicSolid # but make it inactive for backwards compatibility cube.cell_data.set_array([1, 4, 0, 3, 5, 2],['FaceIndex']) # clean duplicate points if clean: cube.clean(inplace=True) return cube def Box(bounds=(-1., 1., -1., 1., -1., 1.), level=0, quads=True): """Create a box with solid faces for the given bounds. Parameters ---------- bounds : iterable, optional Specify the bounding box of the cube. ``(xMin, xMax, yMin, yMax, zMin, zMax)``. level : int, optional Level of subdivision of the faces. quads : bool, optional Flag to tell the source to generate either a quad or two triangle for a set of four points. Default ``True``. Returns ------- pyvista.PolyData Mesh of the box. Examples -------- Create a box with subdivision ``level=2``. >>> import pyvista >>> mesh = pyvista.Box(level=2) >>> mesh.plot(show_edges=True) """ if np.array(bounds).size != 6: raise TypeError('Bounds must be given as length 6 tuple: (xMin, xMax, yMin, yMax, zMin, zMax)') src = _vtk.vtkTessellatedBoxSource() src.SetLevel(level) if quads: src.QuadsOn() else: src.QuadsOff() src.SetBounds(bounds) src.Update() return pyvista.wrap(src.GetOutput()) def Cone(center=(0., 0., 0.), direction=(1., 0., 0.), height=1.0, radius=None, capping=True, angle=None, resolution=6): """Create a cone. Parameters ---------- center : iterable, optional Center in ``[x, y, z]``. Axis of the cone passes through this point. direction : iterable, optional Direction vector in ``[x, y, z]``. Orientation vector of the cone. height : float, optional Height along the cone in its specified direction. radius : float, optional Base radius of the cone. capping : bool, optional Enable or disable the capping the base of the cone with a polygon. angle : float, optional The angle in degrees between the axis of the cone and a generatrix. resolution : int, optional Number of facets used to represent the cone. Returns ------- pyvista.PolyData Cone mesh. Examples -------- Create a default Cone. >>> import pyvista >>> mesh = pyvista.Cone() >>> mesh.plot(show_edges=True, line_width=5) """ src = _vtk.vtkConeSource() src.SetCapping(capping) src.SetDirection(direction) src.SetCenter(center) src.SetHeight(height) if angle and radius: raise ValueError("Both radius and angle specified. They are mutually exclusive.") elif angle and not radius: src.SetAngle(angle) elif not angle and radius: src.SetRadius(radius) elif not angle and not radius: src.SetRadius(0.5) src.SetResolution(resolution) src.Update() return pyvista.wrap(src.GetOutput()) def Polygon(center=(0., 0., 0.), radius=1, normal=(0, 0, 1), n_sides=6): """Create a polygon. Parameters ---------- center : iterable, optional Center in ``[x, y, z]``. Central axis of the polygon passes through this point. radius : float, optional The radius of the polygon. normal : iterable, optional Direction vector in ``[x, y, z]``. Orientation vector of the polygon. n_sides : int, optional Number of sides of the polygon. Returns ------- pyvista.PolyData Mesh of the polygon. Examples -------- Create an 8 sided polygon. >>> import pyvista >>> mesh = pyvista.Polygon(n_sides=8) >>> mesh.plot(show_edges=True, line_width=5) """ src = _vtk.vtkRegularPolygonSource() src.SetCenter(center) src.SetNumberOfSides(n_sides) src.SetRadius(radius) src.SetNormal(normal) src.Update() return pyvista.wrap(src.GetOutput()) def Disc(center=(0., 0., 0.), inner=0.25, outer=0.5, normal=(0, 0, 1), r_res=1, c_res=6): """Create a polygonal disk with a hole in the center. The disk has zero height. The user can specify the inner and outer radius of the disk, and the radial and circumferential resolution of the polygonal representation. Parameters ---------- center : iterable Center in ``[x, y, z]``. Middle of the axis of the disc. inner : float, optional The inner radius. outer : float, optional The outer radius. normal : iterable Direction vector in ``[x, y, z]``. Orientation vector of the disc. r_res : int, optional Number of points in radial direction. c_res : int, optional Number of points in circumferential direction. Returns ------- pyvista.PolyData Disk mesh. Examples -------- Create a disc with 50 points in the circumferential direction. >>> import pyvista >>> mesh = pyvista.Disc(c_res=50) >>> mesh.plot(show_edges=True, line_width=5) """ src = _vtk.vtkDiskSource() src.SetInnerRadius(inner) src.SetOuterRadius(outer) src.SetRadialResolution(r_res) src.SetCircumferentialResolution(c_res) src.Update() normal = np.array(normal) center = np.array(center) surf = pyvista.wrap(src.GetOutput()) surf.rotate_y(90, inplace=True) translate(surf, center, normal) return surf def Text3D(string, depth=0.5): """Create 3D text from a string. Parameters ---------- string : str String to generate 3D text from. depth : float, optional Depth of the text. Defaults to ``0.5``. Returns ------- pyvista.PolyData 3D text mesh. Examples -------- >>> import pyvista >>> text_mesh = pyvista.Text3D('PyVista') >>> text_mesh.plot(cpos='xy') """ vec_text = _vtk.vtkVectorText() vec_text.SetText(string) extrude = _vtk.vtkLinearExtrusionFilter() extrude.SetInputConnection(vec_text.GetOutputPort()) extrude.SetExtrusionTypeToNormalExtrusion() extrude.SetVector(0, 0, 1) extrude.SetScaleFactor(depth) tri_filter = _vtk.vtkTriangleFilter() tri_filter.SetInputConnection(extrude.GetOutputPort()) tri_filter.Update() return pyvista.wrap(tri_filter.GetOutput()) def Wavelet(extent=(-10, 10, -10, 10, -10, 10), center=(0, 0, 0), maximum=255, x_freq=60, y_freq=30, z_freq=40, x_mag=10, y_mag=18, z_mag=5, std=0.5, subsample_rate=1): """Create a wavelet. Produces images with pixel values determined by ``Maximum*Gaussian*x_mag*sin(x_freq*x)*sin(y_freq*y)*cos(z_freq*z)`` Values are float scalars on point data with name ``"RTData"``. Parameters ---------- extent : sequence, optional Set/Get the extent of the whole output image. Default ``(-10, 10, -10, 10, -10, 10)``. center : list, optional Center of the wavelet. maximum : float, optional Maximum of the wavelet function. x_freq : float, optional Natural frequency in the x direction. y_freq : float, optional Natural frequency in the y direction. z_freq : float, optional Natural frequency in the z direction. x_mag : float, optional Magnitude in the x direction. y_mag : float, optional Magnitude in the y direction. z_mag : float, optional Magnitude in the z direction. std : float, optional Standard deviation. subsample_rate : int, optional The sub-sample rate. Returns ------- pyvista.PolyData Wavelet mesh. Examples -------- >>> import pyvista >>> wavelet = pyvista.Wavelet(extent=(0, 50, 0, 50, 0, 10), x_freq=20, ... y_freq=10, z_freq=1, x_mag=100, y_mag=100, ... z_mag=1000) >>> wavelet.plot(show_scalar_bar=False) Extract lower valued cells of the wavelet and create a surface from it. >>> thresh = wavelet.threshold(800).extract_surface() >>> thresh.plot(show_scalar_bar=False) Smooth it to create "waves" >>> waves = thresh.smooth(n_iter=100, relaxation_factor=0.1) >>> waves.plot(color='white', smooth_shading=True, show_edges=True) """ wavelet_source = _vtk.vtkRTAnalyticSource() wavelet_source.SetWholeExtent(*extent) wavelet_source.SetCenter(center) wavelet_source.SetMaximum(maximum) wavelet_source.SetXFreq(x_freq) wavelet_source.SetYFreq(y_freq) wavelet_source.SetZFreq(z_freq) wavelet_source.SetXMag(x_mag) wavelet_source.SetYMag(y_mag) wavelet_source.SetZMag(z_mag) wavelet_source.SetStandardDeviation(std) wavelet_source.SetSubsampleRate(subsample_rate) wavelet_source.Update() return pyvista.wrap(wavelet_source.GetOutput()) def CircularArc(pointa, pointb, center, resolution=100, negative=False): """Create a circular arc defined by two endpoints and a center. The number of segments composing the polyline is controlled by setting the object resolution. Parameters ---------- pointa : sequence Position of the first end point. pointb : sequence Position of the other end point. center : sequence Center of the circle that defines the arc. resolution : int, optional The number of segments of the polyline that draws the arc. Resolution of 1 will just create a line. negative : bool, optional By default the arc spans the shortest angular sector between ``pointa`` and ``pointb``. By setting this to ``True``, the longest angular sector is used instead (i.e. the negative coterminal angle to the shortest one). Returns ------- pyvista.PolyData Circular arc mesh. Examples -------- Create a quarter arc centered at the origin in the xy plane. >>> import pyvista >>> arc = pyvista.CircularArc([-1, 0, 0], [0, 1, 0], [0, 0, 0]) >>> pl = pyvista.Plotter() >>> _ = pl.add_mesh(arc, color='k', line_width=10) >>> _ = pl.show_bounds(location='all', font_size=30, use_2d=True) >>> _ = pl.view_xy() >>> pl.show() """ check_valid_vector(pointa, 'pointa') check_valid_vector(pointb, 'pointb') check_valid_vector(center, 'center') if not np.isclose( np.linalg.norm(np.array(pointa) - np.array(center)), np.linalg.norm(np.array(pointb) - np.array(center)), ): raise ValueError("pointa and pointb are not equidistant from center") # fix half-arc bug: if a half arc travels directly through the # center point, it becomes a line pointb = list(pointb) pointb[0] -= 1E-10 pointb[1] -= 1E-10 arc = _vtk.vtkArcSource() arc.SetPoint1(*pointa) arc.SetPoint2(*pointb) arc.SetCenter(*center) arc.SetResolution(resolution) arc.SetNegative(negative) arc.Update() angle = np.deg2rad(arc.GetAngle()) arc = pyvista.wrap(arc.GetOutput()) # Compute distance of every point along circular arc center = np.array(center).ravel() radius = np.sqrt(np.sum((arc.points[0]-center)**2, axis=0)) angles = np.arange(0.0, 1.0 + 1.0/resolution, 1.0/resolution) * angle arc['Distance'] = radius * angles return arc def CircularArcFromNormal(center, resolution=100, normal=None, polar=None, angle=None): """Create a circular arc defined by normal to the plane of the arc, and an angle. The number of segments composing the polyline is controlled by setting the object resolution. Parameters ---------- center : sequence Center of the circle that defines the arc. resolution : int, optional The number of segments of the polyline that draws the arc. Resolution of 1 will just create a line. normal : sequence, optional The normal vector to the plane of the arc. By default it points in the positive Z direction. polar : sequence, optional Starting point of the arc in polar coordinates. By default it is the unit vector in the positive x direction. angle : float, optional Arc length (in degrees) beginning at the polar vector. The direction is counterclockwise. By default it is 90. Returns ------- pyvista.PolyData Circular arc mesh. Examples -------- Quarter arc centered at the origin in the xy plane. >>> import pyvista >>> normal = [0, 0, 1] >>> polar = [-1, 0, 0] >>> arc = pyvista.CircularArcFromNormal([0, 0, 0], normal=normal, polar=polar) >>> pl = pyvista.Plotter() >>> _ = pl.add_mesh(arc, color='k', line_width=10) >>> _ = pl.show_bounds(location='all', font_size=30, use_2d=True) >>> _ = pl.view_xy() >>> pl.show() """ check_valid_vector(center, 'center') if normal is None: normal = [0, 0, 1] if polar is None: polar = [1, 0, 0] if angle is None: angle = 90.0 arc = _vtk.vtkArcSource() arc.SetCenter(*center) arc.SetResolution(resolution) arc.UseNormalAndAngleOn() check_valid_vector(normal, 'normal') arc.SetNormal(*normal) check_valid_vector(polar, 'polar') arc.SetPolarVector(*polar) arc.SetAngle(angle) arc.Update() angle = np.deg2rad(arc.GetAngle()) arc = pyvista.wrap(arc.GetOutput()) # Compute distance of every point along circular arc center = np.array(center) radius = np.sqrt(np.sum((arc.points[0] - center)**2, axis=0)) angles = np.linspace(0.0, angle, resolution+1) arc['Distance'] = radius * angles return arc def Pyramid(points=None): """Create a pyramid defined by 5 points. Parameters ---------- points : sequence, optional Points of the pyramid. Points are ordered such that the first four points are the four counterclockwise points on the quadrilateral face, and the last point is the apex. Defaults to pyramid in example. Returns ------- pyvista.UnstructuredGrid Unstructured grid containing a single pyramid cell. Examples -------- >>> import pyvista >>> pointa = [1.0, 1.0, 0.0] >>> pointb = [-1.0, 1.0, 0.0] >>> pointc = [-1.0, -1.0, 0.0] >>> pointd = [1.0, -1.0, 0.0] >>> pointe = [0.0, 0.0, 1.608] >>> pyramid = pyvista.Pyramid([pointa, pointb, pointc, pointd, pointe]) >>> pyramid.plot(show_edges=True, line_width=5) """ if points is None: points = [[1.0, 1.0, 0.0], [-1.0, 1.0, 0.0], [-1.0, -1.0, 0.0], [1.0, -1.0, 0.0], [0.0, 0.0, (4 - 2**0.5)**0.5]] if len(points) != 5: raise TypeError('Points must be given as length 5 np.ndarray or list') check_valid_vector(points[0], 'points[0]') check_valid_vector(points[1], 'points[1]') check_valid_vector(points[2], 'points[2]') check_valid_vector(points[3], 'points[3]') check_valid_vector(points[4], 'points[4]') pyramid = _vtk.vtkPyramid() pyramid.GetPointIds().SetId(0, 0) pyramid.GetPointIds().SetId(1, 1) pyramid.GetPointIds().SetId(2, 2) pyramid.GetPointIds().SetId(3, 3) pyramid.GetPointIds().SetId(4, 4) ug = _vtk.vtkUnstructuredGrid() ug.SetPoints(pyvista.vtk_points(np.array(points), False)) ug.InsertNextCell(pyramid.GetCellType(), pyramid.GetPointIds()) return pyvista.wrap(ug) def Triangle(points=None): """Create a triangle defined by 3 points. Parameters ---------- points : sequence, optional Points of the triangle. Defaults to a right isosceles triangle (see example). Returns ------- pyvista.PolyData Triangle mesh. Examples -------- >>> import pyvista >>> pointa = [0, 0, 0] >>> pointb = [1, 0, 0] >>> pointc = [0.5, 0.707, 0] >>> triangle = pyvista.Triangle([pointa, pointb, pointc]) >>> triangle.plot(show_edges=True, line_width=5) """ if points is None: points = [[0, 0, 0], [1, 0, 0], [0.5, 0.5**0.5, 0]] if len(points) != 3: raise TypeError('Points must be given as length 3 np.ndarray or list') check_valid_vector(points[0], 'points[0]') check_valid_vector(points[1], 'points[1]') check_valid_vector(points[2], 'points[2]') cells = np.array([[3, 0, 1, 2]]) return pyvista.wrap(pyvista.PolyData(points, cells)) def Rectangle(points=None): """Create a rectangle defined by 4 points. Parameters ---------- points : sequence, optional Points of the rectangle. Defaults to a simple example. Returns ------- pyvista.PolyData Rectangle mesh. Examples -------- >>> import pyvista >>> pointa = [1.0, 0.0, 0.0] >>> pointb = [1.0, 1.0, 0.0] >>> pointc = [0.0, 1.0, 0.0] >>> pointd = [0.0, 0.0, 0.0] >>> rectangle = pyvista.Rectangle([pointa, pointb, pointc, pointd]) >>> rectangle.plot(show_edges=True, line_width=5) """ if points is None: points = [[1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]] if len(points) != 4: raise TypeError('Points must be given as length 4 np.ndarray or list') check_valid_vector(points[0], 'points[0]') check_valid_vector(points[1], 'points[1]') check_valid_vector(points[2], 'points[2]') check_valid_vector(points[3], 'points[3]') cells = np.array([[4, 0, 1, 2, 3]]) return pyvista.wrap(pyvista.PolyData(points, cells)) def Circle(radius=0.5, resolution=100): """Create a single PolyData circle defined by radius in the XY plane. Parameters ---------- radius : float, optional Radius of circle. resolution : int, optional Number of points on the circle. Returns ------- pyvista.PolyData Circle mesh. Examples -------- >>> import pyvista >>> radius = 0.5 >>> circle = pyvista.Circle(radius) >>> circle.plot(show_edges=True, line_width=5) """ points = np.zeros((resolution, 3)) theta = np.linspace(0.0, 2.0*np.pi, resolution) points[:, 0] = radius * np.cos(theta) points[:, 1] = radius * np.sin(theta) cells = np.array([np.append(np.array([resolution]), np.arange(resolution))]) return pyvista.wrap(pyvista.PolyData(points, cells)) def Superquadric(center=(0., 0., 0.), scale=(1., 1., 1.), size=0.5, theta_roundness=1., phi_roundness=1., theta_resolution=16, phi_resolution=16, toroidal=False, thickness=1/3): """Create a superquadric. Parameters ---------- center : iterable, optional Center of the superquadric in ``[x, y, z]``. scale : iterable, optional Scale factors of the superquadric in ``[x, y, z]``. size : float, optional Superquadric isotropic size. theta_roundness : float, optional Superquadric east/west roundness. Values range from 0 (rectangular) to 1 (circular) to higher orders. phi_roundness : float, optional Superquadric north/south roundness. Values range from 0 (rectangular) to 1 (circular) to higher orders. theta_resolution : int, optional Number of points in the longitude direction. Values are rounded to nearest multiple of 4. phi_resolution : int, optional Number of points in the latitude direction. Values are rounded to nearest multiple of 8. toroidal : bool, optional Whether or not the superquadric is toroidal (``True``) or ellipsoidal (``False``). thickness : float, optional Superquadric ring thickness. Only applies if toroidal is set to ``True``. Returns ------- pyvista.PolyData Superquadric mesh. See Also -------- pyvista.ParametricSuperEllipsoid : Parametric superquadric if toroidal is ``False``. pyvista.ParametricSuperToroid : Parametric superquadric if toroidal is ``True``. Examples -------- >>> import pyvista >>> superquadric = pyvista.Superquadric(scale=(3., 1., 0.5), ... phi_roundness=0.1, ... theta_roundness=0.5) >>> superquadric.plot(show_edges=True) """ superquadricSource = _vtk.vtkSuperquadricSource() superquadricSource.SetCenter(center) superquadricSource.SetScale(scale) superquadricSource.SetSize(size) superquadricSource.SetThetaRoundness(theta_roundness) superquadricSource.SetPhiRoundness(phi_roundness) superquadricSource.SetThetaResolution(round(theta_resolution/4)*4) superquadricSource.SetPhiResolution(round(phi_resolution/8)*8) superquadricSource.SetToroidal(toroidal) superquadricSource.SetThickness(thickness) superquadricSource.Update() return pyvista.wrap(superquadricSource.GetOutput()) def PlatonicSolid(kind='tetrahedron', radius=1.0, center=(0.0, 0.0, 0.0)): """Create a Platonic solid of a given size. Parameters ---------- kind : str or int, optional The kind of Platonic solid to create. Either the name of the polyhedron or an integer index: * ``'tetrahedron'`` or ``0`` * ``'cube'`` or ``1`` * ``'octahedron'`` or ``2`` * ``'icosahedron'`` or ``3`` * ``'dodecahedron'`` or ``4`` radius : float, optional The radius of the circumscribed sphere for the solid to create. center : sequence, optional Three-length sequence defining the center of the solid to create. Returns ------- pyvista.PolyData One of the five Platonic solids. Cell scalars are defined that assign integer labels to each face (with array name ``"FaceIndex"``). Examples -------- Create and plot a dodecahedron. >>> import pyvista >>> dodeca = pyvista.PlatonicSolid('dodecahedron') >>> dodeca.plot(categories=True) See :ref:`platonic_example` for more examples using this filter. """ kinds = { 'tetrahedron': 0, 'cube': 1, 'octahedron': 2, 'icosahedron': 3, 'dodecahedron': 4, } if isinstance(kind, str): if kind not in kinds: raise ValueError(f'Invalid Platonic solid kind "{kind}".') kind = kinds[kind] elif isinstance(kind, int) and kind not in range(5): raise ValueError(f'Invalid Platonic solid index "{kind}".') elif not isinstance(kind, int): raise ValueError('Invalid Platonic solid index type ' f'"{type(kind).__name__}".') check_valid_vector(center, 'center') solid = _vtk.vtkPlatonicSolidSource() solid.SetSolidType(kind) solid.Update() solid = pyvista.wrap(solid.GetOutput()) solid.scale(radius, inplace=True) solid.points += np.asanyarray(center) - solid.center # rename and activate cell scalars cell_data = solid.get_array(0) solid.clear_data() solid.cell_data['FaceIndex'] = cell_data return solid def Tetrahedron(radius=1.0, center=(0.0, 0.0, 0.0)): """Create a tetrahedron of a given size. A tetrahedron is composed of four congruent equilateral triangles. Parameters ---------- radius : float, optional The radius of the circumscribed sphere for the tetrahedron. center : sequence, optional Three-length sequence defining the center of the tetrahedron. Returns ------- pyvista.PolyData Mesh for the tetrahedron. Cell scalars are defined that assign integer labels to each face (with array name ``"FaceIndex"``). Examples -------- Create and plot a tetrahedron. >>> import pyvista >>> tetra = pyvista.Tetrahedron() >>> tetra.plot(categories=True) See :ref:`platonic_example` for more examples using this filter. """ return PlatonicSolid(kind='tetrahedron', radius=radius, center=center) def Octahedron(radius=1.0, center=(0.0, 0.0, 0.0)): """Create an octahedron of a given size. An octahedron is composed of eight congruent equilateral triangles. Parameters ---------- radius : float, optional The radius of the circumscribed sphere for the octahedron. center : sequence, optional Three-length sequence defining the center of the octahedron. Returns ------- pyvista.PolyData Mesh for the octahedron. Cell scalars are defined that assign integer labels to each face (with array name ``"FaceIndex"``). Examples -------- Create and plot an octahedron. >>> import pyvista >>> tetra = pyvista.Octahedron() >>> tetra.plot(categories=True) See :ref:`platonic_example` for more examples using this filter. """ return PlatonicSolid(kind='octahedron', radius=radius, center=center) def Dodecahedron(radius=1.0, center=(0.0, 0.0, 0.0)): """Create a dodecahedron of a given size. A dodecahedron is composed of twelve congruent regular pentagons. Parameters ---------- radius : float, optional The radius of the circumscribed sphere for the dodecahedron. center : sequence, optional Three-length sequence defining the center of the dodecahedron. Returns ------- pyvista.PolyData Mesh for the dodecahedron. Cell scalars are defined that assign integer labels to each face (with array name ``"FaceIndex"``). Examples -------- Create and plot a dodecahedron. >>> import pyvista >>> tetra = pyvista.Dodecahedron() >>> tetra.plot(categories=True) See :ref:`platonic_example` for more examples using this filter. """ return PlatonicSolid(kind='dodecahedron', radius=radius, center=center) def Icosahedron(radius=1.0, center=(0.0, 0.0, 0.0)): """Create an icosahedron of a given size. An icosahedron is composed of twenty congruent equilateral triangles. Parameters ---------- radius : float, optional The radius of the circumscribed sphere for the icosahedron. center : sequence, optional Three-length sequence defining the center of the icosahedron. Returns ------- pyvista.PolyData Mesh for the icosahedron. Cell scalars are defined that assign integer labels to each face (with array name ``"FaceIndex"``). Examples -------- Create and plot an icosahedron. >>> import pyvista >>> tetra = pyvista.Icosahedron() >>> tetra.plot(categories=True) See :ref:`platonic_example` for more examples using this filter. """ return PlatonicSolid(kind='icosahedron', radius=radius, center=center)
src/titiler/application/titiler/application/settings.py
NLTGit/titiler
288
12737757
<filename>src/titiler/application/titiler/application/settings.py<gh_stars>100-1000 """Titiler API settings.""" import pydantic class ApiSettings(pydantic.BaseSettings): """FASTAPI application settings.""" name: str = "titiler" cors_origins: str = "*" cachecontrol: str = "public, max-age=3600" root_path: str = "" debug: bool = False disable_cog: bool = False disable_stac: bool = False disable_mosaic: bool = False lower_case_query_parameters: bool = False @pydantic.validator("cors_origins") def parse_cors_origin(cls, v): """Parse CORS origins.""" return [origin.strip() for origin in v.split(",")] class Config: """model config""" env_file = ".env" env_prefix = "TITILER_API_"
tools/telemetry/telemetry/core/backends/webdriver/webdriver_desktop_browser_finder.py
iplo/Chain
231
12737770
<filename>tools/telemetry/telemetry/core/backends/webdriver/webdriver_desktop_browser_finder.py<gh_stars>100-1000 # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Finds desktop browsers that can be controlled by telemetry.""" import logging import os import sys from telemetry.core import browser from telemetry.core import possible_browser from telemetry.core import util from telemetry.core.backends.webdriver import webdriver_ie_backend from telemetry.core.platform import factory from telemetry.page import cloud_storage # Try to import the selenium python lib which may be not available. util.AddDirToPythonPath( util.GetChromiumSrcDir(), 'third_party', 'webdriver', 'pylib') try: from selenium import webdriver # pylint: disable=F0401 except ImportError: webdriver = None ALL_BROWSER_TYPES = [] if webdriver: ALL_BROWSER_TYPES = [ 'internet-explorer', 'internet-explorer-x64'] else: logging.warning('Webdriver backend is unsupported without selenium pylib. ' 'For installation of selenium pylib, please refer to ' 'https://code.google.com/p/selenium/wiki/PythonBindings.') class PossibleWebDriverBrowser(possible_browser.PossibleBrowser): """A browser that can be controlled through webdriver API.""" def __init__(self, browser_type, finder_options): target_os = sys.platform.lower() super(PossibleWebDriverBrowser, self).__init__(browser_type, target_os, finder_options) assert browser_type in ALL_BROWSER_TYPES, \ 'Please add %s to ALL_BROWSER_TYPES' % browser_type @property def _platform_backend(self): return factory.GetPlatformBackendForCurrentOS() def CreateWebDriverBackend(self, platform_backend): raise NotImplementedError() def Create(self): backend = self.CreateWebDriverBackend(self._platform_backend) return browser.Browser(backend, self._platform_backend) def SupportsOptions(self, finder_options): if len(finder_options.extensions_to_load) != 0: return False return True def UpdateExecutableIfNeeded(self): pass @property def last_modification_time(self): return -1 class PossibleDesktopIE(PossibleWebDriverBrowser): def __init__(self, browser_type, finder_options, architecture): super(PossibleDesktopIE, self).__init__(browser_type, finder_options) self._architecture = architecture def CreateWebDriverBackend(self, platform_backend): assert webdriver def DriverCreator(): ie_driver_exe = os.path.join(util.GetTelemetryDir(), 'bin', 'IEDriverServer_%s.exe' % self._architecture) cloud_storage.GetIfChanged(ie_driver_exe, cloud_storage.PUBLIC_BUCKET) return webdriver.Ie(executable_path=ie_driver_exe) return webdriver_ie_backend.WebDriverIEBackend( platform_backend, DriverCreator, self.finder_options.browser_options) def SelectDefaultBrowser(_): return None def FindAllAvailableBrowsers(finder_options): """Finds all the desktop browsers available on this machine.""" browsers = [] if not webdriver: return browsers # Look for the IE browser in the standard location. if sys.platform.startswith('win'): ie_path = os.path.join('Internet Explorer', 'iexplore.exe') win_search_paths = { '32' : { 'path' : os.getenv('PROGRAMFILES(X86)'), 'type' : 'internet-explorer'}, '64' : { 'path' : os.getenv('PROGRAMFILES'), 'type' : 'internet-explorer-x64'}} for architecture, ie_info in win_search_paths.iteritems(): if not ie_info['path']: continue if os.path.exists(os.path.join(ie_info['path'], ie_path)): browsers.append( PossibleDesktopIE(ie_info['type'], finder_options, architecture)) return browsers
src/zc/buildout/tests/test_increment.py
digitalsatori/buildout
426
12737779
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (c) 2020 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## import doctest import re from zope.testing import renormalizing import zc.buildout.testing from zc.buildout.tests import easy_install_SetUp from zc.buildout.tests import normalize_bang def default_cfg(): r""" >>> home = tmpdir('home') >>> mkdir(home, '.buildout') >>> default_cfg = join(home, '.buildout', 'default.cfg') >>> write(default_cfg, ''' ... [debug] ... dec = 1 ... 2 ... inc = 1 ... ''') >>> write('buildout.cfg', ''' ... [buildout] ... ... [debug] ... dec -= 2 ... inc += 2 ... ''') >>> env = dict(HOME=home, USERPROFILE=home) >>> print_(system(buildout+' annotate debug', env=env), end='') <BLANKLINE> Annotated sections ================== <BLANKLINE> [debug] dec= 1 /home/.buildout/default.cfg -= buildout.cfg inc= 1 2 /home/.buildout/default.cfg += buildout.cfg """ def default_cfg_extensions(): r""" Add two extensions as develop eggs >>> mkdir('demo') >>> write('demo', 'demo.py', ''' ... import sys ... def ext(buildout): ... sys.stdout.write('demo %s %s\\n' % ('ext', sorted(buildout))) ... def unload(buildout): ... sys.stdout.write('demo %s %s\\n' % ('unload', sorted(buildout))) ... ''') >>> write('demo', 'setup.py', ''' ... from setuptools import setup ... ... setup( ... name = "demo", ... entry_points = { ... 'zc.buildout.extension': ['ext = demo:ext'], ... 'zc.buildout.unloadextension': ['ext = demo:unload'], ... }, ... ) ... ''') >>> mkdir('demo2') >>> write('demo2', 'demo2.py', ''' ... import sys ... def ext(buildout): ... sys.stdout.write('demo2 %s %s\\n' % ('ext', sorted(buildout))) ... def unload(buildout): ... sys.stdout.write('demo2 %s %s\\n' % ('unload', sorted(buildout))) ... ''') >>> write('demo2', 'setup.py', ''' ... from setuptools import setup ... ... setup( ... name = "demo2", ... entry_points = { ... 'zc.buildout.extension': ['ext = demo2:ext'], ... 'zc.buildout.unloadextension': ['ext = demo2:unload'], ... }, ... ) ... ''') >>> write('buildout.cfg', ''' ... [buildout] ... develop = demo demo2 ... parts = ... ''') Run buildout once without extensions to actually develop the eggs. (Develop happens after loading extensions.) >>> print_(system(buildout), end='') Develop: '/sample-buildout/demo' Develop: '/sample-buildout/demo2' >>> ls("develop-eggs") - demo.egg-link - demo2.egg-link - zc.recipe.egg.egg-link extensions in .buildout/default.cfg incremented in buildout.cfg >>> home = tmpdir('home') >>> mkdir(home, '.buildout') >>> default_cfg = join(home, '.buildout', 'default.cfg') >>> write(default_cfg, ''' ... [buildout] ... extensions = demo ... ''') >>> write('buildout.cfg', ''' ... [buildout] ... develop = demo demo2 ... extensions += demo2 ... parts = ... ''') >>> env = dict(HOME=home, USERPROFILE=home) >>> print_(system(buildout+' annotate buildout', env=env), end='') ... # doctest: +ELLIPSIS <BLANKLINE> Annotated sections ================== <BLANKLINE> [buildout] ... extensions= demo demo2 /home/.buildout/default.cfg += buildout.cfg ... versions= versions DEFAULT_VALUE """ def with_extends_increment_in_base(): r""" >>> home = tmpdir('home') >>> mkdir(home, '.buildout') >>> default_cfg = join(home, '.buildout', 'default.cfg') >>> write(default_cfg, ''' ... [buildout] ... extensions = demo ... ''') >>> write('base.cfg', ''' ... [buildout] ... extensions += demo2 ... ''') >>> write('buildout.cfg', ''' ... [buildout] ... extends = base.cfg ... parts = ... ''') >>> env = dict(HOME=home, USERPROFILE=home) >>> print_(system(buildout+' annotate buildout', env=env), end='') ... # doctest: +ELLIPSIS <BLANKLINE> Annotated sections ================== <BLANKLINE> [buildout] ... extensions= demo demo2 /home/.buildout/default.cfg += base.cfg ... versions= versions DEFAULT_VALUE """ def with_extends_increment_in_base2(): r""" >>> home = tmpdir('home') >>> mkdir(home, '.buildout') >>> default_cfg = join(home, '.buildout', 'default.cfg') >>> write(default_cfg, ''' ... [buildout] ... extensions = demo ... ''') >>> write('base.cfg', ''' ... [buildout] ... ''') >>> write('base2.cfg', ''' ... [buildout] ... extensions += demo2 ... ''') >>> write('buildout.cfg', ''' ... [buildout] ... extends = base.cfg ... base2.cfg ... parts = ... ''') >>> env = dict(HOME=home, USERPROFILE=home) >>> print_(system(buildout+' annotate buildout', env=env), end='') ... # doctest: +ELLIPSIS <BLANKLINE> Annotated sections ================== <BLANKLINE> [buildout] ... extensions= demo demo2 /home/.buildout/default.cfg += base2.cfg ... versions= versions DEFAULT_VALUE """ def with_extends_increment_in_base2_and_base3(): r""" >>> home = tmpdir('home') >>> mkdir(home, '.buildout') >>> default_cfg = join(home, '.buildout', 'default.cfg') >>> write(default_cfg, ''' ... [buildout] ... extensions = demo ... ''') >>> write('base.cfg', ''' ... [buildout] ... ''') >>> write('base2.cfg', ''' ... [buildout] ... extensions += demo2 ... ''') >>> write('base3.cfg', ''' ... [buildout] ... extensions += demo3 ... ''') >>> write('buildout.cfg', ''' ... [buildout] ... extends = base.cfg ... base2.cfg ... base3.cfg ... parts = ... ''') >>> env = dict(HOME=home, USERPROFILE=home) >>> print_(system(buildout+' annotate buildout', env=env), end='') ... # doctest: +ELLIPSIS <BLANKLINE> Annotated sections ================== <BLANKLINE> [buildout] ... extensions= demo demo2 demo3 /home/.buildout/default.cfg += base2.cfg += base3.cfg ... versions= versions DEFAULT_VALUE """ def with_extends_increment_in_buildout(): r""" >>> home = tmpdir('home') >>> mkdir(home, '.buildout') >>> default_cfg = join(home, '.buildout', 'default.cfg') >>> write(default_cfg, ''' ... [buildout] ... extensions = demo ... ''') >>> write('base.cfg', ''' ... [buildout] ... ''') >>> write('buildout.cfg', ''' ... [buildout] ... extends = base.cfg ... extensions += demo2 ... parts = ... ''') >>> env = dict(HOME=home, USERPROFILE=home) >>> print_(system(buildout+' annotate buildout', env=env), end='') ... # doctest: +ELLIPSIS <BLANKLINE> Annotated sections ================== <BLANKLINE> [buildout] ... extensions= demo demo2 /home/.buildout/default.cfg += buildout.cfg ... versions= versions DEFAULT_VALUE """ def with_extends_increment_in_buildout_with_base_and_root(): r""" >>> home = tmpdir('home') >>> mkdir(home, '.buildout') >>> default_cfg = join(home, '.buildout', 'default.cfg') >>> write(default_cfg, ''' ... [buildout] ... extensions = demo ... ''') >>> write('root.cfg', ''' ... [buildout] ... ''') >>> write('base.cfg', ''' ... [buildout] ... extends = root.cfg ... ''') >>> write('buildout.cfg', ''' ... [buildout] ... extends = base.cfg ... extensions += demo2 ... parts = ... ''') >>> env = dict(HOME=home, USERPROFILE=home) >>> print_(system(buildout+' annotate buildout', env=env), end='') ... # doctest: +ELLIPSIS <BLANKLINE> Annotated sections ================== <BLANKLINE> [buildout] ... extensions= demo demo2 /home/.buildout/default.cfg += buildout.cfg ... versions= versions DEFAULT_VALUE """ def no_default_with_extends_increment_in_base2_and_base3(): r""" >>> write('base.cfg', ''' ... [buildout] ... ''') >>> write('base2.cfg', ''' ... [buildout] ... extensions += demo2 ... ''') >>> write('base3.cfg', ''' ... [buildout] ... extensions += demo3 ... ''') >>> write('buildout.cfg', ''' ... [buildout] ... extends = base.cfg ... base2.cfg ... base3.cfg ... parts = ... ''') >>> print_(system(buildout+' annotate buildout'), end='') ... # doctest: +ELLIPSIS <BLANKLINE> Annotated sections ================== <BLANKLINE> [buildout] ... extensions= demo2 demo3 IMPLICIT_VALUE += base2.cfg += base3.cfg ... versions= versions DEFAULT_VALUE """ def test_suite(): return doctest.DocTestSuite( setUp=easy_install_SetUp, tearDown=zc.buildout.testing.buildoutTearDown, checker=renormalizing.RENormalizing([ zc.buildout.testing.normalize_path, zc.buildout.testing.normalize_endings, zc.buildout.testing.normalize_script, zc.buildout.testing.normalize_egg_py, zc.buildout.testing.normalize___pycache__, zc.buildout.testing.not_found, zc.buildout.testing.normalize_exception_type_for_python_2_and_3, zc.buildout.testing.adding_find_link, zc.buildout.testing.python27_warning, zc.buildout.testing.python27_warning_2, zc.buildout.testing.easyinstall_deprecated, zc.buildout.testing.setuptools_deprecated, zc.buildout.testing.pkg_resources_deprecated, zc.buildout.testing.warnings_warn, normalize_bang, (re.compile(r'^(\w+\.)*(Missing\w+: )'), '\2'), (re.compile(r"buildout: Running \S*setup.py"), 'buildout: Running setup.py'), (re.compile(r'pip-\S+-'), 'pip.egg'), (re.compile(r'setuptools-\S+-'), 'setuptools.egg'), (re.compile(r'zc.buildout-\S+-'), 'zc.buildout.egg'), (re.compile(r'pip = \S+'), 'pip = 20.0.0'), (re.compile(r'setuptools = \S+'), 'setuptools = 0.7.99'), (re.compile(r'File "\S+one.py"'), 'File "one.py"'), (re.compile(r'We have a develop egg: (\S+) (\S+)'), r'We have a develop egg: \1 V'), (re.compile(r'Picked: setuptools = \S+'), 'Picked: setuptools = V'), (re.compile('[-d] pip'), '- pip'), (re.compile('[-d] setuptools'), '- setuptools'), (re.compile(r'\\[\\]?'), '/'), (re.compile( '-q develop -mxN -d "/sample-buildout/develop-eggs'), '-q develop -mxN -d /sample-buildout/develop-eggs' ), (re.compile(r'^[*]...'), '...'), # for # bug_92891 # bootstrap_crashes_with_egg_recipe_in_buildout_section (re.compile(r"Unused options for buildout: 'eggs' 'scripts'\."), "Unused options for buildout: 'scripts' 'eggs'."), # Python 3.4 changed the wording of NameErrors (re.compile('NameError: global name'), 'NameError: name'), # fix for test_distutils_scripts_using_import_are_properly_parsed # and test_distutils_scripts_using_from_are_properly_parsed # win32 apparently adds a " around sys.executable (re.compile('#!"python"'), '#!python'), ]), )
env/lib/python3.6/site-packages/simple_salesforce/bulk.py
anthowen/duplify
5,079
12737781
""" Classes for interacting with Salesforce Bulk API """ try: from collections import OrderedDict except ImportError: # Python < 2.7 from ordereddict import OrderedDict import json import requests from time import sleep from simple_salesforce.util import call_salesforce class SFBulkHandler(object): """ Bulk API request handler Intermediate class which allows us to use commands, such as 'sf.bulk.Contacts.create(...)' This is really just a middle layer, whose sole purpose is to allow the above syntax """ def __init__(self, session_id, bulk_url, proxies=None, session=None): """Initialize the instance with the given parameters. Arguments: * session_id -- the session ID for authenticating to Salesforce * bulk_url -- API endpoint set in Salesforce instance * proxies -- the optional map of scheme to proxy server * session -- Custom requests session, created in calling code. This enables the use of requests Session features not otherwise exposed by simple_salesforce. """ self.session_id = session_id self.session = session or requests.Session() self.bulk_url = bulk_url # don't wipe out original proxies with None if not session and proxies is not None: self.session.proxies = proxies # Define these headers separate from Salesforce class, # as bulk uses a slightly different format self.headers = { 'Content-Type': 'application/json', 'X-SFDC-Session': self.session_id, 'X-PrettyPrint': '1' } def __getattr__(self, name): return SFBulkType(object_name=name, bulk_url=self.bulk_url, headers=self.headers, session=self.session) class SFBulkType(object): """ Interface to Bulk/Async API functions""" def __init__(self, object_name, bulk_url, headers, session): """Initialize the instance with the given parameters. Arguments: * object_name -- the name of the type of SObject this represents, e.g. `Lead` or `Contact` * bulk_url -- API endpoint set in Salesforce instance * headers -- bulk API headers * session -- Custom requests session, created in calling code. This enables the use of requests Session features not otherwise exposed by simple_salesforce. """ self.object_name = object_name self.bulk_url = bulk_url self.session = session self.headers = headers def _create_job(self, operation, object_name, external_id_field=None): """ Create a bulk job Arguments: * operation -- Bulk operation to be performed by job * object_name -- SF object * external_id_field -- unique identifier field for upsert operations """ payload = { 'operation': operation, 'object': object_name, 'contentType': 'JSON' } if operation == 'upsert': payload['externalIdFieldName'] = external_id_field url = "{}{}".format(self.bulk_url, 'job') result = call_salesforce(url=url, method='POST', session=self.session, headers=self.headers, data=json.dumps(payload)) return result.json(object_pairs_hook=OrderedDict) def _close_job(self, job_id): """ Close a bulk job """ payload = { 'state': 'Closed' } url = "{}{}{}".format(self.bulk_url, 'job/', job_id) result = call_salesforce(url=url, method='POST', session=self.session, headers=self.headers, data=json.dumps(payload)) return result.json(object_pairs_hook=OrderedDict) def _get_job(self, job_id): """ Get an existing job to check the status """ url = "{}{}{}".format(self.bulk_url, 'job/', job_id) result = call_salesforce(url=url, method='GET', session=self.session, headers=self.headers) return result.json(object_pairs_hook=OrderedDict) def _add_batch(self, job_id, data, operation): """ Add a set of data as a batch to an existing job Separating this out in case of later implementations involving multiple batches """ url = "{}{}{}{}".format(self.bulk_url, 'job/', job_id, '/batch') if operation != 'query': data = json.dumps(data) result = call_salesforce(url=url, method='POST', session=self.session, headers=self.headers, data=data) return result.json(object_pairs_hook=OrderedDict) def _get_batch(self, job_id, batch_id): """ Get an existing batch to check the status """ url = "{}{}{}{}{}".format(self.bulk_url, 'job/', job_id, '/batch/', batch_id) result = call_salesforce(url=url, method='GET', session=self.session, headers=self.headers) return result.json(object_pairs_hook=OrderedDict) def _get_batch_results(self, job_id, batch_id, operation): """ retrieve a set of results from a completed job """ url = "{}{}{}{}{}{}".format(self.bulk_url, 'job/', job_id, '/batch/', batch_id, '/result') result = call_salesforce(url=url, method='GET', session=self.session, headers=self.headers) if operation == 'query': url_query_results = "{}{}{}".format(url, '/', result.json()[0]) query_result = call_salesforce(url=url_query_results, method='GET', session=self.session, headers=self.headers) return query_result.json() return result.json() #pylint: disable=R0913 def _bulk_operation(self, object_name, operation, data, external_id_field=None, wait=5): """ String together helper functions to create a complete end-to-end bulk API request Arguments: * object_name -- SF object * operation -- Bulk operation to be performed by job * data -- list of dict to be passed as a batch * external_id_field -- unique identifier field for upsert operations * wait -- seconds to sleep between checking batch status """ job = self._create_job(object_name=object_name, operation=operation, external_id_field=external_id_field) batch = self._add_batch(job_id=job['id'], data=data, operation=operation) self._close_job(job_id=job['id']) batch_status = self._get_batch(job_id=batch['jobId'], batch_id=batch['id'])['state'] while batch_status not in ['Completed', 'Failed', 'Not Processed']: sleep(wait) batch_status = self._get_batch(job_id=batch['jobId'], batch_id=batch['id'])['state'] results = self._get_batch_results(job_id=batch['jobId'], batch_id=batch['id'], operation=operation) return results # _bulk_operation wrappers to expose supported Salesforce bulk operations def delete(self, data): """ soft delete records """ results = self._bulk_operation(object_name=self.object_name, operation='delete', data=data) return results def insert(self, data): """ insert records """ results = self._bulk_operation(object_name=self.object_name, operation='insert', data=data) return results def upsert(self, data, external_id_field): """ upsert records based on a unique identifier """ results = self._bulk_operation(object_name=self.object_name, operation='upsert', external_id_field=external_id_field, data=data) return results def update(self, data): """ update records """ results = self._bulk_operation(object_name=self.object_name, operation='update', data=data) return results def hard_delete(self, data): """ hard delete records """ results = self._bulk_operation(object_name=self.object_name, operation='hardDelete', data=data) return results def query(self, data): """ bulk query """ results = self._bulk_operation(object_name=self.object_name, operation='query', data=data) return results
airflow/ti_deps/dep_context.py
npodewitz/airflow
8,092
12737792
