max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
DQM/EcalMonitorClient/python/TimingClient_cfi.py
ckamtsikis/cmssw
852
12758949
<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms from DQM.EcalMonitorTasks.TimingTask_cfi import ecalTimingTask from DQM.EcalMonitorClient.IntegrityClient_cfi import ecalIntegrityClient minChannelEntries = 1 minTowerEntries = 3 toleranceMean = 2. toleranceRMS = 6. minChannelEntriesFwd = 8 minTowerEntriesFwd = 24 toleranceMeanFwd = 6. toleranceRMSFwd = 12. tailPopulThreshold = 0.4 timeWindow = 25. ecalTimingClient = cms.untracked.PSet( params = cms.untracked.PSet( minChannelEntries = cms.untracked.int32(minChannelEntries), minTowerEntries = cms.untracked.int32(minTowerEntries), toleranceMean = cms.untracked.double(toleranceMean), toleranceRMS = cms.untracked.double(toleranceRMS), minChannelEntriesFwd = cms.untracked.int32(minChannelEntriesFwd), minTowerEntriesFwd = cms.untracked.int32(minTowerEntriesFwd), toleranceMeanFwd = cms.untracked.double(toleranceMeanFwd), toleranceRMSFwd = cms.untracked.double(toleranceRMSFwd), tailPopulThreshold = cms.untracked.double(tailPopulThreshold) ), sources = cms.untracked.PSet( TimeAllMap = ecalTimingTask.MEs.TimeAllMap, TimeMap = ecalTimingTask.MEs.TimeMap, TimeMapByLS = ecalTimingTask.MEs.TimeMapByLS, ChStatus = ecalIntegrityClient.MEs.ChStatus ), MEs = cms.untracked.PSet( RMSAll = cms.untracked.PSet( path = cms.untracked.string('%(subdet)s/%(prefix)sSummaryClient/%(prefix)sTMT%(suffix)s timing rms 1D summary'), kind = cms.untracked.string('TH1F'), otype = cms.untracked.string('Ecal3P'), xaxis = cms.untracked.PSet( high = cms.untracked.double(10.0), nbins = cms.untracked.int32(100), low = cms.untracked.double(0.0), title = cms.untracked.string('time (ns)') ), btype = cms.untracked.string('User'), description = cms.untracked.string('Distribution of per-channel timing RMS. Channels with entries less than ' + str(minChannelEntries) + ' are not considered.') ), ProjEta = cms.untracked.PSet( path = cms.untracked.string('%(subdet)s/%(prefix)sTimingClient/%(prefix)sTMT timing projection eta%(suffix)s'), kind = cms.untracked.string('TProfile'), yaxis = cms.untracked.PSet( title = cms.untracked.string('time (ns)') ), otype = cms.untracked.string('Ecal3P'), btype = cms.untracked.string('ProjEta'), description = cms.untracked.string('Projection of per-channel mean timing. Channels with entries less than ' + str(minChannelEntries) + ' are not considered.') ), FwdBkwdDiff = cms.untracked.PSet( path = cms.untracked.string('%(subdet)s/%(prefix)sTimingTask/%(prefix)sTMT timing %(prefix)s+ - %(prefix)s-'), kind = cms.untracked.string('TH1F'), otype = cms.untracked.string('Ecal2P'), xaxis = cms.untracked.PSet( high = cms.untracked.double(5.0), nbins = cms.untracked.int32(100), low = cms.untracked.double(-5.0), title = cms.untracked.string('time (ns)') ), btype = cms.untracked.string('User'), description = cms.untracked.string('Forward-backward asymmetry of per-channel mean timing. Channels with entries less than ' + str(minChannelEntries) + ' are not considered.') ), FwdvBkwd = cms.untracked.PSet( kind = cms.untracked.string('TH2F'), yaxis = cms.untracked.PSet( high = cms.untracked.double(timeWindow), nbins = cms.untracked.int32(50), low = cms.untracked.double(-timeWindow), title = cms.untracked.string('time (ns)') ), otype = cms.untracked.string('Ecal2P'), xaxis = cms.untracked.PSet( high = cms.untracked.double(timeWindow), nbins = cms.untracked.int32(50), low = cms.untracked.double(-timeWindow) ), btype = cms.untracked.string('User'), path = cms.untracked.string('%(subdet)s/%(prefix)sTimingTask/%(prefix)sTMT timing %(prefix)s+ vs %(prefix)s-'), description = cms.untracked.string('Forward-backward correlation of per-channel mean timing. Channels with entries less than ' + str(minChannelEntries) + ' are not considered.') ), ProjPhi = cms.untracked.PSet( path = cms.untracked.string('%(subdet)s/%(prefix)sTimingClient/%(prefix)sTMT timing projection phi%(suffix)s'), kind = cms.untracked.string('TProfile'), yaxis = cms.untracked.PSet( title = cms.untracked.string('time (ns)') ), otype = cms.untracked.string('Ecal3P'), btype = cms.untracked.string('ProjPhi'), description = cms.untracked.string('Projection of per-channel mean timing. Channels with entries less than ' + str(minChannelEntries) + ' are not considered.') ), MeanSM = cms.untracked.PSet( kind = cms.untracked.string('TH1F'), yaxis = cms.untracked.PSet( title = cms.untracked.string('time (ns)') ), otype = cms.untracked.string('SM'), xaxis = cms.untracked.PSet( high = cms.untracked.double(timeWindow), nbins = cms.untracked.int32(100), low = cms.untracked.double(-timeWindow) ), btype = cms.untracked.string('User'), path = cms.untracked.string('%(subdet)s/%(prefix)sTimingClient/%(prefix)sTMT timing mean %(sm)s'), description = cms.untracked.string('Distribution of per-channel timing mean. Channels with entries less than ' + str(minChannelEntries) + ' are not considered.') ), RMSMap = cms.untracked.PSet( path = cms.untracked.string('%(subdet)s/%(prefix)sTimingClient/%(prefix)sTMT timing rms %(sm)s'), kind = cms.untracked.string('TH2F'), zaxis = cms.untracked.PSet( title = cms.untracked.string('rms (ns)') ), otype = cms.untracked.string('SM'), btype = cms.untracked.string('Crystal'), description = cms.untracked.string('2D distribution of per-channel timing RMS. Channels with entries less than ' + str(minChannelEntries) + ' are not considered.') ), QualitySummary = cms.untracked.PSet( path = cms.untracked.string('%(subdet)s/%(prefix)sSummaryClient/%(prefix)sTMT%(suffix)s timing quality summary'), kind = cms.untracked.string('TH2F'), otype = cms.untracked.string('Ecal3P'), btype = cms.untracked.string('SuperCrystal'), description = cms.untracked.string('Summary of the timing data quality. A 5x5 tower is red if the mean timing of the tower is off by more than ' + str(toleranceMean) + ' or RMS is greater than ' + str(toleranceRMS) + ' (' + str(toleranceMeanFwd) + ' and ' + str(toleranceRMSFwd) + ' in forward region). Towers with total entries less than ' + str(minTowerEntries) + ' are not subject to this evaluation. Since 5x5 tower timings are calculated with a tighter time-window than per-channel timings, a tower can additionally become red if its the sum of per-channel timing histogram entries is greater than per-tower histogram entries by factor ' + str(1. / (1. - tailPopulThreshold)) + ' (significant fraction of events fall outside the tight time-window).') ), Quality = cms.untracked.PSet( path = cms.untracked.string('%(subdet)s/%(prefix)sTimingClient/%(prefix)sTMT timing quality %(sm)s'), kind = cms.untracked.string('TH2F'), otype = cms.untracked.string('SM'), btype = cms.untracked.string('Crystal'), description = cms.untracked.string('Summary of the timing data quality. A channel is red if its mean timing is off by more than ' + str(toleranceMean) + ' or RMS is greater than ' + str(toleranceRMS) + '. Channels with entries less than ' + str(minChannelEntries) + ' are not considered.') ), MeanAll = cms.untracked.PSet( path = cms.untracked.string('%(subdet)s/%(prefix)sSummaryClient/%(prefix)sTMT%(suffix)s timing mean 1D summary'), kind = cms.untracked.string('TH1F'), otype = cms.untracked.string('Ecal3P'), xaxis = cms.untracked.PSet( high = cms.untracked.double(timeWindow), nbins = cms.untracked.int32(100), low = cms.untracked.double(-timeWindow), title = cms.untracked.string('time (ns)') ), btype = cms.untracked.string('User'), description = cms.untracked.string('Distribution of per-channel timing mean. Channels with entries less than ' + str(minChannelEntries) + ' are not considered.') ), TrendMean = cms.untracked.PSet( path = cms.untracked.string('Ecal/Trends/TimingClient %(prefix)s timing mean'), kind = cms.untracked.string('TProfile'), otype = cms.untracked.string('Ecal2P'), btype = cms.untracked.string('Trend'), description = cms.untracked.string('Trend of timing mean. Plots simple average of all channel timing means at each lumisection.') ), TrendRMS = cms.untracked.PSet( path = cms.untracked.string('Ecal/Trends/TimingClient %(prefix)s timing rms'), kind = cms.untracked.string('TProfile'), otype = cms.untracked.string('Ecal2P'), btype = cms.untracked.string('Trend'), description = cms.untracked.string('Trend of timing rms. Plots simple average of all channel timing rms at each lumisection.') ) ) )
test/gallery/auction/testAuction.py
jeanqasaur/jeeves
253
12758983
import macropy.activate import JeevesLib from smt.Z3 import * import unittest from Auction import AuctionContext, Bid, User import JeevesLib class TestAuction(unittest.TestCase): def setUp(self): JeevesLib.init() self.aliceUser = User(0) self.bobUser = User(1) self.claireUser = User(2) def testOwnerCanSee(self): policy = lambda oc: False aliceBid = Bid(3, self.aliceUser, policy) ctxt0 = AuctionContext(self.aliceUser, 0, []) self.assertEqual(3 , JeevesLib.concretize(ctxt0, aliceBid.value)) ctxt1 = AuctionContext(self.bobUser, 0, []) self.assertEqual(-1 , JeevesLib.concretize(ctxt1, aliceBid.value)) def testTimeSensitiveRelease(self): auctionEndTime = 10 policy = lambda oc: oc.time > auctionEndTime aliceBid = Bid(3, self.aliceUser, policy) self.assertEqual(3 , JeevesLib.concretize( AuctionContext(self.bobUser, 11, []), aliceBid.value)) self.assertEqual(-1 , JeevesLib.concretize( AuctionContext(self.bobUser, 10, []), aliceBid.value)) def testSealedAuction(self): # Function that returns true if the context contains a bid from the given # user. def hasBidFromUser(ctxt, u): return JeevesLib.jhasElt(ctxt.bids, lambda b: b.owner == u) allUsers = [self.aliceUser, self.bobUser, self.claireUser] policy = lambda oc: reduce(lambda acc, c: JeevesLib.jand( lambda: hasBidFromUser(oc, c), lambda: acc) , allUsers) aliceBid = Bid(3, self.aliceUser, policy) bobBid = Bid(4, self.bobUser, policy) claireBid = Bid(5, self.claireUser, policy) self.assertEqual(-1, JeevesLib.concretize( AuctionContext(self.bobUser, 11, [aliceBid]), aliceBid.value)) if __name__ == '__main__': unittest.main()
client/verta/verta/integrations/__init__.py
fool-sec-review/modeldb
835
12758985
<filename>client/verta/verta/integrations/__init__.py """Automated logging support for common scientific libraries."""
leo/external/leoftsindex.py
ATikhonov2/leo-editor
1,550
12759022
""" Stand alone GUI free index builder for Leo's full text search system:: python leoftsindex.py <file1> <file2> <file3>... If the file name starts with @ it's a assumed to be a simple text file listing files to be indexed. If <file> does not contain '#' it's assumed to be a .leo file to index, and is indexed. If <file> does contain '#' it's assumed to be a .leo file containing a list of .leo files to index, with the list in the node indicated by the UNL after the #, e.g.:: path/to/myfile.leo#Lists-->List of outlines In the latter case, if the node identified by the UNL has children, the list of files to scan is built from the first line of the body of each child node of the identified node (works well with bookmarks.py). If the node identified by the UNL does not have children, the node's body is assumed to be a simple text listing of paths to .leo files). .. note:: It may be necessary to quote the "file" on the command line, as the '#' may be interpreted as a comment delimiter:: python leoftsindex.py "workbook.leo#Links" """ import sys # add folder containing 'leo' folder to path # sys.path.append("/home/tbrown/Package/leo/bzr/leo.repo/trunk") import leo.core.leoBridge as leoBridge import leo.plugins.leofts as leofts controller = leoBridge.controller( gui='nullGui', loadPlugins=False, # True: attempt to load plugins. readSettings=False, # True: read standard settings files. silent=False, # True: don't print signon messages. verbose=False ) g = controller.globals() # list of "files" to process files = sys.argv[1:] # set up leofts leofts.set_leo(g) g._gnxcache = leofts.GnxCache() fts = leofts.get_fts() fn2c = {} # cache to avoid loading same outline twice done = set() # outlines scanned, to avoid repetition repetition todo = list(files) while todo: item = todo.pop(0) print ("INDEX: %s"%item) if '#' in item: fn, node = item.split('#', 1) else: fn, node = item, None if node: c = fn2c.setdefault(fn, controller.openLeoFile(fn)) found, dummy, p = g.recursiveUNLSearch(node.split('-->'), c) if not found: print("Could not find '%s'"%item) break if not p: p = c.p if p.hasChildren(): # use file named in first node of each child files = [chl.b.strip().split('\n', 1)[0].strip() for chl in p.children()] else: # use all files listed in body files = [i.strip() for i in p.b.strip().split('\n')] elif fn.startswith('@'): todo.extend(open(fn[1:]).read().strip().split('\n')) files = [] else: files = [fn] for fn in files: # file names may still have '#' if taken from a node list real_name = fn.split('#', 1)[0] if real_name in done: continue done.add(real_name) if len(files) != 1: print (" FILE: %s"%real_name) c = fn2c.setdefault(real_name, controller.openLeoFile(fn)) fts.drop_document(real_name) fts.index_nodes(c)
bsuite/bsuite/utils/wrappers_test.py
hbutsuak95/iv_rl
1,337
12759058
<reponame>hbutsuak95/iv_rl # python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for bsuite.utils.wrapper.""" from absl.testing import absltest from absl.testing import parameterized from bsuite import environments from bsuite.environments import catch from bsuite.utils import wrappers import dm_env from dm_env import specs from dm_env import test_utils import mock import numpy as np class FakeEnvironment(environments.Environment): """An environment that returns pre-determined rewards and observations.""" def __init__(self, time_steps): """Initializes a new FakeEnvironment. Args: time_steps: A sequence of time step namedtuples. This could represent one episode, or several. This class just repeatedly plays through the sequence and doesn't inspect the contents. """ super().__init__() self.bsuite_num_episodes = 1000 self._time_steps = time_steps obs = np.asarray(self._time_steps[0].observation) self._observation_spec = specs.Array(shape=obs.shape, dtype=obs.dtype) self._step_index = 0 self._reset_next_step = True def reset(self): self._reset_next_step = False self._step_index = 0 return self._time_steps[0] def step(self, action): del action if self._reset_next_step: return self.reset() self._step_index += 1 self._step_index %= len(self._time_steps) return self._time_steps[self._step_index] def _reset(self): raise NotImplementedError def _step(self, action: int): raise NotImplementedError def observation_spec(self): return self._observation_spec def action_spec(self): return specs.Array(shape=(), dtype=np.int32) def bsuite_info(self): return {} class WrapperTest(absltest.TestCase): def test_wrapper(self): """Tests that the wrapper computes and logs the correct data.""" mock_logger = mock.MagicMock() mock_logger.write = mock.MagicMock() # Make a fake environment that cycles through these time steps. timesteps = [ dm_env.restart([]), dm_env.transition(1, []), dm_env.transition(2, []), dm_env.termination(3, []), ] expected_episode_return = 6 fake_env = FakeEnvironment(timesteps) env = wrappers.Logging(env=fake_env, logger=mock_logger, log_every=True) # pytype: disable=wrong-arg-types num_episodes = 5 for _ in range(num_episodes): timestep = env.reset() while not timestep.last(): timestep = env.step(action=0) # We count the number of transitions, hence the -1. expected_episode_length = len(timesteps) - 1 expected_calls = [] for i in range(1, num_episodes + 1): expected_calls.append( mock.call(dict( steps=expected_episode_length * i, episode=i, total_return=expected_episode_return * i, episode_len=expected_episode_length, episode_return=expected_episode_return, )) ) mock_logger.write.assert_has_calls(expected_calls) def test_unwrap(self): raw_env = FakeEnvironment([dm_env.restart([])]) scale_env = wrappers.RewardScale(raw_env, reward_scale=1.) noise_env = wrappers.RewardNoise(scale_env, noise_scale=1.) logging_env = wrappers.Logging(noise_env, logger=None) # pytype: disable=wrong-arg-types unwrapped = logging_env.raw_env self.assertEqual(id(raw_env), id(unwrapped)) class ImageObservationTest(parameterized.TestCase): @parameterized.parameters( ((84, 84, 4), np.array([1, 2])), ((70, 90), np.array([[1, 0, 2, 3]])), ) def test_to_image(self, shape, observation): image = wrappers.to_image(shape, observation) self.assertEqual(image.shape, shape) self.assertCountEqual(np.unique(image), np.unique(observation)) class ImageWrapperCatchTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): env = catch.Catch() return wrappers.ImageObservation(env, (84, 84, 4)) def make_action_sequence(self): actions = [0, 1, 2] rng = np.random.RandomState(42) for _ in range(100): yield rng.choice(actions) if __name__ == '__main__': absltest.main()
Security/02 - Terminology and Concepts/02 - Security Key Spaces.py
srgeyK87/Hacker-Rank-30-days-challlenge
275
12759122
<filename>Security/02 - Terminology and Concepts/02 - Security Key Spaces.py<gh_stars>100-1000 # ======================== # Information # ======================== # Direct Link: https://www.hackerrank.com/challenges/security-key-spaces/problem # Difficulty: Easy # Max Score: 10 # Language: Python # ======================== # Solution # ======================== num = (input()) e = int(input()) print(''.join([str((int(i)+e) % 10) for i in num]))
src/other/ext/stepcode/misc/wiki-scripts/update-matrix.py
dservin/brlcad
262
12759128
