max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
ex09_sed/testfiles/parseargs.py
techieguy007/learn-more-python-the-hard-way-solutions
466
12741588
<reponame>techieguy007/learn-more-python-the-hard-way-solutions import argparse parser = argparse.ArgumentParser() parser.add_argument('integers', metavar='N', type=int, nargs='+') parser.add_argument('-f', '--foo', help='foo help') parser.add_argument('-b', '--bar', help='bar help') parser.add_argument('-z', '--baz', help='baz help') parser.add_argument('-t', '--turn-on', action='store_true') parser.add_argument('-x', '--exclude', action='store_false') parser.add_argument('-s', '--start', action='store_true') args = parser.parse_args() print(args)
terrascript/data/rancher/rancher2.py
mjuenema/python-terrascript
507
12741608
<filename>terrascript/data/rancher/rancher2.py # terrascript/data/rancher/rancher2.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:25:37 UTC) import terrascript class rancher2_app(terrascript.Data): pass class rancher2_catalog(terrascript.Data): pass class rancher2_catalog_v2(terrascript.Data): pass class rancher2_certificate(terrascript.Data): pass class rancher2_cloud_credential(terrascript.Data): pass class rancher2_cluster(terrascript.Data): pass class rancher2_cluster_alert_group(terrascript.Data): pass class rancher2_cluster_alert_rule(terrascript.Data): pass class rancher2_cluster_driver(terrascript.Data): pass class rancher2_cluster_logging(terrascript.Data): pass class rancher2_cluster_role_template_binding(terrascript.Data): pass class rancher2_cluster_scan(terrascript.Data): pass class rancher2_cluster_template(terrascript.Data): pass class rancher2_cluster_v2(terrascript.Data): pass class rancher2_etcd_backup(terrascript.Data): pass class rancher2_global_dns_provider(terrascript.Data): pass class rancher2_global_role(terrascript.Data): pass class rancher2_global_role_binding(terrascript.Data): pass class rancher2_multi_cluster_app(terrascript.Data): pass class rancher2_namespace(terrascript.Data): pass class rancher2_node_driver(terrascript.Data): pass class rancher2_node_pool(terrascript.Data): pass class rancher2_node_template(terrascript.Data): pass class rancher2_notifier(terrascript.Data): pass class rancher2_pod_security_policy_template(terrascript.Data): pass class rancher2_project(terrascript.Data): pass class rancher2_project_alert_group(terrascript.Data): pass class rancher2_project_alert_rule(terrascript.Data): pass class rancher2_project_logging(terrascript.Data): pass class rancher2_project_role_template_binding(terrascript.Data): pass class rancher2_registry(terrascript.Data): pass class rancher2_role_template(terrascript.Data): pass class rancher2_secret(terrascript.Data): pass class rancher2_secret_v2(terrascript.Data): pass class rancher2_setting(terrascript.Data): pass class rancher2_storage_class_v2(terrascript.Data): pass class rancher2_user(terrascript.Data): pass __all__ = [ "rancher2_app", "rancher2_catalog", "rancher2_catalog_v2", "rancher2_certificate", "rancher2_cloud_credential", "rancher2_cluster", "rancher2_cluster_alert_group", "rancher2_cluster_alert_rule", "rancher2_cluster_driver", "rancher2_cluster_logging", "rancher2_cluster_role_template_binding", "rancher2_cluster_scan", "rancher2_cluster_template", "rancher2_cluster_v2", "rancher2_etcd_backup", "rancher2_global_dns_provider", "rancher2_global_role", "rancher2_global_role_binding", "rancher2_multi_cluster_app", "rancher2_namespace", "rancher2_node_driver", "rancher2_node_pool", "rancher2_node_template", "rancher2_notifier", "rancher2_pod_security_policy_template", "rancher2_project", "rancher2_project_alert_group", "rancher2_project_alert_rule", "rancher2_project_logging", "rancher2_project_role_template_binding", "rancher2_registry", "rancher2_role_template", "rancher2_secret", "rancher2_secret_v2", "rancher2_setting", "rancher2_storage_class_v2", "rancher2_user", ]
plugins/modules/nsxt_policy_ip_pool.py
madhukark/ansible-for-nsxt
127
12741622
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2018 VMware, Inc. # SPDX-License-Identifier: BSD-2-Clause OR GPL-3.0-only # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, # BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import (absolute_import, division, print_function) __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: nsxt_policy_ip_pool short_description: Create or Delete a Policy IP Pool description: Creates or deletes a Policy IP Pool. Required attributes include id and display_name. version_added: "2.8" author: <NAME> extends_documentation_fragment: - vmware.ansible_for_nsxt.vmware_nsxt options: id: description: The id of the Policy IP Pool. required: false type: str description: description: Resource description. type: str pool_block_subnets: type: list element: dict description: Specify the IP Pool Block Subnets that need to be created, updated, or deleted as a list of dict in this section suboptions: auto_assign_gateway: description: - Indicate whether default gateway is to be reserved from the range - If this property is set to true, the first IP in the range will be reserved for gateway. type: bool default: true description: description: Resource description. type: str display_name: description: - Display name. - If resource ID is not specified, display_name will be used as ID. required: false type: str do_wait_till_create: type: bool default: false description: Can be used to wait for the realization of subresource before the request to create the next resource is sent to the Manager id: description: The id of the Policy IP Pool Block Subnet. required: false type: str ip_block_display_name: description: Same as ip_block_id. Either one must be specified. If both are specified, ip_block_id takes precedence. required: false type: str ip_block_id: description: The ID of the IpAddressBlock from which the subnet is to be created type: str size: description: - Represents the size or number of IP addresses in the subnet - The size parameter is required for subnet creation. It must be specified during creation but cannot be changed later. type: int state: choices: - present - absent description: "State can be either 'present' or 'absent'. 'present' is used to create or update resource. 'absent' is used to delete resource." required: true tags: description: Opaque identifiers meaningful to the API user. type: dict suboptions: scope: description: Tag scope. required: true type: str tag: description: Tag value. required: true type: str pool_static_subnets: type: list element: dict description: Specify the IP Pool Static Subnets that need to be created, updated, or deleted as a list of dict in this section suboptions: allocation_ranges: description: A collection of IPv4 or IPv6 IP Pool Ranges. type: list element: dict suboptions: start: description: The start IP Address of the IP Range. type: str required: true end: description: The end IP Address of the IP Range. type: str required: true cidr: description: Subnet representation is a network address and prefix length type: str required: true description: description: Resource description. type: str display_name: description: - Display name. - If resource ID is not specified, display_name will be used as ID. required: false type: str dns_nameservers: description: The collection of upto 3 DNS servers for the subnet. type: list element: str dns_suffix: description: The DNS suffix for the DNS server. type: str do_wait_till_create: type: bool default: false description: Can be used to wait for the realization of subresource before the request to create the next resource is sent to the Manager gateway_ip: description: The default gateway address on a layer-3 router. type: str id: description: The id of the Policy IP Pool Block Subnet. required: false type: str state: choices: - present - absent description: "State can be either 'present' or 'absent'. 'present' is used to create or update resource. 'absent' is used to delete resource." tags: description: Opaque identifiers meaningful to the API user. type: dict suboptions: scope: description: Tag scope. required: true type: str tag: description: Tag value. required: true type: str ''' EXAMPLES = ''' - name: create IP Pool nsxt_policy_ip_pool: hostname: "10.10.10.10" nsx_cert_path: /root/com.vmware.nsx.ncp/nsx.crt nsx_key_path: /root/com.vmware.nsx.ncp/nsx.key validate_certs: False id: test-ip-pool display_name: test-ip-pool state: "absent" tags: - tag: "a" scope: "b" pool_block_subnets: - id: test-ip-subnet-1 state: present ip_block_id: "test-ip-blk-1" size: 16 - display_name: test-ip-subnet-2 state: present ip_block_id: "test-ip-blk-1" size: 16 - display_name: test-ip-subnet-3 state: present ip_block_id: "test-ip-blk-1" size: 8 pool_static_subnets: - id: test-ip-static-subnet-1 state: present allocation_ranges: - start: '172.16.31.10' end: '172.16.31.10' - start: '172.16.31.10' end: '172.16.58.3' cidr: '172.16.17.32/26' - display_name: test-ip-static-subnet-2 state: present allocation_ranges: - start: '172.16.17.32' end: '172.16.58.3' - start: '172.16.58.3' end: '172.16.31.10' cidr: '192.168.3.11/26' ''' RETURN = '''# ''' import json import time from ansible.module_utils.basic import AnsibleModule from ansible_collections.vmware.ansible_for_nsxt.plugins.module_utils.nsxt_base_resource import NSXTBaseRealizableResource from ansible_collections.vmware.ansible_for_nsxt.plugins.module_utils.nsxt_resource_urls import ( IP_ADDRESS_POOL_SUBNET_URL, IP_BLOCK_URL, IP_POOL_URL) from ansible.module_utils._text import to_native class NSXTIpPool(NSXTBaseRealizableResource): @staticmethod def get_resource_spec(): ip_pool_arg_spec = {} return ip_pool_arg_spec @staticmethod def get_resource_base_url(baseline_args=None): return IP_POOL_URL def update_parent_info(self, parent_info): parent_info["ip_pool_id"] = self.id class NSXTIpAddressPoolBlockSubnet(NSXTBaseRealizableResource): def get_spec_identifier(self): return (NSXTIpPool.NSXTIpAddressPoolBlockSubnet. get_spec_identifier()) @classmethod def get_spec_identifier(cls): return "pool_block_subnets" @staticmethod def get_resource_spec(): ip_addr_pool_blk_subnet_arg_spec = {} ip_addr_pool_blk_subnet_arg_spec.update( ip_block_id=dict( required=False, type='str' ), ip_block_display_name=dict( required=False, type='str' ), auto_assign_gateway=dict( required=False, type='bool' ), size=dict( required=True, type='int' ), start_ip=dict( required=False, type='str' ), ) return ip_addr_pool_blk_subnet_arg_spec @staticmethod def get_resource_base_url(parent_info): return IP_ADDRESS_POOL_SUBNET_URL.format( parent_info["ip_pool_id"] ) def update_resource_params(self, nsx_resource_params): # ip_block is a required attr ip_block_id = self.get_id_using_attr_name_else_fail( "ip_block", nsx_resource_params, IP_BLOCK_URL, "IP Block") nsx_resource_params["ip_block_path"] = ( IP_BLOCK_URL + "/" + ip_block_id) nsx_resource_params["resource_type"] = "IpAddressPoolBlockSubnet" class NSXTIpAddressPoolStaticSubnet(NSXTBaseRealizableResource): def get_spec_identifier(self): return (NSXTIpPool.NSXTIpAddressPoolStaticSubnet. get_spec_identifier()) @classmethod def get_spec_identifier(cls): return "pool_static_subnets" @staticmethod def get_resource_spec(): ip_addr_pool_static_subnet_arg_spec = {} ip_addr_pool_static_subnet_arg_spec.update( auto_assign_gateway=dict( required=False, type='bool' ), allocation_ranges=dict( required=True, elements='dict', type='list', options=dict( start=dict( required=True, type='str' ), end=dict( required=True, type='str' ), ) ), cidr=dict( required=True, type='str' ), dns_nameservers=dict( required=False, elements='str', type='list' ), dns_suffix=dict( required=False, type='str' ), gateway_ip=dict( required=False, type='str' ), ) return ip_addr_pool_static_subnet_arg_spec @staticmethod def get_resource_base_url(parent_info): return IP_ADDRESS_POOL_SUBNET_URL.format( parent_info["ip_pool_id"] ) def update_resource_params(self, nsx_resource_params): nsx_resource_params["resource_type"] = "IpAddressPoolStaticSubnet" if __name__ == '__main__': ip_pool = NSXTIpPool() ip_pool.realize()
recipes/Python/111971_Format_version_numbers/recipe-111971.py
tdiprima/code
2,023
12741626
def StringVersion( seq ): return '.'.join( ['%s'] * len( seq )) % tuple( seq ) def TupleVersion( str ): return map( int, str.split( '.' ))
components/aws/sagemaker/tests/unit_tests/tests/deploy/test_deploy_component.py
Strasser-Pablo/pipelines
2,860
12741651
from common.sagemaker_component import SageMakerComponent, SageMakerJobStatus from deploy.src.sagemaker_deploy_spec import SageMakerDeploySpec from deploy.src.sagemaker_deploy_component import ( EndpointRequests, SageMakerDeployComponent, ) from tests.unit_tests.tests.deploy.test_deploy_spec import DeploySpecTestCase import unittest from unittest.mock import patch, MagicMock, ANY class DeployComponentTestCase(unittest.TestCase): REQUIRED_ARGS = DeploySpecTestCase.REQUIRED_ARGS @classmethod def setUp(cls): cls.component = SageMakerDeployComponent() # Instantiate without calling Do() cls.component._endpoint_config_name = "endpoint-config" cls.component._endpoint_name = "endpoint" cls.component._should_update_existing = False @patch("deploy.src.sagemaker_deploy_component.super", MagicMock()) def test_do_sets_name(self): given_endpoint_name = SageMakerDeploySpec( self.REQUIRED_ARGS + ["--endpoint_name", "my-endpoint"] ) given_endpoint_config_name = SageMakerDeploySpec( self.REQUIRED_ARGS + ["--endpoint_config_name", "my-endpoint-config"] ) unnamed_spec = SageMakerDeploySpec(self.REQUIRED_ARGS) with patch( "deploy.src.sagemaker_deploy_component.SageMakerComponent._generate_unique_timestamped_id", MagicMock(return_value="-generated"), ): self.component.Do(given_endpoint_name) self.assertEqual( "EndpointConfig-generated", self.component._endpoint_config_name ) self.assertEqual("my-endpoint", self.component._endpoint_name) self.component.Do(given_endpoint_config_name) self.assertEqual("my-endpoint-config", self.component._endpoint_config_name) self.assertEqual("Endpoint-generated", self.component._endpoint_name) self.component.Do(unnamed_spec) self.assertEqual( "EndpointConfig-generated", self.component._endpoint_config_name ) self.assertEqual("Endpoint-generated", self.component._endpoint_name) @patch("deploy.src.sagemaker_deploy_component.super", MagicMock()) def test_update_endpoint_do_sets_name(self): given_endpoint_name = SageMakerDeploySpec( self.REQUIRED_ARGS + ["--endpoint_name", "my-endpoint", "--update_endpoint", "True"] ) given_endpoint_config_name = SageMakerDeploySpec( self.REQUIRED_ARGS + [ "--endpoint_config_name", "my-endpoint-config", "--update_endpoint", "True", ] ) unnamed_spec = SageMakerDeploySpec(self.REQUIRED_ARGS) SageMakerDeployComponent._generate_unique_timestamped_id = MagicMock( return_value="-generated-update" ) self.component._endpoint_name_exists = MagicMock(return_value=True) self.component._get_endpoint_config = MagicMock(return_value="existing-config") with patch( "deploy.src.sagemaker_deploy_component.SageMakerComponent._generate_unique_timestamped_id", MagicMock(return_value="-generated-update"), ): self.component.Do(given_endpoint_name) self.assertEqual( "EndpointConfig-generated-update", self.component._endpoint_config_name ) self.assertEqual("my-endpoint", self.component._endpoint_name) self.assertTrue(self.component._should_update_existing) # Ignore given endpoint config name for update self.component.Do(given_endpoint_config_name) self.assertEqual( "EndpointConfig-generated-update", self.component._endpoint_config_name ) self.assertEqual("Endpoint-generated-update", self.component._endpoint_name) self.assertTrue(self.component._should_update_existing) self.component.Do(unnamed_spec) self.assertEqual( "EndpointConfig-generated-update", self.component._endpoint_config_name ) self.assertEqual("Endpoint-generated-update", self.component._endpoint_name) self.assertFalse(self.component._should_update_existing) def test_create_deploy_job_requests(self): spec = SageMakerDeploySpec(self.REQUIRED_ARGS) request = self.component._create_job_request(spec.inputs, spec.outputs) self.assertEqual( request, EndpointRequests( config_request={ "EndpointConfigName": "endpoint-config", "ProductionVariants": [ { "VariantName": "variant-name-1", "ModelName": "model-test", "InitialInstanceCount": 1, "InstanceType": "ml.m4.xlarge", "InitialVariantWeight": 1.0, } ], "Tags": [], }, endpoint_request={ "EndpointName": "endpoint", "EndpointConfigName": "endpoint-config", }, ), ) def test_create_update_deploy_job_requests(self): spec = SageMakerDeploySpec(self.REQUIRED_ARGS) self.component._should_update_existing = True request = self.component._create_job_request(spec.inputs, spec.outputs) self.assertEqual( request, EndpointRequests( config_request={ "EndpointConfigName": "endpoint-config", "ProductionVariants": [ { "VariantName": "variant-name-1", "ModelName": "model-test", "InitialInstanceCount": 1, "InstanceType": "ml.m4.xlarge", "InitialVariantWeight": 1.0, } ], "Tags": [], }, endpoint_request={ "EndpointName": "endpoint", "EndpointConfigName": "endpoint-config", }, ), ) def test_create_deploy_job_multiple_variants(self): spec = SageMakerDeploySpec( self.REQUIRED_ARGS + [ "--variant_name_1", "variant-test-1", "--initial_instance_count_1", "1", "--instance_type_1", "t1", "--initial_variant_weight_1", "0.1", "--accelerator_type_1", "ml.eia1.medium", "--model_name_2", "model-test-2", "--variant_name_2", "variant-test-2", "--initial_instance_count_2", "2", "--instance_type_2", "t2", "--initial_variant_weight_2", "0.2", "--accelerator_type_2", "ml.eia1.large", ] ) request = self.component._create_job_request(spec.inputs, spec.outputs) self.assertEqual( request, EndpointRequests( config_request={ "EndpointConfigName": "endpoint-config", "ProductionVariants": [ { "VariantName": "variant-test-1", "ModelName": "model-test", "InitialInstanceCount": 1, "InstanceType": "t1", "InitialVariantWeight": 0.1, "AcceleratorType": "ml.eia1.medium", }, { "VariantName": "variant-test-2", "ModelName": "model-test-2", "InitialInstanceCount": 2, "InstanceType": "t2", "InitialVariantWeight": 0.2, "AcceleratorType": "ml.eia1.large", }, ], "Tags": [], }, endpoint_request={ "EndpointName": "endpoint", "EndpointConfigName": "endpoint-config", }, ), ) def test_get_job_status(self): self.component._sm_client = mock_client = MagicMock() self.component._sm_client.describe_endpoint.return_value = { "EndpointStatus": "Creating" } self.assertEqual( self.component._get_job_status(), SageMakerJobStatus(is_completed=False, raw_status="Creating"), ) self.component._sm_client.describe_endpoint.return_value = { "EndpointStatus": "Updating" } self.assertEqual( self.component._get_job_status(), SageMakerJobStatus(is_completed=False, raw_status="Updating"), ) self.component._sm_client.describe_endpoint.return_value = { "EndpointStatus": "InService" } self.assertEqual( self.component._get_job_status(), SageMakerJobStatus(is_completed=True, raw_status="InService"), ) self.component._sm_client.describe_endpoint.return_value = { "EndpointStatus": "Failed", "FailureReason": "lolidk", } self.assertEqual( self.component._get_job_status(), SageMakerJobStatus( is_completed=True, raw_status="Failed", has_error=True, error_message="lolidk", ), ) def test_after_job_completed(self): spec = SageMakerDeploySpec(self.REQUIRED_ARGS) self.component._after_job_complete({}, {}, spec.inputs, spec.outputs) self.assertEqual(spec.outputs.endpoint_name, "endpoint") def test_submit_update_job_request(self): self.component._should_update_existing = True self.component._existing_endpoint_config_name = "old-config" self.component._delete_endpoint_config = MagicMock(return_value=True) self.component._sm_client = MagicMock() requests = EndpointRequests( config_request={ "EndpointConfigName": "endpoint-config", "ProductionVariants": [ { "VariantName": "variant-test-1", "ModelName": "model-test", "InitialInstanceCount": 1, "InstanceType": "t1", "InitialVariantWeight": 0.1, "AcceleratorType": "ml.eia1.medium", }, { "VariantName": "variant-test-2", "ModelName": "model-test-2", "InitialInstanceCount": 2, "InstanceType": "t2", "InitialVariantWeight": 0.2, "AcceleratorType": "ml.eia1.large", }, ], "Tags": [], }, endpoint_request={ "EndpointName": "endpoint", "EndpointConfigName": "endpoint-config", }, ) self.component._submit_job_request(requests) self.component._sm_client.update_endpoint.assert_called_once_with( **{"EndpointName": "endpoint", "EndpointConfigName": "endpoint-config",} ) self.component._delete_endpoint_config.assert_called_once_with("old-config")
tests/test_admin.py
adamlamers/pypicloud
336
12741656
""" Tests for admin endpoints """ from mock import MagicMock from pyramid.httpexceptions import HTTPBadRequest from pypicloud.views.admin import AdminEndpoints from . import MockServerTest class TestAdmin(MockServerTest): """Tests for admin endpoints""" def setUp(self): super(TestAdmin, self).setUp() self.access = self.request.access = MagicMock() def test_rebuild(self): """Rebuild endpoint refreshes db cache""" self.request.db = MagicMock() AdminEndpoints(self.request).rebuild_package_list() self.assertTrue(self.request.db.reload_from_storage.called) def test_get_pending_users(self): """Retrieve pending users from access backend""" ret = AdminEndpoints(self.request).get_pending_users() self.assertEqual(ret, self.access.pending_users()) def test_get_users(self): """Retrieve all users from access backend""" ret = AdminEndpoints(self.request).get_users() self.assertEqual(ret, self.access.user_data()) def test_get_user(self): """Retrieve data for a single user""" self.request.named_subpaths = {"username": "a"} ret = AdminEndpoints(self.request).get_user() self.access.user_data.assert_called_with("a") self.assertEqual(ret, self.access.user_data()) def test_delete_user(self): """Delete user from access backend""" self.request.named_subpaths = {"username": "a"} AdminEndpoints(self.request).delete_user() self.access.delete_user.assert_called_with("a") def test_approve_user(self): """Approve a pending user""" self.request.named_subpaths = {"username": "a"} AdminEndpoints(self.request).approve_user() self.access.approve_user.assert_called_with("a") def test_set_admin_status(self): """Set the admin flag for a user""" self.request.named_subpaths = {"username": "a"} AdminEndpoints(self.request).set_admin_status(True) self.access.set_user_admin.assert_called_with("a", True) def test_add_group_member(self): """Add a user to a group""" self.request.named_subpaths = {"username": "a", "group": "b"} self.request.method = "PUT" AdminEndpoints(self.request).mutate_group_member() self.access.edit_user_group.assert_called_with("a", "b", True) def test_remove_group_member(self): """Remove a user from a group""" self.request.named_subpaths = {"username": "a", "group": "b"} self.request.method = "DELETE" AdminEndpoints(self.request).mutate_group_member() self.access.edit_user_group.assert_called_with("a", "b", False) def test_get_groups(self): """Retrieve list of all groups""" ret = AdminEndpoints(self.request).get_groups() self.assertEqual(ret, self.access.groups()) def test_delete_group(self): """Delete a group""" self.request.named_subpaths = {"group": "a"} AdminEndpoints(self.request).delete_group() self.access.delete_group.assert_called_with("a") def test_get_user_permissions(self): """Get a user's permissions from the access backend""" self.request.named_subpaths = {"username": "a"} ret = AdminEndpoints(self.request).get_user_permissions() self.access.user_package_permissions.assert_called_with("a") self.assertEqual(ret, self.access.user_package_permissions()) def test_get_group(self): """Get a group's members and permissions""" self.request.named_subpaths = {"group": "a"} ret = AdminEndpoints(self.request).get_group() self.access.group_members.assert_called_with("a") self.access.group_package_permissions.assert_called_with("a") self.assertEqual( ret, { "members": self.access.group_members(), "packages": self.access.group_package_permissions(), }, ) def test_get_package_permissions(self): """Get user and group permissions for a package""" self.request.named_subpaths = {"package": "a"} self.access.user_permissions.return_value = {"u1": ["read"]} self.access.group_permissions.return_value = {"g1": ["read", "write"]} ret = AdminEndpoints(self.request).get_package_permissions() self.assertEqual( ret, { "user": [{"username": "u1", "permissions": ["read"]}], "group": [{"group": "g1", "permissions": ["read", "write"]}], }, ) def test_create_group(self): """Create a group""" self.request.named_subpaths = {"group": "a"} AdminEndpoints(self.request).create_group() self.access.create_group.assert_called_with("a") def test_no_create_everyone_group(self): """Cannot create the 'everyone' group""" self.request.named_subpaths = {"group": "everyone"} ret = AdminEndpoints(self.request).create_group() self.assertTrue(isinstance(ret, HTTPBadRequest)) def test_no_create_authenticated_group(self): """Cannot create the 'authenticated' group""" self.request.named_subpaths = {"group": "authenticated"} ret = AdminEndpoints(self.request).create_group() self.assertTrue(isinstance(ret, HTTPBadRequest)) def test_add_user_permission(self): """Add a user permission to a package""" self.request.named_subpaths = { "type": "user", "package": "p", "name": "u", "permission": "read", } self.request.method = "PUT" AdminEndpoints(self.request).edit_permission() self.access.edit_user_permission.assert_called_with("p", "u", "read", True) def test_remove_user_permission(self): """Remove a user permission from a package""" self.request.named_subpaths = { "type": "user", "package": "p", "name": "u", "permission": "read", } self.request.method = "DELETE" AdminEndpoints(self.request).edit_permission() self.access.edit_user_permission.assert_called_with("p", "u", "read", False) def test_add_group_permission(self): """Add a group permission to a package""" self.request.named_subpaths = { "type": "group", "package": "p", "name": "g", "permission": "read", } self.request.method = "PUT" AdminEndpoints(self.request).edit_permission() self.access.edit_group_permission.assert_called_with("p", "g", "read", True) def test_remove_group_permission(self): """Remove a group permission from a package""" self.request.named_subpaths = { "type": "group", "package": "p", "name": "g", "permission": "read", } self.request.method = "DELETE" AdminEndpoints(self.request).edit_permission() self.access.edit_group_permission.assert_called_with("p", "g", "read", False) def test_toggle_allow_register(self): """Toggle registration enabled""" AdminEndpoints(self.request).toggle_allow_register(True) self.access.set_allow_register.assert_called_with(True)
third_party/gsutil/third_party/apitools/apitools/gen/extended_descriptor.py
tingshao/catapult
2,151
12741707
#!/usr/bin/env python # # Copyright 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Extended protorpc descriptors. This takes existing protorpc Descriptor classes and adds extra properties not directly supported in proto itself, notably field and message descriptions. We need this in order to generate protorpc message files with comments. Note that for most of these classes, we can't simply wrap the existing message, since we need to change the type of the subfields. We could have a "plain" descriptor attached, but that seems like unnecessary bookkeeping. Where possible, we purposely reuse existing tag numbers; for new fields, we start numbering at 100. """ import abc import operator import textwrap import six from apitools.base.protorpclite import descriptor as protorpc_descriptor from apitools.base.protorpclite import message_types from apitools.base.protorpclite import messages import apitools.base.py as apitools_base class ExtendedEnumValueDescriptor(messages.Message): """Enum value descriptor with additional fields. Fields: name: Name of enumeration value. number: Number of enumeration value. description: Description of this enum value. """ name = messages.StringField(1) number = messages.IntegerField(2, variant=messages.Variant.INT32) description = messages.StringField(100) class ExtendedEnumDescriptor(messages.Message): """Enum class descriptor with additional fields. Fields: name: Name of Enum without any qualification. values: Values defined by Enum class. description: Description of this enum class. full_name: Fully qualified name of this enum class. enum_mappings: Mappings from python to JSON names for enum values. """ class JsonEnumMapping(messages.Message): """Mapping from a python name to the wire name for an enum.""" python_name = messages.StringField(1) json_name = messages.StringField(2) name = messages.StringField(1) values = messages.MessageField( ExtendedEnumValueDescriptor, 2, repeated=True) description = messages.StringField(100) full_name = messages.StringField(101) enum_mappings = messages.MessageField( 'JsonEnumMapping', 102, repeated=True) class ExtendedFieldDescriptor(messages.Message): """Field descriptor with additional fields. Fields: field_descriptor: The underlying field descriptor. name: The name of this field. description: Description of this field. """ field_descriptor = messages.MessageField( protorpc_descriptor.FieldDescriptor, 100) # We duplicate the names for easier bookkeeping. name = messages.StringField(101) description = messages.StringField(102) class ExtendedMessageDescriptor(messages.Message): """Message descriptor with additional fields. Fields: name: Name of Message without any qualification. fields: Fields defined for message. message_types: Nested Message classes defined on message. enum_types: Nested Enum classes defined on message. description: Description of this message. full_name: Full qualified name of this message. decorators: Decorators to include in the definition when printing. Printed in the given order from top to bottom (so the last entry is the innermost decorator). alias_for: This type is just an alias for the named type. field_mappings: Mappings from python to json field names. """ class JsonFieldMapping(messages.Message): """Mapping from a python name to the wire name for a field.""" python_name = messages.StringField(1) json_name = messages.StringField(2) name = messages.StringField(1) fields = messages.MessageField(ExtendedFieldDescriptor, 2, repeated=True) message_types = messages.MessageField( 'extended_descriptor.ExtendedMessageDescriptor', 3, repeated=True) enum_types = messages.MessageField( ExtendedEnumDescriptor, 4, repeated=True) description = messages.StringField(100) full_name = messages.StringField(101) decorators = messages.StringField(102, repeated=True) alias_for = messages.StringField(103) field_mappings = messages.MessageField( 'JsonFieldMapping', 104, repeated=True) class ExtendedFileDescriptor(messages.Message): """File descriptor with additional fields. Fields: package: Fully qualified name of package that definitions belong to. message_types: Message definitions contained in file. enum_types: Enum definitions contained in file. description: Description of this file. additional_imports: Extra imports used in this package. """ package = messages.StringField(2) message_types = messages.MessageField( ExtendedMessageDescriptor, 4, repeated=True) enum_types = messages.MessageField( ExtendedEnumDescriptor, 5, repeated=True) description = messages.StringField(100) additional_imports = messages.StringField(101, repeated=True) def _WriteFile(file_descriptor, package, version, proto_printer): """Write the given extended file descriptor to the printer.""" proto_printer.PrintPreamble(package, version, file_descriptor) _PrintEnums(proto_printer, file_descriptor.enum_types) _PrintMessages(proto_printer, file_descriptor.message_types) custom_json_mappings = _FetchCustomMappings(file_descriptor.enum_types) custom_json_mappings.extend( _FetchCustomMappings(file_descriptor.message_types)) for mapping in custom_json_mappings: proto_printer.PrintCustomJsonMapping(mapping) def WriteMessagesFile(file_descriptor, package, version, printer): """Write the given extended file descriptor to out as a message file.""" _WriteFile(file_descriptor, package, version, _Proto2Printer(printer)) def WritePythonFile(file_descriptor, package, version, printer): """Write the given extended file descriptor to out.""" _WriteFile(file_descriptor, package, version, _ProtoRpcPrinter(printer)) def PrintIndentedDescriptions(printer, ls, name, prefix=''): if ls: with printer.Indent(indent=prefix): with printer.CommentContext(): width = printer.CalculateWidth() - len(prefix) printer() printer(name + ':') for x in ls: description = '%s: %s' % (x.name, x.description) for line in textwrap.wrap(description, width, initial_indent=' ', subsequent_indent=' '): printer(line) def _FetchCustomMappings(descriptor_ls): """Find and return all custom mappings for descriptors in descriptor_ls.""" custom_mappings = [] for descriptor in descriptor_ls: if isinstance(descriptor, ExtendedEnumDescriptor): custom_mappings.extend( _FormatCustomJsonMapping('Enum', m, descriptor) for m in descriptor.enum_mappings) elif isinstance(descriptor, ExtendedMessageDescriptor): custom_mappings.extend( _FormatCustomJsonMapping('Field', m, descriptor) for m in descriptor.field_mappings) custom_mappings.extend( _FetchCustomMappings(descriptor.enum_types)) custom_mappings.extend( _FetchCustomMappings(descriptor.message_types)) return custom_mappings def _FormatCustomJsonMapping(mapping_type, mapping, descriptor): return '\n'.join(( 'encoding.AddCustomJson%sMapping(' % mapping_type, " %s, '%s', '%s')" % (descriptor.full_name, mapping.python_name, mapping.json_name), )) def _EmptyMessage(message_type): return not any((message_type.enum_types, message_type.message_types, message_type.fields)) class ProtoPrinter(six.with_metaclass(abc.ABCMeta, object)): """Interface for proto printers.""" @abc.abstractmethod def PrintPreamble(self, package, version, file_descriptor): """Print the file docstring and import lines.""" @abc.abstractmethod def PrintEnum(self, enum_type): """Print the given enum declaration.""" @abc.abstractmethod def PrintMessage(self, message_type): """Print the given message declaration.""" class _Proto2Printer(ProtoPrinter): """Printer for proto2 definitions.""" def __init__(self, printer): self.__printer = printer def __PrintEnumCommentLines(self, enum_type): description = enum_type.description or '%s enum type.' % enum_type.name for line in textwrap.wrap(description, self.__printer.CalculateWidth() - 3): self.__printer('// %s', line) PrintIndentedDescriptions(self.__printer, enum_type.values, 'Values', prefix='// ') def __PrintEnumValueCommentLines(self, enum_value): if enum_value.description: width = self.__printer.CalculateWidth() - 3 for line in textwrap.wrap(enum_value.description, width): self.__printer('// %s', line) def PrintEnum(self, enum_type): self.__PrintEnumCommentLines(enum_type) self.__printer('enum %s {', enum_type.name) with self.__printer.Indent(): enum_values = sorted( enum_type.values, key=operator.attrgetter('number')) for enum_value in enum_values: self.__printer() self.__PrintEnumValueCommentLines(enum_value) self.__printer('%s = %s;', enum_value.name, enum_value.number) self.__printer('}') self.__printer() def PrintPreamble(self, package, version, file_descriptor): self.__printer('// Generated message classes for %s version %s.', package, version) self.__printer('// NOTE: This file is autogenerated and should not be ' 'edited by hand.') description_lines = textwrap.wrap(file_descriptor.description, 75) if description_lines: self.__printer('//') for line in description_lines: self.__printer('// %s', line) self.__printer() self.__printer('syntax = "proto2";') self.__printer('package %s;', file_descriptor.package) def __PrintMessageCommentLines(self, message_type): """Print the description of this message.""" description = message_type.description or '%s message type.' % ( message_type.name) width = self.__printer.CalculateWidth() - 3 for line in textwrap.wrap(description, width): self.__printer('// %s', line) PrintIndentedDescriptions(self.__printer, message_type.enum_types, 'Enums', prefix='// ') PrintIndentedDescriptions(self.__printer, message_type.message_types, 'Messages', prefix='// ') PrintIndentedDescriptions(self.__printer, message_type.fields, 'Fields', prefix='// ') def __PrintFieldDescription(self, description): for line in textwrap.wrap(description, self.__printer.CalculateWidth() - 3): self.__printer('// %s', line) def __PrintFields(self, fields): for extended_field in fields: field = extended_field.field_descriptor field_type = messages.Field.lookup_field_type_by_variant( field.variant) self.__printer() self.__PrintFieldDescription(extended_field.description) label = str(field.label).lower() if field_type in (messages.EnumField, messages.MessageField): proto_type = field.type_name else: proto_type = str(field.variant).lower() default_statement = '' if field.default_value: if field_type in [messages.BytesField, messages.StringField]: default_value = '"%s"' % field.default_value elif field_type is messages.BooleanField: default_value = str(field.default_value).lower() else: default_value = str(field.default_value) default_statement = ' [default = %s]' % default_value self.__printer( '%s %s %s = %d%s;', label, proto_type, field.name, field.number, default_statement) def PrintMessage(self, message_type): self.__printer() self.__PrintMessageCommentLines(message_type) if _EmptyMessage(message_type): self.__printer('message %s {}', message_type.name) return self.__printer('message %s {', message_type.name) with self.__printer.Indent(): _PrintEnums(self, message_type.enum_types) _PrintMessages(self, message_type.message_types) self.__PrintFields(message_type.fields) self.__printer('}') def PrintCustomJsonMapping(self, mapping_lines): raise NotImplementedError( 'Custom JSON encoding not supported for proto2') class _ProtoRpcPrinter(ProtoPrinter): """Printer for ProtoRPC definitions.""" def __init__(self, printer): self.__printer = printer def __PrintClassSeparator(self): self.__printer() if not self.__printer.indent: self.__printer() def __PrintEnumDocstringLines(self, enum_type): description = enum_type.description or '%s enum type.' % enum_type.name for line in textwrap.wrap('"""%s' % description, self.__printer.CalculateWidth()): self.__printer(line) PrintIndentedDescriptions(self.__printer, enum_type.values, 'Values') self.__printer('"""') def PrintEnum(self, enum_type): self.__printer('class %s(_messages.Enum):', enum_type.name) with self.__printer.Indent(): self.__PrintEnumDocstringLines(enum_type) enum_values = sorted( enum_type.values, key=operator.attrgetter('number')) for enum_value in enum_values: self.__printer('%s = %s', enum_value.name, enum_value.number) if not enum_type.values: self.__printer('pass') self.__PrintClassSeparator() def __PrintAdditionalImports(self, imports): """Print additional imports needed for protorpc.""" google_imports = [x for x in imports if 'google' in x] other_imports = [x for x in imports if 'google' not in x] if other_imports: for import_ in sorted(other_imports): self.__printer(import_) self.__printer() # Note: If we ever were going to add imports from this package, we'd # need to sort those out and put them at the end. if google_imports: for import_ in sorted(google_imports): self.__printer(import_) self.__printer() def PrintPreamble(self, package, version, file_descriptor): self.__printer('"""Generated message classes for %s version %s.', package, version) self.__printer() for line in textwrap.wrap(file_descriptor.description, 78): self.__printer(line) self.__printer('"""') self.__printer('# NOTE: This file is autogenerated and should not be ' 'edited by hand.') self.__printer() self.__PrintAdditionalImports(file_descriptor.additional_imports) self.__printer() self.__printer("package = '%s'", file_descriptor.package) self.__printer() self.__printer() def __PrintMessageDocstringLines(self, message_type): """Print the docstring for this message.""" description = message_type.description or '%s message type.' % ( message_type.name) short_description = ( _EmptyMessage(message_type) and len(description) < (self.__printer.CalculateWidth() - 6)) with self.__printer.CommentContext(): if short_description: # Note that we use explicit string interpolation here since # we're in comment context. self.__printer('"""%s"""' % description) return for line in textwrap.wrap('"""%s' % description, self.__printer.CalculateWidth()): self.__printer(line) PrintIndentedDescriptions(self.__printer, message_type.enum_types, 'Enums') PrintIndentedDescriptions( self.__printer, message_type.message_types, 'Messages') PrintIndentedDescriptions( self.__printer, message_type.fields, 'Fields') self.__printer('"""') self.__printer() def PrintMessage(self, message_type): if message_type.alias_for: self.__printer( '%s = %s', message_type.name, message_type.alias_for) self.__PrintClassSeparator() return for decorator in message_type.decorators: self.__printer('@%s', decorator) self.__printer('class %s(_messages.Message):', message_type.name) with self.__printer.Indent(): self.__PrintMessageDocstringLines(message_type) _PrintEnums(self, message_type.enum_types) _PrintMessages(self, message_type.message_types) _PrintFields(message_type.fields, self.__printer) self.__PrintClassSeparator() def PrintCustomJsonMapping(self, mapping): self.__printer(mapping) def _PrintEnums(proto_printer, enum_types): """Print all enums to the given proto_printer.""" enum_types = sorted(enum_types, key=operator.attrgetter('name')) for enum_type in enum_types: proto_printer.PrintEnum(enum_type) def _PrintMessages(proto_printer, message_list): message_list = sorted(message_list, key=operator.attrgetter('name')) for message_type in message_list: proto_printer.PrintMessage(message_type) _MESSAGE_FIELD_MAP = { message_types.DateTimeMessage.definition_name(): ( message_types.DateTimeField), } def _PrintFields(fields, printer): for extended_field in fields: field = extended_field.field_descriptor printed_field_info = { 'name': field.name, 'module': '_messages', 'type_name': '', 'type_format': '', 'number': field.number, 'label_format': '', 'variant_format': '', 'default_format': '', } message_field = _MESSAGE_FIELD_MAP.get(field.type_name) if message_field: printed_field_info['module'] = '_message_types' field_type = message_field elif field.type_name == 'extra_types.DateField': printed_field_info['module'] = 'extra_types' field_type = apitools_base.DateField else: field_type = messages.Field.lookup_field_type_by_variant( field.variant) if field_type in (messages.EnumField, messages.MessageField): printed_field_info['type_format'] = "'%s', " % field.type_name if field.label == protorpc_descriptor.FieldDescriptor.Label.REQUIRED: printed_field_info['label_format'] = ', required=True' elif field.label == protorpc_descriptor.FieldDescriptor.Label.REPEATED: printed_field_info['label_format'] = ', repeated=True' if field_type.DEFAULT_VARIANT != field.variant: printed_field_info['variant_format'] = ( ', variant=_messages.Variant.%s' % field.variant) if field.default_value: if field_type in [messages.BytesField, messages.StringField]: default_value = repr(field.default_value) elif field_type is messages.EnumField: try: default_value = str(int(field.default_value)) except ValueError: default_value = repr(field.default_value) else: default_value = field.default_value printed_field_info[ 'default_format'] = ', default=%s' % (default_value,) printed_field_info['type_name'] = field_type.__name__ args = ''.join('%%(%s)s' % field for field in ( 'type_format', 'number', 'label_format', 'variant_format', 'default_format')) format_str = '%%(name)s = %%(module)s.%%(type_name)s(%s)' % args printer(format_str % printed_field_info)
src/test/make_tests_poly1305_reduce.py
ghassanmas/pycryptodome
2,063
12741722
<gh_stars>1000+ """Make unit test for poly1305_reduce()""" from common import counter, make_main, split32 def make_test(value): result = value % (2**130 - 5) h_in = split32(value, 5) h_out = split32(result, 5) print("") print("void test_%d() {" % next(counter)) print(" uint32_t h[5] = {" + ", ".join(h_in) + "};") print(" const uint32_t expected_h[5] = {" + ", ".join(h_out) + "};") print("") print(" poly1305_reduce(h);") print(" assert(memcmp(h, expected_h, sizeof(h)) == 0);") print("}") print("") print("#ifdef NDEBUG") print("#undef NDEBUG") print("#endif") print("#include <assert.h>") print("#include <string.h>") print("#include <stdint.h>") print("#include <stdio.h>") print() print("void poly1305_reduce(uint32_t h[5]);") make_test(0) make_test(2**130-5-1) make_test(2**130-5) make_test(2**130-5+1) make_test(2*(2**130-5)) make_test(2*(2**130-5)+9) # make_test(2*(2**130-5)+10) - Fails, since h[5] takes more than 3 bits make_main()
tests/strided_range_test.py
jnice-81/dace
227
12741762
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import dace from dace.memlet import Memlet import numpy as np sr = dace.SDFG('strided_range_test') s0 = sr.add_state('s0') A = s0.add_array('A', [2, 16, 4], dace.float32) B = s0.add_array('B', [16], dace.float32) tasklet = s0.add_tasklet( 'srtest', {'a'}, {'b'}, """ b[0] = a[0,0] * 2 b[1] = a[0,1] * 2 b[2] = a[1,0] * 2 b[3] = a[1,1] * 2 """) me, mx = s0.add_map('srmap', dict(i='0:4')) # Reading A at [1, 2i:2i+8:8:2, 3] s0.add_memlet_path(A, me, tasklet, dst_conn='a', memlet=Memlet.simple(A, '1, 2*i:2*i+10:8:2, 3')) # Writing B at [4*i:4*i+4] s0.add_memlet_path(tasklet, mx, B, src_conn='b', memlet=Memlet.simple(B, '4*i:4*i+4')) def test(): print('Strided range tasklet test') A = np.random.rand(2, 16, 4).astype(np.float32) B = np.random.rand(16).astype(np.float32) sr(A=A, B=B) diffs = [ B[0:2] - 2 * A[1, 0:2, 3], B[2:4] - 2 * A[1, 8:10, 3], B[4:6] - 2 * A[1, 2:4, 3], B[6:8] - 2 * A[1, 10:12, 3], B[8:10] - 2 * A[1, 4:6, 3], B[10:12] - 2 * A[1, 12:14, 3], B[12:14] - 2 * A[1, 6:8, 3], B[14:16] - 2 * A[1, 14:16, 3] ] diff = np.linalg.norm(np.array(diffs)) print('Differences:', [np.linalg.norm(d) for d in diffs]) assert diff <= 1e-5 if __name__ == "__main__": test()
pyGPs/Demo/generate_data_for_Rasmussen_examples.py
Corentin-LF/pyGPs
196
12741771
from builtins import zip from builtins import range import numpy as np def save_data_regresssion(): # n = 20 # number of labeled/training data # D = 1 # dimension of input data x = np.array([[2.083970427750732, -0.821018066101379, -0.617870699182597, -1.183822608860694,\ 0.274087442277144, 0.599441729295593, 1.768897919204435, -0.465645549031928,\ 0.588852784375935, -0.832982214438054, -0.512106527960363, 0.277883144210116,\ -0.065870426922211, -0.821412363806325, 0.185399443778088, -0.858296174995998,\ 0.370786630037059, -1.409869162416639,-0.144668412325022,-0.553299615220374]]).T y = np.array([[4.549203746331698, 0.371985574437271, 0.711307965514790, -0.013212893618430, 2.255473255338191,\ 1.009915749295733, 3.744675937965029, 0.424592771793202, 1.322833652295811, 0.278298293510020,\ 0.267229130945574, 2.200112286723833, 1.200609983308969, 0.439971697236094, 2.628580433511255,\ 0.503774817336353, 1.942525313820564, 0.579133950013327, 0.670874423968554, 0.377353755100965]]).T # TEST points # test points evenly distributed in the interval [-2, 2.5] xstar = np.array(list(range(-200,250,4)), dtype=np.float64, ndmin=2).T xstar /= 100 np.savez('Regression/regression_data', x=x, y=y, xstar=xstar) def save_data_classification(): # Synthetic data for binary classification: two partially overlapping # Gaussians in two dimensions. 120 data points are generated from two # Gaussians with different means and covariances. One Gaussian is # isotropic and contains 2/3 of the data (blue), the other is highly # correlated and contains 1/3 of the points (red). Note, that the # labels for the targets are -1/+1 (and not 0/1). n1 = 80; n2 = 40 x1 = np.array([[0.089450165731417, -0.000700765006939],\ [ 1.171605560541542, 1.177765337635947],\ [ 1.404722675089394, -0.017417915887421],\ [ 0.556096196907929, -1.489370243839215],\ [ 1.213163445267992, 0.044545401368647],\ [ 0.173404742510759, -0.675668036759603],\ [ 2.225008556585363, 0.469803193769368],\ [ 1.470329290331445, 0.887642323697526],\ [ 2.715199208821485, 0.621044646503113],\ [ 0.173640760494328, -0.936054178730056],\ [ 2.038152815025167, 0.262587298316711],\ [ 1.670218375320427, -2.633186886994263],\ [ 0.270098501389591, -0.948779657473203],\ [ 1.396339236138275, -1.114992287201776],\ [-1.482070589718501, -0.654590652482805],\ [-1.493788226272929, 0.382017940248275],\ [ 1.025083846875763, -0.860344923788873],\ [ 0.750316336734172, -0.101864205602753],\ [ 0.184311310148912, -0.258523866245887],\ [ 0.221868667121623, -1.393954437105630],\ [ 2.258881477897777, -0.786806071526136],\ [ 1.211362530151533, -0.423431246029886],\ [ 1.525307406741207, -0.097975367602030],\ [ 0.978930232706465, 0.476154349549524],\ [ 1.347884229346280, -0.248408186838667],\ [ 1.205779546204216, -0.090878327349907],\ [ 0.124388644862000, 0.599612645000285],\ [ 0.784044356662233, 0.356596736271853],\ [ 1.060216683845210, -0.318474838087900],\ [ 1.678114484474938, 0.678735373910422],\ [ 0.973851135005570, 0.024880700382574],\ [ 0.016237746864886, -0.480899874254564],\ [ 0.979406721923196, 0.697708815321128],\ [ 2.217307638531248, -0.956931847027775],\ [ 2.150475558834153, 1.059031573329512],\ [ 1.050502393215048, 0.532141747419667],\ [ 1.210593098269218, -0.318123542280113],\ [ 0.426309208807901, -0.571727978045793],\ [ 0.742552105732714, -0.122112766396886],\ [ 0.757210723588679, 0.862002000781123],\ [-0.431639130160791, -0.763118261936640],\ [-0.748398486307095, -0.603667649379360],\ [ 0.975086541108249, -1.525297946453790],\ [ 0.074503762788667, -0.092155036190678],\ [-0.668889572018935, 1.305400680048752],\ [ 0.725632503186580, 0.096286255882168],\ [-1.042270707136463, 1.297009698531055],\ [ 1.943144890398260, -1.051176922438962],\ [ 1.191448645802597, 0.261349747400059],\ [ 0.778004017505022, -1.046301123377022],\ [ 0.628873970760607, 1.103926629619643],\ [ 1.295113890591403, -0.479519217798997],\ [ 1.522065175744686, 0.993476032742058],\ [ 1.100255776045601, 0.961069161713818],\ [-0.593243832838153, -0.479418953496258],\ [ 2.023196521366462, -0.275055494808503],\ [-0.788103134597041, -1.090707985778480],\ [-0.085168420896236, 1.226858390046108],\ [ 1.691706923196703, -1.153144804780540],\ [ 1.989279380395157, 1.974704317386435],\ [ 0.398799861652602, 3.051291814188982],\ [-0.707217210772927, 0.185505264874794],\ [ 0.697550136765320, 0.222287208720035],\ [ 2.186126058382323, -0.327829143438683],\ [ 1.368068331060010, 1.708138258453435],\ [ 0.883049126818189, -1.334269372314072],\ [ 1.737643116893527, 0.618452933813739],\ [ 2.002228743955222, 0.103381966018445],\ [-0.202638622737115, 0.495024938090909],\ [ 0.543309203560769, -0.802120609128192],\ [-1.796161599703804, -0.054795478648902],\ [ 1.460693782000059, 0.750052171180825],\ [ 0.133277872804608, -1.154891068006907],\ [ 0.203670382700157, -0.480336687666025],\ [-0.278985011909341, 0.030578590108392],\ [ 2.070490237052893, 2.420782751903098],\ [ 0.599023881366768, -1.673208560658818],\ [ 0.140506592147238, 0.804938444757444],\ [-0.980799204108985, -1.847987723222053],\ [-0.102350006007740, -0.822093851434857]]) x2 = np.array([[1.160257057434194, 1.544111720606185],\ [-0.458434595629321, 0.205667827100987],\ [-1.053562345687376, -0.614938261650010],\ [-1.687901005751336, -0.780028275457715],\ [-0.467035854712698, 0.561692074343868],\ [-0.703391186121452, 0.281301267639200],\ [-1.568557779993616, -0.629129013661319],\ [-2.176478596101226, -1.176211396013793],\ [ 0.768109265900499, 1.376893437232103],\ [-0.514772970064353, 0.474264363701950],\ [-1.301924381487904, -0.525179228127957],\ [-1.312024947004566, -0.049469442305628],\ [-0.623417800418214, 0.226456899059445],\ [ 0.020290591370131, 0.374055846421580],\ [-1.002901826023476, 0.076597486786743],\ [-2.553713136283273, -1.731788289864902],\ [-1.788156378743716, -0.742460481943494],\ [-1.119582270077321, -0.256154464598782],\ [-0.423084091988017, 0.395108309297119],\ [-1.645945345460644, -1.216319293733455],\ [ 0.227805611684674, 0.925948003854262],\ [-1.298719171366801, -0.965511301629466],\ [-0.618292817021891, 0.140045887498202],\ [ 0.794935039731655, 1.917830760420081],\ [-0.213709179946402, 0.617751634356751],\ [-0.474251035850546, -0.054854432018974],\ [ 0.056077816960464, 1.046282980014428],\ [ 0.887136693467512, 1.536490289895764],\ [ 1.377161915854166, 1.764872700787871],\ [-0.901195709427863, -0.340855547886558],\ [-0.783104424735034, -0.330927422324566],\ [-1.507139570543989, 0.137504213149820],\ [-0.348999111724700, 0.235931187612453],\ [-0.367309385513174, 0.655996377722041],\ [-0.050622309620072, 0.410969334468070],\ [ 1.734919039047271, 2.611080177877894],\ [-0.567413078682755, -0.458249564234885],\ [-0.622230797920433, 0.258401595566888],\ [-1.642146761593230, -1.138579130251617],\ [-0.285298076847255, 0.085451489400687]]) x = np.concatenate((x1,x2),axis=0) y = np.concatenate((-np.ones((1,n1)),np.ones((1,n2))),axis=1).T # For plotting, we superimpose the data points with the posterior equi-probability contour # lines for the probability of class two given complete information about the generating mechanism. t1,t2 = np.meshgrid(np.arange(-4,4.1,0.1),np.arange(-4,4.1,0.1)) t = np.array(list(zip(np.reshape(t1,(np.prod(t1.shape),)),np.reshape(t2,(np.prod(t2.shape),))))) # these are the test inputs n = t.shape[0] tmm = np.zeros_like(t) S1 = np.eye(2); S2 = np.array([[1, 0.95], [0.95, 1]]) m1 = np.array([0.75, 0]); m2 = np.array([-0.75, 0]) tmm[:,0] = t[:,0] - m1[0]; tmm[:,1] = t[:,1] - m1[1] p1 = n1*np.exp( (-np.dot(tmm,np.linalg.inv(S1))*tmm/2).sum(axis=1) ) tmm[:,0] = t[:,0] - m2[0]; tmm[:,1] = t[:,1] - m2[1] S2i = np.linalg.inv(S2) p2 = n2*np.exp( (-np.dot(tmm,S2i)*tmm/2).sum(axis=1) ) / np.sqrt(0.0975) np.savez('Classification/classification_data', x=x, y=y, xstar=t, x1=x1,x2=x2,t1=t1,t2=t2,p1=p1,p2=p2) if __name__=='__main__': save_data_regresssion() #save_data_classification()
pano_opt_gen.py
kopetri/LayoutNetv2
166
12741774
import torch import torch.optim as optim import numpy as np from PIL import Image #import pano import pano_gen as pano import time def vecang(vec1, vec2): vec1 = vec1 / np.sqrt((vec1 ** 2).sum()) vec2 = vec2 / np.sqrt((vec2 ** 2).sum()) return np.arccos(np.dot(vec1, vec2)) def rotatevec(vec, theta): x = vec[0] * torch.cos(theta) - vec[1] * torch.sin(theta) y = vec[0] * torch.sin(theta) + vec[1] * torch.cos(theta) return torch.cat([x, y]) def pts_linspace(pa, pb, pts=300): pa = pa.view(1, 2) pb = pb.view(1, 2) w = torch.arange(0, pts + 1, dtype=pa.dtype).view(-1, 1) return (pa * (pts - w) + pb * w) / pts def xyz2uv(xy, z=-1): c = torch.sqrt((xy ** 2).sum(1)) u = torch.atan2(xy[:, 1], xy[:, 0]).view(-1, 1) v = torch.atan2(torch.zeros_like(c) + z, c).view(-1, 1) return torch.cat([u, v], dim=1) def uv2idx(uv, w, h): col = (uv[:, 0] / (2 * np.pi) + 0.5) * w - 0.5 row = (uv[:, 1] / np.pi + 0.5) * h - 0.5 return torch.cat([col.view(-1, 1), row.view(-1, 1)], dim=1) def wallidx(xy, w, h, z1, z2): col = (torch.atan2(xy[1], xy[0]) / (2 * np.pi) + 0.5) * w - 0.5 c = torch.sqrt((xy ** 2).sum()) row_s = (torch.atan2(torch.zeros_like(c) + z1, c) / np.pi + 0.5) * h - 0.5 row_t = (torch.atan2(torch.zeros_like(c) + z2, c) / np.pi + 0.5) * h - 0.5 pa = torch.cat([col.view(1), row_s.view(1)]) pb = torch.cat([col.view(1), row_t.view(1)]) return pts_linspace(pa, pb) def map_coordinates(input, coordinates): ''' PyTorch version of scipy.ndimage.interpolation.map_coordinates input: (H, W) coordinates: (2, ...) ''' h = input.shape[0] w = input.shape[1] def _coordinates_pad_wrap(h, w, coordinates): coordinates[0] = coordinates[0] % h coordinates[1] = coordinates[1] % w return coordinates co_floor = torch.floor(coordinates).long() co_ceil = torch.ceil(coordinates).long() d1 = (coordinates[1] - co_floor[1].float()) d2 = (coordinates[0] - co_floor[0].float()) co_floor = _coordinates_pad_wrap(h, w, co_floor) co_ceil = _coordinates_pad_wrap(h, w, co_ceil) f00 = input[co_floor[0], co_floor[1]] f10 = input[co_floor[0], co_ceil[1]] f01 = input[co_ceil[0], co_floor[1]] f11 = input[co_ceil[0], co_ceil[1]] fx1 = f00 + d1 * (f10 - f00) fx2 = f01 + d1 * (f11 - f01) return fx1 + d2 * (fx2 - fx1) def pc2cor_id(pc, pc_vec, pc_theta, pc_height): if pc_theta.numel()==1: ps = torch.stack([ (pc + pc_vec), (pc + rotatevec(pc_vec, pc_theta)), (pc - pc_vec), (pc + rotatevec(pc_vec, pc_theta - np.pi)) ]) else: ps = pc + pc_vec ps = ps.view(-1,2) for c_num in range(pc_theta.shape[1]): ps = torch.cat((ps, ps[c_num:,:]),0) if (c_num % 2) == 0: ps[-1,1] = pc_theta[0,c_num] else: ps[-1,0] = pc_theta[0,c_num] ps = torch.cat((ps, ps[-1:,:]),0) ps[-1,1] = ps[0,1] return torch.cat([ uv2idx(xyz2uv(ps, z=-1), 1024, 512), uv2idx(xyz2uv(ps, z=pc_height), 1024, 512), ], dim=0) def project2sphere_score(pc, pc_vec, pc_theta, pc_height, scoreedg, scorecor, i_step=None): # Sample corner loss corid = pc2cor_id(pc, pc_vec, pc_theta, pc_height) corid_coordinates = torch.stack([corid[:, 1], corid[:, 0]]) loss_cor = -map_coordinates(scorecor, corid_coordinates).mean() # Sample boundary loss if pc_theta.numel()==1: p1 = pc + pc_vec p2 = pc + rotatevec(pc_vec, pc_theta) p3 = pc - pc_vec p4 = pc + rotatevec(pc_vec, pc_theta - np.pi) segs = [ pts_linspace(p1, p2), pts_linspace(p2, p3), pts_linspace(p3, p4), pts_linspace(p4, p1), ] else: ps = pc + pc_vec ps = ps.view(-1,2) for c_num in range(pc_theta.shape[1]): ps = torch.cat((ps, ps[c_num:,:]),0) if (c_num % 2) == 0: ps[-1,1] = pc_theta[0,c_num] else: ps[-1,0] = pc_theta[0,c_num] ps = torch.cat((ps, ps[-1:,:]),0) ps[-1,1] = ps[0,1] segs = [] for c_num in range(ps.shape[0]-1): segs.append(pts_linspace(ps[c_num,:], ps[c_num+1,:])) segs.append(pts_linspace(ps[-1,:], ps[0,:])) # ceil-wall loss_ceilwall = 0 for seg in segs: ceil_uv = xyz2uv(seg, z=-1) ceil_idx = uv2idx(ceil_uv, 1024, 512) ceil_coordinates = torch.stack([ceil_idx[:, 1], ceil_idx[:, 0]]) loss_ceilwall -= map_coordinates(scoreedg[..., 1], ceil_coordinates).mean() / len(segs) # floor-wall loss_floorwall = 0 for seg in segs: floor_uv = xyz2uv(seg, z=pc_height) floor_idx = uv2idx(floor_uv, 1024, 512) floor_coordinates = torch.stack([floor_idx[:, 1], floor_idx[:, 0]]) loss_floorwall -= map_coordinates(scoreedg[..., 2], floor_coordinates).mean() / len(segs) #losses = 1.0 * loss_cor + 0.1 * loss_wallwall + 0.5 * loss_ceilwall + 1.0 * loss_floorwall losses = 1.0 * loss_cor + 1.0 * loss_ceilwall + 1.0 * loss_floorwall if i_step is not None: with torch.no_grad(): print('step %d: %.3f (cor %.3f, wall %.3f, ceil %.3f, floor %.3f)' % ( i_step, losses, loss_cor, loss_wallwall, loss_ceilwall, loss_floorwall)) return losses def optimize_cor_id(cor_id, scoreedg, scorecor, num_iters=100, verbose=False): assert scoreedg.shape == (512, 1024, 3) assert scorecor.shape == (512, 1024) Z = -1 ceil_cor_id = cor_id[0::2] floor_cor_id = cor_id[1::2] ceil_cor_id, ceil_cor_id_xy = pano.constraint_cor_id_same_z(ceil_cor_id, scorecor, Z) #ceil_cor_id_xyz = np.hstack([ceil_cor_id_xy, np.zeros(4).reshape(-1, 1) + Z]) ceil_cor_id_xyz = np.hstack([ceil_cor_id_xy, np.zeros(ceil_cor_id.shape[0]).reshape(-1, 1) + Z]) # TODO: revise here to general layout #pc = (ceil_cor_id_xy[0] + ceil_cor_id_xy[2]) / 2 #print(ceil_cor_id_xy) if abs(ceil_cor_id_xy[0,0]-ceil_cor_id_xy[1,0])>abs(ceil_cor_id_xy[0,1]-ceil_cor_id_xy[1,1]): ceil_cor_id_xy = np.concatenate((ceil_cor_id_xy[1:,:],ceil_cor_id_xy[:1,:]), axis=0) #print(cor_id) #print(ceil_cor_id_xy) pc = np.mean(ceil_cor_id_xy, axis=0) pc_vec = ceil_cor_id_xy[0] - pc pc_theta = vecang(pc_vec, ceil_cor_id_xy[1] - pc) pc_height = pano.fit_avg_z(floor_cor_id, ceil_cor_id_xy, scorecor) if ceil_cor_id_xy.shape[0] > 4: pc_theta = np.array([ceil_cor_id_xy[1,1]]) for c_num in range(2, ceil_cor_id_xy.shape[0]-1): if (c_num % 2) == 0: pc_theta = np.append(pc_theta, ceil_cor_id_xy[c_num,0]) else: pc_theta = np.append(pc_theta, ceil_cor_id_xy[c_num,1]) scoreedg = torch.FloatTensor(scoreedg) scorecor = torch.FloatTensor(scorecor) pc = torch.FloatTensor(pc) pc_vec = torch.FloatTensor(pc_vec) pc_theta = torch.FloatTensor([pc_theta]) pc_height = torch.FloatTensor([pc_height]) pc.requires_grad = True pc_vec.requires_grad = True pc_theta.requires_grad = True pc_height.requires_grad = True #print(pc_theta) #time.sleep(2) #return cor_id optimizer = optim.SGD([ pc, pc_vec, pc_theta, pc_height ], lr=1e-3, momentum=0.9) best = {'score': 1e9} for i_step in range(num_iters): i = i_step if verbose else None optimizer.zero_grad() score = project2sphere_score(pc, pc_vec, pc_theta, pc_height, scoreedg, scorecor, i) if score.item() < best['score']: best['score'] = score.item() best['pc'] = pc.clone() best['pc_vec'] = pc_vec.clone() best['pc_theta'] = pc_theta.clone() best['pc_height'] = pc_height.clone() score.backward() optimizer.step() pc = best['pc'] pc_vec = best['pc_vec'] pc_theta = best['pc_theta'] pc_height = best['pc_height'] opt_cor_id = pc2cor_id(pc, pc_vec, pc_theta, pc_height).detach().numpy() split_num = int(opt_cor_id.shape[0]//2) opt_cor_id = np.stack([opt_cor_id[:split_num], opt_cor_id[split_num:]], axis=1).reshape(split_num*2, 2) #print(opt_cor_id) #print(cor_id) #time.sleep(500) return opt_cor_id
app/auth/views.py
taogeT/livetv_server
283
12741800
# -*- coding: UTF-8 -*- from flask import url_for, g, redirect from flask_login import logout_user, current_user from datetime import datetime from importlib import import_module from .. import db, login_manager from ..models import User from . import auth @auth.route('/login/<string:authtype>') def login_authorize(authtype): oauth = getattr(import_module('.'+authtype, __package__), authtype) return oauth.authorize(callback=url_for('auth.{}_authorized'.format(authtype), _external=True)) @auth.route('/logout') def logout(): logout_user() return redirect('/') @auth.before_app_request def before_request(): g.user = current_user if g.user.is_authenticated: g.user.last_seen = datetime.utcnow() db.session.add(g.user) db.session.commit() @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id))
tests/unit/cloudsearchdomain/test_cloudsearchdomain.py
Yurzs/boto
5,079
12741803
#!/usr/bin env python import json import mock from tests.unit import AWSMockServiceTestCase from boto.cloudsearch2.domain import Domain from boto.cloudsearch2.layer1 import CloudSearchConnection from boto.cloudsearchdomain.layer1 import CloudSearchDomainConnection class CloudSearchDomainConnectionTest(AWSMockServiceTestCase): connection_class = CloudSearchDomainConnection domain_status = """{ "SearchInstanceType": null, "DomainId": "1234567890/demo", "DomainName": "demo", "Deleted": false, "SearchInstanceCount": 0, "Created": true, "SearchService": { "Endpoint": "search-demo.us-east-1.cloudsearch.amazonaws.com" }, "RequiresIndexDocuments": false, "Processing": false, "DocService": { "Endpoint": "doc-demo.us-east-1.cloudsearch.amazonaws.com" }, "ARN": "arn:aws:cs:us-east-1:1234567890:domain/demo", "SearchPartitionCount": 0 }""" def create_service_connection(self, **kwargs): if kwargs.get('host', None) is None: kwargs['host'] = 'search-demo.us-east-1.cloudsearch.amazonaws.com' return super(CloudSearchDomainConnectionTest, self).\ create_service_connection(**kwargs) def test_get_search_service(self): layer1 = CloudSearchConnection(aws_access_key_id='aws_access_key_id', aws_secret_access_key='aws_secret_access_key', sign_request=True) domain = Domain(layer1=layer1, data=json.loads(self.domain_status)) search_service = domain.get_search_service() self.assertEqual(search_service.sign_request, True) def test_get_document_service(self): layer1 = CloudSearchConnection(aws_access_key_id='aws_access_key_id', aws_secret_access_key='aws_secret_access_key', sign_request=True) domain = Domain(layer1=layer1, data=json.loads(self.domain_status)) document_service = domain.get_document_service() self.assertEqual(document_service.sign_request, True) def test_search_with_auth(self): layer1 = CloudSearchConnection(aws_access_key_id='aws_access_key_id', aws_secret_access_key='aws_secret_access_key', sign_request=True) domain = Domain(layer1=layer1, data=json.loads(self.domain_status)) search_service = domain.get_search_service() response = { 'rank': '-text_relevance', 'match-expr': "Test", 'hits': { 'found': 30, 'start': 0, 'hit': { 'id': '12341', 'fields': { 'title': 'Document 1', 'rank': 1 } } }, 'status': { 'rid': 'b7c167f6c2da6d93531b9a7b314ad030b3a74803b4b7797edb905ba5a6a08', 'time-ms': 2, 'cpu-time-ms': 0 } } self.set_http_response(status_code=200, body=json.dumps(response).encode('utf-8')) search_service.domain_connection = self.service_connection resp = search_service.search() headers = self.actual_request.headers self.assertIsNotNone(headers.get('Authorization')) def test_upload_documents_with_auth(self): layer1 = CloudSearchConnection(aws_access_key_id='aws_access_key_id', aws_secret_access_key='aws_secret_access_key', sign_request=True) domain = Domain(layer1=layer1, data=json.loads(self.domain_status)) document_service = domain.get_document_service() response = { 'status': 'success', 'adds': 1, 'deletes': 0, } document = { "id": "1234", "title": "Title 1", "category": ["cat_a", "cat_b", "cat_c"] } self.set_http_response(status_code=200, body=json.dumps(response).encode('utf-8')) document_service.domain_connection = self.service_connection document_service.add("1234", document) resp = document_service.commit() headers = self.actual_request.headers self.assertIsNotNone(headers.get('Authorization')) def test_no_host_provided(self): # A host must be provided or a error is thrown. with self.assertRaises(ValueError): CloudSearchDomainConnection( aws_access_key_id='aws_access_key_id', aws_secret_access_key='aws_secret_access_key' )
evcouplings/complex/protocol.py
mrunalimanj/EVcouplings
117
12741836
