max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
crawl_data.py
Sharad24/NeurIPS2021Datasets-OpenReviewData
493
12757412
<gh_stars>100-1000 import numpy as np import h5py import string from util import crawl_meta import time CRAWL_DATA = True AFTER_DECISION = False CRAWL_REVIEW = True # Get the meta data meta_list = crawl_meta( meta_hdf5=None, write_meta_name='data_{}.hdf5'.format(time.strftime("%Y%m%d%H%M%S")), crawl_review=CRAWL_REVIEW) num_withdrawn = len([m for m in meta_list if m.withdrawn or m.desk_reject]) print('Number of submissions: {} (withdrawn/desk reject submissions: {})'.format( len(meta_list), num_withdrawn))
pyNastran/dev/bdf_vectorized/cards/elements/bar/cbar.py
ACea15/pyNastran
293
12757443
from numpy import array, arange, zeros, unique, searchsorted, full, nan from numpy.linalg import norm # type: ignore from pyNastran.utils.numpy_utils import integer_types from pyNastran.bdf.field_writer_8 import print_card_8, set_blank_if_default from pyNastran.bdf.field_writer_16 import print_card_16 from pyNastran.bdf.bdf_interface.assign_type import ( integer, integer_or_blank, double_or_blank, integer_double_or_blank, string_or_blank) from pyNastran.bdf.cards.elements.bars import BAROR from pyNastran.bdf.field_writer_8 import set_string8_blank_if_default from pyNastran.dev.bdf_vectorized.cards.elements.element import Element class CBAR(Element): """ +-------+-----+-----+-----+-----+-----+-----+-----+------+ | CBAR | EID | PID | GA | GB | X1 | X2 | X3 | OFFT | +-------+-----+-----+-----+-----+-----+-----+-----+------+ | | PA | PB | W1A | W2A | W3A | W1B | W2B | W3B | +-------+-----+-----+-----+-----+-----+-----+-----+------+ or +-------+-----+-----+-----+-----+-----+-----+-----+------+ | CBAR | EID | PID | GA | GB | G0 | | | OFFT | +-------+-----+-----+-----+-----+-----+-----+-----+------+ | | PA | PB | W1A | W2A | W3A | W1B | W2B | W3B | +-------+-----+-----+-----+-----+-----+-----+-----+------+ +-------+-------+-----+-------+-------+--------+-------+-------+-------+ | CBAR | 2 | 39 | 7 | 6 | 105 | | | GGG | +-------+-------+-----+-------+-------+--------+-------+-------+-------+ | | | 513 | 0.0+0 | 0.0+0 | -9. | 0.0+0 | 0.0+0 | -9. | +-------+-------+-----+-------+-------+--------+-------+-------+-------+ """ type = 'CBAR' def __init__(self, model): """ Defines the CBAR object. Parameters ---------- model : BDF the BDF object """ Element.__init__(self, model) def allocate(self, card_count): ncards = card_count[self.type] self.n = ncards if self.n: assert isinstance(ncards, int), ncards float_fmt = self.model.float_fmt #: Element ID self.element_id = zeros(ncards, 'int32') #: Property ID self.property_id = zeros(ncards, 'int32') self.node_ids = zeros((ncards, 2), 'int32') self.is_g0 = zeros(ncards, 'bool') self.g0 = full(ncards, nan, 'int32') self.x = full((ncards, 3), nan, float_fmt) self.offt = full(ncards, nan, '|U3') self.pin_flags = zeros((ncards, 2), 'int32') self.wa = zeros((ncards, 3), float_fmt) self.wb = zeros((ncards, 3), float_fmt) def add_card(self, card, comment=''): i = self.i if 0 and self.model.cbaror.n > 0: cbaror = self.model.cbaror pid_default = cbaror.property_id is_g0_default = cbaror.is_g0 x1_default = cbaror.x[0] x2_default = cbaror.x[1] x3_default = cbaror.x[2] g0_default = cbaror.g0 offt_default = cbaror.offt else: pid_default = None is_g0_default = None x1_default = 0.0 x2_default = 0.0 x3_default = 0.0 g0_default = None offt_default = 'GGG' eid = integer(card, 1, 'element_id') self.element_id[i] = eid if pid_default is not None: self.property_id[i] = integer_or_blank(card, 2, 'property_id', pid_default) else: self.property_id[i] = integer_or_blank(card, 2, 'property_id', eid) self.node_ids[i] = [integer(card, 3, 'GA'), integer(card, 4, 'GB')] #--------------------------------------------------------- # x / g0 if g0_default is not None: field5 = integer_double_or_blank(card, 5, 'g0_x1', g0_default) else: field5 = integer_double_or_blank(card, 5, 'g0_x1', x1_default) if isinstance(field5, integer_types): self.is_g0[i] = True self.g0[i] = field5 elif isinstance(field5, float): self.is_g0[i] = False x = array([field5, double_or_blank(card, 6, 'x2', x2_default), double_or_blank(card, 7, 'x3', x3_default)], dtype='float64') self.x[i, :] = x if norm(x) == 0.0: msg = 'G0 vector defining plane 1 is not defined on CBAR %s.\n' % eid msg += 'G0 = %s\n' % field5 msg += 'X = %s\n' % x msg += '%s' % card raise RuntimeError(msg) else: msg = ('field5 on CBAR (G0/X1) is the wrong type...id=%s field5=%s ' 'type=%s' % (self.eid, field5, type(field5))) raise RuntimeError(msg) #--------------------------------------------------------- # offt # bit doesn't exist on the CBAR offt = string_or_blank(card, 8, 'offt', offt_default) msg = 'invalid offt parameter of CBEAM...offt=%s' % offt assert offt[0] in ['G', 'B', 'O', 'E'], msg assert offt[1] in ['G', 'B', 'O', 'E'], msg assert offt[2] in ['G', 'B', 'O', 'E'], msg self.offt[i] = offt self.pin_flags[i, :] = [integer_or_blank(card, 9, 'pa', 0), integer_or_blank(card, 10, 'pb', 0)] self.wa[i, :] = [double_or_blank(card, 11, 'w1a', 0.0), double_or_blank(card, 12, 'w2a', 0.0), double_or_blank(card, 13, 'w3a', 0.0),] self.wb[i, :] = [double_or_blank(card, 14, 'w1b', 0.0), double_or_blank(card, 15, 'w2b', 0.0), double_or_blank(card, 16, 'w3b', 0.0),] assert len(card) <= 17, 'len(CBAR card) = %i\ncard=%s' % (len(card), card) self.i += 1 def build(self): if self.n: i = self.element_id.argsort() self.element_id = self.element_id[i] self.property_id = self.property_id[i] self.node_ids = self.node_ids[i, :] self.is_g0 = self.is_g0[i] self.g0 = self.g0[i] self.x = self.x[i, :] self.offt = self.offt[i] self.pin_flags = self.pin_flags[i, :] self.wa = self.wa[i, :] self.wb = self.wb[i, :] unique_eids = unique(self.element_id) if len(unique_eids) != len(self.element_id): raise RuntimeError('There are duplicate CBAR IDs...') self._cards = [] else: self.element_id = array([], dtype='int32') self.property_id = array([], dtype='int32') def update(self, maps): """ maps = { 'node_id' : nid_map, 'property' : pid_map, } """ if self.n: eid_map = maps['element'] nid_map = maps['node'] pid_map = maps['property'] for i, (eid, pid, nids) in enumerate(zip(self.element_id, self.property_id, self.node_ids)): self.element_id[i] = eid_map[eid] self.property_id[i] = pid_map[pid] self.node_ids[i, 0] = nid_map[nids[0]] self.node_ids[i, 1] = nid_map[nids[1]] #========================================================================= def get_mass_by_element_id(self, grid_cid0=None, total=False): """ mass = rho * A * L + nsm """ if self.n == 0: return 0.0 return [0.0] if grid_cid0 is None: grid_cid0 = self.model.grid.get_position_by_node_index() p1 = grid_cid0[self.node_ids[:, 0]] p2 = grid_cid0[self.node_ids[:, 1]] L = p2 - p1 i = self.model.properties_bar.get_index(self.property_id) A = self.model.properties_bar.get_Area[i] material_id = self.model.properties_bar.material_id[i] rho, E, J = self.model.Materials.get_rho_E_J(material_id) rho = self.model.Materials.get_rho(self.mid) E = self.model.Materials.get_E(self.mid) J = self.model.Materials.get_J(self.mid) mass = norm(L, axis=1) * A * rho + self.nsm if total: return mass.sum() else: return mass #========================================================================= def write_card(self, bdf_file, size=8, element_ids=None): if self.n: if element_ids is None: i = arange(self.n) else: i = searchsorted(self.element_id, self.element_id) for (eid, pid, n, is_g0, g0, x, offt, pin, wa, wb) in zip( self.element_id[i], self.property_id[i], self.node_ids[i], self.is_g0[i], self.g0[i], self.x[i], self.offt[i], self.pin_flags[i], self.wa[i], self.wb[i]): pa = set_blank_if_default(pin[0], 0) pb = set_blank_if_default(pin[1], 0) w1a = set_blank_if_default(wa[0], 0.0) w2a = set_blank_if_default(wa[1], 0.0) w3a = set_blank_if_default(wa[2], 0.0) w1b = set_blank_if_default(wb[0], 0.0) w2b = set_blank_if_default(wb[1], 0.0) w3b = set_blank_if_default(wb[2], 0.0) x1 = g0 if is_g0 else x[0] x2 = 0 if is_g0 else x[1] x3 = 0 if is_g0 else x[2] offt = set_string8_blank_if_default(offt, 'GGG') card = ['CBAR', eid, pid, n[0], n[1], x1, x2, x3, offt, pa, pb, w1a, w2a, w3a, w1b, w2b, w3b] if size == 8: bdf_file.write(print_card_8(card)) else: bdf_file.write(print_card_16(card)) def slice_by_index(self, i): i = self._validate_slice(i) obj = CBAR(self.model) obj.n = len(i) #obj._cards = self._cards[i] #obj._comments = obj._comments[i] #obj.comments = obj.comments[i] obj.element_id = self.element_id[i] obj.property_id = self.property_id[i] obj.node_ids = self.node_ids[i, :] obj.is_g0 = self.is_g0[i] obj.g0 = self.g0[i] obj.x = self.x[i, :] obj.offt = self.offt[i] obj.pin_flags = self.pin_flags[i] obj.wa = self.wa[i] obj.wb = self.wb[i] return obj #def get_stiffness_matrix(self, model, node_ids, index0s, fnorm=1.0): #return K, dofs, n_ijv
cea/utilities/doc_graphviz.py
architecture-building-systems/cea-toolbox
121
12757452
<gh_stars>100-1000 """ doc_graphviz.py Creates the graphviz output used to visualize script dependencies. This file relies on the schemas.yml to create the graphviz plots. """ import os import cea.config import cea.schemas from jinja2 import Template __author__ = "<NAME>" __copyright__ = "Copyright 2018, Architecture and Building Systems - ETH Zurich" __credits__ = ["<NAME>", "<NAME>"] __license__ = "MIT" __version__ = "2.14" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" def create_graphviz_files(graphviz_data, documentation_dir): """ :param dict graphviz_data: maps script names to a set of (input/output, script, locator_method, folder_name, file_name) :param documentation_dir: folder with the documentation in it ($repo/docs) :return: None """ if os.path.exists(os.path.join(documentation_dir, "graphviz")): for fname in os.listdir(os.path.join(documentation_dir, "graphviz")): print("deleting {fname}".format(fname=fname)) os.remove(os.path.join(documentation_dir, "graphviz", fname)) for script_name in graphviz_data: print("Creating graph for: {script_name}".format(**locals())) # creating new variable to preserve original trace_data used by other methods trace_data = shorten_trace_data_paths(sorted(graphviz_data[script_name])) trace_data = unique_users_creators(trace_data) # set of unique scripts scripts = sorted(set([td[1] for td in trace_data])) # set of common dirs for each file accessed by the script(s) db_group = sorted(set(td[3] for td in trace_data)) # float containing the node width for the largest file name width = 5 # jinja2 template setup and execution template_path = os.path.join(documentation_dir, "templates", "graphviz_template.gv") template = Template(open(template_path, 'r').read()) digraph = template.render(tracedata=trace_data, script_name=script_name, scripts=scripts, db_group=db_group, width=width) digraph = remove_extra_lines(digraph) with open(os.path.join(documentation_dir, "graphviz", "{script}.gv".format(script=script_name)), 'w') as f: f.write(digraph) def unique_users_creators(trace_data): """ Make sure that the data does not define the same script as producer _and_ consumer at the same time. Prefer producer. :param trace_data: list of tuples of form (0:input/output, 1:script, 2:locator_method, 3:folder_name, 4:file_name) :return: trace_data, filtered """ input_lms = set(t[2] for t in trace_data if t[0] == "input") trace_data = [t for t in trace_data if t[0] == "input" or t[2] not in input_lms] return trace_data def remove_extra_lines(digraph): digraph = "\n".join([line for line in digraph.split('\n') if len(line.strip())]) return digraph def shorten_trace_data_paths(trace_data): """ Shorten the paths in trace_data to max 3 components :param trace_data: :return: """ for i, (direction, _script, method, path, db) in enumerate(trace_data): path = "/".join(path.rsplit('/')[-3:]) # only keep max last 3 components trace_data[i] = (direction, _script, method, path, db) return trace_data def get_list_of_digraphs(documentation_dir, schema_scripts): list_of_digraphs = [] for script in schema_scripts: graphviz_file = os.path.join(documentation_dir, 'graphviz/%s.gv' % script) if os.path.isfile(graphviz_file): underline = '-' * len(script) with open(graphviz_file) as viz: digraph = viz.read() contents = [[script, underline, digraph]] list_of_digraphs.extend(contents) return list_of_digraphs def main(_): schemas = cea.schemas.schemas(plugins=[]) schema_scripts = cea.schemas.get_schema_scripts(plugins=[]) documentation_dir = os.path.join(os.path.dirname(cea.config.__file__), '..', 'docs') graphviz_data = {} for script in schema_scripts: trace_data = set() for locator_method in schemas: file_path = schemas[locator_method]['file_path'] file_name = os.path.basename(file_path) folder_name = os.path.dirname(file_path) if script in schemas[locator_method]['created_by']: trace_data.add(('output', script, locator_method, folder_name, file_name)) if script in schemas[locator_method]['used_by']: trace_data.add(('input', script, locator_method, folder_name, file_name)) graphviz_data[script] = trace_data create_graphviz_files(graphviz_data, documentation_dir) list_of_digraphs = get_list_of_digraphs(documentation_dir=documentation_dir, schema_scripts=schema_scripts) template_path = os.path.join(documentation_dir, "templates", "graphviz_template.rst") template = Template(open(template_path, 'r').read()) with open(os.path.join(documentation_dir, 'script-data-flow.rst'), 'w') as fp: fp.write(template.render(list_of_digraphs=list_of_digraphs)) if __name__ == '__main__': main(cea.config.Configuration())
cpgf/samples/irrlicht/05.userinterface.py
mousepawmedia/libdeps
187
12757457
cpgf._import(None, "builtin.debug"); cpgf._import(None, "builtin.core"); class SAppContext: device = None, counter = 0, listbox = None Context = SAppContext(); GUI_ID_QUIT_BUTTON = 101; GUI_ID_NEW_WINDOW_BUTTON = 102; GUI_ID_FILE_OPEN_BUTTON = 103; GUI_ID_TRANSPARENCY_SCROLL_BAR = 104; def makeMyEventReceiver(receiver) : def OnEvent(me, event) : if event.EventType == irr.EET_GUI_EVENT : id = event.GUIEvent.Caller.getID(); env = Context.device.getGUIEnvironment(); if event.GUIEvent.EventType == irr.EGET_SCROLL_BAR_CHANGED : if id == GUI_ID_TRANSPARENCY_SCROLL_BAR : pos = cpgf.cast(event.GUIEvent.Caller, irr.IGUIScrollBar).getPos(); skin = env.getSkin(); for i in range(irr.EGDC_COUNT) : col = skin.getColor(i); col.setAlpha(pos); skin.setColor(i, col); elif event.GUIEvent.EventType == irr.EGET_BUTTON_CLICKED : if id == GUI_ID_QUIT_BUTTON : Context.device.closeDevice(); return True; elif id == GUI_ID_NEW_WINDOW_BUTTON : Context.listbox.addItem("Window created"); Context.counter = Context.counter + 30; if Context.counter > 200 : Context.counter = 0; window = env.addWindow(irr.rect_s32(100 + Context.counter, 100 + Context.counter, 300 + Context.counter, 200 + Context.counter), False, "Test window"); env.addStaticText("Please close me", irr.rect_s32(35,35,140,50), True, False, window); return True; elif id == GUI_ID_FILE_OPEN_BUTTON : Context.listbox.addItem("File open"); env.addFileOpenDialog("Please choose a file."); return True; return False; receiver.OnEvent = OnEvent; def start() : driverType = irr.driverChoiceConsole(); if driverType == irr.EDT_COUNT : return 1; device = irr.createDevice(driverType, irr.dimension2d_u32(640, 480)); if device == None : return 1; device.setWindowCaption("cpgf Irrlicht Python Binding - User Interface Demo"); device.setResizable(True); driver = device.getVideoDriver(); env = device.getGUIEnvironment(); skin = env.getSkin(); font = env.getFont("../../media/fonthaettenschweiler.bmp"); if font : skin.setFont(font); skin.setFont(env.getBuiltInFont(), irr.EGDF_TOOLTIP); env.addButton(irr.rect_s32(10,240,110,240 + 32), None, GUI_ID_QUIT_BUTTON, "Quit", "Exits Program"); env.addButton(irr.rect_s32(10,280,110,280 + 32), None, GUI_ID_NEW_WINDOW_BUTTON, "New Window", "Launches a Window"); env.addButton(irr.rect_s32(10,320,110,320 + 32), None, GUI_ID_FILE_OPEN_BUTTON, "File Open", "Opens a file"); env.addStaticText("Transparent Control:", irr.rect_s32(150,20,350,40), True); scrollbar = env.addScrollBar(True, irr.rect_s32(150, 45, 350, 60), None, GUI_ID_TRANSPARENCY_SCROLL_BAR); scrollbar.setMax(255); scrollbar.setPos(env.getSkin().getColor(irr.EGDC_WINDOW).getAlpha()); env.addStaticText("Logging ListBox:", irr.rect_s32(50,110,250,130), True); listbox = env.addListBox(irr.rect_s32(50, 140, 250, 210)); env.addEditBox("Editable Text", irr.rect_s32(350, 80, 550, 100)); Context.device = device; Context.counter = 0; Context.listbox = listbox; MyEventReceiver = cpgf.cloneClass(irr.IEventReceiverWrapper); makeMyEventReceiver(MyEventReceiver); receiver = MyEventReceiver(); device.setEventReceiver(receiver); env.addImage(driver.getTexture("../../media/irrlichtlogo2.png"), irr.position2d_s32(10,10)); while device.run() and driver : if device.isWindowActive() : driver.beginScene(True, True, irr.SColor(0,200,200,200)); env.drawAll(); driver.endScene(); device.drop(); return 0; start();
tests/test_import.py
Attsun1031/schematics
1,430
12757487
# -*- coding: utf-8 -*- from copy import deepcopy import pytest from schematics.models import Model from schematics.types import * from schematics.types.compound import * from schematics.exceptions import * from schematics.undefined import Undefined @pytest.mark.parametrize('init', (True, False)) def test_import_data(init): class M(Model): a, b, c, d = IntType(), IntType(), IntType(), IntType() m = M({ 'a': 1, 'b': None, 'c': 3 }, init=init) m.import_data({ 'a': None, 'b': 2 }) if init: assert m._data == {'a': None, 'b': 2, 'c': 3, 'd': None} else: assert m._data == {'a': None, 'b': 2, 'c': 3} @pytest.mark.parametrize('init', (True, False)) def test_import_data_with_error(init): class M(Model): a, b, c, d = IntType(), IntType(), IntType(required=True), IntType() m = M({ 'a': 1, 'b': None, 'c': 3 }, init=init) with pytest.raises(DataError): m.import_data({ 'a': None, 'b': 2, 'c': None, }) if init: assert m._data == {'a': 1, 'b': None, 'c': 3, 'd': None} else: assert m._data == {'a': 1, 'b': None, 'c': 3} @pytest.mark.parametrize('preconvert_source, populate_source', [( False, None), ( True, True), ( True, False)]) @pytest.mark.parametrize('recursive, populate_target, init_to_none, populated_result', [( False, True, True, True), ( False, False, False, False), ( True, True, True, True), ( True, False, True, True), ( True, False, False, False)]) def test_complex_import_data(recursive, preconvert_source, populate_source, populate_target, init_to_none, populated_result): class M(Model): intfield = IntType(max_value=2) matrixfield = ListType(ListType(IntType)) dictfield = DictType(IntType) modelfield = ModelType('M') origdict = { 'intfield': '1', 'dictfield': dict(a=1, b=2), 'modelfield': { 'intfield': '2', 'matrixfield': [[0, 0, 0], [1, 1, 1], [2, 2, 2]], 'dictfield': dict(a=11, b=22), 'modelfield': { 'intfield': '3', 'dictfield': dict(a=111, b=222)}}} m = M(origdict, init=populate_target) sourcedict = { 'intfield': '101', 'dictfield': dict(c=3), 'modelfield': { 'matrixfield': [[9]], 'modelfield': { 'intfield': '103', 'dictfield': dict(c=33)}}} sourcedata = deepcopy(sourcedict) if preconvert_source: sourcedata = M(sourcedata, init=populate_source) m.import_data(sourcedata, recursive=recursive, init_values=init_to_none) assert id(m) != id(sourcedata) if preconvert_source and populate_source: assert m == M(sourcedict, init=True) elif recursive: assert m == M({ 'intfield': '101', 'dictfield': dict(c=3), 'modelfield': { 'intfield': '2', 'matrixfield': [[9]], 'dictfield': dict(a=11, b=22), 'modelfield': { 'intfield': '103', 'dictfield': dict(c=33)}}}, init=populated_result) else: assert m == M(sourcedict, init=populated_result)
tests/algorithms/memory/test_bam.py
FrostByte266/neupy
801
12757494
import pickle import numpy as np from neupy import algorithms from neupy.exceptions import NotTrained from algorithms.memory.data import zero, one, half_one, half_zero from base import BaseTestCase from helpers import vectors_for_testing zero_hint = np.array([[0, 1, 0, 0]]) one_hint = np.array([[1, 0, 0, 0]]) class BAMTestCase(BaseTestCase): def setUp(self): super(BAMTestCase, self).setUp() self.data = np.concatenate([zero, one], axis=0) self.hints = np.concatenate([zero_hint, one_hint], axis=0) def test_bam_exceptions(self): with self.assertRaises(NotTrained): dbnet = algorithms.DiscreteBAM() dbnet.predict(np.array([0, 1])) with self.assertRaises(NotTrained): dbnet = algorithms.DiscreteBAM() dbnet.predict_input(np.array([0, 1])) with self.assertRaises(ValueError): dbnet = algorithms.DiscreteBAM() dbnet.weight = np.array([[0, 1], [1, 0]]) dbnet.train(np.array([0, 1, 1]), np.array([0, 1])) def test_bam_X_validation(self): dbnet = algorithms.DiscreteBAM() dbnet.weight = np.array([[0, 1], [1, 0]]) with self.assertRaises(ValueError): # Invalid discrete input values dbnet.train(np.array([-1, 1]), np.array([0, 1])) with self.assertRaises(ValueError): dbnet.train(np.array([0, 1]), np.array([-1, 1])) with self.assertRaises(ValueError): dbnet.energy(np.array([-1, 1]), np.array([0, 1])) with self.assertRaises(ValueError): dbnet.energy(np.array([0, 1]), np.array([-1, 1])) with self.assertRaises(ValueError): dbnet.predict(np.array([-1, 1])) def test_discrete_bam_storage(self): network = algorithms.DiscreteBAM(mode='sync') network.train(self.data, self.hints) stored_network = pickle.dumps(network) loaded_network = pickle.loads(stored_network) network_prediction = network.predict(self.data) loaded_network_prediction = loaded_network.predict(self.data) np.testing.assert_array_almost_equal( loaded_network_prediction[0], network_prediction[0]) np.testing.assert_array_almost_equal( loaded_network_prediction[1], network_prediction[1]) def test_discrete_bam_sync(self): bamnet = algorithms.DiscreteBAM(mode='sync') bamnet.train(self.data, self.hints) data_before = self.data.copy() hints_before = self.hints.copy() np.testing.assert_array_almost_equal( bamnet.predict(half_zero)[1], zero_hint ) np.testing.assert_array_almost_equal( bamnet.predict_output(half_one)[1], one_hint ) np.testing.assert_array_almost_equal( bamnet.predict_input(zero_hint)[0], zero ) np.testing.assert_array_almost_equal( bamnet.predict_input(one_hint)[0], one ) # Test 1d input array prediction np.testing.assert_array_almost_equal( bamnet.predict_input(one_hint.ravel())[0], one ) # Test 1d output array input prediction np.testing.assert_array_almost_equal( bamnet.predict_output(half_one.ravel())[1], one_hint ) # Test multiple input values prediction input_matrix = np.vstack([one, zero]) output_matrix = np.vstack([one_hint, zero_hint]) output_matrix_before = output_matrix.copy() input_matrix_before = input_matrix.copy() np.testing.assert_array_almost_equal( bamnet.predict_input(output_matrix)[0], input_matrix ) np.testing.assert_array_almost_equal( bamnet.predict(input_matrix)[1], output_matrix ) np.testing.assert_array_equal(self.data, data_before) np.testing.assert_array_equal(self.hints, hints_before) np.testing.assert_array_equal(output_matrix, output_matrix_before) np.testing.assert_array_equal(input_matrix, input_matrix_before) def test_discrete_bam_async(self): bamnet = algorithms.DiscreteBAM(mode='async', n_times=400) data_before = self.data.copy() hints_before = self.hints.copy() bamnet.train(self.data, self.hints) input_matrix = np.vstack([one, zero]) output_matrix = np.vstack([one_hint, zero_hint]) output_matrix_before = output_matrix.copy() input_matrix_before = input_matrix.copy() np.testing.assert_array_almost_equal( bamnet.predict_input(output_matrix)[0], input_matrix ) np.testing.assert_array_almost_equal( bamnet.predict_output(input_matrix)[1], output_matrix ) np.testing.assert_array_equal(self.data, data_before) np.testing.assert_array_equal(self.hints, hints_before) np.testing.assert_array_equal(output_matrix, output_matrix_before) np.testing.assert_array_equal(input_matrix, input_matrix_before) def test_bam_argument_in_predict_method(self): dbnet = algorithms.DiscreteBAM(mode='async', n_times=1) dbnet.train(self.data, self.hints) self.assertTrue(np.any(one != dbnet.predict_output(half_one)[0])) np.testing.assert_array_almost_equal( one, dbnet.predict_output(half_one, n_times=100)[0]) def test_bam_energy_function(self): input_vector = np.array([[1, 0, 0, 1, 1, 0, 0]]) output_vector = np.array([[1, 0]]) dbnet = algorithms.DiscreteBAM() dbnet.train(input_vector, output_vector) self.assertEqual(-7, dbnet.energy(input_vector, output_vector)) self.assertEqual(0, dbnet.energy( np.array([[0, 0, 0, 0, 0, 0, 0]]), np.array([[0, 0]]) )) self.assertEqual(-7, dbnet.energy( np.array([[0, 1, 1, 0, 0, 1, 1]]), np.array([[0, 1]]) )) # Test 1d array self.assertEqual(-7, dbnet.energy( np.array([0, 1, 1, 0, 0, 1, 1]), np.array([0, 1]) )) # Test multiple input values energy calculation np.testing.assert_array_almost_equal( np.array([-7, 0]), dbnet.energy( np.array([ [0, 1, 1, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0], ]), np.array([ [0, 1], [0, 0], ]) ) ) def test_bam_train_different_inputs(self): self.assertInvalidVectorTrain( algorithms.DiscreteBAM(), np.array([1, 0, 0, 1]), np.array([1, 0]), is_feature1d=False) def test_bam_predict_different_inputs(self): bamnet = algorithms.DiscreteBAM() data = np.array([[1, 0, 0, 1]]) target = np.array([[1, 0]]) bamnet.train(data, target) test_vectors = vectors_for_testing( data.reshape(data.size), is_feature1d=False) for test_vector in test_vectors: np.testing.assert_array_almost_equal( bamnet.predict(test_vector)[1], target)
venv/Lib/site-packages/IPython/core/magics/auto.py
ajayiagbebaku/NFL-Model
6,989
12757506
"""Implementation of magic functions that control various automatic behaviors. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 The IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Our own packages from IPython.core.magic import Bunch, Magics, magics_class, line_magic from IPython.testing.skipdoctest import skip_doctest from logging import error #----------------------------------------------------------------------------- # Magic implementation classes #----------------------------------------------------------------------------- @magics_class class AutoMagics(Magics): """Magics that control various autoX behaviors.""" def __init__(self, shell): super(AutoMagics, self).__init__(shell) # namespace for holding state we may need self._magic_state = Bunch() @line_magic def automagic(self, parameter_s=''): """Make magic functions callable without having to type the initial %. Without arguments toggles on/off (when off, you must call it as %automagic, of course). With arguments it sets the value, and you can use any of (case insensitive): - on, 1, True: to activate - off, 0, False: to deactivate. Note that magic functions have lowest priority, so if there's a variable whose name collides with that of a magic fn, automagic won't work for that function (you get the variable instead). However, if you delete the variable (del var), the previously shadowed magic function becomes visible to automagic again.""" arg = parameter_s.lower() mman = self.shell.magics_manager if arg in ('on', '1', 'true'): val = True elif arg in ('off', '0', 'false'): val = False else: val = not mman.auto_magic mman.auto_magic = val print('\n' + self.shell.magics_manager.auto_status()) @skip_doctest @line_magic def autocall(self, parameter_s=''): """Make functions callable without having to type parentheses. Usage: %autocall [mode] The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the value is toggled on and off (remembering the previous state). In more detail, these values mean: 0 -> fully disabled 1 -> active, but do not apply if there are no arguments on the line. In this mode, you get:: In [1]: callable Out[1]: <built-in function callable> In [2]: callable 'hello' ------> callable('hello') Out[2]: False 2 -> Active always. Even if no arguments are present, the callable object is called:: In [2]: float ------> float() Out[2]: 0.0 Note that even with autocall off, you can still use '/' at the start of a line to treat the first argument on the command line as a function and add parentheses to it:: In [8]: /str 43 ------> str(43) Out[8]: '43' # all-random (note for auto-testing) """ if parameter_s: arg = int(parameter_s) else: arg = 'toggle' if not arg in (0, 1, 2, 'toggle'): error('Valid modes: (0->Off, 1->Smart, 2->Full') return if arg in (0, 1, 2): self.shell.autocall = arg else: # toggle if self.shell.autocall: self._magic_state.autocall_save = self.shell.autocall self.shell.autocall = 0 else: try: self.shell.autocall = self._magic_state.autocall_save except AttributeError: self.shell.autocall = self._magic_state.autocall_save = 1 print("Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall])
lib/dynamic_screening_solutions/utils.py
goztrk/django-htk
206
12757510
# Python Standard Library Imports import base64 import hashlib import hmac import json # HTK Imports from htk.utils import htk_setting from htk.utils.general import resolve_method_dynamically def validate_webhook_request(request): """Validates a 321Forms webhook request Returns a JSON request body if it is valid Otherwise, returns None """ webhook_data = json.loads(request.body) company_id = webhook_data.get('company', {}).get('id') headers = request.META expected_signature = headers.get('HTTP_X_ONBOARDING_SIGNATURE', '') hash_key_retriever = resolve_method_dynamically(htk_setting('HTK_321FORMS_WEBHOOK_HASH_KEY_RETRIEVER')) hash_key = hash_key_retriever(company_id) signature = base64.b64encode( hmac.new( bytes(hash_key), request.body, digestmod=hashlib.sha1 ).digest() ) is_valid = signature == expected_signature if is_valid: webhook_data = webhook_data else: webhook_data = None return webhook_data def handle_webhook_request(webhook_data): topic = webhook_data.get('topic', None) event_handlers = htk_setting('HTK_321FORMS_WEBHOOK_EVENT_HANDLERS') event_handler_method = event_handlers.get(topic) event_handler = resolve_method_dynamically(event_handler_method) if event_handler_method else None if event_handler: event_handler(webhook_data) else: pass
server.py
Totsui/Voice_cloner
113
12757511
import socket import os from playsound import playsound from pydub import AudioSegment def sendToClient(msg): msg = msg.decode('utf-8') lang = msg[:3] # ITA or ENG msg = msg[3:] # actual message words = msg.split(" ") if len(words) > 18: sentences = [] sentence = "" for i in range(len(words)): sentence += words[i] + " " if i%12 == 0 and i != 0: sentences.append(sentence) sentence = "" elif i == len(words)-1: sentences.append(sentence) with open('harvard_sentences.txt','w') as f: first = True for i, sentence in enumerate(sentences, start=1): if first: f.write("first line\n1. "+str(sentence)+"\n") first = False else: f.write(f"{i}. {str(sentence)}\n") num_sentences = len(sentences) else: with open('harvard_sentences.txt','w') as f: f.write("first line\n1. "+str(msg)+"\n") num_sentences = 1 os.system('python synthesize.py '+lang) sounds = 0 for i in range(0, num_sentences): sounds += AudioSegment.from_wav(f"samples/{i+1}.wav") # increase volume by 10dB sounds += 10 sounds.export("backup/final.wav", format="wav") f.close() with open('backup/final.wav', 'rb') as f: audiob = f.read() clientsocket.send(audiob) clientsocket.close() f.close() if __name__ == '__main__': s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("0.0.0.0", 1234)) s.listen(5) while True: print("Waiting for connection...") clientsocket, address = s.accept() print(f"Connection from {address} has been established") msg = clientsocket.recv(2048) print(msg) sendToClient(msg)
jchart/tests.py
monasysinfo/django-jchart
125
12757514
<reponame>monasysinfo/django-jchart<filename>jchart/tests.py import json from django.test import TestCase, RequestFactory from django.utils import six from django.core.exceptions import ImproperlyConfigured from .views import ChartView from . import Chart from .config import (Title, Legend, Tooltips, Hover, InteractionModes, Animation, Element, ElementArc, Axes, ScaleLabel, Tick, rgba) class LineChart(Chart): chart_type = 'line' title = Title(text='Test Title Line') legend = Legend(display=False) tooltips = Tooltips(enabled=False) hover = Hover(mode='default') animation = Animation(duration=1.0) scales = { 'xAxes': [Axes(display=False, type='time', position='bottom')], 'yAxes': [Axes(type='linear', position='left', scaleLabel=ScaleLabel(fontColor='#fff'), ticks=Tick(fontColor='#fff') )], } def get_datasets(self, *args, **kwargs): data = [1, 2, 3, 4, 5, 6, 7, 8, 9] return [dict(label='Test Line Chart', data=data)] class LineChartParameterized(LineChart): def get_datasets(self, currency_type): eur_data = list(range(10)) do_data = list(range(10, 20)) if currency_type == 'euro': return [dict(label='Euro Chart', data=eur_data)] elif currency_type == 'dollar': return [dict(label='Dollar Chart', data=do_data)] raise ValueError('Unkown currency type: {}'.format(currency_type)) class LineChartUnresponsive(LineChart): responsive = False class BarChart(Chart): chart_type = 'radar' title = Title(text='Test Title') def get_datasets(self, *args, **kwargs): data = [] return [dict(label='Test Radar Chart', data=data)] class PolarChart(Chart): chart_type = 'polarArea' title = Title(text='Test Title') def get_datasets(self, *args, **kwargs): data = [] return [dict(label='Test Polar Chart', data=data)] class RadarChart(Chart): chart_type = 'bar' title = Title(text='Test Title') def get_datasets(self, *args, **kwargs): data = [] return [dict(label='Test Line Chart', data=data)] class PieChart(Chart): chart_type = 'pie' title = Title(text='Test Title') def get_datasets(self, *args, **kwargs): data = [] return [dict(label='Test Pie Chart', data=data)] class BubbleChart(Chart): chart_type = 'bubble' title = Title(text='Test Title') def get_datasets(self, *args, **kwargs): data = [] return [dict(label='Test Bubble Chart', data=data)] class OptionsChart(Chart): chart_type = 'line' title = Title(text='Precendence') options = { 'title': Title(text='Overriden'), 'responsive': True, 'maintainAspectRatio': True, } def get_datasets(self, *args, **kwargs): data = [1, 2, 3, 4, 5, 6, 7, 8, 9] return [dict(label='Test Line Chart', data=data)] class ChartViewTestToolkit(TestCase): classes = None url_kwargs = {} @property def request(self): request_factory = RequestFactory() return request_factory.get('/test-url') @property def responses(self): for klass in self.classes: yield ChartView.from_chart(klass())(self.request, **self.url_kwargs) class ChartViewTestToolkitSolo(ChartViewTestToolkit): klass = None url_kwargs = {} @property def response(self): return ChartView.from_chart(self.klass())(self.request, **self.url_kwargs) return self.klass.as_view()(self.request) @property def data(self): charset = getattr(self.response, 'charset', 'utf-8') data = self.response.content.decode(charset) return json.loads(data) class ChartResponseTestCase(ChartViewTestToolkit): classes = ( LineChart, BarChart, PolarChart, RadarChart, PieChart, BubbleChart, ) def test_status_code(self): for response in self.responses: self.assertEquals(response.status_code, 200) def test_content_type(self): for response in self.responses: self.assertEquals(response.get('content-type'), 'application/json') def test_chart_config(self): for response in self.responses: charset = getattr(response, 'charset', 'utf-8') content = response.content.decode(charset) data = json.loads(content) self.assertIn('data', data) self.assertIn('options', data) self.assertIn('type', data) self.assertTrue(isinstance(data['data'], dict)) self.assertTrue(isinstance(data['options'], dict)) self.assertTrue(isinstance(data['type'], (six.string_types, six.text_type))) self.assertIn(data['type'], ['bar', 'line', 'radar', 'polarArea', 'pie', 'bubble']) self.assertIn('title', data['options']) class LineChartTestCase(ChartViewTestToolkitSolo): klass = LineChart def test_title(self): self.assertEquals(self.data['options']['title']['text'], 'Test Title Line') def test_legend(self): self.assertEquals(self.data['options']['legend']['display'], False) def test_tooltips(self): self.assertEquals(self.data['options']['tooltips']['enabled'], False) def test_hover(self): self.assertEquals(self.data['options']['hover']['mode'], 'default') def test_animation(self): self.assertEquals(self.data['options']['animation']['duration'], 1.0) def test_dataset(self): self.assertEquals(len(self.data['data']['datasets']), 1) self.assertEquals(len(self.data['data']['labels']), 0) self.assertEquals(self.data['data']['datasets'][0]['data'], list(range(1, 10))) class TestConfigADTS(TestCase): def test_rgba(self): self.assertEquals(rgba(255, 255, 255), 'rgba(255,255,255,1.0)') self.assertEquals(rgba(255, 255, 255, 0.0), 'rgba(255,255,255,0.0)') def test_title(self): title = Title(text='Hello World') self.assertTrue(isinstance(title, dict)) self.assertRaises(ValueError, lambda: Title(nonsense='something')) def test_legend(self): title = Legend(display=False) self.assertTrue(isinstance(title, dict)) self.assertRaises(ValueError, lambda: Legend(nonsense='something')) def test_tooltips(self): title = Tooltips(enabled=True) self.assertTrue(isinstance(title, dict)) self.assertRaises(ValueError, lambda: Tooltips(nonsense='something')) def test_hover(self): title = Hover(mode='default') self.assertTrue(isinstance(title, dict)) self.assertRaises(ValueError, lambda: Hover(nonsense='something')) def test_interaction_modes(self): title = InteractionModes(label='Hello World') self.assertTrue(isinstance(title, dict)) self.assertRaises(ValueError, lambda: InteractionModes(nonsense='something')) def test_animation(self): title = Animation(duration=1.0) self.assertTrue(isinstance(title, dict)) self.assertRaises(ValueError, lambda: Animation(nonsense='something')) def test_element(self): arc = ElementArc(borderColor=rgba(255, 255, 255, 1)) title = Element(arc=arc) self.assertTrue(isinstance(title, dict)) self.assertRaises(ValueError, lambda: Element(nonsense='something')) def test_scales(self): axes = Axes(type='linear', position='left', scaleLabel=ScaleLabel(fontColor='#fff'), ticks=Tick(fontColor='#fff') ) self.assertTrue(isinstance(axes, dict)) self.assertRaises(ValueError, lambda: Axes(nonsense='something')) class ChartViewTestCase(TestCase): def test_chart_view(self): self.assertTrue(getattr(ChartView, 'from_chart', False)) self.assertRaises(ImproperlyConfigured, lambda: ChartView()) def test_chart_view_from_chart_classonly(self): ChartViewSubClass = type('ChartViewSubClass', (ChartView, ), { 'chart_instance': LineChart() }) chart_view = ChartViewSubClass() self.assertRaises(AttributeError, lambda: chart_view.from_chart(LineChart())) def test_chart_view_from_chart(self): self.assertRaises(ImproperlyConfigured, lambda: ChartView.from_chart(dict())) self.assertRaises(ImproperlyConfigured, lambda: ChartView.from_chart(LineChart)) ChartView.from_chart(LineChart()) def test_chart_view_get(self): ChartViewSubClass = type('ChartViewSubClass', (ChartView, ), { 'chart_instance': LineChart() }) chart_view = ChartViewSubClass() request_factory = RequestFactory() request = request_factory.get('/test-url') response = chart_view.get(request) self.assertEquals(response.status_code, 200) charset = getattr(response, 'charset', 'utf-8') content = response.content.decode(charset) data = json.loads(content) self.assertIn('data', data) self.assertIn('options', data) self.assertIn('type', data) self.assertTrue(isinstance(data['data'], dict)) self.assertTrue(isinstance(data['options'], dict)) self.assertTrue(isinstance(data['type'], (six.string_types, six.text_type))) self.assertIn(data['type'], ['bar', 'line', 'radar', 'polarArea', 'pie', 'bubble']) self.assertIn('title', data['options']) class ChartTestCase(TestCase): def test_chart_dimension(self): line_chart = LineChartUnresponsive(width=1000, height=500) self.assertEquals(line_chart.width, 1000) self.assertEquals(line_chart.height, 500) self.assertIn('height: 500px', line_chart.as_html()) self.assertIn('width: 1000px', line_chart.as_html()) def test_chart_no_dimension(self): line_chart = LineChart() self.assertEquals(line_chart.width, None) self.assertEquals(line_chart.height, None) self.assertNotIn('height:', line_chart.as_html()) self.assertNotIn('width:', line_chart.as_html()) def test_chart_html_id(self): line_chart = LineChart(html_id='test-id') self.assertIn('id="test-id"', line_chart.as_html()) def test_chart_render_html(self): line_chart = LineChart() context = { 'html_id': 'test-id', 'chart': line_chart, 'chart_configuration': line_chart.get_configuration(), } html = line_chart.render_html(context) self.assertNotIn('<script', html) def test_chart_render_js(self): line_chart = LineChart() context = { 'html_id': 'test-id', 'chart': line_chart, 'chart_configuration': line_chart.get_configuration(), } js = line_chart.render_js(context) self.assertNotIn('<canvas', js) def test_responsive_height_width(self): LineChartUnresponsive(height=500) self.assertRaises(ImproperlyConfigured, lambda: LineChart(height=500)) def test_chart_parameterization(self): chart = LineChartParameterized() self.assertNotIn('Dollar Chart', chart.as_html('euro')) self.assertIn('Euro Chart', chart.as_html('euro')) self.assertNotIn('Euro Chart', chart.as_html('dollar')) self.assertIn('Dollar Chart', chart.as_html('dollar')) class AsyncChartParameterization(ChartViewTestToolkitSolo): klass = LineChartParameterized def test_euro(self): self.url_kwargs = dict(currency_type='euro') self.assertEquals('Euro Chart', self.data['data']['datasets'][0]['label']) def test_dollar(self): self.url_kwargs = dict(currency_type='dollar') self.assertEquals('Dollar Chart', self.data['data']['datasets'][0]['label']) class OptionsChartTestCase(ChartViewTestToolkitSolo): klass = OptionsChart def test_precedence(self): title = self.data['options']['title']['text'] responsive = self.data['options']['responsive'] maintainAspectRatio = self.data['options']['maintainAspectRatio'] self.assertEquals('Precendence', title) self.assertTrue(responsive) self.assertTrue(maintainAspectRatio)
AutotestWebD/apps/common/func/send_mail.py
yangjourney/sosotest
422
12757524
from AutotestWebD.settings import EMAIL_SENDER,EMAIL_PASSWORD,EMAIL_SERVER,EMAIL_USERNAME import smtplib import traceback from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.base import MIMEBase from email.header import Header import os import email.encoders import time import traceback import re def send_mail(email_list, subject, email_text, filepath="", sub_type="text"): try: # 发送email receiver = list(set(email_list.split(';'))) sender = EMAIL_SENDER smtpserver = EMAIL_SERVER username = EMAIL_USERNAME password = <PASSWORD> # 三个参数:第一个为文本内容,第二个 plain 设置文本格式,第三个 utf-8 设置编码 msg = MIMEMultipart() # if sub_type == "text": text_msg = MIMEText(email_text, 'plain', 'utf-8') # 文本格式 elif sub_type == "html": text_msg = MIMEText(email_text, _subtype='html', _charset='utf-8') # html格式 else: text_msg = MIMEText(email_text, 'plain', 'utf-8') # 文本格式 msg.attach(text_msg) msg['From'] = sender msg['To'] = ";".join(receiver) msg['Subject'] = Header(subject, 'utf-8') # 构造MIMEBase对象做为文件附件内容并附加到根容器 filepath = filepath.strip() if os.path.isfile(filepath): contype = 'application/octet-stream' maintype, subtype = contype.split('/', 1) data = open(filepath, 'rb') file_msg = MIMEBase(maintype, subtype) file_msg.set_payload(data.read()) data.close() email.encoders.encode_base64(file_msg) filename_list = filepath.split('/') filename = filename_list[len(filename_list) - 1] basename = os.path.basename(filename) file_msg.add_header('Content-Disposition', 'attachment', filename=basename) msg.attach(file_msg) is_send_success = False resend_times = 0 for i in range(0, 3): smtp = "" try: smtp = smtplib.SMTP(smtpserver) smtp.login(username, password) # 用smtp发送邮件 smtp.sendmail(sender, receiver, msg.as_string()) is_send_success = True break except Exception as e: resend_times += 1 user_logger.debug("发送第%s次失败!10秒后重试!" % resend_times) user_logger.error(traceback.format_exc()) time.sleep(10) # 休眠10秒,10秒后重发 if len(receiver) == 0: return False finally: if smtp != "": smtp.quit() if is_send_success: return True else: return False except Exception as e: print(traceback.format_exc()) return False def whether_display_name(namestr): if re.match("^[\u4e00-\u9fa5]{2,4}\([a-z]{1,}[0-9]{0,}\)$", namestr): return True else: return False if __name__ == "__main__": retstr = get_email_list("<EMAIL>;<EMAIL>;王蕾(wanglei05);,<EMAIL>,") print(retstr) print(type(retstr))
sdk/customproviders/azure-mgmt-customproviders/azure/mgmt/customproviders/models/__init__.py
rsdoherty/azure-sdk-for-python
2,728
12757531
<reponame>rsdoherty/azure-sdk-for-python # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- try: from ._models_py3 import Association from ._models_py3 import AssociationsList from ._models_py3 import CustomRPActionRouteDefinition from ._models_py3 import CustomRPManifest from ._models_py3 import CustomRPResourceTypeRouteDefinition from ._models_py3 import CustomRPRouteDefinition from ._models_py3 import CustomRPValidations from ._models_py3 import ErrorDefinition from ._models_py3 import ErrorResponse from ._models_py3 import ListByCustomRPManifest from ._models_py3 import Resource from ._models_py3 import ResourceProviderOperation from ._models_py3 import ResourceProviderOperationDisplay from ._models_py3 import ResourceProviderOperationList from ._models_py3 import ResourceProvidersUpdate except (SyntaxError, ImportError): from ._models import Association # type: ignore from ._models import AssociationsList # type: ignore from ._models import CustomRPActionRouteDefinition # type: ignore from ._models import CustomRPManifest # type: ignore from ._models import CustomRPResourceTypeRouteDefinition # type: ignore from ._models import CustomRPRouteDefinition # type: ignore from ._models import CustomRPValidations # type: ignore from ._models import ErrorDefinition # type: ignore from ._models import ErrorResponse # type: ignore from ._models import ListByCustomRPManifest # type: ignore from ._models import Resource # type: ignore from ._models import ResourceProviderOperation # type: ignore from ._models import ResourceProviderOperationDisplay # type: ignore from ._models import ResourceProviderOperationList # type: ignore from ._models import ResourceProvidersUpdate # type: ignore from ._customproviders_enums import ( ActionRouting, ProvisioningState, ResourceTypeRouting, ValidationType, ) __all__ = [ 'Association', 'AssociationsList', 'CustomRPActionRouteDefinition', 'CustomRPManifest', 'CustomRPResourceTypeRouteDefinition', 'CustomRPRouteDefinition', 'CustomRPValidations', 'ErrorDefinition', 'ErrorResponse', 'ListByCustomRPManifest', 'Resource', 'ResourceProviderOperation', 'ResourceProviderOperationDisplay', 'ResourceProviderOperationList', 'ResourceProvidersUpdate', 'ActionRouting', 'ProvisioningState', 'ResourceTypeRouting', 'ValidationType', ]
wakatime/main.py
sklirg/wakatime
220
12757542
# -*- coding: utf-8 -*- """ wakatime.main ~~~~~~~~~~~~~ Module entry point. :copyright: (c) 2013 <NAME>. :license: BSD, see LICENSE for more details. """ from __future__ import print_function import logging import os import sys import time import traceback pwd = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, os.path.dirname(pwd)) sys.path.insert(0, os.path.join(pwd, 'packages')) from .__about__ import __version__ from .api import send_heartbeats from .arguments import parse_arguments from .compat import u, json from .constants import SUCCESS, UNKNOWN_ERROR, HEARTBEATS_PER_REQUEST from .logger import setup_logging log = logging.getLogger('WakaTime') from .heartbeat import Heartbeat from .offlinequeue import Queue def execute(argv=None): if argv: sys.argv = ['wakatime'] + argv args, configs = parse_arguments() setup_logging(args, __version__) try: heartbeats = [] hb = Heartbeat(vars(args), args, configs) if hb: heartbeats.append(hb) else: log.debug(hb.skip) if args.extra_heartbeats: try: for extra_data in json.loads(sys.stdin.readline()): hb = Heartbeat(extra_data, args, configs) if hb: heartbeats.append(hb) else: log.debug(hb.skip) except json.JSONDecodeError as ex: log.warning(u('Malformed extra heartbeats json: {msg}').format( msg=u(ex), )) retval = SUCCESS while heartbeats: retval = send_heartbeats(heartbeats[:HEARTBEATS_PER_REQUEST], args, configs) heartbeats = heartbeats[HEARTBEATS_PER_REQUEST:] if retval != SUCCESS: break if heartbeats: Queue(args, configs).push_many(heartbeats) if retval == SUCCESS: queue = Queue(args, configs) for offline_heartbeats in queue.pop_many(args.sync_offline_activity): time.sleep(1) retval = send_heartbeats(offline_heartbeats, args, configs) if retval != SUCCESS: break return retval except: log.traceback(logging.ERROR) print(traceback.format_exc()) return UNKNOWN_ERROR
single_inference/test_kitti.py
yohannes-taye/mobilePydnet
182
12757578
""" Evaluate the model using Eigen split of KITTI dataset - prepare gt depth running the script https://github.com/nianticlabs/monodepth2/blob/master/export_gt_depth.py """ import argparse import os import cv2 import numpy as np import tensorflow as tf from tqdm import tqdm from eval_utils import compute_errors, compute_scale_and_shift from network import Pydnet os.environ["CUDA_VISIBLE_DEVICES"] = "-1" class KITTILoader(object): def __init__(self, params): self.params = params self.height = params["height"] self.width = params["width"] self.data_list_file = params["data_list_file"] self.data_path = params["data_path"] self.num_workers = 4 self.data_list = np.loadtxt(self.data_list_file, dtype=bytes).astype(np.str) self.default_img_shape = None def read_and_decode(self, filename_queue): """Read jpeg file from file system""" img0_name = tf.strings.join([self.data_path, "/", filename_queue, ".jpg"]) img0 = tf.image.decode_jpeg(tf.io.read_file(img0_name), channels=3) img0 = tf.cast(img0, tf.float32) return img0 def preprocess(self, filename_queue): """Prepare single image at testing time""" img0 = self.read_and_decode(filename_queue) img0 = tf.image.resize_images(img0, [self.height, self.width], tf.image.ResizeMethod.AREA) img0.set_shape([self.height, self.width, 3]) img0 = img0 / 255.0 return img0 def create_iterator(self, num_parallel_calls=4): """Create iterator""" data_list = tf.convert_to_tensor(self.data_list, dtype=tf.string) dataset = tf.data.Dataset.from_tensor_slices(data_list) dataset = dataset.map(self.preprocess, num_parallel_calls=num_parallel_calls) dataset = dataset.batch(1) dataset = dataset.repeat() iterator = dataset.make_initializable_iterator() return iterator def read_test_files(test_file) -> list: """Read test files from txt file""" assert os.path.exists(test_file) with open(test_file, "r") as f: lines = f.readlines() lines = [l.strip() for l in lines] return lines def run_inference(opts): """Run the model on KITTI""" network_params = {"height": 320, "width": 640, "is_training": False} dataset_params = { "height": 320, "width": 640, "data_path": opts.data_path, "data_list_file": opts.data_list_file, } dataset = KITTILoader(dataset_params) iterator = dataset.create_iterator() batch_img = iterator.get_next() network = Pydnet(network_params) predicted_idepth = network.forward(batch_img) predicted_idepth = tf.nn.relu(predicted_idepth) # restore graph saver = tf.train.Saver() sess = tf.Session() sess.run(tf.compat.v1.global_variables_initializer()) sess.run(iterator.initializer) saver.restore(sess, opts.ckpt) os.makedirs(opts.dest, exist_ok=True) test_images = read_test_files(opts.data_list_file) num_images = len(test_images) with tqdm(total=num_images) as pbar: for i in range(num_images): idepth = sess.run(predicted_idepth) idepth = np.squeeze(idepth) min_idepth = idepth.min() max_idepth = idepth.max() norm_idepth = (idepth - min_idepth) / (max_idepth - min_idepth) norm_idepth *= 255.0 target_path = os.path.join(opts.data_path, f"{test_images[i]}.jpg") target = cv2.imread(target_path) h, w = target.shape[:2] norm_idepth = cv2.resize(norm_idepth, (w, h)) img_path = os.path.join(opts.dest, f"{str(i).zfill(4)}.png") cv2.imwrite(img_path, (norm_idepth * 256.0).astype(np.uint16)) pbar.update(1) print("Inference done!") def eval(opts): """Compute error metrics.""" errors = [] test_images = read_test_files(opts.data_list_file) print("=> loading gt data") gt_depths = np.load(opts.gt_path, fix_imports=True, encoding="latin1", allow_pickle=True)[ "data" ] print("=> starting evaluation") with tqdm(total=len(test_images)) as pbar: for i in range(len(test_images)): target = gt_depths[i] pred_path = os.path.join(opts.dest, f"{str(i).zfill(4)}.png") prediction_idepth = cv2.imread(pred_path, -1) / 256.0 mask = (target > 1e-3) & (target < opts.max_depth) target_idepth = np.zeros_like(target) target_idepth[mask == 1] = 1.0 / target[mask == 1] scale, shift = compute_scale_and_shift(prediction_idepth, target_idepth, mask) prediction_idepth_aligned = scale * prediction_idepth + shift disparity_cap = 1.0 / opts.max_depth prediction_idepth_aligned[prediction_idepth_aligned < disparity_cap] = disparity_cap prediciton_depth_aligned = 1.0 / prediction_idepth_aligned prediciton_depth_aligned = prediciton_depth_aligned[mask == 1] target = target[mask == 1] errors.append(compute_errors(target, prediciton_depth_aligned)) pbar.update(1) mean_errors = np.array(errors).mean(0) labels = ["abs_rel", "sq_rel", "rmse", "rmse_log", "a1", "a2", "a3"] for i in range(len(labels)): print(f"{labels[i]}:{mean_errors[i]}") print("Evaluation done!") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluate depth network on KITTI") parser.add_argument("--ckpt", type=str, help="path to checkpoint", required=True) parser.add_argument("--data_path", type=str, help="path to kitti", required=True) parser.add_argument("--gt_path", type=str, help="path to gt_depths.npz", required=True) parser.add_argument( "--data_list_file", type=str, help="path to data list", default="test_kitti.txt" ) parser.add_argument("--dest", type=str, help="prediction folder", default="kitti") parser.add_argument("--max_depth", type=float, help="maximum depth value", default=80.0) opts = parser.parse_args() run_inference(opts) eval(opts)
Pyto/Samples/SciKit-Image/plot_edge_filter.py
snazari/Pyto
701
12757585
""" ============== Edge operators ============== Edge operators are used in image processing within edge detection algorithms. They are discrete differentiation operators, computing an approximation of the gradient of the image intensity function. """ import numpy as np import matplotlib.pyplot as plt from skimage.data import camera from skimage.filters import roberts, sobel, sobel_h, sobel_v, scharr, \ scharr_h, scharr_v, prewitt, prewitt_v, prewitt_h, farid_v, farid_h image = camera() edge_roberts = roberts(image) edge_sobel = sobel(image) fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True, figsize=(8, 4)) ax[0].imshow(edge_roberts, cmap=plt.cm.gray) ax[0].set_title('Roberts Edge Detection') ax[1].imshow(edge_sobel, cmap=plt.cm.gray) ax[1].set_title('Sobel Edge Detection') for a in ax: a.axis('off') plt.tight_layout() plt.show() ###################################################################### # Different operators compute different finite-difference approximations of # the gradient. For example, the Scharr filter results in a less rotational # variance than the Sobel filter that is in turn better than the Prewitt # filter [1]_ [2]_ [3]_. The difference between the Prewitt and Sobel filters # and the Scharr filter is illustrated below with an image that is the # discretization of a rotation- invariant continuous function. The # discrepancy between the Prewitt and Sobel filters, and the Scharr filter is # stronger for regions of the image where the direction of the gradient is # close to diagonal, and for regions with high spatial frequencies. For the # example image the differences between the filter results are very small and # the filter results are visually almost indistinguishable. # # .. [1] https://en.wikipedia.org/wiki/Sobel_operator#Alternative_operators # # .. [2] <NAME>, <NAME>, and <NAME>. Principles of filter design. # In Handbook of Computer Vision and Applications. Academic Press, # 1999. # # .. [3] https://en.wikipedia.org/wiki/Prewitt_operator x, y = np.ogrid[:100, :100] # Rotation-invariant image with different spatial frequencies img = np.exp(1j * np.hypot(x, y) ** 1.3 / 20.).real edge_sobel = sobel(img) edge_scharr = scharr(img) edge_prewitt = prewitt(img) diff_scharr_prewitt = edge_scharr - edge_prewitt diff_scharr_sobel = edge_scharr - edge_sobel max_diff = np.max(np.maximum(diff_scharr_prewitt, diff_scharr_sobel)) fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(8, 8)) ax = axes.ravel() ax[0].imshow(img, cmap=plt.cm.gray) ax[0].set_title('Original image') ax[1].imshow(edge_scharr, cmap=plt.cm.gray) ax[1].set_title('Scharr Edge Detection') ax[2].imshow(diff_scharr_prewitt, cmap=plt.cm.gray, vmax=max_diff) ax[2].set_title('Scharr - Prewitt') ax[3].imshow(diff_scharr_sobel, cmap=plt.cm.gray, vmax=max_diff) ax[3].set_title('Scharr - Sobel') for a in ax: a.axis('off') plt.tight_layout() plt.show() ###################################################################### # As in the previous example, here we illustrate the rotational invariance of # the filters. The top row shows a rotationally invariant image along with the # angle of its analytical gradient. The other two rows contain the difference # between the different gradient approximations (Sobel, Prewitt, Scharr & # Farid) and analytical gradient. # # The Farid & Simoncelli derivative filters [4]_, [5]_ are the most # rotationally invariant, but require a 5x5 kernel, which is computationally # more intensive than a 3x3 kernel. # # .. [4] <NAME>. and <NAME>., "Differentiation of discrete # multidimensional signals", IEEE Transactions on Image Processing 13(4): # 496-508, 2004. :DOI:`10.1109/TIP.2004.823819` # # .. [5] Wikipedia, "Farid and Simoncelli Derivatives." Available at: # <https://en.wikipedia.org/wiki/Image_derivatives#Farid_and_Simoncelli_Derivatives> x, y = np.mgrid[-10:10:255j, -10:10:255j] img = np.sin(x ** 2 + y ** 2) imgx = 2 * x * np.cos(x ** 2 + y ** 2) imgy = 2 * y * np.cos(x ** 2 + y ** 2) def angle(dx, dy): return np.mod(np.arctan2(dy, dx), np.pi) true_angle = angle(imgx, imgy) angle_farid = angle(farid_h(img), farid_v(img)) angle_sobel = angle(sobel_h(img), sobel_v(img)) angle_scharr = angle(scharr_h(img), scharr_v(img)) angle_prewitt = angle(prewitt_h(img), prewitt_v(img)) def diff_angle(angle_1, angle_2): return np.minimum(np.pi - np.abs(angle_1 - angle_2), np.abs(angle_1 - angle_2)) diff_farid = diff_angle(true_angle, angle_farid) diff_sobel = diff_angle(true_angle, angle_sobel) diff_scharr = diff_angle(true_angle, angle_scharr) diff_prewitt = diff_angle(true_angle, angle_prewitt) fig, axes = plt.subplots(nrows=3, ncols=2, sharex=True, sharey=True, figsize=(8, 8)) ax = axes.ravel() ax[0].imshow(img, cmap=plt.cm.gray) ax[0].set_title('Original image') ax[1].imshow(true_angle, cmap=plt.cm.hsv) ax[1].set_title('Analytical gradient angle') ax[2].imshow(diff_sobel, cmap=plt.cm.inferno, vmin=0, vmax=0.02) ax[2].set_title('Sobel error') ax[3].imshow(diff_prewitt, cmap=plt.cm.inferno, vmin=0, vmax=0.02) ax[3].set_title('Prewitt error') ax[4].imshow(diff_scharr, cmap=plt.cm.inferno, vmin=0, vmax=0.02) ax[4].set_title('Scharr error') cax = ax[5].imshow(diff_farid, cmap=plt.cm.inferno, vmin=0, vmax=0.02) ax[5].set_title('Farid error') fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.90, 0.10, 0.02, 0.50]) fig.colorbar(cax, cax=cbar_ax, ticks=[0, 0.01, 0.02]) for a in ax: a.axis('off') plt.show()
