max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
manila/share/drivers/inspur/instorage/cli_helper.py
gouthampacha/manila
159
12746364
<filename>manila/share/drivers/inspur/instorage/cli_helper.py # Copyright 2019 Inspur Corp. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ CLI helpers for Inspur InStorage """ import paramiko import re import six from eventlet import greenthread from oslo_concurrency import processutils from oslo_log import log from oslo_utils import excutils from manila import exception from manila.i18n import _ from manila import utils as manila_utils LOG = log.getLogger(__name__) class SSHRunner(object): """SSH runner is used to run ssh command on inspur instorage system.""" def __init__(self, host, port, login, password, privatekey=None): self.host = host self.port = port self.login = login self.password = password self.privatekey = privatekey self.ssh_conn_timeout = 60 self.ssh_min_pool_size = 1 self.ssh_max_pool_size = 10 self.sshpool = None def __call__(self, cmd_list, check_exit_code=True, attempts=1): """SSH tool""" manila_utils.check_ssh_injection(cmd_list) command = ' '.join(cmd_list) if not self.sshpool: try: self.sshpool = manila_utils.SSHPool( self.host, self.port, self.ssh_conn_timeout, self.login, password=self.password, privatekey=self.privatekey, min_size=self.ssh_min_pool_size, max_size=self.ssh_max_pool_size ) except paramiko.SSHException: LOG.error("Unable to create SSHPool") raise try: return self._ssh_execute(self.sshpool, command, check_exit_code, attempts) except Exception: LOG.error("Error running SSH command: %s", command) raise def _ssh_execute(self, sshpool, command, check_exit_code=True, attempts=1): try: with sshpool.item() as ssh: last_exception = None while attempts > 0: attempts -= 1 try: return processutils.ssh_execute( ssh, command, check_exit_code=check_exit_code) except Exception as e: LOG.exception('Error has occurred') last_exception = e greenthread.sleep(1) try: raise processutils.ProcessExecutionError( exit_code=last_exception.exit_code, stdout=last_exception.stdout, stderr=last_exception.stderr, cmd=last_exception.cmd) except AttributeError: raise processutils.ProcessExecutionError( exit_code=-1, stdout="", stderr="Error running SSH command", cmd=command) except Exception: with excutils.save_and_reraise_exception(): LOG.error("Error running SSH command: %s", command) class CLIParser(object): """Parse MCS CLI output and generate iterable.""" def __init__(self, raw, ssh_cmd=None, delim='!', with_header=True): super(CLIParser, self).__init__() if ssh_cmd: self.ssh_cmd = ' '.join(ssh_cmd) else: self.ssh_cmd = 'None' self.raw = raw self.delim = delim self.with_header = with_header self.result = self._parse() def __getitem__(self, key): try: return self.result[key] except KeyError: msg = (_('Did not find the expected key %(key)s in %(fun)s: ' '%(raw)s.') % {'key': key, 'fun': self.ssh_cmd, 'raw': self.raw}) raise exception.ShareBackendException(msg=msg) def __iter__(self): for a in self.result: yield a def __len__(self): return len(self.result) def _parse(self): def get_reader(content, delim): for line in content.lstrip().splitlines(): line = line.strip() if line: yield line.split(delim) else: yield [] if isinstance(self.raw, six.string_types): stdout, stderr = self.raw, '' else: stdout, stderr = self.raw reader = get_reader(stdout, self.delim) result = [] if self.with_header: hds = tuple() for row in reader: hds = row break for row in reader: cur = dict() if len(hds) != len(row): msg = (_('Unexpected CLI response: header/row mismatch. ' 'header: %(header)s, row: %(row)s.') % {'header': hds, 'row': row}) raise exception.ShareBackendException(msg=msg) for k, v in zip(hds, row): CLIParser.append_dict(cur, k, v) result.append(cur) else: cur = dict() for row in reader: if row: CLIParser.append_dict(cur, row[0], ' '.join(row[1:])) elif cur: # start new section result.append(cur) cur = dict() if cur: result.append(cur) return result @staticmethod def append_dict(dict_, key, value): key, value = key.strip(), value.strip() obj = dict_.get(key, None) if obj is None: dict_[key] = value elif isinstance(obj, list): obj.append(value) dict_[key] = obj else: dict_[key] = [obj, value] return dict_ class InStorageSSH(object): """SSH interface to Inspur InStorage systems.""" def __init__(self, ssh_runner): self._ssh = ssh_runner def _run_ssh(self, ssh_cmd): try: return self._ssh(ssh_cmd) except processutils.ProcessExecutionError as e: msg = (_('CLI Exception output:\n command: %(cmd)s\n ' 'stdout: %(out)s\n stderr: %(err)s.') % {'cmd': ssh_cmd, 'out': e.stdout, 'err': e.stderr}) LOG.error(msg) raise exception.ShareBackendException(msg=msg) def run_ssh_inq(self, ssh_cmd, delim='!', with_header=False): """Run an SSH command and return parsed output.""" raw = self._run_ssh(ssh_cmd) LOG.debug('Response for cmd %s is %s', ssh_cmd, raw) return CLIParser(raw, ssh_cmd=ssh_cmd, delim=delim, with_header=with_header) def run_ssh_assert_no_output(self, ssh_cmd): """Run an SSH command and assert no output returned.""" out, err = self._run_ssh(ssh_cmd) if len(out.strip()) != 0: msg = (_('Expected no output from CLI command %(cmd)s, ' 'got %(out)s.') % {'cmd': ' '.join(ssh_cmd), 'out': out}) LOG.error(msg) raise exception.ShareBackendException(msg=msg) def run_ssh_check_created(self, ssh_cmd): """Run an SSH command and return the ID of the created object.""" out, err = self._run_ssh(ssh_cmd) try: match_obj = re.search(r'\[([0-9]+)\],? successfully created', out) return match_obj.group(1) except (AttributeError, IndexError): msg = (_('Failed to parse CLI output:\n command: %(cmd)s\n ' 'stdout: %(out)s\n stderr: %(err)s.') % {'cmd': ssh_cmd, 'out': out, 'err': err}) LOG.error(msg) raise exception.ShareBackendException(msg=msg) def lsnode(self, node_id=None): with_header = True ssh_cmd = ['mcsinq', 'lsnode', '-delim', '!'] if node_id: with_header = False ssh_cmd.append(node_id) return self.run_ssh_inq(ssh_cmd, with_header=with_header) def lsnaspool(self, pool_id=None): ssh_cmd = ['mcsinq', 'lsnaspool', '-delim', '!'] if pool_id: ssh_cmd.append(pool_id) return self.run_ssh_inq(ssh_cmd, with_header=True) def lsfs(self, node_name=None, fsname=None): if fsname and not node_name: msg = _('Node name should be set when file system name is set.') LOG.error(msg) raise exception.InvalidParameterValue(msg) ssh_cmd = ['mcsinq', 'lsfs', '-delim', '!'] to_append = [] if node_name: to_append += ['-node', '"%s"' % node_name] if fsname: to_append += ['-name', '"%s"' % fsname] if not to_append: to_append += ['-all'] ssh_cmd += to_append return self.run_ssh_inq(ssh_cmd, with_header=True) def addfs(self, fsname, pool_name, size, node_name): """Create a file system on the storage. :param fsname: file system name :param pool_name: pool in which to create the file system :param size: file system size in GB :param node_name: the primary node name :return: """ ssh_cmd = ['mcsop', 'addfs', '-name', '"%s"' % fsname, '-pool', '"%s"' % pool_name, '-size', '%dg' % size, '-node', '"%s"' % node_name] self.run_ssh_assert_no_output(ssh_cmd) def rmfs(self, fsname): """Remove the specific file system. :param fsname: file system name to be removed :return: """ ssh_cmd = ['mcsop', 'rmfs', '-name', '"%s"' % fsname] self.run_ssh_assert_no_output(ssh_cmd) def expandfs(self, fsname, size): """Expand the space of the specific file system. :param fsname: file system name :param size: the size(GB) to be expanded, origin + size = result :return: """ ssh_cmd = ['mcsop', 'expandfs', '-name', '"%s"' % fsname, '-size', '%dg' % size] self.run_ssh_assert_no_output(ssh_cmd) # NAS directory operation def lsnasdir(self, dirpath): """List the child directory under dirpath. :param dirpath: the parent directory to list with :return: """ ssh_cmd = ['mcsinq', 'lsnasdir', '-delim', '!', '"%s"' % dirpath] return self.run_ssh_inq(ssh_cmd, with_header=True) def addnasdir(self, dirpath): """Create a new NAS directory indicated by dirpath.""" ssh_cmd = ['mcsop', 'addnasdir', '"%s"' % dirpath] self.run_ssh_assert_no_output(ssh_cmd) def chnasdir(self, old_path, new_path): """Rename the NAS directory name.""" ssh_cmd = ['mcsop', 'chnasdir', '-oldpath', '"%s"' % old_path, '-newpath', '"%s"' % new_path] self.run_ssh_assert_no_output(ssh_cmd) def rmnasdir(self, dirpath): """Remove the specific dirpath.""" ssh_cmd = ['mcsop', 'rmnasdir', '"%s"' % dirpath] self.run_ssh_assert_no_output(ssh_cmd) # NFS operation def rmnfs(self, share_path): """Remove the NFS indicated by path.""" ssh_cmd = ['mcsop', 'rmnfs', '"%s"' % share_path] self.run_ssh_assert_no_output(ssh_cmd) def lsnfslist(self, prefix=None): """List NFS shares on a system.""" ssh_cmd = ['mcsinq', 'lsnfslist', '-delim', '!'] if prefix: ssh_cmd.append('"%s"' % prefix) return self.run_ssh_inq(ssh_cmd, with_header=True) def lsnfsinfo(self, share_path): """List a specific NFS share's information.""" ssh_cmd = ['mcsinq', 'lsnfsinfo', '-delim', '!', '"%s"' % share_path] return self.run_ssh_inq(ssh_cmd, with_header=True) def addnfsclient(self, share_path, client_spec): """Add a client access rule to NFS share. :param share_path: the NFS share path. :param client_spec: IP/MASK:RIGHTS:ALL_SQUASH:ROOT_SQUASH. :return: """ ssh_cmd = ['mcsop', 'addnfsclient', '-path', '"%s"' % share_path, '-client', client_spec] self.run_ssh_assert_no_output(ssh_cmd) def chnfsclient(self, share_path, client_spec): """Change a NFS share's client info.""" ssh_cmd = ['mcsop', 'chnfsclient', '-path', '"%s"' % share_path, '-client', client_spec] self.run_ssh_assert_no_output(ssh_cmd) def rmnfsclient(self, share_path, client_spec): """Remove a client info from the NFS share.""" # client_spec parameter for rmnfsclient is IP/MASK, # so we need remove the right part client_spec = client_spec.split(':')[0] ssh_cmd = ['mcsop', 'rmnfsclient', '-path', '"%s"' % share_path, '-client', client_spec] self.run_ssh_assert_no_output(ssh_cmd) # CIFS operation def lscifslist(self, filter=None): """List CIFS shares on the system.""" ssh_cmd = ['mcsinq', 'lscifslist', '-delim', '!'] if filter: ssh_cmd.append('"%s"' % filter) return self.run_ssh_inq(ssh_cmd, with_header=True) def lscifsinfo(self, share_name): """List a specific CIFS share's information.""" ssh_cmd = ['mcsinq', 'lscifsinfo', '-delim', '!', '"%s"' % share_name] return self.run_ssh_inq(ssh_cmd, with_header=True) def addcifs(self, share_name, dirpath, oplocks='off'): """Create a CIFS share with given path.""" ssh_cmd = ['mcsop', 'addcifs', '-name', share_name, '-path', dirpath, '-oplocks', oplocks] self.run_ssh_assert_no_output(ssh_cmd) def rmcifs(self, share_name): """Remove a CIFS share.""" ssh_cmd = ['mcsop', 'rmcifs', share_name] self.run_ssh_assert_no_output(ssh_cmd) def chcifs(self, share_name, oplocks='off'): """Change a CIFS share's attribute. :param share_name: share's name :param oplocks: 'off' or 'on' :return: """ ssh_cmd = ['mcsop', 'chcifs', '-name', share_name, '-oplocks', oplocks] self.run_ssh_assert_no_output(ssh_cmd) def addcifsuser(self, share_name, rights): """Add a user access rule to CIFS share. :param share_name: share's name :param rights: [LU|LG]:xxx:[rw|ro] :return: """ ssh_cmd = ['mcsop', 'addcifsuser', '-name', share_name, '-rights', rights] self.run_ssh_assert_no_output(ssh_cmd) def chcifsuser(self, share_name, rights): """Change a user access rule.""" ssh_cmd = ['mcsop', 'chcifsuser', '-name', share_name, '-rights', rights] self.run_ssh_assert_no_output(ssh_cmd) def rmcifsuser(self, share_name, rights): """Remove CIFS user from a CIFS share.""" # the rights parameter for rmcifsuser is LU:NAME rights = ':'.join(rights.split(':')[0:-1]) ssh_cmd = ['mcsop', 'rmcifsuser', '-name', share_name, '-rights', rights] self.run_ssh_assert_no_output(ssh_cmd) # NAS port ip def lsnasportip(self): """List NAS service port ip address.""" ssh_cmd = ['mcsinq', 'lsnasportip', '-delim', '!'] return self.run_ssh_inq(ssh_cmd, with_header=True)
tests/interpretability/test_saliency_maps_gat.py
LarsNeR/stellargraph
2,428
12746365
<reponame>LarsNeR/stellargraph # -*- coding: utf-8 -*- # # Copyright 2018-2020 Data61, CSIRO # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from stellargraph.interpretability.saliency_maps import IntegratedGradientsGAT import numpy as np from stellargraph.layer import GAT from stellargraph.mapper import FullBatchNodeGenerator from tensorflow.keras import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.losses import categorical_crossentropy import networkx as nx from tensorflow.keras import backend as K from ..test_utils.graphs import example_graph_1_saliency_maps as example_graph_1 def create_GAT_model(graph): generator = FullBatchNodeGenerator(graph, sparse=False, method=None) train_gen = generator.flow([0, 1], np.array([[1, 0], [0, 1]])) gat = GAT( layer_sizes=[2, 2], generator=generator, bias=False, in_dropout=0, attn_dropout=0, activations=["elu", "softmax"], normalize=None, saliency_map_support=True, ) for layer in gat._layers: layer._initializer = "ones" x_inp, x_out = gat.in_out_tensors() keras_model = Model(inputs=x_inp, outputs=x_out) return gat, keras_model, generator, train_gen def get_ego_node_num(graph, target_idx): G_ego = nx.ego_graph(graph, target_idx, radius=2) return G_ego.number_of_nodes() def test_ig_saliency_map(): graph = example_graph_1(feature_size=4) base_model, keras_model_gat, generator, train_gen = create_GAT_model(graph) keras_model_gat.compile( optimizer=Adam(lr=0.1), loss=categorical_crossentropy, weighted_metrics=["acc"] ) weights = [ np.array( [ [0.47567585, 0.7989239], [0.33588523, 0.19814175], [0.15685713, 0.43643117], [0.7725941, 0.68441933], ] ), np.array([[0.71832293], [0.8542117]]), np.array([[0.46560588], [0.8165422]]), np.array(1.0), np.array(0.0), np.array([[0.4391179, 0.595691], [0.06000895, 0.2613866]]), np.array([[0.43496376], [0.02840129]]), np.array([[0.33972418], [0.22352563]]), np.array(1.0), np.array(0.0), ] keras_model_gat.set_weights(weights) # sanity check to make sure that the values of delta and non_exist_edges are not trainable # the expected value should be delta = 1.0 and non_exist_edges = 0.0 for var in keras_model_gat.non_trainable_weights: if "ig_delta" in var.name: assert K.get_value(var) == 1.0 if "ig_non_exist_edge" in var.name: assert K.get_value(var) == 0.0 ig_saliency = IntegratedGradientsGAT( keras_model_gat, train_gen, generator.node_list ) target_id = 0 class_of_interest = 0 ig_link_importance = ig_saliency.get_link_importance( target_id, class_of_interest, steps=200 ) print(ig_link_importance) ig_link_importance_ref = np.array( [ [4.759e-11, 4.759e-11, 4.759e-11, 0, 0], [-1.442e-10, -1.442e-10, 0, 0, 0], [1.183e-10, 0, 1.183e-10, 1.183e-10, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], ] ) # Check the number of non-zero elements in the node importance matrix. We expect to see the number be same with the number of nodes in the ego network. assert pytest.approx( np.sum(np.ma.masked_array(ig_link_importance, mask=train_gen.A_dense)), 0 ) # TODO: write a better comparison test with larger floating point values # commented out test because of floating point errors # assert ig_link_importance == pytest.approx(ig_link_importance_ref, abs=1e-11) non_zero_edge_importance = np.sum(np.abs(ig_link_importance) > 1e-11) assert 8 == non_zero_edge_importance ig_node_importance = ig_saliency.get_node_importance( target_id, class_of_interest, steps=200 ) print(ig_node_importance) assert pytest.approx(ig_node_importance, np.array([-13.06, -9.32, -7.46, -3.73, 0])) non_zero_node_importance = np.sum(np.abs(ig_node_importance) > 1e-5) assert 4 == non_zero_node_importance
examples/tensorflow/pruning/resnet_v2/benchmark.py
mdfaijul/neural-compressor
172
12746378
import tensorflow from tensorflow.keras.datasets import cifar10 from tensorflow import keras import numpy as np num_classes = 10 class EvalDataset(object): def __init__(self, batch_size=100): (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean # Convert class vectors to binary class matrices. y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes) y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes) self.test_images = x_test self.test_labels = y_test def __len__(self): return len(self.test_images) def __getitem__(self, idx): return self.test_images[idx], self.test_labels[idx] from neural_compressor.experimental import Benchmark, common evaluator = Benchmark('benchmark.yaml') evaluator.model = common.Model('./baseline_model') evaluator.b_dataloader = common.DataLoader(EvalDataset()) evaluator('performance')
lib/spack/external/archspec/cpu/schema.py
kkauder/spack
2,360
12746379
# Copyright 2019-2020 Lawrence Livermore National Security, LLC and other # Archspec Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) """Global objects with the content of the microarchitecture JSON file and its schema """ import json import os.path try: from collections.abc import MutableMapping # novm except ImportError: from collections import MutableMapping class LazyDictionary(MutableMapping): """Lazy dictionary that gets constructed on first access to any object key Args: factory (callable): factory function to construct the dictionary """ def __init__(self, factory, *args, **kwargs): self.factory = factory self.args = args self.kwargs = kwargs self._data = None @property def data(self): """Returns the lazily constructed dictionary""" if self._data is None: self._data = self.factory(*self.args, **self.kwargs) return self._data def __getitem__(self, key): return self.data[key] def __setitem__(self, key, value): self.data[key] = value def __delitem__(self, key): del self.data[key] def __iter__(self): return iter(self.data) def __len__(self): return len(self.data) def _load_json_file(json_file): json_dir = os.path.join(os.path.dirname(__file__), "..", "json", "cpu") json_dir = os.path.abspath(json_dir) def _factory(): filename = os.path.join(json_dir, json_file) with open(filename, "r") as file: return json.load(file) return _factory #: In memory representation of the data in microarchitectures.json, #: loaded on first access TARGETS_JSON = LazyDictionary(_load_json_file("microarchitectures.json")) #: JSON schema for microarchitectures.json, loaded on first access SCHEMA = LazyDictionary(_load_json_file("microarchitectures_schema.json"))
tests/framework/AnalyticModels/optimizing/diagonal_valley_stochastic.py
rinelson456/raven
159
12746399
<reponame>rinelson456/raven # Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np #static seed np.random.seed(42) def run(raven, Inputs): coeffs = [1, 1, 0] # ax + by + c = 0 -> x = y raven.ans = main(coeffs, raven.x, raven.y) #+ random(scale=raven.stoch)/10 def main(coeffs, x, y, thresh=0.01): distance = dist_to_line(coeffs, x, y) z = 3*(x+0.5)**2 + 3*(y-0.5)**2 z += distance * 10 return z def dist_to_line(coeffs, x0, y0): cx, cy = closest_point(coeffs, x0, y0) dist = np.sqrt((x0 - cx)**2 + (y0 - cy)**2) return dist def closest_point(coeffs, x0, y0): a, b, c = coeffs denom = a*a + b*b x = b * (b * x0 - a * y0) - a * c x /= denom y = a * (-b * x0 + a * y0) - b * c y /= denom return x, y def random(scale=0.5,loc=-1.0): return scale*(2.*np.random.rand()+loc)
language_modeling/language_utils.py
coasxu/FedMA
254
12746420
<gh_stars>100-1000 # Modified from: https://github.com/litian96/FedProx/blob/master/flearn/utils/language_utils.py # credit goes to: <NAME> (litian96 @ GitHub) """Utils for language models.""" import re import numpy as np import torch # ------------------------ # utils for shakespeare dataset ALL_LETTERS = "\n !\"&'(),-.0123456789:;>?ABCDEFGHIJKLMNOPQRSTUVWXYZ[]abcdefghijklmnopqrstuvwxyz}" NUM_LETTERS = len(ALL_LETTERS) def _one_hot(index, size): '''returns one-hot vector with given size and value 1 at given index ''' vec = [0 for _ in range(size)] vec[int(index)] = 1 return vec def letter_to_vec(letter): '''returns one-hot representation of given letter ''' index = ALL_LETTERS.find(letter) return _one_hot(index, NUM_LETTERS) def word_to_indices(word): '''returns a list of character indices Args: word: string Return: indices: int list with length len(word) ''' indices = [] for c in word: indices.append(ALL_LETTERS.find(c)) return indices # ------------------------ # utils for sent140 dataset def split_line(line): '''split given line/phrase into list of words Args: line: string representing phrase to be split Return: list of strings, with each string representing a word ''' return re.findall(r"[\w']+|[.,!?;]", line) def _word_to_index(word, indd): '''returns index of given word based on given lookup dictionary returns the length of the lookup dictionary if word not found Args: word: string indd: dictionary with string words as keys and int indices as values ''' if word in indd: return indd[word] else: return len(indd) def line_to_indices(line, word2id, max_words=25): '''converts given phrase into list of word indices if the phrase has more than max_words words, returns a list containing indices of the first max_words words if the phrase has less than max_words words, repeatedly appends integer representing unknown index to returned list until the list's length is max_words Args: line: string representing phrase/sequence of words word2id: dictionary with string words as keys and int indices as values max_words: maximum number of word indices in returned list Return: indl: list of word indices, one index for each word in phrase ''' unk_id = len(word2id) line_list = split_line(line) # split phrase in words indl = [word2id[w] if w in word2id else unk_id for w in line_list[:max_words]] indl += [unk_id]*(max_words-len(indl)) return indl def bag_of_words(line, vocab): '''returns bag of words representation of given phrase using given vocab Args: line: string representing phrase to be parsed vocab: dictionary with words as keys and indices as values Return: integer list ''' bag = [0]*len(vocab) words = split_line(line) for w in words: if w in vocab: bag[vocab[w]] += 1 return bag def repackage_hidden(h): """Wraps hidden states in new Tensors, to detach them from their history.""" if isinstance(h, torch.Tensor): return h.detach() else: return tuple(repackage_hidden(v) for v in h) def process_x(raw_x_batch): x_batch = [word_to_indices(word) for word in raw_x_batch] x_batch = np.array(x_batch).T return x_batch def process_y(raw_y_batch): y_batch = [letter_to_vec(c) for c in raw_y_batch] return np.array(y_batch) def patch_h_weights(weights, L_next, assignments): # e.g. (1024, 256) comes from (256,256)|(256,256)|(256,256)|(256,256) def __permutate(weight, assignments, L_next): new_w_j = np.zeros((L_next, L_next), dtype=np.float32) new_w_j[np.ix_(assignments, assignments)] = weight # TODO(hwang): make sure if this is correct return new_w_j split_range = np.split(np.arange(weights.shape[0]), 4) h_weights = [] for indices in split_range: #logger.info("assignments: {}".format(assignments)) tempt_h_w = __permutate(weights[indices, :], assignments, L_next) h_weights.append(tempt_h_w) #logger.info("equal: {}".format(np.array_equal(tempt_h_w, weights[indices, :]))) return np.vstack(h_weights) def patch_biases(biases, L_next, assignments): # e.g. (1024, 256) comes from (256,256)|(256,256)|(256,256)|(256,256) def __permutate(bias, assignments, L_next): new_w_j = np.zeros(L_next) new_w_j[assignments] = bias return new_w_j splitted_bias = np.split(biases, 4) h_bias = [__permutate(sb, assignments, L_next) for sb in splitted_bias] return np.hstack(h_bias) def perm_i_weights(w_j, L_next, assignment_j_c): split_range = np.split(np.arange(w_j.shape[0]), 4) res = [] for i in range(4): cand_w_j = w_j[split_range[i], :] temp_new_w_j = np.zeros((L_next, w_j.shape[1])) temp_new_w_j[assignment_j_c, :] = cand_w_j res.append(temp_new_w_j) return np.vstack(res) def patch_i_weights(weights, L_next, assignments): # e.g. (1024, 256) comes from (256,256)|(256,256)|(256,256)|(256,256) def __permutate(weight, assignments, L_next): new_w_j = np.zeros((L_next, L_next), dtype=np.float32) new_w_j[np.ix_(assignments, assignments)] = weight # TODO(hwang): make sure if this is correct return new_w_j split_range = np.split(np.arange(weights.shape[0]), 4) h_weights = [__permutate(weights[indices, :], assignments, L_next) for indices in split_range] return np.hstack(h_weights).T def patch_i_biases(biases, L_next, assignments): # e.g. (1024, 256) comes from (256,256)|(256,256)|(256,256)|(256,256) def __permutate(bias, assignments, L_next): new_w_j = np.zeros(L_next, dtype=np.float32) new_w_j[assignments] = bias return new_w_j splitted_bias = np.split(biases, 4) h_bias = [__permutate(sb, assignments, L_next) for sb in splitted_bias] return np.hstack(h_bias) def perm_i_weights(w_j, L_next, assignment_j_c): split_range = np.split(np.arange(w_j.shape[0]), 4) res = [] for i in range(4): cand_w_j = w_j[split_range[i], :] temp_new_w_j = np.zeros((L_next, w_j.shape[1])) temp_new_w_j[assignment_j_c, :] = cand_w_j res.append(temp_new_w_j) return np.vstack(res)
homeassistant/components/alarmdecoder/const.py
MrDelik/core
30,023
12746436
<reponame>MrDelik/core """Constants for the AlarmDecoder component.""" CONF_ALT_NIGHT_MODE = "alt_night_mode" CONF_AUTO_BYPASS = "auto_bypass" CONF_CODE_ARM_REQUIRED = "code_arm_required" CONF_DEVICE_BAUD = "device_baudrate" CONF_DEVICE_PATH = "device_path" CONF_RELAY_ADDR = "zone_relayaddr" CONF_RELAY_CHAN = "zone_relaychan" CONF_ZONE_LOOP = "zone_loop" CONF_ZONE_NAME = "zone_name" CONF_ZONE_NUMBER = "zone_number" CONF_ZONE_RFID = "zone_rfid" CONF_ZONE_TYPE = "zone_type" DATA_AD = "alarmdecoder" DATA_REMOVE_STOP_LISTENER = "rm_stop_listener" DATA_REMOVE_UPDATE_LISTENER = "rm_update_listener" DATA_RESTART = "restart" DEFAULT_ALT_NIGHT_MODE = False DEFAULT_AUTO_BYPASS = False DEFAULT_CODE_ARM_REQUIRED = True DEFAULT_DEVICE_BAUD = 115200 DEFAULT_DEVICE_HOST = "alarmdecoder" DEFAULT_DEVICE_PATH = "/dev/ttyUSB0" DEFAULT_DEVICE_PORT = 10000 DEFAULT_ZONE_TYPE = "window" DEFAULT_ARM_OPTIONS = { CONF_ALT_NIGHT_MODE: DEFAULT_ALT_NIGHT_MODE, CONF_AUTO_BYPASS: DEFAULT_AUTO_BYPASS, CONF_CODE_ARM_REQUIRED: DEFAULT_CODE_ARM_REQUIRED, } DEFAULT_ZONE_OPTIONS: dict = {} DOMAIN = "alarmdecoder" OPTIONS_ARM = "arm_options" OPTIONS_ZONES = "zone_options" PROTOCOL_SERIAL = "serial" PROTOCOL_SOCKET = "socket" SIGNAL_PANEL_MESSAGE = "alarmdecoder.panel_message" SIGNAL_REL_MESSAGE = "alarmdecoder.rel_message" SIGNAL_RFX_MESSAGE = "alarmdecoder.rfx_message" SIGNAL_ZONE_FAULT = "alarmdecoder.zone_fault" SIGNAL_ZONE_RESTORE = "alarmdecoder.zone_restore"
ocs_ci/ocs/bucket_utils.py
annagitel/ocs-ci
130
12746437
""" Helper functions file for working with object buckets """ import logging import os import shlex from uuid import uuid4 import boto3 from botocore.handlers import disable_signing from ocs_ci.framework import config from ocs_ci.ocs import constants from ocs_ci.ocs.exceptions import TimeoutExpiredError, UnexpectedBehaviour from ocs_ci.utility import templating from ocs_ci.utility.ssl_certs import get_root_ca_cert from ocs_ci.utility.utils import TimeoutSampler, run_cmd from ocs_ci.helpers.helpers import create_resource logger = logging.getLogger(__name__) def craft_s3_command(cmd, mcg_obj=None, api=False, signed_request_creds=None): """ Crafts the AWS CLI S3 command including the login credentials and command to be ran Args: mcg_obj: An MCG class instance cmd: The AWSCLI command to run api: True if the call is for s3api, false if s3 signed_request_creds: a dictionary containing AWS S3 creds for a signed request Returns: str: The crafted command, ready to be executed on the pod """ api = "api" if api else "" if mcg_obj: if mcg_obj.region: region = f"AWS_DEFAULT_REGION={mcg_obj.region} " else: region = "" base_command = ( f'sh -c "AWS_CA_BUNDLE={constants.SERVICE_CA_CRT_AWSCLI_PATH} ' f"AWS_ACCESS_KEY_ID={mcg_obj.access_key_id} " f"AWS_SECRET_ACCESS_KEY={mcg_obj.access_key} " f"{region}" f"aws s3{api} " f"--endpoint={mcg_obj.s3_internal_endpoint} " ) string_wrapper = '"' elif signed_request_creds: if signed_request_creds.get("region"): region = f'AWS_DEFAULT_REGION={signed_request_creds.get("region")} ' else: region = "" base_command = ( f'sh -c "AWS_ACCESS_KEY_ID={signed_request_creds.get("access_key_id")} ' f'AWS_SECRET_ACCESS_KEY={signed_request_creds.get("access_key")} ' f"{region}" f"aws s3{api} " f'--endpoint={signed_request_creds.get("endpoint")} ' ) string_wrapper = '"' else: base_command = f"aws s3{api} --no-sign-request " string_wrapper = "" return f"{base_command}{cmd}{string_wrapper}" def verify_s3_object_integrity(original_object_path, result_object_path, awscli_pod): """ Verifies checksum between original object and result object on an awscli pod Args: original_object_path (str): The Object that is uploaded to the s3 bucket result_object_path (str): The Object that is downloaded from the s3 bucket awscli_pod (pod): A pod running the AWSCLI tools Returns: bool: True if checksum matches, False otherwise """ md5sum = shlex.split( awscli_pod.exec_cmd_on_pod( command=f"md5sum {original_object_path} {result_object_path}" ) ) if md5sum[0] == md5sum[2]: logger.info( f"Passed: MD5 comparison for {original_object_path} and {result_object_path}" ) return True else: logger.error( f"Failed: MD5 comparison of {original_object_path} and {result_object_path} - " f"{md5sum[0]} ≠ {md5sum[2]}" ) return False def retrieve_test_objects_to_pod(podobj, target_dir): """ Downloads all the test objects to a given directory in a given pod. Args: podobj (OCS): The pod object to download the objects to target_dir: The fully qualified path of the download target folder Returns: list: A list of the downloaded objects' names """ sync_object_directory(podobj, f"s3://{constants.TEST_FILES_BUCKET}", target_dir) downloaded_objects = podobj.exec_cmd_on_pod(f"ls -A1 {target_dir}").split(" ") logger.info(f"Downloaded objects: {downloaded_objects}") return downloaded_objects def retrieve_anon_s3_resource(): """ Returns an anonymous boto3 S3 resource by creating one and disabling signing Disabling signing isn't documented anywhere, and this solution is based on a comment by an AWS developer: https://github.com/boto/boto3/issues/134#issuecomment-116766812 Returns: boto3.resource(): An anonymous S3 resource """ anon_s3_resource = boto3.resource("s3") anon_s3_resource.meta.client.meta.events.register( "choose-signer.s3.*", disable_signing ) return anon_s3_resource def sync_object_directory(podobj, src, target, s3_obj=None, signed_request_creds=None): """ Syncs objects between a target and source directories Args: podobj (OCS): The pod on which to execute the commands and download the objects to src (str): Fully qualified object source path target (str): Fully qualified object target path s3_obj (MCG, optional): The MCG object to use in case the target or source are in an MCG signed_request_creds (dictionary, optional): the access_key, secret_key, endpoint and region to use when willing to send signed aws s3 requests """ logger.info(f"Syncing all objects and directories from {src} to {target}") retrieve_cmd = f"sync {src} {target}" if s3_obj: secrets = [s3_obj.access_key_id, s3_obj.access_key, s3_obj.s3_internal_endpoint] elif signed_request_creds: secrets = [ signed_request_creds.get("access_key_id"), signed_request_creds.get("access_key"), signed_request_creds.get("endpoint"), ] else: secrets = None podobj.exec_cmd_on_pod( command=craft_s3_command( retrieve_cmd, s3_obj, signed_request_creds=signed_request_creds ), out_yaml_format=False, secrets=secrets, ), "Failed to sync objects" # Todo: check that all objects were synced successfully def rm_object_recursive(podobj, target, mcg_obj, option=""): """ Remove bucket objects with --recursive option Args: podobj (OCS): The pod on which to execute the commands and download the objects to target (str): Fully qualified bucket target path mcg_obj (MCG, optional): The MCG object to use in case the target or source are in an MCG option (str): Extra s3 remove command option """ rm_command = f"rm s3://{target} --recursive {option}" podobj.exec_cmd_on_pod( command=craft_s3_command(rm_command, mcg_obj), out_yaml_format=False, secrets=[ mcg_obj.access_key_id, mcg_obj.access_key, mcg_obj.s3_internal_endpoint, ], ) def get_rgw_restart_counts(): """ Gets the restart count of the RGW pods Returns: list: restart counts of RGW pods """ # Internal import in order to avoid circular import from ocs_ci.ocs.resources.pod import get_rgw_pods rgw_pods = get_rgw_pods() return [rgw_pod.restart_count for rgw_pod in rgw_pods] def write_individual_s3_objects( mcg_obj, awscli_pod, bucket_factory, downloaded_files, target_dir, bucket_name=None ): """ Writes objects one by one to an s3 bucket Args: mcg_obj (obj): An MCG object containing the MCG S3 connection credentials awscli_pod (pod): A pod running the AWSCLI tools bucket_factory: Calling this fixture creates a new bucket(s) downloaded_files (list): List of downloaded object keys target_dir (str): The fully qualified path of the download target folder bucket_name (str): Name of the bucket (default: none) """ bucketname = bucket_name or bucket_factory(1)[0].name logger.info("Writing objects to bucket") for obj_name in downloaded_files: full_object_path = f"s3://{bucketname}/{obj_name}" copycommand = f"cp {target_dir}{obj_name} {full_object_path}" assert "Completed" in awscli_pod.exec_cmd_on_pod( command=craft_s3_command(copycommand, mcg_obj), out_yaml_format=False, secrets=[ mcg_obj.access_key_id, mcg_obj.access_key, mcg_obj.s3_internal_endpoint, ], ) def upload_parts( mcg_obj, awscli_pod, bucketname, object_key, body_path, upload_id, uploaded_parts ): """ Uploads individual parts to a bucket Args: mcg_obj (obj): An MCG object containing the MCG S3 connection credentials awscli_pod (pod): A pod running the AWSCLI tools bucketname (str): Name of the bucket to upload parts on object_key (list): Unique object Identifier body_path (str): Path of the directory on the aws pod which contains the parts to be uploaded upload_id (str): Multipart Upload-ID uploaded_parts (list): list containing the name of the parts to be uploaded Returns: list: List containing the ETag of the parts """ parts = [] secrets = [mcg_obj.access_key_id, mcg_obj.access_key, mcg_obj.s3_internal_endpoint] for count, part in enumerate(uploaded_parts, 1): upload_cmd = ( f"upload-part --bucket {bucketname} --key {object_key}" f" --part-number {count} --body {body_path}/{part}" f" --upload-id {upload_id}" ) # upload_cmd will return ETag, upload_id etc which is then split to get just the ETag part = ( awscli_pod.exec_cmd_on_pod( command=craft_s3_command(upload_cmd, mcg_obj, api=True), out_yaml_format=False, secrets=secrets, ) .split('"')[-3] .split("\\")[0] ) parts.append({"PartNumber": count, "ETag": f'"{part}"'}) return parts def oc_create_aws_backingstore(cld_mgr, backingstore_name, uls_name, region): """ Create a new backingstore with aws underlying storage using oc create command Args: cld_mgr (CloudManager): holds secret for backingstore creation backingstore_name (str): backingstore name uls_name (str): underlying storage name region (str): which region to create backingstore (should be the same as uls) """ bs_data = templating.load_yaml(constants.MCG_BACKINGSTORE_YAML) bs_data["metadata"]["name"] = backingstore_name bs_data["metadata"]["namespace"] = config.ENV_DATA["cluster_namespace"] bs_data["spec"] = { "type": "aws-s3", "awsS3": { "targetBucket": uls_name, "region": region, "secret": {"name": cld_mgr.aws_client.secret.name}, }, } create_resource(**bs_data) def cli_create_aws_backingstore(mcg_obj, cld_mgr, backingstore_name, uls_name, region): """ Create a new backingstore with aws underlying storage using noobaa cli command Args: mcg_obj (MCG): Used for execution for the NooBaa CLI command cld_mgr (CloudManager): holds secret for backingstore creation backingstore_name (str): backingstore name uls_name (str): underlying storage name region (str): which region to create backingstore (should be the same as uls) """ mcg_obj.exec_mcg_cmd( f"backingstore create aws-s3 {backingstore_name} " f"--access-key {cld_mgr.aws_client.access_key} " f"--secret-key {cld_mgr.aws_client.secret_key} " f"--target-bucket {uls_name} --region {region}" ) def oc_create_google_backingstore(cld_mgr, backingstore_name, uls_name, region): """ Create a new backingstore with GCP underlying storage using oc create command Args: cld_mgr (CloudManager): holds secret for backingstore creation backingstore_name (str): backingstore name uls_name (str): underlying storage name region (str): which region to create backingstore (should be the same as uls) """ bs_data = templating.load_yaml(constants.MCG_BACKINGSTORE_YAML) bs_data["metadata"]["name"] = backingstore_name bs_data["spec"] = { "type": constants.BACKINGSTORE_TYPE_GOOGLE, "googleCloudStorage": { "targetBucket": uls_name, "secret": {"name": cld_mgr.gcp_client.secret.name}, }, } create_resource(**bs_data) def cli_create_google_backingstore( mcg_obj, cld_mgr, backingstore_name, uls_name, region ): """ Create a new backingstore with GCP underlying storage using a NooBaa CLI command Args: mcg_obj (MCG): Used for execution for the NooBaa CLI command cld_mgr (CloudManager): holds secret for backingstore creation backingstore_name (str): backingstore name uls_name (str): underlying storage name region (str): which region to create backingstore (should be the same as uls) """ mcg_obj.exec_mcg_cmd( f"backingstore create google-cloud-storage {backingstore_name} " f"--private-key-json-file {constants.GOOGLE_CREDS_JSON_PATH} " f"--target-bucket {uls_name}" ) def oc_create_azure_backingstore(cld_mgr, backingstore_name, uls_name, region): """ Create a new backingstore with Azure underlying storage using oc create command Args: cld_mgr (CloudManager): holds secret for backingstore creation backingstore_name (str): backingstore name uls_name (str): underlying storage name region (str): which region to create backingstore (should be the same as uls) """ bs_data = templating.load_yaml(constants.MCG_BACKINGSTORE_YAML) bs_data["metadata"]["name"] = backingstore_name bs_data["spec"] = { "type": constants.BACKINGSTORE_TYPE_AZURE, "azureBlob": { "targetBlobContainer": uls_name, "secret": {"name": cld_mgr.azure_client.secret.name}, }, } create_resource(**bs_data) def cli_create_azure_backingstore( mcg_obj, cld_mgr, backingstore_name, uls_name, region ): """ Create a new backingstore with aws underlying storage using noobaa cli command Args: cld_mgr (CloudManager): holds secret for backingstore creation backingstore_name (str): backingstore name uls_name (str): underlying storage name region (str): which region to create backingstore (should be the same as uls) """ mcg_obj.exec_mcg_cmd( f"backingstore create azure-blob {backingstore_name} " f"--account-key {cld_mgr.azure_client.credential} " f"--account-name {cld_mgr.azure_client.account_name} " f"--target-blob-container {uls_name}" ) def oc_create_ibmcos_backingstore(cld_mgr, backingstore_name, uls_name, region): """ Create a new backingstore with IBM COS underlying storage using oc create command Args: cld_mgr (CloudManager): holds secret for backingstore creation backingstore_name (str): backingstore name uls_name (str): underlying storage name region (str): which region to create backingstore (should be the same as uls) """ bs_data = templating.load_yaml(constants.MCG_BACKINGSTORE_YAML) bs_data["metadata"]["name"] = backingstore_name bs_data["metadata"]["namespace"] = config.ENV_DATA["cluster_namespace"] bs_data["spec"] = { "type": "ibm-cos", "ibmCos": { "targetBucket": uls_name, "signatureVersion": "v2", "endpoint": constants.IBM_COS_GEO_ENDPOINT_TEMPLATE.format( cld_mgr.ibmcos_client.region.lower() ), "secret": {"name": cld_mgr.ibmcos_client.secret.name}, }, } create_resource(**bs_data) def cli_create_ibmcos_backingstore( mcg_obj, cld_mgr, backingstore_name, uls_name, region ): """ Create a new backingstore with IBM COS underlying storage using a NooBaa CLI command Args: cld_mgr (CloudManager): holds secret for backingstore creation backingstore_name (str): backingstore name uls_name (str): underlying storage name region (str): which region to create backingstore (should be the same as uls) """ mcg_obj.exec_mcg_cmd( f"backingstore create ibm-cos {backingstore_name} " f"--access-key {cld_mgr.ibmcos_client.access_key} " f"--secret-key {cld_mgr.ibmcos_client.secret_key} " f"""--endpoint { constants.IBM_COS_GEO_ENDPOINT_TEMPLATE.format( cld_mgr.ibmcos_client.region.lower() ) } """ f"--target-bucket {uls_name}" ) def oc_create_s3comp_backingstore(cld_mgr, backingstore_name, uls_name, region): pass def cli_create_s3comp_backingstore(cld_mgr, backingstore_name, uls_name, region): pass def oc_create_pv_backingstore(backingstore_name, vol_num, size, storage_class): """ Create a new backingstore with pv underlying storage using oc create command Args: backingstore_name (str): backingstore name vol_num (int): number of pv volumes size (int): each volume size in GB storage_class (str): which storage class to use """ bs_data = templating.load_yaml(constants.PV_BACKINGSTORE_YAML) bs_data["metadata"]["name"] = backingstore_name bs_data["metadata"]["namespace"] = config.ENV_DATA["cluster_namespace"] bs_data["spec"]["pvPool"]["resources"]["requests"]["storage"] = str(size) + "Gi" bs_data["spec"]["pvPool"]["numVolumes"] = vol_num bs_data["spec"]["pvPool"]["storageClass"] = storage_class create_resource(**bs_data) wait_for_pv_backingstore(backingstore_name, config.ENV_DATA["cluster_namespace"]) def cli_create_pv_backingstore( mcg_obj, backingstore_name, vol_num, size, storage_class ): """ Create a new backingstore with pv underlying storage using noobaa cli command Args: backingstore_name (str): backingstore name vol_num (int): number of pv volumes size (int): each volume size in GB storage_class (str): which storage class to use """ mcg_obj.exec_mcg_cmd( f"backingstore create pv-pool {backingstore_name} --num-volumes " f"{vol_num} --pv-size-gb {size} --storage-class {storage_class}" ) wait_for_pv_backingstore(backingstore_name, config.ENV_DATA["cluster_namespace"]) def wait_for_pv_backingstore(backingstore_name, namespace=None): """ wait for existing pv backing store to reach OPTIMAL state Args: backingstore_name (str): backingstore name namespace (str): backing store's namespace """ namespace = namespace or config.ENV_DATA["cluster_namespace"] sample = TimeoutSampler( timeout=240, sleep=15, func=check_pv_backingstore_status, backingstore_name=backingstore_name, namespace=namespace, ) if not sample.wait_for_func_status(result=True): logger.error(f"Backing Store {backingstore_name} never reached OPTIMAL state") raise TimeoutExpiredError else: logger.info(f"Backing Store {backingstore_name} created successfully") def check_pv_backingstore_status( backingstore_name, namespace=None, desired_status=constants.HEALTHY_PV_BS ): """ check if existing pv backing store is in OPTIMAL state Args: backingstore_name (str): backingstore name namespace (str): backing store's namespace desired_status (str): desired state for the backing store, if None is given then desired is the Healthy status Returns: bool: True if backing store is in the desired state """ kubeconfig = os.getenv("KUBECONFIG") kubeconfig = f"--kubeconfig {kubeconfig}" if kubeconfig else "" namespace = namespace or config.ENV_DATA["cluster_namespace"] cmd = ( f"oc get backingstore -n {namespace} {kubeconfig} {backingstore_name} " "-o=jsonpath=`{.status.mode.modeCode}`" ) res = run_cmd(cmd=cmd) return True if res in desired_status else False def create_multipart_upload(s3_obj, bucketname, object_key): """ Initiates Multipart Upload Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket on which multipart upload to be initiated on object_key (str): Unique object Identifier Returns: str : Multipart Upload-ID """ mpu = s3_obj.s3_client.create_multipart_upload(Bucket=bucketname, Key=object_key) upload_id = mpu["UploadId"] return upload_id def list_multipart_upload(s3_obj, bucketname): """ Lists the multipart upload details on a bucket Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket Returns: dict : Dictionary containing the multipart upload details """ return s3_obj.s3_client.list_multipart_uploads(Bucket=bucketname) def list_uploaded_parts(s3_obj, bucketname, object_key, upload_id): """ Lists uploaded parts and their ETags Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_key (str): Unique object Identifier upload_id (str): Multipart Upload-ID Returns: dict : Dictionary containing the multipart upload details """ return s3_obj.s3_client.list_parts( Bucket=bucketname, Key=object_key, UploadId=upload_id ) def complete_multipart_upload(s3_obj, bucketname, object_key, upload_id, parts): """ Completes the Multipart Upload Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_key (str): Unique object Identifier upload_id (str): Multipart Upload-ID parts (list): List containing the uploaded parts which includes ETag and part number Returns: dict : Dictionary containing the completed multipart upload details """ result = s3_obj.s3_client.complete_multipart_upload( Bucket=bucketname, Key=object_key, UploadId=upload_id, MultipartUpload={"Parts": parts}, ) return result def abort_all_multipart_upload(s3_obj, bucketname, object_key): """ Abort all Multipart Uploads for this Bucket Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_key (str): Unique object Identifier Returns: list : List of aborted upload ids """ multipart_list = s3_obj.s3_client.list_multipart_uploads(Bucket=bucketname) logger.info(f"Aborting{len(multipart_list)} uploads") if "Uploads" in multipart_list: return [ s3_obj.s3_client.abort_multipart_upload( Bucket=bucketname, Key=object_key, UploadId=upload["UploadId"] ) for upload in multipart_list["Uploads"] ] else: return None def abort_multipart(s3_obj, bucketname, object_key, upload_id): """ Aborts a Multipart Upload for this Bucket Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_key (str): Unique object Identifier upload_id (str): Multipart Upload-ID Returns: str : aborted upload id """ return s3_obj.s3_client.abort_multipart_upload( Bucket=bucketname, Key=object_key, UploadId=upload_id ) def put_bucket_policy(s3_obj, bucketname, policy): """ Adds bucket policy to a bucket Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket policy (str): Bucket policy in Json format Returns: dict : Bucket policy response """ return s3_obj.s3_client.put_bucket_policy(Bucket=bucketname, Policy=policy) def get_bucket_policy(s3_obj, bucketname): """ Gets bucket policy from a bucket Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket Returns: dict : Get Bucket policy response """ return s3_obj.s3_client.get_bucket_policy(Bucket=bucketname) def delete_bucket_policy(s3_obj, bucketname): """ Deletes bucket policy Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket Returns: dict : Delete Bucket policy response """ return s3_obj.s3_client.delete_bucket_policy(Bucket=bucketname) def s3_put_object(s3_obj, bucketname, object_key, data, content_type=""): """ Simple Boto3 client based Put object Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_key (str): Unique object Identifier data (str): string content to write to a new S3 object content_type (str): Type of object data. eg: html, txt etc, Returns: dict : Put object response """ return s3_obj.s3_client.put_object( Bucket=bucketname, Key=object_key, Body=data, ContentType=content_type ) def s3_get_object(s3_obj, bucketname, object_key, versionid=""): """ Simple Boto3 client based Get object Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_key (str): Unique object Identifier versionid (str): Unique version number of an object Returns: dict : Get object response """ return s3_obj.s3_client.get_object( Bucket=bucketname, Key=object_key, VersionId=versionid ) def s3_delete_object(s3_obj, bucketname, object_key, versionid=None): """ Simple Boto3 client based Delete object Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_key (str): Unique object Identifier versionid (str): Unique version number of an object Returns: dict : Delete object response """ if versionid: return s3_obj.s3_client.delete_object( Bucket=bucketname, Key=object_key, VersionId=versionid ) else: return s3_obj.s3_client.delete_object(Bucket=bucketname, Key=object_key) def s3_put_bucket_website(s3_obj, bucketname, website_config): """ Boto3 client based Put bucket website function Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket website_config (dict): Website configuration info Returns: dict : PutBucketWebsite response """ return s3_obj.s3_client.put_bucket_website( Bucket=bucketname, WebsiteConfiguration=website_config ) def s3_get_bucket_website(s3_obj, bucketname): """ Boto3 client based Get bucket website function Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket Returns: dict : GetBucketWebsite response """ return s3_obj.s3_client.get_bucket_website(Bucket=bucketname) def s3_delete_bucket_website(s3_obj, bucketname): """ Boto3 client based Delete bucket website function Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket Returns: dict : DeleteBucketWebsite response """ return s3_obj.s3_client.delete_bucket_website(Bucket=bucketname) def s3_put_bucket_versioning(s3_obj, bucketname, status="Enabled", s3_client=None): """ Boto3 client based Put Bucket Versioning function Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket status (str): 'Enabled' or 'Suspended'. Default 'Enabled' s3_client : Any s3 client resource Returns: dict : PutBucketVersioning response """ if s3_client: return s3_client.put_bucket_versioning( Bucket=bucketname, VersioningConfiguration={"Status": status} ) else: return s3_obj.s3_client.put_bucket_versioning( Bucket=bucketname, VersioningConfiguration={"Status": status} ) def s3_get_bucket_versioning(s3_obj, bucketname, s3_client=None): """ Boto3 client based Get Bucket Versioning function Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket s3_client: Any s3 client resource Returns: dict : GetBucketVersioning response """ if s3_client: return s3_client.get_bucket_versioning(Bucket=bucketname) else: return s3_obj.s3_client.get_bucket_versioning(Bucket=bucketname) def s3_list_object_versions(s3_obj, bucketname, prefix=""): """ Boto3 client based list object Versionfunction Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket prefix (str): Object key prefix Returns: dict : List object version response """ return s3_obj.s3_client.list_object_versions(Bucket=bucketname, Prefix=prefix) def s3_io_create_delete(mcg_obj, awscli_pod, bucket_factory): """ Running IOs on s3 bucket Args: mcg_obj (obj): An MCG object containing the MCG S3 connection credentials awscli_pod (pod): A pod running the AWSCLI tools bucket_factory: Calling this fixture creates a new bucket(s) """ target_dir = "/aws/" + uuid4().hex + "_original/" downloaded_files = retrieve_test_objects_to_pod(awscli_pod, target_dir) bucketname = bucket_factory(1)[0].name uploaded_objects_paths = get_full_path_object(downloaded_files, bucketname) write_individual_s3_objects( mcg_obj, awscli_pod, bucket_factory, downloaded_files, target_dir, bucket_name=bucketname, ) del_objects(uploaded_objects_paths, awscli_pod, mcg_obj) awscli_pod.exec_cmd_on_pod(command=f"rm -rf {target_dir}") def del_objects(uploaded_objects_paths, awscli_pod, mcg_obj): """ Deleting objects from bucket Args: uploaded_objects_paths (list): List of object paths awscli_pod (pod): A pod running the AWSCLI tools mcg_obj (obj): An MCG object containing the MCG S3 connection credentials """ for uploaded_filename in uploaded_objects_paths: logger.info(f"Deleting object {uploaded_filename}") awscli_pod.exec_cmd_on_pod( command=craft_s3_command(mcg_obj, "rm " + uploaded_filename), secrets=[ mcg_obj.access_key_id, mcg_obj.access_key, mcg_obj.s3_internal_endpoint, ], ) def get_full_path_object(downloaded_files, bucket_name): """ Getting full of object in the bucket Args: downloaded_files (list): List of downloaded files bucket_name (str): Name of the bucket Returns: uploaded_objects_paths (list) : List of full paths of objects """ uploaded_objects_paths = [] for uploaded_filename in downloaded_files: uploaded_objects_paths.append(f"s3://{bucket_name}/{uploaded_filename}") return uploaded_objects_paths def obc_io_create_delete(mcg_obj, awscli_pod, bucket_factory): """ Running IOs on OBC interface Args: mcg_obj (obj): An MCG object containing the MCG S3 connection credentials awscli_pod (pod): A pod running the AWSCLI tools bucket_factory: Calling this fixture creates a new bucket(s) """ dir = "/aws/" + uuid4().hex + "_original/" downloaded_files = retrieve_test_objects_to_pod(awscli_pod, dir) bucket_name = bucket_factory(amount=1, interface="OC")[0].name mcg_bucket_path = f"s3://{bucket_name}/" uploaded_objects_paths = get_full_path_object(downloaded_files, bucket_name) sync_object_directory(awscli_pod, dir, mcg_bucket_path, mcg_obj) del_objects(uploaded_objects_paths, awscli_pod, mcg_obj) awscli_pod.exec_cmd_on_pod(command=f"rm -rf {dir}") def retrieve_verification_mode(): if config.ENV_DATA["platform"].lower() == "ibm_cloud": verify = True elif config.DEPLOYMENT.get("use_custom_ingress_ssl_cert"): verify = get_root_ca_cert() else: verify = constants.DEFAULT_INGRESS_CRT_LOCAL_PATH logger.debug(f"verification: '{verify}'") return verify def namespace_bucket_update(mcg_obj, bucket_name, read_resource, write_resource): """ Edits MCG namespace bucket resources Args: mcg_obj (obj): An MCG object containing the MCG S3 connection credentials bucket_name (str): Name of the bucket read_resource (list): Resource names to provide read access write_resource (str): Resource name to provide write access """ mcg_obj.send_rpc_query( "bucket_api", "update_bucket", { "name": bucket_name, "namespace": { "read_resources": read_resource, "write_resource": write_resource, }, }, ) def write_random_objects_in_pod(io_pod, file_dir, amount, pattern="ObjKey"): """ Uses /dev/urandom to create and write random files in a given directory in a pod Args: io_pod (ocs_ci.ocs.ocp.OCP): The pod object in which the files should be generated and written file_dir (str): A string describing the path in which to write the files to amount (int): The amount of files to generate pattern (str): The file name pattern to use Returns: list: A list with the names of all written objects """ obj_lst = [] for i in range(amount): object_key = pattern + "-{}".format(i) obj_lst.append(object_key) io_pod.exec_cmd_on_pod( f"dd if=/dev/urandom of={file_dir}/{object_key} bs=1M count=1 status=none" ) return obj_lst def setup_base_objects(awscli_pod, original_dir, result_dir, amount=2): """ Prepares two directories and populate one of them with objects Args: awscli_pod (Pod): A pod running the AWS CLI tools original_dir (str): original directory name result_dir (str): result directory name amount (Int): Number of test objects to create """ awscli_pod.exec_cmd_on_pod(command=f"mkdir {original_dir} {result_dir}") write_random_objects_in_pod(awscli_pod, original_dir, amount) def check_cached_objects_by_name(mcg_obj, bucket_name, expected_objects_names=None): """ Check if the names of cached objects in a cache bucket are as expected using rpc call Args: mcg_obj (MCG): An MCG object containing the MCG S3 connection credentials bucket_name (str): Name of the cache bucket expected_objects_names (list): Expected objects to be cached Returns: bool: True if all the objects exist in the cache as expected, False otherwise """ res = mcg_obj.send_rpc_query( "object_api", "list_objects", { "bucket": bucket_name, }, ).json() list_objects_res = [name["key"] for name in res.get("reply").get("objects")] if not expected_objects_names: expected_objects_names = [] if set(expected_objects_names) == set(list_objects_res): logger.info("Files cached as expected") return True logger.warning( "Objects did not cache properly, \n" f"Expected: [{expected_objects_names}]\n" f"Cached: [{list_objects_res}]" ) return False def wait_for_cache(mcg_obj, bucket_name, expected_objects_names=None): """ wait for existing cache bucket to cache all required objects Args: mcg_obj (MCG): An MCG object containing the MCG S3 connection credentials bucket_name (str): Name of the cache bucket expected_objects_names (list): Expected objects to be cached """ sample = TimeoutSampler( timeout=60, sleep=10, func=check_cached_objects_by_name, mcg_obj=mcg_obj, bucket_name=bucket_name, expected_objects_names=expected_objects_names, ) if not sample.wait_for_func_status(result=True): logger.error("Objects were not able to cache properly") raise UnexpectedBehaviour def compare_directory(awscli_pod, original_dir, result_dir, amount=2): """ Compares object checksums on original and result directories Args: awscli_pod (pod): A pod running the AWS CLI tools original_dir (str): original directory name result_dir (str): result directory name amount (int): Number of test objects to create """ for i in range(amount): file_name = f"ObjKey-{i}" assert verify_s3_object_integrity( original_object_path=f"{original_dir}/{file_name}", result_object_path=f"{result_dir}/{file_name}", awscli_pod=awscli_pod, ), "Checksum comparision between original and result object failed" def s3_copy_object(s3_obj, bucketname, source, object_key): """ Boto3 client based copy object Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket source (str): Source object key. eg: '<bucket>/<key> object_key (str): Unique object Identifier for copied object Returns: dict : Copy object response """ return s3_obj.s3_client.copy_object( Bucket=bucketname, CopySource=source, Key=object_key ) def s3_upload_part_copy( s3_obj, bucketname, copy_source, object_key, part_number, upload_id ): """ Boto3 client based upload_part_copy operation Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket copy_source (str): Name of the source bucket and key name. {bucket}/{key} part_number (int): Part number upload_id (str): Upload Id object_key (str): Unique object Identifier for copied object Returns: dict : upload_part_copy response """ return s3_obj.s3_client.upload_part_copy( Bucket=bucketname, CopySource=copy_source, Key=object_key, PartNumber=part_number, UploadId=upload_id, ) def s3_get_object_acl(s3_obj, bucketname, object_key): """ Boto3 client based get_object_acl operation Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_key (str): Unique object Identifier for copied object Returns: dict : get object acl response """ return s3_obj.s3_client.get_object_acl(Bucket=bucketname, Key=object_key) def s3_head_object(s3_obj, bucketname, object_key, if_match=None): """ Boto3 client based head_object operation to retrieve only metadata Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_key (str): Unique object Identifier for copied object if_match (str): Return the object only if its entity tag (ETag) is the same as the one specified, Returns: dict : head object response """ if if_match: return s3_obj.s3_client.head_object( Bucket=bucketname, Key=object_key, IfMatch=if_match ) else: return s3_obj.s3_client.head_object(Bucket=bucketname, Key=object_key) def s3_list_objects_v1( s3_obj, bucketname, prefix="", delimiter="", max_keys=1000, marker="" ): """ Boto3 client based list object version1 Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket prefix (str): Limits the response to keys that begin with the specified prefix. delimiter (str): Character used to group keys. max_keys (int): Maximum number of keys returned in the response. Default 1,000 keys. marker (str): key to start with when listing objects in a bucket. Returns: dict : list object v1 response """ return s3_obj.s3_client.list_objects( Bucket=bucketname, Prefix=prefix, Delimiter=delimiter, MaxKeys=max_keys, Marker=marker, ) def s3_list_objects_v2( s3_obj, bucketname, prefix="", delimiter="", max_keys=1000, con_token="", fetch_owner=False, ): """ Boto3 client based list object version2 Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket prefix (str): Limits the response to keys that begin with the specified prefix. delimiter (str): Character used to group keys. max_keys (int): Maximum number of keys returned in the response. Default 1,000 keys. con_token (str): Token used to continue the list fetch_owner (bool): Unique object Identifier Returns: dict : list object v2 response """ return s3_obj.s3_client.list_objects_v2( Bucket=bucketname, Prefix=prefix, Delimiter=delimiter, MaxKeys=max_keys, ContinuationToken=con_token, FetchOwner=fetch_owner, ) def s3_delete_objects(s3_obj, bucketname, object_keys): """ Boto3 client based delete objects Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket object_keys (list): The objects to delete. Format: {'Key': 'object_key', 'VersionId': ''} Returns: dict : delete objects response """ return s3_obj.s3_client.delete_objects( Bucket=bucketname, Delete={"Objects": object_keys} ) def bucket_read_api(mcg_obj, bucket_name): """ Fetches the bucket metadata like size, tiers etc Args: mcg_obj (obj): MCG object bucket_name (str): Name of the bucket Returns: dict : Bucket policy response """ resp = mcg_obj.send_rpc_query( "bucket_api", "read_bucket", params={"name": bucket_name} ) bucket_read_resp = resp.json().get("reply") return bucket_read_resp def get_bucket_available_size(mcg_obj, bucket_name): """ Function to get the bucket available size Args: mcg_obj (obj): MCG object bucket_name (str): Name of the bucket Returns: int : Available size in the bucket """ resp = bucket_read_api(mcg_obj, bucket_name) bucket_size = resp["storage"]["values"]["free"] return bucket_size def compare_bucket_object_list(mcg_obj, first_bucket_name, second_bucket_name): """ Compares the object lists of two given buckets Args: mcg_obj (MCG): An initialized MCG object first_bucket_name (str): The name of the first bucket to compare second_bucket_name (str): The name of the second bucket to compare Returns: bool: True if both buckets contain the same object names in all objects, False otherwise """ def _comparison_logic(): first_bucket_object_set = { obj.key for obj in mcg_obj.s3_list_all_objects_in_bucket(first_bucket_name) } second_bucket_object_set = { obj.key for obj in mcg_obj.s3_list_all_objects_in_bucket(second_bucket_name) } if first_bucket_object_set == second_bucket_object_set: logger.info("Objects in both buckets are identical") return True else: logger.warning( f"""Buckets {first_bucket_name} and {second_bucket_name} do not contain the same objects. {first_bucket_name} objects: {first_bucket_object_set} {second_bucket_name} objects: {second_bucket_object_set} """ ) return False try: for comparison_result in TimeoutSampler(600, 30, _comparison_logic): if comparison_result: return True except TimeoutExpiredError: logger.error( "The compared buckets did not contain the same set of objects after ten minutes" ) return False def write_random_test_objects_to_bucket( io_pod, bucket_to_write, file_dir, amount=1, mcg_obj=None, s3_creds=None, ): """ Write files generated by /dev/urandom to a bucket Args: io_pod (ocs_ci.ocs.ocp.OCP): The pod which should handle all needed IO operations bucket_to_write (str): The bucket name to write the random files to file_dir (str): The path to the folder where all random files will be generated and copied from amount (int, optional): The amount of random objects to write. Defaults to 1. mcg_obj (MCG, optional): An MCG class instance s3_creds (dict, optional): A dictionary containing S3-compatible credentials for writing objects directly to buckets outside of the MCG. Defaults to None. Returns: list: A list containing the names of the random files that were written """ full_object_path = f"s3://{bucket_to_write}" obj_lst = write_random_objects_in_pod(io_pod, file_dir, amount) sync_object_directory( io_pod, file_dir, full_object_path, s3_obj=mcg_obj, signed_request_creds=s3_creds, ) return obj_lst