<gh_stars>100-1000 #!/usr/bin/env python #you probably want to run the ctest script that calls this instead: # ctest -S ctest_matrix.cmake #must be ran from scl/build_matrix from __future__ import print_function from xml.etree import ElementTree as ET import os from datetime import date import subprocess import codecs import io #ctest xml file layout #<Site ...=...> # <testing> # <StartDateTime>..</> # <StartTestTime>..</> # <TestList>..</> # <Test status=..>..</> # <EndDateTime>Dec 28 17:49 EST</EndDateTime> # <EndTestTime>1325112579</EndTestTime> # <ElapsedMinutes>1.9</ElapsedMinutes> # </Testing> #</Site> #summary (aka 's') is a table near the top of the document #body (aka 'b') contains the details for all schemas def main(): xml_file = find_xml() wikipath, matrix = find_wiki() #codecs.open is deprecated but io.open doesn't seem to work, and open() complains of unicode out = codecs.open(matrix,encoding='utf-8',mode='w') out.write( header() ) out.write( read_tests(xml_file) ) out.close() git_push(wikipath, matrix) def find_xml(): #find xml file i = 0 for dirname in os.listdir("Testing"): if str(date.today().year) in dirname: i += 1 if i > 1: print("Too many directories, exiting") exit(1) xml = os.path.join("Testing", dirname, "Test.xml") return xml def find_wiki(): #find wiki and matrix file, issue 'git pull' wikipath = os.path.abspath("../../wiki-scl") if not os.path.isdir(os.path.join(wikipath,".git")): print("Can't find wiki or not a git repo") exit(1) p = subprocess.call(["git", "pull", "origin"], cwd=wikipath) if not p == 0: print("'git pull' exited with error") exit(1) matrix = os.path.join(wikipath, "Schema-build-matrix.md") if not os.path.isfile(matrix): print("Matrix file doesn't exist or isn't a file") exit(1) return wikipath,matrix def git_push(path,f): p = subprocess.call(["git", "add", f], cwd=path) if not p == 0: print("'git add' exited with error") exit(1) msg = date.today().__str__() + " - schema matrix updated by update-matrix.py" p = subprocess.call(["git", "commit", "-m", msg ], cwd=path) if not p == 0: print("'git commit' exited with error") exit(1) p = subprocess.call(["git", "push", "origin"], cwd=path) if not p == 0: print("'git push' exited with error") exit(1) def header(): h = "## Created " + date.today().__str__() + "\n" + "### Current as of commit " l = subprocess.check_output(["git", "log", """--pretty=format:%H Commit Summary: %s<br>Author: %aN<br>Date: %aD""", "-n1"]) h += "[" + l[:8] + "](http://github.com/mpictor/StepClassLibrary/commit/" + l[:l.find(" ")] h += ") --\n<font color=grey>" + l[l.find(" ")+1:] + "</font>\n\n----\n" h += "### Summary\n<table width=100%><tr><th>Schema</th><th>Generate</th><th>Build</th></tr>" return h def read_tests(xml): # read all <Test>s in xml, create mixed html/markdown try: tree = ET.parse(xml) except Exception as inst: print("Unexpected error opening %s: %s" % (xml, inst)) return root = tree.getroot() testing = root.find("Testing") tests = testing.findall("Test") summary = "" body = "" for test in tests: s,b = schema_info(test,tests) summary += s body += b summary += "</table>\n\n" return summary + body def schema_info(test,tests): # this returns html & markdown formatted summary and body strings # for the generate and build tests for a single schema s="" b="" name = test.find("Name").text if name.startswith("generate_cpp_"): #print this one. if it passes, find and print build. ap = name[len("generate_cpp_"):] s += "<tr><td><a href=#" + ap + ">" + ap.title() + "</a></td><td>" s += test_status(test) + "</td><td>" b += "----\n<a name=\"wiki-" + ap + "\"></a>\n" b += "### Schema " + ap.title() b += "<table width=100%>" b += test_table("generation",test) if test.get("Status") == "passed": for build in tests: if build.find("Name").text == "build_cpp_sdai_" + ap: s += test_status(build) + "</td></tr>\n" b += test_table("compilation",build) break else: s += "----</td></tr>\n" b += "</table>\n" return s,b def test_table(ttype, test): # populate the table for one test # returns: html & markdown formatted text to be added to 'body' b = "<tr><td>Code " + ttype output = test.find("Results").find("Measurement").find("Value").text w = output.count("WARNING") w += output.count("warning") lines = output.split("\n") if "The rest of the test output was removed since it exceeds the threshold of" in lines[-2]: trunc1 = "at least " trunc2 = "(ctest truncated output)" else: trunc1 = "" trunc2 = "" if test.get("Status") == "passed": #print summary in b b += " succeeded with " + trunc1 + w.__str__() + " warnings " + trunc2 if w == 0: #nothing to print in the table, so skip it b += "</td></tr>\n" return b else: #print warnings and errors in b e = output.count("ERROR") e += output.count("error") b += " failed with %s%d warnings and %d errors %s" %(trunc1, w, e, trunc2) b += "<br>\n<table border=1 width=100%>\n" b += "<tr><th>Line</th><th>Text</th></tr>\n" # ERRORs # 242_n2813_mim_lf.exp:2278: --ERROR: Expected a type... # gcc errors look like ??? l=0 for line in lines: if ": --ERROR:" in line: l += 1 c1 = line.find(":") c2 = line.find(":",c1+1) b += "<tr><td>" + line[c1+1:c2] + "</td><td>" + line[c2+4:] + "</td></tr>\n" elif ": error:" in line: l += 1 c1 = line.find(":") c2 = line.find(":",c1+1) c3 = line.find(":",c2+1) #skip the character number b += "<tr><td>" + line[c1+1:c2] + "</td><td>" + line[c3+2:] + "</td></tr>\n" if l > 20: b += "<tr><td>-</td><td><font color=red>-- maximum number of errors printed --</font></td></tr>\n" break # WARNINGs # ap239_arm_lf.exp:2731: WARNING: Implicit downcast... # WARNING: in SELECT TYPE date_or_date... (multi-line warning) # compstructs.cc:28:23: warning: unused l=0 for line in lines: if ": WARNING" in line: l += 1 c1 = line.find(":") c2 = line.find(":",c1+1) b += "<tr><td>" + line[c1+1:c2] + "</td><td>" + line[c2+2:] + "</td></tr>\n" elif "WARNING" in line: b += "<tr><td>????</td><td>" + line + "</td></tr>\n" elif ": warning:" in line: l += 1 c1 = line.find(":") c2 = line.find(":",c1+1) c3 = line.find(":",c2+1) #skip the character number b += "<tr><td>" + line[c1+1:c2] + "</td><td>" + line[c3+2:] + "</td></tr>\n" if l > 20: b += "<tr><td>-</td><td><font color=red>-- maximum number of warnings printed --</font></td></tr>\n" break b += "</table></td></tr>\n" return b def test_status(test): t = "" for m in test.find("Results").findall("NamedMeasurement"): if m.get("name") == "Execution Time": t = " in " + m.find("Value").text + "s" break if test.get("Status") == "passed": s = "<font color=green>PASS</font>" elif test.get("Status") == "failed": s = "<font color=red>FAIL</font>" else: s = "<font color=cyan>" + test.get("Status") + "</font>" return s + t if __name__ == "__main__": # Someone is launching this directly main()
gluon/gluoncv2/models/shakedropresnet_cifar.py
naviocean/imgclsmob
2,649
12759165
""" ShakeDrop-ResNet for CIFAR/SVHN, implemented in Gluon. Original paper: 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. """ __all__ = ['CIFARShakeDropResNet', 'shakedropresnet20_cifar10', 'shakedropresnet20_cifar100', 'shakedropresnet20_svhn'] import os import numpy as np import mxnet as mx from mxnet import cpu from mxnet.gluon import nn, HybridBlock from .common import conv1x1_block, conv3x3_block from .resnet import ResBlock, ResBottleneck class ShakeDrop(mx.autograd.Function): """ ShakeDrop function. Parameters: ---------- p : float ShakeDrop specific probability (of life) for Bernoulli random variable. """ def __init__(self, p): super(ShakeDrop, self).__init__() self.p = p def forward(self, x): if mx.autograd.is_training(): b = np.random.binomial(n=1, p=self.p) alpha = mx.nd.random.uniform_like(x.slice(begin=(None, 0, 0, 0), end=(None, 1, 1, 1)), low=-1.0, high=1.0) y = mx.nd.broadcast_mul(b + alpha - b * alpha, x) self.save_for_backward(b) else: y = self.p * x return y def backward(self, dy): b, = self.saved_tensors beta = mx.nd.random.uniform_like(dy.slice(begin=(None, 0, 0, 0), end=(None, 1, 1, 1)), low=0.0, high=1.0) return mx.nd.broadcast_mul(b + beta - b * beta, dy) class ShakeDropResUnit(HybridBlock): """ ShakeDrop-ResNet unit with residual connection. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int Strides of the convolution. bn_use_global_stats : bool Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bottleneck : bool Whether to use a bottleneck or simple block in units. life_prob : float Residual branch life probability. """ def __init__(self, in_channels, out_channels, strides, bn_use_global_stats, bottleneck, life_prob, **kwargs): super(ShakeDropResUnit, self).__init__(**kwargs) self.life_prob = life_prob self.resize_identity = (in_channels != out_channels) or (strides != 1) body_class = ResBottleneck if bottleneck else ResBlock with self.name_scope(): self.body = body_class( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats) if self.resize_identity: self.identity_conv = conv1x1_block( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats, activation=None) self.activ = nn.Activation("relu") # self.shake_drop = ShakeDrop(self.life_prob) def hybrid_forward(self, F, x): if self.resize_identity: identity = self.identity_conv(x) else: identity = x x = self.body(x) x = ShakeDrop(self.life_prob)(x) + identity # x = self.shake_drop(x) + identity x = self.activ(x) return x class CIFARShakeDropResNet(HybridBlock): """ ShakeDrop-ResNet model for CIFAR from 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. bottleneck : bool Whether to use a bottleneck or simple block in units. life_probs : list of float Residual branch life probability for each unit. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. Useful for fine-tuning. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (32, 32) Spatial size of the expected input image. classes : int, default 10 Number of classification classes. """ def __init__(self, channels, init_block_channels, bottleneck, life_probs, bn_use_global_stats=False, in_channels=3, in_size=(32, 32), classes=10, **kwargs): super(CIFARShakeDropResNet, self).__init__(**kwargs) self.in_size = in_size self.classes = classes with self.name_scope(): self.features = nn.HybridSequential(prefix="") self.features.add(conv3x3_block( in_channels=in_channels, out_channels=init_block_channels, bn_use_global_stats=bn_use_global_stats)) in_channels = init_block_channels k = 0 for i, channels_per_stage in enumerate(channels): stage = nn.HybridSequential(prefix="stage{}_".format(i + 1)) with stage.name_scope(): for j, out_channels in enumerate(channels_per_stage): strides = 2 if (j == 0) and (i != 0) else 1 stage.add(ShakeDropResUnit( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats, bottleneck=bottleneck, life_prob=life_probs[k])) in_channels = out_channels k += 1 self.features.add(stage) self.features.add(nn.AvgPool2D( pool_size=8, strides=1)) self.output = nn.HybridSequential(prefix="") self.output.add(nn.Flatten()) self.output.add(nn.Dense( units=classes, in_units=in_channels)) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x def get_shakedropresnet_cifar(classes, blocks, bottleneck, model_name=None, pretrained=False, ctx=cpu(), root=os.path.join("~", ".mxnet", "models"), **kwargs): """ Create ShakeDrop-ResNet model for CIFAR with specific parameters. Parameters: ---------- classes : int Number of classification classes. blocks : int Number of blocks. bottleneck : bool Whether to use a bottleneck or simple block in units. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ assert (classes in [10, 100]) if bottleneck: assert ((blocks - 2) % 9 == 0) layers = [(blocks - 2) // 9] * 3 else: assert ((blocks - 2) % 6 == 0) layers = [(blocks - 2) // 6] * 3 init_block_channels = 16 channels_per_layers = [16, 32, 64] channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] if bottleneck: channels = [[cij * 4 for cij in ci] for ci in channels] total_layers = sum(layers) final_death_prob = 0.5 life_probs = [1.0 - float(i + 1) / float(total_layers) * final_death_prob for i in range(total_layers)] net = CIFARShakeDropResNet( channels=channels, init_block_channels=init_block_channels, bottleneck=bottleneck, life_probs=life_probs, classes=classes, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file net.load_parameters( filename=get_model_file( model_name=model_name, local_model_store_dir_path=root), ctx=ctx) return net def shakedropresnet20_cifar10(classes=10, **kwargs): """ ShakeDrop-ResNet-20 model for CIFAR-10 from 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_shakedropresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="shakedropresnet20_cifar10", **kwargs) def shakedropresnet20_cifar100(classes=100, **kwargs): """ ShakeDrop-ResNet-20 model for CIFAR-100 from 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_shakedropresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="shakedropresnet20_cifar100", **kwargs) def shakedropresnet20_svhn(classes=10, **kwargs): """ ShakeDrop-ResNet-20 model for SVHN from 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_shakedropresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="shakedropresnet20_svhn", **kwargs) def _test(): import numpy as np import mxnet as mx pretrained = False models = [ (shakedropresnet20_cifar10, 10), (shakedropresnet20_cifar100, 100), (shakedropresnet20_svhn, 10), ] for model, classes in models: net = model(pretrained=pretrained) ctx = mx.cpu() if not pretrained: net.initialize(ctx=ctx) # net.hybridize() net_params = net.collect_params() weight_count = 0 for param in net_params.values(): if (param.shape is None) or (not param._differentiable): continue weight_count += np.prod(param.shape) print("m={}, {}".format(model.__name__, weight_count)) assert (model != shakedropresnet20_cifar10 or weight_count == 272474) assert (model != shakedropresnet20_cifar100 or weight_count == 278324) assert (model != shakedropresnet20_svhn or weight_count == 272474) x = mx.nd.zeros((14, 3, 32, 32), ctx=ctx) # y = net(x) with mx.autograd.record(): y = net(x) y.backward() assert (y.shape == (14, classes)) if __name__ == "__main__": _test()
x509_pki/migrations/0010_auto_20211017_0936.py
repleo/bounca
142
12759171
# Generated by Django 3.2.7 on 2021-10-17 07:36 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('x509_pki', '0009_auto_20211017_0921'), ] operations = [ migrations.RemoveField( model_name='keystore', name='crl', ), migrations.CreateModel( name='CrlStore', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('crl', models.TextField(blank=True, null=True, verbose_name='Serialized CRL certificate')), ('certificate', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='x509_pki.certificate')), ], ), ]
src/oci/log_analytics/models/log_analytics_em_bridge_summary_report.py
Manny27nyc/oci-python-sdk
249
12759182
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class LogAnalyticsEmBridgeSummaryReport(object): """ Log-Analytics EM Bridge counts summary. """ def __init__(self, **kwargs): """ Initializes a new LogAnalyticsEmBridgeSummaryReport object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param compartment_id: The value to assign to the compartment_id property of this LogAnalyticsEmBridgeSummaryReport. :type compartment_id: str :param active_em_bridge_count: The value to assign to the active_em_bridge_count property of this LogAnalyticsEmBridgeSummaryReport. :type active_em_bridge_count: int :param creating_em_bridge_count: The value to assign to the creating_em_bridge_count property of this LogAnalyticsEmBridgeSummaryReport. :type creating_em_bridge_count: int :param needs_attention_em_bridge_count: The value to assign to the needs_attention_em_bridge_count property of this LogAnalyticsEmBridgeSummaryReport. :type needs_attention_em_bridge_count: int :param deleted_em_bridge_count: The value to assign to the deleted_em_bridge_count property of this LogAnalyticsEmBridgeSummaryReport. :type deleted_em_bridge_count: int :param total_em_bridge_count: The value to assign to the total_em_bridge_count property of this LogAnalyticsEmBridgeSummaryReport. :type total_em_bridge_count: int """ self.swagger_types = { 'compartment_id': 'str', 'active_em_bridge_count': 'int', 'creating_em_bridge_count': 'int', 'needs_attention_em_bridge_count': 'int', 'deleted_em_bridge_count': 'int', 'total_em_bridge_count': 'int' } self.attribute_map = { 'compartment_id': 'compartmentId', 'active_em_bridge_count': 'activeEmBridgeCount', 'creating_em_bridge_count': 'creatingEmBridgeCount', 'needs_attention_em_bridge_count': 'needsAttentionEmBridgeCount', 'deleted_em_bridge_count': 'deletedEmBridgeCount', 'total_em_bridge_count': 'totalEmBridgeCount' } self._compartment_id = None self._active_em_bridge_count = None self._creating_em_bridge_count = None self._needs_attention_em_bridge_count = None self._deleted_em_bridge_count = None self._total_em_bridge_count = None @property def compartment_id(self): """ **[Required]** Gets the compartment_id of this LogAnalyticsEmBridgeSummaryReport. Compartment Identifier `OCID]`__. __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm :return: The compartment_id of this LogAnalyticsEmBridgeSummaryReport. :rtype: str """ return self._compartment_id @compartment_id.setter def compartment_id(self, compartment_id): """ Sets the compartment_id of this LogAnalyticsEmBridgeSummaryReport. Compartment Identifier `OCID]`__. __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm :param compartment_id: The compartment_id of this LogAnalyticsEmBridgeSummaryReport. :type: str """ self._compartment_id = compartment_id @property def active_em_bridge_count(self): """ **[Required]** Gets the active_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Total number of ACTIVE enterprise manager bridges. :return: The active_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :rtype: int """ return self._active_em_bridge_count @active_em_bridge_count.setter def active_em_bridge_count(self, active_em_bridge_count): """ Sets the active_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Total number of ACTIVE enterprise manager bridges. :param active_em_bridge_count: The active_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :type: int """ self._active_em_bridge_count = active_em_bridge_count @property def creating_em_bridge_count(self): """ **[Required]** Gets the creating_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Number of enterprise manager bridges in CREATING state. :return: The creating_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :rtype: int """ return self._creating_em_bridge_count @creating_em_bridge_count.setter def creating_em_bridge_count(self, creating_em_bridge_count): """ Sets the creating_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Number of enterprise manager bridges in CREATING state. :param creating_em_bridge_count: The creating_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :type: int """ self._creating_em_bridge_count = creating_em_bridge_count @property def needs_attention_em_bridge_count(self): """ **[Required]** Gets the needs_attention_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Number of enterprise manager bridges in NEEDS_ATTENTION state. :return: The needs_attention_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :rtype: int """ return self._needs_attention_em_bridge_count @needs_attention_em_bridge_count.setter def needs_attention_em_bridge_count(self, needs_attention_em_bridge_count): """ Sets the needs_attention_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Number of enterprise manager bridges in NEEDS_ATTENTION state. :param needs_attention_em_bridge_count: The needs_attention_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :type: int """ self._needs_attention_em_bridge_count = needs_attention_em_bridge_count @property def deleted_em_bridge_count(self): """ **[Required]** Gets the deleted_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Number of enterprise manager bridges in DELETED state. :return: The deleted_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :rtype: int """ return self._deleted_em_bridge_count @deleted_em_bridge_count.setter def deleted_em_bridge_count(self, deleted_em_bridge_count): """ Sets the deleted_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Number of enterprise manager bridges in DELETED state. :param deleted_em_bridge_count: The deleted_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :type: int """ self._deleted_em_bridge_count = deleted_em_bridge_count @property def total_em_bridge_count(self): """ **[Required]** Gets the total_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Total number of enterprise manager bridges. :return: The total_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :rtype: int """ return self._total_em_bridge_count @total_em_bridge_count.setter def total_em_bridge_count(self, total_em_bridge_count): """ Sets the total_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. Total number of enterprise manager bridges. :param total_em_bridge_count: The total_em_bridge_count of this LogAnalyticsEmBridgeSummaryReport. :type: int """ self._total_em_bridge_count = total_em_bridge_count def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