<reponame>mrunalimanj/EVcouplings """ Protocols for matching putatively interacting sequences in protein complexes to create a concatenated sequence alignment Authors: <NAME> <NAME> """ from collections import Counter import numpy as np import pandas as pd from evcouplings.couplings.mapping import Segment from evcouplings.utils.config import ( check_required, InvalidParameterError ) from evcouplings.utils.system import ( create_prefix_folders, verify_resources ) from evcouplings.align.protocol import modify_alignment from evcouplings.complex.alignment import ( write_concatenated_alignment ) from evcouplings.complex.distance import ( find_possible_partners, best_reciprocal_matching, plot_distance_distribution ) from evcouplings.complex.similarity import ( read_species_annotation_table, most_similar_by_organism, filter_best_reciprocal, find_paralogs ) def modify_complex_segments(outcfg, **kwargs): """ Modifies the output configuration so that the segments are correct for a concatenated alignment Parameters ---------- outcfg : dict The output configuration Returns ------- outcfg: dict The output configuration, with a new field called "segments" """ def _modify_segments(seg_list, seg_prefix): # extract segments from list representation into objects segs = [ Segment.from_list(s) for s in seg_list ] # update segment IDs for i, s in enumerate(segs, start=1): s.segment_id = "{}_{}".format(seg_prefix, i) return segs # merge segments - this allows to have more than one segment per # "monomer" alignment segments_1 = _modify_segments(kwargs["first_segments"], "A") segments_2 = _modify_segments(kwargs["second_segments"], "B") segments_complex = segments_1 + segments_2 outcfg["segments"] = [s.to_list() for s in segments_complex] return outcfg def _run_describe_concatenation(outcfg, **kwargs): """ calculate some basic statistics on the concatenated alignment """ prefix = kwargs["prefix"] outcfg["concatentation_statistics_file"] = prefix + "_concatenation_statistics.csv" describe_concatenation( kwargs["first_annotation_file"], kwargs["second_annotation_file"], kwargs["first_genome_location_file"], kwargs["second_genome_location_file"], outcfg["concatentation_statistics_file"] ) return outcfg def describe_concatenation(annotation_file_1, annotation_file_2, genome_location_filename_1, genome_location_filename_2, outfile): """ Describes properties of concatenated alignment. Writes a csv with the following columns num_seqs_1 : number of sequences in the first monomer alignment num_seqs_2 : number of sequences in the second monomer alignment num_nonred_species_1 : number of unique species annotations in the first monomer alignment num_nonred_species_2 : number of unique species annotations in the second monomer alignment num_species_overlap: number of unique species found in both alignments median_num_per_species_1 : median number of paralogs per species in the first monomer alignmment median_num_per_species_2 : median number of paralogs per species in the second monomer alignment num_with_embl_cds_1 : number of IDs for which we found an EMBL CDS in the first monomer alignment (relevant to distance concatention only) num_with_embl_cds_2 : number of IDs for which we found an EMBL CDS in the first monomer alignment (relevant to distance concatention only) Parameters ---------- annotation_file_1 : str Path to annotation.csv file for first monomer alignment annotation_file_2 : str Path to annotation.csv file for second monomer alignment genome_location_filename_1 : str Path to genome location mapping file for first alignment genome_location_filename_2 : str Path to genome location mapping file for second alignment outfile: str Path to output file """ # load the annotations for each alignment # as a pd.DataFrame annotations_1 = read_species_annotation_table( annotation_file_1 ) species_1 = annotations_1.species.values annotations_2 = read_species_annotation_table( annotation_file_2 ) species_2 = annotations_2.species.values # calculate the number of sequences found in each alignment num_seqs_1 = len(annotations_1) num_seqs_2 = len(annotations_2) # calculate the number of species found in each alignment # where a species is defined as a unique OS or Tax annotation field nonredundant_annotations_1 = len(set(species_1)) nonredundant_annotations_2 = len(set(species_2)) # calculate the number of overlapping species species_overlap = list( set(species_1).intersection(set(species_2)) ) n_species_overlap = len(species_overlap) # calculate the median number of paralogs per species n_paralogs_1 = float( # counts the number of times each species occurs in the list # then takes the median np.median(list(Counter(species_1).values())) ) n_paralogs_2 = float( np.median(list(Counter(species_2).values())) ) # If the user provided genome location files, calculate the number # of ids for which we found an embl CDS. Default value is np.nan embl_cds1 = np.nan embl_cds2 = np.nan if (genome_location_filename_1 is not None and genome_location_filename_2 is not None): genome_location_table_1 = pd.read_csv(genome_location_filename_1) genome_location_table_2 = pd.read_csv(genome_location_filename_2) # Number uniprot IDs with EMBL CDS that is not NA if "uniprot_ac" in genome_location_table_1.columns: embl_cds1 = len(list(set(genome_location_table_1.uniprot_ac))) if "uniprot_ac" in genome_location_table_2.columns: embl_cds2 = len(list(set(genome_location_table_2.uniprot_ac))) concatenation_data = [ num_seqs_1, num_seqs_2, nonredundant_annotations_1, nonredundant_annotations_2, n_species_overlap, n_paralogs_1, n_paralogs_2, embl_cds1, embl_cds2, ] cols = [ "num_seqs_1", "num_seqs_2", "num_nonred_species_1", "num_nonred_species_2", "num_species_overlap", "median_num_per_species_1", "median_num_per_species_2", "num_with_embl_cds_1", "num_with_embl_cds_2", ] # create dataframe and store data_df = pd.DataFrame( [concatenation_data], columns=cols ) data_df.to_csv(outfile) def genome_distance(**kwargs): """ Protocol: Concatenate alignments based on genomic distance Parameters ---------- Mandatory kwargs arguments: See list below in code where calling check_required Returns ------- outcfg : dict Output configuration of the pipeline, including the following fields: * alignment_file * raw_alignment_file * focus_mode * focus_sequence * segments * frequencies_file * identities_file * num_sequences * num_sites * raw_focus_alignment_file * statistics_file """ check_required( kwargs, [ "prefix", "first_alignment_file", "second_alignment_file", "first_focus_sequence", "second_focus_sequence", "first_focus_mode", "second_focus_mode", "first_region_start", "second_region_start", "first_segments", "second_segments", "genome_distance_threshold", "first_genome_location_file", "second_genome_location_file", "first_annotation_file", "second_annotation_file" ] ) prefix = kwargs["prefix"] # make sure input alignments exist verify_resources( "Input alignment does not exist", kwargs["first_alignment_file"], kwargs["second_alignment_file"] ) verify_resources( "Genome location file does not exist", kwargs["first_genome_location_file"], kwargs["second_genome_location_file"] ) # make sure output directory exists create_prefix_folders(prefix) # load the information for each monomer alignment alignment_1 = kwargs["first_alignment_file"] alignment_2 = kwargs["second_alignment_file"] genome_location_filename_1 = kwargs["first_genome_location_file"] genome_location_filename_2 = kwargs["second_genome_location_file"] gene_location_table_1 = pd.read_csv(genome_location_filename_1, header=0) gene_location_table_2 = pd.read_csv(genome_location_filename_2, header=0) # find all possible matches possible_partners = find_possible_partners( gene_location_table_1, gene_location_table_2 ) # find the best reciprocal matches id_pairing_unfiltered = best_reciprocal_matching(possible_partners) # filter best reciprocal matches by genome distance threshold if kwargs["genome_distance_threshold"]: distance_threshold = kwargs["genome_distance_threshold"] id_pairing = id_pairing_unfiltered.query("distance < @distance_threshold") else: id_pairing = id_pairing_unfiltered id_pairing.loc[:, "id_1"] = id_pairing.loc[:, "uniprot_id_1"] id_pairing.loc[:, "id_2"] = id_pairing.loc[:, "uniprot_id_2"] # write concatenated alignment with distance filtering # TODO: save monomer alignments? target_seq_id, target_seq_index, raw_ali, mon_ali_1, mon_ali_2 = \ write_concatenated_alignment( id_pairing, alignment_1, alignment_2, kwargs["first_focus_sequence"], kwargs["second_focus_sequence"] ) # save the alignment files raw_alignment_file = prefix + "_raw.fasta" with open(raw_alignment_file, "w") as of: raw_ali.write(of) mon_alignment_file_1 = prefix + "_monomer_1.fasta" with open(mon_alignment_file_1, "w") as of: mon_ali_1.write(of) mon_alignment_file_2 = prefix + "_monomer_2.fasta" with open(mon_alignment_file_2, "w") as of: mon_ali_2.write(of) # filter the alignment aln_outcfg, _ = modify_alignment( raw_ali, target_seq_index, target_seq_id, kwargs["first_region_start"], **kwargs ) # make sure we return all the necessary information: # * alignment_file: final concatenated alignment that will go into plmc # * focus_sequence: this is the identifier of the concatenated target # sequence which will be passed into plmc with -f outcfg = aln_outcfg outcfg["raw_alignment_file"] = raw_alignment_file outcfg["first_concatenated_monomer_alignment_file"] = mon_alignment_file_1 outcfg["second_concatenated_monomer_alignment_file"] = mon_alignment_file_2 outcfg["focus_sequence"] = target_seq_id # Update the segments outcfg = modify_complex_segments(outcfg, **kwargs) # Describe the statistics of the concatenation outcfg = _run_describe_concatenation(outcfg, **kwargs) # plot the genome distance distribution outcfg["distance_plot_file"] = prefix + "_distplot.pdf" plot_distance_distribution(id_pairing_unfiltered, outcfg["distance_plot_file"]) return outcfg def best_hit(**kwargs): """ Protocol: Concatenate alignments based on the best hit to the focus sequence in each species Parameters ---------- Mandatory kwargs arguments: See list below in code where calling check_required Returns ------- outcfg : dict Output configuration of the pipeline, including the following fields: alignment_file raw_alignment_file focus_mode focus_sequence segments frequencies_file identities_file num_sequences num_sites raw_focus_alignment_file statistics_file """ check_required( kwargs, [ "prefix", "first_alignment_file", "second_alignment_file", "first_focus_sequence", "second_focus_sequence", "first_focus_mode", "second_focus_mode", "first_segments", "second_segments", "first_identities_file", "second_identities_file", "first_annotation_file", "second_annotation_file", "use_best_reciprocal", "paralog_identity_threshold" ] ) prefix = kwargs["prefix"] # make sure input alignments verify_resources( "Input alignment does not exist", kwargs["first_alignment_file"], kwargs["second_alignment_file"] ) # make sure output directory exists create_prefix_folders(prefix) def _load_monomer_info(annotations_file, identities_file, target_sequence, alignment_file, use_best_reciprocal, identity_threshold): # read in annotation to a file and rename the appropriate column annotation_table = read_species_annotation_table(annotations_file) # read identity file similarities = pd.read_csv(identities_file) # create a pd.DataFrame containing the best hit in each organism most_similar_in_species = most_similar_by_organism(similarities, annotation_table) if use_best_reciprocal: paralogs = find_paralogs( target_sequence, annotation_table, similarities, identity_threshold ) most_similar_in_species = filter_best_reciprocal( alignment_file, paralogs, most_similar_in_species ) return most_similar_in_species # load the information about each monomer alignment most_similar_in_species_1 = _load_monomer_info( kwargs["first_annotation_file"], kwargs["first_identities_file"], kwargs["first_focus_sequence"], kwargs["first_alignment_file"], kwargs["use_best_reciprocal"], kwargs["paralog_identity_threshold"] ) most_similar_in_species_2 = _load_monomer_info( kwargs["second_annotation_file"], kwargs["second_identities_file"], kwargs["second_focus_sequence"], kwargs["second_alignment_file"], kwargs["use_best_reciprocal"], kwargs["paralog_identity_threshold"] ) # merge the two dataframes to get all species found in # both alignments species_intersection = most_similar_in_species_1.merge( most_similar_in_species_2, how="inner", # takes the intersection on="species", # merges on species identifiers suffixes=("_1", "_2") ) # write concatenated alignment with distance filtering # TODO: save monomer alignments? target_seq_id, target_seq_index, raw_ali, mon_ali_1, mon_ali_2 = \ write_concatenated_alignment( species_intersection, kwargs["first_alignment_file"], kwargs["second_alignment_file"], kwargs["first_focus_sequence"], kwargs["second_focus_sequence"] ) # save the alignment files raw_alignment_file = prefix + "_raw.fasta" with open(raw_alignment_file, "w") as of: raw_ali.write(of) mon_alignment_file_1 = prefix + "_monomer_1.fasta" with open(mon_alignment_file_1, "w") as of: mon_ali_1.write(of) mon_alignment_file_2 = prefix + "_monomer_2.fasta" with open(mon_alignment_file_2, "w") as of: mon_ali_2.write(of) aln_outcfg, _ = modify_alignment( raw_ali, target_seq_index, target_seq_id, kwargs["first_region_start"], **kwargs ) # make sure we return all the necessary information: # * alignment_file: final concatenated alignment that will go into plmc # * focus_sequence: this is the identifier of the concatenated target # sequence which will be passed into plmc with -f outcfg = aln_outcfg outcfg["raw_alignment_file"] = raw_alignment_file outcfg["first_concatenated_monomer_alignment_file"] = mon_alignment_file_1 outcfg["second_concatenated_monomer_alignment_file"] = mon_alignment_file_2 outcfg["focus_sequence"] = target_seq_id # Update the segments outcfg = modify_complex_segments(outcfg, **kwargs) # Describe the statistics of the concatenation outcfg = _run_describe_concatenation(outcfg, **kwargs) return outcfg # list of available EC inference protocols PROTOCOLS = { # concatenate based on genomic distance ("operon-based") "genome_distance": genome_distance, # concatenate based on best hit per genome ("species") "best_hit": best_hit } def run(**kwargs): """ Run alignment concatenation protocol Parameters ---------- Mandatory kwargs arguments: protocol: concatenation protocol to run prefix: Output prefix for all generated files Returns ------- outcfg : dict Output configuration of concatenation stage Dictionary with results in following fields: (in brackets: not mandatory) alignment_file raw_alignment_file focus_mode focus_sequence segments frequencies_file identities_file num_sequences num_sites raw_focus_alignment_file statistics_file """ check_required(kwargs, ["protocol"]) if kwargs["protocol"] not in PROTOCOLS: raise InvalidParameterError( "Invalid protocol selection: " + "{}. Valid protocols are: {}".format( kwargs["protocol"], ", ".join(PROTOCOLS.keys()) ) ) return PROTOCOLS[kwargs["protocol"]](**kwargs)
floweaver/layered_graph.py
guest-cc/floweaver
342
12741848
<filename>floweaver/layered_graph.py import networkx as nx from .sankey_definition import Ordering class LayeredMixin(object): def __init__(self): super().__init__() self.ordering = Ordering([]) def copy(self): new = super().copy() new.ordering = self.ordering return new def remove_node(self, u): super().remove_node(u) self.ordering = self.ordering.remove(u) def get_node(self, u): """Get the ProcessGroup or Waypoint associated with `u`""" return self.nodes[u]['node'] class LayeredGraph(LayeredMixin, nx.DiGraph): pass class MultiLayeredGraph(LayeredMixin, nx.MultiDiGraph): pass
jobs/jobs/spiders/zhihu.py
xfsd521/crawler
141
12741881
# -*- coding: utf-8 -*- import scrapy import json class ZhihuSpider(scrapy.Spider): name = 'zhihu' allowed_domains = ['www.zhihu.com'] start_urls = ['https://www.zhihu.com/'] loginUrl = 'https://www.zhihu.com/#signin' siginUrl = 'https://www.zhihu.com/login/email' feedUrl = 'https://www.zhihu.com/api/v3/feed/topstory' nextFeedUrl = '' curFeedId = 0 custom_settings = { "COOKIES_ENABLED": True, } headers = { 'Host': 'www.zhihu.com', 'Connection': 'keep-alive', 'Origin': 'https://www.zhihu.com', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36', 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'X-Requested-With': 'XMLHttpRequest', 'DNT': 1, 'Referer': 'https://www.zhihu.com/', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.8,en;q=0.6', 'Upgrade-Insecure-Requests:': 1, } cookies = { 'd_c0': '"AHCAtu1iqAmPTped76X1ZdN0X_qAwhjdLUU=|1458699045"', '__utma': '51854390.1407411155.1458699046.1458699046.1458699046.1', '__utmv': '51854390.000--|3=entry_date=20160322=1', '_zap': '850897bb-cba4-4d0b-8653-fd65e7578ac2', 'q_c1': 'b7918ff9a5514d2981c30050c8c732e1|1502937247000|1491446589000', 'aliyungf_tc': 'AQAAACtKLW+lywEAOhSntJwFFTilwpwt', '_xsrf': 'f3ab08fc68489f44ae77236555367c70', 'r_cap_id': '"M2NjNDAwNTZmY2ExNDA3NzgzNjZkZDA1ODNjZWJkNjI=|1503458111|36984ab33f21997b742d97ace2e02043cbb0a76e"', 'cap_id': '"ZTIxMmM5Yzg1MGJkNDcxNjgxYzZjMjNlYTg3OGE0Yzk=|1503457914|8dce8550bca28e427771a0e7e1fe1bafb6e170f6"', } def start_requests(self): return [ scrapy.http.FormRequest( self.loginUrl, headers=self.headers, cookies=self.cookies, meta={'cookiejar': 1}, callback=self.post_login) ] def post_login(self, response): xsrf = response.css( 'div.view-signin > form > input[name=_xsrf]::attr(value)' ).extract_first() self.headers['X-Xsrftoken'] = xsrf return [ scrapy.http.FormRequest( self.siginUrl, method='POST', headers=self.headers, meta={'cookiejar': response.meta['cookiejar']}, formdata={ '_xsrf': xsrf, 'captcha_type': 'cn', 'email': '<EMAIL>', 'password': '<PASSWORD>', }, callback=self.after_login) ] def after_login(self, response): jdict = json.loads(response.body) print('after_login', jdict) if jdict['r'] == 0: z_c0 = response.headers.getlist('Set-Cookie')[2].split(';')[ 0].split('=')[1] self.headers['authorization'] = 'Bearer ' + z_c0 return scrapy.http.FormRequest( url=self.feedUrl, method='GET', meta={'cookiejar': response.meta['cookiejar']}, headers=self.headers, formdata={ 'action_feed': 'True', 'limit': '10', 'action': 'down', 'after_id': str(self.curFeedId), 'desktop': 'true' }, callback=self.parse) else: print(jdict['error']) def parse(self, response): with open('zhihu.json', 'a') as fd: fd.write(response.body) jdict = json.loads(response.body) jdatas = jdict['data'] for entry in jdatas: entry['pid'] = entry['id'] yield entry jpaging = jdict['paging'] self.curFeedId += len(jdatas) if jpaging['is_end'] == False and self.curFeedId < 50: self.nextFeedUrl = jpaging['next'] yield self.next_request(response) def next_request(self, response): return scrapy.http.FormRequest( url=self.nextFeedUrl, method='GET', meta={'cookiejar': response.meta['cookiejar']}, headers=self.headers, callback=self.parse)
software/glasgow/applet/memory/floppy/mfm.py
electroniceel/Glasgow
1,014
12741887
import logging __all__ = ["SoftwareMFMDecoder"] class SoftwareMFMDecoder: def __init__(self, logger): self._logger = logger self._lock_time = 0 self._bit_time = 0 def _log(self, message, *args): self._logger.log(logging.DEBUG, "soft-MFM: " + message, *args) def edges(self, bytestream): edge_len = 0 for byte in bytestream: edge_len += 1 + byte if byte == 0xfd: continue yield edge_len edge_len = 0 def bits(self, bytestream): prev_byte = 0 for curr_byte in bytestream: if prev_byte != 0xfd: yield 1 for _ in range(curr_byte): yield 0 prev_byte = curr_byte def domains(self, bitstream): polarity = 1 for has_edge in bitstream: if has_edge: polarity *= -1 yield polarity def lock(self, bitstream, *, debug=False, nco_init_period=0, nco_min_period=16, nco_max_period=256, nco_frac_bits=8, pll_kp_exp=2, pll_gph_exp=1): nco_period = nco_init_period << nco_frac_bits nco_phase = 0 nco_step = 1 << nco_frac_bits nco_clock = 0 pll_error = 0 pll_feedbk = 0 bit_curr = 0 for has_edge in bitstream: if nco_period < nco_min_period << nco_frac_bits: nco_period = nco_min_period << nco_frac_bits if nco_period >= nco_max_period << nco_frac_bits: nco_period = nco_max_period << nco_frac_bits if has_edge: bit_curr = 1 pll_error = nco_phase - (nco_period >> 1) pll_p_term = abs(pll_error) >> pll_kp_exp pll_gain = max(1 << pll_gph_exp, pll_p_term) if pll_error < 0: pll_feedbk = +1 * pll_gain else: pll_feedbk = -1 * pll_gain if nco_phase >= nco_period: nco_phase = 0 if not debug: yield bit_curr bit_curr = 0 else: nco_phase += nco_step + pll_feedbk nco_period -= pll_feedbk >> pll_gph_exp pll_feedbk = 0 if debug: yield (nco_phase / nco_step, nco_period / nco_step, pll_error / nco_step) def demodulate(self, chipstream): shreg = [] offset = 0 synced = False prev = 0 bits = [] while True: while len(shreg) < 64: try: shreg.append(next(chipstream)) except StopIteration: return synced_now = False for sync_offset in (0, 1): if shreg[sync_offset:sync_offset + 16] == [0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1]: if not synced or sync_offset != 0: self._log("sync=K.A1 chip-off=%d", offset + sync_offset) offset += sync_offset + 16 shreg = shreg[sync_offset + 16:] synced = True prev = 1 bits = [] yield (1, 0xA1) synced_now = True if synced_now: break if synced_now: continue elif not synced and len(shreg) >= 1: offset += 1 shreg = shreg[1:] if synced and len(shreg) >= 2: if shreg[0:2] == [0,1]: curr = 1 elif prev == 1 and shreg[0:2] == [0,0]: curr = 0 elif prev == 0 and shreg[0:2] == [1,0]: curr = 0 else: synced = False self._log("desync chip-off=%d bitno=%d prev=%d cell=%d%d", offset, len(bits), prev, *shreg[0:2]) if synced: offset += 2 shreg = shreg[2:] prev = curr bits.append(curr) if len(bits) == 8: yield (0, sum(bit << (7 - n) for n, bit in enumerate(bits))) bits = []
src/examples/voice/assistant_library_demo.py
SanchitMisal/aiyprojects-raspbian
1,610
12741892
<reponame>SanchitMisal/aiyprojects-raspbian #!/usr/bin/env python3 # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Activates the Google Assistant with hotword detection, using the Google Assistant Library. The Google Assistant Library has direct access to the audio API, so this Python code doesn't need to record audio. .. note: This example depends on hotword detection (such as "Okay Google") to activate the Google Assistant, which is supported only with Raspberry Pi 2/3. If you're using a Pi Zero, this code won't work. Instead, you must use the button or another type of trigger, as shown in assistant_library_with_button_demo.py. """ import logging import platform import sys from google.assistant.library.event import EventType from aiy.assistant import auth_helpers from aiy.assistant.library import Assistant from aiy.board import Board, Led def process_event(led, event): logging.info(event) if event.type == EventType.ON_START_FINISHED: led.state = Led.BEACON_DARK # Ready. logging.info('Say "OK, Google" then speak, or press Ctrl+C to quit...') elif event.type == EventType.ON_CONVERSATION_TURN_STARTED: led.state = Led.ON # Listening. elif event.type == EventType.ON_END_OF_UTTERANCE: led.state = Led.PULSE_QUICK # Thinking. elif (event.type == EventType.ON_CONVERSATION_TURN_FINISHED or event.type == EventType.ON_CONVERSATION_TURN_TIMEOUT or event.type == EventType.ON_NO_RESPONSE): led.state = Led.BEACON_DARK elif event.type == EventType.ON_ASSISTANT_ERROR and event.args and event.args['is_fatal']: sys.exit(1) def main(): logging.basicConfig(level=logging.INFO) credentials = auth_helpers.get_assistant_credentials() with Board() as board, Assistant(credentials) as assistant: for event in assistant.start(): process_event(board.led, event) if __name__ == '__main__': main()
env/lib/python3.8/site-packages/plotly/validators/layout/template/data/_scattermapbox.py
acrucetta/Chicago_COVI_WebApp
11,750
12741917
<gh_stars>1000+ import _plotly_utils.basevalidators class ScattermapboxValidator(_plotly_utils.basevalidators.CompoundArrayValidator): def __init__( self, plotly_name="scattermapbox", parent_name="layout.template.data", **kwargs ): super(ScattermapboxValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Scattermapbox"), data_docs=kwargs.pop( "data_docs", """ """, ), **kwargs )
webapp/tests/test_dashboard.py
romanek-adam/graphite-web
4,281
12741925
<filename>webapp/tests/test_dashboard.py import copy import errno import mock import os from . import TEST_CONF_DIR from django.conf import settings try: from django.urls import reverse except ImportError: # Django < 1.10 from django.core.urlresolvers import reverse from django.http import HttpResponse from .base import TestCase from django.test.utils import override_settings from graphite.util import json try: from django.contrib.auth import get_user_model User = get_user_model() except ImportError: from django.contrib.auth.models import User class DashboardTest(TestCase): # Set config to the test config file settings.DASHBOARD_CONF = os.path.join(TEST_CONF_DIR, 'dashboard.conf') # Define a testtemplate testtemplate = {"state": '{"graphs": [[ "target=a.b.c.*.__VALUE__.d", { "from":"-2days", "target":[ "a.b.c.*.__VALUE__.d" ], "until":"now" }, "/render?width=400&from=-2days&until=now&height=250&target=a.b.c.*.__VALUE__.d&_uniq=0.6526056618895382&title=a.b.c.*.__VALUE__.d" ]]}'} @override_settings(DASHBOARD_CONF=os.path.join(TEST_CONF_DIR, 'dashboard.conf.missing')) def test_dashboard_missing_conf(self): url = reverse('dashboard') response = self.client.get(url) self.assertEqual(response.status_code, 200) @override_settings(DASHBOARD_CONF=os.path.join(TEST_CONF_DIR, 'dashboard.conf.missing')) def test_dashboard_template_missing_template(self): url = reverse('dashboard_template', args=['bogustemplate', 'testkey']) response = self.client.get(url) self.assertEqual(response.status_code, 200) @mock.patch('graphite.dashboard.views.DashboardConfig.check') def test_dashboard_conf_read_failure(self, check): check.side_effect = OSError(errno.EPERM, 'Operation not permitted') url = reverse('dashboard') with self.assertRaises(Exception): _ = self.client.get(url) @mock.patch('graphite.dashboard.views.DashboardConfig.check') def test_dashboard_template_conf_read_failure(self, check): check.side_effect = OSError(errno.EPERM, 'Operation not permitted') url = reverse('dashboard_template', args=['bogustemplate', 'testkey']) with self.assertRaises(Exception): _ = self.client.get(url) @override_settings(DASHBOARD_CONF=os.path.join(TEST_CONF_DIR, 'dashboard.conf.missing_ui')) def test_dashboard_conf_missing_ui(self): url = reverse('dashboard') response = self.client.get(url) self.assertEqual(response.status_code, 200) @override_settings(DASHBOARD_CONF=os.path.join(TEST_CONF_DIR, 'dashboard.conf.missing_ui')) def test_dashboard_template_missing_ui(self): url = reverse('dashboard_template', args=['bogustemplate', 'testkey']) response = self.client.get(url) self.assertEqual(response.status_code, 200) @override_settings(DASHBOARD_CONF=os.path.join(TEST_CONF_DIR, 'dashboard.conf.missing_keyboard-shortcuts')) def test_dashboard_conf_missing_keyboard_shortcuts(self): url = reverse('dashboard') response = self.client.get(url) self.assertEqual(response.status_code, 200) @override_settings(DASHBOARD_CONF=os.path.join(TEST_CONF_DIR, 'dashboard.conf.missing_keyboard-shortcuts')) def test_dashboard_template_missing_keyboard_shortcuts(self): url = reverse('dashboard_template', args=['bogustemplate', 'testkey']) response = self.client.get(url) self.assertEqual(response.status_code, 200) @override_settings(DASHBOARD_CONF=os.path.join(TEST_CONF_DIR, 'dashboard.conf.invalid_theme')) def test_dashboard_conf_invalid_theme(self): url = reverse('dashboard') response = self.client.get(url) self.assertEqual(response.status_code, 200) @override_settings(DASHBOARD_CONF=os.path.join(TEST_CONF_DIR, 'dashboard.conf.invalid_theme')) def test_dashboard_template_invalid_theme(self): url = reverse('dashboard_template', args=['bogustemplate', 'testkey']) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_dashboard(self): url = reverse('dashboard') response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_dashboard_no_user(self): url = reverse('dashboard') request = {"user": '', "state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) def test_dashboard_pass_valid(self): url = reverse('dashboard_save', args=['testdashboard']) request = {"state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard', args=['testdashboard']) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_dashboard_pass_invalid_name(self): url = reverse('dashboard', args=['bogusdashboard']) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_dashboard_find_empty(self): url = reverse('dashboard_find') request = {"query": ""} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"dashboards": []}') def test_dashboard_save_empty(self): url = reverse('dashboard_save', args=['testdashboard']) request = {"state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) def test_dashboard_save_overwrite(self): url = reverse('dashboard_save', args=['testdashboard']) request = {"state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) def test_dashboard_find_existing(self): url = reverse('dashboard_save', args=['testdashboard']) request = {"state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_find') request = {"query": "test"} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"dashboards": [{"name": "testdashboard"}]}') def test_dashboard_find_not_existing(self): url = reverse('dashboard_save', args=['testdashboard']) request = {"state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_find') request = {"query": "not here"} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"dashboards": []}') def test_dashboard_load_not_existing(self): url = reverse('dashboard_load', args=['bogusdashboard']) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"error": "Dashboard \'bogusdashboard\' does not exist. "}') def test_dashboard_load_existing(self): url = reverse('dashboard_save', args=['testdashboard']) request = {"state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_load', args=['testdashboard']) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"state": {}}') def test_dashboard_delete_nonexisting(self): url = reverse('dashboard_delete', args=['bogusdashboard']) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"error": "Dashboard \'bogusdashboard\' does not exist. "}') def test_dashboard_delete_existing(self): # Create a dashboard entry url = reverse('dashboard_save', args=['testdashboard']) request = {"state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) # Delete it url = reverse('dashboard_delete', args=['testdashboard']) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"success": true}') # Confirm it was deleted url = reverse('dashboard_find') request = {"query": ""} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"dashboards": []}') def test_dashboard_create_temporary(self): url = reverse('dashboard_create_temporary') request = {"state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"name": "temporary-0"}') response = self.client.post(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"name": "temporary-1"}') url = reverse('dashboard_find') request = {"query": ""} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"dashboards": []}') def test_dashboard_template_pass_invalid(self): url = reverse('dashboard_template', args=['bogustemplate', 'testkey']) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_dashboard_template_pass_valid(self): url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_template', args=['testtemplate', 'testkey']) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_dashboard_find_template_empty(self): url = reverse('dashboard_find_template') request = {"query": ""} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"templates": []}') def test_dashboard_save_template(self): url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) # Save again after it now exists def test_dashboard_save_template_overwrite(self): url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) def test_dashboard_find_template(self): url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_find_template') request = {"query": "test"} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"templates": [{"name": "testtemplate"}]}') def test_dashboard_find_template_nonexistent(self): url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_find_template') request = {"query": "not here"} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"templates": []}') def test_dashboard_load_template_nonexistent(self): url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_load_template', args=['bogustemplate', 'testkey']) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"error": "Template \'bogustemplate\' does not exist. "}') def test_dashboard_load_template_existing(self): url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_load_template', args=['testtemplate', 'testkey']) response = self.client.get(url) self.assertEqual(response.status_code, 200) data = json.loads(response.content) graph_data = json.loads(self.testtemplate["state"].replace('__VALUE__', 'testkey')) self.assertEqual(data, json.loads('{"state": {"name": "testtemplate/testkey", "graphs": ' + json.dumps(graph_data['graphs']) + '}}')) def test_dashboard_delete_template_nonexisting(self): # Delete nonexistent template url = reverse('dashboard_delete_template', args=['bogustemplate']) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"error": "Template \'bogustemplate\' does not exist. "}') def test_dashboard_delete_template_existing(self): url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) url = reverse('dashboard_delete_template', args=['testtemplate']) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"success": true}') url = reverse('dashboard_find_template') request = {"query": ""} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"templates": []}') def test_dashboard_help(self): url = reverse('dashboard_help') request = {} response = self.client.get(url, request) self.assertEqual(response.status_code, 200) def test_dashboard_email(self): url = reverse('dashboard_email') request = {"sender": "<EMAIL>", "recipients": "noreply@localhost", "subject": "Test email", "message": "Here is the test graph", "graph_params": '{"target":["sumSeries(a.b.c.d)"],"title":"Test","width":"500","from":"-55minutes","until":"now","height":"400"}'} response = self.client.post(url, request) self.assertEqual(response.content, b'{"success": true}') @mock.patch('graphite.dashboard.views.renderView') def test_dashboard_email_mock_renderView(self, rv): url = reverse('dashboard_email') request = {"sender": "nore<EMAIL>", "recipients": "nore<EMAIL>", "subject": "Test email", "message": "Here is the test graph", "graph_params": '{"target":["sumSeries(a.b.c.d)"],"title":"Test","width":"500","from":"-55minutes","until":"now","height":"400"}'} responseObject = HttpResponse() responseObject.content = '' rv.return_value = responseObject response = self.client.post(url, request) self.assertEqual(response.content, b'{"success": true}') def test_dashboard_login_invalid_authenticate(self): url = reverse('dashboard_login') request = {"username": "testuser", "password": "<PASSWORD>"} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(json.loads(response.content), json.loads('{"errors": {"reason": "Username and/or password invalid."}, "success": false, "text": {}, "permissions": []}')) @mock.patch('graphite.dashboard.views.authenticate') def test_dashboard_login_valid_authenticate(self, authenticate): url = reverse('dashboard_login') request = {"username": "testuser", "password": "<PASSWORD>"} user = User.objects.create(email='<EMAIL>') user.backend = '' authenticate.return_value = user response = self.client.post(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(json.loads(response.content), json.loads('{"permissions": ["change", "delete"], "success": true, "text": {}, "errors": {}}')) @mock.patch('graphite.dashboard.views.authenticate') def test_dashboard_login_valid_authenticate_not_active(self, authenticate): url = reverse('dashboard_login') request = {"username": "testuser", "password": "<PASSWORD>"} user = User.objects.create(email='<EMAIL>') user.backend = '' user.is_active = False authenticate.return_value = user response = self.client.post(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(json.loads(response.content), json.loads('{"permissions": [], "success": false, "errors": {"reason": "Account disabled."}, "text": {}}')) def test_dashboard_logout(self): url = reverse('dashboard_logout') request = {"username": "testuser"} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(json.loads(response.content), json.loads('{"errors": {}, "success": true, "text": {}}')) @mock.patch('graphite.dashboard.views.getPermissions') def test_dashboard_save_no_permissions(self, gp): gp.return_value = [None] url = reverse('dashboard_save', args=['testdashboard']) request = {"state": '{}'} response = self.client.post(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"error": "Must be logged in with appropriate permissions to save"}') @mock.patch('graphite.dashboard.views.getPermissions') def test_dashboard_delete_no_permissions(self, gp): gp.return_value = [None] url = reverse('dashboard_delete', args=['testdashboard']) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"error": "Must be logged in with appropriate permissions to delete"}') @mock.patch('graphite.dashboard.views.getPermissions') def test_dashboard_save_template_no_permissions(self, gp): gp.return_value = [None] url = reverse('dashboard_save_template', args=['testtemplate', 'testkey']) request = copy.deepcopy(self.testtemplate) response = self.client.post(url, request) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"error": "Must be logged in with appropriate permissions to save the template"}') @mock.patch('graphite.dashboard.views.getPermissions') def test_dashboard_delete_template_no_permissions(self, gp): gp.return_value = [None] url = reverse('dashboard_delete_template', args=['testtemplate']) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'{"error": "Must be logged in with appropriate permissions to delete the template"}') def test_getPermissions_no_user(self): settings.DASHBOARD_REQUIRE_AUTHENTICATION=False settings.DASHBOARD_REQUIRE_PERMISSIONS=False settings.DASHBOARD_REQUIRE_EDIT_GROUP=False from graphite.dashboard.views import getPermissions self.assertEqual(getPermissions(False), ['change', 'delete']) def test_getPermissions_no_user_require_auth(self): settings.DASHBOARD_REQUIRE_AUTHENTICATION=True settings.DASHBOARD_REQUIRE_PERMISSIONS=False settings.DASHBOARD_REQUIRE_EDIT_GROUP=False from graphite.dashboard.views import getPermissions self.assertEqual(getPermissions(False), []) def test_getPermissions_valid_user(self): settings.DASHBOARD_REQUIRE_AUTHENTICATION=True settings.DASHBOARD_REQUIRE_PERMISSIONS=False settings.DASHBOARD_REQUIRE_EDIT_GROUP=False from graphite.dashboard.views import getPermissions user = User.objects.create(email='<EMAIL>') user.backend = '' self.assertEqual(getPermissions(user), ['change', 'delete']) def test_getPermissions_valid_user_require_perm(self): settings.DASHBOARD_REQUIRE_AUTHENTICATION=True settings.DASHBOARD_REQUIRE_PERMISSIONS=True settings.DASHBOARD_REQUIRE_EDIT_GROUP=False from graphite.dashboard.views import getPermissions user = User.objects.create(email='<EMAIL>') user.backend = '' self.assertEqual(getPermissions(user), []) def test_getPermissions_valid_user_edit_group(self): settings.DASHBOARD_REQUIRE_AUTHENTICATION=True settings.DASHBOARD_REQUIRE_PERMISSIONS=False settings.DASHBOARD_REQUIRE_EDIT_GROUP=True from graphite.dashboard.views import getPermissions user = User.objects.create(email='<EMAIL>') user.backend = '' self.assertEqual(getPermissions(user), []) def test_getPermissions_valid_user_require_perms_edit_group(self): settings.DASHBOARD_REQUIRE_AUTHENTICATION=True settings.DASHBOARD_REQUIRE_PERMISSIONS=True settings.DASHBOARD_REQUIRE_EDIT_GROUP=True from graphite.dashboard.views import getPermissions user = User.objects.create(email='<EMAIL>') user.backend = '' self.assertEqual(getPermissions(user), [])
aws_ir/libs/connection.py
jeffb4/aws_ir
308
12741934
import boto3 import logging logger = logging.getLogger(__name__) class Connection(object): def __init__(self, type, service=None, region='us-west-2', profile='default'): self.region = region self.connection_type = type self.service = service self.client = None self.resource = None self.profile = profile try: boto3.setup_default_session(profile_name=self.profile) except Exception as e: logger.info("Problem setting default boto3 session: {}".format(e)) def connect(self): if self.connection_type is None: raise AttributeError( "Could not determine connect type. Set client or resource." ) elif self.connection_type == "client": client = boto3.client( self.service, region_name=self.region ) self.client = client return self.client elif self.connection_type == "resource": resource = boto3.resource( self.service, region_name=self.region ) self.resource = resource return self.resource elif self.connection_type == "session": try: session = boto3.Session( region_name=self.region, profile_name=self.profile ) logger.info( "Returning session for default profile." ) except Exception as e: logger.info( "We are likely running on AWS instance.: {}".format(e) ) session = boto3.Session( region_name=self.region ) return session else: raise AttributeError( "Connection type is not supported." )
Ryven/packages/auto_generated/asynchat/nodes.py
tfroehlich82/Ryven
2,872
12741938
<gh_stars>1000+ from NENV import * import asynchat class NodeBase(Node): pass class Find_Prefix_At_End_Node(NodeBase): """ """ title = 'find_prefix_at_end' type_ = 'asynchat' init_inputs = [ NodeInputBP(label='haystack'), NodeInputBP(label='needle'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, asynchat.find_prefix_at_end(self.input(0), self.input(1))) export_nodes( Find_Prefix_At_End_Node, )
generator.py
Nyrize/LipGAN
435
12741957
<gh_stars>100-1000 from keras.models import load_model import numpy as np from keras.optimizers import Adam from keras.models import Model from keras.layers import Dense, Conv2DTranspose, Conv2D, BatchNormalization, \ Activation, Concatenate, Input, MaxPool2D,\ UpSampling2D, ZeroPadding2D, Lambda, Add from keras.callbacks import ModelCheckpoint from keras import backend as K import keras import cv2 import os import librosa import scipy from keras.utils import plot_model import tensorflow as tf from keras.utils import multi_gpu_model from discriminator import contrastive_loss class ModelMGPU(Model): def __init__(self, ser_model, gpus): pmodel = multi_gpu_model(ser_model, gpus) self.__dict__.update(pmodel.__dict__) self._smodel = ser_model def __getattribute__(self, attrname): '''Override load and save methods to be used from the serial-model. The serial-model holds references to the weights in the multi-gpu model. ''' # return Model.__getattribute__(self, attrname) if 'load' in attrname or 'save' in attrname: return getattr(self._smodel, attrname) return super(ModelMGPU, self).__getattribute__(attrname) def conv_block(x, num_filters, kernel_size=3, strides=1, padding='same', act=True): x = Conv2D(filters=num_filters, kernel_size= kernel_size, strides=strides, padding=padding)(x) x = BatchNormalization(momentum=.8)(x) if act: x = Activation('relu')(x) return x def conv_t_block(x, num_filters, kernel_size=3, strides=2, padding='same'): x = Conv2DTranspose(filters=num_filters, kernel_size= kernel_size, strides=strides, padding=padding)(x) x = BatchNormalization(momentum=.8)(x) x = Activation('relu')(x) return x def create_model(args): ############# encoder for face/identity input_face = Input(shape=(args.img_size, args.img_size, 6), name="input_face") identity_mapping = conv_block(input_face, 32, kernel_size=11) # 96x96 x1_face = conv_block(identity_mapping, 64, kernel_size=7, strides=2) # 48x48 x2_face = conv_block(x1_face, 128, 5, 2) # 24x24 x3_face = conv_block(x2_face, 256, 3, 2) #12x12 x4_face = conv_block(x3_face, 512, 3, 2) #6x6 x5_face = conv_block(x4_face, 512, 3, 2) #3x3 x6_face = conv_block(x5_face, 512, 3, 1, padding='valid') x7_face = conv_block(x6_face, 256, 1, 1) ############# encoder for audio input_audio = Input(shape=(12,35,1), name="input_audio") x = conv_block(input_audio, 64) x = conv_block(input_audio, 128) x = ZeroPadding2D(((1,0),(0,0)))(x) x = conv_block(x, 256, strides=(1, 2)) x = conv_block(x, 256) x = conv_block(x, 256, strides=2) x = conv_block(x, 512, strides=2) x = conv_block(x, 512, (4, 5), 1, padding='valid') x = conv_block(x, 256, 1, 1) embedding = Concatenate(axis=3)([x7_face, x]) ############# decoder x = conv_block(embedding, 512, 1) x = conv_t_block(embedding, 512, 3, 3)# 3x3 x = Concatenate(axis=3) ([x5_face, x]) x = conv_t_block(x, 512) #6x6 x = Concatenate(axis=3) ([x4_face, x]) x = conv_t_block(x, 256) #12x12 x = Concatenate(axis=3) ([x3_face, x]) x = conv_t_block(x, 128) #24x24 x = Concatenate(axis=3) ([x2_face, x]) x = conv_t_block(x, 64) #48x48 x = Concatenate(axis=3) ([x1_face, x]) x = conv_t_block(x, 32) #96x96 x = Concatenate(axis=3) ([identity_mapping, x]) x = conv_block(x, 16) #96x96 x = conv_block(x, 16) #96x96 x = Conv2D(filters=3, kernel_size=1, strides=1, padding="same") (x) prediction = Activation("sigmoid", name="prediction")(x) model = Model(inputs=[input_face, input_audio], outputs=prediction) model.summary() ser_model = model if args.n_gpu > 1: parallel_model = ModelMGPU(ser_model , args.n_gpu) else: parallel_model = ser_model parallel_model.compile(loss='mae', optimizer=(Adam(lr=args.lr) if hasattr(args, 'lr') else 'adam')) return parallel_model, ser_model def create_model_residual(args): def residual_block(inp, num_filters): x = conv_block(inp, num_filters) x = conv_block(x, num_filters) x = Add()([x, inp]) x = Activation('relu') (x) return x ############# encoder for face/identity input_face = Input(shape=(args.img_size, args.img_size, 6), name="input_face") identity_mapping = conv_block(input_face, 32, kernel_size=7) # 96x96 x1_face = conv_block(identity_mapping, 64, kernel_size=5, strides=2) # 48x48 x1_face = residual_block(x1_face, 64) x1_face = residual_block(x1_face, 64) x2_face = conv_block(x1_face, 128, 3, 2) # 24x24 x2_face = residual_block(x2_face, 128) x2_face = residual_block(x2_face, 128) x2_face = residual_block(x2_face, 128) x3_face = conv_block(x2_face, 256, 3, 2) #12x12 x3_face = residual_block(x3_face, 256) x3_face = residual_block(x3_face, 256) x4_face = conv_block(x3_face, 512, 3, 2) #6x6 x4_face = residual_block(x4_face, 512) x4_face = residual_block(x4_face, 512) x5_face = conv_block(x4_face, 512, 3, 2) #3x3 x6_face = conv_block(x5_face, 512, 3, 1, padding='valid') x7_face = conv_block(x6_face, 512, 1, 1) ############# encoder for audio input_audio = Input(shape=(12,35,1), name="input_audio") x = conv_block(input_audio, 128) x = residual_block(x, 128) x = residual_block(x, 128) x = residual_block(x, 128) x = ZeroPadding2D(((1,0),(0,0)))(x) x = conv_block(x, 256, strides=(1, 2)) x = residual_block(x, 256) x = residual_block(x, 256) x = conv_block(x, 512, strides=2) x = residual_block(x, 512) x = residual_block(x, 512) x = conv_block(x, 512, strides=2) x = residual_block(x, 512) x = conv_block(x, 512, (4, 5), 1, padding='valid') x = conv_block(x, 512, 1, 1) embedding = Concatenate(axis=3)([x7_face, x]) ############# decoder x = conv_t_block(embedding, 512, 3, 3)# 3x3 x = Concatenate(axis=3) ([x5_face, x]) x = conv_t_block(x, 512) #6x6 x = residual_block(x, 512) x = residual_block(x, 512) x = Concatenate(axis=3) ([x4_face, x]) x = conv_t_block(x, 256) #12x12 x = residual_block(x, 256) x = residual_block(x, 256) x = Concatenate(axis=3) ([x3_face, x]) x = conv_t_block(x, 128) #24x24 x = residual_block(x, 128) x = residual_block(x, 128) x = Concatenate(axis=3) ([x2_face, x]) x = conv_t_block(x, 64) #48x48 x = residual_block(x, 64) x = residual_block(x, 64) x = Concatenate(axis=3) ([x1_face, x]) x = conv_t_block(x, 32) #96x96 x = Concatenate(axis=3) ([identity_mapping, x]) x = conv_block(x, 16) #96x96 x = conv_block(x, 16) #96x96 x = Conv2D(filters=3, kernel_size=1, strides=1, padding="same") (x) prediction = Activation("sigmoid", name="prediction")(x) model = Model(inputs=[input_face, input_audio], outputs=prediction) model.summary() if args.n_gpu > 1: model = ModelMGPU(model , args.n_gpu) model.compile(loss='mae', optimizer=(Adam(lr=args.lr) if hasattr(args, 'lr') else 'adam')) return model def create_combined_model(generator, discriminator, args): input_face = Input(shape=(args.img_size, args.img_size, 6), name="input_face_comb") input_audio = Input(shape=(12, 35, 1), name="input_audio_comb") fake_face = generator([input_face, input_audio]) discriminator.trainable = False d = discriminator([fake_face, input_audio]) model = Model([input_face, input_audio], [fake_face, d]) if args.n_gpu > 1: model = ModelMGPU(model , args.n_gpu) model.compile(loss=['mae', contrastive_loss], optimizer=(Adam(lr=args.lr) if hasattr(args, 'lr') else 'adam'), loss_weights=[1., .01]) return model if __name__ == '__main__': model = create_model_residual() #plot_model(model, to_file='model.png', show_shapes=True)
lite/examples/recommendation/ml/model/recommendation_model_launcher_test.py
duy-maimanh/examples
6,484
12741966
# Lint as: python3 # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for recommendation_model_launcher.""" import os from absl import flags import tensorflow as tf from model import input_pipeline from model import recommendation_model_launcher as launcher from google.protobuf import text_format FLAGS = flags.FLAGS FAKE_MOVIE_GENRE_VOCAB = [ 'UNK', 'Comedy', 'Drama', 'Romance', 'Animation', 'Children' ] TEST_INPUT_CONFIG = """ activity_feature_groups { features { feature_name: "context_movie_id" feature_type: INT vocab_size: 3952 embedding_dim: 8 feature_length: 5 } features { feature_name: "context_movie_rating" feature_type: FLOAT feature_length: 5 } encoder_type: CNN } activity_feature_groups { features { feature_name: "context_movie_genre" feature_type: STRING vocab_name: "movie_genre_vocab.txt" vocab_size: 19 embedding_dim: 8 feature_length: 8 } encoder_type: BOW } label_feature { feature_name: "label_movie_id" feature_type: INT vocab_size: 3952 embedding_dim: 8 feature_length: 1 } """ EXAMPLE1 = text_format.Parse( """ features { feature { key: "context_movie_id" value { int64_list { value: [1, 2, 0, 0, 0] } } } feature { key: "context_movie_rating" value { float_list { value: [3.5, 4.0, 0.0, 0.0, 0.0] } } } feature { key: "context_movie_genre" value { bytes_list { value: [ "Animation", "Children", "Comedy", "Comedy", "Romance", "UNK", "UNK", "UNK" ] } } } feature { key: "label_movie_id" value { int64_list { value: [3] } } } }""", tf.train.Example()) class RecommendationModelLauncherTest(tf.test.TestCase): def _AssertSparseTensorValueEqual(self, a, b): self.assertAllEqual(a.indices, b.indices) self.assertAllEqual(a.values, b.values) self.assertAllEqual(a.dense_shape, b.dense_shape) def _assertInputDetail(self, input_details, index, name, shape): self.assertEqual(name, input_details[index]['name']) self.assertEqual(shape, input_details[index]['shape']) def setUp(self): super().setUp() self.tmp_dir = self.create_tempdir() self.test_input_config_file = os.path.join(self.tmp_dir, 'input_config.pbtxt') self.test_movie_genre_vocab_file = os.path.join(self.tmp_dir, 'movie_genre_vocab.txt') self.test_input_data_file = os.path.join(self.tmp_dir, 'test_input_data.tfrecord') with open(self.test_input_config_file, 'w', encoding='utf-8') as f: f.write(TEST_INPUT_CONFIG) with open(self.test_movie_genre_vocab_file, 'w', encoding='utf-8') as f: for item in FAKE_MOVIE_GENRE_VOCAB: f.write(item + '\n') with tf.io.TFRecordWriter(self.test_input_data_file) as file_writer: file_writer.write(EXAMPLE1.SerializeToString()) self.test_model_dir = os.path.join(self.tmp_dir, 'test_model_dir') FLAGS.training_data_filepattern = self.test_input_data_file FLAGS.testing_data_filepattern = self.test_input_data_file FLAGS.input_config_file = self.test_input_config_file FLAGS.model_dir = self.test_model_dir FLAGS.hidden_layer_dims = [8, 4] FLAGS.eval_top_k = [1, 5] FLAGS.num_predictions = 5 FLAGS.conv_num_filter_ratios = [2, 4] FLAGS.conv_kernel_size = 4 FLAGS.lstm_num_units = 16 def testModelTrainEvalExport(self): """Verifies that model can be trained and evaluated.""" tf.io.gfile.mkdir(FLAGS.model_dir) input_config = launcher.load_input_config() model_config = launcher.prepare_model_config() dataset = input_pipeline.get_input_dataset( data_filepattern=self.test_input_data_file, input_config=input_config, vocab_file_dir=self.tmp_dir, batch_size=8) model = launcher.build_keras_model(input_config, model_config) launcher.train_and_eval( model=model, model_dir=FLAGS.model_dir, train_input_dataset=dataset, eval_input_dataset=dataset, steps_per_epoch=2, epochs=2, eval_steps=1) self.assertTrue(os.path.exists(self.test_model_dir)) summaries_dir = os.path.join(self.test_model_dir, 'summaries') self.assertTrue(os.path.exists(summaries_dir)) export_dir = os.path.join(FLAGS.model_dir, 'export') latest_checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir) launcher.save_model( checkpoint_path=latest_checkpoint, export_dir=export_dir, input_config=input_config, model_config=model_config) savedmodel_path = os.path.join(export_dir, 'saved_model.pb') self.assertTrue(os.path.exists(savedmodel_path)) imported = tf.saved_model.load(export_dir, tags=None) infer = imported.signatures['serving_default'] context_movie_id = tf.range(5, dtype=tf.int32) context_movie_rating = tf.range(5, dtype=tf.float32) context_movie_genre = tf.range(8, dtype=tf.int32) predictions = infer(context_movie_id=context_movie_id, context_movie_rating=context_movie_rating, context_movie_genre=context_movie_genre) self.assertAllEqual([5], predictions['top_prediction_ids'].shape) self.assertAllEqual([5], predictions['top_prediction_scores'].shape) launcher.export_tflite(export_dir) tflite_model_path = os.path.join(export_dir, 'model.tflite') self.assertTrue(os.path.exists(tflite_model_path)) f = open(tflite_model_path, 'rb') interpreter = tf.lite.Interpreter(model_content=f.read()) interpreter.allocate_tensors() inference_signature = interpreter.get_signature_list()['serving_default'] self.assertAllEqual( ['context_movie_genre', 'context_movie_id', 'context_movie_rating'], inference_signature['inputs']) self.assertAllEqual(['top_prediction_ids', 'top_prediction_scores'], inference_signature['outputs']) serving_name_to_tenors = { 'serving_default_context_movie_id:0': context_movie_id, 'serving_default_context_movie_rating:0': context_movie_rating, 'serving_default_context_movie_genre:0': context_movie_genre } input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() indice_to_tensors = {} for input_detail in input_details: indice_to_tensors[input_detail['index']] = serving_name_to_tenors[ input_detail['name']] for index, tensor in indice_to_tensors.items(): interpreter.set_tensor(index, tensor) interpreter.invoke() tflite_top_predictions_ids = interpreter.get_tensor( output_details[0]['index']) tflite_top_prediction_scores = interpreter.get_tensor( output_details[1]['index']) self.assertAllEqual([5], tflite_top_predictions_ids.shape) self.assertAllEqual([5], tflite_top_prediction_scores.shape) if __name__ == '__main__': launcher.define_flags() tf.test.main()
tests/solver_tests.py
stantonious/pymaze
154
12741968
from __future__ import absolute_import import unittest from src.solver import Solver class TestSolver(unittest.TestCase): def test_ctor(self): solver = Solver("", "", False) self.assertEqual(solver.name, "") self.assertEqual(solver.quiet_mode, False) if __name__ == "__main__": unittest.main()
app/lib/api/records.py
grepleria/SnitchDNS
152
12741991
<filename>app/lib/api/records.py from app.lib.base.provider import Provider from app.lib.api.base import ApiBase from app.lib.api.definitions.record import Record class ApiRecords(ApiBase): def all(self, user_id, zone_id=None, domain=None): provider = Provider() zones = provider.dns_zones() records = provider.dns_records() zone = zones.get(zone_id, user_id) if zone_id is not None else zones.find(domain, user_id=user_id) if not zone: return self.send_not_found_response() results = records.get_zone_records(zone.id) data = [] for result in results: data.append(self.__load_record(result)) return self.send_valid_response(data) def one(self, user_id, record_id, zone_id=None, domain=None): provider = Provider() zones = provider.dns_zones() records = provider.dns_records() zone = zones.get(zone_id, user_id) if zone_id is not None else zones.find(domain, user_id=user_id) if not zone: return self.send_not_found_response() record = records.get(record_id, dns_zone_id=zone_id) if not record: return self.send_not_found_response() return self.send_valid_response(self.__load_record(record)) def __load_record(self, item): record = Record() record.id = item.id record.zone_id = item.dns_zone_id record.active = item.active record.cls = item.cls record.type = item.type record.ttl = int(item.ttl) record.data = item.data record.is_conditional = item.has_conditional_responses record.conditional_count = item.conditional_count record.conditional_limit = item.conditional_limit record.confitional_reset = item.conditional_reset record.conditional_data = item.conditional_data return record def classes(self): records = Provider().dns_records() return self.send_valid_response(records.get_classes()) def types(self): records = Provider().dns_records() return self.send_valid_response(records.get_types()) def delete(self, user_id, record_id, zone_id=None, domain=None): provider = Provider() zones = provider.dns_zones() records = provider.dns_records() zone = zones.get(zone_id, user_id) if zone_id is not None else zones.find(domain, user_id=user_id) if not zone: return self.send_not_found_response() record = records.get(record_id, dns_zone_id=zone_id) if not record: return self.send_not_found_response() records.delete(record) return self.send_success_response() def create(self, user_id, zone_id=None, domain=None): provider = Provider() zones = provider.dns_zones() records = provider.dns_records() zone = zones.get(zone_id, user_id) if zone_id is not None else zones.find(domain, user_id=user_id) if not zone: return self.send_not_found_response() # First get the mandatory fields for all record types. required_fields = [ 'class', 'type', 'ttl', 'active', 'data', 'is_conditional', 'conditional_count', 'conditional_limit', 'conditional_reset', 'conditional_data' ] data = self.get_json(required_fields) if data is False: return self.send_error_response( 5000, 'Missing fields', 'Required fields are: {0}'.format(', '.join(required_fields)) ) # Validate. if data['class'] not in records.get_classes(): return self.send_error_response(5005, 'Invalid class', '') elif data['type'] not in records.get_types(): return self.send_error_response(5005, 'Invalid type', '') if isinstance(data['ttl'], str) and data['ttl'].isdigit() is False: return self.send_error_response(5005, 'Invalid TTL', '') data['ttl'] = int(data['ttl']) if data['ttl'] < 0: return self.send_error_response(5005, 'Invalid TTL', '') elif data['conditional_count'] < 0: return self.send_error_response(5005, 'Invalid Conditional Count', '') elif data['conditional_limit'] < 0: return self.send_error_response(5005, 'Invalid Conditional Limit', '') # Fix types. data['active'] = True if data['active'] else False data['is_conditional'] = True if data['is_conditional'] else False # Now that we have the type, we can get the type-specific properties. record_type_properties = records.get_record_type_properties(data['type'], clean=True) record_type_conditional_properties = records.get_record_type_properties(data['type'], clean=True) all_errors = [] basic_data, errors = self.__parse_data_properties(data['data'], record_type_properties) all_errors += errors if data['is_conditional']: conditional_data, errors = self.__parse_data_properties(data['conditional_data'], record_type_conditional_properties) all_errors += errors else: conditional_data = {} if len(errors) > 0: return self.send_error_response( 5005, 'Invalid type property fields', errors ) # Create the record. record = records.create() record = records.save(record, zone.id, data['ttl'], data['class'], data['type'], basic_data, data['active']) record = records.save_conditions(record, enabled=data['is_conditional'], data=conditional_data, count=data['conditional_count'], limit=data['conditional_limit'], reset=data['conditional_reset']) return self.one(user_id, record.id, zone_id=zone.id) def __parse_data_properties(self, data, properties): errors = [] output = {} for property, type in properties.items(): if property not in data: errors.append('Missing type property {0}'.format(property)) continue value = data[property] if (type == 'int') and (isinstance(value, str)): if not value.isdigit(): errors.append('Invalid {0} value'.format(property)) continue value = int(value) if (type == 'str') and (len(value) == 0): errors.append('Invalid {0} value'.format(property)) elif (type == 'int') and (value < 0): errors.append('Invalid {0} value'.format(property)) output[property] = value return output, errors def update(self, user_id, record_id, zone_id=None, domain=None): provider = Provider() zones = provider.dns_zones() records = provider.dns_records() zone = zones.get(zone_id, user_id) if zone_id is not None else zones.find(domain, user_id=user_id) if not zone: return self.send_not_found_response() # Get record. record = records.get(record_id, dns_zone_id=zone.id) if not record: return self.send_not_found_response() data = self.get_json([]) if 'class' in data: if data['class'] not in records.get_classes(): return self.send_error_response(5005, 'Invalid class', '') else: data['class'] = record.cls if 'type' in data: if data['type'] not in records.get_types(): return self.send_error_response(5005, 'Invalid type', '') else: data['type'] = record.type if 'ttl' in data: if isinstance(data['ttl'], str): if not data['ttl'].isdigit(): return self.send_error_response(5005, 'Invalid TTL', '') data['ttl'] = int(data['ttl']) if data['ttl'] < 0: return self.send_error_response(5005, 'Invalid TTL', '') else: data['ttl'] = record.ttl if 'active' in data: data['active'] = True if data['active'] else False else: data['active'] = record.active if 'is_conditional' in data: data['is_conditional'] = True if data['is_conditional'] else False else: data['is_conditional'] = record.has_conditional_responses data['conditional_limit'] = data['conditional_limit'] if 'conditional_limit' in data else record.conditional_limit data['conditional_count'] = data['conditional_count'] if 'conditional_count' in data else record.conditional_count data['conditional_reset'] = data['conditional_reset'] if 'conditional_reset' in data else record.conditional_reset if 'data' in data: record_type_properties = records.get_record_type_properties(data['type'], clean=True) data['data'], errors = self.__parse_data_properties(data['data'], record_type_properties) if len(errors) > 0: return self.send_error_response( 5005, 'Invalid type property fields', errors ) else: data['data'] = record.data if ('conditional_data' in data) and (data['is_conditional'] is True): record_type_properties = records.get_record_type_properties(data['type'], clean=True) data['conditional_data'], errors = self.__parse_data_properties(data['conditional_data'], record_type_properties) if len(errors) > 0: return self.send_error_response( 5005, 'Invalid type property fields', errors ) else: data['conditional_data'] = record.conditional_data record = records.save(record, zone.id, data['ttl'], data['class'], data['type'], data['data'], data['active']) record = records.save_conditions(record, enabled=data['is_conditional'], data=data['conditional_data'], count=data['conditional_count'], limit=data['conditional_limit'], reset=data['conditional_reset']) return self.one(user_id, record.id, zone_id=zone.id)
qutip/tests/test_stochastic_me.py
quantshah/qutip
1,205
12742005
import pytest import numpy as np from numpy.testing import assert_, run_module_suite from qutip import (smesolve, mesolve, photocurrent_mesolve, liouvillian, QobjEvo, spre, spost, destroy, coherent, parallel_map, qeye, fock_dm, general_stochastic, ket2dm, num) def f(t, args): return args["a"] * t @pytest.mark.slow def test_smesolve_homodyne_methods(): "Stochastic: smesolve: homodyne methods with single jump operator" def arccoth(x): return 0.5*np.log((1.+x)/(x-1.)) th = 0.1 # Interaction parameter alpha = np.cos(th) beta = np.sin(th) gamma = 1. N = 30 # number of Fock states Id = qeye(N) a = destroy(N) s = 0.5*((alpha+beta)*a + (alpha-beta)*a.dag()) x = (a + a.dag()) * 2**-0.5 H = Id c_op = [gamma**0.5 * a] sc_op = [s] e_op = [x, x*x] rho0 = fock_dm(N,0) # initial vacuum state T = 3. # final time # number of time steps for which we save the expectation values N_store = 121 Nsub = 10 tlist = np.linspace(0, T, N_store) ddt = (tlist[1]-tlist[0]) #### Analytic solution y0 = 0.5 A = (gamma**2 + alpha**2 * (beta**2 + 4*gamma) - 2*alpha*beta*gamma)**0.5 B = arccoth((-4*alpha**2*y0 + alpha*beta - gamma)/A) y_an = (alpha*beta - gamma + A / np.tanh(0.5*A*tlist - B))/(4*alpha**2) list_methods_tol = [['euler-maruyama', 2e-2], ['pc-euler', 2e-3], ['pc-euler-2', 2e-3], ['platen', 1e-3], ['milstein', 1e-3], ['milstein-imp', 1e-3], ['rouchon', 1e-3], ['taylor1.5', 1e-4], ['taylor1.5-imp', 1e-4], ['explicit1.5', 1e-4], ['taylor2.0', 1e-4]] for n_method in list_methods_tol: sol = smesolve(H, rho0, tlist, c_op, sc_op, e_op, nsubsteps=Nsub, method='homodyne', solver = n_method[0]) sol2 = smesolve(H, rho0, tlist, c_op, sc_op, e_op, store_measurement=0, nsubsteps=Nsub, method='homodyne', solver = n_method[0], noise = sol.noise) sol3 = smesolve(H, rho0, tlist, c_op, sc_op, e_op, nsubsteps=Nsub*5, method='homodyne', solver = n_method[0], tol=1e-8) err = 1/T * np.sum(np.abs(y_an - \ (sol.expect[1]-sol.expect[0]*sol.expect[0].conj())))*ddt err3 = 1/T * np.sum(np.abs(y_an - \ (sol3.expect[1]-sol3.expect[0]*sol3.expect[0].conj())))*ddt print(n_method[0], ': deviation =', err, ', tol =', n_method[1]) assert_(err < n_method[1]) # 5* more substep should decrease the error assert_(err3 < err) # just to check that noise is not affected by smesolve assert_(np.all(sol.noise == sol2.noise)) assert_(np.all(sol.expect[0] == sol2.expect[0])) sol = smesolve(H, rho0, tlist[:2], c_op, sc_op, e_op, noise=10, ntraj=2, nsubsteps=Nsub, method='homodyne', solver='euler', store_measurement=1) sol2 = smesolve(H, rho0, tlist[:2], c_op, sc_op, e_op, noise=10, ntraj=2, nsubsteps=Nsub, method='homodyne', solver='euler', store_measurement=0) sol3 = smesolve(H, rho0, tlist[:2], c_op, sc_op, e_op, noise=11, ntraj=2, nsubsteps=Nsub, method='homodyne', solver='euler') # sol and sol2 have the same seed, sol3 differ. assert_(np.all(sol.noise == sol2.noise)) assert_(np.all(sol.noise != sol3.noise)) assert_(not np.all(sol.measurement[0] == 0.+0j)) assert_(np.all(sol2.measurement[0] == 0.+0j)) sol = smesolve(H, rho0, tlist[:2], c_op, sc_op, e_op, noise=np.array([1,2]), ntraj=2, nsubsteps=Nsub, method='homodyne', solver='euler') sol2 = smesolve(H, rho0, tlist[:2], c_op, sc_op, e_op, noise=np.array([2,1]), ntraj=2, nsubsteps=Nsub, method='homodyne', solver='euler') # sol and sol2 have the seed of traj 1 and 2 reversed. assert_(np.all(sol.noise[0,:,:,:] == sol2.noise[1,:,:,:])) assert_(np.all(sol.noise[1,:,:,:] == sol2.noise[0,:,:,:])) def test_smesolve_photocurrent(): "Stochastic: photocurrent_mesolve" tol = 0.01 N = 4 gamma = 0.25 ntraj = 20 nsubsteps = 100 a = destroy(N) H = [[a.dag() * a,f]] psi0 = coherent(N, 0.5) sc_ops = [np.sqrt(gamma) * a, np.sqrt(gamma) * a * 0.5] e_ops = [a.dag() * a, a + a.dag(), (-1j)*(a - a.dag())] times = np.linspace(0, 1.0, 21) res_ref = mesolve(H, psi0, times, sc_ops, e_ops, args={"a":2}) res = photocurrent_mesolve(H, psi0, times, [], sc_ops, e_ops, args={"a":2}, ntraj=ntraj, nsubsteps=nsubsteps, store_measurement=True, map_func=parallel_map) assert_(all([np.mean(abs(res.expect[idx] - res_ref.expect[idx])) < tol for idx in range(len(e_ops))])) assert_(len(res.measurement) == ntraj) assert_(all([m.shape == (len(times), len(sc_ops)) for m in res.measurement])) def test_smesolve_homodyne(): "Stochastic: smesolve: homodyne, time-dependent H" tol = 0.01 N = 4 gamma = 0.25 ntraj = 20 nsubsteps = 100 a = destroy(N) H = [[a.dag() * a,f]] psi0 = coherent(N, 0.5) sc_ops = [np.sqrt(gamma) * a, np.sqrt(gamma) * a * 0.5] e_ops = [a.dag() * a, a + a.dag(), (-1j)*(a - a.dag())] times = np.linspace(0, 1.0, 21) res_ref = mesolve(H, psi0, times, sc_ops, e_ops, args={"a":2}) list_methods_tol = ['euler-maruyama', 'pc-euler', 'pc-euler-2', 'platen', 'milstein', 'milstein-imp', 'rouchon', 'taylor15', 'taylor15-imp', 'explicit15'] for solver in list_methods_tol: res = smesolve(H, psi0, times, [], sc_ops, e_ops, ntraj=ntraj, nsubsteps=nsubsteps, args={"a":2}, method='homodyne', store_measurement=True, solver=solver, map_func=parallel_map) assert_(all([np.mean(abs(res.expect[idx] - res_ref.expect[idx])) < tol for idx in range(len(e_ops))])) assert_(len(res.measurement) == ntraj) assert_(all([m.shape == (len(times), len(sc_ops)) for m in res.measurement])) @pytest.mark.slow def test_smesolve_heterodyne(): "Stochastic: smesolve: heterodyne, time-dependent H" tol = 0.01 N = 4 gamma = 0.25 ntraj = 20 nsubsteps = 100 a = destroy(N) H = [[a.dag() * a, f]] psi0 = coherent(N, 0.5) sc_ops = [np.sqrt(gamma) * a, np.sqrt(gamma) * a * 0.5] e_ops = [a.dag() * a, a + a.dag(), (-1j)*(a - a.dag())] times = np.linspace(0, 1.0, 21) res_ref = mesolve(H, psi0, times, sc_ops, e_ops, args={"a":2}) list_methods_tol = ['euler-maruyama', 'pc-euler', 'pc-euler-2', 'platen', 'milstein', 'milstein-imp', 'rouchon', 'taylor15', 'taylor15-imp', 'explicit15'] for solver in list_methods_tol: res = smesolve(H, psi0, times, [], sc_ops, e_ops, ntraj=ntraj, nsubsteps=nsubsteps, args={"a":2}, method='heterodyne', store_measurement=True, solver=solver, map_func=parallel_map) assert_(all([np.mean(abs(res.expect[idx] - res_ref.expect[idx])) < tol for idx in range(len(e_ops))])) assert_(len(res.measurement) == ntraj) assert_(all([m.shape == (len(times), len(sc_ops), 2) for m in res.measurement])) @pytest.mark.slow def test_general_stochastic(): "Stochastic: general_stochastic" "Reproduce smesolve homodyne" tol = 0.025 N = 4 gamma = 0.25 ntraj = 20 nsubsteps = 50 a = destroy(N) H = [[a.dag() * a,f]] psi0 = coherent(N, 0.5) sc_ops = [np.sqrt(gamma) * a, np.sqrt(gamma) * a * 0.5] e_ops = [a.dag() * a, a + a.dag(), (-1j)*(a - a.dag())] L = liouvillian(QobjEvo([[a.dag() * a,f]], args={"a":2}), c_ops = sc_ops) L.compile() sc_opsM = [QobjEvo(spre(op) + spost(op.dag())) for op in sc_ops] [op.compile() for op in sc_opsM] e_opsM = [spre(op) for op in e_ops] def d1(t, vec): return L.mul_vec(t,vec) def d2(t, vec): out = [] for op in sc_opsM: out.append(op.mul_vec(t,vec)-op.expect(t,vec)*vec) return np.stack(out) times = np.linspace(0, 0.5, 13) res_ref = mesolve(H, psi0, times, sc_ops, e_ops, args={"a":2}) list_methods_tol = ['euler-maruyama', 'platen', 'explicit15'] for solver in list_methods_tol: res = general_stochastic(ket2dm(psi0),times,d1,d2,len_d2=2, e_ops=e_opsM, normalize=False, ntraj=ntraj, nsubsteps=nsubsteps, solver=solver) assert_(all([np.mean(abs(res.expect[idx] - res_ref.expect[idx])) < tol for idx in range(len(e_ops))])) assert_(len(res.measurement) == ntraj) def f_dargs(a, args): return args["expect_op_3"] - 1 def test_ssesolve_feedback(): "Stochastic: ssesolve: time-dependent H with feedback" tol = 0.01 N = 4 ntraj = 10 nsubsteps = 100 a = destroy(N) H = [num(N)] psi0 = coherent(N, 2.5) sc_ops = [[a + a.dag(), f_dargs]] e_ops = [a.dag() * a, a + a.dag(), (-1j)*(a - a.dag()), qeye(N)] times = np.linspace(0, 10, 101) res_ref = mesolve(H, psi0, times, sc_ops, e_ops, args={"expect_op_3":qeye(N)}) res = smesolve(H, psi0, times, sc_ops=sc_ops, e_ops=e_ops, noise=1, ntraj=ntraj, nsubsteps=nsubsteps, method='homodyne', map_func=parallel_map, args={"expect_op_3":qeye(N)}) print(all([np.mean(abs(res.expect[idx] - res_ref.expect[idx])) < tol for idx in range(len(e_ops))])) if __name__ == "__main__": run_module_suite()