paper_experiments/utils/tracker.py
noskill/JRMOT_ROS
112
12746447
# vim: expandtab:ts=4:sw=4 from __future__ import absolute_import import numpy as np import pdb from . import kf_2d, kf_3d, double_measurement_kf, imm from . import linear_assignment from . import iou_matching from .track import Track from . import JPDA_matching from . import tracking_utils import math from nn_matching import NearestNeighborDistanceMetric import cv2 class Tracker: """ This is the multi-target tracker. Parameters ---------- metric : nn_matching.NearestNeighborDistanceMetric A distance metric for measurement-to-track association. max_age : int Maximum number of missed misses before a track is deleted. n_init : int Number of consecutive detections before the track is confirmed. The track state is set to `Deleted` if a miss occurs within the first `n_init` frames. Attributes ---------- metric : nn_matching.NearestNeighborDistanceMetric The distance metric used for measurement to track association. max_age : int Maximum number of missed misses before a track is deleted. n_init : int Number of frames that a track remains in initialization phase. kf : EKF.KalmanFilter A Kalman filter to filter target trajectories in image space. tracks : List[Track] The list of active tracks at the current time step. """ def __init__(self, max_age=5, n_init=3, JPDA=False, m_best_sol=1, assn_thresh=0.0, matching_strategy=None, kf_appearance_feature=None, gate_full_state=False, lstm = None, cuda = False, appearance_model = None, calib = None, kf_vel_params=(1./20, 1./160, 1, 1, 2), dummy_node_cost_iou=0.4, dummy_node_cost_app=0.2, nn_budget = None, use_imm=False, kf_walk_params=(1./20, 1./160, 1, 1, 2), markov=(0.9, 0.7), uncertainty_limit=1.8, optical_flow=False, gate_limit=400): self.max_age = max_age self.n_init = n_init self.metric = NearestNeighborDistanceMetric("euclidean", nn_budget) if not use_imm: self.kf = kf_2d.KalmanFilter2D(*kf_vel_params, gate_limit) self.use_imm = False else: self.kf = imm.IMMFilter2D(kf_vel_params, kf_walk_params, markov=markov) self.use_imm = True self.tracks = [] self._next_id = 1 self.JPDA = JPDA self.m_best_sol = m_best_sol self.assn_thresh = assn_thresh self.matching_strategy = matching_strategy self.kf_appearance_feature = kf_appearance_feature self.gate_only_position = not gate_full_state self.lstm = lstm self.cuda = cuda self.dummy_node_cost_app = dummy_node_cost_app self.dummy_node_cost_iou = dummy_node_cost_iou self.appearance_model = appearance_model self.prev_frame = None self.uncertainty_limit = uncertainty_limit self.optical_flow = optical_flow # @profile def gated_metric(self, tracks, dets, track_indices, detection_indices, compare_2d = False): targets = np.array([tracks[i].track_id for i in track_indices]) if not compare_2d and self.metric.check_samples(targets): compare_2d = True if compare_2d: features = np.array([dets[i].appearance_feature for i in detection_indices]) else: features = np.array([dets[i].feature for i in detection_indices]) #cost_matrix = self.metric.distance(features, targets, compare_2d) cost_matrix_appearance = self.metric.distance_torch(features, targets, compare_2d) cost_matrix_iou = iou_matching.iou_cost(tracks, dets, track_indices, detection_indices) gate_mask = linear_assignment.gate_cost_matrix( self.kf, tracks, dets, track_indices, detection_indices, only_position=self.gate_only_position) cost_matrix = np.dstack((cost_matrix_appearance, cost_matrix_iou)) return cost_matrix, gate_mask def predict(self): """Propagate track state distributions one time step forward. This function should be called once every time step, before `update`. """ for track in self.tracks: track.predict(self.kf) # @profile def update(self, cur_frame, detections, compare_2d = False): """Perform measurement update and track management. Parameters ---------- detections : List[deep_sort.detection.Detection] A list of detections at the current time step. """ self.cur_frame = cv2.cvtColor((255*cur_frame).permute(1,2,0).cpu().numpy(), cv2.COLOR_BGR2GRAY) matches, unmatched_tracks, unmatched_detections = \ self._match(detections, compare_2d) # update filter for each assigned track # Only do this for non-JPDA because in JPDA the kf states are updated # during the matching process if not self.JPDA: # Map matched tracks to detections track_detection_map = {t:d for (t,d) in matches} # Map unmatched tracks to -1 for no detection for t in unmatched_tracks: track_detection_map[t] = -1 for track_idx, detection_idx in matches: self.tracks[track_idx].update(self.kf, detections, detection_idx=detection_idx, JPDA=self.JPDA, cur_frame = self.cur_frame, appearance_model = self.appearance_model, lstm = self.lstm) # update track state for unmatched tracks for track_idx in unmatched_tracks: self.tracks[track_idx].mark_missed() # create new tracks self.prune_tracks() flow = None if unmatched_detections: if self.optical_flow and self.prev_frame is not None: flow = cv2.calcOpticalFlowFarneback(self.prev_frame, self.cur_frame, None, 0.5, 3, 15, 3, 5, 1.2, 0) for detection_idx in unmatched_detections: self._initiate_track(detections[detection_idx], flow) # Update distance metric. active_targets = [t.track_id for t in self.tracks] features, features_2d, targets, targets_2d = [], [], [], [] for track in self.tracks: features += track.features features_2d += track.features_2d targets += [track.track_id for _ in track.features] targets_2d += [track.track_id for _ in track.features_2d] track.features = [] track.features_2d = [] self.metric.partial_fit( np.asarray(features), np.asarray(features_2d), np.asarray(targets), np.asarray(targets_2d), active_targets) self.prev_frame = self.cur_frame # @profile def _match(self, detections, compare_2d): # Associate all tracks using combined cost matrices. if self.JPDA: # Run JPDA on all tracks marginalizations = \ linear_assignment.JPDA(self.gated_metric, self.dummy_node_cost_app, self.dummy_node_cost_iou, self.tracks, \ detections, m=self.m_best_sol, compare_2d = compare_2d) # for track in self.tracks: #TODO: REMOVE # print(track.track_id) # print(marginalizations) jpda_matcher = JPDA_matching.Matcher( detections, marginalizations, range(len(self.tracks)), self.matching_strategy, assignment_threshold=self.assn_thresh) matches_a, unmatched_tracks_a, unmatched_detections = jpda_matcher.match() # Map matched tracks to detections # Map matched tracks to detections track_detection_map = {t:d for (t,d) in matches_a} # Map unmatched tracks to -1 for no detection for t in unmatched_tracks_a: track_detection_map[t] = -1 # update Kalman state if marginalizations.shape[0] > 0: for i in range(len(self.tracks)): self.tracks[i].update(self.kf, detections, marginalization=marginalizations[i,:], detection_idx=track_detection_map[i], JPDA=self.JPDA, cur_frame = self.cur_frame, appearance_model = self.appearance_model, lstm = self.lstm) else: confirmed_tracks = [i for i, t in enumerate(self.tracks) if t.is_confirmed()] matches_a, unmatched_tracks_a, unmatched_detections = \ linear_assignment.matching_cascade( self.gated_metric, self.dummy_node_cost_iou, self.max_age, self.tracks, detections, confirmed_tracks, compare_2d = compare_2d) return matches_a, unmatched_tracks_a, unmatched_detections def _initiate_track(self, detection, flow=None): if self.use_imm: mean, covariance, model_probabilities = self.kf.initiate(detection.to_xywh(), flow) else: mean, covariance = self.kf.initiate(detection.to_xywh(), flow) model_probabilities = None self.tracks.append(Track( mean, covariance, model_probabilities, self._next_id, self.n_init, self.max_age, kf_appearance_feature = self.kf_appearance_feature, feature=detection.feature, appearance_feature = detection.appearance_feature, cuda = self.cuda, lstm = self.lstm, last_det = detection)) self._next_id += 1 def prune_tracks(self): h, w = self.cur_frame.shape for track in self.tracks: # Check if track is leaving if self.use_imm: predicted_mean, predicted_cov = self.kf.combine_states(track.mean, track.covariance, track.model_probabilities) #TODO: This doesn't predict. Mean should def predict else: predicted_mean = self.kf.predict_mean(track.mean) predicted_cov = track.covariance predicted_pos = predicted_mean[:2] predicted_vel = predicted_mean[4:6] predicted_pos[0] -= w/2 predicted_pos[1] -= h/2 cos_theta = np.dot(predicted_pos, predicted_vel)/(np.linalg.norm(predicted_pos)* np.linalg.norm(predicted_vel) + 1e-6) predicted_pos[0] += w/2 predicted_pos[1] += h/2 # Thresholds for deciding whether track is outside image BORDER_VALUE = 0 if (cos_theta > 0 and (predicted_pos[0] - track.mean[2]/2<= BORDER_VALUE or predicted_pos[0] + track.mean[2]/2 >= w - BORDER_VALUE)): if track.is_exiting() and not track.matched: track.delete_track() else: track.mark_exiting() # Check if track is too uncertain # cov_axis,_ = np.linalg.eigh(predicted_cov) # if np.abs(np.sqrt(cov_axis[-1]))*6 > self.uncertainty_limit*np.linalg.norm(predicted_mean[2:4]): # track.delete_track() self.tracks = [t for t in self.tracks if not t.is_deleted()]
zarr/tests/test_info.py
parthxtripathi/zarr-python
203
12746462
import numcodecs import pytest import zarr from zarr.util import InfoReporter @pytest.mark.parametrize('array_size', [10, 15000]) def test_info(array_size): # setup g = zarr.group(store=dict(), chunk_store=dict(), synchronizer=zarr.ThreadSynchronizer()) g.create_group('foo') z = g.zeros('bar', shape=array_size, filters=[numcodecs.Adler32()]) # test group info items = g.info_items() keys = sorted([k for k, _ in items]) expected_keys = sorted([ 'Type', 'Read-only', 'Synchronizer type', 'Store type', 'Chunk store type', 'No. members', 'No. arrays', 'No. groups', 'Arrays', 'Groups', 'Name' ]) assert expected_keys == keys # can also get a string representation of info via the info attribute assert isinstance(g.info, InfoReporter) assert "Type" in repr(g.info) # test array info items = z.info_items() keys = sorted([k for k, _ in items]) expected_keys = sorted([ 'Type', 'Data type', 'Shape', 'Chunk shape', 'Order', 'Read-only', 'Filter [0]', 'Compressor', 'Synchronizer type', 'Store type', 'Chunk store type', 'No. bytes', 'No. bytes stored', 'Storage ratio', 'Chunks initialized', 'Name' ]) assert expected_keys == keys # can also get a string representation of info via the info attribute assert isinstance(z.info, InfoReporter) assert "Type" in repr(z.info)
test/functional/tests/io_class/io_class_common.py
Ostrokrzew/open-cas-linux
139
12746476
<filename>test/functional/tests/io_class/io_class_common.py # # Copyright(c) 2019-2021 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause-Clear # from api.cas import casadm from api.cas import ioclass_config from api.cas.cache_config import ( CacheLineSize, CacheMode, CleaningPolicy, SeqCutOffPolicy, ) from core.test_run import TestRun from test_tools.dd import Dd from test_tools.fio.fio import Fio from test_tools.fio.fio_param import ReadWrite, IoEngine from test_utils.os_utils import Udev, sync from test_utils.os_utils import drop_caches, DropCachesMode from test_utils.size import Size, Unit ioclass_config_path = "/tmp/opencas_ioclass.conf" mountpoint = "/tmp/cas1-1" def prepare( cache_size=Size(10, Unit.GibiByte), core_size=Size(40, Unit.GibiByte), cache_mode=CacheMode.WB, cache_line_size=CacheLineSize.LINE_4KiB, default_allocation="0.00" ): ioclass_config.remove_ioclass_config() cache_device = TestRun.disks["cache"] core_device = TestRun.disks["core"] cache_device.create_partitions([cache_size]) core_device.create_partitions([core_size]) cache_device = cache_device.partitions[0] core_device = core_device.partitions[0] TestRun.LOGGER.info(f"Starting cache") cache = casadm.start_cache( cache_device, cache_mode=cache_mode, cache_line_size=cache_line_size, force=True ) Udev.disable() TestRun.LOGGER.info(f"Setting cleaning policy to NOP") casadm.set_param_cleaning(cache_id=cache.cache_id, policy=CleaningPolicy.nop) TestRun.LOGGER.info(f"Adding core device") core = casadm.add_core(cache, core_dev=core_device) TestRun.LOGGER.info(f"Setting seq cutoff policy to never") core.set_seq_cutoff_policy(SeqCutOffPolicy.never) ioclass_config.create_ioclass_config( add_default_rule=False, ioclass_config_path=ioclass_config_path ) # To make test more precise all workload except of tested ioclass should be # put in pass-through mode ioclass_config.add_ioclass( ioclass_id=ioclass_config.DEFAULT_IO_CLASS_ID, eviction_priority=ioclass_config.DEFAULT_IO_CLASS_PRIORITY, allocation=default_allocation, rule=ioclass_config.DEFAULT_IO_CLASS_RULE, ioclass_config_path=ioclass_config_path, ) output = TestRun.executor.run(f"mkdir -p {mountpoint}") if output.exit_code != 0: raise Exception(f"Failed to create mountpoint") return cache, core def get_io_class_occupancy(cache, io_class_id, percent=False): return get_io_class_usage(cache, io_class_id, percent).occupancy def get_io_class_dirty(cache, io_class_id): return get_io_class_usage(cache, io_class_id).dirty def get_io_class_usage(cache, io_class_id, percent=False): return cache.get_io_class_statistics( io_class_id=io_class_id, percentage_val=percent ).usage_stats def run_io_dir(path, size_4k, offset=0): dd = ( Dd() .input("/dev/zero") .output(f"{path}") .count(size_4k) .block_size(Size(1, Unit.Blocks4096)) .seek(offset) ) TestRun.LOGGER.info(f"{dd}") output = dd.run() if output.exit_code != 0: TestRun.fail(f"Failed to execute dd.\n {output.stdout}\n{output.stderr}") sync() drop_caches(DropCachesMode.ALL) def run_io_dir_read(path): dd = Dd().output("/dev/null").input(f"{path}") output = dd.run() if output.exit_code != 0: TestRun.fail(f"Failed to execute dd.\n {output.stdout}\n{output.stderr}") sync() drop_caches(DropCachesMode.ALL) def run_fio_count(core, blocksize, num_ios): ( Fio() .create_command() .target(core) .io_engine(IoEngine.libaio) .read_write(ReadWrite.randread) .block_size(blocksize) .direct() .file_size(Size(10, Unit.GibiByte)) .num_ios(num_ios) .run() )
salt/modules/rebootmgr.py
tomdoherty/salt
9,425
12746483
""" :maintainer: <NAME> <<EMAIL>> :maturity: new :depends: None :platform: Linux .. versionadded:: 3004 """ import logging import re import salt.exceptions log = logging.getLogger(__name__) def __virtual__(): """rebootmgrctl command is required.""" if __utils__["path.which"]("rebootmgrctl") is not None: return True else: return (False, "Module rebootmgt requires the command rebootmgrctl") def _cmd(cmd, retcode=False): """Utility function to run commands.""" result = __salt__["cmd.run_all"](cmd) if retcode: return result["retcode"] if result["retcode"]: raise salt.exceptions.CommandExecutionError(result["stderr"]) return result["stdout"] def version(): """Return the version of rebootmgrd CLI Example: .. code-block:: bash salt microos rebootmgr version """ cmd = ["rebootmgrctl", "--version"] return _cmd(cmd).split()[-1] def is_active(): """Check if the rebootmgrd is running and active or not. CLI Example: .. code-block:: bash salt microos rebootmgr is_active """ cmd = ["rebootmgrctl", "is_active", "--quiet"] return _cmd(cmd, retcode=True) == 0 def reboot(order=None): """Tells rebootmgr to schedule a reboot. With the [now] option, a forced reboot is done, no lock from etcd is requested and a set maintenance window is ignored. With the [fast] option, a lock from etcd is requested if needed, but a defined maintenance window is ignored. order If specified, can be "now" or "fast" CLI Example: .. code-block:: bash salt microos rebootmgr reboot salt microos rebootmgt reboot order=now """ if order and order not in ("now", "fast"): raise salt.exceptions.CommandExecutionError( "Order parameter, if specified, must be 'now' or 'fast'" ) cmd = ["rebootmgrctl", "reboot"] if order: cmd.append(order) return _cmd(cmd) def cancel(): """Cancels an already running reboot. CLI Example: .. code-block:: bash salt microos rebootmgr cancel """ cmd = ["rebootmgrctl", "cancel"] return _cmd(cmd) def status(): """Returns the current status of rebootmgrd. Valid returned values are: 0 - No reboot requested 1 - Reboot requested 2 - Reboot requested, waiting for maintenance window 3 - Reboot requested, waiting for etcd lock. CLI Example: .. code-block:: bash salt microos rebootmgr status """ cmd = ["rebootmgrctl", "status", "--quiet"] return _cmd(cmd, retcode=True) def set_strategy(strategy=None): """A new strategy to reboot the machine is set and written into /etc/rebootmgr.conf. strategy If specified, must be one of those options: best-effort - This is the default strategy. If etcd is running, etcd-lock is used. If no etcd is running, but a maintenance window is specified, the strategy will be maint-window. If no maintenance window is specified, the machine is immediately rebooted (instantly). etcd-lock - A lock at etcd for the specified lock-group will be acquired before reboot. If a maintenance window is specified, the lock is only acquired during this window. maint-window - Reboot does happen only during a specified maintenance window. If no window is specified, the instantly strategy is followed. instantly - Other services will be informed that a reboot will happen. Reboot will be done without getting any locks or waiting for a maintenance window. off - Reboot requests are temporary ignored. /etc/rebootmgr.conf is not modified. CLI Example: .. code-block:: bash salt microos rebootmgr set_strategy stragegy=off """ if strategy and strategy not in ( "best-effort", "etcd-lock", "maint-window", "instantly", "off", ): raise salt.exceptions.CommandExecutionError("Strategy parameter not valid") cmd = ["rebootmgrctl", "set-strategy"] if strategy: cmd.append(strategy) return _cmd(cmd) def get_strategy(): """The currently used reboot strategy of rebootmgrd will be printed. CLI Example: .. code-block:: bash salt microos rebootmgr get_strategy """ cmd = ["rebootmgrctl", "get-strategy"] return _cmd(cmd).split(":")[-1].strip() def set_window(time, duration): """Set's the maintenance window. time The format of time is the same as described in systemd.time(7). duration The format of duration is "[XXh][YYm]". CLI Example: .. code-block:: bash salt microos rebootmgr set_window time="Thu,Fri 2020-*-1,5 11:12:13" duration=1h """ cmd = ["rebootmgrctl", "set-window", time, duration] return _cmd(cmd) def get_window(): """The currently set maintenance window will be printed. CLI Example: .. code-block:: bash salt microos rebootmgr get_window """ cmd = ["rebootmgrctl", "get-window"] window = _cmd(cmd) return dict( zip( ("time", "duration"), re.search( r"Maintenance window is set to (.*), lasting (.*).", window ).groups(), ) ) def set_group(group): """Set the group, to which this machine belongs to get a reboot lock from etcd. group Group name CLI Example: .. code-block:: bash salt microos rebootmgr set_group group=group_1 """ cmd = ["rebootmgrctl", "set-group", group] return _cmd(cmd) def get_group(): """The currently set lock group for etcd. CLI Example: .. code-block:: bash salt microos rebootmgr get_group """ cmd = ["rebootmgrctl", "get-group"] group = _cmd(cmd) return re.search(r"Etcd lock group is set to (.*)", group).groups()[0] def set_max(max_locks, group=None): """Set the maximal number of hosts in a group, which are allowed to reboot at the same time. number Maximal number of hosts in a group group Group name CLI Example: .. code-block:: bash salt microos rebootmgr set_max 4 """ cmd = ["rebootmgrctl", "set-max"] if group: cmd.extend(["--group", group]) cmd.append(max_locks) return _cmd(cmd) def lock(machine_id=None, group=None): """Lock a machine. If no group is specified, the local default group will be used. If no machine-id is specified, the local machine will be locked. machine_id The machine-id is a network wide, unique ID. Per default the ID from /etc/machine-id is used. group Group name CLI Example: .. code-block:: bash salt microos rebootmgr lock group=group1 """ cmd = ["rebootmgrctl", "lock"] if group: cmd.extend(["--group", group]) if machine_id: cmd.append(machine_id) return _cmd(cmd) def unlock(machine_id=None, group=None): """Unlock a machine. If no group is specified, the local default group will be used. If no machine-id is specified, the local machine will be locked. machine_id The machine-id is a network wide, unique ID. Per default the ID from /etc/machine-id is used. group Group name CLI Example: .. code-block:: bash salt microos rebootmgr unlock group=group1 """ cmd = ["rebootmgrctl", "unlock"] if group: cmd.extend(["--group", group]) if machine_id: cmd.append(machine_id) return _cmd(cmd)
tests/test_perspective_queue.py
sguzman/castero
483
12746494
<reponame>sguzman/castero<filename>tests/test_perspective_queue.py import os from unittest import mock from castero.config import Config from castero.episode import Episode from castero.feed import Feed from castero.player import Player from castero.queue import Queue my_dir = os.path.dirname(os.path.realpath(__file__)) feed = Feed(file=my_dir + "/feeds/valid_basic.xml") episode = Episode( feed, title="episode title", description="episode description", link="episode link", pubdate="episode pubdate", copyright="episode copyright", enclosure="episode enclosure", ) player1 = Player("MLK Dream", my_dir + "/media/MLK_Dream_10s.mp3", episode) player2 = Player("MLK Dream", my_dir + "/media/MLK_Dream_10s.mp3", episode) player3 = Player("MLK Dream", my_dir + "/media/MLK_Dream_10s.mp3", episode) queue = Queue(mock.MagicMock()) queue.add(player1) queue.add(player2) def get_queue_perspective(display): """Retrieve the Queue perspective. :param display the display containing the loaded perspective :returns Queue: the loaded Queue perspective """ display._active_perspective = 2 return display.perspectives[2] def test_perspective_queue_borders(display): perspective = get_queue_perspective(display) display.display() assert perspective._queue_window.hline.call_count == 1 assert perspective._queue_window.vline.call_count == 1 assert perspective._metadata_window.hline.call_count == 1 display._stdscr.reset_mock() def test_perspective_queue_display_episode_metadata(display): perspective = get_queue_perspective(display) display._queue = queue perspective._draw_metadata = mock.MagicMock() display.display() perspective._draw_metadata.assert_called_with(perspective._metadata_window) display._stdscr.reset_mock() def test_perspective_queue_input_keys(display): perspective = get_queue_perspective(display) display._queue = queue display._footer_window.getch = mock.MagicMock(return_value=10) ret_val = perspective.handle_input(ord("h")) assert ret_val display._stdscr.reset_mock() movement_keys = [ display.KEY_MAPPING[Config["key_up"]], display.KEY_MAPPING[Config["key_right"]], display.KEY_MAPPING[Config["key_down"]], display.KEY_MAPPING[Config["key_left"]], display.KEY_MAPPING[Config["key_scroll_up"]], display.KEY_MAPPING[Config["key_scroll_down"]], ] for key in movement_keys: perspective._metadata_updated = True ret_val = perspective.handle_input(key) assert ret_val assert not perspective._metadata_updated operation_keys = [ display.KEY_MAPPING[Config["key_delete"]], display.KEY_MAPPING[Config["key_remove"]], display.KEY_MAPPING[Config["key_reload"]], display.KEY_MAPPING[Config["key_reload_selected"]], display.KEY_MAPPING[Config["key_play_selected"]], display.KEY_MAPPING[Config["key_add_selected"]], display.KEY_MAPPING[Config["key_clear"]], display.KEY_MAPPING[Config["key_next"]], display.KEY_MAPPING[Config["key_pause_play"]], display.KEY_MAPPING[Config["key_pause_play_alt"]], display.KEY_MAPPING[Config["key_seek_forward"]], display.KEY_MAPPING[Config["key_seek_forward_alt"]], display.KEY_MAPPING[Config["key_seek_backward"]], display.KEY_MAPPING[Config["key_seek_backward_alt"]], display.KEY_MAPPING[Config["key_execute"]], ] for key in operation_keys: ret_val = perspective.handle_input(key) assert ret_val ret_val = perspective.handle_input(ord("q")) assert not ret_val display._stdscr.reset_mock() def test_perspective_queue_draw_metadata(display): perspective = get_queue_perspective(display) display.database.replace_feed(feed) display.database.replace_episodes(feed, [episode]) display.menus_valid = False perspective._draw_metadata(perspective._metadata_window) perspective._draw_metadata(perspective._metadata_window) def test_perspective_queue_get_active_menu(display): perspective = get_queue_perspective(display) perspective._active_window = 0 assert perspective._get_active_menu() == perspective._queue_menu def test_perspective_queue_remove_selected_first(display): perspective = get_queue_perspective(display) perspective._queue_menu = mock.MagicMock() perspective._queue_menu.item = player1 queue1 = Queue(display) queue1.add(player1) queue1.add(player2) queue1.add(player3) display._queue = queue1 perspective._remove_selected_from_queue() assert queue1.first == player2 assert queue1.length == 2 def test_perspective_queue_remove_selected_middle(display): perspective = get_queue_perspective(display) perspective._queue_menu = mock.MagicMock() perspective._queue_menu.item = player2 queue1 = Queue(display) queue1.add(player1) queue1.add(player2) queue1.add(player3) display._queue = queue1 perspective._remove_selected_from_queue() assert queue1.first == player1 assert queue1.length == 2
media/mca/structgen.py
rio-31/android_frameworks_base-1
164
12746510
<gh_stars>100-1000 #!/usr/bin/env python # # Copyright (C) 2011 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys hFileTemplate = """/** * This file is auto-generated by platform/system/media/mca/structgen.py! Do NOT modify! **/ #ifndef %s #define %s %s #endif // %s """ jniFileTemplate = """/** * This file is auto-generated by platform/system/media/mca/structgen.py! Do NOT modify! **/ #include <stdint.h> #include "native/%s.h" #ifdef __cplusplus extern "C" { #endif #include "jni.h" // Helper functions //////////////////////////////////////////////////////////////////////////////// %s* Get%sAtIndex(JNIEnv* env, jobject buffer, int index) { jclass base_class = (*env)->FindClass(env, "android/filterfw/core/NativeBuffer"); jfieldID ptr_field = (*env)->GetFieldID(env, base_class, "mDataPointer", "J"); uintptr_t data_ptr = (*env)->GetLongField(env, buffer, ptr_field); %s* array = (%s*)data_ptr; (*env)->DeleteLocalRef(env, base_class); return &array[index]; } // Declarations //////////////////////////////////////////////////////////////////////////////////// JNIEXPORT jint JNICALL Java_%s_getElementSize(JNIEnv* env, jobject thiz); %s #ifdef __cplusplus } #endif // Implementation ////////////////////////////////////////////////////////////////////////////////// jint Java_%s_getElementSize(JNIEnv* env, jobject thiz) { return sizeof(%s); } %s """ javaFileTemplate = """/** * This file is auto-generated by platform/system/media/mca/structgen.py! Do NOT modify! **/ package %s; import android.filterfw.core.NativeBuffer; %s """ def ToJavaName(cname, start_upper_at = 1): lower = cname.split("_") upper = [c.title() for c in lower] return "".join(lower[:start_upper_at] + upper[start_upper_at:]) def ToJNIPackage(package, jclassname): return "%s_%s" % (package.replace(".", "_"), jclassname) def ToMacroDefName(cname, pname): return "%s_%s" % (pname.replace(".", "_").upper(), cname.upper()) class ParseError: def __init__(self, lineno, message): self.lineno = lineno self.message = message def __str__(self): return "On line %d: %s" % (self.lineno, self.message) class FieldType_BasePOD: def __init__(self, name, structname, jclassname, package, javatype, ctype, jtype, defval): self.name = name self.structname = structname self.jclassname = jclassname self.package = package self.javatype = javatype self.ctype = ctype self.jtype = jtype self.defval = defval def cString(self): return " %s %s;" % (self.ctype, self.name) def javaGetter(self): return " public %s get%s(int index) {\n"\ " assertReadable();\n"\ " return nativeGet%s(index);\n"\ " }" % (self.javatype, ToJavaName(self.name, 0), ToJavaName(self.name, 0)) def javaSetter(self): return " public void set%s(int index, %s value) {\n"\ " assertWritable();\n"\ " nativeSet%s(index, value);\n"\ " }" % (ToJavaName(self.name, 0), self.javatype, ToJavaName(self.name, 0)) def javaNativeGetter(self): return " private native %s nativeGet%s(int index);"\ % (self.javatype, ToJavaName(self.name, 0)) def javaNativeSetter(self): return " private native boolean nativeSet%s(int index, %s value);"\ % (ToJavaName(self.name, 0), self.javatype) def jniGetterDefString(self): return "JNIEXPORT %s JNICALL\n" \ "Java_%s_nativeGet%s(JNIEnv* env, jobject thiz, jint index);" \ % (self.jtype, ToJNIPackage(self.package, self.jclassname), ToJavaName(self.name, 0)) def jniGetterImplString(self): return \ "%s Java_%s_nativeGet%s(JNIEnv* env, jobject thiz, jint index) {\n"\ " %s* instance = Get%sAtIndex(env, thiz, index);\n"\ " return instance ? instance->%s : %s;\n"\ "}\n" % (self.jtype, ToJNIPackage(self.package, self.jclassname), ToJavaName(self.name, 0),\ self.structname, self.structname, self.name, self.defval) def jniSetterDefString(self): return "JNIEXPORT jboolean JNICALL\n" \ "Java_%s_nativeSet%s(JNIEnv* env, jobject thiz, jint index, %s value);" \ % (ToJNIPackage(self.package, self.jclassname), ToJavaName(self.name, 0), self.jtype) def jniSetterImplString(self): return \ "jboolean Java_%s_nativeSet%s(JNIEnv* env, jobject thiz, jint index, %s value) {\n"\ " %s* instance = Get%sAtIndex(env, thiz, index);\n"\ " if (instance) {\n"\ " instance->%s = value;\n"\ " return JNI_TRUE;\n"\ " }\n"\ " return JNI_FALSE;\n"\ "}\n" % (ToJNIPackage(self.package, self.jclassname), ToJavaName(self.name, 0),\ self.jtype, self.structname, self.structname, self.name) class FieldType_Float(FieldType_BasePOD): def __init__(self, name, structname, jclassname, package): FieldType_BasePOD.__init__(self, name, structname, jclassname, package, "float", "float", "jfloat", "0.0") class FieldType_Int(FieldType_BasePOD): def __init__(self, name, structname, jclassname, package): FieldType_BasePOD.__init__(self, name, structname, jclassname, package, "int", "int", "jint", "0") class FieldType_Long(FieldType_BasePOD): def __init__(self, name, structname, jclassname, package): FieldType_BasePOD.__init__(self, name, structname, jclassname, package, "long", "long long", "jlong", "0") class StructSpec: def parseTextFile(self, filepath): # Init self.name = None self.package = None self.fields = [] self.structname = None self.jclassname = None self.libname = None # Open the file txtfile = open(filepath) # Parse it line by line lineno = 0 for line in txtfile: # Split line into components linecomps = line.split() if len(linecomps) == 0: continue # Execute command cmd = linecomps[0] if cmd == "@name": self.commandArgAssert(linecomps, 1, lineno) self.name = linecomps[1] if not self.structname: self.structname = self.name if not self.jclassname: self.jclassname = self.name elif cmd == "@package": self.commandArgAssert(linecomps, 1, lineno) self.package = linecomps[1] elif cmd == "@libname": self.commandArgAssert(linecomps, 1, lineno) self.libname = linecomps[1] elif cmd == "@structname": self.commandArgAssert(linecomps, 1, lineno) self.structname = linecomps[1] elif cmd == "@javaclassname": self.commandArgAssert(linecomps, 1, lineno) self.jclassname = linecomps[1] elif cmd == "@field": self.commandArgAssert(linecomps, 2, lineno) typestr = linecomps[1] if typestr == "int": fieldtype = FieldType_Int(linecomps[2], self.structname, self.jclassname, self.package) elif typestr == "long": fieldtype = FieldType_Long(linecomps[2], self.structname, self.jclassname, self.package) elif typestr == "float": fieldtype = FieldType_Float(linecomps[2], self.structname, self.jclassname, self.package) else: raise ParseError(lineno, "Unknown field type '%s'!" % typestr) self.fields.append(fieldtype) else: raise ParseError(lineno, "Unknown command: '%s'!" % cmd) lineno = lineno + 1 # Make sure we have all required info if not self.name: raise ParseError(lineno, "Required field '@name' missing!") elif not self.package: raise ParseError(lineno, "Required field '@package' missing!") elif not self.libname: raise ParseError(lineno, "Required field '@libname' missing!") # Normalize values if self.libname[:3] == "lib": self.libname = self.libname[3:] def commandArgAssert(self, linecomps, expectedcount, lineno): foundcount = len(linecomps) - 1 if foundcount < expectedcount: raise ParseError(lineno, "Not enough arguments specifed for command '%s'! Expected %d, " \ "but got only %d!" % (linecomps[0], expectedcount, foundcount)) elif foundcount > expectedcount + 1: raise ParseError(lineno, "Too many arguments specifed for command '%s'! Expected %d, " \ "but got %d!" % (linecomps[0], expectedcount, foundcount)) def cStructString(self): cfields = [f.cString() for f in self.fields] return "typedef struct Struct%s {\n%s\n} %s;\n" % (self.structname,\ "\n".join(cfields),\ self.structname) def javaClassString(self): jgetters = [f.javaGetter() for f in self.fields] jsetters = [f.javaSetter() for f in self.fields] jnativesetters = [f.javaNativeSetter() for f in self.fields] jnativegetters = [f.javaNativeGetter() for f in self.fields] return "public class %s extends NativeBuffer {\n\n"\ " public %s() {\n"\ " super();\n"\ " }\n"\ "\n"\ " public %s(int count) {\n"\ " super(count);\n"\ " }\n"\ "\n"\ " public native int getElementSize();\n"\ "\n"\ "%s\n\n"\ "%s\n\n"\ "%s\n\n"\ "%s\n\n"\ " static {\n"\ " System.loadLibrary(\"%s\");\n"\ " }\n"\ "\n"\ "};\n" % (self.jclassname,\ self.jclassname,\ self.jclassname,\ "\n\n".join(jgetters),\ "\n\n".join(jsetters),\ "\n\n".join(jnativegetters),\ "\n\n".join(jnativesetters),\ self.libname) def jniDeclString(self): jnigetters = [f.jniGetterDefString() for f in self.fields] jnisetters = [f.jniSetterDefString() for f in self.fields] return "\n\n".join(jnigetters + jnisetters) def jniImplString(self): jnigetters = [f.jniGetterImplString() for f in self.fields] jnisetters = [f.jniSetterImplString() for f in self.fields] return "\n\n".join(jnigetters + jnisetters) def hFileString(self): defname = ToMacroDefName(self.structname, self.package) return hFileTemplate % (defname, defname, self.cStructString(), defname) def javaFileString(self): return javaFileTemplate % (self.package, self.javaClassString()) def jniFileString(self): return jniFileTemplate % (self.structname.lower(),\ self.structname,\ self.structname,\ self.structname,\ self.structname,\ ToJNIPackage(self.package, self.jclassname),\ self.jniDeclString(),\ ToJNIPackage(self.package, self.jclassname),\ self.structname, self.jniImplString()) def main(argv): if len(argv) != 2: print("Usage: %s <file.struct>" % argv[0]) return -1 filepath = argv[1] structspec = StructSpec() structspec.parseTextFile(filepath) hfilename = "%s.h" % structspec.structname.lower() javafilename = "%s.java" % structspec.jclassname jnifilename = "jni_%s.c" % structspec.structname.lower() javapackagepath = structspec.package.replace('.','/') rootdir = os.path.dirname(filepath) hfilepath = "%s/../native/%s" % (rootdir, hfilename) javafilepath = "%s/../java/%s/%s" % (rootdir, javapackagepath, javafilename) jnifilepath = "%s/../jni/%s" % (rootdir, jnifilename) hfile = open(hfilepath, 'w') hfile.write(structspec.hFileString()) hfile.close() javafile = open(javafilepath, 'w') javafile.write(structspec.javaFileString()) javafile.close() jnifile = open(jnifilepath, 'w') jnifile.write(structspec.jniFileString()) jnifile.close() if __name__ == "__main__": sys.exit(main(sys.argv))
src/appengine/libs/query/base.py
ABHIsHEk122811/clusterfuzz
5,023
12746546
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Represent the interface for Query. This is important because our access control logic needs a unified way to specify conditions for both BigQuery query and Datastore query. This must be compatible with libs.filters and libs.crash_access.""" class Query(object): """Represent the interface for Query.""" def filter(self, field, value, operator='='): """Filter by a single value.""" raise NotImplementedError def filter_in(self, field, values): """Filter by multiple values.""" raise NotImplementedError def union(self, *queries): """Union all queries with OR conditions.""" raise NotImplementedError def new_subquery(self): """Instantiate a query that is compatible with the current query.""" raise NotImplementedError
tensorflow_forward_ad/setup_cbfs.py
renmengye/tensorflow-forward-ad
147
12746567
<reponame>renmengye/tensorflow-forward-ad #!/usr/bin/env python from distutils.core import setup from distutils.extension import Extension from Cython.Distutils import build_ext import numpy setup( cmdclass={'build_ext': build_ext}, ext_modules=[ Extension( "cbfs", sources=["cbfs.pyx"], include_dirs=[numpy.get_include()]) ],)
tests/providers/google/cloud/transfers/test_gdrive_to_gcs.py
npodewitz/airflow
8,092
12746584
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os from unittest import mock from airflow.providers.google.cloud.transfers.gdrive_to_gcs import GoogleDriveToGCSOperator FOLDER_ID = os.environ.get("GCP_GDRIVE_FOLDER_ID", "abcd1234") DRIVE_ID = os.environ.get("GCP_GDRIVE_DRIVE_ID", "abcd1234") FILE_NAME = os.environ.get("GCP_GDRIVE_TO_GCS_FILE_NAME", "gdrive_to_gcs_file.txt") BUCKET = os.environ.get("GCP_GDRIVE_TO_GCS_BUCKET", "gdrive-to-gcs-bucket") OBJECT = "prefix/test.txt" GCP_CONN_ID = "google_cloud_default" IMPERSONATION_CHAIN = ["ACCOUNT_1", "ACCOUNT_2", "ACCOUNT_3"] class TestGoogleDriveToGCSOperator: @mock.patch("airflow.providers.google.cloud.transfers.gdrive_to_gcs.GCSHook") @mock.patch("airflow.providers.google.cloud.transfers.gdrive_to_gcs.GoogleDriveHook") def test_execute(self, mock_gdrive_hook, mock_gcs_hook): context = {} op = GoogleDriveToGCSOperator( task_id="test_task", folder_id=FOLDER_ID, file_name=FILE_NAME, drive_id=DRIVE_ID, bucket_name=BUCKET, object_name=OBJECT, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, ) meta = {"id": "123xyz"} mock_gdrive_hook.return_value.get_file_id.return_value = meta op.execute(context) mock_gdrive_hook.return_value.get_file_id.assert_called_once_with( folder_id=FOLDER_ID, file_name=FILE_NAME, drive_id=DRIVE_ID ) mock_gdrive_hook.return_value.download_file.assert_called_once_with( file_id=meta["id"], file_handle=mock.ANY ) mock_gcs_hook.return_value.provide_file_and_upload.assert_called_once_with( bucket_name=BUCKET, object_name=OBJECT ) assert op.dry_run() is None
RecoLocalCalo/EcalRecProducers/test/testMultipleEcalRecoLocal_cfg.py
ckamtsikis/cmssw
852
12746608
<filename>RecoLocalCalo/EcalRecProducers/test/testMultipleEcalRecoLocal_cfg.py import FWCore.ParameterSet.Config as cms process = cms.Process("RECO2") process.load('Configuration.StandardSequences.Services_cff') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.Geometry.GeometrySimDB_cff') process.load('Configuration.StandardSequences.MagneticField_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.load('Configuration.StandardSequences.RawToDigi_cff') process.load('Configuration.StandardSequences.Reconstruction_cff') process.GlobalTag.globaltag = 'GR_R_74_V10A' process.GlobalTag.toGet = cms.VPSet( cms.PSet(record = cms.string("GeometryFileRcd"), tag = cms.string("XMLFILE_Geometry_2015_72YV2_Extended2015ZeroMaterial_mc"), connect = cms.untracked.string("frontier://FrontierProd/CMS_COND_GEOMETRY_000"), # label = cms.untracked.string("Extended2015ZeroMaterial") ), cms.PSet(record = cms.string("EcalTBWeightsRcd"), tag = cms.string("EcalTBWeights_3p5_time_mc"), connect = cms.untracked.string("frontier://FrontierPrep/CMS_COND_ECAL") ) ) #### CONFIGURE IT HERE isMC = True ##################### process.MessageLogger.cerr.FwkReport.reportEvery = 1 # start from RAW format for more flexibility process.raw2digi_step = cms.Sequence(process.RawToDigi) # get uncalibrechits with global method / time from ratio import RecoLocalCalo.EcalRecProducers.ecalGlobalUncalibRecHit_cfi process.ecalGlobalUncalibRecHit = RecoLocalCalo.EcalRecProducers.ecalGlobalUncalibRecHit_cfi.ecalGlobalUncalibRecHit.clone() # get uncalib rechits from multifit method / time from ratio import RecoLocalCalo.EcalRecProducers.ecalMultiFitUncalibRecHit_cfi process.ecalMultiFitUncalibRecHit = RecoLocalCalo.EcalRecProducers.ecalMultiFitUncalibRecHit_cfi.ecalMultiFitUncalibRecHit.clone() process.ecalMultiFitUncalibRecHit.algoPSet.activeBXs = cms.vint32(-5,-4,-3,-2,-1,0,1,2,3,4) process.ecalMultiFitUncalibRecHit.algoPSet.useLumiInfoRunHeader = cms.bool( False ) # get uncalib rechits from multifit method / time from weights process.ecalMultiFit2UncalibRecHit = RecoLocalCalo.EcalRecProducers.ecalMultiFitUncalibRecHit_cfi.ecalMultiFitUncalibRecHit.clone() process.ecalMultiFit2UncalibRecHit.algoPSet.timealgo = cms.string("WeightsMethod") process.ecalMultiFit2UncalibRecHit.algoPSet.activeBXs = cms.vint32(-5,-4,-3,-2,-1,0,1,2,3,4) process.ecalMultiFit2UncalibRecHit.algoPSet.useLumiInfoRunHeader = cms.bool ( False ) # get the recovered digis if isMC: process.ecalDetIdToBeRecovered.ebSrFlagCollection = 'simEcalDigis:ebSrFlags' process.ecalDetIdToBeRecovered.eeSrFlagCollection = 'simEcalDigis:eeSrFlags' process.ecalRecHit.recoverEBFE = False process.ecalRecHit.recoverEEFE = False process.ecalRecHit.killDeadChannels = False process.ecalRecHit.ebDetIdToBeRecovered = '' process.ecalRecHit.eeDetIdToBeRecovered = '' process.ecalRecHit.ebFEToBeRecovered = '' process.ecalRecHit.eeFEToBeRecovered = '' process.ecalRecHitGlobal = process.ecalRecHit.clone() process.ecalRecHitGlobal.EBuncalibRecHitCollection = 'ecalGlobalUncalibRecHit:EcalUncalibRecHitsEB' process.ecalRecHitGlobal.EEuncalibRecHitCollection = 'ecalGlobalUncalibRecHit:EcalUncalibRecHitsEE' process.ecalRecHitGlobal.EBrechitCollection = 'EcalRecHitsGlobalEB' process.ecalRecHitGlobal.EErechitCollection = 'EcalRecHitsGlobalEE' process.ecalRecHitMultiFit = process.ecalRecHit.clone() process.ecalRecHitMultiFit.EBuncalibRecHitCollection = 'ecalMultiFitUncalibRecHit:EcalUncalibRecHitsEB' process.ecalRecHitMultiFit.EEuncalibRecHitCollection = 'ecalMultiFitUncalibRecHit:EcalUncalibRecHitsEE' process.ecalRecHitMultiFit.EBrechitCollection = 'EcalRecHitsMultiFitEB' process.ecalRecHitMultiFit.EErechitCollection = 'EcalRecHitsMultiFitEE' process.ecalRecHitMultiFit2 = process.ecalRecHit.clone() process.ecalRecHitMultiFit2.EBuncalibRecHitCollection = 'ecalMultiFit2UncalibRecHit:EcalUncalibRecHitsEB' process.ecalRecHitMultiFit2.EEuncalibRecHitCollection = 'ecalMultiFit2UncalibRecHit:EcalUncalibRecHitsEE' process.ecalRecHitMultiFit2.EBrechitCollection = 'EcalRecHitsMultiFit2EB' process.ecalRecHitMultiFit2.EErechitCollection = 'EcalRecHitsMultiFit2EE' process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1000) ) path = '/store/data/Run2012D/DoubleElectron/RAW-RECO/ZElectron-22Jan2013-v1/10000/' process.source = cms.Source("PoolSource", duplicateCheckMode = cms.untracked.string("noDuplicateCheck"), fileNames = cms.untracked.vstring(path+'0008202C-E78F-E211-AADB-0026189437FD.root' )) process.out = cms.OutputModule("PoolOutputModule", outputCommands = cms.untracked.vstring('drop *', 'keep *_ecalUncalib*_*_RECO2', 'keep *_ecalRecHit*_*_RECO2', 'keep *_offlineBeamSpot_*_*', 'keep *_addPileupInfo_*_*' ), fileName = cms.untracked.string('reco2_pu40.root') ) process.ecalAmplitudeReco = cms.Sequence( process.ecalGlobalUncalibRecHit * process.ecalMultiFitUncalibRecHit * process.ecalMultiFit2UncalibRecHit ) process.ecalRecHitsReco = cms.Sequence( process.ecalRecHitGlobal * process.ecalRecHitMultiFit * process.ecalRecHitMultiFit2 ) process.ecalTestRecoLocal = cms.Sequence( process.raw2digi_step * process.ecalAmplitudeReco * process.ecalRecHitsReco ) from PhysicsTools.PatAlgos.tools.helpers import * process.p = cms.Path(process.ecalTestRecoLocal) process.outpath = cms.EndPath(process.out) ######################### # Time Profiling # ######################### #https://twiki.cern.ch/twiki/bin/viewauth/CMS/FastTimerService process.MessageLogger.cerr.FastReport = cms.untracked.PSet( limit = cms.untracked.int32( 10000000 ) ) # remove any instance of the FastTimerService if 'FastTimerService' in process.__dict__: del process.FastTimerService # instrument the menu with the FastTimerService process.load( "HLTrigger.Timer.FastTimerService_cfi" ) # print a text summary at the end of the job process.FastTimerService.printJobSummary = True # enable per-event DQM plots process.FastTimerService.enableDQM = True # enable per-module DQM plots process.FastTimerService.enableDQMbyModule = True # enable per-event DQM plots by lumisection process.FastTimerService.enableDQMbyLumiSection = True process.FastTimerService.dqmLumiSectionsRange = 2500 # lumisections (23.31 s) # set the time resolution of the DQM plots process.FastTimerService.dqmTimeRange = 1000. # ms process.FastTimerService.dqmTimeResolution = 5. # ms process.FastTimerService.dqmPathTimeRange = 100. # ms process.FastTimerService.dqmPathTimeResolution = 0.5 # ms process.FastTimerService.dqmModuleTimeRange = 1000. # ms process.FastTimerService.dqmModuleTimeResolution = 0.5 # ms # set the base DQM folder for the plots process.FastTimerService.dqmPath = "HLT/TimerService" process.FastTimerService.enableDQMbyProcesses = True # save the DQM plots in the DQMIO format process.dqmOutput = cms.OutputModule("DQMRootOutputModule", fileName = cms.untracked.string("DQM_pu40.root") ) process.FastTimerOutput = cms.EndPath( process.dqmOutput )
featuretools/tests/primitive_tests/primitives_to_install/custom_mean.py
Featuretools/featuretools
4,299
12746614
from woodwork.column_schema import ColumnSchema from featuretools.primitives.base import AggregationPrimitive class CustomMean(AggregationPrimitive): name = "custom_mean" input_types = [ColumnSchema(semantic_tags={"numeric"})] return_type = ColumnSchema(semantic_tags={"numeric"})
parallel_wavegan/utils/utils.py
A-Quarter-Mile/ParallelWaveGAN
1,023
12746627