VA/main/models/blocks.py
YuJaceKim/Activity-Recognition-with-Combination-of-Deeply-Learned-Visual-Attention-and-Pose-Estimation
343
12757589
import tensorflow as tf from keras.models import Model from deephar.layers import * from deephar.utils import * def conv_block(inp, kernel_size, filters, last_act=True): filters1, filters2, filters3 = filters x = conv_bn_act(inp, filters1, (1, 1)) x = conv_bn_act(x, filters2, kernel_size) x = conv_bn(x, filters3, (1, 1)) shortcut = conv_bn(inp, filters3, (1, 1)) x = add([x, shortcut]) if last_act: x = Activation('relu')(x) return x def identity_block(inp, kernel_size, filters, last_act=True): filters1, filters2, filters3 = filters x = conv_bn_act(inp, filters1, (1, 1)) x = conv_bn_act(x, filters2, kernel_size) x = conv_bn(x, filters3, (1, 1)) x = add([x, inp]) if last_act: x = Activation('relu')(x) return x def stem_inception_v4(x, image_div=8): """Entry-flow network (stem) *based* on Inception_v4.""" assert image_div in [4, 8, 16, 32], \ 'Invalid image_div ({}).'.format(image_div) x = conv_bn_act(x, 32, (3, 3), strides=(2, 2)) x = conv_bn_act(x, 32, (3, 3)) if image_div is 32: x = MaxPooling2D((2, 2))(x) x = conv_bn_act(x, 64, (3, 3)) a = conv_bn_act(x, 96, (3, 3), strides=(2, 2)) b = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x) x = concatenate([a, b]) a = conv_bn_act(x, 64, (1, 1)) a = conv(a, 96, (3, 3)) b = conv_bn_act(x, 64, (1, 1)) b = conv_bn_act(b, 64, (5, 1)) b = conv_bn_act(b, 64, (1, 5)) b = conv(b, 96, (3, 3)) x = concatenate([a, b]) x = BatchNormalization(axis=-1, scale=False)(x) if image_div is not 4: a = act_conv_bn(x, 192, (3, 3), strides=(2, 2)) b = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x) x = concatenate([a, b]) if image_div in [16, 32]: a = act_conv_bn(x, 192, (3, 3), strides=(2, 2)) b = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x) x = concatenate([a, b]) if image_div is 4: x = residual(x, int_size=112, out_size=2*192+64, convtype='normal', name='residual0') else: x = residual(x, int_size=144, out_size=3*192, convtype='normal', name='residual0') return x def stem_residual_eccv(x, image_div=8): """Entry-flow network (stem) *based* on ResNet ('residual' option).""" assert image_div in [4, 8, 16, 32], \ 'Invalid image_div ({}).'.format(image_div) x = conv_bn_act(x, 64, (7, 7), strides=(2, 2), padding='same') a = conv_bn_act(x, 128, (3, 3), padding='same') b = conv_bn_act(x, 128, (1, 1), padding='same') x = add([a, b]) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x) x = residual(x, int_size=128, out_size=256, convtype='normal', name='rn0') x = residual(x, int_size=128, out_size=256, convtype='normal', name='rn1') if image_div is 4: x = residual(x, out_size=256, convtype='normal', name='rn3') else: x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x) x = residual(x, int_size=192, out_size=384, convtype='normal', name='rn3') x = residual(x, int_size=192, out_size=384, convtype='normal', name='rn4') if image_div in [16, 32]: x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x) x = residual(x, int_size=256, out_size=512, convtype='normal', name='rn5') x = residual(x, int_size=256, out_size=512, convtype='normal', name='rn6') if image_div is 32: x = MaxPooling2D((2, 2), strides=(2, 2), padding='same')(x) return x def reception_block(x, num_levels, kernel_size, int_size=None, convtype='depthwise', name=None): def hourglass(x, n): up1 = residual(x, kernel_size=kernel_size, int_size=int_size, convtype=convtype) low = MaxPooling2D((2, 2))(x) if n == num_levels: low = act_conv_bn(low, int(K.int_shape(x)[-1] / 2), (1, 1)) low = residual(low, kernel_size=kernel_size, int_size=int_size, convtype=convtype) if n > 2: low = hourglass(low, n-1) else: low = residual(low, kernel_size=kernel_size, int_size=int_size, convtype=convtype) if n == num_levels: low = residual(low, kernel_size=kernel_size, out_size=K.int_shape(x)[-1], int_size=int_size, convtype=convtype) else: low = residual(low, kernel_size=kernel_size, int_size=int_size, convtype=convtype) up2 = UpSampling2D((2, 2))(low) x = add([up1, up2]) return x x = hourglass(x, num_levels) return x def build_keypoints_regressor(input_shape, dim, num_maps, sam_model, prob_model, name=None, verbose=0): assert num_maps >= 1, \ 'The number of maps should be at least 1 (%d given)' % num_maps inputs = [] inputs3d = [] p_concat = [] v_concat = [] # Auxiliary functions v_tile = Lambda(lambda x: K.tile(x, (1, 1, dim))) # This depends on TensorFlow because keras does not implement divide. tf_div = Lambda(lambda x: tf.divide(x[0], x[1])) for i in range(num_maps): h = Input(shape=input_shape) inputs.append(h) h_s = act_channel_softmax(h) p = sam_model(h_s) v = prob_model(h_s) if dim == 3: d = Input(shape=input_shape) inputs3d.append(d) d_s = Activation('sigmoid')(d) dm = multiply([d_s, h_s]) z = Lambda(lambda x: K.sum(x, axis=(1, 2)))(dm) z = Lambda(lambda x: K.expand_dims(x, axis=-1))(z) p = concatenate([p, z]) if num_maps > 1: t = v_tile(v) p = multiply([p, v_tile(v)]) p_concat.append(p) v_concat.append(v) if num_maps > 1: p = add(p_concat) v_sum = add(v_concat) p = tf_div([p, v_tile(v_sum)]) v = maximum(v_concat) else: p = p_concat[0] v = v_concat[0] model = Model(inputs+inputs3d, [p, v], name=name) if verbose: model.summary() return model def build_context_aggregation(num_joints, num_context, alpha, num_frames=1, name=None): inp = Input(shape=(num_joints * num_context, 1)) d = Dense(num_joints, use_bias=False) x = Lambda(lambda x: K.squeeze(x, axis=-1))(inp) x = d(x) x = Lambda(lambda x: K.expand_dims(x, axis=-1))(x) w = d.get_weights() w[0].fill(0) for j in range(num_joints): start = j*num_context w[0][j * num_context : (j + 1) * num_context, j] = 1. d.set_weights(w) d.trainable = False ctx_sum = Model(inputs=inp, outputs=x) ctx_sum.trainable = False if num_frames > 1: ctx_sum = TimeDistributed(ctx_sum, input_shape=(num_frames,) + K.int_shape(inp)[1:]) # Define auxiliary layers. mul_alpha = Lambda(lambda x: alpha * x) mul_1alpha = Lambda(lambda x: (1 - alpha) * x) # This depends on TensorFlow because keras does not implement divide. tf_div = Lambda(lambda x: tf.divide(x[0], x[1])) if num_frames == 1: # Define inputs ys = Input(shape=(num_joints, 2)) yc = Input(shape=(num_joints * num_context, 2)) pc = Input(shape=(num_joints * num_context, 1)) # Split contextual predictions in x and y and do computations separately xi = Lambda(lambda x: x[:,:, 0:1])(yc) yi = Lambda(lambda x: x[:,:, 1:2])(yc) else: ys = Input(shape=(num_frames, num_joints, 2)) yc = Input(shape=(num_frames, num_joints * num_context, 2)) pc = Input(shape=(num_frames, num_joints * num_context, 1)) # Split contextual predictions in x and y and do computations separately xi = Lambda(lambda x: x[:,:,:, 0:1])(yc) yi = Lambda(lambda x: x[:,:,:, 1:2])(yc) pxi = multiply([xi, pc]) pyi = multiply([yi, pc]) pc_sum = ctx_sum(pc) pxi_sum = ctx_sum(pxi) pyi_sum = ctx_sum(pyi) pc_div = Lambda(lambda x: x / num_context)(pc_sum) pxi_div = tf_div([pxi_sum, pc_sum]) pyi_div = tf_div([pyi_sum, pc_sum]) yc_div = concatenate([pxi_div, pyi_div]) ys_alpha = mul_alpha(ys) yc_div_1alpha = mul_1alpha(yc_div) y = add([ys_alpha, yc_div_1alpha]) model = Model(inputs=[ys, yc, pc], outputs=y, name=name) model.trainable = False return model def build_softargmax_1d(input_shape, name=None): if name is None: name_sm = None else: name_sm = name + '_softmax' inp = Input(shape=input_shape) x = act_depth_softmax(inp, name=name_sm) x = lin_interpolation_1d(x) model = Model(inputs=inp, outputs=x, name=name) model.trainable = False return model def build_softargmax_2d(input_shape, rho=0., name=None): if name is None: name_sm = None else: name_sm = name + '_softmax' inp = Input(shape=input_shape) x = act_channel_softmax(inp, name=name_sm) if rho > 0: x = kl_divergence_regularizer(x, rho=rho) x_x = lin_interpolation_2d(x, axis=0) x_y = lin_interpolation_2d(x, axis=1) x = concatenate([x_x, x_y]) model = Model(inputs=inp, outputs=x, name=name) model.trainable = False return model def build_joints_probability(input_shape, name=None, verbose=0): inp = Input(shape=input_shape) x = inp x = AveragePooling2D((2, 2), strides=(1, 1))(x) x = Lambda(lambda x: 4*x)(x) x = GlobalMaxPooling2D()(x) x = Lambda(lambda x: K.expand_dims(x, axis=-1))(x) model = Model(inputs=inp, outputs=x, name=name) if verbose: model.summary() return model
schedule/migrations/0002_event_color_event.py
kimarakov/schedule
1,065
12757618
<gh_stars>1000+ from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("schedule", "0001_initial")] operations = [ migrations.AddField( model_name="event", name="color_event", field=models.CharField( verbose_name="Color event", blank=True, max_length=10, null=True ), ) ]
sld-schedule/helpers/api_token.py
guorenxi/Stack-Lifecycle-Deployment
115
12757622
<reponame>guorenxi/Stack-Lifecycle-Deployment from helpers.api_request import request_url from config.api import settings def get_token(data): response = request_url( verb='POST', headers={'Content-Type': 'application/json'}, uri='authenticate/access-token-json', json=data ) if response.get('status_code') == 200: result = response.get('json') return result.get('access_token') if __name__ == "__main__": print(get_token(settings.CREDENTIALS_ADM))
tests/models/hyper_dt_regression_test.py
lixfz/DeepTables
828
12757635
# -*- coding:utf-8 -*- __author__ = 'yangjian' """ """ import pandas as pd from deeptables.models import DeepTable from deeptables.models.hyper_dt import HyperDT, tiny_dt_space from hypernets.core.callbacks import SummaryCallback, FileStorageLoggingCallback from hypernets.core.searcher import OptimizeDirection from hypernets.searchers import RandomSearcher from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from .. import homedir class Test_HyperDT_Regression(): def test_boston(self): print("Loading datasets...") boston_dataset = load_boston() df_train = pd.DataFrame(boston_dataset.data) df_train.columns = boston_dataset.feature_names self.y = pd.Series(boston_dataset.target) self.X = df_train self.X_train, \ self.X_test, \ self.y_train, \ self.y_test = train_test_split(self.X, self.y, test_size=0.2, random_state=42) rs = RandomSearcher(tiny_dt_space, optimize_direction=OptimizeDirection.Maximize, ) hdt = HyperDT(rs, callbacks=[SummaryCallback(), FileStorageLoggingCallback(rs, output_dir=f'{homedir}/hyn_logs')], reward_metric='RootMeanSquaredError', dnn_params={ 'hidden_units': ((256, 0, False), (256, 0, False)), 'dnn_activation': 'relu', }, ) hdt.search(self.X_train, self.y_train, self.X_test, self.y_test, max_trials=3) best_trial = hdt.get_best_trial() estimator = hdt.final_train(best_trial.space_sample, self.X, self.y) score = estimator.predict(self.X_test) result = estimator.evaluate(self.X_test, self.y_test) assert result assert isinstance(estimator.model, DeepTable)
luminaire/model/window_density.py
Dima2022/luminaire
525
12757654
from luminaire.model.base_model import BaseModel, BaseModelHyperParams from luminaire.exploration.data_exploration import DataExploration class WindowDensityHyperParams(BaseModelHyperParams): """ Hyperparameter class for Luminaire Window density model. :param str freq: The frequency of the time-series. Luminaire supports default configuration for 'S', T, '15T', 'H', 'D'. Any other frequency type should be specified as 'custom' and configuration should be set manually. :param float max_missing_train_prop: Maximum proportion of missing observation allowed in the training data. :param bool is_log_transformed: A flag to specify whether to take a log transform of the input data. If the data contain negatives, is_log_transformed is ignored even though it is set to True. :param str baseline_type: A string flag to specify whether to take set a baseline as the previous sub-window from the training data for scoring or to aggregate the overall window as a baseline. Possible values: - "last_window" - "aggregated" :param str detection_method: A string that select between two window testing method. Possible values: - "kldiv" (KL-divergence). This is recommended to be set for high frequency time series such as 'S', 'T' etc. - "sign_test" (Wilcoxon sign rank test). This is recommended to be set for low frequency time series such as 'H', 'D' etc. :param int min_window_length: Minimum size of the scoring window / a stable training sub-window length. .. Note :: This is not the minimum size of the whole training window which is the combination of stable sub-windows. :param int max_window_length: Maximum size of the scoring window / a stable training sub-window length. .. Note :: This is not the maximum size of the whole training window which is the combination of stable sub-windows. :param int window_length: Size of the scoring window / a stable training sub-window length. .. Note :: This is not the size of the whole training window which is the combination of stable sub-windows. :param str detrend_method: A string that select between two stationarizing method. Possible values: - "ma" (moving average based) - "diff" (differencing based). """ def __init__(self, freq=None, max_missing_train_prop=0.1, is_log_transformed=False, baseline_type="aggregated", detection_method=None, min_window_length=None, max_window_length=None, window_length=None, detrend_method='modeling' ): super(WindowDensityHyperParams, self).__init__( model_name="WindowDensityModel", freq=freq, max_missing_train_prop=max_missing_train_prop, is_log_transformed=is_log_transformed, baseline_type=baseline_type, detection_method=detection_method, min_window_length=min_window_length, max_window_length=max_window_length, window_length=window_length, detrend_method=detrend_method ) class WindowDensityModel(BaseModel): """ This model detects anomalous windows using KL divergence (for high frequency data) and Wilcoxon sign rank test (for low frequency data). This default monitoring frequency is set to pandas time frequency type 'T'. :param dict hyper_params: Hyper parameters for Luminaire window density model. See :class:`luminaire.model.window_density.WindowDensityHyperParams` for detailed information. :return: Anomaly probability for the execution window and other related model outputs :rtype: list[dict] """ __version__ = "0.1" def __init__(self, hyper_params: WindowDensityHyperParams().params or None, **kwargs): # Specifying the minimum and maximum number of training windows self.min_num_train_windows = 5 self.max_num_train_windows = 10000 self.hyper_params = hyper_params self.sig_level = 0.001 super(WindowDensityModel, self).__init__(**hyper_params, **kwargs) def _volume_shift_detection(self, mean_list=None, sd_list=None, probability_threshold=0.5): """ This function detects any significant shift in the training data volume using a Bayesian change point detection technique. :param list mean_list: The list of means from each training sub-window. :param list sd_list: The list of standard deviations from each training sub-window. :param float probability_threshold: Threshold for the probability value to be flagged as a change point. :return: Indices with significant vdata volume shift. :rtype: int """ import numpy as np from bayesian_changepoint_detection import offline_changepoint_detection as offcd from functools import partial # Volume shift detection over the means of the training window q, p, pcp = offcd.offline_changepoint_detection( data=np.array(mean_list), prior_func=partial(offcd.const_prior, l=(len(mean_list) + 1)), observation_log_likelihood_function=offcd.gaussian_obs_log_likelihood, truncate=-10) mask_mean = np.append(0, np.exp(pcp).sum(0)) > probability_threshold # Volume shift detection over the standard deviations of the training window change_points = np.array(mask_mean).nonzero() last_mean_cp = change_points[0][-1] if len(change_points[0]) > 0 else [] q, p, pcp = offcd.offline_changepoint_detection( data=np.array(sd_list), prior_func=partial(offcd.const_prior, l=(len(sd_list) + 1)), observation_log_likelihood_function=offcd.gaussian_obs_log_likelihood, truncate=-10) mask_sd = np.append(0, np.exp(pcp).sum(0)) > probability_threshold change_points = np.array(mask_sd).nonzero() last_sd_cp = change_points[0][-1] if len(change_points[0]) > 0 else [] # Change point is the maximum obtained from mean list and the standard deviation list cdate = max(last_mean_cp, last_sd_cp) return cdate def _distance_function(self, data=None, called_for=None, baseline=None): """ This function finds the distance of the given data from the baseline using KL divergence. :param list data: The list containing the scoring window (for scoring) / training sub-window (for training). :param str distance_method: The method to be used to calculate the distance between two datasets. :param str called_for: A flag to specify whether this function is called for training or scoring. :param list baseline: A list containing the base line to be compared with the given data. :return: KL divergence between two time windows. :rtype: float """ import numpy as np import scipy.stats as stats float_min = 1e-50 float_max = 1e50 # If called for training, Kl divergence is performed over each pair of consecutive windows to create # the past anomaly scores if called_for == "training": distance = [] for i in range(0, len(data) - 1): q = stats.kde.gaussian_kde(data[i]) p = stats.kde.gaussian_kde(data[i + 1]) ts_min = min(np.min(data[i]), np.min(data[i + 1])) ts_max = max(np.max(data[i]), np.max(data[i + 1])) density_domain = np.linspace(ts_min, ts_max, 1000) q = q(density_domain) p = p(density_domain) # approximating the zero probability regions to avoid divide by zero issue in KL divergence q[q == 0] = min(np.array(q)[np.array(q) > 0]) p[p == 0] = min(np.array(p)[np.array(p) > 0]) q = np.clip(q, float_min, float_max) p = np.clip(p, float_min, float_max) distance.append(stats.entropy(pk=p, qk=q)) # If called for scoring, Kl divergence is performed between the scoring window and the baseline elif called_for == "scoring": q = stats.kde.gaussian_kde(baseline) p = stats.kde.gaussian_kde(data) ts_min = min(np.min(baseline), np.min(data)) ts_max = max(np.max(baseline), np.max(data)) density_domain = np.linspace(ts_min, ts_max, 1000) q = q(density_domain) p = p(density_domain) q[q == 0] = min(np.array(q)[np.array(q) > 0]) p[p == 0] = min(np.array(p)[np.array(p) > 0]) q = np.clip(q, float_min, float_max) p = np.clip(p, float_min, float_max) distance = stats.entropy(pk=p, qk=q) return distance def _training_data_truncation(self, sliced_training_data=None): """ This function performs the truncation of the training data using the _volume_shift_detection function. :param list sliced_training_data: The list containing the training data. :return: Sliced training sample based on the most recent change point :rtype: list """ import numpy as np # Change point detection is performed over the means and standard deviations of the sub windows window_means = [] window_sds = [] for ts in sliced_training_data: window_means.append(np.mean(ts)) window_sds.append(np.std(ts)) change_point = self._volume_shift_detection(mean_list=window_means, sd_list=window_sds) # Truncating the training data based on the last change point if change_point: sliced_training_data_truncated = sliced_training_data[change_point:] return sliced_training_data_truncated else: return sliced_training_data def _call_training(self, df=None, window_length=None, imputed_metric=None, detrend_method=None, detection_method=None, freq=None, **kwargs): """ This function generates the baseline and training metrics to be used for scoring. :param pandas.DataFrame df: Input training data frame. :param int window_length: The length of a training sub-window. :param str imputed_metric: Column storing the time series values. :param str detrend_method: Detrend method "modeling" or "diff" for nonstationarity. :param str detection_method: Detection method "kldiv" or "sign_test". :param str freq: Data frequency. :return: Returns past anomaly scores based on training data, baseline and other related metrics. :rtype: tuple(list, float, float, float, int, list, luminaire.model, float, dict, list) """ import pandas as pd past_anomaly_scores = dict() gamma_alpha = dict() gama_loc = dict() gamma_beta = dict() detrend_order = dict() baseline = dict() agg_data_model = dict() agg_data = dict() past_model = kwargs.get('past_model') training_start = df.first_valid_index() training_end = df.last_valid_index() current_training_end = training_end while (training_end - current_training_end) < pd.Timedelta('1D'): df_current = df[df.index <= current_training_end] past_anomaly_scores_current, gamma_alpha_current, gama_loc_current, gamma_beta_current, \ detrend_order_current, baseline_current, agg_data_model_current, \ agg_data_current = self._anomalous_region_detection(input_df=df_current, window_length=window_length, value_column=imputed_metric, called_for="training", detrend_method=detrend_method, past_model=past_model, detection_method=detection_method) past_anomaly_scores.update({str(current_training_end.time().strftime('%H:%M:%S')): past_anomaly_scores_current}) gamma_alpha.update({str(current_training_end.time().strftime('%H:%M:%S')): float(gamma_alpha_current) if gamma_alpha_current else None}) gama_loc.update({str(current_training_end.time().strftime('%H:%M:%S')): float(gama_loc_current) if gama_loc_current else None}) gamma_beta.update({str(current_training_end.time().strftime('%H:%M:%S')): float(gamma_beta_current) if gamma_beta_current else None}) detrend_order.update({str(current_training_end.time().strftime('%H:%M:%S')): detrend_order_current}) baseline.update({str(current_training_end.time().strftime('%H:%M:%S')): baseline_current}) agg_data_model.update({str(current_training_end.time().strftime('%H:%M:%S')): agg_data_model_current}) agg_data.update({str(current_training_end.time().strftime('%H:%M:%S')): agg_data_current}) if isinstance(freq, str): freq = pd.Timedelta('1' + freq) current_training_end = current_training_end - min(pd.Timedelta('30T'), freq * 10) return past_anomaly_scores, gamma_alpha, gama_loc, gamma_beta, \ detrend_order, baseline, agg_data_model, agg_data, training_start, training_end def _get_model(self, input_df=None, window_length=None, value_column=None, detrend_method=None, baseline_type=None, detection_method=None, past_model=None): """ This function runs the training process given the input parameters. :param pandas.DataFrame input_df: Input data containing the training and the scoring data. :param int window_length: The length of a training sub-window / scoring window. :param str value_column: Column containing the values. :param str detrend_method: Selects between "modeling" or "diff" detrend method. :param str baseline_type: Selects between "aggregated" or "last_window" baseline. :param str detection_method: Selects between "kldiv" or "sign_test" distance method. :param luminaire.model.window_density.WindowDensityModel past_model: luminaire.model to append model metadata from past :return: Returns past anomaly scores based on training data, baseline and other related metrics. :rtype: tuple(list, float, float, float, int, list, luminaire.model, float) """ import numpy as np import pandas as pd from itertools import chain import scipy.stats as st model_history_truncation_prop = 0.25 # This is the proportion of history to truncate from both sides # everytime we store the past anomaly scores de_obj = DataExploration() sliced_training_data, agg_datetime = de_obj._partition(input_df, window_length, value_column) # performing the stationarity test sliced_training_data_cleaned, detrend_order, agg_data_model, agg_data = de_obj._detrender( training_data_sliced=sliced_training_data, significance_level=0.05, detrend_method=detrend_method, agg_datetime=agg_datetime, past_model=past_model) # Obtain the past anomaly scores and the anomaly means and standard deviation if the detection method # is KL divergence if detection_method == "kldiv": past_anomaly_scores = np.array(self._distance_function(data=sliced_training_data_cleaned, called_for="training")) if past_model: model_timestamps = list(past_model._params['PastAnomalyScores'].keys()) training_end = input_df.index[-1] current_min_timedelta = pd.Timedelta('10D') for timestamp in model_timestamps: current_datetime = pd.Timestamp(str(training_end.date()) + ' ' + timestamp) temp_timedelta = training_end - current_datetime temp_timedelta = pd.Timedelta('1D') + temp_timedelta if temp_timedelta < pd.Timedelta( 0) else temp_timedelta if temp_timedelta < current_min_timedelta: opt_timestamp = timestamp current_min_timedelta = temp_timedelta past_anomaly_scores = np.concatenate([past_model._params['PastAnomalyScores'][opt_timestamp][ int(len(past_anomaly_scores) * model_history_truncation_prop): -int(len(past_anomaly_scores) * model_history_truncation_prop)] , past_anomaly_scores]) if len(past_anomaly_scores) < 100: alpha = [] loc = [] beta = [] for i in range(10): boot_scores = np.random.choice(past_anomaly_scores.tolist(), size=100, replace=True) alpha_i, loc_i, beta_i = st.gamma.fit(boot_scores) alpha.append(alpha_i) loc.append(loc_i) beta.append(beta_i) gamma_alpha = np.mean(alpha) gamma_loc = np.mean(loc) gamma_beta = np.mean(beta) else: gamma_alpha, gamma_loc, gamma_beta = st.gamma.fit(past_anomaly_scores) else: past_anomaly_scores, gamma_alpha, gamma_loc, gamma_beta = None, None, None, None # If aggregated baseline type is specified, we take the whole training window as a baseline, else we # take the last training sub window from the sliced training data if baseline_type == "aggregated": sliced_training_data_cleaned = self._training_data_truncation( sliced_training_data=sliced_training_data_cleaned) if detection_method == "kldiv": baseline = list(chain.from_iterable(sliced_training_data_cleaned)) elif detection_method == "sign_test": baseline = sliced_training_data_cleaned elif baseline_type == "last_window": baseline = sliced_training_data_cleaned[-1] return past_anomaly_scores, gamma_alpha, gamma_loc, gamma_beta, detrend_order, \ baseline, agg_data_model, agg_data def train(self, data, **kwargs): """ Input time series for training. :param pandas.DataFrame data: Input time series. :return: Trained model with the training timestamp and a success flag :rtype: tuple(bool, str, python model object) >>> data raw interpolated index 2017-10-02 00:00:00 118870 118870 2017-10-02 01:00:00 121914 121914 2017-10-02 02:00:00 116097 116097 2017-10-02 03:00:00 94511 94511 2017-10-02 04:00:00 68330 68330 ... ... ... 2018-10-10 19:00:00 219908 219908 2018-10-10 20:00:00 219149 219149 2018-10-10 21:00:00 207232 207232 2018-10-10 22:00:00 198741 198741 2018-10-10 23:00:00 213751 213751 >>> hyper_params = WindowDensityHyperParams(freq='H').params >>> wdm_obj = WindowDensityModel(hyper_params=hyper_params) >>> success, model = wdm_obj.train(data) >>> success, model (True, "2018-10-10 23:00:00", <luminaire.model.window_density.WindowDensityModel object at 0x7fd7c5a34e80>) """ import numpy as np import pandas as pd freq = pd.Timedelta(self._params['freq']) if self._params['freq'] not in ['S', 'T', '15T', 'H', 'D'] \ else self._params['freq'] if freq in ['S', 'T', '15T', 'H', 'D']: window_length = self._params['window_length'] else: min_window_length = self._params['min_window_length'] max_window_length = self._params['max_window_length'] window_length = self._params['window_length'] if not min_window_length or not max_window_length or not window_length: raise ValueError( 'Training window length with min and max should be specified in case frequency not in the ' 'specified list') is_log_transformed = self._params['is_log_transformed'] detrend_method = self._params['detrend_method'] target_metric = 'raw' imputed_metric = 'interpolated' if not self._params['detection_method']: if freq in ['S', 'T', '15T']: detection_method = 'kldiv' elif freq in ['H', 'D']: detection_method = 'sign_test' else: detection_method = 'sign_test' if freq > np.timedelta64(30, 'm') else 'kldiv' else: detection_method = self._params['detection_method'] if len(data) == 0: model = {'ErrorMessage': 'DataFrame length is 0'} success = False return success, WindowDensityModel(**model) # Shift the interpolated value by +1 and get the log. This handles values with 0. if is_log_transformed: neg_flag = True if not data[data[target_metric] < 0].empty else False data[imputed_metric] = data[imputed_metric] if neg_flag else np.log(data[imputed_metric] + 1) past_anomaly_scores, anomaly_scores_gamma_alpha, anomaly_scores_gamma_loc, anomaly_scores_gamma_beta, \ detrend_order, baseline, agg_data_model, agg_data, \ training_start, training_end = self._call_training(df=data, window_length=window_length, imputed_metric=imputed_metric, detrend_method=detrend_method, detection_method=detection_method, freq=freq, **kwargs) success = True self.hyper_params['is_log_transformed'] = is_log_transformed self.hyper_params['detection_method'] = detection_method model = {'TrainingStartDate': str(training_start), 'PastAnomalyScores': past_anomaly_scores, 'AnomalyScoresGammaAlpha': anomaly_scores_gamma_alpha, 'AnomalyScoresGammaLoc': anomaly_scores_gamma_loc, 'AnomalyScoresGammaBeta': anomaly_scores_gamma_beta, 'NonStationarityOrder': detrend_order, 'Baseline': baseline, 'AggregatedDataModel': agg_data_model, 'AggregatedData': agg_data } return success, str(training_end), WindowDensityModel(hyper_params=self.hyper_params, **model) def _call_scoring(self, df=None, target_metric=None, anomaly_scores_gamma_alpha=None, anomaly_scores_gamma_loc=None, anomaly_scores_gamma_beta=None, baseline=None, detrend_order=None, detrend_method=None, agg_data_model=None, detection_method=None, attributes=None, agg_data=None): """ This function generates the anomaly flag and and probability for the scoring window. :param pandas.DataFrame df: Input training data frame. :param str target_metric: Column storing the time series values. :param float anomaly_scores_gamma_alpha: Gamma fit alpha parameter. :param float anomaly_scores_gamma_loc: Gamma fit location parameter. :param float anomaly_scores_gamma_beta: Gamma fit beta parameter. :param list baseline: A list storing a baseline window used to score the scoring window. :param int detrend_order: The order of detrending based on MA or differencing method. :param str detrend_method: Selects between "modeling" or "diff" detrend method. :param luminaire.model.lad_structural.LADStructuralModel agg_data_model: Prediction model for aggregated data. :param str detection_method: Selects between "kldiv" or "sign_test" distance method. :param attributes: Model attributes. :param agg_data: Aggregated Data per day. :return: Returns the anomaly flag with the corresponding anomaly probability. :rtype: tuple(bool, float, dict) """ is_anomaly, prob_of_anomaly = self._anomalous_region_detection(input_df=df, value_column=target_metric, called_for="scoring", anomaly_scores_gamma_alpha=anomaly_scores_gamma_alpha, anomaly_scores_gamma_loc=anomaly_scores_gamma_loc, anomaly_scores_gamma_beta=anomaly_scores_gamma_beta, baseline=baseline, detrend_order=detrend_order, detrend_method=detrend_method, agg_data_model=agg_data_model, detection_method=detection_method, agg_data=agg_data) return is_anomaly, prob_of_anomaly, attributes def _get_result(self, input_df=None, detrend_order=None, agg_data_model=None, value_column=None, detrend_method=None, baseline_type=None, detection_method=None, baseline=None, anomaly_scores_gamma_alpha=None, anomaly_scores_gamma_loc=None, anomaly_scores_gamma_beta=None, agg_data=None): """ The function scores the scoring window for anomalies based on the training metrics and the baseline :param pandas.DataFrame input_df: Input data containing the training and the scoring data. :param int detrend_order: The non-negative order of detrending based on Modeling or differencing method. When the detrend_order > 0, corresponding detrending need to be performed using the method specified in the model config. :param luminaire.model.lad_structural.LADStructuralModel agg_data_model: Prediction model for aggregated data. :param str value_column: Column containing the values. :param str detrend_method: Selects between "modeling" or "diff" detrend method. :param str baseline_type: Selects between "aggregated" or "last_window" baseline. :param str detection_method: Selects between "kldiv" or "sign_test" distance method. :param list baseline: A list storing a baseline window used to score the scoring window. :param float anomaly_scores_gamma_alpha: Gamma fit alpha parameter. :param float anomaly_scores_gamma_loc: Gamma fit location parameter. :param float anomaly_scores_gamma_beta: Gamma fit beta parameter. :param agg_data: Aggregated Data per day. :return: Returns the anomaly flag with the corresponding anomaly probability. :rtype: tuple(bool, float) """ import numpy as np import pandas as pd import copy import scipy.stats as st from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.covariance import EmpiricalCovariance, MinCovDet import collections import operator is_anomaly = False execution_data = input_df[value_column] adjusted_execution_data = [] prob_of_anomaly = [] len_req_agg_data_model = 42 # Setting a hard threshold to have predictions from aggregated data # for stationarity adjustment if detrend_method == 'diff': # Obtain the execution data and perform the necessary differencing execution_data = list(execution_data) adjusted_execution_data = np.diff(execution_data, detrend_order).tolist() if detrend_order > 0 \ else execution_data elif detrend_method == 'modeling': idx = input_df.index.normalize() dates_freq_dist = dict(collections.Counter(idx)) scoring_datetime = str(max(dates_freq_dist.items(), key=operator.itemgetter(1))[0]) execution_data_avg = np.mean(execution_data) # If detrending is needed, we scale the scoring data accordingly using the agg_dat_model forecast if detrend_order > 0: snapshot_len_max = min(len(agg_data), len_req_agg_data_model) agg_data_trunc = np.array(agg_data)[:, 1][-snapshot_len_max:] data_adjust_forecast = [] try: # Setting the data adjustment window of the original data using the predictions and the CILower and # CIUpper keeping the prediction uncertainty of the agg_model in mind if agg_data_model and len(agg_data) > len_req_agg_data_model: score = agg_data_model.score(execution_data_avg, scoring_datetime) data_adjust_forecast.append(score['Prediction']) data_adjust_forecast.append(score['CILower']) data_adjust_forecast.append(score['CIUpper']) else: data_adjust_forecast.append(np.median(agg_data_trunc)) data_adjust_forecast.append(np.percentile(agg_data_trunc, 5)) # setting a 2-sigma limit data_adjust_forecast.append(np.percentile(agg_data_trunc, 95)) # setting a 2-sigma limit except: # If the scoring for the agg_data_model fails for some reason, we use the latest agg_data for the # detrending adjustment data_adjust_forecast.append(np.median(agg_data_trunc)) data_adjust_forecast.append(np.percentile(agg_data_trunc, 5)) # setting a 2-sigma limit data_adjust_forecast.append(np.percentile(agg_data_trunc, 95)) # setting a 2-sigma limit for i in range(3): if data_adjust_forecast[i] != 0: adjusted_execution_data.append((execution_data / data_adjust_forecast[i]).tolist()) else: adjusted_execution_data = list(execution_data) # Kl divergence based anomaly detection if detection_method == "kldiv": if detrend_order > 0: prob_of_anomaly = [] for i in range(3): current_anomaly_score = self._distance_function(data=adjusted_execution_data[i], called_for="scoring", baseline=baseline) prob_of_anomaly.append(st.gamma.cdf(current_anomaly_score, anomaly_scores_gamma_alpha, anomaly_scores_gamma_loc, anomaly_scores_gamma_beta)) prob_of_anomaly = np.min(prob_of_anomaly) else: current_anomaly_score = self._distance_function(data=adjusted_execution_data, called_for="scoring", baseline=baseline) prob_of_anomaly = st.gamma.cdf(current_anomaly_score, anomaly_scores_gamma_alpha, anomaly_scores_gamma_loc, anomaly_scores_gamma_beta) if 1 - prob_of_anomaly < self.sig_level: is_anomaly = True # Sign test based anomaly detection elif detection_method == "sign_test": # If last window is the baseline, we perform the Wilcoxon sign rank test for means and levene # test for variance to detect anomalies if baseline_type == "last_window": test_stat_wilcoxon, pvalue_wilcoxon = st.wilcoxon(execution_data, baseline) test_stat_levene, pvalue_levene = st.levene(execution_data, baseline) if pvalue_wilcoxon < self.sig_level or pvalue_levene < self.sig_level: is_anomaly = True prob_of_anomaly = 1 - min(pvalue_wilcoxon, pvalue_levene) # If aggregated is the baseline, we perform the Wilcoxon sign rank test for means and gamma distribution # based test for the past standard deviations to detect anomalies elif baseline_type == "aggregated": baseline_sds = np.array(baseline).std(1).tolist() if detrend_order == 0: # crearing a 2d list to make it easy to loop through in the following for loop adjusted_execution_data = [adjusted_execution_data] for current_adjusted_data in adjusted_execution_data: baseline_execution_data = copy.copy(baseline) baseline_execution_data.append(current_adjusted_data) pca = PCA() scores = pca.fit_transform(StandardScaler().fit_transform(baseline_execution_data)) robust_cov = MinCovDet().fit(scores[:, :3]) mahalanobis_distance = robust_cov.mahalanobis(scores[:, :3]) # getting the top 3 dimensions pvalue_mahalanobis = 1 - st.chi2.cdf(mahalanobis_distance[-1], np.array(baseline_execution_data).shape[1]) gamma_alpha, gamma_loc, gamma_beta = st.gamma.fit(baseline_sds) pvalue_gamma = 1 - st.gamma.cdf(np.std(current_adjusted_data), gamma_alpha, gamma_loc, gamma_beta) if pvalue_mahalanobis < self.sig_level or pvalue_gamma < self.sig_level: is_anomaly = True prob_of_anomaly.append(1 - min(pvalue_mahalanobis, pvalue_gamma)) prob_of_anomaly = np.min(prob_of_anomaly) return is_anomaly, prob_of_anomaly def score(self, data, **kwargs): """ Function scores input series for anomalies :param pandas.DataFrame data: Input time series to score :return: Output dictionary with scoring summary. :rtype: dict >>> data raw interpolated index 2018-10-11 00:00:00 204800 204800 2018-10-11 01:00:00 222218 222218 2018-10-11 02:00:00 218903 218903 2018-10-11 03:00:00 190639 190639 2018-10-11 04:00:00 148214 148214 2018-10-11 05:00:00 106358 106358 2018-10-11 06:00:00 70081 70081 2018-10-11 07:00:00 47748 47748 2018-10-11 08:00:00 36837 36837 2018-10-11 09:00:00 33023 33023 2018-10-11 10:00:00 44432 44432 2018-10-11 11:00:00 72773 72773 2018-10-11 12:00:00 115180 115180 2018-10-11 13:00:00 157568 157568 2018-10-11 14:00:00 180174 180174 2018-10-11 15:00:00 190048 190048 2018-10-11 16:00:00 188391 188391 2018-10-11 17:00:00 189233 189233 2018-10-11 18:00:00 191703 191703 2018-10-11 19:00:00 189848 189848 2018-10-11 20:00:00 192685 192685 2018-10-11 21:00:00 196743 196743 2018-10-11 22:00:00 193016 193016 2018-10-11 23:00:00 196441 196441 >>> model <luminaire.model.window_density.WindowDensityModel object at 0x7fcaab72fdd8> >>> model.score(data) {'Success': True, 'ConfLevel': 99.9, 'IsAnomaly': False, 'AnomalyProbability': 0.6963188902776808} """ import numpy as np import pandas as pd is_log_transformed = self._params['is_log_transformed'] detrend_method = self._params['detrend_method'] target_metric = 'raw' imputed_metric = 'interpolated' detection_method = self._params['detection_method'] # We want to make sure the time series does not contain any negatives in case of log transformation if is_log_transformed: neg_flag = True if not data[data[target_metric] < 0].empty else False data[imputed_metric] = data[imputed_metric] if neg_flag else np.log(data[imputed_metric] + 1) model_timestamps = list(self._params['AnomalyScoresGammaAlpha'].keys()) scoring_start = data.index[0] current_min_timedelta = pd.Timedelta('10D') for timestamp in model_timestamps: current_datetime = pd.Timestamp(str(scoring_start.date()) + ' ' + timestamp) temp_timedelta = scoring_start - current_datetime temp_timedelta = pd.Timedelta('1D') + temp_timedelta if temp_timedelta < pd.Timedelta(0) else temp_timedelta if temp_timedelta < current_min_timedelta: opt_timestamp = timestamp current_min_timedelta = temp_timedelta anomaly_scores_gamma_alpha = self._params['AnomalyScoresGammaAlpha'][opt_timestamp] anomaly_scores_gamma_loc = self._params['AnomalyScoresGammaLoc'][opt_timestamp] anomaly_scores_gamma_beta = self._params['AnomalyScoresGammaBeta'][opt_timestamp] baseline = self._params['Baseline'][opt_timestamp] detrend_order = self._params['NonStationarityOrder'][opt_timestamp] agg_data_model = self._params['AggregatedDataModel'][opt_timestamp] agg_data = self._params['AggregatedData'][opt_timestamp] is_anomaly, prob_of_anomaly, attributes = self._call_scoring(df=data, target_metric=target_metric, anomaly_scores_gamma_alpha=anomaly_scores_gamma_alpha, anomaly_scores_gamma_loc=anomaly_scores_gamma_loc, anomaly_scores_gamma_beta=anomaly_scores_gamma_beta, baseline=baseline, detrend_order=detrend_order, detrend_method=detrend_method, agg_data_model=agg_data_model, detection_method=detection_method, agg_data=agg_data) result = {'Success': True, 'ConfLevel': float(1.0 - self.sig_level) * 100, 'IsAnomaly': is_anomaly, 'AnomalyProbability': float(prob_of_anomaly), } return result, data.reset_index().values.tolist() def _anomalous_region_detection(self, input_df=None, window_length=None, value_column=None, called_for=None, anomaly_scores_gamma_alpha=None, anomaly_scores_gamma_loc=None, anomaly_scores_gamma_beta=None, detrend_order=None, baseline=None, detrend_method=None, agg_data_model=None, past_model=None, detection_method=None, agg_data=None): """ This function detects anomaly given a training and a scoring window. :param pandas.DataFrame input_df: Input data containing the training and the scoring data. :param int window_length: The length of a training sub-window / scoring window. :param str value_column: A string identifying the value column from the input dataframe :param str called_for: A flag to specify whether this function is called for training or scoring. :param float anomaly_scores_gamma_alpha: Gamma fit alpha parameter. :param float anomaly_scores_gamma_loc: Gamma fit location parameter. :param float anomaly_scores_gamma_beta: Gamma fit beta parameter. :param int detrend_order: Number of differencing for the scoring data. Only required if called for scoring. :param list baseline: The baseline for the scoring. only required if called for scoring. :param str detrend_method: Selects between "modeling" or "diff" detrend method. :param luminaire.model.lad_structural.LADStructuralModel agg_data_model: Prediction model for aggregated data. :param luminaire.model.window_density.WindowDensityModel past_model: Past stored window density model. :param str detection_method: Selects between "kldiv" or "sign_test" distance method. :param agg_data: Aggregated Data per day. :return: Anomaly flag with the corresponding probability of anomaly. :rtype: tuple(bool, float) """ baseline_type = self._params['baseline_type'] input_df.fillna(0, inplace=True) # The function can be called for either training or scoring if called_for == "training": return self._get_model(input_df=input_df, window_length=window_length, value_column=value_column, detrend_method=detrend_method, baseline_type=baseline_type, detection_method=detection_method, past_model=past_model) elif called_for == "scoring": return self._get_result(input_df=input_df, detrend_order=detrend_order, agg_data_model=agg_data_model, value_column=value_column, detrend_method=detrend_method, baseline_type=baseline_type, detection_method=detection_method, baseline=baseline, anomaly_scores_gamma_alpha=anomaly_scores_gamma_alpha, anomaly_scores_gamma_loc=anomaly_scores_gamma_loc, anomaly_scores_gamma_beta=anomaly_scores_gamma_beta, agg_data=agg_data)
tools/android/roll/update_support_library.py
google-ar/chromium
777
12757664
#!/usr/bin/env python # # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Updates the Android support repository (m2repository). """ import argparse import fnmatch import os import subprocess import shutil import sys DIR_SOURCE_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..')) ANDROID_SDK_PATH = os.path.abspath(os.path.join(DIR_SOURCE_ROOT, 'third_party', 'android_tools', 'sdk')) TARGET_NAME = 'extra-android-m2repository' # The first version we included was 23.2.1. Any folders that are older than # that should not be included by Chrome's git repo. Unstable versions should # also be excluded. REMOVE_LIST = ['databinding', '13.*', '18.*', '19.*', '20.*', '21.*', '22.*', '23.0.*', '23.1.*', '23.2.0', '*-alpha*', '*-beta*'] def main(): parser = argparse.ArgumentParser(description='Updates the Android support ' 'repository in third_party/android_tools') parser.add_argument('--sdk-dir', help='Directory for the Android SDK.') args = parser.parse_args() sdk_path = ANDROID_SDK_PATH if args.sdk_dir is not None: sdk_path = os.path.abspath(os.path.join(DIR_SOURCE_ROOT, args.sdk_dir)) sdk_tool = os.path.abspath(os.path.join(sdk_path, 'tools', 'android')) if not os.path.exists(sdk_tool): print 'SDK tool not found at %s' % sdk_tool return 1 # Run the android sdk update tool in command line. subprocess.check_call([sdk_tool, 'update', 'sdk' , '--no-ui', '--filter', TARGET_NAME]) m2repo = os.path.abspath(os.path.join(sdk_path, 'extras', 'android', 'm2repository')) # Remove obsolete folders and unused folders according to REMOVE_LIST. count = 0 for folder, _, _ in os.walk(m2repo): for pattern in REMOVE_LIST: if fnmatch.fnmatch(os.path.basename(folder), pattern): count += 1 print 'Removing %s' % os.path.relpath(folder, sdk_path) shutil.rmtree(folder) if count == 0: print ('No files were removed from the updated support library. ' 'Did you update it successfully?') return 1 if __name__ == '__main__': sys.exit(main())
PyObjCTest/test_nsset.py
Khan/pyobjc-framework-Cocoa
132
12757699
<gh_stars>100-1000 from PyObjCTools.TestSupport import * import objc from Foundation import * class TestNSSetInteraction(TestCase): def __testRepeatedAllocInit( self ): for i in range(1,1000): a = NSSet.alloc().init() def __testContains( self ): x = NSSet.setWithArray_( ["foo", "bar", "baz"] ) self.assert_( "foo" in x ) self.assert_( "notfoo" not in x ) def __testIteration( self ): x = NSSet.setWithArray_( ["foo", "bar", "baz"] ) for i in x: self.assert_( i in x ) self.assert_( x.containsObject_( i ) ) def test_varargsConstruction(self): w = NSSet.setWithObjects_(0,1,2,3,None) x = NSSet.alloc().initWithObjects_(0,1,2,3,None) y = NSSet.setWithObjects_count_(range(10), 4) z = NSSet.alloc().initWithObjects_count_(range(10), 4) #a = NSSet.alloc().initWithObjects_count_(range(4), None) self.assert_(len(w) == 4) self.assert_(len(x) == 4) self.assert_(len(y) == 4) self.assert_(len(z) == 4) #self.assert_(len(a) == 4) self.assert_(0 in w) self.assert_(1 in x) self.assert_(2 in y) self.assert_(3 in z) #self.assert_(3 in a) def test_varargsConstruction2(self): w = NSMutableSet.setWithObjects_(0,1,2,3,None) x = NSMutableSet.alloc().initWithObjects_(0,1,2,3,None) y = NSMutableSet.setWithObjects_count_(range(10), 4) z = NSMutableSet.alloc().initWithObjects_count_(range(10), 4) self.assert_(len(w) == 4) self.assert_(len(x) == 4) self.assert_(len(y) == 4) self.assert_(len(z) == 4) self.assert_(0 in w) self.assert_(1 in x) self.assert_(2 in y) self.assert_(3 in z) class TestVariadic (TestCase): def testSetWithObjects(self): o = NSSet.setWithObjects_() self.assertEqual(len(o), 0) self.assert_(isinstance(o, NSSet)) o = NSSet.setWithObjects_(1,2,3) self.assertEqual(len(o), 3) self.assert_(isinstance(o, NSSet)) self.assert_(1 in o) self.assert_(2 in o) self.assert_(3 in o) o = NSMutableSet.setWithObjects_() self.assertEqual(len(o), 0) self.assert_(isinstance(o, NSMutableSet)) o = NSMutableSet.setWithObjects_(1,2,3) self.assertEqual(len(o), 3) self.assert_(isinstance(o, NSMutableSet)) self.assert_(1 in o) self.assert_(2 in o) self.assert_(3 in o) def testInitWithObjects(self): o = NSSet.alloc().initWithObjects_() self.assertEqual(len(o), 0) self.assert_(isinstance(o, NSSet)) o = NSSet.alloc().initWithObjects_(1,2,3) self.assertEqual(len(o), 3) self.assert_(isinstance(o, NSSet)) self.assert_(1 in o) self.assert_(2 in o) self.assert_(3 in o) o = NSMutableSet.alloc().initWithObjects_() self.assertEqual(len(o), 0) self.assert_(isinstance(o, NSMutableSet)) o = NSMutableSet.alloc().initWithObjects_(1,2,3) self.assertEqual(len(o), 3) self.assert_(isinstance(o, NSMutableSet)) self.assert_(1 in o) self.assert_(2 in o) self.assert_(3 in o) def testSetWithObjectsCount(self): o = NSSet.setWithObjects_count_([1,2,3], 3) self.assertEqual(len(o), 3) self.assert_(isinstance(o, NSSet)) self.assert_(1 in o) self.assert_(2 in o) self.assert_(3 in o) self.assert_(4 not in o) o = NSSet.setWithObjects_count_([1,2,3], 0) self.assertEqual(len(o), 0) self.assert_(isinstance(o, NSSet)) o = NSMutableSet.setWithObjects_count_([1,2,3], 3) self.assertEqual(len(o), 3) self.assert_(isinstance(o, NSMutableSet)) self.assert_(1 in o) self.assert_(2 in o) self.assert_(3 in o) o = NSMutableSet.setWithObjects_count_([1,2,3], 0) self.assertEqual(len(o), 0) self.assert_(isinstance(o, NSMutableSet)) def testInitWithObjectsCount(self): o = NSSet.alloc().initWithObjects_count_([1,2,3], 3) self.assertEqual(len(o), 3) self.assert_(isinstance(o, NSSet)) self.assert_(1 in o) self.assert_(2 in o) self.assert_(3 in o) self.assert_(4 not in o) o = NSSet.alloc().initWithObjects_count_([1,2,3], 0) self.assertEqual(len(o), 0) self.assert_(isinstance(o, NSSet)) o = NSMutableSet.alloc().initWithObjects_count_([1,2,3], 3) self.assertEqual(len(o), 3) self.assert_(isinstance(o, NSMutableSet)) self.assert_(1 in o) self.assert_(2 in o) self.assert_(3 in o) o = NSMutableSet.alloc().initWithObjects_count_([1,2,3], 0) self.assertEqual(len(o), 0) self.assert_(isinstance(o, NSMutableSet)) def testMethods(self): self.assertResultIsBOOL(NSSet.containsObject_) self.assertResultIsBOOL(NSSet.intersectsSet_) self.assertResultIsBOOL(NSSet.isEqualToSet_) self.assertResultIsBOOL(NSSet.isSubsetOfSet_) self.assertArgIsIn(NSSet.setWithObjects_count_, 0) self.assertArgSizeInArg(NSSet.setWithObjects_count_, 0, 1) self.assertArgIsIn(NSSet.initWithObjects_count_, 0) self.assertArgSizeInArg(NSSet.initWithObjects_count_, 0, 1) self.assertArgIsBOOL(NSSet.initWithSet_copyItems_, 1) @min_os_level('10.6') def testMethods10_6(self): self.assertArgIsBlock(NSSet.enumerateObjectsUsingBlock_, 0, b'v@o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSSet.enumerateObjectsWithOptions_usingBlock_, 1, b'v@o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSSet.objectsPassingTest_, 0, objc._C_NSBOOL + b'@o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSSet.objectsWithOptions_passingTest_, 1, objc._C_NSBOOL + b'@o^' + objc._C_NSBOOL) if __name__ == '__main__': main()
fuzzymetaphone.py
sskadamb/csvmatch
146
12757722
import doublemetaphone def match(value1, value2): value1metaphone = doublemetaphone.doublemetaphone(value1) value2metaphone = doublemetaphone.doublemetaphone(value2) possibilities = [ value1metaphone[0] == value2metaphone[0], value1metaphone[0] == value2metaphone[1], value1metaphone[1] == value2metaphone[0], value1metaphone[1] == value2metaphone[1] != '' ] return 1.0 if True in possibilities else 0.0
projectCreation/import_images.py
MattSkiff/aerial_wildlife_detection
166
12757788
<filename>projectCreation/import_images.py ''' Helper function that imports a set of unlabeled images into the database. Works recursively (i.e., with images in nested folders) and different file formats and extensions (.jpg, .JPEG, .png, etc.). Skips images that have already been added to the database. Using this script requires the following steps: 1. Make sure your images are of common format and readable by the web server (i.e., convert camera RAW images first). 2. Copy your image folder into the FileServer's root file directory (i.e., corresponding to the path under "staticfiles_dir" in the configuration *.ini file). 3. Call the script from the AIDE code base on the FileServer instance. 2019-21 <NAME> ''' import os import argparse from psycopg2 import sql from util.helpers import VALID_IMAGE_EXTENSIONS, listDirectory if __name__ == '__main__': parser = argparse.ArgumentParser(description='Import images into database.') parser.add_argument('--project', type=str, help='Shortname of the project to insert the images into.') parser.add_argument('--settings_filepath', type=str, default='config/settings.ini', const=1, nargs='?', help='Manual specification of the directory of the settings.ini file; only considered if environment variable unset (default: "config/settings.ini").') args = parser.parse_args() # setup print('Setup...') if not 'AIDE_CONFIG_PATH' in os.environ: os.environ['AIDE_CONFIG_PATH'] = str(args.settings_filepath) from tqdm import tqdm import datetime from util.configDef import Config from modules import Database currentDT = datetime.datetime.now() currentDT = '{}-{}-{} {}:{}:{}'.format(currentDT.year, currentDT.month, currentDT.day, currentDT.hour, currentDT.minute, currentDT.second) config = Config() dbConn = Database(config) if not dbConn.canConnect(): raise Exception('Error connecting to database.') project = args.project # check if running on file server imgBaseDir = config.getProperty('FileServer', 'staticfiles_dir') if not os.path.isdir(imgBaseDir): raise Exception(f'"{imgBaseDir}" is not a valid directory on this machine. Are you running the script from the file server?') if not imgBaseDir.endswith(os.sep): imgBaseDir += os.sep # locate all images and their base names print('Locating image paths...') imgs = set() imgFiles = listDirectory(imgBaseDir, recursive=True) #glob.glob(os.path.join(imgBaseDir, '**'), recursive=True) #TODO: check if correct imgFiles = list(imgFiles) for i in tqdm(imgFiles): if os.path.isdir(i): continue _, ext = os.path.splitext(i) if ext.lower() not in VALID_IMAGE_EXTENSIONS: continue baseName = i.replace(imgBaseDir, '') imgs.add(baseName) # ignore images that are already in database print('Filter images already in database...') imgs_existing = dbConn.execute(sql.SQL(''' SELECT filename FROM {}; ''').format(sql.Identifier(project, 'image')), None, 'all') if imgs_existing is not None: imgs_existing = set([i['filename'] for i in imgs_existing]) else: imgs_existing = set() imgs = list(imgs.difference(imgs_existing)) imgs = [(i,) for i in imgs] # push image to database print('Adding to database...') dbConn.insert(sql.SQL(''' INSERT INTO {} (filename) VALUES %s; ''').format(sql.Identifier(project, 'image')), imgs) print('Done.')