neuralmonkey/runners/xent_runner.py
ufal/neuralmonkey
446
12742010
from typing import Dict, List, Union from typeguard import check_argument_types import tensorflow as tf import numpy as np from neuralmonkey.decoders.autoregressive import AutoregressiveDecoder from neuralmonkey.decoders.sequence_labeler import SequenceLabeler from neuralmonkey.decorators import tensor from neuralmonkey.runners.base_runner import BaseRunner SupportedDecoders = Union[AutoregressiveDecoder, SequenceLabeler] class XentRunner(BaseRunner[SupportedDecoders]): # pylint: disable=too-few-public-methods # Pylint issue here: https://github.com/PyCQA/pylint/issues/2607 class Executable(BaseRunner.Executable["XentRunner"]): def collect_results(self, results: List[Dict]) -> None: xents = np.mean([res["xents"] for res in results], axis=0) self.set_runner_result(outputs=xents.tolist(), losses=[float(np.mean(xents))]) # pylint: enable=too-few-public-methods def __init__(self, output_series: str, decoder: SupportedDecoders) -> None: check_argument_types() super().__init__(output_series, decoder) @tensor def fetches(self) -> Dict[str, tf.Tensor]: return {"xents": self.decoder.train_xents} @property def loss_names(self) -> List[str]: return ["xent"]
tests/integration/cattletest/core/test_audit_log.py
lifecontrol/cattle
482
12742014
<reponame>lifecontrol/cattle from common_fixtures import * # NOQA from copy import deepcopy def made_log(object, admin_user_client, context, accountId=None): t = object.type if t == 'stack': t = 'stack' logs = admin_user_client.list_audit_log(resourceId=object.id, resourceType=t) assert len(logs) == 1 assert logs[0].resourceType == t if str(logs[0].resourceId) != object.id: assert str(logs[0].resourceId).replace('1s', '1e') == object.id else: assert str(logs[0].resourceId) == object.id if accountId is None: assert logs[0].accountId == context.project.id else: assert logs[0].accountId == accountId assert logs[0].authenticatedAsAccountId == context.account.id def test_audit_entry_created(new_context, admin_user_client): objects = [] new_headers = deepcopy(new_context.user_client._headers) new_headers['X-API-Project-Id'] = new_context.project.id made_log(new_context.user_client.create_project(), admin_user_client, new_context, accountId=new_context.account.id) new_context.user_client._headers = new_headers new_context.user_client.reload_schema() objects.append(new_context.user_client.create_container( imageUuid=new_context.image_uuid)) objects.append(new_context.user_client.create_container( imageUuid=new_context.image_uuid)) objects.append(new_context.user_client.create_api_key()) objects.append(new_context.user_client.create_registry( serverAddress='test.io', name='test')) objects.append(new_context.user_client.create_api_key()) objects.append(new_context.user_client.create_stack( name='env-' + random_str())) for object in objects: made_log(object, admin_user_client, new_context)
smoke-test/test_e2e.py
ShubhamThakre/datahub
289
12742018
<reponame>ShubhamThakre/datahub import time import urllib import pytest import requests from datahub.cli.docker import check_local_docker_containers from datahub.ingestion.run.pipeline import Pipeline from tests.utils import ingest_file_via_rest GMS_ENDPOINT = "http://localhost:8080" FRONTEND_ENDPOINT = "http://localhost:9002" KAFKA_BROKER = "localhost:9092" bootstrap_sample_data = "../metadata-ingestion/examples/mce_files/bootstrap_mce.json" usage_sample_data = ( "../metadata-ingestion/tests/integration/bigquery-usage/bigquery_usages_golden.json" ) bq_sample_data = "./sample_bq_data.json" restli_default_headers = { "X-RestLi-Protocol-Version": "2.0.0", } kafka_post_ingestion_wait_sec = 60 @pytest.fixture(scope="session") def wait_for_healthchecks(): # Simply assert that everything is healthy, but don't wait. assert not check_local_docker_containers() yield @pytest.mark.dependency() def test_healthchecks(wait_for_healthchecks): # Call to wait_for_healthchecks fixture will do the actual functionality. pass @pytest.fixture(scope="session") def frontend_session(wait_for_healthchecks): session = requests.Session() headers = { "Content-Type": "application/json", } data = '{"username":"datahub", "password":"<PASSWORD>"}' response = session.post(f"{FRONTEND_ENDPOINT}/logIn", headers=headers, data=data) response.raise_for_status() yield session @pytest.mark.dependency(depends=["test_healthchecks"]) def test_ingestion_via_rest(wait_for_healthchecks): ingest_file_via_rest(bootstrap_sample_data) @pytest.mark.dependency(depends=["test_healthchecks"]) def test_ingestion_usage_via_rest(wait_for_healthchecks): ingest_file_via_rest(usage_sample_data) @pytest.mark.dependency(depends=["test_healthchecks"]) def test_ingestion_via_kafka(wait_for_healthchecks): pipeline = Pipeline.create( { "source": { "type": "file", "config": {"filename": bq_sample_data}, }, "sink": { "type": "datahub-kafka", "config": { "connection": { "bootstrap": KAFKA_BROKER, } }, }, } ) pipeline.run() pipeline.raise_from_status() # Since Kafka emission is asynchronous, we must wait a little bit so that # the changes are actually processed. time.sleep(kafka_post_ingestion_wait_sec) @pytest.mark.dependency( depends=[ "test_ingestion_via_rest", "test_ingestion_via_kafka", "test_ingestion_usage_via_rest", ] ) def test_run_ingestion(wait_for_healthchecks): # Dummy test so that future ones can just depend on this one. pass @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_gms_get_user(): username = "jdoe" urn = f"urn:li:corpuser:{username}" response = requests.get( f"{GMS_ENDPOINT}/entities/{urllib.parse.quote(urn)}", headers={ **restli_default_headers, }, ) response.raise_for_status() data = response.json() assert data["value"] assert data["value"]["com.linkedin.metadata.snapshot.CorpUserSnapshot"] assert ( data["value"]["com.linkedin.metadata.snapshot.CorpUserSnapshot"]["urn"] == urn ) @pytest.mark.parametrize( "platform,dataset_name,env", [ ( # This one tests the bootstrap sample data. "urn:li:dataPlatform:kafka", "SampleKafkaDataset", "PROD", ), ( # This one tests BigQuery ingestion. "urn:li:dataPlatform:bigquery", "bigquery-public-data.covid19_geotab_mobility_impact.us_border_wait_times", "PROD", ), ], ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_gms_get_dataset(platform, dataset_name, env): platform = "urn:li:dataPlatform:bigquery" dataset_name = ( "bigquery-public-data.covid19_geotab_mobility_impact.us_border_wait_times" ) env = "PROD" urn = f"urn:li:dataset:({platform},{dataset_name},{env})" response = requests.get( f"{GMS_ENDPOINT}/entities/{urllib.parse.quote(urn)}", headers={ **restli_default_headers, "X-RestLi-Method": "get", }, ) response.raise_for_status() res_data = response.json() assert res_data["value"] assert res_data["value"]["com.linkedin.metadata.snapshot.DatasetSnapshot"] assert ( res_data["value"]["com.linkedin.metadata.snapshot.DatasetSnapshot"]["urn"] == urn ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_gms_batch_get_v2(): platform = "urn:li:dataPlatform:bigquery" env = "PROD" name_1 = "bigquery-public-data.covid19_geotab_mobility_impact.us_border_wait_times" name_2 = "bigquery-public-data.covid19_geotab_mobility_impact.ca_border_wait_times" urn1 = f"urn:li:dataset:({platform},{name_1},{env})" urn2 = f"urn:li:dataset:({platform},{name_2},{env})" response = requests.get( f"{GMS_ENDPOINT}/entitiesV2?ids=List({urllib.parse.quote(urn1)},{urllib.parse.quote(urn2)})&aspects=List(datasetProperties,ownership)", headers={ **restli_default_headers, "X-RestLi-Method": "batch_get", }, ) response.raise_for_status() res_data = response.json() # Verify both urns exist and have correct aspects assert res_data["results"] assert res_data["results"][urn1] assert res_data["results"][urn1]["aspects"]["datasetProperties"] assert res_data["results"][urn1]["aspects"]["ownership"] assert res_data["results"][urn2] assert res_data["results"][urn2]["aspects"]["datasetProperties"] assert ( "ownership" not in res_data["results"][urn2]["aspects"] ) # Aspect does not exist. @pytest.mark.parametrize( "query,min_expected_results", [ ("covid", 1), ("sample", 3), ], ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_gms_search_dataset(query, min_expected_results): json = {"input": f"{query}", "entity": "dataset", "start": 0, "count": 10} print(json) response = requests.post( f"{GMS_ENDPOINT}/entities?action=search", headers=restli_default_headers, json=json, ) response.raise_for_status() res_data = response.json() assert res_data["value"] assert res_data["value"]["numEntities"] >= min_expected_results assert len(res_data["value"]["entities"]) >= min_expected_results @pytest.mark.parametrize( "query,min_expected_results", [ ("covid", 1), ("sample", 3), ], ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_gms_search_across_entities(query, min_expected_results): json = {"input": f"{query}", "entities": [], "start": 0, "count": 10} print(json) response = requests.post( f"{GMS_ENDPOINT}/entities?action=searchAcrossEntities", headers=restli_default_headers, json=json, ) response.raise_for_status() res_data = response.json() assert res_data["value"] assert res_data["value"]["numEntities"] >= min_expected_results assert len(res_data["value"]["entities"]) >= min_expected_results @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_gms_usage_fetch(): response = requests.post( f"{GMS_ENDPOINT}/usageStats?action=queryRange", headers=restli_default_headers, json={ "resource": "urn:li:dataset:(urn:li:dataPlatform:bigquery,harshal-playground-306419.test_schema.excess_deaths_derived,PROD)", "duration": "DAY", "rangeFromEnd": "ALL", }, ) response.raise_for_status() data = response.json()["value"] assert len(data["buckets"]) == 6 assert data["buckets"][0]["metrics"]["topSqlQueries"] fields = data["aggregations"].pop("fields") assert len(fields) == 12 assert fields[0]["count"] == 7 users = data["aggregations"].pop("users") assert len(users) == 1 assert users[0]["count"] == 7 assert data["aggregations"] == { # "fields" and "users" already popped out "totalSqlQueries": 7, "uniqueUserCount": 1, } @pytest.mark.dependency(depends=["test_healthchecks"]) def test_frontend_auth(frontend_session): pass @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_frontend_browse_datasets(frontend_session): json = { "query": """query browse($input: BrowseInput!) {\n browse(input: $input) {\n start\n count\n total\n groups { name } entities {\n ... on Dataset {\n urn\n name\n }\n }\n }\n }""", "variables": {"input": {"type": "DATASET", "path": ["prod"]}}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["browse"] assert len(res_data["data"]["browse"]["entities"]) == 0 assert len(res_data["data"]["browse"]["groups"]) > 0 @pytest.mark.parametrize( "query,min_expected_results", [ ("covid", 1), ("sample", 3), ("", 1), ], ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_frontend_search_datasets(frontend_session, query, min_expected_results): json = { "query": """query search($input: SearchInput!) {\n search(input: $input) {\n start\n count\n total\n searchResults {\n entity {\n ... on Dataset {\n urn\n name\n }\n }\n }\n }\n }""", "variables": { "input": {"type": "DATASET", "query": f"{query}", "start": 0, "count": 10} }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["search"] assert res_data["data"]["search"]["total"] >= min_expected_results assert len(res_data["data"]["search"]["searchResults"]) >= min_expected_results @pytest.mark.parametrize( "query,min_expected_results", [ ("covid", 1), ("sample", 3), ("", 1), ], ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_frontend_search_across_entities(frontend_session, query, min_expected_results): json = { "query": """query searchAcrossEntities($input: SearchAcrossEntitiesInput!) {\n searchAcrossEntities(input: $input) {\n start\n count\n total\n searchResults {\n entity {\n ... on Dataset {\n urn\n name\n }\n }\n }\n }\n }""", "variables": { "input": {"types": [], "query": f"{query}", "start": 0, "count": 10} }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["searchAcrossEntities"] assert res_data["data"]["searchAcrossEntities"]["total"] >= min_expected_results assert ( len(res_data["data"]["searchAcrossEntities"]["searchResults"]) >= min_expected_results ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_frontend_user_info(frontend_session): urn = "urn:li:corpuser:datahub" json = { "query": """query corpUser($urn: String!) {\n corpUser(urn: $urn) {\n urn\n username\n editableInfo {\n pictureLink\n }\n info {\n firstName\n fullName\n title\n email\n }\n }\n }""", "variables": {"urn": urn}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["corpUser"] assert res_data["data"]["corpUser"]["urn"] == urn @pytest.mark.parametrize( "platform,dataset_name,env", [ ( # This one tests the bootstrap sample data. "urn:li:dataPlatform:kafka", "SampleKafkaDataset", "PROD", ), ( # This one tests BigQuery ingestion. "urn:li:dataPlatform:bigquery", "bigquery-public-data.covid19_geotab_mobility_impact.us_border_wait_times", "PROD", ), ], ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_frontend_datasets(frontend_session, platform, dataset_name, env): urn = f"urn:li:dataset:({platform},{dataset_name},{env})" json = { "query": """query getDataset($urn: String!) {\n dataset(urn: $urn) {\n urn\n name\n description\n platform {\n urn\n }\n schemaMetadata {\n name\n version\n createdAt\n }\n }\n }""", "variables": {"urn": urn}, } # Basic dataset info. response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["dataset"] assert res_data["data"]["dataset"]["urn"] == urn assert res_data["data"]["dataset"]["name"] == dataset_name assert res_data["data"]["dataset"]["platform"]["urn"] == platform @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_ingest_with_system_metadata(): response = requests.post( f"{GMS_ENDPOINT}/entities?action=ingest", headers=restli_default_headers, json={ "entity": { "value": { "com.linkedin.metadata.snapshot.CorpUserSnapshot": { "urn": "urn:li:corpuser:datahub", "aspects": [ { "com.linkedin.identity.CorpUserInfo": { "active": True, "displayName": "Data Hub", "email": "<EMAIL>", "title": "CEO", "fullName": "Data Hub", } } ], } } }, "systemMetadata": { "lastObserved": 1628097379571, "runId": "af0fe6e4-f547-11eb-81b2-acde48001122", }, }, ) response.raise_for_status() @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_ingest_with_blank_system_metadata(): response = requests.post( f"{GMS_ENDPOINT}/entities?action=ingest", headers=restli_default_headers, json={ "entity": { "value": { "com.linkedin.metadata.snapshot.CorpUserSnapshot": { "urn": "urn:li:corpuser:datahub", "aspects": [ { "com.linkedin.identity.CorpUserInfo": { "active": True, "displayName": "Data Hub", "email": "<EMAIL>", "title": "CEO", "fullName": "Data Hub", } } ], } } }, "systemMetadata": {}, }, ) response.raise_for_status() @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_ingest_without_system_metadata(): response = requests.post( f"{GMS_ENDPOINT}/entities?action=ingest", headers=restli_default_headers, json={ "entity": { "value": { "com.linkedin.metadata.snapshot.CorpUserSnapshot": { "urn": "urn:li:corpuser:datahub", "aspects": [ { "com.linkedin.identity.CorpUserInfo": { "active": True, "displayName": "Data Hub", "email": "<EMAIL>", "title": "CEO", "fullName": "Data Hub", } } ], } } }, }, ) response.raise_for_status() @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_frontend_list_policies(frontend_session): json = { "query": """query listPolicies($input: ListPoliciesInput!) {\n listPolicies(input: $input) {\n start\n count\n total\n policies {\n urn\n type\n name\n description\n state\n resources {\n type\n allResources\n resources\n }\n privileges\n actors {\n users\n groups\n allUsers\n allGroups\n resourceOwners\n }\n editable\n }\n }\n }""", "variables": { "input": { "start": "0", "count": "20", } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["listPolicies"] assert res_data["data"]["listPolicies"]["start"] == 0 assert res_data["data"]["listPolicies"]["count"] > 0 assert len(res_data["data"]["listPolicies"]["policies"]) > 0 @pytest.mark.dependency( depends=["test_healthchecks", "test_run_ingestion", "test_frontend_list_policies"] ) def test_frontend_update_policy(frontend_session): json = { "query": """mutation updatePolicy($urn: String!, $input: PolicyUpdateInput!) {\n updatePolicy(urn: $urn, input: $input) }""", "variables": { "urn": "urn:li:dataHubPolicy:7", "input": { "type": "PLATFORM", "state": "INACTIVE", "name": "Updated Platform Policy", "description": "My Metadaata Policy", "privileges": ["MANAGE_POLICIES"], "actors": { "users": ["urn:li:corpuser:datahub"], "resourceOwners": False, "allUsers": False, "allGroups": False, }, }, }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["updatePolicy"] assert res_data["data"]["updatePolicy"] == "urn:li:dataHubPolicy:7" @pytest.mark.dependency( depends=[ "test_healthchecks", "test_run_ingestion", "test_frontend_list_policies", "test_frontend_update_policy", ] ) def test_frontend_delete_policy(frontend_session): json = { "query": """mutation deletePolicy($urn: String!) {\n deletePolicy(urn: $urn) }""", "variables": {"urn": "urn:li:dataHubPolicy:7"}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() # Now verify the policy has been removed. json = { "query": """query listPolicies($input: ListPoliciesInput!) {\n listPolicies(input: $input) {\n start\n count\n total\n policies {\n urn\n }\n }\n }""", "variables": { "input": { "start": "0", "count": "20", } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["listPolicies"] # Verify that the URN is no longer in the list result = filter( lambda x: x["urn"] == "urn:li:dataHubPolicy:7", res_data["data"]["listPolicies"]["policies"], ) assert len(list(result)) == 0 @pytest.mark.dependency( depends=[ "test_healthchecks", "test_run_ingestion", "test_frontend_list_policies", "test_frontend_delete_policy", ] ) def test_frontend_create_policy(frontend_session): # Policy tests are not idempotent. If you rerun this test it will be wrong. json = { "query": """mutation createPolicy($input: PolicyUpdateInput!) {\n createPolicy(input: $input) }""", "variables": { "input": { "type": "METADATA", "name": "Test Metadata Policy", "description": "My Metadaata Policy", "state": "ACTIVE", "resources": {"type": "dataset", "allResources": True}, "privileges": ["EDIT_ENTITY_TAGS"], "actors": { "users": ["urn:li:corpuser:datahub"], "resourceOwners": False, "allUsers": False, "allGroups": False, }, } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["createPolicy"] new_urn = res_data["data"]["createPolicy"] # Sleep for eventual consistency time.sleep(3) # Now verify the policy has been added. json = { "query": """query listPolicies($input: ListPoliciesInput!) {\n listPolicies(input: $input) {\n start\n count\n total\n policies {\n urn\n }\n }\n }""", "variables": { "input": { "start": "0", "count": "20", } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["listPolicies"] # Verify that the URN appears in the list result = filter( lambda x: x["urn"] == new_urn, res_data["data"]["listPolicies"]["policies"] ) assert len(list(result)) == 1 @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_frontend_app_config(frontend_session): json = { "query": """query appConfig {\n appConfig {\n analyticsConfig {\n enabled\n }\n policiesConfig {\n enabled\n platformPrivileges {\n type\n displayName\n description\n }\n resourcePrivileges {\n resourceType\n resourceTypeDisplayName\n entityType\n privileges {\n type\n displayName\n description\n }\n }\n }\n }\n }""" } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["appConfig"] assert res_data["data"]["appConfig"]["analyticsConfig"]["enabled"] is True assert res_data["data"]["appConfig"]["policiesConfig"]["enabled"] is True @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_frontend_me_query(frontend_session): json = { "query": """query me {\n me {\n corpUser {\n urn\n username\n editableInfo {\n pictureLink\n }\n info {\n firstName\n fullName\n title\n email\n }\n }\n platformPrivileges {\n viewAnalytics managePolicies manageIdentities generatePersonalAccessTokens }\n }\n }""" } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["me"]["corpUser"]["urn"] == "urn:li:corpuser:datahub" assert res_data["data"]["me"]["platformPrivileges"]["viewAnalytics"] is True assert res_data["data"]["me"]["platformPrivileges"]["managePolicies"] is True assert res_data["data"]["me"]["platformPrivileges"]["manageIdentities"] is True assert ( res_data["data"]["me"]["platformPrivileges"]["generatePersonalAccessTokens"] is True ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_list_users(frontend_session): json = { "query": """query listUsers($input: ListUsersInput!) {\n listUsers(input: $input) {\n start\n count\n total\n users {\n urn\n type\n username\n properties {\n firstName }\n }\n }\n }""", "variables": { "input": { "start": "0", "count": "2", } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["listUsers"] assert res_data["data"]["listUsers"]["start"] == 0 assert res_data["data"]["listUsers"]["count"] == 2 assert ( len(res_data["data"]["listUsers"]["users"]) >= 2 ) # Length of default user set. @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_list_groups(frontend_session): json = { "query": """query listGroups($input: ListGroupsInput!) {\n listGroups(input: $input) {\n start\n count\n total\n groups {\n urn\n type\n name\n properties {\n displayName }\n }\n }\n }""", "variables": { "input": { "start": "0", "count": "2", } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["listGroups"] assert res_data["data"]["listGroups"]["start"] == 0 assert res_data["data"]["listGroups"]["count"] == 2 assert ( len(res_data["data"]["listGroups"]["groups"]) >= 2 ) # Length of default group set. @pytest.mark.dependency( depends=["test_healthchecks", "test_run_ingestion", "test_list_groups"] ) def test_add_remove_members_from_group(frontend_session): # Assert no group edges for user jdoe json = { "query": """query corpUser($urn: String!) {\n corpUser(urn: $urn) {\n urn\n relationships(input: { types: ["IsMemberOfGroup"], direction: OUTGOING, start: 0, count: 1 }) {\n total\n }\n }\n }""", "variables": {"urn": "urn:li:corpuser:jdoe"}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["corpUser"] assert res_data["data"]["corpUser"]["relationships"]["total"] == 0 # Add jdoe to group json = { "query": """mutation addGroupMembers($input: AddGroupMembersInput!) {\n addGroupMembers(input: $input) }""", "variables": { "input": { "groupUrn": "urn:li:corpGroup:bfoo", "userUrns": ["urn:li:corpuser:jdoe"], } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() # Sleep for edge store to be updated. Not ideal! time.sleep(3) # Verify the member has been added json = { "query": """query corpUser($urn: String!) {\n corpUser(urn: $urn) {\n urn\n relationships(input: { types: ["IsMemberOfGroup"], direction: OUTGOING, start: 0, count: 1 }) {\n total\n }\n }\n }""", "variables": {"urn": "urn:li:corpuser:jdoe"}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["corpUser"] assert res_data["data"]["corpUser"]["relationships"] assert res_data["data"]["corpUser"]["relationships"]["total"] == 1 # Now remove jdoe from the group json = { "query": """mutation removeGroupMembers($input: RemoveGroupMembersInput!) {\n removeGroupMembers(input: $input) }""", "variables": { "input": { "groupUrn": "urn:li:corpGroup:bfoo", "userUrns": ["urn:li:corpuser:jdoe"], } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() # Sleep for edge store to be updated. Not ideal! time.sleep(3) # Verify the member has been removed json = { "query": """query corpUser($urn: String!) {\n corpUser(urn: $urn) {\n urn\n relationships(input: { types: ["IsMemberOfGroup"], direction: OUTGOING, start: 0, count: 1 }) {\n total\n }\n }\n }""", "variables": {"urn": "urn:li:corpuser:jdoe"}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["corpUser"] assert res_data["data"]["corpUser"]["relationships"]["total"] == 0 @pytest.mark.dependency( depends=["test_healthchecks", "test_run_ingestion"] ) def test_update_corp_group_properties(frontend_session): group_urn = "urn:li:corpGroup:bfoo" # Update Corp Group Description json = { "query": """mutation updateCorpGroupProperties($urn: String!, $input: CorpGroupUpdateInput!) {\n updateCorpGroupProperties(urn: $urn, input: $input) { urn } }""", "variables": { "urn": group_urn, "input": { "description": "My test description", "slack": "test_group_slack", "email": "<EMAIL>", }, }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() print(res_data) assert "error" not in res_data assert res_data["data"]["updateCorpGroupProperties"] is not None # Verify the description has been updated json = { "query": """query corpGroup($urn: String!) {\n corpGroup(urn: $urn) {\n urn\n editableProperties {\n description\n slack\n email\n }\n }\n }""", "variables": {"urn": group_urn}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert "error" not in res_data assert res_data["data"] assert res_data["data"]["corpGroup"] assert res_data["data"]["corpGroup"]["editableProperties"] assert res_data["data"]["corpGroup"]["editableProperties"] == { "description": "My test description", "slack": "test_group_slack", "email": "<EMAIL>" } # Reset the editable properties json = { "query": """mutation updateCorpGroupProperties($urn: String!, $input: UpdateCorpGroupPropertiesInput!) {\n updateCorpGroupProperties(urn: $urn, input: $input) }""", "variables": { "urn": group_urn, "input": { "description": "", "slack": "", "email": "" }, }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() @pytest.mark.dependency( depends=["test_healthchecks", "test_run_ingestion", "test_update_corp_group_properties"] ) def test_update_corp_group_description(frontend_session): group_urn = "urn:li:corpGroup:bfoo" # Update Corp Group Description json = { "query": """mutation updateDescription($input: DescriptionUpdateInput!) {\n updateDescription(input: $input) }""", "variables": { "input": { "description": "My test description", "resourceUrn": group_urn }, }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() print(res_data) assert "error" not in res_data assert res_data["data"]["updateDescription"] is True # Verify the description has been updated json = { "query": """query corpGroup($urn: String!) {\n corpGroup(urn: $urn) {\n urn\n editableProperties {\n description\n }\n }\n }""", "variables": {"urn": group_urn}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert "error" not in res_data assert res_data["data"] assert res_data["data"]["corpGroup"] assert res_data["data"]["corpGroup"]["editableProperties"] assert res_data["data"]["corpGroup"]["editableProperties"]["description"] == "My test description" # Reset Corp Group Description json = { "query": """mutation updateDescription($input: DescriptionUpdateInput!) {\n updateDescription(input: $input) }""", "variables": { "input": { "description": "", "resourceUrn": group_urn }, }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() @pytest.mark.dependency( depends=[ "test_healthchecks", "test_run_ingestion", "test_list_groups", "test_add_remove_members_from_group", ] ) def test_remove_user(frontend_session): json = { "query": """mutation removeUser($urn: String!) {\n removeUser(urn: $urn) }""", "variables": {"urn": "urn:li:corpuser:jdoe"}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() json = { "query": """query corpUser($urn: String!) {\n corpUser(urn: $urn) {\n urn\n properties {\n firstName\n }\n }\n }""", "variables": {"urn": "urn:li:corpuser:jdoe"}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert "error" not in res_data assert res_data["data"] assert res_data["data"]["corpUser"] assert res_data["data"]["corpUser"]["properties"] is None @pytest.mark.dependency( depends=[ "test_healthchecks", "test_run_ingestion", "test_list_groups", "test_add_remove_members_from_group", ] ) def test_remove_group(frontend_session): json = { "query": """mutation removeGroup($urn: String!) {\n removeGroup(urn: $urn) }""", "variables": {"urn": "urn:li:corpGroup:bfoo"}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() json = { "query": """query corpGroup($urn: String!) {\n corpGroup(urn: $urn) {\n urn\n properties {\n displayName\n }\n }\n }""", "variables": {"urn": "urn:li:corpGroup:bfoo"}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["corpGroup"] assert res_data["data"]["corpGroup"]["properties"] is None @pytest.mark.dependency( depends=[ "test_healthchecks", "test_run_ingestion", "test_list_groups", "test_remove_group", ] ) def test_create_group(frontend_session): json = { "query": """mutation createGroup($input: CreateGroupInput!) {\n createGroup(input: $input) }""", "variables": { "input": { "id": "test-id", "name": "Test Group", "description": "My test group", } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() json = { "query": """query corpGroup($urn: String!) {\n corpGroup(urn: $urn) {\n urn\n properties {\n displayName\n }\n }\n }""", "variables": {"urn": "urn:li:corpGroup:test-id"}, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["corpGroup"] assert res_data["data"]["corpGroup"]["properties"]["displayName"] == "Test Group" @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_home_page_recommendations(frontend_session): min_expected_recommendation_modules = 0 json = { "query": """query listRecommendations($input: ListRecommendationsInput!) {\n listRecommendations(input: $input) { modules { title } } }""", "variables": { "input": { "userUrn": "urn:li:corpuser:datahub", "requestContext": {"scenario": "HOME"}, "limit": 5, } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() print(res_data) assert res_data assert res_data["data"] assert res_data["data"]["listRecommendations"] assert "error" not in res_data assert ( len(res_data["data"]["listRecommendations"]["modules"]) > min_expected_recommendation_modules ) @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_search_results_recommendations(frontend_session): # This test simply ensures that the recommendations endpoint does not return an error. json = { "query": """query listRecommendations($input: ListRecommendationsInput!) {\n listRecommendations(input: $input) { modules { title } }""", "variables": { "input": { "userUrn": "urn:li:corpuser:datahub", "requestContext": { "scenario": "SEARCH_RESULTS", "searchRequestContext": {"query": "asdsdsdds", "filters": []}, }, "limit": 5, } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert "error" not in res_data @pytest.mark.dependency(depends=["test_healthchecks", "test_run_ingestion"]) def test_generate_personal_access_token(frontend_session): # Test success case json = { "query": """query getAccessToken($input: GetAccessTokenInput!) {\n getAccessToken(input: $input) {\n accessToken\n }\n }""", "variables": { "input": { "type": "PERSONAL", "actorUrn": "urn:li:corpuser:datahub", "duration": "ONE_MONTH", } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert res_data["data"] assert res_data["data"]["getAccessToken"]["accessToken"] is not None assert "error" not in res_data # Test unauthenticated case json = { "query": """query getAccessToken($input: GetAccessTokenInput!) {\n accessToken\n }""", "variables": { "input": { "type": "PERSONAL", "actorUrn": "urn:li:corpuser:jsmith", "duration": "ONE_DAY", } }, } response = frontend_session.post(f"{FRONTEND_ENDPOINT}/api/v2/graphql", json=json) response.raise_for_status() res_data = response.json() assert res_data assert "errors" in res_data # Assert the request fails
modules/rtm2org.py
hwiorn/orger
241
12742048
<filename>modules/rtm2org.py #!/usr/bin/env python3 from orger import StaticView from orger.inorganic import node, link from orger.common import dt_heading from my.rtm import active_tasks class RtmView(StaticView): def get_items(self): for t in active_tasks(): yield t.uid, node( dt_heading(t.time, t.title), tags=t.tags, body='\n'.join(t.notes), ) if __name__ == '__main__': RtmView.main()
algorithms/maths/primes_sieve_of_eratosthenes.py
zhengli0817/algorithms
128
12742074
<reponame>zhengli0817/algorithms ''' Using sieve of Eratosthenes, primes(x) returns list of all primes less than x Modification: We don't need to check all even numbers, we can make the sieve excluding even numbers and adding 2 to the primes list by default. We are going to make an array of: x / 2 - 1 if number is even, else x / 2 (The -1 with even number it's to exclude the number itself) Because we just need numbers [from 3..x if x is odd] # We can get value represented at index i with (i*2 + 3) For example, for x = 10, we start with an array of x / 2 - 1 = 4 [1, 1, 1, 1] 3 5 7 9 For x = 11: [1, 1, 1, 1, 1] 3 5 7 9 11 # 11 is odd, it's included in the list With this, we have reduced the array size to a half, and complexity it's also a half now. ''' def primes(x): assert(x >= 0) # If x is even, exclude x from list (-1): sieve_size = (x//2 - 1) if x % 2 == 0 else (x//2) sieve = [1 for v in range(sieve_size)] # Sieve primes = [] # List of Primes if x >= 2: primes.append(2) # Add 2 by default for i in range(sieve_size): if sieve[i] == 1: value_at_i = i*2 + 3 primes.append(value_at_i) for j in range(i, sieve_size, value_at_i): sieve[j] = 0 return primes
codalab/scripts/compute.py
AIMultimediaLab/AI4Media-EaaS-prototype-Py2-public
333
12742078
<filename>codalab/scripts/compute.py #!/usr/bin/env python # # import web urls = ('/api/computation/(.+)', 'computation') class computation: def GET(self, id): print "ID: %s" % id if __name__ == "__main__": app = web.application(urls, globals()) app.internalerror = web.debugerror app.run()
ad_examples/timeseries/word2vec_custom.py
matwey/ad_examples
773
12742079
<filename>ad_examples/timeseries/word2vec_custom.py import numpy as np import numpy.random as rnd import tensorflow as tf from ..common.utils import Timer, logger """ This is a simplified version of TensorFlow word2vec_basic.py The primary purpose is pedagogical. Instead of calling some tensorflow functions such as tf.nn.nce_loss, we directly sample uniformly at random for negative samples. The other reason to use this is for the activity modeling example in activity_word2vec.py where the 'vocabulary' is limited to the total number of sensors (few) such that a customized implementation might be more efficient. """ class CustomWord2vec(object): def __init__(self, sensors=None, sensor2code=None, code2sensor=None, dims=100, window_size=3, neg_samples=3, n_epochs=1, learning_rate=0.001, debug=False): self.sensors = sensors self.sensor2code = sensor2code self.code2sensor = code2sensor self.dims = dims self.window_size = window_size self.neg_samples = neg_samples self.n_epochs = n_epochs self.learning_rate = learning_rate self.debug = debug self.X = self.Y = self.Z = self.W = self.embedding = self.weights = None self.normalized_embeddings = None self.similarity = None self.training_op = None def fit(self, seq): tf.set_random_seed(42) self.X = tf.placeholder(tf.int32, shape=[None]) # input 'word' self.Y = tf.placeholder(tf.int32, shape=[None]) # predicted 'word' self.Z = tf.placeholder(tf.float32, shape=[None]) # multiplier {1, -1} self.W = tf.placeholder(tf.float32, shape=[None]) # weight [0, 1.0] vocab_size = len(self.sensors) valid_examples = np.arange(0, vocab_size) valid_size = len(valid_examples) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) top_k = 4 # number of nearest neighbors for validation of similarity init = tf.random_uniform((vocab_size, self.dims), minval=-1.0, maxval=1.0, dtype=tf.float32) # the encoding matrix self.embedding = tf.Variable(init, name="embedding") norm = tf.sqrt(tf.reduce_sum(tf.square(self.embedding), 1, keepdims=True)) self.normalized_embeddings = self.embedding / norm self.valid_embeddings = tf.nn.embedding_lookup(self.normalized_embeddings, valid_dataset) self.similarity = tf.matmul( self.valid_embeddings, self.normalized_embeddings, transpose_b=True) w_i = tf.nn.embedding_lookup(self.embedding, self.X) # the 'output' matrix, or the coefficients of logistic regression # for each class (words). This will be ignored once the embeddings # have been computed self.weights = tf.Variable(init, name="weights") # weights self.b = tf.Variable(tf.zeros(vocab_size), name="b", dtype=tf.float32) # biases w_o = tf.nn.embedding_lookup(self.weights, self.Y) w_b = tf.nn.embedding_lookup(self.b, self.Y) with tf.name_scope("loss"): """ Refer to Equation 4 in: Distributed Representations of Words and Phrases and their Compositionality, by Mikolov et. al., 2014 loss = log(sigmoid(W_i.W_pos)) + E[log(sigmoid(-W_i.W_neg))] Note: The second term above (E[.]) is an 'expectation'. To compute the expectation, we multiply by the self.W. To distinguish between pos/neg examples, we multiply by self.Z """ sim = tf.reduce_sum(tf.multiply(w_i, w_o), axis=1) + w_b sim_sigmoids = tf.log(tf.nn.sigmoid(tf.multiply(sim, self.Z))) log_lik_loss = -tf.reduce_mean(tf.multiply(sim_sigmoids, self.W)) optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) self.training_op = optimizer.minimize(log_lik_loss) init = tf.global_variables_initializer() self.session = tf.Session() self.session.run(init) timer = Timer() i = 0 for epoch in range(self.n_epochs): for x, y, z, w in self.get_batches_skip_gram(seq, window_size=self.window_size, neg_samples=self.neg_samples): # logger.debug(np.hstack([y, x, z, w])) sim_v, log_lik_loss_v, _ = self.session.run([sim, log_lik_loss, self.training_op], feed_dict={self.X: x, self.Y: y, self.Z: z, self.W: w}) if self.debug and (i == 0 or (i + 1) % 5000 == 0): # the original word2vec code for logging the most similar # words for a particular word logger.debug("i: %d, log_lik_loss_v: %f" % (i, log_lik_loss_v)) sim_valid = self.session.run(self.similarity) for j in range(valid_size): valid_word = self.code2sensor[valid_examples[j]] nearest = (-sim_valid[j, :]).argsort()[1:top_k + 1] log_str = 'Nearest to %s:' % valid_word for k in range(top_k): close_word = self.code2sensor[nearest[k]] log_str = '%s %s,' % (log_str, close_word) logger.debug(log_str) if (i + 1) % 5000 == 0: # logger.debug("sim_v: %s\n%s" % (str(sim_v.shape), str(sim_v))) logger.debug("processed %d" % (i + 1)) # break # early terminate for DEBUG only i += 1 logger.debug(timer.message("Completed epoch %d in" % epoch)) def get_embeddings(self, normalized=True): return self.session.run(self.normalized_embeddings) if normalized \ else self.session.run(self.embedding) def get_batches_skip_gram(self, seq, window_size=3, skip_size=1, n_contexts=10, neg_samples=3): """ Skip-gram model for word2vec The max #samples per batch will be: n_contexts x ((window_size - 1) + neg_samples) :param window_size: int length of each context window. Must be > 1 and must be an odd number. :param skip_size: int :param n_contexts: int Number of context windows per batch. :param neg_samples: int Number of negative samples per window :return: """ if window_size <= 1 or window_size % 2 == 0: raise ValueError("window_size must be greater than 1 and must be odd") n = len(seq) s = window_size // 2 all_sensors = set(self.code2sensor.keys()) st = 0 sz = (window_size - 1) + neg_samples # number of samples per context window batch_size = n_contexts * sz x = y = z = w = None for i in range(s, n - s, skip_size): if i + skip_size >= n: logger.debug("i: %d, n: %d, s: %d, sz: %d" % (i, n, s, sz)) if st == 0: x = np.zeros(batch_size, dtype=np.int32) y = np.zeros(batch_size, dtype=np.int32) z = np.zeros(batch_size, dtype=np.float32) w = np.zeros(batch_size, dtype=np.float32) w_in = seq[i] # w_in will be same for both positive and negative samples x[st:(st + sz)] = w_in z[st:(st + 2 * s)] = 1 z[(st + 2 * s):(st + sz)] = -1 w[st:(st + 2 * s)] = 1 # weights for positive samples w[(st + 2 * s):(st + sz)] = 1. / neg_samples # weights for negative samples # first, populate the positive examples y[st:(st + s)] = seq[(i - s):i] y[(st + s):(st + 2 * s)] = seq[(i + 1):(i + s + 1)] # Now, sample a few negative examples... # sample a few sensor ids uniformly at random from those # which do not occur in the current context curr = set(seq[(i - s):(i + s)]) # sensors in current context window non_context = list(all_sensors - curr) # sensors *not* in current context window np.random.shuffle(non_context) # random subsample y[(st + 2 * s):(st + sz)] = non_context[0:neg_samples] st += sz if st >= batch_size: yield x, y, z, w st = 0
removestar/tests/test_removestar.py
asmeurer/removestar
102
12742089
from pyflakes.checker import Checker import sys import ast import os from pathlib import Path from filecmp import dircmp import subprocess from pytest import raises import pytest from ..removestar import (names_to_replace, star_imports, get_names, get_names_from_dir, get_names_dynamically, fix_code, get_mod_filename, replace_imports, is_noqa_comment_allowing_star_import, ExternalModuleError) code_mod1 = """\ a = 1 aa = 2 b = 3 """ mod1_names = {'a', 'aa', 'b'} code_mod2 = """\ b = 1 c = 2 cc = 3 """ mod2_names = {'b', 'c', 'cc'} code_mod3 = """\ name = 0 """ mod3_names = {'name'} code_mod4 = """\ from .mod1 import * from .mod2 import * from .mod3 import name def func(): return a + b + c + d + d + name """ mod4_names = {'a', 'aa', 'b', 'c', 'cc', 'name', 'func'} code_mod4_fixed = """\ from .mod1 import a from .mod2 import b, c from .mod3 import name def func(): return a + b + c + d + d + name """ code_mod5 = """\ from module.mod1 import * from module.mod2 import * from module.mod3 import name def func(): return a + b + c + d + d + name """ mod5_names = {'a', 'aa', 'b', 'c', 'cc', 'name', 'func'} code_mod5_fixed = """\ from module.mod1 import a from module.mod2 import b, c from module.mod3 import name def func(): return a + b + c + d + d + name """ code_mod6 = """\ from os.path import * isfile(join('a', 'b')) """ code_mod6_fixed = """\ from os.path import isfile, join isfile(join('a', 'b')) """ code_mod7 = """\ from .mod6 import * """ code_mod7_fixed = "" mod7_names = {'isfile', 'join'} code_mod8 = """\ a = 1 b = 2 c = 3 __all__ = ['a'] __all__ += ['b'] """ mod8_names = {'a', 'b'} code_mod9 = """\ from .mod8 import * def func(): return a + b """ code_mod9_fixed = """\ from .mod8 import a, b def func(): return a + b """ mod9_names = {'a', 'b', 'func'} code_submod1 = """\ from ..mod1 import * from ..mod2 import * from ..mod3 import name from .submod3 import * def func(): return a + b + c + d + d + e + name """ submod1_names = {'a', 'aa', 'b', 'c', 'cc', 'e', 'name', 'func'} code_submod1_fixed = """\ from ..mod1 import a from ..mod2 import b, c from ..mod3 import name from .submod3 import e def func(): return a + b + c + d + d + e + name """ code_submod2 = """\ from module.mod1 import * from module.mod2 import * from module.mod3 import name from module.submod.submod3 import * def func(): return a + b + c + d + d + e + name """ submod2_names = {'a', 'aa', 'b', 'c', 'cc', 'e', 'name', 'func'} code_submod2_fixed = """\ from module.mod1 import a from module.mod2 import b, c from module.mod3 import name from module.submod.submod3 import e def func(): return a + b + c + d + d + e + name """ code_submod3 = """\ e = 1 """ submod3_names = {'e'} code_submod4 = """\ from . import * func() """ submod4_names = {'func'} code_submod4_fixed = """\ from . import func func() """ code_submod_init = """\ from .submod1 import func """ submod_names = {'func'} # An actual import adds submod1 and submod3 to the submod namespace, since # they are imported submodule names. The static code does not yet support # these. If any other imports happen first, like 'import submod.submod2', # those would be included as well. submod_dynamic_names = {'submod1', 'submod3', 'func'} code_bad_syntax = """\ from mod """ code_mod_unfixable = """\ from .mod1 import *; from .mod2 import\t* def func(): return a + c """ mod_unfixable_names = {'a', 'aa', 'b', 'c', 'cc', 'func'} code_mod_commented_unused_star = """\ from .mod1 import * # comment about mod1 from .mod2 import * # noqa """ mod_commented_unused_star_names = {'a', 'aa', 'b', 'c', 'cc'} code_mod_commented_unused_star_fixed = """\ # comment about mod1 from .mod2 import * # noqa """ code_mod_commented_star = """\ from .mod1 import * # noqa from .mod2 import * # noqa: F401 from .mod3 import * # generic comment def func(): return a + c + name """ mod_commented_star_names = {'a', 'aa', 'b', 'c', 'cc', 'name', 'func'} code_mod_commented_star_fixed = """\ from .mod1 import * # noqa from .mod2 import * # noqa: F401 from .mod3 import name # generic comment def func(): return a + c + name """ code_submod_recursive_init = """\ from .submod1 import * """ submod_recursive_names = {'a', 'b'} submod_recursive_dynamic_names = {'submod1', 'a', 'b'} code_submod_recursive_submod1 = """\ a = 1 b = 2 """ submod_recursive_submod1_names = {'a', 'b'} code_submod_recursive_submod2 = """\ from . import * def func(): return a + 1 """ submod_recursive_submod2_names = {'a', 'b', 'func'} submod_recursive_submod2_dynamic_names = {'a', 'b', 'func', 'submod1'} code_submod_recursive_submod2_fixed = """\ from . import a def func(): return a + 1 """ def create_module(module): os.makedirs(module) with open(module/'mod1.py', 'w') as f: f.write(code_mod1) with open(module/'mod2.py', 'w') as f: f.write(code_mod2) with open(module/'mod3.py', 'w') as f: f.write(code_mod3) with open(module/'mod4.py', 'w') as f: f.write(code_mod4) with open(module/'mod5.py', 'w') as f: f.write(code_mod5) with open(module/'mod6.py', 'w') as f: f.write(code_mod6) with open(module/'mod7.py', 'w') as f: f.write(code_mod7) with open(module/'mod8.py', 'w') as f: f.write(code_mod8) with open(module/'mod9.py', 'w') as f: f.write(code_mod9) with open(module/'__init__.py', 'w') as f: pass with open(module/'mod_bad.py', 'w') as f: f.write(code_bad_syntax) with open(module/'mod_unfixable.py', 'w') as f: f.write(code_mod_unfixable) with open(module/'mod_commented_unused_star.py', 'w') as f: f.write(code_mod_commented_unused_star) with open(module/'mod_commented_star.py', 'w') as f: f.write(code_mod_commented_star) submod = module/'submod' os.makedirs(submod) with open(submod/'__init__.py', 'w') as f: f.write(code_submod_init) with open(submod/'submod1.py', 'w') as f: f.write(code_submod1) with open(submod/'submod2.py', 'w') as f: f.write(code_submod2) with open(submod/'submod3.py', 'w') as f: f.write(code_submod3) with open(submod/'submod4.py', 'w') as f: f.write(code_submod4) submod_recursive = module/'submod_recursive' os.makedirs(submod_recursive) with open(submod_recursive/'__init__.py', 'w') as f: f.write(code_submod_recursive_init) with open(submod_recursive/'submod1.py', 'w') as f: f.write(code_submod_recursive_submod1) with open(submod_recursive/'submod2.py', 'w') as f: f.write(code_submod_recursive_submod2) def test_names_to_replace(): for code in [code_mod1, code_mod2, code_mod3, code_mod7, code_mod8, code_submod3, code_submod_init, code_submod_recursive_init, code_submod_recursive_submod1]: names = names_to_replace(Checker(ast.parse(code))) assert names == set() for code in [code_mod4, code_mod5]: names = names_to_replace(Checker(ast.parse(code))) assert names == {'a', 'b', 'c', 'd'} for code in [code_submod1, code_submod2]: names = names_to_replace(Checker(ast.parse(code))) assert names == {'a', 'b', 'c', 'd', 'e'} names = names_to_replace(Checker(ast.parse(code_submod4))) assert names == {'func'} names = names_to_replace(Checker(ast.parse(code_mod6))) assert names == {'isfile', 'join'} names = names_to_replace(Checker(ast.parse(code_submod_recursive_submod2))) assert names == {'a'} names = names_to_replace(Checker(ast.parse(code_mod9))) assert names == {'a', 'b'} names = names_to_replace(Checker(ast.parse(code_mod_unfixable))) assert names == {'a', 'c'} names = names_to_replace(Checker(ast.parse(code_mod_commented_unused_star))) assert names == set() names = names_to_replace(Checker(ast.parse(code_mod_commented_star))) assert names == {'a', 'c', 'name'} def test_star_imports(): for code in [code_mod1, code_mod2, code_mod3, code_mod8, code_submod3, code_submod_init, code_submod_recursive_submod1]: stars = star_imports(Checker(ast.parse(code))) assert stars == [] stars = star_imports(Checker(ast.parse(code_mod4))) assert stars == ['.mod1', '.mod2'] stars = star_imports(Checker(ast.parse(code_mod5))) assert stars == ['module.mod1', 'module.mod2'] stars = star_imports(Checker(ast.parse(code_mod6))) assert stars == ['os.path'] stars = star_imports(Checker(ast.parse(code_mod7))) assert stars == ['.mod6'] stars = star_imports(Checker(ast.parse(code_mod9))) assert stars == ['.mod8'] stars = star_imports(Checker(ast.parse(code_submod1))) assert stars == ['..mod1', '..mod2', '.submod3'] stars = star_imports(Checker(ast.parse(code_submod2))) assert stars == ['module.mod1', 'module.mod2', 'module.submod.submod3'] for code in [code_submod4, code_submod_recursive_submod2]: stars = star_imports(Checker(ast.parse(code))) assert stars == ['.'] stars = star_imports(Checker(ast.parse(code_submod_recursive_init))) assert stars == ['.submod1'] stars = star_imports(Checker(ast.parse(code_mod_unfixable))) assert stars == ['.mod1', '.mod2'] stars = star_imports(Checker(ast.parse(code_mod_commented_unused_star))) assert stars == ['.mod1', '.mod2'] stars = star_imports(Checker(ast.parse(code_mod_commented_star))) assert stars == ['.mod1', '.mod2', '.mod3'] def test_get_names(): names = get_names(code_mod1) assert names == {'a', 'aa', 'b'} names = get_names(code_mod2) assert names == {'b', 'c', 'cc'} names = get_names(code_mod3) assert names == {'name'} names = get_names(code_mod4) # TODO: Remove the imported name 'name' assert names == {'.mod1.*', '.mod2.*', 'name', 'func'} names = get_names(code_mod5) # TODO: Remove the imported name 'name' assert names == {'module.mod1.*', 'module.mod2.*', 'name', 'func'} names = get_names(code_mod6) assert names == {'os.path.*'} names = get_names(code_submod_init) assert names == {'func'} names = get_names(code_submod1) # TODO: Remove the imported name 'name' assert names == {'..mod1.*', '..mod2.*', '.submod3.*', 'name', 'func'} names = get_names(code_submod2) # TODO: Remove the imported name 'name' assert names == {'module.mod1.*', 'module.mod2.*', 'module.submod.submod3.*', 'name', 'func'} names = get_names(code_submod3) assert names == {'e'} names = get_names(code_submod4) assert names == {'..*'} raises(SyntaxError, lambda: get_names(code_bad_syntax)) names = get_names(code_mod_unfixable) assert names == {'.mod1.*', '.mod2.*', 'func'} names = get_names(code_mod_commented_unused_star) assert names == {'.mod1.*', '.mod2.*'} names = get_names(code_mod_commented_star) assert names == {'.mod1.*', '.mod2.*', '.mod3.*', 'func'} names = get_names(code_submod_recursive_init) assert names == {'.submod1.*'} names = get_names(code_submod_recursive_submod1) assert names == {'a', 'b'} names = get_names(code_submod_recursive_submod2) assert names == {'..*', 'func'} @pytest.mark.parametrize('relative', [True, False]) def test_get_names_from_dir(tmpdir, relative): directory = tmpdir/'module' create_module(directory) if relative: chdir = tmpdir directory = Path('module') else: chdir = '.' curdir = os.path.abspath('.') try: os.chdir(chdir) assert get_names_from_dir('.mod1', directory) == mod1_names assert get_names_from_dir('.mod2', directory) == mod2_names assert get_names_from_dir('.mod3', directory) == mod3_names assert get_names_from_dir('.mod4', directory) == mod4_names assert get_names_from_dir('.mod5', directory) == mod5_names assert get_names_from_dir('.mod6', directory) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('.mod6', directory, allow_dynamic=False)) assert get_names_from_dir('.mod7', directory) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('.mod7', directory, allow_dynamic=False)) assert get_names_from_dir('.mod8', directory) == mod8_names assert get_names_from_dir('.mod9', directory) == mod9_names assert get_names_from_dir('.mod_unfixable', directory) == mod_unfixable_names assert get_names_from_dir('.mod_commented_unused_star', directory) == mod_commented_unused_star_names assert get_names_from_dir('.mod_commented_star', directory) == mod_commented_star_names assert get_names_from_dir('.submod', directory) == submod_names assert get_names_from_dir('.submod.submod1', directory) == submod1_names assert get_names_from_dir('.submod.submod2', directory) == submod2_names assert get_names_from_dir('.submod.submod3', directory) == submod3_names assert get_names_from_dir('.submod.submod4', directory) == submod4_names assert get_names_from_dir('.submod_recursive', directory) == submod_recursive_names assert get_names_from_dir('.submod_recursive.submod1', directory) == submod_recursive_submod1_names assert get_names_from_dir('.submod_recursive.submod2', directory) == submod_recursive_submod2_names assert get_names_from_dir('module.mod1', directory) == mod1_names assert get_names_from_dir('module.mod2', directory) == mod2_names assert get_names_from_dir('module.mod3', directory) == mod3_names assert get_names_from_dir('module.mod4', directory) == mod4_names assert get_names_from_dir('module.mod5', directory) == mod5_names assert get_names_from_dir('module.mod6', directory) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('module.mod6', directory, allow_dynamic=False)) assert get_names_from_dir('module.mod7', directory) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('module.mod7', directory, allow_dynamic=False)) assert get_names_from_dir('module.mod8', directory) == mod8_names assert get_names_from_dir('module.mod9', directory) == mod9_names assert get_names_from_dir('module.mod_unfixable', directory) == mod_unfixable_names assert get_names_from_dir('module.mod_commented_unused_star', directory) == mod_commented_unused_star_names assert get_names_from_dir('module.mod_commented_star', directory) == mod_commented_star_names assert get_names_from_dir('module.submod', directory) == submod_names assert get_names_from_dir('module.submod.submod1', directory) == submod1_names assert get_names_from_dir('module.submod.submod2', directory) == submod2_names assert get_names_from_dir('module.submod.submod3', directory) == submod3_names assert get_names_from_dir('module.submod.submod4', directory) == submod4_names assert get_names_from_dir('module.submod_recursive', directory) == submod_recursive_names assert get_names_from_dir('module.submod_recursive.submod1', directory) == submod_recursive_submod1_names assert get_names_from_dir('module.submod_recursive.submod2', directory) == submod_recursive_submod2_names submod = directory/'submod' assert get_names_from_dir('..submod', submod) == submod_names assert get_names_from_dir('.', submod) == submod_names assert get_names_from_dir('.submod1', submod) == submod1_names assert get_names_from_dir('.submod2', submod) == submod2_names assert get_names_from_dir('.submod3', submod) == submod3_names assert get_names_from_dir('.submod4', submod) == submod4_names assert get_names_from_dir('..mod1', submod) == mod1_names assert get_names_from_dir('..mod2', submod) == mod2_names assert get_names_from_dir('..mod3', submod) == mod3_names assert get_names_from_dir('..mod4', submod) == mod4_names assert get_names_from_dir('..mod5', submod) == mod5_names assert get_names_from_dir('..mod6', submod) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('..mod6', submod, allow_dynamic=False)) assert get_names_from_dir('..mod7', submod) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('..mod7', submod, allow_dynamic=False)) assert get_names_from_dir('..mod8', submod) == mod8_names assert get_names_from_dir('..mod9', submod) == mod9_names assert get_names_from_dir('..mod_unfixable', submod) == mod_unfixable_names assert get_names_from_dir('..mod_commented_unused_star', submod) == mod_commented_unused_star_names assert get_names_from_dir('..mod_commented_star', submod) == mod_commented_star_names assert get_names_from_dir('..submod_recursive', submod) == submod_recursive_names assert get_names_from_dir('..submod_recursive.submod1', submod) == submod_recursive_submod1_names assert get_names_from_dir('..submod_recursive.submod2', submod) == submod_recursive_submod2_names assert get_names_from_dir('module.mod1', submod) == mod1_names assert get_names_from_dir('module.mod2', submod) == mod2_names assert get_names_from_dir('module.mod3', submod) == mod3_names assert get_names_from_dir('module.mod4', submod) == mod4_names assert get_names_from_dir('module.mod5', submod) == mod5_names assert get_names_from_dir('module.mod6', submod) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('module.mod6', submod, allow_dynamic=False)) assert get_names_from_dir('module.mod7', submod) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('module.mod7', submod, allow_dynamic=False)) assert get_names_from_dir('module.mod8', submod) == mod8_names assert get_names_from_dir('module.mod9', submod) == mod9_names assert get_names_from_dir('module.mod_unfixable', submod) == mod_unfixable_names assert get_names_from_dir('module.mod_commented_unused_star', submod) == mod_commented_unused_star_names assert get_names_from_dir('module.mod_commented_star', submod) == mod_commented_star_names assert get_names_from_dir('module.submod', submod) == submod_names assert get_names_from_dir('module.submod.submod1', submod) == submod1_names assert get_names_from_dir('module.submod.submod2', submod) == submod2_names assert get_names_from_dir('module.submod.submod3', submod) == submod3_names assert get_names_from_dir('module.submod.submod4', submod) == submod4_names assert get_names_from_dir('module.submod_recursive', submod) == submod_recursive_names assert get_names_from_dir('module.submod_recursive.submod1', submod) == submod_recursive_submod1_names assert get_names_from_dir('module.submod_recursive.submod2', submod) == submod_recursive_submod2_names submod_recursive = directory/'submod_recursive' assert get_names_from_dir('..submod', submod_recursive) == submod_names assert get_names_from_dir('..submod.submod1', submod_recursive) == submod1_names assert get_names_from_dir('..submod.submod2', submod_recursive) == submod2_names assert get_names_from_dir('..submod.submod3', submod_recursive) == submod3_names assert get_names_from_dir('..submod.submod4', submod_recursive) == submod4_names assert get_names_from_dir('..mod1', submod_recursive) == mod1_names assert get_names_from_dir('..mod2', submod_recursive) == mod2_names assert get_names_from_dir('..mod3', submod_recursive) == mod3_names assert get_names_from_dir('..mod4', submod_recursive) == mod4_names assert get_names_from_dir('..mod5', submod_recursive) == mod5_names assert get_names_from_dir('..mod6', submod_recursive) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('..mod6', submod_recursive, allow_dynamic=False)) assert get_names_from_dir('..mod7', submod_recursive) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('..mod7', submod_recursive, allow_dynamic=False)) assert get_names_from_dir('..mod8', submod_recursive) == mod8_names assert get_names_from_dir('..mod9', submod_recursive) == mod9_names assert get_names_from_dir('..mod_unfixable', submod_recursive) == mod_unfixable_names assert get_names_from_dir('..mod_commented_unused_star', submod_recursive) == mod_commented_unused_star_names assert get_names_from_dir('..mod_commented_star', submod_recursive) == mod_commented_star_names assert get_names_from_dir('.', submod_recursive) == submod_recursive_names assert get_names_from_dir('..submod_recursive', submod_recursive) == submod_recursive_names assert get_names_from_dir('.submod1', submod_recursive) == submod_recursive_submod1_names assert get_names_from_dir('.submod2', submod_recursive) == submod_recursive_submod2_names assert get_names_from_dir('module.mod1', submod_recursive) == mod1_names assert get_names_from_dir('module.mod2', submod_recursive) == mod2_names assert get_names_from_dir('module.mod3', submod_recursive) == mod3_names assert get_names_from_dir('module.mod4', submod_recursive) == mod4_names assert get_names_from_dir('module.mod5', submod_recursive) == mod5_names assert get_names_from_dir('module.mod6', submod_recursive) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('module.mod6', submod, allow_dynamic=False)) assert get_names_from_dir('module.mod7', submod_recursive) == get_names_dynamically('os.path') raises(NotImplementedError, lambda: get_names_from_dir('module.mod7', submod, allow_dynamic=False)) assert get_names_from_dir('module.mod8', submod_recursive) == mod8_names assert get_names_from_dir('module.mod9', submod_recursive) == mod9_names assert get_names_from_dir('module.mod_unfixable', submod_recursive) == mod_unfixable_names assert get_names_from_dir('module.mod_commented_unused_star', submod) == mod_commented_unused_star_names assert get_names_from_dir('module.mod_commented_star', submod) == mod_commented_star_names assert get_names_from_dir('module.submod', submod_recursive) == submod_names assert get_names_from_dir('module.submod.submod1', submod_recursive) == submod1_names assert get_names_from_dir('module.submod.submod2', submod_recursive) == submod2_names assert get_names_from_dir('module.submod.submod3', submod_recursive) == submod3_names assert get_names_from_dir('module.submod.submod4', submod_recursive) == submod4_names assert get_names_from_dir('module.submod_recursive', submod_recursive) == submod_recursive_names assert get_names_from_dir('module.submod_recursive.submod1', submod_recursive) == submod_recursive_submod1_names assert get_names_from_dir('module.submod_recursive.submod2', submod_recursive) == submod_recursive_submod2_names raises(ExternalModuleError, lambda: get_names_from_dir('os.path', directory)) raises(ExternalModuleError, lambda: get_names_from_dir('os.path', submod)) raises(RuntimeError, lambda: get_names_from_dir('.mod_bad', directory)) raises(RuntimeError, lambda: get_names_from_dir('module.mod_bad', directory)) raises(RuntimeError, lambda: get_names_from_dir('.mod_doesnt_exist', directory)) raises(RuntimeError, lambda: get_names_from_dir('module.mod_doesnt_exist', directory)) finally: os.chdir(curdir) def test_get_names_dynamically(tmpdir): os_path = get_names_dynamically('os.path') assert 'isfile' in os_path assert 'join' in os_path directory = tmpdir/'module' create_module(directory) sys_path = sys.path try: sys.path.insert(0, str(tmpdir)) assert get_names_dynamically('module.mod1') == mod1_names assert get_names_dynamically('module.mod2') == mod2_names assert get_names_dynamically('module.mod3') == mod3_names assert get_names_dynamically('module.mod4') == mod4_names assert get_names_dynamically('module.mod5') == mod5_names assert get_names_dynamically('module.mod6') == os_path assert get_names_dynamically('module.mod7') == os_path assert get_names_dynamically('module.mod8') == mod8_names assert get_names_dynamically('module.mod9') == mod9_names assert get_names_dynamically('module.mod_unfixable') == mod_unfixable_names assert get_names_dynamically('module.mod_commented_unused_star') == mod_commented_unused_star_names assert get_names_dynamically('module.mod_commented_star') == mod_commented_star_names assert get_names_dynamically('module.submod') == submod_dynamic_names assert get_names_dynamically('module.submod.submod1') == submod1_names assert get_names_dynamically('module.submod.submod2') == submod2_names assert get_names_dynamically('module.submod.submod3') == submod3_names raises(RuntimeError, lambda: get_names_dynamically('module.submod.submod4')) assert get_names_dynamically('module.submod_recursive') == submod_recursive_dynamic_names assert get_names_dynamically('module.submod_recursive.submod1') == submod_recursive_submod1_names assert get_names_dynamically('module.submod_recursive.submod2') == submod_recursive_submod2_dynamic_names # Doesn't actually import because of the undefined name 'd' # assert get_names_dynamically('module.submod.submod4') == submod4_names finally: sys.path = sys_path raises(RuntimeError, lambda: get_names_dynamically('notarealmodule')) def test_fix_code(tmpdir, capsys): # TODO: Test the verbose and quiet flags directory = tmpdir/'module' create_module(directory) assert fix_code(code_mod1, file=directory/'mod1.py') == code_mod1 out, err = capsys.readouterr() assert not out assert not err assert fix_code(code_mod2, file=directory/'mod2.py') == code_mod2 out, err = capsys.readouterr() assert not out assert not err assert fix_code(code_mod3, file=directory/'mod3.py') == code_mod3 out, err = capsys.readouterr() assert not out assert not err assert fix_code(code_mod4, file=directory/'mod4.py') == code_mod4_fixed out, err = capsys.readouterr() assert not out assert 'Warning' in err assert str(directory/'mod4.py') in err assert "'b'" in err assert "'a'" not in err assert "'.mod1'" in err assert "'.mod2'" in err assert "Using '.mod2'" in err assert "could not find import for 'd'" in err assert fix_code(code_mod5, file=directory/'mod5.py') == code_mod5_fixed out, err = capsys.readouterr() assert not out assert 'Warning' in err assert str(directory/'mod5.py') in err assert "'b'" in err assert "'a'" not in err assert "'module.mod1'" in err assert "'module.mod2'" in err assert "Using 'module.mod2'" in err assert "could not find import for 'd'" in err assert fix_code(code_mod6, file=directory/'mod6.py') == code_mod6_fixed out, err = capsys.readouterr() assert not out assert not err assert raises(NotImplementedError, lambda: fix_code(code_mod6, file=directory/'mod6.py', allow_dynamic=False)) assert fix_code(code_mod7, file=directory/'mod7.py') == code_mod7_fixed out, err = capsys.readouterr() assert not out assert not err assert raises(NotImplementedError, lambda: fix_code(code_mod7, file=directory/'mod7.py', allow_dynamic=False)) assert fix_code(code_mod8, file=directory/'mod8.py') == code_mod8 out, err = capsys.readouterr() assert not out assert not err assert fix_code(code_mod9, file=directory/'mod9.py') == code_mod9_fixed out, err = capsys.readouterr() assert not out assert not err assert fix_code(code_mod_unfixable, file=directory/'mod_unfixable.py') == code_mod_unfixable out, err = capsys.readouterr() assert not out assert 'Warning' in err assert 'Could not find the star imports for' in err for mod in ["'.mod1'", "'.mod2'"]: assert mod in err assert fix_code(code_mod_commented_unused_star, file=directory/'mod_commented_unused_star.py') == code_mod_commented_unused_star_fixed out, err = capsys.readouterr() assert not out assert 'Warning' in err assert ("The removed star import statement for '.mod1' had an inline " "comment which may not make sense without the