<gh_stars>1000+ # -*- coding: utf-8 -*- # Copyright 2019 <NAME> # MIT License (https://opensource.org/licenses/MIT) """Utility functions.""" import fnmatch import logging import os import sys import tarfile from distutils.version import LooseVersion from filelock import FileLock import h5py import numpy as np import torch import yaml PRETRAINED_MODEL_LIST = { "ljspeech_parallel_wavegan.v1": "1PdZv37JhAQH6AwNh31QlqruqrvjTBq7U", "ljspeech_parallel_wavegan.v1.long": "1A9TsrD9fHxFviJVFjCk5W6lkzWXwhftv", "ljspeech_parallel_wavegan.v1.no_limit": "1CdWKSiKoFNPZyF1lo7Dsj6cPKmfLJe72", "ljspeech_parallel_wavegan.v3": "1-oZpwpWZMMolDYsCqeL12dFkXSBD9VBq", "ljspeech_melgan.v1": "1i7-FPf9LPsYLHM6yNPoJdw5Q9d28C-ip", "ljspeech_melgan.v1.long": "1x1b_R7d2561nqweK3FPb2muTdcFIYTu6", "ljspeech_melgan.v3": "1J5gJ_FUZhOAKiRFWiAK6FcO5Z6oYJbmQ", "ljspeech_melgan.v3.long": "124JnaLcRe7TsuAGh3XIClS3C7Wom9AU2", "ljspeech_full_band_melgan.v2": "1Kb7q5zBeQ30Wsnma0X23G08zvgDG5oen", "ljspeech_multi_band_melgan.v2": "1b70pJefKI8DhGYz4SxbEHpxm92tj1_qC", "ljspeech_hifigan.v1": "1i6-hR_ksEssCYNlNII86v3AoeA1JcuWD", "ljspeech_style_melgan.v1": "10aJSZfmCAobQJgRGio6cNyw6Xlgmme9-", "jsut_parallel_wavegan.v1": "1qok91A6wuubuz4be-P9R2zKhNmQXG0VQ", "jsut_multi_band_melgan.v2": "1chTt-76q2p69WPpZ1t1tt8szcM96IKad", "jsut_hifigan.v1": "1vdgqTu9YKyGMCn-G7H2fI6UBC_4_55XB", "jsut_style_melgan.v1": "1VIkjSxYxAGUVEvJxNLaOaJ7Twe48SH-s", "csmsc_parallel_wavegan.v1": "1QTOAokhD5dtRnqlMPTXTW91-CG7jf74e", "csmsc_multi_band_melgan.v2": "1G6trTmt0Szq-jWv2QDhqglMdWqQxiXQT", "csmsc_hifigan.v1": "1fVKGEUrdhGjIilc21Sf0jODulAq6D1qY", "csmsc_style_melgan.v1": "1kGUC_b9oVSv24vZRi66AAbSNUKJmbSCX", "arctic_slt_parallel_wavegan.v1": "1_MXePg40-7DTjD0CDVzyduwQuW_O9aA1", "jnas_parallel_wavegan.v1": "1D2TgvO206ixdLI90IqG787V6ySoXLsV_", "vctk_parallel_wavegan.v1": "1bqEFLgAroDcgUy5ZFP4g2O2MwcwWLEca", "vctk_parallel_wavegan.v1.long": "1tO4-mFrZ3aVYotgg7M519oobYkD4O_0-", "vctk_multi_band_melgan.v2": "10PRQpHMFPE7RjF-MHYqvupK9S0xwBlJ_", "vctk_hifigan.v1": "1oVOC4Vf0DYLdDp4r7GChfgj7Xh5xd0ex", "vctk_style_melgan.v1": "14ThSEgjvl_iuFMdEGuNp7d3DulJHS9Mk", "libritts_parallel_wavegan.v1": "1zHQl8kUYEuZ_i1qEFU6g2MEu99k3sHmR", "libritts_parallel_wavegan.v1.long": "1b9zyBYGCCaJu0TIus5GXoMF8M3YEbqOw", "libritts_multi_band_melgan.v2": "1kIDSBjrQvAsRewHPiFwBZ3FDelTWMp64", "libritts_hifigan.v1": "1_TVFIvVtMn-Z4NiQrtrS20uSJOvBsnu1", "libritts_style_melgan.v1": "1yuQakiMP0ECdB55IoxEGCbXDnNkWCoBg", "kss_parallel_wavegan.v1": "1mLtQAzZHLiGSWguKCGG0EZa4C_xUO5gX", "hui_acg_hokuspokus_parallel_wavegan.v1": "1irKf3okMLau56WNeOnhr2ZfSVESyQCGS", "ruslan_parallel_wavegan.v1": "1M3UM6HN6wrfSe5jdgXwBnAIl_lJzLzuI", } def find_files(root_dir, query="*.wav", include_root_dir=True): """Find files recursively. Args: root_dir (str): Root root_dir to find. query (str): Query to find. include_root_dir (bool): If False, root_dir name is not included. Returns: list: List of found filenames. """ files = [] for root, dirnames, filenames in os.walk(root_dir, followlinks=True): for filename in fnmatch.filter(filenames, query): files.append(os.path.join(root, filename)) if not include_root_dir: files = [file_.replace(root_dir + "/", "") for file_ in files] return files def read_hdf5(hdf5_name, hdf5_path): """Read hdf5 dataset. Args: hdf5_name (str): Filename of hdf5 file. hdf5_path (str): Dataset name in hdf5 file. Return: any: Dataset values. """ if not os.path.exists(hdf5_name): logging.error(f"There is no such a hdf5 file ({hdf5_name}).") sys.exit(1) hdf5_file = h5py.File(hdf5_name, "r") if hdf5_path not in hdf5_file: logging.error(f"There is no such a data in hdf5 file. ({hdf5_path})") sys.exit(1) hdf5_data = hdf5_file[hdf5_path][()] hdf5_file.close() return hdf5_data def write_hdf5(hdf5_name, hdf5_path, write_data, is_overwrite=True): """Write dataset to hdf5. Args: hdf5_name (str): Hdf5 dataset filename. hdf5_path (str): Dataset path in hdf5. write_data (ndarray): Data to write. is_overwrite (bool): Whether to overwrite dataset. """ # convert to numpy array write_data = np.array(write_data) # check folder existence folder_name, _ = os.path.split(hdf5_name) if not os.path.exists(folder_name) and len(folder_name) != 0: os.makedirs(folder_name) # check hdf5 existence if os.path.exists(hdf5_name): # if already exists, open with r+ mode hdf5_file = h5py.File(hdf5_name, "r+") # check dataset existence if hdf5_path in hdf5_file: if is_overwrite: logging.warning( "Dataset in hdf5 file already exists. " "recreate dataset in hdf5." ) hdf5_file.__delitem__(hdf5_path) else: logging.error( "Dataset in hdf5 file already exists. " "if you want to overwrite, please set is_overwrite = True." ) hdf5_file.close() sys.exit(1) else: # if not exists, open with w mode hdf5_file = h5py.File(hdf5_name, "w") # write data to hdf5 hdf5_file.create_dataset(hdf5_path, data=write_data) hdf5_file.flush() hdf5_file.close() class HDF5ScpLoader(object): """Loader class for a fests.scp file of hdf5 file. Examples: key1 /some/path/a.h5:feats key2 /some/path/b.h5:feats key3 /some/path/c.h5:feats key4 /some/path/d.h5:feats ... >>> loader = HDF5ScpLoader("hdf5.scp") >>> array = loader["key1"] key1 /some/path/a.h5 key2 /some/path/b.h5 key3 /some/path/c.h5 key4 /some/path/d.h5 ... >>> loader = HDF5ScpLoader("hdf5.scp", "feats") >>> array = loader["key1"] key1 /some/path/a.h5:feats_1,feats_2 key2 /some/path/b.h5:feats_1,feats_2 key3 /some/path/c.h5:feats_1,feats_2 key4 /some/path/d.h5:feats_1,feats_2 ... >>> loader = HDF5ScpLoader("hdf5.scp") # feats_1 and feats_2 will be concatenated >>> array = loader["key1"] """ def __init__(self, feats_scp, default_hdf5_path="feats"): """Initialize HDF5 scp loader. Args: feats_scp (str): Kaldi-style feats.scp file with hdf5 format. default_hdf5_path (str): Path in hdf5 file. If the scp contain the info, not used. """ self.default_hdf5_path = default_hdf5_path with open(feats_scp) as f: lines = [line.replace("\n", "") for line in f.readlines()] self.data = {} for line in lines: key, value = line.split() self.data[key] = value def get_path(self, key): """Get hdf5 file path for a given key.""" return self.data[key] def __getitem__(self, key): """Get ndarray for a given key.""" p = self.data[key] if ":" in p: if len(p.split(",")) == 1: return read_hdf5(*p.split(":")) else: p1, p2 = p.split(":") feats = [read_hdf5(p1, p) for p in p2.split(",")] return np.concatenate( [f if len(f.shape) != 1 else f.reshape(-1, 1) for f in feats], 1 ) else: return read_hdf5(p, self.default_hdf5_path) def __len__(self): """Return the length of the scp file.""" return len(self.data) def __iter__(self): """Return the iterator of the scp file.""" return iter(self.data) def keys(self): """Return the keys of the scp file.""" return self.data.keys() def values(self): """Return the values of the scp file.""" for key in self.keys(): yield self[key] class NpyScpLoader(object): """Loader class for a fests.scp file of npy file. Examples: key1 /some/path/a.npy key2 /some/path/b.npy key3 /some/path/c.npy key4 /some/path/d.npy ... >>> loader = NpyScpLoader("feats.scp") >>> array = loader["key1"] """ def __init__(self, feats_scp): """Initialize npy scp loader. Args: feats_scp (str): Kaldi-style feats.scp file with npy format. """ with open(feats_scp) as f: lines = [line.replace("\n", "") for line in f.readlines()] self.data = {} for line in lines: key, value = line.split() self.data[key] = value def get_path(self, key): """Get npy file path for a given key.""" return self.data[key] def __getitem__(self, key): """Get ndarray for a given key.""" return np.load(self.data[key]) def __len__(self): """Return the length of the scp file.""" return len(self.data) def __iter__(self): """Return the iterator of the scp file.""" return iter(self.data) def keys(self): """Return the keys of the scp file.""" return self.data.keys() def values(self): """Return the values of the scp file.""" for key in self.keys(): yield self[key] def load_model(checkpoint, config=None, stats=None): """Load trained model. Args: checkpoint (str): Checkpoint path. config (dict): Configuration dict. stats (str): Statistics file path. Return: torch.nn.Module: Model instance. """ # load config if not provided if config is None: dirname = os.path.dirname(checkpoint) config = os.path.join(dirname, "config.yml") with open(config) as f: config = yaml.load(f, Loader=yaml.Loader) # lazy load for circular error import parallel_wavegan.models # get model and load parameters model_class = getattr( parallel_wavegan.models, config.get("generator_type", "ParallelWaveGANGenerator"), ) # workaround for typo #295 generator_params = { k.replace("upsample_kernal_sizes", "upsample_kernel_sizes"): v for k, v in config["generator_params"].items() } model = model_class(**generator_params) model.load_state_dict( torch.load(checkpoint, map_location="cpu")["model"]["generator"] ) # check stats existence if stats is None: dirname = os.path.dirname(checkpoint) if config["format"] == "hdf5": ext = "h5" else: ext = "npy" if os.path.exists(os.path.join(dirname, f"stats.{ext}")): stats = os.path.join(dirname, f"stats.{ext}") # load stats if stats is not None: model.register_stats(stats) # add pqmf if needed if config["generator_params"]["out_channels"] > 1: # lazy load for circular error from parallel_wavegan.layers import PQMF pqmf_params = {} if LooseVersion(config.get("version", "0.1.0")) <= LooseVersion("0.4.2"): # For compatibility, here we set default values in version <= 0.4.2 pqmf_params.update(taps=62, cutoff_ratio=0.15, beta=9.0) model.pqmf = PQMF( subbands=config["generator_params"]["out_channels"], **config.get("pqmf_params", pqmf_params), ) return model def download_pretrained_model(tag, download_dir=None): """Download pretrained model form google drive. Args: tag (str): Pretrained model tag. download_dir (str): Directory to save downloaded files. Returns: str: Path of downloaded model checkpoint. """ assert tag in PRETRAINED_MODEL_LIST, f"{tag} does not exists." id_ = PRETRAINED_MODEL_LIST[tag] if download_dir is None: download_dir = os.path.expanduser("~/.cache/parallel_wavegan") output_path = f"{download_dir}/{tag}.tar.gz" os.makedirs(f"{download_dir}", exist_ok=True) with FileLock(output_path + ".lock"): if not os.path.exists(output_path): # lazy load for compatibility import gdown gdown.download( f"https://drive.google.com/uc?id={id_}", output_path, quiet=False ) with tarfile.open(output_path, "r:*") as tar: for member in tar.getmembers(): if member.isreg(): member.name = os.path.basename(member.name) tar.extract(member, f"{download_dir}/{tag}") checkpoint_path = find_files(f"{download_dir}/{tag}", "checkpoint*.pkl") return checkpoint_path[0]
Codeforces/9A.py
Shaswat-2203/HacktoberfestForBeginners
115
12746631
s = input() y = s[0] w = s[2] if int(y) > int(w): p = 7 - int(y) else: p = 7 - int(w) if p == 1: print('1/6') if p == 2: print('1/3') if p == 3: print('1/2') if p == 4: print('2/3') if p == 5: print('5/6') if p == 6: print('1/1')
forms-flow-api/migrations/versions/166054bd81b5_allow_modified_date_as_nullable.py
andrepestana-aot/forms-flow-ai
132
12746637
<filename>forms-flow-api/migrations/versions/166054bd81b5_allow_modified_date_as_nullable.py """allow modified date as nullable Revision ID: 166054bd81b5 Revises: <PASSWORD> Create Date: 2021-10-11 03:47:20.983464 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "80b8d<PASSWORD>" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column( "application", "modified", existing_type=postgresql.TIMESTAMP(), nullable=True ) op.alter_column( "form_process_mapper", "modified", existing_type=postgresql.TIMESTAMP(), nullable=True, ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column( "form_process_mapper", "modified", existing_type=postgresql.TIMESTAMP(), nullable=False, ) op.alter_column( "application", "modified", existing_type=postgresql.TIMESTAMP(), nullable=False ) # ### end Alembic commands ###
pyjokes/jokes_it.py
r0d0dendr0n/pyjokes
293
12746646
# -*- coding: utf-8 -*- """ Jokes from stackoverflow - provided under CC BY-SA 3.0 http://stackoverflow.com/questions/234075/what-is-your-best-programmer-joke?page=4&tab=votes#tab-top """ neutral = [ "Trionfalmente, Beth ha rimosso Python 2.7 dal server nel 2020.'Finalmente!' ha detto con gioia, solo per vedere l'annuncio di Python 4.4.", "Una query SQL entra in un bar, cammina verso a due table e chiede: 'Posso unirvi?'.", "Quando il tuo martello e` C ++, tutto inizia a sembrare un pollice.", "Se metti un milione di scimmie su un milione di tastiere, uno di loro alla fine scrivera` un programma Java, il resto scrivera` Perl.", "Per comprendere la ricorsione devi prima capire la ricorsione.", "Gli amici non permettono agli amici di usare Python 2.7.", "Ho suggerito di tenere un 'Python Object Oriented Programming Seminar', ma l'acronimo era impopolare.", "'toc, toc'. 'Chi e` la`?' ... pausa molto lunga ... Java.", "Quanti programmatori ci vogliono per cambiare una lampadina? Nessuno, e` un problema hardware.", "Qual e` il modo orientato agli oggetti per diventare ricchi? Ereditarieta`.", "Quanti programmatori ci vogliono per cambiare una lampadina? Nessuno, possono rendere l'oscurita` uno standard.", "I vecchi programmatori C non muoiono, sono solo gettati nel void.", "Gli sviluppatori di software amano risolvere i problemi: se non ci sono problemi facilmente disponibili li creeranno.", ".NET e` stato chiamato .NET in modo che non si visualizzasse in un elenco di directory Unix.", "Hardware: la parte di un computer che puoi calciare.", "Un programmatore e` stato trovato morto nella doccia, accanto al corpo c'era uno shampoo con le istruzioni:Insapona, risciacqua ripeti.", "Ottimista: il bicchiere e` mezzo pieno Pessimista: il bicchiere e` mezzo vuoto Programmatore: il bicchiere e` il doppio del necessario.", "In C abbiamo dovuto codificare i nostri bug. In C ++ possiamo ereditarli.", "Come mai non c'e` una gara Perl offuscato? Perche` tutti vincerebbero.", "Se riproduci un CD di Windows all'indietro, ascolterai il canto satanico ... peggio ancora, se lo riproduci in avanti, installa Windows.", "Quanti programmatori ci vogliono per uccidere uno scarafaggio? Due: uno tiene, l'altro installa Windows su di esso.", "Come si chiama un programmatore finlandese? Nerdic.", "Cosa ha detto il codice Java al codice C? : Non hai classe.", "Perche` Microsoft ha chiamato il proprio motore di ricerca BING? Because It's Not Google.", "I venditori di software e i venditori di auto usate si differenziano perche` questi ultimi sanno quando mentono.", "Bambino: 'papa', perche` il sole sorge ad est e tramonta ad ovest?' Papa': 'figlio, sta funzionando, non toccarlo'.", "Quanti programmatori Prolog ci vogliono per cambiare una lampadina? Falso.", "I veri programmatori possono scrivere codice assembly in qualsiasi lingua.", "Cameriere: 'le piacerebbe un caffe` o un te`?' Programmatore: 'Si'.", "Un programmatore entra in un foo ...", "Qual e` il secondo nome di <NAME>? <NAME>.", "Perche` sorridi sempre? Questa e` solo la mia ... espressione regolare.", "Domanda stupida ASCII, ottiene uno stupido ANSI.", "Un programmatore aveva un problema: penso` tra se stesso: 'lo risolvo con i threads!', ora ha due problemi.", "Java: scrivi una volta e scappa.", "Ti direi una battuta su UDP, ma non lo capiresti mai.", "Un ingegnere di QA entra in un bar, si imbatte in un bar, striscia in un bar, balla in un bar, punta i piedi in un bar...", "Ho avuto un problema quindi ho pensato di utilizzare Java. Ora ho una ProblemFactory.", "L'ingegnere del QA entra in un bar, ordina una birra, ordina 0 birre, 99999 birre, una lucertola, -1 birre, uno sfdeljknesv.", "Un responsabile di prodotto entra in un bar, chiede un drink, il barista dice NO, ma prendera` in considerazione l'aggiunta successiva.", "Come si genera una stringa casuale? Metti uno studente di Informatica del primo anno davanti a Vim e gli chiedi di salvare ed uscire.", "Uso Vim da molto tempo ormai, principalmente perche` non riesco a capire come uscire.", "Come fai a sapere se una persona e` un utente Vim? Non ti preoccupare, te lo diranno.", "un cameriere urla: 'sta soffocando! Qualcuno e` un dottore?' Programmatore: 'sono un utente Vim'.", "3 Database Admins sono entrati in un bar NoSQL e poco dopo sono usciti perche` non sono riusciti a trovare un table.", "Come spiegare il film Inception a un programmatore? Quando esegui una VM dentro una VM dentro un' altra VM tutto procede molto lentamente.", "Come si chiama un pappagallo che dice 'Squawk! Pezzi di nove! Pezzi di nove!' Un errore a pappagallo.", "Ci sono solo due problemi difficili in Informatica: invalidazione della cache, denominazione delle cose e errori di off-by-one.", "Ci sono 10 tipi di persone: quelli che comprendono il binario e quelli che non lo sanno.", "Ci sono 2 tipi di persone: quelli che possono estrapolare dati da insiemi incompleti ...", "Esistono II tipi di persone: quelli che comprendono i numeri romani e quelli che non li conoscono.", "Ci sono 10 tipi di persone: quelli che comprendono l'esadecimale e altri 15.", "Ci sono 10 tipi di persone: quelli che capiscono il trinario, quelli che non lo fanno e quelli che non ne hanno mai sentito parlare.", "Come chiami otto hobbit? Un hob byte.", "La cosa migliore di un booleano e` che anche se ti sbagli, sei solo fuori di un bit.", "Un buon programmatore e` qualcuno che guarda sempre in entrambe le direzioni prima di attraversare una strada a senso unico.", "Esistono due modi per scrivere programmi privi di errori: solo il terzo funziona.", "I controlli di qualita` consistono nel 55% di acqua, 30% di sangue e 15% di ticket in Jira.", "Quanti QA servono per cambiare una lampadina? Hanno notato che la stanza era buia,: non risolvono i problemi, li trovano.", "Un programmatore si schianta contro un'auto , l'uomo chiede 'cosa e` successo', l'altro risponde'Non so. Facciamo il backup e riprova'.", "Scrivere PHP e` come fare pipi` in piscina, tutti lo hanno fatto, ma non hanno bisogno di renderlo pubblico.", "Numero di giorni da quando ho riscontrato un errore di indice di array: -1.", "gli appuntamenti veloci sono inutili, 5 minuti non sono sufficienti per spiegare correttamente i benefici della filosofia Unix.", "Microsoft ha ogni quindici giorni una 'settimana produttiva' dove usa Google invece di Bing.", "Trovare un buon sviluppatore PHP e` come cercare un ago in un pagliaio o e` un hackstack in un ago?.", "Unix e` user friendly, e` solo molto particolare nella scelta di chi siano i suoi amici.", "Un programmatore COBOL guadagna milioni con la riparazione Y2K e decide di congelarsi criogenicamente. L'anno e` 9999.", "Il linguaggio C combina tutta la potenza del linguaggio assembly con tutta la facilita` d'uso del linguaggio assembly.", "Un esperto SEO entra in un bar, pub, pub irlandese, taverna, barista, birra, liquore, vino, alcolici, liquori ...", "Che cosa significa Emacs? Utilizzato esclusivamente dagli scienziati informatici di mezza eta`.", "Che cosa hanno in comune le battute di PyJokes con Adobe Flash? Si aggiornano sempre, ma non migliorano.", "Quanti demosceners sono necessari per cambiare una lampadina? Meta`. Con uno intero non ci sono sfide.", ] """ Jokes from The Internet Chuck Norris DB (ICNDB) (http://www.icndb.com/) - provided under CC BY-SA 3.0 http://api.icndb.com/jokes/ """ chuck = [ "Tutti gli array che Chuck Norris dichiara sono di dimensioni infinite, perche` Chuck Norris non conosce limiti.", "Chuck Norris non ha la latenza del disco perche` il disco rigido sa sbrigarsi, altrimenti sono guai.", "Chuck Norris scrive codice che si ottimizza da solo.", "Chuck Norris non puo` testare l'uguaglianza perche` non ha eguali.", "Chuck Norris non ha bisogno di garbage collection perche` non chiama .Dispose (), chiama .DropKick ().", "Il primo programma di Chuck Norris e` stato kill -9.", "Chuck Norris ha scoppiato la bolla delle dot com.", "Tutti i browser supportano le definizioni esadecimali #chuck e #norris per i colori nero e blu.", "MySpace non e` proprio il tuo spazio, e` di Chuck (te lo lascia solo usare).", "Chuck Norris puo` scrivere funzioni infinitamente ricorsive e farle tornare.", "Chuck Norris puo` risolvere le Torri di Hanoi in una mossa.", "L'unico modello di design che Chuck Norris conosce e` il God Object Pattern.", "Chuck Norris ha terminato World of Warcraft.", "I project manager non chiedono mai a Chuck Norris le stime.", "Chuck Norris non usa gli standard web in quanto il web si conformera` a lui.", "'Funziona sulla mia macchina' e` sempre vero per Chuck Norris.", "Chuck Norris non fa i grafici di Burn Down, fa i grafici di Smack Down.", "Chuck Norris puo` cancellare il cestino.", "La barba di Chuck Norris puo` scrivere 140 parole al minuto.", "Chuck Norris puo` testare tutte le applicazioni con un'unica affermazione, 'funziona'.", "La tastiera di Chuck Norris non ha un tasto Ctrl perche` niente controlla Chuck Norris.", "Chuck Norris puo` far traboccare il tuo stack solo guardandolo.", "Per Chuck Norris, tutto contiene una vulnerabilita`.", "Chuck Norris non usa sudo, la shell sa solo che e` lui e fa quello che gli viene detto.", "Chuck Norris non ha bisogno di un debugger, si limita a fissare il codice finche` non confessa.", "Chuck Norris puo` accedere a metodi privati.", "Chuck Norris puo` istanziare una classe astratta.", "L'oggetto classe eredita da Chuck Norris.", "Chuck Norris conosce l'ultima cifra del Pi greco.", "La connessione di Chuck Norris e` piu' veloce in up che in down perche` i dati sono incentivati a correre via da lui.", "Nessuna affermazione puo` prendere la ChuckNorrisException.", "Chuck Norris puo` scrivere applicazioni multi-thread con un singolo thread.", "Chuck Norris non ha bisogno di usare AJAX perche` le pagine hanno troppa paura di postback comunque.", "Chuck Norris non usa la riflessione, la riflessione chiede educatamente il suo aiuto.", "Non c'e` alcun tasto Esc sulla tastiera di Chuck Norris, perche` nessuno sfugge a Chuck Norris.", "Chuck Norris puo` eseguire la ricerca binaria di dati non ordinati.", "Chuck Norris non ha bisogno di tentativi di cattura, le eccezioni sono troppo spaventate da sollevarsi.", "Chuck Norris e` uscito da un ciclo infinito.", "Se Chuck Norris scrive codice con bug, gli errori si risolvono da soli.", "L'hosting di Chuck Norris e` garantito al 101% di uptime.", "La tastiera di Chuck Norris ha il tasto Any.", "Chuck Norris puo` accedere al database dall'interfaccia utente.", "I programmi di Chuck Norris non escono mai, sono terminati.", "I programmi di Chuck Norris occupano il 150% della CPU, anche quando non sono in esecuzione.", "Chuck Norris puo` generare thread che si completano prima di essere avviati.", "I programmi di Chuck Norris non accettano input.", "Chuck Norris puo` installare iTunes senza installare Quicktime.", "Chuck Norris non ha bisogno di un sistema operativo.", "Il modello di rete OSI di Chuck Norris ha un solo livello: fisico.", "Chuck Norris puo` compilare errori di sintassi.", "Chuck Norris non ha bisogno di digitare cast. Il Chuck-Norris Compiler (CNC) vede attraverso le cose, fino in fondo sempre.", "Chuck Norris comprime i suoi file con un calcio rotante sul disco rigido.", "Con Chuck Norris P = NP. Non c'e` alcun nondeterminismo con le decisioni di Chuck Norris.", "Chuck Norris puo` recuperare qualsiasi cosa da / dev / null.", "Nessuno ha mai programmato in coppia con Chuck Norris ed e`vissuto per raccontare la storia.", "Nessuno ha mai parlato durante la revisione del codice di Chuck Norris ed e` vissuto per raccontare la storia.", "Chuck Norris non usa una GUI, preferisce la linea di comando.", "Chuck Norris non usa Oracle, lui e` l'Oracle.", "Chuck Norris puo` dereferenziare NULL.", "Una differenza tra il tuo codice e quello di Chuck Norris e` infinita.", "Il plugin Chuck Norris Eclipse e` diventato un contatto alieno.", "Chuck Norris e` l'ultimo mutex, tutti i thread lo temono.", "Non preoccuparti dei test, i test case di Chuck Norris coprono anche il tuo codice.", "Le dichiarazioni del registro di Chuck Norris sono sempre al livello FATAL.", "Chuck Norris ha completato World of Warcraft.", "Quando Chuck Norris rompe la build, non e` possibile risolverla, perche` non c'e` una sola riga di codice.", "Chuck Norris scrive con un dito, lo punta alla tastiera e la tastiera fa il resto.", "I programmi di Chuck Norris possono superare il test di Turing fissando l'interrogatore.", "Se provi kill -9 con i programmi di Chuck Norris, si ritorce contro.", "Chuck Norris esegue loop infiniti in meno di 4 secondi.", "Chuck Norris puo` sovrascrivere una variabile bloccata.", "Chuck Norris conosce il valore di NULL.", "Chuck Norris puo` installare un sistema operativo a 64 bit su macchine a 32 bit.", "Chuck Norris puo` scrivere su un flusso di output.", "Chuck Norris puo` leggere da un flusso di input.", "Chuck Norris non ha mai scritto il suo programma in codice macchina. Le macchine hanno imparato a interpretare il codice di Chuck Norris.", "I test unitari di Chuck Norris non girano, muoiono.", "Chuck Norris causa la schermata blu della morte.", "Chuck Norris puo` fare una classe che e` sia astratta che finale.", "Chuck Norris potrebbe usare qualsiasi cosa in java.util.* per ucciderti, inclusi i javadoc.", "Il codice gira piu` velocemente quando <NAME> lo guarda.", "<NAME> non usa REST, lui aspetta.", "Su Facebook a tutti piace <NAME>, che lo scelgano o no.", "Non puoi seguire <NAME> su Twitter, perche` lui ti segue.", "La calcolatrice di <NAME> ha solo 3 tasti: 0, 1 e NAND.", "<NAME> utilizza solo variabili globali. Non ha nulla da nascondere.", "<NAME> scrive direttamente in binario. Quindi scrive il codice sorgente come documentazione per altri programmatori.", ] jokes_it = { 'neutral': neutral, 'chuck': chuck, 'all': neutral + chuck, }
submission/migrations/0002_auto_20170509_1203.py
lizehongss/oj_backend
5,237
12746652
<reponame>lizehongss/oj_backend<gh_stars>1000+ # -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2017-05-09 12:03 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('submission', '0001_initial'), ] operations = [ migrations.AlterField( model_name='submission', name='code', field=models.TextField(), ), migrations.RenameField( model_name='submission', old_name='accepted_info', new_name='statistic_info', ), migrations.RemoveField( model_name='submission', name='accepted_time', ), migrations.RenameField( model_name='submission', old_name='created_time', new_name='create_time', ), migrations.AlterModelOptions( name='submission', options={'ordering': ('-create_time',)}, ) ]
butterfree/transform/utils/date_range.py
fossabot/butterfree
208
12746657
"""Utils for date range generation.""" from datetime import datetime from typing import Union from pyspark.sql import DataFrame, functions from butterfree.clients import SparkClient from butterfree.constants import DataType from butterfree.constants.columns import TIMESTAMP_COLUMN def get_date_range( client: SparkClient, start_date: Union[str, datetime], end_date: Union[str, datetime], step: int = None, ) -> DataFrame: """Create a date range dataframe. The dataframe returning from this method will containing a single column TIMESTAMP_COLUMN, of timestamp type, with dates between start and end. Args: client: a spark client. start_date: range beginning value (inclusive). end_date: range last value (exclusive) step: optional step, in seconds. Returns: A single column date range spark dataframe. """ day_in_seconds = 60 * 60 * 24 step = step or day_in_seconds start_date = ( start_date if isinstance(start_date, str) else start_date.strftime("%Y-%m-%d") ) end_date = end_date if isinstance(end_date, str) else end_date.strftime("%Y-%m-%d") date_df = client.conn.createDataFrame( [(start_date, end_date)], ("start_date", "end_date") ).select( [ functions.col(c).cast(DataType.TIMESTAMP.spark).cast(DataType.BIGINT.spark) for c in ("start_date", "end_date") ] ) start_date, end_date = date_df.first() return client.conn.range( start_date, end_date + day_in_seconds, step # type: ignore ).select(functions.col("id").cast(DataType.TIMESTAMP.spark).alias(TIMESTAMP_COLUMN))
src/http_server.py
Tomasz-Kluczkowski/celery-exporter
132
12746659
<gh_stars>100-1000 from threading import Thread import kombu.exceptions from flask import Blueprint, Flask, current_app, request from loguru import logger from prometheus_client.exposition import choose_encoder from waitress import serve blueprint = Blueprint("celery_exporter", __name__) @blueprint.route("/") def index(): return """ <!doctype html> <html lang="en"> <head> <!-- Required meta tags --> <meta charset="utf-8"> <title>celery-exporter</title> </head> <body> <h1>Celery Exporter</h1> <p><a href="/metrics">Metrics</a></p> </body> </html> """ @blueprint.route("/metrics") def metrics(): encoder, content_type = choose_encoder(request.headers.get("accept")) output = encoder(current_app.config["registry"]) return output, 200, {"Content-Type": content_type} @blueprint.route("/health") def health(): conn = current_app.config["celery_connection"] uri = conn.as_uri() try: conn.ensure_connection(max_retries=3) except kombu.exceptions.OperationalError: logger.error("Failed to connect to broker='{}'", uri) return (f"Failed to connect to broker: '{uri}'", 500) except Exception: # pylint: disable=broad-except logger.exception("Unrecognized error") return ("Unknown exception", 500) return f"Connected to the broker {conn.as_uri()}" def start_http_server(registry, celery_connection, port): app = Flask(__name__) app.config["registry"] = registry app.config["celery_connection"] = celery_connection app.register_blueprint(blueprint) Thread( target=serve, args=(app,), kwargs=dict(host="0.0.0.0", port=port, _quiet=True), daemon=True, ).start() logger.info("Started celery-exporter at port='{}'", port)
Alignment/CommonAlignmentProducer/python/ALCARECOTkAlCosmics_cff.py
ckamtsikis/cmssw
852
12746678
# Author : <NAME> # Date : July 19th, 2007 # last update: $Date: 2010/03/17 18:17:34 $ by $Author: mussgill $ import FWCore.ParameterSet.Config as cms # DCS partitions # "EBp","EBm","EEp","EEm","HBHEa","HBHEb","HBHEc","HF","HO","RPC" # "DT0","DTp","DTm","CSCp","CSCm","CASTOR","TIBTID","TOB","TECp","TECm" # "BPIX","FPIX","ESp","ESm" import DPGAnalysis.Skims.skim_detstatus_cfi ALCARECOTkAlCosmicsDCSFilter = DPGAnalysis.Skims.skim_detstatus_cfi.dcsstatus.clone( DetectorType = cms.vstring('TIBTID','TOB','TECp','TECm','BPIX','FPIX'), ApplyFilter = cms.bool(True), AndOr = cms.bool(True), DebugOn = cms.untracked.bool(False) ) #________________________________Track selection____________________________________ # AlCaReco for track based alignment using Cosmic muons reconstructed by Combinatorial Track Finder import Alignment.CommonAlignmentProducer.AlignmentTrackSelector_cfi ALCARECOTkAlCosmicsCTF = Alignment.CommonAlignmentProducer.AlignmentTrackSelector_cfi.AlignmentTrackSelector.clone( src = 'ctfWithMaterialTracksP5', filter = True, applyBasicCuts = True, ptMin = 0., ##10 ptMax = 99999., pMin = 4., ##10 pMax = 99999., etaMin = -99., ##-2.4 keep also what is going through... etaMax = 99., ## 2.4 ...both TEC with flat slope nHitMin = 7, nHitMin2D = 2, chi2nMax = 999999., applyMultiplicityFilter = False, applyNHighestPt = True, ## select only highest pT track nHighestPt = 1 ) # AlCaReco for track based alignment using Cosmic muons reconstructed by Cosmic Track Finder # (same cuts) ALCARECOTkAlCosmicsCosmicTF = ALCARECOTkAlCosmicsCTF.clone( src = 'cosmictrackfinderP5' ## different for CTF ) # AlCaReco for track based alignment using Cosmic muons reconstructed by Regional Cosmic Tracking # (same cuts) ALCARECOTkAlCosmicsRegional = ALCARECOTkAlCosmicsCTF.clone( src = 'regionalCosmicTracks' ) #________________________________Sequences____________________________________ seqALCARECOTkAlCosmicsCTF = cms.Sequence(ALCARECOTkAlCosmicsCTF) seqALCARECOTkAlCosmicsCosmicTF = cms.Sequence(ALCARECOTkAlCosmicsCosmicTF) seqALCARECOTkAlCosmicsRegional = cms.Sequence(ALCARECOTkAlCosmicsRegional)
configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py
evgps/mmdetection_trashcan
426
12746687
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' # fp16 settings fp16 = dict(loss_scale=512.)
elliot/recommender/latent_factor_models/MF/__init__.py
gategill/elliot
175
12746723
<filename>elliot/recommender/latent_factor_models/MF/__init__.py from .matrix_factorization import MF
examples/low_level/create_a_view_low_level.py
pingod/python-jenkins_api
556
12746744
""" A low level example: This is how JenkinsAPI creates views """ from __future__ import print_function import json import requests url = 'http://localhost:8080/createView' str_view_name = "blahblah123" params = {} # {'name': str_view_name} headers = {'Content-Type': 'application/x-www-form-urlencoded'} data = { "name": str_view_name, "mode": "hudson.model.ListView", "Submit": "OK", "json": json.dumps( {"name": str_view_name, "mode": "hudson.model.ListView"} ) } # Try 1 result = requests.post(url, params=params, data=data, headers=headers) print(result.text.encode('UTF-8'))
lib/tool_shed/test/functional/test_1460_data_managers.py
quacksawbones/galaxy-1
1,085
12746769
import logging from ..base.twilltestcase import common, ShedTwillTestCase log = logging.getLogger(__name__) category_name = 'Test 1460 Data Manager' category_description = 'Test script 1460 for testing Data Managers' data_manager_repository_name = 'data_manager_1460' data_manager_repository_description = 'Repository that contains a Data Manager' data_manager_repository_long_description = f'{data_manager_repository_name}: {data_manager_repository_description}' data_manager_name = 'testing_data_manager' data_manager_tar_file = '1460_files/data_manager_files/test_data_manager.tar' ''' 1. Add a Data Manager to toolshed 2. install Data Manager 3. Check that Data Manager tool ''' # TODO: Allow testing actual Execution of installed Data Manager Tool. class TestDataManagers(ShedTwillTestCase): '''Test installing a repository containing a Data Manager.''' def test_0000_initiate_users_and_category(self): """Create necessary user accounts and login as an admin user.""" self.login(email=common.admin_email, username=common.admin_username) admin_user = self.test_db_util.get_user(common.admin_email) assert admin_user is not None, f'Problem retrieving user with email {common.admin_email} from the database' self.test_db_util.get_private_role(admin_user) self.create_category(name=category_name, description=category_description) self.login(email=common.test_user_2_email, username=common.test_user_2_name) test_user_2 = self.test_db_util.get_user(common.test_user_2_email) assert test_user_2 is not None, f'Problem retrieving user with email {common.test_user_2_email} from the database' self.test_db_util.get_private_role(test_user_2) self.login(email=common.test_user_1_email, username=common.test_user_1_name) test_user_1 = self.test_db_util.get_user(common.test_user_1_email) assert test_user_1 is not None, f'Problem retrieving user with email {common.test_user_1_email} from the database' self.test_db_util.get_private_role(test_user_1) def test_0010_create_data_manager_repository(self): '''Create and populate data_manager_1460. This is step 1 - Create repository data_manager_1460. Create and populate a repository that contains a Data manager. ''' category = self.test_db_util.get_category_by_name(category_name) repository = self.get_or_create_repository(name=data_manager_repository_name, description=data_manager_repository_description, long_description=data_manager_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id(category.id), strings_displayed=[]) # Upload the data manager files to the repository. self.upload_file(repository, filename=data_manager_tar_file, filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message=f'Populate {data_manager_repository_name} with a data manager configuration.', strings_displayed=[], strings_not_displayed=[]) def test_0020_install_data_manager_repository(self): '''Install the data_manager_1460 repository to galaxy. This is step 3 - Attempt to install the repository into a galaxy instance, verify that it is installed. ''' self.galaxy_login(email=common.admin_email, username=common.admin_username) post_submit_strings_displayed = [data_manager_repository_name] self.install_repository(data_manager_repository_name, common.test_user_1_name, category_name, install_tool_dependencies=True, post_submit_strings_displayed=post_submit_strings_displayed) def test_0030_verify_data_manager_tool(self): '''Verify that the data_manager_1460 repository is installed and Data Manager tool appears in list in Galaxy.''' repository = self.test_db_util.get_installed_repository_by_name_owner(data_manager_repository_name, common.test_user_1_name) strings_displayed = ['status', 'jobs', data_manager_name] self.display_installed_jobs_list_page(repository, data_manager_names=data_manager_name, strings_displayed=strings_displayed) def test_0040_verify_data_manager_data_table(self): '''Verify that the installed repository populated shed_tool_data_table.xml and the sample files.''' self.verify_installed_repository_data_table_entries(required_data_table_entries=['data_manager_test_data_table'])
evosax/utils/es_logger.py
mahi97/evosax
102
12746776
<reponame>mahi97/evosax import pickle import jax import jax.numpy as jnp import chex from functools import partial class ESLog(object): def __init__( self, num_dims: int, num_generations: int, top_k: int, maximize: bool ): """Simple jittable logging tool for ES rollouts.""" self.num_dims = num_dims self.num_generations = num_generations self.top_k = top_k self.maximize = maximize @partial(jax.jit, static_argnums=(0,)) def initialize(self) -> chex.ArrayTree: """Initialize the logger storage.""" log = { "top_fitness": jnp.zeros(self.top_k) - 1e10 * self.maximize + 1e10 * (1 - self.maximize), "top_params": jnp.zeros((self.top_k, self.num_dims)) - 1e10 * self.maximize + 1e10 * (1 - self.maximize), "log_top_1": jnp.zeros(self.num_generations) - 1e10 * self.maximize + 1e10 * (1 - self.maximize), "log_top_mean": jnp.zeros(self.num_generations) - 1e10 * self.maximize + 1e10 * (1 - self.maximize), "log_top_std": jnp.zeros(self.num_generations) - 1e10 * self.maximize + 1e10 * (1 - self.maximize), "log_gen_1": jnp.zeros(self.num_generations) - 1e10 * self.maximize + 1e10 * (1 - self.maximize), "log_gen_mean": jnp.zeros(self.num_generations) - 1e10 * self.maximize + 1e10 * (1 - self.maximize), "log_gen_std": jnp.zeros(self.num_generations) - 1e10 * self.maximize + 1e10 * (1 - self.maximize), "gen_counter": 0, } return log # @partial(jax.jit, static_argnums=(0,)) def update( self, log: chex.ArrayTree, x: chex.Array, fitness: chex.Array ) -> chex.ArrayTree: """Update the logging storage with newest data.""" # Check if there are solutions better than current archive vals = jnp.hstack([log["top_fitness"], fitness]) params = jnp.vstack([log["top_params"], x]) top_idx = ( self.maximize * ((-1) * vals).argsort() + ((1 - self.maximize) * vals).argsort() ) log["top_fitness"] = vals[top_idx[: self.top_k]] log["top_params"] = params[top_idx[: self.top_k]] log["log_top_1"] = ( log["log_top_1"].at[log["gen_counter"]].set(log["top_fitness"][0]) ) log["log_top_mean"] = ( log["log_top_mean"] .at[log["gen_counter"]] .set(jnp.mean(log["top_fitness"])) ) log["log_top_std"] = ( log["log_top_std"] .at[log["gen_counter"]] .set(jnp.std(log["top_fitness"])) ) log["log_gen_1"] = ( log["log_gen_1"] .at[log["gen_counter"]] .set( self.maximize * jnp.max(fitness) + (1 - self.maximize) * jnp.min(fitness) ) ) log["log_gen_mean"] = ( log["log_gen_mean"].at[log["gen_counter"]].set(jnp.mean(fitness)) ) log["log_gen_std"] = ( log["log_gen_std"].at[log["gen_counter"]].set(jnp.std(fitness)) ) log["gen_counter"] += 1 return log def save(self, log: chex.ArrayTree, filename: str): """Save different parts of logger in .pkl file.""" with open(filename, "wb") as handle: pickle.dump(log, handle, protocol=pickle.HIGHEST_PROTOCOL) def load(self, filename: str): """Reload the pickle logger and return dictionary.""" with open(filename, "rb") as handle: es_logger = pickle.load(handle) return es_logger def plot( self, log, title, ylims=None, fig=None, ax=None, no_legend=False, ): """Plot fitness trajectory from evo logger over generations.""" import matplotlib.pyplot as plt if fig is None or ax is None: fig, ax = plt.subplots(1, 1, figsize=(6, 3)) int_range = jnp.arange(1, log["gen_counter"] + 1) ax.plot( int_range, log["log_top_1"][: log["gen_counter"]], label="Top 1" ) ax.plot( int_range, log["log_top_mean"][: log["gen_counter"]], label=f"Top-{self.top_k} Mean", ) ax.plot( int_range, log["log_gen_1"][: log["gen_counter"]], label="Gen. 1" ) ax.plot( int_range, log["log_gen_mean"][: log["gen_counter"]], label="Gen. Mean", ) if ylims is not None: ax.set_ylim(ylims) if not no_legend: ax.legend() if title is not None: ax.set_title(title) ax.set_xlabel("Number of Generations") ax.set_ylabel("Fitness Score") ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) return fig, ax
test/programytest/clients/restful/flask/viber/test_client.py
cdoebler1/AIML2
345
12746803
<filename>test/programytest/clients/restful/flask/viber/test_client.py import logging import unittest.mock from viberbot import Api from viberbot.api.user_profile import UserProfile from viberbot.api.viber_requests import ViberConversationStartedRequest from viberbot.api.viber_requests import ViberFailedRequest from viberbot.api.viber_requests import ViberMessageRequest from viberbot.api.viber_requests import ViberSubscribedRequest from viberbot.api.viber_requests import ViberUnsubscribedRequest from programy.clients.restful.flask.viber.client import ViberBotClient from programy.clients.restful.flask.viber.config import ViberConfiguration from programy.clients.render.text import TextRenderer from programytest.clients.arguments import MockArgumentParser class MockViberApi(Api): def __init__(self, configuration, request=None, verified=True): self._logger = logging.getLogger() self._messages = [] self._request = request self._verified = verified def set_webhook(self, url, webhook_events=None, is_inline=False): pass def send_messages(self, to, messages, chat_id=None): self._messages = messages def verify_signature(self, request_data, signature): return self._verified def parse_request(self, request_data): if self._request is None: super(MockViberApi, self).parse_request(request_data) return self._request class MockViberBotClient(ViberBotClient): def __init__(self, argument_parser=None, viber_client=None): self.test_viber_client = viber_client self.test_question = None ViberBotClient.__init__(self, argument_parser) def parse_configuration(self): self.configuration.client_configuration._name = "ViberBot" self.configuration.client_configuration._avatar = "viber.svg" self.configuration.client_configuration._webhook = "http://localhost/webhook" def set_question(self, question): self.test_question = question def get_license_keys(self): self._viber_token = "VIBER_TOKEN" def ask_question(self, sessionid, question): if self.test_question is not None: return self.test_question return super(MockViberBotClient, self).ask_question(sessionid, question) def create_viber_api(self, configuration): return MockViberApi(configuration) def create_viber_bot(self, viber_token): if self.test_viber_client is not None: return self.test_viber_client return super(MockViberBotClient,self).create_viber_bot(viber_token) class ViberBotClientTests(unittest.TestCase): def test_viber_client_init(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments) self.assertIsNotNone(client) self.assertEqual("VIBER_TOKEN", client._viber_token) self.assertIsNotNone(client._viber_bot) self.assertIsInstance(client.get_client_configuration(), ViberConfiguration) self.assertIsInstance(client._viber_bot, Api) self.assertFalse(client._render_callback()) self.assertIsInstance(client.renderer, TextRenderer) def test_create_viber_bot_no_token(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments) self.assertIsNotNone(client) bot = client.create_viber_bot(None) self.assertIsNone(bot) def test_create_viber_bot_no_name(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments) self.assertIsNotNone(client) client.configuration.client_configuration._name = None bot = client.create_viber_bot("TOKEN") self.assertIsNone(bot) def test_create_viber_bot_no_avatar(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments) self.assertIsNotNone(client) client.configuration.client_configuration._avatar = None bot = client.create_viber_bot("TOKEN") self.assertIsNone(bot) def test_create_viber_bot_no_webhook(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments) self.assertIsNotNone(client) client.configuration.client_configuration._webhook = None bot = client.create_viber_bot("TOKEN") self.assertIsNone(bot) def test_handle_message_request(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments, viber_client=MockViberApi(None)) self.assertIsNotNone(client) request = ViberMessageRequest() request._message = "Hello" request._sender = UserProfile(user_id="User123") client.test_question = "Hi there" client.handle_message_request(request) self.assertIsNotNone(client.test_viber_client) self.assertIsNotNone(client.test_viber_client._messages) self.assertEqual(1, len(client.test_viber_client._messages)) self.assertEqual("Hi there", client.test_viber_client._messages[0].text) def test_handle_subscribed_request(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments, viber_client=MockViberApi(None)) self.assertIsNotNone(client) request = ViberSubscribedRequest () request._user = UserProfile(user_id="User123") client.handle_subscribed_request(request) self.assertIsNotNone(client.test_viber_client) self.assertIsNotNone(client.test_viber_client._messages) self.assertEqual(1, len(client.test_viber_client._messages)) self.assertEqual("Thanks for subscribing!", client.test_viber_client._messages[0].text) def test_handle_unsubscribed_request(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments, viber_client=MockViberApi(None)) self.assertIsNotNone(client) request = ViberUnsubscribedRequest() request._user_id = "User123" client.handle_unsubscribed_request(request) def test_handle_conversation_started_request(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments, viber_client=MockViberApi(None)) self.assertIsNotNone(client) request = ViberConversationStartedRequest() request._user = UserProfile(user_id="User123") client.handle_conversation_started_request(request) def test_handle_failed_request(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments, viber_client=MockViberApi(None)) self.assertIsNotNone(client) request = ViberFailedRequest() request._user_id = "User123" request._desc = "Whoops, I know nothing!" client.handle_failed_request(request) def test_handle_unknown_request(self): arguments = MockArgumentParser() client = MockViberBotClient(arguments, viber_client=MockViberApi(None)) self.assertIsNotNone(client) request = unittest.mock.Mock() client.handle_unknown_request(request) def test_receive_message(self): arguments = MockArgumentParser() viber_api = MockViberApi(None) client = MockViberBotClient(arguments, viber_client=viber_api) self.assertIsNotNone(client) request = unittest.mock.Mock() request.get_data.return_value = "{}" request.headers = {"X-Viber-Content-Signature": "SIGNATURE"} return_request = ViberMessageRequest() return_request._message = "Hello" return_request._sender = UserProfile(user_id="User123") viber_api._request = return_request client.receive_message(request)
scenic/projects/baselines/bert/bert_base_model.py
techthiyanes/scenic
688
12746804
<filename>scenic/projects/baselines/bert/bert_base_model.py """Base class for models working with bert.""" from typing import Callable, Dict, Optional, Tuple, Union from flax.training import common_utils import jax import jax.numpy as jnp import numpy as np from scenic.model_lib.base_models import base_model from scenic.model_lib.base_models import model_utils # Aliases for custom types: Batch = Dict[str, jnp.ndarray] MetricFn = Callable[[Dict[str, jnp.ndarray], Batch], Dict[str, Tuple[float, int]]] LossFn = Callable[[Dict[str, jnp.ndarray], Batch, Optional[jnp.ndarray]], float] def num_examples( logits: jnp.ndarray, weights: Optional[jnp.ndarray] = None) -> Union[jnp.ndarray, int]: if weights is None: return logits.shape[0] return weights.sum() def sparse_weighted_unnormalized_softmax_cross_entropy( logits: jnp.ndarray, labels: jnp.ndarray, mlm_weights: jnp.ndarray, batch_mask_weights: Optional[jnp.ndarray] = None) -> jnp.ndarray: """Computes sparse weighted softmax cross entropy give logits and targets. Args: logits: Logits of shape [batch_size, length, vocab_size]. labels: Labels from {0 ... vocab_size - 1} of shape [batch_size, length]. mlm_weights: Weights of shape [batch_size, length], indicating masked tokens in masked language modeling task. batch_mask_weights: None or array of shape [batch,] indicating masked examples. Returns: Per example Loss value. """ batch_size, length, vocab_size = logits.shape logits = jax.nn.log_softmax(logits) logits, mlm_weights = logits.ravel(), mlm_weights.ravel() offsets = (np.arange(batch_size * length) * vocab_size).reshape((-1, length)) labels = (labels + offsets).ravel() loss = -jnp.take(logits, labels, axis=0) loss = loss * mlm_weights loss = loss.sum(axis=-1) / (mlm_weights.sum(axis=-1) + 1e-8) if batch_mask_weights is not None: loss = model_utils.apply_weights(loss, batch_mask_weights) return loss def sparse_weighted_softmax_cross_entropy( logits: jnp.ndarray, labels: jnp.ndarray, mlm_weights: jnp.ndarray, batch_mask_weights: Optional[jnp.ndarray] = None) -> jnp.ndarray: """Same as weighted_unnormalized, but additionally takes a mean. Args: logits: Logits of shape [batch_size, length, vocab_size]. labels: Labels from {0 ... vocab_size - 1} of shape [batch_size, length]. mlm_weights: Weights of shape [batch_size, length], indicating masked tokens in masked language modeling task. batch_mask_weights: None or array of shape [batch,] indicating masked examples. Returns: The mean cross entropy of the examples in the given batch as a scalar. """ if batch_mask_weights is not None: normalization = batch_mask_weights.sum() else: normalization = mlm_weights.shape[0] # Batch size. sparse_unnormalized_softmax_ce = sparse_weighted_unnormalized_softmax_cross_entropy( logits, labels, mlm_weights, batch_mask_weights) return jnp.sum(sparse_unnormalized_softmax_ce) / (normalization + 1e-8) def sparse_weighted_per_example_accuracy( logits: jnp.ndarray, labels: jnp.ndarray, mlm_weights: jnp.ndarray, batch_mask_weights: Optional[jnp.ndarray] = None) -> jnp.ndarray: """Computes weighted number of correctly classified over the given batch. This computes the weighted number of correctly classified masked tokens in a single, potentially padded minibatch. If the minibatch/inputs is padded (i.e., it contains null examples/pad pixels) it is assumed that batch_mask_weights is a binary mask where 0 indicates that the example/pixel is null/padded. We assume the trainer will aggregate and divide by number of samples. Args: logits: Logits of shape [batch_size, length, vocab_size]. labels: Labels from {0 ... vocab_size - 1} of shape [batch_size, length]. mlm_weights: Weights of shape [batch_size, length], indicating masked tokens in masked language modeling task. batch_mask_weights: None or array of shape [batch,] indicating masked examples. Returns: Per example accuracy of predicted masked tokens. """ preds = jnp.argmax(logits, axis=-1) correct = jnp.equal(preds, labels) correct = correct * mlm_weights # Shape of per example acccuracy will be (batch_size,). per_ex_accuracy = correct.sum(axis=-1) / (mlm_weights.sum(axis=-1) + 1e-8) if batch_mask_weights is not None: per_ex_accuracy = model_utils.apply_weights(per_ex_accuracy, batch_mask_weights) return per_ex_accuracy def bert_metrics_function(outputs: Dict[str, jnp.ndarray], batch: Batch) -> Dict[str, Tuple[float, int]]: """Calcualte metrics for the BERT task. Args: outputs: Output of model that has masked LM logits of shape [batch, length, vocab_size], and next sentence prediction logits of shape [batch, 2]. batch: Batch of data that has 'masked_lm_ids', 'masked_lm_weights' and 'next_sentence_labels'. Returns: A dict of metrics, in which keys are metrics name and values are tuples of (metric, normalizer). """ mlm_logits = outputs['mlm_logits'] nsp_logits = outputs['nsp_logits'] next_sentence_labels = common_utils.onehot(batch['next_sentence_labels'], 2) batch_weights = batch.get('batch_mask') # batch_mask might not be defined per_ex_nsp_loss = model_utils.weighted_unnormalized_softmax_cross_entropy( nsp_logits, next_sentence_labels, batch_weights) per_ex_nsp_accuracy = model_utils.weighted_correctly_classified( nsp_logits, next_sentence_labels, batch_weights) per_ex_mlm_loss = sparse_weighted_unnormalized_softmax_cross_entropy( mlm_logits, batch['masked_lm_ids'], batch['masked_lm_weights'], batch_weights) per_ex_mlm_accuracy = sparse_weighted_per_example_accuracy( mlm_logits, batch['masked_lm_ids'], batch['masked_lm_weights'], batch_weights) # This psum is required to correctly evaluate with multihost. Only host 0 # will report the metrics, so we must aggregate across all hosts. The psum # will map an array of shape [n_global_devices, batch_size] -> [batch_size] # by summing across the devices dimension. The outer sum then sums across the # batch dim. The result is then we have summed across all samples in the # sharded batch. evaluated_metrics = {} normalizer = num_examples(mlm_logits, batch_weights) for name, value in zip( ['nsp_loss', 'nsp_accuracy', 'mlm_loss', 'mlm_accuracy', 'loss'], [ per_ex_nsp_loss, per_ex_nsp_accuracy, per_ex_mlm_loss, per_ex_mlm_accuracy, per_ex_nsp_loss + per_ex_mlm_loss ]): evaluated_metrics[name] = model_utils.psum_metric_normalizer( (value, normalizer)) return evaluated_metrics def compute_bert_loss(mlm_logits: jnp.ndarray, nsp_logits: jnp.ndarray, batch: Batch) -> float: """Computes BERT loss. Args: mlm_logits: Masked LM logits of shape [batch, length, vocab_size]. nsp_logits: Next sentence prediction logits of shape [batch, 2]. batch: Batch of data that has 'masked_lm_ids', 'masked_lm_weights' and 'next_sentence_labels'. Returns: Loss value. """ next_sentence_labels = common_utils.onehot(batch['next_sentence_labels'], 2) batch_weights = batch.get('batch_mask') # batch_mask might not be defined nsp_loss = model_utils.weighted_softmax_cross_entropy(nsp_logits, next_sentence_labels, batch_weights) mlm_loss = sparse_weighted_softmax_cross_entropy(mlm_logits, batch['masked_lm_ids'], batch['masked_lm_weights'], batch_weights) return nsp_loss + mlm_loss class BERTBaseModel(base_model.BaseModel): """Defines BERT base models. A model is class with three members: get_metrics_fn, loss_fn, and a flax_model. get_metrics_fn returns a callable function, metric_fn, that calculates the metrics and returns a dictionary. The metric function computes f(x_i, y_i) on a minibatch, it has API: ```metric_fn(logits, label, weights).``` The trainer will then aggregate and compute the mean across all samples evaluated. loss_fn is a function of API loss = loss_fn(logits, batch, model_params=None). This model class defines a softmax_cross_entropy_loss with weight decay, where the weight decay factor is determined by config.l2_decay_factor. flax_model is returned from the build_flax_model function. A typical usage pattern will be: ``` model_cls = bert_model.BERTModel model = model_cls(config, dataset.meta_data) flax_model = model.build_flax_model dummy_input = {name: jnp.zeros(input_shape, model_input_dtype), ...} model_state, params = flax_model.init( rng, dummy_input, train=False).pop('params') ``` And this is how to call the model:s ``` variables = {'params': params, **model_state} output, new_model_state = flax_model.apply(variables, inputs, ...) ``` """ def get_metrics_fn(self, split: Optional[str] = None) -> MetricFn: """Returns a callable metric function for the model. Args: split: The split for which we calculate the metrics. It should be one of the ['train', 'validation', 'test']. Returns: A metric function with the following API: ```metrics_fn(outputs, batch)``` """ del split # For all splits, we return the same metric functions. return bert_metrics_function def loss_function(self, outputs: Dict[str, jnp.ndarray], batch: Batch, model_params: Optional[jnp.ndarray] = None) -> float: """Returns softmax cross entropy loss with an L2 penalty on the weights. Args: outputs: a dictionary containing either 'logits' key of shape [batch, length, num_classes] or 'nsp_logits' of shape [batch, 2] and 'mlm_logits' of shape [batch, length, vocab_size] (for 'BERT' task). batch: Batch of data that has 'label' and optionally 'batch_mask'. model_params: Parameters of the model, for optionally applying regularization. Returns: Total loss. """ total_loss = compute_bert_loss(outputs['mlm_logits'], outputs['nsp_logits'], batch) if self.config.get('l2_decay_factor'): l2_loss = model_utils.l2_regularization(model_params) total_loss += 0.5 * self.config.l2_decay_factor * l2_loss return total_loss def build_flax_model(self): raise NotImplementedError('Subclasses must implement build_flax_model().') def default_flax_model_config(self): """Default config for the flax model that is built in `build_flax_model`. This function in particular serves the testing functions and supposed to provide config tha are passed to the flax_model when it's build in `build_flax_model` function, e.g., `model_dtype_str`. """ raise NotImplementedError( 'Subclasses must implement default_flax_model_config().')