nextgen/bcbio/distributed/lsf.py
bgruening/bcbb
339
12759199
<gh_stars>100-1000 """Commandline interaction with LSF schedulers. """ import re import subprocess _jobid_pat = re.compile("Job <(?P<jobid>\d+)> is") def submit_job(scheduler_args, command): """Submit a job to the scheduler, returning the supplied job ID. """ cl = ["bsub"] + scheduler_args + command status = subprocess.check_output(cl) match = _jobid_pat.search(status) return match.groups("jobid")[0] def stop_job(jobid): cl = ["bkill", jobid] subprocess.check_call(cl) def are_running(jobids): """Check if all of the submitted job IDs are running. """ run_info = subprocess.check_output(["bjobs"]) running = [] for parts in (l.split() for l in run_info.split("\n") if l.strip()): if len(parts) >= 3: pid, _, status = parts[:3] if status.lower() in ["run"]: running.append(pid) want_running = set(running).intersection(set(jobids)) return len(want_running) == len(jobids)
pronto/xref.py
flying-sheep/pronto
182
12759205
"""Cross-reference object definition. """ import typing import fastobo from .utils.meta import roundrepr, typechecked __all__ = ["Xref"] @roundrepr class Xref(object): """A cross-reference to another document or resource. Cross-references (xrefs for short) can be used to back-up definitions of entities, synonyms, or to link ontological entities to other resources they may have been derived from. Although originally intended to provide links to databases, cross-references in OBO ontologies gained additional purposes, such as helping for header macros expansion, or being used to alias external relationships with local unprefixed IDs. The OBO format version 1.4 expects references to be proper OBO identifiers that can be translated to actual IRIs, which is a breaking change from the previous format. Therefore, cross-references are encouraged to be given as plain IRIs or as prefixed IDs using an ID from the IDspace mapping defined in the header. Example: A cross-reference in the Mammalian Phenotype ontology linking a term to some related Web resource: >>> mp = pronto.Ontology.from_obo_library("mp.obo") >>> mp["MP:0030151"].name 'abnormal buccinator muscle morphology' >>> mp["MP:0030151"].xrefs frozenset({Xref('https://en.wikipedia.org/wiki/Buccinator_muscle')}) Caution: `Xref` instances compare only using their identifiers; this means it is not possible to have several cross-references with the same identifier and different descriptions in the same set. Todo: Make sure to resolve header macros for xrefs expansion (such as ``treat-xrefs-as-is_a``) when creating an ontology, or provide a method on `~pronto.Ontology` doing so when called. """ id: str description: typing.Optional[str] __slots__ = ("__weakref__", "id", "description") # noqa: E0602 @typechecked() def __init__(self, id: str, description: typing.Optional[str] = None): """Create a new cross-reference. Arguments: id (str): the identifier of the cross-reference, either as a URL, a prefixed identifier, or an unprefixed identifier. description (str or None): a human-readable description of the cross-reference, if any. """ # check the id is valid using fastobo if not fastobo.id.is_valid(id): raise ValueError("invalid identifier: {}".format(id)) self.id: str = id self.description = description def __eq__(self, other: object) -> bool: if isinstance(other, Xref): return self.id == other.id return False def __gt__(self, other: object) -> bool: if isinstance(other, Xref): return self.id > other.id return NotImplemented def __ge__(self, other: object) -> bool: if isinstance(other, Xref): return self.id >= other.id return NotImplemented def __lt__(self, other: object) -> bool: if isinstance(other, Xref): return self.id < other.id return NotImplemented def __le__(self, other: object) -> bool: if isinstance(other, Xref): return self.id <= other.id return NotImplemented def __hash__(self): return hash(self.id)
blesuite/connection_manager.py
decidedlygray/BLESuite
198
12759208
from blesuite.pybt.roles import LECentral, LEPeripheral from blesuite.pybt.core import Connection from blesuite.pybt.gatt import UUID, AttributeDatabase, Server from blesuite.pybt.gap import GAP from blesuite.gatt_procedures import gatt_procedure_write_handle, gatt_procedure_write_handle_async, \ gatt_procedure_read_handle, gatt_procedure_read_handle_async, \ gatt_procedure_read_uuid, gatt_procedure_read_uuid_async, \ gatt_procedure_discover_primary_services, \ gatt_procedure_discover_secondary_services, \ gatt_procedure_discover_characteristics, \ gatt_procedure_discover_includes, \ gatt_procedure_discover_descriptors, gatt_procedure_prepare_write_handle, \ gatt_procedure_prepare_write_handle_async, gatt_procedure_execute_write, \ gatt_procedure_execute_write_async, gatt_procedure_write_command_handle, \ gatt_procedure_read_multiple_handles, \ gatt_procedure_read_multiple_handles_async, \ gatt_procedure_read_blob_handle, gatt_procedure_read_blob_handle_async from blesuite.smart_scan import blesuite_smart_scan from blesuite.entities.gatt_device import BLEDevice from blesuite.event_handler import BTEventHandler import logging import gevent import os logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) ROLE_CENTRAL = 0x00 ROLE_PERIPHERAL = 0x01 PUBLIC_DEVICE_ADDRESS = 0x00 RANDOM_DEVICE_ADDRESS = 0x01 class BLEConnection(object): """ BLEConnection is used to represent a connection between the BLEConnection manager and a BLE device. This object is commonly returned to the user to represent a connection and is passed to further BLEConnectionManager functions to interact with the connections. :param address: The address of the peer BLEDevice that the HCI device is connected to. :param address_type: The address type of the peer BLEDevice [Central = 0x00 | Peripheral = 0x01] :param connection_handle: The connection handle used to interact with the associated peer BLE device. :type address: str :type address_type: int :type connection_handle: int """ def __init__(self, address, address_type, connection_handle=None): self.address = address self.address_type = address_type self.connection_handle = connection_handle self.interval_min = None self.interval_max = None self.mtu = 23 # default as per spec def __repr__(self): return '<{} address={}, type={}>'.format( self.__class__.__name__, self.address, {0: "random", 1: "public"}.get(self.address_type, "Unknown") ) class BLEConnectionManager(object): """ BLEConnectionManager is used to manage connections to Bluetooth Low Energy Devices. The connection manager is associated with an HCI device, such as a Bluetooth USB adapter, and is responsible for creating the BLE stack and providing a user-friendly interface for interacting with the BLE stack in order to send and receive packets. :param adapter: BTLE adapter on host machine to use for connection (defaults to first found adapter). If left blank, the host's default adapter is used. :param role: Type of role to create for the HCI device [central | peripheral] :param our_address_type: Type of address for our Bluetooth Adapter. [public | random] (default: "public"). Note: We currently only support static random addresses, not resolvable or non-resolvable private addresses. :param random_address: If our address type is set to random, supply a random address or one will be randomly generated ("AA:BB:CC:DD:EE:FF") (default: None) :param psm: Specific PSM (default: 0) :param mtu: Specific MTU (default: 23 as per spec BLUETOOTH SPECIFICATION Version 4.2 [Vol 3, Part G] 5.2.1) :param gatt_server: GATT Server from pybt. Used to assign a custom blesuite.pybt.gatt Server object as the server for a peripheral. Alternatively, by default if the peripheral role is configured, a GATT Server object will be created with no services or characteristics that the user can add to through BLEConnectionManager class methods. :param event_handler: BTEventHandler class instance that will be called when packets are received by the blesuite.pybt.core packet routing class (SocketHandler). :param att_operation_event_hook: ATT operation hook functions triggered when the ATT server receives an ATT request :param att_security_event_hook: ATT security hook functions triggered when the ATT server receives an ATT request and security checks are made :type att_security_event_hook: blesuite.event_handler.ATTSecurityHook :type att_operation_event_hook: blesuite.event_handler.ATTEventHook :type adapter: int :type role: str :type our_address_type: str :type random_address: str :type psm: int :type mtu: int :type gatt_server: Server :type event_handler: BTEventHandler """ def __init__(self, adapter, role, our_address_type="public", random_address=None, psm=0, mtu=23, gatt_server=None, event_handler=None, att_operation_event_hook=None, att_security_event_hook=None): self.role_name = role self.adapter = adapter self.requester = None self.responses = [] self.response_counter = 0 self.psm = psm self.mtu = mtu self.gatt_server = gatt_server self.event_handler = event_handler self.att_operation_event_hook = att_operation_event_hook self.att_security_event_hook = att_security_event_hook self.address = None self.our_address_type_name = our_address_type if self.our_address_type_name.lower() == "random": self.our_address_type = RANDOM_DEVICE_ADDRESS else: self.our_address_type = PUBLIC_DEVICE_ADDRESS if self.our_address_type == RANDOM_DEVICE_ADDRESS and random_address is None: self.random_address = ':'.join(map(lambda x: x.encode('hex'), os.urandom(6))) elif self.our_address_type == RANDOM_DEVICE_ADDRESS: self.random_address = random_address else: self.random_address = None self.central = None self.stack_connection = None self.connections = [] if role is 'central': logger.debug("creating central") self._create_central() logger.debug("creating PyBT connection") self._create_stack_connection(ROLE_CENTRAL) logger.debug("creating listeners") self._start_listeners() elif role is 'peripheral': logger.debug("creating peripheral role") self._create_peripheral() logger.debug("creating PyBT connection") self._create_stack_connection(ROLE_PERIPHERAL) logger.debug("creating listeners") self._start_listeners() else: logger.error("Unknown role: %s" % role) raise RuntimeError("Unknown role: %s" % role) self.address = self.role.stack.addr def __enter__(self): return self def __del__(self): if self.stack_connection is not None: for connection in self.connections: if self.stack_connection.is_connected(connection.connection_handle): self.stack_connection.disconnect(connection.connection_handle, 0x16) self.stack_connection.destroy() self.stack_connection = None def __exit__(self, exc_type, exc_val, exc_tb): logger.debug("Exiting bleConnectionManager. exc_type:%s exc_val:%s exc_tb:%s" % (exc_type, exc_val, exc_tb)) if self.stack_connection is not None: self.stack_connection.destroy() self.stack_connection = None if self.role is not None: self.role.destroy() self.role = None def _create_central(self): if self.adapter is None: self.role = LECentral(address_type=self.our_address_type, random=self.random_address, att_operation_event_hook=self.att_operation_event_hook) else: self.role = LECentral(adapter=self.adapter, address_type=self.our_address_type, random=self.random_address, att_operation_event_hook=self.att_operation_event_hook) def _create_peripheral(self): if self.gatt_server is None: self.attribute_db = AttributeDatabase(event_handler=self.att_security_event_hook) self.gatt_server = Server(self.attribute_db) self.gatt_server.set_mtu(self.mtu) if self.adapter is None: self.role = LEPeripheral(self.gatt_server, mtu=self.mtu, address_type=self.our_address_type, random=self.random_address, att_operation_event_hook=self.att_operation_event_hook) else: self.role = LEPeripheral(self.gatt_server, adapter=self.adapter, mtu=self.mtu, address_type=self.our_address_type, random=self.random_address, att_operation_event_hook=self.att_operation_event_hook) def _create_stack_connection(self, role_type): if self.event_handler is None: self.event_handler = BTEventHandler(self) self.stack_connection = Connection(self.role, role_type, self.event_handler) def _start_listeners(self): self.stack_connection.start() def get_address(self): """ Get the address of the HCI device represented by the BLEConnectionManager. :return: The HCI device address :rtype: str """ return self.address def get_discovered_devices(self): """ Get a dictionary of address seen during a scan and the associated advertising data. :return: Dictionary of seen addresses and advertising data :rtype: dict {"<address>":(<addressTypeInt>, "<advertisingData>")} """ return self.stack_connection.seen def set_event_handler(self, event_class): """ Set the BTEventHandler for the pybt.core.SocketHandler class that will trigger when a Bluetooth Event is received by the stack. :param event_class: Event handler class instance. :type event_class: BTEventHandler :return: Success state :rtype: bool """ logger.debug("Trying to set event handler") self.event_handler = event_class if self.stack_connection.socket_handler is not None: logger.debug("Stack connection found, setting event handler") self.stack_connection.set_event_handler(event_class) return True return False def set_att_operation_hook(self, event_class): """ Set the ATTEventHook for the pybt.att.AttributeProtocol class that will trigger when an ATT operation against the ATT database running locally is received. :param event_class: ATT event class hook instance. :type event_class: ATTEventHook :return: Success state :rtype: bool """ logger.debug("Trying to set ATT operation hook") self.att_operation_event_hook = event_class self.role.att.event_handler = self.att_operation_event_hook return True def set_att_security_hook(self, event_class): """ Set the ATTSecurityHook for the pybt.gatt.AttributeDatabase class that will trigger when a security check against an ATT operation acting on the ATT database occurs. These checks cover encryption, authentication, and authorization. :param event_class: ATT security event hook class instance. :type event_class: ATTSecurityHook :return: Success state :rtype: bool """ logger.debug("Trying to set ATT security hook") self.att_security_event_hook = event_class if self.gatt_server is None: logger.debug("No GATT server running, setting security hook failed.") return False self.gatt_server.db.att_security_hooks = self.att_security_event_hook return True def is_connected(self, connection): """ Return whether the specified connection is connected to the peer device. :return: Return connection status :rtype: bool """ return self.stack_connection.is_connected(connection.connection_handle) def init_connection(self, address, address_type): """ Create BLEConnection object that represents the host's connection to a BLE peripheral. :param address: BD_ADDR of target BLE Peripheral :param address_type: Address type of target BLE Peripheral [public | random] :type address: string :type address_type: string :return: Return BLEConnection object that is used in any communication function. :rtype: BLEConnection """ address = address.upper() if address_type == "public": address_type = PUBLIC_DEVICE_ADDRESS elif address_type == "private": address_type = RANDOM_DEVICE_ADDRESS ble_connection = BLEConnection(address, address_type) self.connections.append(ble_connection) return ble_connection def get_bleconnection_from_connection_handle(self, connection_handle): """ Lookup a BLEConnection based on a supplied connection handle value. :param connection_handle: Connection handle used to look up an existing BLEConnection :type connection_handle: int :return: BLEConnection or None :rtype: BLEConnection or None """ for connection in self.connections: if connection.connection_handle is not None and connection.connection_handle == connection_handle: return connection return None def connect(self, ble_connection, timeout=15): """ Initiate a connection with a peer BLEDevice. :param ble_connection: BLEConnection that represents the connection between our HCI device and the peer :type ble_connection: BLEConnection :param timeout: Connection timeout in seconds (default: 15) :type timeout: int :return: Connected status :rtype: bool """ import time start = time.time() if not self.stack_connection.is_connected(ble_connection.connection_handle): request = self.stack_connection.connect(ble_connection.connection_handle, ble_connection.address, kind=ble_connection.address_type) while not request.has_response(): if timeout is not None and time.time() - start >= timeout: logger.debug("Connection failed: Connection timeout reached.") return False logger.debug("Is not connected") gevent.sleep(1) ble_connection.connection_handle = request.response.conn_handle logger.debug("Connected") return True def disconnect(self, connection, reason=0x16): """ Disconnect from a peer BLE device. :param connection: BLEConnection to disconnect :type connection: BLEConnection :param reason: The reason for the disconnection (default: 0x16 - Connection terminated by local host). Reasons defined in BLUETOOTH SPECIFICATION Version 5.0 | Vol 2, Part E page 777 :type reason: int """ self.stack_connection.disconnect(connection.connection_handle, reason) def pair(self, ble_connection, timeout=15): """ Initiate pairing with a peer BLE device. This method is blocking and will wait until a paired connection is received, pairing fails, or the timeout is reached. If custom pairing request parameters are required, configure the parameters prior to calling this function. :param ble_connection: The BLEConnection to initiate pairing on :type ble_connection: BLEConnection :param timeout: Pairing timeout in seconds (default: 15) :type timeout: int :return: Pairing status :rtype: bool """ import time self.initiate_pairing(ble_connection) start = time.time() while not self.role.smp.get_connection_encryption_status(ble_connection.connection_handle): if self.role.smp.did_pairing_fail(ble_connection.address): logger.debug("Pairing Failed") return False if timeout is not None and time.time() - start >= timeout: return False logger.debug("Pairing in progress. Pairing Failed: %s " % self.role.smp.did_pairing_fail(ble_connection.address)) gevent.sleep(1) logger.debug("Paired") return True def initiate_pairing(self, ble_connection): """ Send pairing request to peer device. This is meant as an asynchronous way for a user to initiate pairing and manage the connection while waiting for the pairing process to complete. Use BLEConnectionManager.pair for a synchronous pairing procedure. :param ble_connection: The BLEConnection to initiate pairing on :type ble_connection: BLEConnection :return: :rtype: """ if not self.is_connected(ble_connection): self.connect(ble_connection) self.role.smp.send_pairing_request(ble_connection.address, ble_connection.connection_handle) def is_pairing_in_progress(self, ble_connection): """ Retrieve pairing status of BLEConnection :param ble_connection: The BLEConnection to view the pairing status of :type ble_connection: BLEConnection :return: Status of BLE pairing :rtype: bool """ return self.role.smp.is_pairing_in_progress(ble_connection.address) def did_pairing_fail(self, ble_connection): """ Lookup whether a pairing failed status was