import") in err assert fix_code(code_mod_commented_star, file=directory/'mod_commented_star.py') == code_mod_commented_star_fixed out, err = capsys.readouterr() assert not out assert not err submod = directory/'submod' assert fix_code(code_submod_init, file=submod/'__init__.py') == code_submod_init out, err = capsys.readouterr() assert not out assert not err assert fix_code(code_submod1, file=submod/'submod1.py') == code_submod1_fixed out, err = capsys.readouterr() assert not out assert 'Warning' in err assert str(submod/'submod1.py') in err assert "'b'" in err assert "'a'" not in err assert "'..mod1'" in err assert "'..mod2'" in err assert "'.mod1'" not in err assert "'.mod2'" not in err assert "Using '..mod2'" in err assert "could not find import for 'd'" in err assert fix_code(code_submod2, file=submod/'submod2.py') == code_submod2_fixed out, err = capsys.readouterr() assert not out assert 'Warning' in err assert str(submod/'submod2.py') in err assert "'b'" in err assert "'a'" not in err assert "'module.mod1'" in err assert "'module.mod2'" in err assert "'module.submod.submod3'" not in err assert "'module.submod.mod1'" not in err assert "'module.submod.mod2'" not in err assert "Using 'module.mod2'" in err assert "could not find import for 'd'" in err assert fix_code(code_submod3, file=submod/'submod3.py') == code_submod3 out, err = capsys.readouterr() assert not out assert not err assert fix_code(code_submod4, file=submod/'submod4.py') == code_submod4_fixed out, err = capsys.readouterr() assert not out assert not err submod_recursive = directory/'submod_recursive' # TODO: It's not actually useful to test this assert fix_code(code_submod_recursive_init, file=submod_recursive/'__init__.py') == "" out, err = capsys.readouterr() assert not out assert not err assert fix_code(code_submod_recursive_submod1, file=submod_recursive/'submod1.py') == code_submod_recursive_submod1 out, err = capsys.readouterr() assert not out assert not err assert fix_code(code_submod_recursive_submod2, file=submod_recursive/'submod2.py') == code_submod_recursive_submod2_fixed out, err = capsys.readouterr() assert not out assert not err raises(RuntimeError, lambda: fix_code(code_bad_syntax, file=directory/'mod_bad.py')) out, err = capsys.readouterr() assert not out assert not err def touch(f): with open(f, 'w'): pass @pytest.mark.parametrize('relative', [True, False]) def test_get_mod_filename(tmpdir, relative): if relative: chdir = tmpdir tmpdir = Path('.') else: chdir = '.' curdir = os.path.abspath('.') try: os.chdir(chdir) module = tmpdir/'module' os.makedirs(module) touch(module/'__init__.py') touch(module/'mod1.py') submod = module/'submod' os.makedirs(submod) touch(submod/'__init__.py') touch(submod/'mod1.py') subsubmod = submod/'submod' os.makedirs(subsubmod) touch(subsubmod/'__init__.py') touch(subsubmod/'mod1.py') def _test(mod, directory, expected): result = os.path.abspath(get_mod_filename(mod, directory)) assert result == os.path.abspath(expected) _test('.', module, module/'__init__.py') _test('.mod1', module, module/'mod1.py') _test('.submod', module, submod/'__init__.py') _test('.submod.mod1', module, submod/'mod1.py') _test('.submod.submod', module, subsubmod/'__init__.py') _test('.submod.submod.mod1', module, subsubmod/'mod1.py') raises(RuntimeError, lambda: get_mod_filename('.notreal', module)) _test('module', module, module/'__init__.py') _test('module.mod1', module, module/'mod1.py') _test('module.submod', module, submod/'__init__.py') _test('module.submod.mod1', module, submod/'mod1.py') _test('module.submod.submod', module, subsubmod/'__init__.py') _test('module.submod.submod.mod1', module, subsubmod/'mod1.py') raises(RuntimeError, lambda: get_mod_filename('module.notreal', module)) raises(RuntimeError, lambda: get_mod_filename('module.submod.notreal', module)) raises(ExternalModuleError, lambda: get_mod_filename('notreal.notreal', module)) _test('..', submod, module/'__init__.py') _test('..mod1', submod, module/'mod1.py') _test('.', submod, submod/'__init__.py') _test('.mod1', submod, submod/'mod1.py') _test('..submod', submod, submod/'__init__.py') _test('..submod.mod1', submod, submod/'mod1.py') _test('.submod', submod, subsubmod/'__init__.py') _test('.submod.mod1', submod, subsubmod/'mod1.py') _test('..submod.submod', submod, subsubmod/'__init__.py') _test('..submod.submod.mod1', submod, subsubmod/'mod1.py') raises(RuntimeError, lambda: get_mod_filename('.notreal', submod)) raises(RuntimeError, lambda: get_mod_filename('..notreal', submod)) _test('module', submod, module/'__init__.py') _test('module.mod1', submod, module/'mod1.py') _test('module.submod', submod, submod/'__init__.py') _test('module.submod.mod1', submod, submod/'mod1.py') _test('module.submod.submod', submod, subsubmod/'__init__.py') _test('module.submod.submod.mod1', submod, subsubmod/'mod1.py') raises(RuntimeError, lambda: get_mod_filename('module.notreal', submod)) raises(RuntimeError, lambda: get_mod_filename('module.submod.notreal', submod)) raises(ExternalModuleError, lambda: get_mod_filename('notreal.notreal', submod)) _test('...', subsubmod, module/'__init__.py') _test('...mod1', subsubmod, module/'mod1.py') _test('..', subsubmod, submod/'__init__.py') _test('..mod1', subsubmod, submod/'mod1.py') _test('...submod', subsubmod, submod/'__init__.py') _test('...submod.mod1', subsubmod, submod/'mod1.py') _test('.', subsubmod, subsubmod/'__init__.py') _test('.mod1', subsubmod, subsubmod/'mod1.py') _test('...submod.submod', subsubmod, subsubmod/'__init__.py') _test('...submod.submod.mod1', subsubmod, subsubmod/'mod1.py') _test('..submod', subsubmod, subsubmod/'__init__.py') _test('..submod.mod1', subsubmod, subsubmod/'mod1.py') raises(RuntimeError, lambda: get_mod_filename('.notreal', subsubmod)) raises(RuntimeError, lambda: get_mod_filename('..notreal', subsubmod)) raises(RuntimeError, lambda: get_mod_filename('..notreal', subsubmod)) _test('module', subsubmod, module/'__init__.py') _test('module.mod1', subsubmod, module/'mod1.py') _test('module.submod', subsubmod, submod/'__init__.py') _test('module.submod.mod1', subsubmod, submod/'mod1.py') _test('module.submod.submod', subsubmod, subsubmod/'__init__.py') _test('module.submod.submod.mod1', subsubmod, subsubmod/'mod1.py') raises(RuntimeError, lambda: get_mod_filename('module.notreal', subsubmod)) raises(RuntimeError, lambda: get_mod_filename('module.submod.notreal', subsubmod)) raises(ExternalModuleError, lambda: get_mod_filename('notreal.notreal', subsubmod)) finally: os.chdir(curdir) def test_replace_imports(): # The verbose and quiet flags are already tested in test_fix_code for code in [code_mod1, code_mod2, code_mod3, code_mod8, code_submod3, code_submod_init, code_submod_recursive_submod1, code_mod_unfixable]: assert replace_imports(code, repls={}, verbose=False, quiet=True) == code assert replace_imports(code_mod4, repls={'.mod1': ['a'], '.mod2': ['b', 'c']}, verbose=False, quiet=True) == code_mod4_fixed assert replace_imports(code_mod5, repls={'module.mod1': ['a'], 'module.mod2': ['b', 'c']}, verbose=False, quiet=True) == code_mod5_fixed assert replace_imports(code_mod6, repls={'os.path': ['isfile', 'join']}, verbose=False, quiet=False) == code_mod6_fixed assert replace_imports(code_mod7, repls={'.mod6': []}, verbose=False, quiet=False) == code_mod7_fixed assert replace_imports(code_mod9, repls={'.mod8': ['a', 'b']}, verbose=False, quiet=False) == code_mod9_fixed assert replace_imports(code_submod1, repls={'..mod1': ['a'], '..mod2': ['b', 'c'], '.submod3': ['e']}, verbose=False, quiet=True) == code_submod1_fixed assert replace_imports(code_submod2, repls={'module.mod1': ['a'], 'module.mod2': ['b', 'c'], 'module.submod.submod3': ['e']}, verbose=False, quiet=True) == code_submod2_fixed assert replace_imports(code_submod4, repls={'.': ['func']}, verbose=False, quiet=True) == code_submod4_fixed assert replace_imports(code_submod_recursive_submod2, repls={'.': ['a']}) == code_submod_recursive_submod2_fixed assert replace_imports(code_mod_unfixable, repls={'.mod1': ['a'], '.mod2': ['c'], '.mod3': ['name']}) == code_mod_unfixable assert replace_imports(code_mod_commented_unused_star, repls={'.mod1': [], '.mod2': []}) == code_mod_commented_unused_star_fixed assert replace_imports(code_mod_commented_star, repls={'.mod1': ['a'], '.mod2': ['c'], '.mod3': ['name']}) == code_mod_commented_star_fixed @pytest.mark.parametrize('verbose_enabled, verbose_kwarg', [ (False, {}), # Default is False (False, {'verbose': False}), (True, {'verbose': True}), ], ids=['implicit no verbose', 'explicit no verbose', 'explicit verbose']) @pytest.mark.parametrize('kwargs, fixed_code, verbose_messages', [ (dict(code=code_mod4, repls={'.mod1': ['a'], '.mod2': ['b', 'c']}), code_mod4_fixed, [ "Replacing 'from .mod1 import *' with 'from .mod1 import a'", "Replacing 'from .mod2 import *' with 'from .mod2 import b, c'" ]), (dict(code=code_mod4, repls={'.mod1': ['a'], '.mod2': ['b', 'c']}, file='directory/mod4.py'), code_mod4_fixed, [ "directory/mod4.py: Replacing 'from .mod1 import *' with 'from .mod1 import a'", "directory/mod4.py: Replacing 'from .mod2 import *' with 'from .mod2 import b, c'" ]), (dict(code=code_mod_commented_star, repls={'.mod1': ['a'], '.mod2': ['c'], '.mod3': ['name']}), code_mod_commented_star_fixed, [ "Replacing 'from .mod3 import *' with 'from .mod3 import name'", "Retaining 'from .mod1 import *' due to noqa comment", "Retaining 'from .mod2 import *' due to noqa comment" ]), (dict(code=code_mod_commented_star, repls={'.mod1': ['a'], '.mod2': ['c'], '.mod3': ['name']}, file='directory/mod_commented_star.py'), code_mod_commented_star_fixed, [ "directory/mod_commented_star.py: Replacing 'from .mod3 import *' with 'from .mod3 import name'", "directory/mod_commented_star.py: Retaining 'from .mod1 import *' due to noqa comment", "directory/mod_commented_star.py: Retaining 'from .mod2 import *' due to noqa comment" ]), ], ids=[ 'mod4 without file', 'mod4 with file', 'mod_commented_star without file', 'mod_commented_star with file' ]) def test_replace_imports_verbose_messages(kwargs, fixed_code, verbose_messages, verbose_enabled, verbose_kwarg, capsys): assert replace_imports(**kwargs, **verbose_kwarg) == fixed_code _, err = capsys.readouterr() if verbose_enabled: assert sorted(err.splitlines()) == verbose_messages else: assert err == '' def test_replace_imports_warnings(capsys): assert replace_imports(code_mod_unfixable, file='module/mod_unfixable.py', repls={'.mod1': ['a'], '.mod2': ['c']}) == code_mod_unfixable out, err = capsys.readouterr() assert set(err.splitlines()) == { "Warning: module/mod_unfixable.py: Could not find the star imports for '.mod1'", "Warning: module/mod_unfixable.py: Could not find the star imports for '.mod2'" } assert replace_imports(code_mod_unfixable, file=None, repls={'.mod1': ['a'], '.mod2': ['c']}) == code_mod_unfixable out, err = capsys.readouterr() assert set(err.splitlines()) == { "Warning: Could not find the star imports for '.mod1'", "Warning: Could not find the star imports for '.mod2'" } assert replace_imports(code_mod_unfixable, quiet=True, repls={'.mod1': ['a'], '.mod2': ['c']}) == code_mod_unfixable out, err = capsys.readouterr() assert err == '' assert replace_imports(code_mod_commented_unused_star, file='module/mod_commented_unused_star.py', repls={'.mod1': [], '.mod2': []}) == code_mod_commented_unused_star_fixed out, err = capsys.readouterr() assert set(err.splitlines()) == { "Warning: module/mod_commented_unused_star.py: The removed star import statement for '.mod1' had an inline comment which may not make sense without the import", } assert replace_imports(code_mod_commented_unused_star, file=None, repls={'.mod1': [], '.mod2': []}) == code_mod_commented_unused_star_fixed out, err = capsys.readouterr() assert set(err.splitlines()) == { "Warning: The removed star import statement for '.mod1' had an inline comment which may not make sense without the import", } assert replace_imports(code_mod_commented_unused_star, quiet=True, repls={'.mod1': [], '.mod2': []}) == code_mod_commented_unused_star_fixed out, err = capsys.readouterr() assert err == '' def test_replace_imports_line_wrapping(): code = """\ from reallyreallylongmodulename import * print(longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9) """ code_fixed = """\ {imp} print(longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9) """ repls = {'reallyreallylongmodulename': ['longname1', 'longname2', 'longname3', 'longname4', 'longname5', 'longname6', 'longname7', 'longname8', 'longname9']} assert replace_imports(code, repls) == code_fixed.format(imp='''\ from reallyreallylongmodulename import (longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9)''') # Make sure the first line has at least one imported name. # There's no point to doing # # from mod import ( # name, # # if we are aligning the names to the opening parenthesis anyway. assert replace_imports(code, repls, max_line_length=49) == code_fixed.format(imp='''\ from reallyreallylongmodulename import (longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9)''') assert replace_imports(code, repls, max_line_length=50) == code_fixed.format(imp='''\ from reallyreallylongmodulename import (longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9)''') assert replace_imports(code, repls, max_line_length=51) == code_fixed.format(imp='''\ from reallyreallylongmodulename import (longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9)''') assert replace_imports(code, repls, max_line_length=120) == code_fixed.format(imp='''\ from reallyreallylongmodulename import (longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9)''') assert len("from reallyreallylongmodulename import longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9") == 136 assert replace_imports(code, repls, max_line_length=137) == code_fixed.format(imp='''\ from reallyreallylongmodulename import longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9''') assert replace_imports(code, repls, max_line_length=136) == code_fixed.format(imp='''\ from reallyreallylongmodulename import longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9''') assert replace_imports(code, repls, max_line_length=135) == code_fixed.format(imp='''\ from reallyreallylongmodulename import (longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9)''') assert replace_imports(code, repls, max_line_length=200) == code_fixed.format(imp='''\ from reallyreallylongmodulename import longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9''') assert replace_imports(code, repls, max_line_length=float('inf')) == code_fixed.format(imp='''\ from reallyreallylongmodulename import longname1, longname2, longname3, longname4, longname5, longname6, longname7, longname8, longname9''') @pytest.mark.parametrize('case_permutation', [ lambda s: s, lambda s: s.upper(), lambda s: s.lower() ], ids=['same case', 'upper case', 'lower case']) @pytest.mark.parametrize('allows_star, comment', [ (True, '# noqa'), (True, '#noqa'), (True, '# noqa '), (False, '# noqa foo bar'), (False, '# noqa:'), (False, '# noqa :'), (True, '# noqa: F401'), (True, '#noqa:F401'), (True, '# noqa: F401 '), (True, '#\tnoqa:\tF401\t'), (True, '# noqa: F403'), (True, '# noqa: A1,F403,A1'), (True, '# noqa: A1 F401 A1'), (True, '# noqa: A1, F401, A1'), (True, '# noqa: A1 , F401 , A1'), (False, '# generic comment'), (False, '#'), (False, ''), (False, '# foo: F401'), (False, '# F401'), (False, '# noqa F401'), # missing : after noqa ]) def test_is_noqa_comment_allowing_star_import(case_permutation, allows_star, comment): assert is_noqa_comment_allowing_star_import(case_permutation(comment)) is allows_star def _dirs_equal(cmp): if cmp.diff_files: return False if not cmp.subdirs: return True return all(_dirs_equal(c) for c in cmp.subdirs.values()) def test_cli(tmpdir): from ..__main__ import __file__ # TODO: Test the verbose and quiet flags directory_orig = tmpdir/'orig'/'module' directory = tmpdir/'module' create_module(directory) create_module(directory_orig) cmp = dircmp(directory, directory_orig) assert _dirs_equal(cmp) # Make sure we are running the command for the right file p = subprocess.run([sys.executable, '-m', 'removestar', '--_this-file', 'none'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8') assert p.stderr == '' assert p.stdout == __file__ p = subprocess.run([sys.executable, '-m', 'removestar', directory], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8') warnings = set(f"""\ Warning: {directory}/submod/submod1.py: 'b' comes from multiple modules: '..mod1', '..mod2'. Using '..mod2'. Warning: {directory}/submod/submod1.py: could not find import for 'd' Warning: {directory}/submod/submod2.py: 'b' comes from multiple modules: 'module.mod1', 'module.mod2'. Using 'module.mod2'. Warning: {directory}/submod/submod2.py: could not find import for 'd' Warning: {directory}/mod4.py: 'b' comes from multiple modules: '.mod1', '.mod2'. Using '.mod2'. Warning: {directory}/mod4.py: could not find import for 'd' Warning: {directory}/mod5.py: 'b' comes from multiple modules: 'module.mod1', 'module.mod2'. Using 'module.mod2'. Warning: {directory}/mod5.py: could not find import for 'd' Warning: {directory}/mod_unfixable.py: Could not find the star imports for '.mod1' Warning: {directory}/mod_unfixable.py: Could not find the star imports for '.mod2' Warning: {directory}/mod_commented_unused_star.py: The removed star import statement for '.mod1' had an inline comment which may not make sense without the import """.splitlines()) error = f"Error with {directory}/mod_bad.py: SyntaxError: invalid syntax (mod_bad.py, line 1)" assert set(p.stderr.splitlines()) == warnings.union({error}) diffs = [ f"""\ --- original/{directory}/mod4.py +++ fixed/{directory}/mod4.py @@ -1,5 +1,5 @@ -from .mod1 import * -from .mod2 import * +from .mod1 import a +from .mod2 import b, c from .mod3 import name \n\ def func():\ """, f"""\ --- original/{directory}/mod5.py +++ fixed/{directory}/mod5.py @@ -1,5 +1,5 @@ -from module.mod1 import * -from module.mod2 import * +from module.mod1 import a +from module.mod2 import b, c from module.mod3 import name \n\ def func():\ """, f"""\ --- original/{directory}/mod6.py +++ fixed/{directory}/mod6.py @@ -1,2 +1,2 @@ -from os.path import * +from os.path import isfile, join isfile(join('a', 'b'))\ """, f"""\ --- original/{directory}/mod7.py +++ fixed/{directory}/mod7.py @@ -1 +0,0 @@ -from .mod6 import *\ """, f"""\ --- original/{directory}/mod9.py +++ fixed/{directory}/mod9.py @@ -1,4 +1,4 @@ -from .mod8 import * +from .mod8 import a, b \n\ def func(): return a + b\ """, f"""\ --- original/{directory}/mod_commented_unused_star.py +++ fixed/{directory}/mod_commented_unused_star.py @@ -1,2 +1,2 @@ -from .mod1 import * # comment about mod1 +# comment about mod1 from .mod2 import * # noqa\ """, f"""\ --- original/{directory}/mod_commented_star.py +++ fixed/{directory}/mod_commented_star.py @@ -1,6 +1,6 @@ from .mod1 import * # noqa from .mod2 import * # noqa: F401 -from .mod3 import * # generic comment +from .mod3 import name # generic comment \n\ def func():\ """, f"""\ --- original/{directory}/submod/submod1.py +++ fixed/{directory}/submod/submod1.py @@ -1,7 +1,7 @@ -from ..mod1 import * -from ..mod2 import * +from ..mod1 import a +from ..mod2 import b, c from ..mod3 import name -from .submod3 import * +from .submod3 import e \n\ def func(): return a + b + c + d + d + e + name\ """, f"""\ --- original/{directory}/submod/submod2.py +++ fixed/{directory}/submod/submod2.py @@ -1,7 +1,7 @@ -from module.mod1 import * -from module.mod2 import * +from module.mod1 import a +from module.mod2 import b, c from module.mod3 import name -from module.submod.submod3 import * +from module.submod.submod3 import e \n\ def func(): return a + b + c + d + d + e + name\ """, f"""\ --- original/{directory}/submod/submod4.py +++ fixed/{directory}/submod/submod4.py @@ -1,3 +1,3 @@ -from . import * +from . import func \n\ func()\ """, f"""\ --- original/{directory}/submod_recursive/submod2.py +++ fixed/{directory}/submod_recursive/submod2.py @@ -1,4 +1,4 @@ -from . import * +from . import a \n\ def func(): return a + 1\ """, ] unchanged = ['__init__.py', 'mod_bad.py', 'mod_unfixable.py'] for d in diffs: assert d in p.stdout, p.stdout for mod_path in unchanged: assert '--- original/{directory}/{mod_path}' not in p.stdout cmp = dircmp(directory, directory_orig) assert _dirs_equal(cmp) p = subprocess.run([sys.executable, '-m', 'removestar', '--quiet', directory], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8') assert p.stderr == '' for d in diffs: assert d in p.stdout cmp = dircmp(directory, directory_orig) assert _dirs_equal(cmp) p = subprocess.run([sys.executable, '-m', 'removestar', '--verbose', directory], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8') changes = set(f"""\ {directory}/mod4.py: Replacing 'from .mod1 import *' with 'from .mod1 import a' {directory}/mod4.py: Replacing 'from .mod2 import *' with 'from .mod2 import b, c' {directory}/mod5.py: Replacing 'from module.mod1 import *' with 'from module.mod1 import a' {directory}/mod5.py: Replacing 'from module.mod2 import *' with 'from module.mod2 import b, c' {directory}/mod6.py: Replacing 'from os.path import *' with 'from os.path import isfile, join' {directory}/mod7.py: Replacing 'from .mod6 import *' with '' {directory}/mod9.py: Replacing 'from .mod8 import *' with 'from .mod8 import a, b' {directory}/mod_commented_unused_star.py: Replacing 'from .mod1 import *' with '' {directory}/mod_commented_unused_star.py: Retaining 'from .mod2 import *' due to noqa comment {directory}/mod_commented_star.py: Replacing 'from .mod3 import *' with 'from .mod3 import name' {directory}/mod_commented_star.py: Retaining 'from .mod1 import *' due to noqa comment {directory}/mod_commented_star.py: Retaining 'from .mod2 import *' due to noqa comment {directory}/submod/submod1.py: Replacing 'from ..mod1 import *' with 'from ..mod1 import a' {directory}/submod/submod1.py: Replacing 'from ..mod2 import *' with 'from ..mod2 import b, c' {directory}/submod/submod1.py: Replacing 'from .submod3 import *' with 'from .submod3 import e' {directory}/submod/submod4.py: Replacing 'from . import *' with 'from . import func' {directory}/submod/submod2.py: Replacing 'from module.mod1 import *' with 'from module.mod1 import a' {directory}/submod/submod2.py: Replacing 'from module.mod2 import *' with 'from module.mod2 import b, c' {directory}/submod/submod2.py: Replacing 'from module.submod.submod3 import *' with 'from module.submod.submod3 import e' {directory}/submod_recursive/submod2.py: Replacing 'from . import *' with 'from . import a' """.splitlines()) assert set(p.stderr.splitlines()) == changes.union({error}).union(warnings) for d in diffs: assert d in p.stdout, p.stdout cmp = dircmp(directory, directory_orig) assert _dirs_equal(cmp) p = subprocess.run([sys.executable, '-m', 'removestar', '--no-dynamic-importing', directory], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8') static_error = set(f"""\ Error with {directory}/mod6.py: Static determination of external module imports is not supported. Error with {directory}/mod7.py: Static determination of external module imports is not supported. """.splitlines()) assert set(p.stderr.splitlines()) == {error}.union(static_error).union(warnings) for d in diffs: if 'mod6' in d: assert d not in p.stdout else: assert d in p.stdout, p.stdout cmp = dircmp(directory, directory_orig) assert _dirs_equal(cmp) # Test --quiet hides both errors p = subprocess.run([sys.executable, '-m', 'removestar', '--quiet', '--no-dynamic-importing', directory], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8') assert p.stderr == '' for d in diffs: if 'mod6' in d: assert d not in p.stdout else: assert d in p.stdout, p.stdout cmp = dircmp(directory, directory_orig) assert _dirs_equal(cmp) # XXX: This modifies directory, so keep it at the end of the test p = subprocess.run([sys.executable, '-m', 'removestar', '--quiet', '-i', directory], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8') assert p.stderr == '' assert p.stdout == '' cmp = dircmp(directory, directory_orig) assert not _dirs_equal(cmp) assert cmp.diff_files == ['mod4.py', 'mod5.py', 'mod6.py', 'mod7.py', 'mod9.py', 'mod_commented_star.py', 'mod_commented_unused_star.py'] assert cmp.subdirs['submod'].diff_files == ['submod1.py', 'submod2.py', 'submod4.py'] assert cmp.subdirs['submod_recursive'].diff_files == ['submod2.py'] with open(directory/'mod4.py') as f: assert f.read() == code_mod4_fixed with open(directory/'mod5.py') as f: assert f.read() == code_mod5_fixed with open(directory/'mod6.py') as f: assert f.read() == code_mod6_fixed with open(directory/'mod7.py') as f: assert f.read() == code_mod7_fixed with open(directory/'mod9.py') as f: assert f.read() == code_mod9_fixed with open(directory/'mod_commented_unused_star.py') as f: assert f.read() == code_mod_commented_unused_star_fixed with open(directory/'mod_commented_star.py') as f: assert f.read() == code_mod_commented_star_fixed with open(directory/'submod'/'submod1.py') as f: assert f.read() == code_submod1_fixed with open(directory/'submod'/'submod2.py') as f: assert f.read() == code_submod2_fixed with open(directory/'submod'/'submod4.py') as f: assert f.read() == code_submod4_fixed with open(directory/'submod_recursive'/'submod2.py') as f: assert f.read() == code_submod_recursive_submod2_fixed with open(directory/'mod_bad.py') as f: assert f.read() == code_bad_syntax with open(directory/'mod_unfixable.py') as f: assert f.read() == code_mod_unfixable # Test error on nonexistent file p = subprocess.run([sys.executable, '-m', 'removestar', directory/'notarealfile.py'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8') assert p.stderr == f'Error: {directory}/notarealfile.py: no such file or directory\n' assert p.stdout == ''
tests/builtins/test_list.py
jacebrowning/voc
850
12742093
from .. utils import TranspileTestCase, BuiltinFunctionTestCase, SAMPLE_SUBSTITUTIONS class ListTests(TranspileTestCase): pass class BuiltinListFunctionTests(BuiltinFunctionTestCase, TranspileTestCase): functions = ["list"] substitutions = dict(SAMPLE_SUBSTITUTIONS) substitutions.update({ "[1, 2.3456, 'another']": [ "[1, 'another', 2.3456]", "[2.3456, 1, 'another']", "[2.3456, 'another', 1]", "['another', 1, 2.3456]", "['another', 2.3456, 1]", ], "['a', 'c', 'd']": [ "['a', 'd', 'c']", "['c', 'a', 'd']", "['c', 'd', 'a']", "['d', 'a', 'c']", "['d', 'c', 'a']", ] })
src/tests/test_sites/test_utils.py
winkidney/PickTrue
118
12742110
<reponame>winkidney/PickTrue<filename>src/tests/test_sites/test_utils.py from picktrue.sites import utils def test_get_name_ext_from_url(): assert utils.get_filename_fom_url( "https://img9.doubanio.com/view/photo/l/public/p2208623414.jpg" ) == "p2208623414.jpg" assert utils.get_filename_fom_url( "https://img9.doubanio.com/view/photo/l/public/p2208623414.jpg?hello=world" ) == "p2208623414.jpg"
CPAC/func_preproc/func_preproc.py
FCP-INDI/C-PAC
125
12742174
<filename>CPAC/func_preproc/func_preproc.py from nipype import logging from nipype.interfaces import ants logger = logging.getLogger('workflow') from CPAC.pipeline import nipype_pipeline_engine as pe import nipype.interfaces.fsl as fsl import nipype.interfaces.utility as util from nipype.interfaces import afni from nipype.interfaces.afni import preprocess from nipype.interfaces.afni import utils as afni_utils from CPAC.func_preproc.utils import add_afni_prefix, nullify, chunk_ts, \ split_ts_chunks, oned_text_concat, notch_filter_motion from CPAC.utils.interfaces.function import Function from CPAC.generate_motion_statistics import motion_power_statistics from CPAC.utils.utils import check_prov_for_motion_tool # niworkflows from ..utils.interfaces.ants import AI def collect_arguments(*args): command_args = [] if args[0]: command_args += [args[1]] command_args += args[2:] return ' '.join(command_args) def anat_refined_mask(init_bold_mask=True, wf_name='init_bold_mask'): wf = pe.Workflow(name=wf_name) input_node = pe.Node(util.IdentityInterface(fields=['func', 'anatomical_brain_mask', 'anat_brain', 'init_func_brain_mask']), name='inputspec') output_node = pe.Node(util.IdentityInterface(fields=['func_brain_mask']), name='outputspec') # 1 Take single volume of func func_single_volume = pe.Node(interface=afni.Calc(), name='func_single_volume') # TODO add an option to select volume func_single_volume.inputs.set( expr='a', single_idx=1, outputtype='NIFTI_GZ' ) wf.connect(input_node, 'func', func_single_volume, 'in_file_a') # 2 get temporary func brain func_tmp_brain = pe.Node(interface=afni_utils.Calc(), name='func_tmp_brain') func_tmp_brain.inputs.expr = 'a*b' func_tmp_brain.inputs.outputtype = 'NIFTI_GZ' wf.connect(func_single_volume, 'out_file', func_tmp_brain, 'in_file_a') # 2.1 get a tmp func brain mask if init_bold_mask == True: # 2.1.1 N4BiasFieldCorrection single volume of raw_func func_single_volume_n4_corrected = pe.Node( interface=ants.N4BiasFieldCorrection(dimension=3, copy_header=True, bspline_fitting_distance=200), shrink_factor=2, name='func_single_volume_n4_corrected') func_single_volume_n4_corrected.inputs.args = '-r True' wf.connect(func_single_volume, 'out_file', func_single_volume_n4_corrected, 'input_image') # 2.1.2 bet n4 corrected image - generate tmp func brain mask func_tmp_brain_mask = pe.Node(interface=fsl.BET(), name='func_tmp_brain_mask_pre') func_tmp_brain_mask.inputs.mask = True wf.connect(func_single_volume_n4_corrected, 'output_image', func_tmp_brain_mask, 'in_file') # 2.1.3 dilate func tmp brain mask func_tmp_brain_mask_dil = pe.Node(interface=fsl.ImageMaths(), name='func_tmp_brain_mask_dil') func_tmp_brain_mask_dil.inputs.op_string = '-dilM' wf.connect(func_tmp_brain_mask, 'mask_file', func_tmp_brain_mask_dil, 'in_file') wf.connect(func_tmp_brain_mask_dil, 'out_file', func_tmp_brain, 'in_file_b') else: # 2.1.1 connect dilated init func brain mask wf.connect(input_node, 'init_func_brain_mask', func_tmp_brain, 'in_file_b') # 3. get transformation of anat to func # 3.1 Register func tmp brain to anat brain to get func2anat matrix linear_reg_func_to_anat = pe.Node(interface=fsl.FLIRT(), name='func_to_anat_linear_reg') linear_reg_func_to_anat.inputs.cost = 'mutualinfo' linear_reg_func_to_anat.inputs.dof = 6 wf.connect(func_tmp_brain, 'out_file', linear_reg_func_to_anat, 'in_file') wf.connect(input_node, 'anat_brain', linear_reg_func_to_anat, 'reference') # 3.2 Inverse func to anat affine inv_func_to_anat_affine = pe.Node(interface=fsl.ConvertXFM(), name='inv_func2anat_affine') inv_func_to_anat_affine.inputs.invert_xfm = True wf.connect(linear_reg_func_to_anat, 'out_matrix_file', inv_func_to_anat_affine, 'in_file') # 4. anat mask to func space # Transform anatomical mask to functional space to get BOLD mask reg_anat_mask_to_func = pe.Node(interface=fsl.FLIRT(), name='reg_anat_mask_to_func') reg_anat_mask_to_func.inputs.apply_xfm = True reg_anat_mask_to_func.inputs.cost = 'mutualinfo' reg_anat_mask_to_func.inputs.dof = 6 reg_anat_mask_to_func.inputs.interp = 'nearestneighbour' wf.connect(input_node, 'anatomical_brain_mask', reg_anat_mask_to_func, 'in_file') wf.connect(func_tmp_brain, 'out_file', reg_anat_mask_to_func, 'reference') wf.connect(inv_func_to_anat_affine, 'out_file', reg_anat_mask_to_func, 'in_matrix_file') # 5. get final func mask: refine func tmp mask with anat_mask_in_func mask func_mask = pe.Node(interface=fsl.MultiImageMaths(), name='func_mask') func_mask.inputs.op_string = "-mul %s" wf.connect(reg_anat_mask_to_func, 'out_file', func_mask, 'operand_files') if init_bold_mask == True: wf.connect(func_tmp_brain_mask_dil, 'out_file', func_mask, 'in_file') else: wf.connect(input_node, 'init_func_brain_mask', func_mask, 'in_file') wf.connect(func_mask, 'out_file', output_node, 'func_brain_mask') return wf def anat_based_mask(wf_name='bold_mask'): # reference DCAN lab BOLD mask # https://github.com/DCAN-Labs/DCAN-HCP/blob/master/fMRIVolume/scripts/DistortionCorrectionAndEPIToT1wReg_FLIRTBBRAndFreeSurferBBRbased.sh wf = pe.Workflow(name=wf_name) input_node = pe.Node(util.IdentityInterface(fields=['func', 'anat_brain', 'anat_head']), name='inputspec') output_node = pe.Node(util.IdentityInterface(fields=['func_brain_mask']), name='outputspec') # 0. Take single volume of func func_single_volume = pe.Node(interface=afni.Calc(), name='func_single_volume') func_single_volume.inputs.set( expr='a', single_idx=1, outputtype='NIFTI_GZ' ) wf.connect(input_node, 'func', func_single_volume, 'in_file_a') # 1. Register func head to anat head to get func2anat matrix linear_reg_func_to_anat = pe.Node(interface=fsl.FLIRT(), name='func_to_anat_linear_reg') linear_reg_func_to_anat.inputs.dof = 6 linear_reg_func_to_anat.inputs.interp = 'spline' linear_reg_func_to_anat.inputs.searchr_x = [30, 30] linear_reg_func_to_anat.inputs.searchr_y = [30, 30] linear_reg_func_to_anat.inputs.searchr_z = [30, 30] wf.connect(func_single_volume, 'out_file', linear_reg_func_to_anat, 'in_file') wf.connect(input_node, 'anat_head', linear_reg_func_to_anat, 'reference') # 2. Inverse func to anat affine, to get anat-to-func transform inv_func_to_anat_affine = pe.Node(interface=fsl.ConvertXFM(), name='inv_func2anat_affine') inv_func_to_anat_affine.inputs.invert_xfm = True wf.connect(linear_reg_func_to_anat, 'out_matrix_file', inv_func_to_anat_affine, 'in_file') # 3. get BOLD mask # 3.1 Apply anat-to-func transform to transfer anatomical brain to functional space reg_anat_brain_to_func = pe.Node(interface=fsl.ApplyWarp(), name='reg_anat_brain_to_func') reg_anat_brain_to_func.inputs.interp = 'nn' reg_anat_brain_to_func.inputs.relwarp = True wf.connect(input_node, 'anat_brain', reg_anat_brain_to_func, 'in_file') wf.connect(input_node, 'func', reg_anat_brain_to_func, 'ref_file') wf.connect(inv_func_to_anat_affine, 'out_file', reg_anat_brain_to_func, 'premat') # 3.2 Binarize transfered image and fill holes to get BOLD mask. # Binarize func_mask_bin = pe.Node(interface=fsl.ImageMaths(), name='func_mask') func_mask_bin.inputs.op_string = '-bin' wf.connect(reg_anat_brain_to_func, 'out_file', func_mask_bin, 'in_file') wf.connect(func_mask_bin, 'out_file', output_node, 'func_brain_mask') return wf def normalize_motion_parameters(in_file): """ Convert FSL mcflirt motion parameters to AFNI space """ import os import numpy as np motion_params = np.genfromtxt(in_file).T motion_params = np.vstack((motion_params[2, :] * 180 / np.pi, motion_params[0, :] * 180 / np.pi, -motion_params[1, :] * 180 / np.pi, motion_params[5, :], motion_params[3, :], -motion_params[4, :])) motion_params = np.transpose(motion_params) out_file = os.path.join(os.getcwd(), 'motion_params.1D') np.savetxt(out_file, motion_params) return out_file def get_mcflirt_rms_abs(rms_files): for path in rms_files: if 'abs.rms' in path: abs_file = path if 'rel.rms' in path: rels_file = path return (abs_file, rels_file) def estimate_reference_image(in_file): # fMRIPrep-style BOLD reference # Ref: https://github.com/nipreps/niworkflows/blob/maint/1.3.x/niworkflows/interfaces/registration.py#L446-L549 import os import numpy as np import nibabel as nb ref_input = [in_file] mc_out_file = 'bold_mc.nii.gz' # Build the nibabel spatial image we will work with ref_im = [] for im_i in ref_input: max_new_volumes = 50 - len(ref_im) if max_new_volumes <= 0: break nib_i = nb.squeeze_image(nb.load(im_i)) if nib_i.dataobj.ndim == 3: ref_im.append(nib_i) elif nib_i.dataobj.ndim == 4: ref_im += nb.four_to_three(nib_i.slicer[..., :max_new_volumes]) ref_im = nb.squeeze_image(nb.concat_images(ref_im)) out_file = os.path.join(os.getcwd(), "ref_bold.nii.gz") # Slicing may induce inconsistencies with shape-dependent values in extensions. # For now, remove all. If this turns out to be a mistake, we can select extensions # that don't break pipeline stages. ref_im.header.extensions.clear() if ref_im.shape[-1] > 40: ref_im = nb.Nifti1Image( ref_im.dataobj[:, :, :, 20:40], ref_im.affine, ref_im.header ) ref_name = os.path.join(os.getcwd(), "slice.nii.gz") ref_im.to_filename(ref_name) cmd = '3dvolreg -Fourier -twopass -zpad 4 -prefix %s %s'%(mc_out_file, ref_name) os.system(cmd) mc_slice_nii = nb.load(mc_out_file) median_image_data = np.median(mc_slice_nii.get_fdata(), axis=3) nb.Nifti1Image(median_image_data, ref_im.affine, ref_im.header).to_filename( out_file ) return out_file def create_scale_func_wf(scaling_factor, wf_name='scale_func'): """Workflow to scale func data. Parameters ---------- scaling_factor : float Scale the size of the dataset voxels by the factor. wf_name : string name of the workflow Workflow Inputs:: inputspec.func : func file or a list of func/rest nifti file User input functional(T2*) Image Workflow Outputs:: outputspec.scaled_func : string (nifti file) Path to Output image with scaled data Order of commands: - Scale the size of the dataset voxels by the factor 'fac'. For details see `3dcalc <https://afni.nimh.nih.gov/pub/dist/doc/program_help/3drefit.html>`_:: 3drefit -xyzscale fac rest.nii.gz """ # allocate a workflow object preproc = pe.Workflow(name=wf_name) # configure the workflow's input spec inputNode = pe.Node(util.IdentityInterface(fields=['func']), name='inputspec') # configure the workflow's output spec outputNode = pe.Node(util.IdentityInterface(fields=['scaled_func']), name='outputspec') # allocate a node to edit the functional file func_scale = pe.Node(interface=afni_utils.Refit(), name='func_scale') func_scale.inputs.xyzscale = scaling_factor # wire in the func_get_idx node preproc.connect(inputNode, 'func', func_scale, 'in_file') # wire the output preproc.connect(func_scale, 'out_file', outputNode, 'scaled_func') return preproc def create_wf_edit_func(wf_name="edit_func"): """Workflow to edit the scan to the proscribed TRs. Workflow Inputs:: inputspec.func : func file or a list of func/rest nifti file User input functional(T2*) Image inputspec.start_idx : string Starting volume/slice of the functional image (optional) inputspec.stop_idx : string Last volume/slice of the functional image (optional) Workflow Outputs:: outputspec.edited_func : string (nifti file) Path to Output image with the initial few slices dropped Order of commands: - Get the start and the end volume index of the functional run. If not defined by the user, return the first and last volume. get_idx(in_files, stop_idx, start_idx) - Dropping the initial TRs. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_:: 3dcalc -a rest.nii.gz[4..299] -expr 'a' -prefix rest_3dc.nii.gz """ # allocate a workflow object preproc = pe.Workflow(name=wf_name) # configure the workflow's input spec inputNode = pe.Node(util.IdentityInterface(fields=['func', 'start_idx', 'stop_idx']), name='inputspec') # configure the workflow's output spec outputNode = pe.Node(util.IdentityInterface(fields=['edited_func']), name='outputspec') # allocate a node to check that the requested edits are # reasonable given the data func_get_idx = pe.Node(util.Function(input_names=['in_files', 'stop_idx', 'start_idx'], output_names=['stopidx', 'startidx'], function=get_idx), name='func_get_idx') # wire in the func_get_idx node preproc.connect(inputNode, 'func', func_get_idx, 'in_files') preproc.connect(inputNode, 'start_idx', func_get_idx, 'start_idx') preproc.connect(inputNode, 'stop_idx', func_get_idx, 'stop_idx') # allocate a node to edit the functional file func_drop_trs = pe.Node(interface=afni_utils.Calc(), name='func_drop_trs', mem_gb=0.37, mem_x=(739971956005215 / 151115727451828646838272, 'in_file_a')) func_drop_trs.inputs.expr = 'a' func_drop_trs.inputs.outputtype = 'NIFTI_GZ' # wire in the inputs preproc.connect(inputNode, 'func', func_drop_trs, 'in_file_a') preproc.connect(func_get_idx, 'startidx', func_drop_trs, 'start_idx') preproc.connect(func_get_idx, 'stopidx', func_drop_trs, 'stop_idx') # wire the output preproc.connect(func_drop_trs, 'out_file', outputNode, 'edited_func') return preproc def slice_timing_wf(name='slice_timing', tpattern=None, tzero=None): # allocate a workflow object wf = pe.Workflow(name=name) # configure the workflow's input spec inputNode = pe.Node(util.IdentityInterface(fields=['func_ts', 'tr', 'tpattern']), name='inputspec') # configure the workflow's output spec outputNode = pe.Node( util.IdentityInterface(fields=['slice_time_corrected']), name='outputspec') # create TShift AFNI node func_slice_timing_correction = pe.Node(interface=preprocess.TShift(), name='slice_timing', mem_gb=0.45, mem_x=(5247073869855161 / 604462909807314587353088, 'in_file')) func_slice_timing_correction.inputs.outputtype = 'NIFTI_GZ' if tzero is not None: func_slice_timing_correction.inputs.tzero = tzero wf.connect([ ( inputNode, func_slice_timing_correction, [ ( 'func_ts', 'in_file' ), # ( # # add the @ prefix to the tpattern file going into # # AFNI 3dTshift - needed this so the tpattern file # # output from get_scan_params would be tied downstream # # via a connection (to avoid poofing) # ('tpattern', nullify, add_afni_prefix), # 'tpattern' # ), ( ('tr', nullify), 'tr' ), ] ), ]) if tpattern is not None: func_slice_timing_correction.inputs.tpattern = tpattern else: wf.connect(inputNode, ('tpattern', nullify, add_afni_prefix), func_slice_timing_correction, 'tpattern') wf.connect(func_slice_timing_correction, 'out_file', outputNode, 'slice_time_corrected') return wf def get_idx(in_files, stop_idx=None, start_idx=None): """ Method to get the first and the last slice for the functional run. It verifies the user specified first and last slice. If the values are not valid, it calculates and returns the very first and the last slice Parameters ---------- in_file : string (nifti file) Path to input functional run stop_idx : int Last volume to be considered, specified by user in the configuration file stop_idx : int First volume to be considered, specified by user in the configuration file Returns ------- stop_idx : int Value of first slice to consider for the functional run start_idx : int Value of last slice to consider for the functional run """ # Import packages from nibabel import load # Init variables img = load(in_files) hdr = img.get_header() shape = hdr.get_data_shape() # Check to make sure the input file is 4-dimensional if len(shape) != 4: raise TypeError('Input nifti file: %s is not a 4D file' % in_files) # Grab the number of volumes nvols = int(hdr.get_data_shape()[3]) if (start_idx == None) or (int(start_idx) < 0) or ( int(start_idx) > (nvols - 1)): startidx = 0 else: startidx = int(start_idx) if (stop_idx == None) or (int(stop_idx) > (nvols - 1)): stopidx = nvols - 1 else: stopidx = int(stop_idx) return stopidx, startidx def motion_correct_connections(wf, cfg, strat_pool, pipe_num, opt): if opt != '3dvolreg' and opt != 'mcflirt': raise Exception("\n\n[!] Error: The 'tool' parameter of the " "'motion_correction' workflow must be either " "'3dvolreg' or 'mcflirt'.\n\nTool input: " "{0}\n\n".format(opt)) if cfg: if int(cfg.pipeline_setup['system_config'][ 'max_cores_per_participant']) > 1: chunk_imports = ['import nibabel as nb'] chunk = pe.Node(Function(input_names=['func_file', 'n_chunks', 'chunk_size'], output_names=['TR_ranges'], function=chunk_ts, imports=chunk_imports), name=f'chunk_{pipe_num}') #chunk.inputs.n_chunks = int(cfg.pipeline_setup['system_config'][ # 'max_cores_per_participant']) # 10-TR sized chunks chunk.inputs.chunk_size = 10 node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, chunk, 'func_file') split_imports = ['import os', 'import subprocess'] split = pe.Node(Function(input_names=['func_file', 'tr_ranges'], output_names=['split_funcs'], function=split_ts_chunks, imports=split_imports), name=f'split_{pipe_num}') node, out = strat_pool.get_data(['desc-preproc_bold', 'bold']) wf.connect(node, out, split, 'func_file') wf.connect(chunk, 'TR_ranges', split, 'tr_ranges') out_split_func = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_split_func_{pipe_num}') wf.connect(split, 'split_funcs', out_split_func, 'out_file') func_motion_correct = pe.MapNode(interface=preprocess.Volreg(), name=f'func_generate_ref_{pipe_num}', iterfield=['in_file']) wf.connect(out_split_func, 'out_file', func_motion_correct, 'in_file') func_concat = pe.Node(interface=afni_utils.TCat(), name=f'func_concat_{pipe_num}') func_concat.inputs.outputtype = 'NIFTI_GZ' wf.connect(func_motion_correct, 'out_file', func_concat, 'in_files') out_motion = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_motion_{pipe_num}') wf.connect(func_concat, 'out_file', out_motion, 'out_file') else: out_split_func = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_split_func_{pipe_num}') node, out = strat_pool.get_data(['desc-preproc_bold', 'bold']) wf.connect(node, out, out_split_func, 'out_file') func_motion_correct = pe.Node(interface=preprocess.Volreg(), name=f'func_generate_ref_{pipe_num}') wf.connect(out_split_func, 'out_file', func_motion_correct, 'in_file') out_motion = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_motion_{pipe_num}') wf.connect(func_motion_correct, 'out_file', out_motion, 'out_file') else: out_split_func = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_split_func_{pipe_num}') node, out = strat_pool.get_data(['desc-preproc_bold', 'bold']) wf.connect(node, out, out_split_func, 'out_file') func_motion_correct = pe.Node(interface=preprocess.Volreg(), name=f'func_generate_ref_{pipe_num}') wf.connect(out_split_func, 'out_file', func_motion_correct, 'in_file') out_motion = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_motion_{pipe_num}') wf.connect(func_motion_correct, 'out_file', out_motion, 'out_file') func_motion_correct.inputs.zpad = 4 func_motion_correct.inputs.outputtype = 'NIFTI_GZ' args = f'-Fourier' if cfg.functional_preproc['motion_estimates_and_correction'][ 'motion_correction']['AFNI-3dvolreg']['functional_volreg_twopass']: args = f'-twopass {args}' func_motion_correct.inputs.args = args # Calculate motion parameters if opt == '3dvolreg': func_motion_correct_A = func_motion_correct.clone( f'func_motion_correct_3dvolreg_{pipe_num}') func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D' func_motion_correct_A.inputs.args = args wf.connect(out_split_func, 'out_file', func_motion_correct_A, 'in_file') node, out = strat_pool.get_data('motion-basefile') wf.connect(node, out, func_motion_correct_A, 'basefile') if cfg: if int(cfg.pipeline_setup['system_config'][ 'max_cores_per_participant']) > 1: motion_concat = pe.Node(interface=afni_utils.TCat(), name=f'motion_concat_{pipe_num}') motion_concat.inputs.outputtype = 'NIFTI_GZ' wf.connect(func_motion_correct_A, 'out_file', motion_concat, 'in_files') out_motion_A = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_motion_A_{pipe_num}') wf.connect(motion_concat, 'out_file', out_motion_A, 'out_file') concat_imports = ['import os'] md1d_concat = pe.Node(Function(input_names=['in_files'], output_names=['out_file'], function=oned_text_concat, imports=concat_imports), name=f'md1d_concat_{pipe_num}') wf.connect(func_motion_correct_A, 'md1d_file', md1d_concat, 'in_files') oned_concat = pe.Node(Function(input_names=['in_files'], output_names=['out_file'], function=oned_text_concat, imports=concat_imports), name=f'oned_concat_{pipe_num}') wf.connect(func_motion_correct_A, 'oned_file', oned_concat, 'in_files') oned_matrix_concat = pe.Node( Function(input_names=['in_files'], output_names=['out_file'], function=oned_text_concat, imports=concat_imports), name=f'oned_matrix_concat_{pipe_num}') wf.connect(func_motion_correct_A, 'oned_matrix_save', oned_matrix_concat, 'in_files') out_md1d = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_md1d_{pipe_num}') wf.connect(md1d_concat, 'out_file', out_md1d, 'out_file') out_oned = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_oned_{pipe_num}') wf.connect(oned_concat, 'out_file', out_oned, 'out_file') out_oned_matrix = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_oned_matrix_{pipe_num}') wf.connect(oned_matrix_concat, 'out_file', out_oned_matrix, 'out_file') else: out_motion_A = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_motion_A_{pipe_num}') wf.connect(func_motion_correct_A, 'out_file', out_motion_A, 'out_file') out_md1d = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_md1d_{pipe_num}') wf.connect(func_motion_correct_A, 'md1d_file', out_md1d, 'out_file') out_oned = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_oned_{pipe_num}') wf.connect(func_motion_correct_A, 'oned_file', out_oned, 'out_file') out_oned_matrix = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_oned_matrix_{pipe_num}') wf.connect(func_motion_correct_A, 'oned_matrix_save', out_oned_matrix, 'out_file') else: out_motion_A = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_motion_A_{pipe_num}') wf.connect(func_motion_correct_A, 'out_file', out_motion_A, 'out_file') out_md1d = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_md1d_{pipe_num}') wf.connect(func_motion_correct_A, 'md1d_file', out_md1d, 'out_file') out_oned = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_oned_{pipe_num}') wf.connect(func_motion_correct_A, 'oned_file', out_oned, 'out_file') out_oned_matrix = pe.Node( interface=util.IdentityInterface(fields=['out_file']), name=f'out_oned_matrix_{pipe_num}') wf.connect(func_motion_correct_A, 'oned_matrix_save', out_oned_matrix, 'out_file') outputs = { 'desc-preproc_bold': (out_motion_A, 'out_file'), 'desc-motion_bold': (out_motion_A, 'out_file'), 'max-displacement': (out_md1d, 'out_file'), 'movement-parameters': (out_oned, 'out_file'), 'coordinate-transformation': (out_oned_matrix, 'out_file') } elif opt == 'mcflirt': func_motion_correct_A = pe.Node( interface=fsl.MCFLIRT(save_mats=True, save_plots=True), name=f'func_motion_correct_mcflirt_{pipe_num}', mem_gb=2.5) func_motion_correct_A.inputs.save_mats = True func_motion_correct_A.inputs.save_plots = True func_motion_correct_A.inputs.save_rms = True node, out = strat_pool.get_data(['desc-preproc_bold', 'bold']) wf.connect(node, out, func_motion_correct_A, 'in_file') node, out = strat_pool.get_data('motion-basefile') wf.connect(node, out, func_motion_correct_A, 'ref_file') normalize_motion_params = pe.Node(Function(input_names=['in_file'], output_names=['out_file'], function=normalize_motion_parameters), name=f'norm_motion_params_{pipe_num}') wf.connect(func_motion_correct_A, 'par_file', normalize_motion_params, 'in_file') get_rms_abs = pe.Node(Function(input_names=['rms_files'], output_names=['abs_file', 'rels_file'], function=get_mcflirt_rms_abs), name=f'get_mcflirt_rms_abs_{pipe_num}') wf.connect(func_motion_correct_A, 'rms_files', get_rms_abs, 'rms_files') outputs = { 'desc-preproc_bold': (func_motion_correct_A, 'out_file'), 'desc-motion_bold': (func_motion_correct_A, 'out_file'), 'max-displacement': (get_rms_abs, 'abs_file'), 'rels-displacement': (get_rms_abs, 'rels_file'), 'movement-parameters': (normalize_motion_params, 'out_file'), 'coordinate-transformation': (func_motion_correct_A, 'mat_file') } return (wf, outputs) def func_scaling(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "func_scaling", "config": ["functional_preproc", "scaling"], "switch": ["run"], "option_key": "None", "option_val": "None", "inputs": [["desc-preproc_bold", "bold"]], "outputs": ["desc-preproc_bold"]} ''' scale_func_wf = create_scale_func_wf( scaling_factor=cfg.scaling_factor, wf_name=f"scale_func_{pipe_num}" ) node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, scale_func_wf, 'inputspec.func') outputs = { 'desc-preproc_bold': (scale_func_wf, 'outputspec.scaled_func') } return (wf, outputs) def func_truncate(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "func_truncate", "config": ["functional_preproc", "truncation"], "switch": "None", "option_key": "None", "option_val": "None", "inputs": [["desc-preproc_bold", "bold"]], "outputs": { "desc-preproc_bold": { "Description": "Truncated functional time-series BOLD data." }} } ''' # if cfg.functional_preproc['truncation']['start_tr'] == 0 and \ # cfg.functional_preproc['truncation']['stop_tr'] == None: # data, key = strat_pool.get_data(["desc-preproc_bold", "bold"], # True) # outputs = {key: data} # return (wf, outputs) trunc_wf = create_wf_edit_func( wf_name=f"edit_func_{pipe_num}" ) trunc_wf.inputs.inputspec.start_idx = cfg.functional_preproc[ 'truncation']['start_tr'] trunc_wf.inputs.inputspec.stop_idx = cfg.functional_preproc['truncation'][ 'stop_tr'] node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, trunc_wf, 'inputspec.func') outputs = { 'desc-preproc_bold': (trunc_wf, 'outputspec.edited_func') } return (wf, outputs) def func_despike(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "func_despike", "config": ["functional_preproc", "despiking"], "switch": ["run"], "option_key": "None", "option_val": "None", "inputs": [["desc-preproc_bold", "bold"]], "outputs": { "desc-preproc_bold": { "Description": "De-spiked BOLD time-series via AFNI 3dDespike." }} } ''' despike = pe.Node(interface=preprocess.Despike(), name=f'func_despiked_{pipe_num}', mem_gb=0.66, mem_x=(8251808479088459 / 1208925819614629174706176, 'in_file')) despike.inputs.outputtype = 'NIFTI_GZ' node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, despike, 'in_file') outputs = { 'desc-preproc_bold': (despike, 'out_file') } return (wf, outputs) def func_slice_time(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "func_slice_time", "config": ["functional_preproc", "slice_timing_correction"], "switch": ["run"], "option_key": "None", "option_val": "None", "inputs": [["desc-preproc_bold", "bold"], "TR", "tpattern"], "outputs": { "desc-preproc_bold": { "Description": "Slice-time corrected BOLD time-series via AFNI 3dTShift." }, "desc-stc_bold": { "Description": "Slice-time corrected BOLD time-series via AFNI 3dTShift."}} } ''' slice_time = slice_timing_wf(name='func_slice_timing_correction_' f'{pipe_num}', tpattern=cfg.functional_preproc[ 'slice_timing_correction']['tpattern'], tzero=cfg.functional_preproc[ 'slice_timing_correction']['tzero']) node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, slice_time, 'inputspec.func_ts') node, out = strat_pool.get_data('TR') wf.connect(node, out, slice_time, 'inputspec.tr') node, out = strat_pool.get_data('tpattern') wf.connect(node, out, slice_time, 'inputspec.tpattern') outputs = { 'desc-preproc_bold': (slice_time, 'outputspec.slice_time_corrected'), 'desc-stc_bold': (slice_time, 'outputspec.slice_time_corrected') } return (wf, outputs) def func_reorient(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "func_reorient", "config": ["functional_preproc"], "switch": ["run"], "option_key": "None", "option_val": "None", "inputs": [["desc-preproc_bold", "bold"]], "outputs": ["desc-preproc_bold", "desc-reorient_bold"]} ''' func_deoblique = pe.Node(interface=afni_utils.Refit(), name=f'func_deoblique_{pipe_num}', mem_gb=0.68, mem_x=(4664065662093477 / 1208925819614629174706176, 'in_file')) func_deoblique.inputs.deoblique = True node, out = strat_pool.get_data(['desc-preproc_bold', 'bold']) wf.connect(node, out, func_deoblique, 'in_file') func_reorient = pe.Node(interface=afni_utils.Resample(), name=f'func_reorient_{pipe_num}', mem_gb=0.68, mem_x=(9005234470657405 / 1208925819614629174706176, 'in_file')) func_reorient.inputs.orientation = 'RPI' func_reorient.inputs.outputtype = 'NIFTI_GZ' wf.connect(func_deoblique, 'out_file', func_reorient, 'in_file') outputs = { 'desc-preproc_bold': (func_reorient, 'out_file'), 'desc-reorient_bold': (func_reorient, 'out_file') } return (wf, outputs) def get_motion_ref(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "get_motion_ref", "config": ["functional_preproc", "motion_estimates_and_correction", "motion_correction"], "switch": "None", "option_key": "motion_correction_reference", "option_val": ["mean", "median", "selected_volume", "fmriprep_reference"], "inputs": [["desc-preproc_bold", "bold"], "bold"], "outputs": ["motion-basefile"]} ''' if opt != 'mean' and opt != 'median' and opt != 'selected_volume' and opt != 'fmriprep_reference': raise Exception("\n\n[!] Error: The 'tool' parameter of the " "'motion_correction_reference' workflow must be either " "'mean' or 'median' or 'selected_volume' or 'fmriprep_reference'.\n\nTool input: " "{0}\n\n".format(opt)) if opt == 'mean': func_get_RPI = pe.Node(interface=afni_utils.TStat(), name=f'func_get_mean_RPI_{pipe_num}', mem_gb=0.48, mem_x=(1435097126797993 / 302231454903657293676544, 'in_file')) func_get_RPI.inputs.options = '-mean' func_get_RPI.inputs.outputtype = 'NIFTI_GZ' node, out = strat_pool.get_data(['desc-preproc_bold', 'bold']) wf.connect(node, out, func_get_RPI, 'in_file') elif opt == 'median': func_get_RPI = pe.Node(interface=afni_utils.TStat(), name=f'func_get_median_RPI_{pipe_num}') func_get_RPI.inputs.options = '-median' func_get_RPI.inputs.outputtype = 'NIFTI_GZ' node, out = strat_pool.get_data(['desc-preproc_bold', 'bold']) wf.connect(node, out, func_get_RPI, 'in_file') elif opt == 'selected_volume': func_get_RPI = pe.Node(interface=afni.Calc(), name=f'func_get_selected_RPI_{pipe_num}') func_get_RPI.inputs.set( expr='a', single_idx=cfg.functional_preproc['motion_estimates_and_correction'][ 'motion_correction']['motion_correction_reference_volume'], outputtype='NIFTI_GZ' ) node, out = strat_pool.get_data(['desc-preproc_bold', 'bold']) wf.connect(node, out, func_get_RPI, 'in_file_a') elif opt == 'fmriprep_reference': func_get_RPI = pe.Node(util.Function(input_names=['in_file'], output_names=['out_file'], function=estimate_reference_image), name=f'func_get_fmriprep_ref_{pipe_num}') node, out = strat_pool.get_data('bold') wf.connect(node, out, func_get_RPI, 'in_file') outputs = { 'motion-basefile': (func_get_RPI, 'out_file') } return (wf, outputs) def func_motion_correct(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "motion_correction", "config": ["functional_preproc", "motion_estimates_and_correction", "motion_correction"], "switch": "None", "option_key": "using", "option_val": ["3dvolreg", "mcflirt"], "inputs": [(["desc-preproc_bold", "bold"], "motion-basefile")], "outputs": ["desc-preproc_bold", "desc-motion_bold", "max-displacement", "rels-displacement", "movement-parameters", "coordinate-transformation"]} ''' wf, outputs = motion_correct_connections(wf, cfg, strat_pool, pipe_num, opt) return (wf, outputs) def func_motion_estimates(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "motion_estimates", "config": ["functional_preproc", "motion_estimates_and_correction", "motion_correction"], "switch": "None", "option_key": "using", "option_val": ["3dvolreg", "mcflirt"], "inputs": [(["desc-preproc_bold", "bold"], "motion-basefile")], "outputs": ["max-displacement", "rels-displacement", "movement-parameters", "coordinate-transformation"]} ''' wf, wf_outputs = motion_correct_connections(wf, cfg, strat_pool, pipe_num, opt) outputs = { 'max-displacement': wf_outputs['max-displacement'], 'movement-parameters': wf_outputs['movement-parameters'] } if 'coordinate-transformation' in wf_outputs: outputs['coordinate-transformation'] = \ wf_outputs['coordinate-transformation'] if 'rels-displacement' in wf_outputs: outputs['rels-displacement'] = wf_outputs['rels-displacement'] return (wf, outputs) def func_motion_correct_only(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "motion_correction_only", "config": ["functional_preproc", "motion_estimates_and_correction", "motion_correction"], "switch": "None", "option_key": "using", "option_val": ["3dvolreg", "mcflirt"], "inputs": [(["desc-preproc_bold", "bold"], "motion-basefile")], "outputs": ["desc-preproc_bold", "desc-motion_bold"]} ''' wf, wf_outputs = motion_correct_connections(wf, cfg, strat_pool, pipe_num, opt) outputs = { 'desc-motion_bold': wf_outputs['desc-motion_bold'] } return (wf, outputs) def motion_estimate_filter(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "motion_estimate_filter", "config": ["functional_preproc", "motion_estimates_and_correction", "motion_estimate_filter"], "switch": ["run"], "option_key": "filter_type", "option_val": ["notch", "lowpass"], "inputs": ["movement-parameters", "TR"], "outputs": ["movement-parameters", "motion-filter-info", "motion-filter-plot"]} ''' notch_imports = ['import os', 'import numpy as np', 'from scipy.signal import iirnotch, lfilter, firwin, freqz', 'from matplotlib import pyplot as plt', 'from CPAC.func_preproc.utils import degrees_to_mm, mm_to_degrees'] notch = pe.Node(Function(input_names=['motion_params', 'filter_type', 'TR', 'fc_RR_min', 'fc_RR_max', 'center_freq', 'freq_bw', 'lowpass_cutoff', 'filter_order'], output_names=[ 'filtered_motion_params', 'filter_info', 'filter_plot'], function=notch_filter_motion, imports=notch_imports), name=f'filter_motion_params_{pipe_num}') notch.inputs.filter_type = cfg.functional_preproc[ "motion_estimates_and_correction"][ "motion_estimate_filter"]['filter_type'] notch.inputs.fc_RR_min = cfg.functional_preproc[ "motion_estimates_and_correction"][ "motion_estimate_filter"]['breathing_rate_min'] notch.inputs.fc_RR_max = cfg.functional_preproc[ "motion_estimates_and_correction"][ "motion_estimate_filter"]['breathing_rate_max'] notch.inputs.center_freq = cfg.functional_preproc[ "motion_estimates_and_correction"][ "motion_estimate_filter"]['center_frequency'] notch.inputs.freq_bw = cfg.functional_preproc[ "motion_estimates_and_correction"][ "motion_estimate_filter"]['filter_bandwidth'] notch.inputs.lowpass_cutoff = cfg.functional_preproc[ "motion_estimates_and_correction"][ "motion_estimate_filter"]['lowpass_cutoff'] notch.inputs.filter_order = cfg.functional_preproc[ "motion_estimates_and_correction"][ "motion_estimate_filter"]['filter_order'] node, out = strat_pool.get_data('movement-parameters') wf.connect(node, out, notch, 'motion_params') node, out = strat_pool.get_data('TR') wf.connect(node, out, notch, 'TR') outputs = { 'motion-filter-info': (notch, 'filter_info'), 'motion-filter-plot': (notch, 'filter_plot'), 'movement-parameters': (notch, 'filtered_motion_params') } return (wf, outputs) def calc_motion_stats(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "calc_motion_stats", "config": "None", "switch": [["functional_preproc", "run"], ["functional_preproc", "motion_estimates_and_correction", "motion_estimates", "calculate_motion_after"]], "option_key": "None", "option_val": "None", "inputs": [("desc-motion_bold", "space-bold_desc-brain_mask", "movement-parameters", "max-displacement", "rels-displacement", "coordinate-transformation"), "subject", "scan"], "outputs": ["framewise-displacement-power", "framewise-displacement-jenkinson", "dvars", "power-params", "motion-params"]} ''' motion_prov = strat_pool.get_cpac_provenance('movement-parameters') motion_correct_tool = check_prov_for_motion_tool(motion_prov) gen_motion_stats = motion_power_statistics( name=f'gen_motion_stats_{pipe_num}', motion_correct_tool=motion_correct_tool) # Special case where the workflow is not getting outputs from # resource pool but is connected to functional datasource node, out_file = strat_pool.get_data('subject') wf.connect(node, out_file, gen_motion_stats, 'inputspec.subject_id') node, out_file = strat_pool.get_data('scan') wf.connect(node, out_file, gen_motion_stats, 'inputspec.scan_id') node, out_file = strat_pool.get_data("desc-motion_bold") wf.connect(node, out_file, gen_motion_stats, 'inputspec.motion_correct') node, out_file = strat_pool.get_data('space-bold_desc-brain_mask') wf.connect(node, out_file, gen_motion_stats, 'inputspec.mask') node, out_file = strat_pool.get_data('movement-parameters') wf.connect(node, out_file, gen_motion_stats, 'inputspec.movement_parameters') node, out_file = strat_pool.get_data('max-displacement') wf.connect(node, out_file, gen_motion_stats, 'inputspec.max_displacement') if strat_pool.check_rpool('rels-displacement'): node, out_file = strat_pool.get_data('rels-displacement') wf.connect(node, out_file, gen_motion_stats, 'inputspec.rels_displacement') if strat_pool.check_rpool('coordinate-transformation'): node, out_file = strat_pool.get_data('coordinate-transformation') wf.connect(node, out_file, gen_motion_stats, 'inputspec.transformations') outputs = { 'framewise-displacement-power': (gen_motion_stats, 'outputspec.FDP_1D'), 'framewise-displacement-jenkinson': (gen_motion_stats, 'outputspec.FDJ_1D'), 'dvars': (gen_motion_stats, 'outputspec.DVARS_1D'), 'power-params': (gen_motion_stats, 'outputspec.power_params'), 'motion-params': (gen_motion_stats, 'outputspec.motion_params') } return (wf, outputs) def bold_mask_afni(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "bold_mask_afni", "config": ["functional_preproc"], "switch": ["run"], "option_key": ["func_masking", "using"], "option_val": "AFNI", "inputs": [["desc-preproc_bold", "bold"]], "outputs": { "space-bold_desc-brain_mask": { "Description": "Binary brain mask of the BOLD functional time-series created by AFNI 3dAutomask."