sparkmagic/sparkmagic/tests/test_sessionmanager.py
sciserver/sparkmagic
1,141
12757798
<reponame>sciserver/sparkmagic<filename>sparkmagic/sparkmagic/tests/test_sessionmanager.py<gh_stars>1000+ import atexit from mock import MagicMock, PropertyMock from nose.tools import raises, assert_equals import sparkmagic.utils.configuration as conf from sparkmagic.livyclientlib.exceptions import SessionManagementException from sparkmagic.livyclientlib.sessionmanager import SessionManager @raises(SessionManagementException) def test_get_client_throws_when_client_not_exists(): manager = get_session_manager() manager.get_session("name") def test_get_client(): client = MagicMock() manager = get_session_manager() manager.add_session("name", client) assert_equals(client, manager.get_session("name")) @raises(SessionManagementException) def test_delete_client(): client = MagicMock() manager = get_session_manager() manager.add_session("name", client) manager.delete_client("name") manager.get_session("name") @raises(SessionManagementException) def test_delete_client_throws_when_client_not_exists(): manager = get_session_manager() manager.delete_client("name") @raises(SessionManagementException) def test_add_client_throws_when_client_exists(): client = MagicMock() manager = get_session_manager() manager.add_session("name", client) manager.add_session("name", client) def test_client_names_returned(): client = MagicMock() manager = get_session_manager() manager.add_session("name0", client) manager.add_session("name1", client) assert_equals({"name0", "name1"}, set(manager.get_sessions_list())) def test_get_any_client(): client = MagicMock() manager = get_session_manager() manager.add_session("name", client) assert_equals(client, manager.get_any_session()) @raises(SessionManagementException) def test_get_any_client_raises_exception_with_no_client(): manager = get_session_manager() manager.get_any_session() @raises(SessionManagementException) def test_get_any_client_raises_exception_with_two_clients(): client = MagicMock() manager = get_session_manager() manager.add_session("name0", client) manager.add_session("name1", client) manager.get_any_session() def test_clean_up(): client0 = MagicMock() client1 = MagicMock() manager = get_session_manager() manager.add_session("name0", client0) manager.add_session("name1", client1) manager.clean_up_all() client0.delete.assert_called_once_with() client1.delete.assert_called_once_with() def test_cleanup_all_sessions_on_exit(): conf.override(conf.cleanup_all_sessions_on_exit.__name__, True) client0 = MagicMock() client1 = MagicMock() manager = get_session_manager() manager.add_session("name0", client0) manager.add_session("name1", client1) atexit._run_exitfuncs() client0.delete.assert_called_once_with() client1.delete.assert_called_once_with() manager.ipython_display.writeln.assert_called_once_with(u"Cleaning up livy sessions on exit is enabled") def test_cleanup_all_sessions_on_exit_fails(): """ Cleanup on exit is best effort only. When cleanup fails, exception is caught and error is logged. """ conf.override(conf.cleanup_all_sessions_on_exit.__name__, True) client0 = MagicMock() client1 = MagicMock() client0.delete.side_effect = Exception('Mocked exception for client1.delete') manager = get_session_manager() manager.add_session("name0", client0) manager.add_session("name1", client1) atexit._run_exitfuncs() client0.delete.assert_called_once_with() client1.delete.assert_not_called() def test_get_session_id_for_client(): manager = get_session_manager() manager.get_sessions_list = MagicMock(return_value=["name"]) manager._sessions["name"] = MagicMock() id = manager.get_session_id_for_client("name") assert id is not None def test_get_session_name_by_id_endpoint(): manager = get_session_manager() id_to_search = "0" endpoint_to_search = "endpoint" name_to_search = "name" name = manager.get_session_name_by_id_endpoint(id_to_search, endpoint_to_search) assert_equals(None, name) session = MagicMock() type(session).id = PropertyMock(return_value=int(id_to_search)) session.endpoint = endpoint_to_search manager.add_session(name_to_search, session) name = manager.get_session_name_by_id_endpoint(id_to_search, endpoint_to_search) assert_equals(name_to_search, name) def test_get_session_id_for_client_not_there(): manager = get_session_manager() manager.get_sessions_list = MagicMock(return_value=[]) id = manager.get_session_id_for_client("name") assert id is None def get_session_manager(): ipython_display = MagicMock() return SessionManager(ipython_display)
persimmon/view/pins/pin.py
AlvarBer/Persimmon
206
12757843
from persimmon.view.pins.circularbutton import CircularButton # MYPY HACK from persimmon.view.util import Type, AbstractWidget, Connection from kivy.properties import ObjectProperty from kivy.lang import Builder from kivy.graphics import Color, Ellipse, Line from kivy.input import MotionEvent from abc import abstractmethod Builder.load_file('persimmon/view/pins/pin.kv') class Pin(CircularButton, metaclass=AbstractWidget): val = ObjectProperty(None, force_dispatch=True) block = ObjectProperty() type_ = ObjectProperty(Type.ANY) @abstractmethod def on_touch_down(self, touch: MotionEvent) -> bool: raise NotImplementedError @abstractmethod def on_touch_up(self, touch: MotionEvent) -> bool: raise NotImplementedError @abstractmethod def on_connection_delete(self, connection: Connection): raise NotImplementedError @abstractmethod def connect_pin(self, connection: Connection): raise NotImplementedError def typesafe(self, other: 'Pin') -> bool: """ Tells if a relation between two pins is typesafe. """ if self.block == other.block or self.__class__ == other.__class__: return False elif self.type_ == Type.ANY or other.type_ == Type.ANY: return True # Anything is possible with ANY else: return self.type_ == other.type_ # Hack def on_type_(self, instance: 'Pin', value: Type): """ If the kv lang was a bit smarted this would not be needed """ self.color = value.value
src/django-nonrel/django/forms/extras/__init__.py
adamjmcgrath/glancydesign
790
12757868
<gh_stars>100-1000 from widgets import *
geomdl/multi.py
Maik93/NURBS-Python
382
12757873
""" .. module:: Multi :platform: Unix, Windows :synopsis: Provides container classes for spline geoemtries .. moduleauthor:: <NAME> <<EMAIL>> """ import abc import warnings from functools import partial from multiprocessing import Value, Lock from . import abstract from . import vis from . import voxelize from . import utilities from . import tessellate from . import _utilities as utl from .exceptions import GeomdlException @utl.add_metaclass(abc.ABCMeta) class AbstractContainer(abstract.GeomdlBase): """ Abstract class for geometry containers. This class implements Python Iterator Protocol and therefore any instance of this class can be directly used in a for loop. This class provides the following properties: * :py:attr:`type` = container * :py:attr:`id` * :py:attr:`name` * :py:attr:`dimension` * :py:attr:`opt` * :py:attr:`pdimension` * :py:attr:`evalpts` * :py:attr:`bbox` * :py:attr:`vis` * :py:attr:`delta` * :py:attr:`sample_size` """ def __init__(self, *args, **kwargs): self._pdim = 0 if not hasattr(self, '_pdim') else self._pdim # number of parametric dimensions self._dinit = 0.01 if not hasattr(self, '_dinit') else self._dinit # delta initialization value super(AbstractContainer, self).__init__(**kwargs) self._geometry_type = "container" self._name = self._geometry_type self._delta = [float(self._dinit) for _ in range(self._pdim)] # evaluation delta self._elements = [] # list of elements contained self._vis_component = None # visualization component self._cache['evalpts'] = [] def __iter__(self): self._iter_index = 0 return self def next(self): return self.__next__() def __next__(self): try: result = self._elements[self._iter_index] except IndexError: raise StopIteration self._iter_index += 1 return result def __reversed__(self): return reversed(self._elements) def __getitem__(self, index): return self._elements[index] def __len__(self): return len(self._elements) def __add__(self, other): if not isinstance(other, self.__class__): raise GeomdlException("Cannot add non-matching container types") self.add(other) return self @property def pdimension(self): """ Parametric dimension. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the parametric dimension :type: int """ return self._pdim @property def evalpts(self): """ Evaluated points. Since there are multiple geometry objects contained in the multi objects, the evaluated points will be returned in the format of list of individual evaluated points which is also a list of Cartesian coordinates. The following code example illustrates these details: .. code-block:: python :linenos: multi_obj = multi.SurfaceContainer() # it can also be multi.CurveContainer() # Add geometries to multi_obj via multi_obj.add() method # Then, the following loop will print all the evaluated points of the Multi object for idx, mpt in enumerate(multi_obj.evalpts): print("Shape", idx+1, "contains", len(mpt), "points. These points are:") for pt in mpt: line = ", ".join([str(p) for p in pt]) print(line) Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the evaluated points of all contained geometries """ if not self._cache['evalpts']: for elem in self._elements: elem.delta = self._delta[0] if self._pdim == 1 else self._delta evalpts = elem.evalpts self._cache['evalpts'] += evalpts return self._cache['evalpts'] @property def bbox(self): """ Bounding box. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the bounding box of all contained geometries """ all_box = [] for elem in self._elements: all_box += list(elem.bbox) return utilities.evaluate_bounding_box(all_box) @property def vis(self): """ Visualization component. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the visualization component :setter: Sets the visualization component """ return self._vis_component @vis.setter def vis(self, value): if not isinstance(value, vis.VisAbstract): warnings.warn("Visualization component is NOT an instance of the vis.VisAbstract class") return self._vis_component = value @property def delta(self): """ Evaluation delta (for all parametric directions). Evaluation delta corresponds to the *step size*. Decreasing the step size results in evaluation of more points. Therefore; smaller the delta value, smoother the shape. The following figure illustrates the working principles of the delta property: .. math:: \\left[{{u_{start}},{u_{start}} + \\delta ,({u_{start}} + \\delta ) + \\delta , \\ldots ,{u_{end}}} \\right] Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the delta value :setter: Sets the delta value """ return self._delta[0] if self._pdim == 1 else self._delta @delta.setter def delta(self, value): if self._pdim == 1 and isinstance(value, (int, float)): delta_vals = [value] else: if isinstance(value, (list, tuple)): if len(value) != self._pdim: raise ValueError("The input must be a list of a tuple with a length of " + str(self._pdim)) delta_vals = value elif isinstance(value, (int, float)): delta_vals = [value for _ in range(self._pdim)] else: raise TypeError("Unsupported input type for evaluation delta. Use float, list or tuple") # Set delta values for idx, dval in enumerate(delta_vals): self._delta_setter_common(idx, dval) # Reset the cache self.reset() def _delta_setter_common(self, idx, value): # Check and set the delta value corresponding to the idx-th parametric dimension if float(value) <= 0 or float(value) >= 1: raise ValueError("Evaluation delta should be between 0.0 and 1.0. You are trying to set it to " + str(value) + " for the " + str(idx + 1) + "st parametric dimension.") self._delta[idx] = float(value) @property def sample_size(self): """ Sample size (for all parametric directions). Sample size defines the number of points to evaluate. It also sets the ``delta`` property. The following figure illustrates the working principles of sample size property: .. math:: \\underbrace {\\left[ {{u_{start}}, \\ldots ,{u_{end}}} \\right]}_{{n_{sample}}} Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size :setter: Sets sample size """ ssz = [self._sample_size_getter_common(idx) for idx in range(self._pdim)] return ssz[0] if self._pdim == 1 else ssz @sample_size.setter def sample_size(self, value): if self._pdim == 1 and isinstance(value, (int, float)): ssz = [value] else: if isinstance(value, (list, tuple)): if len(value) != self._pdim: raise ValueError("The input must be a list of a tuple with a length of " + str(self._pdim)) ssz = value elif isinstance(value, (int, float)): ssz = [value for _ in range(self._pdim)] else: raise TypeError("Unsupported input type for sample size. Use float, list or tuple") # Set sample size for idx, sval in enumerate(ssz): self._sample_size_setter_common(idx, sval) # Reset the cache self.reset() def _sample_size_getter_common(self, idx): return int(1 / self._delta[idx]) + 1 def _sample_size_setter_common(self, idx, value): # Check and set the delta value corresponding to the idx-th parametric dimension if not isinstance(value, int): raise GeomdlException("Sample size must be an integer value bigger than 2") if value < 2: raise GeomdlException("Sample size must be an integer value bigger than 2") self._delta[idx] = 1.0 / float(value - 1) @property def data(self): """ Returns a dict which contains the geometry data. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. """ return tuple([e.data for e in self._elements]) def add(self, element): """ Adds geometry objects to the container. The input can be a single geometry, a list of geometry objects or a geometry container object. :param element: geometry object """ if isinstance(element, (self.__class__, list, tuple)): for elem in element: self.add(elem) elif hasattr(self, '_pdim'): if element.pdimension == self.pdimension: if self.dimension == 0: self._dimension = element.dimension else: if self.dimension != element.dimension: raise GeomdlException("The spatial dimensions of the container and the input must be the same") self._elements.append(element) else: raise GeomdlException("Cannot add the element to the container") # Reset the cache self.reset() # Make container look like a list append = add def reset(self): """ Resets the cache. """ self._cache['evalpts'][:] = [] # Runs visualization component to render the surface @abc.abstractmethod def render(self, **kwargs): """ Renders plots using the visualization component. .. note:: This is an abstract method and it must be implemented in the subclass. """ pass @utl.export class CurveContainer(AbstractContainer): """ Container class for storing multiple curves. This class implements Python Iterator Protocol and therefore any instance of this class can be directly used in a for loop. This class provides the following properties: * :py:attr:`type` = container * :py:attr:`id` * :py:attr:`name` * :py:attr:`dimension` * :py:attr:`opt` * :py:attr:`pdimension` * :py:attr:`evalpts` * :py:attr:`bbox` * :py:attr:`vis` * :py:attr:`delta` * :py:attr:`sample_size` The following code example illustrates the usage of the Python properties: .. code-block:: python # Create a multi-curve container instance mcrv = multi.CurveContainer() # Add single or multi curves to the multi container using mcrv.add() command # Addition operator, e.g. mcrv1 + mcrv2, also works # Set the evaluation delta of the multi-curve mcrv.delta = 0.05 # Get the evaluated points curve_points = mcrv.evalpts """ def __init__(self, *args, **kwargs): self._pdim = 1 # number of parametric dimensions self._dinit = 0.01 # evaluation delta super(CurveContainer, self).__init__(*args, **kwargs) for arg in args: self.add(arg) def render(self, **kwargs): """ Renders the curves. The visualization component must be set using :py:attr:`~vis` property before calling this method. Keyword Arguments: * ``cpcolor``: sets the color of the control points grid * ``evalcolor``: sets the color of the surface * ``filename``: saves the plot with the input name * ``plot``: controls plot window visibility. *Default: True* * ``animate``: activates animation (if supported). *Default: False* * ``delta``: if True, the evaluation delta of the container object will be used. *Default: True* * ``reset_names``: resets the name of the curves inside the container. *Default: False* The ``cpcolor`` and ``evalcolor`` arguments can be a string or a list of strings corresponding to the color values. Both arguments are processed separately, e.g. ``cpcolor`` can be a string whereas ``evalcolor`` can be a list or a tuple, or vice versa. A single string value sets the color to the same value. List input allows customization over the color values. If none provided, a random color will be selected. The ``plot`` argument is useful when you would like to work on the command line without any window context. If ``plot`` flag is False, this method saves the plot as an image file (.png file where possible) and disables plot window popping out. If you don't provide a file name, the name of the image file will be pulled from the configuration class. """ if not self._vis_component: warnings.warn("No visualization component has set") return # Get the color values from keyword arguments cpcolor = kwargs.get('cpcolor') evalcolor = kwargs.get('evalcolor') filename = kwargs.get('filename', None) plot_visible = kwargs.get('plot', True) animate_plot = kwargs.get('animate', False) # Flag to control evaluation delta updates update_delta = kwargs.get('delta', True) reset_names = kwargs.get('reset_names', False) # Check if the input list sizes are equal if isinstance(cpcolor, (list, tuple)): if len(cpcolor) < len(self._elements): raise ValueError("The number of color values in 'cpcolor' (" + str(len(cpcolor)) + ") cannot be less than the number of geometries contained (" + str(len(self._elements)) + ")") if isinstance(evalcolor, (list, tuple)): if len(evalcolor) < len(self._elements): raise ValueError("The number of color values in 'evalcolor' (" + str(len(evalcolor)) + ") cannot be less than the number of geometries contained (" + str(len(self._elements)) + ")") # Run the visualization component self._vis_component.clear() for idx, elem in enumerate(self._elements): if update_delta: elem.delta = self.delta elem.evaluate() # Reset element name if reset_names: elem.name = "curve" # Fix element name if elem.name == "curve": elem.name = elem.name + " " + str(idx) # Color selection color = select_color(cpcolor, evalcolor, idx=idx) self._vis_component.add(ptsarr=elem.ctrlpts, name=(elem.name, "(CP)"), color=color[0], plot_type='ctrlpts', idx=idx) self._vis_component.add(ptsarr=elem.evalpts, name=elem.name, color=color[1], plot_type='evalpts', idx=idx) # Display the figures if animate_plot: self._vis_component.animate(fig_save_as=filename, display_plot=plot_visible) else: self._vis_component.render(fig_save_as=filename, display_plot=plot_visible) @utl.export class SurfaceContainer(AbstractContainer): """ Container class for storing multiple surfaces. This class implements Python Iterator Protocol and therefore any instance of this class can be directly used in a for loop. This class provides the following properties: * :py:attr:`type` = container * :py:attr:`id` * :py:attr:`name` * :py:attr:`dimension` * :py:attr:`opt` * :py:attr:`pdimension` * :py:attr:`evalpts` * :py:attr:`bbox` * :py:attr:`vis` * :py:attr:`delta` * :py:attr:`delta_u` * :py:attr:`delta_v` * :py:attr:`sample_size` * :py:attr:`sample_size_u` * :py:attr:`sample_size_v` * :py:attr:`tessellator` * :py:attr:`vertices` * :py:attr:`faces` The following code example illustrates the usage of these Python properties: .. code-block:: python # Create a multi-surface container instance msurf = multi.SurfaceContainer() # Add single or multi surfaces to the multi container using msurf.add() command # Addition operator, e.g. msurf1 + msurf2, also works # Set the evaluation delta of the multi-surface msurf.delta = 0.05 # Get the evaluated points surface_points = msurf.evalpts """ def __init__(self, *args, **kwargs): self._pdim = 2 # number of parametric dimensions self._dinit = 0.05 # evaluation delta super(SurfaceContainer, self).__init__(*args, **kwargs) self._cache['vertices'] = [] self._cache['faces'] = [] for arg in args: self.add(arg) @property def delta_u(self): """ Evaluation delta for the u-direction. Evaluation delta corresponds to the *step size*. Decreasing the step size results in evaluation of more points. Therefore; smaller the delta, smoother the shape. Please note that ``delta_u`` and ``sample_size_u`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_u`` will also set ``sample_size_u``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the delta value for the u-direction :setter: Sets the delta value for the u-direction :type: float """ return self._delta[0] @delta_u.setter def delta_u(self, value): self._delta_setter_common(0, value) @property def delta_v(self): """ Evaluation delta for the v-direction. Evaluation delta corresponds to the *step size*. Decreasing the step size results in evaluation of more points. Therefore; smaller the delta, smoother the shape. Please note that ``delta_v`` and ``sample_size_v`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_v`` will also set ``sample_size_v``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the delta value for the v-direction :setter: Sets the delta value for the v-direction :type: float """ return self._delta[1] @delta_v.setter def delta_v(self, value): self._delta_setter_common(1, value) @property def sample_size_u(self): """ Sample size for the u-direction. Sample size defines the number of points to evaluate. It also sets the ``delta_u`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the u-direction :setter: Sets sample size for the u-direction :type: int """ return self._sample_size_getter_common(0) @sample_size_u.setter def sample_size_u(self, value): self._sample_size_setter_common(0, value) @property def sample_size_v(self): """ Sample size for the v-direction. Sample size defines the number of points to evaluate. It also sets the ``delta_v`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the v-direction :setter: Sets sample size for the v-direction :type: int """ return self._sample_size_getter_common(1) @sample_size_v.setter def sample_size_v(self, value): self._sample_size_setter_common(1, value) @property def tessellator(self): """ Tessellation component of the surfaces inside the container. Please refer to :doc:`Tessellation <module_tessellate>` documentation for details. .. code-block:: python :linenos: from geomdl import multi from geomdl import tessellate # Create the surface container surf_container = multi.SurfaceContainer(surf_list) # Set tessellator component surf_container.tessellator = tessellate.TrimTessellate() :getter: gets the tessellation component :setter: sets the tessellation component """ tsl_comps = [] for idx in range(len(self._elements)): tsl_comps.append(self._elements[idx].tessellator) return tsl_comps @tessellator.setter def tessellator(self, value): # Set tessellation component for idx in range(len(self._elements)): self._elements[idx].tessellator = value.__class__() @property def vertices(self): """ Vertices generated by the tessellation operation. If the tessellation component is set to None, the result will be an empty list. :getter: Gets the vertices """ if not self._cache['vertices']: self.tessellate() return self._cache['vertices'] @property def faces(self): """ Faces (triangles, quads, etc.) generated by the tessellation operation. If the tessellation component is set to None, the result will be an empty list. :getter: Gets the faces """ if not self._cache['faces']: self.tessellate() return self._cache['faces'] def tessellate(self, **kwargs): """ Tessellates the surfaces inside the container. Keyword arguments are directly passed to the tessellation component. The following code snippet illustrates getting the vertices and faces of the surfaces inside the container: .. code-block:: python :linenos: # Tessellate the surfaces inside the container surf_container.tessellate() # Vertices and faces are stored inside the tessellator component tsl = surf_container.tessellator # Loop through all tessellator components for t in tsl: # Get the vertices vertices = t.tessellator.vertices # Get the faces (triangles, quads, etc.) faces = t.tessellator.faces Keyword Arguments: * ``num_procs``: number of concurrent processes for tessellating the surfaces. *Default: 1* * ``delta``: if True, the evaluation delta of the container object will be used. *Default: True* * ``force``: flag to force tessellation. *Default: False* """ # Keyword arguments force_tsl = kwargs.get('force', False) update_delta = kwargs.pop('delta', True) # Don't re-tessellate if everything is in place if all((self._cache['vertices'], self._cache['faces'])) and not force_tsl: return # Tessellate the surfaces in the container num_procs = kwargs.pop('num_procs', 1) new_elems = [] if num_procs > 1: with utl.pool_context(processes=num_procs) as pool: tmp_elem = pool.map(partial(process_tessellate, delta=self.delta, update_delta=update_delta, **kwargs), self._elements) new_elems += tmp_elem else: for idx in range(len(self._elements)): tmp_elem = process_tessellate(self._elements[idx], delta=self.delta, update_delta=update_delta, **kwargs) new_elems.append(tmp_elem) self._elements = new_elems # Update caches verts = [] faces = [] v_offset = 0 f_offset = 0 for elem in self._elements: v = elem.vertices for i in range(len(v)): v[i].id += v_offset verts += v f = elem.faces for i in range(len(f)): f[i].id += f_offset # for j in range(len(f[i]._data)): # f[i]._data[j].id += v_offset faces += f v_offset += len(v) f_offset += len(f) self._cache['vertices'] = verts self._cache['faces'] = faces def reset(self): """ Resets the cache. """ super(SurfaceContainer, self).reset() self._cache['vertices'][:] = [] self._cache['faces'][:] = [] def render(self, **kwargs): """ Renders the surfaces. The visualization component must be set using :py:attr:`~vis` property before calling this method. Keyword Arguments: * ``cpcolor``: sets the color of the control points grids * ``evalcolor``: sets the color of the surface * ``filename``: saves the plot with the input name * ``plot``: controls plot window visibility. *Default: True* * ``animate``: activates animation (if supported). *Default: False* * ``colormap``: sets the colormap of the surfaces * ``delta``: if True, the evaluation delta of the container object will be used. *Default: True* * ``reset_names``: resets the name of the surfaces inside the container. *Default: False* * ``num_procs``: number of concurrent processes for rendering the surfaces. *Default: 1* The ``cpcolor`` and ``evalcolor`` arguments can be a string or a list of strings corresponding to the color values. Both arguments are processed separately, e.g. ``cpcolor`` can be a string whereas ``evalcolor`` can be a list or a tuple, or vice versa. A single string value sets the color to the same value. List input allows customization over the color values. If none provided, a random color will be selected. The ``plot`` argument is useful when you would like to work on the command line without any window context. If ``plot`` flag is False, this method saves the plot as an image file (.png file where possible) and disables plot window popping out. If you don't provide a file name, the name of the image file will be pulled from the configuration class. Please note that ``colormap`` argument can only work with visualization classes that support colormaps. As an example, please see :py:class:`.VisMPL.VisSurfTriangle()` class documentation. This method expects multiple colormap inputs as a list or tuple, preferable the input list size is the same as the number of surfaces contained in the class. In the case of number of surfaces is bigger than number of input colormaps, this method will automatically assign a random color for the remaining surfaces. """ # Validation if not self._vis_component: warnings.warn("No visualization component has been set") return # Get the color values from keyword arguments cpcolor = kwargs.get('cpcolor') evalcolor = kwargs.get('evalcolor') trimcolor = kwargs.get('trimcolor', 'black') filename = kwargs.get('filename', None) plot_visible = kwargs.get('plot', True) animate_plot = kwargs.get('animate', False) # Flag to control evaluation delta updates update_delta = kwargs.get('delta', True) reset_names = kwargs.get('reset_names', False) # Number of parallel processes num_procs = kwargs.get('num_procs', 1) force_tsl = bool(kwargs.pop('force', False)) # flag to force re-tessellation # Check if the input list sizes are equal if isinstance(cpcolor, (list, tuple)): if len(cpcolor) != len(self._elements): raise ValueError("The number of colors in 'cpcolor' (" + str(len(cpcolor)) + ") cannot be less than the number of geometries contained(" + str(len(self._elements)) + ")") if isinstance(evalcolor, (list, tuple)): if len(evalcolor) != len(self._elements): raise ValueError("The number of colors in 'evalcolor' (" + str(len(evalcolor)) + ") cannot be less than the number of geometries contained (" + str(len(self._elements)) + ")") # Get colormaps as a list surf_cmaps = kwargs.get('colormap', []) if not isinstance(surf_cmaps, (list, tuple)): warnings.warn("Expecting a list of colormap values, not " + str(type(surf_cmaps))) surf_cmaps = [] # Run the visualization component self._vis_component.clear() vis_list = [] if num_procs > 1: mp_lock = Lock() mp_val = Value('i', 0) with utl.pool_context(initializer=mp_init, initargs=(mp_lock, mp_val), processes=num_procs) as pool: tmp = pool.map(partial(process_elements_surface, mconf=self._vis_component.mconf, colorval=(cpcolor, evalcolor, trimcolor), idx=-1, force_tsl=force_tsl, update_delta=update_delta, delta=self.delta, reset_names=reset_names), self._elements) vis_list += tmp else: for idx, elem in enumerate(self._elements): tmp = process_elements_surface(elem, self._vis_component.mconf, (cpcolor, evalcolor, trimcolor), idx, force_tsl, update_delta, self.delta, reset_names) vis_list += tmp for vl in vis_list: if isinstance(vl, dict): self._vis_component.add(**vl) else: for v in vl: self._vis_component.add(**v) # Display the figures if animate_plot: self._vis_component.animate(fig_save_as=filename, display_plot=plot_visible, colormap=surf_cmaps) else: self._vis_component.render(fig_save_as=filename, display_plot=plot_visible, colormap=surf_cmaps) @utl.export class VolumeContainer(AbstractContainer): """ Container class for storing multiple volumes. This class implements Python Iterator Protocol and therefore any instance of this class can be directly used in a for loop. This class provides the following properties: * :py:attr:`type` * :py:attr:`id` * :py:attr:`name` * :py:attr:`dimension` * :py:attr:`opt` * :py:attr:`pdimension` * :py:attr:`evalpts` * :py:attr:`bbox` * :py:attr:`vis` * :py:attr:`delta` * :py:attr:`delta_u` * :py:attr:`delta_v` * :py:attr:`delta_w` * :py:attr:`sample_size` * :py:attr:`sample_size_u` * :py:attr:`sample_size_v` * :py:attr:`sample_size_w` The following code example illustrates the usage of these Python properties: .. code-block:: python # Create a multi-volume container instance mvol = multi.VolumeContainer() # Add single or multi volumes to the multi container using mvol.add() command # Addition operator, e.g. mvol1 + mvol2, also works # Set the evaluation delta of the multi-volume mvol.delta = 0.05 # Get the evaluated points volume_points = mvol.evalpts """ def __init__(self, *args, **kwargs): self._pdim = 3 # number of parametric dimensions self._dinit = 0.1 # evaluation delta super(VolumeContainer, self).__init__() for arg in args: self.add(arg) @property def delta_u(self): """ Evaluation delta for the u-direction. Evaluation delta corresponds to the *step size*. Decreasing the step size results in evaluation of more points. Therefore; smaller the delta, smoother the shape. Please note that ``delta_u`` and ``sample_size_u`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_u`` will also set ``sample_size_u``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the delta value for the u-direction :setter: Sets the delta value for the u-direction :type: float """ return self._delta[0] @delta_u.setter def delta_u(self, value): self._delta_setter_common(0, value) @property def delta_v(self): """ Evaluation delta for the v-direction. Evaluation delta corresponds to the *step size*. Decreasing the step size results in evaluation of more points. Therefore; smaller the delta, smoother the shape. Please note that ``delta_v`` and ``sample_size_v`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_v`` will also set ``sample_size_v``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the delta value for the v-direction :setter: Sets the delta value for the v-direction :type: float """ return self._delta[1] @delta_v.setter def delta_v(self, value): self._delta_setter_common(1, value) @property def delta_w(self): """ Evaluation delta for the w-direction. Evaluation delta corresponds to the *step size*. Decreasing the step size results in evaluation of more points. Therefore; smaller the delta, smoother the shape. Please note that ``delta_w`` and ``sample_size_w`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_w`` will also set ``sample_size_w``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the delta value for the w-direction :setter: Sets the delta value for the w-direction :type: float """ return self._delta[2] @delta_w.setter def delta_w(self, value): self._delta_setter_common(2, value) @property def sample_size_u(self): """ Sample size for the u-direction. Sample size defines the number of points to evaluate. It also sets the ``delta_u`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the u-direction :setter: Sets sample size for the u-direction :type: int """ return self._sample_size_getter_common(0) @sample_size_u.setter def sample_size_u(self, value): self._sample_size_setter_common(0, value) @property def sample_size_v(self): """ Sample size for the v-direction. Sample size defines the number of points to evaluate. It also sets the ``delta_v`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the v-direction :setter: Sets sample size for the v-direction :type: int """ return self._sample_size_getter_common(1) @sample_size_v.setter def sample_size_v(self, value): self._sample_size_setter_common(1, value) @property def sample_size_w(self): """ Sample size for the w-direction. Sample size defines the number of points to evaluate. It also sets the ``delta_w`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the w-direction :setter: Sets sample size for the w-direction :type: int """ return self._sample_size_getter_common(2) @sample_size_w.setter def sample_size_w(self, value): self._sample_size_setter_common(2, value) def render(self, **kwargs): """ Renders the volumes. The visualization component must be set using :py:attr:`~vis` property before calling this method. Keyword Arguments: * ``cpcolor``: sets the color of the control points plot * ``evalcolor``: sets the color of the volume * ``filename``: saves the plot with the input name * ``plot``: controls plot window visibility. *Default: True* * ``animate``: activates animation (if supported). *Default: False* * ``delta``: if True, the evaluation delta of the container object will be used. *Default: True* * ``reset_names``: resets the name of the volumes inside the container. *Default: False* * ``grid_size``: grid size for voxelization. *Default: (16, 16, 16)* * ``num_procs``: number of concurrent processes for voxelization. *Default: 1* The ``cpcolor`` and ``evalcolor`` arguments can be a string or a list of strings corresponding to the color values. Both arguments are processed separately, e.g. ``cpcolor`` can be a string whereas ``evalcolor`` can be a list or a tuple, or vice versa. A single string value sets the color to the same value. List input allows customization over the color values. If none provided, a random color will be selected. The ``plot`` argument is useful when you would like to work on the command line without any window context. If ``plot`` flag is False, this method saves the plot as an image file (.png file where possible) and disables plot window popping out. If you don't provide a file name, the name of the image file will be pulled from the configuration class. """ if not self._vis_component: warnings.warn("No visualization component has been set") return cpcolor = kwargs.pop('cpcolor', None) evalcolor = kwargs.pop('evalcolor', None) filename = kwargs.pop('filename', None) plot_visible = kwargs.pop('plot', True) animate_plot = kwargs.pop('animate', False) # Flag to control evaluation delta updates update_delta = kwargs.pop('delta', True) reset_names = kwargs.get('reset_names', False) # Check if the input list sizes are equal if isinstance(cpcolor, (list, tuple)): if len(cpcolor) != len(self._elements): raise ValueError("The number of colors in 'cpcolor' (" + str(len(cpcolor)) + ") cannot be less than the number of geometries contained(" + str(len(self._elements)) + ")") if isinstance(evalcolor, (list, tuple)): if len(evalcolor) != len(self._elements): raise ValueError("The number of colors in 'evalcolor' (" + str(len(evalcolor)) + ") cannot be less than the number of geometries contained (" + str(len(self._elements)) + ")") # Run the visualization component self._vis_component.clear() for idx, elem in enumerate(self._elements): if update_delta: elem.delta = self.delta elem.evaluate() # Reset element name if reset_names: elem.name = "volume" # Fix element name if elem.name == "volume": elem.name = elem.name + " " + str(idx) # Color selection color = select_color(cpcolor, evalcolor, idx=idx) # Add control points if self._vis_component.mconf['ctrlpts'] == 'points': self._vis_component.add(ptsarr=elem.ctrlpts, name=(elem.name, "(CP)"), color=color[0], plot_type='ctrlpts', idx=idx) # Add evaluated points if self._vis_component.mconf['evalpts'] == 'points': self._vis_component.add(ptsarr=elem.evalpts, name=elem.name, color=color[1], plot_type='evalpts', idx=idx) # Add evaluated points as voxels if self._vis_component.mconf['evalpts'] == 'voxels': grid, filled = voxelize.voxelize(elem, **kwargs) polygrid = voxelize.convert_bb_to_faces(grid) self._vis_component.add(ptsarr=[polygrid, filled], name=elem.name, color=color[1], plot_type='evalpts', idx=idx) # Display the figures if animate_plot: self._vis_component.animate(fig_save_as=filename, display_plot=plot_visible) else: self._vis_component.render(fig_save_as=filename, display_plot=plot_visible) def select_color(cpcolor, evalcolor, idx=0): """ Selects item color for plotting. :param cpcolor: color for control points grid item :type cpcolor: str, list, tuple :param evalcolor: color for evaluated points grid item :type evalcolor: str, list, tuple :param idx: index of the current geometry object :type idx: int :return: a list of color values :rtype: list """ # Random colors by default color = utilities.color_generator() # Constant color for control points grid if isinstance(cpcolor, str): color[0] = cpcolor # User-defined color for control points grid if isinstance(cpcolor, (list, tuple)): color[0] = cpcolor[idx] # Constant color for evaluated points grid if isinstance(evalcolor, str): color[1] = evalcolor # User-defined color for evaluated points grid if isinstance(evalcolor, (list, tuple)): color[1] = evalcolor[idx] return color def process_tessellate(elem, update_delta, delta, **kwargs): """ Tessellates surfaces. .. note:: Helper function required for ``multiprocessing`` :param elem: surface :type elem: abstract.Surface :param update_delta: flag to control evaluation delta updates :type update_delta: bool :param delta: evaluation delta :type delta: list, tuple :return: updated surface :rtype: abstract.Surface """ if update_delta: elem.delta = delta elem.evaluate() elem.tessellate(**kwargs) return elem def process_elements_surface(elem, mconf, colorval, idx, force_tsl, update_delta, delta, reset_names): """ Processes visualization elements for surfaces. .. note:: Helper function required for ``multiprocessing`` :param elem: surface :type elem: abstract.Surface :param mconf: visualization module configuration :type mconf: dict :param colorval: color values :type colorval: tuple :param idx: index of the surface :type idx: int :param force_tsl: flag to force re-tessellation :type force_tsl: bool :param update_delta: flag to update surface delta :type update_delta: bool :param delta: new surface evaluation delta :type delta: list, tuple :param reset_names: flag to reset names :type reset_names: bool :return: visualization element (as a dict) :rtype: list """ if idx < 0: lock.acquire() idx = counter.value counter.value += 1 lock.release() if update_delta: elem.delta = delta elem.evaluate() # Reset element name if reset_names: elem.name = "surface" # Fix element name if elem.name == "surface" and idx >= 0: elem.name = elem.name + " " + str(idx) # Color selection color = select_color(colorval[0], colorval[1], idx=idx) # Initialize the return list rl = [] # Add control points if mconf['ctrlpts'] == 'points': ret = dict(ptsarr=elem.ctrlpts, name=(elem.name, "(CP)"), color=color[0], plot_type='ctrlpts', idx=idx) rl.append(ret) # Add control points as quads if mconf['ctrlpts'] == 'quads': qtsl = tessellate.QuadTessellate() qtsl.tessellate(elem.ctrlpts, size_u=elem.ctrlpts_size_u, size_v=elem.ctrlpts_size_v) ret = dict(ptsarr=[qtsl.vertices, qtsl.faces], name=(elem.name, "(CP)"), color=color[0], plot_type='ctrlpts', idx=idx) rl.append(ret) # Add surface points if mconf['evalpts'] == 'points': ret = dict(ptsarr=elem.evalpts, name=(elem.name, idx), color=color[1], plot_type='evalpts', idx=idx) rl.append(ret) # Add surface points as quads if mconf['evalpts'] == 'quads': qtsl = tessellate.QuadTessellate() qtsl.tessellate(elem.evalpts, size_u=elem.sample_size_u, size_v=elem.sample_size_v) ret = dict(ptsarr=[qtsl.vertices, qtsl.faces], name=elem.name, color=color[1], plot_type='evalpts', idx=idx) rl.append(ret) # Add surface points as vertices and triangles if mconf['evalpts'] == 'triangles': elem.tessellate(force=force_tsl) ret = dict(ptsarr=[elem.tessellator.vertices, elem.tessellator.faces], name=elem.name, color=color[1], plot_type='evalpts', idx=idx) rl.append(ret) # Add the trim curves for itc, trim in enumerate(elem.trims): ret = dict(ptsarr=elem.evaluate_list(trim.evalpts), name=("trim", itc), color=colorval[2], plot_type='trimcurve', idx=idx) rl.append(ret) # Return the list return rl def mp_init(l, c): """ Initialization function for multi-threaded operations. :param l: lock :param c: value for common counter """ global lock global counter lock = l counter = c
tests/nnapi/specs/Ex/transpose_conv_ex_float_1.mod.py
bogus-sudo/ONE-1
255
12757886
<gh_stars>100-1000 # model model = Model() i0 = Input("op_shape", "TENSOR_INT32", "{4}") weights = Parameter("ker", "TENSOR_FLOAT32", "{1, 3, 3, 1}", [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]) i1 = Input("in", "TENSOR_FLOAT32", "{1, 4, 4, 1}" ) pad = Int32Scalar("pad_same", 1) s_x = Int32Scalar("stride_x", 1) s_y = Int32Scalar("stride_y", 1) i2 = Output("op", "TENSOR_FLOAT32", "{1, 4, 4, 1}") model = model.Operation("TRANSPOSE_CONV_EX", i0, weights, i1, pad, s_x, s_y).To(i2) # Example 1. Input in operand 0, input0 = {i0: # output shape [1, 4, 4, 1], i1: # input 0 [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0]} output0 = {i2: # output 0 [29.0, 62.0, 83.0, 75.0, 99.0, 192.0, 237.0, 198.0, 207.0, 372.0, 417.0, 330.0, 263.0, 446.0, 485.0, 365.0]} # Instantiate an example Example((input0, output0))
src/datashare/azext_datashare/vendored_sdks/datashare/aio/operations_async/__init__.py
Mannan2812/azure-cli-extensions
207
12757896
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from ._account_operations_async import AccountOperations from ._consumer_invitation_operations_async import ConsumerInvitationOperations from ._data_set_operations_async import DataSetOperations from ._data_set_mapping_operations_async import DataSetMappingOperations from ._invitation_operations_async import InvitationOperations from ._operation_operations_async import OperationOperations from ._share_operations_async import ShareOperations from ._provider_share_subscription_operations_async import ProviderShareSubscriptionOperations from ._share_subscription_operations_async import ShareSubscriptionOperations from ._consumer_source_data_set_operations_async import ConsumerSourceDataSetOperations from ._synchronization_setting_operations_async import SynchronizationSettingOperations from ._trigger_operations_async import TriggerOperations __all__ = [ 'AccountOperations', 'ConsumerInvitationOperations', 'DataSetOperations', 'DataSetMappingOperations', 'InvitationOperations', 'OperationOperations', 'ShareOperations', 'ProviderShareSubscriptionOperations', 'ShareSubscriptionOperations', 'ConsumerSourceDataSetOperations', 'SynchronizationSettingOperations', 'TriggerOperations', ]
src/bitmessageqt/messagecompose.py
BeholdersEye/PyBitmessage
1,583
12757902
""" Message editor with a wheel zoom functionality """ # pylint: disable=bad-continuation from PyQt4 import QtCore, QtGui class MessageCompose(QtGui.QTextEdit): """Editor class with wheel zoom functionality""" def __init__(self, parent=0): super(MessageCompose, self).__init__(parent) self.setAcceptRichText(False) self.defaultFontPointSize = self.currentFont().pointSize() def wheelEvent(self, event): """Mouse wheel scroll event handler""" if ( QtGui.QApplication.queryKeyboardModifiers() & QtCore.Qt.ControlModifier ) == QtCore.Qt.ControlModifier and event.orientation() == QtCore.Qt.Vertical: if event.delta() > 0: self.zoomIn(1) else: self.zoomOut(1) zoom = self.currentFont().pointSize() * 100 / self.defaultFontPointSize QtGui.QApplication.activeWindow().statusBar().showMessage( QtGui.QApplication.translate("MainWindow", "Zoom level %1%").arg( str(zoom) ) ) else: # in QTextEdit, super does not zoom, only scroll super(MessageCompose, self).wheelEvent(event) def reset(self): """Clear the edit content""" self.setText('')
py/testdir_multi_jvm/test_many_cols_enum_multi.py
gigliovale/h2o
882
12757903
<reponame>gigliovale/h2o<filename>py/testdir_multi_jvm/test_many_cols_enum_multi.py import unittest, random, sys, time, os sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_browse as h2b, h2o_import as h2i import h2o_exec as h2e def write_syn_dataset(csvPathname, rowCount, colCount, header, SEED): r1 = random.Random(SEED) dsf = open(csvPathname, "w+") for i in range(rowCount): rowData = [] for j in range(colCount): # header names need to be unique if header and i==0: r = "a" + str(j) else: r = "a" rowData.append(r) rowDataCsv = ",".join(map(str,rowData)) dsf.write(rowDataCsv + "\n") dsf.close() class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): global SEED SEED = h2o.setup_random_seed() h2o.init(3, java_heap_GB=4) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_many_cols_enum(self): SYNDATASETS_DIR = h2o.make_syn_dir() tryList = [ # (100, 11000, 0, 'cA', 180), # (100, 10000, 1, 'cB', 180), # (100, 8000, 1, 'cD', 180), # (100, 7000, 0, 'cE', 180), # (100, 6000, 1, 'cF', 180), (100, 1000, 0, 'cH', 120), (100, 1000, 1, 'cI', 120), (100, 2000, 1, 'cI', 120), (100, 3000, 1, 'cI', 120), (100, 4000, 1, 'cI', 120), (100, 5000, 0, 'cG', 180), (100, 9000, 0, 'cC', 180), (100, 10000, 1, 'cB', 180), ] ### h2b.browseTheCloud() lenNodes = len(h2o.nodes) cnum = 0 # it's interesting to force the first enum row to be used as header or not # with many cols, we tend to hit limits about stuff fitting in a chunk (header or data) for (rowCount, colCount, header, hex_key, timeoutSecs) in tryList: cnum += 1 csvFilename = 'syn_' + str(SEED) + "_" + str(rowCount) + 'x' + str(colCount) + '.csv' csvPathname = SYNDATASETS_DIR + '/' + csvFilename print "Creating random", csvPathname write_syn_dataset(csvPathname, rowCount, colCount, header, SEED) parseResult = h2i.import_parse(path=csvPathname, schema='put', header=header, hex_key=hex_key, timeoutSecs=timeoutSecs) print "Parse result['destination_key']:", parseResult['destination_key'] # We should be able to see the parse result? inspect = h2o_cmd.runInspect(None, parseResult['destination_key']) print "\n" + csvFilename if not h2o.browse_disable: h2b.browseJsonHistoryAsUrlLastMatch("Inspect") time.sleep(5) # try new offset/view inspect = h2o_cmd.runInspect(None, parseResult['destination_key'], offset=100, view=100) inspect = h2o_cmd.runInspect(None, parseResult['destination_key'], offset=99, view=89) inspect = h2o_cmd.runInspect(None, parseResult['destination_key'], offset=-1, view=53) if __name__ == '__main__': h2o.unit_main()
test_install.py
flothesof/sfepy
510
12757913
<filename>test_install.py #!/usr/bin/env python """ Simple script for testing various SfePy functionality, examples not covered by tests, and running the tests. The script just runs the commands specified in its main() using the `subprocess` module, captures the output and compares one or more key words to the expected ones. The output of failed commands is saved to 'test_install.log' file. """ from __future__ import print_function from __future__ import absolute_import import time import sys from argparse import ArgumentParser, RawDescriptionHelpFormatter import shlex import subprocess import logging import re DEBUG_FMT = '*' * 55 + '\n%s\n' + '*' * 55 def _get_logger(filename='test_install.log'): """ Convenience function to set-up output and logging. """ logger = logging.getLogger('test_install.py') logger.setLevel(logging.DEBUG) console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) file_handler = logging.FileHandler(filename) file_handler.setLevel(logging.DEBUG) logger.addHandler(console_handler) logger.addHandler(file_handler) return logger logger = _get_logger() def check_output(cmd): """ Run the specified command and capture its outputs. Returns ------- out : tuple The (stdout, stderr) output tuple. """ logger.info(cmd) args = shlex.split(cmd) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out = [ii.decode() for ii in p.communicate()] return out def report(out, name, line, item, value, eps=None, return_item=False, match_numbers=False): """ Check that `item` at `line` of the output string `out` is equal to `value`. If not, print the output. """ try: if match_numbers: status = out.split('\n')[line] else: status = out.split('\n')[line].split() except IndexError: logger.error(' not enough output from command!') ok = False else: try: if match_numbers: pat = '([-+]?(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][-+]?\d+)?[jJ]?)' matches = re.findall(pat, status) status_item = matches[item] else: status_item = status[item] logger.info(' comparing: %s %s', status_item, value) if eps is None: ok = (status_item == value) else: try: ok = abs(float(status_item) - float(value)) < eps except: ok = False except IndexError: ok = False logger.info(' %s: %s', name, ok) if not ok: logger.debug(DEBUG_FMT, out) if return_item: return ok, status[item] else: return ok def report2(out, name, items, return_item=False): """ Check that `items` are in the output string `out`. If not, print the output. """ ok = True for s in items: logger.info(' checking: %s', s) if s not in out: ok = False break logger.info(' %s: %s', name, ok) if not ok: logger.debug(DEBUG_FMT, out) if return_item: return ok, s else: return ok def report_tests(out, return_item=False): """ Check that all tests in the output string `out` passed. If not, print the output. """ search = re.compile('([0-9]+) test file\(s\) executed in ([0-9.]+) s, ([0-9]+) failure\(s\) of ([0-9]+) test\(s\)').search try: stats = search(out).groups() except AttributeError: stats = '0', '0', '-1', '0' ok = False ok = stats[2] == '0' logger.info(' %s test file(s) executed in %s s, %s failure(s) of %s test(s)' % (stats[0], stats[1], stats[2], stats[3])) if not ok: logger.debug(DEBUG_FMT, out) if return_item: return ok, stats[2] else: return ok def main(): parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.parse_args() fd = open('test_install.log', 'w') fd.close() if sys.version_info[0] < 3: cmd = 'python2' else: cmd = 'python3' eok = 0 t0 = time.time() out, err = check_output('%s ./script/blockgen.py' % cmd) eok += report(out, '...', -2, 1, '...done') out, err = check_output('%s ./script/cylindergen.py' % cmd) eok += report(out, '...', -2, 1, '...done') out, err = check_output('%s ./script/convert_mesh.py meshes/3d/cylinder.vtk out.mesh' % cmd) eok += report(out, '...', -2, 1, '...done') out, err = check_output('%s ./script/tile_periodic_mesh.py -r 2,2 meshes/elements/2_4_2.mesh out-per.mesh' % cmd) eok += report(out, '...', -2, 1, 'done.') out, err = check_output('%s ./script/extract_surface.py meshes/various_formats/octahedron.node -' % cmd) eok += report(out, '...', -2, 0, '1185') out, err = check_output('%s ./simple.py examples/diffusion/poisson.py' % cmd) eok += report(out, '...', -3, 5, '1.173819e-16', eps=1e-15) out, err = check_output("""%s ./simple.py -c "ebc_2 : {'name' : 't2', 'region' : 'Gamma_Right', 'dofs' : {'t.0' : -5.0}}" examples/diffusion/poisson.py""" %cmd) eok += report(out, '...', -3, 5, '2.308051e-16', eps=1e-15) out, err = check_output('%s ./simple.py examples/diffusion/poisson_iga.py' % cmd) eok += report(out, '...', -3, 5, '3.373487e-15', eps=1e-14) out, err = check_output('%s ./simple.py examples/navier_stokes/stokes.py' % cmd) eok += report(out, '...', -3, 5, '1.210678e-13', eps=1e-11) out, err = check_output('%s ./simple.py examples/diffusion/poisson_parametric_study.py' % cmd) eok += report(out, '...', -3, 5, '1.606408e-14', eps=1e-13) out, err = check_output('%s ./simple.py examples/linear_elasticity/its2D_3.py' % cmd) eok += report(out, '...', -24, 5, '3.964886e-12', eps=1e-11) eok += report(out, '...', -4, 4, '2.58660e+01', eps=1e-5) out, err = check_output('%s ./simple.py examples/linear_elasticity/linear_elastic.py --format h5' % cmd) eok += report(out, '...', -3, 5, '4.638192e-18', eps=1e-15) out, err = check_output('%s ./extractor.py -d cylinder.h5' % cmd) eok += report(out, '...', -2, 1, '...done') out, err = check_output('%s ./postproc.py -n --no-offscreen -o cylinder.png cylinder.h5' % cmd) eok += report(out, '...', -3, 2, 'cylinder.png...') out, err = check_output('%s ./phonon.py examples/phononic/band_gaps.py' % cmd) eok += report(out, '...', -9, 0, '2.08545116e+08', match_numbers=True) eok += report(out, '...', -8, 1, '1.16309223e+11', match_numbers=True) out, err = check_output('%s ./phonon.py examples/phononic/band_gaps.py --phase-velocity' % cmd) eok += report(out, '...', -2, 0, '4189.41229592', match_numbers=True) eok += report(out, '...', -2, 1, '2620.55608256', match_numbers=True) out, err = check_output('%s ./phonon.py examples/phononic/band_gaps.py -d' % cmd) eok += report(out, '...', -6, 1, '[0,') out, err = check_output('%s ./phonon.py examples/phononic/band_gaps_rigid.py' % cmd) eok += report(out, '...', -9, 0, '4.58709531e+07', match_numbers=True) eok += report(out, '...', -8, 1, '1.13929200e+11', match_numbers=True) out, err = check_output('%s ./simple.py examples/quantum/hydrogen.py' % cmd) eok += report(out, '...', -2, -2, '-0.01913506', eps=1e-4) out, err = check_output('%s ./homogen.py examples/homogenization/perfusion_micro.py' % cmd) eok += report2(out, '...', ['computing EpA', 'computing PA_3', 'computing GA', 'computing EmA', 'computing KA']) out, err = check_output('%s examples/homogenization/rs_correctors.py -n' % cmd) eok += report(out, '...', -2, -1, '1.644e-01', match_numbers=True) out, err = check_output('%s examples/large_deformation/compare_elastic_materials.py -n' % cmd) eok += report(out, '...', -3, 5, '1.068759e-14', eps=1e-13) out, err = check_output('%s examples/linear_elasticity/linear_elastic_interactive.py' % cmd) eok += report(out, '...', -16, 0, '1.62128841139e-14', eps=1e-13) out, err = check_output('%s examples/linear_elasticity/modal_analysis.py' % cmd) eok += report(out, '...', -12, 5, '12142.11470773', eps=1e-13) out, err = check_output('%s examples/multi_physics/thermal_electric.py' % cmd) eok += report(out, '...', -4, 5, '2.612933e-14', eps=1e-13) out, err = check_output('%s examples/diffusion/laplace_refine_interactive.py output' % cmd) eok += report(out, '...', -3, 5, '2.675866e-15', eps=1e-13) out, err = check_output('%s examples/diffusion/laplace_iga_interactive.py -o output-tests' % cmd) eok += report(out, '...', -3, 5, '1.028134e-13', eps=1e-12) out, err = check_output('%s examples/dg/imperative_burgers_1D.py -o output-tests' % cmd) eok += report(out, '...', -3, 3, 'moment_1D_limiter') out, err = check_output('mpiexec -n 2 %s examples/diffusion/poisson_parallel_interactive.py output-parallel -2 --silent -ksp_monitor' % cmd) eok += report(out, '...', -2, 4, '8.021313824020e-07', eps=1e-6) out, err = check_output('mpiexec -n 2 %s examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --silent -ksp_monitor' % cmd) eok += report(out, '...', -2, 4, '3.787214380277e-09', eps=1e-8) t1 = time.time() out, err = check_output('%s ./run_tests.py' % cmd) tok, failed = report_tests(out, return_item=True) tok = {True : 'ok', False : 'fail'}[tok] t2 = time.time() fd = open('test_install_times.log', 'a+') fd.write('%s: examples: %.2f [s] (%d), tests: %.2f [s] (%s: %s)\n' % (time.ctime(t0), t1 - t0, eok, t2 - t1, tok, failed)) fd.close() if __name__ == '__main__': main()
cvat/apps/engine/migrations/0018_jobcommit.py
wsp-digital/cvat
4,197
12757930
# Generated by Django 2.1.7 on 2019-04-17 09:25 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('engine', '0017_db_redesign_20190221'), ] operations = [ migrations.CreateModel( name='JobCommit', fields=[ ('id', models.BigAutoField(primary_key=True, serialize=False)), ('version', models.PositiveIntegerField(default=0)), ('timestamp', models.DateTimeField(auto_now=True)), ('message', models.CharField(default='', max_length=4096)), ('author', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ('job', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='commits', to='engine.Job')), ], options={ 'abstract': False, 'default_permissions': (), }, ), ]
third_party/shaderc/src/glslc/test/parameter_tests.py
zipated/src
2,151
12757943
# Copyright 2015 The Shaderc Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import expect import os.path from glslc_test_framework import inside_glslc_testsuite from placeholder import FileShader, StdinShader, TempFileName @inside_glslc_testsuite('File') class SimpleFileCompiled(expect.ValidObjectFile): """Tests whether or not a simple glsl file compiles.""" shader = FileShader('#version 310 es\nvoid main() {}', '.frag') glslc_args = ['-c', shader] @inside_glslc_testsuite('File') class NotSpecifyingOutputName(expect.SuccessfulReturn, expect.CorrectObjectFilePreamble): """Tests that when there is no -o and -E/-S/-c specified, output as a.spv.""" shader = FileShader('#version 140\nvoid main() {}', '.frag') glslc_args = [shader] def check_output_a_spv(self, status): output_name = os.path.join(status.directory, 'a.spv') return self.verify_object_file_preamble(output_name) @inside_glslc_testsuite('Parameters') class HelpParameters( expect.ReturnCodeIsZero, expect.StdoutMatch, expect.StderrMatch): """Tests the --help flag outputs correctly and does not produce and error.""" glslc_args = ['--help'] expected_stdout = '''glslc - Compile shaders into SPIR-V Usage: glslc [options] file... An input file of - represents standard input. Options: -c Only run preprocess, compile, and assemble steps. -Dmacro[=defn] Add an implicit macro definition. -E Outputs only the results of the preprocessing step. Output defaults to standard output. -fshader-stage=<stage> Treat subsequent input files as having stage <stage>. Valid stages are vertex, fragment, tesscontrol, tesseval, geometry, and compute. -g Generate source-level debug information. Currently this option has no effect. --help Display available options. --version Display compiler version information. -I <value> Add directory to include search path. -o <file> Write output to <file>. A file name of '-' represents standard output. -std=<value> Version and profile for input files. Possible values are concatenations of version and profile, e.g. 310es, 450core, etc. -M Generate make dependencies. Implies -E and -w. -MM An alias for -M. -MD Generate make dependencies and compile. -MF <file> Write dependency output to the given file. -MT <target> Specify the target of the rule emitted by dependency generation. -S Only run preprocess and compilation steps. --target-env=<environment> Set the target shader environment, and the semantics of warnings and errors. Valid values are 'opengl', 'opengl_compat' and 'vulkan'. The default value is 'vulkan'. -w Suppresses all warning messages. -Werror Treat all warnings as errors. -x <language> Treat subsequent input files as having type <language>. The only supported language is glsl. ''' expected_stderr = '' @inside_glslc_testsuite('Parameters') class HelpIsNotTooWide(expect.StdoutNoWiderThan80Columns): """Tests that --help output is not too wide.""" glslc_args = ['--help'] @inside_glslc_testsuite('Parameters') class UnknownSingleLetterArgument(expect.ErrorMessage): """Tests that an unknown argument triggers an error message.""" glslc_args = ['-a'] expected_error = ["glslc: error: unknown argument: '-a'\n"] @inside_glslc_testsuite('Parameters') class UnknownMultiLetterArgument(expect.ErrorMessage): """Tests that an unknown argument triggers an error message.""" glslc_args = ['-zzz'] expected_error = ["glslc: error: unknown argument: '-zzz'\n"] @inside_glslc_testsuite('Parameters') class UnsupportedOption(expect.ErrorMessage): """Tests that an unsupported option triggers an error message.""" glslc_args = ['--unsupported-option'] expected_error = [ "glslc: error: unsupported option: '--unsupported-option'\n"] @inside_glslc_testsuite('File') class FileNotFound(expect.ErrorMessage): """Tests the error message if a file cannot be found.""" blabla_file = TempFileName('blabla.frag') glslc_args = [blabla_file] expected_error = [ "glslc: error: cannot open input file: '", blabla_file, "': No such file or directory\n"] @inside_glslc_testsuite('Unsupported') class LinkingNotSupported(expect.ErrorMessage): """Tests the error message generated by linking not supported yet.""" shader1 = FileShader('#version 140\nvoid main() {}', '.vert') shader2 = FileShader('#version 140\nvoid main() {}', '.frag') glslc_args = [shader1, shader2] expected_error = [ 'glslc: error: linking multiple files is not supported yet. ', 'Use -c to compile files individually.\n'] @inside_glslc_testsuite('Unsupported') class MultipleStdinUnsupported(expect.ErrorMessage): """Tests the error message generated by having more than one - input.""" glslc_args = ['-c', '-fshader-stage=vertex', '-', '-'] expected_error = [ 'glslc: error: specifying standard input "-" as input more' ' than once is not allowed.\n'] @inside_glslc_testsuite('Parameters') class StdinWithoutShaderStage(expect.StdoutMatch, expect.StderrMatch): """Tests that you must use -fshader-stage when specifying - as input.""" shader = StdinShader( """#version 140 int a() { } void main() { int x = a(); } """) glslc_args = [shader] expected_stdout = '' expected_stderr = [ "glslc: error: '-': -fshader-stage required when input is from " 'standard input "-"\n']
libraries/botframework-streaming/botframework/streaming/payloads/disassemblers/cancel_disassembler.py
andreikop/botbuilder-python
388
12757946
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from uuid import UUID from botframework.streaming.payload_transport import PayloadSender from botframework.streaming.payloads.models import Header class CancelDisassembler: def __init__(self, *, sender: PayloadSender, identifier: UUID, type: str): self._sender = sender self._identifier = identifier self._type = type async def disassemble(self): header = Header(type=self._type, id=self._identifier, end=True) header.payload_length = 0 self._sender.send_payload(header, None, True, None) return
data_preprocess.py
smlin2000/OmniAnomaly
344
12757965
<gh_stars>100-1000 import ast import csv import os import sys from pickle import dump import numpy as np from tfsnippet.utils import makedirs output_folder = 'processed' makedirs(output_folder, exist_ok=True) def load_and_save(category, filename, dataset, dataset_folder): temp = np.genfromtxt(os.path.join(dataset_folder, category, filename), dtype=np.float32, delimiter=',') print(dataset, category, filename, temp.shape) with open(os.path.join(output_folder, dataset + "_" + category + ".pkl"), "wb") as file: dump(temp, file) def load_data(dataset): if dataset == 'SMD': dataset_folder = 'ServerMachineDataset' file_list = os.listdir(os.path.join(dataset_folder, "train")) for filename in file_list: if filename.endswith('.txt'): load_and_save('train', filename, filename.strip('.txt'), dataset_folder) load_and_save('test', filename, filename.strip('.txt'), dataset_folder) load_and_save('test_label', filename, filename.strip('.txt'), dataset_folder) elif dataset == 'SMAP' or dataset == 'MSL': dataset_folder = 'data' with open(os.path.join(dataset_folder, 'labeled_anomalies.csv'), 'r') as file: csv_reader = csv.reader(file, delimiter=',') res = [row for row in csv_reader][1:] res = sorted(res, key=lambda k: k[0]) label_folder = os.path.join(dataset_folder, 'test_label') makedirs(label_folder, exist_ok=True) data_info = [row for row in res if row[1] == dataset and row[0] != 'P-2'] labels = [] for row in data_info: anomalies = ast.literal_eval(row[2]) length = int(row[-1]) label = np.zeros([length], dtype=np.bool) for anomaly in anomalies: label[anomaly[0]:anomaly[1] + 1] = True labels.extend(label) labels = np.asarray(labels) print(dataset, 'test_label', labels.shape) with open(os.path.join(output_folder, dataset + "_" + 'test_label' + ".pkl"), "wb") as file: dump(labels, file) def concatenate_and_save(category): data = [] for row in data_info: filename = row[0] temp = np.load(os.path.join(dataset_folder, category, filename + '.npy')) data.extend(temp) data = np.asarray(data) print(dataset, category, data.shape) with open(os.path.join(output_folder, dataset + "_" + category + ".pkl"), "wb") as file: dump(data, file) for c in ['train', 'test']: concatenate_and_save(c) if __name__ == '__main__': datasets = ['SMD', 'SMAP', 'MSL'] commands = sys.argv[1:] load = [] if len(commands) > 0: for d in commands: if d in datasets: load_data(d) else: print(""" Usage: python data_preprocess.py <datasets> where <datasets> should be one of ['SMD', 'SMAP', 'MSL'] """)
tests/test_visualization_metrics.py
aniketmaurya/Chitra
158
12758002
from unittest.mock import MagicMock, Mock, patch import numpy as np import pytest from chitra.visualization.metrics import ( cm_accuracy, detect_multilabel, plot_confusion_matrix, ) def test_detect_multilabel(): with pytest.raises(UserWarning): detect_multilabel({"label1": "this will raise UserWarning"}) assert detect_multilabel([1, 2, 3, 4]) assert not detect_multilabel([0, 1, 1, 0]) def test_cm_accuracy(): x = np.asarray([[1, 2], [1, 2]]) assert cm_accuracy(x) == 0.5 @patch("chitra.visualization.metrics.plt") def test_plot_confusion_matrix(mock_plt: Mock): mock_plt.show = MagicMock() y_pred = [1, 1, 0, 1] y_true = [0, 1, 0, 1] assert plot_confusion_matrix(y_pred, y_true) is None mock_plt.show.assert_called_once()
scale/scheduler/cleanup/node.py
kaydoh/scale
121
12758037