<reponame>npodewitz/airflow<gh_stars>1000+ # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import TYPE_CHECKING, List, Optional import attr from sqlalchemy.orm.session import Session from airflow.utils.state import State if TYPE_CHECKING: from airflow.models.dagrun import DagRun from airflow.models.taskinstance import TaskInstance @attr.define class DepContext: """ A base class for contexts that specifies which dependencies should be evaluated in the context for a task instance to satisfy the requirements of the context. Also stores state related to the context that can be used by dependency classes. For example there could be a SomeRunContext that subclasses this class which has dependencies for: - Making sure there are slots available on the infrastructure to run the task instance - A task-instance's task-specific dependencies are met (e.g. the previous task instance completed successfully) - ... :param deps: The context-specific dependencies that need to be evaluated for a task instance to run in this execution context. :param flag_upstream_failed: This is a hack to generate the upstream_failed state creation while checking to see whether the task instance is runnable. It was the shortest path to add the feature. This is bad since this class should be pure (no side effects). :param ignore_all_deps: Whether or not the context should ignore all ignorable dependencies. Overrides the other ignore_* parameters :param ignore_depends_on_past: Ignore depends_on_past parameter of DAGs (e.g. for Backfills) :param ignore_in_retry_period: Ignore the retry period for task instances :param ignore_in_reschedule_period: Ignore the reschedule period for task instances :param ignore_unmapped_tasks: Ignore errors about mapped tasks not yet being expanded :param ignore_task_deps: Ignore task-specific dependencies such as depends_on_past and trigger rule :param ignore_ti_state: Ignore the task instance's previous failure/success :param finished_tis: A list of all the finished task instances of this run """ deps: set = attr.ib(factory=set) flag_upstream_failed: bool = False ignore_all_deps: bool = False ignore_depends_on_past: bool = False ignore_in_retry_period: bool = False ignore_in_reschedule_period: bool = False ignore_task_deps: bool = False ignore_ti_state: bool = False ignore_unmapped_tasks: bool = False finished_tis: Optional[List["TaskInstance"]] = None def ensure_finished_tis(self, dag_run: "DagRun", session: Session) -> List["TaskInstance"]: """ This method makes sure finished_tis is populated if it's currently None. This is for the strange feature of running tasks without dag_run. :param dag_run: The DagRun for which to find finished tasks :return: A list of all the finished tasks of this DAG and execution_date :rtype: list[airflow.models.TaskInstance] """ if self.finished_tis is None: finished_tis = dag_run.get_task_instances(state=State.finished, session=session) self.finished_tis = finished_tis else: finished_tis = self.finished_tis return finished_tis
test/manual/trash/test_get_trash_document.py
membranepotential/mendeley-python-sdk
103
12737817
<gh_stars>100-1000 from test import get_user_session, cassette from test.resources.documents import delete_all_documents, create_document, assert_core_document, assert_bib_document, \ assert_client_document, assert_tags_document, assert_all_document def test_should_get_document_core_view(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/trash/get_document/get_document_core_view.yaml'): created_doc = create_document(session) created_doc.move_to_trash() doc = session.trash.get(created_doc.id) assert_core_document(doc) def test_should_get_document_bib_view(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/trash/get_document/get_document_bib_view.yaml'): created_doc = create_document(session) created_doc.move_to_trash() doc = session.trash.get(created_doc.id, view='bib') assert_core_document(doc) assert_bib_document(doc) def test_should_get_document_client_view(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/trash/get_document/get_document_client_view.yaml'): created_doc = create_document(session) created_doc.move_to_trash() doc = session.trash.get(created_doc.id, view='client') assert_core_document(doc) assert_client_document(doc) def test_should_get_document_tags_view(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/trash/get_document/get_document_tags_view.yaml'): created_doc = create_document(session) created_doc.move_to_trash() doc = session.trash.get(created_doc.id, view='tags') assert_core_document(doc) assert_tags_document(doc) def test_should_get_document_all_view(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/trash/get_document/get_document_all_view.yaml'): created_doc = create_document(session) created_doc.move_to_trash() doc = session.trash.get(created_doc.id, view='all') assert_all_document(doc) def test_should_be_able_to_get_profile_for_document(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/trash/get_document/get_profile_for_document.yaml'): created_doc = create_document(session) created_doc.move_to_trash() doc = session.trash.get(created_doc.id) profile = session.profiles.me assert doc.profile.display_name == profile.display_name
homeassistant/components/tasmota/fan.py
mtarjoianu/core
30,023
12737821
<gh_stars>1000+ """Support for Tasmota fans.""" from __future__ import annotations from typing import Any from hatasmota import const as tasmota_const, fan as tasmota_fan from hatasmota.entity import TasmotaEntity as HATasmotaEntity from hatasmota.models import DiscoveryHashType from homeassistant.components.fan import ( DOMAIN as FAN_DOMAIN, FanEntity, FanEntityFeature, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.util.percentage import ( ordered_list_item_to_percentage, percentage_to_ordered_list_item, ) from .const import DATA_REMOVE_DISCOVER_COMPONENT from .discovery import TASMOTA_DISCOVERY_ENTITY_NEW from .mixins import TasmotaAvailability, TasmotaDiscoveryUpdate ORDERED_NAMED_FAN_SPEEDS = [ tasmota_const.FAN_SPEED_LOW, tasmota_const.FAN_SPEED_MEDIUM, tasmota_const.FAN_SPEED_HIGH, ] # off is not included async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up Tasmota fan dynamically through discovery.""" @callback def async_discover( tasmota_entity: HATasmotaEntity, discovery_hash: DiscoveryHashType ) -> None: """Discover and add a Tasmota fan.""" async_add_entities( [TasmotaFan(tasmota_entity=tasmota_entity, discovery_hash=discovery_hash)] ) hass.data[ DATA_REMOVE_DISCOVER_COMPONENT.format(FAN_DOMAIN) ] = async_dispatcher_connect( hass, TASMOTA_DISCOVERY_ENTITY_NEW.format(FAN_DOMAIN), async_discover, ) class TasmotaFan( TasmotaAvailability, TasmotaDiscoveryUpdate, FanEntity, ): """Representation of a Tasmota fan.""" _attr_supported_features = FanEntityFeature.SET_SPEED _tasmota_entity: tasmota_fan.TasmotaFan def __init__(self, **kwds: Any) -> None: """Initialize the Tasmota fan.""" self._state: int | None = None super().__init__( **kwds, ) async def async_added_to_hass(self) -> None: """Subscribe to MQTT events.""" self._tasmota_entity.set_on_state_callback(self.fan_state_updated) await super().async_added_to_hass() @callback def fan_state_updated(self, state: int, **kwargs: Any) -> None: """Handle state updates.""" self._state = state self.async_write_ha_state() @property def speed_count(self) -> int: """Return the number of speeds the fan supports.""" return len(ORDERED_NAMED_FAN_SPEEDS) @property def percentage(self) -> int | None: """Return the current speed percentage.""" if self._state is None: return None if self._state == 0: return 0 return ordered_list_item_to_percentage(ORDERED_NAMED_FAN_SPEEDS, self._state) async def async_set_percentage(self, percentage: int) -> None: """Set the speed of the fan.""" if percentage == 0: await self.async_turn_off() else: tasmota_speed = percentage_to_ordered_list_item( ORDERED_NAMED_FAN_SPEEDS, percentage ) await self._tasmota_entity.set_speed(tasmota_speed) async def async_turn_on( self, percentage: int | None = None, preset_mode: str | None = None, **kwargs: Any, ) -> None: """Turn the fan on.""" # Tasmota does not support turning a fan on with implicit speed await self.async_set_percentage( percentage or ordered_list_item_to_percentage( ORDERED_NAMED_FAN_SPEEDS, tasmota_const.FAN_SPEED_MEDIUM ) ) async def async_turn_off(self, **kwargs: Any) -> None: """Turn the fan off.""" await self._tasmota_entity.set_speed(tasmota_const.FAN_SPEED_OFF)
azure-devops/azext_devops/devops_sdk/v6_0/search/search_client.py
dhilmathy/azure-devops-cli-extension
248
12737833
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest import Serializer, Deserializer from ...client import Client from . import models class SearchClient(Client): """Search :param str base_url: Service URL :param Authentication creds: Authenticated credentials. """ def __init__(self, base_url=None, creds=None): super(SearchClient, self).__init__(base_url, creds) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) resource_area_identifier = 'ea48a0a1-269c-42d8-b8ad-ddc8fcdcf578' def fetch_scroll_code_search_results(self, request, project=None): """FetchScrollCodeSearchResults. [Preview API] Provides a set of results for the search text. :param :class:`<ScrollSearchRequest> <azure.devops.v6_0.search.models.ScrollSearchRequest>` request: The Code Search Request. :param str project: Project ID or project name :rtype: :class:`<CodeSearchResponse> <azure.devops.v6_0.search.models.CodeSearchResponse>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') content = self._serialize.body(request, 'ScrollSearchRequest') response = self._send(http_method='POST', location_id='852dac94-e8f7-45a2-9910-927ae35766a2', version='6.0-preview.1', route_values=route_values, content=content) return self._deserialize('CodeSearchResponse', response) def fetch_code_search_results(self, request, project=None): """FetchCodeSearchResults. [Preview API] Provides a set of results for the search text. :param :class:`<CodeSearchRequest> <azure.devops.v6_0.search.models.CodeSearchRequest>` request: The Code Search Request. :param str project: Project ID or project name :rtype: :class:`<CodeSearchResponse> <azure.devops.v6_0.search.models.CodeSearchResponse>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') content = self._serialize.body(request, 'CodeSearchRequest') response = self._send(http_method='POST', location_id='e7f29993-5b82-4fca-9386-f5cfe683d524', version='6.0-preview.1', route_values=route_values, content=content) return self._deserialize('CodeSearchResponse', response) def fetch_package_search_results(self, request): """FetchPackageSearchResults. [Preview API] Provides a set of results for the search text. :param :class:`<PackageSearchRequest> <azure.devops.v6_0.search.models.PackageSearchRequest>` request: The Package Search Request. :rtype: :class:`<PackageSearchResponse> <azure.devops.v6_0.search.models.PackageSearchResponse>` """ content = self._serialize.body(request, 'PackageSearchRequest') response = self._send(http_method='POST', location_id='f62ada48-eedc-4c8e-93f0-de870e4ecce0', version='6.0-preview.1', content=content) response_object = models.PackageSearchResponse() response_object.content = self._deserialize('PackageSearchResponseContent', response) response_object.activity_id = response.headers.get('ActivityId') return response_object def get_repository_status(self, project, repository): """GetRepositoryStatus. [Preview API] Provides status of Repository. :param str project: Project ID or project name :param str repository: Repository ID or repository name. :rtype: :class:`<RepositoryStatusResponse> <azure.devops.v6_0.search.models.RepositoryStatusResponse>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if repository is not None: route_values['repository'] = self._serialize.url('repository', repository, 'str') response = self._send(http_method='GET', location_id='1f60303c-7261-4387-80f1-742a2ecf2964', version='6.0-preview.1', route_values=route_values) return self._deserialize('RepositoryStatusResponse', response) def get_tfvc_repository_status(self, project): """GetTfvcRepositoryStatus. [Preview API] Provides status of TFVC Repository. :param str project: Project ID or project name :rtype: :class:`<TfvcRepositoryStatusResponse> <azure.devops.v6_0.search.models.TfvcRepositoryStatusResponse>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') response = self._send(http_method='GET', location_id='d5bf4e52-e0af-4626-8c50-8a80b18fa69f', version='6.0-preview.1', route_values=route_values) return self._deserialize('TfvcRepositoryStatusResponse', response) def fetch_wiki_search_results(self, request, project=None): """FetchWikiSearchResults. [Preview API] Provides a set of results for the search request. :param :class:`<WikiSearchRequest> <azure.devops.v6_0.search.models.WikiSearchRequest>` request: The Wiki Search Request. :param str project: Project ID or project name :rtype: :class:`<WikiSearchResponse> <azure.devops.v6_0.search.models.WikiSearchResponse>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') content = self._serialize.body(request, 'WikiSearchRequest') response = self._send(http_method='POST', location_id='e90e7664-7049-4100-9a86-66b161d81080', version='6.0-preview.1', route_values=route_values, content=content) return self._deserialize('WikiSearchResponse', response) def fetch_work_item_search_results(self, request, project=None): """FetchWorkItemSearchResults. [Preview API] Provides a set of results for the search text. :param :class:`<WorkItemSearchRequest> <azure.devops.v6_0.search.models.WorkItemSearchRequest>` request: The Work Item Search Request. :param str project: Project ID or project name :rtype: :class:`<WorkItemSearchResponse> <azure.devops.v6_0.search.models.WorkItemSearchResponse>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') content = self._serialize.body(request, 'WorkItemSearchRequest') response = self._send(http_method='POST', location_id='73b2c9e2-ff9e-4447-8cda-5f5b21ff7cae', version='6.0-preview.1', route_values=route_values, content=content) return self._deserialize('WorkItemSearchResponse', response)
examples/hid_keyboard_shortcuts.py
jersu11/Adafruit_CircuitPython_HID
174
12737842
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT import time import board import digitalio import usb_hid from adafruit_hid.keyboard import Keyboard from adafruit_hid.keycode import Keycode kbd = Keyboard(usb_hid.devices) # define buttons. these can be any physical switches/buttons, but the values # here work out-of-the-box with a CircuitPlayground Express' A and B buttons. swap = digitalio.DigitalInOut(board.D4) swap.direction = digitalio.Direction.INPUT swap.pull = digitalio.Pull.DOWN search = digitalio.DigitalInOut(board.D5) search.direction = digitalio.Direction.INPUT search.pull = digitalio.Pull.DOWN while True: # press ALT+TAB to swap windows if swap.value: kbd.send(Keycode.ALT, Keycode.TAB) # press CTRL+K, which in a web browser will open the search dialog elif search.value: kbd.send(Keycode.CONTROL, Keycode.K) time.sleep(0.1)
pyecharts/render/engine.py
swuecho/pyecharts
11,032
12737843
<gh_stars>1000+ import os from collections import Iterable from jinja2 import Environment from ..commons import utils from ..datasets import EXTRA, FILENAMES from ..globals import CurrentConfig, NotebookType from ..types import Any, Optional from .display import HTML, Javascript def write_utf8_html_file(file_name: str, html_content: str): with open(file_name, "w+", encoding="utf-8") as html_file: html_file.write(html_content) class RenderEngine: def __init__(self, env: Optional[Environment] = None): self.env = env or CurrentConfig.GLOBAL_ENV @staticmethod def generate_js_link(chart: Any) -> Any: if not chart.js_host: chart.js_host = CurrentConfig.ONLINE_HOST links = [] for dep in chart.js_dependencies.items: # TODO: if? if dep.startswith("https://api.map.baidu.com"): links.append(dep) if dep in FILENAMES: f, ext = FILENAMES[dep] links.append("{}{}.{}".format(chart.js_host, f, ext)) else: for url, files in EXTRA.items(): if dep in files: f, ext = files[dep] links.append("{}{}.{}".format(url, f, ext)) break chart.dependencies = links return chart def render_chart_to_file(self, template_name: str, chart: Any, path: str, **kwargs): """ Render a chart or page to local html files. :param chart: A Chart or Page object :param path: The destination file which the html code write to :param template_name: The name of template file. """ tpl = self.env.get_template(template_name) html = utils.replace_placeholder( tpl.render(chart=self.generate_js_link(chart), **kwargs) ) write_utf8_html_file(path, html) def render_chart_to_template(self, template_name: str, chart: Any, **kwargs) -> str: tpl = self.env.get_template(template_name) return utils.replace_placeholder( tpl.render(chart=self.generate_js_link(chart), **kwargs) ) def render_chart_to_notebook(self, template_name: str, **kwargs) -> str: tpl = self.env.get_template(template_name) return utils.replace_placeholder(tpl.render(**kwargs)) def render( chart, path: str, template_name: str, env: Optional[Environment], **kwargs ) -> str: RenderEngine(env).render_chart_to_file( template_name=template_name, chart=chart, path=path, **kwargs ) return os.path.abspath(path) def render_embed( chart, template_name: str, env: Optional[Environment], **kwargs ) -> str: return RenderEngine(env).render_chart_to_template( template_name=template_name, chart=chart, **kwargs ) def render_notebook(self, notebook_template, lab_template): instance = self if isinstance(self, Iterable) else (self,) if CurrentConfig.NOTEBOOK_TYPE == NotebookType.JUPYTER_NOTEBOOK: require_config = utils.produce_require_dict(self.js_dependencies, self.js_host) return HTML( RenderEngine().render_chart_to_notebook( template_name=notebook_template, charts=instance, config_items=require_config["config_items"], libraries=require_config["libraries"], ) ) if CurrentConfig.NOTEBOOK_TYPE == NotebookType.JUPYTER_LAB: return HTML( RenderEngine().render_chart_to_notebook( template_name=lab_template, charts=instance ) ) if CurrentConfig.NOTEBOOK_TYPE == NotebookType.NTERACT: return HTML(self.render_embed()) if CurrentConfig.NOTEBOOK_TYPE == NotebookType.ZEPPELIN: print("%html " + self.render_embed()) def load_javascript(chart): scripts = [] for dep in chart.js_dependencies.items: f, ext = FILENAMES[dep] scripts.append("{}{}.{}".format(CurrentConfig.ONLINE_HOST, f, ext)) return Javascript(lib=scripts)
models/__init__.py
ModelZoo/BostonHousing
191
12737845
from .house import HousePricePredictionModel
tests/test_act_quantized_ops.py
yachuan/actnn
162
12737897
<filename>tests/test_act_quantized_ops.py """Test the activation quantized ops""" import math import numpy as np import torch from torch.nn import functional as F from timeit_v2 import py_benchmark from actnn import QScheme, QBNScheme, config, get_memory_usage, compute_tensor_bytes from actnn.ops import ext_backward_func, ext_quantization from actnn.ops import conv2d as quantized_conv2d, batch_norm as quantized_batch_norm, \ adaptive_avg_pool2d as quantized_adaptive_avg_pool2d def test_relu_correctness(): print("========== ReLU Correctness Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(128, 56, 56, 31).astype(dtype) def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() output = func(data) output.backward(torch.ones_like(output)) return [x.detach().cpu().numpy() for x in [output, data.grad]] output_ref, grad_data_ref = test_implementation(F.relu) output_us, grad_data_us = test_implementation(ext_quantization.act_quantized_relu) np.testing.assert_allclose(output_ref, output_us) np.testing.assert_allclose(grad_data_ref, grad_data_us) def test_relu_memory(): print("========== ReLU Memory Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(128, 56, 56, 32).astype(dtype) def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() before = get_memory_usage() for i in range(10): data = func(data) after = get_memory_usage() return after - before usage_ref = test_implementation(F.relu) usage_us = test_implementation(ext_quantization.act_quantized_relu) print("Exact. Usage: %.2f MB" % (usage_ref / 2 ** 20)) print("Quantized. Usage: %.2f MB" % (usage_us / 2 ** 20)) def test_relu_speed(): print("========== ReLU Speed Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(256, 56, 56, 32).astype(dtype) def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() stmt = "func(data)" t_forward = py_benchmark(stmt, {**globals(), **locals()}, setup="torch.cuda.synchronize()", finish="torch.cuda.synchronize()") output = func(data) head = torch.ones_like(output) stmt = "output.backward(head, retain_graph=True)" t_backward = py_benchmark(stmt, {**globals(), **locals()}, setup="torch.cuda.synchronize()", finish="torch.cuda.synchronize()") return t_forward, t_backward forward_ref, backward_ref = test_implementation(F.relu) forward_us, backward_us = test_implementation(ext_quantization.act_quantized_relu) print("Exact. forward: %.2f ms\tbackward: %.2f ms\tsum: %.2f ms" % (forward_ref * 1e3, backward_ref * 1e3, (forward_ref + backward_ref) * 1e3)) print("Quantized. forward: %.2f ms\tbackward: %.2f ms\tsum: %.2f ms" % (forward_us * 1e3, backward_us * 1e3, (forward_us + backward_us) * 1e3)) def test_dropout_memory(): print("========== Dropout Memory Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(128, 56, 56, 32).astype(dtype) def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() before = get_memory_usage() for i in range(10): data = func(data, 0.2) after = get_memory_usage() return after - before usage_ref = test_implementation(F.dropout) usage_us = test_implementation(ext_quantization.act_quantized_dropout) print("Exact. Usage: %.2f MB" % (usage_ref / 2 ** 20)) print("Quantized. Usage: %.2f MB" % (usage_us / 2 ** 20)) def test_dropout_speed(): print("========== Dropout Speed Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(256, 56, 56, 32).astype(dtype) def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() stmt = "func(data, 0.2)" t_forward = py_benchmark(stmt, {**globals(), **locals()}, setup="torch.cuda.synchronize()", finish="torch.cuda.synchronize()") output = func(data, 0.2) head = torch.ones_like(output) stmt = "output.backward(head, retain_graph=True)" t_backward = py_benchmark(stmt, {**globals(), **locals()}, setup="torch.cuda.synchronize()", finish="torch.cuda.synchronize()") return t_forward, t_backward forward_ref, backward_ref = test_implementation(F.dropout) forward_us, backward_us = test_implementation(ext_quantization.act_quantized_dropout) print("Exact. forward: %.2f ms\tbackward: %.2f ms\tsum: %.2f ms" % (forward_ref * 1e3, backward_ref * 1e3, (forward_ref + backward_ref) * 1e3)) print("Quantized. forward: %.2f ms\tbackward: %.2f ms\tsum: %.2f ms" % (forward_us * 1e3, backward_us * 1e3, (forward_us + backward_us) * 1e3)) def test_adaptive_avg_pool2d_correctness(): """Test the correctness of computation results""" # arguments and test data N, H, W, CI, CO, kernel_size, stride, padding, dilation, groups = 4, 28, 28, 256, 256, 3, 1, 1, 1, 1 data_np = np.random.randn(N, CI, H, W).astype('float32') head_np = np.random.randn(N, CI, 1, 1).astype('float32') output_size = 1, 1 def test_implementation(func): torch.manual_seed(0) data = torch.tensor(data_np).to("cuda").requires_grad_() head = torch.tensor(head_np).to("cuda") output = func(data, output_size) output.backward(head) return [x.detach().cpu().numpy() for x in [output, data.grad]] output_ref, grad_data_ref = test_implementation(F.adaptive_avg_pool2d) output_us, grad_data_us = test_implementation(quantized_adaptive_avg_pool2d.apply) atol = 1e-4 rtol = 1e-4 print("========== AdaptiveAvgPool2d Correctness Test ==========") np.testing.assert_allclose(output_ref, output_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_data_ref, grad_data_us, atol=atol, rtol=rtol) def test_adaptive_avg_pool2d_memory(): """Test the memory usage""" # arguments and test data N, H, W, CI = 1024, 4, 4, 1024 data_np = np.random.randn(N, CI, H, W).astype('float32') output_size = (1, 1) def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() output = func(data, output_size) for i in range(10): output = func(output, output_size) return get_memory_usage() - compute_tensor_bytes([data, output]) usage_ref = test_implementation(F.adaptive_avg_pool2d) usage_us = test_implementation(quantized_adaptive_avg_pool2d.apply) print("========== AdaptiveAvgPool2d Memory Test ==========") print("Exact. Usage: %.3f MB" % (usage_ref / 2 ** 20)) print("Quantized. Usage: %.2f MB" % (usage_us / 2 ** 20)) def test_max_pool2d_correctness(): """Test the correctness of computation results""" # arguments and test data N, H, W, CI, kernel_size, stride, padding, dilation = 4, 28, 28, 8, 3, 2, 1, 1 ceil_mode, return_indices = False, False print("========== MaxPool2d Correctness Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(N, CI, H, W).astype(dtype) def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() output = func(data, (kernel_size, kernel_size), (stride, stride), (padding, padding), (dilation, dilation), ceil_mode, return_indices) output.backward(torch.ones_like(output)) return [x.detach().cpu().numpy() for x in [output, data.grad]] output_ref, grad_data_ref = test_implementation(F.max_pool2d) output_us, grad_data_us = test_implementation(ext_quantization.act_quantized_max_pool2d) atol = 1e-4 rtol = 1e-4 np.testing.assert_allclose(output_ref, output_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_data_ref, grad_data_us, atol=atol, rtol=rtol) def test_max_pool2d_memory(): """Test the memory usage""" # arguments and test data N, H, W, CI, kernel_size, stride, padding, dilation = 128, 28, 28, 8, 3, 2, 1, 1 ceil_mode, return_indices = False, False print("========== MaxPool2d Memory Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(N, CI, H, W).astype(dtype) def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() output = func(data, (kernel_size, kernel_size), (stride, stride), (padding, padding), (dilation, dilation), ceil_mode, return_indices) return get_memory_usage() - compute_tensor_bytes([output, data]) usage_ref = test_implementation(F.max_pool2d) usage_us = test_implementation(ext_quantization.act_quantized_max_pool2d) print("Exact. Usage: %.3f MB" % (usage_ref / 2 ** 20)) print("Quantized. Usage: %.3f MB" % (usage_us / 2 ** 20)) def test_max_pool2d_speed(): """Test the correctness of computation results""" # arguments and test data N, H, W, CI, kernel_size, stride, padding, dilation = 128, 28, 28, 128, 3, 2, 1, 1 ceil_mode, return_indices = False, False print("========== MaxPool2d Speed Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(N, CI, H, W).astype(dtype) def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() stmt = "func(data, (kernel_size, kernel_size), (stride, stride), (padding, padding),"\ "(dilation, dilation), ceil_mode, return_indices)" t_forward = py_benchmark(stmt, {**globals(), **locals()}, setup="torch.cuda.synchronize()", finish="torch.cuda.synchronize()") output = func(data, (kernel_size, kernel_size), (stride, stride), (padding, padding), (dilation, dilation), ceil_mode, return_indices) head = torch.ones_like(output) stmt = "output.backward(head, retain_graph=True)" t_backward = py_benchmark(stmt, {**globals(), **locals()}, setup="torch.cuda.synchronize()", finish="torch.cuda.synchronize()") return t_forward, t_backward forward_ref, backward_ref = test_implementation(F.max_pool2d) forward_us, backward_us = test_implementation(ext_quantization.act_quantized_max_pool2d) print("Exact. forward: %.2f ms\tbackward: %.2f ms\tsum: %.2f ms" % (forward_ref * 1e3, backward_ref * 1e3, (forward_ref + backward_ref) * 1e3)) print("Quantized. forward: %.2f ms\tbackward: %.2f ms\tsum: %.2f ms" % (forward_us * 1e3, backward_us * 1e3, (forward_us + backward_us) * 1e3)) def test_upsample_memory(): """Test the memory usage""" # arguments and test data N, H, W, CI = 128, 28, 28, 8 size, scale_factor, mode, align_corners = None, 2, 'bilinear', False data_np = np.random.randn(N, CI, H, W).astype('float32') def test_implementation(func): data = torch.tensor(data_np).to("cuda").requires_grad_() output = func(data, size, scale_factor, mode, align_corners) output = func(output, size, scale_factor, mode, align_corners) output = func(output, size, scale_factor, mode, align_corners) return get_memory_usage() - compute_tensor_bytes([output, data]) usage_ref = test_implementation(F.interpolate) print("========== Upsample Memory Test ==========") print("Exact. Usage: %.3f MB" % (usage_ref / 2 ** 20)) def test_bn_correctness(): # arguments and test data N, H, W, CI = 16, 28, 28, 256 data_np = np.random.randn(N, CI, H, W).astype('float32') * 0.01 running_mean_np = np.random.randn(CI).astype('float32') running_var_np = np.random.randn(CI).astype('float32') bn_weight_np = np.random.randn(CI).astype('float32') bn_bias_np = np.random.randn(CI).astype('float32') training = False bn_scheme = QBNScheme() config.compress_activation = False def test_implementation(func): torch.manual_seed(0) data = torch.tensor(data_np).to("cuda").requires_grad_() running_mean = torch.tensor(running_mean_np).to("cuda") running_var = torch.tensor(running_var_np).to("cuda") bn_weight = torch.tensor(bn_weight_np).to("cuda").requires_grad_() bn_bias = torch.tensor(bn_bias_np).to("cuda").requires_grad_() if func == F.batch_norm: output = func(data, running_mean, running_var, bn_weight, bn_bias, training, 0.1, 1e-5) else: output = func(data, running_mean, running_var, bn_weight, bn_bias, training, 0.1, 1e-5, bn_scheme) output.backward(torch.ones_like(output)) return [x.detach().cpu().numpy() for x in [output, data.grad, bn_weight.grad, bn_bias.grad]] output_ref, grad_data_ref, grad_weight_ref, grad_bias_ref = test_implementation(F.batch_norm) output_us, grad_data_us, grad_weight_us, grad_bias_us = test_implementation(quantized_batch_norm.apply) atol = 1e-3 rtol = 1e-3 print("========== BN Correctness Test ==========") np.testing.assert_allclose(output_ref, output_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_data_ref, grad_data_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_weight_ref, grad_weight_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_bias_ref, grad_bias_us, atol=atol, rtol=rtol) def test_conv2d_correctness(): """Test the correctness of computation results""" # arguments and test data N, H, W, CI, CO, kernel_size, stride, padding, dilation, groups = 4, 28, 28, 256, 256, 3, 1, 1, 1, 1 print("========== Conv2d Correctness Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(N, CI, H, W).astype(dtype) weight_np = np.random.randn(CO, CI // groups, kernel_size, kernel_size).astype(dtype) bias_np = np.random.randn(CO).astype(dtype) def test_implementation(func, scheme): torch.manual_seed(0) data = torch.tensor(data_np).to("cuda").requires_grad_() weight = torch.tensor(weight_np).to("cuda").requires_grad_() bias = torch.tensor(bias_np).to("cuda").requires_grad_() output = func(data, weight, bias, stride, padding, dilation, groups, scheme) output.backward(torch.ones_like(output)) return [x.detach().cpu().numpy() for x in [output, data.grad, weight.grad, bias.grad]] config.activation_compression_bits = [16] config.initial_bits = 16 config.perlayer = False config.use_gradient = False scheme = QScheme(None) config.simulate = True output_ref, grad_data_ref, grad_weight_ref, grad_bias_ref = test_implementation(quantized_conv2d.apply, scheme) config.simulate = False output_us, grad_data_us, grad_weight_us, grad_bias_us = test_implementation(quantized_conv2d.apply, scheme) atol = 1e-2 rtol = 1e-2 assert output_ref.dtype == output_us.dtype np.testing.assert_allclose(output_ref, output_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_data_ref, grad_data_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_weight_ref, grad_weight_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_bias_ref, grad_bias_us, atol=atol, rtol=rtol) def test_conv2d_correctness_per_group_only(): """Test the correctness of computation results NOTE: This test will fail on large shapes or low bits. To make this test pass, we should disable stochastic noise. """ # arguments and test data N, H, W, CI, CO, kernel_size, stride, padding, dilation, groups = 2, 16, 16, 4, 4, 1, 1, 1, 1, 1 print("========== Conv2d Correctness Test (per group only) ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(N, CI, H, W).astype(dtype) weight_np = np.random.randn(CO, CI // groups, kernel_size, kernel_size).astype(dtype) bias_np = np.random.randn(CO).astype(dtype) def test_implementation(func, scheme): torch.manual_seed(0) data = torch.tensor(data_np).to("cuda").requires_grad_() weight = torch.tensor(weight_np).to("cuda").requires_grad_() bias = torch.tensor(bias_np).to("cuda").requires_grad_() output = func(data, weight, bias, stride, padding, dilation, groups, scheme) output.backward(torch.ones_like(output)) return [x.detach().cpu().numpy() for x in [output, data.grad, weight.grad, bias.grad]] config.activation_compression_bits = [8] config.perlayer = False config.use_gradient = False config.simulate = True output_ref, grad_data_ref, grad_weight_ref, grad_bias_ref = test_implementation(quantized_conv2d.apply, None) config.simulate = False output_us, grad_data_us, grad_weight_us, grad_bias_us = test_implementation(quantized_conv2d.apply, None) atol = 1e-1 rtol = 1e-1 assert output_ref.dtype == output_us.dtype np.testing.assert_allclose(output_ref, output_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_data_ref, grad_data_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_weight_ref, grad_weight_us, atol=atol, rtol=rtol) np.testing.assert_allclose(grad_bias_ref, grad_bias_us, atol=atol, rtol=rtol) def test_conv2d_speed(): """Test the speed of convolution layer""" # arguments and test data N, H, W, CI, CO, kernel_size, stride, padding, dilation, groups = 128, 28, 28, 256, 256, 3, 1, 1, 1, 1 print("========== Conv2d Speed Test ==========") for dtype in ['float32', 'float16']: print(f"test {dtype}...") data_np = np.random.randn(N, CI, H, W).astype(dtype) weight_np = np.random.randn(CO, CI // groups, kernel_size, kernel_size).astype(dtype) bias_np = np.random.randn(CO).astype(dtype) scheme = QScheme(None) def test_implementation(func, scheme): data = torch.tensor(data_np).to("cuda").requires_grad_() weight = torch.tensor(weight_np).to("cuda").requires_grad_() bias = torch.tensor(bias_np).to("cuda").requires_grad_() if func == quantized_conv2d.apply: output = func(data, weight, bias, stride, padding, dilation, groups, scheme) stmt = "func(data, weight, bias, stride, padding, dilation, groups, scheme)" else: output = func(data, weight, bias, stride, padding, dilation, groups) stmt = "func(data, weight, bias, stride, padding, dilation, groups)" t_forward = py_benchmark(stmt, {**globals(), **locals()}, setup="torch.cuda.synchronize()", finish="torch.cuda.synchronize()") head = torch.ones_like(output) stmt = "output.backward(head, retain_graph=True)" t_backward = py_benchmark(stmt, {**globals(), **locals()}, setup="torch.cuda.synchronize()", finish="torch.cuda.synchronize()") return t_forward, t_backward config.activation_compression_bits = [16] config.initial_bits = 16 config.perlayer = False config.use_gradient = False config.simulate = False scheme = QScheme(None) forward_ref, backward_ref = test_implementation(F.conv2d, None) forward_us, backward_us = test_implementation(quantized_conv2d.apply, scheme) print("Exact. forward: %.2f ms\tbackward: %.2f ms\tsum: %.2f ms" % (forward_ref * 1e3, backward_ref * 1e3, (forward_ref + backward_ref) * 1e3)) print("Quantized. forward: %.2f ms\tbackward: %.2f ms\tsum: %.2f ms" % (forward_us * 1e3, backward_us * 1e3, (forward_us + backward_us) * 1e3)) def test_conv2d_memory_analytical(): """Compute the memory of activation analytically""" # arguments and test data N, H, W, CI, CO, kernel_size, stride, padding, dilation, groups = 256, 28, 28, 256, 256, 3, 1, 1, 1, 1 data_np = np.random.randn(N, CI, H, W).astype('float32') weight_np = np.random.randn(CO, CI // groups, kernel_size, kernel_size).astype('float32') bias_np = np.random.randn(CO).astype('float32') running_mean = np.zeros((CO,), dtype='float32') running_var = np.ones((CO,), dtype='float32') bn_weight = np.random.randn(CO).astype('float32') bn_bias = np.random.randn(CO).astype('float32') scheme = QScheme(num_locations=kernel_size**2) bn_scheme = QBNScheme() def test_implementation(conv_func, relu_func, bn_func, n_layers=10): data = torch.tensor(data_np).to("cuda") # allocate input and weights data = torch.tensor(data_np).to("cuda").requires_grad_(False) weights = [] running_means = [] running_vars = [] bn_weights = [] bn_biass = [] for i in range(n_layers): weights.append(torch.tensor(weight_np).to("cuda").requires_grad_()) running_means.append(torch.tensor(running_mean).to("cuda")) running_vars.append(torch.tensor(running_var).to("cuda")) bn_weights.append(torch.tensor(bn_weight).to("cuda").requires_grad_()) bn_biass.append(torch.tensor(bn_bias).to("cuda").requires_grad_()) before_size = get_memory_usage(False) # forward n convolution layers output = data for i in range(n_layers): if conv_func == quantized_conv2d.apply: output = conv_func(output, weights[i], None, stride, padding, dilation, groups, scheme) output = bn_func(output, running_means[i], running_vars[i], bn_weights[i], bn_biass[i], True, 0.1, 1e-5, bn_scheme) else: output = conv_func(output, weights[i], None, stride, padding, dilation, groups) output = bn_func(output, running_means[i], running_vars[i], bn_weights[i], bn_biass[i], True, 0.1, 1e-5) output = relu_func(output) output = output.sum() after_size = get_memory_usage(False) output_size = compute_tensor_bytes(output) return after_size / 1024**2, (after_size - before_size - output_size) / 1024**2 total_size_ref, act_size_ref = test_implementation(F.conv2d, lambda x: F.relu(x, inplace=True), F.batch_norm) config.simulate = True total_size_sim, act_size_sim = test_implementation(quantized_conv2d.apply, ext_quantization.act_quantized_relu, quantized_batch_norm.apply) config.simulate = False total_size_us, act_size_us = test_implementation(quantized_conv2d.apply, ext_quantization.act_quantized_relu, quantized_batch_norm.apply) print("========== Conv2d Activation Memory Test (bits = %d) ==========" % (config.activation_compression_bits)) print("Exact. Total: %7.2f MB\tAct: %7.2f MB" % (total_size_ref, act_size_ref)) print("Simulation. Total: %7.2f MB\tAct: %7.2f MB" % (total_size_sim, act_size_sim)) print("Quantized. Total: %7.2f MB\tAct: %7.2f MB" % (total_size_us, act_size_us)) def test_conv2d_memory_max_batch_size(): """Find the maximum batch size by gradually increasing the batch size until hitting Out-of-memory error""" for device in ["cuda"]: def test_implementation(func, n_layers, batch_sizes): def run_batch_size(batch_size): N, H, W, CI, CO, kernel_size, stride, padding, dilation, groups = batch_size, 28, 28, 256, 256, 3, 1, 1, 1, 1 data_np = np.random.uniform(size=(N, CI, H, W)).astype('float32') weight_np = np.random.uniform(size=(CO, CI // groups, kernel_size, kernel_size)).astype('float32') bias_np = np.random.uniform(size=(CO,)).astype('float32') # allocate input and weights data = torch.tensor(data_np).to("cuda").requires_grad_(False) weights = [] for i in range(n_layers): weight = torch.tensor(weight_np).to("cuda").requires_grad_() weights.append(weight) before_size = get_memory_usage(False) # forward n convolution layers output = data for i in range(n_layers): output = func(output, weights[i], None, stride, padding, dilation, groups) output = output.sum() after_size = get_memory_usage(False) output_size = compute_tensor_bytes(output) return after_size / 1024**2, (after_size - before_size - output_size) / 1024**2 # try gradually increased batch sizes try: for i, batch_size in enumerate(batch_sizes): total_size_ref, act_size_ref = run_batch_size(batch_size) print("batch_size: %4d\t" % batch_size, end="") print("total_memory: %7.2f MB\tact_memory: %7.2f MB" % (total_size_ref, act_size_ref)) except RuntimeError: pass finally: print("Maximum batch size: %d" % (batch_sizes[i-1])) print("========== Conv2d Batch Size Test ==========") print("---> Exact") test_implementation(F.conv2d, n_layers=50, batch_sizes=[100, 200, 250, 300, 350, 400, 450, 500, 1000]) print("---> Quantized") test_implementation(act_quantized_conv2d.apply, n_layers=50, batch_sizes=[100, 200, 250, 500, 1000, 2200, 2300, 2400, 3000, 4000]) if __name__ == "__main__": test_relu_correctness() test_relu_memory() test_relu_speed() #test_dropout_memory() #test_dropout_speed() #test_adaptive_avg_pool2d_correctness() #test_adaptive_avg_pool2d_memory() #test_max_pool2d_correctness() #test_max_pool2d_memory() #test_max_pool2d_speed() #test_upsample_memory() #test_bn_correctness() test_conv2d_correctness() #test_conv2d_correctness_per_group_only() #test_conv2d_speed() #config.activation_compression_bits = 2 #test_conv2d_memory_analytical() #config.activation_compression_bits = 2 #test_conv2d_memory_max_batch_size()
core/providers/torrent_modules/torrentdownloads.py
0x20Man/Watcher3
320
12737905
<gh_stars>100-1000 import logging from xml.etree.cElementTree import fromstring from xmljson import yahoo import core from core.helpers import Url logging = logging.getLogger(__name__) def search(imdbid, term): proxy_enabled = core.CONFIG['Server']['Proxy']['enabled'] logging.info('Performing backlog search on TorrentDownloads for {}.'.format(imdbid)) url = 'http://www.torrentdownloads.me/rss.xml?type=search&search={}'.format(term) try: if proxy_enabled and core.proxy.whitelist('http://www.torrentdownloads.me') is True: response = Url.open(url, proxy_bypass=True).text else: response = Url.open(url).text if response: return _parse(response, imdbid) else: return [] except (SystemExit, KeyboardInterrupt): raise except Exception as e: logging.error('TorrentDownloads search failed.', exc_info=True) return [] def get_rss(): proxy_enabled = core.CONFIG['Server']['Proxy']['enabled'] logging.info('Fetching latest RSS from TorrentDownloads.') url = 'http://www.torrentdownloads.me/rss2/last/4' try: if proxy_enabled and core.proxy.whitelist('http://www.torrentdownloads.me') is True: response = Url.open(url, proxy_bypass=True).text else: response = Url.open(url).text if response: return _parse(response, None) else: return [] except (SystemExit, KeyboardInterrupt): raise except Exception as e: logging.error('TorrentDownloads RSS fetch failed.', exc_info=True) return [] def _parse(xml, imdbid): logging.info('Parsing TorrentDownloads results.') try: items = yahoo.data(fromstring(xml))['rss']['channel']['item'] except Exception as e: logging.error('Unexpected XML format from TorrentDownloads.', exc_info=True) return [] results = [] for i in items: result = {} try: result['score'] = 0 result['size'] = int(i['size']) result['status'] = 'Available' result['pubdate'] = None result['title'] = i['title'] result['imdbid'] = imdbid result['indexer'] = 'TorrentDownloads' result['info_link'] = 'http://www.torrentdownloads.me{}'.format(i['link']) result['torrentfile'] = core.providers.torrent.magnet(i['info_hash']) result['guid'] = i['info_hash'] result['type'] = 'magnet' result['downloadid'] = None result['freeleech'] = 0 result['download_client'] = None result['seeders'] = int(i['seeders']) results.append(result) except Exception as e: logging.error('Error parsing TorrentDownloads XML.', exc_info=True) continue logging.info('Found {} results from TorrentDownloads.'.format(len(results))) return results
aliyun-python-sdk-core/tests/auth/signers/test_sts_token_signer.py
yndu13/aliyun-openapi-python-sdk
1,001
12737917
<filename>aliyun-python-sdk-core/tests/auth/signers/test_sts_token_signer.py # coding=utf-8 from tests import unittest from aliyunsdkcore.auth.credentials import StsTokenCredential from aliyunsdkcore.auth.signers.sts_token_signer import StsTokenSigner from aliyunsdkcore.request import RpcRequest, RoaRequest class TestStsTokenSigner(unittest.TestCase): def test_sts_token_signer(self): credential = StsTokenCredential( 'sts_access_key_id', 'sts_access_key_secret', 'sts_token') signer = StsTokenSigner(credential) # for rpc request = RpcRequest("product", "version", "action_name") self.assertIsNone(request.get_query_params().get("SecurityToken")) headers, url = signer.sign('cn-hangzhou', request) self.assertDictEqual(request.get_headers(), {'x-acs-action': 'action_name', 'x-acs-version': 'version', 'x-sdk-invoke-type': 'normal'}) self.assertEqual(request.get_query_params().get("SecurityToken"), 'sts_token') # self.assertEqual(url, "/?SignatureVersion=1.0&Format=None" # "&Timestamp=2018-12-02T11%3A03%3A01Z&RegionId=cn-hangzhou" # "&AccessKeyId=access_key_id&SignatureMethod=HMAC-SHA1&Version=version" # "&Signature=AmdeJh1ZOW6PgwM3%2BROhEnbKII4%3D&Action=action_name" # "&SignatureNonce=d5e6e832-7f95-4f26-9e28-017f735721f8&SignatureType=') request = RoaRequest("product", "version", "action_name", uri_pattern="/") request.set_method('get') self.assertIsNone(request.get_headers().get("x-acs-security-token")) headers, url = signer.sign('cn-hangzhou', request) self.assertEqual(request.get_headers().get("x-acs-security-token"), 'sts_token')