}} } ''' func_get_brain_mask = pe.Node(interface=preprocess.Automask(), name=f'func_get_brain_mask_AFNI_{pipe_num}') func_get_brain_mask.inputs.outputtype = 'NIFTI_GZ' node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, func_get_brain_mask, 'in_file') outputs = { 'space-bold_desc-brain_mask': (func_get_brain_mask, 'out_file') } return (wf, outputs) def bold_mask_fsl(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "bold_mask_fsl", "config": ["functional_preproc"], "switch": ["run"], "option_key": ["func_masking", "using"], "option_val": "FSL", "inputs": [["desc-preproc_bold", "bold"]], "outputs": ["space-bold_desc-brain_mask"]} ''' inputnode_bet = pe.Node( util.IdentityInterface(fields=['frac', 'mesh_boolean', 'outline', 'padding', 'radius', 'reduce_bias', 'remove_eyes', 'robust', 'skull', 'surfaces', 'threshold', 'vertical_gradient']), name=f'BET_options_{pipe_num}') func_get_brain_mask = pe.Node(interface=fsl.BET(), name=f'func_get_brain_mask_BET_{pipe_num}') func_get_brain_mask.inputs.output_type = 'NIFTI_GZ' func_get_brain_mask.inputs.mask = True inputnode_bet.inputs.set( frac=cfg.functional_preproc['func_masking']['FSL-BET']['frac'], mesh_boolean=cfg.functional_preproc['func_masking']['FSL-BET'][ 'mesh_boolean'], outline=cfg.functional_preproc['func_masking']['FSL-BET'][ 'outline'], padding=cfg.functional_preproc['func_masking']['FSL-BET'][ 'padding'], radius=cfg.functional_preproc['func_masking']['FSL-BET']['radius'], reduce_bias=cfg.functional_preproc['func_masking']['FSL-BET'][ 'reduce_bias'], remove_eyes=cfg.functional_preproc['func_masking']['FSL-BET'][ 'remove_eyes'], robust=cfg.functional_preproc['func_masking']['FSL-BET']['robust'], skull=cfg.functional_preproc['func_masking']['FSL-BET']['skull'], surfaces=cfg.functional_preproc['func_masking']['FSL-BET'][ 'surfaces'], threshold=cfg.functional_preproc['func_masking']['FSL-BET'][ 'threshold'], vertical_gradient= cfg.functional_preproc['func_masking']['FSL-BET'][ 'vertical_gradient'], ) wf.connect([ (inputnode_bet, func_get_brain_mask, [ ('frac', 'frac'), ('mesh_boolean', 'mesh'), ('outline', 'outline'), ('padding', 'padding'), ('radius', 'radius'), ('reduce_bias', 'reduce_bias'), ('remove_eyes', 'remove_eyes'), ('robust', 'robust'), ('skull', 'skull'), ('surfaces', 'surfaces'), ('threshold', 'threshold'), ('vertical_gradient', 'vertical_gradient'), ]) ]) if cfg.functional_preproc['func_masking']['FSL-BET'][ 'functional_mean_boolean']: func_skull_mean = pe.Node(interface=afni_utils.TStat(), name=f'func_mean_skull_{pipe_num}') func_skull_mean.inputs.options = '-mean' func_skull_mean.inputs.outputtype = 'NIFTI_GZ' node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, func_skull_mean, 'in_file') out_node, out_file = (func_skull_mean, 'out_file') if cfg.functional_preproc['func_masking']['FSL-BET'][ 'functional_mean_thr']['run']: # T=$(fslstats ${subject}_tmean.nii.gz -p 98) threshold_T = pe.Node(interface=fsl.ImageStats(), name=f'func_mean_skull_thr_value_{pipe_num}', iterfield=['in_file']) threshold_T.inputs.op_string = "-p %f " % (cfg.functional_preproc['func_masking']['FSL-BET']['functional_mean_thr']['threshold_value']) wf.connect(func_skull_mean, 'out_file', threshold_T, 'in_file') # z=$(echo "$T / 10" | bc -l) def form_thr_string(thr): threshold_z = str(float(thr/10)) return '-thr %s' % (threshold_z) form_thr_string = pe.Node(util.Function(input_names=['thr'], output_names=['out_str'], function=form_thr_string), name=f'form_thr_string_{pipe_num}') wf.connect(threshold_T, 'out_stat', form_thr_string, 'thr') # fslmaths ${subject}_tmean.nii.gz -thr ${z} ${subject}_tmean_thr.nii.gz func_skull_mean_thr = pe.Node(interface=fsl.ImageMaths(), name=f'func_mean_skull_thr_{pipe_num}') wf.connect(func_skull_mean, 'out_file', func_skull_mean_thr, 'in_file') wf.connect(form_thr_string, 'out_str', func_skull_mean_thr, 'op_string') out_node, out_file = (func_skull_mean_thr, 'out_file') if cfg.functional_preproc['func_masking']['FSL-BET'][ 'functional_mean_bias_correction']: # fast --nopve -B ${subject}_tmean_thr.nii.gz func_mean_skull_fast = pe.Node(interface=fsl.FAST(), name=f'func_mean_skull_fast_{pipe_num}') func_mean_skull_fast.inputs.no_pve = True func_mean_skull_fast.inputs.output_biascorrected = True wf.connect(out_node, out_file, func_mean_skull_fast, 'in_files') out_node, out_file = (func_mean_skull_fast, 'restored_image') wf.connect(out_node, out_file, func_get_brain_mask, 'in_file') else: func_get_brain_mask.inputs.functional = True node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, func_get_brain_mask, 'in_file') # erode one voxel of functional brian mask erode_one_voxel = pe.Node(interface=fsl.ErodeImage(), name=f'erode_one_voxel_{pipe_num}') erode_one_voxel.inputs.kernel_shape = 'box' erode_one_voxel.inputs.kernel_size = 1.0 wf.connect(func_get_brain_mask, 'mask_file', erode_one_voxel, 'in_file') outputs = { 'space-bold_desc-brain_mask': (erode_one_voxel, 'out_file') } return (wf, outputs) def bold_mask_fsl_afni(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "bold_mask_fsl_afni", "config": ["functional_preproc"], "switch": ["run"], "option_key": ["func_masking", "using"], "option_val": "FSL_AFNI", "inputs": [["desc-motion_bold", "desc-preproc_bold", "bold"], "motion-basefile"], "outputs": ["space-bold_desc-brain_mask", "desc-ref_bold"]} ''' # fMRIPrep-style BOLD mask # Ref: https://github.com/nipreps/niworkflows/blob/maint/1.3.x/niworkflows/func/util.py#L246-L514 # Initialize transforms with antsAI init_aff = pe.Node( AI( metric=("Mattes", 32, "Regular", 0.2), transform=("Affine", 0.1), search_factor=(20, 0.12), principal_axes=False, convergence=(10, 1e-6, 10), verbose=True, ), name=f"init_aff_{pipe_num}", n_procs=cfg.pipeline_setup['system_config']['num_OMP_threads'], ) init_aff.inputs.fixed_image = cfg.functional_preproc[ 'func_masking']['FSL_AFNI']['bold_ref'] init_aff.inputs.fixed_image_mask = cfg.functional_preproc[ 'func_masking']['FSL_AFNI']['brain_mask'] init_aff.inputs.search_grid = (40, (0, 40, 40)) # Set up spatial normalization norm = pe.Node( ants.Registration( winsorize_upper_quantile=0.98, winsorize_lower_quantile=0.05, float=True, metric=['Mattes'], metric_weight=[1], radius_or_number_of_bins=[64], transforms=['Affine'], transform_parameters=[[0.1]], number_of_iterations=[[200]], convergence_window_size=[10], convergence_threshold=[1.e-9], sampling_strategy=['Random', 'Random'], smoothing_sigmas=[[2]], sigma_units=['mm', 'mm', 'mm'], shrink_factors=[[2]], sampling_percentage=[0.2], use_histogram_matching=[True], use_estimate_learning_rate_once=[True] ), name=f"norm_{pipe_num}", n_procs=cfg.pipeline_setup['system_config']['num_OMP_threads'], ) norm.inputs.fixed_image = cfg.functional_preproc[ 'func_masking']['FSL_AFNI']['bold_ref'] map_brainmask = pe.Node( ants.ApplyTransforms( interpolation="BSpline", float=True, ), name=f"map_brainmask_{pipe_num}", ) # Use the higher resolution and probseg for numerical stability in rounding map_brainmask.inputs.input_image = cfg.functional_preproc[ 'func_masking']['FSL_AFNI']['brain_probseg'] binarize_mask = pe.Node(interface=fsl.maths.MathsCommand(), name=f'binarize_mask_{pipe_num}') binarize_mask.inputs.args = '-thr 0.85 -bin' # Dilate pre_mask pre_dilate = pe.Node( fsl.DilateImage( operation="max", kernel_shape="sphere", kernel_size=3.0, internal_datatype="char", ), name=f"pre_mask_dilate_{pipe_num}", ) # Run N4 normally, force num_threads=1 for stability (images are small, no need for >1) n4_correct = pe.Node( ants.N4BiasFieldCorrection( dimension=3, copy_header=True, bspline_fitting_distance=200 ), shrink_factor=2, rescale_intensities = True, name=f"n4_correct_{pipe_num}", n_procs=1, ) skullstrip_first_pass = pe.Node( fsl.BET(frac=0.2, mask=True, functional=False), name=f'skullstrip_first_pass_{pipe_num}') bet_dilate = pe.Node( fsl.DilateImage(operation='max', kernel_shape='sphere', kernel_size=6.0, internal_datatype='char'), name=f'skullstrip_first_dilate_{pipe_num}') bet_mask = pe.Node(fsl.ApplyMask(), name=f'skullstrip_first_mask_' f'{pipe_num}') unifize = pe.Node(afni_utils.Unifize(t2=True, outputtype='NIFTI_GZ', args='-clfrac 0.2 -rbt 18.3 65.0 90.0', out_file="uni.nii.gz"), name=f'unifize_{pipe_num}') skullstrip_second_pass = pe.Node( preprocess.Automask(dilate=1, outputtype='NIFTI_GZ'), name=f'skullstrip_second_pass_{pipe_num}') combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'), name=f'combine_masks_{pipe_num}') apply_mask = pe.Node(fsl.ApplyMask(), name=f'extract_ref_brain_bold_{pipe_num}') node, out = strat_pool.get_data(["motion-basefile"]) wf.connect([(node, init_aff, [(out, "moving_image")]), (node, map_brainmask, [(out, "reference_image")]), (node, norm, [(out, "moving_image")]), (init_aff, norm, [("output_transform", "initial_moving_transform")]), (norm, map_brainmask, [ ("reverse_invert_flags", "invert_transform_flags"), ("reverse_transforms", "transforms"), ]), (map_brainmask, binarize_mask, [("output_image", "in_file")]), (binarize_mask, pre_dilate, [("out_file", "in_file")]), (pre_dilate, n4_correct, [("out_file", "mask_image")]), (node, n4_correct, [(out, "input_image")]), (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]), (skullstrip_first_pass, bet_dilate, [('mask_file', 'in_file')]), (bet_dilate, bet_mask, [('out_file', 'mask_file')]), (skullstrip_first_pass, bet_mask, [('out_file', 'in_file')]), (bet_mask, unifize, [('out_file', 'in_file')]), (unifize, skullstrip_second_pass, [('out_file', 'in_file')]), (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]), (skullstrip_second_pass, combine_masks, [('out_file', 'operand_file')]), (unifize, apply_mask, [('out_file', 'in_file')]), (combine_masks, apply_mask, [('out_file', 'mask_file')]), ]) outputs = { 'space-bold_desc-brain_mask': (combine_masks, 'out_file'), 'desc-ref_bold': (apply_mask, 'out_file') } return (wf, outputs) def bold_mask_anatomical_refined(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "bold_mask_anatomical_refined", "config": ["functional_preproc"], "switch": ["run"], "option_key": ["func_masking", "using"], "option_val": "Anatomical_Refined", "inputs": ["bold", ["desc-preproc_bold", "bold"], "desc-brain_T1w", "space-T1w_desc-brain_mask"], "outputs": ["space-bold_desc-brain_mask"]} ''' # binarize anat mask, in case it is not a binary mask. anat_brain_mask_bin = pe.Node(interface=fsl.ImageMaths(), name=f'anat_brain_mask_bin_{pipe_num}') anat_brain_mask_bin.inputs.op_string = '-bin' node, out = strat_pool.get_data('space-T1w_desc-brain_mask') wf.connect(node, out, anat_brain_mask_bin, 'in_file') # fill holes of anat mask anat_mask_filled = pe.Node(interface=afni.MaskTool(), name=f'anat_brain_mask_filled_{pipe_num}') anat_mask_filled.inputs.fill_holes = True anat_mask_filled.inputs.outputtype = 'NIFTI_GZ' wf.connect(anat_brain_mask_bin, 'out_file', anat_mask_filled, 'in_file') # init_bold_mask : input raw func init_bold_mask = anat_refined_mask(init_bold_mask=True, wf_name=f'init_bold_mask_{pipe_num}') func_deoblique = pe.Node(interface=afni_utils.Refit(), name=f'raw_func_deoblique_{pipe_num}') func_deoblique.inputs.deoblique = True node, out = strat_pool.get_data('bold') wf.connect(node, out, func_deoblique, 'in_file') func_reorient = pe.Node(interface=afni_utils.Resample(), name=f'raw_func_reorient_{pipe_num}') func_reorient.inputs.orientation = 'RPI' func_reorient.inputs.outputtype = 'NIFTI_GZ' wf.connect(func_deoblique, 'out_file', func_reorient, 'in_file') wf.connect(func_reorient, 'out_file', init_bold_mask, 'inputspec.func') wf.connect(anat_mask_filled, 'out_file', init_bold_mask, 'inputspec.anatomical_brain_mask') node, out = strat_pool.get_data('desc-brain_T1w') wf.connect(node, out, init_bold_mask, 'inputspec.anat_brain') # dilate init func brain mask func_tmp_brain_mask = pe.Node(interface=fsl.ImageMaths(), name=f'func_tmp_brain_mask_dil_{pipe_num}') func_tmp_brain_mask.inputs.op_string = '-dilM' wf.connect(init_bold_mask, 'outputspec.func_brain_mask', func_tmp_brain_mask, 'in_file') # refined_bold_mask : input motion corrected func refined_bold_mask = anat_refined_mask(init_bold_mask=False, wf_name='refined_bold_mask' f'_{pipe_num}') node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, refined_bold_mask, 'inputspec.func') node, out = strat_pool.get_data('desc-brain_T1w') wf.connect(node, out, refined_bold_mask, 'inputspec.anat_brain') wf.connect(func_tmp_brain_mask, 'out_file', refined_bold_mask, 'inputspec.init_func_brain_mask') # dilate anatomical mask if cfg.functional_preproc['func_masking']['Anatomical_Refined'][ 'anatomical_mask_dilation']: anat_mask_dilate = pe.Node(interface=afni.MaskTool(), name=f'anat_mask_dilate_{pipe_num}') anat_mask_dilate.inputs.dilate_inputs = '1' anat_mask_dilate.inputs.outputtype = 'NIFTI_GZ' wf.connect(anat_mask_filled, 'out_file', anat_mask_dilate, 'in_file') wf.connect(anat_mask_dilate, 'out_file', refined_bold_mask, 'inputspec.anatomical_brain_mask') else: wf.connect(anat_mask_filled, 'out_file', refined_bold_mask, 'inputspec.anatomical_brain_mask') # get final func mask func_mask_final = pe.Node(interface=fsl.MultiImageMaths(), name=f'func_mask_final_{pipe_num}') func_mask_final.inputs.op_string = "-mul %s" wf.connect(func_tmp_brain_mask, 'out_file', func_mask_final, 'in_file') wf.connect(refined_bold_mask, 'outputspec.func_brain_mask', func_mask_final, 'operand_files') outputs = { 'space-bold_desc-brain_mask': (func_mask_final, 'out_file') } return (wf, outputs) def bold_mask_anatomical_based(wf, cfg, strat_pool, pipe_num, opt=None): '''Generate the BOLD mask by basing it off of the anatomical brain mask. Adapted from DCAN Lab's BOLD mask method from the ABCD pipeline. https://github.com/DCAN-Labs/DCAN-HCP/blob/master/fMRIVolume/scripts/DistortionCorrectionAndEPIToT1wReg_FLIRTBBRAndFreeSurferBBRbased.sh Node Block: {"name": "bold_mask_anatomical_based", "config": ["functional_preproc"], "switch": ["run"], "option_key": ["func_masking", "using"], "option_val": "Anatomical_Based", "inputs": [["desc-preproc_bold", "bold"], "desc-brain_T1w", ["desc-preproc_T1w", "desc-reorient_T1w", "T1w"]], "outputs": ["space-bold_desc-brain_mask"]} ''' # 0. Take single volume of func func_single_volume = pe.Node(interface=afni.Calc(), name='func_single_volume') func_single_volume.inputs.set( expr='a', single_idx=1, outputtype='NIFTI_GZ' ) node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, func_single_volume, 'in_file_a') # 1. Register func head to anat head to get func2anat matrix linear_reg_func_to_anat = pe.Node(interface=fsl.FLIRT(), name='func_to_anat_linear_reg') linear_reg_func_to_anat.inputs.dof = 6 linear_reg_func_to_anat.inputs.interp = 'spline' linear_reg_func_to_anat.inputs.searchr_x = [30, 30] linear_reg_func_to_anat.inputs.searchr_y = [30, 30] linear_reg_func_to_anat.inputs.searchr_z = [30, 30] wf.connect(func_single_volume, 'out_file', linear_reg_func_to_anat, 'in_file') node, out = strat_pool.get_data(["desc-preproc_T1w", "desc-reorient_T1w", "T1w"]) wf.connect(node, out, linear_reg_func_to_anat, 'reference') # 2. Inverse func to anat affine, to get anat-to-func transform inv_func_to_anat_affine = pe.Node(interface=fsl.ConvertXFM(), name='inv_func2anat_affine') inv_func_to_anat_affine.inputs.invert_xfm = True wf.connect(linear_reg_func_to_anat, 'out_matrix_file', inv_func_to_anat_affine, 'in_file') # 3. get BOLD mask # 3.1 Apply anat-to-func transform to transfer anatomical brain to functional space reg_anat_brain_to_func = pe.Node(interface=fsl.ApplyWarp(), name='reg_anat_brain_to_func') reg_anat_brain_to_func.inputs.interp = 'nn' reg_anat_brain_to_func.inputs.relwarp = True node, out = strat_pool.get_data("desc-brain_T1w") wf.connect(node, out, reg_anat_brain_to_func, 'in_file') node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, reg_anat_brain_to_func, 'ref_file') wf.connect(inv_func_to_anat_affine, 'out_file', reg_anat_brain_to_func, 'premat') # 3.2 Binarize transfered image func_mask_bin = pe.Node(interface=fsl.ImageMaths(), name='func_mask_bin') func_mask_bin.inputs.op_string = '-abs -bin' wf.connect(reg_anat_brain_to_func, 'out_file', func_mask_bin, 'in_file') # 3.3 Fill holes to get BOLD mask func_mask_fill_holes = pe.Node(interface=afni.MaskTool(), name='func_mask_fill_holes') func_mask_fill_holes.inputs.fill_holes = True func_mask_fill_holes.inputs.outputtype = 'NIFTI_GZ' wf.connect(func_mask_bin, 'out_file', func_mask_fill_holes, 'in_file') outputs = { 'space-bold_desc-brain_mask': (func_mask_fill_holes, 'out_file') } return (wf, outputs) def bold_mask_anatomical_resampled(wf, cfg, strat_pool, pipe_num, opt=None): '''Resample anatomical brain mask in standard space to get BOLD brain mask in standard space Adapted from DCAN Lab's BOLD mask method from the ABCD pipeline. https://github.com/DCAN-Labs/DCAN-HCP/blob/master/fMRIVolume/scripts/OneStepResampling.sh#L121-L132 Node Block: {"name": "bold_mask_anatomical_resampled", "config": ["functional_preproc"], "switch": ["run"], "option_key": ["func_masking", "using"], "option_val": "Anatomical_Resampled", "inputs": [["desc-preproc_bold", "bold"], "T1w-template-funcreg", "space-template_desc-brain_T1w", "space-template_desc-T1w_mask"], "outputs": ["space-template_res-bold_desc-brain_T1w", "space-template_desc-bold_mask", "space-bold_desc-brain_mask"]} ''' # applywarp --rel --interp=spline -i ${T1wImage} -r ${ResampRefIm} --premat=$FSLDIR/etc/flirtsch/ident.mat -o ${WD}/${T1wImageFile}.${FinalfMRIResolution} anat_brain_to_func_res = pe.Node(interface=fsl.ApplyWarp(), name=f'resample_anat_brain_in_standard_{pipe_num}') anat_brain_to_func_res.inputs.interp = 'spline' anat_brain_to_func_res.inputs.premat = cfg.registration_workflows[ 'anatomical_registration']['registration']['FSL-FNIRT']['identity_matrix'] node, out = strat_pool.get_data('space-template_desc-brain_T1w') wf.connect(node, out, anat_brain_to_func_res, 'in_file') node, out = strat_pool.get_data('T1w-template-funcreg') wf.connect(node, out, anat_brain_to_func_res, 'ref_file') # Create brain masks in this space from the FreeSurfer output (changing resolution) # applywarp --rel --interp=nn -i ${FreeSurferBrainMask}.nii.gz -r ${WD}/${T1wImageFile}.${FinalfMRIResolution} --premat=$FSLDIR/etc/flirtsch/ident.mat -o ${WD}/${FreeSurferBrainMaskFile}.${FinalfMRIResolution}.nii.gz anat_brain_mask_to_func_res = pe.Node(interface=fsl.ApplyWarp(), name=f'resample_anat_brain_mask_in_standard_{pipe_num}') anat_brain_mask_to_func_res.inputs.interp = 'nn' anat_brain_mask_to_func_res.inputs.premat = cfg.registration_workflows[ 'anatomical_registration']['registration']['FSL-FNIRT']['identity_matrix'] node, out = strat_pool.get_data('space-template_desc-T1w_mask') wf.connect(node, out, anat_brain_mask_to_func_res, 'in_file') wf.connect(anat_brain_to_func_res, 'out_file', anat_brain_mask_to_func_res, 'ref_file') # Resample func mask in template space back to native space func_mask_template_to_native = pe.Node(interface=afni.Resample(), name=f'resample_func_mask_to_native_{pipe_num}') func_mask_template_to_native.inputs.resample_mode = 'NN' func_mask_template_to_native.inputs.outputtype = 'NIFTI_GZ' wf.connect(anat_brain_mask_to_func_res, 'out_file', func_mask_template_to_native, 'in_file') node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, func_mask_template_to_native, 'master') outputs = { 'space-template_res-bold_desc-brain_T1w': (anat_brain_to_func_res, 'out_file'), 'space-template_desc-bold_mask': (anat_brain_mask_to_func_res, 'out_file'), "space-bold_desc-brain_mask": (func_mask_template_to_native, 'out_file') } return (wf, outputs) def bold_mask_ccs(wf, cfg, strat_pool, pipe_num, opt=None): '''Generate the BOLD mask by basing it off of the anatomical brain. Adapted from the BOLD mask method from the CCS pipeline. https://github.com/TingsterX/CCS/blob/master/ccs_01_funcpreproc.sh#L89-L110 Node Block: {"name": "bold_mask_ccs", "config": ["functional_preproc"], "switch": ["run"], "option_key": ["func_masking", "using"], "option_val": "CCS_Anatomical_Refined", "inputs": [["desc-motion_bold", "desc-preproc_bold", "bold"], "desc-brain_T1w", ["desc-preproc_T1w", "desc-reorient_T1w", "T1w"]], "outputs": ["space-bold_desc-brain_mask", "desc-ROIbrain_bold"]} ''' # Run 3dAutomask to generate func initial mask func_tmp_brain_mask = pe.Node(interface=preprocess.Automask(), name=f'func_tmp_brain_mask_AFNI_{pipe_num}') func_tmp_brain_mask.inputs.dilate = 1 func_tmp_brain_mask.inputs.outputtype = 'NIFTI_GZ' node, out = strat_pool.get_data(["desc-motion_bold", "desc-preproc_bold", "bold"]) wf.connect(node, out, func_tmp_brain_mask, 'in_file') # Extract 8th volume as func ROI func_roi = pe.Node(interface=fsl.ExtractROI(), name=f'extract_func_roi_{pipe_num}') func_roi.inputs.t_min = 7 func_roi.inputs.t_size = 1 node, out = strat_pool.get_data(["desc-motion_bold", "desc-preproc_bold", "bold"]) wf.connect(node, out, func_roi, 'in_file') # Apply func initial mask on func ROI volume func_tmp_brain = pe.Node(interface=fsl.maths.ApplyMask(), name=f'get_func_tmp_brain_{pipe_num}') wf.connect(func_roi, 'roi_file', func_tmp_brain, 'in_file') wf.connect(func_tmp_brain_mask, 'out_file', func_tmp_brain, 'mask_file') # Register func tmp brain to anat brain to get func2anat matrix reg_func_to_anat = pe.Node(interface=fsl.FLIRT(), name=f'func_to_anat_linear_reg_{pipe_num}') reg_func_to_anat.inputs.interp = 'trilinear' reg_func_to_anat.inputs.cost = 'corratio' reg_func_to_anat.inputs.dof = 6 wf.connect(func_tmp_brain, 'out_file', reg_func_to_anat, 'in_file') node, out = strat_pool.get_data("desc-brain_T1w") wf.connect(node, out, reg_func_to_anat, 'reference') # Inverse func2anat matrix inv_func_to_anat_affine = pe.Node(interface=fsl.ConvertXFM(), name=f'inv_func2anat_affine_{pipe_num}') inv_func_to_anat_affine.inputs.invert_xfm = True wf.connect(reg_func_to_anat, 'out_matrix_file', inv_func_to_anat_affine, 'in_file') # Transform anat brain to func space reg_anat_brain_to_func = pe.Node(interface=fsl.FLIRT(), name=f'reg_anat_brain_to_func_{pipe_num}') reg_anat_brain_to_func.inputs.apply_xfm = True reg_anat_brain_to_func.inputs.interp = 'trilinear' node, out = strat_pool.get_data("desc-brain_T1w") wf.connect(node, out, reg_anat_brain_to_func, 'in_file') wf.connect(func_roi, 'roi_file', reg_anat_brain_to_func, 'reference') wf.connect(inv_func_to_anat_affine, 'out_file', reg_anat_brain_to_func, 'in_matrix_file') # Binarize and dilate anat brain in func space bin_anat_brain_in_func = pe.Node(interface=fsl.ImageMaths(), name=f'bin_anat_brain_in_func_{pipe_num}') bin_anat_brain_in_func.inputs.op_string = '-bin -dilM' wf.connect(reg_anat_brain_to_func, 'out_file', bin_anat_brain_in_func, 'in_file') # Binarize detectable func signals bin_func = pe.Node(interface=fsl.ImageMaths(), name=f'bin_func_{pipe_num}') bin_func.inputs.op_string = '-Tstd -bin' node, out = strat_pool.get_data(["desc-motion_bold", "desc-preproc_bold", "bold"]) wf.connect(node, out, bin_func, 'in_file') # Take intersection of masks merge_func_mask = pe.Node(util.Merge(2), name=f'merge_func_mask_{pipe_num}') wf.connect(func_tmp_brain_mask, 'out_file', merge_func_mask, 'in1') wf.connect(bin_anat_brain_in_func, 'out_file', merge_func_mask, 'in2') intersect_mask = pe.Node(interface=fsl.MultiImageMaths(), name=f'intersect_mask_{pipe_num}') intersect_mask.inputs.op_string = '-mul %s -mul %s' intersect_mask.inputs.output_datatype = 'char' wf.connect(bin_func, 'out_file', intersect_mask, 'in_file') wf.connect(merge_func_mask, 'out', intersect_mask, 'operand_files') # this is the func input for coreg in ccs # TODO evaluate if it's necessary to use this brain example_func_brain = pe.Node(interface=fsl.maths.ApplyMask(), name=f'get_example_func_brain_{pipe_num}') wf.connect(func_roi, 'roi_file', example_func_brain, 'in_file') wf.connect(intersect_mask, 'out_file', example_func_brain, 'mask_file') outputs = { 'space-bold_desc-brain_mask': (intersect_mask, 'out_file'), 'desc-ROIbrain_bold': (example_func_brain, 'out_file') } return (wf, outputs) def bold_masking(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "bold_masking", "config": None, "switch": [["functional_preproc", "run"], ["functional_preproc", "func_masking", "apply_func_mask_in_native_space"]], "option_key": "None", "option_val": "None", "inputs": [(["desc-preproc_bold", "bold"], "space-bold_desc-brain_mask")], "outputs": { "desc-preproc_bold": { "Description": "The skull-stripped BOLD time-series.", "SkullStripped": True}, "desc-brain_bold": { "Description": "The skull-stripped BOLD time-series.", "SkullStripped": True}} } ''' func_edge_detect = pe.Node(interface=afni_utils.Calc(), name=f'func_extract_brain_{pipe_num}') func_edge_detect.inputs.expr = 'a*b' func_edge_detect.inputs.outputtype = 'NIFTI_GZ' node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, func_edge_detect, 'in_file_a') node, out = strat_pool.get_data("space-bold_desc-brain_mask") wf.connect(node, out, func_edge_detect, 'in_file_b') outputs = { 'desc-preproc_bold': (func_edge_detect, 'out_file'), 'desc-brain_bold': (func_edge_detect, 'out_file') } return (wf, outputs) def func_mean(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "func_mean", "config": "None", "switch": [["functional_preproc", "run"], ["functional_preproc", "generate_func_mean", "run"]], "option_key": "None", "option_val": "None", "inputs": [["desc-preproc_bold", "bold"]], "outputs": ["desc-mean_bold"] } ''' func_mean = pe.Node(interface=afni_utils.TStat(), name=f'func_mean_{pipe_num}') func_mean.inputs.options = '-mean' func_mean.inputs.outputtype = 'NIFTI_GZ' node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, func_mean, 'in_file') outputs = { 'desc-mean_bold': (func_mean, 'out_file') } return (wf, outputs) def func_normalize(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "func_normalize", "config": "None", "switch": [["functional_preproc", "run"], ["functional_preproc", "normalize_func", "run"]], "option_key": "None", "option_val": "None", "inputs": [["desc-preproc_bold", "bold"]], "outputs": ["desc-preproc_bold"]} ''' func_normalize = pe.Node(interface=fsl.ImageMaths(), name=f'func_normalize_{pipe_num}', mem_gb=0.7, mem_x=(4538494663498653 / 604462909807314587353088, 'in_file')) func_normalize.inputs.op_string = '-ing 10000' func_normalize.inputs.out_data_type = 'float' node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, func_normalize, 'in_file') outputs = { 'desc-preproc_bold': (func_normalize, 'out_file') } return (wf, outputs) def func_mask_normalize(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "func_mask_normalize", "config": ["functional_preproc"], "switch": ["run"], "option_key": "None", "option_val": "None", "inputs": [(["desc-preproc_bold", "bold"], "space-bold_desc-brain_mask")], "outputs": ["space-bold_desc-brain_mask"]} ''' func_mask_normalize = pe.Node(interface=fsl.ImageMaths(), name=f'func_mask_normalize_{pipe_num}', mem_gb=0.7, mem_x=(4538494663498653 / 604462909807314587353088, 'in_file')) func_mask_normalize.inputs.op_string = '-Tmin -bin' func_mask_normalize.inputs.out_data_type = 'char' node, out = strat_pool.get_data(["desc-preproc_bold", "bold"]) wf.connect(node, out, func_mask_normalize, 'in_file') outputs = { 'space-bold_desc-brain_mask': (func_mask_normalize, 'out_file') } return (wf, outputs)
scripts/ipa_to_sql.py
btrungchi/English-to-IPA
195
12742188
from eng_to_ipa import transcribe import sqlite3 import re from os.path import join, abspath, dirname conn = sqlite3.connect(join(abspath(dirname(__file__)), "../eng_to_ipa/resources/CMU_dict.db")) c = conn.cursor() def create_dictionary_table(): try: c.execute("""CREATE TABLE eng_ipa (id INTEGER PRIMARY KEY, word text NOT NULL, phonemes text NOT NULL, ipa text NOT NULL )""") conn.commit() except sqlite3.OperationalError: c.execute("DROP TABLE eng_ipa;") conn.commit() create_dictionary_table() def insert_dictionary_values(): """takes the prepared data and places it into the database""" dictionary_data = [] with open(join(abspath(dirname(__file__)), '..\\eng_to_ipa\\resources\\CMU_source_files/cmudict-0.7b.txt'), encoding="UTF-8") as source_file: for line in source_file.readlines(): word = re.sub(r"\(\d\)", "", line.split(" ")[0]).lower() phonemes = line.split(" ")[1].replace("\n", "").lower() ipa = transcribe.cmu_to_ipa([[phonemes]], stress_marking="both")[0][0] dictionary_data.append((str(word), str(phonemes), str(ipa))) c.executemany("INSERT INTO eng_ipa(word, phonemes, ipa) VALUES (?, ?, ?)", dictionary_data) conn.commit() if __name__ == "__main__": # create_dictionary_table() # insert_dictionary_values() # test c.execute("SELECT * FROM eng_ipa WHERE " "REPLACE(REPLACE(ipa, 'ˌ', ''), 'ˈ', '') " "LIKE \"%nstr%\"") for r in c.fetchall(): print(str(r))
utest/resources/robotdata/libs/sub/libsi.py
ludovicurbain/SWIFT-RIDE
775
12742200
<filename>utest/resources/robotdata/libs/sub/libsi.py def libsi_keyword(): print('libsi keyword')
babyai/rl/utils/supervised_losses.py
m-smith/babyai
411
12742213
import torch import torch.nn.functional as F import numpy from babyai.rl.utils import DictList # dictionary that defines what head is required for each extra info used for auxiliary supervision required_heads = {'seen_state': 'binary', 'see_door': 'binary', 'see_obj': 'binary', 'obj_in_instr': 'binary', 'in_front_of_what': 'multiclass9', # multi class classifier with 9 possible classes 'visit_proportion': 'continuous01', # continous regressor with outputs in [0, 1] 'bot_action': 'binary' } class ExtraInfoCollector: ''' This class, used in rl.algos.base, allows connecting the extra information from the environment, and the corresponding predictions using the specific heads in the model. It transforms them so that they are easy to use to evaluate losses ''' def __init__(self, aux_info, shape, device): self.aux_info = aux_info self.shape = shape self.device = device self.collected_info = dict() self.extra_predictions = dict() for info in self.aux_info: self.collected_info[info] = torch.zeros(*shape, device=self.device) if required_heads[info] == 'binary' or required_heads[info].startswith('continuous'): # we predict one number only self.extra_predictions[info] = torch.zeros(*shape, 1, device=self.device) elif required_heads[info].startswith('multiclass'): # means that this is a multi-class classification and we need to predict the whole proba distr n_classes = int(required_heads[info].replace('multiclass', '')) self.extra_predictions[info] = torch.zeros(*shape, n_classes, device=self.device) else: raise ValueError("{} not supported".format(required_heads[info])) def process(self, env_info): # env_info is now a tuple of dicts env_info = [{k: v for k, v in dic.items() if k in self.aux_info} for dic in env_info] env_info = {k: [env_info[_][k] for _ in range(len(env_info))] for k in env_info[0].keys()} # env_info is now a dict of lists return env_info def fill_dictionaries(self, index, env_info, extra_predictions): for info in self.aux_info: dtype = torch.long if required_heads[info].startswith('multiclass') else torch.float self.collected_info[info][index] = torch.tensor(env_info[info], dtype=dtype, device=self.device) self.extra_predictions[info][index] = extra_predictions[info] def end_collection(self, exps): collected_info = dict() extra_predictions = dict() for info in self.aux_info: # T x P -> P x T -> P * T collected_info[info] = self.collected_info[info].transpose(0, 1).reshape(-1) if required_heads[info] == 'binary' or required_heads[info].startswith('continuous'): # T x P x 1 -> P x T x 1 -> P * T extra_predictions[info] = self.extra_predictions[info].transpose(0, 1).reshape(-1) elif type(required_heads[info]) == int: # T x P x k -> P x T x k -> (P * T) x k k = required_heads[info] # number of classes extra_predictions[info] = self.extra_predictions[info].transpose(0, 1).reshape(-1, k) # convert the dicts to DictLists, and add them to the exps DictList. exps.collected_info = DictList(collected_info) exps.extra_predictions = DictList(extra_predictions) return exps class SupervisedLossUpdater: ''' This class, used by PPO, allows the evaluation of the supervised loss when using extra information from the environment. It also handles logging accuracies/L2 distances/etc... ''' def __init__(self, aux_info, supervised_loss_coef, recurrence, device): self.aux_info = aux_info self.supervised_loss_coef = supervised_loss_coef self.recurrence = recurrence self.device = device self.log_supervised_losses = [] self.log_supervised_accuracies = [] self.log_supervised_L2_losses = [] self.log_supervised_prevalences = [] self.batch_supervised_loss = 0 self.batch_supervised_accuracy = 0 self.batch_supervised_L2_loss = 0 self.batch_supervised_prevalence = 0 def init_epoch(self): self.log_supervised_losses = [] self.log_supervised_accuracies = [] self.log_supervised_L2_losses = [] self.log_supervised_prevalences = [] def init_batch(self): self.batch_supervised_loss = 0 self.batch_supervised_accuracy = 0 self.batch_supervised_L2_loss = 0 self.batch_supervised_prevalence = 0 def eval_subbatch(self, extra_predictions, sb): supervised_loss = torch.tensor(0., device=self.device) supervised_accuracy = torch.tensor(0., device=self.device) supervised_L2_loss = torch.tensor(0., device=self.device) supervised_prevalence = torch.tensor(0., device=self.device) binary_classification_tasks = 0 classification_tasks = 0 regression_tasks = 0 for pos, info in enumerate(self.aux_info): coef = self.supervised_loss_coef[pos] pred = extra_predictions[info] target = dict.__getitem__(sb.collected_info, info) if required_heads[info] == 'binary': binary_classification_tasks += 1 classification_tasks += 1 supervised_loss += coef * F.binary_cross_entropy_with_logits(pred.reshape(-1), target) supervised_accuracy += ((pred.reshape(-1) > 0).float() == target).float().mean() supervised_prevalence += target.mean() elif required_heads[info].startswith('continuous'): regression_tasks += 1 mse = F.mse_loss(pred.reshape(-1), target) supervised_loss += coef * mse supervised_L2_loss += mse elif required_heads[info].startswith('multiclass'): classification_tasks += 1 supervised_accuracy += (pred.argmax(1).float() == target).float().mean() supervised_loss += coef * F.cross_entropy(pred, target.long()) else: raise ValueError("{} not supported".format(required_heads[info])) if binary_classification_tasks > 0: supervised_prevalence /= binary_classification_tasks else: supervised_prevalence = torch.tensor(-1) if classification_tasks > 0: supervised_accuracy /= classification_tasks else: supervised_accuracy = torch.tensor(-1) if regression_tasks > 0: supervised_L2_loss /= regression_tasks else: supervised_L2_loss = torch.tensor(-1) self.batch_supervised_loss += supervised_loss.item() self.batch_supervised_accuracy += supervised_accuracy.item() self.batch_supervised_L2_loss += supervised_L2_loss.item() self.batch_supervised_prevalence += supervised_prevalence.item() return supervised_loss def update_batch_values(self): self.batch_supervised_loss /= self.recurrence self.batch_supervised_accuracy /= self.recurrence self.batch_supervised_L2_loss /= self.recurrence self.batch_supervised_prevalence /= self.recurrence def update_epoch_logs(self): self.log_supervised_losses.append(self.batch_supervised_loss) self.log_supervised_accuracies.append(self.batch_supervised_accuracy) self.log_supervised_L2_losses.append(self.batch_supervised_L2_loss) self.log_supervised_prevalences.append(self.batch_supervised_prevalence) def end_training(self, logs): logs["supervised_loss"] = numpy.mean(self.log_supervised_losses) logs["supervised_accuracy"] = numpy.mean(self.log_supervised_accuracies) logs["supervised_L2_loss"] = numpy.mean(self.log_supervised_L2_losses) logs["supervised_prevalence"] = numpy.mean(self.log_supervised_prevalences) return logs
tests/RunTests/PythonTests/test2011_036.py
maurizioabba/rose
488
12742214
<gh_stars>100-1000 class num(): def __init__(self, n): self.n = n print "init", self.n def __enter__(self): print "enter", self.n return (self.n, self.n**2) def __exit__(self, type, value, traceback): print "exit", self.n pass # simple (non-targetted) with-stmt with num(0): print "simple" # targetted with-stmt with num(1) as (one, one_squared): print one, one_squared # multiple, targetted with-stmt with num(2) as (two, two_squared), num(3) as three: print two, two_squared, three # mixed with-stmt with num(4) as four, num(5), num(6) as six: print four, six
apps/bible/utils/translations.py
goztrk/django-htk
206
12742239
<reponame>goztrk/django-htk # HTK Imports from htk.utils import htk_setting from htk.utils.general import resolve_model_dynamically def get_translation_model(translation): translations_map = htk_setting('HTK_BIBLE_TRANSLATIONS_MAP') translation_model_class = translations_map.get(translation.upper()) translation_model = ( resolve_model_dynamically(translation_model_class) if translation_model_class else None ) return translation_model
h2o-py/tests/testdir_misc/pyunit_pop.py
ahmedengu/h2o-3
6,098
12742241
<gh_stars>1000+ from __future__ import print_function import sys sys.path.insert(1,"../../") import h2o from tests import pyunit_utils def pyunit_pop(): pros = h2o.import_file(pyunit_utils.locate("smalldata/prostate/prostate.csv")) nc = pros.ncol popped_col = pros.pop(pros.names[0]) print(pros.dim) print(popped_col.dim) assert popped_col.ncol==1 assert pros.ncol==nc-1 if __name__ == "__main__": pyunit_utils.standalone_test(pyunit_pop) else: pyunit_pop()
ortools/sat/samples/nurses_sat.py
magneticflux-/or-tools
8,273
12742243
#!/usr/bin/env python3 # Copyright 2010-2021 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of a simple nurse scheduling problem.""" # [START program] # [START import] from ortools.sat.python import cp_model # [END import] # [START solution_printer] class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, shifts, num_nurses, num_days, num_shifts, sols): cp_model.CpSolverSolutionCallback.__init__(self) self._shifts = shifts self._num_nurses = num_nurses self._num_days = num_days self._num_shifts = num_shifts self._solutions = set(sols) self._solution_count = 0 def on_solution_callback(self): if self._solution_count in self._solutions: print('Solution %i' % self._solution_count) for d in range(self._num_days): print('Day %i' % d) for n in range(self._num_nurses): is_working = False for s in range(self._num_shifts): if self.Value(self._shifts[(n, d, s)]): is_working = True print(' Nurse %i works shift %i' % (n, s)) if not is_working: print(' Nurse {} does not work'.format(n)) print() self._solution_count += 1 def solution_count(self): return self._solution_count # [END solution_printer] def main(): # Data. # [START data] num_nurses = 4 num_shifts = 3 num_days = 3 all_nurses = range(num_nurses) all_shifts = range(num_shifts) all_days = range(num_days) # [END data] # Creates the model. # [START model] model = cp_model.CpModel() # [END model] # Creates shift variables. # shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. # [START variables] shifts = {} for n in all_nurses: for d in all_days: for s in all_shifts: shifts[(n, d, s)] = model.NewBoolVar('shift_n%id%is%i' % (n, d, s)) # [END variables] # Each shift is assigned to exactly one nurse in the schedule period. # [START exactly_one_nurse] for d in all_days: for s in all_shifts: model.Add(sum(shifts[(n, d, s)] for n in all_nurses) == 1) # [END exactly_one_nurse] # Each nurse works at most one shift per day. # [START at_most_one_shift] for n in all_nurses: for d in all_days: model.Add(sum(shifts[(n, d, s)] for s in all_shifts) <= 1) # [END at_most_one_shift] # [START assign_nurses_evenly] # Try to distribute the shifts evenly, so that each nurse works # min_shifts_per_nurse shifts. If this is not possible, because the total # number of shifts is not divisible by the number of nurses, some nurses will # be assigned one more shift. min_shifts_per_nurse = (num_shifts * num_days) // num_nurses if num_shifts * num_days % num_nurses == 0: max_shifts_per_nurse = min_shifts_per_nurse else: max_shifts_per_nurse = min_shifts_per_nurse + 1 for n in all_nurses: num_shifts_worked = 0 for d in all_days: for s in all_shifts: num_shifts_worked += shifts[(n, d, s)] model.Add(min_shifts_per_nurse <= num_shifts_worked) model.Add(num_shifts_worked <= max_shifts_per_nurse) # [END assign_nurses_evenly] # Creates the solver and solve. # [START solve] solver = cp_model.CpSolver() solver.parameters.linearization_level = 0 # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Display the first five solutions. a_few_solutions = range(5) solution_printer = NursesPartialSolutionPrinter(shifts, num_nurses, num_days, num_shifts, a_few_solutions) solver.Solve(model, solution_printer) # [END solve] # Statistics. print() print('Statistics') print(' - conflicts : %i' % solver.NumConflicts()) print(' - branches : %i' % solver.NumBranches()) print(' - wall time : %f s' % solver.WallTime()) print(' - solutions found : %i' % solution_printer.solution_count()) if __name__ == '__main__': main() # [END program]
galileo/platform/path_helper.py
YaoPu2021/galileo
115
12742282
<gh_stars>100-1000 # Copyright 2020 JD.com, Inc. Galileo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os from distutils.sysconfig import get_config_var if __file__ == 'setup.py': # when setup project_root_dir = os.path.dirname(os.path.abspath(__file__)) else: project_root_dir = os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) galileo_src_dir = os.path.join(project_root_dir, 'galileo') engine_src_dir = os.path.join(project_root_dir, 'engine') engine_build_dir = os.path.join(project_root_dir, 'build', 'engine') engine_client_dir = os.path.join(engine_build_dir, 'client') engine_proto_dir = os.path.join(engine_build_dir, 'proto') engine_python_dir = os.path.join(engine_build_dir, 'python') libs_dir = os.path.join(project_root_dir, 'galileo', 'framework', 'libs') pywrap_dir = os.path.join(project_root_dir, 'galileo', 'framework', 'pywrap') def get_tf_ops(): suffix = get_config_var('EXT_SUFFIX') return os.path.join(pywrap_dir, 'tf_ops' + suffix) def get_cpp_targets(): return [ os.path.join(engine_client_dir, 'libclient.so'), os.path.join(engine_proto_dir, 'libproto.so'), ] def get_py_targets(): suffix = get_config_var('EXT_SUFFIX') return [ os.path.join(engine_python_dir, 'py_client' + suffix), os.path.join(engine_python_dir, 'py_service' + suffix), os.path.join(engine_python_dir, 'py_convertor' + suffix), ] def get_all_targets(): return get_cpp_targets() + get_py_targets() def is_targets_exists(): return all([os.path.isfile(f) for f in get_all_targets()])
chapter03/3-2.py
alberthao/Python-Crash-Course-Homework
138
12742285
names = ['David','Herry','Army'] message1 = "hello " + names[0] print(message1) message1 = "hello " + names[1] print(message1) message1 = "hello " + names[2] print(message1)
quetz/authentication/jupyterhub.py
maresb/quetz
108
12742286
<reponame>maresb/quetz<gh_stars>100-1000 # Copyright 2020 QuantStack, Codethink Ltd # Distributed under the terms of the Modified BSD License. import json from typing import Any, List, overload from urllib.parse import quote from quetz.config import Config, ConfigEntry, ConfigSection from .oauth2 import OAuthAuthenticator class JupyterConfigEntry: config_section = "jupyterhubauthenticator" registered_entries: List[ConfigEntry] = [] config = None def __init__(self, dtype, default=None, required=True): self.dtype = dtype self.default = default self.required = required # these type annotations dont work yet, but I leave them for now # maybe someone will find a solution later # https://github.com/python/mypy/issues/2566#issuecomment-703998877 @overload def __get__(self, instance: None, owner: Any) -> "JupyterConfigEntry": ... @overload def __get__(self, instance: object, owner: Any) -> str: ... def __get__(self, obj, objtype) -> str: return getattr(self.config, self.config_attr_name) def __set_name__(self, owner, name): self.attr_name = name self.config_attr_name = f"{self.config_section}_{name}" entry = ConfigEntry( name, self.dtype, default=self.default, required=self.required ) self.registered_entries.append(entry) @classmethod def _make_config(cls): section = ConfigSection( cls.config_section, cls.registered_entries, required=False, ) return [section] @classmethod def register(cls, config: Config): cls.config = config config_options = cls._make_config() config.register(config_options) return config.configured_section(cls.config_section) class JupyterhubAuthenticator(OAuthAuthenticator): """Use Oauth2 protcol to authenticate with jupyterhub server, which acts as identity provider. To activate add the following section to the ``config.toml`` (see :ref:`configfile`): .. code:: [jupyterhubauthenticator] # client credentials, they need to be registered with # jupyterhub by adding an external service client_id = "quetz_client" client_secret = "<PASSWORD>-secret" # token enpoint of Jupyterhub, needs to be accessible from Quetz server access_token_url = "http://JUPYTERHUB_HOST:PORT/hub/api/oauth2/token" # authorize endpoint of JupyterHub, needs to be accessible from users' browser authorize_url = "http://JUPYTERHUB_HOST:PORT/hub/api/oauth2/authorize" # API root, needs to be accesible from Quetz server api_base_url = "http://JUPYTERHUB_HOST:PORT/hub/api/" To configure quetz as an oauth client in JupyterHub, you will need to define a `JupyterHub service <https://jupyterhub.readthedocs.io/en/stable/reference/services.html#externally-managed-services>`_. You can achieve it by adding the following to the ``jupyterhub_config.py`` file of your JupyterHub instance: .. code:: c.JupyterHub.services = [ { # service name, it will be used to setup routers 'name': 'quetz', # quetz URL to setup redirections, only required if you use # JupyterHub url scheme 'url': 'http://QUETZ_HOST:PORT', # any secret >8 characters, you will also need to set # the client_secret in the authenticator config with this # string 'api_token': '<PASSWORD>', # client_id in the authenticator config 'oauth_client_id': 'quetz_client', # URL of the callback endpoint on the quetz server 'oauth_redirect_uri': 'http://QUETZ_HOST:PORT/auth/jupyterhub/authorize', } ] """ # noqa provider = 'jupyterhub' # TODO: need to figure out how to use type annotations with descriptors # see also: https://github.com/python/mypy/pull/2266 client_id = JupyterConfigEntry(str, required=True) # type: ignore client_secret = JupyterConfigEntry(str, required=True) # type: ignore access_token_url = JupyterConfigEntry(str, required=True) # type: ignore validate_token_url = "authorizations/token/{}" authorize_url = JupyterConfigEntry(str, required=True) # type: ignore api_base_url = JupyterConfigEntry(str, required=True) # type: ignore client_kwargs = { "token_endpoint_auth_method": "client_secret_post", "token_placement": "uri", } async def userinfo(self, request, token): response = await self._get_user_for_token(token) profile = response.json() github_profile = { "id": profile["name"] + '_id', "name": profile["name"], "avatar_url": "", "login": profile["name"], } return github_profile async def _get_user_for_token(self, token): headers = {'Authorization': 'token {}'.format(self.client_secret)} access_token = quote(token['access_token'], safe='') # authlib client will be place token in query params # which are ignored by jupyterhub # this workaround is required to implement jupyterhub API # which puts the token as path parameter # https://jupyterhub.readthedocs.io/en/stable/_static/rest-api/index.html#path--authorizations-token--token- # noqa resp = await self.client.get( f'authorizations/token/{access_token}', token=token, headers=headers ) return resp async def validate_token(self, token): # access_token = json.loads(token)["access_token"] token = json.loads(token) resp = await self._get_user_for_token(token) return resp.status_code == 200 def configure(self, config: Config): self.is_enabled = JupyterConfigEntry.register(config) super().configure(config)
custom_components/hacs/constrains.py
svkowalski/HAcore_QNAP
167
12742340
"""HACS Startup constrains.""" # pylint: disable=bad-continuation import os from .const import CUSTOM_UPDATER_LOCATIONS, CUSTOM_UPDATER_WARNING from .helpers.misc import version_left_higher_then_right from custom_components.hacs.globals import get_hacs MINIMUM_HA_VERSION = "0.110.0" def check_constrains(): """Check HACS constrains.""" if not constrain_translations(): return False if not constrain_custom_updater(): return False if not constrain_version(): return False return True def constrain_custom_updater(): """Check if custom_updater exist.""" hacs = get_hacs() for location in CUSTOM_UPDATER_LOCATIONS: if os.path.exists(location.format(hacs.system.config_path)): msg = CUSTOM_UPDATER_WARNING.format( location.format(hacs.system.config_path) ) hacs.logger.critical(msg) return False return True def constrain_version(): """Check if the version is valid.""" hacs = get_hacs() if not version_left_higher_then_right(hacs.system.ha_version, MINIMUM_HA_VERSION): hacs.logger.critical( f"You need HA version {MINIMUM_HA_VERSION} or newer to use this integration." ) return False return True def constrain_translations(): """Check if traslations exist.""" hacs = get_hacs() if not os.path.exists( f"{hacs.system.config_path}/custom_components/hacs/translations" ): hacs.logger.critical("You are missing the translations directory.") return False return True
river/compose/func.py
fox-ds/river
2,184
12742345
<filename>river/compose/func.py import typing from river import base __all__ = ["FuncTransformer"] class FuncTransformer(base.Transformer): """Wraps a function to make it usable in a pipeline. There is often a need to apply an arbitrary transformation to a set of features. For instance, this could involve parsing a date and then extracting the hour from said date. If you're processing a stream of data, then you can do this yourself by calling the necessary code at your leisure. On the other hand, if you want to do this as part of a pipeline, then you need to follow a simple convention. To use a function as part of a pipeline, take as input a `dict` of features and output a `dict`. Once you have initialized this class with your function, then you can use it like you would use any other (unsupervised) transformer. It is up to you if you want your function to be pure or not. By pure we refer to a function that doesn't modify its input. However, we recommend writing pure functions because this reduces the chances of inserting bugs into your pipeline. Parameters ---------- func A function that takes as input a `dict` and outputs a `dict`. Examples -------- >>> from pprint import pprint >>> import datetime as dt >>> from river import compose >>> x = {'date': '2019-02-14'} >>> def parse_date(x): ... date = dt.datetime.strptime(x['date'], '%Y-%m-%d') ... x['is_weekend'] = date.day in (5, 6) ... x['hour'] = date.hour ... return x >>> t = compose.FuncTransformer(parse_date) >>> pprint(t.transform_one(x)) {'date': '2019-02-14', 'hour': 0, 'is_weekend': False} The above example is not pure because it modifies the input. The following example is pure and produces the same output: >>> def parse_date(x): ... date = dt.datetime.strptime(x['date'], '%Y-%m-%d') ... return {'is_weekend': date.day in (5, 6), 'hour': date.hour} >>> t = compose.FuncTransformer(parse_date) >>> pprint(t.transform_one(x)) {'hour': 0, 'is_weekend': False} The previous example doesn't include the `date` feature because it returns a new `dict`. However, a common usecase is to add a feature to an existing set of features. You can do this in a pure way by unpacking the input `dict` into the output `dict`: >>> def parse_date(x): ... date = dt.datetime.strptime(x['date'], '%Y-%m-%d') ... return {'is_weekend': date.day in (5, 6), 'hour': date.hour, **x} >>> t = compose.FuncTransformer(parse_date) >>> pprint(t.transform_one(x)) {'date': '2019-02-14', 'hour': 0, 'is_weekend': False} You can add `FuncTransformer` to a pipeline just like you would with any other transformer. >>> from river import naive_bayes >>> pipeline = compose.FuncTransformer(parse_date) | naive_bayes.MultinomialNB() >>> pipeline Pipeline ( FuncTransformer ( func="parse_date" ), MultinomialNB ( alpha=1. ) ) If you provide a function without wrapping it, then the pipeline will do it for you: >>> pipeline = parse_date | naive_bayes.MultinomialNB() """ def __init__(self, func: typing.Callable[[dict], dict]): self.func = func def transform_one(self, x): return self.func(x) def __str__(self): return self.func.__name__
green/test/test_loader.py
jwaschkau/green
686
12742384
<gh_stars>100-1000 from __future__ import unicode_literals import os from os.path import dirname import platform import shutil import sys import tempfile from textwrap import dedent import unittest try: from unittest.mock import MagicMock, patch except: from mock import MagicMock, patch from green import loader from green.loader import GreenTestLoader, flattenTestSuite class TestToProtoTestList(unittest.TestCase): def test_moduleImportFailure(self): """ toProtoTestList() raises import errors normally """ suite = MagicMock() suite.__class__.__name__ = str("ModuleImportFailure") suite.__str__.return_value = "exception_method (other_stuff)" suite.exception_method.side_effect = AttributeError self.assertRaises(AttributeError, loader.toProtoTestList, (suite,)) def test_moduleImportFailureIgnored(self): """ toProtoTestList() does not raise errors when doing completions """ suite = MagicMock() suite.__class__.__name__ = str("ModuleImportFailure") suite.__str__.return_value = "exception_method other_stuff" suite.exception_method.side_effect = AttributeError self.assertEqual(loader.toProtoTestList(suite, doing_completions=True), []) class TestToParallelTargets(unittest.TestCase): def setUp(self): super(TestToParallelTargets, self).setUp() class FakeModule(object): pass class FakeModule2(object): pass self._fake_module_name = "my_test_module" self._fake_module_name2 = "my_test_module2" sys.modules[self._fake_module_name] = FakeModule sys.modules[self._fake_module_name2] = FakeModule2 def tearDown(self): del sys.modules[self._fake_module_name] del sys.modules[self._fake_module_name2] super(TestToParallelTargets, self).tearDown() def test_methods_with_no_constraints(self): """ toParallelTargets() returns only module names. """ class NormalTestCase(unittest.TestCase): def runTest(self): pass NormalTestCase.__module__ = self._fake_module_name targets = loader.toParallelTargets(NormalTestCase(), []) self.assertEqual(targets, [self._fake_module_name]) def test_methods_with_constraints(self): """ toParallelTargets() returns test names when constrained. """ class NormalTestCase(unittest.TestCase): def runTest(self): pass NormalTestCase.__module__ = self._fake_module_name full_name = "my_test_module.NormalTestCase.runTest" targets = loader.toParallelTargets(NormalTestCase(), [full_name]) self.assertEqual(targets, [full_name]) def test_filter_out_dot(self): """ toParallelTargets() correctly returns modules when '.' is in target list """ class NormalTestCase(unittest.TestCase): def runTest(self): pass class NormalTestCase2(unittest.TestCase): def runTest(self): pass NormalTestCase.__module__ = self._fake_module_name NormalTestCase2.__module__ = self._fake_module_name2 targets = loader.toParallelTargets([NormalTestCase(), NormalTestCase2()], ["."]) self.assertEqual(targets, ["my_test_module", "my_test_module2"]) def test_ignore_doctest(self): """ toParallelTargets() ignores""" class TestCompletions(unittest.TestCase): def test_completionBad(self): """ Bad match generates no completions """ self.assertEqual("", loader.getCompletions("garbage.in")) def test_completionExact(self): """ Correct completions are generated for an exact match. """ c = set(loader.getCompletions("green").split("\n")) self.assertIn("green", c) self.assertIn("green.test", c) self.assertIn("green.test.test_loader", c) self.assertIn("green.test.test_loader.TestCompletions", c) self.assertIn("green.test.test_loader.TestCompletions.test_completionExact", c) def test_completionPartialShort(self): """ Correct completions generated for short partial match. """ cwd = os.getcwd() green_parent = dirname(dirname(dirname(os.path.abspath(__file__)))) os.chdir(green_parent) self.addCleanup(os.chdir, cwd) c = set(loader.getCompletions("gre").split("\n")) self.assertIn("green", c) self.assertIn("green.test", c) self.assertIn("green.test.test_loader", c) self.assertIn("green.test.test_loader.TestCompletions", c) self.assertIn( "green.test.test_loader.TestCompletions.test_completionPartialShort", c ) def test_completionPartial(self): """ Correct completions generated for partial match. 2nd target ignored. """ c = set(loader.getCompletions(["green.te", "green"]).split("\n")) self.assertIn("green.test", c) self.assertIn("green.test.test_loader", c) self.assertIn("green.test.test_loader.TestCompletions", c) self.assertIn( "green.test.test_loader.TestCompletions.test_completionPartial", c ) self.assertNotIn("green", c) def test_completionEmpty(self): """ An empty target generates completions for the whole directory """ cwd = os.getcwd() tmpdir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, tmpdir) os.chdir(tmpdir) self.addCleanup(os.chdir, cwd) os.mkdir("the_pkg") fh = open(os.path.join("the_pkg", "__init__.py"), "w") fh.write("") fh.close() fh = open(os.path.join("the_pkg", "test_things.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testOne(self): pass def testTwo(self): pass """ ) ) fh.close() c = set(loader.getCompletions("").split("\n")) self.assertIn("the_pkg", c) self.assertIn("the_pkg.test_things", c) self.assertIn("the_pkg.test_things.A.testOne", c) self.assertIn("the_pkg.test_things.A.testTwo", c) def test_completionDot(self): """ A '.' target generates completions for the whole directory """ cwd = os.getcwd() tmpdir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, tmpdir) os.chdir(tmpdir) self.addCleanup(os.chdir, cwd) os.mkdir("my_pkg") fh = open(os.path.join("my_pkg", "__init__.py"), "w") fh.write("") fh.close() fh = open(os.path.join("my_pkg", "test_things.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testOne(self): pass def testTwo(self): pass """ ) ) fh.close() c = set(loader.getCompletions(".").split("\n")) self.assertIn("my_pkg", c) self.assertIn("my_pkg.test_things", c) self.assertIn("my_pkg.test_things.A.testOne", c) self.assertIn("my_pkg.test_things.A.testTwo", c) def test_completionIgnoresErrors(self): """ Errors in one module don't block the remaining completions """ cwd = os.getcwd() tmpdir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, tmpdir) os.chdir(tmpdir) self.addCleanup(os.chdir, cwd) os.mkdir("my_pkg2") fh = open(os.path.join("my_pkg2", "__init__.py"), "w") fh.write("") fh.close() fh = open(os.path.join("my_pkg2", "test_crash01.py"), "w") contents = dedent( """ import unittest class A(unittest.TestCase): def testOne(self): pass def testTwo(self): pass """ ) fh.write(contents) fh.close() fh = open(os.path.join("my_pkg2", "test_crash02.py"), "w") fh.write("import moocow") fh.close() fh = open(os.path.join("my_pkg2", "test_crash03.py"), "w") fh.write(contents) fh.close() c = set(loader.getCompletions(".").split("\n")) self.assertIn("my_pkg2", c) self.assertIn("my_pkg2.test_crash01", c) self.assertIn("my_pkg2.test_crash01.A.testOne", c) self.assertIn("my_pkg2.test_crash01.A.testTwo", c) self.assertIn("my_pkg2.test_crash03", c) self.assertIn("my_pkg2.test_crash03.A.testOne", c) self.assertIn("my_pkg2.test_crash03.A.testTwo", c) class TestIsPackage(unittest.TestCase): def test_yes(self): """ A package is identified. """ tmpdir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, tmpdir) fh = open(os.path.join(tmpdir, "__init__.py"), "w") fh.write("pass\n") fh.close() self.assertTrue(loader.isPackage(tmpdir)) def test_no(self): """ A non-package is identified """ tmpdir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, tmpdir) self.assertFalse(loader.isPackage(tmpdir)) class TestDottedModule(unittest.TestCase): def test_bad_path(self): """ A bad path causes an exception """ self.assertRaises( ValueError, loader.findDottedModuleAndParentDir, tempfile.tempdir ) def test_good_path(self): """ A good path gets (dotted_module, parent) properly returned """ tmpdir = tempfile.mkdtemp() os.makedirs(os.path.join(tmpdir, "a", "b", "c", "d")) package_init = os.path.join(tmpdir, "a", "b", "c", "__init__.py") subpkg_init = os.path.join(tmpdir, "a", "b", "c", "d", "__init__.py") module_name = "stuff.py" module = os.path.join(tmpdir, "a", "b", "c", "d", module_name) for filename in [package_init, subpkg_init, module]: fh = open(filename, "w") fh.write("pass\n") fh.close() self.assertEqual( loader.findDottedModuleAndParentDir(module), ("c.d.stuff", os.path.join(tmpdir, "a", "b")), ) class TestLoadTestsFromTestCase(unittest.TestCase): def setUp(self): self.loader = GreenTestLoader() def test_runTest(self): """ When a testcase has no matching method names, but does have a runTest, use that instead. """ class MyTestCase(unittest.TestCase): def helper1(self): pass def helper2(self): pass def runTest(self): pass suite = self.loader.loadTestsFromTestCase(MyTestCase) self.assertEqual(suite.countTestCases(), 1) self.assertEqual(suite._tests[0]._testMethodName, "runTest") def test_normal(self): """ Normal test methods get loaded """ class Normal(unittest.TestCase): def test_method1(self): pass def test_method2(self): pass suite = self.loader.loadTestsFromTestCase(Normal) self.assertEqual(suite.countTestCases(), 2) self.assertEqual( set([x._testMethodName for x in suite._tests]), set(["test_method1", "test_method2"]), ) def test_isTestCaseDisabled(self): """ TestCases disabled by nose generators don't get loaded """ class HasDisabled(unittest.TestCase): def test_method(self): pass test_method.__test__ = False suite = self.loader.loadTestsFromTestCase(HasDisabled) self.assertEqual(suite.countTestCases(), 0) class TestLoadFromModuleFilename(unittest.TestCase): def setUp(self): self.loader = GreenTestLoader() def test_skipped_module(self): """ A module that wants to be skipped gets skipped """ tmpdir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, tmpdir) filename = os.path.join(tmpdir, "skipped_module.py") fh = open(filename, "w") fh.write( dedent( """ import unittest raise unittest.case.SkipTest class NotReached(unittest.TestCase): def test_one(self): pass def test_two(self): pass """ ) ) fh.close() suite = self.loader.loadFromModuleFilename(filename) self.assertEqual(suite.countTestCases(), 1) self.assertRaises( unittest.case.SkipTest, getattr(suite._tests[0], suite._tests[0]._testMethodName), ) class TestDiscover(unittest.TestCase): def setUp(self): self.loader = GreenTestLoader() @patch("green.loader.os.path.isdir") @patch("green.loader.debug") @patch("green.loader.os.listdir") def test_oserror(self, mock_listdir, mock_debug, mock_isdir): """ discover() prints a debug message and moves on when ecountering an OSError """ mock_isdir.return_value = True mock_listdir.side_effect = OSError() tmpdir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, tmpdir) self.loader.discover(os.path.join(tmpdir, "garbage_in")) self.assertEqual(len(mock_debug.mock_calls), 1) def test_bad_input(self): """ discover() raises ImportError when passed a non-directory """ tmpdir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, tmpdir) self.assertRaises( ImportError, self.loader.discover, os.path.join(tmpdir, "garbage_in") ) filename = os.path.join(tmpdir, "some_file.py") fh = open(filename, "w") fh.write("pass\n") fh.close() self.assertRaises(ImportError, self.loader.discover, filename) def test_bad_pkg_name(self): """ If the directory is an invalid package name, don't bother looking in it. """ tmpdir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, tmpdir) startdir = os.getcwd() os.chdir(tmpdir) self.addCleanup(os.chdir, startdir) bad_pkg_name = "1badname" os.mkdir(bad_pkg_name) tmp_subdir = os.path.join(tmpdir, bad_pkg_name) fh = open(os.path.join(tmp_subdir, "__init__.py"), "w") fh.write("\n") fh.close() named_module = os.path.join(os.path.basename(tmp_subdir), "named_module.py") fh = open(named_module, "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPass(self): pass """ ) ) fh.close() self.assertEqual(self.loader.discover(tmpdir), None) def test_symlink(self): """ If the directory is a symlink, it should be skipped. """ if platform.system() == "Windows": # pragma: no cover self.skipTest("This test is for posix-specific behavior") tmpdir = tempfile.mkdtemp() tmpdir2 = tempfile.mkdtemp() os.symlink(tmpdir, os.path.join(tmpdir2, "link")) self.addCleanup(shutil.rmtree, tmpdir) startdir = os.getcwd() os.chdir(tmpdir) self.addCleanup(os.chdir, startdir) pkg_name = "realpkg" os.mkdir(pkg_name) tmp_subdir = os.path.join(tmpdir, pkg_name) fh = open(os.path.join(tmp_subdir, "__init__.py"), "w") fh.write("\n") fh.close() named_module = os.path.join(os.path.basename(tmp_subdir), "test_module.py") fh = open(named_module, "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPass(self): pass """ ) ) fh.close() self.assertEqual(self.loader.discover(tmpdir2), None) class TestLoadTargets(unittest.TestCase): # Setup @classmethod def setUpClass(cls): cls.startdir = os.getcwd() cls.container_dir = tempfile.mkdtemp() @classmethod def tearDownClass(cls): if os.getcwd() != cls.startdir: os.chdir(cls.startdir) cls.startdir = None shutil.rmtree(cls.container_dir) def setUp(self): os.chdir(self.container_dir) self.tmpdir = tempfile.mkdtemp(dir=self.container_dir) self.loader = GreenTestLoader() def tearDown(self): os.chdir(self.container_dir) shutil.rmtree(self.tmpdir) # Tests def test_returnIsLoadable(self): """ Results returned by toParallelTargets should be loadable by loadTargets(), even if they aren't directly loadable through a package relative to the current working directory. """ tests_dir = tempfile.mkdtemp(dir=self.tmpdir) # No __init__.py in the directory! fh = open(os.path.join(tests_dir, "test_not_in_pkg.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPass(self): pass """ ) ) fh.close() # Discover stuff suite = self.loader.loadTargets(".") # This should resolve it to the module that's not importable from here test = loader.toParallelTargets(suite, [])[0] self.loader.loadTargets(test) def test_emptyDirAbsolute(self): """ Absolute path to empty directory returns None """ tests = self.loader.loadTargets(self.tmpdir) self.assertTrue(tests is None) def test_emptyDirRelative(self): """ Relative path to empty directory returns None """ os.chdir(self.tmpdir) os.chdir("..") tests = self.loader.loadTargets(os.path.dirname(self.tmpdir)) self.assertEqual(tests, None) def test_emptyDirDot(self): """ '.' while in an empty directory returns None """ os.chdir(self.tmpdir) tests = self.loader.loadTargets(".") self.assertTrue(tests is None) def test_relativeDotDir(self): """ Dotted relative path to empty directory returns None """ os.chdir(self.tmpdir) os.chdir("..") target = os.path.join(".", os.path.basename(self.tmpdir)) tests = self.loader.loadTargets(target) self.assertTrue(tests is None) def test_BigDirWithAbsoluteImports(self): """ Big dir discovers tests and doesn't crash on absolute import """ sub_tmpdir = tempfile.mkdtemp(dir=self.tmpdir) pkg_name = os.path.basename(sub_tmpdir) # Child setup # pkg/__init__.py fh = open(os.path.join(sub_tmpdir, "__init__.py"), "w") fh.write("\n") fh.close() # pkg/target_module.py fh = open(os.path.join(sub_tmpdir, "target_module.py"), "w") fh.write("a = 1\n") fh.close() # pkg/test/__init__.py os.mkdir(os.path.join(sub_tmpdir, "test")) fh = open(os.path.join(sub_tmpdir, "test", "__init__.py"), "w") fh.write("\n") fh.close() # pkg/test/test_target_module.py fh = open(os.path.join(sub_tmpdir, "test", "test_target_module.py"), "w") fh.write( dedent( """ import unittest import {}.target_module class A(unittest.TestCase): def testPass(self): pass """.format( pkg_name ) ) ) fh.close() # Load the tests os.chdir(self.tmpdir) test_suite = self.loader.loadTargets(pkg_name) self.assertEqual(test_suite.countTestCases(), 1) # Dotted name should start with the package! self.assertEqual( pkg_name + ".test.test_target_module.A.testPass", loader.toProtoTestList(test_suite)[0].dotted_name, ) def test_DirWithInit(self): """ Dir empty other than blank __init__.py returns None """ # Parent directory setup os.chdir(self.tmpdir) os.chdir("..") # Child setup target = os.path.join(self.tmpdir, "__init__.py") fh = open(target, "w") fh.write("\n") fh.close() fh = open(os.path.join(self.tmpdir, "test_module_with_init.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPass(self): pass """ ) ) fh.close() # Load the tests module_name = os.path.basename(self.tmpdir) tests = self.loader.loadTargets(module_name) self.assertEqual(tests.countTestCases(), 1) def test_DottedName(self): """ Importing a module via dotted name loads the tests. """ # Parent directory setup os.chdir(self.tmpdir) sub_tmpdir = tempfile.mkdtemp(dir=self.tmpdir) basename = os.path.basename(sub_tmpdir) # Child setup fh = open(os.path.join(basename, "__init__.py"), "w") fh.write("\n") fh.close() fh = open(os.path.join(basename, "test_module_dotted_name.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPass(self): pass """ ) ) fh.close() # Load the tests module_name = basename + ".test_module_dotted_name" tests = self.loader.loadTargets(module_name) self.assertEqual(tests.countTestCases(), 1) def test_DottedNamePackageFromPath(self): """ Importing a package from path loads the tests. """ # Child setup tmp_subdir = tempfile.mkdtemp(dir=self.tmpdir) fh = open(os.path.join(tmp_subdir, "__init__.py"), "w") fh.write("\n") fh.close() fh = open(os.path.join(tmp_subdir, "test_module.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPass(self): pass """ ) ) fh.close() # Go somewhere else, but setup the path os.chdir(self.startdir) sys.path.insert(0, self.tmpdir) # Load the tests tests = self.loader.loadTargets(os.path.basename(tmp_subdir)) sys.path.remove(self.tmpdir) self.assertTrue(tests.countTestCases(), 1) def test_ModuleByName(self): """ A module in a package can be loaded by filename. """ os.chdir(self.tmpdir) tmp_subdir = tempfile.mkdtemp(dir=self.tmpdir) fh = open(os.path.join(tmp_subdir, "__init__.py"), "w") fh.write("\n") fh.close() named_module = os.path.join(os.path.basename(tmp_subdir), "named_module.py") fh = open(named_module, "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPass(self): pass """ ) ) fh.close() # Load the tests tests = self.loader.loadTargets(named_module) try: self.assertEqual(tests.countTestCases(), 1) except: raise finally: shutil.rmtree(tmp_subdir) def test_MalformedModuleByName(self): """ Importing malformed module by name creates test that raises ImportError. """ fh = open(os.path.join(self.tmpdir, "__init__.py"), "w") fh.write("\n") fh.close() malformed_module = os.path.join( os.path.basename(self.tmpdir), "malformed_module.py" ) fh = open(malformed_module, "w") fh.write("This is a malformed module.") fh.close() # Load the tests tests = self.loader.loadTargets(malformed_module) self.assertEqual(tests.countTestCases(), 1) test = tests._tests[0] test_method = getattr(test, test._testMethodName) self.assertRaises(ImportError, test_method) def test_partiallyGoodName(self): """ Don't crash loading module.object with existing module but not object. """ # Parent directory setup os.chdir(self.tmpdir) sub_tmpdir = tempfile.mkdtemp(dir=self.tmpdir) basename = os.path.basename(sub_tmpdir) # Child setup fh = open(os.path.join(basename, "__init__.py"), "w") fh.write("\n") fh.close() fh = open(os.path.join(basename, "existing_module.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPass(self): pass """ ) ) fh.close() # Load the tests module_name = basename + ".existing_module.nonexistant_object" tests = self.loader.loadTargets(module_name) self.assertEqual(tests, None) def test_multiple_targets(self): """ Specifying multiple targets causes them all to be tested. """ sub_tmpdir = tempfile.mkdtemp(dir=self.tmpdir) # pkg/__init__.py fh = open(os.path.join(sub_tmpdir, "__init__.py"), "w") fh.write("\n") fh.close() # pkg/test/test_target1.py fh = open(os.path.join(sub_tmpdir, "test_target1.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPasses(self): pass """ ) ) fh.close() # pkg/test/test_target2.py fh = open(os.path.join(sub_tmpdir, "test_target2.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPasses(self): pass """ ) ) fh.close() # Load the tests os.chdir(self.tmpdir) pkg = os.path.basename(sub_tmpdir) tests = self.loader.loadTargets( [pkg + "." + "test_target1", pkg + "." + "test_target2"] ) self.assertEqual(tests.countTestCases(), 2) def test_duplicate_targets(self): """ Specifying duplicate targets does not cause duplicate loading. """ sub_tmpdir = tempfile.mkdtemp(dir=self.tmpdir) fh = open(os.path.join(sub_tmpdir, "__init__.py"), "w") fh.write("\n") fh.close() fh = open(os.path.join(sub_tmpdir, "test_dupe_target.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPasses(self): pass """ ) ) fh.close() os.chdir(self.tmpdir) pkg = os.path.basename(sub_tmpdir) tests = self.loader.loadTargets( [ pkg + "." + "test_dupe_target", pkg + "." + "test_dupe_target", pkg + "." + "test_dupe_target", ] ) self.assertEqual(tests.countTestCases(), 1) def test_explicit_filename_error(self): """ Loading a module by name with a syntax error produces a failure, not a silent absence of its tests. """ sub_tmpdir = tempfile.mkdtemp(dir=self.tmpdir) fh = open(os.path.join(sub_tmpdir, "mod_with_import_error.py"), "w") fh.write("this is a syntax error") fh.close() os.chdir(sub_tmpdir) tests = self.loader.loadTargets("mod_with_import_error.py") self.assertEqual(tests.countTestCases(), 1) def test_file_pattern(self): """ Specifying a file pattern causes only matching files to be loaded """ sub_tmpdir = tempfile.mkdtemp(dir=self.tmpdir) # pkg/__init__.py fh = open(os.path.join(sub_tmpdir, "__init__.py"), "w") fh.write("\n") fh.close() # pkg/test/target1_tests.py fh = open(os.path.join(sub_tmpdir, "target1_tests.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPasses(self): pass """ ) ) fh.close() # pkg/test/target2_tests.py fh = open(os.path.join(sub_tmpdir, "target2_tests.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPasses(self): pass """ ) ) fh.close() # pkg/test/test_target999.py: NOT a match. fh = open(os.path.join(sub_tmpdir, "test_target999.py"), "w") fh.write( dedent( """ import unittest class A(unittest.TestCase): def testPasses(self): pass """ ) ) fh.close() # Load the tests os.chdir(self.tmpdir) pkg = os.path.basename(sub_tmpdir) tests = self.loader.loadTargets(pkg, file_pattern="*_tests.py") self.assertEqual(tests.countTestCases(), 2) class TestFlattenTestSuite(unittest.TestCase): # Setup @classmethod def setUpClass(cls): cls.startdir = os.getcwd() cls.container_dir = tempfile.mkdtemp() @classmethod def tearDownClass(cls): if os.getcwd() != cls.startdir: os.chdir(cls.startdir) cls.startdir = None shutil.rmtree(cls.container_dir) def setUp(self): os.chdir(self.container_dir) self.tmpdir = tempfile.mkdtemp(dir=self.container_dir) self.loader = GreenTestLoader() def tearDown(self): os.chdir(self.container_dir) shutil.rmtree(self.tmpdir) @patch("green.loader.GreenTestLoader.suiteClass") @patch("green.loader.DocTestSuite") def test_docTests(self, mock_doc_test_suite, mock_suite_class): """ flattenTestSuite injects the test module name into the doctest's .__module__ """ mock_test = MagicMock() mock_iter = MagicMock(return_value=iter([mock_test])) mock_suite = MagicMock() mock_suite.__iter__ = mock_iter mock_doc_test_suite.return_value = mock_suite module = MagicMock() test_module_name = "test.module" module.__name__ = test_module_name module.doctest_modules = ["real.module"] flattenTestSuite((), module) self.assertEqual(mock_test.__module__, test_module_name)