aliyun-python-sdk-cloudmarketing/aliyunsdkcloudmarketing/request/v20180910/DescribeFileRequest.py
yndu13/aliyun-openapi-python-sdk
1,001
12746811
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class DescribeFileRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'cloudmarketing', '2018-09-10', 'DescribeFile') self.set_method('POST') def get_FileName(self): return self.get_query_params().get('FileName') def set_FileName(self,FileName): self.add_query_param('FileName',FileName) def get_DataSchemaStatusLists(self): return self.get_query_params().get('DataSchemaStatusLists') def set_DataSchemaStatusLists(self, DataSchemaStatusLists): for depth1 in range(len(DataSchemaStatusLists)): if DataSchemaStatusLists[depth1] is not None: self.add_query_param('DataSchemaStatusList.' + str(depth1 + 1) , DataSchemaStatusLists[depth1]) def get_PageNo(self): return self.get_query_params().get('PageNo') def set_PageNo(self,PageNo): self.add_query_param('PageNo',PageNo) def get_PageSize(self): return self.get_query_params().get('PageSize') def set_PageSize(self,PageSize): self.add_query_param('PageSize',PageSize) def get_FileId(self): return self.get_query_params().get('FileId') def set_FileId(self,FileId): self.add_query_param('FileId',FileId)
cpmpy/cpmpy_hakank.py
hakank/hakank
279
12746828
""" This package includes my constraints/utilities/etc for cpmpy. This cpmpy model was written by <NAME> (<EMAIL>) See also my cpmpy page: http://hakank.org/cpmpy/ """ import sys, math, re import itertools import numpy as np from functools import reduce from cpmpy import * from cpmpy.expressions.globalconstraints import GlobalConstraint from cpmpy.solvers import * from ortools.sat.python import cp_model as ort from cpmpy.transformations.flatten_model import flatten_constraint, flatten_model from cpmpy.transformations.get_variables import print_variables def AllDifferent_except_0(args): """ Ensure that all arguments that are != 0 must have distinct values. """ # Note: The parenthesis around (var1 != 0) are needed! return [ ((var1!= 0) & (var2 != 0)).implies(var1 != var2) for var1, var2 in all_pairs(args)] def all_different_except_0(args): """ Alias for AllDifferent_except_0(args). """ return AllDifferent_except_0(args) def to_num(a,n,base): """ to_num(a, n, base) Ensure that the digits in array `a` corresponds to the number `n` in base `base`. """ tlen = len(a) return n == sum([(base ** (tlen - i - 1)) * a[i] for i in range(tlen)]) def increasing(args): """ Ensure that the values in args are increasing. """ return [args[i-1] <= args[i] for i in range(1,len(args))] def increasing_strict(args): """ Ensure that the values in args are strict increasing. """ return [args[i-1] < args[i] for i in range(1,len(args))] def decreasing(args): """ Ensure that the values in args are decreasing. """ return [args[i-1] >= args[i] for i in range(1,len(args))] def decreasing_strict(args): """ Ensure that the values in args are strict decreasing. """ return [args[i-1] >= args[i] for i in range(1,len(args))] def all_pairs(args): """ Generate all pairs from the list of lists args. (stolen from cmppy/globalconstraints.py) """ return list(itertools.combinations(args, 2)) def get_different_solution(m,x): """ Add the current solution (x) in the model to generate other solutions. Usage: # ... ss = CPM_ortools(model) if ss.solve(): print(x.value()) get_different_solution(ss, x) Note: The array in x must be a flattened array. If there are many decision variables, use flatten_lists(a) to flatten out the array. E.g. # ... ss = CPM_ortools(model) while ss.solve(): print(x.value()) # an array print(y.value()) # a variable print(z.value()) # another variable get_different_solution(ss,flatten_lists([x,[y,z]]) Note that this might be slow for larger models or models with many solutions. If so, try to use - ortools_wrapper() or the simple solution printers such as - ORT_simple_printer - ORT_arrays_printer - ORT_simple_printer_matrix - ORT_simple_function_printer or define a similiar solution printer. """ # n = len(x) # m += [any([x[i].value() != x[i] for i in range(n)])] m += [any([t.value() != t for t in x])] def flatten_lists(a): """ Flatten a list of lists. Note: a must be an array of arrays (list of lists). See get_different_solution for examples. """ return [item for sublist in a for item in sublist] class ORT_simple_printer(ort.CpSolverSolutionCallback): """ A simple printer callback for single array printing. """ def __init__(self, varmap, a, num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 # I always start at 1. :-) # populate values before printing # For array of arrays (Tias' original) # for wm in self.vars: # for cpm_var in wm: # cpm_var._value = self.Value(self.varmap[cpm_var]) # For single arrays: for cpm_var in self.vars: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"#{self.solcount}: {a.value()}") if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_arrays_printer(ort.CpSolverSolutionCallback): """ A simple printer callback for array of arrays. """ def __init__(self, varmap, a, num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 # I always start at 1. :-) # populate values before printing # For array of arrays (Tias' original) for wm in self.vars: for cpm_var in wm: cpm_var._value = self.Value(self.varmap[cpm_var]) # For single arrays: for cpm_var in self.vars: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"#{self.solcount}: {a.value()}") if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_simple_printer_matrix(ort.CpSolverSolutionCallback): """ A simple printer callback for printing a matrix. """ def __init__(self, varmap, a, rows,cols, num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.rows = rows self.cols = cols self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 for cpm_var in self.vars: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"#{self.solcount}:") for i in range(self.rows): for j in range(self.cols): print("%3d" % a[i*self.cols+j].value(), end=" ") print() print() if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_simple_function_printer(ort.CpSolverSolutionCallback): """ A printer callback with a callback (cb_fun) for printing the array a, which should be structured by the user and including .value() for the variables. Note that the data array a must be a flattening array to be used with this printer callback. Example of a printer function: def f(a): print(a[0].value(),"+",a[1].value(),"=",a[2].value()) which will print a solution such as 2 + 3 = 5 """ def __init__(self, varmap, a, cb_fun,num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.cb_fun = cb_fun self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 # For single arrays: for cpm_var in self.vars: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"\n#{self.solcount}:") self.cb_fun(a) if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_simple_solution_counter(ort.CpSolverSolutionCallback): """ This is a solution 'printer' that just count the solutions. """ def __init__(self, varmap, a): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) def on_solution_callback(self): self.solcount += 1 for wm in self.vars: for cpm_var in wm: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars class ORT_function_printer_arrays(ort.CpSolverSolutionCallback): """ A printer callback with a callback (cb_fun) for printing the array of arrays a, which should be structured by the user and including .value() for the variables. This version t prints solution number. Example of a printer function: def print_solution(a): print('x:', a[0].value()) print('y:', a[1].value()) """ def __init__(self, varmap, a, cb_fun,num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.cb_fun = cb_fun self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 for wm in self.vars: for cpm_var in wm: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"sol #{self.solcount}") self.cb_fun(a) print() if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_function_printer_arrays2(ort.CpSolverSolutionCallback): """ A printer callback with a callback (cb_fun) for printing the array of arrays a, which should be structured by the user and including .value() for the variables. This version don't print solution number. Example of a printer function: def print_solution(a): print('x:', a[0].value()) print('y:', a[1].value()) """ def __init__(self, varmap, a, cb_fun,num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.cb_fun = cb_fun self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 for wm in self.vars: for cpm_var in wm: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars self.cb_fun(a) if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() def print_solution(a): """ print_solution(a) Default callback method for printing the solution in a printer callback. Note: a must be an array of arrays to be used with ortools_wrapper (defined below). """ for x in a: print(x.value()) def ortools_wrapper(model,var_array,print_solution=print_solution,num_sols=0): """ ortools_wrapper((model,var_array,print_solution=print_solution,num_sols=0) This is a simple wrapper for printing the solutions of a model and tends to be (significantly) faster than using ss = CPM_ortools(model) while ss.solve(): # ... get_different_solution(ss,flatten_lists(var_array)) Parameters: - model : the model - var_array: the array of arrays of the decision variables to be printed with print_solution(var_array) - print_solution: the method used to do the actual printing of the solution. Default is print_solution(a) defined above. The function can be overwritten / defined in the current constraint model. - num_sols : number of solutions. Default 0, all solutions. Note: For optimality problems, use ortools_wrapper_opt(.) instead. """ ss = CPM_ortools(model) cb = ORT_function_printer_arrays(ss.varmap,var_array,print_solution,num_sols) # Flags to experiment with # ss.ort_solver.parameters.num_search_workers = 8 # Don't work together with SearchForAllSolutions # ss.ort_solver.parameters.search_branching = ort.PORTFOLIO_SEARCH # ss.ort_solver.parameters.cp_model_presolve = False ss.ort_solver.parameters.linearization_level = 0 ss.ort_solver.parameters.cp_model_probing_level = 0 ort_status = ss.ort_solver.SearchForAllSolutions(ss.ort_model, cb) ss._after_solve(ort_status) print(ss.status()) print("Nr solutions:", cb.solcount) print("Num conflicts:", ss.ort_solver.NumConflicts()) print("NumBranches:", ss.ort_solver.NumBranches()) print("WallTime:", ss.ort_solver.WallTime()) print() def ortools_wrapper2(model,var_array,print_solution=print_solution,num_sols=0): """ ortools_wrapper((model,var_array,print_solution=print_solution,num_sols=0) This is a simple wrapper for printing the solutions of a model and tends to be (significantly) faster than using ss = CPM_ortools(model) while ss.solve(): # ... get_different_solution(ss,flatten_lists(var_array)) This version don't print the solution number. Parameters: - model : the model - var_array: the array of arrays of the decision variables to be printed with print_solution(var_array) - print_solution: the method used to do the actual printing of the solution. Default is print_solution(a) defined above. The function can be overwritten / defined in the current constraint model. - num_sols : number of solutions. Default 0, all solutions. Note: For optimality problems, use ortools_wrapper_opt(.) instead. """ ss = CPM_ortools(model) cb = ORT_function_printer_arrays2(ss.varmap,var_array,print_solution,num_sols) # Flags to experiment with # ss.ort_solver.parameters.num_search_workers = 8 # Don't work together with SearchForAllSolutions # ss.ort_solver.parameters.search_branching = ort.PORTFOLIO_SEARCH # ss.ort_solver.parameters.cp_model_presolve = False ss.ort_solver.parameters.linearization_level = 0 ss.ort_solver.parameters.cp_model_probing_level = 0 ort_status = ss.ort_solver.SearchForAllSolutions(ss.ort_model, cb) print() ss._after_solve(ort_status) # post-process after solve() call... print(ss.status()) print("Nr solutions:", cb.solcount) print("Num conflicts:", ss.ort_solver.NumConflicts()) print("NumBranches:", ss.ort_solver.NumBranches()) print("WallTime:", ss.ort_solver.WallTime()) print() def ortools_wrapper_opt(model,var_array,print_solution=print_solution,num_sols=1,num_procs=1): """ ortools_wrapper_opt((model,var_array,print_solution=print_solution,num_sols=0) This is a simple wrapper for printing the _optimal_ solution of a model. This tends to be (significantly) faster than using if model.solve(): # ... Parameters: - model : the model - var_array: the array of arrays of the decision variables to be printed with print_solution(var_array) - print_solution: the method used to do the actual printing of the solution. Default is print_solution(a) defined above. The function can be overwritten / defined in the current constraint model. - num_sols : number of solutions. Default 0, all solutions. """ ss = CPM_ortools(model) cb = ORT_function_printer_arrays(ss.varmap,var_array,print_solution,1) # Flags to experiment with if num_procs > 1: ss.ort_solver.parameters.num_search_workers = num_procs # ss.ort_solver.parameters.search_branching = ort.PORTFOLIO_SEARCH # ss.ort_solver.parameters.cp_model_presolve = False ss.ort_solver.parameters.linearization_level = 0 ss.ort_solver.parameters.cp_model_probing_level = 0 # Note: This is the real difference between this method and ortool_wrapper. # For optimal problems one cannot use SearchForAllSolutions. Instead # one must use ss.ort_solver.Solve(,) # ort_status = ss.ort_solver.SearchForAllSolutions(ss.ort_model, cb) ort_status = ss.ort_solver.Solve(ss.ort_model, cb) ss._after_solve(ort_status) # post-process after solve() call... print(ss.status()) print("Nr solutions:", cb.solcount) print("Num conflicts:", ss.ort_solver.NumConflicts()) print("NumBranches:", ss.ort_solver.NumBranches()) print("WallTime:", ss.ort_solver.WallTime()) print() def ortools_wrapper_count_solutions(model,var_array): """ ortools_wrapper((model,var_array,print_solution=print_solution,num_sols=0) This is a simple wrapper for just counting the solutions of a model. Parameters: - model : the model - var_array: the array of arrays of the decision variables to be printed with print_solution(var_array) """ ss = CPM_ortools(model) cb = ORT_simple_solution_counter(ss.varmap,var_array) # Flags to experiment with # ss.ort_solver.parameters.num_search_workers = 8 # Don't work together with SearchForAllSolutions # ss.ort_solver.parameters.search_branching = ort.PORTFOLIO_SEARCH # ss.ort_solver.parameters.cp_model_presolve = False ss.ort_solver.parameters.linearization_level = 0 ss.ort_solver.parameters.cp_model_probing_level = 0 ort_status = ss.ort_solver.SearchForAllSolutions(ss.ort_model, cb) ss._after_solve(ort_status) return cb.solcount def base_array(n): """ Returns an array of length `n` with base coefficients. Example: `base_array(4)` returns the array [1000,100,10,1] """ return np.array([10**i for i in range(n-1,-1,-1)]) def scalar_product(a,b): """ `scalar_product(a,b)` Returns the scalar product of the arrays `a` and `b`. Assumption: `len(a) == len(b)` """ assert len(a) == len(a), f"len(a) == len(b)" # return np.dot(a,b) return sum(a*b) def scalar_product1(a): """ `scalar_product1(a)` Returns the scalar product of the array `a` and a base_array of appropriate length. Assumption: `len(a) == len(b)` """ assert len(a) == len(a), f"len(a) == len(b)" # return np.dot(a,base_array(len(a))) return sum(a*base_array(len(a))) def my_circuit(x): """ circuit(x) Exsures that x is a circuit. Note: This assumes that x is has the domain 0..len(x)-1, i.e. 0-based. """ assert x[0].lb == 0, f"circuit: lb is {x[0].lb}, but must be 0" n = len(x) z = intvar(0, n-1,shape=n,name='z') constraints = [ AllDifferent(x), AllDifferent(z), # put the orbit of x[0] in in z[1..n] z[0] == x[0], [ z[i] == x[z[i-1]] for i in range(1, n-1)], # may not be 0 for i < n-1 [ z[i] != 0 for i in range(1, n-1)], # when i = n-1 it must be 0 z[n-1] == 0 ] return constraints def my_circuit_path(x,z): """ circuit(x,z) Ensures that x is an circuit and z is the path. Note: This assumes that x is has the domain 0..len(x)-1, i.e. 0-based. """ assert x[0].lb == 0, f"circuit: x[0].lb is {x[0].lb}, but must be 0" n = len(x) constraints = [ AllDifferent(x), AllDifferent(z), # put the orbit of x[0] in in z[1..n] z[0] == x[0], [ z[i] == x[z[i-1]] for i in range(1, n-1)], # may not be 0 for i < n-1 [ z[i] != 0 for i in range(1, n-1)], # when i = n-1 it must be 0 z[n-1] == 0 ] return constraints def count(a,val,c): """ count(a,val,c) c is the number of occurrences of val in array a. """ return [c == sum([a[i] == val for i in range(len(a))]) ] def atmost(a,val,c): """ atmost(a,val,c) Ensure that the number of occurrences of val in a is atmost c. """ return [sum([a[i] == val for i in range(len(a))]) <= c] def atleast(a,val,c): """ atleast(a,val,c) Ensure that the number of occurrences of val in a is atmost c. """ return [sum([a[i] == val for i in range(len(a))]) >= c] def exactly(a,val,c): """ exactly(a,val,c) Ensure that the number of occurrences of val in a is exactly c. """ return [sum([a[i] == val for i in range(len(a))]) == c] def global_cardinality_count(a,gcc): """ global_cardinality_count(a,gcc) Global cardinality count: Collect the number of occurrences of each value 0..a.ub in gcc. The array gcc must be of length 0..ub. """ n = len(a) ub = max([a[i].ub for i in range(n)]) constraints = [] for i in range(ub+1): constraints += [count(a,i,gcc[i])] return constraints def inverse(x,y): """ inverse(x,y) Ensures that: x[i] == j #<=> y[j] == i Note: inverse(x,y) is sometimes called assignment(x,y). There is an alternative version: inverse(x) which can be simulated by inverse(x,x) """ n = len(x) assert n == len(y), "x and y must be of equal length" constraints = [] for i in range(n): for j in range(n): constraints += [(x[i] == j) == (y[j] == i)] return constraints def my_cumulative(s, d, r, b): """ Decompositon of cumulative. Inspired by the MiniZinc implementation. The MiniZinc decomposition is discussed in the paper: <NAME>, <NAME>, <NAME>, and <NAME>. 'Why cumulative decomposition is not as bad as it sounds.' Parameters: s: start_times assumption: array of varint d: durations assumption: array of int r: resources assumption: array of int b: resource limit assumption: varint or int """ constraints = [] max_d = max(d) tasks = [i for i in range(len(s)) if r[i] > 0 and d[i] > 0] times_min = min([s[i].lb for i in tasks]) times_max = max([s[i].ub + max_d for i in tasks]) for t in range(times_min, times_max + 1): constraints += [ b >= sum([((s[i] <= t) & (t < s[i] + d[i])) * r[i] for i in tasks])] # Somewhat experimental: # This constraint is needed to contrain the upper limit of b. if not isinstance(b, int): constraints += [b <= sum(r)] return constraints def member_of(x, val): """ member_of(x, val) Ensures that the value `val` is in the array `x`. """ n = len(x) # cc = intvar(0,n) # constraints = [count(x, val, cc), cc > 0] constraints = [sum([x[i] == val for i in range(n)]) > 0] return constraints def regular(x, Q, S, d, q0, F): """ Global constraint regular This is a translation of MiniZinc's regular constraint (defined in lib/zinc/globals.mzn), via the Comet code refered above. All comments are from the MiniZinc code. ''' The sequence of values in array 'x' (which must all be in the range 1..S) is accepted by the DFA of 'Q' states with input 1..S and transition function 'd' (which maps (1..Q, 1..S) -> 0..Q)) and initial state 'q0' (which must be in 1..Q) and accepting states 'F' (which all must be in 1..Q). We reserve state 0 to be an always failing state. ''' x : IntVar array Q : number of states S : input_max d : transition matrix q0: initial state F : accepting states Note: As mentioned above the states must start at 1 since 0 is represents a failed state. Note: Compare with regular_table which use the Table constraints instead of Element constraint in the main loop. """ assert Q > 0, 'regular: "Q" must be greater than zero' assert S > 0, 'regular: "S" must be greater than zero' # d2 is the same as d, except we add one extra transition for # each possible input; each extra transition is from state zero # to state zero. This allows us to continue even if we hit a # non-accepted input. d2 = [] for i in range(Q + 1): row = [] for j in range(S): if i == 0: row.append(0) else: row.append(d[i - 1][j]) d2.append(row) d2_flatten = [d2[i][j] for i in range(Q + 1) for j in range(S)] # If x has index set m..n, then a[m-1] holds the initial state # (q0), and a[i+1] holds the state we're in after processing # x[i]. If a[n] is in F, then we succeed (ie. accept the # string). x_range = list(range(0, len(x))) m = 0 n = len(x) a = [intvar(0, Q + 1) for i in range(m, n + 1)] constraints = [] # Check that the final state is in F constraints += [member_of(F,a[-1])] # First state is q0 constraints += [a[m] == q0] for i in x_range: constraints += [x[i] >= 1] constraints += [x[i] <= S] # Determine a[i+1]: a[i+1] == d2[a[i], x[i]] constraints += [ a[i + 1] == Element(d2_flatten,(a[i]) * S + (x[i] - 1)) ] return constraints def regular_table(x, Q, S, d, q0, F): """ Global constraint regular_table This is a translation of MiniZinc's regular constraint (defined in lib/zinc/globals.mzn), via the Comet code refered above. All comments are from the MiniZinc code. ''' The sequence of values in array 'x' (which must all be in the range 1..S) is accepted by the DFA of 'Q' states with input 1..S and transition function 'd' (which maps (1..Q, 1..S) -> 0..Q)) and initial state 'q0' (which must be in 1..Q) and accepting states 'F' (which all must be in 1..Q). We reserve state 0 to be an always failing state. ''' x : IntVar array Q : number of states S : input_max d : transition matrix q0: initial state F : accepting states Note: As mentioned above the states must start at 1 since 0 is represents a failed state. The difference between this version (regular_table) and regular is that this version use Table constraint instead of Element constraint. """ assert Q > 0, 'regular: "Q" must be greater than zero' assert S > 0, 'regular: "S" must be greater than zero' # d2 is the same as d, except we add one extra transition for # each possible input; each extra transition is from state zero # to state zero. This allows us to continue even if we hit a # non-accepted input. d2 = [] for i in range(Q + 1): row = [] for j in range(S): if i == 0: # This is different from regular(.) row.append((0,j,0)) else: # This is different from regular(.) row.append((i,j, d[i - 1][j])) d2.append(row) d2_flatten = [d2[i][j] for i in range(Q + 1) for j in range(S)] # If x has index set m..n, then a[m-1] holds the initial state # (q0), and a[i+1] holds the state we're in after processing # x[i]. If a[n] is in F, then we succeed (ie. accept the # string). x_range = list(range(0, len(x))) m = 0 n = len(x) a = [intvar(0, Q + 1) for i in range(m, n + 1)] constraints = [] # Check that the final state is in F constraints += [member_of(F,a[-1])] # First state is q0 constraints += [a[m] == q0] x_lb, x_ub = get_min_max_domain(x) for i in x_range: constraints += [x[i] >= 1] constraints += [x[i] <= S] # Determine a[i+1]: a[i+1] == d2[a[i], x[i]] xi1 = intvar(0,x_ub) constraints += [ # These two constraints are different # from regular(.) xi1 == x[i]-1, Table((a[i], xi1, a[i + 1]), d2_flatten) ] return constraints def lex_less(x,y): """ lex_less(x,y) Ensures that the array 'x' is strictly lexicographically less than array 'y'. Compares them from first to last element, regardless of indices This is a port of MiniZinc's definition lex_less_int https://github.com/MiniZinc/libminizinc/blob/master/share/minizinc/std/fzn_lex_less_int.mzn Note that we simplify the calculation of lx and ly since cpmpy has start index 0 (in MiniZinc the start index can be user defined). """ xlen = len(x) ylen = len(y) ux = xlen uy = ylen size = min([ux,uy]) # Do not name variables in global constraints # since then the variables are not unique. # b = boolvar(shape=size+1,name="b") b = boolvar(shape=size+1) constraints = [] constraints += [b[0] == 1 ] for i in range(size): constraints += [b[i] == ((x[i] <= y[i]) & ((x[i] < y[i]) | (b[i+1] == 1)) )] constraints += [b[size] == (ux < uy)] return constraints def lex_greater(x,y): """ lex_greater(x,y) Ensures that the array 'x' is strictly lexicographically greater than array 'y'. Compares them from first to last element, regardless of indices. This constraint is defined by lex_less(y,x) defined above . """ return lex_less(y,x) def lex2(x): """ lex2(x) Ensures that the rows and columns in the matrix `x` are increasing, using lex_less. """ x_t = x.transpose() return [[lex_less(x[i],x[i+1]) for i in range(len(x)-1)], [lex_less(x_t[i],x_t[i+1]) for i in range(len(x_t)-1)]] # # Somewhat general definition of knapsack. # def knapsack(values, weights, n): """ knapsack(values, weights, n) Creates a model for the knapsack problem with the values, weights and limit n. See knapsack.py for usage of this. """ z = intvar(0, 10000,name="z") x = intvar(0,1,shape=len(values),name="x") model = Model( [ z >= 0, z == sum(x*values), sum(x*weights) <= n, ], maximize=z ) return [model, x, z] def my_abs(x,y,d): """ A decomposition of abs() for experimentation. """ constraints = [] b = boolvar() constraints += [b == (x >= y)] constraints += [(b).implies(d == x - y)] constraints += [(~b).implies(d == y - x)] return constraints def my_abs2(x,y): """ A decomposition of abs() for experimentation. """ constraints = [] b = boolvar() d = intvar(0,1000000) constraints += [b == (x >= y)] constraints += [(b).implies(d == x - y)] constraints += [(~b).implies(d == y - x)] return d def prod(x,res): """ prod(x,res) res is the product of the values in x. """ return [reduce(lambda a, b: a * b, x) == res] def prod1(x): """ prod1(x) return the product of the values in x. """ return reduce(lambda a, b: a * b, x) def among(m,x,v): """ among(m,x,v) Requires exactly m variables in x to take one of the values in v. """ return [m == sum([x[i] == j for i in range(len(x)) for j in v])] # # Symmetry breaking # # From # http://en.wikipedia.org/wiki/Fr#C3#A9nicle_standard_form # """ # A magic square is in Frénicle standard form, named for # <NAME>, if the following two conditions apply: # - the element at position [1,1] (top left corner) is the smallest # of the four corner elements; and # - the element at position [1,2] (top edge, second from left) is # smaller than the element in [2,1]. # """ # def frenicle(x,n): constraints = [x[(0,0)] == min([x[0,0], x[0,n-1], x[n-1,0], x[n-1,n-1]])] constraints += [x[0,1] < x[1,0]] return constraints def distribute(card, value, base): """ distribute(card, value, base) Requires that 'card[i]' is the number of occurences of 'value[i]' in 'base'. Note: card, value, and base are assumed to be intvar arrays. """ card_len = len(card) value_len = len(value) assert card_len == value_len, "`card` and `value` must have the same length" base_len = len(base) constraints = [] constraints += [AllDifferent(value)] for i in range(card_len): constraints += [ card[i] == sum([value[i] == base[j] for j in range(base_len)]) ] return constraints def fill_array(x,x_val): """ fill_array(x,x_val) If x_val[i] != None then x[i] == x_val[i]. """ constraints = [] for i in range(len(x)): if x_val[i] != None: constraints += [x[i] == x_val[i]] return constraints def all_different_pairs(a, s): """ all_different_pairs(a, s) all pairs must be different """ return [AllDifferent([p for p in pairs(a,s)])] def increasing_pairs(a, s): """ increasing_pairs(a, s) Ensure that the pairs are in increasing order. """ return [increasing(pairs(a,s))] def decreasing_pairs(a, s): """ decreasing_pairs(a, s) Ensure that the pairs are in decreasing order. """ return [decreasing(pairs(a,s))] def pairs(a, s): """ return the pairs of a in the 'integer representation': a[k,0]*(n-1) + a[k,1] s is the size of max value of n """ n = len(a) return [ a[(k,0)]*(s-1) + a[(k,1)] for k in range(n)] def all_min_dist(min_dist, x, n): """ all_min_dist(min_dist, x, n) Ensures that the differences of all pairs (i !=j) are >= min_dist. """ constraints = [] for i in range(n): for j in range(i): constraints += [abs(x[i]-x[j]) >= min_dist] # Nope! return constraints def all_different_on_intersection(x, y): """ all_different_on_intersection(x, y) Ensure that the values that are common in x and y are distinct (in each array). """ return [count_a_in_b(x,y), count_a_in_b(y,x)] def count_a_in_b(ass,bss): """ count_a_in_b(ass,bss) helper for all_different_on_intersection """ constraints = [] for a in ass: constraints += [sum([a == b for b in bss]) <= 1] return constraints def all_different_modulo(x, m): """ all_different_modulo(x, m) Ensure that all elements in x (modulo m) are distinct """ print("x2:",x) n = len(x) constraints = [] mods = intvar(0,m-1,shape=n) for i in range(n): constraints += [mods[i] == x[i] % m] constraints += [AllDifferent(mods)] return constraints def all_different_cst(xs, cst): """ all_different_cst(xs, cst) Ensure that all elements in xs + cst are distinct """ return [AllDifferent([(x + c) for (x,c) in zip(xs,cst)])] def arith(x, relop, val): """ arith(x, relop, val) Ensure that all elements in x are <relop> val. """ constraints = [] for i in range(len(x)): constraints += [arith_relop(x[i],relop, val)] return constraints def arith_relop(a, t, b): """ arith_relop(a, t, b) This is (arguably) a hack. Represents each function as an integer 0..5. """ return [(t == 0).implies(a < b), (t == 1).implies(a <= b), (t == 2).implies(a == b), (t == 3).implies(a >= b), (t == 4).implies(a > b), (t == 5).implies(a != b) ] # # diffn ported from MiniZinc's fzn_diffn: # def diffn(x,y,dx,dy): """ diffn(x,y,dx,dy) Constrains rectangles i, given by their origins x[i], y[i]) and sizes (dx[i], dy[i]), to be non-overlapping. Zero-width rectangles can still not overlap with any other rectangle. """ n = len(x) constraints = [] for i in range(n): for j in range(i+1,n): constraints += [(x[i] + dx[i] <= x[j]) | (y[i] + dy[i] <= y[j]) | (x[j] + dx[j] <= x[i]) | (y[j] + dy[j] <= y[i]) ] return constraints def nvalue(m, x): """ nvalue(m, x) Requires that there is exactly m distinct values in x (min_val and max_val are the minimum and maximum value in x, respectively) """ n = len(x) min_val = min([x[i].lb for i in range(n)]) max_val = max([x[i].ub for i in range(n)]) return (m == sum([ sum([ x[j] == i for j in range(n)]) > 0 for i in range(min_val, max_val+1)])) # # nvalues(x,op,n) # # Requires that the number of distinct values in the array x is # op n # where # op is either one of # =, <m, =<, >=, > # def nvalues(x, op, n): xlen = len(x) m = intvar(1,xlen) return [nvalue(m,x), arith_relop(m,op,n) ] def clique(g, clique, card): """ clique(g, clique, card) Ensure that the boolean array 'clique' (of Integer Array type) represents a clique in the graph g with the cardinality card. Note: This is kind of backward, but it is the whole thing: If there is a connection between nodes I and J (I != J) then there should be a node from I to J in G. If it's not then both c1 and c2 is not in the clique. """ n = len(g) constraints = [] constraints += [card == sum([clique[i] for i in range(n)])] for (c1,i) in zip(clique, range(n)): for (c2,j) in zip(clique, range(n)): if i != j and g[i][j] == 0: constraints += [(c1 == 0) | (c2 == 0)] return constraints def assignment_model(cost, tasks=None,people=None,print_solution=None,opt="min"): """ assignment_model(cost, rows, cols, tasks=None,people=None,print_solution=None,opt='min'): Fairly general implementation of the assignment problem: Minimize total cost of assign all task to one person given the cost of assigning a person to the tasks. For problems were 'task' and 'people' does not applies, a used-defined method 'print_solution' can be used. For maximization problems, use opt='max'. """ rows = len(cost) cols = len(cost[0]) max_cost = np.sum(np.array(cost)) total_cost = intvar(0,max_cost,name='cost') x = boolvar(shape=(rows,cols),name="x") model = Model( total_cost >= 0, total_cost == np.sum([ x_row*cost_row for (x_row, cost_row) in zip(x, cost)]), # exacly one assignment per row, all rows (tasks) must be assigned. [sum(row) == 1 for row in x], # zero or one assignments per column (people) [sum(col) <= 1 for col in x.transpose()], ) if opt == "max": model.maximize(total_cost) else: model.minimize(total_cost) ss = CPM_ortools(model) if ss.solve(): print("total_cost: ", total_cost.value()) print("x:") print(x.value()) print() if tasks == None and people == None: for i in range(rows): print("Task", i, end="") for j in range(cols): if x[i][j].value() == 1: print(" is done by ", j) print() else: if print_solution != None: print_solution(x.value(),tasks,people) else: for i in range(rows): print("Task", tasks[i], end="") for j in range(cols): if x[i][j].value() == 1: print(" is done by", people[j]) print() def latin_square(x): """ latin_square(x) The matrix x is a Latin square. """ return [[AllDifferent(row) for row in x], [AllDifferent(col) for col in x.transpose()]] # # reverses an array from -> to # def reverse(xfrom, xto): """ reverse(xfrom, xto) xto is reverse of xfrom. """ n = len(xfrom) return [xto[i] == xfrom[n-i-1] for i in range(n)] def print_model_and_variables(model): """ print_model_and_variables(model) Prints the following: - the unflattened model (via print(model)) - the flattened model - the variables and the domains in the flattened model (From <NAME> when he debugged one of my models. Thanks, Tias!) """ print("Model:") print(model) print("\nFlattened model and variables:") mf = flatten_model(model) print_variables(mf) print(mf) print() def argmax(x,p): """ argmax(x,p) Ensure that p is the argmax, i.e. the position of the maximum value in x. Note: If there are many maximum values then argmax(x,p) will find all these values. """ n = len(x) constraints = [] for i in range(n): constraints += [(p != i).implies(x[p] > x[i]) ] return constraints def argmin(x,p): """ argmin(x,p) Ensure that p is the argmin, i.e. the position of the minimum value in x. Note: If there are many minimum values then argmin(x,p) will find all these values. """ n = len(x) constraints = [] for i in range(n): constraints += [(p != i).implies(x[p] < x[i]) ] return constraints def argmin_except_c(x,p,c): """ argmin_except_c(x,p,c) Ensure that p is the argmin, i.e. the position of the minimum value in x, but ignores any value of c. Note: - If there are many minimum values then argmin_except_c(x,p,c) will find all these values. - We assume that there are at least one value != c. """ n = len(x) constraints = [x[p] != c] for i in range(n): constraints += [(p != i).implies((x[i] == c) | (x[p] < x[i])) ] return constraints def argmin_except_0(x,p): """ argmin_except_0(x,p) Ensure that p is the argmin, i.e. the position of the minimum value in x, but ignores any value of 0. Note: - If there are many minimum values then argmin_except_0(x,p) will find all these values. - We assume that there are at least one value > 0. """ return argmin_except_c(x,p,0) def argmax_except_c(x,p,c): """ argmax_except_c(x,p,c) Ensure that p is the argmax, i.e. the position of the minimum value in x, but ignores any value of c. Note: - If there are many maximum values then argmax_except_c(x,p,c) will find all these values. - We assume that there are at least one value != c. """ n = len(x) constraints = [x[p] != c] for i in range(n): constraints += [(p != i).implies((x[i] == c) | (x[p] > x[i])) ] return constraints def permutation3(x,p,y): """ permutation(x,p,y) Ensure that the array y is a permutation of array x with the permutation operations in array p. Example: x = [2,0,1,3] p = [2,1,3,0] What is y? y[0] = x[p[0]] = x[2] = 1 y[1] = x[p[1]] = x[1] = 0 y[2] = x[p[2]] = x[3] = 3 y[3] = x[p[3]] = x[0] = 2 Thus: y = [1,0,3,2] Assumptions: - We assume that x, p, and y has distinct values, i.e. constrained by AllDifferent. We check that: - p has the domain of 0..len(p)-1 """ n = len(x) assert n == len(p) and n == len(y), f"Length of x, p, and y must be the same" p_lb, p_ub = get_min_max_domain(p) assert p_lb == 0 and p_ub == n-1, "Domain value of p must be 0..n-1" constraints = [] for i in range(n): constraints += [y[i] == x[p[i]] ] return constraints def permutation(x,y): """ permutation(x,y) Ensure that the array y is a permutation of array x, connected with some unknown permutation. permutation3(x,p,y) is used (which see). """ n = len(x) p = intvar(0,n-1,shape=n) return permutation3(x,p,y) def get_min_max_domain(x): """ get_min_max_domain(x) Return the minimum and maximum domain of an array x. """ n = len(x) x_lb = min([x[i].lb for i in range(n)]) x_ub = max([x[i].ub for i in range(n)]) return [x_lb,x_ub] def chain(op,x): """ chain(op,x) Ensure that all elements pairwise satisfies the binary operator op. Note: In order for this to work the operator must be from the operator library, e.g. operator.lt, operator.ne, e.g: chain(operator.lt,x) Note: Many of the binary operator.* has a definition already, e.g. (from cpmpy_hakank.py): increasing, increasing_strict, decreasing, descreasing_strict and AllDifferent, AllEqual """ n = len(x) constraints = [] for i in range(1,n): constraints += [ op(x[i-1], x[i]) ] return constraints def minimum_except_c(x,min_val,c,allow_all_c=False): """ minimum_except_c(x,min_val,c,allow_all_c) Ensures that min_val is the minimum value in array x, ignoring the value of c. The flag allow_all_c: - If True: allow an array with only c values: min_val is thus c. - If False: assume that there is at least one non c value. min_val must be != c. """ n = len(x) ix = intvar(0,n-1) # Ensure that min_val is in x constraints = [min_val == x[ix]] for j in range(n): constraints += [(min_val <= x[j]) | (x[j] == 0)] if allow_all_c: max_val = max(x) # To be able to handle the case when there is only 0s constraints += [(max_val == c)==(min_val == c)] else: constraints += [min_val != c] return constraints def minimum_except_0(x,min_val,allow_all_0s=False): """ minimum_except_0(x,min_val,allow_all_0s) Ensures that min_val is the minimum value in array x, ignoring 0s. The flag allow_all_0s: - If True: allow an array with only 0 values: min_val is thus 0. - If False: assume that there is at least one non 0 value. min_val must be != 0. """ return minimum_except_c(x,min_val,0,False) def value_precede(s,t,x): """ value_precede(s,t, x) Ensures that the (first occurrence) of the value s precedes the (first occurrence) of the value t in array x if both s and t are in x. This means that for t to occur in x then s has to precede t. This definition is inspired by MiniZinc's definition value_precede.mzn """ n = len(x) bs = boolvar(shape=n+1) constraints = [] for i in range(n): xis = boolvar() constraints += [(xis ==1)==(x[i] == s), (xis ==1).implies(bs[i+1]==1), (xis == 0).implies(bs[i]==bs[i+1]), (bs[i] == 0).implies(x[i] != t) ] constraints += [bs[0] == 0] return constraints def value_precede_chain(c,x): """ value_precede_chain(c, x) Ensures that the value c[i-1] precedes the value c[i] is the array x if both c[i-1] and c[i] are in x. See value_precede(). """ n=len(c) constraints = [] for i in range(1,n): constraints += [value_precede(c[i-1],c[i],x)] return constraints def sliding_sum(low, up, seq, x): """ sliding_sum(low, up, seq, x) Ensure that all sequences of length seq in x sums to between low and up. """ vlen = len(x) constraints = [] for i in range(vlen-seq+1): s = intvar(low,up) constraints += [s == sum([x[j] for j in range(i,i+seq)])] return constraints def no_overlap(s1, d1, s2, d2): """ no_overlap(s1, d1, s2, d2) Ensures that task 1 (start time s1 with duration d1) does not overlap with task2 (start time s2 with duration d2) """ return [(s1 + d1 <= s2) | (s2 + d2 <= s1)] def is_prime(n): """ is_prime(n) Returns True if the number n is a prime number, otherwise return False. """ if n < 2: return False if n == 2: return True if not n & 1: return False for i in range(3, 1+int(math.sqrt(n)), 2): if n % i == 0: return False return True def primes(limit): """ primes(limit) Returns the prime numbers below limit. """ primes = [2] i = 3 for i in range(3, limit, 2): if is_prime(i): primes.append(i) return primes def all_different_reif(x,b): """ all_different_reif(x,b) b == 1 if all values in x are different, else 0. """ n = len(x) m = intvar(1,n) return [nvalue(m,x), (m==n)==(b==1) ] def all_different_reif_m(model,x): """ all_different_reif(x,b) b == 1 if all values in x are different, else 0. This version returns b. Note that the model is a parameter so it must be created first: x = intvar(...) b = boolvar() model = Model(...) model += [b == all_different_reif_m(model,x)] """ n = len(x) m = intvar(1,n) b = boolvar() model += [nvalue(m,x), (m==n)==(b==1)] return b def lex_chain_less(x): """ lex_chain_less(x) Require that all the rows are lexicographically sorted (but not the columns as in lex2). See: http://www.emn.fr/z-info/sdemasse/gccat/Clex_chain_less.html """ n = len(x) m = len(x[0]) constraints = [] for i in range(1,n): constraints += [lex_less([x[i-1,j] for j in range(m)], [x[i,j] for j in range(m)])] return constraints def soft_alldifferent(x,p): """ soft_alldifferent(x,p) p is the number of pairs that have the same value. See http://www.emn.fr/z-info/sdemasse/gccat/Csoft_alldifferent_ctr.html """ n = len(x) return [p == sum([x[i] == x[j] for i in range(n) for j in range(i+1,n)])] def among_seq(low,high,seqlen,x,v): """ among_seq(low, high, seqlen, x, v) Ensures that all sequences of length SeqLen in the list X contains at least Low and atmost High occurrences of V. """ n = len(x) size = n-seqlen+1 constraints = [] for i in range(size): seq = [x[j] for j in range(i,i+seqlen)] constraints += [among_range(low, high, seq, v)] return constraints def among_range(low, high,x,v): """ among_range(low, high, x, v) Ensures that the list x contains at least low and atmost high occurrences of v. Used by among_seq. """ xs = intvar(0,len(x)) vlen = len(v) return [ xs == sum([sum([el == v[i] for i in range(vlen)])>0 for el in x]), xs >= low, xs <= high] def sequence(x,seq_length, lbound,ubound): """ sequence(,length,lbound,ubound) Ensures that all sums of every subsequence of length length in array x is between lbound and ubound """ n = len(x) xs = intvar(lbound.lb,ubound.ub) constraints = [] for i in range(n-seq_length+1): constraints += [xs == sum([x[j] for j in range(i,i+seq_length)]), xs >= lbound, xs <= ubound ] return constraints
VulnerableScan/migrations/0005_vulnerablescantasks_notice.py
b0bac/ApolloScanner
289
12746834
# Generated by Django 4.0.1 on 2022-03-14 10:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('VulnerableScan', '0004_remove_exploitregister_file_object_and_more'), ] operations = [ migrations.AddField( model_name='vulnerablescantasks', name='notice', field=models.BooleanField(db_column='notice', default=False, verbose_name='是否钉钉通知'), ), ]
Codes/Python32/Lib/test/subprocessdata/sigchild_ignore.py
eyantra/FireBird_Swiss_Knife
12,496
12746836
import signal, subprocess, sys # On Linux this causes os.waitpid to fail with OSError as the OS has already # reaped our child process. The wait() passing the OSError on to the caller # and causing us to exit with an error is what we are testing against. signal.signal(signal.SIGCHLD, signal.SIG_IGN) subprocess.Popen([sys.executable, '-c', 'print("albatross")']).wait()
dvc/command/remove.py
lucasalavapena/dvc
9,136
12746862
<reponame>lucasalavapena/dvc<filename>dvc/command/remove.py import argparse import logging from dvc.command import completion from dvc.command.base import CmdBase, append_doc_link from dvc.exceptions import DvcException logger = logging.getLogger(__name__) class CmdRemove(CmdBase): def run(self): for target in self.args.targets: try: self.repo.remove(target, outs=self.args.outs) except DvcException: logger.exception("") return 1 return 0 def add_parser(subparsers, parent_parser): REMOVE_HELP = ( "Remove stages from dvc.yaml and/or" " stop tracking files or directories." ) remove_parser = subparsers.add_parser( "remove", parents=[parent_parser], description=append_doc_link(REMOVE_HELP, "remove"), help=REMOVE_HELP, formatter_class=argparse.RawDescriptionHelpFormatter, ) remove_parser.add_argument( "--outs", action="store_true", default=False, help="Remove outputs as well.", ) remove_parser.add_argument( "targets", nargs="+", help=".dvc files or stages from dvc.yaml to remove.", ).complete = completion.DVC_FILE remove_parser.set_defaults(func=CmdRemove)
models/tacotron.py
dieserRobin/ForwardTacotron
556
12746866
from pathlib import Path from typing import Union, Dict, Any, Tuple import torch import torch.nn as nn import torch.nn.functional as F from models.common_layers import CBHG from utils.text.symbols import phonemes class Encoder(nn.Module): def __init__(self, embed_dims, num_chars, cbhg_channels, K, num_highways, dropout): super().__init__() self.embedding = nn.Embedding(num_chars, embed_dims) self.pre_net = PreNet(embed_dims) self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels, proj_channels=[cbhg_channels, cbhg_channels], num_highways=num_highways) def forward(self, x): x = self.embedding(x) x = self.pre_net(x) x.transpose_(1, 2) x = self.cbhg(x) return x class PreNet(nn.Module): def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5): super().__init__() self.fc1 = nn.Linear(in_dims, fc1_dims) self.fc2 = nn.Linear(fc1_dims, fc2_dims) self.p = dropout def forward(self, x): x = self.fc1(x) x = F.relu(x) x = F.dropout(x, self.p, training=self.training) x = self.fc2(x) x = F.relu(x) x = F.dropout(x, self.p, training=self.training) return x class Attention(nn.Module): def __init__(self, attn_dims): super().__init__() self.W = nn.Linear(attn_dims, attn_dims, bias=False) self.v = nn.Linear(attn_dims, 1, bias=False) def forward(self, encoder_seq_proj, query, t): # print(encoder_seq_proj.shape) # Transform the query vector query_proj = self.W(query).unsqueeze(1) # Compute the scores u = self.v(torch.tanh(encoder_seq_proj + query_proj)) scores = F.softmax(u, dim=1) return scores.transpose(1, 2) class LSA(nn.Module): def __init__(self, attn_dim, kernel_size=31, filters=32): super().__init__() self.conv = nn.Conv1d(2, filters, padding=(kernel_size - 1) // 2, kernel_size=kernel_size, bias=False) self.L = nn.Linear(filters, attn_dim, bias=True) self.W = nn.Linear(attn_dim, attn_dim, bias=True) self.v = nn.Linear(attn_dim, 1, bias=False) self.cumulative = None self.attention = None def init_attention(self, encoder_seq_proj): device = next(self.parameters()).device # use same device as parameters b, t, c = encoder_seq_proj.size() self.cumulative = torch.zeros(b, t, device=device) self.attention = torch.zeros(b, t, device=device) def forward(self, encoder_seq_proj, query, t): if t == 0: self.init_attention(encoder_seq_proj) processed_query = self.W(query).unsqueeze(1) location = torch.cat([self.cumulative.unsqueeze(1), self.attention.unsqueeze(1)], dim=1) processed_loc = self.L(self.conv(location).transpose(1, 2)) u = self.v(torch.tanh(processed_query + encoder_seq_proj + processed_loc)) u = u.squeeze(-1) # Smooth Attention #scores = torch.sigmoid(u) / torch.sigmoid(u).sum(dim=1, keepdim=True) scores = F.softmax(u, dim=1) self.attention = scores self.cumulative += self.attention return scores.unsqueeze(-1).transpose(1, 2) class Decoder(nn.Module): # Class variable because its value doesn't change between classes # yet ought to be scoped by class because its a property of a Decoder max_r = 20 def __init__(self, n_mels, decoder_dims, lstm_dims): super().__init__() self.register_buffer('r', torch.tensor(1, dtype=torch.int)) self.n_mels = n_mels self.prenet = PreNet(n_mels) self.attn_net = LSA(decoder_dims) self.attn_rnn = nn.GRUCell(decoder_dims + decoder_dims // 2, decoder_dims) self.rnn_input = nn.Linear(2 * decoder_dims, lstm_dims) self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims) self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims) self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False) def zoneout(self, prev, current, p=0.1): device = next(self.parameters()).device # Use same device as parameters mask = torch.zeros(prev.size(), device=device).bernoulli_(p) return prev * mask + current * (1 - mask) def forward(self, encoder_seq, encoder_seq_proj, prenet_in, hidden_states, cell_states, context_vec, t): # Need this for reshaping mels batch_size = encoder_seq.size(0) # Unpack the hidden and cell states attn_hidden, rnn1_hidden, rnn2_hidden = hidden_states rnn1_cell, rnn2_cell = cell_states # PreNet for the Attention RNN prenet_out = self.prenet(prenet_in) # Compute the Attention RNN hidden state attn_rnn_in = torch.cat([context_vec, prenet_out], dim=-1) attn_hidden = self.attn_rnn(attn_rnn_in.squeeze(1), attn_hidden) # Compute the attention scores scores = self.attn_net(encoder_seq_proj, attn_hidden, t) # Dot product to create the context vector context_vec = scores @ encoder_seq context_vec = context_vec.squeeze(1) # Concat Attention RNN output w. Context Vector & project x = torch.cat([context_vec, attn_hidden], dim=1) x = self.rnn_input(x) # Compute first Residual RNN rnn1_hidden_next, rnn1_cell = self.res_rnn1(x, (rnn1_hidden, rnn1_cell)) if self.training: rnn1_hidden = self.zoneout(rnn1_hidden, rnn1_hidden_next) else: rnn1_hidden = rnn1_hidden_next x = x + rnn1_hidden # Compute second Residual RNN rnn2_hidden_next, rnn2_cell = self.res_rnn2(x, (rnn2_hidden, rnn2_cell)) if self.training: rnn2_hidden = self.zoneout(rnn2_hidden, rnn2_hidden_next) else: rnn2_hidden = rnn2_hidden_next x = x + rnn2_hidden # Project Mels mels = self.mel_proj(x) mels = mels.view(batch_size, self.n_mels, self.max_r)[:, :, :self.r] hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden) cell_states = (rnn1_cell, rnn2_cell) return mels, scores, hidden_states, cell_states, context_vec class Tacotron(nn.Module): def __init__(self, embed_dims: int, num_chars: int, encoder_dims: int, decoder_dims: int, n_mels: int, postnet_dims: int, encoder_k: int, lstm_dims: int, postnet_k: int, num_highways: int, dropout: float, stop_threshold: float) -> None: super().__init__() self.n_mels = n_mels self.lstm_dims = lstm_dims self.decoder_dims = decoder_dims self.encoder = Encoder(embed_dims, num_chars, encoder_dims, encoder_k, num_highways, dropout) self.encoder_proj = nn.Linear(decoder_dims, decoder_dims, bias=False) self.decoder = Decoder(n_mels, decoder_dims, lstm_dims) self.postnet = CBHG(postnet_k, n_mels, postnet_dims, [256, 80], num_highways) self.post_proj = nn.Linear(postnet_dims * 2, n_mels, bias=False) self.init_model() self.register_buffer('step', torch.zeros(1, dtype=torch.long)) self.register_buffer('stop_threshold', torch.tensor(stop_threshold, dtype=torch.float32)) @property def r(self) -> int: return self.decoder.r.item() @r.setter def r(self, value: int) -> None: self.decoder.r = self.decoder.r.new_tensor(value, requires_grad=False) def forward(self, x: torch.tensor, m: torch.tensor) -> torch.tensor: device = next(self.parameters()).device # use same device as parameters if self.training: self.step += 1 batch_size, _, steps = m.size() # Initialise all hidden states and pack into tuple attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device) rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden) # Initialise all lstm cell states and pack into tuple rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device) rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device) cell_states = (rnn1_cell, rnn2_cell) # <GO> Frame for start of decoder loop go_frame = torch.zeros(batch_size, self.n_mels, device=device) # Need an initial context vector context_vec = torch.zeros(batch_size, self.decoder_dims, device=device) # Project the encoder outputs to avoid # unnecessary matmuls in the decoder loop encoder_seq = self.encoder(x) encoder_seq_proj = self.encoder_proj(encoder_seq) # Need a couple of lists for outputs mel_outputs, attn_scores = [], [] # Run the decoder loop for t in range(0, steps, self.r): prenet_in = m[:, :, t - 1] if t > 0 else go_frame mel_frames, scores, hidden_states, cell_states, context_vec = \ self.decoder(encoder_seq, encoder_seq_proj, prenet_in, hidden_states, cell_states, context_vec, t) mel_outputs.append(mel_frames) attn_scores.append(scores) # Concat the mel outputs into sequence mel_outputs = torch.cat(mel_outputs, dim=2) # Post-Process for Linear Spectrograms postnet_out = self.postnet(mel_outputs) linear = self.post_proj(postnet_out) linear = linear.transpose(1, 2) # For easy visualisation attn_scores = torch.cat(attn_scores, 1) # attn_scores = attn_scores.cpu().data.numpy() return mel_outputs, linear, attn_scores def generate(self, x: torch.tensor, steps=2000) -> Tuple[torch.tensor, torch.tensor, torch.tensor]: self.eval() device = next(self.parameters()).device # use same device as parameters batch_size = 1 # Need to initialise all hidden states and pack into tuple for tidyness attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device) rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden) # Need to initialise all lstm cell states and pack into tuple for tidyness rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device) rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device) cell_states = (rnn1_cell, rnn2_cell) # Need a <GO> Frame for start of decoder loop go_frame = torch.zeros(batch_size, self.n_mels, device=device) # Need an initial context vector context_vec = torch.zeros(batch_size, self.decoder_dims, device=device) # Project the encoder outputs to avoid # unnecessary matmuls in the decoder loop encoder_seq = self.encoder(x) encoder_seq_proj = self.encoder_proj(encoder_seq) # Need a couple of lists for outputs mel_outputs, attn_scores = [], [] # Run the decoder loop for t in range(0, steps, self.r): prenet_in = mel_outputs[-1][:, :, -1] if t > 0 else go_frame mel_frames, scores, hidden_states, cell_states, context_vec = \ self.decoder(encoder_seq, encoder_seq_proj, prenet_in, hidden_states, cell_states, context_vec, t) mel_outputs.append(mel_frames) attn_scores.append(scores) # Stop the loop if silent frames present if (mel_frames < self.stop_threshold).all() and t > 10: break # Concat the mel outputs into sequence mel_outputs = torch.cat(mel_outputs, dim=2) # Post-Process for Linear Spectrograms postnet_out = self.postnet(mel_outputs) linear = self.post_proj(postnet_out) linear = linear.transpose(1, 2)[0].cpu().data.numpy() mel_outputs = mel_outputs[0].cpu().data.numpy() # For easy visualisation attn_scores = torch.cat(attn_scores, 1) attn_scores = attn_scores.cpu().data.numpy()[0] self.train() return mel_outputs, linear, attn_scores def init_model(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def get_step(self): return self.step.data.item() def reset_step(self): # assignment to parameters or buffers is overloaded, updates internal dict entry self.step = self.step.data.new_tensor(1) @classmethod def from_config(cls, config: Dict[str, Any]) -> 'Tacotron': model_config = config['tacotron']['model'] model_config['num_chars'] = len(phonemes) model_config['n_mels'] = config['dsp']['num_mels'] return Tacotron(**model_config) @classmethod def from_checkpoint(cls, path: Union[Path, str]) -> 'Tacotron': checkpoint = torch.load(path, map_location=torch.device('cpu')) model = Tacotron.from_config(checkpoint['config']) model.load_state_dict(checkpoint['model']) return model
coding_assignments/solutions/assignment_helper.py
evelynmitchell/qml-mooc
200
12746871
<reponame>evelynmitchell/qml-mooc import itertools import numpy as np import scipy import socket import subprocess import time def get_free_port(): sock = socket.socket() sock.bind(('', 0)) port = sock.getsockname()[1] sock.close() return port def init_qvm_and_quilc(qvm_executable="qvm", quilc_executable="quilc"): qvm_port = get_free_port() quilc_port = get_free_port() qvm_server = subprocess.Popen([qvm_executable, "-S", "-p", str(qvm_port)]) quilc_server = subprocess.Popen([quilc_executable, "-R", "-p", str(quilc_port)]) fc = ForestConnection(sync_endpoint='http://127.0.0.1:' + str(qvm_port), compiler_endpoint='tcp://127.0.0.1:' + str(quilc_port)) time.sleep(5) return qvm_server, quilc_server, fc def get_amplitudes(circuit): if isinstance(circuit, qiskit.circuit.quantumcircuit.QuantumCircuit): backend = Aer.get_backend('statevector_simulator') job = execute(circuit, backend) amplitudes = job.result().get_statevector(circuit) elif isinstance(circuit, pyquil.quil.Program): wf_sim = WavefunctionSimulator(connection=fc) wavefunction = wf_sim.wavefunction(circuit) amplitudes = wavefunction.amplitudes else: raise ValueError("Unknown circuit type") return amplitudes def get_counts(circuit, num_shots=100): if isinstance(circuit, qiskit.circuit.quantumcircuit.QuantumCircuit): backend = Aer.get_backend('qasm_simulator') job = execute(circuit, backend, shots=num_shots) result = job.result() counts = result.get_counts(circuit) elif isinstance(circuit, pyquil.quil.Program): n_qubits = len(circuit.get_qubits()) circuit.wrap_in_numshots_loop(num_shots) qc = get_qc(str(n_qubits) + 'q-qvm', connection=fc) executable = qc.compile(circuit) result = qc.run(executable) classical_bits = get_classical_bits(circuit) counts = {} for bitstring in itertools.product(*[{1, 0} for _ in range(classical_bits)]): key = "".join(str(i) for i in bitstring) value = sum([tuple(d.tolist()) == bitstring for d in result]) counts[key] = value else: raise ValueError("Unknown circuit type") return counts def get_single_measurement_counts(circuit, num_shots=100): if isinstance(circuit, qiskit.circuit.quantumcircuit.QuantumCircuit): backend = Aer.get_backend('qasm_simulator') job = execute(circuit, backend, shots=num_shots) result = job.result() counts = result.get_counts(circuit) elif isinstance(circuit, pyquil.quil.Program): n_qubits = len(circuit.get_qubits()) circuit.wrap_in_numshots_loop(num_shots) qc = get_qc(str(n_qubits) + 'q-qvm', connection=fc) executable = qc.compile(circuit) result = qc.run(executable) classical_bits = get_classical_bits(circuit) counts = {} for bitstring in itertools.product(*[{1, 0} for _ in range(classical_bits)]): key = "".join(str(i) for i in bitstring) counts[key] = 0 counts["0" * classical_bits] = (result == 0).sum() counts["0" * (classical_bits-1) + "1"] = (result == 1).sum() else: raise ValueError("Unknown circuit type") return counts def get_classical_bits(circuit): if isinstance(circuit, qiskit.circuit.quantumcircuit.QuantumCircuit): classical_bits = circuit.cregs[0].size elif isinstance(circuit, pyquil.quil.Program): for instruction in circuit.instructions: if isinstance(instruction, pyquil.quilbase.Declare): classical_bits = instruction.memory_size break else: raise ValueError("Unknown circuit type") return classical_bits def get_circuit_length(circuit): if isinstance(circuit, qiskit.circuit.quantumcircuit.QuantumCircuit): program_length = sum(circuit.count_ops().values()) elif isinstance(circuit, pyquil.quil.Program): program_length = len(circuit.instructions) else: raise ValueError("Unknown circuit type") return program_length if __name__ == "__main__": try: import grove import pyquil from grove.pyvqe import vqe from pyquil import Program, get_qc from pyquil.paulis import PauliSum, PauliTerm, exponential_map, sZ from pyquil.api import WavefunctionSimulator, ForestConnection from pyquil.gates import * try: qvm_server, quilc_server, fc = init_qvm_and_quilc() is_forest = True except FileNotFoundError: try: prefix = "/home/local/bin/" qvm_server, quilc_server, fc = init_qvm_and_quilc(prefix+"qvm", prefix + "quilc") is_forest = True except FileNotFoundError: is_forest = False except ImportError: is_forest = False try: import qiskit import qiskit.aqua from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute try: from qiskit import Aer except ImportError: from qiskit import BasicAer as Aer from qiskit.quantum_info import Pauli from qiskit.aqua.operators import * is_qiskit = True except ImportError: is_qiskit = False try: import dimod import dwave_networkx import minorminer is_dwave = True except ImportError: is_dwave = False if not (is_qiskit or is_forest): raise RuntimeError("No quantum computing framework available!") if not is_dwave: raise RuntimeError("D-Wave Ocean is not available!") print("Available frameworks:") if is_forest: print("Forest SDK") if is_qiskit: print("Qiskit") if is_dwave: print("D-Wave Ocean")
07. Chapter_7/pytorch/random_access.py
Mikma03/High-performance-Python
223
12746882
import time from functools import partial import torch def timer(fxn, max_time=5): N = 0 total_time = 0 fxn() while total_time < max_time: start = time.perf_counter() fxn() total_time += time.perf_counter() - start N += 1 return total_time / N def task(A, target): result = 0 i = 0 N = 0 while result < target: r = A[i] result += r i = A[i] N += 1 return N if __name__ == "__main__": N = 1000 print(f"Testing with array of length {N}") A_py = (torch.rand(N) * N).type(torch.int).to("cuda:0") A_np = A_py.cpu().numpy() t_py = timer(partial(task, A_py, 500)) t_np = timer(partial(task, A_np, 500)) print(f"PyTorch took: {t_py:0.3e}s") print(f"Numpy took: {t_np:0.3e}s") print(f"Numpy is {100 - t_np/t_py*100:0.2f}% faster")
tests/utils.py
pyGrowler/Growler
806
12746895
<filename>tests/utils.py # # tests/utils # """ Useful functions for all tests """ import asyncio import pytest from growler.aio.http_protocol import GrowlerHTTPProtocol import growler def random_port(): from random import randint return randint(1024, 2**16) @asyncio.coroutine def setup_test_server(unused_tcp_port, event_loop): """ Sets up a GrowlerProtocol server for testing """ # proto = growler.protocol.GrowlerProtocol proto = TestProtocol server = yield from event_loop.create_server(proto, '127.0.0.1', unused_tcp_port) return server, unused_tcp_port @asyncio.coroutine def setup_http_server(loop, port): """ Sets up a GrowlerHTTPProtocol server for testing """ # proto = growler.protocol.GrowlerHTTPProtocol app = growler.App() def proto(): return GrowlerHTTPProtocol(app) return (yield from loop.create_server(proto, '127.0.0.1', port)) def teardown_server(server, loop=asyncio.get_event_loop()): """ 'Generic' tear down a server and wait on the loop for everything to close. """ server.close() loop.run_until_complete(server.wait_closed())
release/stubs.min/Rhino/DocObjects/__init___parts/ObjectMaterialSource.py
htlcnn/ironpython-stubs
182
12746896
class ObjectMaterialSource(Enum,IComparable,IFormattable,IConvertible): """ Defines enumerated values for the source of material of single objects. enum ObjectMaterialSource,values: MaterialFromLayer (0),MaterialFromObject (1),MaterialFromParent (3) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass MaterialFromLayer=None MaterialFromObject=None MaterialFromParent=None value__=None
RecoLocalMuon/GEMRecHit/python/gemLocalReco_cff.py
ckamtsikis/cmssw
852
12746912
import FWCore.ParameterSet.Config as cms from RecoLocalMuon.GEMRecHit.gemRecHits_cfi import * from RecoLocalMuon.GEMSegment.gemSegments_cfi import * gemLocalRecoTask = cms.Task(gemRecHits,gemSegments) gemLocalReco = cms.Sequence(gemLocalRecoTask)
Potatso/Library/ShadowPath/ShadowPath/shadowsocks-libev/src/ssrlink.py
ilioner/WCPotatso
168
12746919