setup.py
theomega/django-ordered-model
421
12737930
<reponame>theomega/django-ordered-model #!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup with open("requirements.txt") as f: requires = f.read().splitlines() with open("README.md", encoding="utf-8") as f: long_description = f.read() setup( name="django-ordered-model", long_description=long_description, long_description_content_type="text/markdown", version="3.4.3", description="Allows Django models to be ordered and provides a simple admin interface for reordering them.", author="<NAME>", author_email="<EMAIL>", url="http://github.com/django-ordered-model/django-ordered-model", packages=[ "ordered_model", "ordered_model.management", "ordered_model.management.commands", ], requires=requires, classifiers=[ "Development Status :: 5 - Production/Stable", "Framework :: Django", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", ], zip_safe=False, package_data={ "ordered_model": [ "static/ordered_model/arrow-up.gif", "static/ordered_model/arrow-down.gif", "static/ordered_model/arrow-top.gif", "static/ordered_model/arrow-bottom.gif", "locale/de/LC_MESSAGES/django.po", "locale/de/LC_MESSAGES/django.mo", "locale/pl/LC_MESSAGES/django.po", "locale/pl/LC_MESSAGES/django.mo", "templates/ordered_model/admin/order_controls.html", ] }, )
models/commands/GetFileInformationFromDeviceCommand.py
pwnfoo/SirepRAT
357
12737952
<reponame>pwnfoo/SirepRAT #!/usr/bin/env python3 """ BSD 3-Clause License Copyright (c) 2017, SafeBreach Labs All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Concrete implementation of the GetFileInformationFromDevice command Author: <NAME> <<EMAIL>> Date: 2018-02-04 08:03:08 """ import common.utils as utils from .SirepCommand import SirepCommand from common.constants import INT_SIZE from common.enums.CommandType import CommandType class GetFileInformationFromDeviceCommand(SirepCommand): """Concrete implementation of the GetFileInformationFromDevice command""" def __init__(self, remote_path): """Described in parent class""" super(GetFileInformationFromDeviceCommand, self).__init__(CommandType.GetFileInformationFromDevice) self.remote_path = remote_path self.payload_length = self._calculate_payload_length() def _calculate_payload_length(self): """ Returns the payload length of the command. The payload length for this command type is the unicode length of the remote path. """ return 2*len(self.remote_path) def serialize_sirep(self): """Described in parent class""" return b''.join(( utils.pack_uint(self.command_type.value), utils.pack_string(self.remote_path), )) @staticmethod def deserialize_sirep(self, command_buffer): """Described in parent class""" remote_path = utils.unpack_string(command_buffer[2*INT_SIZE:]) return GetFileInformationFromDeviceCommand(remote_path)
examples/pytorch/geniepath/ppi.py
ketyi/dgl
9,516
12737962
<gh_stars>1000+ import argparse import numpy as np import torch as th import torch.optim as optim from dgl.data import PPIDataset from dgl.dataloading import GraphDataLoader from sklearn.metrics import f1_score from model import GeniePath, GeniePathLazy def evaluate(model, loss_fn, dataloader, device='cpu'): loss = 0 f1 = 0 num_blocks = 0 for subgraph in dataloader: subgraph = subgraph.to(device) label = subgraph.ndata['label'].to(device) feat = subgraph.ndata['feat'] logits = model(subgraph, feat) # compute loss loss += loss_fn(logits, label).item() predict = np.where(logits.data.cpu().numpy() >= 0., 1, 0) f1 += f1_score(label.cpu(), predict, average='micro') num_blocks += 1 return f1 / num_blocks, loss / num_blocks def main(args): # Step 1: Prepare graph data and retrieve train/validation/test index ============================= # # Load dataset train_dataset = PPIDataset(mode='train') valid_dataset = PPIDataset(mode='valid') test_dataset = PPIDataset(mode='test') train_dataloader = GraphDataLoader(train_dataset, batch_size=args.batch_size) valid_dataloader = GraphDataLoader(valid_dataset, batch_size=args.batch_size) test_dataloader = GraphDataLoader(test_dataset, batch_size=args.batch_size) # check cuda if args.gpu >= 0 and th.cuda.is_available(): device = 'cuda:{}'.format(args.gpu) else: device = 'cpu' num_classes = train_dataset.num_labels # Extract node features graph = train_dataset[0] feat = graph.ndata['feat'] # Step 2: Create model =================================================================== # if args.lazy: model = GeniePathLazy(in_dim=feat.shape[-1], out_dim=num_classes, hid_dim=args.hid_dim, num_layers=args.num_layers, num_heads=args.num_heads, residual=args.residual) else: model = GeniePath(in_dim=feat.shape[-1], out_dim=num_classes, hid_dim=args.hid_dim, num_layers=args.num_layers, num_heads=args.num_heads, residual=args.residual) model = model.to(device) # Step 3: Create training components ===================================================== # loss_fn = th.nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.parameters(), lr=args.lr) # Step 4: training epochs =============================================================== # for epoch in range(args.max_epoch): model.train() tr_loss = 0 tr_f1 = 0 num_blocks = 0 for subgraph in train_dataloader: subgraph = subgraph.to(device) label = subgraph.ndata['label'] feat = subgraph.ndata['feat'] logits = model(subgraph, feat) # compute loss batch_loss = loss_fn(logits, label) tr_loss += batch_loss.item() tr_predict = np.where(logits.data.cpu().numpy() >= 0., 1, 0) tr_f1 += f1_score(label.cpu(), tr_predict, average='micro') num_blocks += 1 # backward optimizer.zero_grad() batch_loss.backward() optimizer.step() # validation model.eval() val_f1, val_loss = evaluate(model, loss_fn, valid_dataloader, device) print("In epoch {}, Train F1: {:.4f} | Train Loss: {:.4f}; Valid F1: {:.4f} | Valid loss: {:.4f}". format(epoch, tr_f1 / num_blocks, tr_loss / num_blocks, val_f1, val_loss)) # Test after all epoch model.eval() test_f1, test_loss = evaluate(model, loss_fn, test_dataloader, device) print("Test F1: {:.4f} | Test loss: {:.4f}". format(test_f1, test_loss)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GeniePath') parser.add_argument("--gpu", type=int, default=-1, help="GPU Index. Default: -1, using CPU.") parser.add_argument("--hid_dim", type=int, default=256, help="Hidden layer dimension") parser.add_argument("--num_layers", type=int, default=3, help="Number of GeniePath layers") parser.add_argument("--max_epoch", type=int, default=1000, help="The max number of epochs. Default: 1000") parser.add_argument("--lr", type=float, default=0.0004, help="Learning rate. Default: 0.0004") parser.add_argument("--num_heads", type=int, default=1, help="Number of head in breadth function. Default: 1") parser.add_argument("--residual", type=bool, default=False, help="Residual in GAT or not") parser.add_argument("--batch_size", type=int, default=2, help="Batch size of graph dataloader") parser.add_argument("--lazy", type=bool, default=False, help="Variant GeniePath-Lazy") args = parser.parse_args() print(args) th.manual_seed(16) main(args)
tkinter/command-access-button/main.py
whitmans-max/python-examples
140
12737967
<gh_stars>100-1000 # date: 2019.04.09 # import tkinter as tk # --- functions --- def get_text(text): print(text) def get_widget(widget): print(widget["text"]) widget["text"] = "DONE" widget["bg"] = "green" def get_event(event): print(event.widget["text"]) event.widget["text"] = "DONE" event.widget["bg"] = "green" # --- main --- list_words = ("One", "Two", "Three") root = tk.Tk() # access button's text in function assigned to button for word in list_words: btn = tk.Button(root, text=word, command=lambda txt=word:get_text(txt)) btn.pack() # access button in function assigned to button for word in list_words: btn = tk.Button(root, text=word) btn["command"] = lambda widget=btn:get_widget(widget) btn.pack() # access button in function assigned to button for word in list_words: btn = tk.Button(root, text=word) btn.bind('<Button-1>', get_event) btn.pack() root.mainloop()
test/persistence/mzworkflows.py
MaterializeInc/materialize
3,840
12737971
# Copyright Materialize, Inc. and contributors. All rights reserved. # # Use of this software is governed by the Business Source License # included in the LICENSE file at the root of this repository. # # As of the Change Date specified in that file, in accordance with # the Business Source License, use of this software will be governed # by the Apache License, Version 2.0. import os from materialize.mzcompose import ( Kafka, Materialized, SchemaRegistry, Testdrive, Workflow, Zookeeper, ) materialized = Materialized( options="--persistent-user-tables --persistent-kafka-upsert-source --disable-persistent-system-tables-test" ) mz_disable_user_indexes = Materialized( name="mz_disable_user_indexes", hostname="materialized", options="--persistent-user-tables --persistent-kafka-upsert-source --disable-persistent-system-tables-test --disable-user-indexes", ) # This instance of Mz is used for failpoint testing. By using --disable-persistent-system-tables-test # we ensure that only testdrive-initiated actions cause I/O. The --workers 1 is used due to #8739 mz_without_system_tables = Materialized( name="mz_without_system_tables", hostname="materialized", options="--persistent-user-tables --disable-persistent-system-tables-test --workers 1", ) prerequisites = [Zookeeper(), Kafka(), SchemaRegistry()] services = [ *prerequisites, materialized, mz_disable_user_indexes, mz_without_system_tables, Testdrive(no_reset=True, seed=1), ] td_test = os.environ.pop("TD_TEST", "*") def workflow_persistence(w: Workflow): workflow_kafka_sources(w) workflow_user_tables(w) workflow_failpoints(w) workflow_disable_user_indexes(w) def workflow_kafka_sources(w: Workflow): w.start_and_wait_for_tcp(services=prerequisites, timeout_secs=240) w.start_services(services=["materialized"]) w.wait_for_mz(service="materialized") w.run_service( service="testdrive-svc", command=f"kafka-sources/*{td_test}*-before.td", ) w.kill_services(services=["materialized"], signal="SIGKILL") w.start_services(services=["materialized"]) w.wait_for_mz(service="materialized") # And restart again, for extra stress w.kill_services(services=["materialized"], signal="SIGKILL") w.start_services(services=["materialized"]) w.wait_for_mz(service="materialized") w.run_service( service="testdrive-svc", command=f"kafka-sources/*{td_test}*-after.td", ) # Do one more restart, just in case and just confirm that Mz is able to come up w.kill_services(services=["materialized"], signal="SIGKILL") w.start_services(services=["materialized"]) w.wait_for_mz(service="materialized") w.kill_services(services=["materialized"], signal="SIGKILL") w.remove_services(services=["materialized", "testdrive-svc"], destroy_volumes=True) w.remove_volumes(volumes=["mzdata"]) def workflow_user_tables(w: Workflow): w.start_services(services=["materialized"]) w.wait_for_mz(service="materialized") w.run_service( service="testdrive-svc", command=f"user-tables/table-persistence-before-{td_test}.td", ) w.kill_services(services=["materialized"], signal="SIGKILL") w.start_services(services=["materialized"]) w.run_service( service="testdrive-svc", command=f"user-tables/table-persistence-after-{td_test}.td", ) w.kill_services(services=["materialized"], signal="SIGKILL") w.remove_services(services=["materialized", "testdrive-svc"], destroy_volumes=True) w.remove_volumes(volumes=["mzdata"]) def workflow_failpoints(w: Workflow): w.start_services(services=["mz_without_system_tables"]) w.wait_for_mz(service="mz_without_system_tables") w.run_service(service="testdrive-svc", command=f"failpoints/{td_test}.td") w.kill_services(services=["mz_without_system_tables"], signal="SIGKILL") w.remove_services( services=["mz_without_system_tables", "testdrive-svc"], destroy_volumes=True ) w.remove_volumes(volumes=["mzdata"]) def workflow_disable_user_indexes(w: Workflow): w.start_and_wait_for_tcp(services=prerequisites) w.start_services(services=["materialized"]) w.wait_for_mz(service="materialized") w.run_service( service="testdrive-svc", command="disable-user-indexes/before.td", ) w.kill_services(services=["materialized"], signal="SIGKILL") w.start_services(services=["mz_disable_user_indexes"]) w.wait_for_mz(service="mz_disable_user_indexes") w.run_service( service="testdrive-svc", command="disable-user-indexes/after.td", ) w.kill_services(services=["mz_disable_user_indexes"], signal="SIGKILL") w.remove_services( services=["materialized", "mz_disable_user_indexes", "testdrive-svc"], destroy_volumes=True, ) w.remove_volumes(volumes=["mzdata"])
tools/build/v2/test/indirect_conditional.py
jmuskaan72/Boost
198
12737975
#!/usr/bin/python # Copyright (C) <NAME> 2006. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) import BoostBuild t = BoostBuild.Tester() t.write("jamroot.jam", """ exe a1 : a1.cpp : <conditional>@a1-rule ; rule a1-rule ( properties * ) { if <variant>debug in $(properties) { return <define>OK ; } } exe a2 : a2.cpp : <conditional>@$(__name__).a2-rule <variant>debug:<optimization>speed ; rule a2-rule ( properties * ) { if <optimization>speed in $(properties) { return <define>OK ; } } exe a3 : a3.cpp : <conditional>@$(__name__).a3-rule-1 <conditional>@$(__name__).a3-rule-2 ; rule a3-rule-1 ( properties * ) { if <optimization>speed in $(properties) { return <define>OK ; } } rule a3-rule-2 ( properties * ) { if <variant>debug in $(properties) { return <optimization>speed ; } } """) t.write("a1.cpp", """ #ifdef OK int main() {} #endif """) t.write("a2.cpp", """ #ifdef OK int main() {} #endif """) t.write("a3.cpp", """ #ifdef OK int main() {} #endif """) t.run_build_system() t.expect_addition("bin/$toolset/debug/a1.exe") t.expect_addition("bin/$toolset/debug/optimization-speed/a2.exe") t.expect_addition("bin/$toolset/debug/optimization-speed/a3.exe") t.cleanup()
api/tacticalrmm/winupdate/migrations/0003_auto_20200828_0134.py
infinite8co/tacticalrmm
903
12737978
# Generated by Django 3.1 on 2020-08-28 01:34 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("automation", "0004_auto_20200617_0332"), ("agents", "0012_auto_20200810_0544"), ("winupdate", "0002_auto_20200715_0445"), ] operations = [ migrations.AddField( model_name="winupdatepolicy", name="policy", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name="winupdatepolicy", to="automation.policy", ), ), migrations.AlterField( model_name="winupdatepolicy", name="agent", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name="winupdatepolicy", to="agents.agent", ), ), ]
sdk/keyvault/azure-keyvault-secrets/tests/test_samples_secrets_async.py
rsdoherty/azure-sdk-for-python
2,728
12737987
<gh_stars>1000+ # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------- import asyncio import pytest from _shared.test_case_async import KeyVaultTestCase from _test_case import client_setup, get_decorator, SecretsTestCase all_api_versions = get_decorator(is_async=True) def print(*args): assert all(arg is not None for arg in args) @pytest.mark.asyncio async def test_create_secret_client(): vault_url = "vault_url" # pylint:disable=unused-variable # [START create_secret_client] from azure.identity.aio import DefaultAzureCredential from azure.keyvault.secrets.aio import SecretClient # Create a SecretClient using default Azure credentials credential = DefaultAzureCredential() secret_client = SecretClient(vault_url, credential) # the client and credential should be closed when no longer needed # (both are also async context managers) await secret_client.close() await credential.close() # [END create_secret_client] class TestExamplesKeyVault(SecretsTestCase, KeyVaultTestCase): @all_api_versions() @client_setup async def test_example_secret_crud_operations(self, client, **kwargs): secret_client = client secret_name = self.get_resource_name("secret-name") # [START set_secret] from dateutil import parser as date_parse expires_on = date_parse.parse("2050-02-02T08:00:00.000Z") # create a secret, setting optional arguments secret = await secret_client.set_secret(secret_name, "secret-value", enabled=True, expires_on=expires_on) print(secret.id) print(secret.name) print(secret.properties.enabled) print(secret.properties.expires_on) # [END set_secret] secret_version = secret.properties.version # [START get_secret] # get the latest version of a secret secret = await secret_client.get_secret(secret_name) # alternatively, specify a version secret = await secret_client.get_secret(secret_name, secret_version) print(secret.id) print(secret.name) print(secret.properties.version) print(secret.properties.vault_url) # [END get_secret] # [START update_secret] # update attributes of an existing secret content_type = "text/plain" tags = {"foo": "updated tag"} updated_secret_properties = await secret_client.update_secret_properties( secret_name, content_type=content_type, tags=tags ) print(updated_secret_properties.version) print(updated_secret_properties.updated_on) print(updated_secret_properties.content_type) print(updated_secret_properties.tags) # [END update_secret] # [START delete_secret] # delete a secret deleted_secret = await secret_client.delete_secret(secret_name) print(deleted_secret.name) # if the vault has soft-delete enabled, the secret's deleted_date, # scheduled purge date and recovery id are set print(deleted_secret.deleted_date) print(deleted_secret.scheduled_purge_date) print(deleted_secret.recovery_id) # [END delete_secret] @all_api_versions() @client_setup async def test_example_secret_list_operations(self, client, **kwargs): secret_client = client for i in range(7): secret_name = self.get_resource_name("secret{}".format(i)) await secret_client.set_secret(secret_name, "value{}".format(i)) # [START list_secrets] # gets a list of secrets in the vault secrets = secret_client.list_properties_of_secrets() async for secret in secrets: # the list doesn't include values or versions of the secrets print(secret.id) print(secret.name) print(secret.enabled) # [END list_secrets] # [START list_properties_of_secret_versions] # gets a list of all versions of a secret secret_versions = secret_client.list_properties_of_secret_versions("secret-name") async for secret in secret_versions: # the list doesn't include the versions' values print(secret.id) print(secret.enabled) print(secret.updated_on) # [END list_properties_of_secret_versions] # [START list_deleted_secrets] # gets a list of deleted secrets (requires soft-delete enabled for the vault) deleted_secrets = secret_client.list_deleted_secrets() async for secret in deleted_secrets: # the list doesn't include values or versions of the deleted secrets print(secret.id) print(secret.name) print(secret.scheduled_purge_date) print(secret.recovery_id) print(secret.deleted_date) # [END list_deleted_secrets] @all_api_versions() @client_setup async def test_example_secrets_backup_restore(self, client, **kwargs): secret_client = client secret_name = self.get_resource_name("secret-name") await secret_client.set_secret(secret_name, "secret-value") # [START backup_secret] # backup secret secret_backup = await secret_client.backup_secret(secret_name) # returns the raw bytes of the backed up secret print(secret_backup) # [END backup_secret] await secret_client.delete_secret(secret_name) await secret_client.purge_deleted_secret(secret_name) if self.is_live: await asyncio.sleep(60) # [START restore_secret_backup] # restores a backed up secret restored_secret = await secret_client.restore_secret_backup(secret_backup) print(restored_secret.id) print(restored_secret.version) # [END restore_secret_backup] @all_api_versions() @client_setup async def test_example_secrets_recover(self, client, **kwargs): secret_client = client secret_name = self.get_resource_name("secret-name") await secret_client.set_secret(secret_name, "secret-value") await secret_client.delete_secret(secret_name) # [START get_deleted_secret] # gets a deleted secret (requires soft-delete enabled for the vault) deleted_secret = await secret_client.get_deleted_secret(secret_name) print(deleted_secret.name) # [END get_deleted_secret] # [START recover_deleted_secret] # recover deleted secret to the latest version recovered_secret = await secret_client.recover_deleted_secret(secret_name) print(recovered_secret.id) print(recovered_secret.name) # [END recover_deleted_secret]
esphome/components/pn532_spi/__init__.py
OttoWinter/esphomeyaml
249
12737991
import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import spi, pn532 from esphome.const import CONF_ID AUTO_LOAD = ["pn532"] CODEOWNERS = ["@OttoWinter", "@jesserockz"] DEPENDENCIES = ["spi"] MULTI_CONF = True pn532_spi_ns = cg.esphome_ns.namespace("pn532_spi") PN532Spi = pn532_spi_ns.class_("PN532Spi", pn532.PN532, spi.SPIDevice) CONFIG_SCHEMA = cv.All( pn532.PN532_SCHEMA.extend( { cv.GenerateID(): cv.declare_id(PN532Spi), } ).extend(spi.spi_device_schema(cs_pin_required=True)) ) async def to_code(config): var = cg.new_Pvariable(config[CONF_ID]) await pn532.setup_pn532(var, config) await spi.register_spi_device(var, config)
backend/cloud_inquisitor/plugins/views/templates.py
MrSecure/cloud-inquisitor
462
12738016
<reponame>MrSecure/cloud-inquisitor from flask import session from cloud_inquisitor.app import _import_templates from cloud_inquisitor.constants import ROLE_ADMIN, HTTP from cloud_inquisitor.database import db from cloud_inquisitor.log import auditlog from cloud_inquisitor.plugins import BaseView from cloud_inquisitor.schema import Role, Template from cloud_inquisitor.utils import MenuItem, diff from cloud_inquisitor.wrappers import check_auth, rollback class TemplateList(BaseView): URLS = ['/api/v1/templates'] MENU_ITEMS = [ MenuItem( 'admin', 'Templates', 'template.list', 'template', order=4 ) ] @rollback @check_auth(ROLE_ADMIN) def get(self): templates = db.Template.all() return self.make_response({ 'templates': templates, 'templateCount': len(templates) }) @rollback @check_auth(ROLE_ADMIN) def post(self): """Create a new template""" self.reqparse.add_argument('templateName', type=str, required=True) self.reqparse.add_argument('template', type=str, required=True) args = self.reqparse.parse_args() template = db.Template.find_one(template_name=args['templateName']) if template: return self.make_response('Template already exists, update the existing template instead', HTTP.CONFLICT) template = Template() template.template_name = args['templateName'] template.template = args['template'] db.session.add(template) db.session.commit() auditlog(event='template.create', actor=session['user'].username, data=args) return self.make_response('Template {} has been created'.format(template.template_name), HTTP.CREATED) @rollback @check_auth(ROLE_ADMIN) def put(self): """Re-import all templates, overwriting any local changes made""" try: _import_templates(force=True) return self.make_response('Imported templates') except: self.log.exception('Failed importing templates') return self.make_response('Failed importing templates', HTTP.SERVER_ERROR) class TemplateGet(BaseView): URLS = ['/api/v1/template/<string:template_name>'] @rollback @check_auth(ROLE_ADMIN) def get(self, template_name): """Get a specific template""" template = db.Template.find_one(template_name=template_name) if not template: return self.make_response('No such template found', HTTP.NOT_FOUND) return self.make_response({'template': template}) @rollback @check_auth(ROLE_ADMIN) def put(self, template_name): """Update a template""" self.reqparse.add_argument('template', type=str, required=True) args = self.reqparse.parse_args() template = db.Template.find_one(template_name=template_name) if not template: return self.make_response('No such template found', HTTP.NOT_FOUND) changes = diff(template.template, args['template']) template.template = args['template'] template.is_modified = True db.session.add(template) db.session.commit() auditlog( event='template.update', actor=session['user'].username, data={ 'template_name': template_name, 'template_changes': changes } ) return self.make_response('Template {} has been updated'.format(template_name)) @rollback @check_auth(ROLE_ADMIN) def delete(self, template_name): """Delete a template""" template = db.Template.find_one(template_name=template_name) if not template: return self.make_response('No such template found', HTTP.NOT_FOUND) db.session.delete(template) db.session.commit() auditlog(event='template.delete', actor=session['user'].username, data={'template_name': template_name}) return self.make_response({ 'message': 'Template has been deleted', 'templateName': template_name })
data/DataPre.py
byamao1/MMSA
198
12738037
# coding: utf-8 import os import shutil import pickle import librosa import argparse import pandas as pd import numpy as np from glob import glob from tqdm import tqdm from PIL import Image from facenet_pytorch import MTCNN, InceptionResnetV1 import torch from transformers import BertTokenizer, BertModel from torch.utils.data import Dataset, DataLoader class MDataPreLoader(Dataset): def __init__(self, args): self.working_dir = args.working_dir self.df = args.df self.annotation_dict = { "Negative": 0, "Neutral": 1, "Positive": 2 } # toolkits path self.openface2Path = args.openface2Path # bert tokenizer_class = BertTokenizer if args.language == 'cn': self.pretrainedBertPath = 'pretrained_model/bert_cn' self.tokenizer = tokenizer_class.from_pretrained('pretrained_model/bert_cn') else: self.pretrainedBertPath = 'pretrained_model/bert_en' self.tokenizer = tokenizer_class.from_pretrained('pretrained_model/bert_en', do_lower_case=True) def __len__(self): return len(self.df) def __getVideoEmbedding(self, video_path, tmp_dir, pool_size=3): faces_feature_dir = os.path.join(tmp_dir, 'Faces') os.mkdir(faces_feature_dir) cmd = self.openface2Path + ' -f ' + video_path + ' -out_dir ' + faces_feature_dir os.system(cmd) # read features features, local_features = [], [] df_path = glob(os.path.join(faces_feature_dir, '*.csv')) if len(df_path) > 0: df_path = df_path[0] df = pd.read_csv(df_path) for i in range(len(df)): local_features.append(np.array(df.loc[i][df.columns[5:]])) if (i + 1) % pool_size == 0: features.append(np.array(local_features).mean(axis=0)) local_features = [] if len(local_features) != 0: features.append(np.array(local_features).mean(axis=0)) return np.array(features) def __getAudioEmbedding(self, video_path, audio_path): # use ffmpeg to extract audio cmd = 'ffmpeg -i ' + video_path + ' -f wav -vn ' + \ audio_path + ' -loglevel quiet' os.system(cmd) # get features y, sr = librosa.load(audio_path) # using librosa to get audio features (f0, mfcc, cqt) hop_length = 512 # hop_length smaller, seq_len larger f0 = librosa.feature.zero_crossing_rate(y, hop_length=hop_length).T # (seq_len, 1) mfcc = librosa.feature.mfcc(y=y, sr=sr, hop_length=hop_length, htk=True).T # (seq_len, 20) cqt = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length).T # (seq_len, 12) return np.concatenate([f0, mfcc, cqt], axis=-1) def __getTextEmbedding(self, text): # directory is fine tokenizer = BertTokenizer.from_pretrained(self.pretrainedBertPath) model = BertModel.from_pretrained(self.pretrainedBertPath) # add_special_tokens will add start and end token input_ids = torch.tensor([tokenizer.encode(text, add_special_tokens=True)]) with torch.no_grad(): last_hidden_states = model(input_ids)[0] # Models outputs are now tuples return last_hidden_states.squeeze().numpy() def __preTextforBert(self, text): tokens_a = self.tokenizer.tokenize(text,invertable=True) tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) input_ids = self.tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) input_ids = np.expand_dims(input_ids, 1) input_mask = np.expand_dims(input_mask, 1) segment_ids = np.expand_dims(segment_ids, 1) text_bert = np.concatenate([input_ids, input_mask, segment_ids], axis=1) return text_bert def __getitem__(self, index): tmp_dir = os.path.join(self.working_dir, f'Processed/tmp-{index}') if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) video_id, clip_id, text, label, annotation, mode, _ = self.df.loc[index] cur_id = video_id + '$_$' + clip_id # video video_path = os.path.join(self.working_dir, 'Raw', video_id, clip_id + '.mp4') embedding_V = self.__getVideoEmbedding(video_path, tmp_dir) seq_V = embedding_V.shape[0] # audio audio_path = os.path.join(tmp_dir, 'tmp.wav') embedding_A = self.__getAudioEmbedding(video_path, audio_path) seq_A = embedding_A.shape[0] # text embedding_T = self.__getTextEmbedding(text) text_bert = self.__preTextforBert(text) seq_T = embedding_T.shape[0] ret = { 'id': cur_id, 'audio': embedding_A, 'vision': embedding_V, 'raw_text': text, 'text': embedding_T, 'text_bert': text_bert, 'audio_lengths': seq_A, 'vision_lengths': seq_V, 'annotations': annotation, 'classification_labels': self.annotation_dict[annotation], 'regression_labels': label, 'mode': mode } # clear tmp dir to save space shutil.rmtree(tmp_dir) return ret class MDataPre(): def __init__(self, args): self.working_dir = args.working_dir # padding self.padding_mode = 'zeros' self.padding_location = 'back' def __padding(self, feature, MAX_LEN): """ mode: zero: padding with 0 normal: padding with normal distribution location: front / back """ assert self.padding_mode in ['zeros', 'normal'] assert self.padding_location in ['front', 'back'] length = feature.shape[0] if length >= MAX_LEN: return feature[:MAX_LEN, :] if self.padding_mode == "zeros": pad = np.zeros([MAX_LEN - length, feature.shape[-1]]) elif self.padding_mode == "normal": mean, std = feature.mean(), feature.std() pad = np.random.normal(mean, std, (MAX_LEN-length, feature.shape[1])) feature = np.concatenate([pad, feature], axis=0) if(self.padding_location == "front") else \ np.concatenate((feature, pad), axis=0) return feature def __paddingSequence(self, sequences): if len(sequences) == 0: return sequences feature_dim = sequences[0].shape[-1] lens = [s.shape[0] for s in sequences] # confirm length using (mean + std) final_length = int(np.mean(lens) + 3 * np.std(lens)) # padding sequences to final_length final_sequence = np.zeros([len(sequences), final_length, feature_dim]) for i, s in enumerate(sequences): if len(s) != 0: final_sequence[i] = self.__padding(s, final_length) return final_sequence def __collate_fn(self, batch): ret = {k: [] for k in batch[0].keys()} for b in batch: for k,v in b.items(): ret[k].append(v) return ret def run(self): output_path = os.path.join(self.working_dir, 'Processed/features.pkl') # load last point if os.path.exists(output_path): with open(output_path, 'rb') as f: data = pickle.load(f) last_row_idx = len(data['id']) else: data = {"id": [], "raw_text": [], "audio": [], "vision": [], "text": [], "text_bert": [], "audio_lengths": [], "vision_lengths": [], "annotations": [], "classification_labels": [], "regression_labels": [], "mode": []} last_row_idx = 0 args.df = pd.read_csv(os.path.join(self.working_dir, 'label.csv'), dtype={'clip_id': str, 'video_id': str, 'text': str}) args.df = args.df[last_row_idx:] dataloader = DataLoader(MDataPreLoader(args), batch_size=64, num_workers=8, shuffle=False, collate_fn=self.__collate_fn) isEnd = False try: with tqdm(dataloader) as td: for batch_data in td: for k, v in batch_data.items(): data[k].extend(v) isEnd = True except Exception as e: print(e) finally: try: if isEnd: # padding for item in ['audio', 'vision', 'text', 'text_bert']: data[item] = self.__paddingSequence(data[item]) # data['mode'] = list(args.df['mode']) # split train, valid, test inx_dict = { mode + '_index': [i for i, v in enumerate(data['mode']) if v == mode] for mode in ['train', 'valid', 'test'] } data.pop('mode') final_data = {k: {} for k in ['train', 'valid', 'test']} for mode in ['train', 'valid', 'test']: indexes = inx_dict[mode + '_index'] for item in data.keys(): if isinstance(data[item], list): final_data[mode][item] = [data[item][v] for v in indexes] else: final_data[mode][item] = data[item][indexes] data = final_data except Exception as e: print(e) finally: with open(output_path, 'wb') as wf: pickle.dump(data, wf, protocol = 4) print('Features are saved in %s!' %output_path) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--working_dir', type=str, default='/home/sharing/disk3/dataset/multimodal-sentiment-dataset/StandardDatasets/MOSEI', help='path to datasets') parser.add_argument('--language', type=str, default="en", help='en / cn') parser.add_argument('--openface2Path', type=str, default="/home/iyuge2/ToolKits/OpenFace/build/bin/FeatureExtraction", help='path to FeatureExtraction tool in openface2') return parser.parse_args() if __name__ == "__main__": args = parse_args() dp = MDataPre(args) dp.run()
aioinflux/__init__.py
AndyBryson/aioinflux
120
12738099
# flake8: noqa from . import serialization from .client import InfluxDBClient, InfluxDBError, InfluxDBWriteError from .iterutils import iterpoints from .serialization.usertype import * __version__ = '0.9.0'
tests/test_serialization.py
Multihuntr/albumentations
3,893
12738127
import json import os import random from unittest.mock import patch import cv2 import numpy as np import pytest import albumentations as A import albumentations.augmentations.functional as F from albumentations.core.serialization import SERIALIZABLE_REGISTRY, shorten_class_name from albumentations.core.transforms_interface import ImageOnlyTransform from .conftest import skipif_no_torch from .utils import ( OpenMock, check_all_augs_exists, get_dual_transforms, get_image_only_transforms, get_transforms, set_seed, ) TEST_SEEDS = (0, 1, 42, 111, 9999) @pytest.mark.parametrize( ["augmentation_cls", "params"], get_transforms( custom_arguments={ A.Crop: {"y_min": 0, "y_max": 10, "x_min": 0, "x_max": 10}, A.CenterCrop: {"height": 10, "width": 10}, A.CropNonEmptyMaskIfExists: {"height": 10, "width": 10}, A.RandomCrop: {"height": 10, "width": 10}, A.RandomResizedCrop: {"height": 10, "width": 10}, A.RandomSizedCrop: {"min_max_height": (4, 8), "height": 10, "width": 10}, A.CropAndPad: {"px": 10}, A.Resize: {"height": 10, "width": 10}, }, except_augmentations={ A.RandomCropNearBBox, A.RandomSizedBBoxSafeCrop, A.FDA, A.HistogramMatching, A.PixelDistributionAdaptation, A.Lambda, A.TemplateTransform, }, ), ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_serialization(augmentation_cls, params, p, seed, image, mask, always_apply): aug = augmentation_cls(p=p, always_apply=always_apply, **params) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, mask=mask) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) AUGMENTATION_CLS_PARAMS = [ [ A.ImageCompression, { "quality_lower": 10, "quality_upper": 80, "compression_type": A.ImageCompression.ImageCompressionType.WEBP, }, ], [A.JpegCompression, {"quality_lower": 10, "quality_upper": 80}], [A.HueSaturationValue, {"hue_shift_limit": 70, "sat_shift_limit": 95, "val_shift_limit": 55}], [A.RGBShift, {"r_shift_limit": 70, "g_shift_limit": 80, "b_shift_limit": 40}], [A.RandomBrightnessContrast, {"brightness_limit": 0.5, "contrast_limit": 0.8}], [A.Blur, {"blur_limit": 3}], [A.MotionBlur, {"blur_limit": 3}], [A.MedianBlur, {"blur_limit": 3}], [A.GaussianBlur, {"blur_limit": 3}], [A.GaussNoise, {"var_limit": (20, 90), "mean": 10, "per_channel": False}], [A.CLAHE, {"clip_limit": 2, "tile_grid_size": (12, 12)}], [A.RandomGamma, {"gamma_limit": (10, 90)}], [A.Cutout, {"num_holes": 4, "max_h_size": 4, "max_w_size": 4}], [A.CoarseDropout, {"max_holes": 4, "max_height": 4, "max_width": 4}], [A.RandomSnow, {"snow_point_lower": 0.2, "snow_point_upper": 0.4, "brightness_coeff": 4}], [ A.RandomRain, { "slant_lower": -5, "slant_upper": 5, "drop_length": 15, "drop_width": 2, "drop_color": (100, 100, 100), "blur_value": 3, "brightness_coefficient": 0.5, "rain_type": "heavy", }, ], [A.RandomFog, {"fog_coef_lower": 0.2, "fog_coef_upper": 0.8, "alpha_coef": 0.11}], [ A.RandomSunFlare, { "flare_roi": (0.1, 0.1, 0.9, 0.6), "angle_lower": 0.1, "angle_upper": 0.95, "num_flare_circles_lower": 7, "num_flare_circles_upper": 11, "src_radius": 300, "src_color": (200, 200, 200), }, ], [ A.RandomShadow, { "shadow_roi": (0.1, 0.4, 0.9, 0.9), "num_shadows_lower": 2, "num_shadows_upper": 4, "shadow_dimension": 8, }, ], [ A.PadIfNeeded, {"min_height": 512, "min_width": 512, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10)}, ], [ A.Rotate, { "limit": 120, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.SafeRotate, { "limit": 120, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.ShiftScaleRotate, { "shift_limit": 0.2, "scale_limit": 0.2, "rotate_limit": 70, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.ShiftScaleRotate, { "shift_limit_x": 0.3, "shift_limit_y": 0.4, "scale_limit": 0.2, "rotate_limit": 70, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.OpticalDistortion, { "distort_limit": 0.2, "shift_limit": 0.2, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.GridDistortion, { "num_steps": 10, "distort_limit": 0.5, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.ElasticTransform, { "alpha": 2, "sigma": 25, "alpha_affine": 40, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [A.CenterCrop, {"height": 10, "width": 10}], [A.RandomCrop, {"height": 10, "width": 10}], [A.CropNonEmptyMaskIfExists, {"height": 10, "width": 10}], [A.RandomSizedCrop, {"min_max_height": (4, 8), "height": 10, "width": 10}], [A.Crop, {"x_max": 64, "y_max": 64}], [A.ToFloat, {"max_value": 16536}], [A.Normalize, {"mean": (0.385, 0.356, 0.306), "std": (0.129, 0.124, 0.125), "max_pixel_value": 100.0}], [A.RandomBrightness, {"limit": 0.4}], [A.RandomContrast, {"limit": 0.4}], [A.RandomScale, {"scale_limit": 0.2, "interpolation": cv2.INTER_CUBIC}], [A.Resize, {"height": 64, "width": 64}], [A.SmallestMaxSize, {"max_size": 64, "interpolation": cv2.INTER_CUBIC}], [A.LongestMaxSize, {"max_size": 128, "interpolation": cv2.INTER_CUBIC}], [A.RandomGridShuffle, {"grid": (5, 5)}], [A.Solarize, {"threshold": 32}], [A.Posterize, {"num_bits": 1}], [A.Equalize, {"mode": "pil", "by_channels": False}], [A.MultiplicativeNoise, {"multiplier": (0.7, 2.3), "per_channel": True, "elementwise": True}], [ A.ColorJitter, {"brightness": [0.2, 0.3], "contrast": [0.7, 0.9], "saturation": [1.2, 1.7], "hue": [-0.2, 0.1]}, ], [ A.Perspective, { "scale": 0.5, "keep_size": False, "pad_mode": cv2.BORDER_REFLECT_101, "pad_val": 10, "mask_pad_val": 100, "fit_output": True, "interpolation": cv2.INTER_CUBIC, }, ], [A.Sharpen, {"alpha": [0.2, 0.5], "lightness": [0.5, 1.0]}], [A.Emboss, {"alpha": [0.2, 0.5], "strength": [0.5, 1.0]}], [A.RandomToneCurve, {"scale": 0.2}], [ A.CropAndPad, { "px": 10, "keep_size": False, "sample_independently": False, "interpolation": cv2.INTER_CUBIC, "pad_cval_mask": [10, 20, 30], "pad_cval": [11, 12, 13], "pad_mode": cv2.BORDER_REFLECT101, }, ], [ A.Superpixels, {"p_replace": (0.5, 0.7), "n_segments": (20, 30), "max_size": 25, "interpolation": cv2.INTER_CUBIC}, ], [ A.Affine, { "scale": 0.5, "translate_percent": 0.7, "translate_px": None, "rotate": 33, "shear": 21, "interpolation": cv2.INTER_CUBIC, "cval": 25, "cval_mask": 1, "mode": cv2.BORDER_REFLECT, "fit_output": True, }, ], [ A.Affine, { "scale": {"x": [0.3, 0.5], "y": [0.1, 0.2]}, "translate_percent": None, "translate_px": {"x": [10, 200], "y": [5, 101]}, "rotate": [333, 360], "shear": {"x": [31, 38], "y": [41, 48]}, "interpolation": 3, "cval": [10, 20, 30], "cval_mask": 1, "mode": cv2.BORDER_REFLECT, "fit_output": True, }, ], [ A.PiecewiseAffine, { "scale": 0.33, "nb_rows": (10, 20), "nb_cols": 33, "interpolation": 2, "mask_interpolation": 1, "cval": 10, "cval_mask": 20, "mode": "edge", "absolute_scale": True, "keypoints_threshold": 0.1, }, ], [A.ChannelDropout, dict(channel_drop_range=(1, 2), fill_value=1)], [A.ChannelShuffle, {}], [A.Downscale, dict(scale_min=0.5, scale_max=0.75, interpolation=cv2.INTER_LINEAR)], [A.Flip, {}], [A.FromFloat, dict(dtype="uint8", max_value=1)], [A.HorizontalFlip, {}], [A.ISONoise, dict(color_shift=(0.2, 0.3), intensity=(0.7, 0.9))], [A.InvertImg, {}], [A.MaskDropout, dict(max_objects=2, image_fill_value=10, mask_fill_value=20)], [A.NoOp, {}], [A.RandomResizedCrop, dict(height=20, width=30, scale=(0.5, 0.6), ratio=(0.8, 0.9))], [A.FancyPCA, dict(alpha=0.3)], [A.RandomRotate90, {}], [A.ToGray, {}], [A.ToSepia, {}], [A.Transpose, {}], [A.VerticalFlip, {}], [A.RingingOvershoot, dict(blur_limit=(7, 15), cutoff=(np.pi / 5, np.pi / 2))], [A.UnsharpMask, {"blur_limit": 3, "sigma_limit": 0.5, "alpha": 0.2, "threshold": 15}], [A.AdvancedBlur, dict(blur_limit=(3, 5), rotate_limit=(60, 90))], [A.PixelDropout, {"dropout_prob": 0.1, "per_channel": True, "drop_value": None}], [A.PixelDropout, {"dropout_prob": 0.1, "per_channel": False, "drop_value": None, "mask_drop_value": 15}], ] AUGMENTATION_CLS_EXCEPT = { A.FDA, A.HistogramMatching, A.PixelDistributionAdaptation, A.Lambda, A.RandomCropNearBBox, A.RandomSizedBBoxSafeCrop, A.GridDropout, A.GlassBlur, A.TemplateTransform, } @pytest.mark.parametrize( ["augmentation_cls", "params"], check_all_augs_exists(AUGMENTATION_CLS_PARAMS, AUGMENTATION_CLS_EXCEPT) ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_serialization_with_custom_parameters( augmentation_cls, params, p, seed, image, mask, always_apply ): aug = augmentation_cls(p=p, always_apply=always_apply, **params) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, mask=mask) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) @pytest.mark.parametrize( ["augmentation_cls", "params"], check_all_augs_exists(AUGMENTATION_CLS_PARAMS, AUGMENTATION_CLS_EXCEPT) ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) @pytest.mark.parametrize("data_format", ("yaml",)) def test_augmentations_serialization_to_file_with_custom_parameters( augmentation_cls, params, p, seed, image, mask, always_apply, data_format ): with patch("builtins.open", OpenMock()): aug = augmentation_cls(p=p, always_apply=always_apply, **params) filepath = "serialized.