source/utils/bp5dbg/adios2/bp5dbg/utils.py
gregorweiss/ADIOS2
190
12742415
<reponame>gregorweiss/ADIOS2 LocalValueDim = 18446744073709551613 dataTypes = { -1: 'unknown', 0: 'byte', 1: 'short', 2: 'integer', 4: 'long', 50: 'unsigned_byte', 51: 'unsigned_short', 52: 'unsigned_integer', 54: 'unsigned_long', 5: 'real', 6: 'double', 7: 'long_double', 9: 'string', 10: 'complex', 11: 'double_complex', 12: 'string_array', 55: 'char' } dataTypeSize = { -1: 0, 0: 1, 1: 2, 2: 4, 4: 8, 50: 1, 51: 2, 52: 4, 54: 8, 5: 4, 6: 8, 7: 16, 9: 0, 10: 8, 11: 16, 12: 0, 55: 1 } def GetTypeName(typeID): name = dataTypes.get(typeID) if name is None: name = "unknown type" return name def GetTypeSize(typeID): size = dataTypeSize.get(typeID) if size is None: size = 0 return size CharacteristicNames = { 0: 'value', 1: 'min', 2: 'max', 3: 'offset', 4: 'dimensions', 5: 'var_id', 6: 'payload_offset', 7: 'file_index', 8: 'time_index', 9: 'bitmap', 10: 'stat', 11: 'transform_type', 12: 'minmax' } def GetCharacteristicName(cID): name = CharacteristicNames.get(cID) if name is None: name = "unknown characteristic" return name def GetCharacteristicDataLength(cID, typeID): name = CharacteristicNames.get(cID) if (name == 'value' or name == 'min' or name == 'max' or name == 'minmax'): return dataTypeSize[typeID] elif (name == 'offset' or name == 'payload_offset'): return 8 elif (name == 'file_index' or name == 'time_index'): return 4 else: return 0 # Read Header info 64 bytes # fileType: Data, Metadata, Index Table def ReadHeader(f, fileSize, fileType): status = True if fileSize < 64: print("ERROR: Invalid " + fileType + ". File is smaller " "than the header (64 bytes)") return False header = f.read(64) hStr = header.decode('ascii') versionStr = hStr[0:32].replace('\0', ' ') major = hStr[32] minor = hStr[33] micro = hStr[34] # unused = hStr[35] endianValue = header[36] if endianValue == 0: endian = 'yes' elif endianValue == 1: endian = ' no' else: print("ERROR: byte 28 must be 0 or 1 to indicate endianness of " "the data. It is however {0} in this file".format( endianValue)) status = False bpversion = int(header[37]) active = int(header[38]) if active == 0: activeStr = ' no' else: activeStr = 'yes' # unused = hStr[39] WriterCount = int(header[40]) aggregatorcount = int(header[44]) iscolumnmajor = header[49] # 45..63 unused print("-----------------------------------------------------------" "-----------------------------------------------------------") print("| Version string | Major | Minor | Patch " "| unused | Endian | BP version | Active | WriterCount | AggCount" + " | ColumnMajor | unused |") print("| 32 bytes | 1B | 1B | 1B " "| 1B | 1B | 1B | 1B | 4b | 4b " + "| 1b | 16B |") print("+----------------------------------------------------------" "----------------------------------------------------------+") print("| {0} | {1} | {2} | {3} | | {4} " "| {5} | {6} | {7:d} | {8:d} | " + "{9} | |".format( versionStr, major, minor, micro, endian, bpversion, activeStr, WriterCount, aggregatorcount, iscolumnmajor)) print("-----------------------------------------------------------" "-----------------------------------------------------------") return [status, WriterCount] if __name__ == "__main__": print("ERROR: Utility main program is bp5dbg.py")
imagenet/optim/qhm.py
batuozt/transformer-ls
177
12742437
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch from torch.optim import Optimizer class QHM(Optimizer): r""" Stochastic gradient method with Quasi-Hyperbolic Momentum (QHM): h(k) = (1 - \beta) * g(k) + \beta * h(k-1) d(k) = (1 - \nu) * g(k) + \nu * h(k) x(k+1) = x(k) - \alpha * d(k) "Quasi-hyperbolic momentum and Adam for deep learning" by <NAME> and <NAME>, ICLR 2019 optimizer = QHM(params, lr=-1, momentum=0, qhm_nu=1, weight_decay=0) Args: params (iterable): iterable params to optimize or dict of param groups lr (float): learning rate, \alpha in QHM update (default:-1 need input) momentum (float, optional): \beta in QHM update, range[0,1) (default:0) qhm_nu (float, optional): \nu in QHM update, range[0,1] (default: 1) \nu = 0: SGD without momentum (\beta is ignored) \nu = 1: SGD with momentum \beta and dampened gradient (1-\beta) \nu = \beta: SGD with "Nesterov momentum" \beta weight_decay (float, optional): weight decay (L2 penalty) (default: 0) Example: >>> optimizer = torch.optim.QHM(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() """ def __init__(self, params, lr=-1, momentum=0, qhm_nu=1, weight_decay=0): # nu can take values outside of the interval [0,1], but no guarantee of convergence? if lr <= 0: raise ValueError("Invalid value for learning rate (>0): {}".format(lr)) if momentum < 0 or momentum > 1: raise ValueError("Invalid value for momentum [0,1): {}".format(momentum)) if weight_decay < 0: raise ValueError("Invalid value for weight_decay (>=0): {}".format(weight_decay)) defaults = dict(lr=lr, momentum=momentum, qhm_nu=qhm_nu, weight_decay=weight_decay) super(QHM, self).__init__(params, defaults) # extra_buffer == True only in SSLS with momentum > 0 and nu != 1 self.state['allocate_step_buffer'] = False def step(self, closure=None): """ Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates model and returns loss. """ loss = None if closure is not None: loss = closure() self.add_weight_decay() self.qhm_direction() self.qhm_update() return loss def add_weight_decay(self): # weight_decay is the same as adding L2 regularization for group in self.param_groups: weight_decay = group['weight_decay'] for p in group['params']: if p.grad is None: continue if weight_decay > 0: p.grad.data.add_(p.data, alpha=weight_decay) def qhm_direction(self): for group in self.param_groups: momentum = group['momentum'] qhm_nu = group['qhm_nu'] for p in group['params']: if p.grad is None: continue x = p.data # Optimization parameters g = p.grad.data # Stochastic gradient # Compute the (negative) step directoin d and necessary momentum state = self.state[p] if abs(momentum) < 1e-12 or abs(qhm_nu) < 1e-12: # simply SGD if beta=0 or nu=0 d = state['step_buffer'] = g else: if 'momentum_buffer' not in state: h = state['momentum_buffer'] = torch.zeros_like(x) else: h = state['momentum_buffer'] # Update momentum buffer: h(k) = (1 - \beta) * g(k) + \beta * h(k-1) h.mul_(momentum).add_(g, alpha=1 - momentum) if abs(qhm_nu - 1) < 1e-12: # if nu=1, then same as SGD with momentum d = state['step_buffer'] = h else: if self.state['allocate_step_buffer']: # copy from gradient if 'step_buffer' not in state: state['step_buffer'] = torch.zeros_like(g) d = state['step_buffer'].copy_(g) else: # use gradient buffer d = state['step_buffer'] = g # Compute QHM momentum: d(k) = (1 - \nu) * g(k) + \nu * h(k) d.mul_(1 - qhm_nu).add_(h, alpha=qhm_nu) def qhm_update(self): """ Perform QHM update, need to call compute_qhm_direction() before calling this. """ for group in self.param_groups: for p in group['params']: if p.grad is not None: p.data.add_(self.state[p]['step_buffer'], alpha=-group['lr'])
mmdet/utils/__init__.py
Joanna0123/QueryInst
326
12742449
from .collect_env import collect_env from .logger import get_root_logger from .optimizer import OptimizerHook __all__ = ['get_root_logger', 'collect_env', 'OptimizerHook']
integration/tests/follow_redirect.py
youhavethewrong/hurl
1,013
12742490
<reponame>youhavethewrong/hurl<filename>integration/tests/follow_redirect.py from tests import app from flask import redirect @app.route('/follow-redirect') def follow_redirect(): return redirect('http://localhost:8000/following-redirect') @app.route('/following-redirect') def following_redirect(): return redirect('http://localhost:8000/followed-redirect') @app.route('/followed-redirect') def followed_redirect(): return 'Followed redirect!'
heat/tests/convergence/scenarios/update_replace_missed_cleanup.py
noironetworks/heat
265
12742532
<gh_stars>100-1000 # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. def check_c_count(expected_count): test.assertEqual(expected_count, len(reality.resources_by_logical_name('C'))) example_template = Template({ 'A': RsrcDef({'a': 'initial'}, []), 'B': RsrcDef({}, []), 'C': RsrcDef({'!a': GetAtt('A', 'a')}, ['B']), 'D': RsrcDef({'c': GetRes('C')}, []), 'E': RsrcDef({'ca': GetAtt('C', '!a')}, []), }) engine.create_stack('foo', example_template) engine.noop(5) engine.call(verify, example_template) example_template_shrunk = Template({ 'A': RsrcDef({'a': 'updated'}, []), 'B': RsrcDef({}, []), 'C': RsrcDef({'!a': GetAtt('A', 'a')}, ['B']), 'D': RsrcDef({'c': GetRes('C')}, []), 'E': RsrcDef({'ca': GetAtt('C', '!a')}, []), }) engine.update_stack('foo', example_template_shrunk) engine.noop(7) example_template_long = Template({ 'A': RsrcDef({'a': 'updated'}, []), 'B': RsrcDef({}, []), 'C': RsrcDef({'!a': GetAtt('A', 'a')}, ['B']), 'D': RsrcDef({'c': GetRes('C')}, []), 'E': RsrcDef({'ca': GetAtt('C', '!a')}, []), 'F': RsrcDef({}, ['D', 'E']), }) engine.update_stack('foo', example_template_long) engine.call(check_c_count, 2) engine.noop(11) engine.call(verify, example_template_long) engine.delete_stack('foo') engine.noop(12) engine.call(verify, Template({}))
third_party/blink/tools/blinkpy/common/net/git_cl_mock.py
zealoussnow/chromium
14,668
12742535
<gh_stars>1000+ # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from blinkpy.common.net.git_cl import CLStatus, GitCL from blinkpy.common.system.executive import ScriptError # pylint: disable=unused-argument class MockGitCL(object): def __init__(self, host, try_job_results=None, status='closed', issue_number='1234', time_out=False, git_error_output=None): """Constructs a fake GitCL with canned return values. Args: host: Host object, used for builder names. try_job_results: A dict of Build to TryJobStatus. status: CL status string. issue_number: CL issue number as a string. time_out: Whether to simulate timing out while waiting. git_error_output: A dict of git-cl args to exception output. """ self._builders = host.builders.all_try_builder_names() self._status = status self._try_job_results = try_job_results self._issue_number = issue_number self._time_out = time_out self._git_error_output = git_error_output self.calls = [] def run(self, args): self.calls.append(['git', 'cl'] + args) arg_key = "".join(args) if self._git_error_output and arg_key in self._git_error_output.keys(): raise ScriptError(output=self._git_error_output[arg_key]) return 'mock output' def trigger_try_jobs(self, builders, bucket=None): bucket = bucket or 'luci.chromium.try' command = ['try', '-B', bucket] for builder in sorted(builders): command.extend(['-b', builder]) self.run(command) def get_issue_number(self): return self._issue_number def try_job_results(self, **_): return self._try_job_results def wait_for_try_jobs(self, **_): if self._time_out: return None return CLStatus(self._status, self.filter_latest(self._try_job_results)) def wait_for_closed_status(self, **_): if self._time_out: return None return 'closed' def latest_try_jobs(self, builder_names=None, **_): return self.filter_latest(self._try_job_results) @staticmethod def filter_latest(try_results): return GitCL.filter_latest(try_results) @staticmethod def all_finished(try_results): return GitCL.all_finished(try_results) @staticmethod def all_success(try_results): return GitCL.all_success(try_results) @staticmethod def some_failed(try_results): return GitCL.some_failed(try_results)
insights/parsers/ipaupgrade_log.py
mglantz/insights-core
121
12742541
<gh_stars>100-1000 """ IpaupgradeLog - file ``/var/log/ipaupgrade.log`` ================================================ This file records the information of IPA server upgrade process while executing command ``ipa-server-upgrade`` """ from .. import LogFileOutput, parser from insights.specs import Specs @parser(Specs.ipaupgrade_log) class IpaupgradeLog(LogFileOutput): """ This parser is used to parse the content of file `/var/log/ipaupgrade.log`. .. note:: Please refer to its super-class :class:`insights.core.LogFileOutput` Typical content of ``ipaupgrade.log`` file is:: 2017-08-07T07:36:50Z DEBUG Starting external process 2017-08-07T07:36:50Z DEBUG args=/bin/systemctl is-active [email protected] 2017-08-07T07:36:50Z DEBUG Process finished, return code=0 2017-08-07T07:36:50Z DEBUG stdout=active 2017-08-07T07:41:50Z ERROR IPA server upgrade failed: Inspect /var/log/ipaupgrade.log and run command ipa-server-upgrade manually. Example: >>> ipaupgradelog = shared[IpaupgradeLog] >>> len(list(log.get('DEBUG'))) 4 >>> from datetime import datetime >>> len(log.get_after(datetime(2017, 8, 7, 7, 37, 30))) 1 """ time_format = '%Y-%m-%dT%H:%M:%SZ'
dreamcoder/domains/regex/main.py
Dragon-hxl/LARC
290
12742550
<reponame>Dragon-hxl/LARC # analog of list.py for regex tasks. Responsible for actually running the task. from dreamcoder.domains.regex.makeRegexTasks import makeOldTasks, makeLongTasks, makeShortTasks, makeWordTasks, makeNumberTasks, makeHandPickedTasks, makeNewTasks, makeNewNumberTasks from dreamcoder.domains.regex.regexPrimitives import basePrimitives, altPrimitives, easyWordsPrimitives, alt2Primitives, concatPrimitives, reducedConcatPrimitives, strConstConcatPrimitives, PRC from dreamcoder.dreamcoder import explorationCompression, Task from dreamcoder.grammar import Grammar from dreamcoder.likelihoodModel import add_cutoff_values, add_string_constants from dreamcoder.program import Abstraction, Application from dreamcoder.type import tpregex from dreamcoder.utilities import eprint, flatten, testTrainSplit, POSITIVEINFINITY import random import math import pregex as pre import os try: from dreamcoder.recognition import RecurrentFeatureExtractor, JSONFeatureExtractor class LearnedFeatureExtractor(RecurrentFeatureExtractor): H = 64 special = 'regex' def tokenize(self, examples): def sanitize(l): return [z if z in self.lexicon else "?" for z_ in l for z in (z_ if isinstance(z_, list) else [z_])] tokenized = [] for xs, y in examples: if isinstance(y, list): y = ["LIST_START"] + y + ["LIST_END"] else: y = [y] y = sanitize(y) if len(y) > self.maximumLength: return None serializedInputs = [] for xi, x in enumerate(xs): if isinstance(x, list): x = ["LIST_START"] + x + ["LIST_END"] else: x = [x] x = sanitize(x) if len(x) > self.maximumLength: return None serializedInputs.append(x) tokenized.append((tuple(serializedInputs), y)) return tokenized def __init__(self, tasks, testingTasks=[], cuda=False): self.lexicon = set(flatten((t.examples for t in tasks + testingTasks), abort=lambda x: isinstance( x, str))).union({"LIST_START", "LIST_END", "?"}) self.num_examples_list = [len(t.examples) for t in tasks] # Calculate the maximum length self.maximumLength = POSITIVEINFINITY self.maximumLength = max(len(l) for t in tasks + testingTasks for xs, y in self.tokenize(t.examples) for l in [y] + [x for x in xs]) super( LearnedFeatureExtractor, self).__init__( lexicon=list( self.lexicon), tasks=tasks, cuda=cuda, H=self.H, bidirectional=True) self.parallelTaskOfProgram = False def taskOfProgram(self, p, t): #raise NotImplementedError num_examples = random.choice(self.num_examples_list) p = p.visit(ConstantInstantiateVisitor.SINGLE) preg = p.evaluate([])(pre.String("")) t = Task("Helm", t, [((), list(preg.sample())) for _ in range(num_examples) ]) return t except: pass #in init: loop over tasks, save lengths, class ConstantInstantiateVisitor(object): def __init__(self): self.regexes = [ pre.create(".+"), pre.create("\d+"), pre.create("\w+"), pre.create("\s+"), pre.create("\\u+"), pre.create("\l+")] def primitive(self, e): if e.name == "r_const": #return Primitive("STRING", e.tp, random.choice(self.words)) s = random.choice(self.regexes).sample() #random string const s = pre.String(s) e.value = PRC(s,arity=0) return e def invented(self, e): return e.body.visit(self) def index(self, e): return e def application(self, e): return Application(e.f.visit(self), e.x.visit(self)) def abstraction(self, e): return Abstraction(e.body.visit(self)) #TODO fix class MyJSONFeatureExtractor(JSONFeatureExtractor): N_EXAMPLES = 5 def _featuresOfProgram(self, program, tp): try: preg = program.evaluate([]) # if 'left_paren' in program.show(False): #eprint("string_pregex:", string_pregex) #eprint("string_pregex:", string_pregex) except IndexError: # free variable return None except Exception as e: eprint("Exception during evaluation:", e) if "Attempt to evaluate fragment variable" in e: eprint("program (bc fragment error)", program) return None examples = [] for _ in range(self.N_EXAMPLES * 5): # oh this is arbitrary ig try: y = preg.sample() # TODO #this line should keep inputs short, so that helmholtzbatch can be large #allows it to try other samples #(Could also return None off the bat... idk which is better) #if len(y) > 20: # continue #eprint(tp, program, x, y) examples.append(y) except BaseException: continues if len(examples) >= self.N_EXAMPLES: break else: return None return examples # changed to list_features(examples) from examples def regex_options(parser): parser.add_argument("--maxTasks", type=int, default=500, help="truncate tasks to fit within this boundary") parser.add_argument( "--maxExamples", type=int, default=10, help="truncate number of examples per task to fit within this boundary") parser.add_argument("--tasks", default="long", help="which tasks to use", choices=["old", "short", "long", "words", "number", "handpicked", "new", "newNumber"]) parser.add_argument("--primitives", default="concat", help="Which primitive set to use", choices=["base", "alt1", "easyWords", "alt2", "concat", "reduced", "strConst"]) parser.add_argument("--extractor", type=str, choices=["hand", "deep", "learned", "json"], default="learned") # if i switch to json it breaks parser.add_argument("--split", metavar="TRAIN_RATIO", type=float, default=0.8, help="split test/train") parser.add_argument("-H", "--hidden", type=int, default=256, help="number of hidden units") parser.add_argument("--likelihoodModel", default="probabilistic", help="likelihood Model", choices=["probabilistic", "all-or-nothing"]) parser.add_argument("--topk_use_map", dest="topk_use_only_likelihood", action="store_false") parser.add_argument("--debug", dest="debug", action="store_true") parser.add_argument("--ll_cutoff", dest="use_ll_cutoff", nargs='*', default=False, help="use ll cutoff for training tasks (for probabilistic likelihood model only). default is False,") parser.add_argument("--use_str_const", action="store_true", help="use string constants") """parser.add_argument("--stardecay", type=float, dest="stardecay", default=0.5, help="p value for kleenestar and plus")""" # Lucas recommends putting a struct with the definitions of the primitives here. # TODO: # Build likelihood funciton # modify NN # make primitives # make tasks def main(args): """ Takes the return value of the `commandlineArguments()` function as input and trains/tests the model on regular expressions. """ #for dreaming #parse use_ll_cutoff use_ll_cutoff = args.pop('use_ll_cutoff') if not use_ll_cutoff is False: #if use_ll_cutoff is a list of strings, then train_ll_cutoff and train_ll_cutoff #will be tuples of that string followed by the actual model if len(use_ll_cutoff) == 1: train_ll_cutoff = use_ll_cutoff[0] # make_cutoff_model(use_ll_cutoff[0], tasks)) test_ll_cutoff = use_ll_cutoff[0] # make_cutoff_model(use_ll_cutoff[0], tasks)) else: assert len(use_ll_cutoff) == 2 train_ll_cutoff = use_ll_cutoff[0] #make_cutoff_model(use_ll_cutoff[0], tasks)) test_ll_cutoff = use_ll_cutoff[1] #make_cutoff_model(use_ll_cutoff[1], tasks)) else: train_ll_cutoff = None test_ll_cutoff = None regexTasks = {"old": makeOldTasks, "short": makeShortTasks, "long": makeLongTasks, "words": makeWordTasks, "number": makeNumberTasks, "handpicked": makeHandPickedTasks, "new": makeNewTasks, "newNumber": makeNewNumberTasks }[args.pop("tasks")] tasks = regexTasks() # TODO eprint("Generated", len(tasks), "tasks") maxTasks = args.pop("maxTasks") if len(tasks) > maxTasks: eprint("Unwilling to handle {} tasks, truncating..".format(len(tasks))) seed = 42 # previously this was hardcoded and never changed random.seed(seed) random.shuffle(tasks) del tasks[maxTasks:] maxExamples = args.pop("maxExamples") split = args.pop("split") test, train = testTrainSplit(tasks, split) eprint("Split tasks into %d/%d test/train" % (len(test), len(train))) test = add_cutoff_values(test, test_ll_cutoff) train = add_cutoff_values(train, train_ll_cutoff) eprint("added cutoff values to tasks, train: ", train_ll_cutoff, ", test:", test_ll_cutoff ) if args.pop("use_str_const"): assert args["primitives"] == "strConst" or args["primitives"] == "reduced" ConstantInstantiateVisitor.SINGLE = \ ConstantInstantiateVisitor() test = add_string_constants(test) train = add_string_constants(train) eprint("added string constants to test and train") for task in test + train: if len(task.examples) > maxExamples: task.examples = task.examples[:maxExamples] task.specialTask = ("regex", {"cutoff": task.ll_cutoff, "str_const": task.str_const}) task.examples = [(xs, [y for y in ys ]) for xs,ys in task.examples ] task.maxParameters = 1 # from list stuff primtype = args.pop("primitives") prims = {"base": basePrimitives, "alt1": altPrimitives, "alt2": alt2Primitives, "easyWords": easyWordsPrimitives, "concat": concatPrimitives, "reduced": reducedConcatPrimitives, "strConst": strConstConcatPrimitives }[primtype] extractor = { "learned": LearnedFeatureExtractor, "json": MyJSONFeatureExtractor }[args.pop("extractor")] extractor.H = args.pop("hidden") #stardecay = args.stardecay #stardecay = args.pop('stardecay') #decaystr = 'd' + str(stardecay) import datetime timestamp = datetime.datetime.now().isoformat() outputDirectory = "experimentOutputs/regex/%s"%timestamp os.system("mkdir -p %s"%outputDirectory) args.update({ "featureExtractor": extractor, "outputPrefix": "%s/regex"%(outputDirectory), "evaluationTimeout": 0.005, "topk_use_only_likelihood": True, "maximumFrontier": 10, "compressor": args.get("compressor","ocaml") }) #### # use the #prim_list = prims(stardecay) prim_list = prims() specials = ["r_kleene", "r_plus", "r_maybe", "r_alt", "r_concat"] n_base_prim = len(prim_list) - len(specials) productions = [ (math.log(0.5 / float(n_base_prim)), prim) if prim.name not in specials else ( math.log(0.10), prim) for prim in prim_list] baseGrammar = Grammar.fromProductions(productions, continuationType=tpregex) #baseGrammar = Grammar.uniform(prims()) #for i in range(100): # eprint(baseGrammar.sample(tpregex)) #eprint(baseGrammar) #explore test_stuff = args.pop("debug") if test_stuff: eprint(baseGrammar) eprint("sampled programs from prior:") for i in range(100): #100 eprint(baseGrammar.sample(test[0].request,maximumDepth=1000)) eprint("""half the probability mass is on higher-order primitives. Therefore half of enumerated programs should have more than one node. However, we do not observe this. Instead we see a very small fraction of programs have more than one node. So something seems to be wrong with grammar.sample. Furthermore: observe the large print statement above. This prints the candidates for sampleDistribution in grammar.sample. the first element of each tuple is the probability passed into sampleDistribution. Half of the probability mass should be on the functions, but instead they are equally weighted with the constants. If you look at the grammar above, this is an error!!!! """) assert False del args["likelihoodModel"] explorationCompression(baseGrammar, train, testingTasks = test, **args)
ufora/networking/DemuxedTransport.py
ufora/ufora
571
12742553
<reponame>ufora/ufora # Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from ufora.networking.ChannelDemuxer import Message, ChannelDemuxer import logging class DemuxedTransport(object): def __init__(self): self.clients = {} def onMessageReceived_(self, content, channelId): try: channel = self.clients[channelId] message = Message( channel.channelGroup, channelId, channel.hostId, channel.outgoingSequenceNumber, content ) channel.outgoingSequenceNumber += 1 self.onMessageReceived(ChannelDemuxer.encodeMessage(message)) except Exception: import traceback logging.error('ERROR: failed to dispatch received message\n%s' % traceback.format_exc())
hgtk/__init__.py
bluedisk/hangul-tools
271
12742576
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import division from . import text from . import letter from . import checker from . import josa
V2RaycSpider1225/src/BusinessLogicLayer/apis/cluster_api/sspanel_parser.py
QIN2DIM/V2RayCloudSpider
891
12742590
# -*- coding: utf-8 -*- # Time : 2021/7/25 13:59 # Author : QIN2DIM # Github : https://github.com/QIN2DIM # Description: import json import os from datetime import datetime from bs4 import BeautifulSoup from selenium.common.exceptions import ( StaleElementReferenceException, WebDriverException, ) from selenium.webdriver import Chrome from src.BusinessCentralLayer.setting import logger, SERVER_DIR_DATABASE, TIME_ZONE_CN from src.BusinessLogicLayer.cluster.master import ActionMasterGeneral class SSPanelParser(ActionMasterGeneral): def __init__(self, url, silence=False, assault=True, anti_slider=True): super(SSPanelParser, self).__init__( url, silence, assault, anti_slider=anti_slider, ) self.obj_parser = {} self.cache_db_name = "parser_cache" self.cache_db_path = self.create_cache_db(database_dir=SERVER_DIR_DATABASE) def create_cache_db(self, database_dir=None): database_dir = "database" if database_dir is None else database_dir if not os.path.exists(database_dir): os.mkdir(database_dir) cache_db = os.path.join(database_dir, self.cache_db_name) if not os.path.exists(cache_db): os.mkdir(cache_db) return cache_db def capture_cache(self, signs, flow): output_path = os.path.join(self.cache_db_path, signs) with open(output_path, "w", encoding="utf8") as f: f.write(flow) def parse(self, **kwargs): """ :return: """ api: Chrome = kwargs.get("api") self.obj_parser.update({"parse_url": self.register_url}) # ---------------------------------------- # 解析可用流量和可用时长 # 优先调用,等待流体动画加载完成[耗时任务] # 以保证后续解析无需等待 # ---------------------------------------- fluid = set() fluid_density = [] i = 0 while True: try: i += 1 card_body = api.find_elements_by_xpath("//div[@class='card-body']")[:2] card_body = [tag.text.strip() for tag in card_body] fluid.update(card_body) fluid_density.append(len(fluid)) # 流体释放 if len(fluid_density) < 10 or len(fluid) < 3: continue # 流体相对均衡 if max(fluid_density[:10]) == min(fluid_density[:10]): self.obj_parser.update( {"time": card_body[0], "flow": card_body[-1]} ) break except StaleElementReferenceException: pass # 存储cookie with open("123.json", "w", encoding="utf8") as f: f.write(json.dumps(api.get_cookies())) # 读取cookie # cookie_json = " ".join([f"{i['name']}={i['value']};" for i in json.loads(f.read())]) # ---------------------------------------- # 解析站点名称 # ---------------------------------------- try: parse_name = api.find_element_by_xpath( "//aside//div[@class='sidebar-brand']" ).text.strip() self.obj_parser.update({"parse_name": parse_name}) except WebDriverException: logger.error( f"<SSPanelParserError> Site name resolution failed -- {self.register_url}" ) # ---------------------------------------- # 解析站点公告 # ---------------------------------------- reference_links = {} try: card_body = api.find_elements_by_xpath("//div[@class='card-body']")[4] self.obj_parser.update({"desc": card_body.text.strip()}) related_href = card_body.find_elements_by_tag_name("a") for tag in related_href: href = tag.get_attribute("href") if href: href = href.strip() if "https" not in href: href = f"{self.register_url}{href}" href_desc = tag.text.strip() if tag.text else href reference_links.update({href: href_desc}) self.obj_parser.update({"reference_links": reference_links}) except WebDriverException: logger.error( f"<SSPanelParserError> Site announcement parsing error -- {self.register_url}" ) # ---------------------------------------- # 解析[链接导入] # ---------------------------------------- subscribes = {} support = [] try: # 清洗订阅链接 soup = BeautifulSoup(api.page_source, "html.parser") for i in soup.find_all("a"): if i.get("data-clipboard-text"): subscribes.update({i.get("data-clipboard-text"): i.text.strip()}) # 识别支持的订阅类型 buttons = api.find_elements_by_xpath("//div[@class='card'][2]//a") for tag in buttons: support_ = tag.get_attribute("class") if support_: support_ = [ i for i in [i for i in support_.split() if i.startswith("btn-")] if i not in [ "btn-icon", "btn-primary", "btn-lg", "btn-round", "btn-progress", ] ] if len(support_) == 1: class_name = support_[0].replace("btn-", "") support.append(class_name) # 残差补全 for tag in subscribes.values(): if "surge" in tag.lower(): support.append("surge") if "ssr" in tag.lower(): support.append("ssr") self.obj_parser.update( {"subscribes": subscribes, "support": list(set(support))} ) except WebDriverException: logger.error( f"<SSPanelParserError> Site subscription resolution failed -- {self.register_url}" ) self.obj_parser.update( { "email": self.email, "password": self.password, "recently_login": datetime.now(tz=TIME_ZONE_CN), } ) return self.obj_parser def parse_by_login(self, **kwargs) -> dict: return self.seep("login", self.parse, **kwargs) def parse_by_register(self, **kwargs): return self.seep("register", self.parse, **kwargs) def refresh_cookie(self, **kwargs): def get_cookie(): cookies = kwargs.get("api") return json.dumps(cookies.get_cookies()) if cookies else {} return self.seep("login", get_cookie, **kwargs) def seep(self, method, business, **kwargs): # 获取任务设置 api = self.set_spider_option() # 执行核心业务逻辑 try: self.get_html_handle(api=api, url=self.register_url, wait_seconds=45) if method == "login": self.sign_in(api, **kwargs) elif method == "register": self.sign_up(api) self.wait(api, 40, "//div[@class='card-body']") kwargs.setdefault("api", api) return business(**kwargs) finally: api.quit()
virl/cli/search/commands.py
tombry/virlutils
133
12742619
<filename>virl/cli/search/commands.py import click from virl.api import ViewerPlugin, NoPluginError from virl.api.github import get_repos from virl.cli.views.search import repo_table @click.command() @click.argument("query", required=False) @click.option("--org", default="virlfiles", required=False, help="GitHub organization to search (default: virlfiles)") def search(query=None, **kwargs): """ list topologies available via github """ repos = get_repos(org=kwargs["org"], query=query) if query is not None: click.secho("Displaying {} Results For {}".format(len(repos), query)) else: click.secho("Displaying {} Results".format(len(repos))) try: pl = ViewerPlugin(viewer="search") pl.visualize(repos=repos) except NoPluginError: repo_table(repos)
test/qa-tests/buildscripts/resmokelib/testing/hooks.py
tfogo/mongo-tools
828
12742626
""" Customize the behavior of a fixture by allowing special code to be executed before or after each test, and before or after each suite. """ from __future__ import absolute_import import os import sys import bson import pymongo from . import fixtures from . import testcases from .. import errors from .. import logging from .. import utils def make_custom_behavior(class_name, *args, **kwargs): """ Factory function for creating CustomBehavior instances. """ if class_name not in _CUSTOM_BEHAVIORS: raise ValueError("Unknown custom behavior class '%s'" % (class_name)) return _CUSTOM_BEHAVIORS[class_name](*args, **kwargs) class CustomBehavior(object): """ The common interface all CustomBehaviors will inherit from. """ @staticmethod def start_dynamic_test(test_case, test_report): """ If a CustomBehavior wants to add a test case that will show up in the test report, it should use this method to add it to the report, since we will need to count it as a dynamic test to get the stats in the summary information right. """ test_report.startTest(test_case, dynamic=True) def __init__(self, logger, fixture): """ Initializes the CustomBehavior with the specified fixture. """ if not isinstance(logger, logging.Logger): raise TypeError("logger must be a Logger instance") self.logger = logger self.fixture = fixture def before_suite(self, test_report): """ The test runner calls this exactly once before they start running the suite. """ pass def after_suite(self, test_report): """ The test runner calls this exactly once after all tests have finished executing. Be sure to reset the behavior back to its original state so that it can be run again. """ pass def before_test(self, test_report): """ Each test will call this before it executes. Raises a TestFailure if the test should be marked as a failure, or a ServerFailure if the fixture exits uncleanly or unexpectedly. """ pass def after_test(self, test_report): """ Each test will call this after it executes. Raises a TestFailure if the test should be marked as a failure, or a ServerFailure if the fixture exits uncleanly or unexpectedly. """ pass class CleanEveryN(CustomBehavior): """ Restarts the fixture after it has ran 'n' tests. On mongod-related fixtures, this will clear the dbpath. """ DEFAULT_N = 20 def __init__(self, logger, fixture, n=DEFAULT_N): CustomBehavior.__init__(self, logger, fixture) # Try to isolate what test triggers the leak by restarting the fixture each time. if "detect_leaks=1" in os.getenv("ASAN_OPTIONS", ""): self.logger.info("ASAN_OPTIONS environment variable set to detect leaks, so restarting" " the fixture after each test instead of after every %d.", n) n = 1 self.n = n self.tests_run = 0 def after_test(self, test_report): self.tests_run += 1 if self.tests_run >= self.n: self.logger.info("%d tests have been run against the fixture, stopping it...", self.tests_run) self.tests_run = 0 teardown_success = self.fixture.teardown() self.logger.info("Starting the fixture back up again...") self.fixture.setup() self.fixture.await_ready() # Raise this after calling setup in case --continueOnFailure was specified. if not teardown_success: raise errors.TestFailure("%s did not exit cleanly" % (self.fixture)) class CheckReplDBHash(CustomBehavior): """ Waits for replication after each test, then checks that the dbhahses of all databases other than "local" match on the primary and all of the secondaries. If any dbhashes do not match, logs information about what was different (e.g. Different numbers of collections, missing documents in a collection, mismatching documents, etc). Compatible only with ReplFixture subclasses. """ def __init__(self, logger, fixture): if not isinstance(fixture, fixtures.ReplFixture): raise TypeError("%s does not support replication" % (fixture.__class__.__name__)) CustomBehavior.__init__(self, logger, fixture) self.test_case = testcases.TestCase(self.logger, "Hook", "#dbhash#") self.started = False def after_test(self, test_report): """ After each test, check that the dbhash of the test database is the same on all nodes in the replica set or master/slave fixture. """ try: if not self.started: CustomBehavior.start_dynamic_test(self.test_case, test_report) self.started = True # Wait until all operations have replicated. self.fixture.await_repl() success = True sb = [] # String builder. primary = self.fixture.get_primary() primary_conn = utils.new_mongo_client(port=primary.port) for secondary in self.fixture.get_secondaries(): read_preference = pymongo.ReadPreference.SECONDARY secondary_conn = utils.new_mongo_client(port=secondary.port, read_preference=read_preference) # Skip arbiters. if secondary_conn.admin.command("isMaster").get("arbiterOnly", False): continue all_matched = CheckReplDBHash._check_all_db_hashes(primary_conn, secondary_conn, sb) if not all_matched: sb.insert(0, "One or more databases were different between the primary on port %d" " and the secondary on port %d:" % (primary.port, secondary.port)) success = all_matched and success if not success: # Adding failures to a TestReport requires traceback information, so we raise # a 'self.test_case.failureException' that we will catch ourselves. self.test_case.logger.info("\n ".join(sb)) raise self.test_case.failureException("The dbhashes did not match") except self.test_case.failureException as err: self.test_case.logger.exception("The dbhashes did not match.") self.test_case.return_code = 1 test_report.addFailure(self.test_case, sys.exc_info()) test_report.stopTest(self.test_case) raise errors.ServerFailure(err.args[0]) except pymongo.errors.WTimeoutError: self.test_case.logger.exception("Awaiting replication timed out.") self.test_case.return_code = 2 test_report.addError(self.test_case, sys.exc_info()) test_report.stopTest(self.test_case) raise errors.StopExecution("Awaiting replication timed out") def after_suite(self, test_report): """ If we get to this point, the #dbhash# test must have been successful, so add it to the test report. """ if self.started: self.test_case.logger.info("The dbhashes matched for all tests.") self.test_case.return_code = 0 test_report.addSuccess(self.test_case) # TestReport.stopTest() has already been called if there was a failure. test_report.stopTest(self.test_case) self.started = False @staticmethod def _check_all_db_hashes(primary_conn, secondary_conn, sb): """ Returns true if for each non-local database, the dbhash command returns the same MD5 hash on the primary as it does on the secondary. Returns false otherwise. Logs a message describing the differences if any database's dbhash did not match. """ # Overview of how we'll check that everything replicated correctly between these two nodes: # # - Check whether they have the same databases. # - If not, log which databases are missing where, and dump the contents of any that are # missing. # # - Check whether each database besides "local" gives the same md5 field as the result of # running the dbhash command. # - If not, check whether they have the same collections. # - If not, log which collections are missing where, and dump the contents of any # that are missing. # - If so, check that the hash of each non-capped collection matches. # - If any do not match, log the diff of the collection between the two nodes. success = True if not CheckReplDBHash._check_dbs_present(primary_conn, secondary_conn, sb): return False for db_name in primary_conn.database_names(): if db_name == "local": continue # We don't expect this to match across different nodes. matched = CheckReplDBHash._check_db_hash(primary_conn, secondary_conn, db_name, sb) success = matched and success return success @staticmethod def _check_dbs_present(primary_conn, secondary_conn, sb): """ Returns true if the list of databases on the primary is identical to the list of databases on the secondary, and false otherwise. """ success = True primary_dbs = primary_conn.database_names() # Can't run database_names() on secondary, so instead use the listDatabases command. # TODO: Use database_names() once PYTHON-921 is resolved. list_db_output = secondary_conn.admin.command("listDatabases") secondary_dbs = [db["name"] for db in list_db_output["databases"]] # There may be a difference in databases which is not considered an error, when # the database only contains system collections. This difference is only logged # when others are encountered, i.e., success = False. missing_on_primary, missing_on_secondary = CheckReplDBHash._check_difference( set(primary_dbs), set(secondary_dbs), "database") for missing_db in missing_on_secondary: db = primary_conn[missing_db] coll_names = db.collection_names() non_system_colls = [name for name in coll_names if not name.startswith("system.")] # It is only an error if there are any non-system collections in the database, # otherwise it's not well defined whether they should exist or not. if non_system_colls: sb.append("Database %s present on primary but not on secondary." % (missing_db)) CheckReplDBHash._dump_all_collections(db, non_system_colls, sb) success = False for missing_db in missing_on_primary: db = secondary_conn[missing_db] # Can't run collection_names() on secondary, so instead use the listCollections command. # TODO: Always use collection_names() once PYTHON-921 is resolved. Then much of the # logic that is duplicated here can be consolidated. list_coll_output = db.command("listCollections")["cursor"]["firstBatch"] coll_names = [coll["name"] for coll in list_coll_output] non_system_colls = [name for name in coll_names if not name.startswith("system.")] # It is only an error if there are any non-system collections in the database, # otherwise it's not well defined if it should exist or not. if non_system_colls: sb.append("Database %s present on secondary but not on primary." % (missing_db)) CheckReplDBHash._dump_all_collections(db, non_system_colls, sb) success = False return success @staticmethod def _check_db_hash(primary_conn, secondary_conn, db_name, sb): """ Returns true if the dbhash for 'db_name' matches on the primary and the secondary, and false otherwise. Appends a message to 'sb' describing the differences if the dbhashes do not match. """ primary_hash = primary_conn[db_name].command("dbhash") secondary_hash = secondary_conn[db_name].command("dbhash") if primary_hash["md5"] == secondary_hash["md5"]: return True success = CheckReplDBHash._check_dbs_eq( primary_conn, secondary_conn, primary_hash, secondary_hash, db_name, sb) if not success: sb.append("Database %s has a different hash on the primary and the secondary" " ([ %s ] != [ %s ]):" % (db_name, primary_hash["md5"], secondary_hash["md5"])) return success @staticmethod def _check_dbs_eq(primary_conn, secondary_conn, primary_hash, secondary_hash, db_name, sb): """ Returns true if all non-capped collections had the same hash in the dbhash response, and false otherwise. Appends information to 'sb' about the differences between the 'db_name' database on the primary and the 'db_name' database on the secondary, if any. """ success = True primary_db = primary_conn[db_name] secondary_db = secondary_conn[db_name] primary_coll_hashes = primary_hash["collections"] secondary_coll_hashes = secondary_hash["collections"] primary_coll_names = set(primary_coll_hashes.keys()) secondary_coll_names = set(secondary_coll_hashes.keys()) missing_on_primary, missing_on_secondary = CheckReplDBHash._check_difference( primary_coll_names, secondary_coll_names, "collection", sb=sb) if missing_on_primary or missing_on_secondary: # 'sb' already describes which collections are missing where. for coll_name in missing_on_primary: CheckReplDBHash._dump_all_documents(secondary_db, coll_name, sb) for coll_name in missing_on_secondary: CheckReplDBHash._dump_all_documents(primary_db, coll_name, sb) return for coll_name in primary_coll_names & secondary_coll_names: primary_coll_hash = primary_coll_hashes[coll_name] secondary_coll_hash = secondary_coll_hashes[coll_name] if primary_coll_hash == secondary_coll_hash: continue # Ignore capped collections because they are not expected to match on all nodes. if primary_db.command({"collStats": coll_name})["capped"]: # Still fail if the collection is not capped on the secondary. if not secondary_db.command({"collStats": coll_name})["capped"]: success = False sb.append("%s.%s collection is capped on primary but not on secondary." % (primary_db.name, coll_name)) sb.append("%s.%s collection is capped, ignoring." % (primary_db.name, coll_name)) continue # Still fail if the collection is capped on the secondary, but not on the primary. elif secondary_db.command({"collStats": coll_name})["capped"]: success = False sb.append("%s.%s collection is capped on secondary but not on primary." % (primary_db.name, coll_name)) continue success = False sb.append("Collection %s.%s has a different hash on the primary and the secondary" " ([ %s ] != [ %s ]):" % (db_name, coll_name, primary_coll_hash, secondary_coll_hash)) CheckReplDBHash._check_colls_eq(primary_db, secondary_db, coll_name, sb) if success: sb.append("All collections that were expected to match did.") return success @staticmethod def _check_colls_eq(primary_db, secondary_db, coll_name, sb): """ Appends information to 'sb' about the differences or between the 'coll_name' collection on the primary and the 'coll_name' collection on the secondary, if any. """ codec_options = bson.CodecOptions(document_class=TypeSensitiveSON) primary_coll = primary_db.get_collection(coll_name, codec_options=codec_options) secondary_coll = secondary_db.get_collection(coll_name, codec_options=codec_options) primary_docs = CheckReplDBHash._extract_documents(primary_coll) secondary_docs = CheckReplDBHash._extract_documents(secondary_coll) CheckReplDBHash._get_collection_diff(primary_docs, secondary_docs, sb) @staticmethod def _extract_documents(collection): """ Returns a list of all documents in the collection, sorted by their _id. """ return [doc for doc in collection.find().sort("_id", pymongo.ASCENDING)] @staticmethod def _get_collection_diff(primary_docs, secondary_docs, sb): """ Returns true if the documents in 'primary_docs' exactly match the documents in 'secondary_docs', and false otherwise. Appends information to 'sb' about what matched or did not match. """ matched = True # These need to be lists instead of sets because documents aren't hashable. missing_on_primary = [] missing_on_secondary = [] p_idx = 0 # Keep track of our position in 'primary_docs'. s_idx = 0 # Keep track of our position in 'secondary_docs'. while p_idx < len(primary_docs) and s_idx < len(secondary_docs): primary_doc = primary_docs[p_idx] secondary_doc = secondary_docs[s_idx] if primary_doc == secondary_doc: p_idx += 1 s_idx += 1 continue # We have mismatching documents. matched = False if primary_doc["_id"] == secondary_doc["_id"]: sb.append("Mismatching document:") sb.append(" primary: %s" % (primary_doc)) sb.append(" secondary: %s" % (secondary_doc)) p_idx += 1 s_idx += 1 # One node was missing a document. Since the documents are sorted by _id, the doc with # the smaller _id was the one that was skipped. elif primary_doc["_id"] < secondary_doc["_id"]: missing_on_secondary.append(primary_doc) # Only move past the doc that we know was skipped. p_idx += 1 else: # primary_doc["_id"] > secondary_doc["_id"] missing_on_primary.append(secondary_doc) # Only move past the doc that we know was skipped. s_idx += 1 # Check if there are any unmatched documents left. while p_idx < len(primary_docs): matched = False missing_on_secondary.append(primary_docs[p_idx]) p_idx += 1 while s_idx < len(secondary_docs): matched = False missing_on_primary.append(secondary_docs[s_idx]) s_idx += 1 if not matched: CheckReplDBHash._append_differences( missing_on_primary, missing_on_secondary, "document", sb) else: sb.append("All documents matched.") @staticmethod def _check_difference(primary_set, secondary_set, item_type_name, sb=None): """ Returns true if the contents of 'primary_set' and 'secondary_set' are identical, and false otherwise. The sets contain information about the primary and secondary, respectively, e.g. the database names that exist on each node. Appends information about anything that differed to 'sb'. """ missing_on_primary = set() missing_on_secondary = set() for item in primary_set - secondary_set: missing_on_secondary.add(item) for item in secondary_set - primary_set: missing_on_primary.add(item) if sb is not None: CheckReplDBHash._append_differences( missing_on_primary, missing_on_secondary, item_type_name, sb) return (missing_on_primary, missing_on_secondary) @staticmethod def _append_differences(missing_on_primary, missing_on_secondary, item_type_name, sb): """ Given two iterables representing items that were missing on the primary or the secondary respectively, append the information about which items were missing to 'sb', if any. """ if missing_on_primary: sb.append("The following %ss were present on the secondary, but not on the" " primary:" % (item_type_name)) for item in missing_on_primary: sb.append(str(item)) if missing_on_secondary: sb.append("The following %ss were present on the primary, but not on the" " secondary:" % (item_type_name)) for item in missing_on_secondary: sb.append(str(item)) @staticmethod def _dump_all_collections(database, coll_names, sb): """ Appends the contents of each of the collections in 'coll_names' to 'sb'. """ if coll_names: sb.append("Database %s contains the following collections: %s" % (database.name, coll_names)) for coll_name in coll_names: CheckReplDBHash._dump_all_documents(database, coll_name, sb) else: sb.append("No collections in database %s." % (database.name)) @staticmethod def _dump_all_documents(database, coll_name, sb): """ Appends the contents of 'coll_name' to 'sb'. """ docs = CheckReplDBHash._extract_documents(database[coll_name]) if docs: sb.append("Documents in %s.%s:" % (database.name, coll_name)) for doc in docs: sb.append(" %s" % (doc)) else: sb.append("No documents in %s.%s." % (database.name, coll_name)) class TypeSensitiveSON(bson.SON): """ Extends bson.SON to perform additional type-checking of document values to differentiate BSON types. """ def items_with_types(self): """ Returns a list of triples. Each triple consists of a field name, a field value, and a field type for each field in the document. """ return [(key, self[key], type(self[key])) for key in self] def __eq__(self, other): """ Comparison to another TypeSensitiveSON is order-sensitive and type-sensitive while comparison to a regular dictionary ignores order and type mismatches. """ if isinstance(other, TypeSensitiveSON): return (len(self) == len(other) and self.items_with_types() == other.items_with_types()) raise TypeError("TypeSensitiveSON objects cannot be compared to other types") class ValidateCollections(CustomBehavior): """ Runs full validation (db.collection.validate(true)) on all collections in all databases on every standalone, or primary mongod. If validation fails (validate.valid), then the validate return object is logged. Compatible with all subclasses. """ DEFAULT_FULL = True DEFAULT_SCANDATA = True def __init__(self, logger, fixture, full=DEFAULT_FULL, scandata=DEFAULT_SCANDATA): CustomBehavior.__init__(self, logger, fixture) if not isinstance(full, bool): raise TypeError("Fixture option full is not specified as type bool") if not isinstance(scandata, bool): raise TypeError("Fixture option scandata is not specified as type bool") self.test_case = testcases.TestCase(self.logger, "Hook", "#validate#") self.started = False self.full = full self.scandata = scandata def after_test(self, test_report): """ After each test, run a full validation on all collections. """ try: if not self.started: CustomBehavior.start_dynamic_test(self.test_case, test_report) self.started = True sb = [] # String builder. # The self.fixture.port can be used for client connection to a # standalone mongod, a replica-set primary, or mongos. # TODO: Run collection validation on all nodes in a replica-set. port = self.fixture.port conn = utils.new_mongo_client(port=port) success = ValidateCollections._check_all_collections( conn, sb, self.full, self.scandata) if not success: # Adding failures to a TestReport requires traceback information, so we raise # a 'self.test_case.failureException' that we will catch ourselves. self.test_case.logger.info("\n ".join(sb)) raise self.test_case.failureException("Collection validation failed") except self.test_case.failureException as err: self.test_case.logger.exception("Collection validation failed") self.test_case.return_code = 1 test_report.addFailure(self.test_case, sys.exc_info()) test_report.stopTest(self.test_case) raise errors.ServerFailure(err.args[0]) def after_suite(self, test_report): """ If we get to this point, the #validate# test must have been successful, so add it to the test report. """ if self.started: self.test_case.logger.info("Collection validation passed for all tests.") self.test_case.return_code = 0 test_report.addSuccess(self.test_case) # TestReport.stopTest() has already been called if there was a failure. test_report.stopTest(self.test_case) self.started = False @staticmethod def _check_all_collections(conn, sb, full, scandata): """ Returns true if for all databases and collections validate_collection succeeds. Returns false otherwise. Logs a message if any database's collection fails validate_collection. """ success = True for db_name in conn.database_names(): for coll_name in conn[db_name].collection_names(): try: conn[db_name].validate_collection(coll_name, full=full, scandata=scandata) except pymongo.errors.CollectionInvalid as err: sb.append("Database %s, collection %s failed to validate:\n%s" % (db_name, coll_name, err.args[0])) success = False return success _CUSTOM_BEHAVIORS = { "CleanEveryN": CleanEveryN, "CheckReplDBHash": CheckReplDBHash, "ValidateCollections": ValidateCollections, }
configs/mmdet/detection/detection_openvino_dynamic-800x1344.py
zhiqwang/mmdeploy
746
12742646
_base_ = ['../_base_/base_openvino_dynamic-800x1344.py']
test_elasticsearch/test_client/__init__.py
jkbak/elasticsearch-py
3,353
12742669
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import unicode_literals from elasticsearch import Elasticsearch from ..test_cases import DummyTransportTestCase class TestClient(DummyTransportTestCase): def test_request_timeout_is_passed_through_unescaped(self): self.client.ping(request_timeout=0.1) calls = self.assert_url_called("HEAD", "/") assert [({"request_timeout": 0.1}, {}, None)] == calls def test_params_is_copied_when(self): rt = object() params = dict(request_timeout=rt) self.client.ping(params=params) self.client.ping(params=params) calls = self.assert_url_called("HEAD", "/", 2) assert [ ({"request_timeout": rt}, {}, None), ({"request_timeout": rt}, {}, None), ] == calls assert not (calls[0][0] is calls[1][0]) def test_headers_is_copied_when(self): hv = "value" headers = dict(Authentication=hv) self.client.ping(headers=headers) self.client.ping(headers=headers) calls = self.assert_url_called("HEAD", "/", 2) assert [ ({}, {"authentication": hv}, None), ({}, {"authentication": hv}, None), ] == calls assert not (calls[0][0] is calls[1][0]) def test_from_in_search(self): self.client.search(index="i", from_=10) calls = self.assert_url_called("POST", "/i/_search") assert [({"from": "10"}, {}, None)] == calls def test_repr_contains_hosts(self): assert "<Elasticsearch([{}])>" == repr(self.client) def test_repr_subclass(self): class OtherElasticsearch(Elasticsearch): pass assert "<OtherElasticsearch([{}])>" == repr(OtherElasticsearch()) def test_repr_contains_hosts_passed_in(self): assert "es.org" in repr(Elasticsearch(["es.org:123"])) def test_repr_truncates_host_to_5(self): hosts = [{"host": "es" + str(i)} for i in range(10)] es = Elasticsearch(hosts) assert "es5" not in repr(es) assert "..." in repr(es) def test_index_uses_post_if_id_is_empty(self): self.client.index(index="my-index", id="", body={}) self.assert_url_called("POST", "/my-index/_doc") def test_index_uses_put_if_id_is_not_empty(self): self.client.index(index="my-index", id=0, body={}) self.assert_url_called("PUT", "/my-index/_doc/0")
backend/api/actions/compose.py
wickedyoda/Yacht
1,452
12742690
<gh_stars>1000+ from fastapi import HTTPException from fastapi.responses import StreamingResponse from sh import docker_compose import os import yaml import pathlib import shutil import docker import io import zipfile from api.settings import Settings from api.utils.compose import find_yml_files settings = Settings() """ Runs an action on the specified compose project. """ def compose_action(name, action): files = find_yml_files(settings.COMPOSE_DIR) compose = get_compose(name) env = os.environ.copy() if action == "up": try: _action = docker_compose( action, "-d", _cwd=os.path.dirname(compose["path"]), _env=check_dockerhost(env), ) except Exception as exc: if hasattr(exc, "stderr"): raise HTTPException(400, exc.stderr.decode("UTF-8").rstrip()) else: raise HTTPException(400, exc) elif action == "create": try: _action = docker_compose( "up", "--no-start", _cwd=os.path.dirname(compose["path"]), _env=check_dockerhost(env), ) except Exception as exc: if hasattr(exc, "stderr"): raise HTTPException(400, exc.stderr.decode("UTF-8").rstrip()) else: raise HTTPException(400, exc) else: try: _action = docker_compose( action, _cwd=os.path.dirname(compose["path"]), _env=check_dockerhost(env), ) except Exception as exc: if hasattr(exc, "stderr"): raise HTTPException(400, exc.stderr.decode("UTF-8").rstrip()) else: raise HTTPException(400, exc) if _action.stdout.decode("UTF-8").rstrip(): _output = _action.stdout.decode("UTF-8").rstrip() elif _action.stderr.decode("UTF-8").rstrip(): _output = _action.stderr.decode("UTF-8").rstrip() else: _output = "No Output" print(f"""Project {compose['name']} {action} successful.""") print(f"""Output: """) print(_output) return get_compose_projects() """ Used to include the DOCKER_HOST in the shell env when someone ups a compose project or returns a useless var to just clear the shell env. """ def check_dockerhost(environment): if environment.get("DOCKER_HOST"): return {"DOCKER_HOST": environment["DOCKER_HOST"]} else: return {"clear_env": "true"} """ Used to run docker-compose commands on specific apps in compose projects. """ def compose_app_action( name, action, app, ): files = find_yml_files(settings.COMPOSE_DIR) compose = get_compose(name) env = os.environ.copy() print("RUNNING: " + compose["path"] + " docker-compose " + " " + action + " " + app) if action == "up": try: _action = docker_compose( "up", "-d", app, _cwd=os.path.dirname(compose["path"]), _env=check_dockerhost(env), ) except Exception as exc: if hasattr(exc, "stderr"): raise HTTPException(400, exc.stderr.decode("UTF-8").rstrip()) else: raise HTTPException(400, exc) elif action == "create": try: _action = docker_compose( "up", "--no-start", app, _cwd=os.path.dirname(compose["path"]), _env=check_dockerhost(env), ) except Exception as exc: if hasattr(exc, "stderr"): raise HTTPException(400, exc.stderr.decode("UTF-8").rstrip()) else: raise HTTPException(400, exc) elif action == "rm": try: _action = docker_compose( "rm", "--force", "--stop", app, _cwd=os.path.dirname(compose["path"]), _env=check_dockerhost(env), ) except Exception as exc: if hasattr(exc, "stderr"): raise HTTPException(400, exc.stderr.decode("UTF-8").rstrip()) else: raise HTTPException(400, exc) else: try: _action = docker_compose( action, app, _cwd=os.path.dirname(compose["path"]), _env=check_dockerhost(env), ) except Exception as exc: if hasattr(exc, "stderr"): raise HTTPException(400, exc.stderr.decode("UTF-8").rstrip()) else: raise HTTPException(400, exc) if _action.stdout.decode("UTF-8").rstrip(): output = _action.stdout.decode("UTF-8").rstrip() elif _action.stderr.decode("UTF-8").rstrip(): output = _action.stderr.decode("UTF-8").rstrip() else: output = "No Output" print(f"""Project {compose['name']} App {name} {action} successful.""") print(f"""Output: """) print(output) return get_compose_projects() """ Checks for compose projects in the COMPOSE_DIR and returns most of the info inside them. """ def get_compose_projects(): files = find_yml_files(settings.COMPOSE_DIR) projects = [] for project, file in files.items(): volumes = [] networks = [] services = {} compose = open(file) loaded_compose = yaml.load(compose, Loader=yaml.SafeLoader) if loaded_compose: if loaded_compose.get("volumes"): for volume in loaded_compose.get("volumes"): volumes.append(volume) if loaded_compose.get("networks"): for network in loaded_compose.get("networks"): networks.append(network) if loaded_compose.get("services"): for service in loaded_compose.get("services"): services[service] = loaded_compose["services"][service] _project = { "name": project, "path": file, "version": loaded_compose.get("version", "3.9"), "services": services, "volumes": volumes, "networks": networks, } projects.append(_project) else: print("ERROR: " + file + " is invalid or empty!") return projects """ Returns detailed information on a specific compose project. """ def get_compose(name): try: files = find_yml_files(settings.COMPOSE_DIR + name) except Exception as exc: raise HTTPException(exc.status_code, exc.detail) for project, file in files.items(): if name == project: networks = [] volumes = [] services = {} compose = open(file) try: loaded_compose = yaml.load(compose, Loader=yaml.SafeLoader) except yaml.scanner.ScannerError as exc: raise HTTPException(422, f"{exc.problem_mark.line}:{exc.problem_mark.column} - {exc.problem}") if loaded_compose.get("volumes"): for volume in loaded_compose.get("volumes"): volumes.append(volume) if loaded_compose.get("networks"): for network in loaded_compose.get("networks"): networks.append(network) if loaded_compose.get("services"): for service in loaded_compose.get("services"): services[service] = loaded_compose["services"][service] _content = open(file) content = _content.read() compose_object = { "name": project, "path": file, "version": loaded_compose.get("version", "-"), "services": services, "volumes": volumes, "networks": networks, "content": content, } return compose_object else: raise HTTPException(404, "Project " + name + " not found") """ Creates a compose directory (if one isn't there already) with the name of the project. Then writes the content of compose.content to it. """ def write_compose(compose): if not os.path.exists(settings.COMPOSE_DIR + compose.name): try: pathlib.Path(settings.COMPOSE_DIR + compose.name).mkdir(parents=True) except Exception as exc: raise HTTPException(exc.status_code, exc.detail) with open(settings.COMPOSE_DIR + compose.name + "/docker-compose.yml", "w") as f: try: f.write(compose.content) f.close() except TypeError as exc: if exc.args[0] == "write() argument must be str, not None": raise HTTPException( status_code=422, detail="Compose file cannot be empty." ) except Exception as exc: raise HTTPException(exc.status_code, exc.detail) return get_compose(name=compose.name) """ Deletes a compose project after checking to see if it exists. This also deletes all files in the folder. """ def delete_compose(project_name): if not os.path.exists("/" + settings.COMPOSE_DIR + project_name): raise HTTPException(404, "Project directory not found.") elif not os.path.exists( "/" + settings.COMPOSE_DIR + project_name + "/docker-compose.yml" ): raise HTTPException(404, "Project docker-compose.yml not found.") else: try: with open( "/" + settings.COMPOSE_DIR + project_name + "/docker-compose.yml" ): pass except OSError as exc: raise HTTPException(400, exc.strerror) try: shutil.rmtree("/" + settings.COMPOSE_DIR + project_name) except Exception as exc: raise HTTPException(exc.status_code, exc.strerror) return get_compose_projects() def generate_support_bundle(project_name): files = find_yml_files(settings.COMPOSE_DIR + project_name) if project_name in files: dclient = docker.from_env() stream = io.BytesIO() with zipfile.ZipFile(stream, "w") as zf, open(files[project_name], "r") as fp: compose = yaml.load(fp, Loader=yaml.SafeLoader) # print(compose) # print(compose.get("services")) for _service in compose.get("services"): print() if len(compose.get("services").keys()) < 2: try: if compose.get("services")[_service].get("container_name"): service = dclient.containers.get( compose.get("services")[_service].get("container_name") ) else: service = dclient.containers.get(_service) except docker.errors.NotFound as exc: raise HTTPException( exc.status_code, detail="container " + _service + " not found", ) else: try: if compose.get("services")[_service].get("container_name"): service = dclient.containers.get( compose.get("services")[_service].get("container_name") ) else: service = dclient.containers.get( project_name.lower() + "_" + _service + "_1" ) except docker.errors.NotFound as exc: raise HTTPException( exc.status_code, detail="container " + _service + " not found", ) service_log = service.logs() zf.writestr(f"{_service}.log", service_log) fp.seek(0) # It is possible that ".write(...)" has better memory management here. zf.writestr("docker-compose.yml", fp.read()) stream.seek(0) return StreamingResponse( stream, media_type="application/x-zip-compressed", headers={ "Content-Disposition": f"attachment;filename={project_name}_bundle.zip" }, ) else: raise HTTPException(404, f"Project {project_name} not found.")