<gh_stars>100-1000 """Defines the class that handles a node's cleanup""" from __future__ import unicode_literals import logging from job.execution.tasks.cleanup_task import CleanupTask from scheduler.manager import scheduler_mgr JOB_EXES_WARNING_THRESHOLD = 100 MAX_JOB_EXES_PER_CLEANUP = 25 logger = logging.getLogger(__name__) class NodeCleanup(object): """This class manages all of the cleanup for a node.""" def __init__(self): """Constructor """ self._job_exes = {} # {Job Exe ID: RunningJobExecution} def add_job_execution(self, job_exe): """Adds a job execution that needs to be cleaned up :param job_exe: The job execution to add :type job_exe: :class:`job.execution.job_exe.RunningJobExecution` """ self._job_exes[job_exe.id] = job_exe def delete_job_executions(self, job_exes): """Deletes the given job executions since they have been cleaned up :param job_exes: The job executions to delete :type job_exes: [:class:`job.execution.job_exe.RunningJobExecution`] """ for job_exe in job_exes: if job_exe.id in self._job_exes: del self._job_exes[job_exe.id] def create_next_task(self, agent_id, hostname, is_initial_cleanup_completed): """Creates and returns the next cleanup task that needs to be run, possibly None :param agent_id: The node's agent ID :type agent_id: string :param hostname: The node's hostname :type hostname: string :param is_initial_cleanup_completed: Indicates if node's initial cleanup is completed :type is_initial_cleanup_completed: bool :returns: The next cleanup task, possibly None :rtype: :class:`job.tasks.base_task.Task` """ total_job_exes = self._job_exes.values() count = len(total_job_exes) if count > JOB_EXES_WARNING_THRESHOLD: logger.warning('Node %s has %d job executions waiting to be cleaned up', hostname, count) cleanup_job_exes = [] if is_initial_cleanup_completed: if count == 0: # No job executions to clean, so no task return None for job_exe in total_job_exes: cleanup_job_exes.append(job_exe) if len(cleanup_job_exes) >= MAX_JOB_EXES_PER_CLEANUP: break return CleanupTask(scheduler_mgr.framework_id, agent_id, cleanup_job_exes) def get_num_job_exes(self): """Returns the number of job executions waiting to be cleaned up :returns: The number of job executions waiting to be cleaned up :rtype: int """ return len(self._job_exes.values())
vlcp/service/sdn/icmpresponder.py
hubo1016/vlcp
252
12758061
import itertools import os import vlcp.service.sdn.ofpportmanager as ofpportmanager import vlcp.service.kvdb.objectdb as objectdb import vlcp.service.sdn.ioprocessing as iop from vlcp.service.sdn.flowbase import FlowBase from vlcp.server.module import depend, call_api from vlcp.config.config import defaultconfig from vlcp.event.runnable import RoutineContainer from vlcp.service.sdn.ofpmanager import FlowInitialize from vlcp.utils.ethernet import mac_addr_bytes, ip4_addr_bytes,ip4_icmp_payload,\ ethernet_l7, ip4_packet_l7, ip4_payload,ICMP_ECHOREPLY,icmp_bestparse,icmp_echo,\ ip_frag from vlcp.utils.flowupdater import FlowUpdater from vlcp.protocol.openflow.openflow import OpenflowConnectionStateEvent, OpenflowAsyncMessageEvent from vlcp.utils.networkmodel import SubNet,RouterPort from namedstruct.stdprim import uint16 from vlcp.event.event import M_ class ICMPResponderUpdater(FlowUpdater): def __init__(self,connection,parent): super(ICMPResponderUpdater,self).__init__(connection,(),('icmpresponderupdate',connection),parent._logger) self.parent = parent self._lastlognets = () self._lastlogports = () self._lastsubnetsinfo = dict() self._orig_initialkeys = () async def main(self): try: self.subroutine(self._update_handler(),True,"update_handler_routine") # use controller to reply icmp ping ,so start routine handler packet in if not self.parent.prepush: self.subroutine(self._icmp_packetin_handler(),True,"icmp_packetin_handler_routine") await FlowUpdater.main(self) finally: if hasattr(self,"update_handler_routine"): self.update_handler_routine.close() if hasattr(self,"icmp_packetin_handler_routine"): self.icmp_packetin_handler_routine.close() async def _icmp_packetin_handler(self): conn = self._connection ofdef = self._connection.openflowdef l3input = self.parent._gettableindex("l3input",self._connection.protocol.vhost) transactid = uint16.create(os.urandom(2)) async def send_packet_out(portid,packet): await self.execute_commands(conn, [ ofdef.ofp_packet_out( buffer_id = ofdef.OFP_NO_BUFFER, in_port = ofdef.OFPP_CONTROLLER, actions = [ ofdef.ofp_action_output(port = portid, max_len = ofdef.OFPCML_NO_BUFFER ) ], data = packet._tobytes() ) ]) icmp_packetin_matcher = OpenflowAsyncMessageEvent.createMatcher(ofdef.OFPT_PACKET_IN,None,None,l3input,2, self._connection,self._connection.connmark) while True: ev = await icmp_packetin_matcher msg = ev.message inport = ofdef.ofp_port_no.create(ofdef.get_oxm(msg.match.oxm_fields,ofdef.OXM_OF_IN_PORT)) # it must be icmp packet ... icmp_packet = ethernet_l7.create(msg.data) if ip_frag(icmp_packet) != 0: # ignore fragmented packets continue transactid = (transactid + 1) & 0xffff reply_packet = ip4_packet_l7((ip4_payload,ip4_icmp_payload), (icmp_bestparse, icmp_echo), dl_src = icmp_packet.dl_dst, dl_dst = icmp_packet.dl_src, ip_src = icmp_packet.ip_dst, ip_dst = icmp_packet.ip_src, frag_off = 0, ttl = 128, identifier = transactid, icmp_type = ICMP_ECHOREPLY, icmp_code = icmp_packet.icmp_code, icmp_id = icmp_packet.icmp_id, icmp_seq = icmp_packet.icmp_seq, data = icmp_packet.data ) self.subroutine(send_packet_out(inport,reply_packet)) async def _update_handler(self): # when lgport,lgnet,phyport,phynet object change , receive this event from ioprocessing module dataobjectchange = iop.DataObjectChanged.createMatcher(None,None,self._connection) while True: ev = await dataobjectchange # save to instance attr , us in other method self._lastlogports,_,self._lastlognets,_ = ev.current self._update_walk() def _walk_lgport(self,key,value,walk,save): if value is not None: save(key) if hasattr(value,'subnet'): try: subnetobj = walk(value.subnet.getkey()) except KeyError: pass else: save(value.subnet.getkey()) if subnetobj is not None and hasattr(subnetobj,"router"): try: _ = walk(subnetobj.router.getkey()) except KeyError: pass else: save(subnetobj.router.getkey()) def _walk_lgnet(self,key,value,walk,save): save(key) # if value is None, also save its key # means watch key, when created , we will recv event def _update_walk(self): lgportkeys = [p.getkey() for p,_ in self._lastlogports] lgnetkeys = [p.getkey() for p,_ in self._lastlognets] self._initialkeys = lgportkeys + lgnetkeys self._orig_initialkeys = lgportkeys + lgnetkeys self._walkerdict = dict(itertools.chain(((p,self._walk_lgport) for p in lgportkeys), ((n,self._walk_lgnet) for n in lgnetkeys))) self.subroutine(self.restart_walk(),False) def reset_initialkeys(self,keys,values): # walk map logicalport --> subnet ---> routerport # we get subnet object, add keys to initialkeys, # when subnet update, it will restart walk ,, after we will get new routerport subnetkeys = [k for k,v in zip(keys,values) if v is not None and not v.isdeleted() and v.isinstance(SubNet)] self._initialkeys = tuple(itertools.chain(self._orig_initialkeys,subnetkeys)) async def updateflow(self, connection, addvalues, removevalues, updatedvalues): try: allobjects = set(o for o in self._savedresult if o is not None and not o.isdeleted()) lastsubnetsinfo = self._lastsubnetsinfo currentlognetsinfo = dict((n,id) for n,id in self._lastlognets if n in allobjects) currentrouterportsinfo = dict((o.subnet,o) for o in allobjects if o.isinstance(RouterPort)) currentsubnetsinfo = dict((o,(getattr(currentrouterportsinfo[o],"ip_address",getattr(o,"gateway",None)), self.parent.inroutermac,o.network.id,currentlognetsinfo[o.network])) for o in allobjects if o.isinstance(SubNet) and hasattr(o,"router") and o in currentrouterportsinfo and o.network in currentlognetsinfo and (hasattr(currentrouterportsinfo[o],"ip_address") or hasattr(o,"gateway")) and ( not hasattr(o,"isexternal") or o.isexternal == False)) self._lastsubnetsinfo = currentsubnetsinfo ofdef = connection.openflowdef vhost = connection.protocol.vhost l3input = self.parent._gettableindex("l3input",vhost) cmds = [] if connection.protocol.disablenxext: def match_network(nid): return ofdef.create_oxm(ofdef.OXM_OF_METADATA_W, (nid & 0xffff) << 32, b'\x00\x00\xff\xff\x00\x00\x00\x00') else: def match_network(nid): return ofdef.create_oxm(ofdef.NXM_NX_REG4, nid) # prepush or not ,, it is same , so .. def _deleteicmpflows(ipaddress, macaddress, networkid): return [ ofdef.ofp_flow_mod( cookie = 0x2, cookie_mask = 0xffffffffffffffff, table_id = l3input, command = ofdef.OFPFC_DELETE, priority = ofdef.OFP_DEFAULT_PRIORITY + 1, buffer_id = ofdef.OFP_NO_BUFFER, out_port = ofdef.OFPP_ANY, out_group = ofdef.OFPG_ANY, match = ofdef.ofp_match_oxm( oxm_fields = [ ofdef.create_oxm(ofdef.NXM_NX_REG4,networkid), ofdef.create_oxm(ofdef.OXM_OF_ETH_DST,mac_addr_bytes(macaddress)), ofdef.create_oxm(ofdef.OXM_OF_ETH_TYPE,ofdef.ETHERTYPE_IP), ofdef.create_oxm(ofdef.OXM_OF_IPV4_DST,ip4_addr_bytes(ipaddress)), ofdef.create_oxm(ofdef.OXM_OF_IP_PROTO,ofdef.IPPROTO_ICMP), ofdef.create_oxm(ofdef.OXM_OF_ICMPV4_TYPE,8), ofdef.create_oxm(ofdef.OXM_OF_ICMPV4_CODE,0) ] ) ) ] if not self.parent.prepush: def _createicmpflows(ipaddress, macaddress, networkid): return [ ofdef.ofp_flow_mod( cookie = 0x2, cookie_mask = 0xffffffffffffffff, table_id = l3input, command = ofdef.OFPFC_ADD, # icmp to router matcher same as ip forward to router # so priority + 1 priority = ofdef.OFP_DEFAULT_PRIORITY + 1, buffer_id = ofdef.OFP_NO_BUFFER, out_port = ofdef.OFPP_ANY, out_group = ofdef.OFPG_ANY, match = ofdef.ofp_match_oxm( oxm_fields = [ match_network(networkid), ofdef.create_oxm(ofdef.OXM_OF_ETH_DST,mac_addr_bytes(macaddress)), ofdef.create_oxm(ofdef.OXM_OF_ETH_TYPE,ofdef.ETHERTYPE_IP), ofdef.create_oxm(ofdef.OXM_OF_IPV4_DST,ip4_addr_bytes(ipaddress)), ofdef.create_oxm(ofdef.OXM_OF_IP_PROTO,ofdef.IPPROTO_ICMP), ofdef.create_oxm(ofdef.OXM_OF_ICMPV4_TYPE,8), ofdef.create_oxm(ofdef.OXM_OF_ICMPV4_CODE,0) ] ), instructions = [ ofdef.ofp_instruction_actions( actions = [ ofdef.ofp_action_output( port = ofdef.OFPP_CONTROLLER, max_len = ofdef.OFPCML_NO_BUFFER ) ] ) ] ) ] else: def _createicmpflows(ipaddress, macaddress, networkid): return [ ofdef.ofp_flow_mod( cookie = 0x2, cookie_mask = 0xffffffffffffffff, table_id = l3input, command = ofdef.OFPFC_ADD, # icmp to router matcher same as ip forward to router # so priority + 1 priority = ofdef.OFP_DEFAULT_PRIORITY + 1, buffer_id = ofdef.OFP_NO_BUFFER, out_port = ofdef.OFPP_ANY, out_group = ofdef.OFPG_ANY, match = ofdef.ofp_match_oxm( oxm_fields = [ match_network(networkid), ofdef.create_oxm(ofdef.OXM_OF_ETH_DST,mac_addr_bytes(macaddress)), ofdef.create_oxm(ofdef.OXM_OF_ETH_TYPE,ofdef.ETHERTYPE_IP), ofdef.create_oxm(ofdef.OXM_OF_IPV4_DST,ip4_addr_bytes(ipaddress)), ofdef.create_oxm(ofdef.OXM_OF_IP_PROTO,ofdef.IPPROTO_ICMP), ofdef.create_oxm(ofdef.OXM_OF_ICMPV4_TYPE,8), ofdef.create_oxm(ofdef.OXM_OF_ICMPV4_CODE,0) ] ), instructions = [ ofdef.ofp_instruction_actions( actions = [ ofdef.nx_action_reg_move( n_bits = 48, src = ofdef.OXM_OF_ETH_SRC, dst = ofdef.OXM_OF_ETH_DST ), ofdef.ofp_action_set_field( field = ofdef.create_oxm( ofdef.OXM_OF_ETH_SRC, ofdef.mac_addr(macaddress) ) ), ofdef.nx_action_reg_move( n_bits = 32, src = ofdef.OXM_OF_IPV4_SRC, dst = ofdef.OXM_OF_IPV4_DST ), ofdef.ofp_action_set_field( field = ofdef.create_oxm( ofdef.OXM_OF_IPV4_SRC, ofdef.ip4_addr(ipaddress) ) ), ofdef.ofp_action_set_field( field = ofdef.create_oxm( ofdef.OXM_OF_ICMPV4_TYPE, ICMP_ECHOREPLY ) ), ofdef.ofp_action_nw_ttl( nw_ttl = 128 ), ofdef.ofp_action_output( port = ofdef.OFPP_IN_PORT ) ] ) ] ) ] for subnet in lastsubnetsinfo.keys(): if subnet not in currentsubnetsinfo\ or (subnet in currentsubnetsinfo and lastsubnetsinfo[subnet] != currentsubnetsinfo[subnet]): # subnet remove or subnet info changed , remove flow info ip_address, mac_address, networkid, nid = lastsubnetsinfo[subnet] remove_arp = {(ip_address,mac_address,networkid,True),} await call_api(self, 'arpresponder', 'removeproxyarp', {'connection':connection, 'arpentries': remove_arp}) cmds.extend(_deleteicmpflows(ip_address,mac_address,nid)) await self.execute_commands(connection, cmds) for subnet in currentsubnetsinfo.keys(): if subnet not in lastsubnetsinfo\ or (subnet in lastsubnetsinfo and lastsubnetsinfo[subnet] != currentsubnetsinfo[subnet]): ip_address, mac_address, networkid, nid = currentsubnetsinfo[subnet] add_arp = {(ip_address,mac_address,networkid,True),} await call_api(self, 'arpresponder', 'createproxyarp', {'connection': connection, 'arpentries': add_arp}) cmds.extend(_createicmpflows(ip_address,mac_address,nid)) await self.execute_commands(connection, cmds) except Exception: self._logger.warning("Unexpected exception in icmp_flow_updater, ignore it! Continue",exc_info=True) @defaultconfig @depend(ofpportmanager.OpenflowPortManager,objectdb.ObjectDB) class ICMPResponder(FlowBase): """ Respond ICMP echo (ping) requests to the gateway """ _tablerequest = ( ("l3input",("l2input",),""), ("l2output",("l3input",),"") ) # True : reply icmp ping with flow # False: reply icmp ping with controller PACKET_IN/PACKET_OUT # # Must use prepush=True with OpenvSwitch 2.5+ # _default_prepush = False # "Gateway" responds with this MAC address _default_inroutermac = '1a:23:67:59:63:33' def __init__(self,server): super(ICMPResponder,self).__init__(server) self.app_routine = RoutineContainer(self.scheduler) self.app_routine.main = self._main self.routines.append(self.app_routine) self._flowupdater = dict() async def _main(self): flowinit = FlowInitialize.createMatcher(_ismatch=lambda x: self.vhostbind is None or x.vhost in self.vhostbind) conndown = OpenflowConnectionStateEvent.createMatcher(state = OpenflowConnectionStateEvent.CONNECTION_DOWN, _ismatch=lambda x:self.vhostbind is None or x.createby.vhost in self.vhostbind) while True: ev, m = await M_(flowinit,conndown) if m is flowinit: c = ev.connection self.app_routine.subroutine(self._init_conn(c)) if m is conndown: c = ev.connection self.app_routine.subroutine(self._remove_conn(c)) async def _init_conn(self,conn): if conn in self._flowupdater: updater = self._flowupdater.pop(conn) updater.close() updater = ICMPResponderUpdater(conn,self) self._flowupdater[conn] = updater updater.start() async def _remove_conn(self,conn): if conn in self._flowupdater: updater = self._flowupdater.pop(conn) updater.close()
11_stream/src/push_notification_to_sns.py
dpai/workshop
2,327
12758065
<reponame>dpai/workshop from __future__ import print_function import boto3 import base64 import os SNS_TOPIC_ARN = os.environ["SNS_TOPIC_ARN"] sns = boto3.client("sns") print("Loading function") def lambda_handler(event, context): output = [] success = 0 failure = 0 highest_score = 0 print("event: {}".format(event)) r = event["records"] print("records: {}".format(r)) print("type_records: {}".format(type(r))) for record in event["records"]: try: # Uncomment the below line to publish the decoded data to the SNS topic. payload = base64.b64decode(record["data"]) print("payload: {}".format(payload)) text = payload.decode("utf-8") print("text: {}".format(text)) score = float(text) if (score != 0) and (score > highest_score): highest_score = score print("New highest_score: {}".format(highest_score)) # sns.publish(TopicArn=SNS_TOPIC_ARN, Message='New anomaly score: {}'.format(text), Subject='New Reviews Anomaly Score Detected') output.append({"recordId": record["recordId"], "result": "Ok"}) success += 1 except Exception as e: print(e) output.append({"recordId": record["recordId"], "result": "DeliveryFailed"}) failure += 1 if highest_score != 0: sns.publish( TopicArn=SNS_TOPIC_ARN, Message="New anomaly score: {}".format(str(highest_score)), Subject="New Reviews Anomaly Score Detected", ) print("Successfully delivered {0} records, failed to deliver {1} records".format(success, failure)) return {"records": output}
docker/test/integration/minifi/validators/SegfaultValidator.py
dtrodrigues/nifi-minifi-cpp
113
12758080
from .OutputValidator import OutputValidator class SegfaultValidator(OutputValidator): """ Validate that a file was received. """ def validate(self): return True
dashboard/dashboard/pinpoint/models/tasks/evaluator.py
Martijnve23/catapult
1,894
12758097
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Consolidated evaluator factory module. This module consolidates the creation of specific evaluator combinators, used throughout Pinpoint to evaluate task graphs we support. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import from dashboard.pinpoint.models import evaluators from dashboard.pinpoint.models.tasks import find_isolate from dashboard.pinpoint.models.tasks import performance_bisection from dashboard.pinpoint.models.tasks import read_value from dashboard.pinpoint.models.tasks import run_test EXCLUDED_PAYLOAD_KEYS = {'commits', 'swarming_request_body'} class ExecutionEngine(evaluators.SequenceEvaluator): def __init__(self, job): # We gather all the evaluators from the modules we know. super(ExecutionEngine, self).__init__(evaluators=[ evaluators.DispatchByTaskType({ 'find_isolate': find_isolate.Evaluator(job), 'find_culprit': performance_bisection.Evaluator(job), 'read_value': read_value.Evaluator(job), 'run_test': run_test.Evaluator(job), }), # We then always lift the task payload up, skipping some of the # larger objects that we know we are not going to need when deciding # what the end result is. evaluators.TaskPayloadLiftingEvaluator( exclude_keys=EXCLUDED_PAYLOAD_KEYS) ])
external/iotivity/iotivity_1.2-rel/build_common/iotivityconfig/compiler/configuration.py
SenthilKumarGS/TizenRT
1,433
12758103
# ------------------------------------------------------------------------ # Copyright 2015 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------ class Configuration: """Compiler-specific configuration abstract base class""" def __init__(self, context): """ Initialize the Configuration object Arguments: context -- the scons configure context """ if type(self) is Configuration: raise TypeError('abstract class cannot be instantiated') self._context = context # scons configure context self._env = context.env # scons environment def check_c99_flags(self): """ Check if command line flag is required to enable C99 support. Returns 1 if no flag is required, 0 if no flag was found, and the actual flag if one was found. CFLAGS will be updated with appropriate C99 flag, accordingly. """ return self._check_flags(self._c99_flags(), self._c99_test_program(), '.c', 'CFLAGS') def check_cxx11_flags(self): """ Check if command line flag is required to enable C++11 support. Returns 1 if no flag is required, 0 if no flag was found, and the actual flag if one was found. CXXFLAGS will be updated with appropriate C++11 flag, accordingly. """ return self._check_flags(self._cxx11_flags(), self._cxx11_test_program(), '.cpp', 'CXXFLAGS') def has_pthreads_support(self): """ Check if PThreads are supported by this system Returns 1 if this system DOES support pthreads, 0 otherwise """ return self._context.TryCompile(self._pthreads_test_program(), '.c') # -------------------------------------------------------------- # Check if flag is required to build the given test program. # # Arguments: # test_flags -- list of flags that may be needed to build # test_program # test_program -- program used used to determine if one of the # given flags is required to for a successful # build # test_extension -- file extension associated with the test # program, e.g. '.cpp' for C++ and '.c' for C # flags_key -- key used to retrieve compiler flags that may # be updated by this check from the SCons # environment # -------------------------------------------------------------- def _check_flags(self, test_flags, test_program, test_extension, flags_key): # Check if no additional flags are required. ret = self._context.TryCompile(test_program, test_extension) if ret is 0: # Try flags known to enable compiler features needed by # the test program. last_flags = self._env[flags_key] for flag in test_flags: self._env.Append(**{flags_key : flag}) ret = self._context.TryCompile(test_program, test_extension) if ret: # Found a flag! return flag else: # Restore original compiler flags for next flag # test. self._env.Replace(**{flags_key : last_flags}) return ret # ------------------------------------------------------------ # Return test program to be used when checking for basic C99 # support. # # Subclasses should implement this template method or use the # default test program found in the DefaultConfiguration class # through composition. # ------------------------------------------------------------ def _c99_test_program(self): raise NotImplementedError('unimplemented method') # -------------------------------------------------------------- # Get list of flags that could potentially enable C99 support. # # Subclasses should implement this template method if flags are # needed to enable C99 support. # -------------------------------------------------------------- def _c99_flags(self): raise NotImplementedError('unimplemented method') # ------------------------------------------------------------ # Return test program to be used when checking for basic C++11 # support. # # Subclasses should implement this template method or use the # default test program found in the DefaultConfiguration class # through composition. # ------------------------------------------------------------ def _cxx11_test_program(self): raise NotImplementedError('unimplemented method') # -------------------------------------------------------------- # Get list of flags that could potentially enable C++11 support. # # Subclasses should implement this template method if flags are # needed to enable C++11 support. # -------------------------------------------------------------- def _cxx11_flags(self): raise NotImplementedError('unimplemented method') # -------------------------------------------------------------- # Return a test program to be used when checking for PThreads # support # # -------------------------------------------------------------- def _pthreads_test_program(self): return """ #include <unistd.h> #include <pthread.h> int main() { #ifndef _POSIX_THREADS # error POSIX Threads support not available #endif return 0; } """
aps/transform/utils.py
ishine/aps
117
12758104
<reponame>ishine/aps # Copyright 2019 <NAME> # License: Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import math import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as tf import librosa.filters as filters from aps.const import EPSILON, TORCH_VERSION from typing import Optional, Tuple from distutils.version import LooseVersion if TORCH_VERSION >= LooseVersion("1.7"): from torch.fft import fft as fft_func else: pass def export_jit(transform: nn.Module) -> nn.Module: """ Export transform module for inference """ export_out = [module for module in transform if module.exportable()] return nn.Sequential(*export_out) def init_window(wnd: str, frame_len: int, device: th.device = "cpu") -> th.Tensor: """ Return window coefficient Args: wnd: window name frame_len: length of the frame """ def sqrthann(frame_len, periodic=True): return th.hann_window(frame_len, periodic=periodic)**0.5 if wnd not in ["bartlett", "hann", "hamm", "blackman", "rect", "sqrthann"]: raise RuntimeError(f"Unknown window type: {wnd}") wnd_tpl = { "sqrthann": sqrthann, "hann": th.hann_window, "hamm": th.hamming_window, "blackman": th.blackman_window, "bartlett": th.bartlett_window, "rect": th.ones } if wnd != "rect": # match with librosa c = wnd_tpl[wnd](frame_len, periodic=True) else: c = wnd_tpl[wnd](frame_len) return c.to(device) def init_kernel(frame_len: int, frame_hop: int, window: th.Tensor, round_pow_of_two: bool = True, normalized: bool = False, inverse: bool = False, mode: str = "librosa") -> Tuple[th.Tensor, th.Tensor]: """ Return STFT kernels Args: frame_len: length of the frame frame_hop: hop size between frames window: window tensor round_pow_of_two: if true, choose round(#power_of_two) as the FFT size normalized: return normalized DFT matrix inverse: return iDFT matrix mode: framing mode (librosa or kaldi) """ if mode not in ["librosa", "kaldi"]: raise ValueError(f"Unsupported mode: {mode}") # FFT size: B if round_pow_of_two or mode == "kaldi": fft_size = 2**math.ceil(math.log2(frame_len)) else: fft_size = frame_len # center padding window if needed if mode == "librosa" and fft_size != frame_len: lpad = (fft_size - frame_len) // 2 window = tf.pad(window, (lpad, fft_size - frame_len - lpad)) if normalized: # make K^H * K = I S = fft_size**0.5 else: S = 1 # W x B x 2 if TORCH_VERSION >= LooseVersion("1.7"): K = fft_func(th.eye(fft_size) / S, dim=-1) K = th.stack([K.real, K.imag], dim=-1) else: I = th.stack([th.eye(fft_size), th.zeros(fft_size, fft_size)], dim=-1) K = th.fft(I / S, 1) if mode == "kaldi": K = K[:frame_len] if inverse and not normalized: # to make K^H * K = I K = K / fft_size # 2 x B x W K = th.transpose(K, 0, 2) # 2B x 1 x W K = th.reshape(K, (fft_size * 2, 1, K.shape[-1])) return K.to(window.device), window def mel_filter(frame_len: int, round_pow_of_two: bool = True, num_bins: Optional[int] = None, sr: int = 16000, num_mels: int = 80, fmin: float = 0.0, fmax: Optional[float] = None, norm: bool = False) -> th.Tensor: """ Return mel filter coefficients Args: frame_len: length of the frame round_pow_of_two: if true, choose round(#power_of_two) as the FFT size num_bins: number of the frequency bins produced by STFT num_mels: number of the mel bands fmin: lowest frequency (in Hz) fmax: highest frequency (in Hz) norm: normalize the mel filter coefficients """ # FFT points if num_bins is None: N = 2**math.ceil( math.log2(frame_len)) if round_pow_of_two else frame_len else: N = (num_bins - 1) * 2 # fmin & fmax freq_upper = sr // 2 if fmax is None: fmax = freq_upper else: fmax = min(fmax + freq_upper if fmax < 0 else fmax, freq_upper) fmin = max(0, fmin) # mel filter coefficients mel = filters.mel(sr, N, n_mels=num_mels, fmax=fmax, fmin=fmin, htk=True, norm="slaney" if norm else None) # num_mels x (N // 2 + 1) return th.tensor(mel, dtype=th.float32) def speed_perturb_filter(src_sr: int, dst_sr: int, cutoff_ratio: float = 0.95, num_zeros: int = 64) -> th.Tensor: """ Return speed perturb filters, reference: https://github.com/danpovey/filtering/blob/master/lilfilter/resampler.py Args: src_sr: sample rate of the source signal dst_sr: sample rate of the target signal Return: weight (Tensor): coefficients of the filter """ if src_sr == dst_sr: raise ValueError( f"src_sr should not be equal to dst_sr: {src_sr}/{dst_sr}") gcd = math.gcd(src_sr, dst_sr) src_sr = src_sr // gcd dst_sr = dst_sr // gcd if src_sr == 1 or dst_sr == 1: raise ValueError("do not support integer downsample/upsample") zeros_per_block = min(src_sr, dst_sr) * cutoff_ratio padding = 1 + int(num_zeros / zeros_per_block) # dst_sr x src_sr x K times = (np.arange(dst_sr)[:, None, None] / float(dst_sr) - np.arange(src_sr)[None, :, None] / float(src_sr) - np.arange(2 * padding + 1)[None, None, :] + padding) window = np.heaviside(1 - np.abs(times / padding), 0.0) * (0.5 + 0.5 * np.cos(times / padding * math.pi)) weight = np.sinc( times * zeros_per_block) * window * zeros_per_block / float(src_sr) return th.tensor(weight, dtype=th.float32) def splice_feature(feats: th.Tensor, lctx: int = 1, rctx: int = 1, op: str = "cat") -> th.Tensor: """ Splice feature Args: feats (Tensor): N x ... x T x F, original feature lctx: left context rctx: right context op: operator on feature context Return: splice (Tensor): feature with context padded """ if lctx + rctx == 0: return feats if op not in ["cat", "stack"]: raise ValueError(f"Unknown op for feature splicing: {op}") # [N x ... x T x F, ...] ctx = [] T = feats.shape[-2] for c in range(-lctx, rctx + 1): idx = th.arange(c, c + T, device=feats.device, dtype=th.int64) idx = th.clamp(idx, min=0, max=T - 1) ctx.append(th.index_select(feats, -2, idx)) if op == "cat": # N x ... x T x FD splice = th.cat(ctx, -1) else: # N x ... x T x F x D splice = th.stack(ctx, -1) return splice def _forward_stft(wav: th.Tensor, kernel: th.Tensor, window: th.Tensor, return_polar: bool = False, pre_emphasis: float = 0, frame_hop: int = 256, onesided: bool = False, center: bool = False, eps: float = EPSILON) -> th.Tensor: """ STFT function implemented by conv1d (not efficient, but we don't care during training) Args: wav (Tensor): N x (C) x S kernel (Tensor): STFT transform kernels, from init_kernel(...) return_polar: return [magnitude; phase] Tensor or [real; imag] Tensor pre_emphasis: factor of preemphasis frame_hop: frame hop size in number samples onesided: return half FFT bins center: if true, we assumed to have centered frames Return: transform (Tensor): STFT transform results """ wav_dim = wav.dim() if wav_dim not in [2, 3]: raise RuntimeError(f"STFT expect 2D/3D tensor, but got {wav_dim:d}D") # if N x S, reshape N x 1 x S # else: reshape NC x 1 x S N, S = wav.shape[0], wav.shape[-1] wav = wav.view(-1, 1, S) # NC x 1 x S+2P if center: pad = kernel.shape[-1] // 2 # NOTE: match with librosa wav = tf.pad(wav, (pad, pad), mode="reflect") # STFT kernel = kernel * window if pre_emphasis > 0: # NC x W x T frames = tf.unfold(wav[:, None], (1, kernel.shape[-1]), stride=frame_hop, padding=0) # follow Kaldi's Preemphasize frames[:, 1:] = frames[:, 1:] - pre_emphasis * frames[:, :-1] frames[:, 0] *= (1 - pre_emphasis) # 1 x 2B x W, NC x W x T, NC x 2B x T packed = th.matmul(kernel[:, 0][None, ...], frames) else: packed = tf.conv1d(wav, kernel, stride=frame_hop, padding=0) # NC x 2B x T => N x C x 2B x T if wav_dim == 3: packed = packed.view(N, -1, packed.shape[-2], packed.shape[-1]) # N x (C) x B x T real, imag = th.chunk(packed, 2, dim=-2) # N x (C) x B/2+1 x T if onesided: num_bins = kernel.shape[0] // 4 + 1 real = real[..., :num_bins, :] imag = imag[..., :num_bins, :] if return_polar: mag = (real**2 + imag**2 + eps)**0.5 pha = th.atan2(imag, real) return th.stack([mag, pha], dim=-1) else: return th.stack([real, imag], dim=-1) def _inverse_stft(transform: th.Tensor, kernel: th.Tensor, window: th.Tensor, return_polar: bool = False, frame_hop: int = 256, onesided: bool = False, center: bool = False, eps: float = EPSILON) -> th.Tensor: """ iSTFT function implemented by conv1d Args: transform (Tensor): STFT transform results kernel (Tensor): STFT transform kernels, from init_kernel(...) return_polar (bool): keep same with the one in _forward_stft frame_hop: frame hop size in number samples onesided: return half FFT bins center: used in _forward_stft Return: wav (Tensor), N x S """ # (N) x F x T x 2 transform_dim = transform.dim() # if F x T x 2, reshape 1 x F x T x 2 if transform_dim == 3: transform = th.unsqueeze(transform, 0) if transform_dim != 4: raise RuntimeError(f"Expect 4D tensor, but got {transform_dim}D") if return_polar: real = transform[..., 0] * th.cos(transform[..., 1]) imag = transform[..., 0] * th.sin(transform[..., 1]) else: real, imag = transform[..., 0], transform[..., 1] if onesided: # [self.num_bins - 2, ..., 1] reverse = range(kernel.shape[0] // 4 - 1, 0, -1) # extend matrix: N x B x T real = th.cat([real, real[:, reverse]], 1) imag = th.cat([imag, -imag[:, reverse]], 1) # pack: N x 2B x T packed = th.cat([real, imag], dim=1) # N x 1 x T wav = tf.conv_transpose1d(packed, kernel * window, stride=frame_hop, padding=0) # normalized audio samples # refer: https://github.com/pytorch/audio/blob/2ebbbf511fb1e6c47b59fd32ad7e66023fa0dff1/torchaudio/functional.py#L171 num_frames = packed.shape[-1] win_length = window.shape[0] # W x T win = th.repeat_interleave(window[..., None]**2, num_frames, dim=-1) # Do OLA on windows # v1) I = th.eye(win_length, device=win.device)[:, None] denorm = tf.conv_transpose1d(win[None, ...], I, stride=frame_hop, padding=0) # v2) # num_samples = (num_frames - 1) * frame_hop + win_length # denorm = tf.fold(win[None, ...], (num_samples, 1), (win_length, 1), # stride=frame_hop)[..., 0] if center: pad = kernel.shape[-1] // 2 wav = wav[..., pad:-pad] denorm = denorm[..., pad:-pad] wav = wav / (denorm + eps) # N x S return wav.squeeze(1) def _pytorch_stft(wav: th.Tensor, frame_len: int, frame_hop: int, n_fft: int = 512, return_polar: bool = False, window: str = "sqrthann", normalized: bool = False, onesided: bool = True, center: bool = False, eps: float = EPSILON) -> th.Tensor: """ Wrapper of PyTorch STFT function Args: wav (Tensor): source audio signal frame_len: length of the frame frame_hop: hop size between frames n_fft: number of the FFT size return_polar: return the results in polar coordinate window: window tensor center: same definition with the parameter in librosa.stft normalized: use normalized DFT kernel onesided: output onesided STFT Return: transform (Tensor), STFT transform results """ if TORCH_VERSION < LooseVersion("1.7"): raise RuntimeError("Can not use this function as TORCH_VERSION < 1.7") wav_dim = wav.dim() if wav_dim not in [2, 3]: raise RuntimeError(f"STFT expect 2D/3D tensor, but got {wav_dim:d}D") # if N x C x S, reshape NC x S wav = wav.view(-1, wav.shape[-1]) # STFT: N x F x T x 2 stft = th.stft(wav, n_fft, hop_length=frame_hop, win_length=window.shape[-1], window=window, center=center, normalized=normalized, onesided=onesided, return_complex=False) if wav_dim == 3: N, F, T, _ = stft.shape stft = stft.view(N, -1, F, T, 2) # N x (C) x F x T x 2 if not return_polar: return stft # N x (C) x F x T real, imag = stft[..., 0], stft[..., 1] mag = (real**2 + imag**2 + eps)**0.5 pha = th.atan2(imag, real) return th.stack([mag, pha], dim=-1) def _pytorch_istft(transform: th.Tensor, frame_len: int, frame_hop: int, window: th.Tensor, n_fft: int = 512, return_polar: bool = False, normalized: bool = False, onesided: bool = True, center: bool = False, eps: float = EPSILON) -> th.Tensor: """ Wrapper of PyTorch iSTFT function Args: transform (Tensor): results of STFT frame_len: length of the frame frame_hop: hop size between frames window: window tensor n_fft: number of the FFT size return_polar: keep same with _pytorch_stft center: same definition with the parameter in librosa.stft normalized: use normalized DFT kernel onesided: output onesided STFT Return: wav (Tensor): synthetic audio """ if TORCH_VERSION < LooseVersion("1.7"): raise RuntimeError("Can not use this function as TORCH_VERSION < 1.7") transform_dim = transform.dim() # if F x T x 2, reshape 1 x F x T x 2 if transform_dim == 3: transform = th.unsqueeze(transform, 0) if transform_dim != 4: raise RuntimeError(f"Expect 4D tensor, but got {transform_dim}D") if return_polar: real = transform[..., 0] * th.cos(transform[..., 1]) imag = transform[..., 0] * th.sin(transform[..., 1]) transform = th.stack([real, imag], -1) # stft is a complex tensor of PyTorch stft = th.view_as_complex(transform) # (N) x S wav = th.istft(stft, n_fft, hop_length=frame_hop, win_length=window.shape[-1], window=window, center=center, normalized=normalized, onesided=onesided, return_complex=False) return wav def forward_stft(wav: th.Tensor, frame_len: int, frame_hop: int, window: str = "sqrthann", round_pow_of_two: bool = True, return_polar: bool = False, pre_emphasis: float = 0, normalized: bool = False, onesided: bool = True, center: bool = False, mode: str = "librosa", eps: float = EPSILON) -> th.Tensor: """ STFT function implementation, equals to STFT layer Args: wav: source audio signal frame_len: length of the frame frame_hop: hop size between frames return_polar: return [magnitude; phase] Tensor or [real; imag] Tensor window: window name center: center flag (similar with that in librosa.stft) round_pow_of_two: if true, choose round(#power_of_two) as the FFT size pre_emphasis: factor of preemphasis normalized: use normalized DFT kernel onesided: output onesided STFT inverse: using iDFT kernel (for iSTFT) mode: STFT mode, "kaldi" or "librosa" or "torch" Return: transform: results of STFT """ window = init_window(window, frame_len, device=wav.device) if mode == "torch": n_fft = 2**math.ceil( math.log2(frame_len)) if round_pow_of_two else frame_len return _pytorch_stft(wav, frame_len, frame_hop, n_fft=n_fft, return_polar=return_polar, window=window, normalized=normalized, onesided=onesided, center=center, eps=eps) else: kernel, window = init_kernel(frame_len, frame_hop, window=window, round_pow_of_two=round_pow_of_two, normalized=normalized, inverse=False, mode=mode) return _forward_stft(wav, kernel, window, return_polar=return_polar, frame_hop=frame_hop, pre_emphasis=pre_emphasis, onesided=onesided, center=center, eps=eps) def inverse_stft(transform: th.Tensor, frame_len: int, frame_hop: int, return_polar: bool = False, window: str = "sqrthann", round_pow_of_two: bool = True, normalized: bool = False, onesided: bool = True, center: bool = False, mode: str = "librosa", eps: float = EPSILON) -> th.Tensor: """ iSTFT function implementation, equals to iSTFT layer Args: transform: results of STFT frame_len: length of the frame frame_hop: hop size between frames return_polar: keep same with function forward_stft(...) window: window name center: center flag (similar with that in librosa.stft) round_pow_of_two: if true, choose round(#power_of_two) as the FFT size normalized: use normalized DFT kernel onesided: output onesided STFT mode: STFT mode, "kaldi" or "librosa" or "torch" Return: wav: synthetic signals """ window = init_window(window, frame_len, device=transform.device) if mode == "torch": n_fft = 2**math.ceil( math.log2(frame_len)) if round_pow_of_two else frame_len return _pytorch_istft(transform, frame_len, frame_hop, n_fft=n_fft, return_polar=return_polar, window=window, normalized=normalized, onesided=onesided, center=center, eps=eps) else: kernel, window = init_kernel(frame_len, frame_hop, window, round_pow_of_two=round_pow_of_two, normalized=normalized, inverse=True, mode=mode) return _inverse_stft(transform, kernel, window, return_polar=return_polar, frame_hop=frame_hop, onesided=onesided, center=center, eps=eps) class STFTBase(nn.Module): """ Base layer for (i)STFT Args: frame_len: length of the frame frame_hop: hop size between frames window: window name center: center flag (similar with that in librosa.stft) round_pow_of_two: if true, choose round(#power_of_two) as the FFT size normalized: use normalized DFT kernel pre_emphasis: factor of preemphasis mode: STFT mode, "kaldi" or "librosa" or "torch" onesided: output onesided STFT inverse: using iDFT kernel (for iSTFT) """ def __init__(self, frame_len: int, frame_hop: int, window: str = "sqrthann", round_pow_of_two: bool = True, normalized: bool = False, pre_emphasis: float = 0, onesided: bool = True, inverse: bool = False, center: bool = False, mode: str = "librosa") -> None: super(STFTBase, self).__init__() if mode != "torch": K, w = init_kernel(frame_len, frame_hop, init_window(window, frame_len), round_pow_of_two=round_pow_of_two, normalized=normalized, inverse=inverse, mode=mode) self.K = nn.Parameter(K, requires_grad=False) self.w = nn.Parameter(w, requires_grad=False) self.num_bins = self.K.shape[0] // 4 + 1 self.pre_emphasis = pre_emphasis self.win_length = self.K.shape[2] else: self.K = None w = init_window(window, frame_len) self.w = nn.Parameter(w, requires_grad=False) fft_size = 2**math.ceil( math.log2(frame_len)) if round_pow_of_two else frame_len self.num_bins = fft_size // 2 + 1 self.pre_emphasis = 0 self.win_length = fft_size self.frame_len = frame_len self.frame_hop = frame_hop self.window = window self.normalized = normalized self.onesided = onesided self.center = center self.mode = mode def num_frames(self, wav_len: th.Tensor) -> th.Tensor: """ Compute number of the frames """ assert th.sum(wav_len <= self.win_length) == 0 if self.center: wav_len += self.win_length return th.div(wav_len - self.win_length, self.frame_hop, rounding_mode="trunc") + 1 def extra_repr(self) -> str: str_repr = ( f"num_bins={self.num_bins}, win_length={self.win_length}, " + f"stride={self.frame_hop}, window={self.window}, " + f"center={self.center}, mode={self.mode}") if not self.onesided: str_repr += f", onesided={self.onesided}" if self.pre_emphasis > 0: str_repr += f", pre_emphasis={self.pre_emphasis}" if self.normalized: str_repr += f", normalized={self.normalized}" return str_repr class STFT(STFTBase): """ Short-time Fourier Transform as a Layer """ def __init__(self, *args, **kwargs): super(STFT, self).__init__(*args, inverse=False, **kwargs) def forward(self, wav: th.Tensor, return_polar: bool = False, eps: float = EPSILON) -> th.Tensor: """ Accept (single or multiple channel) raw waveform and output magnitude and phase Args wav (Tensor) input signal, N x (C) x S Return transform (Tensor), N x (C) x F x T x 2 """ if self.mode == "torch": return _pytorch_stft(wav, self.frame_len, self.frame_hop, n_fft=(self.num_bins - 1) * 2, return_polar=return_polar, window=self.w, normalized=self.normalized, onesided=self.onesided, center=self.center, eps=eps) else: return _forward_stft(wav, self.K, self.w, return_polar=return_polar, frame_hop=self.frame_hop, pre_emphasis=self.pre_emphasis, onesided=self.onesided, center=self.center, eps=eps) class iSTFT(STFTBase): """ Inverse Short-time Fourier Transform as a Layer """ def __init__(self, *args, **kwargs): super(iSTFT, self).__init__(*args, inverse=True, **kwargs) def forward(self, transform: th.Tensor, return_polar: bool = False, eps: float = EPSILON) -> th.Tensor: """ Accept phase & magnitude and output raw waveform Args transform (Tensor): STFT output, N x F x T x 2 Return s (Tensor): N x S """ if self.mode == "torch": return _pytorch_istft(transform, self.frame_len, self.frame_hop, n_fft=(self.num_bins - 1) * 2, return_polar=return_polar, window=self.w, normalized=self.normalized, onesided=self.onesided, center=self.center, eps=eps) else: return _inverse_stft(transform, self.K, self.w, return_polar=return_polar, frame_hop=self.frame_hop, onesided=self.onesided, center=self.center, eps=eps)
tensorflow_gnn/models/gat_v2/layers.py
tensorflow/gnn
611
12758123
"""Contains a Graph Attention Network v2 and associated layers.""" from typing import Any, Callable, Mapping, Optional, Union import tensorflow as tf import tensorflow_gnn as tfgnn @tf.keras.utils.register_keras_serializable(package="GNN>models>gat_v2") class GATv2Conv(tfgnn.keras.layers.AnyToAnyConvolutionBase): """The multi-head attention from Graph Attention Networks v2 (GATv2). GATv2 (https://arxiv.org/abs/2105.14491) improves upon the popular GAT architecture (https://arxiv.org/abs/1710.10903) by allowing the network to compute a more expressive "dynamic" instead of just "static" attention, each of whose heads is described by Equations (7), (3) and (4) in https://arxiv.org/abs/2105.14491. Example: GATv2-style attention on incoming edges whose result is concatenated with the old node state and passed through a Dense layer to compute the new node state. ``` dense = tf.keras.layers.Dense graph = tfgnn.keras.layers.GraphUpdate( node_sets={"paper": tfgnn.keras.layers.NodeSetUpdate( {"cites": tfgnn.keras.layers.GATv2Conv( message_dim, receiver_tag=tfgnn.TARGET)}, tfgnn.keras.layers.NextStateFromConcat(dense(node_state_dim)))} )(graph) ``` This layer implements the multi-head attention of GATv2 with the following generalizations: * This implementation of GATv2 attends only to edges that are explicitly stored in the input GraphTensor. Attention of a node to itself is enabled or disabled by storing or not storing an explicit loop in the edge set. The example above uses a separate layer to combine the old node state with the attention result to form the new node state. * Attention values can be computed from a sender node state that gets broadcast onto the edge (see arg `sender_node_feature`), from an edge feature (see arg `sender_edge_feature`), or from their concatenation (by setting both arguments). This choice is used in place of the sender node state $h_j$ in the defining equations cited above. * This layer can be used with `receiver_tag=tfgnn.CONTEXT` to perform a convolution to the context, with graph components as receivers and the containment in graph components used in lieu of edges. * An `edge_dropout` option is provided. This layer can also be configured to do attention pooling from edges to context or to receiver nodes (without regard for source nodes) by setting `sender_node_feature=None` and setting `sender_edge_feature=...` to the applicable edge feature name (e.g., `tfgnn.DEFAULT_FEATURE_NAME`). Like the Keras Dense layer, if the input features have rank greater than 2, this layer computes a point-wise attention along the last axis of the inputs. For example, if the input features have shape [num_nodes, 2, 4, 1], then it will perform an identical computation on each of the num_nodes * 2 * 4 input values. Init args: num_heads: The number of attention heads. per_head_channels: The number of channels for each attention head. This means that the final output size will be per_head_channels * num_heads. receiver_tag: one of `tfgnn.SOURCE`, `tfgnn.TARGET` or `tfgnn.CONTEXT`. The results of attention are aggregated for this graph piece. If set to `tfgnn.SOURCE` or `tfgnn.TARGET`, the layer can be called for an edge set and will aggregate results at the specified endpoint of the edges. If set to `tfgnn.CONTEXT`, the layer can be called for an edge set or node set. If left unset for init, the tag must be passed at call time. receiver_feature: Can be set to override `tfgnn.DEFAULT_FEATURE_NAME` for use as the receiver's input feature to attention. (The attention key is derived from this input.) sender_node_feature: Can be set to override `tfgnn.DEFAULT_FEATURE_NAME` for use as the input feature from sender nodes to attention. IMPORANT: Must be set to `None` for use with `receiver_tag=tfgnn.CONTEXT` on an edge set, or for pooling from edges without sender node states. sender_edge_feature: Can be set to a feature name of the edge set to select it as an input feature. By default, this set to `None`, which disables this input. IMPORTANT: Must be set for use with `receiver_tag=tfgnn.CONTEXT` on an edge set. use_bias: If true, a bias term is added to the transformations of query and value inputs. edge_dropout: Can be set to a dropout rate for edge dropout. (When pooling nodes to context, it's the node's membership in a graph component that is dropped out.) attention_activation: The nonlinearity used on the transformed inputs before multiplying with the trained weights of the attention layer. This can be specified as a Keras layer, a tf.keras.activations.* function, or a string understood by tf.keras.layers.Activation(). Defaults to "leaky_relu", which in turn defaults to a negative slope of alpha=0.2. activation: The nonlinearity applied to the final result of attention, specified in the same ways as attention_activation. kernel_initializer: Can be set to a `kerner_initializer` as understood by tf.keras.layers.Dense etc. """ def __init__(self, *, num_heads: int, per_head_channels: int, receiver_tag: Optional[tfgnn.IncidentNodeOrContextTag] = None, receiver_feature: tfgnn.FieldName = tfgnn.HIDDEN_STATE, sender_node_feature: Optional[ tfgnn.FieldName] = tfgnn.HIDDEN_STATE, sender_edge_feature: Optional[tfgnn.FieldName] = None, use_bias: bool = True, edge_dropout: float = 0., attention_activation: Union[str, Callable[..., Any]] = "leaky_relu", activation: Union[str, Callable[..., Any]] = "relu", kernel_initializer: Union[ None, str, tf.keras.initializers.Initializer] = None, **kwargs): kwargs.setdefault("name", "gat_v2_conv") super().__init__( receiver_tag=receiver_tag, receiver_feature=receiver_feature, sender_node_feature=sender_node_feature, sender_edge_feature=sender_edge_feature, extra_receiver_ops={"softmax": tfgnn.softmax}, **kwargs) if not self.takes_receiver_input: raise ValueError("Receiver feature cannot be None") if num_heads <= 0: raise ValueError(f"Number of heads {num_heads} must be greater than 0.") self._num_heads = num_heads if per_head_channels <= 0: raise ValueError( f"Per-head channels {per_head_channels} must be greater than 0.") self._per_head_channels = per_head_channels self._use_bias = use_bias if not 0 <= edge_dropout < 1: raise ValueError(f"Edge dropout {edge_dropout} must be in [0, 1).") self._edge_dropout = edge_dropout self._attention_activation = tf.keras.activations.get(attention_activation) self._activation = tf.keras.activations.get(activation) self._kernel_initializer = kernel_initializer # Create the transformations for the query input in all heads. self._w_query = tf.keras.layers.Dense( per_head_channels * num_heads, kernel_initializer=kernel_initializer, # This bias gets added to the attention features but not the outputs. use_bias=use_bias, name="query") # Create the transformations for value input from sender nodes and edges. if self.takes_sender_node_input: self._w_sender_node = tf.keras.layers.Dense( per_head_channels * num_heads, kernel_initializer=kernel_initializer, # This bias gets added to the attention features and the outputs. use_bias=use_bias, name="value_node") else: self._w_sender_node = None if self.takes_sender_edge_input: self._w_sender_edge = tf.keras.layers.Dense( per_head_channels * num_heads, kernel_initializer=kernel_initializer, # This bias would be redundant with self._w_sender_node. use_bias=use_bias and self._w_sender_node is None, name="value_edge") else: self._w_sender_edge = None if self._w_sender_node is None and self._w_sender_edge is None: raise ValueError("GATv2Attention initialized with no inputs.") # Create attention logits layers, one for each head. Note that we can't # use a single Dense layer that outputs `num_heads` units because we need # to apply a different attention function a_k to its corresponding # W_k-transformed features. self._attention_logits_fn = tf.keras.layers.experimental.EinsumDense( "...ik,ki->...i", output_shape=(None, num_heads, 1), # TODO(b/205825425): (num_heads,) kernel_initializer=kernel_initializer, name="attn_logits") def get_config(self): return dict( num_heads=self._num_heads, per_head_channels=self._per_head_channels, use_bias=self._use_bias, edge_dropout=self._edge_dropout, attention_activation=self._attention_activation, activation=self._activation, kernel_initializer=self._kernel_initializer, **super().get_config()) def convolve(self, *, sender_node_input: Optional[tf.Tensor], sender_edge_input: Optional[tf.Tensor], receiver_input: Optional[tf.Tensor], broadcast_from_sender_node: Callable[[tf.Tensor], tf.Tensor], broadcast_from_receiver: Callable[[tf.Tensor], tf.Tensor], pool_to_receiver: Callable[..., tf.Tensor], extra_receiver_ops: Optional[ Mapping[str, Callable[..., Any]]] = None, training: bool) -> tf.Tensor: # Form the attention query for each head. # [num_items, *extra_dims, num_heads, channels_per_head] assert receiver_input is not None, "__init__() should have checked this." query = broadcast_from_receiver(self._split_heads(self._w_query( receiver_input))) # Form the attention value by transforming the configured inputs # and adding up the transformed values. # [num_items, *extra_dims, num_heads, channels_per_head] value_terms = [] if sender_node_input is not None: value_terms.append(broadcast_from_sender_node( self._split_heads(self._w_sender_node(sender_node_input)))) if sender_edge_input is not None: value_terms.append( self._split_heads(self._w_sender_edge(sender_edge_input))) assert value_terms, "Internal error: no values, __init__ should catch this." value = tf.add_n(value_terms) # Compute the features from which attention logits are computed. # [num_items, *extra_dims, num_heads, channels_per_head] attention_features = self._attention_activation(query + value) # Compute the attention logits and softmax to get the coefficients. # [num_items, *extra_dims, num_heads, 1] logits = tf.expand_dims(self._attention_logits_fn(attention_features), -1) attention_coefficients = extra_receiver_ops["softmax"](logits) if training: # Apply dropout to the normalized attention coefficients, as is done in # the original GAT paper. This should have the same effect as edge # dropout. Also, note that tf.nn.dropout upscales the remaining values, # which should maintain the sum-up-to-1 per node in expectation. attention_coefficients = tf.nn.dropout(attention_coefficients, self._edge_dropout) # Apply the attention coefficients to the transformed query. # [num_items, *extra_dims, num_heads, per_head_channels] messages = value * attention_coefficients # Take the sum of the weighted values, which equals the weighted average. # Receivers without incoming senders get the empty sum 0. # [num_receivers, *extra_dims, num_heads, per_head_channels] pooled_messages = pool_to_receiver(messages, reduce_type="sum") # Apply the nonlinearity. pooled_messages = self._activation(pooled_messages) pooled_messages = self._merge_heads(pooled_messages) return pooled_messages # The following helpers map forth and back between tensors with... # - a separate heads dimension: shape [..., num_heads, channels_per_head], # - all heads concatenated: shape [..., num_heads * channels_per_head]. def _split_heads(self, tensor): extra_dims = tensor.shape[1:-1] # Possibly empty. if not extra_dims.is_fully_defined(): raise ValueError( "GATv2Attention requires non-ragged Tensors as inputs, " "and GraphTensor requires these to have statically known " f"dimensions except the first, but got {tensor.shape}") new_shape = (-1, *extra_dims, self._num_heads, self._per_head_channels) return tf.reshape(tensor, new_shape) def _merge_heads(self, tensor): num_merged = 2 extra_dims = tensor.shape[1 : -num_merged] # Possibly empty. merged_dims = tensor.shape[-num_merged:] if not extra_dims.is_fully_defined() or not merged_dims.is_fully_defined(): raise ValueError( f"Unexpected unknown dimensions in shape {tensor.shape}") new_shape = (-1, *extra_dims, merged_dims.num_elements()) return tf.reshape(tensor, new_shape) def GATv2EdgePool(*, # To be called like a class initializer. pylint: disable=invalid-name num_heads: int, per_head_channels: int, receiver_tag: Optional[tfgnn.IncidentNodeOrContextTag] = None, receiver_feature: tfgnn.FieldName = tfgnn.HIDDEN_STATE, sender_feature: tfgnn.FieldName = tfgnn.HIDDEN_STATE, **kwargs): """Returns a layer for pooling edges with GATv2-style attention. When initialized with receiver_tag SOURCE or TARGET, the returned layer can be called on an edge set to compute the weighted sum of edge states at the given endpoint. The weights are computed by the method of Graph Attention Networks v2 (GATv2), except that edge states, not node states broadcast from the edges' other endpoint, are used as input values to attention. When initialized with receiver_tag CONTEXT, the returned layer can be called on an edge set to do the analogous pooling of edge states to context. NOTE: This layer cannot pool node states. For that, use GATv2Conv. Args: num_heads: The number of attention heads. per_head_channels: The number of channels for each attention head. This means that the final output size will be per_head_channels * num_heads. receiver_tag: The results of attention are aggregated for this graph piece. If set to `tfgnn.CONTEXT`, the layer can be called for an edge set or node set. If set to an IncidentNodeTag (e.g., `tfgnn.SOURCE` or `tfgnn.TARGET`), the layer can be called for an edge set and will aggregate results at the specified endpoint of the edges. If left unset, the tag must be passed when calling the layer. receiver_feature: By default, the default state feature of the receiver is used to compute the attention query. A different feature name can be selected by setting this argument. sender_feature: By default, the default state feature of the edge set is used to compute the attention values. A different feature name can be selected by setting this argument. **kwargs: Any other option for GATv2Conv, except sender_node_feature, which is set to None. """ if kwargs.pop("sender_node_feature", None) is not None: raise TypeError("GATv2EdgePool() got an unexpected keyword argument " "'sender_node_feature'. Did you mean GATv2Conv()?") kwargs.setdefault("name", "gat_v2_edge_pool") return GATv2Conv( num_heads=num_heads, per_head_channels=per_head_channels, receiver_tag=receiver_tag, receiver_feature=receiver_feature, sender_edge_feature=sender_feature, sender_node_feature=None, **kwargs) def GATv2GraphUpdate(*, # To be called like a class initializer. pylint: disable=invalid-name num_heads: int, per_head_channels: int, edge_set_name: str, feature_name: str = tfgnn.HIDDEN_STATE, name: str = "gat_v2", **kwargs): """Returns a GraphUpdater layer with a Graph Attention Network V2 (GATv2). The returned layer performs one update step of a Graph Attention Network v2 (GATv2) from https://arxiv.org/abs/2105.14491 on an edge set of a GraphTensor. It is best suited for graphs that have just that one edge set. For heterogeneous graphs with multiple node sets and edge sets, users are advised to consider a GraphUpdate with one or more GATv2Conv objects instead. This implementation of GAT attends only to edges that are explicitly stored in the input GraphTensor. Attention of a node to itself requires having an explicit loop in the edge set. Args: num_heads: The number of attention heads. per_head_channels: The number of channels for each attention head. This means that the final output size will be per_head_channels * num_heads. edge_set_name: A GATv2 update happens on this edge set and its incident node set(s) of the input GraphTensor. feature_name: The feature name of node states; defaults to tfgnn.HIDDEN_STATE. name: Optionally, a name for the layer returned. **kwargs: Any optional arguments to GATv2Conv, see there. """ # Compat logic, remove in late 2021. if "output_feature_name" in kwargs: raise TypeError("Argument 'output_feature_name' is no longer supported.") # Build a GraphUpdate for the target node set of the given edge_set_name. # That needs to be deferred until we see a GraphTensorSpec that tells us # the node_set_name. def deferred_init_callback(spec: tfgnn.GraphTensorSpec): node_set_name = spec.edge_sets_spec[ edge_set_name].adjacency_spec.node_set_name(tfgnn.TARGET) node_set_updates = { node_set_name: tfgnn.keras.layers.NodeSetUpdate( {edge_set_name: GATv2Conv( num_heads=num_heads, per_head_channels=per_head_channels, receiver_tag=tfgnn.TARGET, sender_node_feature=feature_name, receiver_feature=feature_name, **kwargs)}, next_state=NextStateForNodeSetFromSingleEdgeSetInput(), node_input_feature=feature_name)} return dict(node_sets=node_set_updates) return tfgnn.keras.layers.GraphUpdate( deferred_init_callback=deferred_init_callback, name=name) # For use by GATv2GraphUpdate(). @tf.keras.utils.register_keras_serializable(package="GNN>models>gat_v2") class NextStateForNodeSetFromSingleEdgeSetInput(tf.keras.layers.Layer): def call(self, inputs): unused_node_input, edge_inputs, unused_context_input = inputs single_edge_set_input, = edge_inputs.values() # Unpack. return single_edge_set_input
jorldy/test/core/network/test_rainbow_network.py
zenoengine/JORLDY
300
12758130
import torch from core.network.rainbow import Rainbow def test_rainbow_call(): D_in, D_out, D_hidden = 2, 3, 4 N_atom = 5 noise_type = "factorized" net = Rainbow( D_in=D_in, D_out=D_out, N_atom=N_atom, noise_type=noise_type, D_hidden=D_hidden ) batch_size = 6 mock_input = torch.rand((batch_size, D_in)) out = net(mock_input, is_train=True) assert out.shape == (batch_size, D_out, N_atom)
m2cgen/interpreters/ruby/code_generator.py
Symmetry-International/m2cgen
2,161
12758138
<reponame>Symmetry-International/m2cgen from contextlib import contextmanager from m2cgen.interpreters.code_generator import CodeTemplate, ImperativeCodeGenerator class RubyCodeGenerator(ImperativeCodeGenerator): tpl_var_declaration = CodeTemplate("") tpl_num_value = CodeTemplate("{value}") tpl_infix_expression = CodeTemplate("({left}) {op} ({right})") tpl_return_statement = tpl_num_value tpl_array_index_access = CodeTemplate("{array_name}[{index}]") tpl_if_statement = CodeTemplate("if {if_def}") tpl_else_statement = CodeTemplate("else") tpl_block_termination = CodeTemplate("end") tpl_var_assignment = CodeTemplate("{var_name} = {value}") def add_function_def(self, name, args): func_def = f"def {name}({', '.join(args)})" self.add_code_line(func_def) self.increase_indent() @contextmanager def function_definition(self, name, args): self.add_function_def(name, args) yield self.add_block_termination() def method_invocation(self, method_name, obj, args): return f"({obj}).{method_name}({', '.join(map(str, args))})" def vector_init(self, values): return f"[{', '.join(values)}]"
lldb/test/API/functionalities/module_cache/debug_index/TestDebugIndexCache.py
LaudateCorpus1/llvm-project
605
12758184
<filename>lldb/test/API/functionalities/module_cache/debug_index/TestDebugIndexCache.py import glob import json import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil import os import time class DebugIndexCacheTestcase(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Set the lldb module cache directory to a directory inside the build # artifacts directory so no other tests are interfered with. self.cache_dir = os.path.join(self.getBuildDir(), 'lldb-module-cache') def get_module_cache_files(self, basename): module_cache_glob = os.path.join(self.cache_dir, "llvmcache-*%s*dwarf-index*" % (basename)) return glob.glob(module_cache_glob) def get_stats(self, log_path=None): """ Get the output of the "statistics dump" and return the JSON as a python dictionary. """ # If log_path is set, open the path and emit the output of the command # for debugging purposes. if log_path is not None: f = open(log_path, 'w') else: f = None return_obj = lldb.SBCommandReturnObject() command = "statistics dump " if f: f.write('(lldb) %s\n' % (command)) self.ci.HandleCommand(command, return_obj, False) metrics_json = return_obj.GetOutput() if f: f.write(metrics_json) return json.loads(metrics_json) def enable_lldb_index_cache(self): self.runCmd('settings set symbols.lldb-index-cache-path "%s"' % (self.cache_dir)) self.runCmd('settings set symbols.enable-lldb-index-cache true') @no_debug_info_test def test_with_caching_enabled(self): """ Test module cache functionality for debug info index caching. We test that a debug info index file is created for the debug information when caching is enabled with a file that contains at least one of each kind of DIE in ManualDWARFIndex::IndexSet. The input file has DWARF that will fill in every member of the ManualDWARFIndex::IndexSet class to ensure we can encode all of the required information. With caching enabled, we also verify that the appropriate statistics specify that the cache file was saved to the cache. """ self.enable_lldb_index_cache() src_dir = self.getSourceDir() yaml_path = os.path.join(src_dir, "exe.yaml") yaml_base, ext = os.path.splitext(yaml_path) obj_path = self.getBuildArtifact("main.o") self.yaml2obj(yaml_path, obj_path) # Create a target with the object file we just created from YAML target = self.dbg.CreateTarget(obj_path) self.assertTrue(target, VALID_TARGET) debug_index_cache_files = self.get_module_cache_files('main.o') self.assertEqual(len(debug_index_cache_files), 1, "make sure there is one file in the module cache directory (%s) for main.o that is a debug info cache" % (self.cache_dir)) # Verify that the module statistics have the information that specifies # if we loaded or saved the debug index and symtab to the cache stats = self.get_stats() module_stats = stats['modules'][0] self.assertFalse(module_stats['debugInfoIndexLoadedFromCache']) self.assertTrue(module_stats['debugInfoIndexSavedToCache']) self.assertFalse(module_stats['symbolTableLoadedFromCache']) self.assertTrue(module_stats['symbolTableSavedToCache']) # Verify the top level stats track how many things were loaded or saved # to the cache. self.assertEqual(stats["totalDebugInfoIndexLoadedFromCache"], 0) self.assertEqual(stats["totalDebugInfoIndexSavedToCache"], 1) self.assertEqual(stats["totalSymbolTablesLoadedFromCache"], 0) self.assertEqual(stats["totalSymbolTablesSavedToCache"], 1) @no_debug_info_test def test_with_caching_disabled(self): """ Test module cache functionality for debug info index caching. We test that a debug info index file is not created for the debug information when caching is disabled with a file that contains at least one of each kind of DIE in ManualDWARFIndex::IndexSet. The input file has DWARF that will fill in every member of the ManualDWARFIndex::IndexSet class to ensure we can encode all of the required information. With caching disabled, we also verify that the appropriate statistics specify that the cache file was not saved to the cache. """ src_dir = self.getSourceDir() yaml_path = os.path.join(src_dir, "exe.yaml") yaml_base, ext = os.path.splitext(yaml_path) obj_path = self.getBuildArtifact("main.o") self.yaml2obj(yaml_path, obj_path) # Create a target with the object file we just created from YAML target = self.dbg.CreateTarget(obj_path) self.assertTrue(target, VALID_TARGET) debug_index_cache_files = self.get_module_cache_files('main.o') self.assertEqual(len(debug_index_cache_files), 0, "make sure there is no file in the module cache directory (%s) for main.o that is a debug info cache" % (self.cache_dir)) # Verify that the module statistics have the information that specifies # if we loaded or saved the debug index and symtab to the cache stats = self.get_stats() module_stats = stats['modules'][0] self.assertFalse(module_stats['debugInfoIndexLoadedFromCache']) self.assertFalse(module_stats['debugInfoIndexSavedToCache']) self.assertFalse(module_stats['symbolTableLoadedFromCache']) self.assertFalse(module_stats['symbolTableSavedToCache']) # Verify the top level stats track how many things were loaded or saved # to the cache. self.assertEqual(stats["totalDebugInfoIndexLoadedFromCache"], 0) self.assertEqual(stats["totalDebugInfoIndexSavedToCache"], 0) self.assertEqual(stats["totalSymbolTablesLoadedFromCache"], 0) self.assertEqual(stats["totalSymbolTablesSavedToCache"], 0)
semantic_segmentation/main.py
pedrohtg/pytorch
205
12758188