#!/usr/bin/python # -*- coding: UTF-8 -*- import traceback import random import getopt import sys import json import base64 def to_bytes(s): if bytes != str: if type(s) == str: return s.encode('utf-8') return s def to_str(s): if bytes != str: if type(s) == bytes: return s.decode('utf-8') return s def b64decode(data): if b':' in data: return data if len(data) % 4 == 2: data += b'==' elif len(data) % 4 == 3: data += b'=' return base64.urlsafe_b64decode(data) def fromlink(link): if link[:6] == 'ssr://': link = to_bytes(link[6:]) link = to_str(b64decode(link)) params_dict = {} if '/' in link: datas = link.split('/', 1) link = datas[0] param = datas[1] pos = param.find('?') if pos >= 0: param = param[pos + 1:] params = param.split('&') for param in params: part = param.split('=', 1) if len(part) == 2: if part[0] in ['obfsparam']: params_dict[part[0]] = to_str(b64decode(to_bytes(part[1]))) else: params_dict[part[0]] = part[1] datas = link.split(':') if len(datas) == 6: host = datas[0] port = int(datas[1]) protocol = datas[2] method = datas[3] obfs = datas[4] passwd = to_str(b64decode(to_bytes(datas[5]))) result = {} result['server'] = host result['server_port'] = port result['local_address'] = '0.0.0.0' result['local_port'] = 1080 result['password'] = <PASSWORD> result['protocol'] = protocol result['method'] = method result['obfs'] = obfs result['timeout'] = 300 if 'obfsparam' in params_dict: result['obfs_param'] = params_dict['obfsparam'] output = json.dumps(result, sort_keys=True, indent=4, separators=(',', ': ')) print(output) def main(): link = sys.argv[1] fromlink(link) if __name__ == '__main__': main()
interpolation/cartesian.py
vishalbelsare/interpolation.py
110
12746958
""" Filename: cartesian.py Authors: <NAME> Implements cartesian products and regular cartesian grids. """ import numpy from numba import njit def cartesian(nodes, order="C"): """Cartesian product of a list of arrays Parameters: ----------- nodes: (list of 1d-arrays) order: ('C' or 'F') order in which the product is enumerated Returns: -------- out: (2d-array) each line corresponds to one point of the product space """ nodes = [numpy.array(e) for e in nodes] shapes = [e.shape[0] for e in nodes] n = len(nodes) l = numpy.prod(shapes) out = numpy.zeros((l, n)) if order == "C": repetitions = numpy.cumprod([1] + shapes[:-1]) else: shapes.reverse() sh = [1] + shapes[:-1] repetitions = numpy.cumprod(sh) repetitions = repetitions.tolist() repetitions.reverse() for i in range(n): _repeat_1d(nodes[i], repetitions[i], out[:, i]) return out def mlinspace(a, b, nums, order="C"): """Constructs a regular cartesian grid Parameters: ----------- a: (1d-array) lower bounds in each dimension b: (1d-array) upper bounds in each dimension nums: (1d-array) number of nodes along each dimension order: ('C' or 'F') order in which the product is enumerated Returns: -------- out: (2d-array) each line corresponds to one point of the product space """ a = numpy.array(a, dtype="float64") b = numpy.array(b, dtype="float64") nums = numpy.array(nums, dtype="int64") nodes = [numpy.linspace(a[i], b[i], nums[i]) for i in range(len(nums))] return cartesian(nodes, order=order) @njit(cache=True) def _repeat_1d(x, K, out): """Repeats each element of a vector many times and repeats the whole result many times Parameters ---------- x: (1d array) vector to be repeated K: (int) number of times each element of x is repeated (inner iterations) out: (1d array) placeholder for the result Returns ------- None """ N = x.shape[0] L = out.shape[0] // (K * N) # number of outer iterations # K # number of inner iterations # the result out should enumerate in C-order the elements # of a 3-dimensional array T of dimensions (K,N,L) # such that for all k,n,l, we have T[k,n,l] == x[n] for n in range(N): val = x[n] for k in range(K): for l in range(L): ind = k * N * L + n * L + l out[ind] = val
libs/box_utils/iou.py
khanfarhan10/R2CNN_Faster-RCNN_Tensorflow
629
12746968
<filename>libs/box_utils/iou.py # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def iou_calculate(boxes_1, boxes_2): ''' :param boxes_1: [N, 4] [ymin, xmin, ymax, xmax] :param boxes_2: [M, 4] [ymin, xmin. ymax, xmax] :return: ''' with tf.name_scope('iou_caculate'): ymin_1, xmin_1, ymax_1, xmax_1 = tf.split(boxes_1, 4, axis=1) # ymin_1 shape is [N, 1].. ymin_2, xmin_2, ymax_2, xmax_2 = tf.unstack(boxes_2, axis=1) # ymin_2 shape is [M, ].. max_xmin = tf.maximum(xmin_1, xmin_2) min_xmax = tf.minimum(xmax_1, xmax_2) max_ymin = tf.maximum(ymin_1, ymin_2) min_ymax = tf.minimum(ymax_1, ymax_2) overlap_h = tf.maximum(0., min_ymax - max_ymin) # avoid h < 0 overlap_w = tf.maximum(0., min_xmax - max_xmin) overlaps = overlap_h * overlap_w area_1 = (xmax_1 - xmin_1) * (ymax_1 - ymin_1) # [N, 1] area_2 = (xmax_2 - xmin_2) * (ymax_2 - ymin_2) # [M, ] iou = overlaps / (area_1 + area_2 - overlaps) return iou
dirigible/sheet/dependency_graph.py
EnoX1/dirigible-spreadsheet
168
12746982
# Copyright (c) 2010 Resolver Systems Ltd, PythonAnywhere LLP # See LICENSE.md # from threading import Lock from .errors import report_cell_error, CycleError class Node(object): def __init__(self, location, children=None, parents=None): self.location = location self.children = children if children else set() self.parents = parents if parents else set() self.lock = Lock() def __eq__(self, other): return ( self.location == other.location and self.children == other.children and self.parents == other.parents ) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "<Node %d,%d children={%s} parents={%s}>" % ( self.location[0], self.location[1], ', '.join(str(i) for i in self.children), ', '.join(str(i) for i in self.parents)) def remove_from_parents(self, parent_nodes, leaf_queue): for parent in parent_nodes: parent.lock.acquire() parent.children.remove(self.location) if len(parent.children) == 0: leaf_queue.put(parent.location) parent.lock.release() def build_dependency_graph(worksheet): graph = {} visited = set() for loc in worksheet.keys(): try: _generate_cell_subgraph(worksheet, graph, loc, visited, []) except CycleError: pass # Deal with escapees leaves = [] for loc, deps in graph.iteritems(): if not deps.children: leaves.append(loc) return graph, leaves def _generate_cell_subgraph(worksheet, graph, loc, completed, path): if loc not in worksheet: return cell = worksheet[loc] if loc in completed: if type(cell.error) == CycleError: raise cell.error else: return if loc in path: cycle_error = CycleError(path[path.index(loc):] + [loc]) report_cell_error(worksheet, loc, cycle_error) completed.add(loc) raise cycle_error if cell.python_formula: valid_dependencies = set() for dep_loc in cell.dependencies: dep_cell = worksheet[dep_loc] try: _generate_cell_subgraph(worksheet, graph, dep_loc, completed, path + [loc]) if dep_cell.error: continue if not dep_cell.python_formula: continue valid_dependencies.add(dep_loc) except CycleError as cycle_error: if not loc in completed: report_cell_error(worksheet, loc, cycle_error) if loc in cycle_error.path: completed.add(loc) raise cycle_error _add_location_dependencies(graph, loc, valid_dependencies) completed.add(loc) def _add_location_dependencies(graph, location, dependencies): if location not in graph: graph[location] = Node(location) graph[location].children |= dependencies for dependency in dependencies: if dependency not in graph: graph[dependency] = Node(dependency) graph[dependency].parents.add(location)
.github/workflows/get_revision.py
MrBartusek/TwitchIO
514
12746983
import requests def getrev(): resp = requests.get("https://pypi.org/pypi/TwitchIO/json") data = resp.json()["releases"] pre = max(data).split("b") final = f"{pre[0]}b{int(pre[1]) + 1}" return final print(getrev())
SymbolExtractorAndRenamer/lldb/packages/Python/lldbsuite/test/lang/c/forward/TestForwardDeclaration.py
Polidea/SiriusObfuscator
427
12746989
<gh_stars>100-1000 """Test that forward declaration of a data structure gets resolved correctly.""" from __future__ import print_function import os import time import lldb from lldbsuite.test.lldbtest import * import lldbsuite.test.lldbutil as lldbutil class ForwardDeclarationTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) def test_and_run_command(self): """Display *bar_ptr when stopped on a function with forward declaration of struct bar.""" self.build() exe = os.path.join(os.getcwd(), "a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) # Break inside the foo function which takes a bar_ptr argument. lldbutil.run_break_set_by_symbol( self, "foo", num_expected_locations=1, sym_exact=True) self.runCmd("run", RUN_SUCCEEDED) # The stop reason of the thread should be breakpoint. self.expect("thread list", STOPPED_DUE_TO_BREAKPOINT, substrs=['stopped', 'stop reason = breakpoint']) # The breakpoint should have a hit count of 1. self.expect("breakpoint list -f", BREAKPOINT_HIT_ONCE, substrs=[' resolved, hit count = 1']) # This should display correctly. # Note that the member fields of a = 1 and b = 2 is by design. self.expect( "frame variable --show-types *bar_ptr", VARIABLES_DISPLAYED_CORRECTLY, substrs=[ '(bar) *bar_ptr = ', '(int) a = 1', '(int) b = 2']) # And so should this. self.expect( "expression --show-types -- *bar_ptr", VARIABLES_DISPLAYED_CORRECTLY, substrs=[ '(bar)', '(int) a = 1', '(int) b = 2'])
tests/test_reindex.py
a1346054/tldr.py
210
12746997
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import import os from os import path import shutil from basic import BasicTestCase class TestReindex(BasicTestCase): def setUp(self): super(TestReindex, self).setUp() # Add a new page. self.page_path = path.join(self.repo_dir, 'pages') self.new_page = path.join(self.page_path, 'linux', 'blabla.md') shutil.copy(path.join(self.page_path, 'linux', 'tcpflow.md'), self.new_page) # Backup the index.json. shutil.copy(path.join(self.page_path, 'index.json'), path.join(self.page_path, 'index_bak.json')) def tearDown(self): super(TestReindex, self).tearDown() if path.exists(self.new_page): os.remove(self.new_page) # Restore the index.json. if path.exists(path.join(self.page_path, 'index_bak.json')): shutil.move(path.join(self.page_path, 'index_bak.json'), path.join(self.page_path, 'index.json')) def test_reindex(self): before_reindex = self.call_find_command('blabla', platform='') assert 'Sorry' in before_reindex.output self.call_reindex_command() after_reindex = self.call_find_command('blabla', platform='') assert 'tcpflow' in after_reindex.output
project/path.py
ProfesseurGibaud/TestSite
304
12747013
# coding: utf-8 """ This module contains all the paths for alls this project's directories, that we created dynamically. All paths are absolute, without symlink and in unicode. We also add the 'apps' and 'libs' directories to the PYTHON PATH, which will make the imports much easier. """ import sys import os import tempfile from pathlib import Path # This part is a bit complicated and is not mandatory for your project, but # it renders it completely portable since all directory paths are dynamically # generated instead of being hard coded. # We get the 'settings.py' file path (the __FILE__ variable contains # automatically the path of the current file) and we transform this string # to unicode in case you got non ASCII characters in this name ( # sys.getfilesystemencoding() get us the file system encoding which can be # different for Windows, Mac or Linux) THIS_FILE = Path(__file__) # We dynamically create these settings, giving us the absolute path # to the project directory, the root directory containing all our work # and any other directory we might need PROJECT_DIR = THIS_FILE.absolute().resolve() BASE_DIR = PROJECT_DIR.parent.parent APPS_DIR = BASE_DIR / 'apps' LIBS_DIR = BASE_DIR / 'ignore_this_directory' TEMP_DIR = Path(tempfile.gettempdir()) # We add the apps and libs directory to the PYTHON PATH, so we can import each # package without prefixing them with the parent package name. This mimic the # behavior we would have if they were at the root directory or installed with # pip. # # E.G: we can do from "app1_hello.views import hello" instead of # "from apps.app1_hello.views import hello" or "import django" instead of # "from libs import django" # # When you have a small project, you can avoid this and put all apps at the root # dir like in the official Django tutorial, but in a big project with a lots of # apps, you usually put them all in an "apps" dir like we did, so it's a good # thing to know. sys.path.append(str(LIBS_DIR)) sys.path.append(str(APPS_DIR))
artemis/remote/file_system.py
peteroconnor-bc/artemis
235
12747020
from __future__ import print_function import os from ConfigParser import NoSectionError, NoOptionError import paramiko from artemis.config import get_artemis_config_value from artemis.fileman.config_files import get_config_value from artemis.remote.utils import get_ssh_connection def check_config_file(ip_address,file_path=".artemisrc"): ''' Makes sure all required fields are present in ~./artemisrc. Also performs test for the different options if applicable :param ip_address: The section to look for. Remote ip is assumed. Makes no sense for local ip. :return: ''' mandatory_options = ["username","python"] artemisrc_path = os.path.expanduser("~/%s"%file_path) for option in mandatory_options: try: get_artemis_config_value(section=ip_address,option=option) except NoSectionError: print("Section %s could not be found in %s. Please provide it." %(ip_address, artemisrc_path)) raise except NoOptionError: print("Section %s does not contain option %s. Please provide it in %s" %(ip_address, option, artemisrc_path)) raise # optional_options = ["private_key"] try: private_key_path = get_artemis_config_value(section=ip_address,option="private_key") assert os.path.isfile(private_key_path), "The path to the private_key for %s you specified in %s is not valid. You provided %s" %(ip_address, artemisrc_path, private_key_path) except NoOptionError: pass # username & private key setup tests: try: get_ssh_connection(ip_address) except paramiko.ssh_exception.AuthenticationException as e: if "Authentication failed" in e.message: print("An AuthenticationException is being raised. Make sure you have your private key set up correctly") else: print("An AuthenticationException is being raised. Did you specify the correct username for %s in %s? You provided the username %s"% (ip_address, artemisrc_path, get_artemis_config_value(section=ip_address,option="username"))) raise except paramiko.ssh_exception.SSHException: try: private_key_path = get_artemis_config_value(section=ip_address,option="private_key") print ("Something is wrong with the private_key you specified in %s for %s . You provided %s" % (artemisrc_path, ip_address, private_key_path)) raise except NoOptionError: private_key_path = os.path.join(os.path.expanduser("~"),".ssh/id_rsa") print("You did not provide a private_key path in %s. The default path %s appears to be wrongly set up. " "Please make sure you have correctly set up your private key for %s " %(artemisrc_path,private_key_path,ip_address)) #python tests: python_path = get_artemis_config_value(section=ip_address,option="python") command = "python -c 'import os; print(os.path.isfile(os.path.expanduser(\"%s\")))'"%python_path ssh_conn = get_ssh_connection(ip_address) _,stdout,stderr = ssh_conn.exec_command(command) assert stdout.read().strip()=="True", "The provided path to the remote python installation on %s does not exist. You provided %s" %(ip_address, python_path) command = "%s -c 'print(\"Success\")'" % python_path _,stdout,stderr = ssh_conn.exec_command(command) err = stderr.read().strip() assert stdout.read().strip()=="Success" and not err, "The provided python path on %s does not seem to point to a python executable. " \ "You provided %s, which resulted in the following error on the remote machine: " %(ip_address, python_path, err) def simple_rsync(local_path, remote_path, ip_address, verbose=False): ''' This method synchronizes local_path and all subfolders with remote_path at the given address. This method executes a system rsync call. This is not a general wrapper for rsync. The call is blocking. :param local_path: :param remote_path: Assumed to be relative to the home dir :param ip_address: :return: ''' options = "-ah" if verbose: options += "v" local_path = os.path.expanduser(local_path) username = get_artemis_config_value(section=ip_address, option="username") if remote_path.startswith("~"): remote_path = remote_path[1:] if remote_path.startswith(("/")): remote_path = remote_path[1:] # to_path = "%s@%s:/home/%s/%s" % (username, address, username, remote_path) to_path = "%s@%s:~/%s" % (username, ip_address, remote_path) return rsync(options, from_path=local_path, to_path=to_path) def rsync(options, from_path, to_path): ''' basic rsync wrapper :param options: :param from_path: :param to_path: :return: ''' import subprocess print ("Starting: rsync %s %s %s" % (options, from_path, to_path)) if not type(options) is list: options = [options] command = subprocess.Popen(["rsync"] + options + [from_path, to_path], stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1) if "v" in options: while True: line = command.stdout.readline() if line != '': print (line.rstrip()) else: break err = command.stderr.read().strip() if err: msg = "rsync received messages on stderr. This might indicate that the command failed or, if you transferred to a remote server," \ " it might just be some message received by the remote server. \n" \ "This is because rsync automatically forwards all messages by the remote server to stderr. \n" \ "If you are confident that the call succeeded although stderr received messages, then catch the RuntimeError accordingly.\n " \ "The messages received are: \n %s" % err raise RuntimeError(msg) print("rsync finished") return True
Grab/parse_onlinemultfilmy.py
DazEB2/SimplePyScripts
117
12747050
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # Поиск мультсериалов 16+ # Пример сериала: 'http://onlinemultfilmy.ru/bratya-ventura/' import time from grab import Grab g = Grab() # Перебор страниц с мультами for i in range(1, 82 + 1): url_page = 'http://onlinemultfilmy.ru/multserialy/page/' + str(i) print(url_page) # Загрузка страницы с мультами g.go(url_page) # Перебор и загрузка мультов на странице for url in g.doc.select('//div[@class="cat-post"]/a'): g.go(url.attr('href')) if g.doc.select('//*[@class="age_icon age_icon_16"]').count(): print(' ', url.attr('title'), url.attr('href')) # Чтобы сервер не посчитал это дос атакой time.sleep(2)
Regression/Linear Regression.py
yanding/Stock-Analysis
357
12747056
<reponame>yanding/Stock-Analysis<filename>Regression/Linear Regression.py<gh_stars>100-1000 # Linear Regression for Stock based on Date # Currently only works for month # http://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#example-linear-model-plot-ols-py import csv import numpy as np from sklearn import datasets, linear_model import matplotlib.pyplot as plt close_prices = [] dates = [] f = input('Enter filename: \n') if not(f.endswith('.csv')): f = f + '.csv' with open(f, 'r') as file: the_data = csv.reader(file) the_data.next() for row in the_data: x = float(row[4]) close_prices.append(float("{0:.2f}".format(x))) dates.append(int(row[0].split('/')[0])) # convert lists to numpy arrays length_of_dates = len(dates) + 1 day = [] day.extend(range(1, length_of_dates)) rev = input('Is the newest price first? (y/n)') if rev.startswith('y'): close_prices.reverse() prices_arr = np.reshape(close_prices, (len(close_prices), 1)) days_arr = np.reshape(day, (len(day), 1)) print close_prices print day # Creating lin reg object regr = linear_model.LinearRegression() regr.fit(days_arr, prices_arr) print 'Coefficients: ' print regr.coef_ # Explained variance score: 1 is perfect prediction print 'Variance score: %.2f' % regr.score(days_arr, prices_arr) minpr = min(close_prices) maxpr = max(close_prices) maxdt = max(day) mindt = min(day) # Draw black dots representing prices plt.figure(figsize=(15, 15), dpi=240) plt.scatter(days_arr, prices_arr, color='black', label='Close Prices') plt.plot(days_arr, regr.predict(days_arr), color='red', linewidth=4, label='Estimated Linear Function') plt.xlabel('Day') plt.ylabel('Close Price') plt.title('Linear Regression') plt.ylim([minpr - 3, maxpr + 3]) plt.xlim([mindt - 1, maxdt + 5]) plt.subplots_adjust(bottom=0.13) plt.subplots_adjust(top=0.92) plt.subplots_adjust(left=0.07) plt.subplots_adjust(right=0.96) plt.legend() plt.show()
samples/switch-commands/aci-show-vlan-ext.py
richardstrnad/acitoolkit
351
12747080
<gh_stars>100-1000 #!/usr/bin/env python """ This application replicates the switch CLI command 'show vlan info' It largely uses raw queries to the APIC API """ from acitoolkit import Credentials, Session from tabulate import tabulate def show_vlan_brief(apic, node_ids): """ show vlan brief :param apic: Session instance logged in to the APIC :param node_ids: List of strings containing node ids """ for node_id in node_ids: query_url = ('/api/mo/topology/pod-1/node-%s.json?query-target=subtree&' 'target-subtree-class=l2BD,l2RsPathDomAtt' % node_id) resp = apic.get(query_url) if not resp.ok: print('Could not collect APIC data for switch %s.' % node_id) return l2bd_data = [] port_data = {} for obj in resp.json()['imdata']: if 'l2BD' in obj: obj_attr = obj['l2BD']['attributes'] l2bd_data.append((int(obj_attr['id']), str(obj_attr['name']), str(obj_attr['adminSt']), str(obj_attr['fabEncap']))) else: dn = obj['l2RsPathDomAtt']['attributes']['dn'] port_id = str(dn.rpartition('/path-[')[2].partition(']')[0]) port_bd_encap = str(dn.partition('/bd-[')[2].partition(']')[0]) if port_bd_encap not in port_data: port_data[port_bd_encap] = port_id port_data[port_bd_encap] += ', ' + port_id output_data = [] for (l2bd_id, l2bd_name, l2bd_admin_state, l2bd_fab_encap) in l2bd_data: try: ports = port_data[str(l2bd_fab_encap)] except KeyError: ports = '' output_data.append((l2bd_id, l2bd_name, l2bd_admin_state, ports)) output_data.sort(key=lambda tup: tup[0]) print('Switch:', node_id) print tabulate(output_data, headers=["VLAN", "Name", "Status", "Ports"]) def show_vlan_info(apic, node_ids): """ show vlan info :param apic: Session instance logged in to the APIC :param node_ids: List of strings containing node ids """ for node_id in node_ids: query_url = '/api/mo/topology/pod-1/node-%s.json?query-target=subtree&target-subtree-class=l2BD' % node_id resp = apic.get(query_url) if not resp.ok: print('Could not collect APIC data for switch %s.' % node_id) return data = [] for l2bd in resp.json()['imdata']: l2bd_attr = l2bd['l2BD']['attributes'] encap = str(l2bd_attr['fabEncap']) if str(l2bd_attr['accEncap']) != 'unknown': encap += ', ' + str(l2bd_attr['accEncap']) data.append((int(l2bd_attr['id']), 'enet', str(l2bd_attr['mode']), encap)) data.sort(key=lambda tup: tup[0]) print('Switch:', node_id) print tabulate(data, headers=["VLAN", "Type", "Vlan-mode", "Encap"]) def get_node_ids(apic, args): """ Get the list of node ids from the command line arguments. If none, get all of the node ids :param apic: Session instance logged in to the APIC :param args: Command line arguments :return: List of strings containing node ids """ if args.switch is not None: names = [args.switch] else: names = [] query_url = '/api/node/class/fabricNode.json?query-target-filter=eq(fabricNode.role,"leaf")' resp = apic.get(query_url) if not resp.ok: print('Could not get switch list from APIC.') return nodes = resp.json()['imdata'] for node in nodes: names.append(str(node['fabricNode']['attributes']['id'])) return names def main(): """ Main common routine for show vlan ext, show vlan brief, and show vlan info :return: None """ # Set up the command line options creds = Credentials(['apic', 'nosnapshotfiles'], description="This application replicates the switch CLI command 'show vlan extended'") creds.add_argument('-s', '--switch', type=str, default=None, help='Specify a particular switch id, e.g. "101"') args = creds.get() # Login to APIC apic = Session(args.url, args.login, args.password) if not apic.login().ok: print('%% Could not login to APIC') return node_ids = get_node_ids(apic, args) show_vlan_brief(apic, node_ids) show_vlan_info(apic, node_ids) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass
pymatgen/analysis/solar/tests/test_slme.py
exenGT/pymatgen
921
12747083
<gh_stars>100-1000 import os import unittest import warnings from pymatgen.analysis.solar.slme import optics, slme from pymatgen.util.testing import PymatgenTest class SolarTest(PymatgenTest): _multiprocess_shared_ = True def setUp(self): warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") def test_slme_from_vasprun(self): path = os.path.join(os.path.dirname(__file__), "vasprun.xml") en, abz, dirgap, indirgap = optics(path) abz = abz * 100.0 eff = slme(en, abz, indirgap, indirgap, plot_current_voltage=False) self.assertAlmostEqual(eff, 27.728998512472298, places=5) if __name__ == "__main__": unittest.main()
hummingbot/core/data_type/order_book_row.py
BGTCapital/hummingbot
3,027
12747097
<reponame>BGTCapital/hummingbot #!/usr/bin/env python from collections import namedtuple from decimal import Decimal class OrderBookRow(namedtuple("_OrderBookRow", "price, amount, update_id")): """ Used to apply changes to OrderBook. OrderBook classes uses float internally for better performance over Decimal. """ price: float amount: float update_id: int class ClientOrderBookRow(namedtuple("_OrderBookRow", "price, amount, update_id")): """ Used in market classes where OrderBook values are converted to Decimal. """ price: Decimal amount: Decimal update_id: int
kopf/_cogs/structs/__init__.py
tavaresrodrigo/kopf
1,038
12747106
""" All the functions to manipulate the resource fields, state changes, etc. Grouped by the type of the fields and the purpose of the manipulation. Used in the handling routines to check if there were significant changes at all (i.e. not our own internal and system changes, like the uids, links, etc), and to get the exact per-field diffs for the specific handler functions. All the functions are purely data-manipulative and computational. No external calls or any i/o activities are done here. """
test/test_tokens.py
robbm1/pyleri
106
12747123
<reponame>robbm1/pyleri import unittest import os import sys if os.environ.get('USELIB') != '1': sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) from pyleri import ( KeywordError, create_grammar, Tokens, ) # nopep8 class TestTokens(unittest.TestCase): def test_tokens(self): spaced = '== != >= <= > <' tokens = Tokens('== > != < >= <= ') grammar = create_grammar(tokens) self.assertEqual(spaced, str(tokens)) self.assertTrue(grammar.parse('==').is_valid) self.assertTrue(grammar.parse('<=').is_valid) self.assertTrue(grammar.parse('>').is_valid) self.assertFalse(grammar.parse('').is_valid) self.assertFalse(grammar.parse('=').is_valid) self.assertEqual( str(grammar.parse('')), 'error at position 0, expecting: == != >= <= > <' ) if __name__ == '__main__': unittest.main()
python-threatexchange/threatexchange/content_type/video.py
b-bold/ThreatExchange
997
12747156
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Wrapper around the video content type. """ import typing as t from ..signal_type import raw_text, trend_query, url, md5, video_tmk_pdqf from ..signal_type.signal_base import SignalType from .content_base import ContentType class VideoContent(ContentType): """ Content representing a sequence of images, giving the illusion of motion. Examples might be: * mp4 * avi * gif animations """ @classmethod def get_signal_types(cls) -> t.List[t.Type[SignalType]]: return [md5.VideoMD5Signal, video_tmk_pdqf.VideoTmkPdqfSignal]
ui/pypesvds/lib/extras/pdflib/pycdb.py
onfire73/pypeskg
117
12747175
#!/usr/bin/env python # # pycdb.py - Python implementation of cdb and tcdb # # by <NAME> # * public domain * # import sys, os from struct import pack, unpack from array import array # calc hash value with a given key def cdbhash(s, n=5381L): return reduce(lambda h,c: ((h*33) ^ ord(c)) & 0xffffffffL, s, n) if pack('=i',1) == pack('>i',1): # big endian def decode(x): a = array('I', x) a.byteswap() return a def encode(a): a.byteswap() return a.tostring() else: # little endian def decode(x): a = array('I', x) return a def encode(a): return a.tostring() ## CDB ## # cdbiter def cdbiter(fp, eod): kloc = 2048 while kloc < eod: fp.seek(kloc) (klen, vlen) = unpack('<II', fp.read(8)) k = fp.read(klen) v = fp.read(vlen) kloc += 8+klen+vlen yield (k,v) fp.close() return # CDBReader class CDBReader(object): def __init__(self, cdbname, docache=1): self.name = cdbname self._fp = file(cdbname, 'rb') hash0 = decode(self._fp.read(2048)) self._hash0 = [ (hash0[i], hash0[i+1]) for i in xrange(0, 512, 2) ] self._hash1 = [ None ] * 256 self._eod = hash0[0] self._docache = docache self._cache = {} self._keyiter = None self._eachiter = None return def __repr__(self): return '<CDBReader: %r>' % self.name def __getstate__(self): raise TypeError def __setstate__(self, dict): raise TypeError def __getitem__(self, k): k = str(k) if k in self._cache: return self._cache[k] h = cdbhash(k) h1 = h & 0xff (pos_bucket, ncells) = self._hash0[h1] if ncells == 0: raise KeyError(k) hs = self._hash1[h1] if hs == None: self._fp.seek(pos_bucket) hs = decode(self._fp.read(ncells * 8)) self._hash1[h1] = hs i = ((h >> 8) % ncells) * 2 n = ncells*2 for _ in xrange(ncells): p1 = hs[i+1] if p1 == 0: raise KeyError(k) if hs[i] == h: self._fp.seek(p1) (klen, vlen) = unpack('<II', self._fp.read(8)) k1 = self._fp.read(klen) if k1 == k: v1 = self._fp.read(vlen) if self._docache: self._cache[k] = v1 return v1 i = (i+2) % n raise KeyError(k) def get(self, k, failed=None): try: return self.__getitem__(k) except KeyError: return failed def has_key(self, k): try: self.__getitem__(k) return True except KeyError: return False def __contains__(self, k): return self.has_key(k) def firstkey(self): self._keyiter = None return self.nextkey() def nextkey(self): if not self._keyiter: self._keyiter = ( k for (k,v) in cdbiter(self._fp, self._eod) ) try: return self._keyiter.next() except StopIteration: return None def each(self): if not self._eachiter: self._eachiter = cdbiter(self._fp, self._eod) try: return self._eachiter.next() except StopIteration: return None def iterkeys(self): return ( k for (k,v) in cdbiter(self._fp, self._eod) ) def itervalues(self): return ( v for (k,v) in cdbiter(self._fp, self._eod) ) def iteritems(self): return cdbiter(self._fp, self._eod) # CDBMaker class CDBMaker(object): def __init__(self, cdbname, tmpname): self.fn = cdbname self.fntmp = tmpname self.numentries = 0 self._fp = file(tmpname, 'wb') self._pos = 2048 # sizeof((h,p))*256 self._bucket = [ array('I') for _ in xrange(256) ] return def __repr__(self): return '<CDBMaker: %r, %r, %d ents>' % (self.fn, self.fntmp, self.numentries) def __len__(self): return self.numentries def __getstate__(self): raise TypeError def __setstate__(self, dict): raise TypeError def add(self, k, v): (k, v) = (str(k), str(v)) (klen, vlen) = (len(k), len(v)) self._fp.seek(self._pos) self._fp.write(pack('<II', klen, vlen)) self._fp.write(k) self._fp.write(v) h = cdbhash(k) b = self._bucket[h % 256] b.append(h) b.append(self._pos) # sizeof(keylen)+sizeof(datalen)+sizeof(key)+sizeof(data) self._pos += 8+klen+vlen self.numentries += 1 return self def finish(self): self._fp.seek(self._pos) pos_hash = self._pos # write hashes for b1 in self._bucket: if not b1: continue blen = len(b1) a = array('I', [0]*blen*2) for j in xrange(0, blen, 2): (h,p) = (b1[j],b1[j+1]) i = ((h >> 8) % blen)*2 while a[i+1]: # is cell[i] already occupied? i = (i+2) % len(a) a[i] = h a[i+1] = p self._fp.write(encode(a)) # write header self._fp.seek(0) a = array('I') for b1 in self._bucket: a.append(pos_hash) a.append(len(b1)) pos_hash += len(b1)*8 self._fp.write(encode(a)) # close self._fp.close() os.rename(self.fntmp, self.fn) return # txt2cdb def txt2cdb(self, lines): import re HEAD = re.compile(r'^\+(\d+),(\d+):') for line in lines: m = HEAD.match(line) if not m: break (klen, vlen) = (int(m.group(1)), int(m.group(2))) i = len(m.group(0)) k = line[i:i+klen] i += klen if line[i:i+2] != '->': raise ValueError('invalid separator: %r' % line) i += 2 v = line[i:i+vlen] self.add(k, v) return self # cdbdump def cdbdump(cdbname): fp = file(cdbname, 'rb') (eor,) = unpack('<I', fp.read(4)) return cdbiter(fp, eor) # cdbmerge def cdbmerge(iters): q = [] for it in iters: try: q.append((it.next(),it)) except StopIteration: pass k0 = None vs = None while q: q.sort() ((k,v),it) = q.pop(0) if k0 != k: if vs: yield (k0,vs) vs = [] vs.append(v) k0 = k try: q.append((it.next(),it)) except StopIteration: continue if vs: yield (k0,vs) return # aliases cdbmake = CDBMaker init = CDBReader ## TCDB ## # tcdbiter def tcdbiter(fp, eor): locs = {} fp.seek(eor) while 1: x = fp.read(8) if not x: break (h, pos) = unpack('<II', x) if pos: locs[pos] = h pos = 2048 fp.seek(pos) key = () parents = [0] while pos < eor: (klen, vlen) = unpack('<II', fp.read(8)) k = fp.read(klen) v = fp.read(vlen) h = locs[pos] for (i,p) in enumerate(parents): if cdbhash(k, p+5381L) == h: parents = parents[:i+1] key = key[:i] break key += (k,) yield (key, v) parents.append(pos) pos += 8+klen+vlen fp.close() return # TCDBMaker class TCDBMaker(CDBMaker): def __init__(self, cdbname, tmpname): CDBMaker.__init__(self, cdbname, tmpname) self._parent = 0 self._stack = [self._parent] return def put(self, depth, k, v): if depth == len(self._stack)+1: self._stack.append(self._parent) elif depth < len(self._stack): self._stack = self._stack[:depth] elif depth != len(self._stack): raise ValueError('invalid depth: %d' % depth) # (k, v) = (str(k), str(v)) (klen, vlen) = (len(k), len(v)) self._parent = self._pos # sizeof(keylen)+sizeof(datalen)+sizeof(key)+sizeof(data) self._fp.seek(self._pos) self._fp.write(pack('<II', klen, vlen)) self._fp.write(k) self._fp.write(v) self._pos += 4+4+klen+vlen h = cdbhash(k, self._stack[-1]+5381L) b = self._bucket[h % 256] b.append(h) b.append(self._parent) self.numentries += 1 return self def txt2tcdb(self, lines): import re HEAD = re.compile(r'^(\++)(\d+),(\d+):') for line in lines: m = HEAD.match(line) if not m: break (depth, klen, vlen) = (len(m.group(1)), int(m.group(2)), int(m.group(3))) i = len(m.group(0)) k = line[i:i+klen] i += klen if line[i:i+2] != '->': raise ValueError('invalid separator: %r' % line) i += 2 v = line[i:i+vlen] self.put(depth, k, v) return self # TCDBReader class TCDBReader(CDBReader): def lookup(self, seq, parent=0L): r = [] for k in seq: (v, parent) = self.lookup1(k, parent) r.append(v) return r def lookup1(self, k, parent=0L): k = str(k) if self._docache and (parent,k) in self._cache: return self._cache[(parent,k)] h = cdbhash(k, parent+5381L) self._fp.seek((h % 256) << 3) (pos_bucket, ncells) = unpack('<II', self._fp.read(8)) if ncells == 0: raise KeyError(k) start = (h >> 8) % ncells for i in xrange(ncells): self._fp.seek(pos_bucket + ((start+i) % ncells << 3)) (h1, p1) = unpack('<II', self._fp.read(8)) if p1 == 0: raise KeyError(k) if h1 == h: self._fp.seek(p1) (klen, vlen) = unpack('<II', self._fp.read(8)) k1 = self._fp.read(klen) if k1 == k: v1 = self._fp.read(vlen) if self._docache: self._cache[(parent,k)] = (v1,p1) return (v1,p1) raise KeyError(k) def iterkeys(self): return ( k for (k,v) in tcdbiter(self._fp, self._eod) ) def itervalues(self): return ( v for (k,v) in tcdbiter(self._fp, self._eod) ) def iteritems(self): return tcdbiter(self._fp, self._eod) # tcdbdump def tcdbdump(cdbname): fp = file(cdbname, 'rb') (eor,) = unpack('<I', fp.read(4)) return tcdbiter(fp, eor) # aliases tcdbmake = TCDBMaker tcdbinit = TCDBReader tcdbmerge = cdbmerge # main def main(argv): import getopt, fileinput def usage(): print 'usage: %s {cmake,cget,cdump,cmerge} [options] cdbname [args ...]' % argv[0] print 'usage: %s {tmake,tget,tdump,tmerge} [options] tcdbname [args ...]' % argv[0] return 100 args = argv[1:] if not args: return usage() cmd = args.pop(0) try: (opts, args) = getopt.getopt(args, 'kv2') except getopt.GetoptError: return usage() if not args: return usage() dbname = args.pop(0) # cdb if cmd == 'cmake': CDBMaker(dbname, dbname+'.tmp').txt2cdb(fileinput.input(args)).finish() elif cmd == 'cget': print repr(CDBReader(dbname).get(args[0])) elif cmd == 'cdump': f = (lambda k,v: '+%d,%d:%s->%s' % (len(k), len(v), k, v)) for (k, v) in opts: if k == '-k': f = (lambda k,_: k) elif k == '-v': f = (lambda _,v: v) elif k == '-2': f = (lambda k,v: k+'\t'+v) for (k,v) in cdbdump(dbname): print f(k,v) print elif cmd == 'cmerge': dbs = [ cdbdump(fname) for fname in args ] m = CDBMaker(dbname, dbname+'.tmp') for (k,vs) in tcdbmerge(dbs): m.add(k, ' '.join(vs)) m.finish() # tcdb elif cmd == 'tmake': TCDBMaker(dbname, dbname+'.tmp').txt2tcdb(fileinput.input(args)).finish() elif cmd == 'tget': print repr(TCDBReader(dbname).lookup(args)) elif cmd == 'tdump': f = (lambda k,v: '%s%d,%d:%s->%s' % ('+'*len(k), len(k[-1]), len(v), k[-1], v)) for (k, v) in opts: if k == '-k': f = (lambda k,_: '/'.join(k)) elif k == '-v': f = (lambda _,v: v) elif k == '-2': f = (lambda k,v: '/'.join(k)+'\t'+v) for (k,v) in tcdbdump(dbname): print f(k,v) print elif cmd == 'tmerge': dbs = [ tcdbdump(fname) for fname in args ] m = TCDBMaker(dbname, dbname+'.tmp') for (k,vs) in tcdbmerge(dbs): m.put(len(k), k[-1], ' '.join(vs)) m.finish() else: return usage() return if __name__ == '__main__': sys.exit(main(sys.argv))
leonardo/module/media/widget/vectorgraphics/util.py
timgates42/django-leonardo
102
12747193
<gh_stars>100-1000 import xml.parsers.expat from decimal import Decimal from django.conf import settings from django.template.loader import render_to_string import xml.dom.minidom import pprint pp = pprint.PrettyPrinter(indent=1, width=20).pprint def autofill_svg_size(sender, **kwargs): if not kwargs['instance'].autofill_dimensions: return dims = {} def start_element(name, attrs): if name == 'svg': if u'height' in attrs and u'width' in attrs: dims['height'] = attrs[u'height'] dims['width'] = attrs[u'width'] p = xml.parsers.expat.ParserCreate() p.StartElementHandler = start_element p.Parse(kwargs['instance'].file.read()) if 'height' in dims and 'width' in dims: #attention! measure unit is deleted! need to find - what measure units can be used for size #and how it can be implemented in svg-editor kwargs['instance'].height = Decimal(dims['height'].rstrip('px').rstrip('em').rstrip('%')) kwargs['instance'].width = Decimal(dims['width'].rstrip('px').rstrip('em').rstrip('%')) class recompose(object): def __init__(self, modify_type): self.modify_type = modify_type self.sizes = [] self.urls = [] def __call__(self, *args, **kwargs): self.sizes = [] self.urls = [] content_tokens = [] content_attr_name = kwargs['sender'].__name__.split("_")[-1] modified_contents = getattr(kwargs['instance'], content_attr_name).filter(id__in=list(kwargs['pk_set'])) for modified_content in modified_contents: content_tokens += {"orm_id":unicode(modified_content.id), "orm_page_id":unicode(modified_content.parent.id), "orm_region":unicode(modified_content.region), "orm_ordering":unicode(modified_content.ordering)}, self.sizes += (modified_content.markup.height, modified_content.markup.width), self.urls += modified_content.markup.file.url, return self.modify(markup_path=kwargs['instance'].markup.file.path, content_tokens=content_tokens, modify_type=self.modify_type, sizes =self.sizes,) def modify(self, markup_path="", content_tokens=[], sizes=[], modify_type=""): def marked_elements(root, element_name, content_tokens): for element in root.getElementsByTagName(element_name): attrs = dict(((attr_node.name, attr_node.value) for\ attr_node in element._attrs.values())) for content_token in content_tokens: related_attrs = dict((a[0],a[1]) for a in attrs.items() if \ a[0] in content_token \ and a[1] == content_token[a[0]]) if len(related_attrs) == len(content_token): yield element def adder(doc): if not len(list(marked_elements(doc, 'image', content_tokens))): for content_token in content_tokens: # print content_tokens.index(content_token) # print self.urls # print self.urls[content_tokens.index(content_token)] image_node = xml.dom.minidom.parseString(render_to_string('svg/image_node.xml', {'token':content_token, 'size':self.sizes[content_tokens.index(content_token)], 'url':self.urls[content_tokens.index(content_token)]})).\ childNodes[0].childNodes[0] image_node.ownerDocument = None image_node.parentNode = None doc.childNodes[0].appendChild(image_node) def remover(doc): for element in marked_elements(doc, 'image', content_tokens): element.parentNode.removeChild(element) if modify_type == 'add': modifier = adder elif modify_type == 'remove': modifier = remover else: raise ValueError("'modify_type' must be either 'add' or 'remove' string") markup = open(markup_path) doc = xml.dom.minidom.parse(markup) markup.close() #markup = open(markup_path, mode='w') modifier(doc) markup = file(markup_path, mode='w') markup.write(doc.toprettyxml()) markup.close() RECOMPOSE_MAP = {('pre_remove', "SVGComposerContentType_composers"):recompose('remove'), ('post_add', "SVGComposerContentType_composers"):recompose('add'), ('pre_remove', "SVGComposerContentType_components"):recompose('remove'), ('post_add', "SVGComposerContentType_components"):recompose('add'),} def recompose_dispatcher(*args, **kwargs): if kwargs['instance'].__class__.__name__ == 'SVGComposerContentType': if (kwargs['action'],kwargs['sender'].__name__) in RECOMPOSE_MAP: RECOMPOSE_MAP[(kwargs['action'],kwargs['sender'].__name__)](*args, **kwargs) def create_markup_if_empty(*args, **kwargs): if kwargs['sender'].__name__ == 'SVGComposerContentType' and\ not kwargs['instance'].markup and\ not hasattr(kwargs['instance'],'_markup_resetted'): print "reset" kwargs['instance'].reset_markup() setattr(kwargs['instance'],'_markup_resetted', True) kwargs['instance'].save()
geonotebook/vis/ktile/handler.py
irina694/earth-science-notebook
1,076
12747210
<filename>geonotebook/vis/ktile/handler.py from concurrent.futures import ThreadPoolExecutor from datetime import datetime, timedelta import json from ModestMaps.Core import Coordinate from notebook.base.handlers import IPythonHandler from tornado import concurrent, ioloop from tornado import gen from tornado import web from .utils import serialize_config, serialize_layer class KTileAsyncClient(object): __instance = None def __new__(cls, *args, **kwargs): if cls.__instance is None: cls.__instance = super( KTileAsyncClient, cls).__new__(cls, *args, **kwargs) return cls.__instance def __init__(self): self.executor = ThreadPoolExecutor(max_workers=4) self.io_loop = ioloop.IOLoop.current() @concurrent.run_on_executor def getTileResponse(self, layer, coord, extension): return layer.getTileResponse(coord, extension) class KtileHandler(IPythonHandler): def check_xsrf_cookie(self): # TODO: Find a way to correctly communicate XSRF secret to # the kernel so ingest requests can be property authenticated pass def initialize(self, ktile_config_manager): self.ktile_config_manager = ktile_config_manager try: if self.request.headers["Content-Type"].lower().startswith( "application/json"): try: body = self.request.body.decode('utf-8') except AttributeError: body = self.request.body self.request.json = json.loads(body) except Exception: self.request.json = None def post(self, kernel_id): # Note: needs paramater validation kwargs = {} if self.request.json is None else self.request.json self.ktile_config_manager.add_config(kernel_id, **kwargs) self.log.info("Created config for {}".format(kernel_id)) self.finish() def delete(self, kernel_id): try: del self.ktile_config_manager[kernel_id] except KeyError: raise web.HTTPError(404, u'Kernel %s not found' % kernel_id) def get(self, kernel_id, **kwargs): try: config = self.ktile_config_manager[kernel_id] except KeyError: raise web.HTTPError(404, u'Kernel %s not found' % kernel_id) self.finish(serialize_config(config)) class KtileLayerHandler(IPythonHandler): def check_xsrf_cookie(self): # TODO: Find a way to correctly communicate XSRF secret to # the kernel so ingest requests can be property authenticated pass def initialize(self, ktile_config_manager): self.ktile_config_manager = ktile_config_manager def prepare(self): try: if self.request.headers["Content-Type"].lower().startswith( "application/json"): try: body = self.request.body.decode('utf-8') except AttributeError: body = self.request.body self.request.json = json.loads(body) except Exception: self.request.json = None def post(self, kernel_id, layer_name): # Note: needs paramater validation try: self.ktile_config_manager.add_layer( kernel_id, layer_name, self.request.json) self.finish() except Exception: import sys import traceback t, v, tb = sys.exc_info() self.log.error(''.join(traceback.format_exception(t, v, tb))) self.clear() self.set_status(500) self.finish({'error': traceback.format_exception(t, v, tb)}) def get(self, kernel_id, layer_name, **kwargs): try: config = self.ktile_config_manager[kernel_id] except KeyError: raise web.HTTPError(400, u'Kernel %s not found' % kernel_id) try: layer = config.layers[layer_name] except KeyError: raise web.HTTPError(404, u'Layer %s not found' % layer_name) self.finish(serialize_layer(layer)) class KtileTileHandler(IPythonHandler): def initialize(self, ktile_config_manager): self.client = KTileAsyncClient() self.ktile_config_manager = ktile_config_manager @gen.coroutine def get(self, kernel_id, layer_name, x, y, z, extension, **kwargs): config = self.ktile_config_manager[kernel_id] layer = config.layers[layer_name] coord = Coordinate(int(y), int(x), int(z)) # To run synchronously: # status_code, headers, content = layer.getTileResponse( # coord, extension) status_code, headers, content = yield self.client.getTileResponse( layer, coord, extension) if layer.max_cache_age is not None: expires = datetime.utcnow() + timedelta( seconds=layer.max_cache_age) headers['Expires'] = expires.strftime('%a %d %b %Y %H:%M:%S GMT') headers['Cache-Control'] = 'public, max-age=%d' \ % layer.max_cache_age else: headers['Cache-Control'] = 'no-cache, no-store, must-revalidate' headers['Pragma'] = 'no-cache' headers['Expires'] = '0' # Force allow cross origin access headers["Access-Control-Allow-Origin"] = "*" # Fill tornado handler properties with ktile code/header/content for k, v in headers.items(): self.set_header(k, v) self.set_status(status_code) self.write(content)
jnpr/openclos/trapd.py
rohitt29/OpenClos
114
12747233
<gh_stars>100-1000 ''' Created on Nov. 06, 2014 @author: yunli ''' from pysnmp.carrier.asynsock.dispatch import AsynsockDispatcher from pysnmp.carrier.asynsock.dgram import udp from pyasn1.codec.ber import decoder from pysnmp.proto import api from threading import Thread, Event import logging import util import signal import sys import subprocess import concurrent.futures from devicePlugin import TwoStageConfigurator from propLoader import OpenClosProperty, loadLoggingConfig from exception import TrapDaemonError moduleName = 'trapd' loadLoggingConfig(appName = moduleName) logger = logging.getLogger(moduleName) DEFAULT_HOST = "0.0.0.0" DEFAULT_PORT = 20162 DEFAULT_MAX_THREADS = 10 trapReceiver = None def onTrap(transportDispatcher, transportDomain, transportAddress, wholeMsg): # don't even log the trap PDU unless we are at DEBUG level if logger.isEnabledFor(logging.DEBUG): while wholeMsg: msgVer = int(api.decodeMessageVersion(wholeMsg)) if msgVer in api.protoModules: pMod = api.protoModules[msgVer] else: logger.error('Unsupported SNMP version %s' % msgVer) return reqMsg, wholeMsg = decoder.decode( wholeMsg, asn1Spec=pMod.Message(), ) logger.info('Notification message from %s:%s ' % ( transportAddress[0], transportAddress[1] ) ) reqPDU = pMod.apiMessage.getPDU(reqMsg) if reqPDU.isSameTypeWith(pMod.TrapPDU()): if msgVer == api.protoVersion1: logger.debug('Enterprise: %s' % ( pMod.apiTrapPDU.getEnterprise(reqPDU).prettyPrint() ) ) logger.debug('Agent Address: %s' % ( pMod.apiTrapPDU.getAgentAddr(reqPDU).prettyPrint() ) ) logger.debug('Generic Trap: %s' % ( pMod.apiTrapPDU.getGenericTrap(reqPDU).prettyPrint() ) ) logger.debug('Specific Trap: %s' % ( pMod.apiTrapPDU.getSpecificTrap(reqPDU).prettyPrint() ) ) logger.debug('Uptime: %s' % ( pMod.apiTrapPDU.getTimeStamp(reqPDU).prettyPrint() ) ) varBinds = pMod.apiTrapPDU.getVarBindList(reqPDU) else: varBinds = pMod.apiPDU.getVarBindList(reqPDU) logger.debug('Var-binds:') for oid, val in varBinds: logger.debug('%s = %s' % (oid.prettyPrint(), val.prettyPrint())) # start the 2-stage configuration in a separate thread if trapReceiver is not None: # execute 2-stage configuration callback if there is one configured in openclos.yaml callback = trapReceiver.twoStageConfigurationCallback if callback is not None and len(callback) > 0: proc = subprocess.Popen(callback, shell=True) returnValue = proc.wait() if returnValue != 0: # 2-stage configuration callback returns non-zero value indicating we SHOULD NOT continue logger.debug('twoStageConfigurationCallback "%s" returns %d, trap ignored' % (callback, returnValue)) return configurator = TwoStageConfigurator(deviceIp=transportAddress[0], stopEvent=trapReceiver.stopEvent) trapReceiver.executor.submit(configurator.start2StageConfiguration) class TrapReceiver(): def __init__(self, conf = {}): if conf is None or any(conf) == False: self.__conf = OpenClosProperty(appName = moduleName).getProperties() else: self.__conf = conf # default value self.target = DEFAULT_HOST self.port = DEFAULT_PORT # validate required parameter if 'snmpTrap' in self.__conf and 'openclos_trap_group' in self.__conf['snmpTrap'] and 'target' in self.__conf['snmpTrap']['openclos_trap_group']: self.target = self.__conf['snmpTrap']['openclos_trap_group']['target'] else: logger.info("snmpTrap:openclos_trap_group:target is missing from configuration. using %s" % (self.target)) if 'snmpTrap' in self.__conf and 'openclos_trap_group' in self.__conf['snmpTrap'] and 'port' in self.__conf['snmpTrap']['openclos_trap_group']: self.port = int(self.__conf['snmpTrap']['openclos_trap_group']['port']) else: logger.info("snmpTrap:openclos_trap_group:port is missing from configuration. using %d" % (self.port)) if 'snmpTrap' in self.__conf and 'threadCount' in self.__conf['snmpTrap']: self.executor = concurrent.futures.ThreadPoolExecutor(max_workers = self.__conf['snmpTrap']['threadCount']) else: self.executor = concurrent.futures.ThreadPoolExecutor(max_workers = DEFAULT_MAX_THREADS) # event to stop from sleep self.stopEvent = Event() self.twoStageConfigurationCallback = util.getTwoStageConfigurationCallback(self.__conf) def threadFunction(self): self.transportDispatcher = AsynsockDispatcher() self.transportDispatcher.registerRecvCbFun(onTrap) # UDP/IPv4 self.transportDispatcher.registerTransport( udp.domainName, udp.UdpSocketTransport().openServerMode((self.target, self.port)) ) self.transportDispatcher.jobStarted(1) try: # Dispatcher will never finish as job#1 never reaches zero self.transportDispatcher.runDispatcher() except Exception as exc: logger.error("Encounted error '%s' on trap receiver %s:%d" % (exc, self.target, self.port)) self.transportDispatcher.closeDispatcher() raise TrapDaemonError("Trap receiver %s:%d" % (self.target, self.port), exc) else: self.transportDispatcher.closeDispatcher() def start(self): logger.info("Starting trap receiver...") self.thread = Thread(target=self.threadFunction, args=()) self.thread.start() logger.info("Trap receiver started on %s:%d" % (self.target, self.port)) def stop(self): logger.info("Stopping trap receiver...") self.stopEvent.set() self.executor.shutdown() self.transportDispatcher.jobFinished(1) self.thread.join() logger.info("Trap receiver stopped") def trap_receiver_signal_handler(signal, frame): logger.debug("received signal %d" % signal) trapReceiver.stop() sys.exit(0) def main(): signal.signal(signal.SIGINT, trap_receiver_signal_handler) signal.signal(signal.SIGTERM, trap_receiver_signal_handler) global trapReceiver trapReceiver = TrapReceiver() trapReceiver.start() # Note we have to do this in order for signal to be properly caught by main thread # We need to do the similar thing when we integrate this into sampleApplication.py while True: signal.pause() if __name__ == '__main__': main()
CalibPPS/ESProducers/test/ppsTimingCalibrationAnalyzer_cfg.py
ckamtsikis/cmssw
852
12747238
<filename>CalibPPS/ESProducers/test/ppsTimingCalibrationAnalyzer_cfg.py import FWCore.ParameterSet.Config as cms process = cms.Process('test') # minimum logging process.MessageLogger = cms.Service("MessageLogger", cerr = cms.untracked.PSet( enable = cms.untracked.bool(False) ), cout = cms.untracked.PSet( enable = cms.untracked.bool(True), threshold = cms.untracked.string('INFO') ) ) process.source = cms.Source('EmptyIOVSource', timetype = cms.string('runnumber'), firstValue = cms.uint64(1), lastValue = cms.uint64(1), interval = cms.uint64(1) ) # load calibrations from database process.load('CondCore.CondDB.CondDB_cfi') process.CondDB.connect = 'sqlite_file:ppsDiamondTiming_calibration.sqlite' # SQLite input process.PoolDBESSource = cms.ESSource('PoolDBESSource', process.CondDB, DumpStats = cms.untracked.bool(True), toGet = cms.VPSet( cms.PSet( record = cms.string('PPSTimingCalibrationRcd'), tag = cms.string('PPSDiamondTimingCalibration') ) ) ) process.ppsTimingCalibrationAnalyzer = cms.EDAnalyzer('PPSTimingCalibrationAnalyzer') process.path = cms.Path( process.ppsTimingCalibrationAnalyzer )
supervisor/dbus/network/interface.py
pnjongang/supervisor
597
12747257
<filename>supervisor/dbus/network/interface.py """NetworkInterface object for Network Manager.""" from typing import Optional from ...utils.dbus import DBus from ..const import ( DBUS_ATTR_ACTIVE_CONNECTION, DBUS_ATTR_DEVICE_INTERFACE, DBUS_ATTR_DEVICE_TYPE, DBUS_ATTR_DRIVER, DBUS_ATTR_MANAGED, DBUS_IFACE_DEVICE, DBUS_NAME_NM, DBUS_OBJECT_BASE, DeviceType, ) from ..interface import DBusInterfaceProxy from .connection import NetworkConnection from .setting import NetworkSetting from .wireless import NetworkWireless class NetworkInterface(DBusInterfaceProxy): """NetworkInterface object represents Network Manager Device objects. https://developer.gnome.org/NetworkManager/stable/gdbus-org.freedesktop.NetworkManager.Device.html """ def __init__(self, nm_dbus: DBus, object_path: str) -> None: """Initialize NetworkConnection object.""" self.object_path = object_path self.properties = {} self.primary = False self._connection: Optional[NetworkConnection] = None self._settings: Optional[NetworkSetting] = None self._wireless: Optional[NetworkWireless] = None self._nm_dbus: DBus = nm_dbus @property def name(self) -> str: """Return interface name.""" return self.properties[DBUS_ATTR_DEVICE_INTERFACE] @property def type(self) -> int: """Return interface type.""" return self.properties[DBUS_ATTR_DEVICE_TYPE] @property def driver(self) -> str: """Return interface driver.""" return self.properties[DBUS_ATTR_DRIVER] @property def managed(self) -> bool: """Return interface driver.""" return self.properties[DBUS_ATTR_MANAGED] @property def connection(self) -> Optional[NetworkConnection]: """Return the connection used for this interface.""" return self._connection @property def settings(self) -> Optional[NetworkSetting]: """Return the connection settings used for this interface.""" return self._settings @property def wireless(self) -> Optional[NetworkWireless]: """Return the wireless data for this interface.""" return self._wireless async def connect(self) -> None: """Get device information.""" self.dbus = await DBus.connect(DBUS_NAME_NM, self.object_path) self.properties = await self.dbus.get_properties(DBUS_IFACE_DEVICE) # Abort if device is not managed if not self.managed: return # If active connection exists if self.properties[DBUS_ATTR_ACTIVE_CONNECTION] != DBUS_OBJECT_BASE: self._connection = NetworkConnection( self.properties[DBUS_ATTR_ACTIVE_CONNECTION] ) await self._connection.connect() # Attach settings if self.connection and self.connection.setting_object != DBUS_OBJECT_BASE: self._settings = NetworkSetting(self.connection.setting_object) await self._settings.connect() # Wireless if self.type == DeviceType.WIRELESS: self._wireless = NetworkWireless(self.object_path) await self._wireless.connect()
src/apifuzz.py
Boyploy/IMF
108
12747259
# Copyright (c) 2017 <NAME> and <NAME> at SoftSec, KAIST # # See the file LICENCE for copying permission. import basic import hook import utils import log import const import sys import time import argparse import os from multiprocessing import Pool from model import Model class ApiFuzz: def __init__(self): self.apis = {} self.apisets = {} self.apis= basic.load_apis() def load_apilog(self, log_fname, limit): with open(log_fname, 'rb') as f: data = f.read().split('\n')[:-1] if len(data) %2 !=0: data = data[:-1] idx = 0 apilogs = [] while idx < len(data) and idx < limit*2: if data[idx][:2] == 'IN': il = utils.evaluate(data[idx][2:]) else: utils.error('load_apilog: parse IN error') if data[idx+1][:3] == 'OUT' : ol = utils.evaluate(data[idx+1][3:]) else: utils.error('load_apilog: parse OUT error') apilog = log.ApiLog(self.apis[il[0]], il, ol) apilogs.append(apilog) idx+=2 return apilogs def make_model(self, fnames, limit, path, core): apisets = utils.multiproc(self.load_apilog_multi(limit), fnames, core) model = Model(apisets) with open(path, 'wb') as f: code = model.fuzz(const.CODE_HEAD, const.CODE_TAIL) f.write(code) def load_apilog_multi(self, limit): def func(fname): apiseq = self.load_apilog(fname, limit) return apiseq return func def show_help(): print './gen-fuzz [filtered logs path] [output(fuzzer code) path] [# of core]' def get_limit(logs): limit = None for log in logs: with open(log, 'rb') as f: n = (len(f.read().split('\n'))-1)/2 if limit == None : limit = n elif limit != n: utils.error('Invalid triaged logs') return limit if __name__== '__main__': if len(sys.argv) != 4: show_help() sys.exit(-1) fuzz = ApiFuzz() log_dir = sys.argv[1] logs = [] for fname in os.listdir(log_dir): logs.append(os.path.join(log_dir, fname)) limit = get_limit(logs) core = int(sys.argv[3]) fuzz.make_model(logs, limit, sys.argv[2], core)
src/app/beer_garden/api/http/handlers/v1/admin.py
ExpressHermes/beer-garden
230
12747272
# -*- coding: utf-8 -*- from brewtils.errors import ModelValidationError from brewtils.models import Operation from brewtils.schema_parser import SchemaParser from beer_garden.api.http.base_handler import BaseHandler class AdminAPI(BaseHandler): async def patch(self): """ --- summary: Initiate administrative actions description: | The body of the request needs to contain a set of instructions detailing the operations to perform. Currently the supported operations are `rescan`: ```JSON [ { "operation": "rescan" } ] ``` * Will remove from the registry and database any currently stopped plugins who's directory has been removed. * Will add and start any new plugin directories. And reloading the plugin logging configuration: ```JSON [ { "operation": "reload", "path": "/config/logging/plugin" } ] ``` parameters: - name: patch in: body required: true description: Instructions for operations schema: $ref: '#/definitions/Patch' responses: 204: description: Operation successfully initiated 50x: $ref: '#/definitions/50xError' tags: - Admin """ operations = SchemaParser.parse_patch( self.request.decoded_body, many=True, from_string=True ) for op in operations: if op.operation == "rescan": await self.client(Operation(operation_type="RUNNER_RESCAN")) elif op.operation == "reload": if op.path == "/config/logging/plugin": await self.client(Operation(operation_type="PLUGIN_LOG_RELOAD")) else: raise ModelValidationError(f"Unsupported path '{op.path}'") else: raise ModelValidationError(f"Unsupported operation '{op.operation}'") self.set_status(204)
corehq/apps/user_importer/helpers.py
andyasne/commcare-hq
471
12747277