grr/client/grr_response_client/client_actions/network_test.py
khanhgithead/grr
4,238
12742719
#!/usr/bin/env python """Tests the Netstat client action.""" from absl import app from grr_response_client.client_actions import network from grr_response_core.lib.rdfvalues import client_action as rdf_client_action from grr.test_lib import client_test_lib from grr.test_lib import test_lib class NetstatActionTest(client_test_lib.EmptyActionTest): """Tests the Netstat client action.""" def testListNetworkConnections(self): result = self.RunAction( network.ListNetworkConnections, arg=rdf_client_action.ListNetworkConnectionsArgs()) for r in result: self.assertTrue(r.process_name) self.assertTrue(r.local_address) def testListNetworkConnectionsFilter(self): result = self.RunAction( network.ListNetworkConnections, arg=rdf_client_action.ListNetworkConnectionsArgs(listening_only=True)) for r in result: self.assertTrue(r.process_name) self.assertTrue(r.local_address) self.assertEqual(r.state, "LISTEN") def main(argv): test_lib.main(argv) if __name__ == "__main__": app.run(main)
gammapy/data/tests/test_observers.py
Rishank2610/gammapy
155
12742733
<reponame>Rishank2610/gammapy # Licensed under a 3-clause BSD style license - see LICENSE.rst from numpy.testing import assert_allclose from astropy.coordinates import Angle from gammapy.data import observatory_locations def test_observatory_locations(): location = observatory_locations["hess"] assert_allclose(location.lon.deg, Angle("16d30m00.8s").deg) assert_allclose(location.lat.deg, Angle("-23d16m18.4s").deg) assert_allclose(location.height.value, 1835) assert str(location.height.unit) == "m"
autoregressive_diffusion/experiments/language/architectures/arm.py
xxdreck/google-research
23,901
12742735
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains training and sampling functions an autoregressive model.""" import functools from typing import Any, Callable from absl import logging from flax import linen as nn from flax import struct from flax.training import common_utils import jax import jax.numpy as jnp import ml_collections import numpy as np from autoregressive_diffusion.model import distributions from autoregressive_diffusion.model.autoregressive_diffusion import ardm_utils from autoregressive_diffusion.utils import util_fns def cross_entropy(logits, targets): """Compute weighted cross entropy and entropy for log probs and targets. Args: logits: [batch, length, num_classes] float array. targets: categorical targets [batch, length] int array. Returns: Tuple of scalar loss and batch normalizing factor. """ if logits.ndim != targets.ndim + 1: raise ValueError('Incorrect shapes. Got shape %s logits and %s targets' % (str(logits.shape), str(targets.shape))) vocab_size = logits.shape[-1] onehot_targets = common_utils.onehot(targets, vocab_size) loss = -jnp.sum(onehot_targets * nn.log_softmax(logits), axis=-1) d = np.prod(targets.shape[1:]) loss = util_fns.sum_except_batch(loss) / d / np.log(2) return loss def compute_accuracy(logits, targets): """Compute weighted accuracy for log probs and targets. Args: logits: [batch, length, num_classes] float array. targets: categorical targets [batch, length] int array. Returns: Tuple of scalar loss and batch normalizing factor. """ if logits.shape[:-1] != targets.shape[:-1]: raise ValueError('Incorrect shapes. Got shape %s logits and %s targets' % (str(logits.shape), str(targets.shape))) logits = logits[:, :, None, :] # Insert empty channel axis. d = float(np.prod(logits.shape[1:-1])) acc = jnp.equal(jnp.argmax(logits, axis=-1), targets) / d acc = util_fns.sum_except_batch(acc) return acc class ARM(struct.PyTreeNode): """Static model object that wraps important model functions.""" config: ml_collections.config_dict.config_dict.ConfigDict apply_fn: Callable[Ellipsis, Any] logprob_fn: Callable[Ellipsis, Any] sample_fn: Callable[Ellipsis, Any] neural_net: Any num_steps: int policy_support: bool = False num_stages: int = 1 absorbing_state: int = 0 random_order: bool = False def log_px(self, rng, params, x, train, context=None): batch_size = x.shape[0] if self.random_order: logging.info('Log-likelihood for a random-order ARM XLNet style.') rng, rng_perm = jax.random.split(rng) permutations = ardm_utils.get_batch_permutations(rng_perm, batch_size, self.num_steps) else: logging.info('Log-likelihood for a standard ARM.') permutations = None net_out = self.apply_fn( {'params': params}, x, t=None, mask=None, train=train, context=context, permutations=permutations, rngs={'dropout': rng} if train else None) d = float(np.prod(net_out.shape[1:-1])) log_px_elementwise = util_fns.sum_except_batch(self.logprob_fn(x, net_out)) log_px = log_px_elementwise / d / np.log(2) neg_acc = -compute_accuracy(logits=net_out, targets=x) t_batch_dummy = jnp.zeros((batch_size,), dtype=jnp.int32) loss_components_dummy = jnp.zeros((batch_size,)) return log_px, loss_components_dummy, neg_acc, t_batch_dummy def elbo(self, rng, params, x, train, context=None): return self.log_px(rng, params, x, train, context) def sample(self, rng, params, batch_size, context=None): chain_sharded = self.p_sample(rng, params, batch_size, context) chain = chain_sharded.reshape( chain_sharded.shape[0], batch_size, *chain_sharded.shape[3:]) return chain @functools.partial(jax.pmap, in_axes=(None, None, 0, None, 0), out_axes=1, static_broadcasted_argnums=(0, 3), axis_name='batch') def p_sample(self, rng, params, batch_size, context): """Samples from the model, calls sample_step for every timestep.""" rng = jax.random.fold_in(rng, jax.lax.axis_index('batch')) assert batch_size % jax.local_device_count() == 0 per_device_batch_size = batch_size // jax.local_device_count() logging.info('Sampling from model, hope you are patient...') if self.random_order: rng, rng_perm = jax.random.split(rng) orders = ardm_utils.get_batch_permutations(rng_perm, per_device_batch_size, self.num_steps) else: orders = jnp.arange(0, self.num_steps)[None, :] orders = jnp.repeat(orders, repeats=per_device_batch_size, axis=0) chain = [] x = jnp.full((per_device_batch_size, *self.config.data_shape), fill_value=self.absorbing_state, dtype=jnp.int32) chain.append(x) def next_sample_step(x, t): x = self.sample_step( jax.random.fold_in(rng, t), x, t, orders, params, context) return x, x ts = jnp.arange(self.num_steps) _, chain = jax.lax.scan(next_sample_step, init=x, xs=ts) return chain def get_naive_policy(self, budget=250): assert budget <= self.num_steps # We use budget+1 because a linspace contains the last step. naive_policy = ardm_utils.integer_linspace(0, self.num_steps, budget+1) # Last index does not need to be in policy. naive_policy = naive_policy[:-1] return naive_policy def sample_with_naive_policy(self, rng, params, batch_size, budget=250): logging.info('Sampling with naive policy.') naive_policy = self.get_naive_policy(budget) return self.sample_with_policy(rng, params, batch_size, naive_policy) def sample_with_policy(self, rng, params, batch_size, policy): """Wrapper for p_sample_with_policy that takes care of unsharding.""" logging.info('Sampling from model (quickly)...') chain_sharded = self.p_sample_with_policy(rng, params, batch_size, policy) chain = chain_sharded.reshape( chain_sharded.shape[0], batch_size, *chain_sharded.shape[3:]) return chain @functools.partial(jax.pmap, in_axes=(None, None, 0, None, None), out_axes=1, static_broadcasted_argnums=(0, 3), axis_name='batch') def p_sample_with_policy(self, rng, params, batch_size, policy): """Samples from the model, calls sample_step for every policy step.""" rng = jax.random.fold_in(rng, jax.lax.axis_index('batch')) assert batch_size % jax.local_device_count() == 0 per_device_batch_size = batch_size // jax.local_device_count() rng, rng_perm = jax.random.split(rng) sigmas = ardm_utils.get_batch_permutations(rng_perm, per_device_batch_size, self.num_steps) policy_extended = jnp.concatenate( [policy, jnp.array([self.num_steps], dtype=jnp.int32)], axis=0) x = jnp.full((per_device_batch_size, *self.config.data_shape), fill_value=self.absorbing_state, dtype=jnp.int32) def next_sample_step(x, idx): left_t = policy_extended[idx] right_t = policy_extended[idx + 1] x = self.sample_step_with_policy( jax.random.fold_in(rng, idx), x, left_t, right_t, sigmas, params) return x, x x, chain = jax.lax.scan(next_sample_step, x, jnp.arange(len(policy))) return chain def sample_step_with_policy(self, rng, x, left_t, right_t, sigmas, params): """Sampling code for a single step starting at left_t until right_t.""" batch_size = x.shape[0] left_t = jnp.full(batch_size, fill_value=left_t) right_t = jnp.full(batch_size, fill_value=right_t) prev_selection, current_selection = ardm_utils.get_selections_for_sigma_and_range( sigmas, left_t, right_t, self.config.data_shape) params_px = self.apply_fn( {'params': params}, x, left_t, prev_selection, train=False) new_x = self.sample_fn(rng, params_px) x = (1 - current_selection) * x + current_selection * new_x x = jnp.asarray(x, jnp.int32) return x def sample_step(self, rng, x, t, sigmas, params, context): """Sampling code for a single step t.""" batch_size = x.shape[0] t_batch = jnp.full(batch_size, fill_value=t) prev_selection, current_selection = ardm_utils.get_selection_for_sigma_and_t( sigmas, t_batch, self.config.data_shape) if self.random_order: permutations = sigmas else: permutations = None params_px = self.apply_fn( {'params': params}, x, t_batch, prev_selection, train=False, context=context, permutations=permutations) new_x = self.sample_fn(rng, params_px) x = (1 - current_selection) * x + current_selection * new_x x = jnp.asarray(x, jnp.int32) return x def init_architecture(self, init_rng, tmp_x, tmp_t, context=None): tmp_mask = None if context is None: return self.neural_net.init(init_rng, tmp_x, tmp_t, tmp_mask, train=False) else: return self.neural_net.init(init_rng, tmp_x, tmp_t, tmp_mask, train=False, context=context) @classmethod def create(cls, config, get_architecture, random_order): """Creates a new instance with `step=0` and initialized `opt_state`.""" required_num_outputs = config.num_classes num_steps = int(np.prod(config.data_shape)) # We set num_steps=0 since this disables time conditioning, which is not # necessary for ARMs. neural_net = get_architecture( config.num_classes, required_num_outputs, num_steps=0, is_causal=True) out_dist = distributions.SoftmaxCategorical(config.data_shape[-1], config.num_classes) return cls( config, apply_fn=neural_net.apply, logprob_fn=out_dist.log_prob, sample_fn=out_dist.sample, neural_net=neural_net, num_steps=num_steps, random_order=random_order )
tests/test_notify.py
noi4eg/maigret
1,156
12742761
<reponame>noi4eg/maigret from maigret.errors import CheckError from maigret.notify import QueryNotifyPrint from maigret.result import QueryStatus, QueryResult def test_notify_illegal(): n = QueryNotifyPrint(color=False) assert ( n.update( QueryResult( username="test", status=QueryStatus.ILLEGAL, site_name="TEST_SITE", site_url_user="http://example.com/test", ) ) == "[-] TEST_SITE: Illegal Username Format For This Site!" ) def test_notify_claimed(): n = QueryNotifyPrint(color=False) assert ( n.update( QueryResult( username="test", status=QueryStatus.CLAIMED, site_name="TEST_SITE", site_url_user="http://example.com/test", ) ) == "[+] TEST_SITE: http://example.com/test" ) def test_notify_available(): n = QueryNotifyPrint(color=False) assert ( n.update( QueryResult( username="test", status=QueryStatus.AVAILABLE, site_name="TEST_SITE", site_url_user="http://example.com/test", ) ) == "[-] TEST_SITE: Not found!" ) def test_notify_unknown(): n = QueryNotifyPrint(color=False) result = QueryResult( username="test", status=QueryStatus.UNKNOWN, site_name="TEST_SITE", site_url_user="http://example.com/test", ) result.error = CheckError('Type', 'Reason') assert n.update(result) == "[?] TEST_SITE: Type error: Reason"
mmtbx/command_line/fake_f_obs.py
dperl-sol/cctbx_project
155
12742780
from __future__ import absolute_import, division, print_function # LIBTBX_SET_DISPATCHER_NAME phenix.fake_f_obs from cctbx import adptbx from cctbx.array_family import flex import random, math, sys, os import iotbx.pdb import mmtbx.utils from libtbx import easy_run import mmtbx.dynamics.cartesian_dynamics as cartesian_dynamics from mmtbx import monomer_library import mmtbx.monomer_library.pdb_interpretation import mmtbx.monomer_library.server from mmtbx.tls import ladp from mmtbx.utils import run_reduce_with_timeout import mmtbx.tls.tools import mmtbx.f_model import iotbx.phil import mmtbx.masks from libtbx.utils import Sorry from six.moves import range import mmtbx.model if(1): random.seed(0) flex.set_random_seed(0) master_params_str="""\ f_obs { high_resolution = 2.0 .type = float low_resolution = 15.0 .type = float scattering_table = wk1995 it1992 *n_gaussian neutron f_calc { atomic_model { ensemble_size = 20 .type = int add_hydrogens = False .type = bool tls { max_tl = 2 .type = float min_tl = 0 .type = float } apply_cartesian_dynamics = True .type = bool regularize_geometry { rmsd_bonds_target = 0.025 .type = float rmsd_angles_target = 2.5 .type = float } ladp_angle = 3.0 .type = float switch_rotamers = True .type = bool shake_sites_rmsd = 0.01 .type = float rigid_body_shift { rotation_angle = 1.0 .type = float translation_length = 0.1 .type = float } stop_cartesian_dynamics_at_diff = 0.5 .type = float use_ramachandran_plot_restraints = True .type = bool output_file_name = fake_model.pdb .type = str } accuracy { include scope mmtbx.f_model.sf_and_grads_accuracy_master_params } } f_bulk { k_sol = 0.35 .type = float b_sol = 50.0 .type = float mask { include scope mmtbx.masks.mask_master_params } } overall_scale = 1.0 overall_anisotropic_scale_matrix_b_cart { max = 10 .type = float min = 0 .type = float } experimental_noise { add_random_error_to_amplitudes_percent = 5 .type = float } output_file_name = fake_f_obs.mtz .type = str } """ class show(object): def __init__(self, xrs, xrs_start, grm, prefix=""): esg = grm.energies_sites( sites_cart = xrs.sites_cart(), compute_gradients = False).geometry self.bond_rmsd = esg.bond_deviations()[2] self.angle_rmsd = esg.angle_deviations()[2] self.error = flex.mean(xrs.distances(other = xrs_start)) print(" %s err=%8.3f rmsd: bonds=%6.3f angles=%6.3f"%(prefix, self.error, self.bond_rmsd, self.angle_rmsd)) def switch_rotamers(xray_structure, pdb_hierarchy): x = xray_structure.deep_copy_scatterers() p = pdb_hierarchy.deep_copy() p.atoms().reset_i_seq() p = mmtbx.utils.switch_rotamers( pdb_hierarchy = p, mode = "min_distant") x.set_sites_cart(sites_cart = p.atoms().extract_xyz()) return x, p def set_ladp(xray_structure, pdb_hierarchy, angle): axes_and_atoms_i_seqs = ladp.get_axes_and_atoms_i_seqs( pdb_hierarchy = pdb_hierarchy, mon_lib_srv = monomer_library.server.server()) xray_structure = xray_structure.set_b_iso(value=random.randrange(5,10)) xray_structure.convert_to_isotropic() xray_structure = ladp.set_ladp( xray_structure = xray_structure, axes_and_atoms_i_seqs = axes_and_atoms_i_seqs, value = angle, enable_recursion = True, depth = 0) return xray_structure def random_aniso_adp(space_group, unit_cell, u_scale=2, u_min=0): return adptbx.u_star_as_u_cart(unit_cell, space_group.average_u_star( u_star = adptbx.u_cart_as_u_star(unit_cell, adptbx.random_u_cart( u_scale=u_scale, u_min=u_min)))) def apply_tls(xray_structure, params): uc = xray_structure.unit_cell() sg = xray_structure.space_group() selections_1d = flex.bool(xray_structure.scatterers().size(),True) selections = [selections_1d.iselection()] T=random_aniso_adp(space_group=sg, unit_cell=uc, u_scale=params.max_tl, u_min=params.min_tl) L=random_aniso_adp(space_group=sg, unit_cell=uc, u_scale=params.max_tl, u_min=params.min_tl) print(" T: %s"%",".join([("%7.3f"%i).strip() for i in T])) print(" L: %s"%",".join([("%7.3f"%i).strip() for i in L])) tlsos = mmtbx.tls.tools.generate_tlsos( selections = selections, xray_structure = xray_structure, T=[T], L=[L], S=[[0,0,0,0,0,0,0,0,0]]) u_cart_from_tls = mmtbx.tls.tools.u_cart_from_tls( sites_cart = xray_structure.sites_cart(), selections = selections, tlsos = tlsos) xray_structure.convert_to_anisotropic() u_cart = xray_structure.scatterers().extract_u_cart(uc) utot = u_cart_from_tls+u_cart xray_structure.set_u_cart(u_cart=utot, selection = selections_1d.iselection()) xray_structure.tidy_us() return xray_structure def apply_rigid_body_shift(xray_structure, params): import scitbx.matrix mt = flex#.mersenne_twister(seed=0) rot_axis = scitbx.matrix.col(mt.random_double_point_on_sphere()) rot_matrix = scitbx.math.r3_rotation_axis_and_angle_as_matrix( axis=rot_axis, angle=params.rotation_angle, deg=True) run_away_counter = 0 while True: transl = mt.random_double_point_on_sphere() transl_no_cont_sh = scitbx.matrix.col(xray_structure.crystal_symmetry() .subtract_continuous_allowed_origin_shifts(translation_cart=transl)) l = abs(transl_no_cont_sh) if(l > 0.1): break run_away_counter += 1 assert run_away_counter < 100 transl = transl_no_cont_sh * (params.translation_length/l) sites_cart = xray_structure.sites_cart() cm = xray_structure.center_of_mass() ns = rot_matrix * (sites_cart-cm) + transl + cm xray_structure.set_sites_cart(sites_cart = rot_matrix * (sites_cart-cm) + transl + cm) return xray_structure def simulate_f_obs(root, crystal_symmetry, params): f_calc_data = None f_masks_data = [] for i_m, m in enumerate(root.models()): raw_records = flex.std_string() raw_records.append( iotbx.pdb.format_cryst1_record(crystal_symmetry = crystal_symmetry)) for atom in m.atoms(): ra = atom.format_atom_record() ru = atom.format_anisou_record() raw_records.append(ra[:]) raw_records.append(ru[:]) xrs = iotbx.pdb.input(lines = raw_records, source_info=None).xray_structure_simple() if(i_m==0): dummy = abs(xrs.structure_factors( d_min=params.f_obs.high_resolution).f_calc()) dummy = dummy.resolution_filter(d_max = params.f_obs.low_resolution) fmodel = mmtbx.f_model.manager( f_obs = dummy, xray_structure = xrs, mask_params = params.f_obs.f_bulk.mask, sf_and_grads_accuracy_params = params.f_obs.f_calc.accuracy) fcd = fmodel.f_calc().data() fms = fmodel.f_masks() if(i_m==0): f_calc_data = fcd f_masks_data = [] for f in fms: f_masks_data.append(f.data()) else: f_calc_data += fcd fmsks = fms assert len(f_masks_data) == len(fmsks) for ifmd in range(len(f_masks_data)): f_masks_data[ifmd] += fmsks[ifmd].data() fcalc_average = fmodel.f_obs().array(data = f_calc_data) f_masks_data_average = [] for f in f_masks_data: f_masks_data_average.append(fmodel.f_obs().array(data = f/len(root.models()))) b_cart = None if([params.f_obs.overall_anisotropic_scale_matrix_b_cart.max, params.f_obs.overall_anisotropic_scale_matrix_b_cart.min].count(None)==0): b_cart = random_aniso_adp( space_group=crystal_symmetry.space_group(), unit_cell=crystal_symmetry.unit_cell(), u_scale=params.f_obs.overall_anisotropic_scale_matrix_b_cart.max, u_min=params.f_obs.overall_anisotropic_scale_matrix_b_cart.min) print("\noverall_anisotropic_scale_matrix_b_cart: %s"%",".join( [("%7.3f"%i).strip() for i in b_cart])) fmodel = mmtbx.f_model.manager( f_obs = dummy, f_calc = fcalc_average, f_mask = f_masks_data_average, k_sol = params.f_obs.f_bulk.k_sol, b_sol = params.f_obs.f_bulk.b_sol, b_cart = b_cart) # f_obs = abs(fmodel.f_model()) f_obs.set_observation_type_xray_amplitude() mtz_dataset = f_obs.as_mtz_dataset(column_root_label="F(ake)obs") r_free_flags = f_obs.generate_r_free_flags() mtz_dataset.add_miller_array( miller_array=r_free_flags, column_root_label="R-free-flags") mtz_object = mtz_dataset.mtz_object() mtz_object.write(file_name=params.f_obs.output_file_name) def regularize_geometry(xray_structure, restraints_manager, params): from mmtbx.refinement import geometry_minimization as gm import scitbx.lbfgs sites_cart = xray_structure.sites_cart() minimized = gm.lbfgs( sites_cart = sites_cart, correct_special_position_tolerance = 1.0, geometry_restraints_manager = restraints_manager.geometry, geometry_restraints_flags = gm.geometry_restraints.flags.flags(default=True), rmsd_bonds_termination_cutoff=params.rmsd_bonds_target, rmsd_angles_termination_cutoff=params.rmsd_angles_target, lbfgs_termination_params=scitbx.lbfgs.termination_parameters( max_iterations=500)) xray_structure = xray_structure.replace_sites_cart(new_sites = sites_cart) return xray_structure def cd(xray_structure, restraints_manager, params): gradients_calculator=cartesian_dynamics.gradients_calculator_reciprocal_space( restraints_manager = restraints_manager, sites_cart = xray_structure.sites_cart(), wc = 1) cartesian_dynamics.run( gradients_calculator = gradients_calculator, xray_structure = xray_structure, temperature = 3000, n_steps = 500000, time_step = 0.0005, initial_velocities_zero_fraction = 0, n_print = 100, stop_cm_motion = True, log = None, stop_at_diff = params.stop_cartesian_dynamics_at_diff, verbose = -1) def loop_2(params, xray_structure, pdb_hierarchy, restraints_manager, root): print("model:") amp = params.f_obs.f_calc.atomic_model grm = restraints_manager xrs = xray_structure.deep_copy_scatterers() show(xrs = xrs, xrs_start = xrs, grm = grm, prefix = "start:") xrs_sh = xrs.deep_copy_scatterers() if(amp.shake_sites_rmsd is not None): xrs_sh.shake_sites_in_place(rms_difference = amp.shake_sites_rmsd) if(amp.apply_cartesian_dynamics): cd(xray_structure = xrs_sh, restraints_manager = grm, params = amp) show(xrs = xrs_sh, xrs_start = xrs, grm = grm, prefix = "cd: ") if([amp.regularize_geometry.rmsd_bonds_target, amp.regularize_geometry.rmsd_angles_target].count(None)==0): xrs_sh = regularize_geometry(xray_structure = xrs_sh, restraints_manager = grm, params = amp.regularize_geometry) show(xrs = xrs_sh, xrs_start = xrs, grm = grm, prefix = "min: ") if(amp.ladp_angle is not None): xrs_sh = set_ladp(xray_structure = xrs_sh, pdb_hierarchy = pdb_hierarchy, angle = amp.ladp_angle) if([amp.tls.max_tl, amp.tls.min_tl].count(None)==0): xrs_sh = apply_tls(xray_structure = xrs_sh, params = amp.tls) if([amp.rigid_body_shift.rotation_angle, amp.rigid_body_shift.translation_length].count(None)==0): xrs_sh = apply_rigid_body_shift(xray_structure = xrs_sh, params = amp.rigid_body_shift) show(xrs = xrs_sh, xrs_start = xrs, grm = grm, prefix = "rb: ") # h = pdb_hierarchy.deep_copy() h.atoms().reset_i_seq() # XXX h.atoms().set_xyz(xrs_sh.sites_cart().deep_copy()) h.atoms().set_uij(xrs_sh.scatterers().extract_u_cart(xrs_sh.unit_cell())) h.atoms().set_b(xrs_sh.extract_u_iso_or_u_equiv()*adptbx.u_as_b(1.)) m = h.models()[0].detached_copy() m.id = str(None) root.append_model(m) def loop_1(params, root, xray_structure, pdb_hierarchy, restraints_manager): xh = [(xray_structure,pdb_hierarchy)] if(params.f_obs.f_calc.atomic_model.switch_rotamers): xh.append(switch_rotamers( xray_structure = xray_structure.deep_copy_scatterers(), pdb_hierarchy = pdb_hierarchy.deep_copy())) counter = 0 size = int(math.ceil(params.f_obs.f_calc.atomic_model.ensemble_size/len(xh))) for xh_ in xh: x_, h_ = xh_ for mc in range(size): loop_2( params = params, xray_structure = x_, pdb_hierarchy = h_, restraints_manager = restraints_manager, root = root) for i_model, model in enumerate(root.models()): model.id = str(i_model) root.atoms().set_occ(root.atoms().extract_occ()/len(root.models())) def defaults(log): print("Default params::\n", file=log) parsed = iotbx.phil.parse(master_params_str, process_includes=True) print(file=log) return parsed def run(args, log = sys.stdout): if(len(args)==0): parsed = defaults(log=log) parsed.show(prefix=" ", out=log) return parsed = defaults(log=log) processed_args = mmtbx.utils.process_command_line_args(args = args, log = sys.stdout, master_params = parsed) processed_args.params.show() params = processed_args.params.extract() if(len(processed_args.pdb_file_names)==0): raise Sorry("No PDB file found.") if(len(processed_args.pdb_file_names)>1): raise Sorry("More than one PDB file found.") pdb_file_name = processed_args.pdb_file_names[0] if(params.f_obs.f_calc.atomic_model.add_hydrogens): pdb_file_name_r = os.path.basename(pdb_file_name)+"_reduce" # easy_run.go("phenix.reduce %s > %s"% (pdb_file_name, pdb_file_name_r)) run_reduce_with_timeout(file_name=pdb_file_name, parameters=" > %s" % pdb_file_name_r) pdb_file_name = pdb_file_name_r pdbi_params = mmtbx.model.manager.get_default_pdb_interpretation_params() if(params.f_obs.f_calc.atomic_model.use_ramachandran_plot_restraints): pdbi_params.pdb_interpretation.ramachandran_plot_restraints.enabled=True model = mmtbx.model.manager( model_input = iotbx.pdb.input(file_name = pdb_file_name)) model.process(make_restraints=True, pdb_interpretation_params = pdbi_params) root = iotbx.pdb.hierarchy.root() loop_1( params = params, root = root, xray_structure = model.get_xray_structure(), pdb_hierarchy = model.get_hierarchy(), restraints_manager = model.get_restraints_manager()) root.write_pdb_file( file_name = params.f_obs.f_calc.atomic_model.output_file_name, crystal_symmetry = model.crystal_symmetry()) simulate_f_obs(root=root, crystal_symmetry=model.crystal_symmetry(), params = params) if (__name__ == "__main__"): run(sys.argv[1:])
tests/test_alpaca_crypto_data_loader.py
ksilo/LiuAlgoTrader
369
12742811
from datetime import date, datetime import pandas as pd import pytest from alpaca_trade_api.rest import TimeFrame from pytz import timezone from liualgotrader.common import config from liualgotrader.common.data_loader import DataLoader # type: ignore from liualgotrader.common.types import DataConnectorType, TimeScale from liualgotrader.data.alpaca import AlpacaData, AlpacaStream nyc = timezone("America/New_York") @pytest.mark.devtest def test_crypto_get_symbol() -> bool: alpaca_data = AlpacaData() start = date(2021, 5, 1) end = date(2021, 10, 1) _start, _end = alpaca_data._localize_start_end(start, end) df = alpaca_data.crypto_get_symbol_data( symbol="BTCUSD", start=_start, end=_end, timeframe=TimeFrame.Day ) print(df) return True @pytest.mark.devtest def test_btc_data_loader_day() -> bool: dl = DataLoader(TimeScale.day, connector=DataConnectorType.alpaca) data = dl["BTCUSD"]["2021-05-01":"2021-10-01"] # type: ignore print(data) return True @pytest.mark.devtest def test_btc_data_loader_min() -> bool: dl = DataLoader(connector=DataConnectorType.alpaca) data = dl["BTCUSD"]["2021-05-01":"2021-10-01"] # type: ignore print(data) return True @pytest.mark.devtest def test_eth_data_loader_day() -> bool: dl = DataLoader(TimeScale.day, connector=DataConnectorType.alpaca) data = dl["ETHUSD"]["2021-05-01":"2021-10-01"] # type: ignore print(data) return True
core/polyaxon/polyflow/events/__init__.py
admariner/polyaxon
3,200
12742815
#!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import polyaxon_sdk from marshmallow import fields, validate from polyaxon.contexts import refs as contexts_refs from polyaxon.lifecycle import V1Statuses from polyaxon.schemas.base import BaseCamelSchema, BaseConfig class V1EventKind(polyaxon_sdk.V1EventKind): events_statuses_mapping = { polyaxon_sdk.V1EventKind.RUN_STATUS_CREATED: V1Statuses.CREATED, polyaxon_sdk.V1EventKind.RUN_STATUS_RESUMING: V1Statuses.RESUMING, polyaxon_sdk.V1EventKind.RUN_STATUS_ON_SCHEDULE: V1Statuses.ON_SCHEDULE, polyaxon_sdk.V1EventKind.RUN_STATUS_COMPILED: V1Statuses.COMPILED, polyaxon_sdk.V1EventKind.RUN_STATUS_QUEUED: V1Statuses.QUEUED, polyaxon_sdk.V1EventKind.RUN_STATUS_SCHEDULED: V1Statuses.SCHEDULED, polyaxon_sdk.V1EventKind.RUN_STATUS_STARTING: V1Statuses.STARTING, polyaxon_sdk.V1EventKind.RUN_STATUS_RUNNING: V1Statuses.RUNNING, polyaxon_sdk.V1EventKind.RUN_STATUS_PROCESSING: V1Statuses.PROCESSING, polyaxon_sdk.V1EventKind.RUN_STATUS_STOPPING: V1Statuses.STOPPING, polyaxon_sdk.V1EventKind.RUN_STATUS_FAILED: V1Statuses.FAILED, polyaxon_sdk.V1EventKind.RUN_STATUS_STOPPED: V1Statuses.STOPPED, polyaxon_sdk.V1EventKind.RUN_STATUS_SUCCEEDED: V1Statuses.SUCCEEDED, polyaxon_sdk.V1EventKind.RUN_STATUS_SKIPPED: V1Statuses.SKIPPED, polyaxon_sdk.V1EventKind.RUN_STATUS_WARNING: V1Statuses.WARNING, polyaxon_sdk.V1EventKind.RUN_STATUS_UNSCHEDULABLE: V1Statuses.UNSCHEDULABLE, polyaxon_sdk.V1EventKind.RUN_STATUS_UPSTREAM_FAILED: V1Statuses.UPSTREAM_FAILED, polyaxon_sdk.V1EventKind.RUN_STATUS_RETRYING: V1Statuses.RETRYING, polyaxon_sdk.V1EventKind.RUN_STATUS_UNKNOWN: V1Statuses.UNKNOWN, polyaxon_sdk.V1EventKind.RUN_STATUS_DONE: V1Statuses.DONE, } class EventTriggerSchema(BaseCamelSchema): kinds = fields.List( fields.Str(validate=validate.OneOf(V1EventKind.allowable_values)), required=True, ) ref = fields.Str(required=True) @staticmethod def schema_config(): return V1EventTrigger class V1EventTrigger(BaseConfig, contexts_refs.RefMixin, polyaxon_sdk.V1EventTrigger): """Events are an advanced triggering logic that users can take advantage of in addition to: * Manual triggers via API/CLI/UI. * Time-based triggers with schedules and crons. * Upstream triggers with upstream runs or upstream ops in DAGs. Events can be attached to an operation in the context of a DAG to extend the simple trigger process, this is generally important when the user defines a dependency between two operations and needs a run to start as soon as the upstream run generates an event instead of waiting until it reaches a final state. For instance, a usual use-case is to start a tensorboard as soon as training starts. In that case the downstream operation will watch for the `running` status. Events can be attached as well to a single operation to wait for an internal alert or external events, for instance if a user integrates Polyaxon with Github, they can trigger training as soon as Polyaxon is notified that a new git commit was created. Polyaxon provides several internal and external events that users can leverage to fully automate their usage of the platform: * "run_status_created" * "run_status_resuming" * "run_status_compiled" * "run_status_queued" * "run_status_scheduled" * "run_status_starting" * "run_status_initializing" * "run_status_running" * "run_status_processing" * "run_status_stopping" * "run_status_failed" * "run_status_stopped" * "run_status_succeeded" * "run_status_skipped" * "run_status_warning" * "run_status_unschedulable" * "run_status_upstream_failed" * "run_status_retrying" * "run_status_unknown" * "run_status_done" * "run_approved_actor" * "run_invalidated_actor" * "run_new_artifacts" * "connection_git_commit" * "connection_dataset_version" * "connection_registry_image" * "alert_info" * "alert_warning" * "alert_critical" * "model_version_new_metric" * "project_custom_event" * "org_custom_event" Args: kinds: List[str] ref: str > **Important**: Currently only events with prefix `run_status_*` are supported. ## YAML usage ```yaml >>> events: >>> ref: {{ ops.upstream-operation }} >>> kinds: [run_status_running] ``` ```yaml >>> event: >>> ref: {{ connections.git-repo-connection-name }} >>> kinds: [connection_git_commit] ``` ## Python usage ```python >>> from polyaxon.polyflow import V1EventKind, V1EventTrigger >>> event1 = V1EventTrigger( >>> ref="{{ ops.upstream-operation }}", >>> kinds=[V1EventTrigger.RUN_STATUS_RUNNING], >>> ) >>> event2 = V1EventTrigger( >>> ref="{{ connections.git-repo-connection-name }}", >>> kinds=[V1EventTrigger.CONNECTION_GIT_COMMIT], >>> ) ``` ## Fields ### kinds The trigger event kinds to watch, if any event is detected the operation defining the `events` section will be initiated. ```yaml >>> event: >>> kinds: [run_status_running, run_status_done] ``` > **Note**: Similar to trigger in DAGs, after an operation is initiated, > it will still have to validate the rest of the Polyaxonfile, > i.e. conditions, contexts, connections, ... ### ref A valid reference that Polyaxon can resolve the objects that will send the events to watch for. All supported events are prefixed with the object reference that can send such events. The `run_*` events can be referenced both by `runs.UUID` or `ops.OPERATION_NAME` if defined in the context of a DAG. ```yaml >>> event: >>> ref: ops.upstream_operation_name ``` """ IDENTIFIER = "event_trigger" SCHEMA = EventTriggerSchema REDUCED_ATTRIBUTES = [ "ref", ]
uliweb/i18n/i18ntool.py
timgates42/uliweb
202
12742817
<reponame>timgates42/uliweb import os from optparse import make_option from uliweb.core import SimpleFrame from uliweb.utils.common import pkg from uliweb.core.commands import Command #def getfiles(path): # files_list = [] # if os.path.exists(os.path.abspath(os.path.normpath(path))): # if os.path.isfile(path): # files_list.append(path) # else: # for root, dirs, files in os.walk(path): # for f in files: # filename = os.path.join(root, f) # if '.svn' in filename or (not filename.endswith('.py') and not filename.endswith('.html') and not filename.endswith('.ini')): # continue # files_list.append(filename) # return files_list def _get_outputfile(path, locale='en'): output = os.path.normpath(os.path.join(path, 'locale', locale, 'LC_MESSAGES', 'uliweb.pot')) return output def _process(path, locale, options, output_dir=None): from pygettext import extrace_files from po_merge import merge from uliweb.utils import pyini output_dir = output_dir or path output = _get_outputfile(output_dir, locale=locale) try: if options['template']: x = pyini.Ini(options['template']) else: x = pyini.Ini() vars = {} vars['First_Author'] = x.get_var('I18N/First_Author', 'FIRST AUTHOR <EMAIL@ADDRESS>') vars['Project_Id_Version'] = x.get_var('I18N/Project_Id_Version', 'PACKAGE VERSION') vars['Last_Translator'] = x.get_var('I18N/Last_Translator', 'FULL NAME <EMAIL@ADDRESS>') vars['Language_Team'] = x.get_var('I18N/Language_Team', 'LANGUAGE <<EMAIL>>') vars['Content_Type_Charset'] = x.get_var('I18N/Content_Type_Charset', 'utf-8') vars['Content_Transfer_Encoding'] = x.get_var('I18N/Content_Transfer_Encoding', '8bit') vars['Plural_Forms'] = x.get_var('I18N/Plural_Forms', 'nplurals=1; plural=0;') extrace_files(path, output, {'verbose':options['verbose']}, vars=vars) print 'Success! output file is %s' % output merge(output[:-4]+'.po', output, options['exact']) except: raise class I18nCommand(Command): name = 'i18n' check_apps_dirs = False args = '<appname, appname, ...>' help = 'Extract i18n message catalog form app or all apps. Please notice that you can not set -p, -d, --uliweb, --apps and <appname, ...> at the same time.' has_options = True option_list = ( make_option('--apps', dest='apps', action='store_true', default=False, help='If set, then extract translation messages from all apps located in project direcotry, and save .po file in each app direcotry.'), make_option('-p', dest='project', action='store_true', default=False, help='If set, then extract translation messages from project directory.'), make_option('-d', dest='directory', help='If set, then extract translation messages from directory.'), make_option('--uliweb', dest='uliweb', action='store_true', default=False, help='If set, then extract translation messages from uliweb.'), make_option('-l', dest='locale', default='en', help='Target locale. Default is "en".'), make_option('--exact', dest='exact', action='store_true', default=False, help='If set, then all entries existed in old .po file but not existed in new .pot will be removed.'), make_option('-t', '--template', dest='template', help='PO variables definition, such as: charset, translater, etc.'), ) def handle(self, options, global_options, *args): from uliweb.utils.common import check_apps_dir opts = {'verbose':global_options.verbose, 'template':options.template, 'exact':options.exact} if options.project: check_apps_dir(global_options.apps_dir) app = self.get_application(global_options) _process(global_options.apps_dir, options.locale, opts, output_dir=global_options.project) elif options.apps or args: check_apps_dir(global_options.apps_dir) app = self.get_application(global_options) if options.apps: _apps = SimpleFrame.get_apps(global_options.apps_dir) else: _apps = args apps_dir = os.path.normpath(os.path.abspath(global_options.apps_dir)) for appname in _apps: path = SimpleFrame.get_app_dir(appname) if global_options.verbose: print 'Processing... app=>[%s] path=>[%s]' % (appname, path) _process(path, options.locale, opts) elif options.uliweb: path = pkg.resource_filename('uliweb', '') _process(path, options.locale, opts) elif options.directory: _process(options.directory, options.locale, opts)
convokit/text_processing/textToArcs.py
CornellNLP/Cornell-Conversational-Analysis-Toolkit
371
12742825
from .textProcessor import TextProcessor def _use_text(tok, sent): return tok['tok'].isalpha() or tok['tok'][1:].isalpha() class TextToArcs(TextProcessor): """ Transformer that outputs a collection of arcs in the dependency parses of each sentence of an utterance. The returned collection is a list where each element corresponds to a sentence in the utterance. Each sentence is represented in terms of its arcs, in a space-separated string. Each arc, in turn, can be read as follows: * `x_y` means that `x` is the parent and `y` is the child token (e.g., `agree_does` = `agree --> does`) * `x_*` means that `x` is a token with at least one descendant, which we do not resolve (this is analogous to bigrams backing off to unigrams) * `x>y` means that `x` and `y` are the first two tokens in the sentence * `x>*` means that `x` is the first token in the sentence. :param output_field: name of attribute to write arcs to. :param input_field: name of field to use as input. defaults to 'parsed', which stores dependency parses as returned by the TextParser transformer; otherwise expects similarly-formatted input. :param use_start: whether to also return the first and first two tokens of the sentence. defaults to `True`. :param root_only: whether to return only the arcs from the root of the dependency parse. defaults to `False`. :param follow_deps: if root_only is set to `True`, will nonetheless examine subtrees coming out of a dependency listed in follow_deps; by default will follow 'conj' dependencies (hence examining the parts of a sentence following conjunctions like "and"). :param filter_fn: a boolean function determining which tokens to use. arcs will only be included if filter_fn returns True for all tokens in the arc. the function is of signature filter_fn(token, sent) where tokens and sents are formatted according to the output of TextParser. by default, will use tokens which only contain alphabet letters, or only contain letters after the first character (allowing for contractions like you 're): i.e.: `tok['tok'].isalpha() or tok['tok'][1:].isalpha()`. :param input_filter: a boolean function of signature `input_filter(utterance, aux_input)`. parses will only be computed for utterances where `input_filter` returns `True`. By default, will always return `True`, meaning that arcs will be computed for all utterances. :param verbosity: frequency of status messages. """ def __init__(self, output_field, input_field='parsed', use_start=True, root_only=False, follow_deps=('conj',), filter_fn=_use_text, input_filter=lambda utt, aux: True, verbosity=0): aux_input = {'root_only': root_only, 'use_start': use_start, 'follow_deps': follow_deps, 'filter_fn': filter_fn} TextProcessor.__init__(self, proc_fn=self._get_arcs_per_message_wrapper, output_field=output_field, input_field=input_field, aux_input=aux_input, input_filter=input_filter, verbosity=verbosity) def _get_arcs_per_message_wrapper(self, text_entry, aux_input={}): return get_arcs_per_message(text_entry, aux_input['use_start'], aux_input['root_only'], aux_input['follow_deps'], aux_input['filter_fn']) def _get_arcs_at_root(root, sent, use_start=True, root_only=False, follow_deps=('conj',), filter_fn=_use_text): arcs = set() if not filter_fn(root, sent): return arcs arcs.add(root['tok'].lower() + '_*') next_elems = [] for kid_idx in root['dn']: kid = sent['toks'][kid_idx] if kid['dep'] in ['cc']: continue if filter_fn(kid, sent): if (kid['dep'] not in follow_deps) and (root['tok'].lower() != kid['tok'].lower()): arcs.add(root['tok'].lower() + '_' + kid['tok'].lower()) if (not root_only) or (kid['dep'] in follow_deps): next_elems.append(kid) if use_start: first_elem = sent['toks'][0] if filter_fn(first_elem, sent): arcs.add(first_elem['tok'].lower() + '>*') if (1 not in first_elem['dn']) and (len(sent['toks']) >= 2): second_elem = sent['toks'][1] if 0 not in second_elem['dn']: if filter_fn(second_elem, sent) and (first_elem['tok'].lower() != second_elem['tok'].lower()): arcs.add(first_elem['tok'].lower() + '>' + second_elem['tok'].lower()) for next_elem in next_elems: arcs.update(_get_arcs_at_root(next_elem, sent, use_start=False, root_only=root_only, follow_deps=follow_deps, filter_fn=filter_fn)) return arcs def get_arcs_per_message(message, use_start=True, root_only=False, follow_deps=('conj',), filter_fn=_use_text): """ Stand-alone function that returns the arcs of parsed text. :param message: parse to extract arcs from :param use_start: whether to also return the first and first two tokens of the sentence. defaults to `True`. :param root_only: whether to return only the arcs from the root of the dependency parse. defaults to `False`. :param follow_deps: if root_only is set to `True`, will nonetheless examine subtrees coming out of a dependency listed in follow_deps; by default will follow 'conj' dependencies (hence examining the parts of a sentence following conjunctions like "and"). :param filter_fn: a boolean function determining which tokens to use. arcs will only be included if filter_fn returns True for all tokens in the arc. the function is of signature filter_fn(token, sent) where tokens and sents are formatted according to the output of TextParser. by default, will use tokens which only contain alphabet letters, or only contain letters after the first character (allowing for contractions like you 're): i.e.: `tok['tok'].isalpha() or tok['tok'][1:].isalpha()`. :return: a list where each element corresponds to a sentence in the input message. Each sentence is represented in terms of its arcs, in a space-separated string. """ return [' '.join(sorted(_get_arcs_at_root(sent['toks'][sent['rt']], sent, use_start=use_start, root_only=root_only, follow_deps=follow_deps, filter_fn=filter_fn))) for sent in message]
tests/protocols/airplay/test_airplay_scan.py
Jacobs4/pyatv
532
12742833
"""Scanning tests with fake mDNS responder..""" from ipaddress import ip_address import pytest from pyatv.const import Protocol from tests import fake_udns from tests.conftest import Scanner from tests.utils import assert_device IP_1 = "10.0.0.1" AIRPLAY_NAME = "AirPlay ATV" AIRPLAY_ID = "AA:BB:CC:DD:EE:FF" pytestmark = pytest.mark.asyncio async def test_multicast_scan_airplay_device(udns_server, multicast_scan: Scanner): udns_server.add_service( fake_udns.airplay_service(AIRPLAY_NAME, AIRPLAY_ID, addresses=[IP_1]) ) atvs = await multicast_scan() assert len(atvs) == 1 assert atvs[0].name == AIRPLAY_NAME assert atvs[0].identifier == AIRPLAY_ID assert atvs[0].address == ip_address(IP_1) async def test_unicast_scan_airplay(udns_server, unicast_scan: Scanner): udns_server.add_service( fake_udns.airplay_service(AIRPLAY_NAME, AIRPLAY_ID, addresses=[IP_1], port=7000) ) atvs = await unicast_scan() assert len(atvs) == 1 assert_device( atvs[0], AIRPLAY_NAME, ip_address(IP_1), AIRPLAY_ID, Protocol.AirPlay, 7000, )
python/examples/tic-tac-toe/tictactoebot.py
Vindexus/boardgame.io
7,080
12742836
#!/usr/bin/python # # Copyright 2018 The boardgame.io Authors # # Use of this source code is governed by a MIT-style # license that can be found in the LICENSE file or at # https://opensource.org/licenses/MIT. # # pylint: disable=invalid-name,multiple-imports,global-statement # To play against this bot, start the tictactoe server from http://boardgame.io/#/multiplayer # and start the bot with: # $ python tictactoebot.py # (will play player '1' by default) """ Boardgame.io python client example: starts a bot with player id '0' that plays randomly against the other player '1'. """ import signal, random, logging from boardgameio import Bot class TicTacToeBot(Bot): """ Example of use of base class boardgameio.Bot: - the bot connects to the multiplayer server at construction - each time it is the bot's turn to play, method 'think' is called - when game is over, method 'gameover' is called. """ log = logging.getLogger('tictactoebot') def __init__(self): Bot.__init__(self, server='localhost', port=8000, options={'game_name': 'default', 'num_players': 2, 'player_id': '1'}) def think(self, G, _ctx): """ Called when it is this bot's turn to play. """ cells = G['cells'] # choose a random empty cell idx = -1 while True and None in cells: idx = random.randint(0, len(cells)-1) if not cells[idx]: break self.log.debug('cell chosen: %d', idx) return self.make_move('clickCell', idx) def gameover(self, _G, ctx): """ Called when game is over. """ self.log.info('winner is %s', ctx['gameover']) running = False log = logging.getLogger('main') logging.basicConfig(level=logging.INFO) def main(): """ Start bot and listen continuously for events. """ log.info('starting bot... (Ctrl-C to stop)') client = TicTacToeBot() global running running = True while running: client.listen() log.info('stopped.') def stop(_signum, _frame): """ Stop program. """ log.info('stopping...') global running running = False # start process if __name__ == '__main__': signal.signal(signal.SIGINT, stop) signal.signal(signal.SIGTERM, stop) main()
python/cuxfilter/charts/core/core_chart.py
Anhmike/cuxfilter
201
12742852
<gh_stars>100-1000 import functools import cudf import dask_cudf import logging import panel as pn from bokeh.models import ColumnDataSource from panel.config import panel_extension from panel.io import state from panel.util import edit_readonly from typing import Dict from ...assets import datetime as dt class BaseChart: chart_type: str = None x: str = None y: str = None aggregate_fn: str = "count" color: str = None _height: int = 0 _width: int = 0 add_interaction: bool = True chart = None source = None source_backup = None data_points: int = 0 filter_widget = None _library_specific_params: Dict[str, str] = {} stride = None stride_type = int min_value: float = 0.0 max_value: float = 0.0 x_label_map = {} y_label_map = {} _initialized = False # widget=False can only be rendered the main layout is_widget = False title = "" @property def name(self): chart_type = self.chart_type if self.chart_type else "chart" return f"{self.x}_{chart_type}_{self.title}" @property def width(self): return self._width @width.setter def width(self, value): self._width = value if self.chart is not None: self.update_dimensions(width=value) if self.filter_widget is not None: self.filter_widget.width = value @property def height(self): return self._height @height.setter def height(self, value): self._height = value if self.chart is not None: self.update_dimensions(height=value) @property def library_specific_params(self): return self._library_specific_params @property def x_dtype(self): if isinstance(self.source, ColumnDataSource): return self.source.data[self.data_x_axis].dtype elif isinstance(self.source, (cudf.DataFrame, dask_cudf.DataFrame)): return self.source[self.x].dtype return None @property def y_dtype(self): if isinstance(self.source, ColumnDataSource): return self.source.data[self.data_x_axis].dtype elif isinstance(self.source, (cudf.DataFrame, dask_cudf.DataFrame)): return self.source[self.y].dtype return None @library_specific_params.setter def library_specific_params(self, value): self._library_specific_params = value self.extract_mappers() self.set_color() def set_color(self): if "color" in self.library_specific_params: self.color = self.library_specific_params["color"] def extract_mappers(self): if "x_label_map" in self.library_specific_params: self.x_label_map = self.library_specific_params["x_label_map"] self.library_specific_params.pop("x_label_map") if "y_label_map" in self.library_specific_params: self.y_label_map = self.library_specific_params["y_label_map"] self.library_specific_params.pop("y_label_map") def _repr_mimebundle_(self, include=None, exclude=None): view = self.view() if self._initialized and panel_extension._loaded: return view._repr_mimebundle_(include, exclude) if self._initialized is False: logging.warning( "dashboard has not been initialized." "Please run cuxfilter.dashboard.Dashboard([...charts])" " to view this object in notebook" ) if panel_extension._loaded is False: logging.warning( "notebooks assets not loaded." "Please run cuxfilter.load_notebooks_assets()" " to view this object in notebook" ) if isinstance(view, pn.Column): return view.pprint() return None def _to_xaxis_type(self, dates): """ Description: convert to int64 if self.x_dtype is of type datetime ----------------------------------------------------------------- Input: dates: cudf.Series | list | tuple """ return dt.to_int64_if_datetime(dates, self.x_dtype) def _to_yaxis_type(self, dates): """ Description: convert to int64 if self.y_dtype is of type datetime ----------------------------------------------------------------- Input: dates: cudf.Series | list | tuple """ return dt.to_int64_if_datetime(dates, self.y_dtype) def _xaxis_dt_transform(self, dates): """ Description: convert to datetime64 if self.x_dtype is of type datetime ----------------------------------------------------------------- Input: dates: list | tuple of integer timestamps objects """ return dt.to_dt_if_datetime(dates, self.x_dtype) def _yaxis_dt_transform(self, dates): """ Description: convert to datetime64 if self.y_dtype is of type datetime ----------------------------------------------------------------- Input: dates: list | tuple of integer timestamps objects """ return dt.to_dt_if_datetime(dates, self.y_dtype) def _xaxis_np_dt64_transform(self, dates): """ Description: convert to datetime64 if self.x_dtype is of type datetime ----------------------------------------------------------------- Input: dates: list | tuple of datetime.datetime objects """ return dt.to_np_dt64_if_datetime(dates, self.x_dtype) def _yaxis_np_dt64_transform(self, dates): """ Description: convert to datetime64 if self.y_dtype is of type datetime ----------------------------------------------------------------- Input: dates: list | tuple of datetime.datetime objects """ return dt.to_np_dt64_if_datetime(dates, self.y_dtype) def _xaxis_stride_type_transform(self, stride_type): """ Description: return stride_type=CUDF_TIMEDELTA_TYPE if self.x_dtype is of type datetime, else return stride_type """ return dt.transform_stride_type(stride_type, self.x_dtype) def _yaxis_stride_type_transform(self, stride_type): """ Description: return stride_type=CUDF_TIMEDELTA_TYPE if self.y_dtype is of type datetime else return stride_type """ return dt.transform_stride_type(stride_type, self.y_dtype) def view(self): return self.chart def add_event(self, event, callback): def release_state(): with edit_readonly(state): state.busy = False def callback_busy_state(event): with edit_readonly(state): state.busy = True cb = functools.partial(callback, event) self.chart.document.add_next_tick_callback(cb) self.chart.document.add_next_tick_callback(release_state) self.chart.on_event(event, callback_busy_state) def update_dimensions(self, width=None, height=None): print("base calc source function, to over-ridden by delegated classes") return -1 def calculate_source(self, data): print("base calc source function, to over-ridden by delegated classes") return -1 def generate_chart(self): print("base calc source function, to over-ridden by delegated classes") return -1 def add_reset_event(self, callback=None): print("base calc source function, to over-ridden by delegated classes") return -1 def compute_query_dict(self, query_dict): print("base calc source function, to over-ridden by delegated classes") return -1 def reset_chart(self, data: list = []): print("base calc source function, to over-ridden by delegated classes") return -1 def reload_chart(self, data, patch_update: bool): print("base calc source function, to over-ridden by delegated classes") return -1 def format_source_data(self, source_dict, patch_update=False): """""" # print('function to be overridden by library specific extensions') return -1 def get_source_y_axis(self): # print('function to be overridden by library specific extensions') return [] def apply_mappers(self): """""" # print('function to be overridden by library specific extensions') return -1
falsy/utils/meta.py
marco-souza/falsy
127
12742872
<reponame>marco-souza/falsy<filename>falsy/utils/meta.py<gh_stars>100-1000 class Meta(dict): def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError(name) def __setattr__(self, name, value): self[name] = value def bind(self, name, func): setattr(self.__class__, name, func)
python/tvm/relay/testing/nat.py
XiaoSong9905/tvm
4,640
12742881
<gh_stars>1000+ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Defines a unary natural number (Peano natural number) abstract data type for Relay and provides some utility functions for it. Nats are useful for testing purposes, as they make it easy to write test cases for recursion and pattern matching.""" from tvm.relay.backend.interpreter import ConstructorValue def get_type(prelude, name): ty_var = prelude.mod.get_global_type_var(name) ty_data = prelude.mod.type_definitions[ty_var] return tuple([ty_var] + list(ty_data.constructors)) def count(prelude, n): """Takes a ConstructorValue corresponding to a nat ADT and converts it into a Python integer. This is an example of using an ADT value in Python. """ assert isinstance(n, ConstructorValue) _, z, s = prelude.mod.get_type("nat") if n.tag == z.tag: return 0 assert n.tag == s.tag return 1 + count(prelude, n.fields[0]) def make_nat_value(prelude, n): """The inverse of count(): Given a non-negative Python integer, constructs a ConstructorValue representing that value as a nat. """ _, z, s = prelude.mod.get_type("nat") if n == 0: return ConstructorValue(z.tag, [], z) return ConstructorValue(s.tag, [make_nat_value(prelude, n - 1)], s) def make_nat_expr(prelude, n): """Given a non-negative Python integer, constructs a Python expression representing that integer's value as a nat. """ assert n >= 0 _, z, s = prelude.mod.get_type("nat") ret = z() while n > 0: ret = s(ret) n = n - 1 return ret
pxr/base/tf/testenv/testTfPyStaticTokens.py
DougRogers-DigitalFish/USD
3,680
12742887
#!/pxrpythonsubst # # Copyright 2016 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # from pxr import Tf import unittest class TestTfPyStaticTokens(unittest.TestCase): def test_PyStaticTokens(self): testTokens = ( ('orange', 'orange'), ('pear', "d'Anjou"), ('Fuji', 'Fuji'), ('Pippin', 'Pippin'), ('McIntosh', 'McIntosh'), ) for scope in (Tf._testStaticTokens, Tf._TestStaticTokens): for attrName,expectedValue in testTokens: self.assertTrue(hasattr(scope, attrName)) value = getattr(scope, attrName) self.assertEqual(value, expectedValue, "Unexpected value for {0}: got '{1}', expected '{2}'".format( attrName, value, expectedValue)) # Not wrapping arrays yet, just the array elements. self.assertFalse(hasattr(scope, 'apple')) if __name__ == '__main__': unittest.main()
safedelete/tests/test_invisible.py
davidastephens/django-safedelete
505
12742894
from django.db import models from ..models import SafeDeleteModel from .testcase import SafeDeleteTestCase class InvisibleModel(SafeDeleteModel): # SafeDeleteModel subclasses automatically have their visibility set to invisible. name = models.CharField( max_length=100 ) class VisibilityTestCase(SafeDeleteTestCase): def setUp(self): self.instance = InvisibleModel.objects.create( name='instance' ) def test_visible_by_pk(self): """Test whether the soft deleted model cannot be found by filtering on pk.""" self.assertSoftDelete(self.instance, save=False) self.assertEqual( InvisibleModel.objects.filter( pk=self.instance.pk ).count(), 0 ) self.assertRaises( InvisibleModel.DoesNotExist, InvisibleModel.objects.get, pk=self.instance.pk ) def test_invisible_by_name(self): """Test whether the soft deleted model cannot be found by filtering on name.""" self.assertSoftDelete(self.instance, save=False) self.assertEqual( InvisibleModel.objects.filter( name=self.instance.name ).count(), 0 ) self.assertRaises( InvisibleModel.DoesNotExist, InvisibleModel.objects.get, name=self.instance.name )
clang/test/AST/gen_ast_dump_json_test.py
mkinsner/llvm
653
12742905
<reponame>mkinsner/llvm #!/usr/bin/env python3 from __future__ import print_function from collections import OrderedDict from shutil import copyfile import argparse import json import os import re import subprocess import sys import tempfile def normalize(dict_var): for k, v in dict_var.items(): if isinstance(v, OrderedDict): normalize(v) elif isinstance(v, list): for e in v: if isinstance(e, OrderedDict): normalize(e) elif type(v) is str: if v != "0x0" and re.match(r"0x[0-9A-Fa-f]+", v): dict_var[k] = '0x{{.*}}' elif os.path.isfile(v): dict_var[k] = '{{.*}}' else: splits = (v.split(' ')) out_splits = [] for split in splits: inner_splits = split.rsplit(':',2) if os.path.isfile(inner_splits[0]): out_splits.append( '{{.*}}:%s:%s' %(inner_splits[1], inner_splits[2])) continue out_splits.append(split) dict_var[k] = ' '.join(out_splits) def filter_json(dict_var, filters, out): for k, v in dict_var.items(): if type(v) is str: if v in filters: out.append(dict_var) break elif isinstance(v, OrderedDict): filter_json(v, filters, out) elif isinstance(v, list): for e in v: if isinstance(e, OrderedDict): filter_json(e, filters, out) def default_clang_path(): guessed_clang = os.path.join(os.path.dirname(__file__), "clang") if os.path.isfile(guessed_clang): return guessed_clang return None def main(): parser = argparse.ArgumentParser() parser.add_argument("--clang", help="The clang binary (could be a relative or absolute path)", action="store", default=default_clang_path()) parser.add_argument("--source", help="the source file(s). Without --update, the command used to generate the JSON " "will be of the format <clang> -cc1 -ast-dump=json <opts> <source>", action="store", nargs=argparse.ONE_OR_MORE, required=True) parser.add_argument("--filters", help="comma separated list of AST filters. Ex: --filters=TypedefDecl,BuiltinType", action="store", default='') update_or_generate_group = parser.add_mutually_exclusive_group() update_or_generate_group.add_argument("--update", help="Update the file in-place", action="store_true") update_or_generate_group.add_argument("--opts", help="other options", action="store", default='', type=str) parser.add_argument("--update-manual", help="When using --update, also update files that do not have the " "autogenerated disclaimer", action="store_true") args = parser.parse_args() if not args.source: sys.exit("Specify the source file to give to clang.") clang_binary = os.path.abspath(args.clang) if not os.path.isfile(clang_binary): sys.exit("clang binary specified not present.") for src in args.source: process_file(src, clang_binary, cmdline_filters=args.filters, cmdline_opts=args.opts, do_update=args.update, force_update=args.update_manual) def process_file(source_file, clang_binary, cmdline_filters, cmdline_opts, do_update, force_update): note_firstline = "// NOTE: CHECK lines have been autogenerated by " \ "gen_ast_dump_json_test.py" filters_line_prefix = "// using --filters=" note = note_firstline cmd = [clang_binary, "-cc1"] if do_update: # When updating the first line of the test must be a RUN: line with open(source_file, "r") as srcf: first_line = srcf.readline() found_autogenerated_line = False filters_line = None for i, line in enumerate(srcf.readlines()): if found_autogenerated_line: # print("Filters line: '", line.rstrip(), "'", sep="") if line.startswith(filters_line_prefix): filters_line = line[len(filters_line_prefix):].rstrip() break if line.startswith(note_firstline): found_autogenerated_line = True # print("Found autogenerated disclaimer at line", i + 1) if not found_autogenerated_line and not force_update: print("Not updating", source_file, "since it is not autogenerated.", file=sys.stderr) return if not cmdline_filters and filters_line: cmdline_filters = filters_line print("Inferred filters as '" + cmdline_filters + "'") if "RUN: %clang_cc1 " not in first_line: sys.exit("When using --update the first line of the input file must contain RUN: %clang_cc1") clang_start = first_line.find("%clang_cc1") + len("%clang_cc1") file_check_idx = first_line.rfind("| FileCheck") if file_check_idx: dump_cmd = first_line[clang_start:file_check_idx] else: dump_cmd = first_line[clang_start:] print("Inferred run arguments as '", dump_cmd, "'", sep="") options = dump_cmd.split() if "-ast-dump=json" not in options: sys.exit("ERROR: RUN: line does not contain -ast-dump=json") if "%s" not in options: sys.exit("ERROR: RUN: line does not contain %s") options.remove("%s") else: options = cmdline_opts.split() options.append("-ast-dump=json") cmd.extend(options) using_ast_dump_filter = any('ast-dump-filter' in arg for arg in cmd) cmd.append(source_file) print("Will run", cmd) filters = set() if cmdline_filters: note += "\n" + filters_line_prefix + cmdline_filters filters = set(cmdline_filters.split(',')) print("Will use the following filters:", filters) try: json_str = subprocess.check_output(cmd).decode() except Exception as ex: print("The clang command failed with %s" % ex) return -1 out_asts = [] if using_ast_dump_filter: # If we're using a filter, then we might have multiple JSON objects # in the output. To parse each out, we use a manual JSONDecoder in # "raw" mode and update our location in the string based on where the # last document ended. decoder = json.JSONDecoder(object_hook=OrderedDict) doc_start = 0 prev_end = 0 while True: try: prev_end = doc_start (j, doc_start) = decoder.raw_decode(json_str[doc_start:]) doc_start += prev_end + 1 normalize(j) out_asts.append(j) except: break else: j = json.loads(json_str, object_pairs_hook=OrderedDict) normalize(j) if len(filters) == 0: out_asts.append(j) else: filter_json(j, filters, out_asts) with tempfile.NamedTemporaryFile("w", delete=False) as f: with open(source_file, "r") as srcf: for line in srcf.readlines(): # copy up to the note: if line.rstrip() == note_firstline: break f.write(line) f.write(note + "\n") for out_ast in out_asts: append_str = json.dumps(out_ast, indent=1, ensure_ascii=False) out_str = '\n\n' out_str += "// CHECK-NOT: {{^}}Dumping\n" index = 0 for append_line in append_str.splitlines()[2:]: if index == 0: out_str += '// CHECK: %s\n' %(append_line.rstrip()) index += 1 else: out_str += '// CHECK-NEXT: %s\n' %(append_line.rstrip()) f.write(out_str) f.flush() f.close() if do_update: print("Updating json appended source file to %s." % source_file) copyfile(f.name, source_file) else: partition = source_file.rpartition('.') dest_path = '%s-json%s%s' % (partition[0], partition[1], partition[2]) print("Writing json appended source file to %s." % dest_path) copyfile(f.name, dest_path) os.remove(f.name) return 0 if __name__ == '__main__': main()