<filename>semantic_segmentation/main.py from argparse import ArgumentParser import os import random from matplotlib import pyplot as plt import torch from torch import optim from torch import nn from torch.nn import functional as F from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import models from torchvision.utils import save_image from data import CityscapesDataset, num_classes, full_to_colour, train_to_full from model import FeatureResNet, SegResNet # Setup parser = ArgumentParser(description='Semantic segmentation') parser.add_argument('--seed', type=int, default=42, help='Random seed') parser.add_argument('--workers', type=int, default=8, help='Data loader workers') parser.add_argument('--epochs', type=int, default=100, help='Training epochs') parser.add_argument('--crop-size', type=int, default=512, help='Training crop size') parser.add_argument('--lr', type=float, default=5e-5, help='Learning rate') parser.add_argument('--momentum', type=float, default=0, help='Momentum') parser.add_argument('--weight-decay', type=float, default=2e-4, help='Weight decay') parser.add_argument('--batch-size', type=int, default=16, help='Batch size') args = parser.parse_args() random.seed(args.seed) torch.manual_seed(args.seed) if not os.path.exists('results'): os.makedirs('results') plt.switch_backend('agg') # Allow plotting when running remotely # Data train_dataset = CityscapesDataset(split='train', crop=args.crop_size, flip=True) val_dataset = CityscapesDataset(split='val') train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = DataLoader(val_dataset, batch_size=1, num_workers=args.workers, pin_memory=True) # Training/Testing pretrained_net = FeatureResNet() pretrained_net.load_state_dict(models.resnet34(pretrained=True).state_dict()) net = SegResNet(num_classes, pretrained_net).cuda() crit = nn.BCELoss().cuda() # Construct optimiser params_dict = dict(net.named_parameters()) params = [] for key, value in params_dict.items(): if 'bn' in key: # No weight decay on batch norm params += [{'params': [value], 'weight_decay': 0}] elif '.bias' in key: # No weight decay plus double learning rate on biases params += [{'params': [value], 'lr': 2 * args.lr, 'weight_decay': 0}] else: params += [{'params': [value]}] optimiser = optim.RMSprop(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) scores, mean_scores = [], [] def train(e): net.train() for i, (input, target, _) in enumerate(train_loader): optimiser.zero_grad() input, target = Variable(input.cuda(async=True)), Variable(target.cuda(async=True)) output = F.sigmoid(net(input)) loss = crit(output, target) print(e, i, loss.data[0]) loss.backward() optimiser.step() # Calculates class intersections over unions def iou(pred, target): ious = [] # Ignore IoU for background class for cls in range(num_classes - 1): pred_inds = pred == cls target_inds = target == cls intersection = (pred_inds[target_inds]).long().sum().data.cpu()[0] # Cast to long to prevent overflows union = pred_inds.long().sum().data.cpu()[0] + target_inds.long().sum().data.cpu()[0] - intersection if union == 0: ious.append(float('nan')) # If there is no ground truth, do not include in evaluation else: ious.append(intersection / max(union, 1)) return ious def test(e): net.eval() total_ious = [] for i, (input, _, target) in enumerate(val_loader): input, target = Variable(input.cuda(async=True), volatile=True), Variable(target.cuda(async=True), volatile=True) output = F.log_softmax(net(input)) b, _, h, w = output.size() pred = output.permute(0, 2, 3, 1).contiguous().view(-1, num_classes).max(1)[1].view(b, h, w) total_ious.append(iou(pred, target)) # Save images if i % 25 == 0: pred = pred.data.cpu() pred_remapped = pred.clone() # Convert to full labels for k, v in train_to_full.items(): pred_remapped[pred == k] = v # Convert to colour image pred = pred_remapped pred_colour = torch.zeros(b, 3, h, w) for k, v in full_to_colour.items(): pred_r = torch.zeros(b, 1, h, w) pred_r[(pred == k)] = v[0] pred_g = torch.zeros(b, 1, h, w) pred_g[(pred == k)] = v[1] pred_b = torch.zeros(b, 1, h, w) pred_b[(pred == k)] = v[2] pred_colour.add_(torch.cat((pred_r, pred_g, pred_b), 1)) save_image(pred_colour[0].float().div(255), os.path.join('results', str(e) + '_' + str(i) + '.png')) # Calculate average IoU total_ious = torch.Tensor(total_ious).transpose(0, 1) ious = torch.Tensor(num_classes - 1) for i, class_iou in enumerate(total_ious): ious[i] = class_iou[class_iou == class_iou].mean() # Calculate mean, ignoring NaNs print(ious, ious.mean()) scores.append(ious) # Save weights and scores torch.save(net.state_dict(), os.path.join('results', str(e) + '_net.pth')) torch.save(scores, os.path.join('results', 'scores.pth')) # Plot scores mean_scores.append(ious.mean()) es = list(range(len(mean_scores))) plt.plot(es, mean_scores, 'b-') plt.xlabel('Epoch') plt.ylabel('Mean IoU') plt.savefig(os.path.join('results', 'ious.png')) plt.close() test(0) for e in range(1, args.epochs + 1): train(e) test(e)
tests/functional/custom_singular_tests/test_custom_singular_tests.py
tomasfarias/dbt-core
799
12758210
<gh_stars>100-1000 import pytest from pathlib import Path from dbt.tests.util import run_dbt # from `test/integration/009_data_test` # # Models # models__table_copy = """ {{ config( materialized='table' ) }} select * from {{ this.schema }}.seed """ # # Tests # tests__fail_email_is_always_null = """ select * from {{ ref('table_copy') }} where email is not null """ tests__fail_no_ref = """ select 1 """ tests__dotted_path_pass_id_not_null = """ {# Same as `pass_id_not_null` but with dots in its name #} select * from {{ ref('table_copy') }} where id is null """ tests__pass_id_not_null = """ select * from {{ ref('table_copy') }} where id is null """ tests__pass_no_ref = """ select 1 limit 0 """ class CustomSingularTestsBase(object): @pytest.fixture(scope="class", autouse=True) def setUp(self, project): """Create seed and downstream model tests are to be run on""" project.run_sql_file(project.test_data_dir / Path("seed_expected.sql")) results = run_dbt() assert len(results) == 1 @pytest.fixture(scope="class") def models(self): return {"table_copy.sql": models__table_copy} class TestPassingTests(CustomSingularTestsBase): @pytest.fixture(scope="class") def tests(self): return { "my_db.my_schema.table_copy.pass_id_not_null.sql": tests__dotted_path_pass_id_not_null, "tests__pass_id_not_null.sql": tests__pass_id_not_null, "tests__pass_no_ref.sql": tests__pass_no_ref, } def test_data_tests(self, project, tests): test_results = run_dbt(["test"]) assert len(test_results) == len(tests) for result in test_results: assert result.status == "pass" assert not result.skipped assert result.failures == 0 class TestFailingTests(CustomSingularTestsBase): @pytest.fixture(scope="class") def tests(self): return { "tests__fail_email_is_always_null.sql": tests__fail_email_is_always_null, "tests__fail_no_ref.sql": tests__fail_no_ref, } def test_data_tests(self, project, tests): """assert that all deliberately failing tests actually fail""" test_results = run_dbt(["test"], expect_pass=False) assert len(test_results) == len(tests) for result in test_results: assert result.status == "fail" assert not result.skipped assert result.failures > 0
linear_attention_transformer/__init__.py
lucidrains/linear-attention
361
12758228
from linear_attention_transformer.linear_attention_transformer import LinearAttentionTransformer, LinearAttentionTransformerLM, LinformerSettings, LinformerContextSettings from linear_attention_transformer.autoregressive_wrapper import AutoregressiveWrapper from linear_attention_transformer.images import ImageLinearAttention
datadog_checks_base/tests/base/checks/win/test_winpdh.py
mchelen-gov/integrations-core
663
12758258
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import logging from collections import defaultdict import pytest from datadog_checks.dev.testing import requires_windows try: from datadog_test_libs.win.pdh_mocks import ( # noqa: F401 initialize_pdh_tests, pdh_mocks_fixture, pdh_mocks_fixture_bad_perf_strings, ) from datadog_checks.checks.win.winpdh import SINGLE_INSTANCE_KEY, WinPDHCounter except ImportError: import platform if platform.system() != 'Windows': pass logger = logging.getLogger(__file__) ''' WinPDHCounter tests. Test specific behavior of the WinPDHCounter class, which provides the interface to the OS API. ''' @requires_windows def test_winpdhcounter_bad_strings_english(pdh_mocks_fixture_bad_perf_strings): # noqa F811 initialize_pdh_tests() counter = WinPDHCounter('System', 'Processor Queue Length', logger) vals = counter.get_all_values() assert len(vals) == 1 # single instance key, should only have one value assert SINGLE_INSTANCE_KEY in vals @requires_windows def test_winpdhcounter_throws_on_bad_input(pdh_mocks_fixture): # noqa F811 initialize_pdh_tests() with pytest.raises(AttributeError): WinPDHCounter('Ssystem', 'Processor Queue Length', logger) with pytest.raises(AttributeError): WinPDHCounter('System', 'PProcessor Queue Length', logger) @requires_windows def test_winpdhcounter_throws_on_bad_input_with_bad_strings(pdh_mocks_fixture_bad_perf_strings): # noqa F811 initialize_pdh_tests() with pytest.raises(AttributeError): WinPDHCounter('Ssystem', 'Processor Queue Length', logger) with pytest.raises(AttributeError): WinPDHCounter('System', 'PProcessor Queue Length', logger) @requires_windows def test_winpdhcounter_bad_strings_not_english(pdh_mocks_fixture_bad_perf_strings): # noqa F811 WinPDHCounter._use_en_counter_names = False WinPDHCounter.pdh_counter_dict = defaultdict(list) initialize_pdh_tests(lang="se-sv") ''' expectation is that the initialization will fail. We attempt to fall back to english counters if the strings database isn't present; however, on non-english windows the english counters won't work ''' with pytest.raises(AttributeError): WinPDHCounter('System', 'Processor Queue Length', logger) @requires_windows def test_winpdhcounter_non_english(pdh_mocks_fixture): # noqa F811 WinPDHCounter._use_en_counter_names = False WinPDHCounter.pdh_counter_dict = defaultdict(list) initialize_pdh_tests(lang="se-sv") counter = WinPDHCounter('System', 'Processor Queue Length', logger) vals = counter.get_all_values() assert len(vals) == 1 # single instance key, should only have one value assert SINGLE_INSTANCE_KEY in vals
OracleInternetDirectory/dockerfiles/12.2.1.4.0/container-scripts/start_oid_component.py
rmohare/oracle-product-images
5,519
12758264
#!/usr/bin/python # # Copyright (c) 2021, Oracle and/or its affiliates. # # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl. # # Author: <NAME> # import os, sys, re domain_name = os.environ.get("DOMAIN_NAME", "oid_domain") oracle_home = os.environ.get("ORACLE_HOME", "/u01/oracle/") weblogic_home = '/u01/oracle/wlserver' i = 1 while i < len(sys.argv): if sys.argv[i] == '-username': user = sys.argv[i + 1] i += 2 elif sys.argv[i] == '-adminpassword': password = sys.argv[i + 1] i += 2 elif sys.argv[i] == '-instance_Name': instanceName= sys.argv[i + 1] i += 2 else: print 'Unexpected argument switch at position ' + str(i) + ': ' + str(sys.argv[i]) sys.exit(1) try: nmConnect(domainName=domain_name,username=user,password=password,nmType='ssl') nmServerStatus(serverName=instanceName,serverType='OID') nmStart(serverName=instanceName,serverType='OID') exit() except: print 'Unable to start '+instanceName exit()
kfac/examples/mnist.py
ntselepidis/kfac
179
12758265
<filename>kfac/examples/mnist.py<gh_stars>100-1000 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for loading MNIST into TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v1 as tf __all__ = [ 'load_mnist_as_tensors', 'load_mnist_as_dataset', 'load_mnist_as_iterator', ] def load_mnist_as_tensors(flatten_images=True, dtype=tf.float32): """Loads MNIST as Tensors. Args: flatten_images: bool. If True, [28, 28, 1]-shaped images are flattened into [784]-shaped vectors. dtype: The TF dtype to return the images as. Returns: images, labels, num_examples """ # mnist_data = tf.contrib.learn.datasets.mnist.read_data_sets( # '/tmp/mnist', reshape=flatten_images) # num_examples = len(mnist_data.train.labels) # images = mnist_data.train.images # labels = mnist_data.train.labels # # images = tf.constant(np.asarray(images, dtype=np.float32)) # labels = tf.constant(np.asarray(labels, dtype=np.int64)) # # return images, labels, num_examples (images, labels), _ = tf.keras.datasets.mnist.load_data() num_examples = images.shape[0] if flatten_images: images = images.reshape(images.shape[0], 28**2) else: images = images.reshape(images.shape[0], 28, 28, 1) images = images.astype('float64') labels = labels.astype('int32') images /= 255. images = tf.constant(images, dtype=dtype) labels = tf.constant(labels) return images, labels, num_examples def load_mnist_as_dataset(flatten_images=True): """Loads MNIST as a Dataset object. Args: flatten_images: bool. If True, [28, 28, 1]-shaped images are flattened into [784]-shaped vectors. Returns: dataset, num_examples, where dataset is a Dataset object containing the whole MNIST training dataset and num_examples is the number of examples in the MNIST dataset (should be 60000). """ images, labels, num_examples = load_mnist_as_tensors( flatten_images=flatten_images) dataset = tf.data.Dataset.from_tensor_slices((images, labels)) return dataset, num_examples def load_mnist_as_iterator(num_epochs, batch_size, use_fake_data=False, flatten_images=True): """Loads MNIST dataset as an iterator Tensor. Args: num_epochs: int. Number of passes to make over the dataset. batch_size: int. Number of examples per minibatch. use_fake_data: bool. If True, generate a synthetic dataset rather than reading MNIST in. flatten_images: bool. If True, [28, 28, 1]-shaped images are flattened into [784]-shaped vectors. Returns: examples: Tensor of shape [batch_size, 784] if 'flatten_images' is True, else [batch_size, 28, 28, 1]. Each row is one example. Values in [0, 1]. labels: Tensor of shape [batch_size]. Indices of integer corresponding to each example. Values in {0...9}. """ if use_fake_data: rng = np.random.RandomState(42) num_examples = batch_size * 4 images = rng.rand(num_examples, 28 * 28) if not flatten_images: images = np.reshape(images, [num_examples, 28, 28, 1]) labels = rng.randint(10, size=num_examples) dataset = tf.data.Dataset.from_tensor_slices((np.asarray( images, dtype=np.float32), np.asarray(labels, dtype=np.int64))) else: dataset, num_examples = load_mnist_as_dataset(flatten_images=flatten_images) dataset = (dataset.shuffle(num_examples).repeat(num_epochs) .batch(batch_size).prefetch(5)) return tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
metrics/kvret/evaluator.py
HKUNLP/UnifiedSKG
191
12758298
<reponame>HKUNLP/UnifiedSKG<gh_stars>100-1000 # encoding=utf8 from collections import OrderedDict import json import nltk from datasets import load_metric def load_entities(kvret_entity_file_path): """ @param kvret_entity_file_path: the path of kvret_entities.json @return: """ under_scored_entity_dict = OrderedDict() with open(kvret_entity_file_path) as f: entity = json.load(f) for sub_class_name, sub_class_entity_list in entity.items(): if sub_class_name == 'poi': for entity_item in sub_class_entity_list: under_scored_entity_dict[str(entity_item['address'])] = ( str(entity_item['address']).replace(" ", "_")) under_scored_entity_dict[str(entity_item['poi'])] = (str(entity_item['poi']).replace(" ", "_")) under_scored_entity_dict[str(entity_item['type'])] = (str(entity_item['type']).replace(" ", "_")) elif sub_class_name == "distance": for entity_item in sub_class_entity_list: under_scored_entity_dict[str(entity_item) + " miles"] = str(entity_item) + " miles" elif sub_class_name == "temperature": for entity_item in sub_class_entity_list: under_scored_entity_dict[str(entity_item) + "f"] = str(entity_item) + "f" else: for entity_item in sub_class_entity_list: under_scored_entity_dict[str(entity_item)] = (str(entity_item).replace(" ", "_")) # add missing entities, missed_entities = ["yoga", "tennis", "swimming", "football", " lab ", "doctor", "optometrist", "dentist", "1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th", "11th", "12th", "13th", "14th", "15th", "16th", "17th", "18th", "19th", "20th", "Jill", "Jack"] for missed_entity in missed_entities: under_scored_entity_dict[str(missed_entity)] = (missed_entity) # special handle of "HR" del under_scored_entity_dict['HR'] under_scored_entity_dict[' HR '] = ' HR ' return under_scored_entity_dict def postprocess_text(preds, responses, metric_name): _preds = [pred.strip() for pred in preds] _responses = [response.strip() for response in responses] # rougeLSum expects newline after each sentence if metric_name == "rouge": _preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in _preds] _responses = ["\n".join(nltk.sent_tokenize(response)) for response in _responses] elif metric_name == "sacrebleu": # sacrebleu _responses = [[response] for response in _responses] elif metric_name == "bleu": _preds = [pred.split(" ") for pred in _preds] _responses = [[response.split(" ")] for response in _responses] else: pass return _preds, _responses class EvaluateTool(object): def __init__(self, args): self.args = args def evaluate(self, preds, golds, section): summary = {} assert len(golds) > 0 global_entities = load_entities(golds[0]["entities_file"]) metric_list = [] if section in ["train", "dev"]: metric_list = ["bleu"] elif section == "test": metric_list = ["bleu", "metrics/kvret/response_entity_hit.py"] for metric_name in metric_list: metric = load_metric(metric_name) if metric_name == "metrics/kvret/response_entity_hit.py": gold_responses = [ { "response": item["seq_out"], "intents": [item["intent"]], } for item in golds ] res = metric.compute( **{ "predictions": preds, "references": gold_responses, "global_entities": global_entities, } ) summary.update(res) else: gold_responses = [item["seq_out"] for item in golds] processed_preds, processed_golds = postprocess_text( preds, gold_responses, metric_name ) res = metric.compute( predictions=processed_preds, references=processed_golds, ) summary[metric_name] = res[metric_name] return summary
examples/backends/plot_unmix_optim_torch.py
kguerda-idris/POT
830
12758308
# -*- coding: utf-8 -*- r""" ================================= Wasserstein unmixing with PyTorch ================================= In this example we estimate mixing parameters from distributions that minimize the Wasserstein distance. In other words we suppose that a target distribution :math:`\mu^t` can be expressed as a weighted sum of source distributions :math:`\mu^s_k` with the following model: .. math:: \mu^t = \sum_{k=1}^K w_k\mu^s_k where :math:`\mathbf{w}` is a vector of size :math:`K` and belongs in the distribution simplex :math:`\Delta_K`. In order to estimate this weight vector we propose to optimize the Wasserstein distance between the model and the observed :math:`\mu^t` with respect to the vector. This leads to the following optimization problem: .. math:: \min_{\mathbf{w}\in\Delta_K} \quad W \left(\mu^t,\sum_{k=1}^K w_k\mu^s_k\right) This minimization is done in this example with a simple projected gradient descent in PyTorch. We use the automatic backend of POT that allows us to compute the Wasserstein distance with :any:`ot.emd2` with differentiable losses. """ # Author: <NAME> <<EMAIL>> # # License: MIT License # sphinx_gallery_thumbnail_number = 2 import numpy as np import matplotlib.pylab as pl import ot import torch ############################################################################## # Generate data # ------------- #%% Data nt = 100 nt1 = 10 # ns1 = 50 ns = 2 * ns1 rng = np.random.RandomState(2) xt = rng.randn(nt, 2) * 0.2 xt[:nt1, 0] += 1 xt[nt1:, 1] += 1 xs1 = rng.randn(ns1, 2) * 0.2 xs1[:, 0] += 1 xs2 = rng.randn(ns1, 2) * 0.2 xs2[:, 1] += 1 xs = np.concatenate((xs1, xs2)) # Sample reweighting matrix H H = np.zeros((ns, 2)) H[:ns1, 0] = 1 / ns1 H[ns1:, 1] = 1 / ns1 # each columns sums to 1 and has weights only for samples form the # corresponding source distribution M = ot.dist(xs, xt) ############################################################################## # Plot data # --------- #%% plot the distributions pl.figure(1) pl.scatter(xt[:, 0], xt[:, 1], label='Target $\mu^t$', alpha=0.5) pl.scatter(xs1[:, 0], xs1[:, 1], label='Source $\mu^s_1$', alpha=0.5) pl.scatter(xs2[:, 0], xs2[:, 1], label='Source $\mu^s_2$', alpha=0.5) pl.title('Sources and Target distributions') pl.legend() ############################################################################## # Optimization of the model wrt the Wasserstein distance # ------------------------------------------------------ #%% Weights optimization with gradient descent # convert numpy arrays to torch tensors H2 = torch.tensor(H) M2 = torch.tensor(M) # weights for the source distributions w = torch.tensor(ot.unif(2), requires_grad=True) # uniform weights for target b = torch.tensor(ot.unif(nt)) lr = 2e-3 # learning rate niter = 500 # number of iterations losses = [] # loss along the iterations # loss for the minimal Wasserstein estimator def get_loss(w): a = torch.mv(H2, w) # distribution reweighting return ot.emd2(a, b, M2) # squared Wasserstein 2 for i in range(niter): loss = get_loss(w) losses.append(float(loss)) loss.backward() with torch.no_grad(): w -= lr * w.grad # gradient step w[:] = ot.utils.proj_simplex(w) # projection on the simplex w.grad.zero_() ############################################################################## # Estimated weights and convergence of the objective # --------------------------------------------------- we = w.detach().numpy() print('Estimated mixture:', we) pl.figure(2) pl.semilogy(losses) pl.grid() pl.title('Wasserstein distance') pl.xlabel("Iterations") ############################################################################## # Ploting the reweighted source distribution # ------------------------------------------ pl.figure(3) # compute source weights ws = H.dot(we) pl.scatter(xt[:, 0], xt[:, 1], label='Target $\mu^t$', alpha=0.5) pl.scatter(xs[:, 0], xs[:, 1], color='C3', s=ws * 20 * ns, label='Weighted sources $\sum_{k} w_k\mu^s_k$', alpha=0.5) pl.title('Target and reweighted source distributions') pl.legend()
IntelligentUAVPathPlanningSimulationSystem/core/main.py
wangwei39120157028/IntelligentUAVPathPlanningSimulationSystem-Drone
208
12758323
# -*- coding:utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) from appUI.MainWindow import main if __name__ == "__main__": # main()
js2py/internals/prototypes/jsboolean.py
renesugar/Js2Py
1,926
12758332
from __future__ import unicode_literals from ..conversions import * from ..func_utils import * class BooleanPrototype: def toString(this, args): if GetClass(this) != 'Boolean': raise MakeError('TypeError', 'Boolean.prototype.toString is not generic') if is_object(this): this = this.value return u'true' if this else u'false' def valueOf(this, args): if GetClass(this) != 'Boolean': raise MakeError('TypeError', 'Boolean.prototype.valueOf is not generic') if is_object(this): this = this.value return this
app/my_bokeh_app.py
adarsh0806/scipy2015-blaze-bokeh
168
12758365
# -*- coding: utf-8 -*- import math from collections import OrderedDict import flask import pandas as pd import netCDF4 import numpy as np from bokeh.embed import components from bokeh.resources import INLINE from bokeh.templates import RESOURCES from bokeh.util.string import encode_utf8 from bokeh.models import DatetimeTickFormatter, ColumnDataSource, HoverTool, Plot, Range1d from bokeh.palettes import RdBu11 from bokeh.models.glyphs import Text, Rect from bokeh.plotting import figure, show, output_notebook, hplot, vplot import utils.world_countries as wc from utils.colormap import RGBAColorMapper from viz2 import climate_map, timeseries, legend, title, get_slice app = flask.Flask(__name__) colormap = RGBAColorMapper(-6, 6, RdBu11) @app.route("/") def index(): # Create layout c_map = climate_map() ts = timeseries() l = legend() t = title() map_legend = hplot(c_map, l) layout = vplot(t, map_legend, ts) plot_resources = RESOURCES.render( js_raw=INLINE.js_raw, css_raw=INLINE.css_raw, js_files=INLINE.js_files, css_files=INLINE.css_files, ) script, div = components(layout, INLINE) html = flask.render_template( 'embed.html', plot_script=script, plot_div=div, plot_resources=plot_resources, ) return encode_utf8(html) if __name__ == "__main__": app.run(debug=True)
scripts/compute_possible_instructions.py
m-smith/babyai
411
12758377
<reponame>m-smith/babyai<filename>scripts/compute_possible_instructions.py #!/usr/bin/env python3 """ Compute the number of possible instructions in the BabyAI grammar. """ from gym_minigrid.minigrid import COLOR_NAMES def count_Sent(): return ( count_Sent1() + # Sent1, then Sent1 count_Sent1() * count_Sent1() + # Sent1 after you Sent1 count_Sent1() * count_Sent1() ) def count_Sent1(): return ( count_Clause() + # Clause and Clause count_Clause() * count_Clause() ) def count_Clause(): return ( # go to count_Descr() + # pick up count_DescrNotDoor() + # open count_DescrDoor() + # put next count_DescrNotDoor() * count_Descr() ) def count_DescrDoor(): # (the|a) Color door Location return 2 * count_Color() * count_LocSpec() def count_DescrBall(): return count_DescrDoor() def count_DescrBox(): return count_DescrDoor() def count_DescrKey(): return count_DescrDoor() def count_Descr(): return count_DescrDoor() + count_DescrBall() + count_DescrBox() + count_DescrKey() def count_DescrNotDoor(): return count_DescrBall() + count_DescrBox() + count_DescrKey() def count_Color(): # Empty string or color return len([None] + COLOR_NAMES) def count_LocSpec(): # Empty string or location return len([None, 'left', 'right', 'front', 'behind']) print('DescrKey: ', count_DescrKey()) print('Descr: ', count_Descr()) print('DescrNotDoor: ', count_DescrNotDoor()) print('Clause: ', count_Clause()) print('Sent1: ', count_Sent1()) print('Sent: ', count_Sent()) print('Sent: {:.3g}'.format(count_Sent()))
sdk/core/azure-common/tests/test_credentials.py
rsdoherty/azure-sdk-for-python
2,728
12758450
# coding: utf-8 #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import time try: from unittest import mock except ImportError: import mock import pytest from azure.common.credentials import _CliCredentials import azure.common.credentials class MockCliCredentials: def _token_retriever(self): return "NOTUSED", "TOKEN", {'expiresIn': 42} def signed_session(self, session=None): return session class MockCliProfile: def __init__(self): self.received_resource = None def get_login_credentials(self, resource): self.received_resource = resource return MockCliCredentials(), "NOTUSED", "NOTUSED" def test_cli_credentials_mgmt(): cli_profile = MockCliProfile() cred = _CliCredentials(cli_profile, "http://resource.id") # Mgmt scenario session = cred.signed_session("session") assert cli_profile.received_resource == "http://resource.id" assert session == "session" # Trying to mock azure-core not here with mock.patch('azure.common.credentials._AccessToken', None): # Should not crash cred.signed_session("session") def test_cli_credentials_accesstoken(): cli_profile = MockCliProfile() cred = _CliCredentials(cli_profile, "http://resource.id") # Track2 scenario access_token = cred.get_token("http://resource.id/.default") assert cli_profile.received_resource == "http://resource.id" assert access_token.token == "TOKEN" assert access_token.expires_on <= int(time.time() + 42) access_token = cred.get_token("http://resource.newid") assert cli_profile.received_resource == "http://resource.newid" # Trying to mock azure-core not here with mock.patch('azure.common.credentials._AccessToken', None): with pytest.raises(ImportError): cred.get_token("http://resource.yetid")
equip/analysis/graph/io.py
neuroo/equip
102
12758504
<reponame>neuroo/equip # -*- coding: utf-8 -*- """ equip.analysis.graph.io ~~~~~~~~~~~~~~~~~~~~~~~ Outputs the graph structures :copyright: (c) 2014 by <NAME> (@rgaucher) :license: Apache 2, see LICENSE for more details. """ from .graphs import DiGraph, Tree DOT_STYLE = """ rankdir=TD; ordering=out; graph[fontsize=10 fontname="Verdana"]; color="#efefef"; node[shape=box style=filled fontsize=8 fontname="Verdana" fillcolor="#efefef"]; edge[fontsize=8 fontname="Verdana"]; """ class DotConverter(object): def __init__(self, graph): self.g = graph self.buffer = '' self.node_ids = {} @staticmethod def process(graph): converter = DotConverter(graph) converter.run() return converter.buffer def run(self): self.buffer += 'digraph G {' self.buffer += DOT_STYLE if isinstance(self.g, DiGraph): for edge in self.g.edges: self.add_edge(edge) elif isinstance(self.g, Tree): root = self.g.root worklist = [root] while worklist: current = worklist.pop(0) if current.has_children(): num_children = current.num_children() i = 0 while i < num_children: child = current.children[i] if child is None: i += 1 continue self.add_tree_edge(current, child) worklist.insert(0, child) i += 1 else: nid = self.get_node_id(current) self.buffer += '}\n' def add_edge(self, edge): labels = '' if edge.kind is not None: data = '' if edge.data is None else str(edge.data) labels = '[label="%s - %s"]' % (edge.kind, data) nid1 = self.get_node_id(edge.source) nid2 = self.get_node_id(edge.dest) self.buffer += '%s -> %s %s;\n' % (nid1, nid2, labels) def add_tree_edge(self, node1, node2): nid1 = self.get_node_id(node1) nid2 = self.get_node_id(node2) self.buffer += '%s -> %s;\n' % (nid1, nid2) def get_node_id(self, node): if node not in self.node_ids: self.node_ids[node] = 'node_%d' % node.gid self.add_node(node, self.node_ids[node]) return self.node_ids[node] def add_node(self, node, node_id): label = '' if node.data is not None: node_kind = ('%s - ' % node.kind) if node.kind is not None else '' label = '[label="Node%d - %s%s"]' % (node.gid, node_kind, node.data) self.buffer += '%s %s;\n' % (node_id, label)
utils/helper.py
parksunwoo/daanet
145
12758509
<gh_stars>100-1000 import importlib import logging import math import os import re import shutil import subprocess import sys import time import traceback from collections import defaultdict from random import shuffle import GPUtil import tensorflow as tf from ruamel.yaml import YAML from ruamel.yaml.comments import CommentedMap from tensorflow.contrib.training import HParams from tensorflow.python.ops.image_ops_impl import ResizeMethod from gpu_env import APP_NAME, DEVICE_ID, IGNORE_PATTERNS millnames = ['', ' K', ' M', ' BL', ' TL'] regex_title_source = re.compile(r'^([^_\-—]*).*?[_\-—]\s?([^_\-—]+)[\s_\-—]?$') def set_logger(model_id=None): logger = logging.getLogger(APP_NAME) logger.setLevel(logging.INFO) if model_id: formatter = logging.Formatter( '%(levelname)-.1s:' + model_id + ':[%(filename).3s:%(funcName).3s:%(lineno)3d]:%(message)s', datefmt= '%m-%d %H:%M:%S') else: formatter = logging.Formatter( '%(levelname)-.1s:[%(filename)s:%(lineno)d]:%(message)s', datefmt= '%m-%d %H:%M:%S') console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(formatter) logger.handlers = [] logger.addHandler(console_handler) return logger def touch(fname: str, times=None, create_dirs: bool = False): import os if create_dirs: base_dir = os.path.dirname(fname) if not os.path.exists(base_dir): os.makedirs(base_dir) with open(fname, 'a'): os.utime(fname, times) def touch_dir(base_dir: str) -> None: import os if not os.path.exists(base_dir): os.makedirs(base_dir) def millify(n): n = float(n) millidx = max(0, min(len(millnames) - 1, int(math.floor(0 if n == 0 else math.log10(abs(n)) / 3)))) return '{:.0f}{}'.format(n / 10 ** (3 * millidx), millnames[millidx]) def args2hparam(args, vocab): params = vars(args) params['vocab'] = vocab p = HParams() for k, v in params.items(): p.add_hparam(k, v) return p def runner(main, *done): logger = logging.getLogger(APP_NAME) try: main() except (tf.errors.OutOfRangeError, IndexError) as e: logger.warning('Data has been exhausted! Done!') finally: [f() for f in done] def parse_yaml(yaml_path, model_id): from tensorflow.contrib.training import HParams from ruamel.yaml import YAML hparams = HParams() hparams.add_hparam('model_id', model_id) with open(yaml_path) as fp: customized = YAML().load(fp) for k, v in customized.items(): if k in hparams: hparams.set_hparam(k, v) else: hparams.add_hparam(k, v) return hparams def parse_args(yaml_path, model_id, default_set, followup=None): logger = logging.getLogger(APP_NAME) hparams = HParams() hparams.add_hparam('model_id', model_id) with open('default.yaml') as fp: configs = YAML().load(fp) default_cfg = configs[default_set] add_param_recur(hparams, default_cfg) if yaml_path: logger.info('loading parameters...') with open(yaml_path) as fp: customized = YAML().load(fp) for k, v in customized.items(): if k in hparams and hparams.get(k) != v: logger.info('%20s: %20s -> %20s' % (k, hparams.get(k), v)) hparams.set_hparam(k, v) elif k not in hparams: # add new parameter hparams.add_hparam(k, v) logger.info('%30s %20s: %20s' % ("[add from %s]" % yaml_path, k, hparams.get(k))) if followup: # useful when changing args for prediction logger.info('override args with follow-up args...') for k, v in followup.items(): if k in hparams and hparams.get(k) != v: logger.info('%20s: %20s -> %20s' % (k, hparams.get(k), v)) hparams.set_hparam(k, v) elif k not in hparams: logger.warning('%s is not a valid attribute! ignore!' % k) if 'save_dir' not in hparams: hparams.add_hparam('save_dir', os.path.join(hparams.get('model_dir'), hparams.get('model_id'))) if 'code_dir' not in hparams: hparams.add_hparam('code_dir', os.path.join(hparams.get('save_dir'), 'code')) hparams.set_hparam('summary_dir', os.path.join(hparams.get('save_dir'), 'summary')) # reset logger model id logger = set_logger(model_id='%s:%s' % (DEVICE_ID, hparams.get('model_id'))) try: shutil.copytree('./', hparams.get('code_dir'), ignore=shutil.ignore_patterns(*IGNORE_PATTERNS)) logger.info('current code base is copied to %s' % hparams.get('save_dir')) except FileExistsError: logger.info('code base exist, no need to copy!') # if hparams.get('model_id') != model_id: # logger.warning('model id is changed %s -> %s! ' # 'This happens when you train a pretrained model' % ( # hparams.get('model_id'), model_id)) # hparams.set_hparam('model_id', model_id) if 'loss_csv_file' not in hparams: hparams.add_hparam('loss_csv_file', os.path.join(hparams.get('save_dir'), 'loss.csv')) if 'is_serving' not in hparams: hparams.add_hparam('is_serving', False) logger.info('current parameters') for k, v in sorted(vars(hparams).items()): if not k.startswith('_'): logger.info('%20s = %-20s' % (k, v)) return hparams def add_param_recur(root, p_tree): for k, v in p_tree.items(): if isinstance(v, CommentedMap): new_node = HParams() add_param_recur(new_node, v) root.add_hparam(k, new_node) else: root.add_hparam(k, v) def fill_gpu_jobs(all_jobs, logger, job_parser, wait_until_next=300, retry_delay=300, do_shuffle=False): if do_shuffle: shuffle(all_jobs) all_procs = [] while all_jobs: logger.info('number of jobs in the queue: %d' % len(all_jobs)) j = all_jobs.pop() logger.info('will start the job: %s ...' % job_parser(j)) try: GPUtil.getFirstAvailable() # check if there is a free GPU! process = subprocess.Popen(job_parser(j), shell=True) all_procs.append((process, j)) time.sleep(wait_until_next) except FileNotFoundError: logger.warning('there is no gpu, running on cpu!') process = subprocess.Popen(job_parser(j), shell=True) all_procs.append((process, j)) except RuntimeError as e: logger.error(str(e)) logger.warning('all gpus are busy! waiting for a free slot...') # add job back all_jobs.append(j) time.sleep(retry_delay) exit_codes = [(p.wait(), j) for p, j in all_procs] return [v for p, v in exit_codes if p != 0] def get_args_cli(args): d = defaultdict(list) if args: for k, v in ((k.lstrip('-'), v) for k, v in (a.split('=') for a in args)): d[k].append(v) for k, v in d.items(): parsed_v = [s for s in (parse_arg(vv) for vv in v) if s is not None] if len(parsed_v) > 1: d[k] = parsed_v if len(parsed_v) == 1: d[k] = parsed_v[0] return d def parse_arg(v: str): if v.startswith('[') and v.endswith(']'): # function args must be immutable tuples not list tmp = v.replace('[', '').replace(']', '').strip().split(',') if len(tmp) > 0: return [parse_arg(vv.strip()) for vv in tmp] else: return [] try: v = int(v) # parse int parameter except ValueError: try: v = float(v) # parse float parameter except ValueError: if len(v) == 0: # ignore it when the parameter is empty v = None elif v.lower() == 'true': # parse boolean parameter v = True elif v.lower() == 'false': v = False return v def get_scope_name(): return tf.get_variable_scope().name.split('/')[0] def sparse_nll_loss(probs, labels, epsilon=1e-9, scope=None): """ negative log likelihood loss """ with tf.name_scope(scope, "log_loss"): labels = tf.one_hot(labels, tf.shape(probs)[1], axis=1, dtype=tf.float32) losses = - tf.reduce_sum(labels * tf.log(probs + epsilon), 1) return losses def normalize_distribution(p, eps=1e-9): p += eps norm = tf.reduce_sum(p, axis=1) return tf.cast(p, tf.float32) / tf.reshape(norm, (-1, 1)) def kl_divergence(p, q, eps=1e-9): p = normalize_distribution(p, eps) q = normalize_distribution(q, eps) return tf.reduce_sum(p * tf.log(p / q), axis=1) def get_kl_loss(start_label, start_probs, bandwidth=1.0): a = tf.reshape(tf.range(tf.shape(start_probs)[1]), (1, -1)) b = tf.reshape(start_label, (-1, 1)) start_true_probs = tf.exp(-tf.cast(tf.squared_difference(a, b), tf.float32) / bandwidth) return sym_kl_divergence(start_true_probs, start_probs) def sym_kl_divergence(p, q, eps=1e-9): return (kl_divergence(p, q, eps) + kl_divergence(q, p, eps)) / 2.0 def get_conv1d(x, out_dim, window_len, name, act_fn): return tf.layers.conv1d(x, out_dim, window_len, strides=1, padding='SAME', name=name, activation=act_fn) def upsampling_a2b(a, b, D_a): return tf.squeeze(tf.image.resize_images(tf.expand_dims(a, axis=-1), [tf.shape(b)[1], D_a], method=ResizeMethod.NEAREST_NEIGHBOR), axis=-1) def dropout(args, keep_prob, is_train, mode="recurrent"): if keep_prob < 1.0: noise_shape = None scale = 1.0 shape = tf.shape(args) if mode == "embedding": noise_shape = [shape[0], 1] scale = keep_prob if mode == "recurrent" and len(args.get_shape().as_list()) == 3: noise_shape = [shape[0], 1, shape[-1]] args = tf.cond(is_train, lambda: tf.nn.dropout( args, keep_prob, noise_shape=noise_shape) * scale, lambda: args) return args def get_tmp_yaml(par, prefix=None): import tempfile with tempfile.NamedTemporaryFile('w', delete=False, prefix=prefix) as tmp: YAML().dump(par, tmp) return tmp.name def build_model(args, reset_graph=True): rccore = importlib.import_module(args.package_rccore) if reset_graph: tf.reset_default_graph() return rccore.RCCore(args) def get_last_output(output, sequence_length, name): """Get the last value of the returned output of an RNN. http://disq.us/p/1gjkgdr output: [batch x number of steps x ... ] Output of the dynamic lstm. sequence_length: [batch] Length of each of the sequence. """ rng = tf.range(0, tf.shape(sequence_length)[0]) indexes = tf.stack([rng, sequence_length - 1], 1) return tf.gather_nd(output, indexes, name) def import_class(import_str): mod_str, _sep, class_str = import_str.rpartition('.') cur_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, cur_dir) __import__(mod_str) sys.path.remove(cur_dir) try: return getattr(sys.modules[mod_str], class_str) except AttributeError: raise ImportError('Class %s cannot be found (%s)' % (class_str, traceback.format_exception(*sys.exc_info()))) def delete_module(modname): from sys import modules del_keys = [] for mod_key, mod_value in modules.items(): if modname in mod_key: del_keys.append(mod_key) elif modname in str(mod_value): del_keys.append(mod_key) for key in del_keys: del modules[key]
deepnet/sparse_code_layer.py
airingzhang/deepnet
626
12758521
from layer import * class SparseCodeLayer(Layer): def AllocateBatchsizeDependentMemory(self, batchsize): super(SparseCodeLayer, self).AllocateBatchsizeDependentMemory(batchsize) self.approximator = cm.empty(self.state.shape) self.temp3 = cm.empty(self.state.shape) self.grad = cm.empty(self.state.shape) self.grad_scale = cm.CUDAMatrix(np.zeros((self.state.shape[0], 1))) self.m_by_m = cm.empty((self.state.shape[0], self.state.shape[0])) def ApplyActivation(self, state): if self.activation == deepnet_pb2.Hyperparams.LOGISTIC: cm.sigmoid(state) elif self.activation == deepnet_pb2.Hyperparams.TANH: cm.tanh(state) elif self.activation == deepnet_pb2.Hyperparams.RECTIFIED_LINEAR: state.greater_than(0, target=self.temp) state.mult(self.temp) elif self.activation == deepnet_pb2.Hyperparams.RECTIFIED_LINEAR_SMOOTH: cm.log_1_plus_exp(state) elif self.activation == deepnet_pb2.Hyperparams.LINEAR: pass def ComputeDeriv(self, state): """Compute derivative w.r.t input given derivative w.r.t output.""" if self.activation == deepnet_pb2.Hyperparams.LOGISTIC: self.deriv.apply_logistic_deriv(state) elif self.activation == deepnet_pb2.Hyperparams.TANH: self.deriv.apply_tanh_deriv(state) if self.hyperparams.dropout: self.deriv.mult(self.mask) elif self.activation == deepnet_pb2.Hyperparams.RECTIFIED_LINEAR: self.deriv.apply_rectified_linear_deriv(state) elif self.activation == deepnet_pb2.Hyperparams.RECTIFIED_LINEAR_SMOOTH: self.deriv.apply_rectified_linear_smooth_deriv(state) elif self.activation == deepnet_pb2.Hyperparams.LINEAR: if self.hyperparams.dropout: self.deriv.mult(self.mask) elif self.activation == deepnet_pb2.Hyperparams.SOFTMAX: raise Exception('Not implemented.') else: raise Exception('Unknown activation.')
pool_automation/roles/aws_manage/library/test_stateful_set.py
Rob-S/indy-node
627
12758527
<reponame>Rob-S/indy-node<gh_stars>100-1000 import random import string import json import boto3 import pytest from stateful_set import ( AWS_REGIONS, InstanceParams, find_ubuntu_ami, AwsEC2Launcher, AwsEC2Terminator, find_instances, valid_instances, get_tag, manage_instances ) class EC2TestCtx(object): def __init__(self, region, resource, client, prices=None): self.region = region self.resource = resource self.client = client self.prices = prices ############ # FIXTURES # ############ @pytest.fixture def ec2(regions, ec2_all): return [ec2_all[r]['rc'] for r in regions] @pytest.fixture def ec2cl(regions, ec2_all): return [ec2_all[r]['cl'] for r in regions] @pytest.fixture def ec2_resources(request, regions, ec2): def gen_params(group_suffix=None, key_name_suffix=None, security_group_suffix=None): def _random(N=7): return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(N)) return InstanceParams( project='Indy-PA-dev', add_tags={'Purpose': 'Test Pool Automation'}, namespace='test_stateful_set', group="group_{}" .format(group_suffix if group_suffix else _random()), key_name="test_stateful_set_key_{}" .format(key_name_suffix if key_name_suffix else _random()), security_group="test_stateful_set_security_group_{}" .format(security_group_suffix if security_group_suffix else _random()), type_name='t2.micro', # TODO docs market_spot=(request.config.getoption("--market-type") == 'spot'), spot_max_price=None, # TODO docs ebs_volume_size=9, ebs_volume_type='gp2', ) def manage_key_pair(ec2, present, params): count = 0 for key in ec2.key_pairs.all(): if key.key_name != params.key_name: continue if present and count == 0: count = 1 else: key.delete() if present and count == 0: ec2.create_key_pair(KeyName=params.key_name) def manage_security_group(ec2, present, params): count = 0 for sgroup in ec2.security_groups.all(): if sgroup.group_name != params.security_group: continue if present and count == 0: count = 1 else: sgroup.delete() if present and count == 0: sg = ec2.create_security_group( GroupName=params.security_group, Description='Test security group') sg.create_tags(Tags=[ {'Key': 'Name', 'Value': "{}-{}-{}" .format(params.project, params.namespace, params.group)}, {'Key': 'Project', 'Value': params.project}, {'Key': 'Namespace', 'Value': params.namespace}, {'Key': 'Group', 'Value': params.group}]) params = gen_params( group_suffix=request.node.name, key_name_suffix=request.node.name, security_group_suffix=request.node.name ) for rc in ec2: manage_key_pair(rc, True, params) manage_security_group(rc, True, params) yield params terminator = AwsEC2Terminator() for region, rc in zip(regions, ec2): for inst in find_instances( rc, params.project, params.namespace, params.group): terminator.terminate(inst, region) terminator.wait(False) for rc in ec2: manage_key_pair(rc, False, params) manage_security_group(rc, False, params) @pytest.fixture(scope="session") def pricing_client(): # pricing API is available only through us-east-1 and ap-south-1 # https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/using-pelong.html return boto3.client('pricing', region_name='us-east-1') @pytest.fixture def on_demand_prices(request, pricing_client, ec2_prices, regions, ec2_resources): marker = request.node.get_closest_marker('prices') if not (marker and ('on-demand' in marker.kwargs.get('term', []))): return for region_code in regions: res = ec2_prices[region_code]['on-demand'].get(ec2_resources.type_name) if res is None: # Search product filters # https://docs.aws.amazon.com/aws-cost-management/latest/APIReference/API_pricing_Filter.html # https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/using-ppslong.html filters = [ {'Field': k, 'Type': 'TERM_MATCH', 'Value': v} for k, v in (('tenancy', 'shared'), ('capacitystatus', 'UnusedCapacityReservation'), ('location', AWS_REGIONS[region_code].location), ('operatingSystem', 'Linux'), # TODO might be parametrized ('instanceType', ec2_resources.type_name), ('preInstalledSw', 'NA')) ] products = pricing_client.get_products( ServiceCode='AmazonEC2', Filters=filters) price_info = json.loads(products['PriceList'][0]) # https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/reading-an-offer.html # # "terms": { # "OnDemand": { # "<sku.offerTermCode>": { # "offerTermCode":"The term code of the product", # "sku":"The SKU of the product", # ... # "priceDimensions": { # "<sku.offerTermCode.rateCode>": { # "rateCode":"The rate code of the price", # ... # "pricePerUnit": { # "currencyCode":"currencyRate", # } # } # } # } # } # } offer = price_info['terms']['OnDemand'].popitem()[1] price_tier = offer['priceDimensions'].popitem()[1] res = float(price_tier['pricePerUnit']['USD']) ec2_prices[region_code]['on-demand'][ec2_resources.type_name] = res @pytest.fixture def ec2ctxs(regions, ec2, ec2cl, on_demand_prices, ec2_prices): assert len(set([len(l) for l in (regions, ec2, ec2cl)])) == 1 return [EC2TestCtx(r, rc, cl, ec2_prices[r]) for r, rc, cl in zip(regions, ec2, ec2cl)] @pytest.fixture def ec2ctx(ec2ctxs): assert len(ec2ctxs) == 1 return ec2ctxs[0] ######### # TESTS # ######### def test_find_ubuntu_image(ec2ctx): image_id = find_ubuntu_ami(ec2ctx.resource) assert image_id is not None image = ec2ctx.resource.Image(image_id) assert image.owner_id == '099720109477' # Canonical assert image.state == 'available' assert image.architecture == 'x86_64' assert 'Canonical' in image.description assert 'Ubuntu' in image.description assert '16.04' in image.description assert 'UNSUPPORTED' not in image.description # TODO split test_AwsEC2Launcher tests into multiple more focused ones def check_instance_params(inst, params, ec2cl=None, price=None): # https://stackoverflow.com/questions/5595425/what-is-the-best-way-to-compare-floats-for-almost-equality-in-python # https://www.python.org/dev/peps/pep-0485/#proposed-implementation def isclose(a, b, rel_tol=1e-09, abs_tol=0.0): return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) def check_tags(obj): assert {'Key': 'Project', 'Value': params.project} in obj.tags assert {'Key': 'Namespace', 'Value': params.namespace} in obj.tags assert {'Key': 'Group', 'Value': params.group} in obj.tags for tag_key, tag_value in params.add_tags.iteritems(): assert tag_value == get_tag(obj, tag_key) # general assert inst.instance_type == params.type_name assert inst.state['Name'] == 'running' # tags check_tags(inst) # linked resources assert inst.key_name == params.key_name assert len(inst.security_groups) == 1 assert inst.security_groups[0]['GroupName'] == params.security_group # ebs options volumes = list(inst.volumes.all()) assert len(volumes) == 1 assert volumes[0].size == params.ebs_volume_size assert volumes[0].volume_type == params.ebs_volume_type check_tags(volumes[0]) # market options if params.market_spot: assert inst.instance_lifecycle == 'spot' assert inst.spot_instance_request_id is not None spot_params = ec2cl.describe_spot_instance_requests( SpotInstanceRequestIds=[inst.spot_instance_request_id]) assert isclose( float(spot_params['SpotInstanceRequests'][0]['SpotPrice']), price ) @pytest.mark.regions([['us-east-2', 'eu-west-1']]) def test_AwsEC2Launcher_wait(ec2ctxs, ec2_resources): launcher = AwsEC2Launcher() instances = [] params = ec2_resources._replace(market_spot=False) for ctx in ec2ctxs: _instances = launcher.launch( params, 1, region=ctx.region, ec2=ctx.resource) assert len(_instances) == 1 instances += _instances assert len(launcher.awaited) > 0 launcher.wait() assert len(launcher.awaited) == 0 for inst in instances: check_instance_params(inst, params) def idfn_test_AwsEC2Launcher(max_price): if max_price is None: return 'max_price_default' else: return "max_price_{}".format(max_price) @pytest.mark.prices(term="on-demand") @pytest.mark.regions([['us-east-2'], ['eu-west-1']]) @pytest.mark.parametrize( 'max_price_factor', [None, 0.7], ids=idfn_test_AwsEC2Launcher) def test_AwsEC2Launcher_spot(ec2ctx, ec2_resources, max_price_factor): launcher = AwsEC2Launcher() default_price = ec2ctx.prices['on-demand'][ec2_resources.type_name] price = default_price * (1 if max_price_factor is None else max_price_factor) params = ec2_resources._replace( market_spot=True, spot_max_price=(None if max_price_factor is None else "{}".format(price)) ) instances = launcher.launch( params, 1, region=ec2ctx.region, ec2=ec2ctx.resource) launcher.wait() for inst in instances: check_instance_params(inst, params, ec2ctx.client, price) @pytest.mark.regions([['us-east-2', 'eu-west-1']]) def test_AwsEC2Terminator_wait(ec2ctxs, ec2_resources): launcher = AwsEC2Launcher() terminator = AwsEC2Terminator() instances = [] params = ec2_resources._replace(market_spot=False) for ctx in ec2ctxs: _instances = launcher.launch( params, 1, region=ctx.region, ec2=ctx.resource) assert len(_instances) == 1 instances += _instances launcher.wait() for instance in instances: terminator.terminate(instance) assert len(terminator.awaited) > 0 terminator.wait() assert len(terminator.awaited) == 0 for instance in instances: assert instance.state['Name'] == 'terminated' @pytest.mark.regions([['us-east-2'], ['eu-west-1']]) def test_AwsEC2Terminator_spot(ec2ctx, ec2_resources): launcher = AwsEC2Launcher() terminator = AwsEC2Terminator() params = ec2_resources._replace(market_spot=True, spot_max_price=None) instances = launcher.launch( params, 1, region=ec2ctx.region, ec2=ec2ctx.resource) launcher.wait() for instance in instances: terminator.terminate(instance) for instance in instances: assert instance.spot_instance_request_id is not None spot_params = ec2ctx.client.describe_spot_instance_requests( SpotInstanceRequestIds=[instance.spot_instance_request_id]) # https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-bid-status.html#get-spot-instance-bid-status assert (spot_params['SpotInstanceRequests'][0]['State'] in ('closed', 'cancelled')) assert (spot_params['SpotInstanceRequests'][0]['Status']['Code'] in ( 'instance-terminated-by-user', 'request-canceled-and-instance-running' )) terminator.wait() @pytest.mark.regions([['us-east-1']]) def test_find_instances(ec2ctx, ec2_resources): launcher = AwsEC2Launcher() terminator = AwsEC2Terminator() params1 = ec2_resources._replace( group="{}_{}".format(ec2_resources.group, 'aaa')) params2 = ec2_resources._replace( group="{}_{}".format(ec2_resources.group, 'bbb')) for group in (params1.group, params2.group): for inst in find_instances( ec2ctx.resource, ec2_resources.project, ec2_resources.namespace, group): terminator.terminate(inst, ec2ctx.region) terminator.wait(False) launcher.launch(params1, 2, ec2=ec2ctx.resource) launcher.launch(params2, 3, ec2=ec2ctx.resource) aaa = find_instances( ec2ctx.resource, params1.project, params1.namespace, params1.group) bbb = find_instances( ec2ctx.resource, params2.project, params2.namespace, params2.group) aaa_and_bbb = [i for i in find_instances( ec2ctx.resource, ec2_resources.project, ec2_resources.namespace) if get_tag(i, 'Group') in (params1.group, params2.group)] assert len(aaa) == 2 assert len(bbb) == 3 assert len(aaa_and_bbb) == 5 assert set(aaa).union(bbb) == set(aaa_and_bbb) for inst in aaa_and_bbb: terminator.terminate(inst, ec2ctx.region) terminator.wait(False) def test_valid_instances(): regions = ['us', 'eu'] instances = valid_instances(regions, 0) assert instances['us'] == [] assert instances['eu'] == [] instances = valid_instances(regions, 1) assert instances['us'] == ['1'] assert instances['eu'] == [] instances = valid_instances(regions, 2) assert instances['us'] == ['1'] assert instances['eu'] == ['2'] instances = valid_instances(regions, 3) assert instances['us'] == ['1', '3'] assert instances['eu'] == ['2'] instances = valid_instances(regions, 4) assert instances['us'] == ['1', '3'] assert instances['eu'] == ['2', '4'] @pytest.mark.regions( [['us-east-2', 'ca-central-1', 'eu-west-1']], ids=['3regions']) def test_manage_instances(ec2ctxs, ec2_resources): regions = [ctx.region for ctx in ec2ctxs] def check_hosts(hosts): assert len(set(host.tag_id for host in hosts)) == len(hosts) assert len(set(host.public_ip for host in hosts)) == len(hosts) def check_tags(instances): for inst_group in instances: for inst in inst_group: inst_tag_id = get_tag(inst, 'ID') assert inst_tag_id is not None inst_tag_name = get_tag(inst, 'Name') assert inst_tag_name == "{}-{}-{}-{}".format( ec2_resources.project, ec2_resources.namespace, ec2_resources.group, inst_tag_id.zfill(3)).lower() res = manage_instances(regions, ec2_resources, 4) instances = [find_instances(ctx.resource, ec2_resources.project, ec2_resources.namespace, ec2_resources.group) for ctx in ec2ctxs] assert res.changed assert len(res.active) == 4 assert len(res.terminated) == 0 check_hosts(res.active + res.terminated) check_tags(instances) assert len(instances[0]) == 2 assert len(instances[1]) == 1 assert len(instances[2]) == 1 assert set([get_tag(instances[0][0], 'ID'), get_tag(instances[0][1], 'ID')]) == set(['1', '4']) assert get_tag(instances[1][0], 'ID') == '2' assert get_tag(instances[2][0], 'ID') == '3' res = manage_instances(regions, ec2_resources, 4) instances = [find_instances(ctx.resource, ec2_resources.project, ec2_resources.namespace, ec2_resources.group) for ctx in ec2ctxs] assert not res.changed assert len(res.active) == 4 assert len(res.terminated) == 0 check_hosts(res.active + res.terminated) check_tags(instances) assert len(instances[0]) == 2 assert len(instances[1]) == 1 assert len(instances[2]) == 1 assert set([get_tag(instances[0][0], 'ID'), get_tag(instances[0][1], 'ID')]) == set(['1', '4']) assert get_tag(instances[1][0], 'ID') == '2' assert get_tag(instances[2][0], 'ID') == '3' res = manage_instances(regions, ec2_resources, 2) instances = [find_instances(ctx.resource, ec2_resources.project, ec2_resources.namespace, ec2_resources.group) for ctx in ec2ctxs] assert res.changed assert len(res.active) == 2 assert len(res.terminated) == 2 check_hosts(res.active + res.terminated) check_tags(instances) assert len(instances[0]) == 1 assert len(instances[1]) == 1 assert len(instances[2]) == 0 assert get_tag(instances[0][0], 'ID') == '1' assert get_tag(instances[1][0], 'ID') == '2' res = manage_instances(regions, ec2_resources, 0) instances = [find_instances(ctx.resource, ec2_resources.project, ec2_resources.namespace, ec2_resources.group) for ctx in ec2ctxs] assert res.changed assert len(res.active) == 0 assert len(res.terminated) == 2 check_hosts(res.active + res.terminated) check_tags(instances) assert len(instances[0]) == 0 assert len(instances[1]) == 0 assert len(instances[2]) == 0 res = manage_instances(regions, ec2_resources, 0) instances = [find_instances(ctx.resource, ec2_resources.project, ec2_resources.namespace, ec2_resources.group) for ctx in ec2ctxs] assert not res.changed assert len(res.active) == 0 assert len(res.terminated) == 0 check_hosts(res.active + res.terminated) check_tags(instances) assert len(instances[0]) == 0 assert len(instances[1]) == 0 assert len(instances[2]) == 0
.modules/.sqlmap/lib/takeover/abstraction.py
termux-one/EasY_HaCk
1,103
12758531
<reponame>termux-one/EasY_HaCk #!/usr/bin/env python """ Copyright (c) 2006-2018 sqlmap developers (http://sqlmap.org/) See the file 'LICENSE' for copying permission """ import sys from extra.safe2bin.safe2bin import safechardecode from lib.core.common import dataToStdout from lib.core.common import Backend from lib.core.common import getSQLSnippet from lib.core.common import getUnicode from lib.core.common import isStackingAvailable from lib.core.common import readInput from lib.core.data import conf from lib.core.data import logger from lib.core.enums import AUTOCOMPLETE_TYPE from lib.core.enums import DBMS from lib.core.enums import OS from lib.core.exception import SqlmapFilePathException from lib.core.exception import SqlmapUnsupportedFeatureException from lib.core.shell import autoCompletion from lib.request import inject from lib.takeover.udf import UDF from lib.takeover.web import Web from lib.takeover.xp_cmdshell import XP_cmdshell class Abstraction(Web, UDF, XP_cmdshell): """ This class defines an abstraction layer for OS takeover functionalities to UDF / XP_cmdshell objects """ def __init__(self): self.envInitialized = False self.alwaysRetrieveCmdOutput = False UDF.__init__(self) Web.__init__(self) XP_cmdshell.__init__(self) def execCmd(self, cmd, silent=False): if self.webBackdoorUrl and not isStackingAvailable(): self.webBackdoorRunCmd(cmd) elif Backend.getIdentifiedDbms() in (DBMS.MYSQL, DBMS.PGSQL): self.udfExecCmd(cmd, silent=silent) elif Backend.isDbms(DBMS.MSSQL): self.xpCmdshellExecCmd(cmd, silent=silent) else: errMsg = "Feature not yet implemented for the back-end DBMS" raise SqlmapUnsupportedFeatureException(errMsg) def evalCmd(self, cmd, first=None, last=None): retVal = None if self.webBackdoorUrl and not isStackingAvailable(): retVal = self.webBackdoorRunCmd(cmd) elif Backend.getIdentifiedDbms() in (DBMS.MYSQL, DBMS.PGSQL): retVal = self.udfEvalCmd(cmd, first, last) elif Backend.isDbms(DBMS.MSSQL): retVal = self.xpCmdshellEvalCmd(cmd, first, last) else: errMsg = "Feature not yet implemented for the back-end DBMS" raise SqlmapUnsupportedFeatureException(errMsg) return safechardecode(retVal) def runCmd(self, cmd): choice = None if not self.alwaysRetrieveCmdOutput: message = "do you want to retrieve the command standard " message += "output? [Y/n/a] " choice = readInput(message, default='Y').upper() if choice == 'A': self.alwaysRetrieveCmdOutput = True if choice == 'Y' or self.alwaysRetrieveCmdOutput: output = self.evalCmd(cmd) if output: conf.dumper.string("command standard output", output) else: dataToStdout("No output\n") else: self.execCmd(cmd) def shell(self): if self.webBackdoorUrl and not isStackingAvailable(): infoMsg = "calling OS shell. To quit type " infoMsg += "'x' or 'q' and press ENTER" logger.info(infoMsg) else: if Backend.getIdentifiedDbms() in (DBMS.MYSQL, DBMS.PGSQL): infoMsg = "going to use injected sys_eval and sys_exec " infoMsg += "user-defined functions for operating system " infoMsg += "command execution" logger.info(infoMsg) elif Backend.isDbms(DBMS.MSSQL): infoMsg = "going to use xp_cmdshell extended procedure for " infoMsg += "operating system command execution" logger.info(infoMsg) else: errMsg = "feature not yet implemented for the back-end DBMS" raise SqlmapUnsupportedFeatureException(errMsg) infoMsg = "calling %s OS shell. To quit type " % (Backend.getOs() or "Windows") infoMsg += "'x' or 'q' and press ENTER" logger.info(infoMsg) autoCompletion(AUTOCOMPLETE_TYPE.OS, OS.WINDOWS if Backend.isOs(OS.WINDOWS) else OS.LINUX) while True: command = None try: command = raw_input("os-shell> ") command = getUnicode(command, encoding=sys.stdin.encoding) except KeyboardInterrupt: print errMsg = "user aborted" logger.error(errMsg) except EOFError: print errMsg = "exit" logger.error(errMsg) break if not command: continue if command.lower() in ("x", "q", "exit", "quit"): break self.runCmd(command) def _initRunAs(self): if not conf.dbmsCred: return if not conf.direct and not isStackingAvailable(): errMsg = "stacked queries are not supported hence sqlmap cannot " errMsg += "execute statements as another user. The execution " errMsg += "will continue and the DBMS credentials provided " errMsg += "will simply be ignored" logger.error(errMsg) return if Backend.isDbms(DBMS.MSSQL): msg = "on Microsoft SQL Server 2005 and 2008, OPENROWSET function " msg += "is disabled by default. This function is needed to execute " msg += "statements as another DBMS user since you provided the " msg += "option '--dbms-creds'. If you are DBA, you can enable it. " msg += "Do you want to enable it? [Y/n] " if readInput(msg, default='Y', boolean=True): expression = getSQLSnippet(DBMS.MSSQL, "configure_openrowset", ENABLE="1") inject.goStacked(expression) # TODO: add support for PostgreSQL # elif Backend.isDbms(DBMS.PGSQL): # expression = getSQLSnippet(DBMS.PGSQL, "configure_dblink", ENABLE="1") # inject.goStacked(expression) def initEnv(self, mandatory=True, detailed=False, web=False, forceInit=False): self._initRunAs() if self.envInitialized and not forceInit: return if web: self.webInit() else: self.checkDbmsOs(detailed) if mandatory and not self.isDba(): warnMsg = "functionality requested probably does not work because " warnMsg += "the current session user is not a database administrator" if not conf.dbmsCred and Backend.getIdentifiedDbms() in (DBMS.MSSQL, DBMS.PGSQL): warnMsg += ". You can try to use option '--dbms-cred' " warnMsg += "to execute statements as a DBA user if you " warnMsg += "were able to extract and crack a DBA " warnMsg += "password by any mean" logger.warn(warnMsg) if Backend.getIdentifiedDbms() in (DBMS.MYSQL, DBMS.PGSQL): success = self.udfInjectSys() if success is not True: msg = "unable to mount the operating system takeover" raise SqlmapFilePathException(msg) elif Backend.isDbms(DBMS.MSSQL): if mandatory: self.xpCmdshellInit() else: errMsg = "feature not yet implemented for the back-end DBMS" raise SqlmapUnsupportedFeatureException(errMsg) self.envInitialized = True
observations/r/bmw.py
hajime9652/observations
199
12758584
<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def bmw(path): """Daily Log Returns on BMW Share Price These data are the daily log returns on BMW share price from Tuesday 2nd January 1973 until Tuesday 23rd July 1996. The data are contained in a numeric vector. The dates of each observation are contained in a `times` attribute, which is an object of class `"POSIXct"` (see `DateTimeClasses`). Note that these data form an irregular time series because no trading takes place at the weekend. A numeric vector containing 6146 observations, with a `times` Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `bmw.csv`. Returns: Tuple of np.ndarray `x_train` with 6146 rows and 1 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'bmw.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/evir/bmw.csv' maybe_download_and_extract(path, url, save_file_name='bmw.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
general/add-watermark-pdf/pdf_watermarker.py
caesarcc/python-code-tutorials
1,059
12758586
from PyPDF4 import PdfFileReader, PdfFileWriter from PyPDF4.pdf import ContentStream from PyPDF4.generic import TextStringObject, NameObject from PyPDF4.utils import b_ import os import argparse from io import BytesIO from typing import Tuple # Import the reportlab library from reportlab.pdfgen import canvas # The size of the page supposedly A4 from reportlab.lib.pagesizes import A4 # The color of the watermark from reportlab.lib import colors PAGESIZE = A4 FONTNAME = 'Helvetica-Bold' FONTSIZE = 40 # using colors module # COLOR = colors.lightgrey # or simply RGB # COLOR = (190, 190, 190) COLOR = colors.red # The position attributes of the watermark X = 250 Y = 10 # The rotation angle in order to display the watermark diagonally if needed ROTATION_ANGLE = 45 def get_info(input_file: str): """ Extracting the file info """ # If PDF is encrypted the file metadata cannot be extracted with open(input_file, 'rb') as pdf_file: pdf_reader = PdfFileReader(pdf_file, strict=False) output = { "File": input_file, "Encrypted": ("True" if pdf_reader.isEncrypted else "False") } if not pdf_reader.isEncrypted: info = pdf_reader.getDocumentInfo() num_pages = pdf_reader.getNumPages() output["Author"] = info.author output["Creator"] = info.creator output["Producer"] = info.producer output["Subject"] = info.subject output["Title"] = info.title output["Number of pages"] = num_pages # To Display collected metadata print("## File Information ##################################################") print("\n".join("{}:{}".format(i, j) for i, j in output.items())) print("######################################################################") return True, output def get_output_file(input_file: str, output_file: str): """ Check whether a temporary output file is needed or not """ input_path = os.path.dirname(input_file) input_filename = os.path.basename(input_file) # If output file is empty -> generate a temporary output file # If output file is equal to input_file -> generate a temporary output file if not output_file or input_file == output_file: tmp_file = os.path.join(input_path, 'tmp_' + input_filename) return True, tmp_file return False, output_file def create_watermark(wm_text: str): """ Creates a watermark template. """ if wm_text: # Generate the output to a memory buffer output_buffer = BytesIO() # Default Page Size = A4 c = canvas.Canvas(output_buffer, pagesize=PAGESIZE) # you can also add image instead of text # c.drawImage("logo.png", X, Y, 160, 160) # Set the size and type of the font c.setFont(FONTNAME, FONTSIZE) # Set the color if isinstance(COLOR, tuple): color = (c/255 for c in COLOR) c.setFillColorRGB(*color) else: c.setFillColor(COLOR) # Rotate according to the configured parameter c.rotate(ROTATION_ANGLE) # Position according to the configured parameter c.drawString(X, Y, wm_text) c.save() return True, output_buffer return False, None def save_watermark(wm_buffer, output_file): """ Saves the generated watermark template to disk """ with open(output_file, mode='wb') as f: f.write(wm_buffer.getbuffer()) f.close() return True def watermark_pdf(input_file: str, wm_text: str, pages: Tuple = None): """ Adds watermark to a pdf file. """ result, wm_buffer = create_watermark(wm_text) if result: wm_reader = PdfFileReader(wm_buffer) pdf_reader = PdfFileReader(open(input_file, 'rb'), strict=False) pdf_writer = PdfFileWriter() try: for page in range(pdf_reader.getNumPages()): # If required to watermark specific pages not all the document pages if pages: if str(page) not in pages: continue page = pdf_reader.getPage(page) page.mergePage(wm_reader.getPage(0)) pdf_writer.addPage(page) except Exception as e: print("Exception = ", e) return False, None, None return True, pdf_reader, pdf_writer def unwatermark_pdf(input_file: str, wm_text: str, pages: Tuple = None): """ Removes watermark from the pdf file. """ pdf_reader = PdfFileReader(open(input_file, 'rb'), strict=False) pdf_writer = PdfFileWriter() for page in range(pdf_reader.getNumPages()): # If required for specific pages if pages: if str(page) not in pages: continue page = pdf_reader.getPage(page) # Get the page content content_object = page["/Contents"].getObject() content = ContentStream(content_object, pdf_reader) # Loop through all the elements page elements for operands, operator in content.operations: # Checks the TJ operator and replaces the corresponding string operand (Watermark text) with '' if operator == b_("Tj"): text = operands[0] if isinstance(text, str) and text.startswith(wm_text): operands[0] = TextStringObject('') page.__setitem__(NameObject('/Contents'), content) pdf_writer.addPage(page) return True, pdf_reader, pdf_writer def watermark_unwatermark_file(**kwargs): input_file = kwargs.get('input_file') wm_text = kwargs.get('wm_text') # watermark -> Watermark # unwatermark -> Unwatermark action = kwargs.get('action') # HDD -> Temporary files are saved on the Hard Disk Drive and then deleted # RAM -> Temporary files are saved in memory and then deleted. mode = kwargs.get('mode') pages = kwargs.get('pages') temporary, output_file = get_output_file( input_file, kwargs.get('output_file')) if action == "watermark": result, pdf_reader, pdf_writer = watermark_pdf( input_file=input_file, wm_text=wm_text, pages=pages) elif action == "unwatermark": result, pdf_reader, pdf_writer = unwatermark_pdf( input_file=input_file, wm_text=wm_text, pages=pages) # Completed successfully if result: # Generate to memory if mode == "RAM": output_buffer = BytesIO() pdf_writer.write(output_buffer) pdf_reader.stream.close() # No need to create a temporary file in RAM Mode if temporary: output_file = input_file with open(output_file, mode='wb') as f: f.write(output_buffer.getbuffer()) f.close() elif mode == "HDD": # Generate to a new file on the hard disk with open(output_file, 'wb') as pdf_output_file: pdf_writer.write(pdf_output_file) pdf_output_file.close() pdf_reader.stream.close() if temporary: if os.path.isfile(input_file): os.replace(output_file, input_file) output_file = input_file def watermark_unwatermark_folder(**kwargs): """ Watermarks all PDF Files within a specified path Unwatermarks all PDF Files within a specified path """ input_folder = kwargs.get('input_folder') wm_text = kwargs.get('wm_text') # Run in recursive mode recursive = kwargs.get('recursive') # watermark -> Watermark # unwatermark -> Unwatermark action = kwargs.get('action') # HDD -> Temporary files are saved on the Hard Disk Drive and then deleted # RAM -> Temporary files are saved in memory and then deleted. mode = kwargs.get('mode') pages = kwargs.get('pages') # Loop though the files within the input folder. for foldername, dirs, filenames in os.walk(input_folder): for filename in filenames: # Check if pdf file if not filename.endswith('.pdf'): continue # PDF File found inp_pdf_file = os.path.join(foldername, filename) print("Processing file:", inp_pdf_file) watermark_unwatermark_file(input_file=inp_pdf_file, output_file=None, wm_text=wm_text, action=action, mode=mode, pages=pages) if not recursive: break def is_valid_path(path): """ Validates the path inputted and checks whether it is a file path or a folder path """ if not path: raise ValueError(f"Invalid Path") if os.path.isfile(path): return path elif os.path.isdir(path): return path else: raise ValueError(f"Invalid Path {path}") def parse_args(): """ Get user command line parameters """ parser = argparse.ArgumentParser(description="Available Options") parser.add_argument('-i', '--input_path', dest='input_path', type=is_valid_path, required=True, help="Enter the path of the file or the folder to process") parser.add_argument('-a', '--action', dest='action', choices=[ 'watermark', 'unwatermark'], type=str, default='watermark', help="Choose whether to watermark or to unwatermark") parser.add_argument('-m', '--mode', dest='mode', choices=['RAM', 'HDD'], type=str, default='RAM', help="Choose whether to process on the hard disk drive or in memory") parser.add_argument('-w', '--watermark_text', dest='watermark_text', type=str, required=True, help="Enter a valid watermark text") parser.add_argument('-p', '--pages', dest='pages', type=tuple, help="Enter the pages to consider e.g.: [2,4]") path = parser.parse_known_args()[0].input_path if os.path.isfile(path): parser.add_argument('-o', '--output_file', dest='output_file', type=str, help="Enter a valid output file") if os.path.isdir(path): parser.add_argument('-r', '--recursive', dest='recursive', default=False, type=lambda x: ( str(x).lower() in ['true', '1', 'yes']), help="Process Recursively or Non-Recursively") # To Porse The Command Line Arguments args = vars(parser.parse_args()) # To Display The Command Line Arguments print("## Command Arguments #################################################") print("\n".join("{}:{}".format(i, j) for i, j in args.items())) print("######################################################################") return args if __name__ == '__main__': # Parsing command line arguments entered by user args = parse_args() # If File Path if os.path.isfile(args['input_path']): # Extracting File Info get_info(input_file=args['input_path']) # Encrypting or Decrypting a File watermark_unwatermark_file( input_file=args['input_path'], wm_text=args['watermark_text'], action=args[ 'action'], mode=args['mode'], output_file=args['output_file'], pages=args['pages'] ) # If Folder Path elif os.path.isdir(args['input_path']): # Encrypting or Decrypting a Folder watermark_unwatermark_folder( input_folder=args['input_path'], wm_text=args['watermark_text'], action=args['action'], mode=args['mode'], recursive=args['recursive'], pages=args['pages'] )