from dimagi.utils.parsing import string_to_boolean from corehq.apps.custom_data_fields.models import PROFILE_SLUG from corehq.apps.user_importer.exceptions import UserUploadError from corehq.apps.users.audit.change_messages import UserChangeMessage from corehq.apps.users.model_log import UserModelAction from corehq.apps.users.util import log_user_change def spec_value_to_boolean_or_none(user_spec_dict, key): value = user_spec_dict.get(key, None) if value and isinstance(value, str): return string_to_boolean(value) elif isinstance(value, bool): return value else: return None class UserChangeLogger(object): """ User change logger to record - changes to user properties - text messages for changes - useful info for changes to associated data models like role/locations """ def __init__(self, upload_domain, user_domain, user, is_new_user, changed_by_user, changed_via, upload_record_id, user_domain_required_for_log=True): self.upload_domain = upload_domain self.user_domain = user_domain self.user = user self.is_new_user = is_new_user self.changed_by_user = changed_by_user self.changed_via = changed_via self.upload_record_id = upload_record_id self.user_domain_required_for_log = user_domain_required_for_log if not is_new_user: self.original_user_doc = self.user.to_json() else: self.original_user_doc = None self.fields_changed = {} self.change_messages = {} self._save = False # flag to check if log needs to be saved for updates def add_changes(self, changes): """ Add changes to user properties. Ignored for new user since the whole user doc is logged for a new user :param changes: dict of property mapped to it's new value """ if self.is_new_user: return for name, new_value in changes.items(): if self.original_user_doc[name] != new_value: self.fields_changed[name] = new_value self._save = True def add_change_message(self, message): """ Add change message for a change in user property that is in form of a UserChangeMessage Ignored for new user since the whole user doc is logged for a new user :param message: text message for the change like 'Password reset' / 'Added as web user to domain foo' """ if self.is_new_user: return self._update_change_messages(message) self._save = True def _update_change_messages(self, change_messages): for slug in change_messages: if slug in self.change_messages: raise UserUploadError(f"Double Entry for {slug}") self.change_messages.update(change_messages) def add_info(self, change_message): """ Add change message for a change to the user that is in form of a UserChangeMessage """ self._update_change_messages(change_message) self._save = True def save(self): if self.is_new_user or self._save: action = UserModelAction.CREATE if self.is_new_user else UserModelAction.UPDATE fields_changed = None if self.is_new_user else self.fields_changed log_user_change( by_domain=self.upload_domain, for_domain=self.user_domain, couch_user=self.user, changed_by_user=self.changed_by_user, changed_via=self.changed_via, change_messages=self.change_messages, action=action, fields_changed=fields_changed, bulk_upload_record_id=self.upload_record_id, for_domain_required_for_log=self.user_domain_required_for_log, ) class BaseUserImporter(object): """ Imports a Web/CommCareUser via bulk importer and also handles the logging save_log should be called explicitly to save logs, after user is saved """ def __init__(self, upload_domain, user_domain, user, upload_user, is_new_user, via, upload_record_id): """ :param upload_domain: domain on which the bulk upload is being done :param user_domain: domain user is being updated for :param user: user to update :param upload_user: user doing the upload :param is_new_user: if user is a new user :param via: USER_CHANGE_VIA_BULK_IMPORTER :param upload_record_id: ID of the bulk upload record """ self.user_domain = user_domain self.user = user self.upload_user = upload_user self.logger = UserChangeLogger(upload_domain=upload_domain, user_domain=user_domain, user=user, is_new_user=is_new_user, changed_by_user=upload_user, changed_via=via, upload_record_id=upload_record_id) self.role_updated = False def update_role(self, role_qualified_id): user_current_role = self.user.get_role(domain=self.user_domain) self.role_updated = not (user_current_role and user_current_role.get_qualified_id() == role_qualified_id) if self.role_updated: self.user.set_role(self.user_domain, role_qualified_id) def save_log(self): # Tracking for role is done post save to have role setup correctly on save if self.role_updated: new_role = self.user.get_role(domain=self.user_domain) self.logger.add_info(UserChangeMessage.role_change(new_role)) self._include_user_data_changes() self.logger.save() def _include_user_data_changes(self): # ToDo: consider putting just the diff if self.logger.original_user_doc and self.logger.original_user_doc['user_data'] != self.user.user_data: self.logger.add_changes({'user_data': self.user.user_data}) class CommCareUserImporter(BaseUserImporter): def update_password(self, password): self.user.set_password(password) self.logger.add_change_message(UserChangeMessage.password_reset()) def update_phone_numbers(self, phone_numbers): """ The first item in 'phone_numbers' will be the default """ old_user_phone_numbers = self.user.phone_numbers fmt_phone_numbers = [_fmt_phone(n) for n in phone_numbers] if any(fmt_phone_numbers): self.user.set_phone_numbers(fmt_phone_numbers, default_number=fmt_phone_numbers[0]) else: self.user.set_phone_numbers([]) self._log_phone_number_changes(old_user_phone_numbers, fmt_phone_numbers) def update_name(self, name): self.user.set_full_name(str(name)) self.logger.add_changes({'first_name': self.user.first_name, 'last_name': self.user.last_name}) def update_user_data(self, data, uncategorized_data, profile, domain_info): # Add in existing data. Don't use metadata - we don't want to add profile-controlled fields. current_profile_id = self.user.user_data.get(PROFILE_SLUG) for key, value in self.user.user_data.items(): if key not in data: data[key] = value if profile: profile_obj = domain_info.profiles_by_name[profile] data[PROFILE_SLUG] = profile_obj.id for key in profile_obj.fields.keys(): self.user.pop_metadata(key) try: self.user.update_metadata(data) except ValueError as e: raise UserUploadError(str(e)) if uncategorized_data: self.user.update_metadata(uncategorized_data) # Clear blank user data so that it can be purged by remove_unused_custom_fields_from_users_task for key in dict(data, **uncategorized_data): value = self.user.metadata[key] if value is None or value == '': self.user.pop_metadata(key) new_profile_id = self.user.user_data.get(PROFILE_SLUG) if new_profile_id and new_profile_id != current_profile_id: profile_name = domain_info.profile_name_by_id[new_profile_id] self.logger.add_info(UserChangeMessage.profile_info(new_profile_id, profile_name)) def update_language(self, language): self.user.language = language self.logger.add_changes({'language': language}) def update_email(self, email): self.user.email = email.lower() self.logger.add_changes({'email': self.user.email}) def update_status(self, is_active): self.user.is_active = is_active self.logger.add_changes({'is_active': is_active}) def update_locations(self, location_codes, domain_info): from corehq.apps.user_importer.importer import ( check_modified_user_loc, find_location_id, get_location_from_site_code ) location_ids = find_location_id(location_codes, domain_info.location_cache) user_current_primary_location_id = self.user.location_id locations_updated, primary_loc_removed = check_modified_user_loc(location_ids, self.user.location_id, self.user.assigned_location_ids) if primary_loc_removed: self.user.unset_location(commit=False) if locations_updated: self.user.reset_locations(location_ids, commit=False) self.logger.add_changes({'assigned_location_ids': location_ids}) if location_ids: locations = [get_location_from_site_code(code, domain_info.location_cache) for code in location_codes] self.logger.add_info( UserChangeMessage.assigned_locations_info(locations)) else: self.logger.add_info(UserChangeMessage.assigned_locations_info([])) # log this after assigned locations are updated, which can re-set primary location if self.user.location_id != user_current_primary_location_id: self.logger.add_changes({'location_id': self.user.location_id}) if self.user.location_id: self.logger.add_info( UserChangeMessage.primary_location_info( self.user.get_sql_location(self.user_domain) ) ) else: self.logger.add_info(UserChangeMessage.primary_location_removed()) def _log_phone_number_changes(self, old_phone_numbers, new_phone_numbers): (items_added, items_removed) = find_differences_in_list( target=new_phone_numbers, source=old_phone_numbers ) change_messages = {} if items_added: change_messages.update(UserChangeMessage.phone_numbers_added(list(items_added))["phone_numbers"]) if items_removed: change_messages.update(UserChangeMessage.phone_numbers_removed(list(items_removed))["phone_numbers"]) if change_messages: self.logger.add_change_message({'phone_numbers': change_messages}) def _fmt_phone(phone_number): if phone_number and not isinstance(phone_number, str): phone_number = str(int(phone_number)) return phone_number.lstrip("+") class WebUserImporter(BaseUserImporter): def add_to_domain(self, role_qualified_id, location_id): self.user.add_as_web_user(self.user_domain, role=role_qualified_id, location_id=location_id) self.role_updated = bool(role_qualified_id) self.logger.add_info(UserChangeMessage.added_as_web_user(self.user_domain)) if location_id: self._log_primary_location_info() def _log_primary_location_info(self): primary_location = self.user.get_sql_location(self.user_domain) self.logger.add_info(UserChangeMessage.primary_location_info(primary_location)) def update_primary_location(self, location_id): current_primary_location_id = get_user_primary_location_id(self.user, self.user_domain) if location_id: self.user.set_location(self.user_domain, location_id) if current_primary_location_id != location_id: self._log_primary_location_info() else: self.user.unset_location(self.user_domain) # if there was a location before, log that it was cleared if current_primary_location_id: self.logger.add_info(UserChangeMessage.primary_location_removed()) def update_locations(self, location_codes, membership, domain_info): from corehq.apps.user_importer.importer import ( check_modified_user_loc, find_location_id, get_location_from_site_code ) location_ids = find_location_id(location_codes, domain_info.location_cache) user_current_primary_location_id = membership.location_id locations_updated, primary_loc_removed = check_modified_user_loc(location_ids, membership.location_id, membership.assigned_location_ids) if primary_loc_removed: self.user.unset_location(self.user_domain, commit=False) if locations_updated: self.user.reset_locations(self.user_domain, location_ids, commit=False) if location_ids: locations = [get_location_from_site_code(code, domain_info.location_cache) for code in location_codes] else: locations = [] self.logger.add_info(UserChangeMessage.assigned_locations_info(locations)) # log this after assigned locations are updated, which can re-set primary location user_updated_primary_location_id = get_user_primary_location_id(self.user, self.user_domain) if user_updated_primary_location_id != user_current_primary_location_id: if user_updated_primary_location_id: self._log_primary_location_info() else: self.logger.add_info(UserChangeMessage.primary_location_removed()) def get_user_primary_location_id(user, domain): primary_location = user.get_sql_location(domain) if primary_location: return primary_location.location_id def get_user_primary_location_name(user, domain): primary_location = user.get_sql_location(domain) if primary_location: return primary_location.name def find_differences_in_list(target: list, source: list): """ Find the differences between 'source' and 'target' and return (added_items, removed_items) 'added_items': items that are in 'target' but not in 'source' 'removed_items': items that are in 'source' but not 'target' >>> find_differences_in_list(list_to_compare=[3,4,5,6], reference_list=[1,2,3,5]) ({4, 6}, {1, 2}) """ shared_items = set(target).intersection(source) added_items = set(target).difference(shared_items) removed_items = set(source).difference(shared_items) return added_items, removed_items
c2nl/config.py
kopf-yhs/ncscos
131
12747282
""" Implementation of all available options """ from __future__ import print_function """Model architecture/optimization options for Seq2seq architecture.""" import argparse import logging logger = logging.getLogger(__name__) # Index of arguments concerning the core model architecture MODEL_ARCHITECTURE = { 'model_type', 'emsize', 'rnn_type', 'nhid', 'nlayers', 'use_all_enc_layers', 'bidirection', 'src_pos_emb', 'tgt_pos_emb', 'max_relative_pos', 'use_neg_dist', 'd_ff', 'd_k', 'd_v', 'num_head', 'trans_drop', 'n_characters', 'char_emsize', 'filter_size', 'nfilters' } SEQ2SEQ_ARCHITECTURE = { 'attn_type', 'coverage_attn', 'copy_attn', 'review_attn', 'force_copy', 'layer_wise_attn', 'split_decoder', 'reuse_copy_attn', 'reload_decoder_state', 'share_decoder_embeddings', 'conditional_decoding' } DATA_OPTIONS = { 'use_src_char', 'use_tgt_char', 'use_src_word', 'use_tgt_word', 'max_src_len', 'max_tgt_len', 'src_vocab_size', 'tgt_vocab_size', 'num_train_examples', 'batch_size', 'use_code_type', 'code_tag_type', 'uncase', 'max_characters_per_token', 'dataset_weights' } # Index of arguments concerning the model optimizer/training MODEL_OPTIMIZER = { 'optimizer', 'fix_embeddings', 'learning_rate', 'momentum', 'weight_decay', 'rnn_padding', 'dropout_rnn', 'dropout', 'dropout_emb', 'cuda', 'grad_clipping', 'lr_decay', 'warmup_steps', 'num_epochs', 'parallel' } def str2bool(v): return v.lower() in ('yes', 'true', 't', '1', 'y') def add_model_args(parser): parser.register('type', 'bool', str2bool) # Data options data = parser.add_argument_group('Data parameters') data.add_argument('--max_src_len', type=int, default=100, help='Maximum allowed length for the source sequence') data.add_argument('--max_tgt_len', type=int, default=50, help='Maximum allowed length for the target sequence') data.add_argument('--use_code_type', type='bool', default=False, help='Use code type as additional feature for feature representations') data.add_argument('--code_tag_type', type=str, default='subtoken', help='Use code type as additional feature for feature representations') # Model architecture model = parser.add_argument_group('Summary Generator') model.add_argument('--model_type', type=str, default='rnn', choices=['rnn', 'transformer'], help='Model architecture type') model.add_argument('--emsize', type=int, default=300, help='Embedding size if embedding_file is not given') model.add_argument('--rnn_type', type=str, default='LSTM', help='RNN type: LSTM, GRU') model.add_argument('--nhid', type=int, default=200, help='Hidden size of RNN units') model.add_argument('--bidirection', type='bool', default=True, help='use bidirectional recurrent unit') model.add_argument('--nlayers', type=int, default=2, help='Number of encoding layers') model.add_argument('--use_all_enc_layers', type='bool', default=False, help='Use a weighted average of all encoder layers\' ' 'representation as the contextual representation') # Transformer specific params model.add_argument('--src_pos_emb', type='bool', default=True, help='Use positional embeddings in encoder') model.add_argument('--tgt_pos_emb', type='bool', default=True, help='Use positional embeddings in decoder') model.add_argument('--max_relative_pos', nargs='+', type=int, default=0, help='Max value for relative position representations') model.add_argument('--use_neg_dist', type='bool', default=True, help='Use negative Max value for relative position representations') model.add_argument('--d_ff', type=int, default=2048, help='Number of units in position-wise FFNN') model.add_argument('--d_k', type=int, default=64, help='Hidden size of heads in multi-head attention') model.add_argument('--d_v', type=int, default=64, help='Hidden size of heads in multi-head attention') model.add_argument('--num_head', type=int, default=8, help='Number of heads in Multi-Head Attention') model.add_argument('--trans_drop', type=float, default=0.2, help='Dropout for transformer') model.add_argument('--layer_wise_attn', type='bool', default=False, help='Use layer-wise attention in Transformer') # Input representation specific details model.add_argument('--use_src_char', type='bool', default=False, help='Use character embedding in the source') model.add_argument('--use_tgt_char', type='bool', default=False, help='Use character embedding in the target') model.add_argument('--use_src_word', type='bool', default=True, help='Use word embedding in the input') model.add_argument('--use_tgt_word', type='bool', default=True, help='Use word embedding in the input') model.add_argument('--n_characters', type=int, default=260, help='Character vocabulary size') model.add_argument('--char_emsize', type=int, default=16, help='Character embedding size') model.add_argument('--filter_size', nargs='+', type=int, default=5, help='Char convolution filter sizes') model.add_argument('--nfilters', nargs='+', type=int, default=100, help='Number of char convolution filters') seq2seq = parser.add_argument_group('Seq2seq Model Specific Params') seq2seq.add_argument('--attn_type', type=str, default='general', help='Attention type for the seq2seq [dot, general, mlp]') seq2seq.add_argument('--coverage_attn', type='bool', default=False, help='Use coverage attention') seq2seq.add_argument('--copy_attn', type='bool', default=False, help='Use copy attention') seq2seq.add_argument('--review_attn', type='bool', default=False, help='Use review attention') seq2seq.add_argument('--force_copy', type='bool', default=False, help='Apply force copying') seq2seq.add_argument('--reuse_copy_attn', type='bool', default=False, help='Reuse encoder attention') seq2seq.add_argument('--share_decoder_embeddings', type='bool', default=False, help='Share decoder embeddings weight with softmax layer') seq2seq.add_argument('--split_decoder', type='bool', default=False, help='Split the decoder into two for copying and generation') seq2seq.add_argument('--reload_decoder_state', type=str, default=None, help='Reload decoder states for the seq2seq') seq2seq.add_argument('--conditional_decoding', type='bool', default=False, help='Conditional decoding applied to Seq2seq') # Optimization details optim = parser.add_argument_group('Neural QA Reader Optimization') optim.add_argument('--optimizer', type=str, default='adam', choices=['sgd', 'adam', 'adamW'], help='Name of the optimizer') optim.add_argument('--dropout_emb', type=float, default=0.2, help='Dropout rate for word embeddings') optim.add_argument('--dropout_rnn', type=float, default=0.2, help='Dropout rate for RNN states') optim.add_argument('--dropout', type=float, default=0.2, help='Dropout for NN layers') optim.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate for the optimizer') parser.add_argument('--lr_decay', type=float, default=0.99, help='Decay ratio for learning rate') optim.add_argument('--grad_clipping', type=float, default=5.0, help='Gradient clipping') parser.add_argument('--early_stop', type=int, default=5, help='Stop training if performance doesn\'t improve') optim.add_argument('--weight_decay', type=float, default=0, help='Weight decay factor') optim.add_argument('--momentum', type=float, default=0, help='Momentum factor') optim.add_argument('--fix_embeddings', type='bool', default=True, help='Keep word embeddings fixed (use pretrained)') optim.add_argument('--warmup_steps', type=int, default=10000, help='Number of of warmup steps') optim.add_argument('--warmup_epochs', type=int, default=0, help='Number of of warmup steps') def get_model_args(args): """Filter args for model ones. From a args Namespace, return a new Namespace with *only* the args specific to the model architecture or optimization. (i.e. the ones defined here.) """ global MODEL_ARCHITECTURE, MODEL_OPTIMIZER, SEQ2SEQ_ARCHITECTURE, DATA_OPTIONS required_args = MODEL_ARCHITECTURE | MODEL_OPTIMIZER | SEQ2SEQ_ARCHITECTURE | DATA_OPTIONS arg_values = {k: v for k, v in vars(args).items() if k in required_args} return argparse.Namespace(**arg_values) def override_model_args(old_args, new_args): """Set args to new parameters. Decide which model args to keep and which to override when resolving a set of saved args and new args. We keep the new optimization or RL setting, and leave the model architecture alone. """ global MODEL_OPTIMIZER old_args, new_args = vars(old_args), vars(new_args) for k in old_args.keys(): if k in new_args and old_args[k] != new_args[k]: if k in MODEL_OPTIMIZER: logger.info('Overriding saved %s: %s --> %s' % (k, old_args[k], new_args[k])) old_args[k] = new_args[k] else: logger.info('Keeping saved %s: %s' % (k, old_args[k])) return argparse.Namespace(**old_args) def add_new_model_args(old_args, new_args): """Set args to new parameters. Decide which model args to keep and which to override when resolving a set of saved args and new args. We keep the new optimization or RL setting, and leave the model architecture alone. """ global ADVANCED_OPTIONS old_args, new_args = vars(old_args), vars(new_args) for k in new_args.keys(): if k not in old_args: if k in ADVANCED_OPTIONS: logger.info('Adding arg %s: %s' % (k, new_args[k])) old_args[k] = new_args[k] return argparse.Namespace(**old_args)
tools/mkowners/mkowners.py
txl0591/grpc
117
12747287
#!/usr/bin/env python3 # Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections import operator import os import re import subprocess # # Find the root of the git tree # git_root = (subprocess .check_output(['git', 'rev-parse', '--show-toplevel']) .decode('utf-8') .strip()) # # Parse command line arguments # default_out = os.path.join(git_root, '.github', 'CODEOWNERS') argp = argparse.ArgumentParser('Generate .github/CODEOWNERS file') argp.add_argument('--out', '-o', type=str, default=default_out, help='Output file (default %s)' % default_out) args = argp.parse_args() # # Walk git tree to locate all OWNERS files # owners_files = [os.path.join(root, 'OWNERS') for root, dirs, files in os.walk(git_root) if 'OWNERS' in files] # # Parse owners files # Owners = collections.namedtuple('Owners', 'parent directives dir') Directive = collections.namedtuple('Directive', 'who globs') def parse_owners(filename): with open(filename) as f: src = f.read().splitlines() parent = True directives = [] for line in src: line = line.strip() # line := directive | comment if not line: continue if line[0] == '#': continue # it's a directive directive = None if line == 'set noparent': parent = False elif line == '*': directive = Directive(who='*', globs=[]) elif ' ' in line: (who, globs) = line.split(' ', 1) globs_list = [glob for glob in globs.split(' ') if glob] directive = Directive(who=who, globs=globs_list) else: directive = Directive(who=line, globs=[]) if directive: directives.append(directive) return Owners(parent=parent, directives=directives, dir=os.path.relpath(os.path.dirname(filename), git_root)) owners_data = sorted([parse_owners(filename) for filename in owners_files], key=operator.attrgetter('dir')) # # Modify owners so that parented OWNERS files point to the actual # Owners tuple with their parent field # new_owners_data = [] for owners in owners_data: if owners.parent == True: best_parent = None best_parent_score = None for possible_parent in owners_data: if possible_parent is owners: continue rel = os.path.relpath(owners.dir, possible_parent.dir) # '..' ==> we had to walk up from possible_parent to get to owners # ==> not a parent if '..' in rel: continue depth = len(rel.split(os.sep)) if not best_parent or depth < best_parent_score: best_parent = possible_parent best_parent_score = depth if best_parent: owners = owners._replace(parent = best_parent.dir) else: owners = owners._replace(parent = None) new_owners_data.append(owners) owners_data = new_owners_data # # In bottom to top order, process owners data structures to build up # a CODEOWNERS file for GitHub # def full_dir(rules_dir, sub_path): return os.path.join(rules_dir, sub_path) if rules_dir != '.' else sub_path # glob using git gg_cache = {} def git_glob(glob): global gg_cache if glob in gg_cache: return gg_cache[glob] r = set(subprocess .check_output(['git', 'ls-files', os.path.join(git_root, glob)]) .decode('utf-8') .strip() .splitlines()) gg_cache[glob] = r return r def expand_directives(root, directives): globs = collections.OrderedDict() # build a table of glob --> owners for directive in directives: for glob in directive.globs or ['**']: if glob not in globs: globs[glob] = [] if directive.who not in globs[glob]: globs[glob].append(directive.who) # expand owners for intersecting globs sorted_globs = sorted(globs.keys(), key=lambda g: len(git_glob(full_dir(root, g))), reverse=True) out_globs = collections.OrderedDict() for glob_add in sorted_globs: who_add = globs[glob_add] pre_items = [i for i in out_globs.items()] out_globs[glob_add] = who_add.copy() for glob_have, who_have in pre_items: files_add = git_glob(full_dir(root, glob_add)) files_have = git_glob(full_dir(root, glob_have)) intersect = files_have.intersection(files_add) if intersect: for f in sorted(files_add): # sorted to ensure merge stability if f not in intersect: out_globs[os.path.relpath(f, start=root)] = who_add for who in who_have: if who not in out_globs[glob_add]: out_globs[glob_add].append(who) return out_globs def add_parent_to_globs(parent, globs, globs_dir): if not parent: return for owners in owners_data: if owners.dir == parent: owners_globs = expand_directives(owners.dir, owners.directives) for oglob, oglob_who in owners_globs.items(): for gglob, gglob_who in globs.items(): files_parent = git_glob(full_dir(owners.dir, oglob)) files_child = git_glob(full_dir(globs_dir, gglob)) intersect = files_parent.intersection(files_child) gglob_who_orig = gglob_who.copy() if intersect: for f in sorted(files_child): # sorted to ensure merge stability if f not in intersect: who = gglob_who_orig.copy() globs[os.path.relpath(f, start=globs_dir)] = who for who in oglob_who: if who not in gglob_who: gglob_who.append(who) add_parent_to_globs(owners.parent, globs, globs_dir) return assert(False) todo = owners_data.copy() done = set() with open(args.out, 'w') as out: out.write('# Auto-generated by the tools/mkowners/mkowners.py tool\n') out.write('# Uses OWNERS files in different modules throughout the\n') out.write('# repository as the source of truth for module ownership.\n') written_globs = [] while todo: head, *todo = todo if head.parent and not head.parent in done: todo.append(head) continue globs = expand_directives(head.dir, head.directives) add_parent_to_globs(head.parent, globs, head.dir) for glob, owners in globs.items(): skip = False for glob1, owners1, dir1 in reversed(written_globs): files = git_glob(full_dir(head.dir, glob)) files1 = git_glob(full_dir(dir1, glob1)) intersect = files.intersection(files1) if files == intersect: if sorted(owners) == sorted(owners1): skip = True # nothing new in this rule break elif intersect: # continuing would cause a semantic change since some files are # affected differently by this rule and CODEOWNERS is order dependent break if not skip: out.write('/%s %s\n' % ( full_dir(head.dir, glob), ' '.join(owners))) written_globs.append((glob, owners, head.dir)) done.add(head.dir)
third_party/boto/manage/test_manage.py
stdft112/depot_tools
2,151
12747291
from boto.manage.server import Server from boto.manage.volume import Volume import time print '--> Creating New Volume' volume = Volume.create() print volume print '--> Creating New Server' server_list = Server.create() server = server_list[0] print server print '----> Waiting for Server to start up' while server.status != 'running': print '*' time.sleep(10) print '----> Server is running' print '--> Run "df -k" on Server' status = server.run('df -k') print status[1] print '--> Now run volume.make_ready to make the volume ready to use on server' volume.make_ready(server) print '--> Run "df -k" on Server' status = server.run('df -k') print status[1] print '--> Do an "ls -al" on the new filesystem' status = server.run('ls -al %s' % volume.mount_point) print status[1]
tests/test_snapshot.py
kklein/icontract
244
12747300
# pylint: disable=missing-docstring # pylint: disable=invalid-name # pylint: disable=unnecessary-lambda # pylint: disable=unused-argument # pylint: disable=no-self-use import textwrap import unittest from typing import List, Optional # pylint: disable=unused-import import icontract import tests.error class TestOK(unittest.TestCase): def test_without_argument(self) -> None: z = [1] @icontract.snapshot(lambda: z[:], name="z") @icontract.ensure(lambda OLD, val: OLD.z + [val] == z) def some_func(val: int) -> None: z.append(val) some_func(2) def test_with_name_same_for_single_argument(self) -> None: @icontract.snapshot(lambda lst: lst[:]) @icontract.ensure(lambda OLD, val, lst: OLD.lst + [val] == lst) def some_func(lst: List[int], val: int) -> None: lst.append(val) # Expected to pass some_func([1], 2) def test_with_custom_name_for_single_argument(self) -> None: @icontract.snapshot(lambda lst: len(lst), name="len_lst") @icontract.ensure(lambda OLD, val, lst: OLD.len_lst + 1 == len(lst)) def some_func(lst: List[int], val: int) -> None: lst.append(val) # Expected to pass some_func([1], 2) def test_with_multiple_arguments(self) -> None: @icontract.snapshot(lambda lst_a, lst_b: set(lst_a).union(lst_b), name="union") @icontract.ensure(lambda OLD, lst_a, lst_b: set(lst_a).union(lst_b) == OLD.union) def some_func(lst_a: List[int], lst_b: List[int]) -> None: pass # Expected to pass some_func(lst_a=[1, 2], lst_b=[3, 4]) class TestViolation(unittest.TestCase): def test_with_name_same_as_argument(self) -> None: @icontract.snapshot(lambda lst: lst[:]) @icontract.ensure(lambda OLD, val, lst: OLD.lst + [val] == lst) def some_func(lst: List[int], val: int) -> None: lst.append(val) lst.append(1984) violation_error = None # type: Optional[icontract.ViolationError] try: some_func([1], 2) except icontract.ViolationError as err: violation_error = err self.assertIsNotNone(violation_error) self.assertEqual( textwrap.dedent("""\ OLD.lst + [val] == lst: OLD was a bunch of OLD values OLD.lst was [1] lst was [1, 2, 1984] result was None val was 2"""), tests.error.wo_mandatory_location(str(violation_error))) def test_with_custom_name(self) -> None: @icontract.snapshot(lambda lst: len(lst), name="len_lst") @icontract.ensure(lambda OLD, val, lst: OLD.len_lst + 1 == len(lst)) def some_func(lst: List[int], val: int) -> None: lst.append(val) lst.append(1984) violation_error = None # type: Optional[icontract.ViolationError] try: some_func([1], 2) except icontract.ViolationError as err: violation_error = err self.assertIsNotNone(violation_error) self.assertEqual( textwrap.dedent("""\ OLD.len_lst + 1 == len(lst): OLD was a bunch of OLD values OLD.len_lst was 1 len(lst) was 3 lst was [1, 2, 1984] result was None val was 2"""), tests.error.wo_mandatory_location(str(violation_error))) def test_with_multiple_arguments(self) -> None: @icontract.snapshot(lambda lst_a, lst_b: set(lst_a).union(lst_b), name="union") @icontract.ensure(lambda OLD, lst_a, lst_b: set(lst_a).union(lst_b) == OLD.union) def some_func(lst_a: List[int], lst_b: List[int]) -> None: lst_a.append(1984) # bug violation_error = None # type: Optional[icontract.ViolationError] try: some_func(lst_a=[1, 2], lst_b=[3, 4]) except icontract.ViolationError as err: violation_error = err self.assertIsNotNone(violation_error) self.assertEqual( textwrap.dedent('''\ set(lst_a).union(lst_b) == OLD.union: OLD was a bunch of OLD values OLD.union was {1, 2, 3, 4} lst_a was [1, 2, 1984] lst_b was [3, 4] result was None set(lst_a) was {1, 2, 1984} set(lst_a).union(lst_b) was {1, 2, 3, 4, 1984}'''), tests.error.wo_mandatory_location(str(violation_error))) class TestInvalid(unittest.TestCase): def test_missing_snapshot_but_old_in_postcondition(self) -> None: @icontract.ensure(lambda OLD, val, lst: OLD.len_lst + 1 == len(lst)) def some_func(lst: List[int], val: int) -> None: lst.append(val) type_error = None # type: Optional[TypeError] try: some_func([1], 2) except TypeError as err: type_error = err self.assertIsNotNone(type_error) self.assertEqual("The argument(s) of the contract condition have not been set: ['OLD']. " "Does the original function define them? Did you supply them in the call? " "Did you decorate the function with a snapshot to capture OLD values?", tests.error.wo_mandatory_location(str(type_error))) def test_conflicting_snapshots_with_argument_name(self) -> None: value_error = None # type: Optional[ValueError] try: # pylint: disable=unused-variable @icontract.snapshot(lambda lst: lst[:]) @icontract.snapshot(lambda lst: lst[:]) @icontract.ensure(lambda OLD, val, lst: len(OLD.lst) + 1 == len(lst)) def some_func(lst: List[int], val: int) -> None: lst.append(val) except ValueError as err: value_error = err self.assertIsNotNone(value_error) self.assertEqual("There are conflicting snapshots with the name: 'lst'", str(value_error)) def test_conflicting_snapshots_with_custom_name(self) -> None: value_error = None # type: Optional[ValueError] try: # pylint: disable=unused-variable @icontract.snapshot(lambda lst: len(lst), name='len_lst') @icontract.snapshot(lambda lst: len(lst), name='len_lst') @icontract.ensure(lambda OLD, val, lst: OLD.len_lst + 1 == len(lst)) def some_func(lst: List[int], val: int) -> None: lst.append(val) except ValueError as err: value_error = err self.assertIsNotNone(value_error) self.assertEqual("There are conflicting snapshots with the name: 'len_lst'", str(value_error)) def test_with_invalid_argument(self) -> None: # lst versus a_list type_error = None # type: Optional[TypeError] try: @icontract.snapshot(lambda lst: len(lst), name='len_lst') @icontract.ensure(lambda OLD, val, a_list: OLD.len_lst + 1 == len(a_list)) def some_func(a_list: List[int], val: int) -> None: a_list.append(val) some_func([1], 2) except TypeError as err: type_error = err self.assertIsNotNone(type_error) self.assertEqual("The argument(s) of the snapshot have not been set: ['lst']. " "Does the original function define them? Did you supply them in the call?", tests.error.wo_mandatory_location(str(type_error))) def test_with_no_arguments_and_no_name(self) -> None: z = [1] value_error = None # type: Optional[ValueError] try: # pylint: disable=unused-variable @icontract.snapshot(lambda: z[:]) @icontract.ensure(lambda OLD, val: OLD.z + [val] == z) def some_func(val: int) -> None: z.append(val) except ValueError as err: value_error = err self.assertIsNotNone(value_error) self.assertEqual("You must name a snapshot if no argument was given in the capture function.", str(value_error)) def test_with_multiple_arguments_and_no_name(self) -> None: value_error = None # type: Optional[ValueError] try: # pylint: disable=unused-variable @icontract.snapshot(lambda lst_a, lst_b: set(lst_a).union(lst_b)) @icontract.ensure(lambda OLD, lst_a, lst_b: set(lst_a).union(lst_b) == OLD.union) def some_func(lst_a: List[int], lst_b: List[int]) -> None: pass except ValueError as err: value_error = err self.assertIsNotNone(value_error) self.assertEqual("You must name a snapshot if multiple arguments were given in the capture function.", str(value_error)) def test_with_no_postcondition(self) -> None: value_error = None # type: Optional[ValueError] try: # pylint: disable=unused-variable @icontract.snapshot(lambda lst: lst[:]) def some_func(lst: List[int]) -> None: return except ValueError as err: value_error = err self.assertIsNotNone(value_error) self.assertEqual("You are decorating a function with a snapshot, " "but no postcondition was defined on the function before.", str(value_error)) def test_missing_old_attribute(self) -> None: @icontract.snapshot(lambda lst: lst[:]) @icontract.ensure(lambda OLD, lst: OLD.len_list == lst) # We miss len_lst in OLD here! def some_func(lst: List[int]) -> None: return attribute_error = None # type: Optional[AttributeError] try: some_func(lst=[1, 2, 3]) except AttributeError as error: attribute_error = error assert attribute_error is not None self.assertEqual("The snapshot with the name 'len_list' is not available in the OLD of a postcondition. " "Have you decorated the function with a corresponding snapshot decorator?", str(attribute_error)) if __name__ == '__main__': unittest.main()
polylearn/kernels.py
JDechery/polylearn
237
12747310
# Author: <NAME> <<EMAIL>> # License: Simplified BSD from sklearn.metrics.pairwise import polynomial_kernel from sklearn.utils.extmath import safe_sparse_dot from scipy.sparse import issparse import numpy as np def safe_power(X, degree=2): """Element-wise power supporting both sparse and dense data. Parameters ---------- X : ndarray or sparse The array whose entries to raise to the power. degree : int, default: 2 The power to which to raise the elements. Returns ------- X_ret : ndarray or sparse Same shape as X, but (x_ret)_ij = (x)_ij ^ degree """ if issparse(X): if hasattr(X, 'power'): return X.power(degree) else: # old scipy X = X.copy() X.data **= degree return X else: return X ** degree def _D(X, P, degree=2): """The "replacement" part of the homogeneous polynomial kernel. D[i, j] = sum_k [(X_ik * P_jk) ** degree] """ return safe_sparse_dot(safe_power(X, degree), P.T ** degree) def homogeneous_kernel(X, P, degree=2): """Convenience alias for homogeneous polynomial kernel between X and P:: K_P(x, p) = <x, p> ^ degree Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) degree : int, default 2 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ return polynomial_kernel(X, P, degree=degree, gamma=1, coef0=0) def anova_kernel(X, P, degree=2): """ANOVA kernel between X and P:: K_A(x, p) = sum_i1>i2>...>id x_i1 p_i1 x_i2 p_i2 ... x_id p_id See <NAME> and <NAME>, Kernel Methods for Pattern Analysis section 9.2. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) degree : int, default 2 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ if degree == 2: K = homogeneous_kernel(X, P, degree=2) K -= _D(X, P, degree=2) K /= 2 elif degree == 3: K = homogeneous_kernel(X, P, degree=3) K -= 3 * _D(X, P, degree=2) * _D(X, P, degree=1) K += 2 * _D(X, P, degree=3) K /= 6 else: raise NotImplementedError("ANOVA kernel for degree >= 4 not yet " "implemented efficiently.") return K def _poly_predict(X, P, lams, kernel, degree=2): if kernel == "anova": K = anova_kernel(X, P, degree) elif kernel == "poly": K = homogeneous_kernel(X, P, degree) else: raise ValueError(("Unsuppported kernel: {}. Use one " "of {{'anova'|'poly'}}").format(kernel)) return np.dot(K, lams)
python/ql/test/library-tests/examples/custom-sanitizer/test.py
vadi2/codeql
4,036
12747315
<filename>python/ql/test/library-tests/examples/custom-sanitizer/test.py def random_choice(): return bool(GLOBAL_UNKOWN_VAR) def is_safe(arg): return UNKNOWN_FUNC(arg) def true_func(): return True def test_basic(): s = TAINTED_STRING if is_safe(s): ensure_not_tainted(s) else: ensure_tainted(s) if not is_safe(s): ensure_tainted(s) else: ensure_not_tainted(s) def test_or(): s = TAINTED_STRING # x or y if is_safe(s) or random_choice(): ensure_tainted(s) # might be tainted else: ensure_tainted(s) # must be tainted # not (x or y) if not(is_safe(s) or random_choice()): ensure_tainted(s) # must be tainted else: ensure_tainted(s) # might be tainted # not (x or y) == not x and not y [de Morgan's laws] if not is_safe(s) and not random_choice(): ensure_tainted(s) # must be tainted else: ensure_tainted(s) # might be tainted def test_and(): s = TAINTED_STRING # x and y if is_safe(s) and random_choice(): ensure_not_tainted(s) # must not be tainted else: ensure_tainted(s) # might be tainted # not (x and y) if not(is_safe(s) and random_choice()): ensure_tainted(s) # might be tainted else: ensure_not_tainted(s) # not (x and y) == not x or not y [de Morgan's laws] if not is_safe(s) or not random_choice(): ensure_tainted(s) # might be tainted else: ensure_not_tainted(s) def test_tricky(): s = TAINTED_STRING x = is_safe(s) if x: ensure_not_tainted(s) # FP s_ = s if is_safe(s): ensure_not_tainted(s_) # FP def test_nesting_not(): s = TAINTED_STRING if not(not(is_safe(s))): ensure_not_tainted(s) else: ensure_tainted(s) if not(not(not(is_safe(s)))): ensure_tainted(s) else: ensure_not_tainted(s) # Adding `and True` makes the sanitizer trigger when it would otherwise not. See output in # SanitizedEdges.expected and compare with `test_nesting_not` and `test_basic` def test_nesting_not_with_and_true(): s = TAINTED_STRING if not(is_safe(s) and True): ensure_tainted(s) else: ensure_not_tainted(s) if not(not(is_safe(s) and True)): ensure_not_tainted(s) else: ensure_tainted(s) if not(not(not(is_safe(s) and True))): ensure_tainted(s) else: ensure_not_tainted(s)
pydis_site/apps/resources/apps.py
Robin5605/site
700
12747322
<reponame>Robin5605/site from django.apps import AppConfig class ResourcesConfig(AppConfig): """AppConfig instance for Resources app.""" name = 'resources'
spikeinterface/core/unitsaggregationsorting.py
khl02007/spikeinterface
116
12747324
<filename>spikeinterface/core/unitsaggregationsorting.py from typing import List, Union import numpy as np from .basesorting import BaseSorting, BaseSortingSegment class UnitsAggregationSorting(BaseSorting): """ Class that handles aggregating units from different sortings, e.g. from different channel groups. Do not use this class directly but use `si.aggregate_units(...)` """ def __init__(self, sorting_list, renamed_unit_ids=None): unit_map = {} num_all_units = sum([sort.get_num_units() for sort in sorting_list]) if renamed_unit_ids is not None: assert len(np.unique(renamed_unit_ids)) == num_all_units, "'renamed_unit_ids' doesn't have the right size" \ "or has duplicates!" unit_ids = list(renamed_unit_ids) else: unit_ids = list(np.arange(num_all_units)) # unit map maps unit ids that are used to get spike trains u_id = 0 for s_i, sorting in enumerate(sorting_list): single_unit_ids = sorting.get_unit_ids() for unit_id in single_unit_ids: unit_map[unit_ids[u_id]] = {'sorting_id': s_i, 'unit_id': unit_id} u_id += 1 sampling_frequency = sorting_list[0].get_sampling_frequency() num_segments = sorting_list[0].get_num_segments() ok1 = all(sampling_frequency == sort.get_sampling_frequency() for sort in sorting_list) ok2 = all(num_segments == sort.get_num_segments() for sort in sorting_list) if not (ok1 and ok2): raise ValueError("Sortings don't have the same sampling_frequency/num_segments") BaseSorting.__init__(self, sampling_frequency, unit_ids) property_keys = sorting_list[0].get_property_keys() property_dict = {} for prop_name in property_keys: if all([prop_name in sort.get_property_keys() for sort in sorting_list]): for i_s, sort in enumerate(sorting_list): prop_value = sort.get_property(prop_name) if i_s == 0: property_dict[prop_name] = prop_value else: try: property_dict[prop_name] = np.concatenate((property_dict[prop_name], sort.get_property(prop_name))) except Exception as e: print(f"Skipping property '{prop_name}' for shape inconsistency") del property_dict[prop_name] break for prop_name, prop_values in property_dict.items(): self.set_property(key=prop_name, values=prop_values) # add segments for i_seg in range(num_segments): parent_segments = [sort._sorting_segments[i_seg] for sort in sorting_list] sub_segment = UnitsAggregationSortingSegment(unit_map, parent_segments) self.add_sorting_segment(sub_segment) self._sortings = sorting_list self._kwargs = {'sorting_list': [sort.to_dict() for sort in sorting_list], 'renamed_unit_ids': renamed_unit_ids} @property def sortings(self): return self._sortings class UnitsAggregationSortingSegment(BaseSortingSegment): def __init__(self, unit_map, parent_segments): BaseSortingSegment.__init__(self) self._unit_map = unit_map self._parent_segments = parent_segments def get_unit_spike_train(self, unit_id, start_frame: Union[int, None] = None, end_frame: Union[int, None] = None, ) -> np.ndarray: sorting_id = self._unit_map[unit_id]['sorting_id'] unit_id_sorting = self._unit_map[unit_id]['unit_id'] times = self._parent_segments[sorting_id].get_unit_spike_train(unit_id_sorting, start_frame, end_frame) return times def aggregate_units(sorting_list, renamed_unit_ids=None): """ Aggregates units of multiple sortings into a single sorting object Parameters ---------- sorting_list: list List of BaseSorting objects to aggregate renamed_unit_ids: array-like If given, unit ids are renamed as provided. If None, unit ids are sequential integers. Returns ------- aggregate_sorting: UnitsAggregationSorting The aggregated sorting object """ return UnitsAggregationSorting(sorting_list, renamed_unit_ids)
worldengine/generation.py
ctittel/worldengine
946
12747325
import numpy from noise import snoise2 from worldengine.model.world import Step from worldengine.simulations.basic import find_threshold_f from worldengine.simulations.hydrology import WatermapSimulation from worldengine.simulations.irrigation import IrrigationSimulation from worldengine.simulations.humidity import HumiditySimulation from worldengine.simulations.temperature import TemperatureSimulation from worldengine.simulations.permeability import PermeabilitySimulation from worldengine.simulations.erosion import ErosionSimulation from worldengine.simulations.precipitation import PrecipitationSimulation from worldengine.simulations.biome import BiomeSimulation from worldengine.simulations.icecap import IcecapSimulation from worldengine.common import anti_alias, get_verbose # ------------------ # Initial generation # ------------------ def center_land(world): """Translate the map horizontally and vertically to put as much ocean as possible at the borders. It operates on elevation and plates map""" y_sums = world.layers['elevation'].data.sum(1) # 1 == sum along x-axis y_with_min_sum = y_sums.argmin() if get_verbose(): print("geo.center_land: height complete") x_sums = world.layers['elevation'].data.sum(0) # 0 == sum along y-axis x_with_min_sum = x_sums.argmin() if get_verbose(): print("geo.center_land: width complete") latshift = 0 world.layers['elevation'].data = numpy.roll(numpy.roll(world.layers['elevation'].data, -y_with_min_sum + latshift, axis=0), - x_with_min_sum, axis=1) world.layers['plates'].data = numpy.roll(numpy.roll(world.layers['plates'].data, -y_with_min_sum + latshift, axis=0), - x_with_min_sum, axis=1) if get_verbose(): print("geo.center_land: width complete") def place_oceans_at_map_borders(world): """ Lower the elevation near the border of the map """ ocean_border = int(min(30, max(world.width / 5, world.height / 5))) def place_ocean(x, y, i): world.layers['elevation'].data[y, x] = \ (world.layers['elevation'].data[y, x] * i) / ocean_border for x in range(world.width): for i in range(ocean_border): place_ocean(x, i, i) place_ocean(x, world.height - i - 1, i) for y in range(world.height): for i in range(ocean_border): place_ocean(i, y, i) place_ocean(world.width - i - 1, y, i) def add_noise_to_elevation(world, seed): octaves = 8 freq = 16.0 * octaves for y in range(world.height): for x in range(world.width): n = snoise2(x / freq * 2, y / freq * 2, octaves, base=seed) world.layers['elevation'].data[y, x] += n def fill_ocean(elevation, sea_level):#TODO: Make more use of numpy? height, width = elevation.shape ocean = numpy.zeros(elevation.shape, dtype=bool) to_expand = [] for x in range(width):#handle top and bottom border of the map if elevation[0, x] <= sea_level: to_expand.append((x, 0)) if elevation[height - 1, x] <= sea_level: to_expand.append((x, height - 1)) for y in range(height):#handle left- and rightmost border of the map if elevation[y, 0] <= sea_level: to_expand.append((0, y)) if elevation[y, width - 1] <= sea_level: to_expand.append((width - 1, y)) for t in to_expand: tx, ty = t if not ocean[ty, tx]: ocean[ty, tx] = True for px, py in _around(tx, ty, width, height): if not ocean[py, px] and elevation[py, px] <= sea_level: to_expand.append((px, py)) return ocean def initialize_ocean_and_thresholds(world, ocean_level=1.0): """ Calculate the ocean, the sea depth and the elevation thresholds :param world: a world having elevation but not thresholds :param ocean_level: the elevation representing the ocean level :return: nothing, the world will be changed """ e = world.layers['elevation'].data ocean = fill_ocean(e, ocean_level) hl = find_threshold_f(e, 0.10) # the highest 10% of all (!) land are declared hills ml = find_threshold_f(e, 0.03) # the highest 3% are declared mountains e_th = [('sea', ocean_level), ('plain', hl), ('hill', ml), ('mountain', None)] harmonize_ocean(ocean, e, ocean_level) world.ocean = ocean world.elevation = (e, e_th) world.sea_depth = sea_depth(world, ocean_level) def harmonize_ocean(ocean, elevation, ocean_level): """ The goal of this function is to make the ocean floor less noisy. The underwater erosion should cause the ocean floor to be more uniform """ shallow_sea = ocean_level * 0.85 midpoint = shallow_sea / 2.0 ocean_points = numpy.logical_and(elevation < shallow_sea, ocean) shallow_ocean = numpy.logical_and(elevation < midpoint, ocean_points) elevation[shallow_ocean] = midpoint - ((midpoint - elevation[shallow_ocean]) / 5.0) deep_ocean = numpy.logical_and(elevation > midpoint, ocean_points) elevation[deep_ocean] = midpoint + ((elevation[deep_ocean] - midpoint) / 5.0) # ---- # Misc # ---- def sea_depth(world, sea_level): # a dynamic programming approach to gather how far the next land is # from a given coordinate up to a maximum distance of max_radius # result is 0 for land coordinates and -1 for coordinates further than # max_radius away from land # there might be even faster ways but it does the trick def next_land_dynamic(ocean, max_radius=5): next_land = numpy.full(ocean.shape, -1, int) # non ocean tiles are zero distance away from next land next_land[numpy.logical_not(ocean)]=0 height, width = ocean.shape for dist in range(max_radius): indices = numpy.transpose(numpy.where(next_land==dist)) for y, x in indices: for dy in range(-1, 2): ny = y + dy if 0 <= ny < height: for dx in range(-1, 2): nx = x + dx if 0 <= nx < width: if next_land[ny,nx] == -1: next_land[ny,nx] = dist + 1 return next_land # We want to multiply the raw sea_depth by one of these factors # depending on the distance from the next land # possible TODO: make this a parameter factors = [0.0, 0.3, 0.5, 0.7, 0.9] next_land = next_land_dynamic(world.layers['ocean'].data) sea_depth = sea_level - world.layers['elevation'].data for y in range(world.height): for x in range(world.width): dist_to_next_land = next_land[y,x] if dist_to_next_land > 0: sea_depth[y,x]*=factors[dist_to_next_land-1] sea_depth = anti_alias(sea_depth, 10) min_depth = sea_depth.min() max_depth = sea_depth.max() sea_depth = (sea_depth - min_depth) / (max_depth - min_depth) return sea_depth def _around(x, y, width, height): ps = [] for dx in range(-1, 2): nx = x + dx if 0 <= nx < width: for dy in range(-1, 2): ny = y + dy if 0 <= ny < height and (dx != 0 or dy != 0): ps.append((nx, ny)) return ps def generate_world(w, step): if isinstance(step, str): step = Step.get_by_name(step) if not step.include_precipitations: return w # Prepare sufficient seeds for the different steps of the generation rng = numpy.random.RandomState(w.seed) # create a fresh RNG in case the global RNG is compromised (i.e. has been queried an indefinite amount of times before generate_world() was called) sub_seeds = rng.randint(0, numpy.iinfo(numpy.int32).max, size=100) # choose lowest common denominator (32 bit Windows numpy cannot handle a larger value) seed_dict = { 'PrecipitationSimulation': sub_seeds[ 0], # after 0.19.0 do not ever switch out the seeds here to maximize seed-compatibility 'ErosionSimulation': sub_seeds[ 1], 'WatermapSimulation': sub_seeds[ 2], 'IrrigationSimulation': sub_seeds[ 3], 'TemperatureSimulation': sub_seeds[ 4], 'HumiditySimulation': sub_seeds[ 5], 'PermeabilitySimulation': sub_seeds[ 6], 'BiomeSimulation': sub_seeds[ 7], 'IcecapSimulation': sub_seeds[ 8], '': sub_seeds[99] } TemperatureSimulation().execute(w, seed_dict['TemperatureSimulation']) # Precipitation with thresholds PrecipitationSimulation().execute(w, seed_dict['PrecipitationSimulation']) if not step.include_erosion: return w ErosionSimulation().execute(w, seed_dict['ErosionSimulation']) # seed not currently used if get_verbose(): print("...erosion calculated") WatermapSimulation().execute(w, seed_dict['WatermapSimulation']) # seed not currently used # FIXME: create setters IrrigationSimulation().execute(w, seed_dict['IrrigationSimulation']) # seed not currently used HumiditySimulation().execute(w, seed_dict['HumiditySimulation']) # seed not currently used PermeabilitySimulation().execute(w, seed_dict['PermeabilitySimulation']) cm, biome_cm = BiomeSimulation().execute(w, seed_dict['BiomeSimulation']) # seed not currently used for cl in cm.keys(): count = cm[cl] if get_verbose(): print("%s = %i" % (str(cl), count)) if get_verbose(): print('') # empty line print('Biome obtained:') for cl in biome_cm.keys(): count = biome_cm[cl] if get_verbose(): print(" %30s = %7i" % (str(cl), count)) IcecapSimulation().execute(w, seed_dict['IcecapSimulation']) # makes use of temperature-map return w
components/isceobj/Scene/Track.py
vincentschut/isce2
1,133
12747336
<reponame>vincentschut/isce2<filename>components/isceobj/Scene/Track.py #!/usr/bin/env python3 # #Copyright 2010, by the California Institute of Technology. #ALL RIGHTS RESERVED. #United States Government Sponsorship acknowledged. #Any commercial use must be negotiated with the Office of #Technology Transfer at the California Institute of Technology. # #This software may be subject to U.S. export control laws. By #accepting this software, the user agrees to comply with all applicable #U.S. export laws and regulations. User has the responsibility to obtain #export licenses, or other export authority as may be required before #exporting such information to foreign countries or providing access #to foreign persons. # import isce import sys import os from sys import float_info import logging import datetime from isceobj.Scene.Frame import Frame from isceobj.Orbit.Orbit import Orbit from isceobj.Attitude.Attitude import Attitude from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTU from isceobj.Util.decorators import type_check, logged, pickled import isceobj import tempfile @pickled class Track(object): """A class to represent a collection of temporally continuous radar frame objects""" logging_name = "isce.Scene.Track" @logged def __init__(self): # These are attributes representing the starting time and stopping # time of the track # As well as the early and late times (range times) of the track self._startTime = datetime.datetime(year=datetime.MAXYEAR,month=1,day=1) self._stopTime = datetime.datetime(year=datetime.MINYEAR,month=1,day=1) # Hopefully this number is large # enough, Python doesn't appear to have a MAX_FLT variable self._nearRange = float_info.max self._farRange = 0.0 self._frames = [] self._frame = Frame() self._lastFile = '' return None def combineFrames(self, output, frames): attitudeOk = True for frame in frames: self.addFrame(frame) if hasattr(frame,'_attitude'): att = frame.getAttitude() if not att: attitudeOk = False self.createInstrument() self.createTrack(output) self.createOrbit() if attitudeOk: self.createAttitude() return self._frame def createAuxFile(self, fileList, output): import struct from operator import itemgetter import os import array import copy dateIndx = [] cnt = 0 #first sort the files from earlier to latest. use the first element for name in fileList: with open(name,'rb') as fp: date = fp.read(16) day, musec = struct.unpack('<dd',date) dateIndx.append([day,musec,name]) cnt += 1 sortedDate = sorted(dateIndx, key=itemgetter(0,1)) #we need to make sure that there are not duplicate points in the orbit since some frames overlap allL = array.array('d') allL1 = array.array('d') name = sortedDate[0][2] size = os.path.getsize(name)//8 with open(name,'rb') as fp1: allL.fromfile(fp1,size) lastDay = allL[-2] lastMusec = allL[-1] for j in range(1, len(sortedDate)): name = sortedDate[j][2] size = os.path.getsize(name)//8 with open(name,'rb') as fp1: allL1.fromfile(fp1, size) indxFound = None avgPRI = 0 cnt = 0 for i in range(len(allL1)//2): if i > 0: avgPRI += allL1[2*i+1] - allL1[2*i-1] cnt += 1 if allL1[2*i] >= lastDay and allL1[2*i+1] > lastMusec: avgPRI //= (cnt-1) if (allL1[2*i+1] - lastMusec) > avgPRI/2:# make sure that the distance in pulse is atleast 1/2 PRI indxFound = 2*i else:#if not take the next indxFound = 2*(i+1) pass break if not indxFound is None: allL.extend(allL1[indxFound:]) lastDay = allL[-2] lastMusec = allL[-1] pass pass with open(output,'wb') as fp: allL.tofile(fp) return # Add an additional Frame object to the track @type_check(Frame) def addFrame(self, frame): self.logger.info("Adding Frame to Track") self._updateTrackTimes(frame) self._frames.append(frame) return None def createOrbit(self): orbitAll = Orbit() for i in range(len(self._frames)): orbit = self._frames[i].getOrbit() #remember that everything is by reference, so the changes applied to orbitAll will be made to the Orbit #object in self.frame for sv in orbit._stateVectors: orbitAll.addStateVector(sv) # sort the orbit state vecotrs according to time orbitAll._stateVectors.sort(key=lambda sv: sv.time) self.removeDuplicateVectors(orbitAll._stateVectors) self._frame.setOrbit(orbitAll) def removeDuplicateVectors(self,stateVectors): i1 = 0 #remove duplicate state vectors while True: if i1 >= len(stateVectors) - 1: break if stateVectors[i1].time == stateVectors[i1+1].time: stateVectors.pop(i1+1) #since is sorted by time if is not equal we can pass to the next else: i1 += 1 def createAttitude(self): attitudeAll = Attitude() for i in range(len(self._frames)): attitude = self._frames[i].getAttitude() #remember that everything is by reference, so the changes applied to attitudeAll will be made to the Attitude object in self.frame for sv in attitude._stateVectors: attitudeAll.addStateVector(sv) # sort the attitude state vecotrs according to time attitudeAll._stateVectors.sort(key=lambda sv: sv.time) self.removeDuplicateVectors(attitudeAll._stateVectors) self._frame.setAttitude(attitudeAll) def createInstrument(self): # the platform is already part of the instrument ins = self._frames[0].getInstrument() self._frame.setInstrument(ins) # sometime the startLine computed below from the sensingStart is not #precise and the image are missaligned. #for each pair do an exact mach by comparing the lines around lineStart #file1,2 input files, startLine1 is the estimated start line in the first file #line1 = last line used in the first file #width = width of the files #frameNum1,2 number of the frames in the sequence of frames to stitch #returns a more accurate line1 def findOverlapLine(self, file1, file2, line1,width,frameNum1,frameNum2): import numpy as np import array fin2 = open(file2,'rb') arr2 = array.array('b') #read full line at the beginning of second file arr2.fromfile(fin2,width) buf2 = np.array(arr2,dtype = np.int8) numTries = 30 # start around line1 and try numTries around line1 # see searchlist to see which lines it searches searchNumLines = 2 #make a sliding window that search for the searchSize samples inside buf2 searchSize = 500 max = 0 indx = None fin1 = open(file1,'rb') for i in range(numTries): # example line1 = 0,searchNumLine = 2 and i = 0 search = [-2,-1,0,1], i = 1, serach = [-4,-3,2,3] search = list(range(line1 - (i+1)*searchNumLines,line1 - i*searchNumLines)) search.extend(list(range(line1 + i*searchNumLines,line1 + (i+1)*searchNumLines))) for k in search: arr1 = array.array('b') #seek to the line k and read +- searchSize/2 samples from the middle of the line fin1.seek(k*width + (width - searchSize)//2,0) arr1.fromfile(fin1,searchSize) buf1 = np.array(arr1,dtype = np.int8) found = False for i in np.arange(width-searchSize): lenSame =len(np.nonzero(buf1 == buf2[i:i+searchSize])[0]) if lenSame > max: max = lenSame indx = k if(lenSame == searchSize): found = True break if(found): break if(found): break if not found: self.logger.warning("Cannot find perfect overlap between frame %d and frame %d. Using acquisition time to find overlap position."%(frameNum1,frameNum2)) fin1.close() fin2.close() print('Match found: ', indx) return indx def reAdjustStartLine(self, sortedList, width): """ Computed the adjusted starting lines based on matching in overlapping regions """ from operator import itemgetter import os #first one always starts from zero startLine = [sortedList[0][0]] outputs = [sortedList[0][1]] for i in range(1,len(sortedList)): # endLine of the first file. we use all the lines of the first file up to endLine endLine = sortedList[i][0] - sortedList[i-1][0] indx = self.findOverlapLine(sortedList[i-1][1],sortedList[i][1],endLine,width,i-1,i) #if indx is not None than indx is the new start line #otherwise we use startLine computed from acquisition time if (indx is not None) and (indx + sortedList[i-1][0] != sortedList[i][0]): startLine.append(indx + sortedList[i-1][0]) outputs.append(sortedList[i][1]) self.logger.info("Changing starting line for frame %d from %d to %d"%(i,endLine,indx)) else: startLine.append(sortedList[i][0]) outputs.append(sortedList[i][1]) return startLine,outputs # Create the actual Track data by concatenating data from # all of the Frames objects together def createTrack(self,output): import os from operator import itemgetter from isceobj import Constants as CN from ctypes import cdll, c_char_p, c_int, c_ubyte,byref lib = cdll.LoadLibrary(os.path.dirname(__file__)+'/concatenate.so') # Perhaps we should check to see if Xmin is 0, if it is not, strip off the header self.logger.info("Adjusting Sampling Window Start Times for all Frames") # Iterate over each frame object, and calculate the number of samples with which to pad it on the left and right outputs = [] totalWidth = 0 auxList = [] for frame in self._frames: # Calculate the amount of padding thisNearRange = frame.getStartingRange() thisFarRange = frame.getFarRange() left_pad = int(round( (thisNearRange - self._nearRange)* frame.getInstrument().getRangeSamplingRate()/(CN.SPEED_OF_LIGHT/2.0)))*2 right_pad = int(round((self._farRange - thisFarRange)*frame.getInstrument().getRangeSamplingRate()/(CN.SPEED_OF_LIGHT/2.0)))*2 width = frame.getImage().getXmax() if width - int(width) != 0: raise ValueError("frame Xmax is not an integer") else: width = int(width) input = frame.getImage().getFilename() # tempOutput = os.path.basename(os.tmpnam()) # Some temporary filename with tempfile.NamedTemporaryFile(dir='.') as f: tempOutput = f.name pad_value = int(frame.getInstrument().getInPhaseValue()) if totalWidth < left_pad + width + right_pad: totalWidth = left_pad + width + right_pad # Resample this frame with swst_resample input_c = c_char_p(bytes(input,'utf-8')) output_c = c_char_p(bytes(tempOutput,'utf-8')) width_c = c_int(width) left_pad_c = c_int(left_pad) right_pad_c = c_int(right_pad) pad_value_c = c_ubyte(pad_value) lib.swst_resample(input_c,output_c,byref(width_c),byref(left_pad_c),byref(right_pad_c),byref(pad_value_c)) outputs.append(tempOutput) auxList.append(frame.auxFile) #this step construct the aux file withe the pulsetime info for the all set of frames self.createAuxFile(auxList,output + '.aux') # This assumes that all of the frames to be concatenated are sampled at the same PRI prf = self._frames[0].getInstrument().getPulseRepetitionFrequency() # Calculate the starting output line of each scene i = 0 lineSort = [] # the listSort has 2 elements: a line start number which is the position of that specific frame # computed from acquisition time and the corresponding file name for frame in self._frames: startLine = int(round(DTU.timeDeltaToSeconds(frame.getSensingStart()-self._startTime)*prf)) lineSort.append([startLine,outputs[i]]) i += 1 sortedList = sorted(lineSort, key=itemgetter(0)) # sort by line number i.e. acquisition time startLines, outputs = self.reAdjustStartLine(sortedList,totalWidth) self.logger.info("Concatenating Frames along Track") # this is a hack since the length of the file could be actually different from the one computed using start and stop time. it only matters the last frame added import os fileSize = os.path.getsize(outputs[-1]) numLines = fileSize//totalWidth + startLines[-1] totalLines_c = c_int(numLines) # Next, call frame_concatenate width_c = c_int(totalWidth) # Width of each frame (with the padding added in swst_resample) numberOfFrames_c = c_int(len(self._frames)) inputs_c = (c_char_p * len(outputs))() # These are the inputs to frame_concatenate, but the outputs from swst_resample for kk in range(len(outputs)): inputs_c[kk] = bytes(outputs[kk],'utf-8') output_c = c_char_p(bytes(output,'utf-8')) startLines_c = (c_int * len(startLines))() startLines_c[:] = startLines lib.frame_concatenate(output_c,byref(width_c),byref(totalLines_c),byref(numberOfFrames_c),inputs_c,startLines_c) # Clean up the temporary output files from swst_resample for file in outputs: os.unlink(file) orbitNum = self._frames[0].getOrbitNumber() first_line_utc = self._startTime last_line_utc = self._stopTime centerTime = DTU.timeDeltaToSeconds(last_line_utc-first_line_utc)/2.0 center_line_utc = first_line_utc + datetime.timedelta(microseconds=int(centerTime*1e6)) procFac = self._frames[0].getProcessingFacility() procSys = self._frames[0].getProcessingSystem() procSoft = self._frames[0].getProcessingSoftwareVersion() pol = self._frames[0].getPolarization() xmin = self._frames[0].getImage().getXmin() self._frame.setOrbitNumber(orbitNum) self._frame.setSensingStart(first_line_utc) self._frame.setSensingMid(center_line_utc) self._frame.setSensingStop(last_line_utc) self._frame.setStartingRange(self._nearRange) self._frame.setFarRange(self._farRange) self._frame.setProcessingFacility(procFac) self._frame.setProcessingSystem(procSys) self._frame.setProcessingSoftwareVersion(procSoft) self._frame.setPolarization(pol) self._frame.setNumberOfLines(numLines) self._frame.setNumberOfSamples(width) # add image to frame rawImage = isceobj.createRawImage() rawImage.setByteOrder('l') rawImage.setFilename(output) rawImage.setAccessMode('r') rawImage.setWidth(totalWidth) rawImage.setXmax(totalWidth) rawImage.setXmin(xmin) self._frame.setImage(rawImage) # Extract the early, late, start and stop times from a Frame object # And use this information to update def _updateTrackTimes(self,frame): if (frame.getSensingStart() < self._startTime): self._startTime = frame.getSensingStart() if (frame.getSensingStop() > self._stopTime): self._stopTime = frame.getSensingStop() if (frame.getStartingRange() < self._nearRange): self._nearRange = frame.getStartingRange() if (frame.getFarRange() > self._farRange): self._farRange = frame.getFarRange() pass pass pass def main(): tr = Track() file1 = sys.argv[1] file2 = sys.argv[2] line1 = 17731 width = 21100 indx = tr.findOverlapLine(file1, file2, line1,width,0,1) if __name__ == '__main__': sys.exit(main())