{}".format(data_format) A.save(aug, filepath, data_format=data_format) deserialized_aug = A.load(filepath, data_format=data_format) set_seed(seed) aug_data = aug(image=image, mask=mask) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) @pytest.mark.parametrize( ["augmentation_cls", "params"], get_transforms( custom_arguments={ A.Crop: {"y_min": 0, "y_max": 10, "x_min": 0, "x_max": 10}, A.CenterCrop: {"height": 10, "width": 10}, A.CropNonEmptyMaskIfExists: {"height": 10, "width": 10}, A.RandomCrop: {"height": 10, "width": 10}, A.RandomResizedCrop: {"height": 10, "width": 10}, A.RandomSizedCrop: {"min_max_height": (4, 8), "height": 10, "width": 10}, A.CropAndPad: {"px": 10}, A.Resize: {"height": 10, "width": 10}, A.RandomSizedBBoxSafeCrop: {"height": 10, "width": 10}, }, except_augmentations={ A.RandomCropNearBBox, A.FDA, A.HistogramMatching, A.PixelDistributionAdaptation, A.Lambda, A.CoarseDropout, A.CropNonEmptyMaskIfExists, A.ElasticTransform, A.GridDistortion, A.RandomGridShuffle, A.GridDropout, A.MaskDropout, A.OpticalDistortion, A.TemplateTransform, }, ), ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_for_bboxes_serialization( augmentation_cls, params, p, seed, image, albumentations_bboxes, always_apply ): aug = augmentation_cls(p=p, always_apply=always_apply, **params) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, bboxes=albumentations_bboxes) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, bboxes=albumentations_bboxes) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["bboxes"], deserialized_aug_data["bboxes"]) @pytest.mark.parametrize( ["augmentation_cls", "params"], get_transforms( custom_arguments={ A.Crop: {"y_min": 0, "y_max": 10, "x_min": 0, "x_max": 10}, A.CenterCrop: {"height": 10, "width": 10}, A.CropNonEmptyMaskIfExists: {"height": 10, "width": 10}, A.RandomCrop: {"height": 10, "width": 10}, A.RandomResizedCrop: {"height": 10, "width": 10}, A.RandomSizedCrop: {"min_max_height": (4, 8), "height": 10, "width": 10}, A.CropAndPad: {"px": 10}, A.Resize: {"height": 10, "width": 10}, }, except_augmentations={ A.RandomCropNearBBox, A.FDA, A.HistogramMatching, A.PixelDistributionAdaptation, A.Lambda, A.CoarseDropout, A.CropNonEmptyMaskIfExists, A.ElasticTransform, A.GridDistortion, A.RandomGridShuffle, A.GridDropout, A.MaskDropout, A.OpticalDistortion, A.RandomSizedBBoxSafeCrop, A.TemplateTransform, }, ), ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_for_keypoints_serialization(augmentation_cls, params, p, seed, image, keypoints, always_apply): aug = augmentation_cls(p=p, always_apply=always_apply, **params) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, keypoints=keypoints) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, keypoints=keypoints) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["keypoints"], deserialized_aug_data["keypoints"]) @pytest.mark.parametrize( ["augmentation_cls", "params", "call_params"], [[A.RandomCropNearBBox, {"max_part_shift": 0.15}, {"cropping_bbox": [-59, 77, 177, 231]}]], ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_serialization_with_call_params( augmentation_cls, params, call_params, p, seed, image, always_apply ): aug = augmentation_cls(p=p, always_apply=always_apply, **params) annotations = {"image": image, **call_params} serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(**annotations) set_seed(seed) deserialized_aug_data = deserialized_aug(**annotations) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) def test_from_float_serialization(float_image): aug = A.FromFloat(p=1, dtype="uint8") serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) aug_data = aug(image=float_image) deserialized_aug_data = deserialized_aug(image=float_image) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) @pytest.mark.parametrize("seed", TEST_SEEDS) def test_transform_pipeline_serialization(seed, image, mask): aug = A.Compose( [ A.OneOrOther( A.Compose( [ A.Resize(1024, 1024), A.RandomSizedCrop(min_max_height=(256, 1024), height=512, width=512, p=1), A.OneOf( [ A.RandomSizedCrop(min_max_height=(256, 512), height=384, width=384, p=0.5), A.RandomSizedCrop(min_max_height=(256, 512), height=512, width=512, p=0.5), ] ), ] ), A.Compose( [ A.Resize(1024, 1024), A.RandomSizedCrop(min_max_height=(256, 1025), height=256, width=256, p=1), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1), ] ), ), A.SomeOf( [ A.HorizontalFlip(p=1), A.Transpose(p=1), A.HueSaturationValue(p=0.5), A.RandomBrightnessContrast(p=0.5), ], 2, replace=False, ), ] ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, mask=mask) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) @pytest.mark.parametrize( ["bboxes", "bbox_format", "labels"], [ ([(20, 30, 40, 50)], "coco", [1]), ([(20, 30, 40, 50, 99), (10, 40, 30, 20, 9)], "coco", [1, 2]), ([(20, 30, 60, 80)], "pascal_voc", [2]), ([(20, 30, 60, 80, 99)], "pascal_voc", [1]), ([(0.2, 0.3, 0.4, 0.5)], "yolo", [2]), ([(0.2, 0.3, 0.4, 0.5, 99)], "yolo", [1]), ], ) @pytest.mark.parametrize("seed", TEST_SEEDS) def test_transform_pipeline_serialization_with_bboxes(seed, image, bboxes, bbox_format, labels): aug = A.Compose( [ A.OneOrOther( A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]), A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]), ), A.SomeOf( [ A.HorizontalFlip(p=1), A.Transpose(p=1), A.HueSaturationValue(p=0.5), A.RandomBrightnessContrast(p=0.5), ], n=5, ), ], bbox_params={"format": bbox_format, "label_fields": ["labels"]}, ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, bboxes=bboxes, labels=labels) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, bboxes=bboxes, labels=labels) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["bboxes"], deserialized_aug_data["bboxes"]) @pytest.mark.parametrize( ["keypoints", "keypoint_format", "labels"], [ ([(20, 30, 40, 50)], "xyas", [1]), ([(20, 30, 40, 50, 99), (10, 40, 30, 20, 9)], "xy", [1, 2]), ([(20, 30, 60, 80)], "yx", [2]), ([(20, 30, 60, 80, 99)], "xys", [1]), ], ) @pytest.mark.parametrize("seed", TEST_SEEDS) def test_transform_pipeline_serialization_with_keypoints(seed, image, keypoints, keypoint_format, labels): aug = A.Compose( [ A.OneOrOther( A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]), A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]), ), A.SomeOf( n=2, transforms=[ A.HorizontalFlip(p=1), A.Transpose(p=1), A.HueSaturationValue(p=0.5), A.RandomBrightnessContrast(p=0.5), ], replace=False, ), ], keypoint_params={"format": keypoint_format, "label_fields": ["labels"]}, ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, keypoints=keypoints, labels=labels) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, keypoints=keypoints, labels=labels) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["keypoints"], deserialized_aug_data["keypoints"]) @pytest.mark.parametrize( ["augmentation_cls", "params"], get_image_only_transforms( except_augmentations={A.HistogramMatching, A.FDA, A.PixelDistributionAdaptation, A.TemplateTransform}, ), ) @pytest.mark.parametrize("seed", TEST_SEEDS) def test_additional_targets_for_image_only_serialization(augmentation_cls, params, image, seed): aug = A.Compose([augmentation_cls(always_apply=True, **params)], additional_targets={"image2": "image"}) image2 = image.copy() serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, image2=image2) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, image2=image2) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["image2"], deserialized_aug_data["image2"]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("p", [1]) def test_lambda_serialization(image, mask, albumentations_bboxes, keypoints, seed, p): def vflip_image(image, **kwargs): return F.vflip(image) def vflip_mask(mask, **kwargs): return F.vflip(mask) def vflip_bbox(bbox, **kwargs): return F.bbox_vflip(bbox, **kwargs) def vflip_keypoint(keypoint, **kwargs): return F.keypoint_vflip(keypoint, **kwargs) aug = A.Lambda(name="vflip", image=vflip_image, mask=vflip_mask, bbox=vflip_bbox, keypoint=vflip_keypoint, p=p) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug, lambda_transforms={"vflip": aug}) set_seed(seed) aug_data = aug(image=image, mask=mask, bboxes=albumentations_bboxes, keypoints=keypoints) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask, bboxes=albumentations_bboxes, keypoints=keypoints) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) assert np.array_equal(aug_data["bboxes"], deserialized_aug_data["bboxes"]) assert np.array_equal(aug_data["keypoints"], deserialized_aug_data["keypoints"]) def test_serialization_v2_conversion_without_totensor(): current_directory = os.path.dirname(os.path.abspath(__file__)) files_directory = os.path.join(current_directory, "files") transform_1_1_0 = A.load(os.path.join(files_directory, "transform_v1.1.0_without_totensor.json")) with open(os.path.join(files_directory, "output_v1.1.0_without_totensor.json")) as f: output_1_1_0 = json.load(f) np.random.seed(42) image = np.random.randint(low=0, high=255, size=(256, 256, 3), dtype=np.uint8) random.seed(42) transformed_image = transform_1_1_0(image=image)["image"] assert transformed_image.tolist() == output_1_1_0 @skipif_no_torch def test_serialization_v2_conversion_with_totensor(): current_directory = os.path.dirname(os.path.abspath(__file__)) files_directory = os.path.join(current_directory, "files") transform_1_1_0 = A.load(os.path.join(files_directory, "transform_v1.1.0_with_totensor.json")) with open(os.path.join(files_directory, "output_v1.1.0_with_totensor.json")) as f: output_1_1_0 = json.load(f) np.random.seed(42) image = np.random.randint(low=0, high=255, size=(256, 256, 3), dtype=np.uint8) random.seed(42) transformed_image = transform_1_1_0(image=image)["image"] assert transformed_image.numpy().tolist() == output_1_1_0 def test_serialization_v2_without_totensor(): current_directory = os.path.dirname(os.path.abspath(__file__)) files_directory = os.path.join(current_directory, "files") transform = A.load(os.path.join(files_directory, "transform_serialization_v2_without_totensor.json")) with open(os.path.join(files_directory, "output_v1.1.0_without_totensor.json")) as f: output_1_1_0 = json.load(f) np.random.seed(42) image = np.random.randint(low=0, high=255, size=(256, 256, 3), dtype=np.uint8) random.seed(42) transformed_image = transform(image=image)["image"] assert transformed_image.tolist() == output_1_1_0 @skipif_no_torch def test_serialization_v2_with_totensor(): current_directory = os.path.dirname(os.path.abspath(__file__)) files_directory = os.path.join(current_directory, "files") transform = A.load(os.path.join(files_directory, "transform_serialization_v2_with_totensor.json")) with open(os.path.join(files_directory, "output_v1.1.0_with_totensor.json")) as f: output_1_1_0 = json.load(f) np.random.seed(42) image = np.random.randint(low=0, high=255, size=(256, 256, 3), dtype=np.uint8) random.seed(42) transformed_image = transform(image=image)["image"] assert transformed_image.numpy().tolist() == output_1_1_0 def test_custom_transform_with_overlapping_name(): class HorizontalFlip(ImageOnlyTransform): pass assert SERIALIZABLE_REGISTRY["HorizontalFlip"] == A.HorizontalFlip assert SERIALIZABLE_REGISTRY["tests.test_serialization.HorizontalFlip"] == HorizontalFlip def test_serialization_v2_to_dict(): transform = A.Compose([A.HorizontalFlip()]) transform_dict = A.to_dict(transform)["transform"] assert transform_dict == { "__class_fullname__": "Compose", "p": 1.0, "transforms": [{"__class_fullname__": "HorizontalFlip", "always_apply": False, "p": 0.5}], "bbox_params": None, "keypoint_params": None, "additional_targets": {}, } @pytest.mark.parametrize( ["class_fullname", "expected_short_class_name"], [ ["albumentations.augmentations.transforms.HorizontalFlip", "HorizontalFlip"], ["HorizontalFlip", "HorizontalFlip"], ["some_module.HorizontalFlip", "some_module.HorizontalFlip"], ], ) def test_shorten_class_name(class_fullname, expected_short_class_name): assert shorten_class_name(class_fullname) == expected_short_class_name @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("p", [1]) def test_template_transform_serialization(image, template, seed, p): template_transform = A.TemplateTransform(name="template", templates=template, p=p) aug = A.Compose([A.Flip(), template_transform, A.Blur()]) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug, lambda_transforms={"template": template_transform}) set_seed(seed) aug_data = aug(image=image) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"])
emukit/test_functions/multi_fidelity/hartmann.py
EmuKit/Emukit
272
12738138
<gh_stars>100-1000 from typing import Tuple import numpy as np from ...core import ContinuousParameter, InformationSourceParameter, ParameterSpace from ...core.loop.user_function import MultiSourceFunctionWrapper def multi_fidelity_hartmann_3d() -> Tuple[MultiSourceFunctionWrapper, ParameterSpace]: r""" The function is given by: .. math:: f(x, \alpha) = -\sum_{i=1}^{4} \alpha_i \exp \left( -\sum_{j=1}^{3} A_{i,j}\left( x_j - P_{i, j} \right)^2 \right) where .. math:: \mathbf{A} = \begin{bmatrix} 3.0 & 10 & 30 \\ 0.1 & 10 & 35 \\ 3.0 & 10 & 30 \\ 0.1 & 10 & 35 \end{bmatrix} .. math:: \mathbf{P} = 10^{-4} \begin{bmatrix} 3689 & 1170 & 2673 \\ 4699 & 4387 & 7470 \\ 1091 & 8732 & 5547 \\ 381 & 5743 & 8828 \end{bmatrix} The high fidelity function is given by setting: .. math:: \alpha = (1.0, 1.2, 3.0, 3.2)^T The middle fidelity is given by setting: .. math:: \alpha = (1.01, 1.19, 2.9, 3.3)^T The low fidelity is given by setting: .. math:: \alpha = (1.02, 1.18, 2.8, 3.4)^T The domain is given by: .. math:: \mathbf{x}_i \in (0, 1) Reference: https://www.sfu.ca/~ssurjano/hart3.html :return: Tuple of MultiSourceFunctionWrapper and ParameterSpace """ A = np.array([[3, 10, 30], [0.1, 10, 35], [3, 10, 30], [0.1, 10, 35]]) P = 1e-4 * np.array([[3689, 1170, 2673], [4699, 4387, 7470], [1091, 8732, 5547], [381, 5743, 8828]]) alpha = np.array([1.0, 1.2, 3.0, 3.2]) delta = np.array([0.01, -0.01, -0.1, 0.1]) def high(x): res = 0 for i in range(4): temp = 0 for j in range(3): temp -= A[i][j] * np.power(x[:, j] - P[i][j], 2) res += alpha[i] * np.exp(temp) return res[:, None] def medium(x): alpha_m = alpha + delta res = 0 for i in range(4): temp = 0 for j in range(3): temp -= A[i][j] * np.power(x[:, j] - P[i][j], 2) res += alpha_m[i] * np.exp(temp) return res[:, None] def low(x): alpha_l = alpha + 2 * delta res = 0 for i in range(4): temp = 0 for j in range(3): temp -= A[i][j] * np.power(x[:, j] - P[i][j], 2) res += alpha_l[i] * np.exp(temp) return res[:, None] space = ParameterSpace( [ ContinuousParameter("x1", 0.0, 1.0), ContinuousParameter("x2", 0.0, 1.0), ContinuousParameter("x3", 0.0, 1.0), InformationSourceParameter(3), ] ) fcn_wrapper = MultiSourceFunctionWrapper([low, medium, high]) return fcn_wrapper, space
vnpy/api/nst/__init__.py
funrunskypalace/vnpy
19,529
12738150
from .vnnsttd import TdApi from .nst_constant import *
examples/MktdataPublisher.py
msitt/blpapi-python
228
12738178
# MktdataPublisher.py from __future__ import print_function from __future__ import absolute_import import time from optparse import OptionParser, OptionValueError import datetime import threading import os import platform as plat import sys if sys.version_info >= (3, 8) and plat.system().lower() == "windows": # pylint: disable=no-member with os.add_dll_directory(os.getenv('BLPAPI_LIBDIR')): import blpapi else: import blpapi PERMISSION_REQUEST = blpapi.Name("PermissionRequest") RESOLUTION_SUCCESS = blpapi.Name("ResolutionSuccess") SESSION_TERMINATED = blpapi.Name("SessionTerminated") TOPICS = blpapi.Name("topics") TOPIC_CREATED = blpapi.Name("TopicCreated") TOPIC_SUBSCRIBED = blpapi.Name("TopicSubscribed") TOPIC_UNSUBSCRIBED = blpapi.Name("TopicUnsubscribed") TOPIC_RECAP = blpapi.Name("TopicRecap") class MyStream(object): def __init__(self, sid="", fields=None): self.id = sid self.fields = fields if fields else [] self.lastValue = 0 self.topic = blpapi.Topic() self.isSubscribed = False def fillData(self, eventFormatter, elementDef): for i, f in enumerate(self.fields): if not elementDef.typeDefinition().hasElementDefinition(f): print("Invalid field '%s'" % f) continue fieldDef = elementDef.typeDefinition().getElementDefinition(f) fieldType = fieldDef.typeDefinition().datatype() value = None if fieldType == blpapi.DataType.BOOL: value = bool((self.lastValue + i) % 2 == 0) elif fieldType == blpapi.DataType.CHAR: value = chr((self.lastValue + i) % 100 + 32) elif fieldType == blpapi.DataType.INT32 or \ fieldType == blpapi.DataType.INT64: value = self.lastValue + i elif fieldType == blpapi.DataType.FLOAT32 or \ fieldType == blpapi.DataType.FLOAT64: value = (self.lastValue + i) * 1.1 elif fieldType == blpapi.DataType.STRING: value = "S%d" % (self.lastValue + i) elif fieldType == blpapi.DataType.DATE or \ fieldType == blpapi.DataType.TIME or \ fieldType == blpapi.DataType.DATETIME: value = datetime.datetime.today() value.replace(day=(self.lastValue / 100) % 28 + 1) value.replace(microsecond=i * 1000) eventFormatter.setElement(f, value) def fillDataNull(self, eventFormatter, elementDef): for f in self.fields: if not elementDef.typeDefinition().hasElementDefinition(f): print("Invalid field '%s'" % f) continue fieldDef = elementDef.typeDefinition().getElementDefinition(f) if fieldDef.typeDefinition().isSimpleType(): # Publishing NULL value eventFormatter.setElementNull(f) def next(self): self.lastValue += 1 def isAvailable(self): return self.topic.isValid() and self.isSubscribed class MyEventHandler(object): def __init__(self, serviceName, messageType, fields, eids, resolveSubServiceCode, mutex, stop, condition): self.serviceName = serviceName self.messageType = messageType self.fields = fields self.eids = eids self.resolveSubServiceCode = resolveSubServiceCode self.mutex = mutex self.stop = stop self.condition = condition self.streams = dict() self.availableTopicCount = 0 def processEvent(self, event, session): if event.eventType() == blpapi.Event.SESSION_STATUS: for msg in event: print(msg) if msg.messageType() == SESSION_TERMINATED: self.stop.set() elif event.eventType() == blpapi.Event.TOPIC_STATUS: topicList = blpapi.TopicList() for msg in event: print(msg) if msg.messageType() == TOPIC_SUBSCRIBED: topicStr = msg.getElementAsString("topic") with self.mutex: if topicStr not in self.streams: # TopicList knows how to add an entry based on a # TOPIC_SUBSCRIBED message. topicList.add(msg) self.streams[topicStr] = MyStream(topicStr, self.fields) stream = self.streams[topicStr] stream.isSubscribed = True if stream.isAvailable(): self.availableTopicCount += 1 self.condition.notifyAll() elif msg.messageType() == TOPIC_UNSUBSCRIBED: topicStr = msg.getElementAsString("topic") with self.mutex: if topicStr not in self.streams: # We should never be coming here. # TOPIC_UNSUBSCRIBED can not come before # a TOPIC_SUBSCRIBED or TOPIC_CREATED continue stream = self.streams[topicStr] if stream.isAvailable(): self.availableTopicCount -= 1 self.condition.notifyAll() stream.isSubscribed = False elif msg.messageType() == TOPIC_CREATED: topicStr = msg.getElementAsString("topic") with self.mutex: if topicStr not in self.streams: self.streams[topicStr] = MyStream(topicStr, self.fields) stream = self.streams[topicStr] try: stream.topic = session.getTopic(msg) except blpapi.Exception as e: print("Exception while processing " \ "TOPIC_CREATED: %s" % e) continue if stream.isAvailable(): self.availableTopicCount += 1 self.condition.notifyAll() elif msg.messageType() == TOPIC_RECAP: # Here we send a recap in response to a Recap request. try: topicStr = msg.getElementAsString("topic") recapEvent = None with self.mutex: if topicStr not in self.streams: continue stream = self.streams[topicStr] if not stream.isAvailable(): continue topic = session.getTopic(msg) service = topic.service() recapCid = msg.correlationIds()[0] recapEvent = service.createPublishEvent() elementDef = \ service.getEventDefinition(self.messageType) eventFormatter = blpapi.EventFormatter(recapEvent) eventFormatter.appendRecapMessage(topic, recapCid) stream.fillData(eventFormatter, elementDef) session.publish(recapEvent) except blpapi.Exception as e: print("Exception while processing TOPIC_RECAP: %s" % e) continue if topicList.size() > 0: # createTopicsAsync will result in RESOLUTION_STATUS, # TOPIC_CREATED events. session.createTopicsAsync(topicList) elif event.eventType() == blpapi.Event.RESOLUTION_STATUS: for msg in event: print(msg) elif event.eventType() == blpapi.Event.REQUEST: service = session.getService(self.serviceName) for msg in event: print(msg) if msg.messageType() == PERMISSION_REQUEST: # Similar to createPublishEvent. We assume just one # service - self.serviceName. A responseEvent can only be # for single request so we can specify the correlationId - # which establishes context - when we create the Event. response = \ service.createResponseEvent(msg.correlationIds()[0]) permission = 1 # ALLOWED: 0, DENIED: 1 ef = blpapi.EventFormatter(response) if msg.hasElement("uuid"): msg.getElementAsInteger("uuid") permission = 0 if msg.hasElement("applicationId"): msg.getElementAsInteger("applicationId") permission = 0 # In appendResponse the string is the name of the # operation, the correlationId indicates which request we # are responding to. ef.appendResponse("PermissionResponse") ef.pushElement("topicPermissions") # For each of the topics in the request, add an entry to # the response. topicsElement = msg.getElement(TOPICS).values() for topic in topicsElement: ef.appendElement() ef.setElement("topic", topic) if self.resolveSubServiceCode: try: ef.setElement("subServiceCode", self.resolveSubServiceCode) print(("Mapping topic %s to subServiceCode %s" % (topic, self.resolveSubServiceCode))) except blpapi.Exception: print("subServiceCode could not be set." " Resolving without subServiceCode") ef.setElement("result", permission) if permission == 1: # DENIED ef.pushElement("reason") ef.setElement("source", "My Publisher Name") ef.setElement("category", "NOT_AUTHORIZED") ef.setElement("subcategory", "Publisher Controlled") ef.setElement( "description", "Permission denied by My Publisher Name") ef.popElement() elif self.eids: ef.pushElement("permissions") ef.appendElement() ef.setElement("permissionService", "//blp/blpperm") ef.pushElement("eids") for e in self.eids: ef.appendValue(e) ef.popElement() ef.popElement() ef.popElement() ef.popElement() ef.popElement() # Service is implicit in the Event. sendResponse has a # second parameter - partialResponse - that defaults to # false. session.sendResponse(response) else: for msg in event: print(msg) return True def authOptionCallback(_option, _opt, value, parser): """Parse authorization options from user input""" vals = value.split('=', 1) if value == "user": authUser = blpapi.AuthUser.createWithLogonName() authOptions = blpapi.AuthOptions.createWithUser(authUser) elif value == "none": authOptions = None elif vals[0] == "app" and len(vals) == 2: appName = vals[1] authOptions = blpapi.AuthOptions.createWithApp(appName) elif vals[0] == "userapp" and len(vals) == 2: appName = vals[1] authUser = blpapi.AuthUser.createWithLogonName() authOptions = blpapi.AuthOptions\ .createWithUserAndApp(authUser, appName) elif vals[0] == "dir" and len(vals) == 2: activeDirectoryProperty = vals[1] authUser = blpapi.AuthUser\ .createWithActiveDirectoryProperty(activeDirectoryProperty) authOptions = blpapi.AuthOptions.createWithUser(authUser) elif vals[0] == "manual": parts = [] if len(vals) == 2: parts = vals[1].split(',') if len(parts) != 3: raise OptionValueError("Invalid auth option {}".format(value)) appName, ip, userId = parts authUser = blpapi.AuthUser.createWithManualOptions(userId, ip) authOptions = blpapi.AuthOptions.createWithUserAndApp(authUser, appName) else: raise OptionValueError("Invalid auth option '{}'".format(value)) parser.values.auth = {'option' : authOptions} def parseCmdLine(): parser = OptionParser(description="Publish market data.") parser.add_option("-a", "--ip", dest="hosts", help="server name or IP (default: localhost)", metavar="ipAddress", action="append", default=[]) parser.add_option("-p", dest="port", type="int", help="server port (default: %default)", metavar="tcpPort", default=8194) parser.add_option("-s", dest="service", help="service name (default: %default)", metavar="service", default="//viper/mktdata") parser.add_option("-f", dest="fields", help="field to subscribe to (default: LAST_PRICE)", metavar="field", action="append", default=[]) parser.add_option("-m", dest="messageType", help="type of published event (default: %default)", metavar="messageType", default="MarketDataEvents") parser.add_option("-e", dest="eids", help="permission eid for all subscriptions", metavar="EID", action="append", default=[]) parser.add_option("-g", dest="groupId", help="publisher groupId (defaults to unique value)", metavar="groupId") parser.add_option("-r", "--pri", type="int", dest="priority", help="set publisher priority level (default: %default)", metavar="priority", default=10) parser.add_option("-c", type="int", dest="clearInterval", help="number of events after which cache will be " "cleared (default: 0 i.e cache never cleared)", metavar="clearInterval", default=0) parser.add_option("--auth", dest="auth", help="authentication option: " "user|none|app=<app>|userapp=<app>|dir=<property>" "|manual=<app,ip,user>" " (default: user)\n" "'none' is applicable to Desktop API product " "that requires Bloomberg Professional service " "to be installed locally.", metavar="option", action="callback", callback=authOptionCallback, type="string", default={"option" : blpapi.AuthOptions.createWithUser( blpapi.AuthUser.createWithLogonName())}) parser.add_option("--ssc", dest="ssc", help="active sub-service code option: " "<begin>,<end>,<priority>", metavar="ssc", default="") parser.add_option("--rssc", dest="rssc", help="sub-service code to be used in resolves", metavar="rssc", default="") (options, _) = parser.parse_args() if not options.hosts: options.hosts = ["localhost"] if not options.fields: options.fields = ["LAST_PRICE"] return options def activate(options, session): if options.ssc: sscBegin, sscEnd, sscPriority = map(int, options.ssc.split(",")) print(("Activating sub service code range [%s, %s] @ %s" % (sscBegin, sscEnd, sscPriority))) session.activateSubServiceCodeRange(options.service, sscBegin, sscEnd, sscPriority) def deactivate(options, session): if options.ssc: sscBegin, sscEnd, sscPriority = map(int, options.ssc.split(",")) print(("DeActivating sub service code range [%s, %s] @ %s" % (sscBegin, sscEnd, sscPriority))) session.deactivateSubServiceCodeRange(options.service, sscBegin, sscEnd) def main(): options = parseCmdLine() # Fill SessionOptions sessionOptions = blpapi.SessionOptions() for idx, host in enumerate(options.hosts): sessionOptions.setServerAddress(host, options.port, idx) sessionOptions.setSessionIdentityOptions(options.auth['option']) sessionOptions.setAutoRestartOnDisconnection(True) # NOTE: If running without a backup server, make many attempts to # connect/reconnect to give that host a chance to come back up (the # larger the number, the longer it will take for SessionStartupFailure # to come on startup, or SessionTerminated due to inability to fail # over). We don't have to do that in a redundant configuration - it's # expected at least one server is up and reachable at any given time, # so only try to connect to each server once. sessionOptions.setNumStartAttempts(1 if len(options.hosts) > 1 else 1000) print("Connecting to port %d on %s" % ( options.port, " ".join(options.hosts))) PUBLISH_MESSAGE_TYPE = blpapi.Name(options.messageType) mutex = threading.Lock() stop = threading.Event() condition = threading.Condition(mutex) myEventHandler = MyEventHandler(options.service, PUBLISH_MESSAGE_TYPE, options.fields, options.eids, options.rssc, mutex, stop, condition) # Create a Session session = blpapi.ProviderSession(sessionOptions, myEventHandler.processEvent) # Start a Session if not session.start(): print("Failed to start session.") return serviceOptions = blpapi.ServiceRegistrationOptions() if options.groupId is not None: serviceOptions.setGroupId(options.groupId) serviceOptions.setServicePriority(options.priority) if options.ssc: sscBegin, sscEnd, sscPriority = map(int, options.ssc.split(",")) print(("Adding active sub service code range [%s, %s] @ %s" % (sscBegin, sscEnd, sscPriority))) try: serviceOptions.addActiveSubServiceCodeRange(sscBegin, sscEnd, sscPriority) except blpapi.Exception as e: print(("FAILED to add active sub service codes." " Exception %s" % e.description())) try: if not session.registerService(options.service, session.getAuthorizedIdentity(), serviceOptions): print("Failed to register '%s'" % options.service) return service = session.getService(options.service) elementDef = service.getEventDefinition(PUBLISH_MESSAGE_TYPE) eventCount = 0 numPublished = 0 while not stop.is_set(): event = service.createPublishEvent() with condition: while myEventHandler.availableTopicCount == 0: # Set timeout to 1 - give a chance for CTRL-C condition.wait(1) if stop.is_set(): return publishNull = False if (options.clearInterval > 0 and eventCount == options.clearInterval): eventCount = 0 publishNull = True eventFormatter = blpapi.EventFormatter(event) for _,stream in myEventHandler.streams.items(): if not stream.isAvailable(): continue eventFormatter.appendMessage(PUBLISH_MESSAGE_TYPE, stream.topic) if publishNull: stream.fillDataNull(eventFormatter, elementDef) else: eventCount += 1 stream.next() stream.fillData(eventFormatter, elementDef) for msg in event: print(msg) session.publish(event) time.sleep(1) numPublished += 1 if numPublished % 10 == 0: deactivate(options, session) time.sleep(30) activate(options, session) finally: # Stop the session session.stop() if __name__ == "__main__": print("MktdataPublisher") try: main() except KeyboardInterrupt: print("Ctrl+C pressed. Stopping...") __copyright__ = """ Copyright 2012. Bloomberg Finance L.P. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """
tests/test_packages/test_protocols/test_http.py
bryanchriswhite/agents-aea
126
12738185
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the tests of the http protocol package.""" import sys from typing import Type from unittest import mock import pytest from aea.common import Address from aea.exceptions import AEAEnforceError from aea.mail.base import Envelope from aea.protocols.base import Message from aea.protocols.dialogue.base import Dialogue as BaseDialogue from aea.protocols.dialogue.base import DialogueLabel import packages from packages.fetchai.protocols.http.dialogues import HttpDialogue, HttpDialogues from packages.fetchai.protocols.http.message import HttpMessage from packages.fetchai.protocols.http.message import ( _default_logger as http_message_logger, ) from tests.conftest import ROOT_DIR sys.path.append(ROOT_DIR) def test_request_serialization(): """Test the serialization for 'request' speech-act works.""" msg = HttpMessage( performative=HttpMessage.Performative.REQUEST, method="some_method", url="url", version="some_version", headers="some_headers", body=b"some_body", ) msg.to = "receiver" envelope = Envelope(to=msg.to, sender="sender", message=msg,) envelope_bytes = envelope.encode() actual_envelope = Envelope.decode(envelope_bytes) expected_envelope = envelope assert expected_envelope.to == actual_envelope.to assert expected_envelope.sender == actual_envelope.sender assert ( expected_envelope.protocol_specification_id == actual_envelope.protocol_specification_id ) assert expected_envelope.message != actual_envelope.message actual_msg = HttpMessage.serializer.decode(actual_envelope.message) actual_msg.to = actual_envelope.to actual_msg.sender = actual_envelope.sender expected_msg = msg assert expected_msg == actual_msg def test_response_serialization(): """Test the serialization for 'response' speech-act works.""" msg = HttpMessage( message_id=2, target=1, performative=HttpMessage.Performative.RESPONSE, version="some_version", status_code=1, status_text="some_status_text", headers="some_headers", body=b"some_body", ) msg.to = "receiver" envelope = Envelope(to=msg.to, sender="sender", message=msg,) envelope_bytes = envelope.encode() actual_envelope = Envelope.decode(envelope_bytes) expected_envelope = envelope assert expected_envelope.to == actual_envelope.to assert expected_envelope.sender == actual_envelope.sender assert ( expected_envelope.protocol_specification_id == actual_envelope.protocol_specification_id ) assert expected_envelope.message != actual_envelope.message actual_msg = HttpMessage.serializer.decode(actual_envelope.message) actual_msg.to = actual_envelope.to actual_msg.sender = actual_envelope.sender expected_msg = msg assert expected_msg == actual_msg def test_performative_string_value(): """Test the string value of the performatives.""" assert ( str(HttpMessage.Performative.REQUEST) == "request" ), "The str value must be request" assert ( str(HttpMessage.Performative.RESPONSE) == "response" ), "The str value must be response" def test_encoding_unknown_performative(): """Test that we raise an exception when the performative is unknown during encoding.""" msg = HttpMessage( performative=HttpMessage.Performative.REQUEST, method="some_method", url="url", version="some_version", headers="some_headers", body=b"some_body", ) with pytest.raises(ValueError, match="Performative not valid:"): with mock.patch.object(HttpMessage.Performative, "__eq__", return_value=False): HttpMessage.serializer.encode(msg) def test_decoding_unknown_performative(): """Test that we raise an exception when the performative is unknown during decoding.""" msg = HttpMessage( performative=HttpMessage.Performative.REQUEST, method="some_method", url="url", version="some_version", headers="some_headers", body=b"some_body", ) encoded_msg = HttpMessage.serializer.encode(msg) with pytest.raises(ValueError, match="Performative not valid:"): with mock.patch.object(HttpMessage.Performative, "__eq__", return_value=False): HttpMessage.serializer.decode(encoded_msg) @mock.patch.object( packages.fetchai.protocols.http.message, "enforce", side_effect=AEAEnforceError("some error"), ) def test_incorrect_message(mocked_enforce): """Test that we raise an exception when the message is incorrect.""" with mock.patch.object(http_message_logger, "error") as mock_logger: HttpMessage( performative=HttpMessage.Performative.REQUEST, method="some_method", url="url", version="some_version", headers="some_headers", body=b"some_body", ) mock_logger.assert_any_call("some error") class TestDialogues: """Tests http dialogues.""" @classmethod def setup_class(cls): """Set up the test.""" cls.agent_addr = "agent address" cls.server_addr = "server address" cls.agent_dialogues = AgentDialogues(cls.agent_addr) cls.server_dialogues = ServerDialogues(cls.server_addr) def test_create_self_initiated(self): """Test the self initialisation of a dialogue.""" result = self.agent_dialogues._create_self_initiated( dialogue_opponent_addr=self.server_addr, dialogue_reference=(str(0), ""), role=HttpDialogue.Role.CLIENT, ) assert isinstance(result, HttpDialogue) assert result.role == HttpDialogue.Role.CLIENT, "The role must be client." def test_create_opponent_initiated(self): """Test the opponent initialisation of a dialogue.""" result = self.agent_dialogues._create_opponent_initiated( dialogue_opponent_addr=self.server_addr, dialogue_reference=(str(0), ""), role=HttpDialogue.Role.CLIENT, ) assert isinstance(result, HttpDialogue) assert result.role == HttpDialogue.Role.CLIENT, "The role must be client." class AgentDialogue(HttpDialogue): """The dialogue class maintains state of a dialogue and manages it.""" def __init__( self, dialogue_label: DialogueLabel, self_address: Address, role: BaseDialogue.Role, message_class: Type[HttpMessage], ) -> None: """ Initialize a dialogue. :param dialogue_label: the identifier of the dialogue :param self_address: the address of the entity for whom this dialogue is maintained :param role: the role of the agent this dialogue is maintained for :return: None """ HttpDialogue.__init__( self, dialogue_label=dialogue_label, self_address=self_address, role=role, message_class=message_class, ) class AgentDialogues(HttpDialogues): """The dialogues class keeps track of all dialogues.""" def __init__(self, self_address: Address) -> None: """ Initialize dialogues. :return: None """ def role_from_first_message( # pylint: disable=unused-argument message: Message, receiver_address: Address ) -> BaseDialogue.Role: """Infer the role of the agent from an incoming/outgoing first message :param message: an incoming/outgoing first message :param receiver_address: the address of the receiving agent :return: The role of the agent """ return HttpDialogue.Role.CLIENT HttpDialogues.__init__( self, self_address=self_address, role_from_first_message=role_from_first_message, dialogue_class=AgentDialogue, ) class ServerDialogue(HttpDialogue): """The dialogue class maintains state of a dialogue and manages it.""" def __init__( self, dialogue_label: DialogueLabel, self_address: Address, role: BaseDialogue.Role, message_class: Type[HttpMessage], ) -> None: """ Initialize a dialogue. :param dialogue_label: the identifier of the dialogue :param self_address: the address of the entity for whom this dialogue is maintained :param role: the role of the agent this dialogue is maintained for :return: None """ HttpDialogue.__init__( self, dialogue_label=dialogue_label, self_address=self_address, role=role, message_class=message_class, ) class ServerDialogues(HttpDialogues): """The dialogues class keeps track of all dialogues.""" def __init__(self, self_address: Address) -> None: """ Initialize dialogues. :return: None """ def role_from_first_message( # pylint: disable=unused-argument message: Message, receiver_address: Address ) -> BaseDialogue.Role: """Infer the role of the agent from an incoming/outgoing first message :param message: an incoming/outgoing first message :param receiver_address: the address of the receiving agent :return: The role of the agent """ return HttpDialogue.Role.SERVER HttpDialogues.__init__( self, self_address=self_address, role_from_first_message=role_from_first_message, dialogue_class=ServerDialogue, )
memory_analyzer/tests/test_analysis_template.py
clearpathrobotics/memory-analyzer
129
12738199
<filename>memory_analyzer/tests/test_analysis_template.py #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import pickle import sys import tempfile from unittest import TestCase, mock import objgraph from jinja2 import Environment, FileSystemLoader from pympler import muppy, summary # noqa from .. import analysis_utils class ObjGraphTemplateTests(TestCase): template_name = "analysis.py.template" filename = "some_filename" templates_path = f"{os.path.abspath(os.path.dirname(__file__))}/../templates/" pid = 1234 specific_refs = ["str", "int"] def setUp(self): self.items = [ ["builtins.test1", 1, 10000], ["__main__.test2", 3, 5], ["ast._things.test3", 10, 1024], ] # TODO: Add tests for summary obj and the _repr mock_summ = mock.patch.object(summary, "summarize", return_value=self.items) mock_summ.start() self.addCleanup(mock_summ.stop) def tearDown(self): if os.path.isfile(f"{self.templates_path}rendered_template.py.out"): os.remove(f"{self.templates_path}rendered_template.py.out") def test_with_no_references(self): template = analysis_utils.render_template( self.template_name, self.templates_path, 0, self.pid, [], self.filename, None, ) with mock.patch("builtins.open", mock.mock_open(), create=True) as mock_fifo: exec(template) mock_fifo.assert_called_with(f"/tmp/memanz_pipe_{self.pid}", "wb") output_bytes = pickle.dumps(self.items) mock_fifo().write.assert_called_with(output_bytes) @mock.patch.object(objgraph, "show_backrefs") @mock.patch.object(objgraph, "show_refs") def test_with_num_references(self, mock_refs, mock_back_refs): dirname = "/tmp/tests/" template = analysis_utils.render_template( self.template_name, self.templates_path, 1, self.pid, [], f"{dirname}{self.filename}", None, ) with mock.patch("builtins.open", mock.mock_open(), create=True) as mock_fifo: exec(template, {}) handler = mock_fifo() output_bytes = pickle.dumps(self.items) handler.write.assert_called_with(output_bytes) self.assertEqual( self.items, [ [ "builtins.test1", 1, 10000, f"{dirname}ref_1234_test1.png", f"{dirname}backref_1234_test1.png", ], ["ast._things.test3", 10, 1024], ["__main__.test2", 3, 5], ], ) @mock.patch.object(objgraph, "show_backrefs") @mock.patch.object(objgraph, "show_refs") def test_with_specific_references(self, mock_refs, mock_back_refs): dirname = "/tmp/tests/" with tempfile.TemporaryDirectory() as d: template = analysis_utils.render_template( self.template_name, self.templates_path, 0, self.pid, ["test3"], f"{dirname}{self.filename}", d, ) self.assertEqual(1, len(os.listdir(d)), os.listdir(d)) with mock.patch("builtins.open", mock.mock_open(), create=True) as mock_fifo: exec(template, {}) handler = mock_fifo() output_bytes = pickle.dumps(self.items) handler.write.assert_called_with(output_bytes) self.assertEqual( self.items, [ ["builtins.test1", 1, 10000], ["__main__.test2", 3, 5], [ "ast._things.test3", 10, 1024, f"{dirname}ref_1234_test3.png", f"{dirname}backref_1234_test3.png", ], ], )
changedetectionio/notification.py
jeremysherriff/changedetection.io
3,933
12738208
import os import apprise valid_tokens = { 'base_url': '', 'watch_url': '', 'watch_uuid': '', 'watch_title': '', 'watch_tag': '', 'diff_url': '', 'preview_url': '', 'current_snapshot': '' } def process_notification(n_object, datastore): import logging log = logging.getLogger('apprise') log.setLevel('TRACE') apobj = apprise.Apprise(debug=True) for url in n_object['notification_urls']: url = url.strip() print (">> Process Notification: AppRise notifying {}".format(url)) apobj.add(url) # Get the notification body from datastore n_body = n_object['notification_body'] n_title = n_object['notification_title'] # Insert variables into the notification content notification_parameters = create_notification_parameters(n_object, datastore) for n_k in notification_parameters: token = '{' + n_k + '}' val = notification_parameters[n_k] n_title = n_title.replace(token, val) n_body = n_body.replace(token, val) apobj.notify( body=n_body, title=n_title ) # Notification title + body content parameters get created here. def create_notification_parameters(n_object, datastore): from copy import deepcopy # in the case we send a test notification from the main settings, there is no UUID. uuid = n_object['uuid'] if 'uuid' in n_object else '' if uuid != '': watch_title = datastore.data['watching'][uuid]['title'] watch_tag = datastore.data['watching'][uuid]['tag'] else: watch_title = 'Change Detection' watch_tag = '' # Create URLs to customise the notification with base_url = datastore.data['settings']['application']['base_url'] watch_url = n_object['watch_url'] # Re #148 - Some people have just {base_url} in the body or title, but this may break some notification services # like 'Join', so it's always best to atleast set something obvious so that they are not broken. if base_url == '': base_url = "<base-url-env-var-not-set>" diff_url = "{}/diff/{}".format(base_url, uuid) preview_url = "{}/preview/{}".format(base_url, uuid) # Not sure deepcopy is needed here, but why not tokens = deepcopy(valid_tokens) # Valid_tokens also used as a field validator tokens.update( { 'base_url': base_url if base_url is not None else '', 'watch_url': watch_url, 'watch_uuid': uuid, 'watch_title': watch_title if watch_title is not None else '', 'watch_tag': watch_tag if watch_tag is not None else '', 'diff_url': diff_url, 'preview_url': preview_url, 'current_snapshot': n_object['current_snapshot'] if 'current_snapshot' in n_object else '' }) return tokens
python/tvm/topi/nn/conv1d.py
XiaoSong9905/tvm
4,640
12738217
<reponame>XiaoSong9905/tvm<gh_stars>1000+ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable, unused-argument """1D convolution operators.""" from .conv2d import conv def conv1d(data, kernel, strides=1, padding="VALID", dilation=1, layout="NCW", out_dtype=None): """1D convolution forward operator. Parameters ---------- data : tvm.te.Tensor 3-D input shape [batch, in_channel, in_width] for layout == 'NCW' and [batch, in_width, in_channel] for layout == 'NWC' kernel : tvm.te.Tensor 3-D kernel with shape [num_filter, in_channel, filter_size] for layout == 'NCW' and [filter_size, in_channel, num_filter] for layout == 'NWC' strides : int or tuple The spatial stride along width padding : int or str Padding size, or ['VALID', 'SAME'] dilation : int or tuple Dilation rate if convolution should be dilated. layout : str How input data is laid out, must be one of ['NCW', 'NWC'] out_dtype : str The output data type. If None then output is same type as input. """ return conv(data, kernel, strides, padding, dilation, 1, layout, out_dtype) def conv1d_nwc(data, kernel, strides=1, padding="VALID", dilation=1, out_dtype=None): """1D convolution in NWC layout. See :py:func:`conv` for details on parameters""" return conv(data, kernel, strides, padding, dilation, 1, "NWC", out_dtype=out_dtype) def conv1d_ncw(data, kernel, strides=1, padding="VALID", dilation=1, out_dtype=None): """1D convolution in NCW layout. See :py:func:`conv` for details on parameters""" return conv(data, kernel, strides, padding, dilation, 1, "NCW", out_dtype=out_dtype) def group_conv1d_nwc( data, kernel, strides=1, padding="VALID", dilation=1, groups=1, out_dtype=None ): """1D convolution forward operator for NWC layout. Parameters ---------- data : tvm.te.Tensor 3-D with shape [batch, in_width, in_channel] kernel : tvm.te.Tensor 3-D with shape [filter_size, in_channel, num_filter] strides : int or tuple The spatial stride along width padding : int, tuple, or str Padding size can be an integer for equal padding, a tuple of (left, right) or a string in ['VALID', 'SAME']. dilation : int or tuple Dilation rate if convolution should be dilated. groups : int Number of groups out_dtype : str The output data type. If None then output is same type as input. """ return conv(data, kernel, strides, padding, dilation, groups, "NWC", out_dtype=out_dtype) def group_conv1d_ncw( data, kernel, strides=1, padding="VALID", dilation=1, groups=1, out_dtype=None ): """1D convolution forward operator for NCW layout. Parameters ---------- data : tvm.te.Tensor 3-D with shape [batch, in_channel, in_width] kernel : tvm.te.Tensor 3-D with shape [num_filter, in_channel, filter_size] strides : int or tuple The spatial stride along width padding : int, tuple, or str Padding size can be an integer for equal padding, a tuple of (left, right) or a string in ['VALID', 'SAME']. dilation : int or tuple Dilation rate if convolution should be dilated. groups : int Number of groups out_dtype : str The output data type. If None then output is same type as input. """ return conv(data, kernel, strides, padding, dilation, groups, "NCW", out_dtype=out_dtype)