data/base_dataset.py
ArlenCHEN/SNE-RoadSeg
213
12758589
import torch.utils.data as data class BaseDataset(data.Dataset): def __init__(self): super(BaseDataset, self).__init__() def name(self): return 'BaseDataset' @staticmethod def modify_commandline_options(parser, is_train): return parser def initialize(self, opt): pass def __len__(self): return 0
jorldy/core/env/gym_env.py
zenoengine/JORLDY
300
12758616
<filename>jorldy/core/env/gym_env.py import gym import numpy as np from .base import BaseEnv class _Gym(BaseEnv): """Gym environment. Args: name (str): name of environment in Gym. render (bool): parameter that determine whether to render. custom_action (bool): parameter that determine whether to use custom action. """ def __init__( self, name, render=False, custom_action=False, **kwargs, ): self.env = gym.make(name) self.state_size = self.env.observation_space.shape[0] if not custom_action: self.action_size = ( self.env.action_space.shape[0] if self.action_type == "continuous" else self.env.action_space.n ) self.render = render def reset(self): self.score = 0 state = self.env.reset() state = np.expand_dims(state, 0) # for (1, state_size) return state def step(self, action): if self.render: self.env.render() if self.action_type == "continuous": action = ((action + 1.0) / 2.0) * ( self.env.action_space.high - self.env.action_space.low ) + self.env.action_space.low action = np.reshape(action, self.env.action_space.shape) else: action = action.item() next_state, reward, done, info = self.env.step(action) self.score += reward next_state, reward, done = map( lambda x: np.expand_dims(x, 0), [next_state, [reward], [done]] ) # for (1, ?) return (next_state, reward, done) def close(self): self.env.close() class Cartpole(_Gym): def __init__(self, action_type="discrete", **kwargs): self.action_type = action_type if action_type == "continuous": super(Cartpole, self).__init__("CartPole-v1", custom_action=True, **kwargs) self.action_size = 1 else: super(Cartpole, self).__init__("CartPole-v1", **kwargs) def step(self, action): if self.render: self.env.render() action = action.item() if self.action_type == "continuous": action = 0 if action < 0 else 1 next_state, reward, done, info = self.env.step(action) self.score += reward reward = -1 if done else 0.1 next_state, reward, done = map( lambda x: np.expand_dims(x, 0), [next_state, [reward], [done]] ) # for (1, ?) return (next_state, reward, done) class Pendulum(_Gym): def __init__(self, **kwargs): self.action_type = "continuous" super(Pendulum, self).__init__("Pendulum-v1", **kwargs) class MountainCar(_Gym): def __init__(self, **kwargs): self.action_type = "discrete" super(MountainCar, self).__init__("MountainCar-v0", **kwargs)
stores/apps/users/admin.py
diassor/CollectorCity-Market-Place
135
12758631
from models import * from django.contrib import admin admin.site.register(Profile) admin.site.register(EmailVerify)
ide/tasks/gist.py
Ramonrlb/cloudpebble
147
12758646
<filename>ide/tasks/gist.py import json import github from celery import task from django.db import transaction from django.conf import settings from ide.models.user import User from ide.models.project import Project from ide.utils.sdk import load_manifest_dict from ide.models.files import SourceFile, ResourceFile, ResourceIdentifier, ResourceVariant from ide.utils.project import APPINFO_MANIFEST, PACKAGE_MANIFEST from ide.utils import generate_half_uuid from utils.td_helper import send_td_event from collections import defaultdict import urllib2 @task(acks_late=True) def import_gist(user_id, gist_id): user = User.objects.get(pk=user_id) g = github.Github() try: gist = g.get_gist(gist_id) except github.UnknownObjectException: send_td_event('cloudpebble_gist_not_found', data={'data': {'gist_id': gist_id}}, user=user) raise Exception("Couldn't find gist to import.") files = gist.files default_name = gist.description or 'Sample project' default_settings = { 'name': default_name, 'app_short_name': default_name, 'app_long_name': default_name, 'app_company_name': user.username, 'app_version_label': '1.0', 'app_is_watchface': False, 'app_is_hidden': False, 'app_is_shown_on_communication': False, 'app_capabilities': '[]', 'app_keys': '{}', 'project_type': 'native', 'app_modern_multi_js': False, 'sdk_version': '2' } if len(files) == 1 or ((APPINFO_MANIFEST in files or PACKAGE_MANIFEST in files) and len(files) == 2): if 'simply.js' in files: default_settings['project_type'] = 'simplyjs' elif 'app.js' in files: default_settings['project_type'] = 'pebblejs' elif 'index.js' in files: default_settings['project_type'] = 'rocky' # If all files are .js or .json and there is an index.js, assume it's a rocky project. if all(x.endswith(('.js', '.json')) for x in gist.files) and 'index.js' in files: default_settings['project_type'] = 'rocky' default_settings['sdk_version'] = '3' default_settings['app_modern_multi_js'] = True media = [] # Using defaultdict we can load project settings from a manifest dict which # has values that default to None. This way, we can delegate if PACKAGE_MANIFEST in files: content = json.loads(files[PACKAGE_MANIFEST].content) package = defaultdict(lambda: None) package.update(content) package['pebble'] = defaultdict(lambda: None) package['pebble'].update(content.get('pebble', {})) manifest_settings, media, dependencies = load_manifest_dict(package, PACKAGE_MANIFEST, default_project_type=None) default_settings['app_keys'] = '[]' default_settings['sdk_version'] = '3' default_settings['app_modern_multi_js'] = True elif APPINFO_MANIFEST in files: content = json.loads(files[APPINFO_MANIFEST].content) package = defaultdict(lambda: None) package.update(content) manifest_settings, media, dependencies = load_manifest_dict(package, APPINFO_MANIFEST, default_project_type=None) else: manifest_settings = {} dependencies = {} fixed_settings = { 'owner': user, 'app_uuid': generate_half_uuid() } project_settings = {} project_settings.update(default_settings) project_settings.update({k: v for k, v in manifest_settings.iteritems() if v is not None}) project_settings.update(fixed_settings) with transaction.atomic(): project = Project.objects.create(**project_settings) project.set_dependencies(dependencies) project_type = project.project_type if project_type == 'package': raise Exception("Gist imports are not yet support for packages.") if project_type != 'simplyjs': for filename in gist.files: target = 'app' if not filename.endswith(('.c', '.h', '.js', '.json')): continue if filename in ('appinfo.json', 'package.json'): continue if project_type == 'native': if filename.endswith(('.js', '.json')): target = 'pkjs' elif project_type == 'rocky': if filename == 'app.js': target = 'pkjs' source_file = SourceFile.objects.create(project=project, file_name=filename, target=target) source_file.save_text(gist.files[filename].content) resources = {} for resource in media: kind = resource['type'] def_name = resource['name'] filename = resource['file'] regex = resource.get('characterRegex', None) tracking = resource.get('trackingAdjust', None) memory_format = resource.get('memoryFormat', None) storage_format = resource.get('storageFormat', None) space_optimisation = resource.get('spaceOptimization', None) is_menu_icon = resource.get('menuIcon', False) compatibility = resource.get('compatibility', None) if filename not in gist.files: continue if filename not in resources: resources[filename] = ResourceFile.objects.create(project=project, file_name=filename, kind=kind, is_menu_icon=is_menu_icon) # We already have this as a unicode string in .content, but it shouldn't have become unicode # in the first place. default_variant = ResourceVariant.objects.create(resource_file=resources[filename], tags=ResourceVariant.TAGS_DEFAULT) default_variant.save_file(urllib2.urlopen(gist.files[filename].raw_url)) ResourceIdentifier.objects.create( resource_file=resources[filename], resource_id=def_name, character_regex=regex, tracking=tracking, compatibility=compatibility, memory_format=memory_format, storage_format=storage_format, space_optimisation=space_optimisation ) else: source_file = SourceFile.objects.create(project=project, file_name='app.js') source_file.save_text(gist.files['simply.js'].content) send_td_event('cloudpebble_gist_import', data={'data': {'gist_id': gist_id}}, project=project) return project.id
lib/utils/adb.py
vividmuse/frida-skeleton
520
12758701
<reponame>vividmuse/frida-skeleton #!/usr/bin/env python # -*- coding: utf-8 -*- from lib.utils.shell import Shell class Adb(Shell): def __init__(self, serial): super().__init__() self.serial = serial # if we are root shell self.is_root = False self.check_root() @classmethod def start_server(cls): return Shell().exec('adb start-server', supress_error=True) @classmethod def devices(cls): return Shell().exec('adb devices', quiet=True) def check_root(self): if self.unsafe_shell('whoami').out == 'root': self.is_root = True def root(self): self.exec('adb -s "{}" root'.format(self.serial)) self.check_root() def unsafe_shell(self, command, root=False, quiet=False): return self.exec(r'''adb -s "{}" shell "{}{}"'''.format( self.serial, 'su - -c ' if root and not self.is_root else '', command), quiet) def push(self, src, dst): return self.exec('adb -s "{}" push "{}" "{}"'.format(self.serial, src, dst)) def reverse(self, port): return self.exec('adb -s "{0}" reverse tcp:{1} tcp:{1}'.format(self.serial, port)) def clear_reverse(self, remote_port): return self.exec('adb -s "{}" reverse --remove tcp:{}'.format(self.serial, remote_port)) def forward(self, local_port, remote_port): return self.exec('adb -s "{}" forward tcp:{} tcp:{}'.format(self.serial, local_port, remote_port)) def clear_forward(self, local_port): return self.exec('adb -s "{}" forward --remove tcp:{}'.format(self.serial, local_port))
src/platform/weblogic/deployers/webs_deploy.py
0x27/clusterd
539
12758712
<filename>src/platform/weblogic/deployers/webs_deploy.py from src.platform.weblogic.interfaces import WINTERFACES import src.platform.weblogic.deployers.web_deploy as web_deploy versions = ["10", "11", "12"] title = WINTERFACES.WLS def deploy(fingerengine, fingerprint): return web_deploy.deploy(fingerengine, fingerprint)
chainer_/datasets/cifar10_cls_dataset.py
naviocean/imgclsmob
2,649
12758715
<filename>chainer_/datasets/cifar10_cls_dataset.py<gh_stars>1000+ """ CIFAR-10 classification dataset. """ import os import numpy as np from chainer.dataset import DatasetMixin from chainer.datasets.cifar import get_cifar10 from chainercv.transforms import random_crop from chainercv.transforms import random_flip from .dataset_metainfo import DatasetMetaInfo class CIFAR10(DatasetMixin): """ CIFAR-10 image classification dataset. Parameters: ---------- root : str, default '~/.chainer/datasets/cifar10' Path to temp folder for storing data. mode : str, default 'train' 'train', 'val', or 'test'. transform : function, default None A function that takes data and label and transforms them. """ def __init__(self, root=os.path.join("~", ".chainer", "datasets", "cifar10"), mode="train", transform=None): assert (root is not None) self.transform = transform train_ds, test_ds = get_cifar10() self.base = train_ds if mode == "train" else test_ds def __len__(self): return len(self.base) def get_example(self, i): image, label = self.base[i] image = self.transform(image) return image, label class CIFAR10MetaInfo(DatasetMetaInfo): def __init__(self): super(CIFAR10MetaInfo, self).__init__() self.label = "CIFAR10" self.short_label = "cifar" self.root_dir_name = "cifar10" self.dataset_class = CIFAR10 self.num_training_samples = 50000 self.in_channels = 3 self.num_classes = 10 self.input_image_size = (32, 32) self.train_metric_capts = ["Train.Err"] self.train_metric_names = ["Top1Error"] self.train_metric_extra_kwargs = [{"name": "err"}] self.val_metric_capts = ["Val.Err"] self.val_metric_names = ["Top1Error"] self.val_metric_extra_kwargs = [{"name": "err"}] self.saver_acc_ind = 0 self.train_transform = CIFARTrainTransform self.val_transform = CIFARValTransform self.test_transform = CIFARValTransform self.ml_type = "imgcls" class CIFARTrainTransform(object): """ CIFAR-10 training transform. """ def __init__(self, ds_metainfo, mean_rgb=(0.4914, 0.4822, 0.4465), std_rgb=(0.2023, 0.1994, 0.2010)): assert (ds_metainfo is not None) self.mean = np.array(mean_rgb, np.float32)[:, np.newaxis, np.newaxis] self.std = np.array(std_rgb, np.float32)[:, np.newaxis, np.newaxis] def __call__(self, img): img = random_crop(img=img, size=self.resize_value) img = random_flip(img=img, x_random=True) img -= self.mean img /= self.std return img class CIFARValTransform(object): """ CIFAR-10 validation transform. """ def __init__(self, ds_metainfo, mean_rgb=(0.4914, 0.4822, 0.4465), std_rgb=(0.2023, 0.1994, 0.2010)): assert (ds_metainfo is not None) self.mean = np.array(mean_rgb, np.float32)[:, np.newaxis, np.newaxis] self.std = np.array(std_rgb, np.float32)[:, np.newaxis, np.newaxis] def __call__(self, img): img -= self.mean img /= self.std return img
Anaconda-files/Program_19d.py
arvidl/dynamical-systems-with-applications-using-python
106
12758720
# Program 19d: Generalized synchronization. # See Figure 19.8(a). import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint # Constants mu = 5.7 sigma = 16 b = 4 r = 45.92 g = 8 # When g=4, there is no synchronization. tmax = 100 t = np.arange(0.0, tmax, 0.1) def rossler_lorenz_odes(X,t): x1, x2, x3, y1, y2, y3, z1, z2, z3 = X dx1 = -(x2 + x3) dx2 = x1 + 0.2*x2 dx3 = 0.2 + x3 * (x1 - mu) dy1 = sigma * (y2 - y1) - g * (y1 - x1) dy2 = -y1 * y3 + r*y1 - y2 dy3 = y1 * y2 - b*y3 dz1 = sigma * (z2 - z1) - g * (z1 - x1) dz2 = -z1*z3 + r*z1 - z2 dz3 = z1*z2 - b*z3 return (dx1, dx2, dx3, dy1, dy2, dy3, dz1, dz2, dz3) y0 = [2, -10, 44, 30, 10, 20, 31, 11, 22] X = odeint(rossler_lorenz_odes, y0, t, rtol=1e-6) x1, x2, x3, y1, y2, y3, x1, z2, z3 = X.T # unpack columns plt.figure(1) # Delete first 500 iterates. plt.plot(y2[500:len(y2)], z2[500:len(z2)]) plt.xlabel(r'$y_2$', fontsize=15) plt.ylabel(r'$z_2$', fontsize=15) plt.show()
model-optimizer/extensions/front/ATenToEmbeddingBag.py
monroid/openvino
2,406
12758723
<gh_stars>1000+ # Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from extensions.ops.embedding_bag import EmbeddingBagOffsetsSum, EmbeddingBagPackedSum from extensions.ops.rank import Rank from mo.front.common.partial_infer.utils import int64_array from mo.front.common.replacement import FrontReplacementPattern from mo.front.tf.graph_utils import create_op_with_const_inputs from mo.graph.graph import Graph, rename_node from mo.ops.broadcast import Broadcast from mo.ops.concat import Concat from mo.ops.shape import Shape from mo.ops.unsqueeze import Unsqueeze from mo.utils.shape import node_to_get_shape_value_of_indices, get_canonical_axis_index_node, \ get_shape_values_by_indices_node class AtenToEmbeddingBag(FrontReplacementPattern): """ Converts the ATen layer to EmbeddingBag layer. """ enabled = True def find_and_replace_pattern(self, graph: Graph): for node in graph.get_op_nodes(op='ATen', operator='embedding_bag'): assert node.soft_get('mode') == 0, 'ATen::embedding_bag has unsupported mode, only "sum" ' \ 'mode is supported for node {}.'.format(node.id) node_name = node.soft_get('name', node.id) rename_node(node, node_name + '/TBR') is_packed = False if len(node.in_ports()) < 3 or node.in_port(2).disconnected(): is_packed = True embedding_bag = EmbeddingBagPackedSum(graph, {'name': node_name}).create_node() else: embedding_bag = EmbeddingBagOffsetsSum(graph, {'name': node_name}).create_node() node.in_port(2).get_connection().set_destination(embedding_bag.in_port(2)) rename_node(embedding_bag, node_name) node.in_port(0).get_connection().set_destination(embedding_bag.in_port(0)) node.in_port(1).get_connection().set_destination(embedding_bag.in_port(1)) node.out_port(0).get_connection().set_source(embedding_bag.out_port(0)) if len(node.in_ports()) == 4 and not node.in_port(3).disconnected(): if is_packed: node.in_port(3).get_connection().set_destination(embedding_bag.in_port(2)) else: # connect per_sample_weights node.in_port(3).get_connection().set_destination(embedding_bag.in_port(4)) weights_shape_node = Shape(graph, {'name': node_name + '/WeightsShape'}).create_node() weights_rank_node = Rank(graph, {'name': node_name + '/WeightsRank'}).create_node() last_dim_node = get_canonical_axis_index_node(weights_rank_node, -1) weights_last_dim = get_shape_values_by_indices_node(weights_shape_node, last_dim_node) weights_first_dim = node_to_get_shape_value_of_indices(weights_shape_node, [0]) zero_col_node = create_op_with_const_inputs(graph, Broadcast, {0: int64_array([0])}, {'name': node_name + '/Broadcast'}) zero_col_node.in_port(1).connect(weights_last_dim.out_port(0)) default_embeddings_node = create_op_with_const_inputs(graph, Unsqueeze, {1: int64_array(0)}, {'name': node_name + '/Unsqueeze'}) default_embeddings_node.in_port(0).connect(zero_col_node.out_port(0)) # expand embedding table with zeros weights_concat = Concat(graph, {'axis': 0, 'in_ports_count': 2, 'name': node_name + '/Concat'}).create_node() embedding_bag.in_port(0).get_connection().set_destination(weights_concat.in_port(0)) weights_concat.in_port(0).get_connection().add_destination(weights_shape_node.in_port(0)) weights_concat.in_port(0).get_connection().add_destination(weights_rank_node.in_port(0)) weights_concat.in_port(1).connect(default_embeddings_node.out_port(0)) weights_concat.out_port(0).connect(embedding_bag.in_port(0)) # point default index to expanded part of embedding table weights_first_dim.out_port(0).connect(embedding_bag.in_port(3))
fn/stream.py
bmintz/fn.py
2,260
12758737
from sys import version_info if version_info[0] == 2: from sys import maxint else: from sys import maxsize as maxint from itertools import chain from .iters import map, range class Stream(object): __slots__ = ("_last", "_collection", "_origin") class _StreamIterator(object): __slots__ = ("_stream", "_position") def __init__(self, stream): self._stream = stream self._position = -1 # not started yet def __next__(self): # check if elements are available for next position # return next element or raise StopIteration self._position += 1 if (len(self._stream._collection) > self._position or self._stream._fill_to(self._position)): return self._stream._collection[self._position] raise StopIteration() if version_info[0] == 2: next = __next__ def __init__(self, *origin): self._collection = [] self._last = -1 # not started yet self._origin = iter(origin) if origin else [] def __lshift__(self, rvalue): iterator = rvalue() if callable(rvalue) else rvalue self._origin = chain(self._origin, iterator) return self def cursor(self): """Return position of next evaluated element""" return self._last + 1 def _fill_to(self, index): if self._last >= index: return True while self._last < index: try: n = next(self._origin) except StopIteration: return False self._last += 1 self._collection.append(n) return True def __iter__(self): return self._StreamIterator(self) def __getitem__(self, index): if isinstance(index, int): # todo: i'm not sure what to do with negative indices if index < 0: raise TypeError("Invalid argument type") self._fill_to(index) elif isinstance(index, slice): low, high, step = index.indices(maxint) if step == 0: raise ValueError("Step must not be 0") return self.__class__() << map(self.__getitem__, range(low, high, step or 1)) else: raise TypeError("Invalid argument type") return self._collection.__getitem__(index)
tests/classification/dataset_readers/boolq.py
shunk031/allennlp-models
402
12758748
<reponame>shunk031/allennlp-models # -*- coding: utf-8 -*- from allennlp.common.util import ensure_list from allennlp.data.tokenizers import PretrainedTransformerTokenizer from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp_models.classification import BoolQDatasetReader from tests import FIXTURES_ROOT class TestBoolqReader: boolq_path = FIXTURES_ROOT / "classification" / "boolq.jsonl" def test_boolq_dataset_reader_default_setting(self): reader = BoolQDatasetReader() instances = reader.read(self.boolq_path) instances = ensure_list(instances) assert len(instances) == 5 fields = instances[0].fields assert [t.text for t in fields["tokens"].tokens][:5] == [ "Persian", "language", "--", "Persian", "(/ˈpɜːrʒən,", ] assert fields["label"].label == 1 fields = instances[1].fields assert [t.text for t in fields["tokens"].tokens][:5] == [ "Epsom", "railway", "station", "--", "Epsom", ] assert fields["label"].label == 0 def test_boolq_dataset_reader_roberta_setting(self): reader = BoolQDatasetReader( tokenizer=PretrainedTransformerTokenizer("roberta-base", add_special_tokens=False), token_indexers={"tokens": PretrainedTransformerIndexer("roberta-base")}, ) instances = reader.read(self.boolq_path) instances = ensure_list(instances) assert len(instances) == 5 fields = instances[0].fields assert [t.text for t in fields["tokens"].tokens][:5] == [ "<s>", "Pers", "ian", "Ġlanguage", "Ġ--", ] assert [t.text for t in fields["tokens"].tokens][-5:] == [ "Ġspeak", "Ġthe", "Ġsame", "Ġlanguage", "</s>", ] assert fields["label"].label == 1 fields = instances[1].fields assert [t.text for t in fields["tokens"].tokens][:5] == [ "<s>", "E", "ps", "om", "Ġrailway", ] assert [t.text for t in fields["tokens"].tokens][-5:] == [ "Ġe", "ps", "om", "Ġstation", "</s>", ] assert fields["label"].label == 0
benchmarks/django_simple/app.py
p7g/dd-trace-py
308
12758757
<gh_stars>100-1000 import os import django from django.db import connection from django.template import Context from django.template import Template from django.urls import path BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DEBUG = False ROOT_URLCONF = __name__ DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": ":memory:", } } TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [ BASE_DIR, ], } ] SECRET_KEY = ("SECRET",) MIDDLEWARE = ["app.empty_middleware", "app.empty_middleware"] ALLOWED_HOSTS = ["*"] SETTINGS = dict((key, val) for key, val in locals().items() if key.isupper()) def empty_middleware(get_response): def middleware(request): response = get_response(request) return response return middleware def index(request): # render a large table template template = Template( ( "<table>\n" "{% for row in table %}\n" "<tr>{% for col in row %}<td>{{ col|escape }}</td>{% endfor %}</tr>\n" "{% endfor %}\n" "</table>" ) ) table = [range(10) for _ in range(100)] context = Context({"table": table}) template.render(context) # query db for random data for _ in range(10): with connection.cursor() as cursor: cursor.execute( """with recursive cnt( id, x) as ( values(1 , random()) union all select id+1,random() from cnt where id<100) select * from cnt""" ) cursor.fetchall() index = Template( """ <html lang="en"> <head> <meta charset="utf-8"> <title>Django Simple</title> </head> <body> <p>Hello {{name|default:"friend"}}!</p> </body> </html> """ ) return django.http.HttpResponse(index.render(Context({}))) urlpatterns = [path("", index)] if __name__ == "__main__": from django.core import management management.execute_from_command_line()
data/transcoder_evaluation_gfg/python/CHECK_WHETHER_TRIANGLE_VALID_NOT_SIDES_GIVEN.py
mxl1n/CodeGen
241
12758775
<reponame>mxl1n/CodeGen<gh_stars>100-1000 # Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( a , b , c ) : if ( a + b <= c ) or ( a + c <= b ) or ( b + c <= a ) : return False else : return True #TOFILL if __name__ == '__main__': param = [ (29,19,52,), (83,34,49,), (48,14,65,), (59,12,94,), (56,39,22,), (68,85,9,), (63,36,41,), (95,34,37,), (2,90,27,), (11,16,1,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
examples/monthly_budget_mover_example.py
Ressmann/starthinker
138
12758799
<filename>examples/monthly_budget_mover_example.py ########################################################################### # # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### # # This code generated (see scripts folder for possible source): # - Command: "python starthinker_ui/manage.py example" # ########################################################################### import argparse import textwrap from starthinker.util.configuration import Configuration from starthinker.task.dataset.run import dataset from starthinker.task.dbm.run import dbm from starthinker.task.monthly_budget_mover.run import monthly_budget_mover def recipe_monthly_budget_mover(config, recipe_timezone, recipe_name, auth_write, auth_read, partner_id, budget_categories, filter_ids, excluded_ios, version, is_colab, dataset): """Apply the previous month's budget/spend delta to the current month. Aggregate up the budget and spend from the previous month of each category declared then apply the delta of the spend and budget equally to each Line Item under that Category. Args: recipe_timezone (timezone) - Timezone for report dates. recipe_name (string) - Table to write to. auth_write (authentication) - Credentials used for writing data. auth_read (authentication) - Credentials used for reading data. partner_id (integer) - The sdf file types. budget_categories (json) - A dictionary to show which IO Ids go under which Category. {"CATEGORY1":[12345,12345,12345], "CATEGORY2":[12345,12345]} filter_ids (integer_list) - Comma separated list of filter ids for the request. excluded_ios (integer_list) - A comma separated list of Inserion Order Ids that should be exluded from the budget calculations version (choice) - The sdf version to be returned. is_colab (boolean) - Are you running this in Colab? (This will store the files in Colab instead of Bigquery) dataset (string) - Dataset that you would like your output tables to be produced in. """ dataset(config, { 'description':'Create a dataset where data will be combined and transfored for upload.', 'auth':auth_write, 'dataset':dataset }) dbm(config, { 'auth':auth_read, 'report':{ 'timeout':90, 'filters':{ 'FILTER_ADVERTISER':{ 'values':filter_ids } }, 'body':{ 'timezoneCode':recipe_timezone, 'metadata':{ 'title':recipe_name, 'dataRange':'PREVIOUS_MONTH', 'format':'CSV' }, 'params':{ 'type':'TYPE_GENERAL', 'groupBys':[ 'FILTER_ADVERTISER_CURRENCY', 'FILTER_INSERTION_ORDER' ], 'metrics':[ 'METRIC_REVENUE_ADVERTISER' ] } } }, 'delete':False }) monthly_budget_mover(config, { 'auth':'user', 'is_colab':is_colab, 'report_name':recipe_name, 'budget_categories':budget_categories, 'excluded_ios':excluded_ios, 'sdf':{ 'auth':'user', 'version':version, 'partner_id':partner_id, 'file_types':'INSERTION_ORDER', 'filter_type':'FILTER_TYPE_ADVERTISER_ID', 'read':{ 'filter_ids':{ 'single_cell':True, 'values':filter_ids } }, 'time_partitioned_table':False, 'create_single_day_table':False, 'dataset':dataset, 'table_suffix':'' }, 'out_old_sdf':{ 'bigquery':{ 'dataset':dataset, 'table':recipe_name, 'schema':[ ], 'skip_rows':0, 'disposition':'WRITE_TRUNCATE' }, 'file':'/content/old_sdf.csv' }, 'out_new_sdf':{ 'bigquery':{ 'dataset':dataset, 'table':recipe_name, 'schema':[ ], 'skip_rows':0, 'disposition':'WRITE_TRUNCATE' }, 'file':'/content/new_sdf.csv' }, 'out_changes':{ 'bigquery':{ 'dataset':dataset, 'table':recipe_name, 'schema':[ ], 'skip_rows':0, 'disposition':'WRITE_TRUNCATE' }, 'file':'/content/log.csv' } }) if __name__ == "__main__": parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent(""" Apply the previous month's budget/spend delta to the current month. Aggregate up the budget and spend from the previous month of each category declared then apply the delta of the spend and budget equally to each Line Item under that Category. 1. No changes made can be made in DV360 from the start to the end of this process 2. Make sure there is budget information for the current and previous month's IOs in DV360 3. Make sure the provided spend report has spend data for every IO in the previous month 4. Spend report must contain 'Revenue (Adv Currency)' and 'Insertion Order ID' 5. There are no duplicate IO Ids in the categories outlined below 6. This process must be ran during the month of the budget it is updating 7. If you receive a 502 error then you must separate your jobs into two, because there is too much information being pulled in the sdf 8. Manually run this job 9. Once the job has completed go to the table for the new sdf and export to a csv 10. Take the new sdf and upload it into DV360 """)) parser.add_argument("-project", help="Cloud ID of Google Cloud Project.", default=None) parser.add_argument("-key", help="API Key of Google Cloud Project.", default=None) parser.add_argument("-client", help="Path to CLIENT credentials json file.", default=None) parser.add_argument("-user", help="Path to USER credentials json file.", default=None) parser.add_argument("-service", help="Path to SERVICE credentials json file.", default=None) parser.add_argument("-verbose", help="Print all the steps as they happen.", action="store_true") parser.add_argument("-recipe_timezone", help="Timezone for report dates.", default='America/Los_Angeles') parser.add_argument("-recipe_name", help="Table to write to.", default=None) parser.add_argument("-auth_write", help="Credentials used for writing data.", default='service') parser.add_argument("-auth_read", help="Credentials used for reading data.", default='user') parser.add_argument("-partner_id", help="The sdf file types.", default=None) parser.add_argument("-budget_categories", help="A dictionary to show which IO Ids go under which Category. {"CATEGORY1":[12345,12345,12345], "CATEGORY2":[12345,12345]}", default='{}') parser.add_argument("-filter_ids", help="Comma separated list of filter ids for the request.", default=[]) parser.add_argument("-excluded_ios", help="A comma separated list of Inserion Order Ids that should be exluded from the budget calculations", default=None) parser.add_argument("-version", help="The sdf version to be returned.", default='5') parser.add_argument("-is_colab", help="Are you running this in Colab? (This will store the files in Colab instead of Bigquery)", default=True) parser.add_argument("-dataset", help="Dataset that you would like your output tables to be produced in.", default='') args = parser.parse_args() config = Configuration( project=args.project, user=args.user, service=args.service, client=args.client, key=args.key, verbose=args.verbose ) recipe_monthly_budget_mover(config, args.recipe_timezone, args.recipe_name, args.auth_write, args.auth_read, args.partner_id, args.budget_categories, args.filter_ids, args.excluded_ios, args.version, args.is_colab, args.dataset)
tests/test_target.py
iksteen/dpf
133
12758802
import mock import pytest import pwny def test_default_arch_x86(): with mock.patch('platform.machine') as platform_mock: platform_mock.return_value = 'i386' assert pwny.Target().arch is pwny.Target.Arch.x86 def test_default_arch_x86_64(): with mock.patch('platform.machine') as platform_mock: platform_mock.return_value = 'x86_64' assert pwny.Target().arch is pwny.Target.Arch.x86 def test_default_arch_unknown(): with mock.patch('platform.machine') as platform_mock: platform_mock.return_value = 'unknown' assert pwny.Target().arch is pwny.Target.Arch.unknown def test_default_arch_32bit(): with mock.patch('platform.architecture') as platform_mock: platform_mock.return_value = ('32bit',) assert pwny.Target().bits is pwny.Target.Bits.bits_32 def test_default_arch_64bit(): with mock.patch('platform.architecture') as platform_mock: platform_mock.return_value = ('64bit',) assert pwny.Target().bits is pwny.Target.Bits.bits_64 def test_set_arch(): with mock.patch('platform.architecture') as platform_mock: platform_mock.return_value = ('64bit',) target = pwny.Target(arch=pwny.Target.Arch.x86) assert target.arch is pwny.Target.Arch.x86 def test_default_endian(): assert pwny.Target().endian is pwny.Target.Endian.little def test_set_endian(): target = pwny.Target(arch=pwny.Target.Arch.unknown, endian=pwny.Target.Endian.big) assert target.endian is pwny.Target.Endian.big def test_default_bits_x86(): target = pwny.Target(arch=pwny.Target.Arch.x86) assert target.bits == 32 @pytest.mark.xfail(raises=NotImplementedError) def test_default_bits_unsupported(): target = pwny.Target(arch=pwny.Target.Arch.unknown) _ = target.bits def test_set__bits(): target = pwny.Target(arch=pwny.Target.Arch.x86, bits=64) assert target.bits == 64 @pytest.mark.xfail(raises=ValueError) def test_set_invalid_bits(): pwny.Target(bits=33) def test_target_assume(): target = pwny.Target() target.assume(pwny.Target(arch=pwny.Target.Arch.arm, endian=pwny.Target.Endian.little, bits=64, mode=2)) assert target.arch is pwny.Target.Arch.arm and \ target.endian == pwny.Target.Endian.little and \ target.bits == 64 and \ target.mode == 2
src/whylogs/features/__init__.py
cswarth/whylogs
603
12758803
<filename>src/whylogs/features/__init__.py _IMAGE_FEATURES = ["Hue", "Brightness", "Saturation"]
src/encoded/tests/fixtures/schemas/award.py
procha2/encoded
102
12758813
import pytest @pytest.fixture def ENCODE3_award(testapp): item = { 'name': 'ABC1234', 'rfa': 'ENCODE3', 'project': 'ENCODE', 'title': 'A Generic ENCODE3 Award' } return testapp.post_json('/award', item, status=201).json['@graph'][0] @pytest.fixture def award_a(): return{ 'name': 'ENCODE2', } @pytest.fixture def award_1(award_a): item = award_a.copy() item.update({ 'schema_version': '1', 'rfa': "ENCODE2" }) return item @pytest.fixture def award_2(award_1): item = award_1.copy() item.update({ 'schema_version': '3', 'viewing_group': 'ENCODE', }) return item @pytest.fixture def award_5(award_2): item = award_2.copy() item.update({ 'schema_version': '6', 'viewing_group': 'ENCODE', }) return item @pytest.fixture def award(testapp): item = { 'name': 'encode3-award', 'rfa': 'ENCODE3', 'project': 'ENCODE', 'title': 'A Generic ENCODE3 Award', 'viewing_group': 'ENCODE3', } return testapp.post_json('/award', item).json['@graph'][0] @pytest.fixture def award_modERN(testapp): item = { 'name': 'modERN-award', 'rfa': 'modERN', 'project': 'modERN', 'title': 'A Generic modERN Award', 'viewing_group': 'ENCODE3', } return testapp.post_json('/award', item).json['@graph'][0] @pytest.fixture def remc_award(testapp): item = { 'name': 'remc-award', 'rfa': 'GGR', 'project': 'GGR', 'title': 'A Generic REMC Award', 'viewing_group': 'REMC', } return testapp.post_json('/award', item).json['@graph'][0] @pytest.fixture def encode2_award(testapp): item = { # upgrade/shared.py ENCODE2_AWARDS 'uuid': '1a4d6443-8e29-4b4a-99dd-f93e72d42418', 'name': 'encode2-award', 'rfa': 'ENCODE2', 'project': 'ENCODE', 'title': 'A Generic ENCODE2 Award', 'viewing_group': 'ENCODE3', } return testapp.post_json('/award', item).json['@graph'][0] @pytest.fixture def encode4_award(testapp): item = { 'name': 'encode4-award', 'rfa': 'ENCODE4', 'project': 'ENCODE', 'title': 'A Generic ENCODE4 Award', 'viewing_group': 'ENCODE4', 'component': 'mapping', } return testapp.post_json('/award', item).json['@graph'][0] @pytest.fixture def award_encode4(testapp): item = { 'name': 'encode4-award', 'rfa': 'ENCODE4', 'project': 'ENCODE', 'title': 'A Generic ENCODE4 Award', 'viewing_group': 'ENCODE4', } return testapp.post_json('/award', item).json['@graph'][0] @pytest.fixture def roadmap_award(testapp): item = { 'name': 'roadmap-award', 'rfa': 'Roadmap', 'project': 'Roadmap', 'title': 'A Generic Roadmap Award', 'viewing_group': 'REMC', } return testapp.post_json('/award', item).json['@graph'][0] @pytest.fixture def award_8(award_1): item = award_1.copy() item.update({ 'schema_version': '8', 'viewing_group': 'ENCODE', }) return item
digits/model/tasks/test_caffe_train.py
PhysicsTeacher13/Digits-NVIDIA
111
12758827
# Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from digits import test_utils def test_caffe_imports(): test_utils.skipIfNotFramework('caffe') import numpy # noqa import google.protobuf # noqa
server/server.py
cattlepi/cattlepi
257
12758837
<reponame>cattlepi/cattlepi<filename>server/server.py<gh_stars>100-1000 import falcon import json import os import hashlib class ServerUtils(object): @staticmethod def get_file_location(filename): dirname = os.path.dirname(__file__) relpath = os.path.join(dirname, '../builder/latest/output', filename) return os.path.abspath(relpath) @staticmethod def get_file_dir(filename): return os.path.dirname(ServerUtils.get_file_location(filename)) @staticmethod def get_my_rsa_key(): path_to_key = os.path.join(os.environ['HOME'], '.ssh/id_rsa.pub') return open(path_to_key).read().strip() class DeviceConfigResource(object): def md5(self, fname): hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def get_filedescriptor(self, filename): return { 'url': "http://%s/images/global/%s" % (os.environ['CATTLEPI_LOCALAPI'], filename), 'md5sum': self.md5(ServerUtils.get_file_location(filename)) } def on_get(self, req, resp, deviceid): resp.status = falcon.HTTP_200 body = { 'initfs': self.get_filedescriptor('initramfs.tgz'), 'rootfs': self.get_filedescriptor('rootfs.sqsh'), 'bootcode': '', 'usercode': '', 'config': { 'ssh': { 'pi': { 'authorized_keys': [ ServerUtils.get_my_rsa_key() ] } } } } resp.body = json.dumps(body) class TrackAllResource(object): def on_get(self, req, resp): resp.status = falcon.HTTP_200 resp.body = "Ok: dummy response" class TrackResource(object): def on_get(self, req, resp): resp.status = falcon.HTTP_200 resp.body = "Ok: dummy response" app = falcon.API() app.add_route('/boot/{deviceid}/config', DeviceConfigResource()) app.add_route('/track', TrackAllResource()) app.add_route('/track/{deviceid}', TrackResource()) app.add_static_route('/images/global', ServerUtils.get_file_dir('initramfs.tgz'))
src/0064.minimum-path-sum/minimum-path-sum.py
lyphui/Just-Code
782
12758838
<filename>src/0064.minimum-path-sum/minimum-path-sum.py class Solution: def minPathSum(self, grid: List[List[int]]) -> int: m, n = len(grid), len(grid[0]) dp = grid[0][:] for i in range(1, n): dp[i] += dp[i-1] for i in range(1, m): for j in range(n): if j > 0: dp[j] = grid[i][j] + min(dp[j], dp[j-1]) else: dp[j] = grid[i][j] + dp[j] return dp[-1]
scripts/standalone_blob_server.py
nishp77/lbry-sdk
4,996
12758848
<filename>scripts/standalone_blob_server.py<gh_stars>1000+ import sys import os import asyncio from lbry.blob.blob_manager import BlobManager from lbry.blob_exchange.server import BlobServer from lbry.schema.address import decode_address from lbry.extras.daemon.storage import SQLiteStorage async def main(address: str): try: decode_address(address) except: print(f"'{address}' is not a valid lbrycrd address") return 1 loop = asyncio.get_running_loop() storage = SQLiteStorage(os.path.expanduser("~/.lbrynet/lbrynet.sqlite")) await storage.open() blob_manager = BlobManager(loop, os.path.expanduser("~/.lbrynet/blobfiles"), storage) await blob_manager.setup() server = await loop.create_server( lambda: BlobServer(loop, blob_manager, address), '0.0.0.0', 4444) try: async with server: await server.serve_forever() finally: await storage.close() if __name__ == "__main__": asyncio.run(main(sys.argv[1]))
orbitdeterminator/doppler/utils/utils.py
DewanshiDewan/orbitdeterminator
158
12758851
<reponame>DewanshiDewan/orbitdeterminator<filename>orbitdeterminator/doppler/utils/utils.py import numpy as np from scipy.integrate import odeint # Orbit propagation from scipy.optimize import fsolve # For solving TDoA from sgp4.api import Satrec from astropy import units as u from astropy.time import Time from astropy.coordinates import EarthLocation, ITRS, ICRS, TEME, CartesianDifferential, CartesianRepresentation from orbitdeterminator.doppler.utils.constants import * def range_range_rate(x_sat:np.ndarray, x_obs:np.ndarray): """ Get range and slant range rate (radial relative velocity component). Vectorized. Args: x_sat (np.ndarray): satellite location (pos, vel). x_obs (np.ndarray): observer location (pos, vel). Returns: r (np.ndarray): range. rr (np.ndarray): range rate (slant range rate). """ if len(x_obs.shape) == 2: # Single observer (6, n) einsum_format = 'ij,ij->j' d = x_sat - x_obs # Difference elif len(x_obs.shape) == 3: # Multiple observers (6,n,n_obs) einsum_format = 'ijk,ijk->jk' d = np.repeat(np.expand_dims(x_sat, axis = 2), x_obs.shape[2], axis = 2) - x_obs # Difference #d = x_sat - x_obs # Difference r = np.linalg.norm(d[0:3,], axis=0) # Range l = d[0:3,] / np.linalg.norm(d[0:3,], axis=0) # Range unit vectors rr = np.einsum(einsum_format, d[3:6,], l) # Radial range rate return r.T, rr.T def doppler_shift(x_sat:np.ndarray, x_obs:np.ndarray, f_ref:float, c:float): """ Get Doppler shift value for the give satellite and observer vectors. Vectorized. Args: x_sat (np.ndarray): satellite location (pos, vel). x_obs (np.ndarray): observer location (pos, vel). f_ref (float): reference frequency. c (float): propagation speed. Returns: df (np.ndarray): frequency shift relative to reference frequenct df """ _, rv = range_range_rate(x_sat, x_obs) df = rv / c * f_ref return df # Orbit derivative def orbdyn_2body(x:np.ndarray, t:float, mu:float=3.986004418e14): """ Orbital (x,y,z,x_dot,y_dot,z_dot) vector derivative Args: x (np.ndarray): state vector. t (float): time. Returns: dxdt (np.ndarray): state vector time derivative. """ r = np.linalg.norm(x[0:3,], axis=0) dxdt = np.zeros(x.shape) dxdt[0:3,] = x[3:6,] dxdt[3:6,] = -(mu/r**3) * x[0:3,] return dxdt def orbdyn_2body_stm(x:np.ndarray, t:float, mu:float=3.986004418e14): """ Orbital (x,y,z,x_dot,y_dot,z_dot) vector and matrix derivative. Phi_dot = A * Phi. Args: x (np.ndarray): state vector and flattened state transition matrix [x, Phi(:)] Size: (6+6*6,): (42,). t (float): time. Returns: dxdt (np.ndarray): state vector and state transition matrix time derivative. """ dxdt = np.zeros(x.shape) r = np.linalg.norm(x[0:3,], axis=0) dxdt[0:3,] = x[3:6,] dxdt[3:6,] = (-mu / r**3) * x[0:3,] A = get_matrix_A(x[0:3,], mu=mu) # (6,6,n) if len(x.shape) == 1: Phi = x[6:,].reshape((6, 6)) # (6,6) Phi_dot = np.matmul(A, Phi) dxdt[6:,] = Phi_dot.reshape((36)) else: Phi = x[6:,].reshape((6, 6, -1)) # (6,6,n) Phi_dot = np.einsum('ijl,jkl->ikl', A, Phi) dxdt[6:,] = Phi_dot.reshape((36, -1)) return dxdt def get_matrix_A(x:np.ndarray, mu:float=3.986004418e14): """ Get A matrix (orbital x_dot = A*x). Vectorized. Args: x (np.ndarray): orbital state vector (Cartesian). mu (np.ndarray): standard gravitational parameter. Defaults to 3.98e14 m^3/s^2. Returns: A (np.ndarray): A matrix. Size (x_dim, x_dim): (6,6). """ r = np.linalg.norm(x[0:3,], axis=0) aa = -mu / r**3 b = 3 * mu / r**5 AA = np.array([ [aa + b*x[0,]**2, b*x[0,]*x[1,], b*x[0,]*x[2,]], [b*x[0,]*x[1,], aa + b*x[1,]**2, b*x[1,]*x[2,]], [b*x[0,]*x[2,], b*x[1,]*x[2,], aa + b*x[2,]**2,] ]) A_z = np.zeros(AA.shape) # Zero parts for A matrix A_e = np.zeros(AA.shape) # Eye (upper right) i = np.arange(AA.shape[0]) A_e[i, i, ] = 1 A = np.concatenate([ np.concatenate([A_z, A_e], axis=1), np.concatenate([AA, A_z], axis=1) ], axis=0) return A def f_obs_range_rate(x_sat:np.ndarray, x_obs:np.ndarray): """ Observation function for range rate. Args: x_sat (np.ndarray): set of satellite positions. x_obs (np.ndarray): set of observer positions. Returns: rr (np.ndarray): range rate. Size (z_dim, n): (1, n) H (np.ndarray): Partial of radial range rate w.r.t state vector. Size (z_dim, x_dim, n): (1, 6, n). """ _, rr = range_range_rate(x_sat, x_obs) H = get_matrix_range_rate_H(x_sat, x_obs) if len(x_obs.shape) == 2: rr = np.expand_dims(rr, axis=0) return rr, H def f_obs_x_sat(x_sat:np.ndarray, x_obs:np.ndarray=None): """ Observation function for full state vector. E.g. GPS measurement Used for debugging. Args: x_sat (np.ndarray): set of satellite positions. Returns: x_sat (np.ndarray): satellite state vector. H (np.ndarray): observation matrix (identity). """ H = np.expand_dims(np.eye(x_sat.shape[0]), axis=2) H = np.repeat(H, x_sat.shape[1], axis=2) return x_sat, H def get_matrix_range_rate_H(x_sat:np.ndarray, x_obs:np.ndarray): """ Obtain measurement Jacobian for range rate measurements. Vectorized. Args: x_sat (np.ndarray): set of satellite positions. x_obs (np.ndarray): set of observer positions. Returns: H (np.ndarray): Partial of radial range rate w.r.t state vector. Size (z_dim, x_dim, n): (1, 6, n). """ if len(x_obs.shape) == 2: # Single observer (6, n) einsum_format = 'ij,ij->j' d = x_sat - x_obs # Difference elif len(x_obs.shape) == 3: # Multiple observers (6,n,n_obs) einsum_format = 'ijk,ijk->jk' d = np.repeat(np.expand_dims(x_sat, axis = 2), x_obs.shape[2], axis = 2) - x_obs # Difference #d = x_sat - x_obs # Difference r = np.linalg.norm(d[0:3,], axis=0) # Range d_r = d / r # Temporary variable H = d_r[[3,4,5,0,1,2],] r_dot_v = np.einsum(einsum_format, d[0:3,], d[3:6]) # Dot product position, velocity H[0:3,:] -= (d[0:3,] * r_dot_v) / r**3 if len(x_obs.shape) == 2: # Single observer (6, n) H = np.expand_dims(H, axis=0) elif len(x_obs.shape) == 3: # Multiple observers (6,n,n_obs) H = np.transpose(H, (2, 0, 1)) return H # Transpose before return (H is a single row matrix) def tdoa_objective_function(vars, *data): """ Objective function for solving Time Differential of Arrival (TDoA). 0 = C * (TDoA + tau) - || x_sat-x_obs || Args: vars (tuple): a tuple of unknowns - xyz satellite position and time offset (x, y, z, t) data (tuple): additional arguments - observer positions and TDoA measurements (x_obs, tdoa) Returns: (tuple): tuple of objective function values """ x, y, z, tau = vars x_sat = np.array([[x], [y], [z]], dtype=np.float64) x_obs, tdoa = data r = C*(tdoa + tau) - np.linalg.norm(x_obs - x_sat, axis=0) return (r.item(0), r.item(1), r.item(2), r.item(3)) def get_tdoa_simulated(x_sat:np.ndarray, x_obs:np.ndarray, flag_tof:bool=False): """ Get simulated Time Differential of Arrival measurements. TODO: Take into account time of flight, right now it is instantaneous. TODO: Flip range and tdoa arrays dimensions to be (n_measurements, n_stations) Args: x_sat (np.ndarray): set of satellite state vectors. x_obs (np.ndarray): set of observer positions. tof (bool): flag whether to simulate using time of flight (not currently implemented). Returns: tdoa (np.ndarray): set of simulated TDoA measurements. tof (np.ndarray): set of simulate time of flights between the observer and the satellite. """ if flag_tof: assert False, "Time of flight not implemented!" else: r, _ = range_range_rate(x_sat, x_obs) tof = r / C tdoa = tof - tof[0,:] return tdoa, tof def get_tdoa_simulated_r(r:np.ndarray): """ Same as get_tdoa_simulated_r, but only range as argument. TODO: Flip range and tdoa arrays dimensions to be (n_measurements, n_stations) Args: range(np.ndarray): set of observed ranges per station (n_stations, n_measurements). Returns: tdoa (np.ndarray): set of simulated TDoA measurements. tof (np.ndarray): set of simulate time of flights between the observer and the satellite. """ tof = r / C tdoa = tof - tof[0,:] return tdoa, tof def solve_tdoa(tdoa:np.ndarray, x_obs:np.ndarray): """ Function to solve Time Differential of Arrival (TDoA) measurements. Args: tdoa (np.ndarray): array of TDoA measurements. TODO: Array dimensions. TDoA array must include time differential for the reference station even being zero. x_obs (np.ndarray): array of observer positions (6, n, n_obs). Returns: p_sat (np.ndarray): array of multilaterated satellite positions. tau (np.ndarray): array of time offsets for reference station """ n = x_obs.shape[1] p_sat = np.zeros((3, n)) tau = np.zeros(n) x_obs_mean = np.mean(x_obs, axis=2) for i in range(n): vars_0 = [x_obs_mean[0,i]*1.01, x_obs_mean[1,i]*1.01, x_obs_mean[2,i]*1.01, 5e-3] data = (x_obs[0:3, i, :], tdoa[:, i]) result = fsolve(tdoa_objective_function, vars_0, args=data) p_sat[:,i] = result[0:3] tau[i] = result[3] return p_sat, tau def verify_sat_orbital(x_sat:np.ndarray, range_pos:np.ndarray, range_vel:np.ndarray): """ Verifies whether given state vectors represent a valid orbital state. This function is used to eliminate possible states that violate orbital constraints. Args: x_sat (np.ndarray): set of satellite positions. range_r (np.ndarray): set of valid position vector norms. range_v (np.ndarray): set of valid velocity vector norms. Returns: x_sat_ok (np.ndarray): set of satellite positions. x_mask (np.ndarray): boolean array indicating the validity of satellite vector. """ r = np.linalg.norm(x_sat[0:3,], axis=0) # Norm of the position v = np.linalg.norm(x_sat[3:6,], axis=0) # Norm of the velocity r_mask = (r >= range_pos[0]) & (r <= range_pos[1]) v_mask = (v >= range_vel[0]) & (v <= range_vel[1]) x_mask = r_mask & v_mask # x_mask = np.logical_and.reduce(r >= range_pos[0], r <= range_pos[1], # v >= range_vel[0], v <= range_vel[1]) x_sat_ok = x_sat[:,x_mask] return x_sat_ok, x_mask def verify_sat_observer(x_sat:np.ndarray, x_obs:np.ndarray, range_range:np.ndarray): """ Verifies whether the satellite is within the valid range from the observer. This function is used to eliminate possible states that violate satellite-observer constraints. Args: x_sat (np.ndarray): set of satellite positions. x_obs (np.ndarray): set of observer positions. Returns: x_sat_ok (np.ndarray): set of satellite positions. x_mask (np.ndarray): boolean array indicating the validity of satellite vector. """ r, _ = range_range_rate(x_sat, x_obs) x_mask = (r >= range_range[0]) & (r <= range_range[1]) x_sat_ok = x_sat[:,x_mask] return x_sat_ok, x_mask def herrick_gibbs(p_sat:np.ndarray, t:np.ndarray, angle_checks=True): """ Herrick-Gibbs Initial Orbit Determination Method. Takes three positional observations and corresponding timesteps and outpus full state vector estimate (position and velocity) for the middle measurement. Reference: <NAME> - Fundamentals of Astrodynamics and Applications, 4th ed., p.461, 7.5.2 Herrick-Gibbs Args: p_sat (np.ndarray): set of satellite positions. Three close positions are required for the method to work. t (np.ndarray): observation times angle_checks (bool): flag whether on not to perform angle checks between position vectors Returns: x_2 (np.ndarray): estimated satellite state (position + velocity for the second observation) """ #print(f"Herrick-Gibbs") error = None tolerance_angle = 10.0/180.0*np.pi r = np.linalg.norm(p_sat, axis=0) # Magnitude of the observed positions # Sanity checks #angle_checks = True if angle_checks: p = np.cross(p_sat[:,1], p_sat[:,2]) p_n = p / np.linalg.norm(p) x_sat_1n = p_sat[:,0] / r[0] #copa = np.arcsin(np.dot(p_n, x_sat_1n)) # Variable unused in original code # Check whether the vectors are coplanar if np.abs(np.dot(x_sat_1n, p_n)) > tolerance_angle: error = f"Error: not coplanar {np.abs(np.dot(x_sat_1n, p_n))} > {tolerance_angle}" # Calculate angle between vectors theta_01 = np.arccos(np.dot(p_sat[:,0], p_sat[:,1]) / (np.linalg.norm(p_sat[:,0])*np.linalg.norm(p_sat[:,1]))) theta_12 = np.arccos(np.dot(p_sat[:,1], p_sat[:,2]) / (np.linalg.norm(p_sat[:,1])*np.linalg.norm(p_sat[:,2]))) if min(theta_01, theta_12) > tolerance_angle: error = f"Error: angles {min(theta_01, theta_12)} > {tolerance_angle}" # Herrick-Gibbs Initial Orbit Determination dt_10, dt_20, dt_21 = t[1]-t[0], t[2]-t[0], t[2]-t[1] term = np.array([ -dt_21 * (1.0/(dt_10*dt_20)) + MU/(12.0*r[0]**3), (dt_21-dt_10) * (1.0/(dt_10*dt_21)) + MU/(12.0*r[1]**3), dt_10 * (1.0/(dt_21*dt_20)) + MU/(12.0*r[2]**3), ]) #v_sat_1 = term[0]*p_sat[:,0] + term[1]*p_sat[:,1] + term[2]*p_sat[:,2] v_sat_1 = np.sum(term*p_sat, axis=1) x_sat_1 = np.concatenate([p_sat[:,1], v_sat_1]) return x_sat_1, error def batch( x_0: np.ndarray, P_bar_0: np.ndarray, R: np.ndarray, z: np.ndarray, t: np.ndarray, x_obs: np.ndarray, f_obs, tolerance: float = 1e-8, max_iterations: int = 1000 ): """ Batch estimation algorithm. Reference: <NAME>, <NAME>, <NAME> - Statistical Orbit Determination, Chapter 4.6, p. 196-197 - Computational Algorithm for the Batch Processor. Args: x_0 (np.ndarray): Initial state vector, shape (x_dim, 1). P_bar_0 (np.ndarray): Initial uncertainty, shape (x_dim, x_dim). R (np.ndarray): Measurement uncertainty, shape (z_dim, z_dim). z (np.ndarray): Array of measurements, shape (z_dim, n). t (np.ndarray): Array of time deltas, shape (n,). x_obs (np.ndarray): Array of observer positions (x_dim, n). f_obs (): observation function. tolerance (float): convergence tolerance. Return: x_0 (np.ndarray): new estimate for the initial state vector. """ n = z.shape[1] Phi_0 = np.eye(x_0.shape[0]) # Initial State Transition Matrix x_hat_0 = np.zeros(x_0.shape) # Nominal trajectory update x_bar_0 = np.zeros(x_0.shape) # Apriori estimate W = np.linalg.inv(R) W_vec = np.repeat(np.expand_dims(W, axis=2), n, axis=2) error = 1 i = 0 singular = False while(np.abs(error) > tolerance and i < max_iterations): i += 1 # Check if initial uncertainty has been set up if np.count_nonzero(P_bar_0) == 0: L = np.zeros(x_0.shape[0], x_0.shape[0]) else: L = np.linalg.inv(P_bar_0) N = L.dot(x_bar_0) # Propagate, flatten the stm and append to the state vector x_Phi = np.transpose(odeint(orbdyn_2body_stm, np.concatenate([x_0.squeeze(), Phi_0.flatten()]), t, args=(MU,))) X = x_Phi[0:6,] Phi = x_Phi[6:,].reshape((x_0.shape[0], x_0.shape[0], t.shape[0])) # Calculate projected observations (projected measurements and H_tilde) y, H_t = f_obs(X, x_obs) dy = np.expand_dims(z - y, axis=1) # Calculate H H_k = np.einsum('ijl,jkl->ikl', H_t, Phi) H_kt = np.transpose(H_k, axes=(1,0,2)) # Batch update L += np.einsum('ijl,jkl,kml->im', H_kt, W_vec, H_k) N += np.einsum('ijl,jkl,kml->im', H_kt, W_vec, dy) temp = np.copy(x_hat_0) try: x_hat_0 = np.linalg.inv(L).dot(N) except np.linalg.LinAlgError: print("Singular matrix exception.") singular = True break x_0 += + x_hat_0 x_bar_0 -= x_hat_0 error = np.abs(np.linalg.norm(temp - x_hat_0)) np.set_printoptions(precision=2) output = {'num_it': i, 'singular': singular} return x_0, output
regtests/typed/float32vec.py
ahakingdom/Rusthon
622
12758866
"""simd float32vec""" def get_data(): return [1.9, 1.8, 1.7, 0.6, 0.99,0.88,0.77,0.66] def main(): ## the translator knows this is a float32vec because there are more than 4 elements x = y = z = w = 22/7 a = numpy.array( [1.1, 1.2, 1.3, 0.4, x,y,z,w], dtype=numpy.float32 ) ## in this case the translator is not sure what the length of `u` is, so it defaults ## to using a float32vec. u = get_data() b = numpy.array( u, dtype=numpy.float32 ) c = a + b print(c) TestError( c[0]==3.0 ) TestError( c[1]==3.0 ) TestError( c[2]==3.0 ) TestError( c[3]==1.0 )
test/onnx/test_pytorch_onnx_onnxruntime.py
jsun94/nimble
206
12758876
<gh_stars>100-1000 import unittest import onnxruntime # noqa import torch import numpy as np import io import itertools import copy from torch.nn.utils import rnn as rnn_utils from model_defs.lstm_flattening_result import LstmFlatteningResult from model_defs.rnn_model_with_packed_sequence import RnnModelWithPackedSequence from test_pytorch_common import (skipIfUnsupportedMinOpsetVersion, disableScriptTest, skipIfUnsupportedOpsetVersion, skipIfNoLapack, skipIfUnsupportedMaxOpsetVersion, skipIfONNXShapeInference) from test_pytorch_common import BATCH_SIZE from test_pytorch_common import RNN_BATCH_SIZE, RNN_SEQUENCE_LENGTH, RNN_INPUT_SIZE, RNN_HIDDEN_SIZE from typing import List import model_defs.word_language_model as word_language_model import torchvision import onnx def to_numpy(tensor): if tensor.requires_grad: return tensor.detach().cpu().numpy() else: return tensor.cpu().numpy() def convert_to_onnx(model, input=None, opset_version=9, example_outputs=None, do_constant_folding=True, keep_initializers_as_inputs=True, dynamic_axes=None, input_names=None, output_names=None, fixed_batch_size=False, training=None, onnx_shape_inference=False, use_new_jit_passes=False): # export the model to ONNX f = io.BytesIO() input_copy = copy.deepcopy(input) torch.onnx._export(model, input_copy, f, opset_version=opset_version, example_outputs=example_outputs, do_constant_folding=do_constant_folding, keep_initializers_as_inputs=keep_initializers_as_inputs, dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names, fixed_batch_size=fixed_batch_size, training=training, onnx_shape_inference=onnx_shape_inference, use_new_jit_passes=use_new_jit_passes) # compute onnxruntime output prediction ort_sess = onnxruntime.InferenceSession(f.getvalue()) return ort_sess def run_ort(ort_sess, input): input_copy = copy.deepcopy(input) input, _ = torch.jit._flatten(input_copy) inputs = list(map(to_numpy, input)) ort_inputs = dict((ort_sess.get_inputs()[i].name, input) for i, input in enumerate(inputs)) ort_outs = ort_sess.run(None, ort_inputs) return ort_outs def ort_compare_with_pytorch(ort_outs, output, rtol, atol): output, _ = torch.jit._flatten(output) outputs = list(map(to_numpy, output)) # compare onnxruntime and PyTorch results assert len(outputs) == len(ort_outs), "number of outputs differ" # compare onnxruntime and PyTorch results [np.testing.assert_allclose(out, ort_out, rtol=rtol, atol=atol) for out, ort_out in zip(outputs, ort_outs)] def run_model_test(self, model, batch_size=2, state_dict=None, input=None, use_gpu=True, rtol=0.001, atol=1e-7, example_outputs=None, do_constant_folding=True, dynamic_axes=None, test_with_inputs=None, input_names=None, output_names=None, fixed_batch_size=False): model.eval() if input is None: input = torch.randn(batch_size, 3, 224, 224, requires_grad=True) with torch.no_grad(): if isinstance(input, torch.Tensor): input = (input,) # In-place operators will update input tensor data as well. # Thus inputs are replicated before every forward call. input_copy = copy.deepcopy(input) output = model(*input_copy) if isinstance(output, torch.Tensor): output = (output,) ort_sess = convert_to_onnx(model, input=input, opset_version=self.opset_version, example_outputs=output, do_constant_folding=do_constant_folding, keep_initializers_as_inputs=self.keep_initializers_as_inputs, dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names, fixed_batch_size=fixed_batch_size, training=None, onnx_shape_inference=self.onnx_shape_inference, use_new_jit_passes=self.use_new_jit_passes) ort_outs = run_ort(ort_sess, input) ort_compare_with_pytorch(ort_outs, output, rtol, atol) # if additional test inputs are provided run the onnx # model with these inputs and check the outputs if test_with_inputs is not None: for test_input in test_with_inputs: if isinstance(test_input, torch.Tensor): test_input = (test_input,) test_input_copy = copy.deepcopy(test_input) output = model(*test_input_copy) if isinstance(output, torch.Tensor): output = (output,) ort_outs = run_ort(ort_sess, test_input) ort_compare_with_pytorch(ort_outs, output, rtol, atol) class TestONNXRuntime(unittest.TestCase): from torch.onnx.symbolic_helper import _export_onnx_opset_version opset_version = _export_onnx_opset_version keep_initializers_as_inputs = True # For IR version 3 type export. use_new_jit_passes = False # For testing main code-path onnx_shape_inference = False def setUp(self): torch.manual_seed(0) onnxruntime.set_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) np.random.seed(seed=0) self.is_script_test_enabled = True def run_test(self, model, input, rtol=1e-3, atol=1e-7, do_constant_folding=True, batch_size=2, use_gpu=True, dynamic_axes=None, test_with_inputs=None, input_names=None, output_names=None, fixed_batch_size=False): def _run_test(m): return run_model_test(self, m, batch_size=batch_size, input=input, use_gpu=use_gpu, rtol=rtol, atol=atol, do_constant_folding=do_constant_folding, dynamic_axes=dynamic_axes, test_with_inputs=test_with_inputs, input_names=input_names, output_names=output_names, fixed_batch_size=fixed_batch_size) if self.is_script_test_enabled and self.use_new_jit_passes: script_model = torch.jit.script(model) _run_test(script_model) _run_test(model) def run_model_test_with_external_data(self, model, input, rtol=0.001, atol=1e-7, example_outputs=None, do_constant_folding=True, dynamic_axes=None, input_names=None, output_names=None, ort_optim_on=True): import os import tempfile model.eval() with torch.no_grad(): if isinstance(input, torch.Tensor): input = (input,) # In-place operators will update input tensor data as well. # Thus inputs are replicated before every forward call. input_copy = copy.deepcopy(input) output = model(*input_copy) if isinstance(output, torch.Tensor): output = (output,) # export the model to ONNX with tempfile.TemporaryDirectory() as tmpdirname: model_file_name = os.path.join(tmpdirname, 'model.onnx') input_copy = copy.deepcopy(input) torch.onnx.export(model, input_copy, model_file_name, opset_version=self.opset_version, example_outputs=output, verbose=False, do_constant_folding=do_constant_folding, keep_initializers_as_inputs=self.keep_initializers_as_inputs, dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names, use_external_data_format=True) # compute onnxruntime output prediction ort_sess_opt = onnxruntime.SessionOptions() ort_sess_opt.graph_optimization_level = \ onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED if ort_optim_on else \ onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL ort_sess = onnxruntime.InferenceSession(model_file_name, sess_options=ort_sess_opt) input_copy = copy.deepcopy(input) ort_outs = run_ort(ort_sess, input_copy) ort_compare_with_pytorch(ort_outs, output, rtol, atol) @skipIfUnsupportedMinOpsetVersion(9) # Because external data format was released with Opset 9. def test_embedding_model_with_external_data(self): class LargeModel(torch.nn.Module): def __init__(self): super(LargeModel, self).__init__() dim = 15 n = 4 * 100 self.emb = torch.nn.Embedding(n, dim) self.lin1 = torch.nn.Linear(dim, 1) self.seq = torch.nn.Sequential( self.emb, self.lin1, ) def forward(self, input): return self.seq(input) model = LargeModel() x = torch.tensor([2], dtype=torch.long) self.run_model_test_with_external_data(model, x) @skipIfUnsupportedMinOpsetVersion(9) # Because external data format was released with Opset 9. def test_mobilenet_v2_with_external_data(self): model = torchvision.models.mobilenet_v2(pretrained=True) x = torch.randn(2, 3, 224, 224, requires_grad=True) # We are turning off Onnx Runtime optimization off in this test, # because external data format is not supported to in ORT optimizer. # Once that support is added, we can set ort_optim_on=True (default). self.run_model_test_with_external_data(model, x, rtol=1e-3, atol=1e-5, ort_optim_on=False) @skipIfUnsupportedMinOpsetVersion(9) # Because external data format was released with Opset 9. def test_attribute_with_external_data(self): class LargeModel(torch.nn.Module): def forward(self, x): return x + torch.ones(2, 1024) x = torch.randn(2, 1) self.run_model_test_with_external_data(LargeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) # Because external data format was released with Opset 9. @unittest.skip("Enable this once large model with subgraph is supported in ORT") def test_subgraph_with_external_data(self): class LargeModel(torch.nn.Module): def forward(self, x): for i in range(x.size(0)): x = x + torch.ones(2, 1024) return x x = torch.randn(2, 1) self.run_model_test_with_external_data(torch.jit.script(LargeModel()), x) def test_fuse_conv_bn1d(self): class Fuse(torch.nn.Module): def __init__(self): super(Fuse, self).__init__() self.conv = torch.nn.Conv1d(16, 33, 3, stride=2) self.bn = torch.nn.BatchNorm1d(33) def forward(self, x): out = self.conv(x) return self.bn(out) model = Fuse() x = torch.randn(20, 16, 50, requires_grad=True) self.run_test(model, (x,)) def test_fuse_conv_bn2d(self): class Fuse(torch.nn.Module): def __init__(self): super(Fuse, self).__init__() self.conv = torch.nn.Conv2d(3, 2, kernel_size=1, stride=2, padding=3, bias=False) self.bn = torch.nn.BatchNorm2d(2) def forward(self, x): out = self.conv(x) return self.bn(out) model = Fuse() x = torch.randn(2, 3, 2, 2, requires_grad=True) self.run_test(model, (x,)) def test_fuse_conv_bn3d(self): class Fuse(torch.nn.Module): def __init__(self): super(Fuse, self).__init__() self.conv = torch.nn.Conv3d(3, 2, (3, 5, 2), stride=(2, 1, 1), padding=(3, 2, 0), bias=False) self.bn = torch.nn.BatchNorm3d(2) def forward(self, x): out = self.conv(x) return self.bn(out) model = Fuse() x = torch.randn(2, 3, 10, 50, 100, requires_grad=True) self.run_test(model, (x,), rtol=1e-3, atol=1e-6) def test_reshape_constant_fold(self): class Reshape(torch.nn.Module): def __init__(self, ): super(Reshape, self).