ShuffleNetV2.ExLarge/network.py
PeterouZh/ShuffleNet-Series
1,382
12747360
<reponame>PeterouZh/ShuffleNet-Series import torch import torch.nn as nn class Conv_BN_ReLU(nn.Module): def __init__(self, in_channel, out_channel, k_size, stride=1, padding=0, groups=1, has_bn=True, has_relu=True, gaussian_init=False): super(Conv_BN_ReLU, self).__init__() self.conv = nn.Conv2d(in_channel, out_channel, kernel_size=k_size, stride=stride, padding=padding, groups=groups, bias=False) if gaussian_init: nn.init.normal_(self.conv.weight.data, 0, 0.01) if has_bn: self.bn = nn.BatchNorm2d(out_channel) self.has_bn = has_bn self.has_relu = has_relu if has_relu: self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) if self.has_bn: x = self.bn(x) if self.has_relu: x = self.relu(x) return x class FC(nn.Module): def __init__(self, in_channels, out_channels): super(FC, self).__init__() self.fc = nn.Linear(in_channels, out_channels) nn.init.normal_(self.fc.weight.data, 0, 0.01) def forward(self, x): return self.fc(x) class ExtraLabelPredict(nn.Module): def __init__(self, in_channels, out_channels, num_classes=1000): super(ExtraLabelPredict, self).__init__() self.num_classes = num_classes self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv = nn.Sequential( Conv_BN_ReLU(in_channels, out_channels, 1, 1, 0), Conv_BN_ReLU(out_channels, out_channels, 3, 1, 1) ) self.globalpool = nn.AdaptiveAvgPool2d(output_size=1) self.fc = nn.Linear(out_channels, num_classes) def forward(self, inputs): inputs = self.maxpool(inputs) inputs = self.conv(inputs) inputs = self.globalpool(inputs) inputs = inputs.view(inputs.size(0), -1) inputs = self.fc(inputs) return inputs class ShuffleV2Block(nn.Module): def __init__(self, in_channels, out_channels, mid_channels, stride, groups, has_proj=False, has_se=False): super(ShuffleV2Block, self).__init__() self.stride = stride assert stride in [1, 2] self.has_proj = has_proj self.has_se = has_se self.relu = nn.ReLU(inplace=True) if has_proj: self.proj = Conv_BN_ReLU(in_channels, out_channels - mid_channels, k_size=3, stride=stride, padding=1, has_bn=True, has_relu=True) self.branch_main = nn.Sequential( Conv_BN_ReLU(in_channels, out_channels, k_size=1, stride=1, padding=0, has_bn=True, has_relu=True), Conv_BN_ReLU(out_channels, out_channels, k_size=3, stride=stride, padding=1, groups=groups, has_bn=True, has_relu=True), Conv_BN_ReLU(out_channels, out_channels, k_size=3, stride=1, padding=1, groups=out_channels, has_bn=True, has_relu=False), Conv_BN_ReLU(out_channels, mid_channels, k_size=1, stride=1, padding=0, has_bn=True, has_relu=False), ) if has_se: self.se_globalpool = nn.AdaptiveAvgPool2d(output_size=1) self.se_fc1 = FC(mid_channels, mid_channels // 4) self.se_fc2 = FC(mid_channels // 4, mid_channels) se_block = [ self.se_fc1, nn.ReLU(inplace=True), self.se_fc2, nn.Sigmoid(), ] self.se_block = nn.Sequential(*se_block) def forward(self, old_x): if self.has_proj: proj, x = old_x, old_x else: proj, x = self.channel_shuffle(old_x) x_proj = x if self.has_proj: proj = self.proj(proj) x = self.branch_main(x) if self.has_se: se_scale = self.se_globalpool(x).view(x.size(0), -1) se_scale = self.se_block(se_scale).unsqueeze(-1).unsqueeze(-1) x = x * se_scale if not self.has_proj: x = self.relu(x_proj + x) x = torch.cat((proj, x), dim=1) return x def channel_shuffle(self, x): batchsize, num_channels, height, width = x.data.size() assert (num_channels % 4 == 0) x = x.reshape(batchsize * num_channels // 2, 2, height * width) x = x.permute(1, 0, 2) x = x.reshape(2, -1, num_channels // 2, height, width) return x[0], x[1] class ShuffleNetV2(nn.Module): def __init__(self, n_class=1000, model_size='ExLarge'): super(ShuffleNetV2, self).__init__() self.stage_repeats = [4, 8, 4] self.model_size = model_size if model_size == 'ExLarge': self.pre = [2, 3, 4, 5] self.stage_repeats = [8, 16, 36, 10] self.outputs = [320, 640, 1280, 2560] self.enable_stride = [False, True, True, True] else: raise NotImplementedError self.first_conv = nn.Sequential( Conv_BN_ReLU(3, 64, k_size=3, stride=2, padding=1), Conv_BN_ReLU(64, 128, k_size=3, stride=1, padding=1), Conv_BN_ReLU(128, 256, k_size=3, stride=1, padding=1), ) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.features = nn.ModuleList() input_channel = 256 if model_size == 'ExLarge': for p, s, o, es in zip(self.pre, self.stage_repeats, self.outputs, self.enable_stride): feature = [] for i in range(s): prefix = "{}{}".format(p, str(i)) stride = 1 if not es or i > 0 else 2 has_proj = False if i > 0 else True feature.append(ShuffleV2Block(in_channels=input_channel, out_channels=o, mid_channels=o // 2, stride=stride, groups=16, has_proj=has_proj, has_se=True)) input_channel = o // 2 feature.append(Conv_BN_ReLU(o, o, k_size=1, stride=1, padding=0)) input_channel = o feature = nn.Sequential(*feature) self.features.append(feature) if p == 2: self.predict_56 = ExtraLabelPredict(in_channels=320, out_channels=256) elif p == 3: self.predict_28 = ExtraLabelPredict(in_channels=640, out_channels=512) elif p == 4: self.predict_14 = ExtraLabelPredict(in_channels=1280, out_channels=1024) self.globalpool = nn.AvgPool2d(7) if self.model_size == 'ExLarge': self.dropout = nn.Dropout(0.2) self.fc = FC(2560, n_class) self._initialize_weights() def _initialize_weights(self): for name, m in self.named_modules(): if isinstance(m, nn.Conv2d): if 'first' in name: nn.init.normal_(m.weight, 0, 0.01) else: nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1]) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0.0001) nn.init.constant_(m.running_mean, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0.0001) nn.init.constant_(m.running_mean, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.first_conv(x) x = self.maxpool(x) # 1 * 256 * 56 * 56 x = self.features[0](x) # 1 * 320 * 56 * 56 if self.training: predict_56 = self.predict_56(x) x = self.features[1](x) # 1 * 640 * 28 * 28 if self.training: predict_28 = self.predict_28(x) x = self.features[2](x) # 1 * 1280 * 14 * 14 if self.training: predict_14 = self.predict_14(x) x = self.features[3](x) # 1 * 2560 * 7 * 7 x = self.globalpool(x) if self.model_size == 'ExLarge': x = self.dropout(x) x = x.reshape(x.size(0), -1) x = self.fc(x) if self.training: # Loss is scaled by 1.0, 0.7, 0.5, 0.3 return x, predict_14, predict_28, predict_56 else: return x def create_network(): model = ShuffleNetV2() return model if __name__ == "__main__": create_network()
sdk/python/pulumi_azure/kusto/_inputs.py
henriktao/pulumi-azure
109
12747404
<filename>sdk/python/pulumi_azure/kusto/_inputs.py # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'AttachedDatabaseConfigurationSharingArgs', 'ClusterIdentityArgs', 'ClusterOptimizedAutoScaleArgs', 'ClusterSkuArgs', 'ClusterVirtualNetworkConfigurationArgs', ] @pulumi.input_type class AttachedDatabaseConfigurationSharingArgs: def __init__(__self__, *, external_tables_to_excludes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, external_tables_to_includes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, materialized_views_to_excludes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, materialized_views_to_includes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tables_to_excludes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tables_to_includes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ :param pulumi.Input[Sequence[pulumi.Input[str]]] external_tables_to_excludes: List of external tables exclude from the follower database. :param pulumi.Input[Sequence[pulumi.Input[str]]] external_tables_to_includes: List of external tables to include in the follower database. :param pulumi.Input[Sequence[pulumi.Input[str]]] materialized_views_to_excludes: List of materialized views exclude from the follower database. :param pulumi.Input[Sequence[pulumi.Input[str]]] materialized_views_to_includes: List of materialized views to include in the follower database. :param pulumi.Input[Sequence[pulumi.Input[str]]] tables_to_excludes: List of tables to exclude from the follower database. :param pulumi.Input[Sequence[pulumi.Input[str]]] tables_to_includes: List of tables to include in the follower database. """ if external_tables_to_excludes is not None: pulumi.set(__self__, "external_tables_to_excludes", external_tables_to_excludes) if external_tables_to_includes is not None: pulumi.set(__self__, "external_tables_to_includes", external_tables_to_includes) if materialized_views_to_excludes is not None: pulumi.set(__self__, "materialized_views_to_excludes", materialized_views_to_excludes) if materialized_views_to_includes is not None: pulumi.set(__self__, "materialized_views_to_includes", materialized_views_to_includes) if tables_to_excludes is not None: pulumi.set(__self__, "tables_to_excludes", tables_to_excludes) if tables_to_includes is not None: pulumi.set(__self__, "tables_to_includes", tables_to_includes) @property @pulumi.getter(name="externalTablesToExcludes") def external_tables_to_excludes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of external tables exclude from the follower database. """ return pulumi.get(self, "external_tables_to_excludes") @external_tables_to_excludes.setter def external_tables_to_excludes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "external_tables_to_excludes", value) @property @pulumi.getter(name="externalTablesToIncludes") def external_tables_to_includes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of external tables to include in the follower database. """ return pulumi.get(self, "external_tables_to_includes") @external_tables_to_includes.setter def external_tables_to_includes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "external_tables_to_includes", value) @property @pulumi.getter(name="materializedViewsToExcludes") def materialized_views_to_excludes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of materialized views exclude from the follower database. """ return pulumi.get(self, "materialized_views_to_excludes") @materialized_views_to_excludes.setter def materialized_views_to_excludes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "materialized_views_to_excludes", value) @property @pulumi.getter(name="materializedViewsToIncludes") def materialized_views_to_includes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of materialized views to include in the follower database. """ return pulumi.get(self, "materialized_views_to_includes") @materialized_views_to_includes.setter def materialized_views_to_includes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "materialized_views_to_includes", value) @property @pulumi.getter(name="tablesToExcludes") def tables_to_excludes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of tables to exclude from the follower database. """ return pulumi.get(self, "tables_to_excludes") @tables_to_excludes.setter def tables_to_excludes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "tables_to_excludes", value) @property @pulumi.getter(name="tablesToIncludes") def tables_to_includes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of tables to include in the follower database. """ return pulumi.get(self, "tables_to_includes") @tables_to_includes.setter def tables_to_includes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "tables_to_includes", value) @pulumi.input_type class ClusterIdentityArgs: def __init__(__self__, *, type: pulumi.Input[str], identity_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, principal_id: Optional[pulumi.Input[str]] = None, tenant_id: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] type: Specifies the type of Managed Service Identity that is configured on this Kusto Cluster. Possible values are: `SystemAssigned`, `UserAssigned` and `SystemAssigned, UserAssigned`. :param pulumi.Input[Sequence[pulumi.Input[str]]] identity_ids: A list of IDs for User Assigned Managed Identity resources to be assigned. :param pulumi.Input[str] principal_id: The Principal ID associated with this System Assigned Managed Service Identity. :param pulumi.Input[str] tenant_id: The Tenant ID associated with this System Assigned Managed Service Identity. """ pulumi.set(__self__, "type", type) if identity_ids is not None: pulumi.set(__self__, "identity_ids", identity_ids) if principal_id is not None: pulumi.set(__self__, "principal_id", principal_id) if tenant_id is not None: pulumi.set(__self__, "tenant_id", tenant_id) @property @pulumi.getter def type(self) -> pulumi.Input[str]: """ Specifies the type of Managed Service Identity that is configured on this Kusto Cluster. Possible values are: `SystemAssigned`, `UserAssigned` and `SystemAssigned, UserAssigned`. """ return pulumi.get(self, "type") @type.setter def type(self, value: pulumi.Input[str]): pulumi.set(self, "type", value) @property @pulumi.getter(name="identityIds") def identity_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of IDs for User Assigned Managed Identity resources to be assigned. """ return pulumi.get(self, "identity_ids") @identity_ids.setter def identity_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "identity_ids", value) @property @pulumi.getter(name="principalId") def principal_id(self) -> Optional[pulumi.Input[str]]: """ The Principal ID associated with this System Assigned Managed Service Identity. """ return pulumi.get(self, "principal_id") @principal_id.setter def principal_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "principal_id", value) @property @pulumi.getter(name="tenantId") def tenant_id(self) -> Optional[pulumi.Input[str]]: """ The Tenant ID associated with this System Assigned Managed Service Identity. """ return pulumi.get(self, "tenant_id") @tenant_id.setter def tenant_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tenant_id", value) @pulumi.input_type class ClusterOptimizedAutoScaleArgs: def __init__(__self__, *, maximum_instances: pulumi.Input[int], minimum_instances: pulumi.Input[int]): """ :param pulumi.Input[int] maximum_instances: The maximum number of allowed instances. Must between `0` and `1000`. :param pulumi.Input[int] minimum_instances: The minimum number of allowed instances. Must between `0` and `1000`. """ pulumi.set(__self__, "maximum_instances", maximum_instances) pulumi.set(__self__, "minimum_instances", minimum_instances) @property @pulumi.getter(name="maximumInstances") def maximum_instances(self) -> pulumi.Input[int]: """ The maximum number of allowed instances. Must between `0` and `1000`. """ return pulumi.get(self, "maximum_instances") @maximum_instances.setter def maximum_instances(self, value: pulumi.Input[int]): pulumi.set(self, "maximum_instances", value) @property @pulumi.getter(name="minimumInstances") def minimum_instances(self) -> pulumi.Input[int]: """ The minimum number of allowed instances. Must between `0` and `1000`. """ return pulumi.get(self, "minimum_instances") @minimum_instances.setter def minimum_instances(self, value: pulumi.Input[int]): pulumi.set(self, "minimum_instances", value) @pulumi.input_type class ClusterSkuArgs: def __init__(__self__, *, name: pulumi.Input[str], capacity: Optional[pulumi.Input[int]] = None): """ :param pulumi.Input[str] name: The name of the SKU. Valid values are: `Dev(No SLA)_Standard_D11_v2`, `Dev(No SLA)_Standard_E2a_v4`, `Standard_D11_v2`, `Standard_D12_v2`, `Standard_D13_v2`, `Standard_D14_v2`, `Standard_DS13_v2+1TB_PS`, `Standard_DS13_v2+2TB_PS`, `Standard_DS14_v2+3TB_PS`, `Standard_DS14_v2+4TB_PS`, `Standard_E16as_v4+3TB_PS`, `Standard_E16as_v4+4TB_PS`, `Standard_E16a_v4`, `Standard_E2a_v4`, `Standard_E4a_v4`, `Standard_E64i_v3`, `Standard_E8as_v4+1TB_PS`, `Standard_E8as_v4+2TB_PS`, `Standard_E8a_v4`, `Standard_L16s`, `Standard_L4s`, `Standard_L8s`, `Standard_L16s_v2` and `Standard_L8s_v2`. :param pulumi.Input[int] capacity: Specifies the node count for the cluster. Boundaries depend on the sku name. """ pulumi.set(__self__, "name", name) if capacity is not None: pulumi.set(__self__, "capacity", capacity) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ The name of the SKU. Valid values are: `Dev(No SLA)_Standard_D11_v2`, `Dev(No SLA)_Standard_E2a_v4`, `Standard_D11_v2`, `Standard_D12_v2`, `Standard_D13_v2`, `Standard_D14_v2`, `Standard_DS13_v2+1TB_PS`, `Standard_DS13_v2+2TB_PS`, `Standard_DS14_v2+3TB_PS`, `Standard_DS14_v2+4TB_PS`, `Standard_E16as_v4+3TB_PS`, `Standard_E16as_v4+4TB_PS`, `Standard_E16a_v4`, `Standard_E2a_v4`, `Standard_E4a_v4`, `Standard_E64i_v3`, `Standard_E8as_v4+1TB_PS`, `Standard_E8as_v4+2TB_PS`, `Standard_E8a_v4`, `Standard_L16s`, `Standard_L4s`, `Standard_L8s`, `Standard_L16s_v2` and `Standard_L8s_v2`. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def capacity(self) -> Optional[pulumi.Input[int]]: """ Specifies the node count for the cluster. Boundaries depend on the sku name. """ return pulumi.get(self, "capacity") @capacity.setter def capacity(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "capacity", value) @pulumi.input_type class ClusterVirtualNetworkConfigurationArgs: def __init__(__self__, *, data_management_public_ip_id: pulumi.Input[str], engine_public_ip_id: pulumi.Input[str], subnet_id: pulumi.Input[str]): """ :param pulumi.Input[str] data_management_public_ip_id: Data management's service public IP address resource id. :param pulumi.Input[str] engine_public_ip_id: Engine service's public IP address resource id. :param pulumi.Input[str] subnet_id: The subnet resource id. """ pulumi.set(__self__, "data_management_public_ip_id", data_management_public_ip_id) pulumi.set(__self__, "engine_public_ip_id", engine_public_ip_id) pulumi.set(__self__, "subnet_id", subnet_id) @property @pulumi.getter(name="dataManagementPublicIpId") def data_management_public_ip_id(self) -> pulumi.Input[str]: """ Data management's service public IP address resource id. """ return pulumi.get(self, "data_management_public_ip_id") @data_management_public_ip_id.setter def data_management_public_ip_id(self, value: pulumi.Input[str]): pulumi.set(self, "data_management_public_ip_id", value) @property @pulumi.getter(name="enginePublicIpId") def engine_public_ip_id(self) -> pulumi.Input[str]: """ Engine service's public IP address resource id. """ return pulumi.get(self, "engine_public_ip_id") @engine_public_ip_id.setter def engine_public_ip_id(self, value: pulumi.Input[str]): pulumi.set(self, "engine_public_ip_id", value) @property @pulumi.getter(name="subnetId") def subnet_id(self) -> pulumi.Input[str]: """ The subnet resource id. """ return pulumi.get(self, "subnet_id") @subnet_id.setter def subnet_id(self, value: pulumi.Input[str]): pulumi.set(self, "subnet_id", value)
hubspot/crm/quotes/api/__init__.py
fakepop/hubspot-api-python
117
12747414
from __future__ import absolute_import # flake8: noqa # import apis into api package from hubspot.crm.quotes.api.associations_api import AssociationsApi from hubspot.crm.quotes.api.basic_api import BasicApi from hubspot.crm.quotes.api.batch_api import BatchApi from hubspot.crm.quotes.api.search_api import SearchApi
tests/test_queries.py
matchup-ir/whooshy
270
12747416
<gh_stars>100-1000 from __future__ import with_statement import copy import pytest from whoosh import fields, qparser, query from whoosh.compat import b, u from whoosh.filedb.filestore import RamStorage from whoosh.qparser import QueryParser from whoosh.query import And from whoosh.query import AndMaybe from whoosh.query import ConstantScoreQuery from whoosh.query import DateRange from whoosh.query import DisjunctionMax from whoosh.query import Every from whoosh.query import FuzzyTerm from whoosh.query import Not from whoosh.query import NullQuery from whoosh.query import NumericRange from whoosh.query import Or from whoosh.query import Phrase from whoosh.query import Prefix from whoosh.query import Require from whoosh.query import Term from whoosh.query import TermRange from whoosh.query import Variations from whoosh.query import Wildcard from whoosh.query.spans import SpanContains from whoosh.query.spans import SpanFirst from whoosh.query.spans import SpanNear from whoosh.query.spans import SpanNot from whoosh.query.spans import SpanOr from whoosh.util.testing import TempIndex def test_all_terms(): q = QueryParser("a", None).parse(u('hello b:there c:"my friend"')) ts = q.all_terms(phrases=False) assert sorted(ts) == [("a", "hello"), ("b", "there")] ts = q.all_terms(phrases=True) assert sorted(ts) == [("a", "hello"), ("b", "there"), ("c", "friend"), ("c", "my")] def test_existing_terms(): s = fields.Schema(key=fields.ID, value=fields.TEXT) ix = RamStorage().create_index(s) w = ix.writer() w.add_document(key=u("a"), value=u("alfa bravo charlie delta echo")) w.add_document(key=u("b"), value=u("foxtrot golf hotel india juliet")) w.commit() r = ix.reader() q = QueryParser("value", None).parse(u('alfa hotel tango "sierra bravo"')) ts = q.existing_terms(r, phrases=False) assert sorted(ts) == [("value", b("alfa")), ("value", b("hotel"))] ts = q.existing_terms(r) assert sorted(ts) == [("value", b("alfa")), ("value", b("bravo")), ("value", b("hotel"))] def test_wildcard_existing_terms(): s = fields.Schema(key=fields.ID, value=fields.TEXT) ix = RamStorage().create_index(s) w = ix.writer() w.add_document(key=u("a"), value=u("alfa bravo bear charlie delta")) w.add_document(key=u("a"), value=u("boggle echo render rendering renders")) w.commit() r = ix.reader() qp = QueryParser("value", ix.schema) def words(terms): z = [] for t in terms: assert t[0] == "value" z.append(t[1]) return b(" ").join(sorted(z)) q = qp.parse(u("b*")) ts = q.existing_terms(r) assert ts == set() ts = q.existing_terms(r, expand=True) assert words(ts) == b("bear boggle bravo") q = qp.parse(u("[a TO f]")) ts = q.existing_terms(r) assert ts == set() ts = q.existing_terms(r, expand=True) assert words(ts) == b("alfa bear boggle bravo charlie delta echo") q = query.Variations("value", "render") ts = q.existing_terms(r, expand=False) assert ts == set([("value", b("render"))]) ts = q.existing_terms(r, expand=True) assert words(ts) == b("render rendering renders") def test_replace(): q = And([Or([Term("a", "b"), Term("b", "c")], boost=1.2), Variations("a", "b", boost=2.0)]) q = q.replace("a", "b", "BB") assert q == And([Or([Term("a", "BB"), Term("b", "c")], boost=1.2), Variations("a", "BB", boost=2.0)]) def test_apply(): def visit(q): if isinstance(q, (Term, Variations, FuzzyTerm)): q.text = q.text.upper() return q return q.apply(visit) before = And([Not(Term("a", u("b"))), Variations("a", u("c")), Not(FuzzyTerm("a", u("d")))]) after = visit(before) assert after == And([Not(Term("a", u("B"))), Variations("a", u("C")), Not(FuzzyTerm("a", u("D")))]) def term2var(q): if isinstance(q, Term): return Variations(q.fieldname, q.text) else: return q.apply(term2var) q = And([Term("f", "alfa"), Or([Term("f", "bravo"), Not(Term("f", "charlie"))])]) q = term2var(q) assert q == And([Variations('f', 'alfa'), Or([Variations('f', 'bravo'), Not(Variations('f', 'charlie'))])]) def test_accept(): def boost_phrases(q): if isinstance(q, Phrase): q.boost *= 2.0 return q before = And([Term("a", u("b")), Or([Term("c", u("d")), Phrase("a", [u("e"), u("f")])]), Phrase("a", [u("g"), u("h")], boost=0.25)]) after = before.accept(boost_phrases) assert after == And([Term("a", u("b")), Or([Term("c", u("d")), Phrase("a", [u("e"), u("f")], boost=2.0)]), Phrase("a", [u("g"), u("h")], boost=0.5)]) before = Phrase("a", [u("b"), u("c")], boost=2.5) after = before.accept(boost_phrases) assert after == Phrase("a", [u("b"), u("c")], boost=5.0) def test_simplify(): s = fields.Schema(k=fields.ID, v=fields.TEXT) ix = RamStorage().create_index(s) w = ix.writer() w.add_document(k=u("1"), v=u("aardvark apple allan alfa bear bee")) w.add_document(k=u("2"), v=u("brie glue geewhiz goop julia")) w.commit() r = ix.reader() q1 = And([Prefix("v", "b", boost=2.0), Term("v", "juliet")]) q2 = And([Or([Term('v', 'bear', boost=2.0), Term('v', 'bee', boost=2.0), Term('v', 'brie', boost=2.0)]), Term('v', 'juliet')]) assert q1.simplify(r) == q2 def test_merge_ranges(): q = And([TermRange("f1", u("a"), None), TermRange("f1", None, u("z"))]) assert q.normalize() == TermRange("f1", u("a"), u("z")) q = And([NumericRange("f1", None, u("aaaaa")), NumericRange("f1", u("zzzzz"), None)]) assert q.normalize() == q q = And([TermRange("f1", u("a"), u("z")), TermRange("f1", "b", "x")]) assert q.normalize() == TermRange("f1", u("a"), u("z")) q = And([TermRange("f1", u("a"), u("m")), TermRange("f1", u("f"), u("q"))]) assert q.normalize() == TermRange("f1", u("f"), u("m")) q = Or([TermRange("f1", u("a"), u("m")), TermRange("f1", u("f"), u("q"))]) assert q.normalize() == TermRange("f1", u("a"), u("q")) q = Or([TermRange("f1", u("m"), None), TermRange("f1", None, u("n"))]) assert q.normalize() == Every("f1") q = And([Every("f1"), Term("f1", "a"), Variations("f1", "b")]) assert q.normalize() == Every("f1") q = Or([Term("f1", u("q")), TermRange("f1", u("m"), None), TermRange("f1", None, u("n"))]) assert q.normalize() == Every("f1") q = And([Or([Term("f1", u("a")), Term("f1", u("b"))]), Every("f1")]) assert q.normalize() == Every("f1") q = And([Term("f1", u("a")), And([Or([Every("f1")])])]) assert q.normalize() == Every("f1") def test_normalize_compound(): def oq(): return Or([Term("a", u("a")), Term("a", u("b"))]) def nq(level): if level == 0: return oq() else: return Or([nq(level - 1), nq(level - 1), nq(level - 1)]) q = nq(5) q = q.normalize() assert q == Or([Term("a", u("a")), Term("a", u("b"))]) def test_duplicates(): q = And([Term("a", u("b")), Term("a", u("b"))]) assert q.normalize() == Term("a", u("b")) q = And([Prefix("a", u("b")), Prefix("a", u("b"))]) assert q.normalize() == Prefix("a", u("b")) q = And([Variations("a", u("b")), And([Variations("a", u("b")), Term("a", u("b"))])]) assert q.normalize() == And([Variations("a", u("b")), Term("a", u("b"))]) q = And([Term("a", u("b")), Prefix("a", u("b")), Term("a", u("b"), boost=1.1)]) assert q.normalize() == q # Wildcard without * or ? normalizes to Term q = And([Wildcard("a", u("b")), And([Wildcard("a", u("b")), Term("a", u("b"))])]) assert q.normalize() == Term("a", u("b")) # TODO: FIX THIS def test_query_copy_hash(): def do(q1, q2): q1a = copy.deepcopy(q1) assert q1 == q1a assert hash(q1) == hash(q1a) assert q1 != q2 do(Term("a", u("b"), boost=1.1), Term("a", u("b"), boost=1.5)) do(And([Term("a", u("b")), Term("c", u("d"))], boost=1.1), And([Term("a", u("b")), Term("c", u("d"))], boost=1.5)) do(Or([Term("a", u("b"), boost=1.1), Term("c", u("d"))]), Or([Term("a", u("b"), boost=1.8), Term("c", u("d"))], boost=1.5)) do(DisjunctionMax([Term("a", u("b"), boost=1.8), Term("c", u("d"))]), DisjunctionMax([Term("a", u("b"), boost=1.1), Term("c", u("d"))], boost=1.5)) do(Not(Term("a", u("b"), boost=1.1)), Not(Term("a", u("b"), boost=1.5))) do(Prefix("a", u("b"), boost=1.1), Prefix("a", u("b"), boost=1.5)) do(Wildcard("a", u("b*x?"), boost=1.1), Wildcard("a", u("b*x?"), boost=1.5)) do(FuzzyTerm("a", u("b"), constantscore=True), FuzzyTerm("a", u("b"), constantscore=False)) do(FuzzyTerm("a", u("b"), boost=1.1), FuzzyTerm("a", u("b"), boost=1.5)) do(TermRange("a", u("b"), u("c")), TermRange("a", u("b"), u("d"))) do(TermRange("a", None, u("c")), TermRange("a", None, None)) do(TermRange("a", u("b"), u("c"), boost=1.1), TermRange("a", u("b"), u("c"), boost=1.5)) do(TermRange("a", u("b"), u("c"), constantscore=True), TermRange("a", u("b"), u("c"), constantscore=False)) do(NumericRange("a", 1, 5), NumericRange("a", 1, 6)) do(NumericRange("a", None, 5), NumericRange("a", None, None)) do(NumericRange("a", 3, 6, boost=1.1), NumericRange("a", 3, 6, boost=1.5)) do(NumericRange("a", 3, 6, constantscore=True), NumericRange("a", 3, 6, constantscore=False)) # do(DateRange) do(Variations("a", u("render")), Variations("a", u("renders"))) do(Variations("a", u("render"), boost=1.1), Variations("a", u("renders"), boost=1.5)) do(Phrase("a", [u("b"), u("c"), u("d")]), Phrase("a", [u("b"), u("c"), u("e")])) do(Phrase("a", [u("b"), u("c"), u("d")], boost=1.1), Phrase("a", [u("b"), u("c"), u("d")], boost=1.5)) do(Phrase("a", [u("b"), u("c"), u("d")], slop=1), Phrase("a", [u("b"), u("c"), u("d")], slop=2)) # do(Ordered) do(Every(), Every("a")) do(Every("a"), Every("b")) do(Every("a", boost=1.1), Every("a", boost=1.5)) do(NullQuery, Term("a", u("b"))) do(ConstantScoreQuery(Term("a", u("b"))), ConstantScoreQuery(Term("a", u("c")))) do(ConstantScoreQuery(Term("a", u("b")), score=2.0), ConstantScoreQuery(Term("a", u("c")), score=2.1)) do(Require(Term("a", u("b")), Term("c", u("d"))), Require(Term("a", u("b"), boost=1.1), Term("c", u("d")))) # do(Require) # do(AndMaybe) # do(AndNot) # do(Otherwise) do(SpanFirst(Term("a", u("b")), limit=1), SpanFirst(Term("a", u("b")), limit=2)) do(SpanNear(Term("a", u("b")), Term("c", u("d"))), SpanNear(Term("a", u("b")), Term("c", u("e")))) do(SpanNear(Term("a", u("b")), Term("c", u("d")), slop=1), SpanNear(Term("a", u("b")), Term("c", u("d")), slop=2)) do(SpanNear(Term("a", u("b")), Term("c", u("d")), mindist=1), SpanNear(Term("a", u("b")), Term("c", u("d")), mindist=2)) do(SpanNear(Term("a", u("b")), Term("c", u("d")), ordered=True), SpanNear(Term("a", u("b")), Term("c", u("d")), ordered=False)) do(SpanNot(Term("a", u("b")), Term("a", u("c"))), SpanNot(Term("a", u("b")), Term("a", u("d")))) do(SpanOr([Term("a", u("b")), Term("a", u("c")), Term("a", u("d"))]), SpanOr([Term("a", u("b")), Term("a", u("c")), Term("a", u("e"))])) do(SpanContains(Term("a", u("b")), Term("a", u("c"))), SpanContains(Term("a", u("b")), Term("a", u("d")))) # do(SpanBefore) # do(SpanCondition) def test_requires(): a = Term("f", u("a")) b = Term("f", u("b")) assert And([a, b]).requires() == set([a, b]) assert Or([a, b]).requires() == set() assert AndMaybe(a, b).requires() == set([a]) assert a.requires() == set([a]) def test_highlight_daterange(): from datetime import datetime schema = fields.Schema(id=fields.ID(unique=True, stored=True), title=fields.TEXT(stored=True), content=fields.TEXT(stored=True), released=fields.DATETIME(stored=True)) ix = RamStorage().create_index(schema) w = ix.writer() w.update_document( id=u('1'), title=u('Life Aquatic'), content=u('A nautic film crew sets out to kill a gigantic shark.'), released=datetime(2004, 12, 25) ) w.update_document( id=u('2'), title=u('Darjeeling Limited'), content=u('Three brothers meet in India for a life changing train ' + 'journey.'), released=datetime(2007, 10, 27) ) w.commit() s = ix.searcher() r = s.search(Term('content', u('train')), terms=True) assert len(r) == 1 assert r[0]["id"] == "2" assert (r[0].highlights("content") == 'for a life changing <b class="match term0">train</b> journey') r = s.search(DateRange('released', datetime(2007, 1, 1), None)) assert len(r) == 1 assert r[0].highlights("content") == '' def test_patterns(): domain = u("aaron able acre adage aether after ago ahi aim ajax akimbo " "alembic all amiga amount ampere").split() schema = fields.Schema(word=fields.KEYWORD(stored=True)) ix = RamStorage().create_index(schema) with ix.writer() as w: for word in domain: w.add_document(word=word) with ix.reader() as r: assert list(r.field_terms("word")) == domain assert list(r.expand_prefix("word", "al")) == [b("alembic"), b("all")] q = query.Prefix("word", "al") assert q.simplify(r).__unicode__() == "(word:alembic OR word:all)" q = query.Wildcard("word", "a*[ae]") assert q.simplify(r).__unicode__() == "(word:able OR word:acre OR word:adage OR word:amiga OR word:ampere)" assert q._find_prefix(q.text) == "a" q = query.Regex("word", "am.*[ae]") assert q.simplify(r).__unicode__() == "(word:amiga OR word:ampere)" assert q._find_prefix(q.text) == "am" q = query.Regex("word", "able|ago") assert q.simplify(r).__unicode__() == "(word:able OR word:ago)" assert q._find_prefix(q.text) == "" # special case: ? may mean "zero occurences" q = query.Regex("word", "ah?i") assert q.simplify(r).__unicode__() == "(word:ahi OR word:aim)" assert q._find_prefix(q.text) == "a" # special case: * may mean "zero occurences" q = query.Regex("word", "ah*i") assert q.simplify(r).__unicode__() == "(word:ahi OR word:aim)" assert q._find_prefix(q.text) == "a" def test_or_nots1(): # Issue #285 schema = fields.Schema(a=fields.KEYWORD(stored=True), b=fields.KEYWORD(stored=True)) st = RamStorage() ix = st.create_index(schema) with ix.writer() as w: w.add_document(a=u("alfa"), b=u("charlie")) with ix.searcher() as s: q = query.And([query.Term("a", "alfa"), query.Or([query.Not(query.Term("b", "bravo")), query.Not(query.Term("b", "charlie")) ]) ]) r = s.search(q) assert len(r) == 1 def test_or_nots2(): # Issue #286 schema = fields.Schema(a=fields.KEYWORD(stored=True), b=fields.KEYWORD(stored=True)) st = RamStorage() ix = st.create_index(schema) with ix.writer() as w: w.add_document(b=u("bravo")) with ix.searcher() as s: q = query.Or([query.Term("a", "alfa"), query.Not(query.Term("b", "alfa")) ]) r = s.search(q) assert len(r) == 1 def test_or_nots3(): schema = fields.Schema(title=fields.TEXT(stored=True), itemtype=fields.ID(stored=True)) with TempIndex(schema, "ornot") as ix: w = ix.writer() w.add_document(title=u("a1"), itemtype=u("a")) w.add_document(title=u("a2"), itemtype=u("a")) w.add_document(title=u("b1"), itemtype=u("b")) w.commit() q = Term('itemtype', 'a') | Not(Term('itemtype', 'a')) with ix.searcher() as s: r = " ".join([hit["title"] for hit in s.search(q)]) assert r == "a1 a2 b1" def test_ornot_andnot(): schema = fields.Schema(id=fields.NUMERIC(stored=True), a=fields.KEYWORD()) st = RamStorage() ix = st.create_index(schema) with ix.writer() as w: w.add_document(id=0, a=u("word1 word1")) w.add_document(id=1, a=u("word1 word2")) w.add_document(id=2, a=u("word1 foo")) w.add_document(id=3, a=u("foo word2")) w.add_document(id=4, a=u("foo bar")) with ix.searcher() as s: qp = qparser.QueryParser("a", ix.schema) q1 = qp.parse(u("NOT word1 NOT word2")) q2 = qp.parse(u("NOT (word1 OR word2)")) r1 = [hit["id"] for hit in s.search(q1, sortedby="id")] r2 = [hit["id"] for hit in s.search(q2, sortedby="id")] assert r1 == r2 == [4] def test_none_in_compounds(): with pytest.raises(query.QueryError): _ = query.And([query.Term("a", "b"), None, query.Term("c", "d")]) def test_issue_355(): schema = fields.Schema(seats=fields.NUMERIC(bits=8, stored=True)) ix = RamStorage().create_index(schema) with ix.writer() as w: w.add_document(seats=0) w.add_document(seats=10) w.add_document(seats=20) with ix.searcher() as s: # Passing a bytestring for a numeric field q = Term("seats", b("maker")) r1 = [hit["seats"] for hit in s.search(q, limit=5)] # Passing a unicode string for a numeric field q = Term("seats", u("maker")) r2 = [hit["seats"] for hit in s.search(q, limit=5)] # Passing a value too large for the numeric field q = Term("seats", 260) r3 = [hit["seats"] for hit in s.search(q, limit=5)] assert r1 == r2 == r3 == [] def test_sequence(): schema = fields.Schema(id=fields.STORED, text=fields.TEXT) ix = RamStorage().create_index(schema) with ix.writer() as w: w.add_document(id=0, text=u("alfa bravo charlie delta echo")) w.add_document(id=1, text=u("bravo charlie delta echo alfa")) w.add_document(id=2, text=u("charlie delta echo bravo")) w.add_document(id=3, text=u("delta echo charlie")) w.add_document(id=4, text=u("echo delta")) with ix.searcher() as s: seq = query.Sequence([query.Term("text", u("echo")), query.Term("text", u("alfa"))]) q = query.And([query.Term("text", "bravo"), seq]) r = s.search(q, limit=4) assert len(r) == 1 assert r[0]["id"] == 1 def test_andmaybe(): schema = fields.Schema(id=fields.STORED, text=fields.TEXT) ix = RamStorage().create_index(schema) with ix.writer() as w: w.add_document(id=0, text=u("alfa bravo charlie delta echo")) w.add_document(id=1, text=u("bravo charlie delta echo alfa")) w.add_document(id=2, text=u("charlie delta echo bravo")) w.add_document(id=3, text=u("delta echo charlie")) w.add_document(id=4, text=u("echo delta")) qp = qparser.QueryParser("text", schema) q = qp.parse(u('bravo ANDMAYBE "echo alfa"')) with ix.searcher() as s: r = s.search(q) assert len(r) == 3 assert [hit["id"] for hit in r] == [1, 2, 0] def test_numeric_filter(): schema = fields.Schema(status=fields.NUMERIC, tags=fields.TEXT) ix = RamStorage().create_index(schema) # Add a single document with status = -2 with ix.writer() as w: w.add_document(status=-2, tags=u"alfa bravo") with ix.searcher() as s: # No document should match the filter fq = query.NumericRange("status", 0, 2) fr = s.search(fq) assert fr.scored_length() == 0 # Make sure the query would otherwise match q = query.Term("tags", u"alfa") r = s.search(q) assert r.scored_length() == 1 # Check the query doesn't match with the filter r = s.search(q, filter=fq) assert r.scored_length() == 0 def test_andnot_reverse(): # Bitbucket issue 419 docs = ['ruby', 'sapphire', 'ruby + sapphire'] schema = fields.Schema(name=fields.TEXT(stored=True)) q = query.AndNot(query.Term('name', 'ruby'), query.Term('name', 'sapphire')) with TempIndex(schema) as ix: with ix.writer() as w: for name in docs: w.add_document(name=u(name)) with ix.searcher() as s: names_fw = [hit["name"] for hit in s.search(q, limit=None)] with TempIndex(schema) as ix: with ix.writer() as w: for name in reversed(docs): w.add_document(name=u(name)) with ix.searcher() as s: names_rv = [hit["name"] for hit in s.search(q, limit=None)] assert len(names_fw) == len(names_rv) == 1 assert names_fw == names_rv
src/imitation_frames.py
akolishchak/doom-net-pytorch
143
12747435
# # imitation_frames.py, doom-net # # Created by <NAME> on 01/21/17. # import os import time import h5py import torch import torch.nn as nn import torch.optim as optim from device import device import argparse from doom_instance import * from aac import BaseModel def data_generator(args, screens, variables, labels, episodes, step_size): # remove short episodes episode_min_size = args.episode_size*step_size episodes = episodes[episodes[:, 1]-episodes[:, 0] > episode_min_size] episodes_num = len(episodes) # step_idx = episodes[:, 0].copy() + np.random.randint(step_size, size=episodes_num) step_screens = np.ndarray(shape=(args.batch_size, *screens.shape[1:]), dtype=np.float32) step_variables = np.ndarray(shape=(args.batch_size, *variables.shape[1:]), dtype=np.float32) step_labels = np.ndarray(shape=(args.batch_size,), dtype=np.int) step_terminals = np.ones(shape=(args.batch_size,), dtype=np.float32) # select episodes for the initial batch batch_episodes = np.random.randint(episodes_num, size=args.batch_size) while True: for i in range(args.batch_size): idx = batch_episodes[i] step_screens[i, :] = screens[step_idx[idx]] / 127.5 - 1.0 step_variables[i, :] = variables[step_idx[idx]] / 100 step_labels[i] = labels[step_idx[idx]] step_idx[idx] += step_size if step_idx[idx] > episodes[idx][1]: step_idx[idx] = episodes[idx][0] + np.random.randint(step_size) step_terminals[i] = 0 # reached terminal state, select a new episode batch_episodes[i] = np.random.randint(episodes_num) else: step_terminals[i] = 1 yield torch.from_numpy(step_screens), \ torch.from_numpy(step_variables), \ torch.from_numpy(step_labels), \ torch.from_numpy(step_terminals) def train(args): data_file = h5py.File(args.h5_path, 'r') screens = data_file['screens'] variables = data_file['variables'] labels = data_file['action_labels'] print('Dataset size =', len(screens)) action_sets = data_file['action_sets'][:] episodes = data_file['episodes'][:] input_shape = screens[0].shape train_generator = data_generator(args, screens, variables, labels, episodes, args.skiprate) np.save('action_set', action_sets) model = BaseModel(input_shape[0]*args.frame_num, len(action_sets), variables.shape[1], args.frame_num).to(device) if args.load is not None and os.path.isfile(args.load): print("loading model parameters {}".format(args.load)) source_model = torch.load(args.load) model.load_state_dict(source_model.state_dict()) del source_model criterion = nn.CrossEntropyLoss() optimizer = optim.AdamW(model.parameters(), lr=5e-4) optimizer.zero_grad() running_loss = 0 running_accuracy = 0 batch_time = time.time() for batch, (screens, variables, labels, terminals) in enumerate(train_generator): labels = labels.to(device) outputs, _ = model(*model.transform_input(screens, variables)) loss = criterion(outputs, labels) model.set_terminal(terminals) running_loss += loss.item() _, pred = outputs.max(1) accuracy = (pred == labels).float().mean() running_accuracy += accuracy loss.backward() optimizer.step() optimizer.zero_grad() if batch % args.episode_length == args.episode_length - 1: running_loss /= args.episode_length running_accuracy /= args.episode_length print( '[{:d}] loss: {:.3f}, accuracy: {:.3f}, time: {:.6f}'.format( batch + 1, running_loss, running_accuracy, time.time()-batch_time ) ) running_loss = 0 running_accuracy = 0 batch_time = time.time() if batch % args.checkpoint_rate == args.checkpoint_rate - 1: torch.save(model, args.checkpoint_file) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Doom Recorder') parser.add_argument('--episode_size', type=int, default=20, help='number of steps in an episode') parser.add_argument('--batch_size', type=int, default=64, help='number of game instances running in parallel') parser.add_argument('--load', default=None, help='path to model file') parser.add_argument('--h5_path', default=os.path.expanduser('~') + '/test/datasets/vizdoom/cig_map01/flat.h5', help='hd5 file path') parser.add_argument('--skiprate', type=int, default=2, help='number of skipped frames') parser.add_argument('--episode_length', type=int, default=30, help='episode length') parser.add_argument('--frame_num', type=int, default=4, help='number of frames per input') parser.add_argument('--checkpoint_file', default=None, help='check point file name') parser.add_argument('--checkpoint_rate', type=int, default=5000, help='number of batches per checkpoit') args = parser.parse_args() train(args)
main/signals.py
curenamo/ssmreleva
123
12747459
<reponame>curenamo/ssmreleva from django.contrib.auth.models import User from django.db.models.signals import post_save def set_api_permissions(sender, instance=None, created=False, **kwargs): from utils.user_auth import set_api_permissions_for_user if created: set_api_permissions_for_user(instance) post_save.connect(set_api_permissions, sender=User)
monai/losses/tversky.py
dylanbuchi/MONAI
2,971
12747475
<reponame>dylanbuchi/MONAI<gh_stars>1000+ # Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Callable, List, Optional, Union import torch from torch.nn.modules.loss import _Loss from monai.networks import one_hot from monai.utils import LossReduction class TverskyLoss(_Loss): """ Compute the Tversky loss defined in: Sadegh et al. (2017) Tversky loss function for image segmentation using 3D fully convolutional deep networks. (https://arxiv.org/abs/1706.05721) Adapted from: https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/layer/loss_segmentation.py#L631 """ def __init__( self, include_background: bool = True, to_onehot_y: bool = False, sigmoid: bool = False, softmax: bool = False, other_act: Optional[Callable] = None, alpha: float = 0.5, beta: float = 0.5, reduction: Union[LossReduction, str] = LossReduction.MEAN, smooth_nr: float = 1e-5, smooth_dr: float = 1e-5, batch: bool = False, ) -> None: """ Args: include_background: If False channel index 0 (background category) is excluded from the calculation. to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False. sigmoid: If True, apply a sigmoid function to the prediction. softmax: If True, apply a softmax function to the prediction. other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute other activation layers, Defaults to ``None``. for example: `other_act = torch.tanh`. alpha: weight of false positives beta: weight of false negatives reduction: {``"none"``, ``"mean"``, ``"sum"``} Specifies the reduction to apply to the output. Defaults to ``"mean"``. - ``"none"``: no reduction will be applied. - ``"mean"``: the sum of the output will be divided by the number of elements in the output. - ``"sum"``: the output will be summed. smooth_nr: a small constant added to the numerator to avoid zero. smooth_dr: a small constant added to the denominator to avoid nan. batch: whether to sum the intersection and union areas over the batch dimension before the dividing. Defaults to False, a Dice loss value is computed independently from each item in the batch before any `reduction`. Raises: TypeError: When ``other_act`` is not an ``Optional[Callable]``. ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``]. Incompatible values. """ super().__init__(reduction=LossReduction(reduction).value) if other_act is not None and not callable(other_act): raise TypeError(f"other_act must be None or callable but is {type(other_act).__name__}.") if int(sigmoid) + int(softmax) + int(other_act is not None) > 1: raise ValueError("Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].") self.include_background = include_background self.to_onehot_y = to_onehot_y self.sigmoid = sigmoid self.softmax = softmax self.other_act = other_act self.alpha = alpha self.beta = beta self.smooth_nr = float(smooth_nr) self.smooth_dr = float(smooth_dr) self.batch = batch def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Args: input: the shape should be BNH[WD]. target: the shape should be BNH[WD]. Raises: ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"]. """ if self.sigmoid: input = torch.sigmoid(input) n_pred_ch = input.shape[1] if self.softmax: if n_pred_ch == 1: warnings.warn("single channel prediction, `softmax=True` ignored.") else: input = torch.softmax(input, 1) if self.other_act is not None: input = self.other_act(input) if self.to_onehot_y: if n_pred_ch == 1: warnings.warn("single channel prediction, `to_onehot_y=True` ignored.") else: target = one_hot(target, num_classes=n_pred_ch) if not self.include_background: if n_pred_ch == 1: warnings.warn("single channel prediction, `include_background=False` ignored.") else: # if skipping background, removing first channel target = target[:, 1:] input = input[:, 1:] if target.shape != input.shape: raise AssertionError(f"ground truth has differing shape ({target.shape}) from input ({input.shape})") p0 = input p1 = 1 - p0 g0 = target g1 = 1 - g0 # reducing only spatial dimensions (not batch nor channels) reduce_axis: List[int] = torch.arange(2, len(input.shape)).tolist() if self.batch: # reducing spatial dimensions and batch reduce_axis = [0] + reduce_axis tp = torch.sum(p0 * g0, reduce_axis) fp = self.alpha * torch.sum(p0 * g1, reduce_axis) fn = self.beta * torch.sum(p1 * g0, reduce_axis) numerator = tp + self.smooth_nr denominator = tp + fp + fn + self.smooth_dr score: torch.Tensor = 1.0 - numerator / denominator if self.reduction == LossReduction.SUM.value: return torch.sum(score) # sum over the batch and channel dims if self.reduction == LossReduction.NONE.value: return score # returns [N, num_classes] losses if self.reduction == LossReduction.MEAN.value: return torch.mean(score) raise ValueError(f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].')
verde/tests/test_scipy.py
fatiando/verde
415
12747489
<reponame>fatiando/verde # Copyright (c) 2017 The Verde Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause # # This code is part of the Fatiando a Terra project (https://www.fatiando.org) # """ Test the scipy based interpolator. """ import warnings import numpy as np import numpy.testing as npt import pandas as pd import pytest from ..coordinates import grid_coordinates from ..scipygridder import ScipyGridder from ..synthetic import CheckerBoard def test_scipy_gridder_same_points(): "See if the gridder recovers known points." region = (1000, 5000, -8000, -7000) synth = CheckerBoard(region=region) data = synth.scatter(size=1000, random_state=0) coords = (data.easting, data.northing) # The interpolation should be perfect on top of the data points for method in ["nearest", "linear", "cubic"]: grd = ScipyGridder(method=method) grd.fit(coords, data.scalars) predicted = grd.predict(coords) npt.assert_allclose(predicted, data.scalars) npt.assert_allclose(grd.score(coords, data.scalars), 1) def test_scipy_gridder(): "See if the gridder recovers known points." synth = CheckerBoard(region=(1000, 5000, -8000, -6000)) data = synth.scatter(size=20000, random_state=0) coords = (data.easting, data.northing) pt_coords = (3000, -7000) true_data = synth.predict(pt_coords) # nearest will never be too close to the truth grd = ScipyGridder("cubic").fit(coords, data.scalars) npt.assert_almost_equal(grd.predict(pt_coords), true_data, decimal=2) grd = ScipyGridder("linear").fit(coords, data.scalars) npt.assert_almost_equal(grd.predict(pt_coords), true_data, decimal=1) def test_scipy_gridder_region(): "See if the region is gotten from the data is correct." region = (1000, 5000, -8000, -6000) synth = CheckerBoard(region=region) # Test using xarray objects grid = synth.grid(shape=(101, 101)) coords = grid_coordinates(region, grid.scalars.shape) grd = ScipyGridder().fit(coords, grid.scalars) npt.assert_allclose(grd.region_, region) # Test using pandas objects data = pd.DataFrame( { "easting": coords[0].ravel(), "northing": coords[1].ravel(), "scalars": grid.scalars.values.ravel(), } ) grd = ScipyGridder().fit((data.easting, data.northing), data.scalars) npt.assert_allclose(grd.region_, region) def test_scipy_gridder_extra_args(): "Passing in extra arguments to scipy" data = CheckerBoard().scatter(random_state=100) coords = (data.easting, data.northing) grd = ScipyGridder(method="linear", extra_args=dict(rescale=True)) grd.fit(coords, data.scalars) predicted = grd.predict(coords) npt.assert_allclose(predicted, data.scalars) def test_scipy_gridder_fails(): "fit should fail for invalid method name" data = CheckerBoard().scatter(random_state=0) grd = ScipyGridder(method="some invalid method name") with pytest.raises(ValueError): grd.fit((data.easting, data.northing), data.scalars) def test_scipy_gridder_warns(): "Check that a warning is issued when using weights." data = CheckerBoard().scatter(random_state=100) weights = np.ones_like(data.scalars) grd = ScipyGridder() msg = "ScipyGridder does not support weights and they will be ignored." with warnings.catch_warnings(record=True) as warn: grd.fit((data.easting, data.northing), data.scalars, weights=weights) assert len(warn) == 1 assert issubclass(warn[-1].category, UserWarning) assert str(warn[-1].message) == msg
setup.py
DataCanvasIO/Cooka
222
12747521
#!/usr/bin/env python # -*- coding: utf-8 -*- from os.path import join as pjoin import shutil from setuptools import setup, find_packages import distutils.cmd import distutils.log import subprocess from os import path as P try: execfile except NameError: def execfile(fname, globs, locs=None): locs = locs or globs exec(compile(open(fname).read(), fname, "exec"), globs, locs) HERE = P.dirname((P.abspath(__file__))) version_ns = {} execfile(P.join(HERE, 'cooka', '_version.py'), version_ns) version = version_ns['__version__'] print("__version__=" + version) with open(P.join(HERE, 'README.md'), encoding='utf-8') as f: long_description = f.read() class BuildJSCommand(distutils.cmd.Command): description = 'Build frontend that written by javascript' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): # 1. check files frontend_home = pjoin(HERE, 'packages') backend_assets = pjoin(HERE, 'cooka', 'assets') if P.exists(backend_assets): raise RuntimeError(f"Assets path {backend_assets} already exists") # 2. install deps by yarn yarn_executable = 'yarn' self.announce("yarn install ", distutils.log.INFO) subprocess.call([yarn_executable, 'install'], cwd=frontend_home) # 3. build assets self.announce("yarn build ", distutils.log.INFO) subprocess.call([yarn_executable, 'build'], cwd=frontend_home) # 4. copy to python package frontend_dist = pjoin(frontend_home, 'dist') shutil.copytree(frontend_dist, backend_assets) if __name__ == '__main__': setup( name="cooka", version=version, description="A lightweight AutoML system.", long_description=long_description, long_description_content_type="text/markdown", packages=find_packages(exclude=["test.*", "test"]), author="DataCanvas Community", author_email="<EMAIL>", cmdclass={'buildjs': BuildJSCommand}, python_requires='>=3.6.*', license='Apache License 2.0', install_requires=[ 'numpy', 'pandas', 'scikit-learn>=0.22.1', 'requests', 'SQLAlchemy>=1.3.18', 'tornado==6.0.4', 'jinja2', 'deeptables==0.1.13', 'hypergbm==0.2.2', 'traitlets', ], # extras_require={ # 'notebook': [ # 'shap', # 'jupyterlab', # 'matplotlib' # 'pyecharts' # ] # }, zip_safe=False, platforms="Linux, Mac OS X", classifiers=[ 'Operating System :: OS Independent', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: Apache Software License', ], entry_points={ 'console_scripts': [ 'cooka = cooka.cli:main', ] }, include_package_data=True, package_data={ 'cooka': ['core/train_template/*.jinja2', '*.template', 'assets/*', 'assets/static/*'], # can not inlcude a directory recursion } )
tests/riscv/APIs/api_getPageInfo_01_force.py
noahsherrill/force-riscv
111
12747523
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES # OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO # NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence class MainSequence(Sequence): """Exercise different combinations of values for the parameters for the genPA instruction. Focus in this test is to try values of the Size, Align and CanAlias parameters. Type is always 'D'; Bank is always '0'. """ def generate(self, **kargs): ldstr_byte_ops = ["LB##RISCV", "SB##RISCV"] ldstr_half_ops = ["LH##RISCV", "SH##RISCV"] ldstr_word_ops = ["LW##RISCV", "SW##RISCV"] ldstr_double_ops = ["LD##RISCV", "SD##RISCV"] theType = "D" theBank = 0 theCanAlias = 0 loopCount = 2 # Iterate through Size and Align values. Force requires Align to # be a power of 2. This 1st block tests smaller values of size - # 1 byte to 32 bytes. for theSize in [2 ** x for x in range(0, 5)]: for theAlign in [2 ** x for x in range(0, 6)]: if theAlign < theSize: continue for _ in range(loopCount): rand_PA = self.genPA( Size=theSize, Align=theAlign, Type=theType, Bank=theBank, CanAlias=theCanAlias, ) rand_VA = self.genVAforPA( PA=rand_PA, Bank=theBank, FlatMap=0, Type=theType, Size=theSize, ) self.notice( ">>>>>> Requested Alignment: {:6d} Requested " "Size: {:6d} PA target= {:16X} VA target= " "{:16X}".format(theAlign, theSize, rand_PA, rand_VA) ) # Bank argument must be 0 now as the 3rd argument. # May not be required at some point. page_info = self.getPageInfo(rand_VA, "VA", 0) # This section displays the keys and values for the # second and third level dictionaries. if "Page" in page_info.keys(): self.notice( ">>>>>>>>>> VA Page info <<<<<<<<<<<<<<<<<<<<" "<<<<<<<<<<<<<" ) for k in page_info["Page"]: if k != "DescriptorDetails": if k == "MemoryType" or k == "MemoryAttr": self.notice( ">>>>>>>>>> Key: {:15} Value: " "{}".format(k, page_info["Page"][k]) ) else: self.notice( ">>>>>>>>>> Key: {:15} Value: " "0x{:x}".format( k, page_info["Page"][k] ) ) else: for j in page_info["Page"][ k ]: # Descriptor details are in 3rd level # dict in page_info object self.notice( ">>>>>>>>>> DescriptorDetails: " "Key: {:22} Value: {}".format( j, page_info["Page"][k][j] ) ) else: self.error( ">>>>>>>>>> VA Page info: Nothing returned " 'from getPageInfo "VA"' ) if "Table" in page_info.keys(): self.notice( ">>>>>>>>>> VA Table info <<<<<<<<<<<<<<<<<" "<<<<<<<<<<<<<<<<" ) for k in page_info["Table"]: self.notice( ">>>>>>>>>> Key: {:12} Value: {}".format( k, page_info["Table"][k] ) ) else: self.notice( ">>>>>>>>>> VA Table info: No Table info " 'returned from getPageInfo "VA"' ) # Just making sure we can actually generate an # instruction with the rand_VA determined above. instr_id = self.genInstruction( self.choice(ldstr_byte_ops), {"LSTarget": rand_VA} ) # Iterate through Size and Align values. Force requires Align to be # a power of 2. This 2nd block tests larger values of size - 32K to 8M. for theSize in [2 ** x for x in range(15, 17)]: for theAlign in [2 ** x for x in range(15, 18)]: if theAlign < theSize: continue for _ in range(loopCount): rand_PA = self.genPA( Size=theSize, Align=theAlign, Type=theType, Bank=theBank, CanAlias=theCanAlias, ) rand_VA = self.genVAforPA( PA=rand_PA, Bank=theBank, FlatMap=0, CanAlias=0, ForceNewAddress=1, Type=theType, Size=theSize, ) self.notice( ">>>>>> Requested Alignment: {:6d} Requested " "Size: {:6d} PA target= {:16X} VA target= " "{:16X}".format(theAlign, theSize, rand_PA, rand_VA) ) instr_id = self.genInstruction( self.choice(ldstr_byte_ops), {"LSTarget": rand_VA} ) MainSequenceClass = MainSequence GenThreadClass = GenThreadRISCV EnvClass = EnvRISCV
deepscm/experiments/medical/ukbb/sem_vi/base_sem_experiment.py
biomedia-mira/deepscm
183
12747525