tests/test_samples.py
j0ono0/pinout-diagram
304
12738222
########################################################## # # pinout tests # # Use a user-defined temporary directory if # you have problems with multiple harddrives (like I do): # # >>> pytest --basetemp=temp # ########################################################## import filecmp import pytest import re import shutil import uuid from pathlib import Path from importlib import reload from pinout import manager from pinout import config def re_sub_ids(re_m): id = re_m.group(0).split("_") id = "unique_id_replaced-for-testing_" + id[-1] return id def mk_test_file(src, dest): shutil.copyfile(src, dest) with src.open() as f: data = f.read() # sub ids id = re.compile(r"(?<=id=\").+(?=\")") data = re.sub(id, re_sub_ids, data) # sub hrefs id = re.compile(r"(?<=href=\"#).+(?=\")") data = re.sub(id, re_sub_ids, data) # sub clip-path urls id = re.compile(r"(?<=clip-path=\"url\(#).+(?=\")") data = re.sub(id, re_sub_ids, data) # write modified file data to testfile dest.write_text(data) return dest @pytest.mark.parametrize( "module_path, ref_path", [ ( "../samples/arduino/arduino/uno/arduino_uno.py", "../samples/arduino/pinout_arduino_uno_rev3.svg", ), ( "../samples/arduino/arduino/rp2040/arduino_nano_rp2040_connect.py", "../samples/arduino/pinout_arduino_nano_rp2040_connect.svg", ), ( "../samples/attiny85/attiny85.py", "../samples/attiny85/pinout_attiny85.svg", ), ( "../samples/clip_path/pinout_diagram.py", "../samples/clip_path/diagram.svg", ), ( "../samples/full_sample/pinout_diagram.py", "../samples/full_sample/pinout_diagram.svg", ), ( "../samples/panel_layout/panel_layout.py", "../samples/panel_layout/output/panel_layout.svg", ), ( "../samples/panel_layout/populated_layout.py", "../samples/panel_layout/output/populated_layout.svg", ), ( "../samples/pci-express/pinout_x1.py", "../samples/pci-express/pinout_x1.svg", ), ( "../samples/section_pullout/pinout_diagram.py", "../samples/section_pullout/diagram.svg", ), ( "../samples/teensy_4.0/pinout_diagram.py", "../samples/teensy_4.0/teensy_4.0_front_pinout_diagram.svg", ), ], ) def test_output_against_reference(tmp_path, module_path, ref_path): # Config requires reloading between tests to to ensure # is in default state. reload(config) module_path = Path(module_path) ref_path = Path(ref_path) # Export a temp file in same location as reference: # Required for relative links to be identical. tempsvg = ref_path.parent / f"temp_pytest_{str(uuid.uuid4())}.svg" manager.export_diagram( module_path, tempsvg, overwrite=True, ) # Create files for comparison. Unique ids are converted to match file1 = mk_test_file(tempsvg, tmp_path / f"test_file.svg") file2 = mk_test_file(ref_path, tmp_path / f"ref_file.svg") # Remove temp file tempsvg.unlink() # Test files are identical assert filecmp.cmp(file1, file2, shallow=False)
tools/mo/openvino/tools/mo/ops/Exit.py
ryanloney/openvino-1
1,127
12738238
<reponame>ryanloney/openvino-1 # Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from openvino.tools.mo.graph.graph import Node, Graph from openvino.tools.mo.ops.op import Op class Exit(Op): op = "Exit" def __init__(self, graph: Graph, attrs: dict): mandatory_props = { 'type': None, 'op': __class__.op, 'infer': Exit.exit_infer, 'in_ports_count': 1, } super().__init__(graph, mandatory_props, attrs) @staticmethod def exit_infer(node: Node): output_shape = node.in_port(0).data.get_shape() output_value = node.in_port(0).data.get_value() for port in node.out_ports(): if not node.out_port(port).disconnected(): node.out_port(port).data.set_shape(output_shape) if output_value is not None: node.out_port(port).data.set_value(output_value)
api-inference-community/docker_images/timm/tests/test_api_text_to_speech.py
abidlabs/huggingface_hub
362
12738249
import os from unittest import TestCase, skipIf from app.main import ALLOWED_TASKS from app.validation import ffmpeg_read from starlette.testclient import TestClient from tests.test_api import TESTABLE_MODELS @skipIf( "text-to-speech" not in ALLOWED_TASKS, "text-to-speech not implemented", ) class AudioSourceSeparationTestCase(TestCase): def setUp(self): model_id = TESTABLE_MODELS["text-to-speech"] self.old_model_id = os.getenv("MODEL_ID") self.old_task = os.getenv("TASK") os.environ["MODEL_ID"] = model_id os.environ["TASK"] = "text-to-speech" from app.main import app self.app = app def tearDown(self): os.environ["MODEL_ID"] = self.old_model_id os.environ["TASK"] = self.old_task def test_simple(self): with TestClient(self.app) as client: response = client.post("/", json={"inputs": "This is some text"}) self.assertEqual( response.status_code, 200, ) self.assertEqual(response.header["content-type"], "audio/wav") audio = ffmpeg_read(response.content) self.assertEqual(audio.shape, (10,)) def test_malformed_input(self): with TestClient(self.app) as client: response = client.post("/", data=b"This is some test") self.assertEqual( response.status_code, 400, ) self.assertEqual(response.content, b'{"error":"Malformed soundfile"}')
src/sage/algebras/finite_gca.py
UCD4IDS/sage
1,742
12738269
r""" Finite dimensional graded commutative algebras AUTHORS: - <NAME> (2021): initial version """ #***************************************************************************** # Copyright (C) 2021 <NAME> <m.jung at vu.nl> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from sage.combinat.free_module import CombinatorialFreeModule from sage.categories.algebras import Algebras from sage.misc.cachefunc import cached_method from sage.combinat.integer_vector_weighted import WeightedIntegerVectors from sage.rings.ring import Algebra from sage.misc.functional import is_odd, is_even from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets from sage.sets.condition_set import ConditionSet from sage.rings.integer_ring import ZZ class FiniteGCAlgebra(CombinatorialFreeModule, Algebra): r""" Finite dimensional graded commutative algebras. A finite dimensional graded commutative algebra `A` is an integer-graded algebra satisfying the super-algebra relation w.r.t. the degree modulo 2. More precisely, `A` has a graded ring structure .. MATH:: A = \bigoplus_{i=0}^n A_i, where `n \in \NN` is the finite maximal degree, and the multiplication satisfies .. MATH:: A_i \cdot A_j \subset \begin{cases}A_{i+j} & \text{if $i+j\leq n$}, \\ 0 & \text{if $i+j > n$},\end{cases} as well as the super-algebra relation .. MATH:: x y = (-1)^{ij} y x for all homogeneous elements `x \in A_i` and `y \in A_j`. Such an algebra is multiplicatively generated by a set of single monomials `\{ x_1, \ldots, x_k \}`, where each `x_i` is given a certain degree `\mathrm{deg}(x_i)`. To that end, this algebra can be given a vector space basis, and the basis vectors are of the form `x_1^{w_1} \cdots x_n^{ w_k}`, where `\sum_{i=1}^k \mathrm{deg}(x_i) \, w_i \leq n` and .. MATH:: w_i \in \begin{cases} \ZZ_2 & \text{if $\mathrm{deg}(x_i)$ is odd}, \\ \NN & \text{if $\mathrm{deg}(x_i)$ is even}. \end{cases} Typical examples of finite dimensional graded commutative algebras are cohomology rings over finite dimensional CW-complexes. INPUT: - ``base`` -- the base field - ``names`` -- (optional) names of the generators: a list of strings or a single string with the names separated by commas. If not specified, the generators are named "x0", "x1",... - ``degrees`` -- (optional) a tuple or list specifying the degrees of the generators; if omitted, each generator is given degree 1, and if both ``names`` and ``degrees`` are omitted, an error is raised. - ``max_degree`` -- the maximal degree of the graded algebra. - ``mul_symbol`` -- (optional) symbol used for multiplication. If omitted, the string "*" is used. - ``mul_latex_symbol`` -- (optional) latex symbol used for multiplication. If omitted, the empty string is used. EXAMPLES:: sage: A.<x,y,z,t> = GradedCommutativeAlgebra(QQ, degrees=(1,2,2,3), max_degree=6) sage: A Graded commutative algebra with generators ('x', 'y', 'z', 't') in degrees (1, 2, 2, 3) with maximal degree 6 sage: t*x + x*t 0 sage: x^2 0 sage: x*t^2 0 sage: x*y^2+z*t x*y^2 + z*t The generators can be returned with :meth:`algebra_generators`:: sage: F = A.algebra_generators(); F Family (x, y, z, t) sage: [g.degree() for g in F] [1, 2, 2, 3] We can also return the basis:: sage: list(A.basis()) [1, x, z, y, t, x*z, x*y, x*t, z^2, y*z, y^2, z*t, y*t, x*z^2, x*y*z, x*y^2] Depending on the context, the multiplication can be given a different symbol:: sage: A.<x,y,z,t> = GradedCommutativeAlgebra(QQ, degrees=(1,2,6,6), max_degree=10, mul_symbol='⌣', mul_latex_symbol=r'\smile') sage: x*y^2 + x*t x⌣y^2 + x⌣t sage: latex(x*y^2 - z*x) x\smile y^{2} - x\smile z .. NOTE:: Notice, when the argument ``max_degree`` in the global namespace is omitted, an instance of the class :class:`sage.algebras.commutative_dga.GCAlgebra` is created instead:: sage: A.<x,y,z,t> = GradedCommutativeAlgebra(QQ, degrees=(1,2,6,6)) sage: type(A) <class 'sage.algebras.commutative_dga.GCAlgebra_with_category'> """ @staticmethod def __classcall_private__(cls, base, names=None, degrees=None, max_degree=None, category=None, **kwargs): r""" Normalize the input for the :meth:`__init__` method and the unique representation. INPUT: - ``base`` -- the base ring of the algebra - ``max_degree`` -- the maximal degree of the algebra - ``names`` -- the names of the variables; by default, set to ``x1``, ``x2``, etc. - ``degrees`` -- the degrees of the generators; by default, set to 1 TESTS:: sage: A1 = GradedCommutativeAlgebra(GF(2), 'x,y', (3, 6), max_degree=12) sage: A2 = GradedCommutativeAlgebra(GF(2), ['x', 'y'], [3, 6], max_degree=12) sage: A1 is A2 True """ if max_degree is None: raise TypeError("max_degree must be specified") if names is None: if degrees is None: raise ValueError("You must specify names or degrees") else: n = len(degrees) names = tuple('x{}'.format(i) for i in range(n)) elif isinstance(names, str): names = tuple(names.split(',')) n = len(names) else: n = len(names) names = tuple(names) if degrees is None: degrees = tuple([1 for _ in range(n)]) else: degrees = tuple(degrees) return super().__classcall__(cls, base=base, names=names, degrees=degrees, max_degree=max_degree, category=category, **kwargs) def __init__(self, base, names, degrees, max_degree, category=None, **kwargs): r""" Construct a commutative graded algebra with finite degree. TESTS:: sage: A.<x,y,z,t> = GradedCommutativeAlgebra(QQ, max_degree=6) sage: TestSuite(A).run() sage: A = GradedCommutativeAlgebra(QQ, ('x','y','z'), [2,3,4], max_degree=8) sage: TestSuite(A).run() sage: A = GradedCommutativeAlgebra(QQ, ('x','y','z','t'), [1,2,3,4], max_degree=10) sage: TestSuite(A).run() """ from sage.arith.misc import gcd if max_degree not in ZZ: raise TypeError('max_degree must be an integer') if max_degree < max(degrees): raise ValueError(f'max_degree must not deceed {max(degrees)}') self._names = names self.__ngens = len(self._names) self._degrees = degrees self._max_deg = max_degree self._weighted_vectors = WeightedIntegerVectors(degrees) self._mul_symbol = kwargs.pop('mul_symbol', '*') self._mul_latex_symbol = kwargs.pop('mul_latex_symbol', '') step = gcd(degrees) universe = DisjointUnionEnumeratedSets(self._weighted_vectors.subset(k) for k in range(0, max_degree, step)) base_cat = Algebras(base).WithBasis().Super().Supercommutative().FiniteDimensional() category = base_cat.or_subcategory(category, join=True) indices = ConditionSet(universe, self._valid_index) sorting_key = self._weighted_vectors.grading CombinatorialFreeModule.__init__(self, base, indices, sorting_key=sorting_key, category=category) def _valid_index(self, w): r""" Return whether ``w`` is a valid index; no multiple powers in odd degrees. TESTS:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=8) sage: w1 = A._weighted_vectors([1,2,1]) sage: w2 = A._weighted_vectors([1,2,2]) sage: A._valid_index(w1) True sage: A._valid_index(w2) False """ return not any(i > 1 for i, d in zip(w, self._degrees) if is_odd(d)) def _repr_(self): """ Return the string representation of ``self``. TESTS:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=8) sage: A._repr_() "Graded commutative algebra with generators ('x', 'y', 'z') in degrees (1, 2, 3) with maximal degree 8" sage: A # indirect doctest Graded commutative algebra with generators ('x', 'y', 'z') in degrees (1, 2, 3) with maximal degree 8 """ desc = f'Graded commutative algebra with generators {self._names} in ' desc += f'degrees {self._degrees} with maximal degree {self._max_deg}' return desc def ngens(self): r""" Return the number of generators of ``self``. EXAMPLES:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(4,8,2), max_degree=10) sage: A.ngens() 3 """ return self.__ngens @cached_method def product_on_basis(self, w1, w2): r""" Return the product of two indices within the algebra. EXAMPLES:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(4,8,2), max_degree=10) sage: z*x x*z sage: x^3 0 sage: 5*z + 4*z*x 5*z + 4*x*z :: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=5) sage: 2*x*y 2*x*y sage: x^2 0 sage: x*z x*z sage: z*x -x*z sage: x*y*z 0 TESTS:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(4,8,2), max_degree=10) sage: weighted_vectors = A._weighted_vectors sage: w1 = A._weighted_vectors([1,0,1]) sage: w2 = A._weighted_vectors([0,0,0]) sage: A.product_on_basis(w1, w2) x*z :: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=5) sage: weighted_vectors = A._weighted_vectors sage: w1 = A._weighted_vectors([1,0,0]) sage: w2 = A._weighted_vectors([0,0,1]) sage: A.product_on_basis(w1, w2) x*z sage: A.product_on_basis(w2, w1) -x*z :: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=10) sage: weighted_vectors = A._weighted_vectors sage: w1 = A._weighted_vectors([1,1,0]) sage: w2 = A._weighted_vectors([0,1,1]) sage: A.product_on_basis(w1, w2) x*y^2*z sage: A.product_on_basis(w2, w1) -x*y^2*z """ grading = self._weighted_vectors.grading deg_left = grading(w1) deg_right = grading(w2) deg_tot = deg_left + deg_right if deg_tot > self._max_deg: return self.zero() w_tot = self._weighted_vectors([sum(w) for w in zip(w1, w2)]) if not self._valid_index(w_tot): return self.zero() # determine sign n = self.__ngens c = 0 for p, i, d in zip(reversed(range(n)), reversed(w1), reversed(self._degrees)): if is_even(d) or i == 0: continue for q, j, b in zip(range(n), w2, self._degrees): if q == p: break if j == 0 or is_even(b): continue c += 1 return (-1)**c * self.monomial(w_tot) def degree_on_basis(self, i): r""" Return the degree of a homogeneous element with index `i`. EXAMPLES:: sage: A.<a,b,c> = GradedCommutativeAlgebra(QQ, degrees=(2,4,6), max_degree=7) sage: a.degree() 2 sage: (2*a*b).degree() 6 sage: (a+b).degree() Traceback (most recent call last): ... ValueError: element is not homogeneous TESTS:: sage: A.<a,b,c> = GradedCommutativeAlgebra(QQ, degrees=(2,4,6), max_degree=7) sage: weighted_vectors = A._weighted_vectors sage: i = A._weighted_vectors([1,1,0]) sage: A.degree_on_basis(i) 6 """ return self._weighted_vectors.grading(i) def _repr_term(self, w): r""" Return the string representation of basis with index ``w``. TESTS:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=8) sage: w = A._weighted_vectors([1,2,1]) sage: A._repr_term(w) 'x*y^2*z' sage: x*y^2*z # indirect doctest x*y^2*z :: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=8, mul_symbol='⌣') sage: w = A._weighted_vectors([1,2,1]) sage: A._repr_term(w) 'x⌣y^2⌣z' sage: x*y^2*z # indirect doctest x⌣y^2⌣z """ # Trivial case: if sum(w) == 0: return '1' # Non-trivial case: terms = [] for i in range(len(w)): if w[i] == 0: continue elif w[i] == 1: terms.append(self._names[i]) else: terms.append(self._names[i] + f'^{w[i]}') return self._mul_symbol.join(terms) def _latex_term(self, w): r""" Return the LaTeX representation of basis with index ``w``. TESTS:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=8) sage: w = A._weighted_vectors([1,2,1]) sage: A._latex_term(w) 'x y^{2} z' sage: latex(x*y^2*z) # indirect doctest x y^{2} z :: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=8, mul_latex_symbol=r'\smile') sage: A._latex_term(w) 'x\\smile y^{2}\\smile z' sage: latex(x*y^2*z) # indirect doctest x\smile y^{2}\smile z """ # Trivial case: if sum(w) == 0: return '1' # Non-trivial case: terms = [] for i in range(len(w)): if w[i] == 0: continue elif w[i] == 1: terms.append(self._names[i]) else: terms.append(self._names[i] + '^{' + str(w[i]) + '}') latex_mul = self._mul_latex_symbol + ' ' # add whitespace return latex_mul.join(terms) def algebra_generators(self): r""" Return the generators of ``self`` as a :class:`sage.sets.family.TrivialFamily`. EXAMPLES:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(4,8,2), max_degree=10) sage: A.algebra_generators() Family (x, y, z) """ from sage.sets.family import Family return Family(self.gens()) @cached_method def one_basis(self): r""" Return the index of the one element of ``self``. EXAMPLES:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(4,8,2), max_degree=10) sage: ind = A.one_basis(); ind [0, 0, 0] sage: A.monomial(ind) 1 sage: A.one() # indirect doctest 1 """ n = len(self._degrees) return self._weighted_vectors([0 for _ in range(n)]) def gens(self): r""" Return the generators of ``self`` as a list. EXAMPLES:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(4,8,2), max_degree=10) sage: A.gens() [x, y, z] """ n = len(self._degrees) zero = [0 for _ in range(n)] indices = [] for k in range(n): ind = list(zero) ind[k] = 1 indices.append(self._weighted_vectors(ind)) return [self.monomial(ind) for ind in indices] @cached_method def gen(self, i): r""" Return the `i`-th generator of ``self``. EXAMPLES:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(4,8,2), max_degree=10) sage: A.gen(0) x sage: A.gen(1) y sage: A.gen(2) z """ return self.gens()[i] def maximal_degree(self): r""" Return the maximal degree of ``self``. EXAMPLES:: sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=8) sage: A.maximal_degree() 8 """ return self._max_deg max_degree = maximal_degree
configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py
evgps/mmdetection_trashcan
367
12738289
<reponame>evgps/mmdetection_trashcan _base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py' ] model = dict( pretrained=None, roi_head=dict( bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=8, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=8, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))) # optimizer # lr is set for a batch size of 8 optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, # [7] yields higher performance than [6] step=[7]) runner = dict( type='EpochBasedRunner', max_epochs=8) # actual epoch = 8 * 8 = 64 log_config = dict(interval=100) # For better, more stable performance initialize from COCO load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth' # noqa
social_auth/backends/contrib/dropbox.py
merutak/django-social-auth
863
12738298
from social.backends.dropbox import DropboxOAuth as DropboxBackend
zktraffic/stats/stats.py
fakeNetflix/twitter-repo-zktraffic
159
12738303
# ================================================================================================== # Copyright 2014 Twitter, Inc. # -------------------------------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================================== def sizeof_fmt(num): for x in ('', 'KB', 'MB', 'GB'): if num < 1024.0: if x == '': return "%d%s" % (num, x) else: return "%3.1f%s" % (num, x) num /= 1024.0 return "%3.1f%s" % (num, 'TB') class Counters(object): ALL = -1 WRITES = 0 READS = 1 CREATE = 2 SET_DATA = 3 GET_DATA = 4 DELETE = 5 GET_CHILDREN = 6 EXISTS = 7 CREATE_BYTES = 8 SET_DATA_BYTES = 9 GET_DATA_BYTES = 10 DELETE_BYTES = 11 GET_CHILDREN_BYTES = 12 EXISTS_BYTES = 13 CountersByName = { "all": Counters.ALL, "writes": Counters.WRITES, "reads": Counters.READS, "create": Counters.CREATE, "getdata": Counters.GET_DATA, "setdata": Counters.SET_DATA, "delete": Counters.DELETE, "getchildren": Counters.GET_CHILDREN, "getchildren_bytes": Counters.GET_CHILDREN_BYTES, "create_bytes": Counters.CREATE_BYTES, "getdata_bytes": Counters.GET_DATA_BYTES, "setdata_bytes": Counters.SET_DATA_BYTES, "delete_bytes": Counters.DELETE_BYTES, } def counter_to_str(counter): for name, c in CountersByName.items(): if counter == c: return name return ""
koku/reporting/migrations/0210_ocpaws_partables.py
project-koku/koku
157
12738310
<gh_stars>100-1000 # Generated by Django 3.1.13 on 2021-11-18 04:49 import django.db.models.deletion from django.db import migrations from django.db import models from koku.database import set_partition_mode from koku.database import unset_partition_mode class Migration(migrations.Migration): dependencies = [("api", "0050_exchangerates"), ("reporting", "0209_gcp_partables")] operations = [ migrations.RunPython(code=set_partition_mode, reverse_code=unset_partition_mode), migrations.CreateModel( name="OCPAWSStorageSummaryP", fields=[ ("id", models.UUIDField(primary_key=True, serialize=False)), ("usage_start", models.DateField()), ("usage_end", models.DateField()), ("cluster_id", models.CharField(max_length=50, null=True)), ("cluster_alias", models.CharField(max_length=256, null=True)), ("usage_account_id", models.CharField(max_length=50)), ("product_family", models.CharField(max_length=150, null=True)), ("usage_amount", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("unit", models.CharField(max_length=63, null=True)), ("unblended_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("markup_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("currency_code", models.CharField(max_length=10)), ( "account_alias", models.ForeignKey( null=True, on_delete=django.db.models.deletion.DO_NOTHING, to="reporting.awsaccountalias" ), ), ( "source_uuid", models.ForeignKey( db_column="source_uuid", null=True, on_delete=django.db.models.deletion.CASCADE, to="api.provider", ), ), ], options={"db_table": "reporting_ocpaws_storage_summary_p"}, ), migrations.RunSQL( sql="ALTER TABLE reporting_ocpaws_storage_summary_p ALTER COLUMN id SET DEFAULT uuid_generate_v4()", reverse_sql="select 1", ), migrations.CreateModel( name="OCPAWSNetworkSummaryP", fields=[ ("id", models.UUIDField(primary_key=True, serialize=False)), ("usage_start", models.DateField()), ("usage_end", models.DateField()), ("cluster_id", models.CharField(max_length=50, null=True)), ("cluster_alias", models.CharField(max_length=256, null=True)), ("usage_account_id", models.CharField(max_length=50)), ("product_code", models.CharField(max_length=50)), ("usage_amount", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("unit", models.CharField(max_length=63, null=True)), ("unblended_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("markup_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("currency_code", models.CharField(max_length=10)), ( "account_alias", models.ForeignKey( null=True, on_delete=django.db.models.deletion.DO_NOTHING, to="reporting.awsaccountalias" ), ), ( "source_uuid", models.ForeignKey( db_column="source_uuid", null=True, on_delete=django.db.models.deletion.CASCADE, to="api.provider", ), ), ], options={"db_table": "reporting_ocpaws_network_summary_p"}, ), migrations.RunSQL( sql="ALTER TABLE reporting_ocpaws_network_summary_p ALTER COLUMN id SET DEFAULT uuid_generate_v4()", reverse_sql="select 1", ), migrations.CreateModel( name="OCPAWSDatabaseSummaryP", fields=[ ("id", models.UUIDField(primary_key=True, serialize=False)), ("usage_start", models.DateField()), ("usage_end", models.DateField()), ("cluster_id", models.CharField(max_length=50, null=True)), ("cluster_alias", models.CharField(max_length=256, null=True)), ("usage_account_id", models.CharField(max_length=50)), ("product_code", models.CharField(max_length=50)), ("usage_amount", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("unit", models.CharField(max_length=63, null=True)), ("unblended_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("markup_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("currency_code", models.CharField(max_length=10)), ( "account_alias", models.ForeignKey( null=True, on_delete=django.db.models.deletion.DO_NOTHING, to="reporting.awsaccountalias" ), ), ( "source_uuid", models.ForeignKey( db_column="source_uuid", null=True, on_delete=django.db.models.deletion.CASCADE, to="api.provider", ), ), ], options={"db_table": "reporting_ocpaws_database_summary_p"}, ), migrations.RunSQL( sql="ALTER TABLE reporting_ocpaws_database_summary_p ALTER COLUMN id SET DEFAULT uuid_generate_v4()", reverse_sql="select 1", ), migrations.CreateModel( name="OCPAWSCostSummaryP", fields=[ ("id", models.UUIDField(primary_key=True, serialize=False)), ("usage_start", models.DateField()), ("usage_end", models.DateField()), ("cluster_id", models.CharField(max_length=50, null=True)), ("cluster_alias", models.CharField(max_length=256, null=True)), ("unblended_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("markup_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("currency_code", models.CharField(max_length=10)), ( "source_uuid", models.ForeignKey( db_column="source_uuid", null=True, on_delete=django.db.models.deletion.CASCADE, to="api.provider", ), ), ], options={"db_table": "reporting_ocpaws_cost_summary_p"}, ), migrations.RunSQL( sql="ALTER TABLE reporting_ocpaws_cost_summary_p ALTER COLUMN id SET DEFAULT uuid_generate_v4()", reverse_sql="select 1", ), migrations.CreateModel( name="OCPAWSCostSummaryByServiceP", fields=[ ("id", models.UUIDField(primary_key=True, serialize=False)), ("usage_start", models.DateField()), ("usage_end", models.DateField()), ("cluster_id", models.CharField(max_length=50, null=True)), ("cluster_alias", models.CharField(max_length=256, null=True)), ("usage_account_id", models.CharField(max_length=50)), ("product_code", models.CharField(max_length=50)), ("product_family", models.CharField(max_length=150, null=True)), ("unblended_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("markup_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("currency_code", models.CharField(max_length=10)), ( "account_alias", models.ForeignKey( null=True, on_delete=django.db.models.deletion.DO_NOTHING, to="reporting.awsaccountalias" ), ), ( "source_uuid", models.ForeignKey( db_column="source_uuid", null=True, on_delete=django.db.models.deletion.CASCADE, to="api.provider", ), ), ], options={"db_table": "reporting_ocpaws_cost_summary_by_service_p"}, ), migrations.RunSQL( sql="ALTER TABLE reporting_ocpaws_cost_summary_by_service_p ALTER COLUMN id SET DEFAULT uuid_generate_v4()", reverse_sql="select 1", ), migrations.CreateModel( name="OCPAWSCostSummaryByRegionP", fields=[ ("id", models.UUIDField(primary_key=True, serialize=False)), ("usage_start", models.DateField()), ("usage_end", models.DateField()), ("cluster_id", models.CharField(max_length=50, null=True)), ("cluster_alias", models.CharField(max_length=256, null=True)), ("usage_account_id", models.CharField(max_length=50)), ("region", models.CharField(max_length=50, null=True)), ("availability_zone", models.CharField(max_length=50, null=True)), ("unblended_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("markup_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("currency_code", models.CharField(max_length=10)), ( "account_alias", models.ForeignKey( null=True, on_delete=django.db.models.deletion.DO_NOTHING, to="reporting.awsaccountalias" ), ), ( "source_uuid", models.ForeignKey( db_column="source_uuid", null=True, on_delete=django.db.models.deletion.CASCADE, to="api.provider", ), ), ], options={"db_table": "reporting_ocpaws_cost_summary_by_region_p"}, ), migrations.RunSQL( sql="ALTER TABLE reporting_ocpaws_cost_summary_by_region_p ALTER COLUMN id SET DEFAULT uuid_generate_v4()", reverse_sql="select 1", ), migrations.CreateModel( name="OCPAWSCostSummaryByAccountP", fields=[ ("id", models.UUIDField(primary_key=True, serialize=False)), ("usage_start", models.DateField()), ("usage_end", models.DateField()), ("cluster_id", models.CharField(max_length=50, null=True)), ("cluster_alias", models.CharField(max_length=256, null=True)), ("usage_account_id", models.CharField(max_length=50)), ("unblended_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("markup_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("currency_code", models.CharField(max_length=10)), ( "account_alias", models.ForeignKey( null=True, on_delete=django.db.models.deletion.DO_NOTHING, to="reporting.awsaccountalias" ), ), ( "source_uuid", models.ForeignKey( db_column="source_uuid", null=True, on_delete=django.db.models.deletion.CASCADE, to="api.provider", ), ), ], options={"db_table": "reporting_ocpaws_cost_summary_by_account_p"}, ), migrations.RunSQL( sql="ALTER TABLE reporting_ocpaws_cost_summary_by_account_p ALTER COLUMN id SET DEFAULT uuid_generate_v4()", reverse_sql="select 1", ), migrations.CreateModel( name="OCPAWSComputeSummaryP", fields=[ ("id", models.UUIDField(primary_key=True, serialize=False)), ("usage_start", models.DateField()), ("usage_end", models.DateField()), ("cluster_id", models.CharField(max_length=50, null=True)), ("cluster_alias", models.CharField(max_length=256, null=True)), ("usage_account_id", models.CharField(max_length=50)), ("instance_type", models.CharField(max_length=50, null=True)), ("resource_id", models.CharField(max_length=253, null=True)), ("usage_amount", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("unit", models.CharField(max_length=63, null=True)), ("unblended_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("markup_cost", models.DecimalField(decimal_places=15, max_digits=33, null=True)), ("currency_code", models.CharField(max_length=10)), ( "account_alias", models.ForeignKey( null=True, on_delete=django.db.models.deletion.DO_NOTHING, to="reporting.awsaccountalias" ), ), ( "source_uuid", models.ForeignKey( db_column="source_uuid", null=True, on_delete=django.db.models.deletion.CASCADE, to="api.provider", ), ), ], options={"db_table": "reporting_ocpaws_compute_summary_p"}, ), migrations.RunSQL( sql="ALTER TABLE reporting_ocpaws_compute_summary_p ALTER COLUMN id SET DEFAULT uuid_generate_v4()", reverse_sql="select 1", ), migrations.AddIndex( model_name="ocpawsstoragesummaryp", index=models.Index(fields=["usage_start"], name="ocpawsstorsumm_usst") ), migrations.AddIndex( model_name="ocpawsstoragesummaryp", index=models.Index(fields=["product_family"], name="ocpawsstorsumm_product_fam"), ), migrations.AddIndex( model_name="ocpawsnetworksummaryp", index=models.Index(fields=["usage_start"], name="ocpawsnetsumm_usst") ), migrations.AddIndex( model_name="ocpawsnetworksummaryp", index=models.Index(fields=["product_code"], name="ocpawsnetsumm_product_cd"), ), migrations.AddIndex( model_name="ocpawsdatabasesummaryp", index=models.Index(fields=["usage_start"], name="ocpawsdbsumm_usst") ), migrations.AddIndex( model_name="ocpawsdatabasesummaryp", index=models.Index(fields=["product_code"], name="ocpawsdbsumm_product_cd"), ), migrations.AddIndex( model_name="ocpawscostsummaryp", index=models.Index(fields=["usage_start"], name="ocpawscostsumm_usst") ), migrations.AddIndex( model_name="ocpawscostsummarybyservicep", index=models.Index(fields=["usage_start"], name="ocpawscostsumm_svc_usst"), ), migrations.AddIndex( model_name="ocpawscostsummarybyservicep", index=models.Index(fields=["product_code"], name="ocpawscostsumm_svc_prod_cd"), ), migrations.AddIndex( model_name="ocpawscostsummarybyregionp", index=models.Index(fields=["usage_start"], name="ocpawscostsumm_reg_usst"), ), migrations.AddIndex( model_name="ocpawscostsummarybyregionp", index=models.Index(fields=["region"], name="ocpawscostsumm_reg_region"), ), migrations.AddIndex( model_name="ocpawscostsummarybyregionp", index=models.Index(fields=["availability_zone"], name="ocpawscostsumm_reg_zone"), ), migrations.AddIndex( model_name="ocpawscostsummarybyaccountp", index=models.Index(fields=["usage_start"], name="ocpawscostsumm_acct_usst"), ), migrations.AddIndex( model_name="ocpawscomputesummaryp", index=models.Index(fields=["usage_start"], name="ocpawscompsumm_usst") ), migrations.AddIndex( model_name="ocpawscomputesummaryp", index=models.Index(fields=["instance_type"], name="ocpawscompsumm_insttyp"), ), migrations.RunPython(code=unset_partition_mode, reverse_code=set_partition_mode), ]
leather/shapes/dots.py
timgates42/leather
198
12738314
<reponame>timgates42/leather #!/usr/bin/env python from collections import defaultdict import xml.etree.ElementTree as ET import six from leather.data_types import Text from leather.series import CategorySeries from leather.shapes.base import Shape from leather import theme from leather.utils import DummySeries, X, Y class Dots(Shape): """ Render a series of data as dots. :param fill_color: The color to fill the dots. You may also specify a :func:`.style_function`. If not specified, default chart colors will be used. :param radius: The radius of the rendered dots. Defaults to :data:`.theme.default_dot_radius`. You may also specify a :func:`.style_function`. """ def __init__(self, fill_color=None, radius=None): self._fill_color = fill_color self._radius = radius or theme.default_dot_radius def validate_series(self, series): """ Verify this shape can be used to render a given series. """ if series.data_type(X) is Text or series.data_type(Y) is Text: raise ValueError('Dots do not support Text values.') return True def to_svg(self, width, height, x_scale, y_scale, series, palette): """ Render dots to SVG elements. """ group = ET.Element('g') group.set('class', 'series dots') default_colors = defaultdict(lambda: next(palette)) for d in series.data(): if d.x is None or d.y is None: continue proj_x = x_scale.project(d.x, 0, width) proj_y = y_scale.project(d.y, height, 0) if callable(self._fill_color): fill_color = self._fill_color(d) elif self._fill_color: fill_color = self._fill_color else: fill_color = default_colors[d.z] if callable(self._radius): radius = self._radius(d) else: radius = self._radius group.append(ET.Element('circle', cx=six.text_type(proj_x), cy=six.text_type(proj_y), r=six.text_type(radius), fill=fill_color )) return group def legend_to_svg(self, series, palette): """ Render the legend entries for these shapes. """ items = [] if isinstance(series, CategorySeries): for category in series.categories(): items.extend(Shape.legend_to_svg(self, DummySeries(category), palette)) else: items.extend(Shape.legend_to_svg(self, series, palette)) return items
pyNastran/bdf/mesh_utils/skin_solid_elements.py
luzpaz/pyNastran
293
12738326
<filename>pyNastran/bdf/mesh_utils/skin_solid_elements.py """ defines: - get_solid_skin_faces(model) """ from collections import defaultdict from copy import deepcopy from pyNastran.bdf.field_writer_8 import print_card_8 from pyNastran.bdf.field_writer_16 import print_card_16 def write_skin_solid_faces(model, skin_filename, write_solids=False, write_shells=True, size=8, is_double=False, encoding=None): """ Writes the skinned elements Parameters ---------- model : BDF() the BDF object skin_filename : str the file to write write_solids : bool; default=False write solid elements that have skinned faces write_shells : bool; default=False write newly created shell elements if there are shells in the model, doesn't write these size : int; default=8 the field width is_double : bool; default=False double precision flag encoding : str; default=None -> system default the string encoding """ if(len(model.element_ids) == 0 or len(model.material_ids) == 0 or len(model.property_ids) == 0): return eid_set, face_map = get_solid_skin_faces(model) if len(eid_set) == 0: return eid_set_to_write = set() nid_set_to_write = set() mid_set_to_write = set() if write_solids: for face, eids in eid_set.items(): eid_set_to_write.update(eids) for eid in eids: elem = model.elements[eid] pid = elem.Pid() prop = model.properties[pid] # PSOLID mid = prop.Mid() #print(prop) nid_set_to_write.update(elem.node_ids) mid_set_to_write.add(mid) #print('added_mid (a) =', mid) elif write_shells: for face, eids in eid_set.items(): eid_set_to_write.update(eids) nid_set_to_write.update(face) for eid in eids: elem = model.elements[eid] pid = elem.Pid() prop = model.properties[pid] # PSOLID if prop.type in ['PSOLID', 'PLSOLID']: mid = prop.Mid() elif prop.type in ['PCOMPS', 'PCOMPLS', 'PCOMP', 'PCOMPG']: mid = prop.mids[0] else: raise NotImplementedError(prop) #except TypeError: #model.log.warning('TypeError: skipping:%s' % prop) #raise #except AttributeError: #model.log.warning('skipping:%s' % prop) #continue mid_set_to_write.add(mid) #print('added eid=%s pid=%s mid=%s (b)' % (eid, pid, mid)) else: raise RuntimeError('write_solids=False write_shells=False') eids_to_write = list(eid_set_to_write) nids_to_write = list(nid_set_to_write) mids_to_write = list(mid_set_to_write) #element_ids_to_delete = set(model.element_ids) - eids_to_write eid_shell = max(model.elements) + 1 pid_shell = max(model.properties) + 1 mid_shell = max(model.materials) + 1 _write_skin_solid_faces(model, skin_filename, face_map, nids_to_write, eids_to_write, mids_to_write, eid_set, eid_shell, pid_shell, mid_shell, write_solids=write_solids, write_shells=write_shells, size=size, is_double=is_double, encoding=encoding) def get_solid_skin_faces(model): """ Gets the elements and faces that are skinned from solid elements. This doesn't include internal faces or existing shells. Parameters ---------- model : BDF() the BDF object Returns ------- eid_set : Dict[sorted_face] = eids sorted_face : tuple(int, int, ...) the face nids in sorted order eids : List[int] list of element ids with that face face_map : Dict[sorted_face] = face sorted_face : tuple(int, int, ...) the face nids in sorted order face : List(int, int, ...) the face nids """ eid_faces = model.get_element_faces() face_set = defaultdict(int) eid_set = defaultdict(list) face_map = {} for eid, face in eid_faces: #print(eid, face) raw_face = deepcopy(face) try: face.sort() except Exception: print('face = %s' % str(face)) raise tface = tuple(face) #print(tface) face_set[tface] += 1 eid_set[tface].append(eid) face_map[tface] = raw_face #print('eid_set:') #for tface, eidset in eid_set.items(): #print(tface, eidset) #print('face_set:') #for tface, faceset in face_set.items(): #print(tface, faceset) #print('face_map:') #for tface, facemap in face_map.items(): #print(tface, facemap) del_faces = [] for face, face_count in face_set.items(): if face_count == 2: del_faces.append(face) for face in del_faces: del face_set[face] del eid_set[face] return eid_set, face_map def _write_skin_solid_faces(model, skin_filename, face_map, nids_to_write, eids_to_write, mids_to_write, eid_set, eid_shell, pid_shell, mid_shell, write_solids=False, write_shells=True, size=8, is_double=False, encoding=None): """ helper method for ``write_skin_solid_faces`` Parameters ---------- model : BDF() the BDF object skin_filename : str the file to write face_map : dict[sorted_face] : face sorted_face : List[int, int, int] / List[int, int, int, int] face : List[int, int, int] / List[int, int, int, int] nids_to_write : List[int, int, ...] list of node ids to write eids_to_write : List[int, int, ...] list of element ids to write mids_to_write : List[int, int, ...] list of material ids to write eid_set : dict[face] : eids ??? eid_shell : int the next id to use for the shell id pid_shell : int the next id to use for the shell property mid_shell : int the next id to use for the shell material write_solids : bool; default=False write solid elements that have skinned faces write_shells : bool; default=True write shell elements size : int; default=8 the field width is_double : bool; default=False double precision flag encoding : str; default=None -> system default the string encoding """ encoding = model.get_encoding(encoding) with open(skin_filename, 'w', encoding=encoding) as bdf_file: bdf_file.write('$ pyNastran: punch=True\n') for nid in sorted(nids_to_write): if nid is None: continue node = model.nodes[nid] bdf_file.write(node.write_card(size=size, is_double=is_double)) for cid, coord in model.coords.items(): if cid == 0: continue bdf_file.write(coord.write_card(size=size, is_double=is_double)) if write_solids: for eid in sorted(eids_to_write): elem = model.elements[eid] bdf_file.write(elem.write_card(size=size)) for pid, prop in model.properties.items(): bdf_file.write(prop.write_card(size=size, is_double=is_double)) for mid in sorted(mids_to_write): material = model.materials[mid] bdf_file.write(material.write_card(size=size, is_double=is_double)) del eid, pid, mid if write_shells: mids_to_write.sort() for imid, mid in enumerate(mids_to_write): card = ['PSHELL', pid_shell + imid, mid_shell + imid, 0.1] try: msg = print_card_8(card) except RuntimeError: msg = print_card_16(card) bdf_file.write(msg) card = ['MAT1', mid_shell + imid, 3.e7, None, 0.3] #bdf_file.write(model.materials[mid].comment) try: msg = print_card_8(card) except RuntimeError: msg = print_card_16(card) bdf_file.write(msg) for face, eids in eid_set.items(): face_raw = face_map[face] nface = len(face) #print("eids =", eids) #assert len(eids) == 1, eids #for eid in sorted(eids): #elem = model.elements[eid] #print(elem) #break assert len(eids) == 1, eids elem = model.elements[eids[0]] #pid = next(model.properties.keys()) pid = elem.Pid() prop = model.properties[pid] if prop.type in ['PSOLID']: # 'PSHELL', mid = prop.Mid() elif prop.type in ['PCOMPS', 'PCOMPLS']: # 'PSHELL', #print(prop.get_stats()) mid = prop.Mid() #elif prop.type in ['PCOMP', 'PCOMPG']: #mid = prop.mids[0] else: raise NotImplementedError(prop) #print('mids_to_write = %s' % mids_to_write) #print('mids = ', model.materials.keys()) imid = mids_to_write.index(mid) if nface == 3: card = ['CTRIA3', eid_shell, pid_shell + imid] + list(face_raw) elif nface == 4: card = ['CQUAD4', eid_shell, pid_shell + imid] + list(face_raw) elif nface == 4: card = ['CQUAD4', eid_shell, pid_shell + imid] + list(face_raw) elif nface == 6: card = ['CTRIA6', eid_shell, pid_shell + imid] + list(face_raw) elif nface == 8: card = ['CQUAD8', eid_shell, pid_shell + imid] + list(face_raw) else: raise NotImplementedError('face=%s len(face)=%s' % (face, nface)) try: msg = print_card_8(card) except RuntimeError: msg = print_card_16(card) bdf_file.write(msg) eid_shell += 1 #elem = model.elements[eid] #bdf_file.write(elem.write_card(size=size)) #for pid, prop in model.properties.items(): #bdf_file.write(prop.write_card(size=size, is_double=is_double)) bdf_file.write('ENDDATA\n') #if 0: #model = model.__class__.__init__() #model.read_bdf(skin_filename)
Example/Psi4Numpy/13-GeometryOptimization/opt_helper/printTools.py
yychuang/109-2-compchem-lite
214
12738352