__init__() self.register_buffer("weight", torch.ones(5)) def forward(self, x): scale_1 = self.weight.reshape(1, -1, 1, 1) return x * scale_1 x = torch.randn(4, 5) self.run_test(Reshape(), (x,), rtol=1e-3, atol=1e-5) def run_word_language_model(self, model_name): ntokens = 50 emsize = 5 nhid = 5 nlayers = 5 dropout = 0.2 tied = False batchsize = 5 model = word_language_model.RNNModel(model_name, ntokens, emsize, nhid, nlayers, dropout, tied, batchsize) x = torch.arange(0, ntokens).long().view(-1, batchsize) # Only support CPU version, since tracer is not working in GPU RNN. self.run_test(model, (x, model.hidden)) @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() # Faster RCNN model is not scriptable def test_faster_rcnn(self): model = torchvision.models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300) model.eval() x = torch.randn(2, 3, 200, 300, requires_grad=True) self.run_test(model, (x,), rtol=1e-3, atol=1e-5) def get_image_from_url(self, url): import os from urllib.parse import urlsplit from urllib import request from PIL import Image from torchvision import transforms from torch._utils_internal import get_writable_path filename = os.path.basename(urlsplit(url)[2]) data_dir = get_writable_path(os.path.join(os.path.dirname(__file__))) path = os.path.join(data_dir, filename) data = request.urlopen(url, timeout=15).read() with open(path, 'wb') as f: f.write(data) image = Image.open(path).convert("RGB") image = image.resize((300, 200), Image.BILINEAR) to_tensor = transforms.ToTensor() return to_tensor(image) def get_test_images(self): image_url = "http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg" image = self.get_image_from_url(url=image_url) images = [image] return images @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() def test_mask_rcnn(self): model = torchvision.models.detection.mask_rcnn.maskrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300) images = self.get_test_images() self.run_test(model, (images,), rtol=1e-3, atol=1e-5) @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() def test_keypoint_rcnn(self): model = torchvision.models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300) images = self.get_test_images() self.run_test(model, (images,), rtol=1e-3, atol=1e-5) @disableScriptTest() def test_word_language_model_RNN_TANH(self): self.run_word_language_model("RNN_TANH") @disableScriptTest() def test_word_language_model_RNN_RELU(self): self.run_word_language_model("RNN_RELU") @disableScriptTest() def test_word_language_model_LSTM(self): self.run_word_language_model("LSTM") @disableScriptTest() def test_word_language_model_GRU(self): self.run_word_language_model("GRU") def test_index_1d(self): class MyModel(torch.nn.Module): def forward(self, input): return input[0] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) def test_index_2d_1dimslice(self): class MyModel(torch.nn.Module): def forward(self, input): return input[0:1, :] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) def test_index_2d_sliceint(self): class MyModel(torch.nn.Module): def forward(self, input): return input[1, :] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) def test_index_2d_neg_slice(self): class MyModel(torch.nn.Module): def forward(self, input): return input[0:-1, :] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) @skipIfUnsupportedMinOpsetVersion(9) def test_index_mask(self): class MyModel(torch.nn.Module): def forward(self, input): return input[torch.tensor([0, 1, 0], dtype=torch.uint8)] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) class MyModel(torch.nn.Module): def forward(self, input): return input[torch.tensor([0, 1, 0], dtype=torch.bool)] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) @disableScriptTest() def test_dict(self): class MyModel(torch.nn.Module): def forward(self, x_in): x_out = {} x_out["test_key_out"] = torch.add(x_in[list(x_in.keys())[0]], list(x_in.keys())[0]) return x_out x = {torch.tensor(1.): torch.randn(1, 2, 3)} self.run_test(MyModel(), (x,)) @disableScriptTest() def test_dict_str(self): class MyModel(torch.nn.Module): def forward(self, x_in): x_out = {} x_out["test_key_out"] = torch.add(x_in["test_key_in"], 2.) return x_out x = {"test_key_in": torch.randn(1, 2, 3)} self.run_test(MyModel(), (x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_cste_script(self): class MyModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.zeros(x.size(0)), torch.ones((x.size(1), x.size(0)), dtype=torch.int64) x = torch.randn(3, 4) self.run_test(MyModel(), x) def test_scalar_tensor(self): class test(torch.nn.Module): def forward(self, input): return torch.scalar_tensor(input.size(0)), \ torch.scalar_tensor(input.size(1), dtype=torch.int64) x = torch.randn(2, 3, 4) y = torch.randn(7, 8, 9) model = test() self.run_test(model, x, test_with_inputs=[y], input_names=['input_1'], dynamic_axes={'input_1': [0, 1, 2]}) def test_tensor(self): class ScalarInputModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor(input.shape[1]) x = torch.randn(3, 4) self.run_test(ScalarInputModel(), x) class TensorInputModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor([input.shape[0], input.shape[1]]) x = torch.randn(3, 4) self.run_test(TensorInputModel(), x) class FloatInputModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor([float(input)]) x = torch.randn(1) self.run_test(FloatInputModel(), x) class InputWithDtypeModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor(input.shape[1], dtype=torch.long) x = torch.randn(3, 4) self.run_test(InputWithDtypeModel(), x) class MixedInputModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor([input.shape[0], int(input)]) x = torch.randn(1) self.run_test(MixedInputModel(), x) def test_hardtanh(self): model = torch.nn.Hardtanh(-1.5, 2.5) x = torch.arange(-5, 5).to(dtype=torch.float32) self.run_test(model, x) def test_hardtanh_script_with_default_values(self): class MyModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.nn.functional.hardtanh(x) x = torch.arange(-5, 5).to(dtype=torch.float32) self.run_test(MyModel(), x) def test_clamp(self): class ClampModel(torch.nn.Module): def forward(self, x): return x.clamp(-0.5, 0.5) x = torch.randn(3, 4) self.run_test(ClampModel(), x) class ClampMinModel(torch.nn.Module): def forward(self, x): return x.clamp(min=-0.5) x = torch.randn(3, 4) self.run_test(ClampMinModel(), x) class ClampMaxModel(torch.nn.Module): def forward(self, x): return x.clamp(max=0.5) x = torch.randn(3, 4) self.run_test(ClampMaxModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_clamp_dyn(self): class ClampMaxModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return x.clamp(None, x.size(0)) x = torch.arange(16).view(4, 4).float() self.run_test(ClampMaxModel(), x) class ClampMinModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return x.clamp(x.size(0), None) x = torch.arange(16).view(4, 4).float() self.run_test(ClampMinModel(), x) class ClampMinMaxModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return x.clamp(x.size(0), x.size(1)) x = torch.arange(16).view(2, 8).float() self.run_test(ClampMinMaxModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_full_trace(self): class FullModel(torch.nn.Module): def forward(self, x): return torch.full((3, 4), x, dtype=torch.long) x = torch.tensor(12) self.run_test(FullModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_full_script(self): class FullModelScripting(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.full((3, 4), x, dtype=torch.long) x = torch.tensor(12) self.run_test(FullModelScripting(), x) def test_fuse_addmm(self): class AddmmModel(torch.nn.Module): def forward(self, x): return torch.mm(x, x) + x x = torch.ones(3, 3) self.run_test(AddmmModel(), x) def test_maxpool(self): model = torch.nn.MaxPool1d(2, stride=1) x = torch.randn(20, 16, 50) self.run_test(model, x) def test_conv(self): class TraceModel(torch.nn.Module): def __init__(self): super(TraceModel, self).__init__() self.conv1 = torch.nn.Conv1d(16, 33, 3, stride=2) self.conv2 = torch.nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) self.conv3 = torch.nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0)) def forward(self, input1, input2, input3): return self.conv1(input1), self.conv2(input2), self.conv3(input3) class ScriptModel(torch.jit.ScriptModule): def __init__(self): super(ScriptModel, self).__init__() self.conv1 = torch.nn.Conv1d(16, 33, 3, stride=2) self.conv2 = torch.nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) self.conv3 = torch.nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0)) @torch.jit.script_method def forward(self, input1, input2, input3): return self.conv1(input1), self.conv2(input2), self.conv3(input3) x1 = torch.randn(20, 16, 50) x2 = torch.randn(20, 16, 50, 100) x3 = torch.randn(20, 16, 10, 50, 100) self.run_test(TraceModel(), (x1, x2, x3), atol=10e-5) self.run_test(ScriptModel(), (x1, x2, x3), atol=10e-5) def test_conv_shape_inference(self): class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.conv2 = torch.nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) def forward(self, input): return self.conv2(input) + 2 x = torch.randn(20, 16, 50, 100) self.run_test(Model(), x, atol=10e-5, input_names=['x'], dynamic_axes={'x': [0]}) def test_conv_transpose(self): class TraceModel(torch.nn.Module): def __init__(self): super(TraceModel, self).__init__() self.conv1 = torch.nn.ConvTranspose1d(16, 33, 3, stride=2) self.conv2 = torch.nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) self.conv3 = torch.nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0)) def forward(self, input1, input2, input3): return self.conv1(input1), self.conv2(input2), self.conv3(input3) class ScriptModel(torch.jit.ScriptModule): def __init__(self): super(ScriptModel, self).__init__() self.conv1 = torch.nn.ConvTranspose1d(16, 33, 3, stride=2) self.conv2 = torch.nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) self.conv3 = torch.nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0)) @torch.jit.script_method def forward(self, input1, input2, input3): return self.conv1(input1), self.conv2(input2), self.conv3(input3) x1 = torch.randn(20, 16, 50) x2 = torch.randn(20, 16, 50, 100) x3 = torch.randn(20, 16, 10, 50, 100) self.run_test(TraceModel(), (x1, x2, x3), atol=10e-5) self.run_test(ScriptModel(), (x1, x2, x3), atol=10e-5) # Conversion of Transpose depends on input shape to be known. # The following test only works when onnx shape inference is enabled. @skipIfONNXShapeInference(False) def test_transpose_infer_shape(self): class TransposeModule(torch.jit.ScriptModule): def __init__(self): super(TransposeModule, self).__init__() self.conv = torch.nn.Conv2d(3, 1, 3, stride=2) @torch.jit.script_method def forward(self, x): x = self.conv(x) return x.transpose(0, 1) x = torch.randn(32, 3, 64, 64) self.run_test(TransposeModule(), x) def squeeze_model_tests(self, d, x1, x2): class Squeeze(torch.nn.Module): def __init__(self, d): super(Squeeze, self).__init__() self.d = d def forward(self, x): if self.d is not None: return torch.squeeze(x, dim=self.d) else: return torch.squeeze(x) x2 = [] if x2 is None else [x2] self.run_test(Squeeze(d), x1, input_names=['input'], dynamic_axes={'input': {0: '0', 1: '1', 2: '2'}}, test_with_inputs=x2) def test_squeeze_without_no_op(self): x = torch.randn(2, 1, 4) self.squeeze_model_tests(1, x, None) @skipIfUnsupportedMinOpsetVersion(11) def test_squeeze(self): x_squeeze = torch.randn(2, 1, 4) x_noop = torch.randn(2, 2, 3) self.squeeze_model_tests(1, x_squeeze, x_noop) def test_squeeze_neg_without_no_op(self): x = torch.randn(2, 1, 4) self.squeeze_model_tests(-2, x, None) @skipIfUnsupportedMinOpsetVersion(11) def test_squeeze_neg(self): x_squeeze = torch.randn(2, 1, 4) x_noop = torch.randn(2, 2, 3) self.squeeze_model_tests(-2, x_squeeze, x_noop) def test_squeeze_all_dims(self): x_squeeze = torch.randn(2, 1, 4) x_noop = torch.randn(2, 2, 3) self.squeeze_model_tests(None, x_squeeze, x_noop) @skipIfUnsupportedMinOpsetVersion(11) def test_squeeze_no_op(self): x_noop = torch.randn(2, 1, 4) x_squeeze = torch.randn(2, 2, 1) self.squeeze_model_tests(2, x_noop, x_squeeze) def test_squeeze_no_op_without_additional_inputs(self): x_noop = torch.randn(2, 1, 4) self.squeeze_model_tests(2, x_noop, None) @skipIfUnsupportedMinOpsetVersion(11) def test_squeeze_runtime_dim(self): class Squeeze(torch.nn.Module): def forward(self, d1, d2): t = torch.zeros(d1[0], d2[0]) return t.squeeze(0) d1 = torch.tensor([1]) d3 = torch.tensor([3]) d4 = torch.tensor([4]) self.run_test(Squeeze(), (d1, d4), test_with_inputs=[(d3, d4)]) self.run_test(Squeeze(), (d3, d4), test_with_inputs=[(d1, d3)]) def test_unsqueeze(self): class Unsqueeze(torch.nn.Module): def forward(self, x): return torch.unsqueeze(x, dim=-2) x = torch.randn(2, 3, 4) self.run_test(Unsqueeze(), x) def test_maxpool_default_stride(self): class MaxPoolModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.max_pool2d(x, 2) model = MaxPoolModel() x = torch.randn(10, 20, 16, 50) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(8) def test_maxpool_adaptive(self): model = torch.nn.AdaptiveMaxPool1d((5), return_indices=False) x = torch.randn(20, 16, 50, requires_grad=True) self.run_test(model, x) def test_maxpool_2d(self): model = torch.nn.MaxPool2d(5, padding=(1, 2)) x = torch.randn(1, 20, 16, 50, requires_grad=True) self.run_test(model, x) def test_maxpool_1d_ceil(self): model = torch.nn.MaxPool1d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50) self.run_test(model, x) def test_maxpool_2d_ceil(self): model = torch.nn.MaxPool2d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50, 32) self.run_test(model, x) def test_maxpool_3d_ceil(self): model = torch.nn.MaxPool3d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50, 44, 31) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(8) @disableScriptTest() # Functional module not scriptable def test_maxpool_with_indices(self): model = torch.nn.MaxPool1d(2, stride=1, return_indices=True) x = torch.randn(20, 16, 50) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(10) def test_maxpool_dilation(self): model = torch.nn.MaxPool1d(2, stride=1, dilation=2) x = torch.randn(20, 16, 50) self.run_test(model, x) def test_avgpool_default_stride(self): class AvgPoolModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.avg_pool2d(x, 2) model = AvgPoolModel() x = torch.randn(10, 20, 16, 50) self.run_test(model, x) def test_avgpool(self): model = torch.nn.AvgPool1d(2, stride=1) x = torch.randn(20, 16, 50) self.run_test(model, x) def test_avgpool_1d_ceil(self): model = torch.nn.AvgPool1d(3, 2, ceil_mode=True) x = torch.randn(1, 1, 7) self.run_test(model, x) def test_avgpool_2d_ceil(self): model = torch.nn.AvgPool2d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50, 32) self.run_test(model, x) def test_avgpool_3d_ceil(self): model = torch.nn.AvgPool3d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50, 44, 31) self.run_test(model, x) def test_arithmetic(self): class ArithmeticModule(torch.nn.Module): def forward(self, x): x = x + 2 x = x - 4 x = x * 6 x = x / 8 return x x = torch.randn(2, 3, 4) self.run_test(ArithmeticModule(), x) # In scripting the first transpose node do not carry shape and dtype info. # The following test only works when onnx shape inference is enabled. @skipIfONNXShapeInference(False) def test_arithmetic_infer_dtype(self): class ArithmeticModule(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): x = x.t() x = x + 2 x = x - 4 x = x * 6 x = x / 8 return x x = torch.randn(2, 3) self.run_test(ArithmeticModule(), x) def test_floor_div(self): class FloorDivModule(torch.nn.Module): def forward(self, x, y): return x // 3, x // 2., \ x.to(dtype=torch.float64) // 3, x.to(dtype=torch.float64) // 2., \ x.to(dtype=torch.int64) // 3, x.to(dtype=torch.int64) // 2., \ x // (y + 1.).to(dtype=torch.int64), x // y, \ x.to(dtype=torch.float64) // y.to(dtype=torch.int64), x.to(dtype=torch.float64) // y.to(dtype=torch.float64), \ x.to(dtype=torch.int64) // y.to(dtype=torch.int64), x.to(dtype=torch.int64) // y x = torch.randn(2, 3, 4) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4) self.run_test(FloorDivModule(), (x, y)) def test_floor_div_script(self): class FloorDivModule(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y): return x // 3, x // 2., x // y x = torch.randn(2, 3, 4) y = torch.randn(2, 3, 4) self.run_test(FloorDivModule(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_floordiv(self): class FloordivModule(torch.nn.Module): def forward(self, x): return x.new_zeros(x.size(2) // x.size(1)) x = torch.randn(2, 3, 4) self.run_test(FloordivModule(), (x,)) def test_div(self): class DivModule(torch.nn.Module): def forward(self, x, y): return x / y, torch.true_divide(x, y) x = torch.randn(2, 3, 4).to(torch.int) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4).to(torch.int) self.run_test(DivModule(), (x, y)) self.run_test(DivModule(), (x.float(), y.float())) # Note: div cannot (generally) be exported via scripting # since its type promotion logic is dependent on knowing the scalar types # of the input tensors. That is, the ONNX graph is dependent on the # data type of the inputs. This makes it appropriate for tracing only. def test_div_promotion_trace(self): class DivModule(torch.nn.Module): def forward(self, x, y): return x / y, torch.true_divide(x, y) x = torch.randn(2, 3, 4).to(torch.int) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4).to(torch.int) prev_default = torch.get_default_dtype() torch.set_default_dtype(torch.float) self.run_test(torch.jit.trace(DivModule(), (x, y)), (x, y)) torch.set_default_dtype(torch.double) self.run_test(torch.jit.trace(DivModule(), (x, y)), (x, y)) torch.set_default_dtype(prev_default) # In scripting x, y do not carry shape and dtype info. # The following test only works when onnx shape inference is enabled. @skipIfONNXShapeInference(False) def test_div_promotion_script(self): class DivModule(torch.nn.Module): def forward(self, x, y): # Add transpose to hide shape/type information # Otherwise shape and type are still avaiable from input. x = x.transpose(1, 2) y = y.transpose(1, 2) return x / y, torch.true_divide(x, y) x = torch.randn(2, 3, 4).to(torch.int) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4).to(torch.int) prev_default = torch.get_default_dtype() # 1. x,y are int, and output is float. # This can be handled by the default case, where both are cast to float. # It works even if type of x, y are unknown. torch.set_default_dtype(torch.float) self.run_test(torch.jit.script(DivModule()), (x, y)) # 2. x,y are int, and output is double. # This can be handled by the default case, where both are cast to double. # It works even if type of x, y are unknown. torch.set_default_dtype(torch.double) self.run_test(torch.jit.script(DivModule()), (x, y)) # 3. x is int, y is double, and output is double. # This can only be handled when both type of x and y are known. torch.set_default_dtype(prev_default) x = torch.randn(2, 3, 4).to(torch.int) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4).to(torch.double) self.run_test(torch.jit.script(DivModule()), (x, y)) def test_slice_trace(self): class MyModule(torch.nn.Module): def forward(self, x): return x[0:1] x = torch.randn(3) self.run_test(MyModule(), x) def test_slice_neg(self): class NegSlice(torch.nn.Module): def forward(self, x): return x[-1:] x = torch.randn(3, 4, 5) self.run_test(NegSlice(), x) def test_slice_neg_large(self): class NegSlice(torch.nn.Module): def forward(self, x): return x[:, :, -3:-1, :, -1] x = torch.randn(3, 4, 5, 6, 7) self.run_test(NegSlice(), x) def test_slice_neg_large_negone(self): class NegSlice(torch.nn.Module): def forward(self, x): return x[:, :, :, :, -1] x = torch.randn(3, 4, 5, 6, 7) self.run_test(NegSlice(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_slice_with_input_index(self): class InputIndexSlice(torch.nn.Module): def forward(self, x, y): x[:y.size(0), 0, :] = y return x x = torch.zeros((56, 6, 256)) y = torch.rand((22, 256)) self.run_test(InputIndexSlice(), (x, y)) @skipIfUnsupportedMinOpsetVersion(10) @disableScriptTest() # scripting tuple/list append def test_slice_dynamic(self): class DynamicSliceExportMod(torch.nn.Module): def forward(self, x): results = [] for i in range(4): results.append(x[:x.size(0) - i, i:x.size(2), i:3]) return tuple(results) x = torch.rand(5, 5, 5) y = torch.randn(6, 7, 8) self.run_test(DynamicSliceExportMod(), x, test_with_inputs=[y], input_names=['input_1'], output_names=['output_1'], dynamic_axes={'input_1': [0, 1, 2], 'output_1': [0, 1, 2]}) @skipIfUnsupportedMinOpsetVersion(10) def test_slice_dynamic_script(self): class DynamicSliceModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return x[1:x.size(1)] x = torch.rand(1, 2) self.run_test(DynamicSliceModel(), x) @skipIfUnsupportedMinOpsetVersion(10) def test_slice_dynamic_shape_script(self): class DynamicSliceModel(torch.nn.Module): def forward(self, x): return x.new_zeros(x.shape[1:x.size(2)]) x = torch.rand(1, 2, 3, 4) self.run_test(DynamicSliceModel(), x) @skipIfUnsupportedMinOpsetVersion(10) @disableScriptTest() # scripting tuple/list append def test_slice_dynamic_to_end(self): class DynamicSliceExportMod(torch.nn.Module): def forward(self, x): results = [] for i in range(4): results.append(x[:, i:, x.size(2) - 5]) return tuple(results) x = torch.rand(5, 5, 5) self.run_test(DynamicSliceExportMod(), x, dynamic_axes={'input_1': [0, 1, 2], 'output_1': [0, 1, 2]}) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_dynamic(self): class ArangeModel(torch.nn.Module): def forward(self, input): return torch.arange(input.shape[0]), \ torch.arange(12), \ torch.arange(start=input.shape[0], end=input.shape[0] + 5) x = torch.randn(5, 3, 2) y = torch.randn(8, 3, 2) self.run_test(ArangeModel(), x, test_with_inputs=[y], input_names=['input_1'], output_names=['output_1', 'output_2', 'output_3'], dynamic_axes={'input_1': [0], 'output_1': [0]}) self.run_test(torch.jit.script(ArangeModel()), x, test_with_inputs=[y], input_names=['input_1'], output_names=['output_1', 'output_2', 'output_3'], dynamic_axes={'input_1': [0], 'output_1': [0]}) @skipIfUnsupportedMinOpsetVersion(9) def test_dynamic_arange_out(self): class ArangeOutModel(torch.nn.Module): def forward(self, end): out_t = torch.tensor([1], dtype=torch.int64) return torch.arange(end, out=out_t) x = torch.tensor(8) self.run_test(ArangeOutModel(), (x)) @skipIfUnsupportedMinOpsetVersion(9) def test_dynamic_arange_start_out(self): class ArangeStartOutModel(torch.nn.Module): def forward(self, start, end): out_t = torch.tensor([1], dtype=torch.int64) return torch.arange(start.size(0), end, out=out_t) x = torch.randn(2, 3, 4) y = torch.tensor(8) self.run_test(ArangeStartOutModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_arange(self): class ArangeModel(torch.nn.Module): def forward(self, start, end): return torch.arange(start.size(0), end, 1.5, dtype=torch.int64) x = torch.randn(2, 3, 4) y = torch.tensor(8.5, dtype=torch.float) self.run_test(ArangeModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_out(self): class ArangeOutModel(torch.nn.Module): def forward(self, end): out_t = torch.tensor([1], dtype=torch.float) return torch.arange(end, out=out_t) x = torch.tensor(8.5, dtype=torch.float) self.run_test(ArangeOutModel(), (x)) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_start_out(self): class ArangeStartOutModel(torch.nn.Module): def forward(self, start, end): out_t = torch.tensor([1], dtype=torch.float) return torch.arange(start.size(0), end, out=out_t) x = torch.randn(2, 3, 4) y = torch.tensor(8.5, dtype=torch.float) self.run_test(ArangeStartOutModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_no_type(self): class ArangeModel(torch.nn.Module): def forward(self, end): return torch.arange(end), \ torch.arange(0, end) x = torch.tensor(6.2, dtype=torch.float) self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_size(self): class SizeModel(torch.nn.Module): def forward(self, input): return torch.arange(input.size(0)), torch.arange(input.size(-1)), torch.ones(input.shape) x = torch.randn(5, 3, 2) self.run_test(SizeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() # x.stride() not scriptable def test_as_strided(self): class Model(torch.nn.Module): def forward(self, x): chunk_size = list(x.size()) chunk_size[1] = chunk_size[1] * 2 - 1 chunk_stride = list(x.stride()) chunk_stride[1] = chunk_stride[1] // 2 return x.as_strided((3, 3, 3), (1, 4, 2), storage_offset=2), x.as_strided(chunk_size, chunk_stride) x = torch.randn(5, 8, 7) self.run_test(Model(), x) @disableScriptTest() # Ellipses followed by tensor indexing not scriptable def test_tensor_index_advanced_indexing_ellipsis(self): class MyModel(torch.nn.Module): def forward(self, input): return input[..., torch.tensor([2, 1]), torch.tensor([0, 3])] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), (m1,)) def test_tensor_index_advanced_indexing(self): class MyModel(torch.nn.Module): def forward(self, input): return input[:, torch.tensor([[0, 2], [1, 1]]), :, torch.tensor([2, 1]), torch.tensor([0, 3])] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), (m1,)) class MyModel(torch.nn.Module): def forward(self, input): return input[:, torch.tensor([0, 2]), None, 2:4, torch.tensor([[1, 3], [4, 0]])] self.run_test(MyModel(), (m1,)) class MyModel(torch.nn.Module): def forward(self, input): return input[:, torch.tensor([0, 2]), torch.tensor([1]), 2:4, torch.tensor([[1], [4]])] self.run_test(MyModel(), (m1,)) def test_tensor_index_advanced_indexing_consecutive(self): class MyModel(torch.nn.Module): def forward(self, input): return input[:, torch.tensor([0, 2]), torch.tensor([[1, 3], [4, 0]]), None] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), (m1,)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put(self): class IndexPutModel(torch.nn.Module): def forward(self, x, ind, update): x[ind] = update return x x = torch.randn(3, 4) ind = torch.tensor([1], dtype=torch.long) update = torch.ones(4) self.run_test(IndexPutModel(), (x, ind, update)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_accumulate(self): class IndexPutModel(torch.nn.Module): def forward(self, x, ind, update): return x.index_put((ind, ), update, accumulate=True) x = torch.randn(3, 4) ind = torch.tensor([2], dtype=torch.long) update = torch.ones(4) self.run_test(IndexPutModel(), (x, ind, update)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_slice_index(self): class IndexPutModel(torch.nn.Module): def forward(self, x, update): x[1:2, 1:3, torch.tensor([1])] += update return x x = torch.randn(3, 4, 5) update = torch.tensor([10, 15]).view(1, 2, 1) self.run_test(IndexPutModel(), (x, update)) class IndexPutModel2(torch.nn.Module): def forward(self, x, update): x[torch.tensor([0, 2]), torch.tensor([1, 2])] += update return x x = torch.randn(3, 4, 5) update = torch.randn(2, 5) self.run_test(IndexPutModel2(), (x, update)) class IndexPutModel3(torch.nn.Module): def forward(self, x, update): x[torch.tensor([0, 2]), 1:2] += update return x x = torch.randn(3, 4, 5) update = torch.tensor([10, 15]).view(2, 1, 1) self.run_test(IndexPutModel3(), (x, update)) class IndexPutModel4(torch.nn.Module): def forward(self, x, update): x[torch.tensor([0, 2]), 2] += update return x x = torch.randn(3, 4, 5) update = torch.tensor([10, 15]).view(2, 1) self.run_test(IndexPutModel4(), (x, update)) class IndexPutModel5(torch.nn.Module): def forward(self, x, update): x[1:3, torch.tensor([0, 2]), 2] += update return x x = torch.randn(3, 4, 5) update = torch.tensor([10, 15]).view(2, 1) self.run_test(IndexPutModel5(), (x, update)) class IndexPutModel6(torch.nn.Module): def forward(self, x, update): x[1:3, 0] = update return x x = torch.randn(3, 4, 5) update = torch.arange(2 * 5).to(torch.float).view(2, 5) self.run_test(IndexPutModel6(), (x, update)) class IndexPutModel7(torch.nn.Module): def forward(self, x, update): x[1:, 0] = update return x x = torch.randn(3, 4, 5) update = torch.arange(2 * 5).to(torch.float).view(2, 5) self.run_test(IndexPutModel7(), (x, update)) class IndexPutModel8(torch.nn.Module): def forward(self, x, update): x[:3, 0] = update return x x = torch.randn(3, 4, 5) update = torch.arange(3 * 5).to(torch.float).view(3, 5) self.run_test(IndexPutModel8(), (x, update)) @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() # Ellipses followed by tensor indexing not scriptable def test_index_put_ellipsis(self): class IndexPutModel(torch.nn.Module): def forward(self, x, update): x[..., torch.tensor([2, 1, 3]), 2:4] += update return x x = torch.randn(3, 4, 5, 6, 7) update = torch.randn(3, 1, 1, 3, 2) self.run_test(IndexPutModel(), (x, update)) class IndexPutModel2(torch.nn.Module): def forward(self, x, update): x[2, ..., torch.tensor([2, 1, 3]), 2:4] += update return x x = torch.randn(3, 4, 5, 6, 7) update = torch.randn(4, 1, 3, 2) self.run_test(IndexPutModel2(), (x, update)) @skipIfUnsupportedMinOpsetVersion(11) def test_copy_(self): class CopyModel(torch.nn.Module): def forward(self, x, data): x[1:3] = data return x x = torch.randn(3, 4) update = torch.randn(2, 4) self.run_test(CopyModel(), (x, update)) # mixed slice and select class CopyModel2(torch.nn.Module): def forward(self, x, data): x[1:3, 0] = data return x x = torch.randn(3, 4) update = torch.tensor([0], dtype=torch.float32) self.run_test(CopyModel2(), (x, update)) update = torch.tensor([2, 3], dtype=torch.float32) self.run_test(CopyModel2(), (x, update)) update = torch.randn(2) self.run_test(CopyModel2(), (x, update)) class CopyModel3(torch.nn.Module): def forward(self, x, data): x[1, 1:3] = data return x x = torch.randn(3, 4) update = torch.tensor([0], dtype=torch.float32) self.run_test(CopyModel3(), (x, update)) update = torch.tensor([2, 3], dtype=torch.float32) self.run_test(CopyModel3(), (x, update)) update = torch.randn(2) self.run_test(CopyModel3(), (x, update)) class CopyModel4(torch.nn.Module): def forward(self, x, ind, data): x[ind] = data return x x = torch.randn(3, 4) ind = torch.tensor(2) data = torch.randn(4) self.run_test(CopyModel4(), (x, ind, data)) @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() # Model not scriptable (output with shape doesn't match the broadcast shape) def test_copy_tracing(self): class CopyModel(torch.nn.Module): def forward(self, x, data): x[1, 1:3] = data return x x = torch.randn(3, 4) update = torch.randn(1, 2) self.run_test(CopyModel(), (x, update)) @skipIfUnsupportedMinOpsetVersion(11) def test_copy_ellipsis(self): class CopyModel(torch.nn.Module): def forward(self, x, update): x[..., 1] = update return x x = torch.randn(2, 3, 4) update = torch.ones(1) self.run_test(CopyModel(), (x, update)) x = torch.randn(2, 3, 4, 5, 6) update = torch.ones(1) self.run_test(CopyModel(), (x, update)) @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() # Missing input size (with ellipsis indexing) def test_copy_ellipsis_tracing(self): class CopyModel(torch.nn.Module): def forward(self, x, update): x[2, ..., 1:3] = update return x x = torch.randn(3, 4, 5, 6) update = torch.ones(1) self.run_test(CopyModel(), (x, update)) @skipIfUnsupportedMinOpsetVersion(10) def test_flip(self): class MyModule(torch.nn.Module): def forward(self, x): return torch.flip(x, dims=[0]) x = torch.tensor(np.arange(6.0).reshape(2, 3)) self.run_test(MyModule(), x) def test_random(self): class RandN(torch.nn.Module): def forward(self, x): return torch.mul(x, (torch.randn(2, 3, 4) + x).size(0)) x = torch.randn(2, 3, 4) self.run_test(RandN(), x) class Rand(torch.nn.Module): def forward(self, x): return torch.mul(x, (torch.rand(2, 3, 4) + x).size(0)) x = torch.randn(2, 3, 4) self.run_test(Rand(), x) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() # symbolic update for randn def test_random_dynamic_size(self): class RandN(torch.nn.Module): def forward(self, x): return torch.mul(x, torch.randn(x.size()).size(1)) x = torch.randn(2, 3, 4) self.run_test(RandN(), x) class Rand(torch.nn.Module): def forward(self, x): return torch.mul(x, torch.rand(x.size()).size(1)) x = torch.randn(2, 3, 4) self.run_test(Rand(), x) def test_random_like(self): class RandNLike(torch.nn.Module): def forward(self, x): return torch.mul(x, torch.randn_like(x).size(0)) x = torch.randn(2, 3, 4) self.run_test(RandNLike(), x) self.run_test(torch.jit.script(RandNLike()), x) class RandLike(torch.nn.Module): def forward(self, x): return torch.mul(x, torch.rand_like(x).size(0)) x = torch.randn(2, 3, 4) self.run_test(RandLike(), x) self.run_test(torch.jit.script(RandLike()), x) def test_random_like_dtype(self): class RandNLike(torch.nn.Module): def forward(self, x): return torch.mul(x.to(torch.double), torch.randn_like(x, dtype=torch.double).size(0)) x = torch.randn(2, 3, 4) self.run_test(RandNLike(), x) class RandLike(torch.nn.Module): def forward(self, x): return torch.mul(x.to(torch.double), torch.rand_like(x, dtype=torch.double).size(0)) x = torch.randn(2, 3, 4) self.run_test(RandLike(), x) def _interpolate(self, x, mode, use_size, is_upsample, align_corners=False): class MyModel(torch.nn.Module): def forward(self, x): scale = 2.3 if is_upsample else 0.5 if len(x.size()) == 3: scale_array = 2.3 if len(x.size()) == 4: scale_array = [2.3, 5.1] if len(x.size()) == 5: scale_array = [3.3, 2.3, 5.1] if use_size: size_array = [int(float(v) * scale) for v in x.size()[2:]] if align_corners: return torch.nn.functional.interpolate(x, mode=mode, size=size_array[0], align_corners=True), \ torch.nn.functional.interpolate(x, mode=mode, size=size_array, align_corners=True) return torch.nn.functional.interpolate(x, mode=mode, size=size_array[0]), \ torch.nn.functional.interpolate(x, mode=mode, size=size_array) if align_corners: return torch.nn.functional.interpolate(x, mode=mode, scale_factor=scale, align_corners=True, recompute_scale_factor=False), \ torch.nn.functional.interpolate(x, mode=mode, scale_factor=scale_array, align_corners=True, recompute_scale_factor=False) return torch.nn.functional.interpolate(x, mode=mode, scale_factor=scale, recompute_scale_factor=False), \ torch.nn.functional.interpolate(x, mode=mode, scale_factor=scale_array, recompute_scale_factor=False) self.run_test(MyModel(), x) def _interpolate_script(self, x, mode, use_size, is_upsample, align_corners=False): class MyModel(torch.jit.ScriptModule): __constants__ = ['mode', 'use_size', 'is_upsample', 'size', 'scale', 'size_array', 'scale_array', 'align_corners'] def __init__(self, mode, use_size, is_upsample, align_corners): super(MyModel, self).__init__() self.mode = mode self.use_size = use_size self.is_upsample = is_upsample self.align_corners = align_corners self.scale = 2.0 if self.is_upsample else 0.5 self.size = 24 if self.is_upsample else 2 if x.dim() == 3: self.scale_array = [2.3] self.size_array = [16] elif x.dim() == 4: self.scale_array = [2.3, 3.1] self.size_array = [16, 32] else: self.scale_array = [2.3, 3.1, 4.6] self.size_array = [16, 32, 64] @torch.jit.script_method def forward(self, x): if self.use_size: if self.align_corners: return torch.nn.functional.interpolate(x, mode=self.mode, size=self.size, align_corners=True), \ torch.nn.functional.interpolate(x, mode=self.mode, size=self.size_array, align_corners=True) return torch.nn.functional.interpolate(x, mode=self.mode, size=self.size), \ torch.nn.functional.interpolate(x, mode=self.mode, size=self.size_array) if self.align_corners: return torch.nn.functional.interpolate(x, mode=self.mode, scale_factor=self.scale, recompute_scale_factor=False), \ torch.nn.functional.interpolate(x, mode=self.mode, scale_factor=self.scale_array, recompute_scale_factor=False) return torch.nn.functional.interpolate(x, mode=self.mode, scale_factor=self.scale, recompute_scale_factor=False), \ torch.nn.functional.interpolate(x, mode=self.mode, scale_factor=self.scale_array, recompute_scale_factor=False) model = MyModel(mode, use_size, is_upsample, align_corners) self.run_test(model, x, atol=1e-6) def _interpolate_tests(self, is_upsample): # - cubic mode is not supported for opsets below 11; # - linear mode does not match for opsets below 11; modes = ["nearest", "linear", "bicubic"] if self.opset_version < 11: modes = ["nearest"] x = [torch.randn(1, 2, 6, requires_grad=True), torch.randn(1, 2, 4, 6, requires_grad=True), torch.randn(1, 2, 4, 4, 6, requires_grad=True)] for mode in modes: for xi in x: mode_i = mode # TODO: enable bicubic downsample when ORT precision loss fixed if mode == "bicubic" and xi.dim() != 4: continue elif mode == "linear": if xi.dim() == 3: # TODO : enable when linear mode is implemented for 1d inputs in ORT continue elif xi.dim() == 4: mode_i = "bilinear" elif xi.dim() == 5: # TODO : enable when linear mode is implemented for 3d inputs in ORT mode_i = "trilinear" continue self._interpolate(xi, mode_i, True, is_upsample) # test with align_corners if supported if mode != 'nearest': self._interpolate(xi, mode_i, True, is_upsample, True) self._interpolate_script(xi, mode_i, True, is_upsample, True) # the following cases, require dynamic sizes/scales, # which which is not supported for opset_version < 9 if self.opset_version >= 9: self._interpolate_script(xi, mode_i, True, is_upsample) self._interpolate(xi, mode_i, False, is_upsample) # test with align_corners if supported if mode != 'nearest': self._interpolate(xi, mode_i, False, is_upsample, True) self._interpolate_script(xi, mode_i, False, is_upsample, True) self._interpolate_script(xi, mode_i, False, is_upsample) @disableScriptTest() def test_interpolate_upsample(self): self._interpolate_tests(True) @disableScriptTest() @skipIfUnsupportedMinOpsetVersion(9) def test_interpolate_function_substitution(self): class ScriptModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.nn.functional.interpolate(x, mode="nearest", scale_factor=2.) class ScriptModule(torch.jit.ScriptModule): def __init__(self): super(ScriptModule, self).__init__() self.submodule = ScriptModel() @torch.jit.script_method def forward(self, input): return self.submodule(input) x = torch.randn(1, 2, 4, 4, 6) self.run_test(ScriptModule(), (x,)) @torch.jit.script def script_method(x): return torch.nn.functional.interpolate(x, mode="nearest", scale_factor=2.) class TracingModule(torch.nn.Module): def forward(self, x): return script_method(x) self.run_test(TracingModule(), (x,)) @skipIfUnsupportedMinOpsetVersion(10) @disableScriptTest() def test_interpolate_downsample(self): self._interpolate_tests(False) @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() def test_interpolate_no_shape(self): class MyModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y): x = torch.add(x, x) out1 = torch.nn.functional.interpolate(x, mode="bilinear", size=(16, 16), align_corners=False) out2 = torch.nn.functional.interpolate(x, mode="nearest", size=(int(y.size(0)), int(y.size(1)))) return out1, out2 x = torch.randn(1, 2, 4, 4, requires_grad=True) y = torch.randn(16, 16, requires_grad=True) self.run_test(MyModel(), (x, y)) def test_interpolate_adaptive_pooling_error(self): x = torch.randn(1, 2, 6, requires_grad=True) with self.assertRaises(RuntimeError) as cm: self._interpolate(x, "area", True, True) with self.assertRaises(RuntimeError) as cm: self._interpolate(x, "area", False, True) def test_groupnorm(self): model = torch.nn.GroupNorm(3, 6, 0.002) x = torch.randn(4, 6, 180, 180, 180) self.run_test(model, x) model = torch.nn.GroupNorm(1, 6, 0.002) x = torch.randn(4, 6, 180, 180) self.run_test(model, x) model = torch.nn.GroupNorm(6, 6, 0.002) x = torch.randn(4, 6, 180, 180) self.run_test(model, x) @disableScriptTest() def test_groupnorm_noaffine(self): model = torch.nn.GroupNorm(4, 8, 0.002, affine=False) x = torch.randn(3, 8, 224, 224) self.run_test(model, x) model = torch.nn.GroupNorm(1, 6, 0.002, affine=False) x = torch.randn(4, 6, 180, 180) self.run_test(model, x) model = torch.nn.GroupNorm(6, 6, 0.002, affine=False) x = torch.randn(4, 6, 180, 180) self.run_test(model, x) def test_std(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std(input, unbiased=False) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) def test_pow(self): class PowModule(torch.nn.Module): def forward(self, x, y): return x.pow(y) x = torch.randn(2, 3, 4) y = torch.randn(2, 3, 4) self.run_test(PowModule(), (x, y)) x = torch.randint(10, (2, 3, 4)) y = torch.randint(10, (2, 3, 4)).to(dtype=torch.int32) self.run_test(PowModule(), (x, y)) x = torch.randint(10, (2, 3, 4)) y = torch.randint(10, (2, 3, 4)) self.run_test(PowModule(), (x, y)) x = torch.randn(2, 3, 4).to(dtype=torch.float64) y = torch.randint(10, (2, 3, 4)) self.run_test(PowModule(), (x, y)) def test_std_along_dims(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std(input, dim=(0, 1), unbiased=False) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) def test_std_keepdim(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std(input, dim=(0, 1), unbiased=False, keepdim=True) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) def test_bitshift(self): class BitshiftModel(torch.nn.Module): def forward(self, input, input2): return input >> 1, input << 3.1, \ input2 >> torch.tensor([1, 2]), input2 << 4.2 input = torch.arange(24, dtype=torch.float32).reshape(3, 4, 2) input2 = torch.arange(24, dtype=torch.int64).reshape(3, 4, 2) self.run_test(BitshiftModel(), (input, input2)) def test_bitshift_other_fp(self): class BitshiftModel(torch.nn.Module): def forward(self, input): return input << 2.4 input = torch.arange(24, dtype=torch.int64).reshape(3, 4, 2) self.run_test(BitshiftModel(), input) # uint8 not implemented in ORT for Mul used in # exporting bitshift for opset_version < 10 @skipIfUnsupportedMinOpsetVersion(11) def test_bitshift_uint8(self): class BitshiftModel(torch.nn.Module): def forward(self, input, input2): return input >> 1, input << 3., \ input2 >> torch.tensor([1, 2], dtype=torch.uint8), input2 << 4. input = torch.arange(24, dtype=torch.uint8).reshape(3, 4, 2) input2 = torch.arange(24, dtype=torch.uint8).reshape(3, 4, 2) self.run_test(BitshiftModel(), (input, input2)) def test_narrow(self): class NarrowModel(torch.nn.Module): def forward(self, input): return torch.narrow(input, 0, 0, 2) x = torch.randn(3, 3, requires_grad=True) self.run_test(NarrowModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_narrow_dynamic(self): class NarrowModel(torch.nn.Module): def forward(self, input): return torch.narrow(input, 0, 0, input.shape[0] - 1) x = torch.randn(3, 3, requires_grad=True) self.run_test(NarrowModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_index_fill(self): class IndexFillModel(torch.nn.Module): def forward(self, input): index = torch.tensor([2, 0]) return input.index_fill(2, index, -1) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(IndexFillModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_index_copy(self): class IndexCopyModel(torch.nn.Module): def forward(self, input): index = torch.tensor([2, 0]) source = torch.ones(3, 2, 5) return input.index_copy(1, index, source) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(IndexCopyModel(), x) def test_select(self): class Select(torch.nn.Module): def forward(self, x): return x[:, 1] x = torch.randn(3, 4) self.run_test(Select(), x) def test_select_negative_index(self): class Select(torch.nn.Module): def forward(self, x): return x[:, -1] x = torch.randn(3, 4) self.run_test(Select(), x) # TODO: enable for opset 10 when ONNXRuntime version will be updated def test_index_select_constant_scaler_index(self): class IndexSelectScalerIndexModel(torch.nn.Module): def forward(self, x): index = 2 return torch.index_select(x, 1, torch.tensor(index)) x = torch.randn(3, 4) self.run_test(IndexSelectScalerIndexModel(), x) def test_index_select_scaler_index(self): class IndexSelectScalerIndexModel(torch.nn.Module): def __init__(self, index_base): super(IndexSelectScalerIndexModel, self).__init__() self.index_base = torch.tensor(index_base) def forward(self, x, index_offset): index = self.index_base + index_offset return torch.index_select(x, 1, index) x = torch.randn(3, 4) offset = 2 index_offset = torch.tensor(offset) base = 1 self.run_test(IndexSelectScalerIndexModel(base), (x, index_offset)) def test_take(self): class TakeModel(torch.nn.Module): def forward(self, x, y): return torch.take(x, y) x = torch.randn(6, 4, 3, 3) y = torch.tensor([4, 1, 7, 15, 63]) self.run_test(TakeModel(), (x, y)) def test_topk(self): class MyModule(torch.nn.Module): def forward(self, x): return torch.topk(x, 3) x = torch.arange(1., 6., requires_grad=True) self.run_test(MyModule(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_topk_smallest_unsorted(self): class MyModule(torch.nn.Module): def forward(self, x, k): # When sorted=False, order of elements in the outout tensors # are not expected to match between PyTorch and ORT topk_unsorted = torch.topk(x, k, largest=False, sorted=False) topk_sorted = torch.topk(x, k, largest=False, sorted=True) return topk_sorted, torch.sort(topk_unsorted.values).values x = torch.arange(1., 6., requires_grad=True) k = torch.tensor(3) self.run_test(MyModule(), (x, k)) @skipIfUnsupportedMinOpsetVersion(10) def test_topk_script(self): class MyModuleDynamic(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, k): return torch.topk(x, k) x = torch.arange(1., 6., requires_grad=True) k = torch.tensor(3) self.run_test(MyModuleDynamic(), [x, k]) @skipIfUnsupportedOpsetVersion([7]) def test_normalize(self): class Model(torch.nn.Module): def forward(self, x): return torch.nn.functional.normalize(x) x = torch.randn(3, 3) self.run_test(Model(), x) def test_layer_norm(self): model = torch.nn.LayerNorm([10, 10]) x = torch.randn(20, 5, 10, 10) self.run_test(model, x) def test_batchnorm1d(self): x = torch.randn(10, 10) model = torch.nn.BatchNorm1d(10, affine=True) self.run_test(model, x) x = torch.randn(10, 10, 128) self.run_test(model, x) def test_batchnorm1d_noaffine(self): x = torch.randn(10, 10) model = torch.nn.BatchNorm1d(10, affine=False) self.run_test(model, x) x = torch.randn(10, 10, 128) self.run_test(model, x) def test_batchnorm2d(self): x = torch.randn(10, 3, 128, 128) model = torch.nn.BatchNorm2d(3, affine=True) self.run_test(model, x) def test_batchnorm2d_noaffine(self): x = torch.randn(10, 3, 128, 128) model = torch.nn.BatchNorm2d(3, affine=False) self.run_test(model, x) def test_batchnorm3d(self): x = torch.randn(10, 3, 128, 128, 128) model = torch.nn.BatchNorm3d(3, affine=True) self.run_test(model, x) def test_batchnorm3d_noaffine(self): x = torch.randn(10, 3, 128, 128, 128) model = torch.nn.BatchNorm3d(3, affine=False) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(9) def test_scatter_with_scalar(self): class ScatterModel(torch.nn.Module): def forward(self, input, indices): values = 1.0 return input.scatter(1, indices, values) input = torch.tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]], dtype=torch.float64) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) self.run_test(ScatterModel(), input=(input, indices)) @skipIfUnsupportedMinOpsetVersion(9) def test_scatter_with_scalar_different_types(self): # Tests the case when scalar src (updates values) type is different # from self type. Happens only with scalar src - PyTorch does not # allow this when src is a tensor. class ScatterModel(torch.nn.Module): def forward(self, input, indices): values = 1.0 return input.scatter(1, indices, values) input = torch.tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]], dtype=torch.float32) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) self.run_test(ScatterModel(), input=(input, indices)) @skipIfUnsupportedMinOpsetVersion(9) def test_scatter(self): class ScatterModel(torch.nn.Module): def forward(self, input, indices, values): return input.scatter(1, indices, values) input = torch.tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]]) self.run_test(ScatterModel(), input=(input, indices, values)) input = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) indices = torch.tensor([[1, 0], [0, 2], [0, 1]], dtype=torch.int64) values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]]) self.run_test(ScatterModel(), (input, indices, values)) input = torch.zeros(3, 4, 5, 6) indices = torch.tensor([[1, 0], [0, 2], [0, 1]], dtype=torch.int64) indices = indices.view(3, 2, 1, 1).expand(3, 2, 5, 6) values = torch.arange(3 * 2 * 5 * 6, dtype=torch.float32).view(3, 2, 5, 6) self.run_test(ScatterModel(), (input, indices, values)) input = torch.zeros(3, 4, 2) indices = torch.tensor([[[1, 0], [0, 2]], [[1, 1], [0, 1]], [[2, 1], [2, 2]]]) values = torch.arange(3 * 2 * 2, dtype=torch.float32).view(3, 2, 2) self.run_test(ScatterModel(), (input, indices, values)) @skipIfUnsupportedMinOpsetVersion(9) def test_scatter_add(self): class ScatterModel(torch.nn.Module): def forward(self, input, indices, values): return input.scatter_add(1, indices, values) input = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]]) self.run_test(ScatterModel(), input=(input, indices, values)) @skipIfUnsupportedMinOpsetVersion(9) def test_one_hot(self): class OneHot(torch.nn.Module): def __init__(self, num_classes): super().__init__() self.num_classes = num_classes def forward(self, x): return torch.nn.functional.one_hot(x, self.num_classes) x = torch.arange(10) self.run_test(OneHot(15), (x)) @skipIfUnsupportedMinOpsetVersion(9) def test_gather(self): class GatherModel(torch.nn.Module): def forward(self, input, indices): return input.gather(1, indices) input = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) self.run_test(GatherModel(), input=(input, indices)) @skipIfUnsupportedMinOpsetVersion(9) def test_expand(self): class ExpandModel(torch.nn.Module): def forward(self, input): return input.expand(2, 3, -1) input = torch.randn(2, 1, 4) self.run_test(ExpandModel(), input=(input)) class ExpandInferDimModel(torch.nn.Module): def forward(self, input): return input.expand(-1, input.size(0)) input = torch.randn(3, 1) self.run_test(ExpandInferDimModel(), input=(input)) class ExpandTensorSizeModel(torch.nn.Module): def forward(self, input, size): return input.expand(size) input = torch.randn(3,) size = torch.tensor(-1) self.run_test(ExpandTensorSizeModel(), input=(input, size)) def test_multinomial(self): class Multinomial(torch.nn.Module): def forward(self, weight): return torch.multinomial(weight, 3, replacement=True) class MultinomialNoReplacement(torch.nn.Module): def forward(self, weight): return torch.multinomial(weight, 1) weight = torch.tensor([[0, 10, 0, 0], [0, 0, 100, 0]], dtype=torch.float) self.run_test(Multinomial(), (weight,)) self.run_test(MultinomialNoReplacement(), (weight,)) def _test_reduced_ops(self, op): class ReducedOpModule(torch.nn.Module): def forward(self, input): return op(input, dim=-1) if op != torch.mean: # torch.mean only supports float types x = torch.randint(10, (4, 4), dtype=torch.uint8) self.run_test(ReducedOpModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int8) self.run_test(ReducedOpModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int16) self.run_test(ReducedOpModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int32) self.run_test(ReducedOpModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int64) self.run_test(ReducedOpModule(), x) # torch.mean only supports float types # ORT does not support double ReduceProd for double if op != torch.prod and op != torch.mean: x = torch.randn(4, 5, dtype=torch.double) self.run_test(ReducedOpModule(), x) if op != torch.prod: # torch.prod not implemented for Half x = torch.randn(4, 4, dtype=torch.half) self.run_test(ReducedOpModule(), x) x = torch.randn(4, 5, dtype=torch.float) self.run_test(ReducedOpModule(), x) def test_reduced_sum(self): return self._test_reduced_ops(op=torch.sum) def test_reduced_mean(self): return self._test_reduced_ops(op=torch.mean) def test_reduced_prod(self): return self._test_reduced_ops(op=torch.prod) def test_reduced_min_max(self): class ReducedMinMaxModule(torch.nn.Module): def forward(self, input): return torch.min(input, dim=-1)[0], torch.max(input, dim=0)[0] x = torch.randint(10, (4, 4), dtype=torch.int32) self.run_test(ReducedMinMaxModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int64) self.run_test(ReducedMinMaxModule(), x) x = torch.randn(4, 5, dtype=torch.float) self.run_test(ReducedMinMaxModule(), x) def test_reduce_log_sum_exp(self): class ReduceLogSumExpModel(torch.nn.Module): def forward(self, input): a = torch.logsumexp(input, dim=0) b = torch.logsumexp(input, dim=(0, 1)) return a + b x = torch.randn(4, 4, requires_grad=True) self.run_test(ReduceLogSumExpModel(), x) def test_softmax(self): for i in range(-4, 3): model = torch.nn.Softmax(dim=i) input = torch.randn(3, 4, 5, 6) self.run_test(model, input) class SoftmaxUnknownRank(torch.nn.Module): def __init__(self, i): super().__init__() self.softmax = torch.nn.Softmax(dim=i) def forward(self, x): return self.softmax(x.reshape(3, 4, 5, 6)) model = torch.jit.script(SoftmaxUnknownRank(i)) self.run_test(model, input) def test_softmax_large_values(self): input = torch.tensor([[-1e12, -1e12, -1e12], [1e12, 0.0, -5.0], [3.0, 4.0, 5.0]]) for i in range(-2, 1): model = torch.nn.Softmax(dim=i) self.run_test(model, input) class SoftmaxUnknownRank(torch.nn.Module): def __init__(self, i): super().__init__() self.softmax = torch.nn.Softmax(dim=i) def forward(self, x): return self.softmax(x.reshape(3, 3)) model = torch.jit.script(SoftmaxUnknownRank(i)) self.run_test(model, input) def test_logsoftmax(self): for i in range(7)[2:]: model = torch.nn.LogSoftmax(dim=i - 1) dims = [2] * (i - 2) + [3, 4] input = torch.ones(*dims, requires_grad=True) self.run_test(model, input) def test_logsoftmax_dim(self): for i in range(-4, 3): model = torch.nn.LogSoftmax(dim=i) input = torch.randn(3, 4, 5, 6) self.run_test(model, input) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() # scripting prim_dtype def test_lstm_no_hidden(self): class LSTMModel(torch.nn.Module): def __init__(self): super().__init__() self.rnn = torch.nn.LSTM(input_size=16, hidden_size=16) def forward(self, x): return self.rnn(x) input = torch.randn((10, 16, 16)) self.run_test(LSTMModel(), (input,)) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() def test_lstm(self): model = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False) input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) h0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE) c0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE) self.run_test(model, (input, (h0, c0))) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() def test_lstm_default_init_state(self): model = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False) input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) self.run_test(model, input) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() # LSTMModel model not scriptable def test_lstm_fixed_batch_size(self): class LSTMModel(torch.nn.Module): def __init__(self): super(LSTMModel, self).__init__() self.lstm = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False) def forward(self, input): batch_size = input.size()[1] h0_np = np.ones([1, batch_size, RNN_HIDDEN_SIZE]).astype(np.float32) c0_np = np.ones([1, batch_size, RNN_HIDDEN_SIZE]).astype(np.float32) h0 = torch.from_numpy(h0_np) c0 = torch.from_numpy(c0_np) return self.lstm(input, (h0, c0)) input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) # verify with different input of same batch size input2 = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) self.run_test(LSTMModel(), input, fixed_batch_size=True, test_with_inputs=[input2]) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() def test_lstm_post_fix_init_state(self): class LSTMModel(torch.nn.Module): def __init__(self): super(LSTMModel, self).__init__() self.lstm = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False) def forward(self, input): batch_size = input.size()[1] h0_np = np.ones([1, batch_size, RNN_HIDDEN_SIZE]).astype(np.float32) c0_np = np.ones([1, batch_size, RNN_HIDDEN_SIZE]).astype(np.float32) h0 = torch.from_numpy(h0_np) c0 = torch.from_numpy(c0_np) return self.lstm(input, (h0, c0)) model = LSTMModel() input = torch.randn(RNN_SEQUENCE_LENGTH, 1, RNN_INPUT_SIZE) # verify with different input of different batch size input2 = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) self.run_test(model, input, dynamic_axes={'input' : {0 : 'seq', 1 : 'batch'}}, test_with_inputs=[input2]) @disableScriptTest() def test_lstm_constant_folding(self): class LstmNet(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, bidirectional): super(LstmNet, self).__init__() self.lstm = torch.nn.LSTM(input_size, hidden_size, num_layers, bidirectional=bidirectional) def forward(self, input, initial_state): return self.lstm(input, initial_state) def get_LstmNet_model_and_inputs(input_size, hidden_size, num_layers, batch_size, seq_len, bidirectional): num_directions = 2 if bidirectional else 1 model = LstmNet(input_size, hidden_size, num_layers, bidirectional) input = torch.randn(seq_len, batch_size, input_size) h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size) c0 = torch.randn(num_layers * num_directions, batch_size, hidden_size) return model, (input, (h0, c0)) batch_size1 = 3 model1, input1 = get_LstmNet_model_and_inputs(7, 3, 2, batch_size1, 5, True) self.run_test(model1, input1, do_constant_folding=True) batch_size2 = 4 model2, input2 = get_LstmNet_model_and_inputs(5, 4, 3, batch_size2, 7, False) self.run_test(model2, input2, do_constant_folding=True) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() def test_lstm_no_bias(self): class LstmNet(torch.nn.Module): def __init__(self, num_layers, bidirectional): super(LstmNet, self).__init__() self.lstm = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, num_layers, bias=False, bidirectional=bidirectional) def forward(self, input, initial_state): return self.lstm(input, initial_state) def get_LstmNet_model_and_inputs(num_layers, bidirectional): input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) num_directions = 2 if bidirectional else 1 model = LstmNet(num_layers, bidirectional) h0 = torch.randn(num_layers * num_directions, BATCH_SIZE, RNN_HIDDEN_SIZE) c0 = torch.randn(num_layers * num_directions, BATCH_SIZE, RNN_HIDDEN_SIZE) return model, (input, (h0, c0)) num_layers = [1, 1, 2, 3] bidirectional = [True, False, True, False] models_and_inputs = [get_LstmNet_model_and_inputs(n, b) for n, b in zip(num_layers, bidirectional)] for model, input in models_and_inputs: self.run_test(model, input) @disableScriptTest() def test_rnn_no_bias(self): def make_model(layers, packed_sequence): batch_first = True if packed_sequence == 2 else False model = torch.nn.RNN(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, bidirectional=False, batch_first=batch_first, bias=False) if packed_sequence == 1: model = RnnModelWithPackedSequence(model, False) if packed_sequence == 2: model = RnnModelWithPackedSequence(model, True) return model def make_input(batch_size, layers, packed_sequence): batch_first = True if packed_sequence == 2 else False seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size) seq_lengths = list(reversed(sorted(map(int, seq_lengths)))) inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths] inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first) inputs = [inputs] h0 = torch.randn(layers, batch_size, RNN_HIDDEN_SIZE) inputs.append(h0) if packed_sequence != 0: inputs.append(torch.IntTensor(seq_lengths)) if len(inputs) == 1: input = inputs[0] else: input = tuple(inputs) return input layers = [1, 3, 1, 3, 1, 3] packed_sequence = [0, 0, 1, 1, 2, 2] models = [make_model(l, p) for l, p in zip(layers, packed_sequence)] inputs = [make_input(RNN_BATCH_SIZE, l, p) for l, p in zip(layers, packed_sequence)] for model, input in zip(models, inputs): self.run_test(model, input, batch_size=RNN_BATCH_SIZE) def test_gru_no_bias(self): class GruNet(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, bidirectional): super(GruNet, self).__init__() self.mygru = torch.nn.GRU(input_size, hidden_size, num_layers, bidirectional=bidirectional, bias=False) def forward(self, input, initial_state): out = self.mygru(input, initial_state) return out def get_GruNet_model_and_inputs(input_size, hidden_size, num_layers, batch_size, seq_len, bidirectional): num_directions = 2 if bidirectional else 1 model = GruNet(input_size, hidden_size, num_layers, bidirectional) input = torch.randn(seq_len, batch_size, input_size) h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size) return model, (input, h0) input_size = [7, 5] hidden_size = [3, 4] num_layers = [2, 3] batch_size = [3, 4] seq_len = [5, 7] bidirectional = [True, False] models_and_inputs = [get_GruNet_model_and_inputs(i, h, n, b, s, bi) for i, h, n, b, s, bi in zip(input_size, hidden_size, num_layers, batch_size, seq_len, bidirectional)] for model, input in models_and_inputs: self.run_test(model, input, do_constant_folding=True) def test_gru_constant_folding(self): class GruNet(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, bidirectional): super(GruNet, self).