<reponame>biomedia-mira/deepscm<gh_stars>100-1000 import pyro from typing import Mapping from pyro.infer import SVI, TraceGraph_ELBO from pyro.nn import pyro_method from pyro.optim import Adam from torch.distributions import Independent import torch from pyro.distributions.torch_transform import ComposeTransformModule from pyro.distributions.transforms import ( ComposeTransform, AffineTransform, ExpTransform, Spline ) from pyro.distributions import LowRankMultivariateNormal, MultivariateNormal, Normal, TransformedDistribution from deepscm.arch.medical import Decoder, Encoder from deepscm.distributions.transforms.reshape import ReshapeTransform from deepscm.distributions.transforms.affine import LowerCholeskyAffine from deepscm.distributions.deep import DeepMultivariateNormal, DeepIndepNormal, Conv2dIndepNormal, DeepLowRankMultivariateNormal import numpy as np from deepscm.experiments.medical.base_experiment import BaseCovariateExperiment, BaseSEM, EXPERIMENT_REGISTRY, MODEL_REGISTRY # noqa: F401 class CustomELBO(TraceGraph_ELBO): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.trace_storage = {'model': None, 'guide': None} def _get_trace(self, model, guide, args, kwargs): model_trace, guide_trace = super()._get_trace(model, guide, args, kwargs) self.trace_storage['model'] = model_trace self.trace_storage['guide'] = guide_trace return model_trace, guide_trace class Lambda(torch.nn.Module): def __init__(self, func): super().__init__() self.func = func def forward(self, x): return self.func(x) class BaseVISEM(BaseSEM): context_dim = 0 def __init__(self, latent_dim: int, logstd_init: float = -5, enc_filters: str = '16,32,64,128', dec_filters: str = '128,64,32,16', num_convolutions: int = 2, use_upconv: bool = False, decoder_type: str = 'fixed_var', decoder_cov_rank: int = 10, **kwargs): super().__init__(**kwargs) self.img_shape = (1, 192 // self.downsample, 192 // self.downsample) if self.downsample > 0 else (1, 192, 192) self.latent_dim = latent_dim self.logstd_init = logstd_init self.enc_filters = tuple(int(f.strip()) for f in enc_filters.split(',')) self.dec_filters = tuple(int(f.strip()) for f in dec_filters.split(',')) self.num_convolutions = num_convolutions self.use_upconv = use_upconv self.decoder_type = decoder_type self.decoder_cov_rank = decoder_cov_rank # decoder parts decoder = Decoder( num_convolutions=self.num_convolutions, filters=self.dec_filters, latent_dim=self.latent_dim + self.context_dim, upconv=self.use_upconv, output_size=self.img_shape) if self.decoder_type == 'fixed_var': self.decoder = Conv2dIndepNormal(decoder, 1, 1) torch.nn.init.zeros_(self.decoder.logvar_head.weight) self.decoder.logvar_head.weight.requires_grad = False torch.nn.init.constant_(self.decoder.logvar_head.bias, self.logstd_init) self.decoder.logvar_head.bias.requires_grad = False elif self.decoder_type == 'learned_var': self.decoder = Conv2dIndepNormal(decoder, 1, 1) torch.nn.init.zeros_(self.decoder.logvar_head.weight) self.decoder.logvar_head.weight.requires_grad = False torch.nn.init.constant_(self.decoder.logvar_head.bias, self.logstd_init) self.decoder.logvar_head.bias.requires_grad = True elif self.decoder_type == 'independent_gaussian': self.decoder = Conv2dIndepNormal(decoder, 1, 1) torch.nn.init.zeros_(self.decoder.logvar_head.weight) self.decoder.logvar_head.weight.requires_grad = True torch.nn.init.normal_(self.decoder.logvar_head.bias, self.logstd_init, 1e-1) self.decoder.logvar_head.bias.requires_grad = True elif self.decoder_type == 'multivariate_gaussian': seq = torch.nn.Sequential(decoder, Lambda(lambda x: x.view(x.shape[0], -1))) self.decoder = DeepMultivariateNormal(seq, np.prod(self.img_shape), np.prod(self.img_shape)) elif self.decoder_type == 'sharedvar_multivariate_gaussian': seq = torch.nn.Sequential(decoder, Lambda(lambda x: x.view(x.shape[0], -1))) self.decoder = DeepMultivariateNormal(seq, np.prod(self.img_shape), np.prod(self.img_shape)) torch.nn.init.zeros_(self.decoder.logdiag_head.weight) self.decoder.logdiag_head.weight.requires_grad = False torch.nn.init.zeros_(self.decoder.lower_head.weight) self.decoder.lower_head.weight.requires_grad = False torch.nn.init.normal_(self.decoder.logdiag_head.bias, self.logstd_init, 1e-1) self.decoder.logdiag_head.bias.requires_grad = True elif self.decoder_type == 'lowrank_multivariate_gaussian': seq = torch.nn.Sequential(decoder, Lambda(lambda x: x.view(x.shape[0], -1))) self.decoder = DeepLowRankMultivariateNormal(seq, np.prod(self.img_shape), np.prod(self.img_shape), decoder_cov_rank) elif self.decoder_type == 'sharedvar_lowrank_multivariate_gaussian': seq = torch.nn.Sequential(decoder, Lambda(lambda x: x.view(x.shape[0], -1))) self.decoder = DeepLowRankMultivariateNormal(seq, np.prod(self.img_shape), np.prod(self.img_shape), decoder_cov_rank) torch.nn.init.zeros_(self.decoder.logdiag_head.weight) self.decoder.logdiag_head.weight.requires_grad = False torch.nn.init.zeros_(self.decoder.factor_head.weight) self.decoder.factor_head.weight.requires_grad = False torch.nn.init.normal_(self.decoder.logdiag_head.bias, self.logstd_init, 1e-1) self.decoder.logdiag_head.bias.requires_grad = True else: raise ValueError('unknown ') # encoder parts self.encoder = Encoder(num_convolutions=self.num_convolutions, filters=self.enc_filters, latent_dim=self.latent_dim, input_size=self.img_shape) latent_layers = torch.nn.Sequential(torch.nn.Linear(self.latent_dim + self.context_dim, self.latent_dim), torch.nn.ReLU()) self.latent_encoder = DeepIndepNormal(latent_layers, self.latent_dim, self.latent_dim) # priors self.register_buffer('age_base_loc', torch.zeros([1, ], requires_grad=False)) self.register_buffer('age_base_scale', torch.ones([1, ], requires_grad=False)) self.sex_logits = torch.nn.Parameter(torch.zeros([1, ])) self.register_buffer('ventricle_volume_base_loc', torch.zeros([1, ], requires_grad=False)) self.register_buffer('ventricle_volume_base_scale', torch.ones([1, ], requires_grad=False)) self.register_buffer('brain_volume_base_loc', torch.zeros([1, ], requires_grad=False)) self.register_buffer('brain_volume_base_scale', torch.ones([1, ], requires_grad=False)) self.register_buffer('z_loc', torch.zeros([latent_dim, ], requires_grad=False)) self.register_buffer('z_scale', torch.ones([latent_dim, ], requires_grad=False)) self.register_buffer('x_base_loc', torch.zeros(self.img_shape, requires_grad=False)) self.register_buffer('x_base_scale', torch.ones(self.img_shape, requires_grad=False)) self.register_buffer('age_flow_lognorm_loc', torch.zeros([], requires_grad=False)) self.register_buffer('age_flow_lognorm_scale', torch.ones([], requires_grad=False)) self.register_buffer('ventricle_volume_flow_lognorm_loc', torch.zeros([], requires_grad=False)) self.register_buffer('ventricle_volume_flow_lognorm_scale', torch.ones([], requires_grad=False)) self.register_buffer('brain_volume_flow_lognorm_loc', torch.zeros([], requires_grad=False)) self.register_buffer('brain_volume_flow_lognorm_scale', torch.ones([], requires_grad=False)) # age flow self.age_flow_components = ComposeTransformModule([Spline(1)]) self.age_flow_lognorm = AffineTransform(loc=self.age_flow_lognorm_loc.item(), scale=self.age_flow_lognorm_scale.item()) self.age_flow_constraint_transforms = ComposeTransform([self.age_flow_lognorm, ExpTransform()]) self.age_flow_transforms = ComposeTransform([self.age_flow_components, self.age_flow_constraint_transforms]) # other flows shared components self.ventricle_volume_flow_lognorm = AffineTransform(loc=self.ventricle_volume_flow_lognorm_loc.item(), scale=self.ventricle_volume_flow_lognorm_scale.item()) # noqa: E501 self.ventricle_volume_flow_constraint_transforms = ComposeTransform([self.ventricle_volume_flow_lognorm, ExpTransform()]) self.brain_volume_flow_lognorm = AffineTransform(loc=self.brain_volume_flow_lognorm_loc.item(), scale=self.brain_volume_flow_lognorm_scale.item()) self.brain_volume_flow_constraint_transforms = ComposeTransform([self.brain_volume_flow_lognorm, ExpTransform()]) def __setattr__(self, name, value): super().__setattr__(name, value) if name == 'age_flow_lognorm_loc': self.age_flow_lognorm.loc = self.age_flow_lognorm_loc.item() elif name == 'age_flow_lognorm_scale': self.age_flow_lognorm.scale = self.age_flow_lognorm_scale.item() elif name == 'ventricle_volume_flow_lognorm_loc': self.ventricle_volume_flow_lognorm.loc = self.ventricle_volume_flow_lognorm_loc.item() elif name == 'ventricle_volume_flow_lognorm_scale': self.ventricle_volume_flow_lognorm.scale = self.ventricle_volume_flow_lognorm_scale.item() elif name == 'brain_volume_flow_lognorm_loc': self.brain_volume_flow_lognorm.loc = self.brain_volume_flow_lognorm_loc.item() elif name == 'brain_volume_flow_lognorm_scale': self.brain_volume_flow_lognorm.scale = self.brain_volume_flow_lognorm_scale.item() def _get_preprocess_transforms(self): return super()._get_preprocess_transforms().inv def _get_transformed_x_dist(self, latent): x_pred_dist = self.decoder.predict(latent) x_base_dist = Normal(self.x_base_loc, self.x_base_scale).to_event(3) preprocess_transform = self._get_preprocess_transforms() if isinstance(x_pred_dist, MultivariateNormal) or isinstance(x_pred_dist, LowRankMultivariateNormal): chol_transform = LowerCholeskyAffine(x_pred_dist.loc, x_pred_dist.scale_tril) reshape_transform = ReshapeTransform(self.img_shape, (np.prod(self.img_shape), )) x_reparam_transform = ComposeTransform([reshape_transform, chol_transform, reshape_transform.inv]) elif isinstance(x_pred_dist, Independent): x_pred_dist = x_pred_dist.base_dist x_reparam_transform = AffineTransform(x_pred_dist.loc, x_pred_dist.scale, 3) return TransformedDistribution(x_base_dist, ComposeTransform([x_reparam_transform, preprocess_transform])) @pyro_method def guide(self, x, age, sex, ventricle_volume, brain_volume): raise NotImplementedError() @pyro_method def svi_guide(self, x, age, sex, ventricle_volume, brain_volume): self.guide(x, age, sex, ventricle_volume, brain_volume) @pyro_method def svi_model(self, x, age, sex, ventricle_volume, brain_volume): with pyro.plate('observations', x.shape[0]): pyro.condition(self.model, data={'x': x, 'sex': sex, 'age': age, 'ventricle_volume': ventricle_volume, 'brain_volume': brain_volume})() @pyro_method def infer_z(self, *args, **kwargs): return self.guide(*args, **kwargs) @pyro_method def infer(self, **obs): _required_data = ('x', 'sex', 'age', 'ventricle_volume', 'brain_volume') assert set(obs.keys()) == set(_required_data), 'got: {}'.format(tuple(obs.keys())) z = self.infer_z(**obs) exogeneous = self.infer_exogeneous(z=z, **obs) exogeneous['z'] = z return exogeneous @pyro_method def reconstruct(self, x, age, sex, ventricle_volume, brain_volume, num_particles: int = 1): obs = {'x': x, 'sex': sex, 'age': age, 'ventricle_volume': ventricle_volume, 'brain_volume': brain_volume} z_dist = pyro.poutine.trace(self.guide).get_trace(**obs).nodes['z']['fn'] recons = [] for _ in range(num_particles): z = pyro.sample('z', z_dist) recon, *_ = pyro.poutine.condition( self.sample, data={'sex': sex, 'age': age, 'ventricle_volume': ventricle_volume, 'brain_volume': brain_volume, 'z': z})(x.shape[0]) recons += [recon] return torch.stack(recons).mean(0) @pyro_method def counterfactual(self, obs: Mapping, condition: Mapping = None, num_particles: int = 1): _required_data = ('x', 'sex', 'age', 'ventricle_volume', 'brain_volume') assert set(obs.keys()) == set(_required_data), 'got: {}'.format(tuple(obs.keys())) z_dist = pyro.poutine.trace(self.guide).get_trace(**obs).nodes['z']['fn'] counterfactuals = [] for _ in range(num_particles): z = pyro.sample('z', z_dist) exogeneous = self.infer_exogeneous(z=z, **obs) exogeneous['z'] = z # condition on sex if sex isn't included in 'do' as it's a root node and we don't have the exogeneous noise for it yet... if 'sex' not in condition.keys(): exogeneous['sex'] = obs['sex'] counter = pyro.poutine.do(pyro.poutine.condition(self.sample_scm, data=exogeneous), data=condition)(obs['x'].shape[0]) counterfactuals += [counter] return {k: v for k, v in zip(('x', 'z', 'sex', 'age', 'ventricle_volume', 'brain_volume'), (torch.stack(c).mean(0) for c in zip(*counterfactuals)))} @classmethod def add_arguments(cls, parser): parser = super().add_arguments(parser) parser.add_argument('--latent_dim', default=100, type=int, help="latent dimension of model (default: %(default)s)") parser.add_argument('--logstd_init', default=-5, type=float, help="init of logstd (default: %(default)s)") parser.add_argument('--enc_filters', default='16,24,32,64,128', type=str, help="number of filters to use (default: %(default)s)") parser.add_argument('--dec_filters', default='128,64,32,24,16', type=str, help="number of filters to use (default: %(default)s)") parser.add_argument('--num_convolutions', default=3, type=int, help="number of convolutions to build model (default: %(default)s)") parser.add_argument('--use_upconv', default=False, action='store_true', help="toogle upconv (default: %(default)s)") parser.add_argument( '--decoder_type', default='fixed_var', help="var type (default: %(default)s)", choices=['fixed_var', 'learned_var', 'independent_gaussian', 'sharedvar_multivariate_gaussian', 'multivariate_gaussian', 'sharedvar_lowrank_multivariate_gaussian', 'lowrank_multivariate_gaussian']) parser.add_argument('--decoder_cov_rank', default=10, type=int, help="rank for lowrank cov approximation (requires lowrank decoder) (default: %(default)s)") # noqa: E501 return parser class SVIExperiment(BaseCovariateExperiment): def __init__(self, hparams, pyro_model: BaseSEM): super().__init__(hparams, pyro_model) self.svi_loss = CustomELBO(num_particles=hparams.num_svi_particles) self._build_svi() def _build_svi(self, loss=None): def per_param_callable(module_name, param_name): params = {'eps': 1e-5, 'amsgrad': self.hparams.use_amsgrad, 'weight_decay': self.hparams.l2} if 'flow_components' in module_name or 'sex_logits' in param_name: params['lr'] = self.hparams.pgm_lr else: params['lr'] = self.hparams.lr print(f'building opt for {module_name} - {param_name} with p: {params}') return params if loss is None: loss = self.svi_loss if self.hparams.use_cf_guide: def guide(*args, **kwargs): return self.pyro_model.counterfactual_guide(*args, **kwargs, counterfactual_type=self.hparams.cf_elbo_type) self.svi = SVI(self.pyro_model.svi_model, guide, Adam(per_param_callable), loss) else: self.svi = SVI(self.pyro_model.svi_model, self.pyro_model.svi_guide, Adam(per_param_callable), loss) self.svi.loss_class = loss def backward(self, *args, **kwargs): pass # No loss to backpropagate since we're using Pyro's optimisation machinery def print_trace_updates(self, batch): with torch.no_grad(): print('Traces:\n' + ('#' * 10)) guide_trace = pyro.poutine.trace(self.pyro_model.svi_guide).get_trace(**batch) model_trace = pyro.poutine.trace(pyro.poutine.replay(self.pyro_model.svi_model, trace=guide_trace)).get_trace(**batch) guide_trace = pyro.poutine.util.prune_subsample_sites(guide_trace) model_trace = pyro.poutine.util.prune_subsample_sites(model_trace) model_trace.compute_log_prob() guide_trace.compute_score_parts() print(f'model: {model_trace.nodes.keys()}') for name, site in model_trace.nodes.items(): if site["type"] == "sample": fn = site['fn'] if isinstance(fn, Independent): fn = fn.base_dist print(f'{name}: {fn} - {fn.support}') log_prob_sum = site["log_prob_sum"] is_obs = site["is_observed"] print(f'model - log p({name}) = {log_prob_sum} | obs={is_obs}') if torch.isnan(log_prob_sum): value = site['value'][0] conc0 = fn.concentration0 conc1 = fn.concentration1 print(f'got:\n{value}\n{conc0}\n{conc1}') raise Exception() print(f'guide: {guide_trace.nodes.keys()}') for name, site in guide_trace.nodes.items(): if site["type"] == "sample": fn = site['fn'] if isinstance(fn, Independent): fn = fn.base_dist print(f'{name}: {fn} - {fn.support}') entropy = site["score_parts"].entropy_term.sum() is_obs = site["is_observed"] print(f'guide - log q({name}) = {entropy} | obs={is_obs}') def get_trace_metrics(self, batch): metrics = {} model = self.svi.loss_class.trace_storage['model'] guide = self.svi.loss_class.trace_storage['guide'] metrics['log p(x)'] = model.nodes['x']['log_prob'].mean() metrics['log p(age)'] = model.nodes['age']['log_prob'].mean() metrics['log p(sex)'] = model.nodes['sex']['log_prob'].mean() metrics['log p(ventricle_volume)'] = model.nodes['ventricle_volume']['log_prob'].mean() metrics['log p(brain_volume)'] = model.nodes['brain_volume']['log_prob'].mean() metrics['p(z)'] = model.nodes['z']['log_prob'].mean() metrics['q(z)'] = guide.nodes['z']['log_prob'].mean() metrics['log p(z) - log q(z)'] = metrics['p(z)'] - metrics['q(z)'] return metrics def prep_batch(self, batch): x = batch['image'] * 255. age = batch['age'].unsqueeze(1).float() sex = batch['sex'].unsqueeze(1).float() ventricle_volume = batch['ventricle_volume'].unsqueeze(1).float() brain_volume = batch['brain_volume'].unsqueeze(1).float() x = x.float() if self.training: x += torch.rand_like(x) return {'x': x, 'age': age, 'sex': sex, 'ventricle_volume': ventricle_volume, 'brain_volume': brain_volume} def training_step(self, batch, batch_idx): batch = self.prep_batch(batch) if self.hparams.validate: print('Validation:') self.print_trace_updates(batch) loss = self.svi.step(**batch) metrics = self.get_trace_metrics(batch) if np.isnan(loss): self.logger.experiment.add_text('nan', f'nand at {self.current_epoch}:\n{metrics}') raise ValueError('loss went to nan with metrics:\n{}'.format(metrics)) tensorboard_logs = {('train/' + k): v for k, v in metrics.items()} tensorboard_logs['train/loss'] = loss self.log_dict(tensorboard_logs) return torch.Tensor([loss]) def validation_step(self, batch, batch_idx): batch = self.prep_batch(batch) loss = self.svi.evaluate_loss(**batch) metrics = self.get_trace_metrics(batch) return {'loss': loss, **metrics} def test_step(self, batch, batch_idx): batch = self.prep_batch(batch) loss = self.svi.evaluate_loss(**batch) metrics = self.get_trace_metrics(batch) samples = self.build_test_samples(batch) return {'loss': loss, **metrics, 'samples': samples} @classmethod def add_arguments(cls, parser): parser = super().add_arguments(parser) parser.add_argument('--num_svi_particles', default=4, type=int, help="number of particles to use for ELBO (default: %(default)s)") parser.add_argument('--num_sample_particles', default=32, type=int, help="number of particles to use for MC sampling (default: %(default)s)") parser.add_argument('--use_cf_guide', default=False, action='store_true', help="whether to use counterfactual guide (default: %(default)s)") parser.add_argument( '--cf_elbo_type', default=-1, choices=[-1, 0, 1, 2], help="-1: randomly select per batch, 0: shuffle thickness, 1: shuffle intensity, 2: shuffle both (default: %(default)s)") return parser EXPERIMENT_REGISTRY[SVIExperiment.__name__] = SVIExperiment
src/prefect/cli/kv_store.py
concreted/prefect
8,633
12747635
<reponame>concreted/prefect<filename>src/prefect/cli/kv_store.py import sys import click from prefect import config from prefect.backend import kv_store from prefect.backend.kv_store import NON_CLOUD_BACKEND_ERROR_MESSAGE from prefect.cli.build_register import ( handle_terminal_error, TerminalError, log_exception, ) @click.group() def kv(): """ Interact with Prefect Cloud KV Store \b Usage: $ prefect kv [COMMAND] """ if config.backend != "cloud": click.secho(NON_CLOUD_BACKEND_ERROR_MESSAGE, fg="red") sys.exit(1) @kv.command(name="set") @click.argument("key") @click.argument("value") @handle_terminal_error def set_command(key, value): """ Set a key value pair, overriding existing values if key exists \b Arguments: key TEXT Key to set value TEXT Value associated with key to set """ try: kv_store.set_key_value(key=key, value=value) click.secho("Key value pair set successfully", fg="green") except Exception as exc: log_exception(exc) raise TerminalError("An error occurred setting the key value pair") @kv.command(name="get") @click.argument("key") @handle_terminal_error def get_command(key): """ Get the value of a key \b Arguments: key TEXT Key to get """ try: result = kv_store.get_key_value(key=key) click.secho(f"Key {key!r} has value {result!r}", fg="green") except Exception as exc: log_exception(exc) raise TerminalError(f"Error retrieving value for key {key!r}") @kv.command(name="delete") @click.argument("key") @handle_terminal_error def delete_command(key): """ Delete a key value pair \b Arguments: key TEXT Key to delete """ try: kv_store.delete_key(key=key) click.secho(f"Key {key!r} has been deleted", fg="green") except Exception as exc: log_exception(exc) raise TerminalError("An error occurred deleting the key") @kv.command(name="list") @handle_terminal_error def list_command(): """ List all key value pairs """ try: result = kv_store.list_keys() if result: click.secho("\n".join(result), fg="green") else: click.secho("No keys found", fg="yellow") except Exception as exc: log_exception(exc) raise TerminalError("An error occurred when listing keys")
.modules/.CMSeeK/deepscans/joom/check_debug.py
termux-one/EasY_HaCk
1,103
12747636
#!/usr/bin/python3 # -*- coding: utf-8 -*- # This is a part of CMSeeK, check the LICENSE file for more information # Copyright (c) 2018 Tuhinshubhra import cmseekdb.basic as cmseek # I know there is no reason at all to create a separate module for this.. there's something that's going to be added here so.. trust me! def start(source): # print(source) if 'Joomla! Debug Console' in source or 'xdebug.org/docs/all_settings' in source: cmseek.success('Debug mode on!') return '1' else: return '0'
core/tests/test_polyaxonfile/test_patch_specification.py
admariner/polyaxon
3,200
12747643
#!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from polyaxon import pkg, types from polyaxon.config_reader.utils import deep_update from polyaxon.containers.names import MAIN_JOB_CONTAINER from polyaxon.polyaxonfile import OperationSpecification from polyaxon.polyflow import V1Component, V1EventKind, V1Operation, V1RunKind from polyaxon.schemas.patch_strategy import V1PatchStrategy from polyaxon.utils.tz_utils import now from tests.utils import BaseTestCase @pytest.mark.polyaxonfile_mark class TestPatchSpecifications(BaseTestCase): DEFAULT_INT_VALUE = 2 DEFAULT_DT_VALUE = now().isoformat() DEFAULT_STR_VALUE = "test" PATCH_INT_VALUE = 13 PATCH_DT_VALUE = now().isoformat() PATCH_STR_VALUE = "patch" def get_empty_operation(self): return OperationSpecification.read( {"version": pkg.SCHEMA_VERSION, "hubRef": "test"} ) def get_full_operation(self): return OperationSpecification.read( { "version": pkg.SCHEMA_VERSION, "name": self.DEFAULT_STR_VALUE, "description": self.DEFAULT_STR_VALUE, "tags": [ "{}1".format(self.DEFAULT_STR_VALUE), "{}2".format(self.DEFAULT_STR_VALUE), ], "presets": [self.DEFAULT_STR_VALUE], "queue": "{}/{}".format(self.DEFAULT_STR_VALUE, self.DEFAULT_STR_VALUE), "cache": { "disable": False, "ttl": self.DEFAULT_INT_VALUE, }, "termination": { "maxRetries": self.DEFAULT_INT_VALUE, "ttl": self.DEFAULT_INT_VALUE, "timeout": self.DEFAULT_INT_VALUE, }, "plugins": { "auth": False, "shm": False, "collectLogs": False, "collectArtifacts": False, "collectResources": False, }, "build": { "params": { "patch-key1": {"value": "{}2".format(self.DEFAULT_STR_VALUE)}, "patch-key2": {"value": "{}1".format(self.DEFAULT_STR_VALUE)}, }, "runPatch": { "init": [ { "connection": self.DEFAULT_STR_VALUE, "git": {"revision": self.DEFAULT_STR_VALUE}, } ], }, "hubRef": self.DEFAULT_STR_VALUE, }, "hooks": [ { "hubRef": "{}1".format(self.DEFAULT_STR_VALUE), "trigger": "succeeded", "connection": "{}1".format(self.DEFAULT_STR_VALUE), }, { "connection": "{}2".format(self.DEFAULT_STR_VALUE), "hubRef": "{}2".format(self.DEFAULT_STR_VALUE), }, ], "params": { "patch-key1": {"value": "{}2".format(self.DEFAULT_STR_VALUE)}, "patch-key2": {"value": "{}1".format(self.DEFAULT_STR_VALUE)}, }, "runPatch": { "init": [ { "connection": self.DEFAULT_STR_VALUE, "git": {"revision": self.DEFAULT_STR_VALUE}, } ], "connections": [ "{}1".format(self.DEFAULT_STR_VALUE), "{}2".format(self.DEFAULT_STR_VALUE), ], "container": { "resources": {"requests": {"cpu": self.DEFAULT_INT_VALUE}} }, "environment": { "nodeSelector": {"polyaxon": "core"}, "serviceAccountName": self.DEFAULT_STR_VALUE, "imagePullSecrets": [ "{}1".format(self.DEFAULT_STR_VALUE), "{}2".format(self.DEFAULT_STR_VALUE), ], }, }, "schedule": { "kind": "cron", "cron": "0 0 * * *", "startAt": self.DEFAULT_DT_VALUE, "endAt": self.DEFAULT_DT_VALUE, }, "events": [ { "kinds": [V1EventKind.RUN_STATUS_SCHEDULED], "ref": "{}1".format(self.DEFAULT_STR_VALUE), }, { "kinds": [V1EventKind.RUN_STATUS_SCHEDULED], "ref": "{}2".format(self.DEFAULT_STR_VALUE), }, ], "joins": [ { "query": "{}1".format(self.DEFAULT_STR_VALUE), "sort": "{}1".format(self.DEFAULT_STR_VALUE), "params": { "u": {"value": "{}1".format(self.DEFAULT_STR_VALUE)}, }, }, { "query": "{}2".format(self.DEFAULT_STR_VALUE), "sort": "{}2".format(self.DEFAULT_STR_VALUE), "params": { "v": { "value": "{}2".format(self.DEFAULT_STR_VALUE), "contextOnly": True, }, }, }, ], "matrix": { "concurrency": self.DEFAULT_INT_VALUE, "kind": "mapping", "values": [ {"a": self.DEFAULT_INT_VALUE}, {"b": self.DEFAULT_INT_VALUE}, ], }, "dependencies": [ "{}1".format(self.DEFAULT_STR_VALUE), "{}2".format(self.DEFAULT_STR_VALUE), ], "trigger": "all_succeeded", "conditions": self.DEFAULT_STR_VALUE, "skipOnUpstreamSkip": True, "hubRef": self.DEFAULT_STR_VALUE, } ) def get_full_operation_with_component(self): operation = self.get_full_operation() config_dict = { "inputs": [{"name": "param1", "type": types.INT}], "run": {"kind": V1RunKind.JOB, "container": {"image": "test"}}, } operation.component = V1Component.from_dict(config_dict) return operation def get_full_preset(self): return OperationSpecification.read( { "version": pkg.SCHEMA_VERSION, "name": self.PATCH_STR_VALUE, "isPreset": True, "description": self.PATCH_STR_VALUE, "tags": [ "{}1".format(self.PATCH_STR_VALUE), "{}2".format(self.PATCH_STR_VALUE), ], "presets": [self.PATCH_STR_VALUE], "queue": "{}/{}".format(self.PATCH_STR_VALUE, self.PATCH_STR_VALUE), "cache": { "disable": True, "ttl": self.PATCH_INT_VALUE, }, "termination": { "maxRetries": self.PATCH_INT_VALUE, "ttl": self.PATCH_INT_VALUE, "timeout": self.PATCH_INT_VALUE, }, "plugins": { "auth": True, "shm": True, "collectLogs": True, "collectArtifacts": True, "collectResources": True, }, "build": { "params": { "patch-key1": {"value": "{}2".format(self.PATCH_STR_VALUE)}, "patch-key2": {"value": "{}1".format(self.PATCH_STR_VALUE)}, }, "runPatch": { "init": [ { "connection": self.PATCH_STR_VALUE, "git": {"revision": self.PATCH_STR_VALUE}, } ], }, "hubRef": self.PATCH_STR_VALUE, }, "hooks": [ { "hubRef": "{}1".format(self.PATCH_STR_VALUE), "trigger": "succeeded", "connection": "{}1".format(self.PATCH_STR_VALUE), }, { "connection": "{}1".format(self.PATCH_STR_VALUE), "hubRef": "{}2".format(self.PATCH_STR_VALUE), }, ], "params": { "patch-key1": {"value": "{}2".format(self.PATCH_STR_VALUE)}, "patch-key2": {"value": "{}1".format(self.PATCH_STR_VALUE)}, }, "runPatch": { "init": [ {"connection": self.PATCH_STR_VALUE, "git": {"revision": "dev"}} ], "connections": [ "{}1".format(self.PATCH_STR_VALUE), "{}2".format(self.PATCH_STR_VALUE), ], "container": { "resources": { "requests": { "cpu": self.PATCH_INT_VALUE, "memory": self.PATCH_INT_VALUE, } } }, "environment": { "nodeSelector": {"polyaxon-patch": "core"}, "serviceAccountName": self.PATCH_STR_VALUE, "imagePullSecrets": [ "{}1".format(self.PATCH_STR_VALUE), "{}2".format(self.PATCH_STR_VALUE), ], }, }, "schedule": {"kind": "datetime", "startAt": self.PATCH_DT_VALUE}, "events": [ { "kinds": [V1EventKind.RUN_STATUS_DONE], "ref": self.PATCH_STR_VALUE, }, { "kinds": [V1EventKind.RUN_STATUS_DONE], "ref": self.PATCH_STR_VALUE, }, ], "joins": [ { "query": self.PATCH_STR_VALUE, "sort": self.PATCH_STR_VALUE, "params": { "u": {"value": self.PATCH_STR_VALUE}, }, }, { "query": self.PATCH_STR_VALUE, "sort": self.PATCH_STR_VALUE, "params": { "x": {"value": self.PATCH_STR_VALUE, "contextOnly": True}, }, }, ], "matrix": { "concurrency": self.PATCH_INT_VALUE, "kind": "mapping", "values": [ {"a": self.PATCH_INT_VALUE}, {"c": self.PATCH_INT_VALUE}, ], }, "dependencies": [ "{}1".format(self.PATCH_STR_VALUE), "{}2".format(self.PATCH_STR_VALUE), ], "trigger": "all_succeeded", "conditions": "", "skipOnUpstreamSkip": True, } ) def get_empty_preset(self): return OperationSpecification.read( { "version": pkg.SCHEMA_VERSION, "name": None, "isPreset": True, "description": "", "tags": [], "presets": [], "queue": "", "cache": {}, "termination": {}, "plugins": {}, "build": None, "hooks": [], "params": {}, "runPatch": { "init": [], "connections": [], "container": {}, "environment": { "nodeSelector": {}, "serviceAccountName": "", "imagePullSecrets": [], }, }, "schedule": None, "events": [], "joins": [], "matrix": None, "dependencies": [], "trigger": None, "conditions": None, "skipOnUpstreamSkip": None, } ) def test_patch_replace_empty_values_with_empty_preset(self): operation = self.get_empty_operation() tmp_operation = self.get_empty_operation() result = tmp_operation.patch( V1Operation(is_preset=True), strategy=V1PatchStrategy.REPLACE ) assert result.to_dict() == operation.to_dict() tmp_operation = self.get_empty_operation() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.REPLACE) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref expected = preset.to_dict() expected.pop("isPreset") assert result_dict == expected def test_patch_replace_empty_values_with_full_preset(self): operation = self.get_empty_operation() tmp_operation = self.get_empty_operation() preset = self.get_full_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.REPLACE) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref expected = preset.to_dict() expected.pop("isPreset") assert result_dict == expected def test_patch_replace_full_values_with_empty_preset(self): operation = self.get_full_operation() tmp_operation = self.get_full_operation() result = tmp_operation.patch( V1Operation(is_preset=True), strategy=V1PatchStrategy.REPLACE ) assert result.to_dict() == operation.to_dict() tmp_operation = self.get_full_operation() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.REPLACE) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref assert result_dict.pop("name") == operation.name assert result_dict.pop("trigger") == operation.trigger assert result_dict.pop("conditions") == operation.conditions assert result_dict.pop("skipOnUpstreamSkip") == operation.skip_on_upstream_skip assert result_dict.pop("schedule") == operation.schedule.to_dict() assert result_dict.pop("conditions", None) is None assert result_dict.pop("matrix") == operation.matrix.to_dict() assert result_dict.pop("cache") == operation.cache.to_dict() assert result_dict.pop("plugins") == operation.plugins.to_dict() assert result_dict.pop("termination") == operation.termination.to_dict() assert result_dict.pop("build", None) is not None expected = preset.to_dict() expected.pop("isPreset") expected.pop("cache") expected.pop("plugins") expected.pop("termination") assert result_dict == expected def test_patch_replace_full_values_with_full_preset(self): operation = self.get_full_operation() tmp_operation = self.get_full_operation() preset = self.get_full_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.REPLACE) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref expected = preset.to_dict() expected.pop("isPreset") assert result_dict == expected def test_patch_isnull_empty_values_with_empty_preset(self): operation = self.get_empty_operation() tmp_operation = self.get_empty_operation() result = tmp_operation.patch( V1Operation(is_preset=True), strategy=V1PatchStrategy.ISNULL ) assert result.to_dict() == operation.to_dict() tmp_operation = self.get_empty_operation() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.ISNULL) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref expected = preset.to_dict() expected.pop("isPreset") assert result_dict == expected def test_patch_isnull_empty_values_with_full_preset(self): operation = self.get_empty_operation() tmp_operation = self.get_empty_operation() result = tmp_operation.patch( V1Operation(is_preset=True), strategy=V1PatchStrategy.ISNULL ) assert result.to_dict() == operation.to_dict() tmp_operation = self.get_empty_operation() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.ISNULL) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref expected = preset.to_dict() expected.pop("isPreset") assert result_dict == expected def test_patch_isnull_full_values_with_empty_preset(self): operation = self.get_full_operation() tmp_operation = self.get_full_operation() result = tmp_operation.patch( V1Operation(is_preset=True), strategy=V1PatchStrategy.ISNULL ) assert result.to_dict() == operation.to_dict() tmp_operation = self.get_full_operation() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.ISNULL) assert result.to_dict() == operation.to_dict() def test_patch_isnull_full_values_with_full_preset(self): operation = self.get_full_operation() tmp_operation = self.get_full_operation() preset = self.get_full_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.ISNULL) assert result.to_dict() == operation.to_dict() def test_patch_post_merge_empty_values_with_empty_preset(self): operation = self.get_empty_operation() tmp_operation = self.get_empty_operation() result = tmp_operation.patch( V1Operation(is_preset=True), strategy=V1PatchStrategy.POST_MERGE ) assert result.to_dict() == operation.to_dict() tmp_operation = self.get_empty_operation() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.POST_MERGE) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref expected = preset.to_dict() expected.pop("isPreset") assert result_dict == expected def test_patch_post_merge_empty_values_with_full_preset(self): operation = self.get_empty_operation() tmp_operation = self.get_empty_operation() preset = self.get_full_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.POST_MERGE) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref expected = preset.to_dict() expected.pop("isPreset") assert result_dict == expected def test_patch_post_merge_full_values_with_empty_preset(self): operation = self.get_full_operation() tmp_operation = self.get_full_operation() result = tmp_operation.patch( V1Operation(is_preset=True), strategy=V1PatchStrategy.POST_MERGE ) assert result.to_dict() == operation.to_dict() tmp_operation = self.get_full_operation() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.POST_MERGE) result_dict = result.to_dict() assert result_dict["description"] == "" result_dict["description"] = self.DEFAULT_STR_VALUE assert result_dict["queue"] == "" result_dict["queue"] = "{}/{}".format( self.DEFAULT_STR_VALUE, self.DEFAULT_STR_VALUE ) result_dict["presets"] = [self.DEFAULT_STR_VALUE] # Since there's no component to validate the runPatch section it stays the same assert result_dict == operation.to_dict() operation = self.get_full_operation_with_component() tmp_operation = self.get_full_operation_with_component() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.POST_MERGE) result_dict = result.to_dict() assert result_dict["description"] == "" result_dict["description"] = self.DEFAULT_STR_VALUE assert result_dict["queue"] == "" result_dict["queue"] = "{}/{}".format( self.DEFAULT_STR_VALUE, self.DEFAULT_STR_VALUE ) # Run patch was validated and merged assert result_dict["runPatch"]["environment"]["serviceAccountName"] == "" result_dict["runPatch"]["environment"][ "serviceAccountName" ] = operation.run_patch["environment"]["serviceAccountName"] assert result_dict["runPatch"]["container"].pop("name") == MAIN_JOB_CONTAINER assert result_dict == operation.to_dict() def test_patch_post_merge_full_values_with_full_preset(self): operation = self.get_full_operation() tmp_operation = self.get_full_operation() preset = self.get_full_preset() expected = preset.to_dict() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.POST_MERGE) result_dict = result.to_dict() expected.pop("isPreset") expected["tags"] = operation.tags + expected["tags"] expected["presets"] = operation.presets + expected["presets"] expected["hooks"] = [i.to_dict() for i in operation.hooks] + expected["hooks"] expected["dependencies"] = operation.dependencies + expected["dependencies"] expected["events"] = [i.to_dict() for i in operation.events] + expected[ "events" ] expected["joins"] = [i.to_dict() for i in operation.joins] + expected["joins"] expected["matrix"]["values"] = ( operation.matrix.values + expected["matrix"]["values"] ) # Since there's no component to validate the runPatch section it stays the same expected["runPatch"] = operation.run_patch assert result_dict.pop("hubRef") == operation.hub_ref assert result_dict == expected operation = self.get_full_operation_with_component() tmp_operation = self.get_full_operation_with_component() preset = self.get_full_preset() expected = preset.to_dict() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.POST_MERGE) result_dict = result.to_dict() expected.pop("isPreset") expected["tags"] = operation.tags + expected["tags"] expected["presets"] = operation.presets + expected["presets"] expected["hooks"] = [i.to_dict() for i in operation.hooks] + expected["hooks"] expected["dependencies"] = operation.dependencies + expected["dependencies"] expected["events"] = [i.to_dict() for i in operation.events] + expected[ "events" ] expected["joins"] = [i.to_dict() for i in operation.joins] + expected["joins"] expected["matrix"]["values"] = ( operation.matrix.values + expected["matrix"]["values"] ) # Run patch was validated and merged assert result_dict["runPatch"]["container"].pop("name") == MAIN_JOB_CONTAINER assert ( result_dict["runPatch"]["connections"] == operation.run_patch["connections"] + expected["runPatch"]["connections"] ) result_dict["runPatch"]["connections"] = expected["runPatch"]["connections"] assert ( result_dict["runPatch"]["init"] == operation.run_patch["init"] + expected["runPatch"]["init"] ) result_dict["runPatch"]["init"] = expected["runPatch"]["init"] assert ( result_dict["runPatch"]["environment"]["imagePullSecrets"] == operation.run_patch["environment"]["imagePullSecrets"] + expected["runPatch"]["environment"]["imagePullSecrets"] ) result_dict["runPatch"]["environment"]["imagePullSecrets"] = expected[ "runPatch" ]["environment"]["imagePullSecrets"] assert result_dict["runPatch"]["environment"]["nodeSelector"] == { **operation.run_patch["environment"]["nodeSelector"], **expected["runPatch"]["environment"]["nodeSelector"], } result_dict["runPatch"]["environment"]["nodeSelector"] = expected["runPatch"][ "environment" ]["nodeSelector"] assert result_dict.pop("hubRef") == operation.hub_ref assert result_dict.pop("component") == operation.component.to_dict() expected["runPatch"]["container"].pop("name") assert result_dict == expected def test_patch_pre_merge_empty_values_with_empty_preset(self): operation = self.get_empty_operation() tmp_operation = self.get_empty_operation() result = tmp_operation.patch( V1Operation(is_preset=True), strategy=V1PatchStrategy.PRE_MERGE ) assert result.to_dict() == operation.to_dict() tmp_operation = self.get_empty_operation() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.PRE_MERGE) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref expected = preset.to_dict() expected.pop("isPreset") assert result_dict == expected def test_patch_pre_merge_empty_values_with_full_preset(self): operation = self.get_empty_operation() tmp_operation = self.get_empty_operation() preset = self.get_full_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.PRE_MERGE) result_dict = result.to_dict() assert result_dict.pop("hubRef") == operation.hub_ref expected = preset.to_dict() expected.pop("isPreset") assert result_dict == expected def test_patch_pre_merge_full_values_with_empty_preset(self): operation = self.get_full_operation() tmp_operation = self.get_full_operation() result = tmp_operation.patch( V1Operation(is_preset=True), strategy=V1PatchStrategy.PRE_MERGE ) assert result.to_dict() == operation.to_dict() tmp_operation = self.get_full_operation() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.PRE_MERGE) result_dict = result.to_dict() # Since there's no component to validate the runPatch section it stays the same assert result_dict == operation.to_dict() operation = self.get_full_operation_with_component() tmp_operation = self.get_full_operation_with_component() preset = self.get_empty_preset() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.PRE_MERGE) result_dict = result.to_dict() assert result_dict["runPatch"]["container"].pop("name") == MAIN_JOB_CONTAINER # Run patch was validated and merged assert result_dict == operation.to_dict() def test_patch_pre_merge_full_values_with_full_preset(self): operation = self.get_full_operation() tmp_operation = self.get_full_operation() preset = self.get_full_preset() preset_dict = preset.to_dict() expected = operation.to_dict() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.PRE_MERGE) result_dict = result.to_dict() expected["tags"] = preset_dict["tags"] + operation.tags expected["presets"] = preset_dict["presets"] + operation.presets expected["hooks"] = preset_dict["hooks"] + [ i.to_dict() for i in operation.hooks ] expected["dependencies"] = preset_dict["dependencies"] + operation.dependencies expected["events"] = preset_dict["events"] + [ i.to_dict() for i in operation.events ] expected["joins"] = preset_dict["joins"] + [ i.to_dict() for i in operation.joins ] expected["matrix"]["values"] = ( preset_dict["matrix"]["values"] + operation.matrix.values ) assert result_dict == expected operation = self.get_full_operation_with_component() tmp_operation = self.get_full_operation_with_component() preset = self.get_full_preset() preset_dict = preset.to_dict() expected = operation.to_dict() result = tmp_operation.patch(preset, strategy=V1PatchStrategy.PRE_MERGE) result_dict = result.to_dict() expected["tags"] = preset_dict["tags"] + operation.tags expected["presets"] = preset_dict["presets"] + operation.presets expected["hooks"] = preset_dict["hooks"] + [ i.to_dict() for i in operation.hooks ] expected["dependencies"] = preset_dict["dependencies"] + operation.dependencies expected["events"] = preset_dict["events"] + [ i.to_dict() for i in operation.events ] expected["joins"] = preset_dict["joins"] + [ i.to_dict() for i in operation.joins ] expected["matrix"]["values"] = ( preset_dict["matrix"]["values"] + operation.matrix.values ) # Run patch was validated and merged assert result_dict["runPatch"]["container"].pop("name") == MAIN_JOB_CONTAINER assert result_dict["runPatch"]["container"].pop("resources") == deep_update( preset_dict["runPatch"]["container"]["resources"], expected["runPatch"]["container"]["resources"], ) result_dict["runPatch"]["container"]["resources"] = expected["runPatch"][ "container" ]["resources"] assert ( result_dict["runPatch"]["connections"] == preset_dict["runPatch"]["connections"] + expected["runPatch"]["connections"] ) result_dict["runPatch"]["connections"] = expected["runPatch"]["connections"] assert ( result_dict["runPatch"]["init"] == preset_dict["runPatch"]["init"] + expected["runPatch"]["init"] ) result_dict["runPatch"]["init"] = expected["runPatch"]["init"] assert ( result_dict["runPatch"]["environment"]["imagePullSecrets"] == preset_dict["runPatch"]["environment"]["imagePullSecrets"] + expected["runPatch"]["environment"]["imagePullSecrets"] ) result_dict["runPatch"]["environment"]["imagePullSecrets"] = expected[ "runPatch" ]["environment"]["imagePullSecrets"] assert result_dict["runPatch"]["environment"]["nodeSelector"] == { **preset_dict["runPatch"]["environment"]["nodeSelector"], **expected["runPatch"]["environment"]["nodeSelector"], } result_dict["runPatch"]["environment"]["nodeSelector"] = expected["runPatch"][ "environment" ]["nodeSelector"] assert result_dict == expected class BaseTestApplyPreset(BaseTestCase): def setUp(self): super().setUp() op_spec = OperationSpecification.read( { "version": 1.1, "kind": "operation", "name": "foo", "description": "a description", "tags": ["tag1", "tag2"], "trigger": "all_succeeded", "component": { "name": "build-template", "tags": ["tag1", "tag2"], "run": { "kind": V1RunKind.JOB, "container": {"image": "test"}, "init": [{"connection": "foo", "git": {"revision": "dev"}}], }, }, } ) self.compiled_operation = OperationSpecification.compile_operation(op_spec) self.preset = {"runPatch": {}, "patchStrategy": V1PatchStrategy.POST_MERGE} @pytest.mark.polyaxonfile_mark class TestApplyPresetEnvironment(BaseTestApplyPreset): def assert_environment(self, environment1, environment2): self.preset["runPatch"]["environment"] = environment1 assert self.compiled_operation.run.environment is None assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.run.environment is not None env = self.compiled_operation.run.environment.to_dict() assert env == environment1 # Updating the preset self.preset["patchStrategy"] = V1PatchStrategy.REPLACE self.preset["runPatch"]["environment"] = environment2 assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.run.environment is not None env = self.compiled_operation.run.environment.to_dict() assert env == environment2 def test_compile_injects_labels(self): environment1 = {"labels": {"label1": "value1"}} environment2 = {"labels": {"label1": "value11"}} self.assert_environment(environment1, environment2) # Updating the preset environment3 = {"labels": {"label2": "value2"}} self.preset["runPatch"]["environment"] = environment3 env = self.compiled_operation.run.environment.to_dict() assert env == environment2 assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.run.environment is not None env = self.compiled_operation.run.environment.to_dict() assert env == {"labels": {"label2": "value2"}} def test_compile_injects_annotations(self): environment1 = {"annotations": {"anno1": "value1"}} environment2 = {"annotations": {"anno1": "value11"}} self.assert_environment(environment1, environment2) # Updating the preset environment3 = {"annotations": {"anno2": "value2"}} self.preset["runPatch"]["environment"] = environment3 assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.run.environment is not None env = self.compiled_operation.run.environment.to_dict() assert env == {"annotations": {"anno2": "value2"}} def test_compile_injects_node_selector(self): environment1 = {"nodeSelector": {"plx": "selector1"}} environment2 = {"nodeSelector": {"plx": "selector2"}} self.assert_environment(environment1, environment2) def test_compile_injects_affinity(self): environment1 = {"affinity": {"podAffinity": {}}} environment2 = {"affinity": {"podAffinity": {"foo": "bar"}}} self.assert_environment(environment1, environment2) def test_compile_injects_tolerations(self): environment1 = {"tolerations": [{"key": "key1", "operator": "Exists"}]} environment2 = {"tolerations": [{"key": "key2", "operator": "NotExists"}]} self.assert_environment(environment1, environment2) def test_compile_injects_service_account_name(self): environment1 = {"serviceAccountName": "sa1"} environment2 = {"serviceAccountName": "sa2"} self.assert_environment(environment1, environment2) def test_compile_injects_image_pull_secrets(self): environment1 = {"imagePullSecrets": ["ps1", "ps2"]} environment2 = {"imagePullSecrets": ["ps3"]} self.assert_environment(environment1, environment2) def test_compile_injects_security_context(self): environment1 = {"securityContext": {"runAsUser": 1000, "runAsGroup": 3000}} environment2 = {"securityContext": {"runAsUser": 100, "runAsGroup": 300}} self.assert_environment(environment1, environment2) @pytest.mark.polyaxonfile_mark class TestApplyPresetPlugins(BaseTestApplyPreset): def assert_plugins(self, plugins1, plugins2): self.preset["plugins"] = plugins1 assert self.compiled_operation.plugins is None assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.plugins is not None env = self.compiled_operation.plugins.to_dict() assert env == plugins1 # Updating the preset self.preset["plugins"] = plugins2 plugins = self.compiled_operation.plugins.to_dict() assert plugins == plugins1 assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.plugins is not None plugins = self.compiled_operation.plugins.to_dict() assert plugins == plugins2 def test_compile_injects_log_level(self): plugins = {"logLevel": "DEBUG"} plugins2 = {"logLevel": "INFO"} self.assert_plugins(plugins, plugins2) def test_compile_injects_auth(self): plugins = {"auth": True} plugins2 = {"auth": False} self.assert_plugins(plugins, plugins2) def test_compile_injects_docker(self): plugins = {"docker": True} plugins2 = {"docker": False} self.assert_plugins(plugins, plugins2) def test_compile_injects_shm(self): plugins = {"shm": True} plugins2 = {"shm": False} self.assert_plugins(plugins, plugins2) @pytest.mark.polyaxonfile_mark class TestApplyPresetTermination(BaseTestApplyPreset): def assert_termination(self, termination1, termination2): self.preset["termination"] = termination1 assert self.compiled_operation.termination is None assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.termination is not None assert self.compiled_operation.termination.to_dict() == termination1 # Updating the preset self.preset["termination"] = termination2 assert self.compiled_operation.termination.to_dict() == termination1 assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.termination is not None assert self.compiled_operation.termination.to_dict() == termination2 def test_compile_injects_max_retries(self): termination1 = {"maxRetries": 10} termination2 = {"maxRetries": 1} self.assert_termination(termination1, termination2) def test_compile_injects_timeout(self): termination1 = {"timeout": 10} termination2 = {"timeout": 1} self.assert_termination(termination1, termination2) def test_compile_injects_ttl(self): termination1 = {"ttl": 10} termination2 = {"ttl": 1} self.assert_termination(termination1, termination2) @pytest.mark.polyaxonfile_mark class TestApplyPreset(BaseTestApplyPreset): def test_patch_does_not_alter_with_no_preset(self): assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=None, ) == self.compiled_operation ) def test_patch_does_not_alter_with_preset_with_no_environment_or_contexts_or_termination( self, ): assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) def test_patch_environment_and_termination(self): termination1 = {"maxRetries": 1, "timeout": 1, "ttl": 1} environment1 = { "labels": {"label1": "value1"}, "annotations": {"anno1": "value1"}, "nodeSelector": {"plx": "selector1"}, "affinity": {"podAffinity": {}}, "tolerations": [{"key": "key1", "operator": "Exists"}], "serviceAccountName": "sa1", "imagePullSecrets": ["ps1", "ps2"], "securityContext": {"runAsUser": 1000, "runAsGroup": 3000}, } plugins1 = { "logLevel": "DEBUG", "auth": True, "docker": True, "shm": True, } self.preset["termination"] = termination1 self.preset["runPatch"]["environment"] = environment1 self.preset["plugins"] = plugins1 assert self.compiled_operation.termination is None assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.termination is not None assert self.compiled_operation.termination.to_dict() == termination1 assert self.compiled_operation.run.environment is not None env = self.compiled_operation.run.environment.to_dict() assert env == environment1 assert self.compiled_operation.plugins is not None assert self.compiled_operation.plugins.to_dict() == plugins1 termination2 = {"maxRetries": 10, "timeout": 10, "ttl": 10} environment2 = { "labels": {"label1": "value12"}, "annotations": {"anno1": "value12"}, "nodeSelector": {"plx": "selector12"}, "affinity": {"podAffinity": {"k": "v"}}, "tolerations": [{"key": "key11", "operator": "NotExists"}], "serviceAccountName": "sa2", "imagePullSecrets": ["ps2", "ps22"], "securityContext": {"runAsUser": 100, "runAsGroup": 300}, } plugins2 = { "logLevel": "INFO", "auth": False, "docker": False, "shm": False, } # Updating the preset self.preset["termination"] = termination2 self.preset["runPatch"]["environment"] = environment2 self.preset["plugins"] = plugins2 self.preset["patchStrategy"] = V1PatchStrategy.REPLACE assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.termination is not None assert self.compiled_operation.termination.to_dict() == termination2 assert self.compiled_operation.termination is not None env = self.compiled_operation.run.environment.to_dict() assert env == environment2 assert self.compiled_operation.plugins is not None assert self.compiled_operation.plugins.to_dict() == plugins2 termination3 = {"maxRetries": 15} environment3 = { "labels": {}, "annotations": {}, "nodeSelector": {}, "affinity": {"podAffinity": {"k": "v"}}, "tolerations": [], "securityContext": {"runAsUser": 10, "runAsGroup": 30}, "serviceAccountName": "sa2", "imagePullSecrets": ["ps2", "ps22"], } # Updating the preset self.preset["termination"] = termination3 self.preset["runPatch"]["environment"] = environment3 self.preset["patchStrategy"] = V1PatchStrategy.REPLACE assert ( OperationSpecification.apply_preset( config=self.compiled_operation, preset=self.preset, ) == self.compiled_operation ) assert self.compiled_operation.termination is not None assert self.compiled_operation.termination.to_dict() == { "maxRetries": 15, "timeout": 10, "ttl": 10, } assert self.compiled_operation.termination is not None env = self.compiled_operation.run.environment.to_dict() assert env == environment3 assert self.compiled_operation.plugins is not None assert self.compiled_operation.plugins.to_dict() == plugins2
src/lib/trains/train_factory.py
EvelynYihuiYang/MCMOT
306
12747665
from __future__ import absolute_import from __future__ import division from __future__ import print_function from .mot import MotTrainer train_factory = { 'mot': MotTrainer, }
lib/pose/hrnet/pose_estimation/gen_kpts.py
aibodygym/GAST-Net-3DPoseEstimation
235
12747673
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import os.path as osp import argparse import time import numpy as np from tqdm import tqdm import json import torch import torch.backends.cudnn as cudnn import cv2 import _init_paths from _init_paths import get_path from utils.utilitys import plot_keypoint, PreProcess, write, load_json from config import cfg, update_config from utils.transforms import * from utils.inference import get_final_preds import models sys.path.pop(0) pre_dir, cur_dir, chk_root, data_root, lib_root, output_root = get_path(__file__) cfg_dir = pre_dir + '/experiments/coco/hrnet/' model_dir = chk_root + 'hrnet/pose_coco/' # Loading human detector model sys.path.insert(0, lib_root) from detector import load_model as yolo_model from detector import yolo_human_det as yolo_det from track.sort import Sort sys.path.pop(0) def parse_args(): parser = argparse.ArgumentParser(description='Train keypoints network') # general parser.add_argument('--cfg', type=str, default=cfg_dir + 'w48_384x288_adam_lr1e-3.yaml', help='experiment configure file name') parser.add_argument('opts', nargs=argparse.REMAINDER, default=None, help="Modify config options using the command-line") parser.add_argument('--modelDir', type=str, default=model_dir + 'pose_hrnet_w48_384x288.pth', help='The model directory') parser.add_argument('--det-dim', type=int, default=416, help='The input dimension of the detected image') parser.add_argument('--thred-score', type=float, default=0.70, help='The threshold of object Confidence') parser.add_argument('-a', '--animation', action='store_true', help='output animation') parser.add_argument('-np', '--num-person', type=int, default=1, help='The maximum number of estimated poses') parser.add_argument("-v", "--video", type=str, default='camera', help="input video file name") args = parser.parse_args() return args def reset_config(args): update_config(cfg, args) # cudnn related setting cudnn.benchmark = cfg.CUDNN.BENCHMARK torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED # load model def model_load(config): print('Loading HRNet model ...') # lib/models/pose_hrnet.py:get_pose_net model = eval('models.' + config.MODEL.NAME + '.get_pose_net')(config, is_train=False) if torch.cuda.is_available(): model = model.cuda() state_dict = torch.load(config.OUTPUT_DIR) from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k # remove module. # print(name,'\t') new_state_dict[name] = v model.load_state_dict(new_state_dict) model.eval() print('HRNet network successfully loaded') return model def load_default_model(): args = parse_args() reset_config(args) print('Loading HRNet model ...') # lib/models/pose_hrnet.py:get_pose_net model = eval('models.' + cfg.MODEL.NAME + '.get_pose_net')(cfg, is_train=False) if torch.cuda.is_available(): model = model.cuda() state_dict = torch.load(cfg.OUTPUT_DIR) from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k # remove module. # print(name,'\t') new_state_dict[name] = v model.load_state_dict(new_state_dict) model.eval() print('HRNet network successfully loaded') return model def gen_img_kpts(image, human_model, pose_model, human_sort, det_dim=416, num_peroson=2): """ :param image: Input image matrix instead of image path :param human_model: The YOLOv3 model :param pose_model: The HRNet model :param human_sort: Input initialized sort tracker :param det_dim: The input dimension of YOLOv3. [160, 320, 416] :param num_peroson: The number of tracked people :return: kpts: (M, N, 2) scores: (M, N, 1) bboxs_track: (x1, y1, x2, y2, ID) human_sort: Updated human_sort """ args = parse_args() reset_config(args) thred_score = args.thred_score bboxs, bbox_scores = yolo_det(image, human_model, reso=det_dim, confidence=thred_score) if bboxs is None or not bboxs.any(): return None, None, None # Using Sort to track people # people_track: Num_bbox × [x1, y1, x2, y2, ID] people_track = human_sort.update(bboxs) # Track the first two people in the video and remove the ID if people_track.shape[0] == 1: bboxs_track = people_track[-1].reshape(1, 5) else: people_track_ = people_track[-num_peroson:].reshape(num_peroson, 5) bboxs_track = people_track_[::-1] with torch.no_grad(): # bbox is coordinate location inputs, origin_img, center, scale = PreProcess(image, bboxs_track, cfg, num_peroson) inputs = inputs[:, [2, 1, 0]] if torch.cuda.is_available(): inputs = inputs.cuda() output = pose_model(inputs) # compute coordinate preds, maxvals = get_final_preds(cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale)) kpts = np.zeros((num_peroson, 17, 2), dtype=np.float32) scores = np.zeros((num_peroson, 17, 1), dtype=np.float32) for i, kpt in enumerate(preds): kpts[i] = kpt for i, score in enumerate(maxvals): scores[i] = score human_indexes = [] for i in range(len(bboxs_track)): human_indexes.append(bboxs_track[i, -1]) return kpts, scores, human_indexes def gen_video_kpts(video, det_dim=416, num_peroson=1, gen_output=False): # Updating configuration args = parse_args() reset_config(args) cap = cv2.VideoCapture(video) assert cap.isOpened(), 'Cannot capture source' # Loading detector and pose model, initialize sort for track human_model = yolo_model(inp_dim=det_dim) pose_model = model_load(cfg) people_sort = Sort() video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # video_length = 1000 # collect keypoints coordinate print('Generating 2D pose ...') kpts_result = [] scores_result = [] for i in tqdm(range(video_length)): ret, frame = cap.read() if not ret: continue # start = time.time() try: bboxs, scores = yolo_det(frame, human_model, reso=det_dim, confidence=args.thred_score) if bboxs is None or not bboxs.any(): print('No person detected!') # print('FPS of the video is {:5.2f}'.format(1 / (time.time() - start))) continue # Using Sort to track people people_track = people_sort.update(bboxs) # Track the first two people in the video and remove the ID if people_track.shape[0] == 1: people_track_ = people_track[-1, :-1].reshape(1, 4) elif people_track.shape[0] >= 2: people_track_ = people_track[-num_peroson:, :-1].reshape(num_peroson, 4) people_track_ = people_track_[::-1] else: continue track_bboxs = [] for bbox in people_track_: bbox = [round(i, 2) for i in list(bbox)] track_bboxs.append(bbox) except Exception as e: print(e) exit(0) continue with torch.no_grad(): # bbox is coordinate location inputs, origin_img, center, scale = PreProcess(frame, track_bboxs, cfg, num_peroson) inputs = inputs[:, [2, 1, 0]] if torch.cuda.is_available(): inputs = inputs.cuda() output = pose_model(inputs) # compute coordinate preds, maxvals = get_final_preds(cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale)) if gen_output: kpts = np.zeros((num_peroson, 17, 2), dtype=np.float32) scores = np.zeros((num_peroson, 17), dtype=np.float32) for i, kpt in enumerate(preds): kpts[i] = kpt for i, score in enumerate(maxvals): scores[i] = score.squeeze() kpts_result.append(kpts) scores_result.append(scores) else: index_bboxs = [bbox + [i] for i, bbox in enumerate(track_bboxs)] list(map(lambda x: write(x, frame), index_bboxs)) plot_keypoint(frame, preds, maxvals, 0.3) # print('FPS of the video is {:5.2f}'.format(1 / (time.time() - start))) cv2.imshow('frame', frame) key = cv2.waitKey(1) if key & 0xFF == ord('q'): break if gen_output: keypoints = np.array(kpts_result) scores = np.array(scores_result) keypoints = keypoints.transpose(1, 0, 2, 3) # (T, M, N, 2) --> (M, T, N, 2) scores = scores.transpose(1, 0, 2) # (T, M, N) --> (M, T, N) return keypoints, scores def generate_ntu_kpts_json(video_path, kpts_file): args = parse_args() reset_config(args) # Loading detector and pose model, initialize sort for track human_model = yolo_model() pose_model = model_load(cfg) people_sort = Sort() with torch.no_grad(): cap = cv2.VideoCapture(video_path) video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # collect keypoints information kpts_info = dict() data = [] for i in tqdm(range(video_length)): frame_info = {'frame_index': i + 1} ret, frame = cap.read() try: bboxs, scores = yolo_det(frame, human_model, confidence=args.thred_score) if bboxs is None or not bboxs.any(): print('No person detected!') continue # Using Sort to track people people_track = people_sort.update(bboxs) # Track the first two people in the video and remove the ID if people_track.shape[0] == 1: people_track_ = people_track[-1, :-1].reshape(1, 4) elif people_track.shape[0] >= 2: people_track_ = people_track[-2:, :-1].reshape(2, 4) people_track_ = people_track_[::-1] else: skeleton = {'skeleton': [{'pose': [], 'score': [], 'bbox': []}]} frame_info.update(skeleton) data.append(frame_info) continue track_bboxs = [] for bbox in people_track_: bbox = [round(i, 3) for i in list(bbox)] track_bboxs.append(bbox) except Exception as e: print(e) continue # bbox is coordinate location inputs, origin_img, center, scale = PreProcess(frame, bboxs, cfg, args.num_person) inputs = inputs[:, [2, 1, 0]] if torch.cuda.is_available(): inputs = inputs.cuda() output = pose_model(inputs.cuda()) # compute coordinate preds, maxvals = get_final_preds(cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale)) skeleton = [] for num, bbox in enumerate(track_bboxs): pose = preds[num].tolist() score = maxvals[num].tolist() pose = round_list(pose) score = round_list(score) one_skeleton = {'pose': pose, 'score': score, 'bbox': bbox} skeleton.append(one_skeleton) frame_info.update({'skeleton': skeleton}) data.append(frame_info) kpts_info.update({'data': data}) with open(kpts_file, 'w') as fw: json.dump(kpts_info, fw) print('Finishing!') def round_list(input_list, decimals=3): dim = len(input_list) for i in range(dim): for j in range(len(input_list[i])): input_list[i][j] = round(input_list[i][j], decimals) return input_list
octopus/tests/BTC/test_explorer.py
SillyTin/octopus
212
12747714
from octopus.platforms.BTC.explorer import BitcoinExplorerRPC from octopus.platforms.BTC.explorer import RPC_USER, RPC_PASSWORD, RPC_HOST import unittest class BitcoinExplorerTestCase(unittest.TestCase): explorer = BitcoinExplorerRPC(host=('%s:%s@%s' % (RPC_USER, RPC_PASSWORD, RPC_HOST))) blockhash = '00000000000000000024fb37364cbf81fd49cc2d51c09c75c35433c3a1945d04' txid = '1b5bfc2681d40c872126919ccb1752de4cca42dcfc594899f2ef11db4b05bb39' tx_raw = '0200000001686b654b40737f0daa1532f64e525dc925e60d075403d38cfb12ac9097764015040000006a473044022009ec3f26984906a813faae05d968ec06bf1c68883e09a00b6333126ea87d96b302201cf1d2b9165442aa178fdf772a3909c3d2ba69e454eb8660fa35df8645e3bcb60121022f2caec3ad2f3b174d048a0d46f4f6e8ba4e9d02f6bdbba64ac6817f7ac6c131ffffffff02060d0700000000001976a91407c5acae3abc91735a1471e275e33abbffada89088ac00581300000000001976a91432f2e30111e1dc45f415430ef082cb64225c538a88ac00000000' wallet_address = '15wDxrRCn7YiCXdvqjcih6G8svrmq5AQSS' script_hex = "76a82096b3fe1f4ec8fd076379267f72443bed81cc49c18a2913f7e1f0727f6f9f4fbf88ac" script_asm = 'OP_DUP OP_SHA256 96b3fe1f4ec8fd076379267f72443bed81cc49c18a2913f7e1f0727f6f9f4fbf OP_EQUALVERIFY OP_CHECKSIG' def testRPCCommand(self): ####################### # HIGHT-LEVEL METHODS # ####################### self.assertEqual(self.explorer.get_transaction(self.txid, 0), self.tx_raw) self.assertEqual(len(self.explorer.get_block_by_hash(self.blockhash)), 18) self.assertEqual(len(self.explorer.get_block_by_number(500000)), 18) #################### # JSON-RPC METHODS # #################### self.assertEqual(self.explorer.decoderawtransaction(self.tx_raw)['txid'], self.txid) self.assertEqual(self.explorer.decodescript(self.script_hex)['asm'], self.script_asm) self.assertEqual(len(self.explorer.getbestblockhash()), len(self.blockhash)) self.assertEqual(len(self.explorer.getblock(self.blockhash)), 18) self.assertEqual(len(self.explorer.getblockchaininfo()), 11) self.assertEqual(type(self.explorer.getblockcount()), int) self.assertEqual(self.explorer.getblockhash(500000), self.blockhash) # self.assertEqual(len(self.explorer.getchaintips()), 2) self.assertEqual(type(self.explorer.getconnectioncount()), int) self.assertEqual(type(self.explorer.getdifficulty()), float) self.assertEqual(len(self.explorer.getinfo()), 16) self.assertEqual(len(self.explorer.getmempoolinfo()), 5) self.assertEqual(len(self.explorer.getmininginfo()), 8) self.assertEqual(len(self.explorer.getnettotals()), 4) self.assertEqual(type(self.explorer.getnetworkhashps()), float) self.assertEqual(len(self.explorer.getnetworkinfo()), 13) self.assertEqual(len(self.explorer.getpeerinfo()), 8) self.assertEqual(type(self.explorer.getrawmempool()), list) self.assertEqual(self.explorer.getrawtransaction(self.txid), self.tx_raw) self.assertEqual(type(self.explorer.getreceivedbyaccount('')), float) self.assertEqual(type(self.explorer.getreceivedbyaddress(self.wallet_address)), float) self.assertEqual(len(self.explorer.gettxout(self.txid, 0)), 5) self.assertEqual(len(self.explorer.gettxoutproof([self.txid])), 818) self.assertEqual(type(self.explorer.getunconfirmedbalance()), float) self.assertEqual(len(self.explorer.getwalletinfo()), 9) self.assertEqual(type(self.explorer.help()), str) self.assertEqual(len(self.explorer.validateaddress(self.wallet_address)), 6) self.assertEqual(self.explorer.verifytxoutproof(self.explorer.gettxoutproof([self.txid])), [self.txid]) # Not tested ''' self.explorer.abandontransaction() self.explorer.addmultisigaddress() self.explorer.addnode() self.explorer.createmultisig() self.explorer.createrawtransaction() self.explorer.dumpprivkey() self.explorer.encryptwallet() self.explorer.estimatefee() self.explorer.estimatepriority() self.explorer.getaccountaddress() self.explorer.getaccount() self.explorer.getaddednodeinfo() self.explorer.getaddressesbyaccount() self.explorer.getbalance() self.explorer.gettransaction() self.explorer.keypoolrefill() self.explorer.listaccounts() self.explorer.listaddressgroupings() self.explorer.listlockunspent() self.explorer.listreceivedbyaccount() self.explorer.listreceivedbyaddress() self.explorer.listtransactions() self.explorer.listunspent() self.explorer.lockunspent() self.explorer.prioritisetransaction() self.explorer.sendfrom() self.explorer.sendmany() self.explorer.sendrawtransaction() self.explorer.sendtoaddress() self.explorer.settxfee() self.explorer.signmessage() self.explorer.signrawtransaction() self.explorer.submitblock() self.explorer.verifymessage() self.explorer.walletlock() self.explorer.walletpassphrase() self.explorer.walletpassphrasechange() ''' if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(BitcoinExplorerTestCase) unittest.TextTestRunner(verbosity=2).run(suite)
tests/test_parameters.py
compose-x/troposphere
4,573
12747725
import unittest from troposphere import Parameter, Ref class TestInitArguments(unittest.TestCase): def test_title_max_length(self): title = "i" * 256 with self.assertRaises(ValueError): Parameter(title, Type="String") def test_ref_can_be_requested(self): param = Parameter("title", Type="String") reference = param.ref() self.assertIsInstance(reference, Ref) self.assertDictEqual(reference.data, {"Ref": "title"}) if __name__ == "__main__": unittest.main()
netket/graph/__init__.py
gpescia/MyNetKet
352
12747783
<gh_stars>100-1000 # Copyright 2021 The NetKet Authors - All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .abstract_graph import AbstractGraph from .graph import Graph, Edgeless, DoubledGraph, disjoint_union from .lattice import Lattice from .common_lattices import ( Grid, Hypercube, Cube, Square, Chain, BCC, FCC, Diamond, Pyrochlore, Triangular, Honeycomb, Kagome, ) from netket.utils import _hide_submodules _hide_submodules(__name__)