<gh_stars>100-1000 from __future__ import print_function def printMat(M, Ncol=7, title=None): if title: print(title + '\n') for row in range(M.shape[0]): tab = 0 for col in range(M.shape[1]): tab += 1 print(" %10.6f" % M[row, col]) if tab == Ncol and col != (M.shape[1] - 1): print("\n") tab = 0 print("\n") return def printMatString(M, Ncol=7, title=None): if title: print(title + '\n') s = '' for row in range(M.shape[0]): tab = 0 for col in range(M.shape[1]): tab += 1 s += " %10.6f" % M[row, col] if tab == Ncol and col != (M.shape[1] - 1): s += '\n' tab = 0 s += '\n' return s def printArray(M, Ncol=7, title=None): if title: print(title + '\n') tab = 0 for col, entry in enumerate(M): tab += 1 print(" %10.6f" % M[col]) if tab == Ncol and col != (len(M) - 1): print("\n") tab = 0 print("\n") return def printArrayString(M, Ncol=7, title=None): if title: print(title + '\n') tab = 0 s = '' for i, entry in enumerate(M): tab += 1 s += " %10.6f" % entry if tab == Ncol and i != (len(M) - 1): s += '\n' tab = 0 s += '\n' return s def printGeomGrad(geom, grad): print("\tGeometry and Gradient\n") Natom = geom.shape[0] for i in range(Natom): print("\t%20.10f%20.10f%20.10f\n" % (geom[i, 0], geom[i, 1], geom[i, 2])) print("\n") for i in range(Natom): print("\t%20.10f%20.10f%20.10f\n" % (grad[3 * i + 0], grad[3 * i + 1], grad[3 * i + 2]))
tests/test_views_objects_permissions.py
vincentfretin/kinto
4,618
12738356
<filename>tests/test_views_objects_permissions.py import unittest from kinto.core.testing import get_user_headers from .support import ( MINIMALIST_BUCKET, MINIMALIST_COLLECTION, MINIMALIST_GROUP, MINIMALIST_RECORD, BaseWebTest, ) class PermissionsTest(BaseWebTest, unittest.TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.alice_headers = {**cls.headers, **get_user_headers("alice")} cls.bob_headers = {**cls.headers, **get_user_headers("bob")} cls.alice_principal = ( "basicauth:<PASSWORD>" ) cls.bob_principal = ( "basicauth:<PASSWORD>" ) class BucketPermissionsTest(PermissionsTest): def setUp(self): bucket = {**MINIMALIST_BUCKET, "permissions": {"read": [self.alice_principal]}} self.app.put_json("/buckets/sodas", bucket, headers=self.headers) def test_creation_is_allowed_to_authenticated_by_default(self): self.app.put_json("/buckets/beer", MINIMALIST_BUCKET, headers=self.headers) def test_current_user_receives_write_permission_on_creation(self): resp = self.app.put_json("/buckets/beer", MINIMALIST_BUCKET, headers=self.headers) permissions = resp.json["permissions"] self.assertIn(self.principal, permissions["write"]) def test_can_read_if_allowed(self): self.app.get("/buckets/sodas", headers=self.alice_headers) def test_cannot_write_if_not_allowed(self): self.app.put_json( "/buckets/sodas", MINIMALIST_BUCKET, headers=self.alice_headers, status=403 ) def test_permissions_are_not_returned_if_can_only_read(self): resp = self.app.get("/buckets/sodas", headers=self.alice_headers) self.assertEqual(resp.json["permissions"], {}) def test_permissions_are_returned_if_can_write(self): resp = self.app.get("/buckets/sodas", headers=self.headers) self.assertIn("write", resp.json["permissions"]) def test_cannot_post_existing_id_if_cannot_read(self): self.app.get("/buckets/sodas", headers=self.bob_headers, status=403) self.app.post_json( "/buckets", {"data": {"id": "sodas"}}, headers=self.bob_headers, status=403 ) def test_can_post_existing_id_if_can_read(self): self.app.patch_json( "/buckets/sodas", {"data": {"marker": True}, "permissions": {"read": ["system.Authenticated"]}}, headers=self.headers, ) resp = self.app.post_json("/buckets", {"data": {"id": "sodas"}}, headers=self.bob_headers) assert resp.json["data"]["marker"] class CollectionPermissionsTest(PermissionsTest): def setUp(self): bucket = { **MINIMALIST_BUCKET, "permissions": {"read": [self.alice_principal], "write": [self.bob_principal]}, } self.app.put_json("/buckets/beer", bucket, headers=self.headers) self.app.put_json( "/buckets/beer/collections/barley", MINIMALIST_COLLECTION, headers=self.headers, ) def test_passing_unicode_on_parent_id_is_supported(self): self.app.get( "/buckets/block%C2%93%C2%96sts/collections/barley", headers=self.alice_headers, status=403, ) def test_read_is_allowed_if_read_on_bucket(self): self.app.get("/buckets/beer/collections/barley", headers=self.alice_headers) def test_read_is_allowed_if_write_on_bucket(self): self.app.get("/buckets/beer/collections/barley", headers=self.bob_headers) def test_cannot_read_if_not_allowed(self): headers = {**self.headers, **get_user_headers("jean-louis")} self.app.get("/buckets/beer/collections/barley", headers=headers, status=403) def test_cannot_write_if_not_allowed(self): self.app.put_json( "/buckets/beer/collections/barley", MINIMALIST_COLLECTION, headers=self.alice_headers, status=403, ) def test_permission_backend_prevent_sql_injections(self): self.app.get("/buckets/beer'", headers=self.headers, status=403) self.app.get("/buckets/beer'/collections/barley", headers=self.headers, status=403) self.app.get("/buckets/beer'/groups/barley", headers=self.headers, status=403) self.app.get("/buckets/beer/collections/barley'", headers=self.headers, status=400) # XXX: We should validate the collection ID on the records collection endpoint. #1077 self.app.get( "/buckets/beer/collections/barley'/records", headers=self.headers, status=404, ) self.app.get("/buckets/beer/groups/barley'", headers=self.headers, status=400) class GroupPermissionsTest(PermissionsTest): def setUp(self): bucket = { **MINIMALIST_BUCKET, "permissions": {"read": [self.alice_principal], "write": [self.bob_principal]}, } self.app.put_json("/buckets/beer", bucket, headers=self.headers) self.app.put_json( "/buckets/beer/groups/moderators", MINIMALIST_GROUP, headers=self.headers ) def test_creation_is_allowed_if_write_on_bucket(self): self.app.post_json("/buckets/beer/groups", MINIMALIST_GROUP, headers=self.headers) def test_read_is_allowed_if_read_on_bucket(self): self.app.get("/buckets/beer/groups/moderators", headers=self.alice_headers) def test_read_is_allowed_if_write_on_bucket(self): self.app.get("/buckets/beer/groups/moderators", headers=self.bob_headers) def test_cannot_read_if_not_allowed(self): headers = {**self.headers, **get_user_headers("jean-louis")} self.app.get("/buckets/beer/groups/moderators", headers=headers, status=403) def test_cannot_write_if_not_allowed(self): self.app.put_json( "/buckets/beer/groups/moderators", MINIMALIST_GROUP, headers=self.alice_headers, status=403, ) def test_creation_is_forbidden_is_no_write_on_bucket(self): self.app.post_json( "/buckets/beer/groups", MINIMALIST_GROUP, headers=self.alice_headers, status=403, ) class RecordPermissionsTest(PermissionsTest): def setUp(self): bucket = {**MINIMALIST_BUCKET, "permissions": {"write": [self.alice_principal]}} self.app.put_json("/buckets/beer", bucket, headers=self.headers) collection = { **MINIMALIST_COLLECTION, "permissions": {"write": [self.bob_principal]}, } self.app.put_json("/buckets/beer/collections/barley", collection, headers=self.headers) def test_creation_is_allowed_if_write_on_bucket(self): self.app.post_json( "/buckets/beer/collections/barley/records", MINIMALIST_RECORD, headers=self.alice_headers, ) def test_creation_is_allowed_if_write_on_collection(self): self.app.post_json( "/buckets/beer/collections/barley/records", MINIMALIST_RECORD, headers=self.bob_headers, ) def test_creation_is_forbidden_is_no_write_on_bucket_nor_collection(self): headers = {**self.headers, **get_user_headers("jean-louis")} self.app.post_json( "/buckets/beer/collections/barley/records", MINIMALIST_RECORD, headers=headers, status=403, ) def test_record_permissions_are_modified_by_patch(self): collection_url = "/buckets/beer/collections/barley/records" resp = self.app.post_json(collection_url, MINIMALIST_RECORD, headers=self.headers) record = resp.json["data"] resp = self.app.patch_json( "{}/{}".format(collection_url, record["id"]), {"permissions": {"read": ["fxa:user"]}}, headers=self.headers, ) self.assertIn("fxa:user", resp.json["permissions"]["read"]) class ChildrenCreationTest(PermissionsTest): def setUp(self): self.app.put_json( "/buckets/create", {"permissions": {"group:create": ["system.Authenticated"]}}, headers=self.alice_headers, ) self.app.put_json( "/buckets/write", {"permissions": {"write": ["system.Authenticated"]}}, headers=self.alice_headers, ) self.app.put_json( "/buckets/read", {"permissions": {"read": ["system.Authenticated"]}}, headers=self.alice_headers, ) for parent in ("create", "write", "read"): self.app.put_json( "/buckets/{}/groups/child".format(parent), MINIMALIST_GROUP, headers=self.alice_headers, ) self.bob_headers_safe_creation = dict({"If-None-Match": "*"}, **self.bob_headers) def test_cannot_read_others_objects_if_only_allowed_to_create(self): self.app.get("/buckets/create/groups/child", headers=self.bob_headers, status=403) def test_safe_creation_with_put_returns_412_if_allowed_to_create(self): self.app.put_json( "/buckets/create/groups/child", MINIMALIST_GROUP, headers=self.bob_headers_safe_creation, status=412, ) def test_safe_creation_with_post_returns_412_if_allowed_to_create_and_read(self): self.app.patch_json( "/buckets/create/groups/child", {"permissions": {"read": ["system.Authenticated"]}}, headers=self.alice_headers, ) self.app.post_json( "/buckets/create/groups", {"data": {"id": "child", "members": []}}, headers=self.bob_headers_safe_creation, status=412, ) def test_safe_creation_with_put_returns_412_if_allowed_to_write(self): self.app.put_json( "/buckets/write/groups/child", MINIMALIST_GROUP, headers=self.bob_headers_safe_creation, status=412, ) def test_safe_creation_with_post_returns_412_if_allowed_to_write(self): self.app.post_json( "/buckets/write/groups", {"data": {"id": "child", "members": []}}, headers=self.bob_headers_safe_creation, status=412, ) def test_safe_creation_with_put_returns_403_if_only_allowed_to_read(self): self.app.put_json( "/buckets/read/groups/child", MINIMALIST_GROUP, headers=self.bob_headers_safe_creation, status=403, ) def test_safe_creation_with_post_returns_403_if_not_allowed_to_read(self): self.app.post_json( "/buckets/create/groups", {"data": {"id": "child", "members": []}}, headers=self.bob_headers_safe_creation, status=403, ) def test_safe_creation_with_post_returns_412_if_only_allowed_to_read(self): self.app.post_json( "/buckets/read/groups", {"data": {"id": "child", "members": []}}, headers=self.bob_headers_safe_creation, status=412, ) def test_delete_returns_404_on_unknown_if_only_allowed_to_read(self): self.app.delete("/buckets/read/groups/g1", headers=self.bob_headers, status=404) def test_patch_returns_404_on_unknown_if_only_allowed_to_read(self): self.app.patch_json( "/buckets/read/groups/g1", {"data": {"members": []}}, headers=self.bob_headers, status=404, ) class ParentMetadataTest(PermissionsTest): def setUp(self): self.app.put_json( "/buckets/beer", {"permissions": {"collection:create": [self.bob_principal]}}, headers=self.headers, ) self.app.put_json("/buckets/beer/collections/wheat", headers=self.headers) self.app.put_json("/buckets/beer/collections/root", headers=self.headers) self.app.put_json( "/buckets/beer/collections/barley", {"permissions": {"record:create": [self.alice_principal]}}, headers=self.bob_headers, ) def test_parent_metadata_can_be_read_if_allowed_to_create_child(self): self.app.get("/buckets/beer", headers=self.bob_headers) self.app.get("/buckets/beer/collections/barley", headers=self.alice_headers) def test_parent_metadata_cannot_be_read_if_not_allowed_to_create_child(self): self.app.get("/buckets/beer", headers=get_user_headers("jean:paul"), status=403) self.app.get( "/buckets/beer/collections/barley", headers=get_user_headers("mahmud:hatim"), status=403, ) def test_list_can_be_obtained_if_allowed_to_create(self): resp = self.app.get("/buckets/beer/collections", headers=self.bob_headers) self.assertEqual(len(resp.json["data"]), 1) self.assertEqual(resp.json["data"][0]["id"], "barley") resp = self.app.get("/buckets/beer/collections/barley/records", headers=self.alice_headers) self.assertEqual(resp.json["data"], []) def test_list_is_denied_if_not_allowed_to_create(self): self.app.get( "/buckets/beer/collections", headers=get_user_headers("jean:paul"), status=403, ) self.app.get( "/buckets/beer/collections/barley/records", headers=get_user_headers("mahmud:hatim"), status=403, ) class DisabledExplicitPermissionsTest(BaseWebTest, unittest.TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.alice_headers = {**cls.headers, **get_user_headers("alice")} cls.alice_principal = ( "basicauth:d5b0026601f1b251974e09548d44155e16812e3c64ff7ae053fe3542e2ca1570" ) @classmethod def get_app_settings(cls, extras=None): settings = super().get_app_settings(extras) settings["explicit_permissions"] = "false" settings["experimental_permissions_endpoint"] = "true" return settings def setUp(self): self.app.put_json( "/buckets/write", {"permissions": {"write": ["system.Authenticated"]}}, headers=self.headers, ) self.app.put_json( "/buckets/write/collections/test", {"permissions": {"write": ["system.Authenticated"]}}, headers=self.alice_headers, ) def test_can_create_and_access_child_object(self): self.app.put( "/buckets/write/collections/test/records/1", headers=self.alice_headers, ) self.app.get( "/buckets/write/collections/test/records/1", headers=self.alice_headers, ) def test_current_user_is_not_added_to_object_permissions(self): resp = self.app.put_json( "/buckets/write/collections/test/records/1", {"permissions": {"write": ["system.Authenticated"], "read": ["ldap:chantal"]}}, headers=self.alice_headers, ) self.assertEqual( resp.json["permissions"], {"write": ["system.Authenticated"], "read": ["ldap:chantal"]}, ) def test_child_objects_are_not_listed_in_permission_endpoint(self): self.app.put( "/buckets/write/collections/test/records/1", headers=self.alice_headers, ) resp = self.app.get("/permissions", headers=self.alice_headers) perms = resp.json["data"] self.assertEqual( sorted(p["uri"] for p in perms), ["/", "/buckets/write", "/buckets/write/collections/test"], ) def test_write_via_groups(self): self.app.put_json( "/buckets/viagroup", {"permissions": {"write": [self.principal]}}, headers=self.headers, ) self.app.put_json( "/buckets/viagroup/collections/c", {"permissions": {"write": ["/buckets/viagroup/groups/editors"]}}, headers=self.headers, ) self.app.put_json( "/buckets/viagroup/groups/editors", {"data": {"members": [self.alice_principal]}}, headers=self.headers, ) self.app.post_json( "/buckets/viagroup/collections/c/records", {}, headers=self.alice_headers, )
sources/PacketStorm.py
eacg-gmbh/VIA4CVE
109
12738380
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # PacketStorm information # Based on Vulners # # Software is free software released under the "Modified BSD license" # # Copyright (c) 2017 <NAME> - <EMAIL> # Sources SOURCE_NAME = 'packetstorm' SOURCE_FILE = "https://vulners.com/api/v3/archive/collection/?type=packetstorm&api_key={}" # Imports import json from collections import defaultdict from lib.Config import Configuration as conf from lib.Source import Source def add_if(_, entry, item, name=None): if not name: name=item if entry.get(item): _[name] = entry[item] def clean_date(_, item): if _.get(item): _[item] = _[item].split('T')[0] class PacketStorm(Source): def __init__(self): self.name = SOURCE_NAME self.cves = defaultdict(list) source_file = SOURCE_FILE.format(conf.readSetting("vulners", "api_key", "")) _file, r = conf.getFeedData(SOURCE_NAME, source_file) data = json.loads(str(_file.read(), 'utf-8')) for entry in data: ps = {} source = entry['_source'] add_if(ps, source, 'published') add_if(ps, source, 'lastseen', 'last seen') add_if(ps, source, 'id') add_if(ps, source, 'title') add_if(ps, source, 'description') add_if(ps, source, 'references') add_if(ps, source, 'reporter') add_if(ps, source, 'href', 'source') add_if(ps, source, 'sourceHref', 'data source') for date in ['published', 'last seen']: clean_date(ps, date) if ps: for CVE in source['cvelist']: self.cves[CVE].append(ps) def getSearchables(self): return ['id', 'reporter']
causalml/__init__.py
zazrivec/causalml
2,919
12738413
<filename>causalml/__init__.py name = 'causalml' __version__ = '0.11.1' __all__ = ['dataset', 'features', 'feature_selection', 'inference', 'match', 'metrics', 'optimize', 'propensity']
scripts/generate_aligned_wave.py
m95music/yukarin
139
12738415
<filename>scripts/generate_aligned_wave.py """ extract indexes for alignment. """ import argparse import glob import multiprocessing from functools import partial from pathlib import Path from pprint import pprint from typing import Tuple import librosa import numpy import tqdm from yukarin.acoustic_feature import AcousticFeature from yukarin.align_indexes import AlignIndexes from yukarin.param import AcousticParam from yukarin.utility.json_utility import save_arguments base_acoustic_param = AcousticParam() parser = argparse.ArgumentParser() parser.add_argument('--input_feature_glob1', '-if1') parser.add_argument('--input_feature_glob2', '-if2') parser.add_argument('--input_indexes', '-ii') parser.add_argument('--output', '-o', type=Path) parser.add_argument('--sampling_rate', type=int, default=base_acoustic_param.sampling_rate) parser.add_argument('--frame_period', type=float, default=base_acoustic_param.frame_period) parser.add_argument('--alpha', type=float, default=base_acoustic_param.alpha) parser.add_argument('--disable_overwrite', action='store_true') arguments = parser.parse_args() def generate_aligned_wave( pair_path: Tuple[Path, Path, Path], sampling_rate: int, frame_period: float, alpha: float, ): path_feature1, path_feature2, path_indexes = pair_path if path_feature1.stem != path_feature2.stem: print('warning: the file names are different', path_feature1, path_feature2) if path_feature1.stem != path_indexes.stem: print('warning: the file names are different', path_feature1, path_indexes) out = Path(arguments.output, path_indexes.stem + '.wav') if arguments.disable_overwrite: return feature1 = AcousticFeature.load(path=path_feature1) feature2 = AcousticFeature.load(path=path_feature2) feature1.sp = AcousticFeature.mc2sp(feature1.mc, sampling_rate=sampling_rate, alpha=alpha) feature2.sp = AcousticFeature.mc2sp(feature2.mc, sampling_rate=sampling_rate, alpha=alpha) feature1.ap = AcousticFeature.decode_ap(feature1.coded_ap, sampling_rate=sampling_rate) feature2.ap = AcousticFeature.decode_ap(feature2.coded_ap, sampling_rate=sampling_rate) align_indexes = AlignIndexes.load(path=path_indexes) align_indexes.feature1 = feature1 align_indexes.feature2 = feature2 wave1 = align_indexes.get_aligned_feature1().decode(sampling_rate=sampling_rate, frame_period=frame_period) wave2 = align_indexes.get_aligned_feature2().decode(sampling_rate=sampling_rate, frame_period=frame_period) # save y = numpy.vstack([wave1.wave, wave2.wave]) librosa.output.write_wav(str(out), y, sr=sampling_rate) def main(): pprint(vars(arguments)) arguments.output.mkdir(exist_ok=True) save_arguments(arguments, arguments.output / 'arguments.json') path_feature1 = {Path(p).stem: Path(p) for p in glob.glob(arguments.input_feature_glob1)} path_feature2 = {Path(p).stem: Path(p) for p in glob.glob(arguments.input_feature_glob2)} path_indexes = {Path(p).stem: Path(p) for p in glob.glob(arguments.input_indexes)} fn_both_list = set(path_feature1.keys()) & set(path_indexes.keys()) pool = multiprocessing.Pool() generate = partial( generate_aligned_wave, sampling_rate=arguments.sampling_rate, frame_period=arguments.frame_period, alpha=arguments.alpha, ) it = pool.imap(generate, ((path_feature1[fn], path_feature2[fn], path_indexes[fn]) for fn in fn_both_list)) list(tqdm.tqdm(it, total=len(path_feature1))) if __name__ == '__main__': main()
py/examples/graphics_primitives.py
swt2c/wave
3,013
12738417
# Graphics / Primitives # Use the #graphics module to render and update shapes. # --- from h2o_wave import site, ui, graphics as g # Create some shapes arc = g.arc(r1=25, r2=50, a1=90, a2=180) circle = g.circle(cx=25, cy=25, r=25) ellipse = g.ellipse(cx=25, cy=25, rx=25, ry=20) image = g.image(width=50, height=50, href='https://www.python.org/static/community_logos/python-powered-h-140x182.png') line = g.line(x1=0, y1=0, x2=50, y2=50) path = g.path(d='M 0,0 L 50,50 L 50,0 L 0,50 z') path2 = g.path(d=g.p().M(0, 0).L(50, 50).L(50, 0).L(0, 50).z().d()) # same effect as above, but programmable. path3 = g.p().M(0, 0).L(50, 50).L(50, 0).L(0, 50).z().path() # same effect as above, but a tad more concise. polygon = g.polygon(points='0,0 50,50 50,0 0,50') polyline = g.polyline(points='0,0 50,50 50,0 0,50') rect = g.rect(x=0, y=0, width=50, height=50) rounded_rect = g.rect(x=0, y=0, width=50, height=50, rx=10) text = g.text(x=0, y=48, text='Z', font_size='4em') # Collect 'em all shapes = [arc, circle, ellipse, image, line, path, path2, path3, polygon, polyline, rect, rounded_rect, text] # Apply fill/stroke for each shape for shape in shapes: shape.fill = 'none' if g.type_of(shape) == 'polyline' else 'crimson' shape.stroke = 'darkred' shape.stroke_width = 5 # Lay out shapes vertically y = 10 for shape in shapes: shape.transform = f'translate(10,{y})' y += 60 # Add shapes to the graphics card page = site['/demo'] page['example'] = ui.graphics_card( box='1 1 1 10', view_box='0 0 70 800', width='100%', height='100%', stage=g.stage( arc=arc, circle=circle, ellipse=ellipse, image=image, line=line, path=path, path2=path2, path3=path3, polygon=polygon, polyline=polyline, rect=rect, rounded_rect=rounded_rect, text=text, ), ) page.save()
Packs/CloudConvert/Integrations/CloudConvert/CloudConvert.py
diCagri/content
799
12738419
import demistomock as demisto from CommonServerPython import * import urllib3 from typing import Any, Dict # Disable insecure warnings urllib3.disable_warnings() class Client(BaseClient): @logger def __init__(self, headers, verify=False, proxy=False): url = 'https://api.cloudconvert.com/v2' super().__init__(url, headers=headers, verify=verify, proxy=proxy) @logger def upload_url(self, arguments: Dict[str, Any]) -> Dict[str, Any]: """ Upload the file given as url to the API's server, for later conversion. Note - this operation is called 'import' by the API. Args: arguments: dict containing the request arguments, should contain the field 'url' Returns: dict containing the results of the upload action as returned from the API (status, task ID, etc.) ``Dict[str, Any]`` """ return self._http_request( method='POST', url_suffix='import/url', data=arguments, ok_codes=(200, 201, 422), ) @logger def upload_entry_id(self, file_path: str, file_name: str) -> Dict[str, Any]: """ Upload the file given as a war room entry id to the API's server, for later conversion Note - this operation is called 'import' by the API. Args: file_path: path to given file, derived from the entry id file_name: name of file, including format suffix Returns: dict containing the results of the upload action as returned from the API (status, task ID, etc.) ``Dict[str, Any]`` """ response_get_form = self._http_request( method='POST', url_suffix='import/upload' ) form = dict_safe_get(response_get_form, ('data', 'result', 'form'), default_return_value={}) port_url = form.get('url') params = form.get('parameters') if port_url is None or params is None: raise ValueError('Failed to initiate an upload operation') file_dict = {'file': (file_name, open(file_path, 'rb'))} self._http_request( method='POST', url_suffix=None, full_url=port_url, files=file_dict, empty_valid_codes=[201, 204], return_empty_response=True, data=params ) # As shown, this operation has two requests # The data about the operation is within the first request's response, # So in order to keep the operation's data, we should return the first request's response, # But first we should remove fields that are no longer true, such as ones that indicates that # The second request has not been done yet if response_get_form.get('data'): response_get_form.get('data').pop('message', None) response_get_form.get('data').pop('result', None) return response_get_form @logger def convert(self, arguments: Dict[str, Any]) -> Dict[str, Any]: """ Convert a file to desired format, given the file was priorly uploaded to the API's server Args: arguments: dict containing the request arguments, should contain the fields 'task_id' and 'output_format' Returns: dict containing the results of the convert action as returned from the API (status, task ID, etc.) ``Dict[str, Any]`` """ arguments['input'] = arguments.pop('task_id') return self._http_request( method='POST', url_suffix='convert', data=arguments, ok_codes=(200, 201, 422), ) def check_status(self, arguments: Dict[str, Any]) -> Dict[str, Any]: """ Check the status of a request sent to the API's server Args: arguments: dict containing the request arguments, should contain the field 'task_id' Returns: dict containing the results of the check status action as returned from the API (status, task ID, etc.) ``Dict[str, Any]`` """ task_id = arguments.get('task_id') return self._http_request( method='GET', url_suffix=f'/tasks/{task_id}', ok_codes=(200, 201, 422), ) @logger def download_url(self, arguments: Dict[str, Any]) -> Dict[str, Any]: """ Download a converted file to a url Note - this operation is called 'export' by the API. Args: arguments: dict containing the request arguments, should contain the field 'task_id' of the desired file Returns: dict containing the results of the download action as returned from the API (status, task ID, etc.) if the action was complete, the result url will be a part of this dict. If the request is pending, one should retrieve the url via the 'check_status' command ``Dict[str, Any]`` """ arguments['input'] = arguments.pop('task_id') return self._http_request( method='POST', url_suffix='/export/url', data=arguments, ok_codes=(200, 201, 422), ) @logger def get_file_from_url(self, url: str): """ Call a GET http request in order to get the file data given as url Args: url: url containing a file Returns: request response, containing the data of the file """ # Saving the headers of this client instance # The HTTP request that gets the file data needs to have no headers # Passing an empty dictionary to _http_request cause it to use this client's headers by default session_headers = self._headers self._headers = {} try: results = self._http_request( method='GET', url_suffix=None, full_url=url, headers={}, resp_type='response', ) return results.content finally: self._headers = session_headers @logger def raise_error_if_no_data(results: Dict[str, Any]): """ This function checks if No 'data' field was returned from the request, meaning the input was invalid Args: results: a dict containing the request's results Returns: raises error if there is no 'data' field, with the matching error message returned from the server if no error message was given from the server, suggests the other optional errors """ if results.get('data') is None: if results.get('message'): raise ValueError(results.get('message')) else: raise ValueError('No response from server, the server could be temporary unavailable or it is handling too ' 'many requests. Please try again later.') @logger def upload_command(client: Client, arguments: Dict[str, Any]): """ Upload a file to the API for later conversion Args: client: CloudConvert client to use arguments: All command arguments - either 'url' or 'entry_id'. Returns: CommandResults object containing the results of the upload action as returned from the API and its readable output """ if arguments.get('url'): if arguments.get('entry_id'): raise ValueError('Both url and entry id were inserted - please insert only one.') results = client.upload_url(arguments) elif arguments.get('entry_id'): demisto.debug('getting the path of the file from its entry id') result = demisto.getFilePath(arguments.get('entry_id')) if not result: raise ValueError('No file was found for given entry id') file_path, file_name = result['path'], result['name'] results = client.upload_entry_id(file_path, file_name) else: raise ValueError('No url or entry id specified.') raise_error_if_no_data(results) format_operation_title(results) results_data = results.get('data') readable_output = tableToMarkdown( 'Upload Results', remove_empty_elements(results_data), headers=('id', 'operation', 'created_at', 'status'), headerTransform=string_to_table_header, ) return CommandResults( readable_output=readable_output, outputs_prefix='CloudConvert.Task', outputs_key_field='id', raw_response=results, outputs=remove_empty_elements(results_data), ) @logger def convert_command(client: Client, arguments: Dict[str, Any]): """ Convert a file that was priorly uploaded Args: client: CloudConvert client to use arguments: All command arguments, the fields 'task_id' and 'output_format' Returns: CommandResults object containing the results of the convert action as returned from the API and its readable output """ results = client.convert(arguments) raise_error_if_no_data(results) results_data = results.get('data') readable_output = tableToMarkdown( 'Convert Results', remove_empty_elements(results_data), headers=('id', 'operation', 'created_at', 'status', 'depends_on_task_ids'), headerTransform=string_to_table_header, ) return CommandResults( readable_output=readable_output, outputs_prefix='CloudConvert.Task', outputs_key_field='id', raw_response=results, outputs=remove_empty_elements(results_data), ) @logger def check_status_command(client: Client, arguments: Dict[str, Any]): """ Check status of an existing operation using it's task id Args: client: CloudConvert client to use arguments: All command arguments, the field 'task_id' Note: When the checked operation is 'download', the field 'create_war_room_entry' should be set according to the chosen download method, true if downloading as war room entry and false if not. This way a war room entry containing the file will be created if needed. Returns: CommandResults object containing the results of the check status action as returned from the API and its readable output OR if the argument create_war_room_entry is set to True, then a war room entry is also being created. """ results = client.check_status(arguments) raise_error_if_no_data(results) format_operation_title(results) results_data = results.get('data', {}) # If checking on an download to entry operation, manually change the operation name # This is because the 'download as entry' operation is our variation on the export to url operation, # hence not distinguished as a different operation by the API if argToBoolean(arguments.get('create_war_room_entry', False)) \ and results_data.get('operation') == 'download/url': results['data']['operation'] = 'download/entry' # Check if an download to war room entry operation is finished # If it did - create the entry if results_data.get('status') == 'finished' \ and argToBoolean(arguments.get('create_war_room_entry', 'False'))\ and results_data.get('operation') == 'download/entry': modify_results_dict(results_data) url = results_data.get('url') file_name = results_data.get('file_name') file_data = client.get_file_from_url(url) war_room_file = fileResult(filename=file_name, data=file_data, file_type=entryTypes['entryInfoFile']) readable_output = tableToMarkdown('Check Status Results', remove_empty_elements(results_data), headers=('id', 'operation', 'created_at', 'status', 'depends_on_task_ids', 'file_name', 'url'), headerTransform=string_to_table_header,) return_results(CommandResults( outputs_prefix='CloudConvert.Task', outputs_key_field='id', raw_response=results, readable_output=readable_output, outputs=remove_empty_elements(results_data) )) return war_room_file else: modify_results_dict(results_data) readable_output = tableToMarkdown( 'Check Status Results', remove_empty_elements(results_data), headers=('id', 'operation', 'created_at', 'status', 'depends_on_task_ids', 'file_name', 'url'), headerTransform=string_to_table_header, ) return CommandResults( readable_output=readable_output, outputs_prefix='CloudConvert.Task', outputs_key_field='id', raw_response=results, outputs=remove_empty_elements(results_data), ) def modify_results_dict(results_data: Dict[str, Any]): """ The results of the specific file converted/uploaded/downloaded are sub-values of some keys, so parse the results field to the outer scope of the dict Args: results_data: the dict under the 'data' field in the response's results """ if results_data.get('result'): results_info = results_data.get('result', {}).get('files') if results_info: results_data['file_name'] = results_info[0].get('filename') results_data['url'] = results_info[0].get('url') results_data['size'] = results_info[0].get('size') @logger def download_command(client: Client, arguments: Dict[str, Any]): """ Download a converted file back to the user, either as a url or directly as a war room entry Note: in order to get the resulted url/entry of the file you need to use a check-status command as well, since the response of the download command is usually responded before the file is fully downloaded (hence the 'status' field is 'waiting', and not 'finished') Args: client: CloudConvert client to use arguments: All command arguments, the fields 'task_id', and 'download_as' (url/war_room_entry) Returns: CommandResults object containing the results of the download action as returned from the API, and its readable """ # Call download as url request # In both url and war room entry we still first get a url results = client.download_url(arguments) raise_error_if_no_data(results) # If downloading as war room entry, manually change the operation name # This is because the 'download as entry' operation is our variation on the export to url operation, # hence not distinguished as a different operation by the API if arguments['download_as'] == 'war_room_entry': results['data']['operation'] = 'download/entry' else: format_operation_title(results) results_data = results.get('data') readable_output = tableToMarkdown( 'Download Results', remove_empty_elements(results_data), headers=('id', 'operation', 'created_at', 'status', 'depends_on_task_ids'), headerTransform=string_to_table_header, ) return CommandResults( readable_output=readable_output, outputs_prefix='CloudConvert.Task', outputs_key_field='id', raw_response=results, outputs=remove_empty_elements(results_data), ) def test_module(client: Client): """ Returning 'ok' indicates that the integration works like it suppose to. Connection to the service is successful. Args: client: CloudConvert client Returns: 'ok' if test passed, anything else will fail the test """ dummy_url = 'https://raw.githubusercontent.com/demisto/content/master/TestData/pdfworking.pdf' result = client.upload_url({'url': dummy_url}) if result.get('data'): return 'ok' elif result.get('message') == "Unauthenticated.": return 'Authorization Error: make sure API Key is correctly set' elif result.get('message'): return result.get('message') else: return 'No response from server, the server could be temporary unavailable or it is handling too ' \ 'many requests. Please try again later.' def format_operation_title(results: Dict[str, Any]): """ This function is being used in order to change the titles of the operations that are done by the API and are returned in the response to titles that makes more sense for the users actions, and matches the API's use in our system. Args: results: The response from the http request """ title_exchange_dict = { 'import/url': 'upload/url', 'import/upload': 'upload/entry', 'export/url': 'download/url'} operation = results['data']['operation'] results['data']['operation'] = title_exchange_dict[operation] if operation in title_exchange_dict.keys() \ else operation def main() -> None: try: command = demisto.command() params = demisto.params() api_key = params.get('apikey') verify = not params.get('insecure', False) proxy = params.get('proxy', False) headers = { 'Authorization': f'Bearer {api_key}' } client = Client(headers, verify, proxy) if command == 'cloudconvert-upload': return_results(upload_command(client, demisto.args())) elif command == 'cloudconvert-convert': return_results(convert_command(client, demisto.args())) elif command == 'cloudconvert-check-status': return_results(check_status_command(client, demisto.args())) elif command == 'cloudconvert-download': return_results(download_command(client, demisto.args())) elif command == 'test-module': return_results(test_module(client)) except Exception as e: err_msg = 'Task id not found or expired' if 'No query results for model' in str(e) else \ ('No more conversion minutes for today for this user' if 'Payment Required' in str(e) else str(e)) return_error(f'Failed to execute {command} command. Error: {err_msg}', error=traceback.format_exc()) if __name__ in ('__main__', '__builtin__', 'builtins'): main()
server/migrations/0070_remove_machine_install_log_hash.py
nathandarnell/sal
215
12738435
<reponame>nathandarnell/sal<gh_stars>100-1000 # Generated by Django 1.11 on 2018-04-25 18:29 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('server', '0069_remove_machine_install_log'), ] operations = [ migrations.RemoveField( model_name='machine', name='install_log_hash', ), ]
tests/unit/lib/utils/test_hash.py
zhuhaow/aws-sam-cli
2,959
12738468
import hashlib import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch from samcli.lib.utils.hash import dir_checksum, str_checksum class TestHash(TestCase): def setUp(self): self.temp_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.temp_dir, ignore_errors=True) def test_dir_hash_independent_of_location(self): temp_dir1 = os.path.join(self.temp_dir, "temp-dir-1") os.mkdir(temp_dir1) with open(os.path.join(temp_dir1, "test-file"), "w+") as f: f.write("Testfile") checksum1 = dir_checksum(temp_dir1) temp_dir2 = shutil.move(temp_dir1, os.path.join(self.temp_dir, "temp-dir-2")) checksum2 = dir_checksum(temp_dir2) self.assertEqual(checksum1, checksum2) def test_dir_hash_independent_of_file_order(self): file1 = tempfile.NamedTemporaryFile(delete=False, dir=self.temp_dir) file1.write(b"Testfile") file1.close() file2 = tempfile.NamedTemporaryFile(delete=False, dir=self.temp_dir) file2.write(b"Testfile") file2.close() dir_checksums = {} with patch("os.walk") as mockwalk: mockwalk.return_value = [ ( self.temp_dir, [], [ file1.name, file2.name, ], ), ] dir_checksums["first"] = dir_checksum(self.temp_dir) with patch("os.walk") as mockwalk: mockwalk.return_value = [ ( self.temp_dir, [], [ file2.name, file1.name, ], ), ] dir_checksums["second"] = dir_checksum(self.temp_dir) self.assertEqual(dir_checksums["first"], dir_checksums["second"]) def test_dir_hash_same_contents_diff_file_per_directory(self): _file = tempfile.NamedTemporaryFile(delete=False, dir=self.temp_dir) _file.write(b"Testfile") _file.close() checksum_before = dir_checksum(os.path.dirname(_file.name)) shutil.move(os.path.abspath(_file.name), os.path.join(os.path.dirname(_file.name), "different_name")) checksum_after = dir_checksum(os.path.dirname(_file.name)) self.assertNotEqual(checksum_before, checksum_after) def test_dir_hash_with_ignore_list(self): _file = tempfile.NamedTemporaryFile(delete=False, dir=self.temp_dir) _file.write(b"Testfile") _file.close() dir_path = os.path.dirname(_file.name) checksum_before = dir_checksum(dir_path) # add a file to .aws-sam/ aws_sam_dir_path = os.path.join(dir_path, ".aws-sam") os.mkdir(aws_sam_dir_path) _new_file = tempfile.NamedTemporaryFile(delete=False, dir=aws_sam_dir_path) _new_file.write(b"dummy") _new_file.close() checksum_after = dir_checksum(os.path.dirname(_file.name)) self.assertNotEqual(checksum_before, checksum_after) checksum_after_with_ignore_list = dir_checksum(os.path.dirname(_file.name), ignore_list=[".aws-sam"]) self.assertEqual(checksum_before, checksum_after_with_ignore_list) def test_hashing_method(self): _file = tempfile.NamedTemporaryFile(delete=False, dir=self.temp_dir) _file.write(b"Testfile") _file.close() checksum_sha256 = dir_checksum(os.path.dirname(_file.name), hash_generator=hashlib.sha256()) checksum_md5 = dir_checksum(os.path.dirname(_file.name), hashlib.md5()) checksum_default = dir_checksum(os.path.dirname(_file.name)) self.assertEqual(checksum_default, checksum_md5) self.assertNotEqual(checksum_md5, checksum_sha256) def test_dir_cyclic_links(self): _file = tempfile.NamedTemporaryFile(delete=False, dir=self.temp_dir) _file.write(b"Testfile") _file.close() os.symlink(os.path.abspath(_file.name), os.path.join(os.path.dirname(_file.name), "symlink")) os.symlink( os.path.join(os.path.dirname(_file.name), "symlink"), os.path.join(os.path.dirname(_file.name), "symlink2") ) os.unlink(os.path.abspath(_file.name)) os.symlink(os.path.join(os.path.dirname(_file.name), "symlink2"), os.path.abspath(_file.name)) with self.assertRaises(OSError) as ex: dir_checksum(os.path.dirname(_file.name)) self.assertIn("Too many levels of symbolic links", ex.message) def test_str_checksum(self): checksum = str_checksum("Hello, World!") self.assertEqual(checksum, "65a8e27d8879283831b664bd8b7f0ad4")
modules/pymol/wizard/filter.py
dualword/pymol-open-source
636
12738487