triggered :param ble_connection: The BLEConnection to check for a pairing failure :type ble_connection: BLEConnection :return: Pairing failure status (True means failure was triggered) :rtype: bool """ return self.role.smp.did_pairing_fail(ble_connection.address) def is_connection_encrypted(self, ble_connection): """ Retrieve BLEConnection encryption status :param ble_connection: The BLEConnection to check the encryption status of :type ble_connection: BLEConnection :return: Encryption status :rtype: bool """ return self.role.smp.get_connection_encryption_status(ble_connection.connection_handle) def resume_connection_encryption(self, ble_connection): """ Initiate BLEConnection encryption with encryption keys present in the Security Manager's LongTermKeyDatabase. Encryption key look-up is done based on the address of the peer device's address. :param ble_connection: The BLEConnection to resume encryption on :type ble_connection: BLEConnection :return: Result of encryption initiation with existing keys (True if encryption initiation was successfully start, False if encryption keys were not found) :rtype: bool """ result = self.role.smp.initiate_encryption_with_existing_keys(ble_connection.address, ble_connection.address_type, ble_connection.connection_handle, self.address, self.our_address_type, self.role) return result def get_security_manager_long_term_key_database(self): """ Retrieve the LongTermKeyDatabase from the Security Manager :return: LongTermKeyDatabase from the Security Manager :rtype: blesuite.pybt.sm.LongTermKeyDatabase """ return self.role.smp.long_term_key_db def add_key_to_security_manager_long_term_key_database(self, address, address_type, ltk, ediv, rand, irk, csrk, security_mode, security_level): """ Add an entry to the LongTermKeyDatabase that will be used for encryption key lookups when encryption on a BLEConnection is initiated :param address: Address of peer device (byte form, big-endian) :type address: str :param address_type: Address type of peer device :type address_type: int :param ltk: Long term key for peer (big-endian) :type ltk: str :param ediv: EDIV for peer. Required for LE Legacy encryption resumption :type ediv: int :param rand: Encryption Random for peer (big-endian). Required for LE Legacy encryption resumption :type rand: str :param irk: IRK for peer (big-endian) :type irk: str :param csrk: CSRK for peer :type csrk: str :param security_mode: Security mode associated with encryption keys. This mode will be applied to a connection encrypted with these keys. :type security_mode: int :param security_level: Security level associated with encryption keys. This level will be applied to a connection encrypted with these keys. :type security_level: int :return: :rtype: """ self.role.smp.long_term_key_db.add_long_term_key_entry(address, address_type, ltk, ediv, rand, irk, csrk, security_mode, security_level) def export_security_manager_long_term_key_database_for_storage(self): """ Export Security Manager LongTermKeyDatabase as a list of dictionary containing BLE encryption properties (LTK, EDIV, random, CSRK, IRK, security mode, security level) with integers and hex encoded strings :return: LongTermKeyDatabase as a list of dictionaries with integers and hex encoded strings (user-friendly exportable version) :rtype: dict """ ltk_db = self.role.smp.long_term_key_db.get_long_term_key_database() for entry in ltk_db: temp = entry['address'] if temp is not None: temp = temp.encode('hex') entry['address'] = temp temp = entry['ltk'] if temp is not None: temp = temp.encode('hex') entry['ltk'] = temp temp = entry['rand'] if temp is not None: temp = temp.encode('hex') entry['rand'] = temp temp = entry['irk'] if temp is not None: temp = temp.encode('hex') entry['irk'] = temp temp = entry['csrk'] if temp is not None: temp = temp.encode('hex') entry['csrk'] = temp return ltk_db def import_long_term_key_database_to_security_manager(self, long_term_key_database): """ Import LongTermKeyDatabase and apply it to the Security Manager. Import database format is identical to the LongTermKeyDatabase export format with integers and hex encoded strings. The function will perform some input validation to ensure proper encoding and value types. :param long_term_key_database: List of dictionaries of LongTermKeyDatabase entries with integers and hex encoded strings :type long_term_key_database: list of dict :return: :rtype: """ import blesuite.utils.validators as validator for entry in long_term_key_database: keys = entry.keys() if 'address' in keys: peer_address = entry['address'].decode('hex') else: peer_address = "00" * 6 if 'address_type' in keys: peer_address_type = entry['address_type'] else: peer_address_type = 0 if 'ltk' in keys: ltk = validator.validate_ltk(entry['ltk']).decode('hex') else: raise validator.InvalidSMLTK(None) if 'ediv' in keys: ediv = entry['ediv'] else: ediv = 0 if 'rand' in keys: rand = validator.validate_rand(entry['rand']).decode('hex') else: rand = '\x00' * 8 if 'irk' in keys: irk = validator.validate_irk(entry['irk']).decode('hex') else: irk = '\x00' * 16 if 'csrk' in keys: csrk = validator.validate_csrk(entry['csrk']).decode('hex') else: csrk = '\x00' * 16 if 'security_mode' in keys: mode = entry['security_mode'] else: mode = 1 if 'security_level' in keys: level = entry['security_level'] else: level = 1 mode, level = validator.validate_att_security_mode(mode, level) self.role.smp.long_term_key_db.add_long_term_key_entry(peer_address, peer_address_type, ltk, ediv, rand, irk, csrk, mode, level) def get_security_manager_protocol_default_pairing_parameters(self): """ Get the default pairing parameters that will be applied to Security Managers by default. The pairing parameters are used by the devices to determine the type of pairing to use, the temporary key sharing method (association model), and which keys will be exchanged when pairing is complete (if any). See BLUETOOTH SPECIFICATION Version 5.0 | Vol 3, Part H page 2340 - 2342 for more details. (Security Managers are created per BLE connection and can be modified independently) :return: {io_cap, oob, mitm, bond, lesc, keypress, ct2, rfu, max_key_size, initiator_key_distribution, responder_key_distribution} :rtype: dict """ return self.role.smp.get_default_pairing_parameters() def set_security_manager_protocol_default_pairing_parameters(self, default_io_cap=0x03, default_oob=0x00, default_mitm=0x00, default_bond=0x01, default_lesc=0x00, default_keypress=0x00, default_ct2=0x01, default_rfu=0x00, default_max_key_size=16, default_initiator_key_distribution=0x01, default_responder_key_distribution=0x01): """ Set the default pairing parameters that will be applied to Security Managers by default. The pairing parameters are used by the devices to determine the type of pairing to use, the temporary key sharing method (association model), and which keys will be exchanged when pairing is complete (if any). See BLUETOOTH SPECIFICATION Version 5.0 | Vol 3, Part H page 2340 - 2342 for more details. (Security Managers are created per BLE connection and can be modified independently) :param default_io_cap: IO Capabilities (default: 0x03 - No Input, No Output) :type default_io_cap: int :param default_oob: Out-of-band Data present and available (default: 0x00) :type default_oob: int :param default_mitm: Request man-in-the-middle pairing protections (default: 0x01) :type default_mitm: int :param default_bond: Request bonding (default: 0x01) :type default_bond: int :param default_lesc: LE Secure Connections supported (default: 0x00) :type default_lesc: int :param default_keypress: Keypress notifications (default: 0x00) :type default_keypress: int :param default_ct2: CT2 (default: 0x01) :type default_ct2: int :param default_rfu: Reserved for future use bits (default: 0x00) :type default_rfu: int :param default_max_key_size: Max encryption key size (default: 16) :type default_max_key_size: int :param default_initiator_key_distribution: Requested keys to be sent by the initiator (central) (default: 0x01) :type default_initiator_key_distribution: int :param default_responder_key_distribution: Requested keys to be sent by the responder (peripheral) (default: 0x01) :type default_responder_key_distribution: int :return: :rtype: """ self.role.smp.set_default_pairing_parameters(default_io_cap, default_oob, default_mitm, default_bond, default_lesc, default_keypress, default_ct2, default_rfu, default_max_key_size, default_initiator_key_distribution, default_responder_key_distribution) def get_security_manager_protocol_pairing_parameters_for_connection(self, ble_connection): """ Get the default pairing parameters for the Security Manager associated with a BLEConnection (based on the peer address). The pairing parameters are used by the devices to determine the type of pairing to use, the temporary key sharing method (association model), and which keys will be exchanged when pairing is complete (if any). See BLUETOOTH SPECIFICATION Version 5.0 | Vol 3, Part H page 2340 - 2342 for more details. :param ble_connection: BLEConnection to modify Security Manager pairing parameters of :type ble_connection: BLEConnection :return: {io_cap, oob, mitm, bond, lesc, keypress, ct2, rfu, max_key_size, initiator_key_distribution, responder_key_distribution} :rtype: dict """ return self.role.smp.get_pairing_parameters_for_connection(ble_connection.address) def set_security_manager_protocol_pairing_parameters_for_connection(self, ble_connection, io_cap=0x03, oob=0x00, mitm=0x00, bond=0x01, lesc=0x00, keypress=0x0, ct2=0x01, rfu=0x00, max_key_size=16, initiator_key_distribution=0x01, responder_key_distribution=0x01): """ Set the default pairing parameters for the Security Manager associated with a BLEConnection (based on the peer address). The pairing parameters are used by the devices to determine the type of pairing to use, the temporary key sharing method (association model), and which keys will be exchanged when pairing is complete (if any). See BLUETOOTH SPECIFICATION Version 5.0 | Vol 3, Part H page 2340 - 2342 for more details. :param ble_connection: BLEConnection to modify Security Manager pairing parameters of :type ble_connection: BLEConnection :param io_cap: IO Capabilities (default: 0x03 - No Input, No Output) :type io_cap: int :param oob: Out-of-band Data present and available (default: 0x00) :type oob: int :param mitm: Request man-in-the-middle pairing protections (default: 0x01) :type mitm: int :param bond: Request bonding (default: 0x01) :type bond: int :param lesc: LE Secure Connections supported (default: 0x00) :type lesc: int :param keypress: Keypress notifications (default: 0x00) :type keypress: int :param ct2: CT2 (default: 0x01) :type ct2: int :param rfu: Reserved for future use bits (default: 0x00) :type rfu: int :param max_key_size: Max encryption key size (default: 16) :type max_key_size: int :param initiator_key_distribution: Requested keys to be sent by the initiator (central) (default: 0x01) :type initiator_key_distribution: int :param responder_key_distribution: Requested keys to be sent by the responder (peripheral) (default: 0x01) :type responder_key_distribution: int :return: Success status of pairing parameter configuration (False is returned if BLEConnection does not have a valid connection or a security manager set) :rtype: bool """ return self.role.smp.set_pairing_parameters_for_connection(ble_connection.address, io_cap, oob, mitm, bond, lesc, keypress, ct2, rfu, max_key_size, initiator_key_distribution, responder_key_distribution) def decode_gap_data(self, data): """ Decode GAP data into GAP class object :param data: GAP binary data :type data: str :return: GAP object containing the GAP data that has been parsed :rtype: blesuite.pybt.gap.GAP """ gap = GAP() try: gap.decode(data) except Exception as e: if "Data too short" in str(e): logger.debug("Data too short, leaving off malformed data") else: raise e return gap def generate_gap_data_dict(self, gap): """ Generates a dictionary of user-friendly strings that describe the GAP data in the supplied GAP object. :param gap: GAP object to retrieve data from :type gap: blesuite.pybt.gap.GAP :return: Dictionary of readable strings that represent the GAP data stored in the object :rtype: dict """ return gap.gap_dict() # Scanning/Discovery Functions def scan(self, timeout): """ Carry-out BLE scan for the specified timeout and return discovered devices. :param timeout: Scan timeout in seconds :type timeout: int :return: Discovered devices :rtype: dict """ import time self.start_scan() start = time.time() * 1000 logger.debug("Starting sleep loop") # comparing time in ms while ((time.time() * 1000) - start) < timeout: logger.debug("Scanning...") gevent.sleep(1) self.stop_scan() logger.debug("Done scanning!") discovered_devices = self.get_discovered_devices() return discovered_devices def start_scan(self): """ Enable scanning on HCI device. :return: :rtype: """ self.stack_connection.scan("on") def stop_scan(self): """ Stop scanning on HCI device :return: :rtype: """ self.stack_connection.scan("off") def advertise_and_wait_for_connection(self): """ Begin advertising with the HCI device and wait for a connection to be established. :return: Status of connection with a peer device and the BLEConnection :rtype: tuple - bool, (BLEConnection | None) """ self.start_advertising() while self.is_advertising(): gevent.sleep(1) if len(self.stack_connection.connection_statuses.keys()) > 0: connection_handle = self.stack_connection.connection_statuses.keys()[0] peer_address = self.stack_connection.peer_addresses_by_connection_handle[connection_handle] peer_address_type = self.stack_connection.connected_addr_type_by_connection_handle[connection_handle] return True, BLEConnection(peer_address, peer_address_type, connection_handle=connection_handle) else: logger.error("Advertising stopped and no connections are present. Something went wrong.") return False, None def start_advertising(self): """ Enable advertising on HCI device. :return: :rtype: """ self.stack_connection.start_advertising() def stop_advertising(self): """ Disable advertising on HCI device. :return: :rtype: """ self.stack_connection.stop_advertising() def is_advertising(self): """ Retrieve advertising status of HCI device. :return: Status of advertising :rtype: bool """ return self.stack_connection.is_advertising() def set_advertising_data(self, data): """ Set advertising data. :param data: Data to include in advertising packets :type data: str :return: :rtype: """ self.stack_connection.set_advertising_data(data) def set_scan_response_data(self, data): """ Set scan response data. :param data: Data to return when a scan packet is received. :type data: str :return: :rtype: """ self.stack_connection.set_scan_response_data(data) def set_advertising_parameters(self, advertisement_type, channel_map, interval_min, interval_max, destination_addr, destination_addr_type): """ Set advertising parameters. See: BLUETOOTH SPECIFICATION Version 5.0 | Vol 2, Part E page 1251 :param advertisement_type: Advertising packet type (see blesuite.utils.GAP_ADV_TYPES) :type advertisement_type: int :param channel_map: Bit field that indicates the advertising channels to use. (Channel 37 - 0x01, Channel 38 - 0x02, Channel 39 - 0x04, all channels - 0x07) :type channel_map: int :param interval_min: Minimum advertising interval for undirected and low duty cycle directed advertising. (Range 0x00020 - 0x4000, default 0x0800 or 1.28 seconds. Time conversion = interval * 0.625ms) :type interval_min: int :param interval_max: Maximum advertising interval for undirected and low duty cycle directed advertising. (Range 0x00020 - 0x4000, default 0x0800 or 1.28 seconds. Time conversion = interval * 0.625ms) :type interval_max: int :param destination_addr: Destination address for directed advertising (set to 00:00:00:00:00:00 if using undirected advertising) :type destination_addr: str :param destination_addr_type: Destination address type (set to 0x00 if using undirected advertising) :type destination_addr_type: int :return: :rtype: """ self.stack_connection.set_advertising_parameters(advertisement_type, channel_map, interval_min, interval_max, destination_addr, destination_addr_type) def set_local_name(self, name, enforce_null_termination=True): """ Set the local name of the HCI device. (Bluetooth Spec says the value needs to be null terminated. If it is intended to write a string that is not null terminated, then set the enforcement flag to False). :param name: Local name to write to HCI device :type name: str :param enforce_null_termination: Flag to enforce null termination (default: True) :type enforce_null_termination: bool :return: :rtype: """ if enforce_null_termination: if len(name) != 248: padding = 248 - len(name) name = name + ('\0' * padding) self.stack_connection.set_local_name(name) def get_gatt_server(self): """ Retrieve the GATT server for the BLEConnectionManager instance. :return: GATT Server :rtype: blesuite.pybt.gatt.Server """ return self.gatt_server def set_server_mtu(self, mtu): """ Configures the MTU (max transmission unit) on the GATT server and ATT class instance. MTU is used to restrict the size of data the stack returns in ATT packets. Note: The MTU used by the class is determined by the MTUs exchanged by both connected BLE devices (uses the minimum value of the exchanged MTUs). :param mtu: MTU size in bytes (Bluetooth Spec default is 23 bytes) :type mtu: int :return: :rtype: """ self.mtu = mtu self.role.att.set_mtu(mtu) def get_server_mtu(self): """ Returns the MTU size from the GATT server. :return: GATT server MTU (bytes) :rtype: int """ if self.role.att.gatt_server is not None: return self.role.att.gatt_server.mtu def initialize_gatt_server_from_ble_device(self, ble_device, use_handles_from_ble_device=False): """ Initializes the GATT server based on a supplied BLEDevice entity. All services, includes, characteristics, and descriptors are retrieved from the BLEDevice entity and added to the GATT server using the properties and permissions configured in the BLEDevice object. :param ble_device: BLEDevice object to replicate with the GATT server :type ble_device: BLEDevice :param use_handles_from_ble_device: Flag to indicate that the GATT server should use the attribute handles specified in each BLE entity withhin the BLEDevice. If set to false (default), then the GATT server will automatically assign handles in the order that entites are added to the server. :type use_handles_from_ble_device: bool :return: :rtype: """ from pybt.gatt import GATTService, GATTCharacteristic, GATTCharacteristicDescriptorDeclaration,\ GATTInclude, UUID if self.gatt_server is None: att_db = AttributeDatabase() self.gatt_server = Server(att_db) self.gatt_server.set_mtu(self.mtu) for service in ble_device.get_services(): gatt_service = GATTService(UUID(service.attribute_type), UUID(service.uuid)) gatt_service.start = service.start gatt_service.end = service.end gatt_service.handle = service.start for incl in service.get_includes(): include_1 = GATTInclude(incl.included_service_att_handle, incl.included_service_end_group_handle, UUID(incl.included_service_uuid), incl.include_definition_attribute_properties, incl.include_definition_attribute_read_permission, incl.include_definition_attribute_write_permission, incl.include_definition_attribute_require_authorization) include_1.handle = incl.handle gatt_service.add_include(include_1) for characteristic in service.get_characteristics(): # create general characteristic (note: this method doesn't apply permissions and properties to the # characteristic declaration descriptor) characteristic_1 = GATTCharacteristic(characteristic.value, characteristic.gatt_properties, UUID(characteristic.uuid), characteristic.characteristic_value_attribute_properties, characteristic.characteristic_value_attribute_read_permission, characteristic.characteristic_value_attribute_write_permission, characteristic.characteristic_value_attribute_require_authorization) # update characteristic declaration descriptor with configured permissions and authz characteristic_1.declaration.attribute_properties = characteristic.characteristic_definition_attribute_properties characteristic_1.declaration.attribute_read_permission = characteristic.characteristic_definition_attribute_read_permission characteristic_1.declaration.attribute_write_permission = characteristic.characteristic_definition_attribute_write_permission characteristic_1.declaration.require_authorization = characteristic.characteristic_definition_attribute_require_authorization characteristic_1.declaration.handle = characteristic.handle characteristic_1.declaration.value_attribute_handle = characteristic.value_handle characteristic_1.value_declaration.handle = characteristic.value_handle for descriptor in characteristic.get_descriptors(): # characteristic declaration is already created when we created the characteristic attribute if descriptor.type == 0x2803: pass descriptor_1 = GATTCharacteristicDescriptorDeclaration(UUID(descriptor.uuid), descriptor.value, descriptor.characteristic_descriptor_attribute_properties, descriptor.characteristic_descriptor_attribute_read_permission, descriptor.characteristic_descriptor_attribute_write_permission, descriptor.characteristic_descriptor_attribute_require_authorization) descriptor_1.handle = descriptor.handle characteristic_1.add_descriptor(descriptor_1) gatt_service.add_characteristic(characteristic_1) self.gatt_server.add_service(gatt_service) self.gatt_server.refresh_database(calculate_handles=(not use_handles_from_ble_device)) def set_extended_inquiry_response(self, fec_required=0, formatted_eir_data=None): """ Set the extended inquiry response on the HCI device. :param fec_required: FEC required (default: 0) :type fec_required: 0 :param formatted_eir_data: Formatted extended inquiry response data (default: None) :type formatted_eir_data: str :return: :rtype: """ self.stack_connection.set_eir_response(fec_required=fec_required, formatted_eir_data=formatted_eir_data) def read_remote_used_features(self, connection): """ Issues a read remote used features command to the connected peer device. :param connection: BLEConnection of target connection :type connection: BLEConnection :return: :rtype: """ self.stack_connection.read_remote_used_features(connection.connection_handle) return # ATT Packets / GATT Procedures def exchange_mtu(self, connection, mtu, timeout=15 * 1000): """ Sends Exchange MTU packet using the supplied BLEConnection object and returns a GATTRequest object containing the request or any received errors. Synchronous method. Note: Sending this packet as a peripheral will not change the MTU configured on the GATT server. :param connection: BLEConnection with connection to target device :param mtu: Desired MTU (bytes) :param timeout: Timeout for exhange MTU response (in milliseconds) :type connection: BLEConnection :type mtu: int :rtype: blesuite.pybt.core.GATTRequest """ request = self.stack_connection.exchange_mtu_sync(mtu, connection.connection_handle, timeout=timeout) if request.has_error(): logger.debug("Exchange MTU Response Error") else: logger.debug("Exchange MTU Response Data(str): %s" % request.response.data) if not request.has_error() and request.has_response(): connection.mtu = mtu return request def gatt_discover_primary_services(self, connection, device=None): """ Discover primary GATT services of a peer GATT server and populate (or generate) a BLEDevice object with the discovered entities. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param device: BLEDevice to populate. If None is supplied (default) a new BLEDevice object with the discovered entities will be added. :type device: BLEDevice :return: Populated BLEDevice :rtype: BLEDevice """ if device is None: device = BLEDevice(connection.address) return gatt_procedure_discover_primary_services(self, connection, device) def gatt_discover_secondary_services(self, connection, device=None): """ Discover secondary GATT services of a peer GATT server and populate (or generate) a BLEDevice object with the discovered entities. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param device: BLEDevice to populate. If None is supplied (default) a new BLEDevice object with the discovered entities will be added. :type device: BLEDevice :return: Populated BLEDevice :rtype: BLEDevice """ if device is None: device = BLEDevice(connection.address) return gatt_procedure_discover_secondary_services(self, connection, device) def gatt_discover_characteristics(self, connection, device=None): """ Discover GATT characteristics of a peer GATT server and populate (or generate) a BLEDevice object with the discovered entities. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param device: BLEDevice to populate. If None is supplied (default) a new BLEDevice object with the discovered entities will be added. :type device: BLEDevice :return: Populated BLEDevice :rtype: BLEDevice """ if device is None: device = BLEDevice(connection.address) return gatt_procedure_discover_characteristics(self, connection, device) def gatt_discover_includes(self, connection, device=None): """ Discover GATT service includes of a peer GATT server and populate (or generate) a BLEDevice object with the discovered entities. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param device: BLEDevice to populate. If None is supplied (default) a new BLEDevice object with the discovered entities will be added. :type device: BLEDevice :return: Populated BLEDevice :rtype: BLEDevice """ if device is None: device = BLEDevice(connection.address) return gatt_procedure_discover_includes(self, connection, device) def gatt_discover_descriptors(self, connection, device): """ Discover GATT characteristic descriptors of a peer GATT server and populate (or generate) a BLEDevice object with the discovered entities. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param device: BLEDevice to populate. If None is supplied (default) a new BLEDevice object with the discovered entities will be added. :type device: BLEDevice :return: Populated BLEDevice :rtype: BLEDevice """ return gatt_procedure_discover_descriptors(self, connection, device) def smart_scan(self, connection, device=None, look_for_device_info=True, attempt_desc_read=False, timeout=15 * 1000): """ Initiate a BLE Smart Scan, which is an all inclusive way to scan a BLE peripheral for all services, includes, characteristics, and descriptors. The scan can also attempt to reach from each attribute handle discovered during the scan (regardless of GATT properties returned by the server) in order to quickly view data exposed by the device. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param device: BLEDevice to populate. If None is supplied (default) a new BLEDevice object with the discovered entities will be added. :type device: BLEDevice :param look_for_device_info: Flag to indicate the scan should scan for several basic types of information based on UUIDs defined by the Bluetooth Special Interest Group (default: True) :type look_for_device_info: bool :param attempt_desc_read: Flag to indicate the scan should attempt to read from each attribute discovered during the scan (default: False). Note: This may significantly slow down the scan. If the target peripheral disconnects, the scan will attempt to reconnect to the server. :type attempt_desc_read: bool :param timeout: Request timeout (milliseconds) :type timeout: int :return: Populated BLEDevice :rtype: BLEDevice """ if device is None: device = BLEDevice(connection.address) return blesuite_smart_scan(self, connection, device, look_for_device_info=look_for_device_info, attempt_desc_read=attempt_desc_read, timeout=timeout) def gatt_write_handle(self, connection, handle, data, timeout=15 * 1000): """ Send an ATT Write request to the peer device associated with the supplied BLEConnection, attribute handle, and data. This is a synchronous call that will wait for either a successful response, error response, or the specified timeout (milliseconds) to be reached. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handle: Attribute handle of target attribute (0x01 - 0xFFFF) :type handle: int :param data: Data to place in ATT write request. :type data: str :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_write_handle(self.stack_connection, connection.connection_handle, handle, data, timeout=timeout) def gatt_write_handle_async(self, connection, handle, data, timeout=15 * 1000): """ Send an ATT Write request to the peer device associated with the supplied BLEConnection, attribute handle, and data. This is an asynchronous call that will send the request to the peer device and return a GATTRequest object that can be monitored for a GATTResponse or GATTError (either through a valid peer response, peer error response, or timeout error triggering). :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handle: Attribute handle of target attribute (0x01 - 0xFFFF) :type handle: int :param data: Data to place in ATT write request. :type data: str :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_write_handle_async(self.stack_connection, connection.connection_handle, handle, data, timeout=timeout) def gatt_write_command_handle(self, connection, handle, data): """ Send an ATT Write Command request to the peer device associated with the supplied BLEConnection, attribute handle, and data. This is an asynchronous call that will send the request to the peer device. No GATTRequest will be generated since this command should not ever receive a response from the peer. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handle: Attribute handle of target attribute (0x01 - 0xFFFF) :type handle: int :param data: Data to place in ATT write request. :type data: str :param timeout: Request timeout (milliseconds) :type timeout: int """ gatt_procedure_write_command_handle(self.stack_connection, connection.connection_handle, handle, data) def gatt_prepare_write_handle(self, connection, handle, data, offset, timeout=15 * 1000): """ Send an ATT Prepare Write request to the peer device associated with the supplied BLEConnection, attribute handle, offset, and data. This is a synchronous call that will wait for either a successful response, error response, or the specified timeout (milliseconds) to be reached. Note: Prepare write is used in conjunction with execute write to write a large set of data. The user will send a series of prepare write requests with data and the correct offsets to set a large value for a write operation. An execute write request will then be issued to carry out the write. (Permission / Auth checks should happen on the prepare write request). :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handle: Attribute handle of target attribute (0x01 - 0xFFFF) :type handle: int :param data: Data to place in ATT write request. :type data: str :param offset: Offset to write the data :type offset: int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_prepare_write_handle(self.stack_connection, connection.connection_handle, handle, data, offset, timeout=timeout) def gatt_prepare_write_handle_async(self, connection, handle, data, offset, timeout=15 * 1000): """ Send an ATT Prepare Write request to the peer device associated with the supplied BLEConnection, attribute handle, offset, and data. This is an asynchronous call that will send the request to the peer device and return a GATTRequest object that can be monitored for a GATTResponse or GATTError (either through a valid peer response, peer error response, or timeout error triggering). Note: Prepare write is used in conjunction with execute write to write a large set of data. The user will send a series of prepare write requests with data and the correct offsets to set a large value for a write operation. An execute write request will then be issued to carry out the write. (Permission / Auth checks should happen on the prepare write request). :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handle: Attribute handle of target attribute (0x01 - 0xFFFF) :type handle: int :param data: Data to place in ATT write request. :type data: str :param offset: Offset to write the data :type offset: int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_prepare_write_handle_async(self.stack_connection, connection.connection_handle, handle, data, offset, timeout=timeout) def gatt_execute_write(self, connection, flags, timeout=15 * 1000): """ Send an ATT Execute Write request to the peer device associated with the supplied BLEConnection and flag. This is a synchronous call that will wait for either a successful response, error response, or the specified timeout (milliseconds) to be reached. Note: Execute write is used in conjunction with prepare write to write a large set of data. The user will send a series of prepare write requests with data and the correct offsets to set a large value for a write operation. An execute write request will then be issued to carry out the write. (Permission / Auth checks should happen on the prepare write request). :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param flags: Specifies which execute write operation should be performed (0x00 - Cancel all prepared writes, 0x01 - Immediately write all pending prepared values. :type flags: int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_execute_write(self.stack_connection, connection.connection_handle, flags, timeout=timeout) def gatt_execute_write_async(self, connection, flags, timeout=15 * 1000): """ Send an ATT Execute Write request to the peer device associated with the supplied BLEConnection and flag. This is an asynchronous call that will send the request to the peer device and return a GATTRequest object that can be monitored for a GATTResponse or GATTError (either through a valid peer response, peer error response, or timeout error triggering). Note: Execute write is used in conjunction with prepare write to write a large set of data. The user will send a series of prepare write requests with data and the correct offsets to set a large value for a write operation. An execute write request will then be issued to carry out the write. (Permission / Auth checks should happen on the prepare write request). :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param flags: Specifies which execute write operation should be performed (0x00 - Cancel all prepared writes, 0x01 - Immediately write all pending prepared values. :type flags: int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_execute_write_async(self.stack_connection, connection.connection_handle, flags, timeout=timeout) def gatt_read_handle(self, connection, handle, timeout=15 * 1000): """ Send an ATT Read request to the peer device associated with the supplied BLEConnection and attribute handle. This is a synchronous call that will wait for either a successful response, error response, or the specified timeout (milliseconds) to be reached. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handle: Attribute handle of target attribute (0x01 - 0xFFFF) :type handle: int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_read_handle(self.stack_connection, connection.connection_handle, handle, timeout=timeout) def gatt_read_handle_async(self, connection, handle, timeout=15 * 1000): """ Send an ATT Read request to the peer device associated with the supplied BLEConnection and attribute handle. This is an asynchronous call that will send the request to the peer device and return a GATTRequest object that can be monitored for a GATTResponse or GATTError (either through a valid peer response, peer error response, or timeout error triggering). :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handle: Attribute handle of target attribute (0x01 - 0xFFFF) :type handle: int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_read_handle_async(self.stack_connection, connection.connection_handle, handle, timeout=timeout) def gatt_read_multiple_handles(self, connection, handles, timeout=15 * 1000): """ Send an ATT Read Multiple request to the peer device associated with the supplied BLEConnection and a set of attribute handles. This is a synchronous call that will wait for either a successful response, error response, or the specified timeout (milliseconds) to be reached. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handles: A list of attribute handles for target attributes (0x01 - 0xFFFF) :type handles: list of int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_read_multiple_handles(self.stack_connection, connection.connection_handle, handles, timeout=timeout) def gatt_read_multiple_handles_async(self, connection, handles, timeout=15 * 1000): """ Send an ATT Read Multiple request to the peer device associated with the supplied BLEConnection and a set of attribute handles. This is an asynchronous call that will send the request to the peer device and return a GATTRequest object that can be monitorged for a GATTResponse or GATTError (either through a valid return a GATTRequest object that can be monitored for a GATTResponse or GATTError (either through a valid peer response, peer error response, or timeout error triggering). :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handles: A list of attribute handles for target attributes (0x01 - 0xFFFF) :type handles: list of int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_read_multiple_handles_async(self.stack_connection, connection.connection_handle, handles, timeout=timeout) def gatt_read_blob_handle(self, connection, handle, offset, timeout=15 * 1000): """ Send an ATT Blob Read request to the peer device associated with the supplied BLEConnection, attribute handle, and an offset. This is a synchronous call that will wait for either a successful response, error response, or the specified timeout (milliseconds) to be reached. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handle: Attribute handle of target attribute (0x01 - 0xFFFF) :type handle: int :param offset: Offset to begin reading attribute value :type offset: int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_read_blob_handle(self.stack_connection, connection.connection_handle, handle, offset, timeout=timeout) def gatt_read_blob_handle_async(self, connection, handle, offset, timeout=15 * 1000): """ Send an ATT Blob Read request to the peer device associated with the supplied BLEConnection, attribute handle, and an offset. This is an asynchronous call that will send the request to the peer device and return a GATTRequest object that can be monitored for a GATTResponse or GATTError (either through a valid peer response, peer error response, or timeout error triggering). :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param handle: Attribute handle of target attribute (0x01 - 0xFFFF) :type handle: int :param offset: Offset to begin reading attribute value :type offset: int :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_read_blob_handle_async(self.stack_connection, connection.connection_handle, handle, offset, timeout=timeout) def gatt_read_uuid(self, connection, uuid, timeout=15 * 1000): """ Send an ATT Read request to the peer device associated with the supplied BLEConnection and GATT UUID. This is a synchronous call that will wait for either a successful response, error response, or the specified timeout (milliseconds) to be reached. :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param uuid: UUID of target GATT entity (16-bit and 128-bit UUIDs are accepted) :type uuid: str :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_read_uuid(self.stack_connection, connection.connection_handle, UUID(uuid), timeout=timeout) def gatt_read_uuid_async(self, connection, uuid, timeout=15 * 1000): """ Send an ATT Read request to the peer device associated with the supplied BLEConnection and GATT UUID. This is an asynchronous call that will send the request to the peer device and return a GATTRequest object that can be monitored for a GATTResponse or GATTError (either through a valid peer response, peer error response, or timeout error triggering). :param connection: BLEConnection with the connected GATT server :type connection: BLEConnection :param uuid: UUID of target GATT entity (16-bit and 128-bit UUIDs are accepted) :type uuid: str :param timeout: Request timeout (milliseconds) :type timeout: int :return: GATTRequest that contains the GATTResponse or GATTError result :rtype: blesuite.pybt.core.GATTRequest """ return gatt_procedure_read_uuid_async(self.stack_connection, connection.connection_handle, UUID(uuid), timeout=timeout) def att_send_raw(self, connection, body): """ Sends a raw ATT packet using the supplied BLEConnection object and data supplied. The function does not apply a standard ATT header the supplied body, but L2CAP and HCI encapsulation is handled. Note: Valid ATT packets can be constructed using packets defined in scapy.layers.bluetooth or using random data for fuzzing. :param connection: BLEConnection to target device :param body: ATT request body :rtype: GATTRequest """ request = self.stack_connection.send_raw_att(body, connection.connection_handle) return request def l2cap_send_raw(self, connection, body): """ Sends a raw L2CAP packet using the supplied BLEConnection object and data supplied. The function does not apply a standard L2CAP header to the user supplied value, but HCI encapsulation is applied. Note: Valid L2CAP packets can be constructed using packets defined in scapy.layers.bluetooth or using random data for fuzzing. :param connection: BLEConnection to target device :param body: L2CAP request body :rtype: GATTRequest """ request = self.stack_connection.send_raw_l2cap(body, connection.connection_handle) return request
indy_node/test/upgrade/test_forced_upgrade_if_request_received_after_propagate.py
Rob-S/indy-node
627
12759228
from indy_node.server.upgrade_log import UpgradeLog from indy_node.test import waits from indy_node.test.upgrade.helper import checkUpgradeScheduled, sdk_ensure_upgrade_sent from plenum.common.constants import VERSION from plenum.common.messages.node_messages import Propagate from plenum.common.request import Request from plenum.test.delayers import req_delay, ppgDelay from plenum.test.test_node import getNonPrimaryReplicas def test_forced_upgrade_handled_once_if_request_received_after_propagate( looper, nodeSet, sdk_pool_handle, sdk_wallet_trustee, validUpgradeExpForceTrue): """ Verifies that POOL_UPGRADE force=true request is handled one time in case the node commits the transaction to the ledger but during the 3PC-process receives the request directly from the client after a PROPAGATE from some other node """ slow_node = getNonPrimaryReplicas(nodeSet, instId=0)[-1].node slow_node.clientIbStasher.delay(req_delay()) slow_node.nodeIbStasher.delay(ppgDelay(sender_filter='Beta')) slow_node.nodeIbStasher.delay(ppgDelay(sender_filter='Gamma')) original_process_propagate = slow_node.nodeMsgRouter.routes[Propagate] original_process_request = slow_node.clientMsgRouter.routes[Request] def patched_process_propagate(msg: Propagate, frm: str): original_process_propagate(msg, frm) slow_node.clientIbStasher.reset_delays_and_process_delayeds() slow_node.nodeMsgRouter.routes[Propagate] = original_process_propagate def patched_process_request(request: Request, frm: str): original_process_request(request, frm) slow_node.nodeIbStasher.reset_delays_and_process_delayeds() slow_node.clientMsgRouter.routes[Request] = original_process_request slow_node.nodeMsgRouter.routes[Propagate] = patched_process_propagate slow_node.clientMsgRouter.routes[Request] = patched_process_request init_len = len(list(slow_node.upgrader._actionLog)) sdk_ensure_upgrade_sent(looper, sdk_pool_handle, sdk_wallet_trustee, validUpgradeExpForceTrue) looper.runFor(waits.expectedUpgradeScheduled()) checkUpgradeScheduled([slow_node], validUpgradeExpForceTrue[VERSION]) if init_len ==0: # first upgrade - should be only one scheduled assert len(list(slow_node.upgrader._actionLog)) == 1 else: # one upgrade were already scheduled. we should cancel it and schedule new one # so action log should be increased by 2 assert len(list(slow_node.upgrader._actionLog)) == init_len + 2 assert slow_node.upgrader._actionLog.last_event.ev_type == UpgradeLog.Events.scheduled
src/python/nimbusml/examples/WordTokenizer.py
montehoover/NimbusML
134
12759240
############################################################################### # WordTokenizer from nimbusml import Pipeline, FileDataStream from nimbusml.datasets import get_dataset from nimbusml.preprocessing.text import WordTokenizer # data input (as a FileDataStream) path = get_dataset("wiki_detox_train").as_filepath() data = FileDataStream.read_csv(path, sep='\t') print(data.head()) # Sentiment SentimentText # 0 1 ==RUDE== Dude, you are rude upload that carl p... # 1 1 == OK! == IM GOING TO VANDALIZE WILD ONES WIK... # 2 1 Stop trolling, zapatancas, calling me a liar m... # 3 1 ==You're cool== You seem like a really cool g... # 4 1 ::::: Why are you threatening me? I'm not bein... tokenize = WordTokenizer(char_array_term_separators=[" "]) << {'wt': 'SentimentText'} pipeline = Pipeline([tokenize]) tokenize.fit(data) y = tokenize.transform(data) print(y.drop(labels='SentimentText', axis=1).head()) # Sentiment wt.000 wt.001 wt.002 wt.003 wt.004 wt.005 ... wt.366 wt.367 wt.368 wt.369 wt.370 wt.371 wt.372 # 0 1 ==RUDE== Dude, you are rude upload ... None None None None None None None # 1 1 == OK! == IM GOING TO ... None None None None None None None # 2 1 Stop trolling, zapatancas, calling me a ... None None None None None None None # 3 1 ==You're cool== You seem like a ... None None None None None None None # 4 1 ::::: Why are you threatening me? ... None None None None None None None
redbot/webui/captcha.py
gusdleon/redbot
167
12759294
import hmac from http import cookies import json from typing import Callable, TYPE_CHECKING from urllib.parse import urlencode import thor from thor.http import HttpClient, get_header from thor.http.error import HttpError from redbot.resource import HttpResource from redbot.type import RawHeaderListType token_client = HttpClient() token_client.idle_timeout = 30 token_client.connect_timeout = 10 token_client.read_timeout = 10 token_client.max_server_conn = 30 if TYPE_CHECKING: from redbot.webui import RedWebUi # pylint: disable=cyclic-import,unused-import class CaptchaHandler: def __init__( self, webui: "RedWebUi", client_id: str, continue_test: Callable, error_response: Callable, ) -> None: self.webui = webui self.client_id = client_id self.continue_test = continue_test self.error_response = error_response self.secret = webui.config.get("hcaptcha_secret", "").encode("utf-8") self.token_lifetime = webui.config.getint("token_lifetime", fallback=300) def run(self) -> None: captcha_token = self.webui.body_args.get("captcha_token", [None])[0] cookie_str = b", ".join(get_header(self.webui.req_headers, b"cookie")) try: cookiejar = cookies.SimpleCookie( cookie_str.decode("utf-8", "replace") ) # type: cookies.SimpleCookie except cookies.CookieError: self.error_response( b"400", b"Bad Request", "Sorry, your cookies appear corrupted. Please try again.", f"Cookie Parse Error: {cookie_str.decode('utf-8', 'replace')}", ) return human_time = cookiejar.get("human_time", None) human_hmac = cookiejar.get("human_hmac", None) if human_time and human_time.value.isdigit() and human_hmac: if self.verify_human(int(human_time.value), human_hmac.value): self.continue_test() else: self.error_response( b"403", b"Forbidden", "I need to double-check that you're human; please resubmit.", "Invalid human token", ) elif captcha_token: self.verify_captcha(captcha_token) else: self.error_response( b"403", b"Forbidden", "I need to double-check that you're human; please resubmit.", "Invalid captcha.", ) def verify_captcha(self, presented_token: str) -> None: exchange = token_client.exchange() @thor.events.on(exchange) def error(err_msg: HttpError) -> None: self.error_response( b"403", b"Forbidden", "There was a problem with the Captcha server; please try again soon.", f"Captcha error: {err_msg}.", ) @thor.events.on(exchange) def response_start( status: bytes, phrase: bytes, headers: RawHeaderListType ) -> None: exchange.tmp_status = status exchange.tmp_res_body = b"" @thor.events.on(exchange) def response_body(chunk: bytes) -> None: exchange.tmp_res_body += chunk @thor.events.on(exchange) def response_done(trailers: RawHeaderListType) -> None: try: results = json.loads(exchange.tmp_res_body) except ValueError: if exchange.tmp_status != b"200": e_str = f"Captcha server returned {exchange.tmp_status.decode('utf-8')} status code" else: e_str = f"Captcha server response error" self.error_response( b"500", b"Internal Server Error", e_str, e_str, ) return if results["success"]: self.continue_test(self.issue_human()) else: e_str = f"Captcha errors: {', '.join(results.get('error-codes', ['unknown error']))}" self.error_response( b"403", b"Forbidden", e_str, e_str, ) request_form = { "secret": self.secret, "response": presented_token, "remoteip": self.client_id, } exchange.request_start( b"POST", b"https://hcaptcha.com/siteverify", [[b"content-type", b"application/x-www-form-urlencoded"]], ) exchange.request_body(urlencode(request_form).encode("utf-8", "replace")) exchange.request_done({}) def issue_human(self) -> RawHeaderListType: """ Return cookie headers for later verification that this is a human. """ human_time = str(int(thor.time()) + self.token_lifetime) human_hmac = hmac.new( self.secret, bytes(human_time, "ascii"), "sha512" ).hexdigest() return [ ( b"Set-Cookie", f"human_time={human_time}; Max-Age={self.token_lifetime}; SameSite=Strict".encode( "ascii" ), ), ( b"Set-Cookie", f"human_hmac={human_hmac}; Max-Age={self.token_lifetime}; SameSite=Strict".encode( "ascii" ), ), ] def verify_human(self, human_time: int, human_hmac: str) -> bool: """ Check the user's human HMAC. """ computed_hmac = hmac.new(self.secret, bytes(str(human_time), "ascii"), "sha512") is_valid = human_hmac == computed_hmac.hexdigest() if is_valid and human_time >= thor.time(): return True else: return False
service-workers/service-worker/resources/update-fetch-worker.py
meyerweb/wpt
14,668
12759308
<reponame>meyerweb/wpt import random import time def main(request, response): # no-cache itself to ensure the user agent finds a new version for each update. headers = [(b'Cache-Control', b'no-cache, must-revalidate'), (b'Pragma', b'no-cache')] content_type = b'' extra_body = u'' content_type = b'application/javascript' headers.append((b'Content-Type', content_type)) extra_body = u"self.onfetch = (event) => { event.respondWith(fetch(event.request)); };" # Return a different script for each access. return headers, u'/* %s %s */ %s' % (time.time(), random.random(), extra_body)
notebooks/thunderdome/eth2spec/test/phase0/epoch_processing/test_process_historical_roots_update.py
casparschwa/beaconrunner
2,161
12759310
from eth2spec.test.context import spec_state_test, with_all_phases from eth2spec.test.helpers.epoch_processing import ( run_epoch_processing_with ) def run_process_historical_roots_update(spec, state): yield from run_epoch_processing_with(spec, state, 'process_historical_roots_update') @with_all_phases @spec_state_test def test_historical_root_accumulator(spec, state): # skip ahead to near the end of the historical roots period (excl block before epoch processing) state.slot = spec.SLOTS_PER_HISTORICAL_ROOT - 1 history_len = len(state.historical_roots) yield from run_process_historical_roots_update(spec, state) assert len(state.historical_roots) == history_len + 1
src/python/nimbusml/internal/entrypoints/transforms_columnselector.py
michaelgsharp/NimbusML
134
12759320
<reponame>michaelgsharp/NimbusML<gh_stars>100-1000 # - Generated by tools/entrypoint_compiler.py: do not edit by hand """ Transforms.ColumnSelector """ from ..utils.entrypoints import EntryPoint from ..utils.utils import try_set, unlist def transforms_columnselector( data, output_data=None, model=None, keep_columns=None, drop_columns=None, keep_hidden=False, ignore_missing=False, **params): """ **Description** Selects a set of columns, dropping all others :param keep_columns: List of columns to keep. (inputs). :param data: Input dataset (inputs). :param drop_columns: List of columns to drop. (inputs). :param keep_hidden: Specifies whether to keep or remove hidden columns. (inputs). :param ignore_missing: Specifies whether to ignore columns that are missing from the input. (inputs). :param output_data: Transformed dataset (outputs). :param model: Transform model (outputs). """ entrypoint_name = 'Transforms.ColumnSelector' inputs = {} outputs = {} if keep_columns is not None: inputs['KeepColumns'] = try_set( obj=keep_columns, none_acceptable=True, is_of_type=list, is_column=True) if data is not None: inputs['Data'] = try_set( obj=data, none_acceptable=False, is_of_type=str) if drop_columns is not None: inputs['DropColumns'] = try_set( obj=drop_columns, none_acceptable=True, is_of_type=list, is_column=True) if keep_hidden is not None: inputs['KeepHidden'] = try_set( obj=keep_hidden, none_acceptable=True, is_of_type=bool) if ignore_missing is not None: inputs['IgnoreMissing'] = try_set( obj=ignore_missing, none_acceptable=True, is_of_type=bool) if output_data is not None: outputs['OutputData'] = try_set( obj=output_data, none_acceptable=False, is_of_type=str) if model is not None: outputs['Model'] = try_set( obj=model, none_acceptable=False, is_of_type=str) input_variables = { x for x in unlist(inputs.values()) if isinstance(x, str) and x.startswith("$")} output_variables = { x for x in unlist(outputs.values()) if isinstance(x, str) and x.startswith("$")} entrypoint = EntryPoint( name=entrypoint_name, inputs=inputs, outputs=outputs, input_variables=input_variables, output_variables=output_variables) return entrypoint
var/spack/repos/builtin/packages/orfm/package.py
kkauder/spack
2,360
12759322
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Orfm(AutotoolsPackage): """A simple and not slow open reading frame (ORF) caller. No bells or whistles like frameshift detection, just a straightforward goal of returning a FASTA file of open reading frames over a certain length from a FASTA/Q file of nucleotide sequences.""" homepage = "https://github.com/wwood/OrfM" url = "https://github.com/wwood/OrfM/releases/download/v0.7.1/orfm-0.7.1.tar.gz" version('0.7.1', sha256='19f39c72bcc48127b757613c5eef4abae95ee6c82dccf96b041db527b27f319a') depends_on('zlib', type='link')
pypeln/task/api/concat_task_test.py
quarckster/pypeln
1,281
12759335
<gh_stars>1000+ import sys import time import typing as tp from unittest import TestCase import hypothesis as hp from hypothesis import strategies as st import pypeln as pl MAX_EXAMPLES = 10 T = tp.TypeVar("T") @hp.given(nums=st.lists(st.integers())) @hp.settings(max_examples=MAX_EXAMPLES) def test_concat_basic(nums: tp.List[int]): nums_py = list(map(lambda x: x + 1, nums)) nums_py1 = list(map(lambda x: x ** 2, nums_py)) nums_py2 = list(map(lambda x: -x, nums_py)) nums_py = nums_py1 + nums_py2 nums_pl = pl.task.map(lambda x: x + 1, nums) nums_pl1 = pl.task.map(lambda x: x ** 2, nums_pl) nums_pl2 = pl.task.map(lambda x: -x, nums_pl) nums_pl = pl.task.concat([nums_pl1, nums_pl2]) assert sorted(nums_pl) == sorted(nums_py) @hp.given(nums=st.lists(st.integers())) @hp.settings(max_examples=MAX_EXAMPLES) @pl.task.utils.run_test_async async def test_concat_basic_2(nums: tp.List[int]): nums_py = list(map(lambda x: x + 1, nums)) nums_py1 = list(map(lambda x: x ** 2, nums_py)) nums_py2 = list(map(lambda x: -x, nums_py)) nums_py = nums_py1 + nums_py2 nums_pl = pl.task.map(lambda x: x + 1, nums) nums_pl1 = pl.task.map(lambda x: x ** 2, nums_pl) nums_pl2 = pl.task.map(lambda x: -x, nums_pl) nums_pl = await pl.task.concat([nums_pl1, nums_pl2]) assert sorted(nums_pl) == sorted(nums_py) # @hp.given(nums=st.lists(st.integers())) # @hp.settings(max_examples=MAX_EXAMPLES) def test_concat_multiple(nums: tp.List[int] = [1, 2, 3]): nums_py = [x + 1 for x in nums] nums_py1 = nums_py + nums_py nums_py2 = nums_py1 + nums_py nums_pl = pl.task.map(lambda x: x + 1, nums) nums_pl1 = pl.task.concat([nums_pl, nums_pl]) nums_pl2 = pl.task.concat([nums_pl1, nums_pl]) # assert sorted(nums_py1) == sorted(list(nums_pl1)) assert sorted(nums_py2) == sorted(list(nums_pl2)) @pl.task.utils.run_test_async async def test_concat_multiple_2(nums: tp.List[int] = [1, 2, 3]): nums_py = [x + 1 for x in nums] nums_py1 = nums_py + nums_py nums_py2 = nums_py1 + nums_py nums_pl = pl.task.map(lambda x: x + 1, nums) nums_pl1 = pl.task.concat([nums_pl, nums_pl]) nums_pl2 = await pl.task.concat([nums_pl1, nums_pl]) # assert sorted(nums_py1) == sorted(list(nums_pl1)) assert sorted(nums_py2) == sorted(list(nums_pl2))
tests/import/gen_context.py
learnforpractice/micropython-cpp
692
12759349
<gh_stars>100-1000 import gen_context2 GLOBAL = "GLOBAL" def gen(): print(GLOBAL) yield 1 gen_context2.call(gen())
preprocess/snips_preprocess.py
OlegJakushkin/s3prl
856
12759406