PaddleCV/adversarial/advbox/__init__.py
suytingwan/models
819
12742940
<gh_stars>100-1000 """ A set of tools for generating adversarial example on paddle platform """
examples/python/templates/multi-page-apps/responsive-collapsible-sidebar/sidebar.py
glsdown/dash-bootstrap-components
776
12742951
<reponame>glsdown/dash-bootstrap-components """ This app creates a collapsible, responsive sidebar layout with dash-bootstrap-components and some custom css with media queries. When the screen is small, the sidebar moved to the top of the page, and the links get hidden in a collapse element. We use a callback to toggle the collapse when on a small screen, and the custom CSS to hide the toggle, and force the collapse to stay open when the screen is large. dcc.Location is used to track the current location, a callback uses the current location to render the appropriate page content. The active prop of each NavLink is set automatically according to the current pathname. To use this feature you must install dash-bootstrap-components >= 0.11.0. For more details on building multi-page Dash applications, check out the Dash documentation: https://dash.plot.ly/urls """ import dash import dash_bootstrap_components as dbc from dash import Input, Output, State, dcc, html app = dash.Dash( external_stylesheets=[dbc.themes.BOOTSTRAP], # these meta_tags ensure content is scaled correctly on different devices # see: https://www.w3schools.com/css/css_rwd_viewport.asp for more meta_tags=[ {"name": "viewport", "content": "width=device-width, initial-scale=1"} ], ) # we use the Row and Col components to construct the sidebar header # it consists of a title, and a toggle, the latter is hidden on large screens sidebar_header = dbc.Row( [ dbc.Col(html.H2("Sidebar", className="display-4")), dbc.Col( [ html.Button( # use the Bootstrap navbar-toggler classes to style html.Span(className="navbar-toggler-icon"), className="navbar-toggler", # the navbar-toggler classes don't set color style={ "color": "rgba(0,0,0,.5)", "border-color": "rgba(0,0,0,.1)", }, id="navbar-toggle", ), html.Button( # use the Bootstrap navbar-toggler classes to style html.Span(className="navbar-toggler-icon"), className="navbar-toggler", # the navbar-toggler classes don't set color style={ "color": "rgba(0,0,0,.5)", "border-color": "rgba(0,0,0,.1)", }, id="sidebar-toggle", ), ], # the column containing the toggle will be only as wide as the # toggle, resulting in the toggle being right aligned width="auto", # vertically align the toggle in the center align="center", ), ] ) sidebar = html.Div( [ sidebar_header, # we wrap the horizontal rule and short blurb in a div that can be # hidden on a small screen html.Div( [ html.Hr(), html.P( "A responsive sidebar layout with collapsible navigation " "links.", className="lead", ), ], id="blurb", ), # use the Collapse component to animate hiding / revealing links dbc.Collapse( dbc.Nav( [ dbc.NavLink("Home", href="/", active="exact"), dbc.NavLink("Page 1", href="/page-1", active="exact"), dbc.NavLink("Page 2", href="/page-2", active="exact"), ], vertical=True, pills=True, ), id="collapse", ), ], id="sidebar", ) content = html.Div(id="page-content") app.layout = html.Div([dcc.Location(id="url"), sidebar, content]) @app.callback(Output("page-content", "children"), [Input("url", "pathname")]) def render_page_content(pathname): if pathname == "/": return html.P("This is the content of the home page!") elif pathname == "/page-1": return html.P("This is the content of page 1. Yay!") elif pathname == "/page-2": return html.P("Oh cool, this is page 2!") # If the user tries to reach a different page, return a 404 message return dbc.Jumbotron( [ html.H1("404: Not found", className="text-danger"), html.Hr(), html.P(f"The pathname {pathname} was not recognised..."), ] ) @app.callback( Output("sidebar", "className"), [Input("sidebar-toggle", "n_clicks")], [State("sidebar", "className")], ) def toggle_classname(n, classname): if n and classname == "": return "collapsed" return "" @app.callback( Output("collapse", "is_open"), [Input("navbar-toggle", "n_clicks")], [State("collapse", "is_open")], ) def toggle_collapse(n, is_open): if n: return not is_open return is_open if __name__ == "__main__": app.run_server(port=8888, debug=True)
pypy2.7/module/_multiprocess/interp_win32.py
UniverseFly/multiprocess
356
12742993
from rpython.rlib import rwin32 from rpython.rlib.rarithmetic import r_uint from rpython.rtyper.lltypesystem import lltype, rffi from rpython.rtyper.tool import rffi_platform from rpython.translator.tool.cbuild import ExternalCompilationInfo from pypy.interpreter.error import oefmt, wrap_windowserror from pypy.interpreter.function import StaticMethod from pypy.interpreter.gateway import interp2app, unwrap_spec from _multiprocess.interp_connection import w_handle CONSTANTS = """ PIPE_ACCESS_INBOUND PIPE_ACCESS_DUPLEX GENERIC_READ GENERIC_WRITE OPEN_EXISTING PIPE_TYPE_MESSAGE PIPE_READMODE_MESSAGE PIPE_WAIT PIPE_UNLIMITED_INSTANCES NMPWAIT_WAIT_FOREVER ERROR_PIPE_CONNECTED ERROR_SEM_TIMEOUT ERROR_PIPE_BUSY ERROR_NO_SYSTEM_RESOURCES ERROR_BROKEN_PIPE ERROR_MORE_DATA ERROR_ALREADY_EXISTS ERROR_NO_DATA """.split() class CConfig: _compilation_info_ = ExternalCompilationInfo( includes = ['windows.h'], libraries = ['kernel32'], ) for name in CONSTANTS: locals()[name] = rffi_platform.ConstantInteger(name) config = rffi_platform.configure(CConfig) globals().update(config) def handle_w(space, w_handle): return rffi.cast(rwin32.HANDLE, space.int_w(w_handle)) _CreateNamedPipe = rwin32.winexternal( 'CreateNamedPipeA', [ rwin32.LPCSTR, rwin32.DWORD, rwin32.DWORD, rwin32.DWORD, rwin32.DWORD, rwin32.DWORD, rwin32.DWORD, rffi.VOIDP], rwin32.HANDLE, save_err=rffi.RFFI_SAVE_LASTERROR) _ConnectNamedPipe = rwin32.winexternal( 'ConnectNamedPipe', [rwin32.HANDLE, rffi.VOIDP], rwin32.BOOL, save_err=rffi.RFFI_SAVE_LASTERROR) _SetNamedPipeHandleState = rwin32.winexternal( 'SetNamedPipeHandleState', [ rwin32.HANDLE, rwin32.LPDWORD, rwin32.LPDWORD, rwin32.LPDWORD], rwin32.BOOL, save_err=rffi.RFFI_SAVE_LASTERROR) _WaitNamedPipe = rwin32.winexternal( 'WaitNamedPipeA', [rwin32.LPCSTR, rwin32.DWORD], rwin32.BOOL, save_err=rffi.RFFI_SAVE_LASTERROR) _PeekNamedPipe = rwin32.winexternal( 'PeekNamedPipe', [ rwin32.HANDLE, rffi.VOIDP, rwin32.DWORD, rwin32.LPDWORD, rwin32.LPDWORD, rwin32.LPDWORD], rwin32.BOOL, save_err=rffi.RFFI_SAVE_LASTERROR) _CreateFile = rwin32.winexternal( 'CreateFileA', [ rwin32.LPCSTR, rwin32.DWORD, rwin32.DWORD, rffi.VOIDP, rwin32.DWORD, rwin32.DWORD, rwin32.HANDLE], rwin32.HANDLE, save_err=rffi.RFFI_SAVE_LASTERROR) _WriteFile = rwin32.winexternal( 'WriteFile', [ rwin32.HANDLE, rffi.VOIDP, rwin32.DWORD, rwin32.LPDWORD, rffi.VOIDP], rwin32.BOOL, save_err=rffi.RFFI_SAVE_LASTERROR) _ReadFile = rwin32.winexternal( 'ReadFile', [ rwin32.HANDLE, rffi.VOIDP, rwin32.DWORD, rwin32.LPDWORD, rffi.VOIDP], rwin32.BOOL, save_err=rffi.RFFI_SAVE_LASTERROR) _ExitProcess = rwin32.winexternal( 'ExitProcess', [rffi.UINT], lltype.Void, save_err=rffi.RFFI_SAVE_LASTERROR) _GetTickCount = rwin32.winexternal( 'GetTickCount', [], rwin32.DWORD) _Sleep = rwin32.winexternal( 'Sleep', [rwin32.DWORD], lltype.Void) def CloseHandle(space, w_handle): handle = handle_w(space, w_handle) if not rwin32.CloseHandle(handle): raise wrap_windowserror(space, rwin32.lastSavedWindowsError()) def GetLastError(space): """NOTE: don't use this. See issue #2658""" return space.newint(rwin32.GetLastError_saved()) # __________________________________________________________ # functions for the "win32" namespace @unwrap_spec(name='text', openmode=r_uint, pipemode=r_uint, maxinstances=r_uint, outputsize=r_uint, inputsize=r_uint, timeout=r_uint) def CreateNamedPipe(space, name, openmode, pipemode, maxinstances, outputsize, inputsize, timeout, w_security): security = space.int_w(w_security) if security: raise oefmt(space.w_NotImplementedError, "expected a NULL pointer") handle = _CreateNamedPipe( name, openmode, pipemode, maxinstances, outputsize, inputsize, timeout, rffi.NULL) if handle == rwin32.INVALID_HANDLE_VALUE: raise wrap_windowserror(space, rwin32.lastSavedWindowsError()) return w_handle(space, handle) def ConnectNamedPipe(space, w_handle, w_overlapped): handle = handle_w(space, w_handle) overlapped = space.int_w(w_overlapped) if overlapped: raise oefmt(space.w_NotImplementedError, "expected a NULL pointer") if not _ConnectNamedPipe(handle, rffi.NULL): raise wrap_windowserror(space, rwin32.lastSavedWindowsError()) def SetNamedPipeHandleState(space, w_handle, w_pipemode, w_maxinstances, w_timeout): handle = handle_w(space, w_handle) state = lltype.malloc(rffi.CArrayPtr(rffi.UINT).TO, 3, flavor='raw') statep = lltype.malloc(rffi.CArrayPtr(rffi.UINTP).TO, 3, flavor='raw', zero=True) try: if not space.is_w(w_pipemode, space.w_None): state[0] = rffi.cast(rffi.UINT, space.uint_w(w_pipemode)) statep[0] = rffi.ptradd(state, 0) if not space.is_w(w_maxinstances, space.w_None): state[1] = rffi.cast(rffi.UINT, space.uint_w(w_maxinstances)) statep[1] = rffi.ptradd(state, 1) if not space.is_w(w_timeout, space.w_None): state[2] = rffi.cast(rffi.UINT, space.uint_w(w_timeout)) statep[2] = rffi.ptradd(state, 2) if not _SetNamedPipeHandleState(handle, statep[0], statep[1], statep[2]): raise wrap_windowserror(space, rwin32.lastSavedWindowsError()) finally: lltype.free(state, flavor='raw') lltype.free(statep, flavor='raw') @unwrap_spec(name='text', timeout=r_uint) def WaitNamedPipe(space, name, timeout): # Careful: zero means "default value specified by CreateNamedPipe()" if not _WaitNamedPipe(name, timeout): raise wrap_windowserror(space, rwin32.lastSavedWindowsError()) @unwrap_spec(filename='fsencode', access=r_uint, share=r_uint, disposition=r_uint, flags=r_uint) def CreateFile(space, filename, access, share, w_security, disposition, flags, w_templatefile): security = space.int_w(w_security) templatefile = space.int_w(w_templatefile) if security or templatefile: raise oefmt(space.w_NotImplementedError, "expected a NULL pointer") handle = _CreateFile(filename, access, share, rffi.NULL, disposition, flags, rwin32.NULL_HANDLE) if handle == rwin32.INVALID_HANDLE_VALUE: raise wrap_windowserror(space, rwin32.lastSavedWindowsError()) return w_handle(space, handle) @unwrap_spec(code=r_uint) def ExitProcess(space, code): _ExitProcess(code) def win32_namespace(space): "NOT_RPYTHON" w_win32 = space.call_function(space.w_type, space.wrap("win32"), space.newtuple([]), space.newdict()) # constants for name in CONSTANTS: space.setattr(w_win32, space.wrap(name), space.wrap(config[name])) space.setattr(w_win32, space.wrap('NULL'), space.newint(0)) # functions for name in ['CloseHandle', 'GetLastError', 'CreateFile', 'CreateNamedPipe', 'ConnectNamedPipe', 'SetNamedPipeHandleState', 'WaitNamedPipe', 'ExitProcess', ]: function = globals()[name] w_function = space.wrap(interp2app(function)) w_method = space.wrap(StaticMethod(w_function)) space.setattr(w_win32, space.wrap(name), w_method) return w_win32
calvin/actorstore/systemactors/media/ImageSource.py
gabrielcercel/calvin-base
334
12743011
# -*- coding: utf-8 -*- # Copyright (c) 2016-17 Ericsson AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from calvin.actor.actor import Actor, manage, condition, stateguard, calvinsys from calvin.utilities.calvinlogger import get_actor_logger _log = get_actor_logger(__name__) class ImageSource(Actor): """ When token on input, get an image. Inputs: trigger: anything Outputs: b64image: generated image """ @manage(exclude=["_cam"]) def init(self): self.setup() def setup(self): self._cam = calvinsys.open(self, "image.source") def did_migrate(self): self.setup() def will_end(self): calvinsys.close(self._cam) @stateguard(lambda self: calvinsys.can_read(self._cam)) @condition(action_output=['b64image']) def send_image(self): image = calvinsys.read(self._cam) return (image, ) @stateguard(lambda self: calvinsys.can_write(self._cam)) @condition(action_input=['trigger']) def fetch_image(self, trigger): calvinsys.write(self._cam, None) action_priority = (fetch_image, send_image) requires = ['image.source'] test_calvinsys = {'image.source': {'read': [1,0,1,0,0,1,0,1], 'write': [None, None, None, None]}} test_set = [ { 'inports': {'trigger': [True, 1, "a", 0]}, 'outports': {'b64image': [1,0,1,0,0,1,0,1]} } ]
python/render_vision_dataset/render_verify_pixel2block.py
boldsort/craftassist
626
12743046
""" Copyright (c) Facebook, Inc. and its affiliates. """ import argparse import logging import os import subprocess import random import cv2 import numpy as np import sys python_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0, python_dir) from cuberite_process import CuberiteProcess from repo import repo_home logging.basicConfig(format="%(asctime)s [%(levelname)s]: %(message)s") logging.getLogger().setLevel(logging.DEBUG) def to_unit_vec(yaw, pitch): pitch *= 3.14159 / 180 yaw *= 3.14159 / 180 return np.array( [-1 * np.cos(pitch) * np.sin(yaw), -1 * np.sin(pitch), np.cos(pitch) * np.cos(yaw)] ) def ground_height(blocks): dirt_pct = np.mean(np.mean(blocks[:, :, :, 0] == 2, axis=1), axis=1) if (dirt_pct > 0.25).any(): return np.argmax(dirt_pct) return None def change_block(schematic, b): x, y, z = b ## change to red wool schematic[y][z][x][0] = 35 schematic[y][z][x][1] = 14 def render(npy_p2b, out_dir, port, spp, img_size, mn=None): npy_file = ( os.path.expanduser("~") + "/minecraft_houses/" + ".".join(npy_p2b.split(".")[1:-2]) + "/schematic.npy" ) schematic = np.load(npy_file) print(schematic.shape) house_name = os.path.basename(os.path.dirname(npy_file)) p2b = np.load(npy_p2b) # remove blocks below ground-level g = ground_height(schematic) schematic = schematic[(g or 0) :, :, :, :] ys, zs, xs = np.nonzero(schematic[:, :, :, 0] > 0) xmid, ymid, zmid = np.mean(xs), np.mean(ys), np.mean(zs) focus = np.array([xmid, ymid + 63, zmid]) # TODO: +63 only works for flat_world seed=0w yaw, distance = list(map(int, npy_p2b.split(".")[-2].split("_"))) look = [yaw, 0] look_xyz = to_unit_vec(*look) camera = focus - (look_xyz * distance) if mn == [0, 0]: M, N = p2b.shape[:2] while True: m = random.randint(0, M - 1) n = random.randint(0, N - 1) if p2b[m][n][0] != -1: break else: m, n = mn print("Select pixel at {}".format((m, n))) print("Mapped block {}".format(p2b[m][n])) change_block(schematic, p2b[m][n]) logging.info("Launching cuberite at port {}".format(port)) p = CuberiteProcess( "flat_world", seed=0, game_mode="creative", place_blocks_yzx=schematic, port=port ) logging.info("Destroying cuberite at port {}".format(port)) p.destroy() world_dir = os.path.join(p.workdir, "world") render_view_bin = os.path.join(repo_home, "bin/render_view") assert os.path.isfile( render_view_bin ), "{} not found.\n\nTry running: make render_view".format(render_view_bin) procs = [] chunky_id = "{}_{}".format(yaw, distance) out_file = "{}/chunky_verify.{}.{}.png".format(out_dir, house_name, chunky_id) call = [ str(a) for a in [ "python3", "{}/python/minecraft_render/render.py".format(repo_home), "--world", world_dir, "--out", out_file, "--camera", *camera, "--look", yaw, 0, "--size", *img_size, "--spp", spp, ] ] logging.info("CALL: " + " ".join(call)) procs.append(subprocess.Popen(call)) for p in procs: p.wait() ## draw the sampled pixel for a better view img = cv2.imread(out_file) cv2.circle(img, (n, m), 2, (255, 0, 0)) cv2.imwrite(out_file, img) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("npy_p2b") parser.add_argument( "--out-dir", "-o", required=True, help="Directory in which to write vision files" ) parser.add_argument("--spp", type=int, default=25, help="samples per pixel") parser.add_argument("--port", type=int, default=25565) parser.add_argument("--size", type=int, nargs=2, default=[300, 225]) parser.add_argument("--mn", type=int, nargs=2, default=[0, 0]) args = parser.parse_args() render(args.npy_p2b, args.out_dir, args.port, args.spp, args.size, args.mn)
tests/test_e01_link_options.py
simonvh/genomepy
112
12743061
import pytest skip = False if not skip: @pytest.fixture(scope="module", params=["primary_assembly", "toplevel"]) def assembly(request): return request.param @pytest.fixture(scope="module", params=["98", None]) def release_version(request): return request.param @pytest.fixture(scope="module", params=["hard", "soft", "unmasked"]) def masking(request): return request.param def test_ensembl_genome_download_links(assembly, masking, release_version, ensembl): """Test Ensembl links with various options These genomes are hosted on ftp.ensembl.org Vertebrates are downloaded from HTTP. """ mask = masking if masking != "unmasked" else "none" toplevel = False if assembly == "primary_assembly" else True version = release_version assert ensembl.get_genome_download_link( "GRCh38.p13", mask=mask, toplevel=toplevel, version=version ) def test_ensemblgenomes_genome_download_links(masking, ensembl): """Test Ensembl FTP links for various genomes These genomes are hosted on ftp.ensemblgenomes.org. """ mask = masking if masking != "unmasked" else "none" for genome in ["Amel_HAv3.1", "ASM23943v1"]: assert ensembl.get_genome_download_link(genome, mask=mask) def test_ucsc_genome_download_links(masking, ucsc): """Test UCSC HTTP links for various genomes Also test masking (unmasked should be ignored).""" for genome in ["sacCer3", "hg38"]: assert ucsc.get_genome_download_link(genome, mask=masking) def test_ncbi_genome_download_links(masking, ncbi): """Test NCBI HTTPS links for various genomes Also test masking (should be ignored). These genomes are hosted on ftp://ftp.ncbi.nlm.nih.gov.""" for genome in ["Charlie1.0", "GRCh38.p13"]: assert ncbi.get_genome_download_link(genome, mask=masking)
anchore_engine/services/apiext/api/controllers/image_imports.py
rbrady/anchore-engine
1,484
12743073
<gh_stars>1000+ import datetime from connexion import request from anchore_engine.apis import exceptions as api_exceptions from anchore_engine.apis.authorization import ( ActionBoundPermission, RequestingAccountValue, get_authorizer, ) from anchore_engine.apis.context import ApiRequestContextProxy from anchore_engine.clients.services import internal_client_for from anchore_engine.clients.services.catalog import CatalogClient from anchore_engine.common.helpers import make_response_error from anchore_engine.subsys import logger authorizer = get_authorizer() IMPORT_BUCKET = "image_content_imports" MAX_UPLOAD_SIZE = 100 * 1024 * 1024 # 100 MB OPERATION_EXPIRATION_DELTA = datetime.timedelta(hours=24) @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def create_operation(): """ POST /imports/images :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) resp = client.create_image_import() return resp, 200 except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500 @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def list_operations(): """ GET /imports/images :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) resp = client.list_image_import_operations() return resp, 200 except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500 @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def get_operation(operation_id): """ GET /imports/images/{operation_id} :param operation_id: :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) resp = client.get_image_import_operation(operation_id) return resp, 200 except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500 @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def invalidate_operation(operation_id): """ DELETE /imports/images/{operation_id} :param operation_id: :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) resp = client.cancel_image_import(operation_id) return resp, 200 except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500 @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def list_import_packages(operation_id): """ GET /imports/images/{operation_id}/packages :param operation_id: :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) resp = client.list_import_content(operation_id, "packages") return resp, 200 except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500 @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def list_import_dockerfiles(operation_id): """ GET /imports/images/{operation_id}/dockerfile :param operation_id: :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) resp = client.list_import_content(operation_id, "dockerfile") return resp, 200 except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500 @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def list_import_image_manifests(operation_id): """ GET /imports/images/{operation_id}/manifest :param operation_id: :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) resp = client.list_import_content(operation_id, "manifest") return resp, 200 except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500 @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def list_import_parent_manifests(operation_id): """ GET /imports/images/{operation_id}/manifest :param operation_id: :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) resp = client.list_import_content(operation_id, "parent_manifest") return resp, 200 except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500 @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def list_import_image_configs(operation_id): """ GET /imports/images/{operation_id}/image_config :param operation_id: :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) resp = client.list_import_content(operation_id, "image_config") return resp, 200 except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500 @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def import_image_packages(operation_id): """ POST /imports/images/{operation_id}/packages :param operation_id: :param sbom: :return: """ return content_upload(operation_id, "packages", request) @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def import_image_dockerfile(operation_id): """ POST /imports/images/{operation_id}/dockerfile :param operation_id: :param sbom: :return: """ return content_upload(operation_id, "dockerfile", request) @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def import_image_manifest(operation_id): """ POST /imports/images/{operation_id}/manifest :param operation_id: :return: """ return content_upload(operation_id, "manifest", request) @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def import_image_parent_manifest(operation_id): """ POST /imports/images/{operation_id}/parent_manifest :param operation_id: :return: """ return content_upload(operation_id, "parent_manifest", request) @authorizer.requires([ActionBoundPermission(domain=RequestingAccountValue())]) def import_image_config(operation_id): """ POST /imports/images/{operation_id}/image_config :param operation_id: :return: """ return content_upload(operation_id, "image_config", request) def content_upload(operation_id, content_type, request): """ Generic handler for multiple types of content uploads. Still operates at the API layer :param operation_id: :param content_type: :param request: :return: """ try: client = internal_client_for( CatalogClient, userId=ApiRequestContextProxy.namespace() ) return ( client.upload_image_import_content( operation_id, content_type, request.data ), 200, ) except api_exceptions.AnchoreApiError as ex: return ( make_response_error(ex, in_httpcode=ex.__response_code__), ex.__response_code__, ) except Exception as ex: logger.exception("Unexpected error in api processing") return make_response_error(ex, in_httpcode=500), 500
athena/utils/learning_rate.py
godjealous/athena
119
12743090
# coding=utf-8 # Copyright (C) ATHENA AUTHORS # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Only support eager mode # pylint: disable=too-few-public-methods, no-member, too-many-arguments, unused-argument """ learning rate """ import tensorflow as tf from ..utils.hparam import register_and_parse_hparams class WarmUpLearningSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): """ WarmUp Learning rate schedule for Adam Used as : optimizer = tf.keras.optimizers.Adam(learning_rate = WarmUpLearningSchedule(512), beta_1=0.9, beta_2=0.98, epsilon=1e-9) Args : model_dim is the something related to total model parameters warmup_steps is the highest learning rate iters Returns: return the learning rate Idea from the paper: Attention Is All You Need """ def __init__(self, model_dim=512, warmup_steps=4000, k=1.0, decay_steps=99999999, decay_rate=1.0): super().__init__() self.model_dim = tf.cast(model_dim, tf.float32) self.warmup_steps = warmup_steps self.k = k self.decay_steps = tf.cast(decay_steps, tf.float32) self.decay_rate = tf.cast(decay_rate, tf.float32) def __call__(self, step): step = tf.cast(step, tf.float32) arg1 = tf.math.rsqrt(step) arg2 = step * (self.warmup_steps ** -1.5) k = self.k * tf.cast(self.decay_rate ** (step // self.decay_steps), tf.float32) return k * tf.math.rsqrt(self.model_dim) * tf.math.minimum(arg1, arg2) class WarmUpAdam(tf.keras.optimizers.Adam): """WarmUpAdam Implementation """ default_config = { "d_model": 512, "warmup_steps": 8000, "k": 0.5, "decay_steps": 100000, "decay_rate": 1.0 } def __init__(self, config=None, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, name="WarmUpAdam", **kwargs): self.hparams = register_and_parse_hparams(self.default_config, config, cls=self.__class__) super().__init__( learning_rate=WarmUpLearningSchedule( self.hparams.d_model, self.hparams.warmup_steps, self.hparams.k, self.hparams.decay_steps, self.hparams.decay_rate ), beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, amsgrad=amsgrad, name=name, ) class ExponentialDecayLearningRateSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): """ ExponentialDecayLearningRateSchedule Used as : optimizer = tf.keras.optimizers.Adam( learning_rate = ExponentialDecayLearningRate(0.01, 100)) Args : initial_lr, decay_steps Returns: initial_lr * (0.5 ** (step // decay_steps)) """ def __init__(self, initial_lr=0.005, decay_steps=10000, decay_rate=0.5): super().__init__() self.initial_lr = initial_lr self.decay_steps = tf.cast(decay_steps, tf.float32) self.decay_rate = tf.cast(decay_rate, tf.float32) def __call__(self, step): step = tf.cast(step, tf.float32) factor = tf.cast(self.decay_rate ** (step // self.decay_steps), tf.float32) return self.initial_lr * factor class ExponentialDecayAdam(tf.keras.optimizers.Adam): """WarmUpAdam Implementation """ default_config = { "initial_lr": 0.005, "decay_steps": 10000, "decay_rate": 0.5 } def __init__(self, config=None, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, name="WarmUpAdam", **kwargs): self.hparams = register_and_parse_hparams(self.default_config, config, cls=self.__class__) super().__init__( learning_rate=ExponentialDecayLearningRateSchedule( self.hparams.initial_lr, self.hparams.decay_steps, self.hparams.decay_rate ), beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, amsgrad=amsgrad, name=name, )
pythran/tests/cases/goodExpoMeasure.py
davidbrochart/pythran
1,647
12743112
#runas import numpy as np; n = 20; a = np.arange(n*n*n).reshape((n,n,n)).astype(np.uint8); b = 2. ; goodExpoMeasure(a, b) #pythran export goodExpoMeasure(uint8[][][], float) import numpy def goodExpoMeasure(inRGB, sigma): ''' Compute the good exposition image quality measure on 1 input image. ''' R = inRGB[0,:,:].astype(numpy.float64) G = inRGB[1,:,:].astype(numpy.float64) B = inRGB[2,:,:].astype(numpy.float64) goodExpoR = numpy.exp(- ((R - 128)**2) / sigma) goodExpoG = numpy.exp(- ((G - 128)**2) / sigma) goodExpoB = numpy.exp(- ((B - 128)**2) / sigma) goodExpo = goodExpoR * goodExpoG * goodExpoB goodExpo = (numpy.round(goodExpo, 2) * (2**8-1)).astype(numpy.uint8) return goodExpo
wxpy/api/messages/message.py
yylingyun/wxpy
14,391
12743113
<reponame>yylingyun/wxpy # coding: utf-8 from __future__ import unicode_literals import logging import os import tempfile import weakref from datetime import datetime from xml.etree import ElementTree as ETree try: import html except ImportError: # Python 2.6-2.7 # noinspection PyUnresolvedReferences,PyUnresolvedReferences,PyCompatibility from HTMLParser import HTMLParser html = HTMLParser() from wxpy.api.chats import Chat, Group, Member, User from wxpy.compatible.utils import force_encoded_string_output from wxpy.utils import wrap_user_name, repr_message from .article import Article from ..consts import ATTACHMENT, CARD, FRIENDS, MAP, PICTURE, RECORDING, SHARING, TEXT, VIDEO from ...compatible import * logger = logging.getLogger(__name__) class Message(object): """ 单条消息对象,包括: * 来自好友、群聊、好友请求等聊天对象的消息 * 使用机器人账号在手机微信中发送的消息 | 但 **不包括** 代码中通过 .send/reply() 系列方法发出的消息 | 此类消息请参见 :class:`SentMessage` """ def __init__(self, raw, bot): self.raw = raw self.bot = weakref.proxy(bot) self._receive_time = datetime.now() # 将 msg.chat.send* 方法绑定到 msg.reply*,例如 msg.chat.send_img => msg.reply_img for method in '', '_image', '_file', '_video', '_msg', '_raw_msg': setattr(self, 'reply' + method, getattr(self.chat, 'send' + method)) def __hash__(self): return hash((Message, self.id)) @force_encoded_string_output def __repr__(self): return repr_message(self) def __unicode__(self): return repr_message(self) # basic @property def type(self): """ 消息的类型,目前可为以下值:: # 文本 TEXT = 'Text' # 位置 MAP = 'Map' # 名片 CARD = 'Card' # 提示 NOTE = 'Note' # 分享 SHARING = 'Sharing' # 图片 PICTURE = 'Picture' # 语音 RECORDING = 'Recording' # 文件 ATTACHMENT = 'Attachment' # 视频 VIDEO = 'Video' # 好友请求 FRIENDS = 'Friends' # 系统 SYSTEM = 'System' :rtype: str """ return self.raw.get('Type') @property def id(self): """ 消息的唯一 ID (通常为大于 0 的 64 位整型) """ return self.raw.get('NewMsgId') # content @property def text(self): """ 消息的文本内容 """ _type = self.type _card = self.card if _type == MAP: location = self.location if location: return location.get('label') elif _card: if _type == CARD: return _card.name elif _type == FRIENDS: return _card.raw.get('Content') ret = self.raw.get('Text') if isinstance(ret, str): return ret def get_file(self, save_path=None): """ 下载图片、视频、语音、附件消息中的文件内容。 可与 :any:`Message.file_name` 配合使用。 :param save_path: 文件的保存路径。若为 None,将直接返回字节数据 """ _text = self.raw.get('Text') if callable(_text) and self.type in (PICTURE, RECORDING, ATTACHMENT, VIDEO): return _text(save_path) else: raise ValueError('download method not found, or invalid message type') @property def file_name(self): """ 消息中文件的文件名 """ return self.raw.get('FileName') @property def file_size(self): """ 消息中文件的体积大小 """ return self.raw.get('FileSize') @property def media_id(self): """ 文件类消息中的文件资源 ID (但图片视频语音等其他消息中为空) """ return self.raw.get('MediaId') # group @property def is_at(self): """ 当消息来自群聊,且被 @ 时,为 True """ return self.raw.get('IsAt') or self.raw.get('isAt') # misc @property def img_height(self): """ 图片高度 """ return self.raw.get('ImgHeight') @property def img_width(self): """ 图片宽度 """ return self.raw.get('ImgWidth') @property def play_length(self): """ 视频长度 """ return self.raw.get('PlayLength') @property def voice_length(self): """ 语音长度 """ return self.raw.get('VoiceLength') @property def url(self): """ 分享类消息中的网页 URL """ _url = self.raw.get('Url') if isinstance(_url, str): _url = html.unescape(_url) return _url @property def articles(self): """ 公众号推送中的文章列表 (首篇的 标题/地址 与消息中的 text/url 相同) 其中,每篇文章均有以下属性: * `title`: 标题 * `summary`: 摘要 * `url`: 文章 URL * `cover`: 封面或缩略图 URL """ from wxpy import MP if self.type == SHARING and isinstance(self.sender, MP): tree = ETree.fromstring(self.raw['Content']) # noinspection SpellCheckingInspection items = tree.findall('.//mmreader/category/item') article_list = list() for item in items: def find_text(tag): found = item.find(tag) if found is not None: return found.text article = Article() article.title = find_text('title') article.summary = find_text('digest') article.url = find_text('url') article.cover = find_text('cover') article_list.append(article) return article_list @property def card(self): """ * 好友请求中的请求用户 * 名片消息中的推荐用户 """ if self.type in (CARD, FRIENDS): return User(self.raw.get('RecommendInfo'), self.bot) # time @property def create_time(self): """ 服务端发送时间 """ # noinspection PyBroadException try: return datetime.fromtimestamp(self.raw.get('CreateTime')) except: pass @property def receive_time(self): """ 本地接收时间 """ return self._receive_time @property def latency(self): """ 消息的延迟秒数 (发送时间和接收时间的差值) """ create_time = self.create_time if create_time: return (self.receive_time - create_time).total_seconds() @property def location(self): """ 位置消息中的地理位置信息 """ try: ret = ETree.fromstring(self.raw['OriContent']).find('location').attrib try: ret['x'] = float(ret['x']) ret['y'] = float(ret['y']) ret['scale'] = int(ret['scale']) ret['maptype'] = int(ret['maptype']) except (KeyError, ValueError): pass return ret except (TypeError, KeyError, ValueError, ETree.ParseError): pass # chats @property def chat(self): """ 消息所在的聊天会话,即: * 对于自己发送的消息,为消息的接收者 * 对于别人发送的消息,为消息的发送者 :rtype: :class:`wxpy.User`, :class:`wxpy.Group` """ if self.raw.get('FromUserName') == self.bot.self.user_name: return self.receiver else: return self.sender @property def sender(self): """ 消息的发送者 :rtype: :class:`wxpy.User`, :class:`wxpy.Group` """ return self._get_chat_by_user_name(self.raw.get('FromUserName')) @property def receiver(self): """ 消息的接收者 :rtype: :class:`wxpy.User`, :class:`wxpy.Group` """ return self._get_chat_by_user_name(self.raw.get('ToUserName')) @property def member(self): """ * 若消息来自群聊,则此属性为消息的实际发送人(具体的群成员) * 若消息来自其他聊天对象(非群聊),则此属性为 None :rtype: NoneType, :class:`wxpy.Member` """ if isinstance(self.chat, Group): if self.sender == self.bot.self: return self.chat.self else: actual_user_name = self.raw.get('ActualUserName') for _member in self.chat.members: if _member.user_name == actual_user_name: return _member return Member(dict( UserName=actual_user_name, NickName=self.raw.get('ActualNickName') ), self.chat) def _get_chat_by_user_name(self, user_name): """ 通过 user_name 找到对应的聊天对象 :param user_name: user_name :return: 找到的对应聊天对象 """ def match_in_chats(_chats): for c in _chats: if c.user_name == user_name: return c _chat = None if user_name.startswith('@@'): _chat = match_in_chats(self.bot.groups()) elif user_name: _chat = match_in_chats(self.bot.friends()) if not _chat: _chat = match_in_chats(self.bot.mps()) if not _chat: _chat = Chat(wrap_user_name(user_name), self.bot) return _chat def forward(self, chat, prefix=None, suffix=None, raise_for_unsupported=False): """ 将本消息转发给其他聊天对象 支持以下消息类型 * 文本 (`TEXT`) * 视频(`VIDEO`) * 文件 (`ATTACHMENT`) * 图片/自定义表情 (`PICTURE`) * 但不支持表情商店中的表情 * 名片 (`CARD`) * 仅支持公众号名片,以及自己发出的个人号名片 * 分享 (`SHARING`) * 会转化为 `标题 + 链接` 形式的文本消息 * 语音 (`RECORDING`) * 会以文件方式发送 * 地图 (`MAP`) * 会转化为 `位置名称 + 地图链接` 形式的文本消息 :param Chat chat: 接收转发消息的聊天对象 :param str prefix: 转发时增加的 **前缀** 文本,原消息为文本时会自动换行 :param str suffix: 转发时增加的 **后缀** 文本,原消息为文本时会自动换行 :param bool raise_for_unsupported: | 为 True 时,将为不支持的消息类型抛出 `NotImplementedError` 异常 例如,将公司群中的老板消息转发出来:: from wxpy import * bot = Bot() # 定位公司群 company_group = ensure_one(bot.groups().search('公司微信群')) # 定位老板 boss = ensure_one(company_group.search('老板大名')) # 将老板的消息转发到文件传输助手 @bot.register(company_group) def forward_boss_message(msg): if msg.member == boss: msg.forward(bot.file_helper, prefix='老板发言') # 堵塞线程 embed() """ logger.info('{}: forwarding to {}: {}'.format(self.bot, chat, self)) def wrapped_send(send_type, *args, **kwargs): if send_type == 'msg': if args: text = args[0] elif kwargs: text = kwargs['msg'] else: text = self.text ret = chat.send_msg('{}{}{}'.format( str(prefix) + '\n' if prefix else '', text, '\n' + str(suffix) if suffix else '', )) else: if prefix: chat.send_msg(prefix) ret = getattr(chat, 'send_{}'.format(send_type))(*args, **kwargs) if suffix: chat.send_msg(suffix) return ret def download_and_send(): fd, path = tempfile.mkstemp( suffix='_{}'.format(self.file_name), dir=self.bot.temp_dir.name ) try: self.get_file(path) if self.type == PICTURE: return wrapped_send('image', path) elif self.type == VIDEO: return wrapped_send('video', path) else: return wrapped_send('file', path) finally: os.close(fd) def raise_properly(text): logger.warning(text) if raise_for_unsupported: raise NotImplementedError(text) if self.type == TEXT: return wrapped_send('msg') elif self.type == SHARING: return wrapped_send('msg', '{}\n{}'.format(self.text, self.url)) elif self.type == MAP: return wrapped_send('msg', '{}: {}\n{}'.format( self.location['poiname'], self.location['label'], self.url )) elif self.type == ATTACHMENT: # noinspection SpellCheckingInspection content = \ "<appmsg appid='wxeb7ec651dd0aefa9' sdkver=''>" \ "<title>{file_name}</title><des></des><action></action>" \ "<type>6</type><content></content><url></url><lowurl></lowurl>" \ "<appattach><totallen>{file_size}</totallen><attachid>{media_id}</attachid>" \ "<fileext>{file_ext}</fileext></appattach><extinfo></extinfo></appmsg>" content = content.format( file_name=self.file_name, file_size=self.file_size, media_id=self.media_id, file_ext=os.path.splitext(self.file_name)[1].replace('.', '') ) return wrapped_send( send_type='raw_msg', raw_type=self.raw['MsgType'], raw_content=content, uri='/webwxsendappmsg?fun=async&f=json' ) elif self.type == CARD: if self.card.raw.get('AttrStatus') and self.sender != self.bot.self: # 为个人名片,且不为自己所发出 raise_properly('Personal cards sent from others are unsupported:\n{}'.format(self)) else: return wrapped_send( send_type='raw_msg', raw_type=self.raw['MsgType'], raw_content=self.raw['Content'], uri='/webwxsendmsg' ) elif self.type == PICTURE: if self.raw.get('HasProductId'): # 来自表情商店的表情 raise_properly('Stickers from store are unsupported:\n{}'.format(self)) else: return download_and_send() elif self.type == VIDEO: return download_and_send() elif self.type == RECORDING: return download_and_send() else: raise_properly('Unsupported message type:\n{}'.format(self))
zhaquirks/aduro/__init__.py
WolfRevo/zha-device-handlers
213
12743135
"""ADUROLIGHT module for custom device handlers."""
sdk/python/feast/infra/online_stores/datastore.py
kevjumba/feast
810
12743162
<filename>sdk/python/feast/infra/online_stores/datastore.py # Copyright 2021 The Feast Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import logging from datetime import datetime from multiprocessing.pool import ThreadPool from queue import Empty, Queue from threading import Lock, Thread from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple from pydantic import PositiveInt, StrictStr from pydantic.typing import Literal from feast import Entity, utils from feast.errors import FeastProviderLoginError from feast.feature_view import FeatureView from feast.infra.infra_object import DATASTORE_INFRA_OBJECT_CLASS_TYPE, InfraObject from feast.infra.online_stores.helpers import compute_entity_id from feast.infra.online_stores.online_store import OnlineStore from feast.protos.feast.core.DatastoreTable_pb2 import ( DatastoreTable as DatastoreTableProto, ) from feast.protos.feast.core.InfraObject_pb2 import InfraObject as InfraObjectProto from feast.protos.feast.types.EntityKey_pb2 import EntityKey as EntityKeyProto from feast.protos.feast.types.Value_pb2 import Value as ValueProto from feast.repo_config import FeastConfigBaseModel, RepoConfig from feast.usage import log_exceptions_and_usage, tracing_span LOGGER = logging.getLogger(__name__) try: from google.auth.exceptions import DefaultCredentialsError from google.cloud import datastore from google.cloud.datastore.client import Key except ImportError as e: from feast.errors import FeastExtrasDependencyImportError raise FeastExtrasDependencyImportError("gcp", str(e)) ProtoBatch = Sequence[ Tuple[EntityKeyProto, Dict[str, ValueProto], datetime, Optional[datetime]] ] class DatastoreOnlineStoreConfig(FeastConfigBaseModel): """Online store config for GCP Datastore""" type: Literal["datastore"] = "datastore" """ Online store type selector""" project_id: Optional[StrictStr] = None """ (optional) GCP Project Id """ namespace: Optional[StrictStr] = None """ (optional) Datastore namespace """ write_concurrency: Optional[PositiveInt] = 40 """ (optional) Amount of threads to use when writing batches of feature rows into Datastore""" write_batch_size: Optional[PositiveInt] = 50 """ (optional) Amount of feature rows per batch being written into Datastore""" class DatastoreOnlineStore(OnlineStore): """ OnlineStore is an object used for all interaction between Feast and the service used for offline storage of features. """ _client: Optional[datastore.Client] = None @log_exceptions_and_usage(online_store="datastore") def update( self, config: RepoConfig, tables_to_delete: Sequence[FeatureView], tables_to_keep: Sequence[FeatureView], entities_to_delete: Sequence[Entity], entities_to_keep: Sequence[Entity], partial: bool, ): online_config = config.online_store assert isinstance(online_config, DatastoreOnlineStoreConfig) client = self._get_client(online_config) feast_project = config.project for table in tables_to_keep: key = client.key("Project", feast_project, "Table", table.name) entity = datastore.Entity( key=key, exclude_from_indexes=("created_ts", "event_ts", "values") ) entity.update({"created_ts": datetime.utcnow()}) client.put(entity) for table in tables_to_delete: _delete_all_values( client, client.key("Project", feast_project, "Table", table.name) ) # Delete the table metadata datastore entity key = client.key("Project", feast_project, "Table", table.name) client.delete(key) def teardown( self, config: RepoConfig, tables: Sequence[FeatureView], entities: Sequence[Entity], ): online_config = config.online_store assert isinstance(online_config, DatastoreOnlineStoreConfig) client = self._get_client(online_config) feast_project = config.project for table in tables: _delete_all_values( client, client.key("Project", feast_project, "Table", table.name) ) # Delete the table metadata datastore entity key = client.key("Project", feast_project, "Table", table.name) client.delete(key) def _get_client(self, online_config: DatastoreOnlineStoreConfig): if not self._client: self._client = _initialize_client( online_config.project_id, online_config.namespace ) return self._client @log_exceptions_and_usage(online_store="datastore") def online_write_batch( self, config: RepoConfig, table: FeatureView, data: List[ Tuple[EntityKeyProto, Dict[str, ValueProto], datetime, Optional[datetime]] ], progress: Optional[Callable[[int], Any]], ) -> None: online_config = config.online_store assert isinstance(online_config, DatastoreOnlineStoreConfig) client = self._get_client(online_config) write_concurrency = online_config.write_concurrency write_batch_size = online_config.write_batch_size feast_project = config.project with ThreadPool(processes=write_concurrency) as pool: pool.map( lambda b: self._write_minibatch( client, feast_project, table, b, progress ), self._to_minibatches(data, batch_size=write_batch_size), ) @staticmethod def _to_minibatches(data: ProtoBatch, batch_size) -> Iterator[ProtoBatch]: """ Split data into minibatches, making sure we stay under GCP datastore transaction size limits. """ iterable = iter(data) while True: batch = list(itertools.islice(iterable, batch_size)) if len(batch) > 0: yield batch else: break @staticmethod def _write_minibatch( client, project: str, table: FeatureView, data: Sequence[ Tuple[EntityKeyProto, Dict[str, ValueProto], datetime, Optional[datetime]] ], progress: Optional[Callable[[int], Any]], ): entities = [] for entity_key, features, timestamp, created_ts in data: document_id = compute_entity_id(entity_key) key = client.key( "Project", project, "Table", table.name, "Row", document_id, ) entity = datastore.Entity( key=key, exclude_from_indexes=("created_ts", "event_ts", "values") ) content_entity = datastore.Entity( exclude_from_indexes=tuple(features.keys()) ) for k, v in features.items(): content_entity[k] = v.SerializeToString() entity["key"] = entity_key.SerializeToString() entity["values"] = content_entity entity["event_ts"] = utils.make_tzaware(timestamp) entity["created_ts"] = ( utils.make_tzaware(created_ts) if created_ts is not None else None ) entities.append(entity) with client.transaction(): client.put_multi(entities) if progress: progress(len(entities)) @log_exceptions_and_usage(online_store="datastore") def online_read( self, config: RepoConfig, table: FeatureView, entity_keys: List[EntityKeyProto], requested_features: Optional[List[str]] = None, ) -> List[Tuple[Optional[datetime], Optional[Dict[str, ValueProto]]]]: online_config = config.online_store assert isinstance(online_config, DatastoreOnlineStoreConfig) client = self._get_client(online_config) feast_project = config.project keys: List[Key] = [] result: List[Tuple[Optional[datetime], Optional[Dict[str, ValueProto]]]] = [] for entity_key in entity_keys: document_id = compute_entity_id(entity_key) key = client.key( "Project", feast_project, "Table", table.name, "Row", document_id ) keys.append(key) # NOTE: get_multi doesn't return values in the same order as the keys in the request. # Also, len(values) can be less than len(keys) in the case of missing values. with tracing_span(name="remote_call"): values = client.get_multi(keys) values_dict = {v.key: v for v in values} if values is not None else {} for key in keys: if key in values_dict: value = values_dict[key] res = {} for feature_name, value_bin in value["values"].items(): val = ValueProto() val.ParseFromString(value_bin) res[feature_name] = val result.append((value["event_ts"], res)) else: result.append((None, None)) return result def _delete_all_values(client, key): """ Delete all data under the key path in datastore. Creates and uses a queue of lists of entity keys, which are batch deleted by multiple threads. """ class AtomicCounter(object): # for tracking how many deletions have already occurred; not used outside this method def __init__(self): self.value = 0 self.lock = Lock() def increment(self): with self.lock: self.value += 1 BATCH_SIZE = 500 # Dec 2021: delete_multi has a max size of 500: https://cloud.google.com/datastore/docs/concepts/limits NUM_THREADS = 3 deletion_queue = Queue() status_info_counter = AtomicCounter() def worker(shared_counter): while True: try: job = deletion_queue.get(block=False) except Empty: return client.delete_multi(job) shared_counter.increment() LOGGER.debug( f"batch deletions completed: {shared_counter.value} ({shared_counter.value * BATCH_SIZE} total entries) & outstanding queue size: {deletion_queue.qsize()}" ) deletion_queue.task_done() query = client.query(kind="Row", ancestor=key) for page in query.fetch().pages: deletion_queue.put([entity.key for entity in page]) for _ in range(NUM_THREADS): Thread(target=worker, args=(status_info_counter,)).start() deletion_queue.join() def _initialize_client( project_id: Optional[str], namespace: Optional[str] ) -> datastore.Client: try: client = datastore.Client(project=project_id, namespace=namespace,) return client except DefaultCredentialsError as e: raise FeastProviderLoginError( str(e) + '\nIt may be necessary to run "gcloud auth application-default login" if you would like to use your ' "local Google Cloud account " ) class DatastoreTable(InfraObject): """ A Datastore table managed by Feast. Attributes: project: The Feast project of the table. name: The name of the table. project_id (optional): The GCP project id. namespace (optional): Datastore namespace. """ project: str project_id: Optional[str] namespace: Optional[str] def __init__( self, project: str, name: str, project_id: Optional[str] = None, namespace: Optional[str] = None, ): super().__init__(name) self.project = project self.project_id = project_id self.namespace = namespace def to_infra_object_proto(self) -> InfraObjectProto: datastore_table_proto = self.to_proto() return InfraObjectProto( infra_object_class_type=DATASTORE_INFRA_OBJECT_CLASS_TYPE, datastore_table=datastore_table_proto, ) def to_proto(self) -> Any: datastore_table_proto = DatastoreTableProto() datastore_table_proto.project = self.project datastore_table_proto.name = self.name if self.project_id: datastore_table_proto.project_id.value = self.project_id if self.namespace: datastore_table_proto.namespace.value = self.namespace return datastore_table_proto @staticmethod def from_infra_object_proto(infra_object_proto: InfraObjectProto) -> Any: datastore_table = DatastoreTable( project=infra_object_proto.datastore_table.project, name=infra_object_proto.datastore_table.name, ) # Distinguish between null and empty string, since project_id and namespace are StringValues. if infra_object_proto.datastore_table.HasField("project_id"): datastore_table.project_id = ( infra_object_proto.datastore_table.project_id.value ) if infra_object_proto.datastore_table.HasField("namespace"): datastore_table.namespace = ( infra_object_proto.datastore_table.namespace.value ) return datastore_table @staticmethod def from_proto(datastore_table_proto: DatastoreTableProto) -> Any: datastore_table = DatastoreTable( project=datastore_table_proto.project, name=datastore_table_proto.name, ) # Distinguish between null and empty string, since project_id and namespace are StringValues. if datastore_table_proto.HasField("project_id"): datastore_table.project_id = datastore_table_proto.project_id.value if datastore_table_proto.HasField("namespace"): datastore_table.namespace = datastore_table_proto.namespace.value return datastore_table def update(self): client = _initialize_client(self.project_id, self.namespace) key = client.key("Project", self.project, "Table", self.name) entity = datastore.Entity( key=key, exclude_from_indexes=("created_ts", "event_ts", "values") ) entity.update({"created_ts": datetime.utcnow()}) client.put(entity) def teardown(self): client = _initialize_client(self.project_id, self.namespace) key = client.key("Project", self.project, "Table", self.name) _delete_all_values(client, key) # Delete the table metadata datastore entity client.delete(key)
elliot/hyperoptimization/model_coordinator.py
pkaram/elliot
175
12743169
""" Module description: """ __version__ = '0.3.1' __author__ = '<NAME>, <NAME>' __email__ = '<EMAIL>, <EMAIL>' from types import SimpleNamespace import typing as t import numpy as np import logging as pylog from elliot.utils import logging from hyperopt import STATUS_OK class ModelCoordinator(object): """ This class handles the selection of hyperparameters for the hyperparameter tuning realized with HyperOpt. """ def __init__(self, data_objs, base: SimpleNamespace, params, model_class: t.ClassVar, test_fold_index: int): """ The constructor creates a Placeholder of the recommender model. :param base: a SimpleNamespace that contains the configuration (main level) options :param params: a SimpleNamespace that contains the hyper-parameters of the model :param model_class: the class of the recommendation model """ self.logger = logging.get_logger(self.__class__.__name__, pylog.CRITICAL if base.config_test else pylog.DEBUG) self.data_objs = data_objs self.base = base self.params = params self.model_class = model_class self.test_fold_index = test_fold_index self.model_config_index = 0 def objective(self, args): """ This function respect the signature, and the return format required for HyperOpt optimization :param args: a Dictionary that contains the new hyper-parameter values that will be used in the current run :return: it returns a Dictionary with loss, and status being required by HyperOpt, and params, and results being required by the framework """ sampled_namespace = SimpleNamespace(**args) model_params = SimpleNamespace(**self.params[0].__dict__) self.logger.info("Hyperparameter tuning exploration:") for (k, v) in sampled_namespace.__dict__.items(): model_params.__setattr__(k, v) self.logger.info(f"{k} set to {model_params.__getattribute__(k)}") losses = [] results = [] for trainval_index, data_obj in enumerate(self.data_objs): self.logger.info(f"Exploration: Hyperparameter exploration number {self.model_config_index+1}") self.logger.info(f"Exploration: Test Fold exploration number {self.test_fold_index+1}") self.logger.info(f"Exploration: Train-Validation Fold exploration number {trainval_index+1}") model = self.model_class(data=data_obj, config=self.base, params=model_params) model.train() losses.append(model.get_loss()) results.append(model.get_results()) self.model_config_index += 1 loss = np.average(losses) results = self._average_results(results) return { 'loss': loss, 'status': STATUS_OK, 'params': model.get_params(), 'val_results': {k: result_dict["val_results"] for k, result_dict in results.items()}, 'val_statistical_results': {k: result_dict["val_statistical_results"] for k, result_dict in model.get_results().items()}, 'test_results': {k: result_dict["test_results"] for k, result_dict in results.items()}, 'test_statistical_results': {k: result_dict["test_statistical_results"] for k, result_dict in model.get_results().items()}, 'name': model.name } def single(self): """ This function respect the signature, and the return format required for HyperOpt optimization :param args: a Dictionary that contains the new hyper-parameter values that will be used in the current run :return: it returns a Dictionary with loss, and status being required by HyperOpt, and params, and results being required by the framework """ self.logger.info("Hyperparameters:") for k, v in self.params.__dict__.items(): self.logger.info(f"{k} set to {v}") losses = [] results = [] for trainval_index, data_obj in enumerate(self.data_objs): self.logger.info(f"Exploration: Test Fold exploration number {self.test_fold_index+1}") self.logger.info(f"Exploration: Train-Validation Fold exploration number {trainval_index+1}") model = self.model_class(data=data_obj, config=self.base, params=self.params) model.train() losses.append(model.get_loss()) results.append(model.get_results()) loss = np.average(losses) results = self._average_results(results) return { 'loss': loss, 'status': STATUS_OK, 'params': model.get_params(), 'val_results': {k: result_dict["val_results"] for k, result_dict in results.items()}, 'val_statistical_results': {k: result_dict["val_statistical_results"] for k, result_dict in model.get_results().items()}, 'test_results': {k: result_dict["test_results"] for k, result_dict in results.items()}, 'test_statistical_results': {k: result_dict["test_statistical_results"] for k, result_dict in model.get_results().items()}, 'name': model.name } @staticmethod def _average_results(results_list): ks = list(results_list[0].keys()) eval_result_types = ["val_results", "test_results"] metrics = list(results_list[0][ks[0]]["val_results"].keys()) return {k: {type_: {metric: np.average([fold_result[k][type_][metric] for fold_result in results_list]) for metric in metrics} for type_ in eval_result_types} for k in ks}
src/RelativeDepthDataset.py
JasonQSY/YouTube3D
102
12743178
import numpy as np import random from utils import save_obj, load_obj import torch from torch.utils import data import cv2 import os import h5py from ReDWebNet import resNet_data_preprocess ####################################################################### ##### ATTENTION: ##### When using this dataset, set the number of loading worker to 0. ##### There is problem using hdf5 and multi-threading together. class RelativeDepthDataset(data.Dataset): def __init__(self, csv_filename, height=240, width=320, b_data_aug = False, b_resnet_prep = False): """ b_data_aug is a dummy var, not used. """ super(RelativeDepthDataset, self).__init__() print("=====================================================") print "Using RelativeDepthDataset..." self.parse_relative_depth_csv(csv_filename) self.height = height self.width = width self.n_sample = len(self.img_names) self.b_resnet_prep = b_resnet_prep print "\t-(width, height): (%d, %d)" % (self.width, self.height) print "\t-%s: %d samples" % (csv_filename, self.n_sample) print "\t-Resnet data preprocessing:", self.b_resnet_prep print("=====================================================") def parse_csv_meta_data(self, csv_filename): img_names = [] n_pairs = [] with open(csv_filename, 'r') as f: f.readline() while True: dummy_info = f.readline() if not dummy_info: break infos = dummy_info.split(',') img_name, n_point = infos[0], int(infos[2]) img_names.append(img_name) n_pairs.append(n_point) for i in range(n_point): f.readline() n_pairs = np.array(n_pairs) return img_names, n_pairs def parse_relative_depth_csv(self, csv_filename): hdf5_filename = csv_filename.replace('.csv', '.h5') if not os.path.exists(hdf5_filename): print "\tError: You need to have a hdf5 version of the csv file!" else: self.hdf5_handle = h5py.File(hdf5_filename, 'r') name_filename = csv_filename.replace('.csv', '.meta') if not os.path.exists(name_filename): self.img_names, self.n_pairs = self.parse_csv_meta_data(csv_filename) save_obj({"img_names":self.img_names, "n_pairs": self.n_pairs}, name_filename) else: temp = load_obj(name_filename) self.img_names = temp["img_names"] self.n_pairs = temp["n_pairs"] def __getitem__(self, index): # This data reader assumes that the target coordinates are in the # same resolution as the input image, instead of the network input # resolution! # However, even though it resizes the input image, it does NOT # resize the target accordingly! # Therefore, there can only be ONE kind of input when training: # 1. target = test = (240,320). # When validating / testing: # 1. target = test = (240,320) # 2. target = test = (480,640) color = cv2.imread(self.img_names[index]) orig_img_res = color.shape[:2] color = cv2.resize(color, (self.width, self.height)) color = color.transpose(2, 0, 1).astype(np.float32) / 255.0 if self.b_resnet_prep: color = resNet_data_preprocess(color) n_pairs = self.n_pairs[index] _hdf5_offset = int(5*index) #zero-indexed target = self.hdf5_handle['/data'][_hdf5_offset:_hdf5_offset+5,0:n_pairs] target[:4,:] = target[:4,:] - 1 # the coordinate in python starts from 0!!!! return color, target.astype(np.int64), orig_img_res def __len__(self): return self.n_sample def relative_depth_collate_fn(batch): return (torch.stack([torch.from_numpy(b[0]) for b in batch], 0), [torch.from_numpy(b[1]) for b in batch], [b[2] for b in batch] )
rbtools/clients/errors.py
ngie-eign/rbtools
113
12743190
<reponame>ngie-eign/rbtools<filename>rbtools/clients/errors.py """Error definitions for SCMClient implementations.""" from __future__ import unicode_literals class SCMError(Exception): """A generic error from an SCM.""" class AuthenticationError(Exception): """An error for when authentication fails.""" class CreateCommitError(Exception): """The creation of a commit has failed or was aborted.""" class MergeError(Exception): """An error for when merging two branches fails.""" class PushError(Exception): """An error for when pushing a branch to upstream fails.""" class AmendError(Exception): """An error for when amending a commit fails.""" class OptionsCheckError(Exception): """An error for when command line options are used incorrectly.""" class InvalidRevisionSpecError(Exception): """An error for when the specified revisions are invalid.""" class MinimumVersionError(Exception): """An error for when software doesn't meet version requirements.""" class TooManyRevisionsError(InvalidRevisionSpecError): """An error for when too many revisions were specified.""" def __init__(self): """Initialize the error.""" super(TooManyRevisionsError, self).__init__( 'Too many revisions specified') class EmptyChangeError(Exception): """An error for when there are no changed files.""" def __init__(self): """Initialize the error.""" super(EmptyChangeError, self).__init__( "Couldn't find any affected files for this change.")
kitsune/motidings/tests/__init__.py
AndrewDVXI/kitsune
929
12743195
from factory import fuzzy from factory.django import DjangoModelFactory from tidings.models import Watch class WatchFactory(DjangoModelFactory): class Meta: model = Watch event_type = "fooevent" is_active = True secret = fuzzy.FuzzyText(length=10)