<gh_stars>100-1000 # filter wizard # no-frills tool for quickly filtering docked compounds, etc. import os,sys from pymol.wizard import Wizard from pymol import cmd import traceback # global dictionary for saving result on a per-object basis static_dict = {} # last/current object being filtered default_object = None # browing mode default_browse = 1 accept_str = "Accept" defer_str = "Defer" reject_str = "Reject" # class definition (class name must match wizard name with cap) class Filter(Wizard): def migrate_session(self, version): if version >= self.cmd.get_version()[2]: return # remap old "title" state identifiers to new identifiers # (changed in 1.7.0.0) for object, sdo in self.dict.items(): if not sdo: continue # build title -> ident mapping tota = self.cmd.count_states(object) title2ident = dict( (self.cmd.get_title(object, state), self.get_ident(object, state)) for state in range(1, tota + 1)) # build remapped sdo try: new_sdo = {} for title, value in sdo.items(): new_sdo[title2ident[title]] = value sdo.clear() sdo.update(new_sdo) except KeyError: # lookup by title failed, we can assume that this instance # already uses new identifiers return self.load_state_dict() def __init__(self,_self=cmd): # initialize parent class Wizard.__init__(self,_self) self.update_object_menu() # restore previous state from global storage self.dict = static_dict self.object = default_object if default_object in self.avail_objects else None self.browse = default_browse self.state_dict = {} # if we don't have a current object, choose the first multi-state object if not self.object and self.avail_objects: self.object = self.avail_objects[0] # menu for self.menu['browse'] = [ [2, 'Browse Mode',''], [1, 'Browse All','cmd.get_wizard().set_browse(1)'], [1, 'Browse Accepted','cmd.get_wizard().set_browse(2)'], [1, 'Browse Rejected','cmd.get_wizard().set_browse(3)'], [1, 'Browse Deferred','cmd.get_wizard().set_browse(4)'], [1, 'Browse Remaining','cmd.get_wizard().set_browse(5)'], ] self.menu['create'] = [ [2, 'Create Filtered Object', ''], [1, 'Accepted','cmd.get_wizard().create_object("Accept")'], [1, 'Rejected','cmd.get_wizard().create_object("Reject")'], [1, 'Deferred','cmd.get_wizard().create_object("Defer")'], ] self.count_object() self.load_state_dict() self.update_object_menu() cmd.set_key('F1',lambda s=self:s.accept()) cmd.set_key('F2',lambda s=self:s.reject()) cmd.set_key('F3',lambda s=self:s.defer()) cmd.set_key('right',lambda s=self:s.forward()) cmd.set_key('left',lambda s=self:s.backward()) def do_select(self,name): try: obj_name = cmd.index('first ?' + name)[0][0] self.set_object(obj_name) except: pass self.cmd.deselect() def do_pick(self,bondFlag): self.do_select('pk1') self.cmd.unpick() def do_state(self, state): cmd.refresh_wizard() def get_event_mask(self): return Wizard.event_mask_pick + Wizard.event_mask_select + Wizard.event_mask_state def update_object_menu(self): # find objects with > 1 state self.avail_objects = [] for a in cmd.get_names('objects'): if cmd.get_type(a)=='object:molecule': if cmd.count_states(a)>1: self.avail_objects.append(a) # now create the object menu self.menu['object'] = [[2,'Select Object','']] for a in self.avail_objects: self.menu['object'].append([ 1,a,'cmd.get_wizard().set_object("%s")'%(a) ]) self.menu['object'].append([ 1,'None','cmd.get_wizard().set_object(None)']) def set_browse(self,browse): # allow user to focus on only a subset of the compounds self.browse = browse if self.browse == 1: print(" Filter: Browsing all compounds.") cmd.mset() # all states visible elif self.object is None: print(" Filter-Error: please choose an object first") else: self.check_object_dict() if self.browse == 2: print(" Filter: Browsing accepted compounds.") target = accept_str elif self.browse == 3: print(" Filter: Browsing rejected compounds.") target = reject_str elif self.browse == 4: print(" Filter: Browsing deferred compounds.") target = defer_str lst = [] sd = self.state_dict sdo = self.dict[self.object] if self.browse<5: for a in list(sdo.keys()): if sdo[a]==target: lst.append(sd[a]) else: print(" Filter: Browsing remaining compounds") for a in sd.keys(): if a not in sdo: lst.append(sd[a]) lst.sort() if len(lst)==0: print(" Filter-Error: No matching compounds.") cmd.mset(' '.join(map(str,lst))) cmd.rewind() cmd.refresh_wizard() def check_object_dict(self): # make sure we have a valid entry for this object in our dictionary if self.object not in self.dict: self.dict[self.object]={} # create dictionary to store results def adjust(self,decision,inc): # utility routine to increment/decrement counters if decision == accept_str: self.acce = self.acce + inc elif decision == reject_str: self.reje = self.reje + inc elif decision == defer_str: self.defe = self.defe + inc def load_state_dict(self): # establish relationship between names and states # ASSUMPTION: identifiers will be unique self.state_dict = {} sd = self.state_dict so = self.object if so is not None: cnt = cmd.count_states(so) for a in range(1,cnt+1): sd[self.get_ident(so,a)] = a def count_object(self): # record how many molecular are in an object, etc. self.check_object_dict() if self.object is not None: self.acce = 0 self.reje = 0 self.defe = 0 self.togo = 0 self.tota = cmd.count_states(self.object) sdo=self.dict[self.object] self.togo = self.tota-len(sdo) for a in list(sdo.keys()): dec = sdo[a] self.adjust(dec,1) def set_object(self,obj_name): self.object = obj_name self.count_object() self.load_state_dict() cmd.refresh_wizard() def get_panel(self): # returns Wizard panel for PyMOL to display # 1 = title/text # 2 = button # 3 = pop-up menu self.update_object_menu() if self.object is not None: save_str = 'Save %s.txt'%self.object else: save_str = "" return [ [ 1, 'Filtering Wizard',''], [ 3, self.menu['browse'][self.browse][1], 'browse' ], [ 3, 'Object: %s' % (self.object), 'object' ], [ 2, 'Accept (F1)','cmd.get_wizard().accept()'], [ 2, 'Reject (F2)','cmd.get_wizard().reject()'], [ 2, 'Defer (F3)','cmd.get_wizard().defer()'], [ 2, 'Forward (->)','cmd.get_wizard().forward()'], [ 2, 'Back (<-)','cmd.get_wizard().backward()'], [ 3, 'Create Filtered Object', 'create'], [ 2, save_str,'cmd.get_wizard().save()'], [ 2, 'Refresh','cmd.refresh_wizard()'], [ 2, 'Done','cmd.set_wizard()'], ] def get_ident(self, object, state): return '%d/%d %s' % (state, self.tota, self.cmd.get_title(self.object, state)) def get_prompt(self): # returns text prompt self.prompt = None if self.object is None: self.prompt = [ 'Please select a multi-state object...' ] else: self.prompt = [ '%s: %d accepted, %d rejected, %d deferred, %d remaining'%( self.object,self.acce,self.reje,self.defe,self.togo) ] state = cmd.get_object_state(self.object) ident = self.get_ident(self.object,state) sdo=self.dict[self.object] if ident in sdo: self.prompt.append('%s: %s'%(ident,sdo[ident])) else: self.prompt.append('%s?'%(ident)) return self.prompt def count(self,entry,str): # keep track of how many compounds are in which category self.check_object_dict() sdo = self.dict[self.object] if entry in sdo: self.adjust(sdo[entry],-1) else: self.togo = self.togo - 1 sdo[entry] = str self.adjust(sdo[entry],1) def accept(self): # accept compound and advance if self.object is None: print(" Filter-Error: Please choose an object first") else: state = cmd.get_object_state(self.object) ident = self.get_ident(self.object,state) print(" Filter: Accepting '%s'"%ident) self.count(ident,accept_str) cmd.forward() cmd.refresh_wizard() def reject(self): # reject compound and advance if self.object is None: print(" Filter-Error: Please choose an object first") else: state = cmd.get_object_state(self.object) ident = self.get_ident(self.object,state) print(" Filter: Rejecting '%s'"%ident) self.check_object_dict() self.count(ident,reject_str) cmd.forward() cmd.refresh_wizard() def defer(self): # defer compound and advance if self.object is None: print(" Filter-Error: Please choose an object first") else: state = cmd.get_object_state(self.object) ident = self.get_ident(self.object,state) print(" Filter: Deferring '%s'"%ident) self.check_object_dict() self.count(ident,defer_str) cmd.forward() cmd.refresh_wizard() def forward(self): # go forward and update information cmd.forward() cmd.refresh_wizard() def backward(self): # go backward and update information cmd.backward() cmd.refresh_wizard() def create_object(self, what='Accept'): if not self.object: print(" Filter-Error: Please choose an object first") return name = self.cmd.get_unused_name(self.object + '_' + what, 0) sdo = self.dict[self.object] lst = [self.state_dict[ident] for (ident, w) in sdo.items() if w == what] for state in sorted(lst): self.cmd.create(name, self.object, state, -1) def save(self): # write compounds to a file if self.object is None: print(" Filter-Error: please choose an object first") else: self.check_object_dict() fname = self.object+".txt" try: f=open(fname,'w') f.close() except: print(" Filter-Warning: '"+fname+"' in current directory is not writable.") print(" Filter-Warning: attempting to write in home directory.") fname = cmd.exp_path(os.path.join('~', fname)) try: f=open(fname,'w') sd = self.state_dict sdo = self.dict[self.object] f.write('Object\t"%s"\n'%(self.object)) f.write('Total\t%d\nAccepted\t%d\nRejected\t%d\nDeferred\t%d\nRemaining\t%d\n\n'%( self.tota, self.acce, self.reje, self.defe, self.togo)) # sort output in order of states lst = [] for a in sd.keys(): lst.append((sd[a],a)) lst.sort() # write list with decisions for a in lst: if a[1] in sdo: f.write('%d\t"%s"\t"%s"\n'%(a[0],a[1],sdo[a[1]])) else: f.write('%d\t"%s"\t"?"\n'%(a[0],a[1])) f.close() print(" Filter: Wrote '%s'."%fname) except: traceback.print_exc() print(" Filter-Error: Unable to write '%s'."%fname) def cleanup(self): # save current state in global vars... global default_object,default_browse,static_dict default_object = self.object default_browse = self.browse static_dict = self.dict # restore key actions cmd.set_key('F1',None) cmd.set_key('F2',None) cmd.set_key('F3',None) cmd.set_key('right',cmd.forward) cmd.set_key('left',cmd.backward)
haven/haven_jupyter/images_tab.py
haven-ai/haven-ai
145
12738505
from .. import haven_utils from .. import haven_results as hr from .. import haven_utils as hu from .. import haven_share as hd import os import pprint import json import copy import pprint import pandas as pd from . import widgets as wdg try: import ast from ipywidgets import Button, HBox, VBox from ipywidgets import widgets from IPython.display import display from IPython.core.display import Javascript, display, HTML from IPython.display import FileLink, FileLinks from ipywidgets.widgets.interaction import show_inline_matplotlib_plots except Exception: print("widgets not available...") def images_tab(self, output): db = self if db.vars.get("legend_list") is None: db.vars["legend_list"] = hu.get_diff_hparam(db.rm.exp_list) w_legend = wdg.SelectMultiple(header="Legend:", options=db.rm.exp_params, db_vars=db.vars, var="legend_list") w_n_exps = wdg.Text("n_exps:", default="3", type="int", db_vars=db.vars, var="n_exps") w_n_images = wdg.Text("n_images:", default="5", type="int", db_vars=db.vars, var="n_images") w_figsize = wdg.Text("figsize:", default="(10,5)", type="tuple", db_vars=db.vars, var="figsize") w_dirname = wdg.Text("dirname:", default="images", type="str", db_vars=db.vars, var="dirname") bdownload = widgets.Button(description="Download Images", layout=self.layout_button) bdownload_out = widgets.Output(layout=self.layout_button) bdownload_zip = widgets.Button(description="Download Images zipped", layout=self.layout_button) bdownload_zip_out = widgets.Output(layout=self.layout_button) brefresh = widgets.Button(description="Display Images") button = widgets.VBox( [ widgets.HBox( [ w_legend.get_widget(), w_n_exps.get_widget(), w_n_images.get_widget(), w_figsize.get_widget(), w_dirname.get_widget(), ] ), widgets.HBox([brefresh, bdownload, bdownload_out, bdownload_zip, bdownload_zip_out]), ] ) output_plot = widgets.Output() with output: display(button) display(output_plot) def on_clicked(b): output_plot.clear_output() with output_plot: self.update_rm() self.rm_original.fig_image_list = self.rm.get_images( legend_list=w_legend.update(), n_images=w_n_images.update(), n_exps=w_n_exps.update(), figsize=w_figsize.update(), dirname=w_dirname.update(), ) show_inline_matplotlib_plots() brefresh.on_click(on_clicked) def on_download_clicked(b): fname = "images" from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt pp = PdfPages(fname) for fig in self.rm_original.fig_image_list: fig.savefig(pp, format="pdf") pp.close() bdownload_out.clear_output() with bdownload_out: display(FileLink(fname, result_html_prefix="Download: ")) def on_download_clicked_zip(b): fname = "results.zip" bdownload_zip_out.clear_output() with bdownload_zip_out: import zipfile, glob exp_id_list = [hu.hash_dict(exp_dict) for exp_dict in self.rm.exp_list] zipf = zipfile.ZipFile(fname, "w", zipfile.ZIP_DEFLATED) for exp_id in exp_id_list: abs_path_list = glob.glob(os.path.join(self.rm.savedir_base, exp_id, "images", "*")) for abs_path in abs_path_list: # weq iname = os.path.split(abs_path)[-1] rel_path = f"{exp_id}_{iname}" zipf.write(abs_path, rel_path) zipf.close() # self.rm.to_zip(savedir_base="", fname=fname, fname_list=self.vars["fname_list"]) bdownload_zip_out.clear_output() with bdownload_zip_out: display("%d exps zipped." % len(self.rm.exp_list)) display(FileLink(fname, result_html_prefix="Download: ")) bdownload.on_click(on_download_clicked) bdownload_zip.on_click(on_download_clicked_zip)
moviepy/audio/tools/cuts.py
odidev/moviepy
8,558
12738510
<reponame>odidev/moviepy<filename>moviepy/audio/tools/cuts.py<gh_stars>1000+ """Cutting utilities working with audio.""" import numpy as np def find_audio_period(clip, min_time=0.1, max_time=2, time_resolution=0.01): """Finds the period, in seconds of an audioclip. Parameters ---------- min_time : float, optional Minimum bound for the returned value. max_time : float, optional Maximum bound for the returned value. time_resolution : float, optional Numerical precision. """ chunksize = int(time_resolution * clip.fps) chunk_duration = 1.0 * chunksize / clip.fps # v denotes the list of volumes v = np.array([(chunk ** 2).sum() for chunk in clip.iter_chunks(chunksize)]) v = v - v.mean() corrs = np.correlate(v, v, mode="full")[-len(v) :] corrs[: int(min_time / chunk_duration)] = 0 corrs[int(max_time / chunk_duration) :] = 0 return chunk_duration * np.argmax(corrs)
var/spack/repos/builtin/packages/kadath/package.py
LiamBindle/spack
2,360
12738511
<filename>var/spack/repos/builtin/packages/kadath/package.py # Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os from spack import * class Kadath(CMakePackage): """KADATH SPECTRAL SOLVER. The Frankfurt University/Kadath (FUKA) Initial Data solver branch is a collection of ID solvers aimed at delivering consistent initial data (ID) solutions to the eXtended Conformal Thin-Sandwich (XCTS) formulation of Einstein's field equations for a variety of compact object configurations to include extremely compact, asymmetric, and mixed spin binaries. """ homepage = "https://kadath.obspm.fr/fuka/" git = "https://gitlab.obspm.fr/grandcle/Kadath.git" maintainers = ['eschnett'] version('fuka', branch='fuka') variant('mpi', default=True, description='Enable MPI support') variant('codes', multi=True, description="Codes to enable", values=('none', 'BBH', 'BH', 'BHNS', 'BNS', 'NS'), default='none') depends_on('blas') depends_on('boost cxxstd=17') # kadath uses std=C++17 depends_on('cmake @2.8:', type='build') depends_on('fftw-api @3:') depends_on('gsl') depends_on('lapack') depends_on('mpi', when='+mpi') depends_on('pgplot') depends_on('scalapack') root_cmakelists_dir = 'build_release' def patch(self): for code in self.spec.variants['codes'].value: if code != 'none': # Disable unwanted explicit include directory settings filter_file(r"include_directories\(/usr", "# include_directories(/usr", join_path("codes", code, "CMakeLists.txt")) def setup_build_environment(self, env): env.set('HOME_KADATH', self.stage.source_path) def cmake_args(self): return [ # kadath uses a non-standard option to enable MPI self.define_from_variant('PAR_VERSION', 'mpi'), ] def cmake(self, spec, prefix): options = self.std_cmake_args options += self.cmake_args() options.append(os.path.abspath(self.root_cmakelists_dir)) with working_dir(self.build_directory, create=True): cmake(*options) for code in self.spec.variants['codes'].value: if code != 'none': with working_dir(join_path("codes", code)): cmake(*options) def build(self, spec, prefix): with working_dir(self.build_directory): make(*self.build_targets) for code in self.spec.variants['codes'].value: if code != 'none': with working_dir(join_path("codes", code)): make(*self.build_targets) def install(self, spec, prefix): mkdirp(prefix.include) install_tree('include', prefix.include) mkdirp(prefix.lib) install_tree('lib', prefix.lib)
dulwich/tests/test_refs.py
jessecureton-aurora/dulwich
460
12738543
<filename>dulwich/tests/test_refs.py # test_refs.py -- tests for refs.py # encoding: utf-8 # Copyright (C) 2013 <NAME> <<EMAIL>> # # Dulwich is dual-licensed under the Apache License, Version 2.0 and the GNU # General Public License as public by the Free Software Foundation; version 2.0 # or (at your option) any later version. You can redistribute it and/or # modify it under the terms of either of these two licenses. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # You should have received a copy of the licenses; if not, see # <http://www.gnu.org/licenses/> for a copy of the GNU General Public License # and <http://www.apache.org/licenses/LICENSE-2.0> for a copy of the Apache # License, Version 2.0. # """Tests for dulwich.refs.""" from io import BytesIO import os import sys import tempfile from dulwich import errors from dulwich.file import ( GitFile, ) from dulwich.objects import ZERO_SHA from dulwich.refs import ( DictRefsContainer, InfoRefsContainer, check_ref_format, _split_ref_line, parse_symref_value, read_packed_refs_with_peeled, read_packed_refs, strip_peeled_refs, write_packed_refs, ) from dulwich.repo import Repo from dulwich.tests import ( SkipTest, TestCase, ) from dulwich.tests.utils import ( open_repo, tear_down_repo, ) class CheckRefFormatTests(TestCase): """Tests for the check_ref_format function. These are the same tests as in the git test suite. """ def test_valid(self): self.assertTrue(check_ref_format(b"heads/foo")) self.assertTrue(check_ref_format(b"foo/bar/baz")) self.assertTrue(check_ref_format(b"refs///heads/foo")) self.assertTrue(check_ref_format(b"foo./bar")) self.assertTrue(check_ref_format(b"heads/foo@bar")) self.assertTrue(check_ref_format(b"heads/fix.lock.error")) def test_invalid(self): self.assertFalse(check_ref_format(b"foo")) self.assertFalse(check_ref_format(b"heads/foo/")) self.assertFalse(check_ref_format(b"./foo")) self.assertFalse(check_ref_format(b".refs/foo")) self.assertFalse(check_ref_format(b"heads/foo..bar")) self.assertFalse(check_ref_format(b"heads/foo?bar")) self.assertFalse(check_ref_format(b"heads/foo.lock")) self.assertFalse(check_ref_format(b"heads/v@{ation")) self.assertFalse(check_ref_format(b"heads/foo\bar")) ONES = b"1" * 40 TWOS = b"2" * 40 THREES = b"3" * 40 FOURS = b"4" * 40 class PackedRefsFileTests(TestCase): def test_split_ref_line_errors(self): self.assertRaises(errors.PackedRefsException, _split_ref_line, b"singlefield") self.assertRaises(errors.PackedRefsException, _split_ref_line, b"badsha name") self.assertRaises( errors.PackedRefsException, _split_ref_line, ONES + b" bad/../refname", ) def test_read_without_peeled(self): f = BytesIO(b"\n".join([b"# comment", ONES + b" ref/1", TWOS + b" ref/2"])) self.assertEqual( [(ONES, b"ref/1"), (TWOS, b"ref/2")], list(read_packed_refs(f)) ) def test_read_without_peeled_errors(self): f = BytesIO(b"\n".join([ONES + b" ref/1", b"^" + TWOS])) self.assertRaises(errors.PackedRefsException, list, read_packed_refs(f)) def test_read_with_peeled(self): f = BytesIO( b"\n".join( [ ONES + b" ref/1", TWOS + b" ref/2", b"^" + THREES, FOURS + b" ref/4", ] ) ) self.assertEqual( [ (ONES, b"ref/1", None), (TWOS, b"ref/2", THREES), (FOURS, b"ref/4", None), ], list(read_packed_refs_with_peeled(f)), ) def test_read_with_peeled_errors(self): f = BytesIO(b"\n".join([b"^" + TWOS, ONES + b" ref/1"])) self.assertRaises(errors.PackedRefsException, list, read_packed_refs(f)) f = BytesIO(b"\n".join([ONES + b" ref/1", b"^" + TWOS, b"^" + THREES])) self.assertRaises(errors.PackedRefsException, list, read_packed_refs(f)) def test_write_with_peeled(self): f = BytesIO() write_packed_refs(f, {b"ref/1": ONES, b"ref/2": TWOS}, {b"ref/1": THREES}) self.assertEqual( b"\n".join( [ b"# pack-refs with: peeled", ONES + b" ref/1", b"^" + THREES, TWOS + b" ref/2", ] ) + b"\n", f.getvalue(), ) def test_write_without_peeled(self): f = BytesIO() write_packed_refs(f, {b"ref/1": ONES, b"ref/2": TWOS}) self.assertEqual( b"\n".join([ONES + b" ref/1", TWOS + b" ref/2"]) + b"\n", f.getvalue(), ) # Dict of refs that we expect all RefsContainerTests subclasses to define. _TEST_REFS = { b"HEAD": b"<PASSWORD>493e<PASSWORD>ec", b"refs/heads/40-char-ref-aaaaaaaaaaaaaaaaaa": b"<PASSWORD>f02ec", b"refs/heads/master": b"<PASSWORD>", b"refs/heads/packed": b"<PASSWORD>", b"refs/tags/refs-0.1": b"df6800012397fb85c56e7418dd4eb9405dee075c", b"refs/tags/refs-0.2": b"3ec9c43c84ff242e3ef4a9fc5bc111fd780a76a8", b"refs/heads/loop": b"ref: refs/heads/loop", } class RefsContainerTests(object): def test_keys(self): actual_keys = set(self._refs.keys()) self.assertEqual(set(self._refs.allkeys()), actual_keys) self.assertEqual(set(_TEST_REFS.keys()), actual_keys) actual_keys = self._refs.keys(b"refs/heads") actual_keys.discard(b"loop") self.assertEqual( [b"40-char-ref-aaaaaaaaaaaaaaaaaa", b"master", b"packed"], sorted(actual_keys), ) self.assertEqual( [b"refs-0.1", b"refs-0.2"], sorted(self._refs.keys(b"refs/tags")) ) def test_iter(self): actual_keys = set(self._refs.keys()) self.assertEqual(set(self._refs), actual_keys) self.assertEqual(set(_TEST_REFS.keys()), actual_keys) def test_as_dict(self): # refs/heads/loop does not show up even if it exists expected_refs = dict(_TEST_REFS) del expected_refs[b"refs/heads/loop"] self.assertEqual(expected_refs, self._refs.as_dict()) def test_get_symrefs(self): self._refs.set_symbolic_ref(b"refs/heads/src", b"refs/heads/dst") symrefs = self._refs.get_symrefs() if b"HEAD" in symrefs: symrefs.pop(b"HEAD") self.assertEqual( { b"refs/heads/src": b"refs/heads/dst", b"refs/heads/loop": b"refs/heads/loop", }, symrefs, ) def test_setitem(self): self._refs[b"refs/some/ref"] = b"42d06bd4b77fed026b154d16493e5deab78f02ec" self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"refs/some/ref"], ) self.assertRaises( errors.RefFormatError, self._refs.__setitem__, b"notrefs/foo", b"42d06bd4b77fed026b154d16493e5deab78f02ec", ) def test_set_if_equals(self): nines = b"9" * 40 self.assertFalse(self._refs.set_if_equals(b"HEAD", b"c0ffee", nines)) self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"HEAD"] ) self.assertTrue( self._refs.set_if_equals( b"HEAD", b"42d06bd4b77fed026b154d16493e5deab78f02ec", nines ) ) self.assertEqual(nines, self._refs[b"HEAD"]) # Setting the ref again is a no-op, but will return True. self.assertTrue(self._refs.set_if_equals(b"HEAD", nines, nines)) self.assertEqual(nines, self._refs[b"HEAD"]) self.assertTrue(self._refs.set_if_equals(b"refs/heads/master", None, nines)) self.assertEqual(nines, self._refs[b"refs/heads/master"]) self.assertTrue( self._refs.set_if_equals(b"refs/heads/nonexistant", ZERO_SHA, nines) ) self.assertEqual(nines, self._refs[b"refs/heads/nonexistant"]) def test_add_if_new(self): nines = b"9" * 40 self.assertFalse(self._refs.add_if_new(b"refs/heads/master", nines)) self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"refs/heads/master"], ) self.assertTrue(self._refs.add_if_new(b"refs/some/ref", nines)) self.assertEqual(nines, self._refs[b"refs/some/ref"]) def test_set_symbolic_ref(self): self._refs.set_symbolic_ref(b"refs/heads/symbolic", b"refs/heads/master") self.assertEqual( b"ref: refs/heads/master", self._refs.read_loose_ref(b"refs/heads/symbolic"), ) self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"refs/heads/symbolic"], ) def test_set_symbolic_ref_overwrite(self): nines = b"9" * 40 self.assertNotIn(b"refs/heads/symbolic", self._refs) self._refs[b"refs/heads/symbolic"] = nines self.assertEqual(nines, self._refs.read_loose_ref(b"refs/heads/symbolic")) self._refs.set_symbolic_ref(b"refs/heads/symbolic", b"refs/heads/master") self.assertEqual( b"ref: refs/heads/master", self._refs.read_loose_ref(b"refs/heads/symbolic"), ) self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"refs/heads/symbolic"], ) def test_check_refname(self): self._refs._check_refname(b"HEAD") self._refs._check_refname(b"refs/stash") self._refs._check_refname(b"refs/heads/foo") self.assertRaises(errors.RefFormatError, self._refs._check_refname, b"refs") self.assertRaises( errors.RefFormatError, self._refs._check_refname, b"notrefs/foo" ) def test_contains(self): self.assertIn(b"refs/heads/master", self._refs) self.assertNotIn(b"refs/heads/bar", self._refs) def test_delitem(self): self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"refs/heads/master"], ) del self._refs[b"refs/heads/master"] self.assertRaises(KeyError, lambda: self._refs[b"refs/heads/master"]) def test_remove_if_equals(self): self.assertFalse(self._refs.remove_if_equals(b"HEAD", b"c0ffee")) self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"HEAD"] ) self.assertTrue( self._refs.remove_if_equals( b"refs/tags/refs-0.2", b"3ec9c43c84ff242e3ef4a9fc5bc111fd780a76a8", ) ) self.assertTrue(self._refs.remove_if_equals(b"refs/tags/refs-0.2", ZERO_SHA)) self.assertNotIn(b"refs/tags/refs-0.2", self._refs) def test_import_refs_name(self): self._refs[ b"refs/remotes/origin/other" ] = b"48d01bd4b77fed026b154d16493e5deab78f02ec" self._refs.import_refs( b"refs/remotes/origin", {b"master": b"4<PASSWORD>6b154d16493e5deab78f02ec"}, ) self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"refs/remotes/origin/master"], ) self.assertEqual( b"48d01bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"refs/remotes/origin/other"], ) def test_import_refs_name_prune(self): self._refs[ b"refs/remotes/origin/other" ] = b"48d01bd4b77fed026b154d16493e5deab78f02ec" self._refs.import_refs( b"refs/remotes/origin", {b"master": b"<PASSWORD>1<PASSWORD>3e5deab78f02ec"}, prune=True, ) self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"refs/remotes/origin/master"], ) self.assertNotIn(b"refs/remotes/origin/other", self._refs) def test_watch(self): try: watcher = self._refs.watch() except (NotImplementedError, ImportError): self.skipTest("watching not supported") with watcher: self._refs[ b"refs/remotes/origin/other" ] = b"48d01bd4b77fed026b154d16493e5deab78f02ec" change = next(watcher) self.assertEqual( ( b"refs/remotes/origin/other", b"48d01bd4b77fed026b154d16493e5deab78f02ec", ), change, ) self._refs[ b"refs/remotes/origin/other" ] = b"48d01bd4b77fed026b154d16493e5deab78f02ed" change = next(watcher) self.assertEqual( ( b"refs/remotes/origin/other", b"48d01bd4b77fed026b154d16493e5deab78f02ed", ), change, ) del self._refs[b"refs/remotes/origin/other"] change = next(watcher) self.assertEqual((b"refs/remotes/origin/other", None), change) class DictRefsContainerTests(RefsContainerTests, TestCase): def setUp(self): TestCase.setUp(self) self._refs = DictRefsContainer(dict(_TEST_REFS)) def test_invalid_refname(self): # FIXME: Move this test into RefsContainerTests, but requires # some way of injecting invalid refs. self._refs._refs[b"refs/stash"] = b"00" * 20 expected_refs = dict(_TEST_REFS) del expected_refs[b"refs/heads/loop"] expected_refs[b"refs/stash"] = b"00" * 20 self.assertEqual(expected_refs, self._refs.as_dict()) class DiskRefsContainerTests(RefsContainerTests, TestCase): def setUp(self): TestCase.setUp(self) self._repo = open_repo("refs.git") self.addCleanup(tear_down_repo, self._repo) self._refs = self._repo.refs def test_get_packed_refs(self): self.assertEqual( { b"refs/heads/packed": b"42d06bd4b77fed026b154d16493e5deab78f02ec", b"refs/tags/refs-0.1": b"df6800012397fb85c56e7418dd4eb9405dee075c", }, self._refs.get_packed_refs(), ) def test_get_peeled_not_packed(self): # not packed self.assertEqual(None, self._refs.get_peeled(b"refs/tags/refs-0.2")) self.assertEqual( b"3ec9c43c84ff242e3ef4a9fc5bc111fd780a76a8", self._refs[b"refs/tags/refs-0.2"], ) # packed, known not peelable self.assertEqual( self._refs[b"refs/heads/packed"], self._refs.get_peeled(b"refs/heads/packed"), ) # packed, peeled self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs.get_peeled(b"refs/tags/refs-0.1"), ) def test_setitem(self): RefsContainerTests.test_setitem(self) path = os.path.join(self._refs.path, b"refs", b"some", b"ref") with open(path, "rb") as f: self.assertEqual(b"42d06bd4b77fed026b154d16493e5deab78f02ec", f.read()[:40]) self.assertRaises( OSError, self._refs.__setitem__, b"refs/some/ref/sub", b"42d06bd4b77fed026b154d16493e5deab78f02ec", ) def test_delete_refs_container(self): # We shouldn't delete the refs directory self._refs[b'refs/heads/blah'] = b"42d06bd4b77fed026b154d16493e5deab78f02ec" for ref in self._refs.allkeys(): del self._refs[ref] self.assertTrue(os.path.exists(os.path.join(self._refs.path, b'refs'))) def test_setitem_packed(self): with open(os.path.join(self._refs.path, b"packed-refs"), "w") as f: f.write("# pack-refs with: peeled fully-peeled sorted \n") f.write("42d06bd4b77fed026b154d16493e5deab78f02ec refs/heads/packed\n") # It's allowed to set a new ref on a packed ref, the new ref will be # placed outside on refs/ self._refs[b"refs/heads/packed"] = b"3ec9c43c84ff242e3ef4a9fc5bc111fd780a76a8" packed_ref_path = os.path.join(self._refs.path, b"refs", b"heads", b"packed") with open(packed_ref_path, "rb") as f: self.assertEqual(b"3ec9c43c84ff242e3ef4a9fc5bc111fd780a76a8", f.read()[:40]) self.assertRaises( OSError, self._refs.__setitem__, b"refs/heads/packed/sub", b"42d06bd4b77fed026b154d16493e5deab78f02ec", ) def test_setitem_symbolic(self): ones = b"1" * 40 self._refs[b"HEAD"] = ones self.assertEqual(ones, self._refs[b"HEAD"]) # ensure HEAD was not modified f = open(os.path.join(self._refs.path, b"HEAD"), "rb") v = next(iter(f)).rstrip(b"\n\r") f.close() self.assertEqual(b"ref: refs/heads/master", v) # ensure the symbolic link was written through f = open(os.path.join(self._refs.path, b"refs", b"heads", b"master"), "rb") self.assertEqual(ones, f.read()[:40]) f.close() def test_set_if_equals(self): RefsContainerTests.test_set_if_equals(self) # ensure symref was followed self.assertEqual(b"9" * 40, self._refs[b"refs/heads/master"]) # ensure lockfile was deleted self.assertFalse( os.path.exists( os.path.join(self._refs.path, b"refs", b"heads", b"master.lock") ) ) self.assertFalse(os.path.exists(os.path.join(self._refs.path, b"HEAD.lock"))) def test_add_if_new_packed(self): # don't overwrite packed ref self.assertFalse(self._refs.add_if_new(b"refs/tags/refs-0.1", b"9" * 40)) self.assertEqual( b"df6800012397fb85c56e7418dd4eb9405dee075c", self._refs[b"refs/tags/refs-0.1"], ) def test_add_if_new_symbolic(self): # Use an empty repo instead of the default. repo_dir = os.path.join(tempfile.mkdtemp(), "test") os.makedirs(repo_dir) repo = Repo.init(repo_dir) self.addCleanup(tear_down_repo, repo) refs = repo.refs nines = b"9" * 40 self.assertEqual(b"ref: refs/heads/master", refs.read_ref(b"HEAD")) self.assertNotIn(b"refs/heads/master", refs) self.assertTrue(refs.add_if_new(b"HEAD", nines)) self.assertEqual(b"ref: refs/heads/master", refs.read_ref(b"HEAD")) self.assertEqual(nines, refs[b"HEAD"]) self.assertEqual(nines, refs[b"refs/heads/master"]) self.assertFalse(refs.add_if_new(b"HEAD", b"1" * 40)) self.assertEqual(nines, refs[b"HEAD"]) self.assertEqual(nines, refs[b"refs/heads/master"]) def test_follow(self): self.assertEqual( ( [b"HEAD", b"refs/heads/master"], b"42d06bd4b77fed026b154d16493e5deab78f02ec", ), self._refs.follow(b"HEAD"), ) self.assertEqual( ( [b"refs/heads/master"], b"42d06bd4b77fed026b154d16493e5deab78f02ec", ), self._refs.follow(b"refs/heads/master"), ) self.assertRaises(KeyError, self._refs.follow, b"refs/heads/loop") def test_delitem(self): RefsContainerTests.test_delitem(self) ref_file = os.path.join(self._refs.path, b"refs", b"heads", b"master") self.assertFalse(os.path.exists(ref_file)) self.assertNotIn(b"refs/heads/master", self._refs.get_packed_refs()) def test_delitem_symbolic(self): self.assertEqual(b"ref: refs/heads/master", self._refs.read_loose_ref(b"HEAD")) del self._refs[b"HEAD"] self.assertRaises(KeyError, lambda: self._refs[b"HEAD"]) self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs[b"refs/heads/master"], ) self.assertFalse(os.path.exists(os.path.join(self._refs.path, b"HEAD"))) def test_remove_if_equals_symref(self): # HEAD is a symref, so shouldn't equal its dereferenced value self.assertFalse( self._refs.remove_if_equals( b"HEAD", b"42d06bd4b77fed026b154d16493e5deab78f02ec" ) ) self.assertTrue( self._refs.remove_if_equals( b"refs/heads/master", b"42d06bd4b77fed026b154d16493e5deab78f02ec", ) ) self.assertRaises(KeyError, lambda: self._refs[b"refs/heads/master"]) # HEAD is now a broken symref self.assertRaises(KeyError, lambda: self._refs[b"HEAD"]) self.assertEqual(b"ref: refs/heads/master", self._refs.read_loose_ref(b"HEAD")) self.assertFalse( os.path.exists( os.path.join(self._refs.path, b"refs", b"heads", b"master.lock") ) ) self.assertFalse(os.path.exists(os.path.join(self._refs.path, b"HEAD.lock"))) def test_remove_packed_without_peeled(self): refs_file = os.path.join(self._repo.path, "packed-refs") f = GitFile(refs_file) refs_data = f.read() f.close() f = GitFile(refs_file, "wb") f.write( b"\n".join( line for line in refs_data.split(b"\n") if not line or line[0] not in b"#^" ) ) f.close() self._repo = Repo(self._repo.path) refs = self._repo.refs self.assertTrue( refs.remove_if_equals( b"refs/heads/packed", b"42d06bd4b77fed026b154d16493e5deab78f02ec", ) ) def test_remove_if_equals_packed(self): # test removing ref that is only packed self.assertEqual( b"df6800012397fb85c56e7418dd4eb9405dee075c", self._refs[b"refs/tags/refs-0.1"], ) self.assertTrue( self._refs.remove_if_equals( b"refs/tags/refs-0.1", b"df6800012397fb85c56e7418dd4eb9405dee075c", ) ) self.assertRaises(KeyError, lambda: self._refs[b"refs/tags/refs-0.1"]) def test_remove_parent(self): self._refs[b"refs/heads/foo/bar"] = b"df6800012397fb85c56e7418dd4eb9405dee075c" del self._refs[b"refs/heads/foo/bar"] ref_file = os.path.join( self._refs.path, b"refs", b"heads", b"foo", b"bar", ) self.assertFalse(os.path.exists(ref_file)) ref_file = os.path.join(self._refs.path, b"refs", b"heads", b"foo") self.assertFalse(os.path.exists(ref_file)) ref_file = os.path.join(self._refs.path, b"refs", b"heads") self.assertTrue(os.path.exists(ref_file)) self._refs[b"refs/heads/foo"] = b"df6800012397fb85c56e7418dd4eb9405dee075c" def test_read_ref(self): self.assertEqual(b"ref: refs/heads/master", self._refs.read_ref(b"HEAD")) self.assertEqual( b"42d06bd4b77fed026b154d16493e5deab78f02ec", self._refs.read_ref(b"refs/heads/packed"), ) self.assertEqual(None, self._refs.read_ref(b"nonexistant")) def test_read_loose_ref(self): self._refs[b"refs/heads/foo"] = b"df6800012397fb85c56e7418dd4eb9405dee075c" self.assertEqual(None, self._refs.read_ref(b"refs/heads/foo/bar")) def test_non_ascii(self): try: encoded_ref = os.fsencode(u"refs/tags/schön") except UnicodeEncodeError: raise SkipTest("filesystem encoding doesn't support special character") p = os.path.join(os.fsencode(self._repo.path), encoded_ref) with open(p, "w") as f: f.write("00" * 20) expected_refs = dict(_TEST_REFS) expected_refs[encoded_ref] = b"00" * 20 del expected_refs[b"refs/heads/loop"] self.assertEqual(expected_refs, self._repo.get_refs()) def test_cyrillic(self): if sys.platform in ("darwin", "win32"): raise SkipTest("filesystem encoding doesn't support arbitrary bytes") # reported in https://github.com/dulwich/dulwich/issues/608 name = b"\xcd\xee\xe2\xe0\xff\xe2\xe5\xf2\xea\xe01" encoded_ref = b"refs/heads/" + name with open(os.path.join(os.fsencode(self._repo.path), encoded_ref), "w") as f: f.write("00" * 20) expected_refs = set(_TEST_REFS.keys()) expected_refs.add(encoded_ref) self.assertEqual(expected_refs, set(self._repo.refs.allkeys())) self.assertEqual( {r[len(b"refs/") :] for r in expected_refs if r.startswith(b"refs/")}, set(self._repo.refs.subkeys(b"refs/")), ) expected_refs.remove(b"refs/heads/loop") expected_refs.add(b"HEAD") self.assertEqual(expected_refs, set(self._repo.get_refs().keys())) _TEST_REFS_SERIALIZED = ( b"42d06bd4b77fed026b154d16493e5deab78f02ec\t" b"refs/heads/40-char-ref-aaaaaaaaaaaaaaaaaa\n" b"42d06bd4b77fed026b154d16493e5deab78f02ec\trefs/heads/master\n" b"42d06bd4b77fed026b154d16493e5deab78f02ec\trefs/heads/packed\n" b"df6800012397fb85c56e7418dd4eb9405dee075c\trefs/tags/refs-0.1\n" b"3ec9c43c84ff242e3ef4a9fc5bc111fd780a76a8\trefs/tags/refs-0.2\n" ) class InfoRefsContainerTests(TestCase): def test_invalid_refname(self): text = _TEST_REFS_SERIALIZED + b"00" * 20 + b"\trefs/stash\n" refs = InfoRefsContainer(BytesIO(text)) expected_refs = dict(_TEST_REFS) del expected_refs[b"HEAD"] expected_refs[b"refs/stash"] = b"00" * 20 del expected_refs[b"refs/heads/loop"] self.assertEqual(expected_refs, refs.as_dict()) def test_keys(self): refs = InfoRefsContainer(BytesIO(_TEST_REFS_SERIALIZED)) actual_keys = set(refs.keys()) self.assertEqual(set(refs.allkeys()), actual_keys) expected_refs = dict(_TEST_REFS) del expected_refs[b"HEAD"] del expected_refs[b"refs/heads/loop"] self.assertEqual(set(expected_refs.keys()), actual_keys) actual_keys = refs.keys(b"refs/heads") actual_keys.discard(b"loop") self.assertEqual( [b"40-char-ref-aaaaaaaaaaaaaaaaaa", b"master", b"packed"], sorted(actual_keys), ) self.assertEqual([b"refs-0.1", b"refs-0.2"], sorted(refs.keys(b"refs/tags"))) def test_as_dict(self): refs = InfoRefsContainer(BytesIO(_TEST_REFS_SERIALIZED)) # refs/heads/loop does not show up even if it exists expected_refs = dict(_TEST_REFS) del expected_refs[b"HEAD"] del expected_refs[b"refs/heads/loop"] self.assertEqual(expected_refs, refs.as_dict()) def test_contains(self): refs = InfoRefsContainer(BytesIO(_TEST_REFS_SERIALIZED)) self.assertIn(b"refs/heads/master", refs) self.assertNotIn(b"refs/heads/bar", refs) def test_get_peeled(self): refs = InfoRefsContainer(BytesIO(_TEST_REFS_SERIALIZED)) # refs/heads/loop does not show up even if it exists self.assertEqual( _TEST_REFS[b"refs/heads/master"], refs.get_peeled(b"refs/heads/master"), ) class ParseSymrefValueTests(TestCase): def test_valid(self): self.assertEqual(b"refs/heads/foo", parse_symref_value(b"ref: refs/heads/foo")) def test_invalid(self): self.assertRaises(ValueError, parse_symref_value, b"foobar") class StripPeeledRefsTests(TestCase): all_refs = { b"refs/heads/master": b"8843d7f92416211de9ebb963ff4ce28125932878", b"refs/heads/testing": b"186a005b134d8639a58b6731c7c1ea821a6eedba", b"refs/tags/1.0.0": b"a93db4b0360cc635a2b93675010bac8d101f73f0", b"refs/tags/1.0.0^{}": b"a93db4b0360cc635a2b93675010bac8d101f73f0", b"refs/tags/2.0.0": b"0749936d0956c661ac8f8d3483774509c165f89e", b"refs/tags/2.0.0^{}": b"0749936d0956c661ac8f8d3483774509c165f89e", } non_peeled_refs = { b"refs/heads/master": b"8843d7f92416211de9ebb963ff4ce28125932878", b"refs/heads/testing": b"186a005b134d8639a58b6731c7c1ea821a6eedba", b"refs/tags/1.0.0": b"a93db4b0360cc635a2b93675010bac8d101f73f0", b"refs/tags/2.0.0": b"0749936d0956c661ac8f8d3483774509c165f89e", } def test_strip_peeled_refs(self): # Simple check of two dicts self.assertEqual(strip_peeled_refs(self.all_refs), self.non_peeled_refs)
env/lib/python3.4/site-packages/bulbs/titan/index.py
mudbungie/NetExplorer
234
12738545
# -*- coding: utf-8 -*- # # Copyright 2012 <NAME> (http://jamesthornton.com) # BSD License (see LICENSE for details) # """ An interface for interacting with indices on Rexster. """ from bulbs.utils import initialize_element, initialize_elements, get_one_result class IndexProxy(object): """Abstract base class the index proxies.""" def __init__(self, index_class, client): # The index class for this proxy, e.g. ManualIndex. self.index_class = index_class # The Client object for the database. self.client = client class VertexIndexProxy(IndexProxy): """ Manage vertex indices on Rexster. :param index_class: The index class for this proxy, e.g. ManualIndex. :type index_class: Index :param client: The Client object for the database. :type client: bulbs.rexster.client.RexsterClient :ivar index_class: Index class. :ivar client: RexsterClient object. """ def create(self, index_name): """ Creates an Vertex index and returns it. :param index_name: Index name. :type index_name: str :rtype: bulbs.rexster.index.Index """ raise NotImplementedError def get(self, index_name="vertex"): """ Returns the Index object with the specified name or None if not found. :param index_name: Index name. :type index_name: str :rtype: bulbs.rexster.index.Index """ index = self.index_class(self.client, None) index.base_type = "vertex" index._index_name = index_name self.client.registry.add_index(index_name, index) return index def get_or_create(self, index_name="vertex", index_params=None): """ Get a Vertex Index or create it if it doesn't exist. :param index_name: Index name. :type index_name: str :rtype: bulbs.rexster.index.Index """ return self.get(index_name) def delete(self, index_name): """ Deletes an index and returns the Response. :param index_name: Index name. :type index_name: str :rtype: bulbs.rexster.client.RexsterResponse """ raise NotImplementedError class EdgeIndexProxy(IndexProxy): """ Manage edge indices on Rexster. :param index_class: The index class for this proxy, e.g. ManualIndex. :type index_class: Index :param client: The Client object for the database. :type client: bulbs.rexster.client.RexsterClient :ivar index_class: Index class. :ivar client: RexsterClient object. """ def create(self,index_name,*args,**kwds): """ Adds an index to the database and returns it. index_keys must be a string in this format: '[k1,k2]' Don't pass actual list b/c keys get double quoted. :param index_name: The name of the index to create. :param index_class: The class of the elements stored in the index. Either vertex or edge. """ raise NotImplementedError def get(self, index_name="edge"): """ Returns the Index object with the specified name or None if not found. :param index_name: Index name. :type index_name: str :rtype: bulbs.rexster.index.Index """ index = self.index_class(self.client, None) index.base_type = "edge" index._index_name = index_name self.client.registry.add_index(index_name, index) return index def get_or_create(self, index_name="edge", index_params=None): """ Get an Edge Index or create it if it doesn't exist. :param index_name: Index name. :type index_name: str :rtype: bulbs.rexster.index.Index """ return self.get(index_name) def delete(self,index_name): """ Deletes an index and returns the Response. :param index_name: Index name. :type index_name: str :rtype: bulbs.rexster.client.RexsterResponse """ raise NotImplementedError # # Index Containers (Titan only supports KeyIndex so far) # class Index(object): """Abstract base class for an index.""" def __init__(self, client, result): self.client = client self.result = result self.base_type = None # set by Factory.get_index self._index_name = None # ditto # the index_name is actually ignored with Titan, # but setting it like normal to make tests pass @classmethod def get_proxy_class(cls, base_type): """ Returns the IndexProxy class. :param base_type: Index base type, either vertex or edge. :type base_type: str :rtype: class """ class_map = dict(vertex=VertexIndexProxy, edge=EdgeIndexProxy) return class_map[base_type] @property def index_name(self): """ Returns the index name. :rtype: str """ # faking the index name as "vertex" return self._index_name @property def index_class(self): """ Returns the index class, either vertex or edge. :rtype: class """ return self.base_type @property def index_type(self): """ Returns the index type, which will either be automatic or manual. :rtype: str """ return "automatic" def count(self,key=None,value=None,**pair): """ Return a count of all elements with 'key' equal to 'value' in the index. :param key: The index key. This is optional because you can instead supply a key/value pair such as name="James". :param value: The index key's value. This is optional because you can instead supply a key/value pair such as name="James". :param pair: Optional keyword param. Instead of supplying key=name and value = 'James', you can supply a key/value pair in the form of name='James'. """ raise NotImplementedError def _get_key_value(self, key, value, pair): """Return the key and value, regardless of how it was entered.""" if pair: key, value = pair.popitem() return key, value def _get_method(self, **method_map): method_name = method_map[self.index_class] method = getattr(self.client, method_name) return method def lookup(self, key=None, value=None, **pair): """ Return a generator containing all the elements with key property equal to value in the index. :param key: The index key. This is optional because you can instead supply a key/value pair such as name="James". :param value: The index key's value. This is optional because you can instead supply a key/value pair such as name="James". :param raw: Optional keyword param. If set to True, it won't try to initialize the results. Defaults to False. :param pair: Optional keyword param. Instead of supplying key=name and value = 'James', you can supply a key/value pair in the form of name='James'. """ key, value = self._get_key_value(key, value, pair) resp = self.client.lookup_vertex(self.index_name,key,value) return initialize_elements(self.client,resp) def get_unique(self,key=None,value=None,**pair): """ Returns a max of 1 elements matching the key/value pair in the index. :param key: The index key. This is optional because you can instead supply a key/value pair such as name="James". :param value: The index key's value. This is optional because you can instead supply a key/value pair such as name="James". :param pair: Optional keyword param. Instead of supplying key=name and value = 'James', you can supply a key/value pair in the form of name='James'. """ key, value = self._get_key_value(key,value,pair) resp = self.client.lookup_vertex(self.index_name,key,value) if resp.total_size > 0: result = get_one_result(resp) return initialize_element(self.client, result) class KeyIndex(Index): def keys(self): """Return the index's keys.""" # Titan does not support edge indices. resp = self.client.get_vertex_keys() return [result.raw for result in resp.results] def create_key(self, key): # TODO: You can't create a key if prop already exists - workaround? if self.base_type is "edge": return self.create_edge_key(key) return self.create_vertex_key(key) def create_vertex_key(self, key): return self.client.create_vertex_key_index(key) def create_edge_key(self, key): return self.client.create_vertex_key_index(key) def rebuild(self): raise NotImplementedError # (for now) # need class_map b/c the Blueprints need capitalized class names, # but Rexster returns lower-case class names for index_class method_map = dict(vertex=self.client.rebuild_vertex_index, edge=self.client.rebuild_edge_index) rebuild_method = method_map.get(self.index_class) resp = rebuild_method(self.index_name) return list(resp.results)
test/regression/features/assignment/assign_multi.py