from random import shuffle import os from glob import glob import shutil import re import tqdm from multiprocessing import Pool from normalise import normalise months = {'jan.': 'January', 'feb.': 'February', 'mar.': 'March', 'apr.': 'April', 'may': 'May', 'jun.': 'June', 'jul.': 'July', 'aug.': 'August', 'sep.': 'September', 'oct.': 'October', 'nov.': 'November', 'dec.': 'December', 'jan': 'January', 'feb': 'February', 'mar': 'March', 'apr': 'April', 'jun': 'June', 'jul': 'July', 'aug': 'August', 'sep': 'September', 'oct': 'October', 'nov': 'November', 'dec': 'December'} replace_words = {'&': 'and', '¡':'', 'r&b':'R and B', 'funtime':'fun time', 'español':'espanol', "'s":'s', 'palylist':'playlist'} replace_vocab = {'ú':'u', 'ñ':'n', 'Ō':'O', 'â':'a'} reservations = {'chyi':'chyi', 'Pre-Party':'pre party', 'Chu':'Chu', 'B&B':'B and B', '0944':'nine four four', 'Box':'Box', 'ain’t':'am not', 'Zon':'Zon', 'Yui':'Yui', 'neto':'neto', 'skepta':'skepta', '¡Fiesta':'Fiesta', 'Vue':'Vue', 'iheart':'iheart', 'disco':'disco'} same = "klose la mejor música para tus fiestas dubstep dangles drejer listas".split(' ') for word in same: reservations[word] = word def word_normalise(words): ret = [] for word in words: if word.lower() in months: word = months[word.lower()] if word.lower() in replace_words: word = replace_words[word.lower()] for regex in replace_vocab: word = re.sub(regex, '', word) #word = re.sub(r'(\S)([\.\,\!\?])', r'\1 \2', word) word = re.sub(r'[\.\,\!\?;\/]', '', word) ret.append(word) return ret def sent_normalise(text, slots_split=None): norm_slots, norm_texts = [], [] text_split = text.split(' ') if slots_split is None: slots_split = ['O']*len(text_split) for idx in range(len(text_split)): if text_split[idx] in '.,!?;/]': continue if text_split[idx] in reservations: for word in reservations[text_split[idx]].split(' '): norm_texts.append(word) norm_slots.append(slots_split[idx]) continue norm_text = normalise(word_normalise([text_split[idx]]), variety="AmE", verbose=False) for phrase in norm_text: if phrase == '': continue for word in re.split(r' |\-', phrase): word = re.sub(r'[\.\,\!\?;\/]', '', word) if word == '': continue norm_texts.append(word) norm_slots.append(slots_split[idx]) return norm_slots, norm_texts def process_raw_snips_file(file, out_f): with open(file) as f: content = f.readlines() content = [x.strip() for x in content] with open(out_f, 'w') as f: for cnt, line in enumerate(content): text = line.split(' <=> ')[0] intent = line.split(' <=> ')[1] #[r.split(':')[0] if len(r.split(':')) == 2 else ' ' for r in x.split()] text_split = [x.replace('::', ':').split(':')[0] if len(x.replace('::', ':').split(':')) == 2 else ' ' for x in text.split()] text_entities = ' '.join(text_split) slots_split = [x.replace('::', ':').split(':')[1] for x in text.split()] slots_entities = ' '.join(slots_split) assert len(text_split) == len(slots_split), (text_split, slots_split) f.write('%d | BOS %s EOS | O %s | %s\n' % (cnt, text_entities, slots_entities, intent)) def remove_IBO_from_snipt_vocab_slot(in_f, out_f): with open(in_f) as f: content = f.readlines() content = [x.strip() for x in content] # get rid of BIO tag from the slots for idx, line in enumerate(content): if line != 'O': content[idx] = line[len('B-'):] content = set(content) # remove repeating slots with open(out_f, 'w') as f: for line in content: f.write('%s\n' % line) def process_daniel_snips_file(content): content = [x.strip() for x in content] utt_ids = [x.split('\t', 1)[0] for x in content] valid_uttids = [x for x in utt_ids if x.split('-')[1] == 'valid'] test_uttids = [x for x in utt_ids if x.split('-')[1] == 'test'] train_uttids = [x for x in utt_ids if x.split('-')[1] == 'train'] utt2text, utt2slots, utt2intent = {}, {}, {} assert len(utt_ids) == len(set(utt_ids)) # create utt2text, utt2slots, utt2intent for line in content: uttid, text, slots, intent = line.split('\t') if len(text.split()) != len(slots.split()): # detect 'empty' in text assert len(text.split(' ')) == 2 empty_idx = text.split().index(text.split(' ')[0].split()[-1]) + 1 slots_list = slots.split() del slots_list[empty_idx] cleaned_slots = ' '.join(slots_list) assert len(text.split()) == len(slots_list) cleaned_text = ' '.join(text.split()) #print(cleaned_text, cleaned_slots) else: (cleaned_text, cleaned_slots) = (text, slots) # get rid of the 'intent/' from all slot values cleaned_slots = ' '.join([x.split('/')[1] if x != 'O' else x for x in cleaned_slots.split()]) # strip the whitespaces before punctuations #cleaned_text = re.sub(r'\s([?.!,"](?:\s|$))', r'\1', cleaned_text) utt2text[uttid] = cleaned_text utt2slots[uttid] = cleaned_slots utt2intent[uttid] = intent test_utt2text, test_utt2slots, test_utt2intent = {}, {}, {} valid_utt2text, valid_utt2slots, valid_utt2intent = {}, {}, {} train_utt2text, train_utt2slots, train_utt2intent = {}, {}, {} for utt in valid_uttids: valid_utt2text[utt] = utt2text[utt] valid_utt2slots[utt] = utt2slots[utt] valid_utt2intent[utt] = utt2intent[utt] for utt in test_uttids: test_utt2text[utt] = utt2text[utt] test_utt2slots[utt] = utt2slots[utt] test_utt2intent[utt] = utt2intent[utt] for utt in train_uttids: train_utt2text[utt] = utt2text[utt] train_utt2slots[utt] = utt2slots[utt] train_utt2intent[utt] = utt2intent[utt] assert len(set(valid_utt2intent.values())) == len(set(test_utt2intent.values())) == len(set(train_utt2intent.values())) == 7 assert len(valid_utt2intent.keys()) == len(test_utt2intent.keys()) == 700 assert len(train_utt2intent.keys()) == 13084 def __return_set_of_slots(utt2slots): all_slots = [] for slot in utt2slots.values(): all_slots.extend(slot.split()) unique_slots = set(all_slots) return unique_slots assert len(__return_set_of_slots(valid_utt2slots)) == len(__return_set_of_slots(test_utt2slots)) == \ len(__return_set_of_slots(train_utt2slots)) == 40 return (train_utt2text, train_utt2slots, train_utt2intent), \ (valid_utt2text, valid_utt2slots, valid_utt2intent), \ (test_utt2text, test_utt2slots, test_utt2intent) def map_and_link_snips_audio(snips_audio_dir, link_dir): # traverse through snips_audio_dir result = [y for x in os.walk(snips_audio_dir) for y in glob(os.path.join(x[0], '*.mp3'))] for path in result: person = path.split('/')[8].split('_')[1] filename = path.split('/')[-1] if filename[:5] != 'snips': continue uttid = filename.split('.')[0] new_uttid = person + '-' + filename partition = uttid.split('-')[1] destination = os.path.join(link_dir, partition, new_uttid) shutil.copyfile(path, destination) def create_multispk_for_snips(output_dir): speakers = "<NAME> <NAME>".split(' ') dataset_info = [{'split':'test', 'num_utts':700}, {'split':'valid', 'num_utts':700}, {'split':'train', 'num_utts':13084}] test_out_f = open(os.path.join(output_dir, 'all.iob.snips.txt'), 'w') for data in dataset_info: num_utts = data['num_utts'] split = data['split'] with open(os.path.join(output_dir, 'single-matched-snips.%s.w-intent'%split)) as f: content = f.readlines() utt2line = {x.strip().split()[0]:x.strip() for x in content} for spk in speakers: for num in range(num_utts): uttid = "%s-snips-%s-%d"%(spk, split, num) #mp3.split('/')[-1].split('.')[0] line = utt2line["snips-%s-%d"%(split, num)] #'-'.join(uttid.split('-')[1:])] text = line.split('\t')[1].upper() slots = line.split('\t')[2] intent = line.split('\t')[3] test_out_f.write('%s BOS %s EOS\tO %s %s\n' % (uttid, text, slots, intent)) test_out_f.close() def apply_text_norm_and_modify_slots(all_tsv, output_dir): train_dirs, valid_dirs, test_dirs = process_daniel_snips_file(all_tsv) # test test_file = open(os.path.join(output_dir, 'single-matched-snips.test.w-intent'), 'w') vocab_slot = {} for uttid in tqdm.tqdm(test_dirs[0].keys(), desc='Text Normalising on testing set'): text = test_dirs[0][uttid] slots = test_dirs[1][uttid] intent = test_dirs[2][uttid] slots_split = slots.split() for s in slots_split: vocab_slot.setdefault(s, 0) vocab_slot[s] += 1 norm_slots, norm_texts = sent_normalise(text, slots_split) assert len(norm_texts) == len(norm_slots), (norm_texts, norm_slots) # write to file test_file.write('%s\t%s\t%s\t%s\n' % (uttid, ' '.join(norm_texts).upper(), ' '.join(norm_slots), intent)) test_file.close() # valid valid_file = open(os.path.join(output_dir, 'single-matched-snips.valid.w-intent'), 'w') for uttid in tqdm.tqdm(valid_dirs[0].keys(), desc='Text Normalising on validation set'): text = valid_dirs[0][uttid] slots = valid_dirs[1][uttid] intent = valid_dirs[2][uttid] slots_split = slots.split() for s in slots_split: vocab_slot.setdefault(s, 0) vocab_slot[s] += 1 norm_slots, norm_texts = sent_normalise(text, slots_split) assert len(norm_texts) == len(norm_slots), (norm_texts, norm_slots) # write to file valid_file.write('%s\t%s\t%s\t%s\n' % (uttid, ' '.join(norm_texts).upper(), ' '.join(norm_slots), intent)) valid_file.close() # train train_file = open(os.path.join(output_dir, 'single-matched-snips.train.w-intent'), 'w') for uttid in tqdm.tqdm(train_dirs[0].keys(), desc='Text Normalising on training set'): text = train_dirs[0][uttid] slots = train_dirs[1][uttid] intent = train_dirs[2][uttid] slots_split = slots.split() for s in slots_split: vocab_slot.setdefault(s, 0) vocab_slot[s] += 1 norm_slots, norm_texts = sent_normalise(text, slots_split) assert len(norm_texts) == len(norm_slots), (norm_texts, norm_slots) # write to file train_file.write('%s\t%s\t%s\t%s\n' % (uttid, ' '.join(norm_texts).upper(), ' '.join(norm_slots), intent)) train_file.close() vocab_file = open(os.path.join(output_dir, 'slots.txt'), 'w') vocab_file.write('\n'.join(sorted(list(vocab_slot.keys()), key=lambda x:vocab_slot[x], reverse=True))) def sox_func(inputs): files, root, out_root, speaker = inputs for name in tqdm.tqdm(files, desc='Process for speaker: '+speaker): if name.endswith(".mp3"): split = name.split('-')[1] out_dir = os.path.join(out_root, split) os.makedirs(out_dir, exist_ok=True) orig_file = os.path.join(root, name) new_file = os.path.join(out_dir, speaker+'-'+name.split('/')[-1].split('.')[0] + '.wav') bashCommand = "sox " + orig_file + " -t wav -c 1 -r 16000 -b 16 -e signed-integer " + new_file r = os.popen(bashCommand).read() def sox_mp3_to_wav(in_root, out_root): os.makedirs(out_root, exist_ok=True) pool = Pool(16) inputs = [] for root, dirs, files in os.walk(in_root): print('[Processing] enter directory %s'%root) if not len(files): continue speaker = root.split('/')[-2].split('_')[1] print('[Processing] process %d audio files from speaker %s'%(len(files), speaker)) inputs.append((files, root, out_root, speaker)) pool.map(sox_func, inputs) if __name__ == '__main__': import sys, os mode = sys.argv[1] if mode == 'text': repo_dir = sys.argv[2] dump_dir = sys.argv[3] os.makedirs(dump_dir, exist_ok=True) content = [] content += open(os.path.join(repo_dir, 'data/nlu_annotation/valid')).readlines()[1:] content += open(os.path.join(repo_dir, 'data/nlu_annotation/test')).readlines()[1:] content += open(os.path.join(repo_dir, 'data/nlu_annotation/train')).readlines()[1:] apply_text_norm_and_modify_slots(content, dump_dir) create_multispk_for_snips(dump_dir) elif mode == 'audio': audio_dir = sys.argv[2] dump_dir = sys.argv[3] # Step: sox the snips *.mp3 to the correct format sox_mp3_to_wav(audio_dir, dump_dir) else: print('Usage: python preprocess.py [text|audio] [data_path] [dump_path]')
intake/cli/client/subcommands/drivers.py
mattkram/intake
149
12759416
<reponame>mattkram/intake #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2018, Anaconda, Inc. and Intake contributors # All rights reserved. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- """ CLI for listing, enabling, disabling intake drivers """ from intake import __version__ from intake.cli.util import Subcommand from intake.source.discovery import drivers import logging log = logging.getLogger(__name__) # ----------------------------------------------------------------------------- # API # ----------------------------------------------------------------------------- class Drivers(Subcommand): """ List, enable, and disable intake drivers. """ name = "drivers" def initialize(self): sub_parser = self.parser.add_subparsers() list = sub_parser.add_parser( 'list', help='Show all intake drivers, whether enabled, disabled, ' 'or directly inserted into the registry' ) list.add_argument( '-v', '--verbose', action='store_true', help='Show module path.') list.set_defaults(invoke=self._list) enable = sub_parser.add_parser('enable', help='Enable an intake driver.') enable.add_argument('name', type=str, help='Driver name') enable.add_argument('driver', type=str, default=None, nargs='?', help='Module path and class name, as in ' 'package.submodule.ClassName') enable.set_defaults(invoke=self._enable) disable = sub_parser.add_parser( 'disable', help='Disable one or more intake drivers.') disable.add_argument('names', type=str, help='Driver names', nargs='+') disable.set_defaults(invoke=self._disable) def invoke(self, args): self.parser.print_help() def _list(self, args): if drivers.do_scan: print("Package scan:") for k, v in drivers.scanned.items(): print(f'{k:<30}{v.__module__}.{v.__name__}') print() print("Entrypoints:") eps = [ep for ep in drivers.from_entrypoints() if ep.name not in drivers.disabled()] if eps: for v in eps: print(f'{v.name:<30}{v.module_name}:{v.object_name}') else: print("<none>") print() print("From Config:") eps = [ep for ep in drivers.from_conf() if ep.name not in drivers.disabled()] if eps: for v in eps: if v.name not in drivers.disabled(): print(f'{v.name:<30}{v.module_name}:{v.object_name}') else: print("<none>") print() print("Disabled: ", drivers.disabled() or "<none>") def _enable(self, args): drivers.enable(args.name, args.driver) def _disable(self, args): for name in args.names: drivers.disable(name)
crestify/archivers/__init__.py
punto1/crestify
214
12759438
<reponame>punto1/crestify<gh_stars>100-1000 from archive_service import ArchiveService, ArchiveException from archiveorg import ArchiveOrgService from archivetoday import ArchiveTodayService
omaha_server/crash/tests/test_serializers.py
makar21/omaha-server
142
12759459
<reponame>makar21/omaha-server # coding: utf8 """ This software is licensed under the Apache 2 license, quoted below. Copyright 2014 Crystalnix Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from builtins import str import os from django.test import TestCase from django.core.files.uploadedfile import SimpleUploadedFile from omaha.tests.utils import temporary_media_root from crash.models import Symbols, Crash from crash.serializers import SymbolsSerializer, CrashSerializer BASE_DIR = os.path.dirname(__file__) TEST_DATA_DIR = os.path.join(BASE_DIR, 'testdata') SYM_FILE = os.path.join(TEST_DATA_DIR, 'BreakpadTestApp.sym') class SymbolsSerializerTest(TestCase): def test_serializer(self): data = dict(file=SimpleUploadedFile('./test.pdb', False), debug_id='C1C0FA629EAA4B4D9DD2ADE270A231CC1', debug_file='BreakpadTestApp.pdb') symbols = Symbols.objects.create(**data) self.assertDictEqual(SymbolsSerializer(symbols).data, dict(id=symbols.id, debug_id='C1C0FA629EAA4B4D9DD2ADE270A231CC1', debug_file='BreakpadTestApp.pdb', file=symbols.file.url, file_size=symbols.file_size, created=symbols.created.strftime('%Y-%m-%dT%H:%M:%S.%fZ'), modified=symbols.modified.strftime('%Y-%m-%dT%H:%M:%S.%fZ'), )) @temporary_media_root(MEDIA_URL='http://cache.pack.google.com/edgedl/chrome/install/782.112/') def test_auto_fill_file_size(self): with open(SYM_FILE, 'rb') as f: data = dict(file=SimpleUploadedFile('./BreakpadTestApp.sym', f.read())) symbols = SymbolsSerializer(data=data) self.assertTrue(symbols.is_valid()) symbols_instance = symbols.save() self.assertEqual(symbols_instance.debug_id, 'C1C0FA629EAA4B4D9DD2ADE270A231CC1') self.assertEqual(symbols_instance.debug_file, 'BreakpadTestApp.pdb') self.assertEqual(symbols_instance.file_size, 68149) class CrashSerializerTest(TestCase): maxDiff = None @temporary_media_root( CELERY_ALWAYS_EAGER=False, CELERY_EAGER_PROPAGATES_EXCEPTIONS=False, ) def test_serializer(self): meta = dict( lang='en', version='1.0.0.1', ) stacktrace_json = dict( crashing_thread={}, ) app_id = '{D0AB2EBC-931B-4013-9FEB-C9C4C2225C8C}' user_id = '{2882CF9B-D9C2-4edb-9AAF-8ED5FCF366F7}' crash = Crash.objects.create( appid=app_id, userid=user_id, upload_file_minidump=SimpleUploadedFile('./dump.dat', b''), meta=meta, stacktrace_json=stacktrace_json ) self.assertDictEqual(CrashSerializer(crash).data, dict(id=crash.id, upload_file_minidump=crash.upload_file_minidump.url, archive=None, appid=str(crash.appid), userid=str(crash.userid), meta=meta, signature=crash.signature, stacktrace_json=crash.stacktrace_json, created=crash.created.strftime('%Y-%m-%dT%H:%M:%S.%fZ'), modified=crash.modified.strftime('%Y-%m-%dT%H:%M:%S.%fZ'), os=None, build_number=None, channel=''))
Hackerearth/The_minionGame.py
Shaswat-2203/HacktoberfestForBeginners
115
12759462
def minion_game(string): length = len(string) the_vowel = "AEIOU" kevin = 0 stuart = 0 for i in range(length): if string[i] in the_vowel: kevin = kevin + length - i else: stuart = stuart + length - i if kevin > stuart: print ("Kevin %d" % kevin) elif kevin < stuart: print ("Stuart %d" % stuart) else: print ("Draw")
Chapter03/Arista/eapi_1.py
stavsta/Mastering-Python-Networking-Second-Edition
107
12759476
<filename>Chapter03/Arista/eapi_1.py #!/usr/bin/python2 from __future__ import print_function from jsonrpclib import Server import ssl ssl._create_default_https_context = ssl._create_unverified_context switch = Server("https://admin:[email protected]/command-api") response = switch.runCmds( 1, [ "show version" ] ) print('Serial Number: ' + response[0]['serialNumber'])
nn/clipping.py
awesome-archive/sentence-space
211
12759489
<gh_stars>100-1000 import theano.tensor as T class MaxNorm(object): def __init__(self, max_norm=5): self.max_norm = max_norm def __call__(self, grads): norm = T.sqrt(sum([T.sum(g ** 2) for g in grads])) return [self.clip_norm(g, self.max_norm, norm) for g in grads] def clip_norm(self, g, c, n): if c > 0: g = T.switch(T.ge(n, c), g * c / n, g) return g class Clip(object): def __init__(self, clip=5): self.clip = clip def __call__(self, grads): return [T.clip(g, -self.clip, self.clip) for g in grads]
onegram/exceptions.py
pauloromeira/onegram
150
12759491
<filename>onegram/exceptions.py class OnegramException(Exception): pass # TODO [romeira]: Login exceptions {06/03/18 23:07} class AuthException(OnegramException): pass class AuthFailed(AuthException): pass class AuthUserError(AuthException): pass class NotSupportedError(OnegramException): pass class RequestFailed(OnegramException): pass class RateLimitedError(RequestFailed): pass # TODO [romeira]: Query/action exceptions {06/03/18 23:08} # TODO [romeira]: Session expired exception {06/03/18 23:08} # TODO [romeira]: Private user exception/warning {06/03/18 23:09} # TODO [romeira]: Not found exception {06/03/18 23:12} # TODO [romeira]: Already following/liked/commented? warnings {06/03/18 23:12} # TODO [romeira]: Timeout exception {06/03/18 23:12}
unicode/servers/test_ucd.py
fluentpython/concurrency
102
12759500