__init__() self.mygru = torch.nn.GRU(input_size, hidden_size, num_layers, bidirectional=bidirectional) def forward(self, input, initial_state): out = self.mygru(input, initial_state) return out def get_GruNet_model_and_inputs(input_size, hidden_size, num_layers, batch_size, seq_len, bidirectional): num_directions = 2 if bidirectional else 1 model = GruNet(input_size, hidden_size, num_layers, bidirectional) input = torch.randn(seq_len, batch_size, input_size) h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size) return model, (input, h0) batch_size1 = 3 model1, input1 = get_GruNet_model_and_inputs(7, 3, 2, batch_size1, 5, True) self.run_test(model1, input1, do_constant_folding=True) batch_size2 = 4 model2, input2 = get_GruNet_model_and_inputs(5, 4, 3, batch_size2, 7, False) self.run_test(model2, input2, do_constant_folding=True) @skipIfUnsupportedMinOpsetVersion(8) def test_max_tensors(self): class MaxModel(torch.nn.Module): def forward(self, input, other): return torch.max(input, other) model = MaxModel() x = torch.randn(4, 4, requires_grad=True) y = torch.randn(4, 1, requires_grad=True) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_end(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(a.size(0), dtype=torch.float).view(-1, 1) + a x = torch.randn(3, 4, requires_grad=True) outputs = ArangeScript()(x) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(a.size(0), dtype=torch.float).view(-1, 1) + a self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_end_notype(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(a.size(0)) x = torch.randn(3, 4, requires_grad=True) outputs = ArangeScript()(x) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(a.size(0)) self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_start_end(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(2, a.size(0) + 2, dtype=torch.float).view(-1, 1) + a x = torch.randn(3, 4, requires_grad=True) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(2, a.size(0) + 2, dtype=torch.float).view(-1, 1) + a self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_start_end_notype(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(2.7, a.size(0) + 2).view(-1, 1) + a x = torch.randn(3, 4, requires_grad=True) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(2.7, a.size(0) + 2).view(-1, 1) + a self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_start_end_step(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(2, a.size(0) * a.size(1) + 2, a.size(1), dtype=torch.float).view(-1, 1) + a x = torch.randn(3, 4, requires_grad=True) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(2, a.size(0) * a.size(1) + 2, a.size(1), dtype=torch.float).view(-1, 1) + a self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_start_end_step_notype(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(2.7, a.size(0) * a.size(1) + 2, a.size(1)).view(-1, 1) + a x = torch.randn(3, 4, requires_grad=True) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(2.7, a.size(0) * a.size(1) + 2, a.size(1)).view(-1, 1) + a self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test__dim_arange(self): class DimArange(torch.nn.Module): def forward(self, input): return torch._dim_arange(input, 1) x = torch.ones(5, 6) self.run_test(DimArange(), x) def _test_compare_ops(self, model, num_inputs): x_float = torch.randn(1, 2, 3, 4, requires_grad=True) x_int = torch.randint(10, (3, 4), dtype=torch.int32) if num_inputs > 1: y_float = torch.randn(1, 2, 3, 4, requires_grad=True) y_int = torch.randint(10, (3, 4), dtype=torch.int32) self.run_test(model, (x_float, y_float)) self.run_test(model, (x_float, y_int)) self.run_test(model, (x_int, y_float)) self.run_test(model, (x_int, y_int)) else: self.run_test(model, x_float) self.run_test(model, x_int) def test_gt(self): class GreaterModel(torch.nn.Module): def forward(self, input, other): return input > other self._test_compare_ops(GreaterModel(), 2) @skipIfUnsupportedMinOpsetVersion(9) def test_ge(self): class GreaterOrEqualModel(torch.nn.Module): def forward(self, input, other): return input >= other self._test_compare_ops(GreaterOrEqualModel(), 2) def test_gt_scalar(self): class GreaterModel(torch.nn.Module): def forward(self, input): return input > 1 self._test_compare_ops(GreaterModel(), 1) @skipIfUnsupportedMinOpsetVersion(9) def test_ge_scalar(self): class GreaterOrEqualModel(torch.nn.Module): def forward(self, input): return input >= 1 self._test_compare_ops(GreaterOrEqualModel(), 1) def test_lt(self): class LessModel(torch.nn.Module): def forward(self, input, other): return input > other self._test_compare_ops(LessModel(), 2) @skipIfUnsupportedMinOpsetVersion(9) def test_le(self): class LessOrEqualModel(torch.nn.Module): def forward(self, input, other): return input <= other self._test_compare_ops(LessOrEqualModel(), 2) def test_lt_scalar(self): class LessModel(torch.nn.Module): def forward(self, input): return input < 1 self._test_compare_ops(LessModel(), 1) @skipIfUnsupportedMinOpsetVersion(9) def test_le_scalar(self): class LessOrEqualModel(torch.nn.Module): def forward(self, input): return input <= 1 self._test_compare_ops(LessOrEqualModel(), 1) def test_matmul(self): class MatmulModel(torch.nn.Module): def forward(self, input, other): return torch.matmul(input, other) x = torch.randn(3, 4, requires_grad=True) y = torch.randn(4, 5, requires_grad=True) self.run_test(MatmulModel(), (x, y)) x = torch.randint(10, (3, 4)) y = torch.randint(10, (4, 5)) self.run_test(MatmulModel(), (x, y)) def test_matmul_batch(self): class MatmulModel(torch.nn.Module): def forward(self, input, other): return torch.matmul(input, other) x = torch.randn(2, 3, 4, requires_grad=True) y = torch.randn(2, 4, 5, requires_grad=True) self.run_test(MatmulModel(), (x, y)) x = torch.randint(10, (2, 3, 4)) y = torch.randint(10, (2, 4, 5)) self.run_test(MatmulModel(), (x, y)) def _argmin_argmax_model(self, input): class ArgminArgmaxModel(torch.nn.Module): def forward(self, input): return torch.argmin(input), \ torch.argmax(input), \ torch.argmin(input, keepdim=True), \ torch.argmax(input, keepdim=True) self.run_test(ArgminArgmaxModel(), input) def test_argmin_argmax(self): input = torch.randn(7, 3, 5) self._argmin_argmax_model(input) # Argmin and Argmax with "select_last_index" is not supprted before opset 12 # "select_last_index" was added in opset 12 to deal with corner case where the # same value appears multiple times in the tensor @skipIfUnsupportedMinOpsetVersion(12) def test_argmin_argmax_select_last_index(self): input = torch.tensor([[1., 2., 3.], [1., 1., 2.]]) self._argmin_argmax_model(input) input = torch.ones(7, 3, 5) self._argmin_argmax_model(input) def test_repeat(self): class RepeatModel(torch.nn.Module): def forward(self, x, y): x2 = x.repeat(y.shape[0], 1) y1 = y.view(-1, 1) return x2 + y1 x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 8, 9]) self.run_test(RepeatModel(), (x, y)) def test_view(self): class ViewModel(torch.nn.Module): def forward(self, input): return input.view(4, 24) x = torch.randint(10, (4, 2, 3, 4), dtype=torch.int32) self.run_test(ViewModel(), x) def test_view_dynamic(self): class ViewModel(torch.nn.Module): def forward(self, input, other): return input.view(other.shape) x = torch.randn(2, 3, 4) shape = torch.randn(6, 4) self.run_test(ViewModel(), (x, shape)) def test_view_dynamic_zero_dim(self): class ViewModel(torch.nn.Module): def forward(self, input): input = input.view(-1, 2) return input.view(1, -1) x = torch.ones(2) another_x = torch.empty((0,)) self.run_test(ViewModel(), x, test_with_inputs=[another_x], input_names=['input_1'], dynamic_axes={'input_1': [0, ]}) def test_view_as(self): class ViewModel(torch.nn.Module): def forward(self, input, other): return input.view_as(other) x = torch.randn(2, 3, 4) y = torch.randn(6, 4) self.run_test(ViewModel(), (x, y)) @disableScriptTest() # ONNX Shape inference failure in if/else block for Gemm def test_weight_norm(self): model = torch.nn.utils.weight_norm(torch.nn.Linear(5, 10), dim=1) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(model, x) model = torch.nn.utils.weight_norm(torch.nn.Conv1d(1, 1, 3)) x = torch.randn(1, 1, 5, requires_grad=True) self.run_test(model, x) model = torch.nn.utils.weight_norm(torch.nn.Conv1d(1, 1, 3), dim=-2) x = torch.randn(1, 1, 5, requires_grad=True) self.run_test(model, x) model = torch.nn.utils.weight_norm(torch.nn.Conv1d(3, 6, 3), name='weight') x = torch.randn(3, 3, 5, requires_grad=True) self.run_test(model, x) @disableScriptTest() # ONNX Shape inference failure in if/else block for Gemm def test_weight_norm_nodim(self): model = torch.nn.utils.weight_norm(torch.nn.Linear(5, 10), dim=None) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(model, x) def test_flatten(self): class FlattenModel(torch.nn.Module): def forward(self, input): return torch.flatten(input) x = torch.randint(10, (1, 2, 3, 4)) self.run_test(FlattenModel(), x) def test_flatten2d(self): class FlattenModel(torch.nn.Module): def forward(self, input): return torch.flatten(input, 1) x = torch.randint(10, (1, 2, 3, 4)) self.run_test(FlattenModel(), x) def test_flatten2d_neg(self): class FlattenModel(torch.nn.Module): def forward(self, x): return torch.flatten(x, 1, -1), torch.flatten(x, 0, -2), torch.flatten(x, 1, -2) x = torch.randint(10, (1, 2, 3, 4)) self.run_test(FlattenModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_flatten_dynamic_axes(self): class MyModule(torch.nn.Module): def forward(self, x): return torch.flatten(x, start_dim=2, end_dim=3) batch_size = 3 x = torch.randn(batch_size, 5, 4, 5) y = torch.randn(5, 5, 4, 5) model = MyModule() self.run_test(model, x, test_with_inputs=[y], input_names=['input'], output_names=['output'], dynamic_axes={'input' : {0 : 'batch_size'}, 'output' : {0 : 'batch_size'}}) @skipIfUnsupportedMinOpsetVersion(11) def test_getitem(self): class GetItemModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y, z, ind): # this will create prim::ListConstruct(x, y, z) + aten::__getitem__ arr = [x, y, z] return arr[ind] x = torch.randn(3, 4, 5) y = torch.randn(1, 4, 5) z = torch.randn(2, 4, 5) ind = torch.tensor(1, dtype=torch.long) self.run_test(GetItemModel(), (x, y, z, ind)) ind = torch.tensor(-2, dtype=torch.long) self.run_test(GetItemModel(), (x, y, z, ind)) def test_unbind(self): class UnbindModel(torch.nn.Module): def forward(self, input): _, out, _ = input.unbind() return out x = torch.randn(3, 4, 5) self.run_test(UnbindModel(), x) class UnbindModel2(torch.nn.Module): def forward(self, input): _, out, _, _ = input.unbind(1) return out x = torch.randn(3, 4, 5) self.run_test(UnbindModel2(), x) class UnbindModel3(torch.nn.Module): def forward(self, input): _, out, _, _ = input.unbind(-2) return out x = torch.randn(3, 4, 5) self.run_test(UnbindModel3(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_len(self): class LenModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return len(input.unbind()) + input x = torch.randn(4, 5) self.run_test(LenModel(), x, input_names=['input'], dynamic_axes={'input': {0: 'seq'}}, test_with_inputs=(torch.randn(5, 5),)) @skipIfUnsupportedMinOpsetVersion(9) def test_len_list(self): class LenListModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.ones(len(input.shape)) x = torch.randn(4, 5) self.run_test(LenListModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_unbind_dynamic(self): class UnbindModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.unbind()[1] x = torch.randn(3, 4, 5) self.run_test(UnbindModel(), x) class UnbindModel2(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.unbind(-1)[1] x = torch.randn(3, 4, 5) self.run_test(UnbindModel2(), x) def test_split(self): class SplitModel(torch.nn.Module): def forward(self, input): out1, out2, out3 = input.split([2, 1, 2]) return out1, out2, out3 x = torch.randn(5, 4, 3) self.run_test(SplitModel(), x) class SplitModel2(torch.nn.Module): def forward(self, input): out1, out2, out3 = input.split([2, 1, 1], -2) return out1, out2, out3 x = torch.randn(5, 4, 3) self.run_test(SplitModel2(), x) class SplitModel3(torch.nn.Module): def forward(self, input): out1, out2, out3 = input.split([2, 1, 2]) return out3, out1 x = torch.randn(5, 4, 3) self.run_test(torch.jit.script(SplitModel3()), x) @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() def test_split_size_as_list(self): class SplitModel(torch.nn.Module): def forward(self, input, split_sizes: List[int]): out = [] split_list: List[torch.Tensor] = input.split(split_sizes) for ob in split_list: out.append(ob) return torch.cat(out, dim=0) x = torch.randn(6, 4, 3) split_sizes = [torch.tensor(2), torch.tensor(4)] self.run_test(SplitModel(), (x, split_sizes)) @skipIfUnsupportedMinOpsetVersion(11) def test_split_size_with_slice(self): class SplitModule(torch.nn.Module): def forward(self, x, y, t): splits = (x.size(1), y.size(1)) out, out2 = torch.split(t, splits, dim=1) return out, out2 x = torch.randn(2, 3) y = torch.randn(2, 4) t = torch.randn(2, 7) self.run_test(SplitModule(), (x, y, t)) @skipIfUnsupportedMinOpsetVersion(11) def test_split_dynamic(self): class SplitModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.split(2)[1] x = torch.randn(5, 4, 3) self.run_test(SplitModel(), x) class SplitModel2(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.split(2, -3)[1] x = torch.randn(5, 4, 3) self.run_test(SplitModel2(), x) def test_concat(self): class ConcatModel(torch.nn.Module): def forward(self, x, y, z): return torch.cat((x, y, z)) x = torch.randn(3, 4, 5) y = torch.randn(1, 4, 5) z = torch.randn(2, 4, 5) self.run_test(ConcatModel(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(11) def test_concat_dynamic(self): class ConcatDynamicModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.cat(x.unbind()) x = torch.randn(4, 5, 6) self.run_test(ConcatDynamicModel(), x) def test_stack(self): class StackModel(torch.nn.Module): def forward(self, x, y, z): return torch.stack((x, y, z), 1) x = torch.randn(3, 4, 5) y = torch.randn(3, 4, 5) z = torch.randn(3, 4, 5) self.run_test(StackModel(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(11) def test_stack_dynamic(self): class StackDynamicModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.stack(x.unbind(), 1) x = torch.randn(4, 5, 6) self.run_test(StackDynamicModel(), x) def test_loop_dynamic(self): class LoopModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): for i in range(x.size(2)): x = x + i return x model = LoopModel() inputs = torch.zeros(1, 2, 3, dtype=torch.long) self.run_test(model, inputs) @skipIfUnsupportedMinOpsetVersion(9) def test_loop_nested(self): class NestedLoopsModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): for i in range(5): a = 0 while a < 4: a += 1 x = x + a return x model = NestedLoopsModel() inputs = torch.zeros(1, 2, 3, dtype=torch.long) self.run_test(model, inputs) @skipIfUnsupportedMinOpsetVersion(11) def test_loop_with_list(self): class ListLoopModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): res = [] res1 = [] arr = x.split([3, 4, 1, 1, 2, 3, 2], 0) res2 = torch.zeros(3, 4, dtype=torch.long) res3 = [] res4 = [] for i in range(len(arr)): res = res.append(arr[i].sum(0, False)) res1 = res1.append(arr[-1 - i].sum(0, False)) res2 += 1 res3 = res3 + [arr[i].sum(0, False)] res4 += [arr[-1 - i].sum(0, False)] return torch.stack(res), torch.stack(res1), res2, torch.stack(res3), torch.stack(res4) model = ListLoopModel() inputs = torch.randn(16) self.run_test(model, inputs) @skipIfONNXShapeInference(False) @skipIfUnsupportedMinOpsetVersion(11) def test_loop_transpose(self): class LoopModel(torch.nn.Module): def forward(self, x): res = torch.zeros_like(x[0]) for i in range(x.size(0)): res += x[0].transpose(0, 1) return res model = torch.jit.script(LoopModel()) x = torch.randn(5, 3, 3) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(11) def test_list(self): class ListModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): tensors = x.unbind() res = [] res.append(tensors[0]) res.append(tensors[1]) res.pop(1) res.insert(0, tensors[1]) res.append(tensors[2]) res += [tensors[3], tensors[4]] res = res + [tensors[5]] return torch.ones(len(res)) model = ListModel() inputs = torch.randn(16, 1) self.run_test(model, inputs) @skipIfUnsupportedMinOpsetVersion(9) def test_tensor_factories(self): class TensorFactory(torch.nn.Module): def forward(self, x): return torch.zeros(x.size()) + torch.ones(x.size()) x = torch.randn(2, 3, 4) self.run_test(TensorFactory(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_tensor_factories_script(self): class TensorFactory(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.zeros(x.shape, dtype=torch.float) + torch.ones(x.shape, dtype=torch.float) x = torch.randn(2, 3, 4) self.run_test(TensorFactory(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_tensor_like_factories_script(self): class TensorFactory(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): zeros = torch.zeros_like(x, dtype=torch.float, layout=torch.strided, device=torch.device('cpu')) ones = torch.ones_like(x, dtype=torch.float, layout=torch.strided, device=torch.device('cpu')) return zeros + ones x = torch.randn(2, 3, 4) self.run_test(TensorFactory(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_eye(self): class TensorFactory(torch.nn.Module): def forward(self, x): return torch.eye(x.size()[1], 3), torch.eye(4, 4, dtype=torch.long), torch.eye(x.size()[1], 2, dtype=torch.long) x = torch.randn(2, 3, 4) another_x = torch.randn(5, 6, 7) self.run_test(TensorFactory(), x, test_with_inputs=[another_x], input_names=['input_1'], dynamic_axes={'input_1': [0, 1, 2]}) @skipIfUnsupportedMinOpsetVersion(9) def test_inplace_zero(self): class Zero_(torch.nn.Module): def forward(self, x): return x.zero_(), x x = torch.randn(2, 3, 4) self.run_test(Zero_(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_new_zeros(self): class Zero_(torch.nn.Module): def forward(self, x): return x.new_zeros(x.shape[1:2]), x.new_zeros(x.shape[2:], dtype=torch.long) x = torch.randn(2, 3, 4) self.run_test(Zero_(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_list_pass(self): class Slice(torch.nn.Module): def forward(self, x, y): return x.new_zeros(x.shape[2:] + y.shape[1:]) x = torch.randn(2, 3, 4, 5) y = torch.randn(1, 2, 3, 4) self.run_test(Slice(), (x, y)) class Size(torch.nn.Module): def forward(self, x, y): return x.new_zeros(x.shape + y.shape) x = torch.randn(2, 3, 4) y = torch.randn(1, 2, 3) self.run_test(Size(), (x, y)) class Array(torch.nn.Module): def forward(self, x, y): arr1 = [x.shape[0], x.shape[1], 2] arr2 = [y.shape[0], y.shape[1]] return x.new_zeros(arr1 + arr2) x = torch.randn(2, 3, 4) y = torch.randn(1, 2, 3) self.run_test(Array(), (x, y)) class List(torch.nn.Module): def forward(self, x, y): l1 = list(x.shape) l2 = list(y.shape) return x.new_zeros(l1 + l2) x = torch.randn(2, 3, 4) y = torch.randn(1, 2, 3) self.run_test(List(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_new_empty(self): class Emtpy(torch.nn.Module): def forward(self, x): return x.new_empty(x.shape[0]).fill_(0), x.new_empty(x.shape[0], dtype=torch.long) * 0 x = torch.randn(2, 3, 4) self.run_test(Emtpy(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_new_full(self): class Full(torch.nn.Module): def forward(self, x): return x.new_full(x.shape[1:2], 5), x.new_full(x.shape[0:1], 1.3, dtype=torch.long) x = torch.randn(2, 3, 4) self.run_test(Full(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_inplace_list(self): class Arithmetic(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y): return torch.cat([x.add_(3), y.fill_(0)]) x = torch.randn(2, 3) y = torch.randn(2, 3) self.run_test(Arithmetic(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_inplace_fill(self): class Fill_(torch.nn.Module): def forward(self, x): return x.fill_(3), x x = torch.randn(2, 3, 4) self.run_test(Fill_(), x) def test_inplace_arithmetic(self): class Arithmetic(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y): x.add_(3) y.mul_(x) return x, y x = torch.randn(2, 3, 4) y = torch.randn(2, 3, 4) self.run_test(Arithmetic(), (x, y)) @disableScriptTest() def test_sort(self): class SortModel(torch.nn.Module): def forward(self, x): out = [] for i in range(-2, 2): out.append(torch.sort(x, dim=i, descending=True)) return out x = torch.randn(3, 4) self.run_test(SortModel(), x) @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() def test_sort_ascending(self): class SortModel(torch.nn.Module): def forward(self, x): out = [] for i in range(-2, 2): out.append(torch.sort(x, dim=i, descending=False)) return out x = torch.randn(3, 4) self.run_test(SortModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_masked_fill(self): class MaskedFillModel(torch.nn.Module): def forward(self, x): mask = torch.tensor([[0, 0, 1], [1, 1, 0]], dtype=torch.uint8) return x.masked_fill(mask, 2) x = torch.zeros(4, 2, 3, requires_grad=True) self.run_test(MaskedFillModel(), x) class MaskedFillModel2(torch.nn.Module): def forward(self, x): return x.masked_fill(x > 3, -1) x = torch.arange(16).view(2, 2, 4).to(torch.float32) self.run_test(MaskedFillModel2(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_masked_fill_inplace(self): class MaskedFillModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): mask = torch.tensor([[0, 0, 1], [1, 1, 0]], dtype=torch.uint8) x.masked_fill_(mask, 2) return x x = torch.zeros(4, 2, 3, requires_grad=True) self.run_test(MaskedFillModel(), x) class MaskedFillModel2(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): x.masked_fill_(x > 3, -1) return x x = torch.arange(16).view(2, 2, 4).to(torch.float32) self.run_test(MaskedFillModel2(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_masked_scatter(self): class MaskedScatterModel(torch.nn.Module): def forward(self, x): return torch.masked_scatter(x, x.ge(0.5), torch.ones(100, 100) * 5) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(MaskedScatterModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_masked_select(self): class MaskedSelectModel(torch.nn.Module): def forward(self, x): return torch.masked_select(x, x.ge(0.5)) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(MaskedSelectModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_pixel_shuffle(self): class PixelShuffle(torch.nn.Module): def forward(self, x): return torch.pixel_shuffle(x, upscale_factor=2) x = torch.randn(2, 16, 4, 3, requires_grad=True) self.run_test(PixelShuffle(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_scalar_type(self): class ArithmeticModel(torch.nn.Module): def forward(self, x): return x.size(0) * 2 * x x = torch.ones(2, 3, dtype=torch.float32) self.run_test(ArithmeticModel(), x) class ReciprocalModel(torch.nn.Module): def forward(self, x): return torch.reciprocal(x) x = torch.tensor([2.0, 4.0], dtype=torch.double) self.run_test(ReciprocalModel(), x) class ComparisonModel(torch.nn.Module): def forward(self, x, y): a = torch.tensor([12.0]) return x.lt(1.5) & y.le(2) & x.le(1), x.gt(y), x.lt(y), a.ge(x.size(0)) x = torch.ones(2, 3, dtype=torch.int32) y = torch.ones(2, 3, dtype=torch.float32) self.run_test(ComparisonModel(), (x, y)) class MatMulModel(torch.nn.Module): def forward(self, x): return (torch.mm(x, x) + x + torch.mm(x, x) + x) x = torch.ones(3, 3) self.run_test(MatMulModel(), x) class AddMMModel(torch.nn.Module): def forward(self, x): return torch.mm(x, x) + x x = torch.ones(3, 3) self.run_test(AddMMModel(), x) class FullModel(torch.nn.Module): # add is used for exporting full def forward(self, x): return torch.full((3, 4), x) x = torch.tensor(12.) self.run_test(FullModel(), x) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() # dtype mismatch def test_full_like(self): class FullLikeModel(torch.nn.Module): def forward(self, x): return torch.full_like(x, 4) x = torch.tensor(12) self.run_test(FullLikeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() # dtype mismatch def test_full_like_value(self): class FullLikeModel(torch.nn.Module): def forward(self, x, y): out = y + 2 return torch.full_like(x, out) x = torch.tensor(12) y = torch.tensor(2) self.run_test(FullLikeModel(), (x, y)) def test_l1_norm(self): class NormModel(torch.nn.Module): def forward(self, x): return torch.norm(x, p=1, dim=-1, keepdim=False) x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(NormModel(), x) def test_l2_norm(self): class NormModel(torch.nn.Module): def forward(self, x): return torch.norm(x, p=2, dim=-2, keepdim=False) x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(NormModel(), x) def test_frobenius_norm(self): class NormModel(torch.nn.Module): def forward(self, x): return torch.norm(x, p="fro", dim=0, keepdim=False) x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(NormModel(), x) def test_frobenius_norm_keepdim(self): class NormModel(torch.nn.Module): def forward(self, x): return torch.norm(x, p="fro", dim=(0, 1), keepdim=True) x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(NormModel(), x) def test_unfold(self): class UnfoldModel(torch.nn.Module): def forward(self, x): return x.unfold(dimension=2, size=2, step=2) x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(UnfoldModel(), x) @skipIfONNXShapeInference(False) def test_unfold_infer_shape(self): class UnfoldModule(torch.jit.ScriptModule): def __init__(self): super(UnfoldModule, self).__init__() self.conv = torch.nn.Conv1d(3, 1, 3, stride=2) @torch.jit.script_method def forward(self, x): x = self.conv(x) return x.unfold(dimension=2, size=2, step=2) x = torch.randn(32, 3, 64) self.run_test(UnfoldModule(), x) def test_remainder(self): class RemainderModel(torch.nn.Module): def forward(self, input, other): return torch.remainder(input, other) x = torch.randn(4, 2, 3) y = torch.randn(1, 2, 1) self.run_test(RemainderModel(), (x, y)) def test_remainder_scalar(self): class RemainderModel(torch.nn.Module): def forward(self, input): return torch.remainder(input, 2.55) x = torch.randint(10, (2, 3)) self.run_test(RemainderModel(), x) @skipIfUnsupportedMinOpsetVersion(10) def test_fmod(self): class FModModel(torch.nn.Module): def forward(self, input, other): return torch.fmod(input, other) x = torch.randn(4, 2, 3) y = torch.randn(1, 2, 1) self.run_test(FModModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(10) def test_fmod_scalar(self): class FModModel(torch.nn.Module): def forward(self, input): return torch.fmod(input, 2.55) x = torch.randint(10, (2, 3)) self.run_test(FModModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_gelu(self): class GeluModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.gelu(x) x = torch.randn(2, 4, 5, 6, requires_grad=True) self.run_test(GeluModel(), x) def test_add_inplace(self): class InplaceAddModel(torch.nn.Module): def forward(self, x): x += 12 return x x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(InplaceAddModel(), x) def test_rsqrt(self): class RsqrtModel(torch.nn.Module): def forward(self, x): return x.rsqrt() x = torch.randn(4, 2, 3, requires_grad=True, dtype=torch.float64) self.run_test(RsqrtModel(), x) def test_rsqrt_zeros(self): class RsqrtModel(torch.nn.Module): def forward(self, x): return x.rsqrt() x = torch.zeros(4, 2, 3, requires_grad=True, dtype=torch.float64) self.run_test(RsqrtModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_unique(self): class UniqueModel(torch.nn.Module): def forward(self, x): return torch.unique(x, sorted=True, return_inverse=False, return_counts=True) x = torch.tensor([1, 3, 2, 3], dtype=torch.long) self.run_test(UniqueModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_unique_along_dim(self): class UniqueModel(torch.nn.Module): def forward(self, x): return torch.unique(x, dim=0, sorted=True, return_inverse=True, return_counts=False) x = torch.tensor([1, 3, 2, 3], dtype=torch.long) self.run_test(UniqueModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_cumsum(self): class CumSum(torch.nn.Module): def forward(self, input): return torch.cumsum(input, dim=0) x = torch.randn(2, 3, 4) model = CumSum() self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(11) def test_cumsum_with_cast(self): class CumSum(torch.nn.Module): def forward(self, input): return torch.cumsum(input, dim=0, dtype=torch.float32) model = CumSum() x = torch.tensor([2, 3, 4], dtype=torch.int32) self.run_test(model, x) x = torch.tensor([False, True, True]) self.run_test(model, x) @disableScriptTest() # error in propagate as assign input shape @skipIfUnsupportedMinOpsetVersion(10) @skipIfUnsupportedOpsetVersion([12]) # Due to ONNX Loop shape inference issue def test_embedding_bag(self): model = torch.nn.EmbeddingBag(10, 5, mode='sum', scale_grad_by_freq=True) input = torch.randint(10, (7,)) offset = torch.tensor([0, 2, 5, 6]) self.run_test(model, (input, offset)) model = torch.nn.EmbeddingBag(10, 5, mode='sum', include_last_offset=True) input = torch.randint(10, (7,)) offset = torch.tensor([0, 2, 5, 6]) self.run_test(model, (input, offset)) model = torch.nn.EmbeddingBag(10, 5, mode='max') input = torch.randint(10, (7, 5)) self.run_test(model, (input)) @disableScriptTest() # scripting prim::Uninitialized, prim::dtype, prim::unchecked_cast @skipIfUnsupportedMinOpsetVersion(10) @skipIfUnsupportedOpsetVersion([12]) # Due to ONNX Loop shape inference issue def test_embedding_bag_1d_per_sample_weights(self): class EmbeddingModel(torch.nn.Module): def forward(self, embedding_matrix, input, offset, weights): return torch.nn.functional.embedding_bag(input, embedding_matrix, offsets=offset, mode='sum', per_sample_weights=weights) model = EmbeddingModel() x = torch.randint(7, (6,)) w = torch.randn(6, ) offset = torch.tensor([0, 2, 5]) embedding_matrix = torch.rand(10, 15) self.run_test(model, (embedding_matrix, x, offset, w)) @disableScriptTest() # scripting prim::Uninitialized, prim::dtype, prim::unchecked_cast @skipIfUnsupportedMinOpsetVersion(10) @skipIfUnsupportedOpsetVersion([12]) # Due to ONNX Loop shape inference issue def test_embedding_bag_2d_per_sample_weights(self): class EmbeddingModel(torch.nn.Module): def forward(self, embedding_matrix, input, weights): return torch.nn.functional.embedding_bag(input, embedding_matrix, mode='sum', per_sample_weights=weights) embedding_matrix = torch.rand(10, 15) model = EmbeddingModel() x = torch.randint(7, (2, 3)) w = torch.randn(2, 3) self.run_test(model, (embedding_matrix, x, w)) @disableScriptTest() # scripting prim::Uninitialized, prim::dtype, prim::unchecked_cast @skipIfUnsupportedMinOpsetVersion(11) @unittest.skip("Due to ONNX Loop shape inference issue.") def test_embedding_bag_dynamic_input(self): class EmbeddingModel1D(torch.nn.Module): def forward(self, embedding_matrix, input, weights, offsets): return torch.nn.functional.embedding_bag(input, embedding_matrix, offsets=offsets, mode='sum', per_sample_weights=weights) model = EmbeddingModel1D() x = torch.randint(7, (6,)) w = torch.randn(6, ) offsets = torch.tensor([0, 2, 5], dtype=torch.long) embedding_matrix = torch.rand(10, 15) x2 = torch.randint(7, (2,)) w2 = torch.randn(2, ) embedding_matrix2 = torch.rand(12, 25) offsets2 = torch.tensor([0, ], dtype=torch.long) self.run_test(model, (embedding_matrix, x, w, offsets), test_with_inputs=[(embedding_matrix2, x2, w2, offsets2)], input_names=['embedding_matrix', 'x', 'offsets', 'w'], dynamic_axes={'embedding_matrix': [0, 1], 'x': [0], 'offsets': [0], 'w': [0]}) class EmbeddingModel2D(torch.nn.Module): def forward(self, embedding_matrix, input, weights): return torch.nn.functional.embedding_bag(input, embedding_matrix, mode='sum', per_sample_weights=weights) model = EmbeddingModel2D() x = torch.randint(7, (2, 3)) w = torch.randn(2, 3) embedding_matrix = torch.rand(10, 15) x2 = torch.randint(7, (3, 5)) w2 = torch.randn(3, 5) embedding_matrix2 = torch.rand(12, 25) self.run_test(model, (embedding_matrix, x, w), test_with_inputs=[(embedding_matrix2, x2, w2)], input_names=['embedding_matrix', 'x', 'w'], dynamic_axes={'embedding_matrix': [0, 1], 'x': [0, 1], 'w': [0, 1]}) @skipIfUnsupportedMinOpsetVersion(8) def test_meshgrid(self): class Meshgrid(torch.nn.Module): def forward(self, x, y, z): output1, output2, output3 = torch.meshgrid(x, y, z) return output1, output2, output3 x = torch.randn(3, requires_grad=True) y = torch.zeros(4, requires_grad=True) z = torch.randn(5, requires_grad=True) self.run_test(Meshgrid(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(8) def test_meshgrid_scalar(self): class Meshgrid(torch.nn.Module): def forward(self, x, y, z): output1, output2, output3 = torch.meshgrid(x, y, z) return output1, output2, output3 x = torch.ones(3, requires_grad=True) y = torch.zeros(4, requires_grad=True) z = torch.tensor(2.0) self.run_test(Meshgrid(), (x, y, z)) def test_baddbmm(self): class MyModule(torch.nn.Module): def forward(self, input, batch1, batch2): return torch.baddbmm(input, batch1, batch2, alpha=torch.tensor(5), beta=3.5) x = torch.randn(10, 3, 5) batch1 = torch.randn(10, 3, 4) batch2 = torch.randn(10, 4, 5) model = MyModule() self.run_test(model, (x, batch1, batch2)) def test_baddbmm_dynamic(self): class MyModule(torch.nn.Module): def forward(self, input, batch1, batch2, alpha, beta): return torch.baddbmm(input, batch1, batch2, alpha=alpha, beta=beta) x = torch.randn(10, 3, 5) batch1 = torch.randn(10, 3, 4) batch2 = torch.randn(10, 4, 5) alpha = torch.tensor(5) beta = torch.tensor(3.5) model = MyModule() self.run_test(model, (x, batch1, batch2, alpha, beta)) def test_numel(self): class MyModule(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.numel() * input x = torch.randn(2, 3, 5) model = MyModule() self.run_test(model, (x,)) def test_numel_empty(self): class MyModule(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.numel() * input x = torch.randn(0) model = MyModule() self.run_test(model, (x,)) def test_cast_to(self): class MyModule(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input, other): return input.to(other) + other x = torch.randn(2, 3, 4) y = torch.tensor([1], dtype=torch.int64) model = MyModule() self.run_test(model, (x, y)) def test_cast_to_bool(self): class MyModule(torch.nn.Module): def forward(self, input, other): return torch.cat((input.to(other), other), 0) x = torch.randn(2, 3, 4) y = torch.zeros([2, 3, 4], dtype=torch.bool) model = MyModule() self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_ones_bool(self): class MyModule(torch.nn.Module): def forward(self, input): true = torch.ones(input.shape, dtype=torch.bool) return input.to(true) & true x = torch.randn(2, 3, 4) model = MyModule() self.run_test(model, x) def test_log(self): class Log(torch.nn.Module): def forward(self, input): return torch.log(input) x = torch.rand(2, 3, 4) model = Log() self.run_test(model, x) def test_log1p(self): class Log1p(torch.nn.Module): def forward(self, input): return torch.log1p(input) x = torch.rand(2, 3, 4) model = Log1p() self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(11) def test_round(self): class Round(torch.nn.Module): def forward(self, x): return torch.round(x) x = torch.tensor([0.9920, -1.0362, -1.5000, 3.5000], requires_grad=True) self.run_test(Round(), x) def test_constant_pad(self): model = torch.nn.ConstantPad1d(2, 3.5) x = torch.randn(2, 4, 4) self.run_test(model, x) model = torch.nn.ConstantPad2d((3, 0, 2, 1), 3.5) x = torch.randn(2, 2, 4, 4) self.run_test(model, x) # Dynamic padding is added in opset 11 @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() # Functional module not scriptable def test_pad_types(self): # Test for different pad integer types class Pad(torch.nn.Module): def forward(self, x, pad): return torch.nn.functional.pad(x, pad) x = torch.randn(2, 2, 4, 4) y = pad = (torch.tensor(2, dtype=torch.int32), torch.tensor(4, dtype=torch.int32)) self.run_test(Pad(), (x, y)) y = pad = (torch.tensor(2, dtype=torch.int64), torch.tensor(4, dtype=torch.int64)) self.run_test(Pad(), (x, y)) @skipIfUnsupportedMaxOpsetVersion(10) def test_unsupported_pad(self): class Pad(torch.nn.Module): def forward(self, x, pad): return torch.nn.functional.pad(x, pad) def run(): x = torch.randn(2, 2, 4, 4) y = pad = (torch.tensor(2, dtype=torch.int32), torch.tensor(4, dtype=torch.int32)) p = Pad() f = io.BytesIO() torch.onnx._export(p, (x, y), f) with self.assertRaises(RuntimeError) as cm: run() the_exception = cm.exception self.assertEqual('Unsupported: ONNX export of Pad in opset 9. The sizes of the padding must be constant. ' + 'Please try opset version 11.', the_exception.args[0]) @disableScriptTest() # export prim::Uninitialized def test_reflection_pad(self): model = torch.nn.ReflectionPad1d(2) x = torch.randn(2, 4, 4) self.run_test(model, x) model = torch.nn.ReflectionPad2d((3, 0, 2, 1)) x = torch.randn(2, 2, 4, 4) self.run_test(model, x) @disableScriptTest() # export prim::Uninitialized def test_replication_pad(self): model = torch.nn.ReplicationPad1d(2) x = torch.randn(2, 4, 4) self.run_test(model, x) model = torch.nn.ReplicationPad2d((3, 0, 2, 1)) x = torch.randn(2, 2, 4, 4) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(11) @disableScriptTest() # export prim::Uninitialized def test_im2col(self): class Unfold(torch.nn.Module): def forward(self, input): return torch.nn.functional.unfold(input, kernel_size=(10, 15), dilation=2, padding=5, stride=3), \ torch.nn.functional.unfold(input, kernel_size=(2, 2), dilation=1, padding=0, stride=3), \ torch.nn.functional.unfold(input, kernel_size=(1, 1), dilation=5, padding=2, stride=3) x = torch.rand(1, 1, 200, 100) self.run_test(Unfold(), x) @skipIfNoLapack @skipIfUnsupportedMinOpsetVersion(11) def test_det(self): class Det(torch.nn.Module): def forward(self, x): return torch.det(x) x = torch.randn(2, 3, 5, 5) self.run_test(Det(), x) # This test checks output scalar type in the ONNX graph should not be null # https://github.com/pytorch/pytorch/issues/28607 @skipIfUnsupportedMinOpsetVersion(10) def test_trace_script(self): @torch.jit.script def center_slice_helper(input, h_offset): return input[:, h_offset:] class CenterCrop(torch.nn.Module): def forward(self, input): return center_slice_helper(input, torch.tensor(input.shape[1] - 1)) x = torch.randn(3, 4) self.run_test(CenterCrop(), x) @skipIfNoLapack @skipIfUnsupportedMinOpsetVersion(11) def test_logdet(self): class LogDet(torch.nn.Module): def forward(self, x): return torch.logdet(x) x = torch.randn(2, 3, 5, 5) self.run_test(LogDet(), x) def test_dim(self): class DimModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): out = input * 2 out *= out.dim() return out empty_input = torch.randn(0, requires_grad=True) multi_dim_input = torch.randn(1, 2, 3, requires_grad=True) self.run_test(DimModel(), empty_input) self.run_test(DimModel(), multi_dim_input) @skipIfUnsupportedMinOpsetVersion(12) @disableScriptTest() # variable number of inputs not scriptable def test_einsum(self): class EinsumModelBatchDiagonal(torch.nn.Module): def forward(self, *tensor_list): eqn = '...ii ->...i' return torch.einsum(eqn, *tensor_list) x = torch.randn(3, 5, 5) self.run_test(EinsumModelBatchDiagonal(), input=(x,)) class EinsumModelBatchMatmul(torch.nn.Module): def forward(self, *tensor_list): eqn = 'bij, bjk -> bik' return torch.einsum(eqn, *tensor_list) x = torch.randn(5, 2, 3) y = torch.randn(5, 3, 4) self.run_test(EinsumModelBatchMatmul(), input=(x, y)) class EinsumModelInnerProd(torch.nn.Module): def forward(self, *tensor_list): eqn = 'i,i' return torch.einsum(eqn, *tensor_list) x = torch.randn(5) y = torch.randn(5) self.run_test(EinsumModelInnerProd(), input=(x, y)) class EinsumModelTranspose(torch.nn.Module): def forward(self, *tensor_list): eqn = 'ij->ji' return torch.einsum(eqn, *tensor_list) x = torch.randn(3, 4) self.run_test(EinsumModelTranspose(), input=(x,)) @skipIfUnsupportedMinOpsetVersion(12) @disableScriptTest() # shape/type inference def test_crossentropyloss(self): for ignore_index in [-100, 1]: x = torch.randn(3, 5) y = torch.empty(3, dtype=torch.long).random_(5) y[y == 1] = ignore_index self._crossentropyloss(x, y, ignore_index) x = torch.randn(3, 5, 2) y = torch.empty(3, 2, dtype=torch.long).random_(5) y[y == 1] = ignore_index self._crossentropyloss(x, y, ignore_index) x = torch.randn(3, 5, 2, 7) y = torch.empty(3, 2, 7, dtype=torch.long).random_(5) y[y == 1] = ignore_index self._crossentropyloss(x, y, ignore_index) def _crossentropyloss(self, x, y, ignore_index): class CrossEntropyLossNone(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossNone, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss(reduction='none') else: self.loss = torch.nn.CrossEntropyLoss(reduction='none', ignore_index=ignore_index) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossNone(ignore_index), input=(x, y)) class CrossEntropyLossNoneWeight(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossNoneWeight, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss(reduction='none', weight=torch.randn(5)) else: self.loss = torch.nn.CrossEntropyLoss(reduction='none', weight=torch.randn(5), ignore_index=ignore_index) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossNoneWeight(ignore_index), input=(x, y)) class CrossEntropyLossSum(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossSum, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss(reduction='sum') else: self.loss = torch.nn.CrossEntropyLoss(reduction='sum', ignore_index=ignore_index) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossSum(ignore_index), input=(x, y)) class CrossEntropyLossSumWeight(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossSumWeight, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss(reduction='sum', weight=torch.randn(5)) else: self.loss = torch.nn.CrossEntropyLoss(reduction='sum', weight=torch.randn(5), ignore_index=ignore_index) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossSumWeight(ignore_index), input=(x, y)) class CrossEntropyLossMean(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossMean, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss() else: self.loss = torch.nn.CrossEntropyLoss(ignore_index=ignore_index) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossMean(ignore_index), input=(x, y)) class CrossEntropyLossMeanWeight(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossMeanWeight, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss(weight=torch.randn(5)) else: self.loss = torch.nn.CrossEntropyLoss(weight=torch.randn(5), ignore_index=ignore_index) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossMeanWeight(ignore_index), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() # Output dtype mismatch def test_kldiv_loss(self): x = torch.randn(5) y = torch.randn(5) self._kldiv_loss(x, y) x = torch.randn(2, 3, 5) y = torch.randn(2, 3, 5) self._kldiv_loss(x, y) x = torch.randn(2, 3, 5, 7) y = torch.randn(2, 3, 5, 7) self._kldiv_loss(x, y) def _kldiv_loss(self, x, y): class KLDivLossNone(torch.nn.Module): def __init__(self): super(KLDivLossNone, self).__init__() self.loss = torch.nn.KLDivLoss(reduction='none', log_target=True) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossNone(), input=(x, y)) class KLDivLossMean(torch.nn.Module): def __init__(self): super(KLDivLossMean, self).__init__() self.loss = torch.nn.KLDivLoss(reduction='mean', log_target=False) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossMean(), input=(x, y)) class KLDivLossSum(torch.nn.Module): def __init__(self): super(KLDivLossSum, self).__init__() self.loss = torch.nn.KLDivLoss(reduction='sum', log_target=True) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossSum(), input=(x, y)) class KLDivLossBatchMean(torch.nn.Module): def __init__(self): super(KLDivLossBatchMean, self).__init__() self.loss = torch.nn.KLDivLoss(reduction='batchmean', log_target=False) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossBatchMean(), input=(x, y)) class KLDivLossMiniBatchMean(torch.nn.Module): def __init__(self): super(KLDivLossMiniBatchMean, self).__init__() self.loss = torch.nn.KLDivLoss(reduction='batchmean', size_average=False, log_target=True) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossMiniBatchMean(), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(12) @disableScriptTest() # shape/type inference def test_nllloss(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction='none') self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(2 * input), target) return output N, C = 5, 4 input = torch.randn(N, 16) target = torch.empty(N, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) @disableScriptTest() # shape/type inference def test_nllloss_2d_none(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction='none') self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) @disableScriptTest() # shape/type inference def test_nllloss_2d_mean(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction='mean') self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) @disableScriptTest() # shape/type inference def test_nllloss_2d_sum(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction='sum') self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) @disableScriptTest() # shape/type inference def test_nllloss_2d_mean_weights(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction='mean', weight=torch.randn(C)) self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) @disableScriptTest() # shape/type inference def test_nllloss_2d_mean_ignore_index(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction='mean', ignore_index=1) self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) @disableScriptTest() # shape/type inference def test_nllloss_2d_mean_ignore_index_weights(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction='mean', weight=torch.randn(C), ignore_index=1) self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) self.run_test(NLLModel(), (input, target)) def test_torch_mm(self): class M(torch.nn.Module): def forward(self, mat1, mat2): mm = torch.mm(mat1, mat2) return mm mat1 = torch.randn(2, 3) mat2 = torch.randn(3, 3) self.run_test(M(), input=(mat1, mat2)) @skipIfUnsupportedMinOpsetVersion(9) # Because where op is not supported for opset < 9. def test_where_with_bool_tensor(self): class M(torch.nn.Module): def forward(self, mat1, mat2): out = torch.where(mat1 > 0, mat1, mat2) return out mat1 = torch.randn(2, 3) mat2 = torch.ones(2, 3) self.run_test(M(), input=(mat1, mat2)) @skipIfUnsupportedMinOpsetVersion(9) # Because where op is not supported for opset < 9. def test_where_with_byte_tensor(self): class M(torch.nn.Module): def forward(self, cond, mat1, mat2): out = torch.where(cond, mat1, mat2) return out cond = torch.ones(2, 3, dtype=torch.uint8) cond[1, 2] = 0 mat1 = torch.randn(2, 3) mat2 = torch.ones(2, 3) self.run_test(M(), input=(cond, mat1, mat2)) def test_dropout(self): class M(torch.nn.Module): def __init__(self): super(M, self).__init__() self.dropout = torch.nn.Dropout(0.3) def forward(self, x): dropout = self.dropout(x) return dropout x = torch.randn(10, 3, 53) self.run_test(M(), (x)) def test_shape_constant_fold(self): class ShapeModule(torch.nn.Module): def __init__(self): super(ShapeModule, self).__init__() self.register_buffer("weight", torch.ones(5)) def forward(self, x): shape = self.weight.shape[0] return x + shape x = torch.randn(2, 5) self.run_test(ShapeModule(), (x,), rtol=1e-3, atol=1e-5) @skipIfUnsupportedMinOpsetVersion(12) def test_celu(self): class Celu(torch.nn.Module): def __init__(self): super(Celu, self).__init__() self.celu = torch.nn.CELU(alpha=1.0) def forward(self, input): return self.celu(input) input = torch.randn(2) self.run_test(Celu(), (input,)) @skipIfUnsupportedMinOpsetVersion(12) def test_celu_default(self): class Celu(torch.nn.Module): def __init__(self): super(Celu, self).__init__() self.celu = torch.nn.CELU() def forward(self, input): return self.celu(input) input = torch.randn(2) self.run_test(Celu(), (input,)) @skipIfUnsupportedMinOpsetVersion(12) def test_celu_alpha(self): class Celu(torch.nn.Module): def __init__(self): super(Celu, self).__init__() self.celu = torch.nn.CELU(alpha=2.) def forward(self, input): return self.celu(input) input = torch.randn(2) self.run_test(Celu(), (input,)) @skipIfUnsupportedMinOpsetVersion(12) def test_celu_cast(self): class Celu(torch.nn.Module): def __init__(self): super(Celu, self).__init__() self.celu = torch.nn.CELU() def forward(self, input): return self.celu(input) input = torch.randn(2, 5, 7, dtype=torch.float64) self.run_test(Celu(), (input,)) @skipIfUnsupportedMinOpsetVersion(9) def test_where(self): class Model(torch.nn.Module): def forward(self, cond, input, other): return torch.where(cond, input, other) x = torch.randint(0, 1, (2, 3, 4), dtype=torch.bool) y = torch.randn(2, 1, 4) z = torch.ones(2, 3, 1) self.run_test(Model(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(9) @disableScriptTest() # symbolic update needed for unbind: ONNX export of unbind with dynamic number of outputs def test_where_condition(self): class Model1(torch.nn.Module): def forward(self, input): return torch.stack(torch.where(input > 0.5), dim=1) x = torch.randint(0, 2, (2, 3, 4), dtype=bool) self.run_test(Model1(), (x)) class Model2(torch.nn.Module): def forward(self, input, other): return torch.stack(torch.where(input > other), dim=1) x = torch.randint(0, 1, (2, 3, 4), dtype=bool) y = torch.randint(1, 2, (2, 3, 4), dtype=bool) self.run_test(Model2(), (x, y)) def test_empty_branch(self): class EmptyBranchModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): out = input + 1 if out.dim() > 2: if out.dim() > 3: out += 3 else: pass else: pass return out x = torch.randn(1, 2, 3, requires_grad=True) self.run_test(EmptyBranchModel(), x) @skipIfONNXShapeInference(False) @skipIfUnsupportedMinOpsetVersion(11) def test_if_transpose(self): class IfModel(torch.nn.Module): def forward(self, x): x = x.transpose(0, 1) if x.size(0) == 2: return x.transpose(0, 1) else: return x x = torch.randn(2, 3) self.run_test(torch.jit.script(IfModel()), x, output_names=['output_1'], dynamic_axes={'output_1': [0, 1]}) def test_onnx_proto_checker(self): class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x): return 2 * x x = torch.randn(1, 2, 3, requires_grad=True) f = io.BytesIO() torch.onnx._export(Model(), x, f) model = onnx.load(f) model.ir_version = 0 def check_proto(): torch._C._check_onnx_proto(model.SerializeToString()) self.assertRaises(RuntimeError, check_proto) @disableScriptTest() # dtype mismatch def test_split_tensor_scalar(self): class SplitModel(torch.nn.Module): def forward(self, x): return torch.split(x, x.size(1)) x = torch.randn(1, 2, 3, requires_grad=True) self.run_test(SplitModel(), x) def test_split_tensor_multi(self): class SplitModel(torch.nn.Module): def forward(self, x): return torch.split(x, torch.ones(3)) x = torch.randn(1, 2, 3, requires_grad=True) def run_model(): SplitModel(x) self.assertRaises(TypeError, run_model) def _dispatch_rnn_test(self, name, *args, **kwargs): if name == 'elman': self._elman_rnn_test(*args, **kwargs) if name == 'lstm': self._lstm_test(*args, **kwargs) if name == 'gru': self._gru_test(*args, **kwargs) def _elman_rnn_test(self, layers, nonlinearity, bidirectional, initial_state, packed_sequence, dropout): batch_first = True if packed_sequence == 2 else False model = torch.nn.RNN(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, nonlinearity=nonlinearity, bidirectional=bidirectional, dropout=dropout, batch_first=batch_first) if packed_sequence == 1: model = RnnModelWithPackedSequence(model, False) if packed_sequence == 2: model = RnnModelWithPackedSequence(model, True) def make_input(batch_size): seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size) seq_lengths = list(reversed(sorted(map(int, seq_lengths)))) inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths] inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first) inputs = [inputs] directions = 2 if bidirectional else 1 if initial_state: h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE) inputs.append(h0) if packed_sequence != 0: inputs.append(torch.IntTensor(seq_lengths)) if len(inputs) == 1: input = inputs[0] else: input = tuple(inputs) return input input = make_input(RNN_BATCH_SIZE) self.run_test(model, input, batch_size=RNN_BATCH_SIZE) # test that the model still runs with a different batch size other_input = make_input(RNN_BATCH_SIZE + 1) self.run_test(model, other_input, batch_size=RNN_BATCH_SIZE + 1) def _lstm_test(self, layers, bidirectional, initial_state, packed_sequence, dropout): batch_first = True if packed_sequence == 2 else False model = LstmFlatteningResult( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, bidirectional=bidirectional, dropout=dropout, batch_first=batch_first) if packed_sequence == 1: model = RnnModelWithPackedSequence(model, False) if packed_sequence == 2: model = RnnModelWithPackedSequence(model, True) def make_input(batch_size): seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size) seq_lengths = list(reversed(sorted(map(int, seq_lengths)))) inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths] inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first) inputs = [inputs] directions = 2 if bidirectional else 1 if initial_state: h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE) c0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE) inputs.append((h0, c0)) if packed_sequence != 0: inputs.append(torch.IntTensor(seq_lengths)) if len(inputs) == 1: input = inputs[0] else: input = tuple(inputs) return input input = make_input(RNN_BATCH_SIZE) self.run_test(model, input, batch_size=RNN_BATCH_SIZE) # test that the model still runs with a different batch size other_input = make_input(RNN_BATCH_SIZE + 1) self.run_test(model, other_input, batch_size=RNN_BATCH_SIZE + 1) def _gru_test(self, layers, bidirectional, initial_state, packed_sequence, dropout): batch_first = True if packed_sequence == 2 else False model = torch.nn.GRU(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, bidirectional=bidirectional, dropout=dropout, batch_first=batch_first) if packed_sequence == 1: model = RnnModelWithPackedSequence(model, False) if packed_sequence == 2: model = RnnModelWithPackedSequence(model, True) def make_input(batch_size): seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size) seq_lengths = list(reversed(sorted(map(int, seq_lengths)))) inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths] inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first) inputs = [inputs] directions = 2 if bidirectional else 1 if initial_state: h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE) inputs.append(h0) if packed_sequence != 0: inputs.append(torch.IntTensor(seq_lengths)) if len(inputs) == 1: input = inputs[0] else: input = tuple(inputs) return input input = make_input(RNN_BATCH_SIZE) self.run_test(model, input, batch_size=RNN_BATCH_SIZE) # test that the model still runs with a different batch size other_input = make_input(RNN_BATCH_SIZE + 1) self.run_test(model, other_input, batch_size=RNN_BATCH_SIZE + 1) @skipIfUnsupportedMinOpsetVersion(10) def test_fake_quantize_per_tensor(self): class FakeQuantizePerTensorModel(torch.nn.Module): def forward(self, input): scale = 1. / 127 zero_point = 0 quant_min = -128 quant_max = 127 return torch.fake_quantize_per_tensor_affine(input, scale, zero_point, quant_min, quant_max) x = torch.randn(6, 4, 3, 3) self.run_test(FakeQuantizePerTensorModel(), (x)) @skipIfUnsupportedMinOpsetVersion(12) def test_dropout_training(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.dropout = torch.nn.Dropout(0.4) def forward(self, x): dropout = self.dropout(x) return dropout model = MyModule() x = torch.randn(10) model.train() ort_sess = convert_to_onnx(model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING) ort_outs = run_ort(ort_sess, input=(x,)) assert not torch.all(torch.eq(x, torch.from_numpy(ort_outs[0]))) @skipIfUnsupportedMinOpsetVersion(12) def test_dropout_training_zero(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.dropout = torch.nn.Dropout(0.5) def forward(self, x): dropout = self.dropout(x) return dropout model = MyModule() # ensure there are no zeros in the input x = torch.randn(10, 3, 128, 128) y = x.numpy() y_mask = np.where(y == 0, 1, y) input = torch.from_numpy(y_mask) nb_elements = torch.numel(input) model.train() ort_sess = convert_to_onnx(model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING) ort_outs = run_ort(ort_sess, input=(x,)) y = model(input) output = y.cpu().numpy() ort_mask = np.where(ort_outs[0] != 0, 1, 0) pyt_mask = np.where(output != 0, 1, 0) ratio_pytorch = np.sum(pyt_mask) / nb_elements ratio_ort = np.sum(ort_mask) / nb_elements np.testing.assert_allclose(ratio_pytorch, ratio_ort, rtol=0.01, atol=0.01) def test_conv_bn(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv = torch.nn.Conv2d(3, 16, kernel_size=1, stride=2, padding=3, bias=True) self.bn = torch.nn.BatchNorm2d(16, affine=True) def forward(self, x): x = self.conv(x) bn = self.bn(x) return bn model = MyModule() x = torch.randn(10, 3, 128, 128) ort_sess1 = convert_to_onnx(model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING) ort_outs1 = run_ort(ort_sess1, input=(x,)) ort_sess2 = convert_to_onnx(model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.EVAL) ort_outs2 = run_ort(ort_sess2, input=(x,)) [np.testing.assert_allclose(ort_out1, ort_out2, atol=1e-7, rtol=0.001) for ort_out1, ort_out2 in zip(ort_outs1, ort_outs2)] def test_multiple_conv_bn(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.conv2 = torch.nn.Conv2d(64, 2, kernel_size=1, stride=1, padding=0, bias=False) self.conv3 = torch.nn.Conv2d(2, 2, kernel_size=3, stride=1, padding=1, bias=False) self.bn = torch.nn.BatchNorm2d(64) self.bn2 = torch.nn.BatchNorm2d(2) self.relu = torch.nn.ReLU(inplace=True) self.maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.conv1(x) x = self.bn(x) x = self.relu(x) x = self.maxpool(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn2(x) x = self.relu(x) return x model = MyModule() x = torch.randn(2, 3, 224, 224) ort_sess1 = convert_to_onnx(model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING) ort_outs1 = run_ort(ort_sess1, input=(x,)) ort_sess2 = convert_to_onnx(model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.EVAL) ort_outs2 = run_ort(ort_sess2, input=(x,)) [np.testing.assert_allclose(ort_out1, ort_out2, atol=1e-7, rtol=0.001) for ort_out1, ort_out2 in zip(ort_outs1, ort_outs2)] def make_test(name, base, layer, bidirectional, initial_state, variable_length, dropout, **extra_kwargs): test_name = str('_'.join([ 'test', name, layer[1], bidirectional[1], initial_state[1], variable_length[1], dropout[1] ])) # Cannot export with older opsets because of 'ConstantFill' op # ConstantFill was a temp op removed at opset 8. This is no longer supported by onnxruntime @disableScriptTest() # Test code not scriptable @skipIfUnsupportedMinOpsetVersion(9) def f(self): self._dispatch_rnn_test( base, layers=layer[0], bidirectional=bidirectional[0], initial_state=initial_state[0], packed_sequence=variable_length[0], dropout=dropout[0], **extra_kwargs) f.__name__ = test_name setattr(TestONNXRuntime, f.__name__, f) def setup_rnn_tests(): layers_opts = [ (1, 'unilayer'), (3, 'trilayer') ] bidirectional_opts = [ (False, 'forward'), (True, 'bidirectional') ] initial_state_opts = [ (True, 'with_initial_state'), (False, 'no_initial_state') ] variable_length_opts = [ (0, 'without_sequence_lengths'), (1, 'with_variable_length_sequences'), (2, 'with_batch_first_sequence_lengths') ] dropout_opts = [ (0.2, 'with_dropout'), (0.0, 'without_dropout') ] test_count = 0 for (layer, bidirectional, initial_state, variable_length, dropout) in \ itertools.product( layers_opts, bidirectional_opts, initial_state_opts, variable_length_opts, dropout_opts,): for base, name, extra_kwargs in ( ('elman', 'elman_relu', {'nonlinearity': u'relu'}), ('elman', 'elman_tanh', {'nonlinearity': u'tanh'}), ('lstm', 'lstm', {}), ('gru', 'gru', {}) ): make_test(name, base, layer, bidirectional, initial_state, variable_length, dropout, **extra_kwargs) test_count += 1 # sanity check that a representative example does exist TestONNXRuntime.test_gru_trilayer_forward_with_initial_state_without_sequence_lengths_with_dropout # make sure no one accidentally disables all the tests without # noticing if test_count != 192: raise ValueError('Expected 192 tests but found {}'.format(test_count)) setup_rnn_tests() # opset 7 tests TestONNXRuntime_opset7 = type(str("TestONNXRuntime_opset7"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=7)) # opset 8 tests TestONNXRuntime_opset8 = type(str("TestONNXRuntime_opset8"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=8)) # opset 10 tests TestONNXRuntime_opset10 = type(str("TestONNXRuntime_opset10"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=10)) # opset 11 tests TestONNXRuntime_opset11 = type(str("TestONNXRuntime_opset11"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=11)) # opset 12 tests TestONNXRuntime_opset12 = type(str("TestONNXRuntime_opset12"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=12)) # opset 9 tests, with keep_initializers_as_inputs=False for # IR version 4 style export. TestONNXRuntime_opset9_IRv4 = type(str("TestONNXRuntime_opset9_IRv4"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, keep_initializers_as_inputs=False)) # opset 10 tests, with keep_initializers_as_inputs=False for # IR version 4 style export. TestONNXRuntime_opset10_IRv4 = type(str("TestONNXRuntime_opset10_IRv4"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=10, keep_initializers_as_inputs=False)) # opset 11 tests, with keep_initializers_as_inputs=False for # IR version 4 style export. TestONNXRuntime_opset11_IRv4 = type(str("TestONNXRuntime_opset11_IRv4"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=11, keep_initializers_as_inputs=False)) # opset 12 tests, with keep_initializers_as_inputs=False for # IR version 4 style export. TestONNXRuntime_opset12_IRv4 = type(str("TestONNXRuntime_opset12_IRv4"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=12, keep_initializers_as_inputs=False)) # opset 9 tests, with use_new_jit_passes=True for using new jit API, # and with keep_initializers_as_inputs=False for IR version 4 style export. TestONNXRuntime_opset9_IRv4_new_jit_API = type(str("TestONNXRuntime_opset9_IRv4_new_jit_API"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, keep_initializers_as_inputs=False, use_new_jit_passes=True, onnx_shape_inference=True)) # opset 12 tests, with use_new_jit_passes=True for using new jit API, # and keep_initializers_as_inputs=False for IR version 4 style export. TestONNXRuntime_opset12_IRv4_new_jit_API = type(str("TestONNXRuntime_opset12_IRv4_new_jit_API"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=12, keep_initializers_as_inputs=False, use_new_jit_passes=True, onnx_shape_inference=True)) # opset 12 tests, with _onnx_shape_inference=True. TestONNXRuntime_opset12_onnx_shape_inference = type(str("TestONNXRuntime_opset12_onnx_shape_inference"), (unittest.TestCase,), dict(TestONNXRuntime.__dict__, opset_version=12, onnx_shape_inference=True)) if __name__ == '__main__': unittest.main()
readthedocs/projects/migrations/0021_add-webhook-deprecation-feature.py
tkoyama010/readthedocs.org
4,054
12758887
<gh_stars>1000+ # -*- coding: utf-8 -*- """Add feature for allowing access to deprecated webhook endpoints.""" from django.db import migrations FEATURE_ID = 'allow_deprecated_webhooks' def forward_add_feature(apps, schema_editor): Feature = apps.get_model('projects', 'Feature') Feature.objects.create( feature_id=FEATURE_ID, default_true=True, ) def reverse_add_feature(apps, schema_editor): Feature = apps.get_model('projects', 'Feature') Feature.objects.filter(feature_id=FEATURE_ID).delete() class Migration(migrations.Migration): dependencies = [ ('projects', '0020_add-api-project-proxy'), ] operations = [ migrations.RunPython(forward_add_feature, reverse_add_feature), ]
test/tet_train.py
luoyudong593/Keras-TextClassification
1,339
12758889
# !/usr/bin/python # -*- coding: utf-8 -*- # @time : 2019/11/12 16:45 # @author : Mo # @function: from keras_textclassification import train train(graph='TextCNN', # 必填, 算法名, 可选"ALBERT","BERT","XLNET","FASTTEXT","TEXTCNN","CHARCNN", # "TEXTRNN","RCNN","DCNN","DPCNN","VDCNN","CRNN","DEEPMOJI", # "SELFATTENTION", "HAN","CAPSULE","TRANSFORMER" label=17, # 必填, 类别数, 训练集和测试集合必须一样 path_train_data=None, # 必填, 训练数据文件, csv格式, 必须含'label,ques'头文件, 详见keras_textclassification/data path_dev_data=None, # 必填, 测试数据文件, csv格式, 必须含'label,ques'头文件, 详见keras_textclassification/data rate=1, # 可填, 训练数据选取比例 hyper_parameters=None) # 可填, json格式, 超参数, 默认embedding为'char','random'
gcp_variant_transforms/transforms/merge_header_definitions_test.py
tsa87/gcp-variant-transforms
113
12758894
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test cases for merge_header_definitions module.""" import unittest from pysam import libcbcf from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to from apache_beam.transforms import Create from gcp_variant_transforms.beam_io import vcf_header_io from gcp_variant_transforms.transforms import merge_header_definitions from gcp_variant_transforms.libs.vcf_header_definitions_merger import Definition from gcp_variant_transforms.libs.vcf_header_definitions_merger import VcfHeaderDefinitions class MergeHeadersTest(unittest.TestCase): def _get_header_from_lines(self, lines, file_path): header = libcbcf.VariantHeader() for line in lines[:-1]: header.add_line(line) return vcf_header_io.VcfHeader(infos=header.info, filters=header.filters, alts=header.alts, formats=header.formats, contigs=header.contigs, file_path=file_path) def test_merge_header_definitions_one_header(self): lines = [ '##INFO=<ID=NS,Number=1,Type=Integer,Description="Number samples">\n', '#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2\n' ] headers = self._get_header_from_lines(lines, 'file1') pipeline = TestPipeline() merged_definitions = ( pipeline | Create([headers]) | 'MergeDefinitions' >> merge_header_definitions.MergeDefinitions()) expected = VcfHeaderDefinitions() expected._infos = {'NS': {Definition(1, 'Integer'): ['file1']}} assert_that(merged_definitions, equal_to([expected])) pipeline.run() def test_merge_header_definitions_two_conflicting_headers(self): lines_1 = [ '##INFO=<ID=NS,Number=1,Type=Integer,Description="Number samples">\n', '#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2\n' ] lines_2 = [ '##INFO=<ID=NS,Number=1,Type=Float,Description="Number samples">\n', '#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample3\n' ] headers_1 = self._get_header_from_lines(lines_1, 'file1') headers_2 = self._get_header_from_lines(lines_2, 'file2') pipeline = TestPipeline() merged_definitions = ( pipeline | Create([headers_1, headers_2]) | 'MergeDefinitions' >> merge_header_definitions.MergeDefinitions()) expected = VcfHeaderDefinitions() expected._infos = {'NS': {Definition(1, 'Integer'): ['file1'], Definition(1, 'Float'): ['file2']}} assert_that(merged_definitions, equal_to([expected])) pipeline.run() def test_merge_header_definitions_no_conflicting_headers(self): lines_1 = [ '##FORMAT=<ID=NS,Number=1,Type=Float,Description="Number samples">\n', '#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2\n' ] lines_2 = [ '##FORMAT=<ID=DP,Number=2,Type=Float,Description="Total Depth">\n', '#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample3\n' ] headers_1 = self._get_header_from_lines(lines_1, 'file1') headers_2 = self._get_header_from_lines(lines_2, 'file2') pipeline = TestPipeline() merged_definitions = ( pipeline | Create([headers_1, headers_2]) | 'MergeDefinitions' >> merge_header_definitions.MergeDefinitions()) expected = VcfHeaderDefinitions() expected._formats = {'NS': {Definition(1, 'Float'): ['file1']}, 'DP': {Definition(2, 'Float'): ['file2']}} assert_that(merged_definitions, equal_to([expected])) pipeline.run() def test_merge_header_definitions_same_id_in_info_and_format_headers(self): lines_1 = [ '##INFO=<ID=NS,Number=1,Type=Integer,Description="Number samples">\n', '#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2\n' ] lines_2 = [ '##FORMAT=<ID=NS,Number=1,Type=Float,Description="Number samples">\n', '#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample3\n' ] headers_1 = self._get_header_from_lines(lines_1, 'file1') headers_2 = self._get_header_from_lines(lines_2, 'file2') pipeline = TestPipeline() merged_definitions = ( pipeline | Create([headers_1, headers_2]) | 'MergeDefinitions' >> merge_header_definitions.MergeDefinitions()) expected = VcfHeaderDefinitions() expected._infos = {'NS': {Definition(1, 'Integer'): ['file1']}} expected._formats = {'NS': {Definition(1, 'Float'): ['file2']}} assert_that(merged_definitions, equal_to([expected])) pipeline.run() def test_merge_header_definitions_save_five_copies(self): lines_1 = [ '##INFO=<ID=NS,Number=1,Type=Float,Description="Number samples">\n', '#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2\n' ] lines_2 = [ '##INFO=<ID=NS,Number=1,Type=Integer,Description="Number samples">\n', '#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample3\n' ] file_names = ['file1', 'file2', 'file3', 'file4', 'file5', 'file6'] headers = [] for file_name in file_names: headers.append(self._get_header_from_lines(lines_1, file_name)) headers.append(self._get_header_from_lines(lines_2, 'file7')) pipeline = TestPipeline() merged_definitions = ( pipeline | Create(headers, reshuffle=False) | 'MergeDefinitions' >> merge_header_definitions.MergeDefinitions()) expected = VcfHeaderDefinitions() expected._infos = { 'NS': {Definition(1, 'Float'): ['file1', 'file2', 'file3', 'file4', 'file5'], Definition(1, 'Integer'): ['file7']}} assert_that(merged_definitions, equal_to([expected])) pipeline.run()
demo/helper.py
scottx611x/napkin
190
12758913
<reponame>scottx611x/napkin import inspect import os import napkin def generate_markdown_file(title, src_path): name, _ = os.path.splitext(os.path.basename(src_path)) src_file = name + '.py' napkin.generate(output_format='plantuml_png', output_dir='../images') text = """# {title} Following examples are auto-generated by [demo/{src_file}](demo/{src_file}) """.format(title=title, src_file=src_file) for diagram in napkin._collected_seq_diagrams: text += """## {name} ![UML result image](images/{image_file}) ```python {src} ``` """.format(src=inspect.getsource(diagram.sd_func), name=diagram.name, image_file=diagram.name.replace(' ', '%20') + '.png') md_file = '../{}.md'.format(name.upper()) with open(md_file, 'wt') as f: f.write(text) print('MD file generated : {}'.format(md_file))
tests/unit/output/schema/__init__.py
jaebradley/draftkings_client
111
12758925
<gh_stars>100-1000 """ Represents tests defined in the draft_kings.output.schema module. Most tests center around serializing / deserializing output objects using the marshmallow library """
junction/conferences/migrations/0001_initial.py
theSage21/junction
192
12758931
# -*- coding: utf-8 -*- from __future__ import unicode_literals import django_extensions.db.fields from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name="Conference", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ( "created_at", models.DateTimeField(auto_now_add=True, verbose_name="Created At"), ), ( "modified_at", models.DateTimeField( auto_now=True, verbose_name="Last Modified At" ), ), ( "name", models.CharField(max_length=255, verbose_name="Conference Name"), ), ( "slug", django_extensions.db.fields.AutoSlugField( editable=False, populate_from=("name",), max_length=255, blank=True, unique=True, ), ), ("description", models.TextField(default="")), ("start_date", models.DateField(verbose_name="Start Date")), ("end_date", models.DateField(verbose_name="End Date")), ( "status", models.PositiveSmallIntegerField( verbose_name="Current Status", choices=[ (1, b"Accepting Call for Proposals"), (2, b"Closed for Proposals"), (3, b"Accepting Votes"), (4, b"Schedule Published"), ], ), ), ( "deleted", models.BooleanField(default=False, verbose_name="Is Deleted?"), ), ( "created_by", models.ForeignKey( related_name="created_conference_set", verbose_name="Created By", blank=True, on_delete=models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, null=True, ), ), ( "modified_by", models.ForeignKey( related_name="updated_conference_set", verbose_name="Modified By", blank=True, on_delete=models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, null=True, ), ), ], options={"abstract": False}, bases=(models.Model,), ), migrations.CreateModel( name="ConferenceModerator", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ( "created_at", models.DateTimeField(auto_now_add=True, verbose_name="Created At"), ), ( "modified_at", models.DateTimeField( auto_now=True, verbose_name="Last Modified At" ), ), ( "active", models.BooleanField(default=True, verbose_name="Is Active?"), ), ( "conference", models.ForeignKey( to="conferences.Conference", on_delete=models.deletion.CASCADE, ), ), ( "created_by", models.ForeignKey( related_name="created_conferencemoderator_set", verbose_name="Created By", blank=True, on_delete=models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, null=True, ), ), ( "moderator", models.ForeignKey( to=settings.AUTH_USER_MODEL, on_delete=models.deletion.CASCADE, ), ), ( "modified_by", models.ForeignKey( related_name="updated_conferencemoderator_set", verbose_name="Modified By", blank=True, on_delete=models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, null=True, ), ), ], options={"abstract": False}, bases=(models.Model,), ), migrations.CreateModel( name="ConferenceProposalReviewer", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ( "created_at", models.DateTimeField(auto_now_add=True, verbose_name="Created At"), ), ( "modified_at", models.DateTimeField( auto_now=True, verbose_name="Last Modified At" ), ), ( "active", models.BooleanField(default=True, verbose_name="Is Active?"), ), ( "conference", models.ForeignKey( to="conferences.Conference", on_delete=models.deletion.CASCADE, ), ), ( "created_by", models.ForeignKey( related_name="created_conferenceproposalreviewer_set", verbose_name="Created By", blank=True, on_delete=models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, null=True, ), ), ( "modified_by", models.ForeignKey( related_name="updated_conferenceproposalreviewer_set", verbose_name="Modified By", blank=True, on_delete=models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, null=True, ), ), ( "reviewer", models.ForeignKey( to=settings.AUTH_USER_MODEL, on_delete=models.deletion.CASCADE, ), ), ], options={}, bases=(models.Model,), ), migrations.AlterUniqueTogether( name="conferenceproposalreviewer", unique_together=set([("conference", "reviewer")]), ), ]
smartsheet/models/webhook_stats.py
bromic007/smartsheet-python-sdk
106
12758933
# pylint: disable=C0111,R0902,R0904,R0912,R0913,R0915,E1101 # Smartsheet Python SDK. # # Copyright 2017 Smartsheet.com, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"): you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import from ..types import * from ..util import serialize from ..util import deserialize class WebhookStats(object): """Smartsheet WebhookStats data model.""" def __init__(self, props=None, base_obj=None): """Initialize the WebhookStats model.""" self._base = None if base_obj is not None: self._base = base_obj self._last_callback_attempt = Timestamp() self._last_callback_attempt_retry_count = Number() self._last_successful_callback = Timestamp() if props: deserialize(self, props) # requests package Response object self.request_response = None self.__initialized = True @property def last_callback_attempt(self): return self._last_callback_attempt.value @last_callback_attempt.setter def last_callback_attempt(self, value): self._last_callback_attempt.value = value @property def last_callback_attempt_retry_count(self): return self._last_callback_attempt_retry_count.value @last_callback_attempt_retry_count.setter def last_callback_attempt_retry_count(self, value): self._last_callback_attempt_retry_count.value = value @property def last_successful_callback(self): return self._last_successful_callback.value @last_successful_callback.setter def last_successful_callback(self, value): self._last_successful_callback.value = value def to_dict(self): return serialize(self) def to_json(self): return json.dumps(self.to_dict()) def __str__(self): return self.to_json()