ppelleti/berp
137
12738583
<filename>test/regression/features/assignment/assign_multi.py x = y = 1 print(x,y) x = y = z = 1 print(x,y,z)
zoopt/objective.py
HowardHu97/ZOOpt
403
12738646
<reponame>HowardHu97/ZOOpt<filename>zoopt/objective.py<gh_stars>100-1000 """ This module contains the class Objective Author: <NAME>, <NAME> """ from zoopt.solution import Solution from zoopt.utils.zoo_global import pos_inf from zoopt.utils.tool_function import ToolFunction import numpy as np class Objective: """ This class represents the objective function and its associated variables """ def __init__(self, func=None, dim=None, constraint=None, resample_func=None): """ Initialization. :param func: objective function defined by the user :param dim: a Dimension object, which describes the search space. :param constraint: constraint function for POSS :param resample_func: resample function for SSRacos :param reducedim: whether to use sequential random embedding """ self.__func = func self.__dim = dim # the function for inheriting solution attachment self.__inherit = self.default_inherit self.__post_inherit = self.default_post_inherit # the constraint function self.__constraint = constraint # the history of optimization self.__history = [] self.__resample_times = 1 self.__resample_func = self.resample_func if resample_func is None else resample_func self.__balance_rate = 1 # for sequential random embedding self.__reducedim = False self.__A = None self.__last_x = None def parameter_set(self, parameter): """ Use a Parameter object to set attributes in Objective object. :param parameter: a Parameter object :return: no return """ if parameter.get_noise_handling() is True and parameter.get_suppression() is True: self.__balance_rate = parameter.get_balance_rate() if parameter.get_noise_handling() is True and parameter.get_resampling() is True: self.__resample_times = parameter.get_resample_times() if parameter.get_high_dim_handling() is True and parameter.get_reducedim() is True: self.__reducedim = True def construct_solution(self, x, parent=None): """ Construct a solution from x :param x: a list :param parent: the attached structure :return: solution """ new_solution = Solution() new_solution.set_x(x) new_solution.set_attach(self.__inherit(parent)) return new_solution def eval(self, solution): """ Use the objective function to evaluate a solution. :param solution: :return: value of fx(evaluation result) will be returned """ res = [] for i in range(self.__resample_times): if self.__reducedim is False: val = self.__func(solution) else: x = solution.get_x() x_origin = x[0] * np.array(self.__last_x.get_x()) + np.dot(self.__A, np.array(x[1:])) val = self.__func(Solution(x=x_origin)) res.append(val) self.__history.append(val) value = sum(res) / float(len(res)) solution.set_value(value) solution.set_post_attach(self.__post_inherit()) return value def resample(self, solution, repeat_times): """ Resample function for value suppression. :param solution: a Solution object :param repeat_times: repeat times :return: repeat times """ if solution.get_resample_value() is None: solution.set_resample_value(self.__resample_func(solution, repeat_times)) solution.set_value((1 - self.__balance_rate) * solution.get_value() + self.__balance_rate * solution.get_resample_value()) solution.set_post_attach(self.__post_inherit()) return repeat_times else: return 0 def resample_func(self, solution, iteration_num): result = [] for i in range(iteration_num): result.append(self.eval(solution)) return sum(result) * 1.0 / len(result) def eval_constraint(self, solution): solution.set_value( [self.eval(solution), self.__constraint(solution)]) solution.set_post_attach(self.__post_inherit()) def set_func(self, func): """ Set the objective function :param func: the objective function :return: no return value """ self.__func = func def get_func(self): return self.__func def set_dim(self, dim): self.__dim = dim def get_dim(self): return self.__dim def set_inherit_func(self, inherit_func): self.__inherit = inherit_func def set_post_inherit_func(self, inherit_func): self.__post_inherit = inherit_func def get_post_inherit_func(self): return self.__post_inherit def get_inherit_func(self): return self.__inherit def set_constraint(self, constraint): self.__constraint = constraint return def get_constraint(self): return self.__constraint def set_history(self, history): self.__history = history def get_history(self): return self.__history def get_history_bestsofar(self): """ Get the best-so-far history. """ history_bestsofar = [] bestsofar = pos_inf for i in range(len(self.__history)): if self.__history[i] < bestsofar: bestsofar = self.__history[i] history_bestsofar.append(bestsofar) return history_bestsofar def get_reducedim(self): return self.__reducedim def get_last_x(self): return self.__last_x def get_A(self): return self.__A def set_A(self, A): self.__A = A def set_last_x(self, x): self.__last_x = x def clean_history(self): """ clean the optimization history """ self.__history = [] @staticmethod def default_inherit(parent=None): """ Default inherited function. :param parent: the parent structure :return: None """ return None @staticmethod def default_post_inherit(parent=None): """ Default post inherited function. :param parent: the parent structure :return: None """ return None
scripts/test_zmq/test_zmq/server.py
IDunion/indy-plenum
148
12738649
<filename>scripts/test_zmq/test_zmq/server.py<gh_stars>100-1000 #! /usr/bin/env python3 import argparse import shutil import socket from concurrent.futures import ThreadPoolExecutor from tempfile import TemporaryDirectory from typing import NamedTuple import zmq from test_zmq.zstack import ZStack SEED = b'E21bEA7DeaE981cBabCECd9FAeF4e340' EXPECTED_ZMQ_REPLY = '{"type": "DIAGNOSE", "text": "ZMQ connection is possible"}' EXPECTED_TCP_REPLY = '{"type": "DIAGNOSE", "text": "TCP connection is possible"}' QUIT = False HA = NamedTuple("HA", [ ("host", str), ("port", int)]) def msg_handler(zstack, msg): _, frm = msg print(msg) zstack.send(EXPECTED_ZMQ_REPLY, frm) def loop(): loop = zmq.asyncio.ZMQEventLoop() return loop class SafeTemporaryDirectory(TemporaryDirectory): @classmethod def _cleanup(cls, name, warn_message): shutil.rmtree(name, ignore_errors=True) def cleanup(self): if self._finalizer.detach(): shutil.rmtree(self.name, ignore_errors=True) def up_zmq_server(server_ha): print("ZMQ_SERVER: Seed is {}".format(SEED)) server = ZStack(name='Test_zmq', ha=server_ha, basedirpath=base_dir, msgHandler=msg_handler, seed=SEED, onlyListener=True) server.start() return server def up_tcp_server(server_ha): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(server_ha) s.listen() print("TCP_SERVER: Listen clients on {}".format(server_ha)) while True: conn, addr = s.accept() with conn: print('TCP_SERVER: Connected by', addr) while True: data = conn.recv(1024) if data: print("TCP_SERVER: Received {} from client through tcp".format(data)) conn.sendall(EXPECTED_TCP_REPLY.encode()) break if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--zmq_port', help="Port which will be used for ZMQ client's connections") parser.add_argument('--tcp_port', help="Port which will be used for TCP client's connections") parser.add_argument('--addr', help="Address which will used for incoming client's connection. 0.0.0.0 by default", default='0.0.0.0', required=False) args = parser.parse_args() zmq_server_ha = HA(args.addr, int(args.zmq_port) if args.zmq_port else '9999') tcp_server_ha = HA(args.addr, int(args.tcp_port) if args.tcp_port else 10000) with SafeTemporaryDirectory() as base_dir: zmq_server = up_zmq_server(zmq_server_ha) tpe = ThreadPoolExecutor(max_workers=4) tpe.submit(up_tcp_server, tcp_server_ha) async def wrapper(): while True: await zmq_server.service() looper = loop() try: looper.run_until_complete(wrapper()) except KeyboardInterrupt: zmq_server.stop() tpe.shutdown(wait=False) print("Server was stopped") exit(0)
SuperClippy/superclippy.py
zatherz/reddit
444
12738656
#/u/GoldenSights import sys import traceback import time import datetime import sqlite3 import json import praw '''USER CONFIGURATION''' """GENERAL""" APP_ID = "" APP_SECRET = "" APP_URI = "" APP_REFRESH = "" # https://www.reddit.com/comments/3cm1p8/how_to_make_your_bot_use_oauth2/ USERAGENT = "/r/Excel Clippy Office Assistant all-in-one moderator." # This is a short description of what the bot does. # For example "/u/GoldenSights' Newsletter bot" SUBREDDIT = "Goldtesting" # This is the sub or list of subs to scan for new posts. # For a single sub, use "sub1". # For multiple subreddits, use "sub1+sub2+sub3+..." PLAY_BOOT_SOUND = True #Play boot.wav MAXPOSTS = 100 # How many posts to get from the /new queue at once WAIT = 30 # The number of seconds between cycles. The bot is completely inactive during # this time """**************""" """CLIPPYPOINTS™ """ """**************""" POINT_STRING_USR = ["Solution Verified"] # OP can use this string to award points in his thread. POINT_STRING_MOD = ["+1 Point"] # Moderators can use this to give points at any time. POINT_FLAIR_CSS = "points" # The CSS class associated with point flair # Set to "" for none POINT_REPLY = "You have awarded one point to _parent_" # This is the phrase that User will receive # _parent_ will be replaced by the username of the Parent. POINT_EXEMPT = [] # Any usernames in this list will not receive points. # Perhaps they have special flair. POINT_OP_ONLY = True # Is OP the only person who can give points? # I recommend setting this to False. Other users might have the same question # and would like to reward a good answer. POINT_PER_THREAD = 200 # How many points can be distributed in a single thread? POINT_DO_EXPLAIN = True # If the max-per-thread is reached and someone tries to give a point, reply to # them saying that the max has already been reached POINT_EXPLAIN = """ Sorry, but %d point(s) have already been distributed in this thread. This is the maximum allowed at this time. """%POINT_PER_THREAD # If EXPLAINMAX is True, this will be said to someone who tries to give a # point after max is reached POINT_EXPLAIN_OP_ONLY = """ Hi! It looks like you are trying to award a point and you are not the OP! I am here to assist you! What would you like help with? [ClippyPoints^(TM)?](/r/excel/wiki/clippy) [Flair Descriptions](http://www.reddit.com/r/excel/wiki/index) """ """**************""" """FLAIR REMINDER""" """**************""" FLAIR_WARN_DELAY = 86400 # This is the time, IN SECONDS, the user has to reply to the first comment. # If he does not respond by this time, post is removed NCDELAY = 172800 FLAIR_WARN_MESSAGE = """ Hi! It looks like you are trying to ask a question! Since you have not responded in the last 24 hours, I am here to assist you! If your questions has been solved, please be sure to update the flair. Would you like help? [Help Changing Your Flair?](https://www.reddit.com/r/excel/wiki/flair) [Asking Question and Sharing Data](https://www.reddit.com/r/excel/wiki/sharingquestions) """ # This is what the bot tells you when you dont meet the DELAY. Uses reddit's # usual Markdown formatting FLAIR_IGNORE_MODS = False # Do you want the bot to ignore posts made by moderators? # Use True or False (With capitals! No quotations!) FLAIR_IGNORE_SELF = False #Do you want the bot to ignore selfposts? FLAIR_SOLVED = "solved" FLAIR_UNSOLVED = "unsolved" FLAIR_CHAL = "challenge" FLAIR_MANN = "Mod Announcement" FLAIR_MNEWS = "Mod News" FLAIR_WAITING = "Waiting on OP" FLAIR_DISCUSS = "discussion" FLAIR_ADVERTISEMENT = "advertisement" FLAIR_TEMPLATE = "User Template" FLAIR_PROTIP = "pro tip" FLAIR_TRIGGERS = ["that works", "perfect", "thank you so much", "huge help", "figured it out", "got it", "thanks for your help"] #These encourage OP to change flair / award point FLAIR_REMINDER = """ Hi! It looks like you received an answer to your question! Since the top is still marked as unsolved, I am here to assist you! If your questions has been solved, please be sure to update the flair. Would you like help? [Help Changing Your Flair?](http://www.reddit.com/r/excel/wiki/index) [Flair Descriptions](http://www.reddit.com/r/excel/wiki/index) """ """******************""" """FUNCTION REFERENCE""" """******************""" DICT_TRIGGER = "clippy: " # The trigger phrase for perfoming a lookup DICT_FILE = 'reference.txt' # The file with the Keys/Values DICT_RESULT_FORM = "_value_" # This is the form that the result will take # You may use _key_ and _value_ to inject the key/value from the dict. # You may delete one or both of these injectors. DICT_LEVENSHTEIN = False # If this is True it will use a function that is slow but can find # misspelled keys # If this is False it will use a simple function that is very fast but can # only find keys which are spelled exactly DICT_FAIL = """ Hi! It looks like you're looking for help with an Excel function! Unfortunately I have not learned that function yet. If you'd like to change that, [message the moderators](http://www.reddit.com/message/compose?to=%2Fr%2Fexcel)! """ # The comment which is created when a function is requested # but not in the file """***************""" """WELCOME MESSAGE""" """***************""" WELCOME_SUBJECT = """Welcome to /r/Excel, I am here to help!""" WELCOME_MESSAGE = """ Hi %s! It looks like you are new to posting in /r/Excel. Did you know we have a few ways to help you receive better help? How can I help you? [How to Share Your Questions](/r/excel/wiki/sharingquestions) [Changing Link Flair](/r/excel/wiki/flair) [ClippyPoints^TM](/r/excel/wiki/clippy) ^This ^message ^is ^auto-generated ^and ^is ^not ^monitored ^on ^a ^regular ^basis, ^replies ^to ^this ^message ^may ^not ^go ^answered. ^Remember ^to [^contact ^the ^moderators](http://www.reddit.com/message/compose?to=%2Fr%2Fexcel) ^to ^guarantee ^a ^response """ # Sent to the user if he has created his first post in the subreddit '''All done!''' class ClippyPoints: def incrementflair(self, subreddit, username): #Returns True if the operation was successful if isinstance(subreddit, str): subreddit = r.get_subreddit(subreddit) success = False print('\t\tChecking flair for ' + username) flairs = subreddit.get_flair(username) flairs = flairs['flair_text'] if flairs is not None and flairs != '': print('\t\t:' + flairs) try: flairs = int(flairs) flairs += 1 flairs = str(flairs) success = True except ValueError: print('\t\tCould not convert flair to a number.') else: print('\t\tNo current flair. 1 point') flairs = '1' success = True if success: print('\t\tAssigning Flair: ' + flairs) subreddit.set_flair(username, flair_text=flairs, flair_css_class=POINT_FLAIR_CSS) return success def receive(self, comments): print('\tClippyPoints received comments.') subreddit = r.get_subreddit(SUBREDDIT) for comment in comments: cid = comment.id cur.execute('SELECT * FROM clippy_points WHERE ID=?', [cid]) if not cur.fetchone(): print(cid) cbody = comment.body.lower() try: if not comment.is_root: cauthor = comment.author.name print('\tChecking subreddit moderators') moderators = [user.name for user in subreddit.get_moderators()] byuser = False if cauthor not in moderators and any(flag.lower() in cbody for flag in POINT_STRING_USR): byuser = True if byuser or ( (cauthor in moderators and any(flag.lower() in cbody for flag in POINT_STRING_MOD))): print('\tFlagged %s.' % cid) print('\t\tFetching parent and Submission data.') parentcom = r.get_info(thing_id=comment.parent_id) pauthor = parentcom.author.name op = comment.submission.author.name opid = comment.submission.id if pauthor != cauthor: if not any(exempt.lower() == pauthor.lower() for exempt in POINT_EXEMPT): if POINT_OP_ONLY is False or cauthor == op or cauthor in moderators: cur.execute('SELECT * FROM clippy_points_s WHERE ID=?', [opid]) fetched = cur.fetchone() if not fetched: cur.execute('INSERT INTO clippy_points_s VALUES(?, ?)', [opid, 0]) fetched = 0 else: fetched = fetched[1] if fetched < POINT_PER_THREAD: if self.incrementflair(subreddit, pauthor): print('\t\tWriting reply') comment_confirm = comment.reply(POINT_REPLY.replace('_parent_', pauthor)) comment_confirm.distinguish() cur.execute('UPDATE clippy_points_s SET count=? WHERE ID=?', [fetched+1, opid]) if byuser: comment.submission.set_flair(flair_text=FLAIR_SOLVED, flair_css_class="solvedcase") else: print('\t\tMaxPerThread has been reached') if EXPLAINMAX is True: print('\t\tWriting reply') comment.reply(POINT_EXPLAIN) else: print('\tOther users cannot give points.') #comment_confirm = comment.reply(EXPLAINOPONLY) #comment_confirm.distinguish() else: print('\t\tParent is on the exempt list.') else: print('\t\tCannot give points to self.') else: print('\t\tRoot comment. Ignoring.') except AttributeError: print('\t\tCould not fetch usernames. Cannot proceed.') cur.execute('INSERT INTO clippy_points VALUES(?)', [cid]) sql.commit() print('\tClippyPoints finished') class ClippyFlairReminder: def receive(self, posts): print('\tClippyFlair received submissions') now = datetime.datetime.now() subreddit = r.get_subreddit(SUBREDDIT) print('\tChecking subreddit moderators') moderators = [user.name for user in subreddit.get_moderators()] for post in posts: found = False ctimes = [] pid = post.id try: pauthor = post.author.name except AttributeError: pauthor = '[deleted]' ptime = post.created_utc curtime = getTime(True) ctime = curtime cur.execute('SELECT * FROM clippy_flair WHERE id=?', [pid]) if not cur.fetchone(): if post.is_self is False or FLAIR_IGNORE_SELF is False: if pauthor not in moderators or FLAIR_IGNORE_MODS is False: comments = praw.helpers.flatten_tree(post.comments) try: flair = post.link_flair_text.lower() except AttributeError: flair = '' if flair == FLAIR_UNSOLVED.lower(): print(pid + ': Unsolved') for comment in comments: try: cauthor = comment.author.name except AttributeError: cauthor = '[deleted]' if cauthor != pauthor: found = True break if not found: print('\tNo comments by another user. No action taken.') else: print('\tFound comment by other user. Marking as Waiting.') post.set_flair(flair_text=FLAIR_WAITING, flair_css_class="waitingonop") elif flair == FLAIR_WAITING.lower(): print(pid + ': Waiting') for comment in comments: try: cauthor = comment.author.name except AttributeError: cauthor = '[deleted]' if cauthor == pauthor: found = True pbody = comment.body.lower() else: ctimes.append(comment.created_utc) if found is True: if not any(trigger in pbody for trigger in POINT_STRING_USR): print('\tFound comment by OP. All clear, changing flair back to unsolved.') post.set_flair(flair_text=FLAIR_UNSOLVED, flair_css_class="notsolvedcase") #print('\tUpvoting comment..') #post.upvote() cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) if any(key.lower() in pbody for key in FLAIR_TRIGGERS): print('Replying to ' + pid + ' by ' + pauthor) comment.reply(FLAIR_REMINDER) newcomment.distinguish() elif found is False and len(ctimes) > 0: print('\tNo comments by OP. Checking time limit.') ctime = min(ctimes) difference = curtime - ctime if difference > FLAIR_WARN_DELAY: print('\tTime is up.') print('\tLeaving Comment') newcomment = post.add_comment(FLAIR_WARN_MESSAGE) print('\tDistinguishing Comment') newcomment.distinguish() cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) else: differences = str('%.0f' % (FLAIR_WARN_DELAY - difference)) print('\tStill has ' + differences + 's.') elif found is False and len(ctimes) == 0: print('\tNo comments by OP, but no other comments are available.') else: print(pid + ': Neither flair') if flair == FLAIR_DISCUSS.lower(): print(pid + ': is a discussion post, adding to ignore list...') cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) if flair == FLAIR_ADVERTISEMENT.lower(): print(pid + ': is an advertisement post, adding to ignore list...') cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) if flair == FLAIR_TEMPLATE.lower(): print(pid + ': is a User Template post, adding to ignore list...') cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) if flair == FLAIR_PROTIP.lower(): print(pid + ': is a ProTip post, adding to ignore list...') cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) if flair == FLAIR_SOLVED.lower(): print(pid + ': is a SOLVED post, adding to ignore list...') cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) if flair == FLAIR_MANN.lower(): print(pid + ': is a Mod Annoucement post, adding to ignore list...') cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) if flair == FLAIR_MNEWS.lower(): print(pid + ': is a Mod News post, adding to ignore list...') cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) else: cur.execute('SELECT * FROM clippy_flair WHERE id=?', [pid]) if not cur.fetchone(): print('\tAssigning Flair') post.set_flair(flair_text=FLAIR_UNSOLVED, flair_css_class="notsolvedcase") else: #cur.execute('INSERT INTO flair VALUES("%s")' % pid) if pauthor in moderators and FLAIR_IGNORE_MODS is True: print(pid + ', ' + pauthor + ': Ignoring Moderator') cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) if post.is_self is True and FLAIR_IGNORE_SELF is True: print(pid + ', ' + pauthor + ': Ignoring Selfpost') cur.execute('INSERT INTO clippy_flair VALUES(?)', [pid]) sql.commit() print('\tClippyFlair finished') class ClippyReference: def __init__(self): with open(DICT_FILE, 'r') as f: self.DICT = json.loads(f.read()) def levenshtein(self, s1, s2): #Levenshtein algorithm to figure out how close two strings are two each other #Courtesy http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python if len(s1) < len(s2): return self.levenshtein(s2, s1) # len(s1) >= len(s2) if len(s2) == 0: return len(s1) previous_row = range(len(s2) + 1) for i, c1 in enumerate(s1): current_row = [i + 1] for j, c2 in enumerate(s2): insertions = previous_row[j + 1] + 1 # j+1 instead of j since previous_row and current_row are one character longer deletions = current_row[j] + 1 # than s2 substitutions = previous_row[j] + (c1 != c2) current_row.append(min(insertions, deletions, substitutions)) previous_row = current_row return previous_row[-1] def findsuper(self, comment, tolerance= 1): results = [] used = [] for itemname in self.DICT: itemlength = len(itemname.split()) pos = 0 commentsplit = comment.split() end = False while not end: try: gram = commentsplit[pos:pos+itemlength] gramjoin = ' '.join(gram) lev = self.levenshtein(itemname, gramjoin) if lev <= tolerance: if itemname not in used: used.append(itemname) result = DICT_RESULT_FORM result = result.replace('_key_', itemname) result = result.replace('_value_', self.DICT[itemname]) results.append(result) pos += 1 if pos > len(commentsplit): end = True except IndexError: end = True return results def findsimple(self, comment): results = [] for itemname in self.DICT: if itemname.lower() in comment.lower(): result = DICT_RESULT_FORM result = result.replace('_key_', itemname) result = result.replace('_value_', self.DICT[itemname]) results.append(result) return results def receive(self, comments): lev = "True" if DICT_LEVENSHTEIN else "False" print('\tClippyReference received comments (Lev: %s)'%lev) for comment in comments: results = [] cid = comment.id try: cauthor = comment.author.name cur.execute('SELECT * FROM clippy_reference WHERE ID=?',[cid]) if not cur.fetchone(): print('\t' + cid) if cauthor.lower() != r.user.name.lower(): cbody = comment.body.lower() if DICT_LEVENSHTEIN is True: results = self.findsuper(cbody) else: results = self.findsimple(cbody) if DICT_TRIGGER.lower() in cbody.lower() and ( len(results) == 0): #They made a request, but we didn't find anything results.append(DICT_FAIL) if len(results) > 0: newcomment = '\n\n'.join(results) print('\t\tReplying to %s with %d items...'% (cauthor, len(results)), end="") sys.stdout.flush() comment.reply(newcomment) print('done.') else: #Will not reply to self pass cur.execute('INSERT INTO clippy_reference VALUES(?)',[cid]) sql.commit() except AttributeError: # Comment Author is deleted pass print('\tClippyReference finished') class ClippyWelcome: def receive(self, posts): print('\tClippyWelcome received submissions') for post in posts: try: pauthor = post.author.name pid = post.id cur.execute('SELECT * FROM clippy_welcome WHERE NAME=?', [pauthor]) if not cur.fetchone(): print('\t' + pid) print('\t\tFound new user: ' + pauthor) print('\t\tSending message...', end="") sys.stdout.flush() #r.send_message(pauthor, WELCOME_SUBJECT, WELCOME_MESSAGE%pauthor, captcha=None) cur.execute('INSERT INTO clippy_welcome VALUES(?, ?)', (pauthor, pid)) print('done.') sql.commit() except AttributeError: #Post author is deleted pass print('\tClippyWelcome finished') def getTime(bool): timeNow = datetime.datetime.now(datetime.timezone.utc) timeUnix = timeNow.timestamp() if bool is False: return timeNow else: return timeUnix def clippy_manager(): try: subreddit = r.get_subreddit(SUBREDDIT) print('Getting new comments') newcomments =list( subreddit.get_comments(limit=MAXPOSTS)) clippyreference.receive(newcomments) clippypoints.receive(newcomments) print('Getting new submissions') newposts = list(subreddit.get_new(limit=MAXPOSTS)) clippywelcome.receive(newposts) clippyflair.receive(newposts) except Exception: traceback.print_exc() if __name__ == "__main__": sql = sqlite3.connect('superclippy.db') cur = sql.cursor() cur.execute('CREATE TABLE IF NOT EXISTS clippy_welcome(NAME TEXT, ID TEXT)') cur.execute('CREATE TABLE IF NOT EXISTS clippy_reference(ID TEXT)') cur.execute('CREATE TABLE IF NOT EXISTS clippy_points(ID TEXT)') cur.execute('CREATE TABLE IF NOT EXISTS clippy_points_s(ID TEXT, count INT)') cur.execute('CREATE TABLE IF NOT EXISTS clippy_flair(id TEXT)') print('Loaded SQL Database') sql.commit() if PLAY_BOOT_SOUND: try: import winsound import threading def bootsound(): winsound.PlaySound('boot.wav', winsound.SND_FILENAME) soundthread = threading.Thread(target=bootsound) soundthread.daemon = True soundthread.start() except Exception: pass print('Logging in...', end="") try: import bot USERAGENT = bot.aG except ImportError: pass sys.stdout.flush() r = praw.Reddit(USERAGENT) r.set_oauth_app_info(APP_ID, APP_SECRET, APP_URI) r.refresh_access_information(APP_REFRESH) print('done.') print('Starting Points...', end="") clippypoints = ClippyPoints() print('done.') print('Starting Welcome...', end="") clippywelcome = ClippyWelcome() print('done.') print('Starting Flair...', end="") clippyflair = ClippyFlairReminder() print('done.') print('Starting Reference...', end="") clippyreference = ClippyReference() print('done.') while True: clippy_manager() print('Sleeping %d seconds.\n\n'%WAIT) time.sleep(WAIT)
tests/file_tests.py
nbanmp/seninja
109
12738661
from ..expr import BVS, BVV from ..memory.sym_file import SymFile from ..os_models.os_file import OsFileHandler def test_1(): # read unconstrained f = SymFile("a") res = f.read(1) assert len(res) == 1 assert isinstance(res[0], BVS) assert res[0].name == "unconstrained_a_0" def test_2(): # read concrete f = SymFile("a") f.write([BVV(0xff, 8)]) f.seek(0) res = f.read(1) assert len(res) == 1 assert isinstance(res[0], BVV) assert res[0].value == 255 def test_3(): os = OsFileHandler() fd = os.open("stdin", "r--") assert fd == 0 def test_4(): os = OsFileHandler() fd = os.open("stdin", "r--") assert os.is_open(fd) os.close(fd) assert not os.is_open(fd) def test_5(): os = OsFileHandler() fd1 = os.open("A", "-w-") fd2 = os.open("A", "r--") os.write(fd1, [BVV(0xff, 8)]) res = os.read(fd2, 1) assert len(res) == 1 assert isinstance(res[0], BVV) assert res[0].value == 255 def test_6(): os1 = OsFileHandler() os2 = OsFileHandler() fd1 = os1.open("A", "-w-") os1.write(fd1, [BVV(0xff, 8)]) fd2 = os1.open("A", "r--") os1.copy_to(os2) res = os2.read(fd2, 1) assert len(res) == 1 assert isinstance(res[0], BVV) assert res[0].value == 255
aw_nas/weights_manager/diff_super_net.py
Harald-R/aw_nas
195
12738723
""" Supernet for differentiable rollouts. """ import contextlib import torch from torch.nn import functional as F from aw_nas import assert_rollout_type, utils from aw_nas.rollout.base import DartsArch, DifferentiableRollout, BaseRollout from aw_nas.utils import data_parallel, use_params from aw_nas.weights_manager.base import CandidateNet from aw_nas.weights_manager.shared import SharedNet, SharedCell, SharedOp __all__ = ["DiffSubCandidateNet", "DiffSuperNet"] class DiffSubCandidateNet(CandidateNet): def __init__(self, super_net, rollout: DifferentiableRollout, gpus=tuple(), virtual_parameter_only=True, eval_no_grad=True): super(DiffSubCandidateNet, self).__init__(eval_no_grad=eval_no_grad) self.super_net = super_net self._device = super_net.device self.gpus = gpus self.arch = rollout.arch self.virtual_parameter_only = virtual_parameter_only def get_device(self): return self._device @contextlib.contextmanager def begin_virtual(self): w_clone = {k: v.clone() for k, v in self.named_parameters()} if not self.virtual_parameter_only: buffer_clone = {k: v.clone() for k, v in self.named_buffers()} yield for n, v in self.named_parameters(): v.data.copy_(w_clone[n]) del w_clone if not self.virtual_parameter_only: for n, v in self.named_buffers(): v.data.copy_(buffer_clone[n]) del buffer_clone def forward(self, inputs, detach_arch=True): #pylint: disable=arguments-differ if detach_arch: arch = [ DartsArch( op_weights=op_weights.detach(), edge_norms=edge_norms.detach() if edge_norms is not None else None ) for op_weights, edge_norms in self.arch ] else: arch = self.arch if not self.gpus or len(self.gpus) == 1: return self.super_net.forward(inputs, arch, detach_arch=detach_arch) if arch[0].op_weights.ndimension() == 2: arch = [ DartsArch( op_weights=a.op_weights.repeat(len(self.gpus), 1), edge_norms=(a.edge_norms.repeat(len(self.gpus)) \ if a.edge_norms is not None else None)) for a in arch ] else: # Ugly fix for rollout_size > 1 # call scatter here and stack... # split along dimension 1, # then concatenate along dimension 0 for `data_parallel` to scatter it again num_split = len(self.gpus) rollout_batch_size = arch[0].op_weights.shape[1] assert rollout_batch_size % num_split == 0 split_size = rollout_batch_size // num_split # arch = [torch.cat(torch.split(a, split_size, dim=1), dim=0) for a in arch] # Note: edge_norms (1-dim) do not support batch_size, just repeat arch = [DartsArch( op_weights=torch.cat(torch.split(a.op_weights, split_size, dim=1), dim=0), edge_norms=(a.edge_norms.repeat(len(self.gpus)) \ if a.edge_norms is not None else None)) for a in arch] return data_parallel(self.super_net, (inputs, arch), self.gpus, module_kwargs={"detach_arch": detach_arch}) def _forward_with_params(self, inputs, params, **kwargs): #pylint: disable=arguments-differ with use_params(self.super_net, params): return self.forward(inputs, **kwargs) def named_parameters(self, *args, **kwargs): #pylint: disable=arguments-differ return self.super_net.named_parameters(*args, **kwargs) def named_buffers(self, *args, **kwargs): #pylint: disable=arguments-differ return self.super_net.named_buffers(*args, **kwargs) def eval_data(self, data, criterions, mode="eval", **kwargs): #pylint: disable=arguments-differ """ Override eval_data, to enable gradient. Returns: results (list of results return by criterions) """ self._set_mode(mode) outputs = self.forward_data(data[0], **kwargs) return utils.flatten_list([c(data[0], outputs, data[1]) for c in criterions]) class DiffSuperNet(SharedNet): NAME = "diff_supernet" def __init__(self, search_space, device, rollout_type="differentiable", gpus=tuple(), num_classes=10, init_channels=16, stem_multiplier=3, max_grad_norm=5.0, dropout_rate=0.1, use_stem="conv_bn_3x3", stem_stride=1, stem_affine=True, preprocess_op_type=None, cell_use_preprocess=True, cell_use_shortcut=False, cell_shortcut_op_type="skip_connect", cell_group_kwargs=None, candidate_virtual_parameter_only=False, candidate_eval_no_grad=True): super(DiffSuperNet, self).__init__( search_space, device, rollout_type, cell_cls=DiffSharedCell, op_cls=DiffSharedOp, gpus=gpus, num_classes=num_classes, init_channels=init_channels, stem_multiplier=stem_multiplier, max_grad_norm=max_grad_norm, dropout_rate=dropout_rate, use_stem=use_stem, stem_stride=stem_stride, stem_affine=stem_affine, preprocess_op_type=preprocess_op_type, cell_use_preprocess=cell_use_preprocess, cell_group_kwargs=cell_group_kwargs, cell_use_shortcut=cell_use_shortcut, cell_shortcut_op_type=cell_shortcut_op_type) self.candidate_virtual_parameter_only = candidate_virtual_parameter_only self.candidate_eval_no_grad = candidate_eval_no_grad # ---- APIs ---- def extract_features(self, inputs, rollout_or_arch, **kwargs): if isinstance(rollout_or_arch, BaseRollout): # from extract_features (wrapper wm) arch = rollout_or_arch.arch else: # from candidate net arch = rollout_or_arch return super().extract_features(inputs, arch, **kwargs) def assemble_candidate(self, rollout): return DiffSubCandidateNet(self, rollout, gpus=self.gpus, virtual_parameter_only=self.candidate_virtual_parameter_only, eval_no_grad=self.candidate_eval_no_grad) @classmethod def supported_rollout_types(cls): return [assert_rollout_type("differentiable")] class DiffSharedCell(SharedCell): def num_out_channel(self): return self.num_out_channels * self._steps def forward(self, inputs, arch, detach_arch=True): # pylint: disable=arguments-differ assert self._num_init == len(inputs) states = [op(_input) for op, _input in zip(self.preprocess_ops, inputs)] offset = 0 # in parallel forward, after scatter, a namedtuple will be come a normal tuple arch = DartsArch(*arch) use_edge_normalization = arch.edge_norms is not None for i_step in range(self._steps): to_ = i_step + self._num_init if use_edge_normalization: act_lst = [ arch.edge_norms[offset + from_] * # edge norm factor scalar on this edge self.edges[from_][to_]( state, arch.op_weights[offset + from_], # op weights vector on this edge detach_arch=detach_arch ) for from_, state in enumerate(states) ] else: act_lst = [ self.edges[from_][to_]( state, arch.op_weights[offset + from_], detach_arch=detach_arch ) for from_, state in enumerate(states) ] new_state = sum(act_lst) offset += len(states) states.append(new_state) out = torch.cat(states[-self._steps:], dim=1) if self.use_shortcut and self.layer_index != 0: out = out + self.shortcut_reduction_op(inputs[-1]) return out class DiffSharedOp(SharedOp): def forward(self, x, weights, detach_arch=True): # pylint: disable=arguments-differ if weights.ndimension() == 2: # weights: (batch_size, num_op) if not weights.shape[0] == x.shape[0]: # every `x.shape[0] % weights.shape[0]` data use the same sampled arch weights assert x.shape[0] % weights.shape[0] == 0 weights = weights.repeat(x.shape[0] // weights.shape[0], 1) return sum( [ weights[:, i].reshape(-1, 1, 1, 1) * op(x) for i, op in enumerate(self.p_ops) ] ) out_act: torch.Tensor = 0.0 # weights: (num_op) if self.partial_channel_proportion is None: for w, op in zip(weights, self.p_ops): if detach_arch and w.item() == 0: continue act = op(x).detach_() if w.item() == 0 else op(x) out_act += w * act else: op_channels = x.shape[1] // self.partial_channel_proportion x_1 = x[:, :op_channels, :, :] # these channels goes through op x_2 = x[:, op_channels:, :, :] # these channels skips op # apply pooling if the ops have stride=2 if self.stride == 2: x_2 = F.max_pool2d(x_2, 2, 2) for w, op in zip(weights, self.p_ops): # if detach_arch and w.item() == 0: # continue # not really sure about this act = op(x_1) # if w.item() == 0: # act.detach_() # not really sure about this either out_act += w * act out_act = torch.cat((out_act, x_2), dim=1) # PC-DARTS implements a deterministic channel_shuffle() (not what they said in the paper) # ref: https://github.com/yuhuixu1993/PC-DARTS/blob/b74702f86c70e330ce0db35762cfade9df026bb7/model_search.py#L9 out_act = self._channel_shuffle(out_act, self.partial_channel_proportion) # this is the random channel shuffle # channel_perm = torch.randperm(out_act.shape[1]) # out_act = out_act[:, channel_perm, :, :] return out_act @staticmethod def _channel_shuffle(x: torch.Tensor, groups: int): """channel shuffle for PC-DARTS""" n, c, h, w = x.shape x = x.view(n, groups, -1, h, w).transpose(1, 2).contiguous() x = x.view(n, c, h, w).contiguous() return x
salem/__init__.py
sunt05/salem
147
12738724
<gh_stars>100-1000 """ Salem package """ from __future__ import division from os import path from os import makedirs import sys from functools import wraps import pyproj try: from .version import version as __version__ except ImportError: # pragma: no cover raise ImportError('Salem is not properly installed. If you are running ' 'from the source directory, please instead create a ' 'new virtual environment (using conda or virtualenv) ' 'and then install it in-place by running: ' 'pip install -e .') def lazy_property(fn): """Decorator that makes a property lazy-evaluated.""" attr_name = '_lazy_' + fn.__name__ @property @wraps(fn) def _lazy_property(self): if not hasattr(self, attr_name): setattr(self, attr_name, fn(self)) return getattr(self, attr_name) return _lazy_property # Default proj wgs84 = pyproj.Proj(proj='latlong', datum='WGS84') # Path to the cache directory cache_dir = path.join(path.expanduser('~'), '.salem_cache') if not path.exists(cache_dir): makedirs(cache_dir) download_dir = path.join(cache_dir, 'downloads') if not path.exists(download_dir): makedirs(download_dir) sample_data_gh_commit = '758f7ddd0fa6b5b1bd4c63b6dcfe8d5eec0f4c59' sample_data_dir = path.join(cache_dir, 'salem-sample-data-' + sample_data_gh_commit) # python version python_version = 'py3' if sys.version_info.major == 2: python_version = 'py2' # API from salem.gis import * from salem.datasets import * from salem.sio import read_shapefile, read_shapefile_to_grid, grid_from_dataset from salem.sio import (open_xr_dataset, open_metum_dataset, open_wrf_dataset, open_mf_wrf_dataset) from salem.sio import DataArrayAccessor, DatasetAccessor from salem.utils import get_demo_file, reduce try: from salem.graphics import get_cmap, DataLevels, Map except ImportError as err: if 'matplotlib' not in str(err): raise def get_cmap(): raise ImportError('requires matplotlib') def DataLevels(): raise ImportError('requires matplotlib') def Map(): raise ImportError('requires matplotlib') from salem.wrftools import geogrid_simulator
scripts/27_send_sms.py
Kirklin12/python-scripts
2,076
12738730
<reponame>Kirklin12/python-scripts import requests message = raw_input('Enter a Message: ') number = raw_input('Enter the phone number: ') payload = {'number': number, 'message': message} r = requests.post("http://textbelt.com/text", data=payload) if r.json()['success']: print('Success!') else: print('Error!')
keras2onnx/ke2onnx/layer_spec.py
TomWildenhain-Microsoft/keras-onnx
362
12738734
# SPDX-License-Identifier: Apache-2.0 import tensorflow as tf from ..proto import keras, is_tf_keras, is_keras_older_than from ..proto.tfcompat import is_tf2 _layer = keras.layers _adv_activations = keras.layers.advanced_activations def _default_layer_name_extractor(fstr_list, node_name): for fstr in fstr_list: idx = fstr.rfind('{}/') if node_name.endswith(fstr[idx + 3:]): klen = len(fstr) + idx - 2 # 2 = len('{}') return node_name[:len(node_name) - klen] return None def _simple_layer_name_extractor(fstr_list, node_name): ri = node_name.rindex('/') return node_name[:ri] def _conv_layer_spec_outputs(layer, node): if type(layer) == _layer.Conv1D: return node.name + '/Squeeze' activation_map = { keras.activations.linear: '', tf.nn.sigmoid: 'Sigmoid', tf.nn.softmax: 'Softmax', tf.nn.relu: 'Relu', tf.nn.elu: 'Elu', tf.nn.tanh: 'Tanh', tf.nn.swish: 'mul'} node_act = activation_map.get(layer.activation, None) if node_act is None: actname_map = {a_.__name__: a_ for a_ in activation_map if hasattr(a_, "__name__")} act_trans = actname_map.get(layer.activation.__name__, None) if act_trans is not None: node_act = activation_map.get(act_trans) assert node_act is not None, "Unsupported activation in the layer({})".format(layer.activation) if node_act: ri = node.name.rindex('/') return node.name[:ri + 1] + node_act else: if not layer.use_bias: if node.inputs[0].op.type == 'SpaceToBatchND': return node.name + '/BatchToSpaceND' else: return node.name else: ri = node.name.rindex('/') return node.name[:ri + 1] + 'BiasAdd' def _relu_like_spec_outputs(layer, node): if isinstance(layer, _adv_activations.PReLU): ri = node.name.rindex('/') return node.name[:ri + 1] + 'add' return node.name _keras_layer_spec = { # layer-type: ([pattern-list], [extract-layer-name, output-name-generator(optional)] _layer.AveragePooling1D: (["{}/AvgPool"], [_default_layer_name_extractor]), _layer.AveragePooling2D: (["{}/AvgPool"], [_default_layer_name_extractor]), _layer.AveragePooling3D: (["{}/AvgPool"], [_default_layer_name_extractor]), _layer.MaxPooling1D: (["{}/MaxPool"], [_default_layer_name_extractor]), _layer.MaxPooling2D: (["{}/MaxPool"], [_default_layer_name_extractor]), _layer.MaxPooling3D: (["{}/MaxPool"], [_default_layer_name_extractor]), _layer.Conv1D: (["{}/conv1d"], [_simple_layer_name_extractor, _conv_layer_spec_outputs]), _layer.Conv2D: (["{}/Conv2D"], [_simple_layer_name_extractor, _conv_layer_spec_outputs]), _layer.Conv2DTranspose: (["{}/conv2d_transpose"], [_simple_layer_name_extractor, _conv_layer_spec_outputs]), _layer.DepthwiseConv2D: (["{}/depthwise"], [_simple_layer_name_extractor, _conv_layer_spec_outputs]), _layer.LeakyReLU: (["{}/LeakyRelu"], [_default_layer_name_extractor]), _adv_activations.PReLU: (["{}/Relu"], [_simple_layer_name_extractor, _relu_like_spec_outputs]), _layer.Reshape: (["{}/Reshape"], [_default_layer_name_extractor]) } if not is_keras_older_than('2.2.0'): _keras_layer_spec.update({ _adv_activations.ReLU: (["{}/Relu"], [_simple_layer_name_extractor, _relu_like_spec_outputs]), }) if is_tf_keras and is_tf2 and hasattr(_layer, 'normalization_v2'): _keras_layer_spec.update({ _layer.normalization_v2.BatchNormalization: ( ["{}/FusedBatchNormV3", "{}/batchnorm/add_1"], [_default_layer_name_extractor]) }) def keras_layer_spec(layer_type): return _keras_layer_spec.get(layer_type, (None, []))
superset/migrations/versions/31bb738bd1d2_move_pivot_table_v2_legacy_order_by_to_.py
delorenzosoftware/superset
18,621
12738744
<reponame>delorenzosoftware/superset<gh_stars>1000+ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """move_pivot_table_v2_legacy_order_by_to_timeseries_limit_metric Revision ID: <KEY> Revises: fe23025b9441 Create Date: 2021-12-17 16:56:55.186285 """ # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "fe23025b9441" import json import logging from alembic import op from sqlalchemy import Column, Integer, String, Text from sqlalchemy.ext.declarative import declarative_base from superset import db Base = declarative_base() logger = logging.getLogger("alembic") class Slice(Base): __tablename__ = "slices" id = Column(Integer, primary_key=True) params = Column(Text) viz_type = Column(String(250)) def upgrade(): bind = op.get_bind() session = db.Session(bind=bind) slices = session.query(Slice).filter(Slice.viz_type == "pivot_table_v2").all() for slc in slices: try: params = json.loads(slc.params) legacy_order_by = params.pop("legacy_order_by", None) if legacy_order_by: params["series_limit_metric"] = legacy_order_by slc.params = json.dumps(params, sort_keys=True) except Exception as e: logger.exception( f"An error occurred: parsing params for slice {slc.id} failed." f"You need to fix it before upgrading your DB." ) raise e session.commit() session.close() def downgrade(): bind = op.get_bind() session = db.Session(bind=bind) slices = session.query(Slice).filter(Slice.viz_type == "pivot_table_v2").all() for slc in slices: try: params = json.loads(slc.params) series_limit_metric = params.pop("series_limit_metric", None) if series_limit_metric: params["legacy_order_by"] = series_limit_metric slc.params = json.dumps(params, sort_keys=True) except Exception as e: logger.exception( f"An error occurred: parsing params for slice {slc.id} failed. " "You need to fix it before downgrading your DB." ) raise e session.commit() session.close()