import itertools import ucd ABC_LINES = ''' 0040;COMMERCIAL AT;Po;0;ON;;;;;N;;;;; 0041;LATIN CAPITAL LETTER A;Lu;0;L;;;;;N;;;;0061; 0042;LATIN CAPITAL LETTER B;Lu;0;L;;;;;N;;;;0062; 0043;LATIN CAPITAL LETTER C;Lu;0;L;;;;;N;;;;0063; '''.strip() def test_parse_line(): line_A = '0041;LATIN CAPITAL LETTER A;Lu;0;L;;;;;N;;;;0061;' code, name, old_name, words = ucd.parse_line(line_A) assert code == 65 assert name == 'LATIN CAPITAL LETTER A' assert old_name == '' assert words == ['A', 'CAPITAL', 'LATIN', 'LETTER'] def test_parse_line_with_hyphen_and_field_10(): cases = [ ('002D;HYPHEN-MINUS;Pd;0;ES;;;;;N;;;;;', 45, 'HYPHEN-MINUS', '', ['HYPHEN', 'MINUS']), ('005F;LOW LINE;Pc;0;ON;;;;;N;SPACING UNDERSCORE;;;;', 95, 'LOW LINE', 'SPACING UNDERSCORE', ['LINE', 'LOW', 'SPACING', 'UNDERSCORE']), ('0027;APOSTROPHE;Po;0;ON;;;;;N;APOSTROPHE-QUOTE;;;', 39, 'APOSTROPHE', 'APOSTROPHE-QUOTE', ['APOSTROPHE', 'QUOTE']), ] for line, *fields_ok in cases: fields = ucd.parse_line(line) assert fields == tuple(fields_ok) def test_parser_top_3(): records = list(itertools.islice(ucd.parser(), 3)) assert records == [ (32, 'SPACE', '', ['SPACE']), (33, 'EXCLAMATION MARK', '', ['EXCLAMATION', 'MARK']), (34, 'QUOTATION MARK', '', ['MARK', 'QUOTATION']), ] def test_index(): line = '003E;GREATER-THAN SIGN;Sm;0;ON;;;;;Y;;;;;' record = ucd.parse_line(line) idx = ucd.index([record]) assert idx == {'GREATER': [62], 'SIGN': [62], 'THAN': [62]} def test_index_abc(): records = [ucd.parse_line(line) for line in ABC_LINES.split('\n')] idx = ucd.index(records) assert idx == { 'A': [65], 'AT': [64], 'B': [66], 'C': [67], 'CAPITAL': [65, 66, 67], 'COMMERCIAL': [64], 'LATIN': [65, 66, 67], 'LETTER': [65, 66, 67], }
clickhouse_driver/dbapi/cursor.py
1024inc/clickhouse-driver
823
12759504
from collections import namedtuple from itertools import islice from ..errors import Error as DriverError from .errors import InterfaceError, OperationalError, ProgrammingError Column = namedtuple( 'Column', 'name type_code display_size internal_size precision scale null_ok' ) class Cursor(object): class States(object): ( NONE, RUNNING, FINISHED, CURSOR_CLOSED ) = range(4) _states = States() def __init__(self, client, connection): self._client = client self._connection = connection self._reset_state() self.arraysize = 1 # Begin non-PEP attributes self._columns_with_types = None # End non-PEP attributes super(Cursor, self).__init__() def __repr__(self): is_closed = self._state == self._states.CURSOR_CLOSED return '<cursor object at 0x{0:x}; closed: {1:}>'.format( id(self), is_closed ) # Iteration support. def __iter__(self): while True: one = self.fetchone() if one is None: return yield one # Context manager integrations. def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() @property def description(self): if self._state == self._states.NONE: return None columns = self._columns or [] types = self._types or [] return [ Column(name, type_code, None, None, None, None, True) for name, type_code in zip(columns, types) ] @property def rowcount(self): """ :return: the number of rows that the last .execute*() produced. """ return self._rowcount def close(self): """ Close the cursor now. The cursor will be unusable from this point forward; an :data:`~clickhouse_driver.dbapi.Error` (or subclass) exception will be raised if any operation is attempted with the cursor. """ self._client.disconnect() self._state = self._states.CURSOR_CLOSED try: # cursor can be already closed self._connection.cursors.remove(self) except ValueError: pass def execute(self, operation, parameters=None): """ Prepare and execute a database operation (query or command). :param operation: query or command to execute. :param parameters: sequence or mapping that will be bound to variables in the operation. :return: None """ self._check_cursor_closed() self._begin_query() try: execute, execute_kwargs = self._prepare() response = execute( operation, params=parameters, with_column_types=True, **execute_kwargs ) except DriverError as orig: raise OperationalError(orig) self._process_response(response) self._end_query() def executemany(self, operation, seq_of_parameters): """ Prepare a database operation (query or command) and then execute it against all parameter sequences found in the sequence `seq_of_parameters`. :param operation: query or command to execute. :param seq_of_parameters: sequences or mappings for execution. :return: None """ self._check_cursor_closed() self._begin_query() try: execute, execute_kwargs = self._prepare() response = execute( operation, params=seq_of_parameters, **execute_kwargs ) except DriverError as orig: raise OperationalError(orig) self._process_response(response, executemany=True) self._end_query() def fetchone(self): """ Fetch the next row of a query result set, returning a single sequence, or None when no more data is available. :return: the next row of a query result set or None. """ self._check_query_started() if self._stream_results: return next(self._rows, None) else: if not self._rows: return None return self._rows.pop(0) def fetchmany(self, size=None): """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. :param size: amount of rows to return. :return: list of fetched rows or empty list. """ self._check_query_started() if size is None: size = self.arraysize if self._stream_results: if size == -1: return list(self._rows) else: return list(islice(self._rows, size)) if size < 0: rv = self._rows self._rows = [] else: rv = self._rows[:size] self._rows = self._rows[size:] return rv def fetchall(self): """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). :return: list of fetched rows. """ self._check_query_started() if self._stream_results: return list(self._rows) rv = self._rows self._rows = [] return rv def setinputsizes(self, sizes): # Do nothing. pass def setoutputsize(self, size, column=None): # Do nothing. pass # Begin non-PEP methods @property def columns_with_types(self): """ :return: list of column names with corresponding types of the last .execute*(). E.g. [('x', 'UInt64')]. """ return self._columns_with_types def set_stream_results(self, stream_results, max_row_buffer): """ Toggles results streaming from server. Driver will consume block-by-block of `max_row_buffer` size and yield row-by-row from each block. :param stream_results: enable or disable results streaming. :param max_row_buffer: specifies the maximum number of rows to buffer at a time. :return: None """ self._stream_results = stream_results self._max_row_buffer = max_row_buffer def set_settings(self, settings): """ Specifies settings for cursor. :param settings: dictionary of query settings :return: None """ self._settings = settings def set_types_check(self, types_check): """ Toggles type checking for sequence of INSERT parameters. Disabled by default. :param types_check: new types check value. :return: None """ self._types_check = types_check def set_external_table(self, name, structure, data): """ Adds external table to cursor context. If the same table is specified more than once the last one is used. :param name: name of external table :param structure: list of tuples (name, type) that defines table structure. Example [(x, 'Int32')]. :param data: sequence of rows of tuples or dicts for transmission. :return: None """ self._external_tables[name] = (structure, data) def set_query_id(self, query_id): """ Specifies the query identifier for cursor. :param query_id: the query identifier. :return: None """ self._query_id = query_id # End non-PEP methods # Private methods. def _prepare(self): external_tables = [ {'name': name, 'structure': structure, 'data': data} for name, (structure, data) in self._external_tables.items() ] or None execute = self._client.execute if self._stream_results: execute = self._client.execute_iter self._settings = self._settings or {} self._settings['max_block_size'] = self._max_row_buffer execute_kwargs = { 'settings': self._settings, 'external_tables': external_tables, 'types_check': self._types_check, 'query_id': self._query_id } return execute, execute_kwargs def _process_response(self, response, executemany=False): if executemany: self._rowcount = response response = None if not response or isinstance(response, int): self._columns = self._types = self._rows = [] if isinstance(response, int): self._rowcount = response return if self._stream_results: columns_with_types = next(response) rows = response else: rows, columns_with_types = response self._columns_with_types = columns_with_types # Only SELECT queries have columns_with_types. # DDL and INSERT INTO ... SELECT queries have empty columns header. # We need to obtain rows count only during non-streaming SELECTs. if columns_with_types: self._columns, self._types = zip(*columns_with_types) if not self._stream_results: self._rowcount = len(rows) else: self._columns = self._types = [] self._rows = rows def _reset_state(self): """ Resets query state and get ready for another query. """ self._state = self._states.NONE self._columns = None self._types = None self._rows = None self._rowcount = -1 self._stream_results = False self._max_row_buffer = 0 self._settings = None self._query_id = None self._external_tables = {} self._types_check = False def _begin_query(self): self._state = self._states.RUNNING def _end_query(self): self._state = self._states.FINISHED def _check_cursor_closed(self): if self._state == self._states.CURSOR_CLOSED: raise InterfaceError('cursor already closed') def _check_query_started(self): if self._state == self._states.NONE: raise ProgrammingError('no results to fetch')
pythonFiles/tests/testing_tools/adapter/.data/complex/mod.py
AlbertDeFusco/vscode-python
2,461
12759570
<reponame>AlbertDeFusco/vscode-python """ Examples: >>> square(1) 1 >>> square(2) 4 >>> square(3) 9 >>> spam = Spam() >>> spam.eggs() 42 """ def square(x): """ Examples: >>> square(1) 1 >>> square(2) 4 >>> square(3) 9 """ return x * x class Spam(object): """ Examples: >>> spam = Spam() >>> spam.eggs() 42 """ def eggs(self): """ Examples: >>> spam = Spam() >>> spam.eggs() 42 """ return 42
python/ray/tune/integration/docker.py
mkucijan/ray
21,382
12759574
<filename>python/ray/tune/integration/docker.py<gh_stars>1000+ import logging import os from typing import Optional, Tuple, List from ray.autoscaler.sdk import rsync, configure_logging from ray.util import get_node_ip_address from ray.util.debug import log_once from ray.tune.syncer import NodeSyncer from ray.tune.sync_client import SyncClient from ray.ray_constants import env_integer logger = logging.getLogger(__name__) class DockerSyncer(NodeSyncer): """DockerSyncer used for synchronization between Docker containers. This syncer extends the node syncer, but is usually instantiated without a custom sync client. The sync client defaults to ``DockerSyncClient`` instead. Set the env var `TUNE_SYNCER_VERBOSITY` to increase verbosity of syncing operations (0, 1, 2, 3). Defaults to 0. .. note:: This syncer only works with the Ray cluster launcher. If you use your own Docker setup, make sure the nodes can connect to each other via SSH, and try the regular SSH-based syncer instead. Example: .. code-block:: python from ray.tune.integration.docker import DockerSyncer tune.run(train, sync_config=tune.SyncConfig( sync_to_driver=DockerSyncer)) """ _cluster_config_file = os.path.expanduser("~/ray_bootstrap_config.yaml") def __init__(self, local_dir: str, remote_dir: str, sync_client: Optional[SyncClient] = None): configure_logging( log_style="record", verbosity=env_integer("TUNE_SYNCER_VERBOSITY", 0)) self.local_ip = get_node_ip_address() self.worker_ip = None sync_client = sync_client or DockerSyncClient() sync_client.configure(self._cluster_config_file) super(NodeSyncer, self).__init__(local_dir, remote_dir, sync_client) def set_worker_ip(self, worker_ip: str): self.worker_ip = worker_ip @property def _remote_path(self) -> Tuple[str, str]: return (self.worker_ip, self._remote_dir) class DockerSyncClient(SyncClient): """DockerSyncClient to be used by DockerSyncer. This client takes care of executing the synchronization commands for Docker nodes. In its ``sync_down`` and ``sync_up`` commands, it expects tuples for the source and target, respectively, for compatibility with docker. Args: should_bootstrap: Whether to bootstrap the autoscaler cofiguration. This may be useful when you are running into authentication problems; i.e.: https://github.com/ray-project/ray/issues/17756. """ def __init__(self, should_bootstrap: bool = True): self._command_runners = {} self._cluster_config = None if os.environ.get("TUNE_SYNC_DISABLE_BOOTSTRAP") == "1": should_bootstrap = False logger.debug("Skipping bootstrap for docker sync client.") self._should_bootstrap = should_bootstrap def configure(self, cluster_config_file: str): self._cluster_config_file = cluster_config_file def sync_up(self, source: str, target: Tuple[str, str], exclude: Optional[List] = None) -> bool: """Here target is a tuple (target_node, target_dir)""" target_node, target_dir = target # Add trailing slashes for rsync source = os.path.join(source, "") target_dir = os.path.join(target_dir, "") import click try: rsync( cluster_config=self._cluster_config_file, source=source, target=target_dir, down=False, ip_address=target_node, should_bootstrap=self._should_bootstrap, use_internal_ip=True) except click.ClickException: if log_once("docker_rsync_up_fail"): logger.warning( "Rsync-up failed. Consider using a durable trainable " "or setting the `TUNE_SYNC_DISABLE_BOOTSTRAP=1` env var.") raise return True def sync_down(self, source: Tuple[str, str], target: str, exclude: Optional[List] = None) -> bool: """Here source is a tuple (source_node, source_dir)""" source_node, source_dir = source # Add trailing slashes for rsync source_dir = os.path.join(source_dir, "") target = os.path.join(target, "") import click try: rsync( cluster_config=self._cluster_config_file, source=source_dir, target=target, down=True, ip_address=source_node, should_bootstrap=self._should_bootstrap, use_internal_ip=True) except click.ClickException: if log_once("docker_rsync_down_fail"): logger.warning( "Rsync-down failed. Consider using a durable trainable " "or setting the `TUNE_SYNC_DISABLE_BOOTSTRAP=1` env var.") raise return True def delete(self, target: str) -> bool: raise NotImplementedError
objectModel/Python/tests/cdm/projection/test_projection_object_model.py
jocubeit/CDM
265
12759635
<filename>objectModel/Python/tests/cdm/projection/test_projection_object_model.py # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. import os import unittest from cdm.enums import CdmObjectType from cdm.enums.cdm_operation_type import CdmOperationType from cdm.objectmodel import CdmCorpusDefinition, CdmFolderDefinition, CdmProjection, CdmOperationAddCountAttribute, \ CdmOperationAddSupportingAttribute, CdmOperationAddTypeAttribute, CdmOperationExcludeAttributes, CdmOperationArrayExpansion, \ CdmOperationCombineAttributes, CdmOperationRenameAttributes, CdmOperationReplaceAsForeignKey, CdmOperationIncludeAttributes, CdmObject from cdm.storage import LocalAdapter from tests.common import async_test, TestHelper from tests.utilities.projection_test_utils import ProjectionTestUtils class ProjectionObjectModelTest(unittest.TestCase): foundation_json_path = 'cdm:/foundations.cdm.json' # The path between TestDataPath and TestName. tests_subpath = os.path.join('Cdm', 'Projection') @async_test async def test_projection_using_object_model(self): """Basic test to save projection based entities and then try to reload them and validate that the projections were persisted correctly""" corpus = ProjectionTestUtils.get_local_corpus(self.tests_subpath, 'test_projection_using_object_model') corpus.storage.mount('local', LocalAdapter(TestHelper.get_actual_output_folder_path(self.tests_subpath, 'test_projection_using_object_model'))) local_root = corpus.storage.fetch_root_folder('local') manifest_default = self._create_default_manifest(corpus, local_root) entity_test_source = self._create_entity_test_source(corpus, manifest_default, local_root) entity_test_entity_projection = self._create_entity_test_entity_projection(corpus, manifest_default, local_root) entity_test_entity_nested_projection = self._create_entity_test_entity_nested_projection(corpus, manifest_default, local_root) entity_test_entity_attribute_projection = self._create_entity_test_entity_attribute_projection(corpus, manifest_default, local_root) entity_test_operation_collection = self._create_entity_test_operation_collection(corpus, manifest_default, local_root) # Save manifest and entities await manifest_default.save_as_async('{}.manifest.cdm.json'.format(manifest_default.manifest_name), True) expected = 'TestSource' expected_type = CdmObjectType.PROJECTION_DEF actual = None actual_type = CdmObjectType.ERROR # Try to read back the newly persisted manifest and projection based entities manifest_read_back = await corpus.fetch_object_async('local:/{}.manifest.cdm.json'.format(manifest_default.manifest_name)) self.assertEqual(5, len(manifest_read_back.entities)) self.assertEqual(entity_test_source.entity_name, manifest_read_back.entities[0].entity_name) self.assertEqual(entity_test_entity_projection.entity_name, manifest_read_back.entities[1].entity_name) self.assertEqual(entity_test_entity_nested_projection.entity_name, manifest_read_back.entities[2].entity_name) self.assertEqual(entity_test_entity_attribute_projection.entity_name, manifest_read_back.entities[3].entity_name) # Read back the newly persisted manifest and projection based entity TestEntityProjection and validate entity_test_entity_projection_read_back = await corpus.fetch_object_async('local:/{}.cdm.json/{}'.format(entity_test_entity_projection.entity_name, entity_test_entity_projection.entity_name), manifest_read_back) self.assertIsNotNone(entity_test_entity_projection_read_back) actual = entity_test_entity_projection_read_back.extends_entity.explicit_reference.source.named_reference actual_type = entity_test_entity_projection_read_back.extends_entity.explicit_reference.object_type self.assertEqual(expected, actual) self.assertEqual(expected_type, actual_type) # Read back the newly persisted manifest and projection based entity TestEntityNestedProjection and validate entity_test_entity_nested_projection_read_back = await corpus.fetch_object_async('local:/{}.cdm.json/{}'.format(entity_test_entity_nested_projection.entity_name, entity_test_entity_nested_projection.entity_name), manifest_read_back) self.assertIsNotNone(entity_test_entity_nested_projection_read_back) actual = entity_test_entity_nested_projection_read_back.extends_entity.explicit_reference.source.explicit_reference.source.explicit_reference.source.named_reference actual_type = entity_test_entity_nested_projection_read_back.extends_entity.explicit_reference.source.explicit_reference.source.explicit_reference.object_type self.assertEqual(expected, actual) self.assertEqual(expected_type, actual_type) # Read back the newly persisted manifest and projection based entity TestEntityAttributeProjection and validate entity_test_entity_attribute_projection_read_back = await corpus.fetch_object_async('local:/{}.cdm.json/{}'.format(entity_test_entity_attribute_projection.entity_name, entity_test_entity_attribute_projection.entity_name), manifest_read_back) self.assertIsNotNone(entity_test_entity_attribute_projection_read_back) actual = entity_test_entity_attribute_projection_read_back.attributes[0].entity.explicit_reference.source.named_reference actual_type = entity_test_entity_attribute_projection_read_back.attributes[0].entity.explicit_reference.object_type self.assertEqual(expected, actual) self.assertEqual(expected_type, actual_type) # Read back operations collections and validate entity_test_operation_collection_read_back = await corpus.fetch_object_async('local:/{}.cdm.json/{}'.format(entity_test_operation_collection.entity_name, entity_test_operation_collection.entity_name), manifest_read_back) self.assertIsNotNone(entity_test_operation_collection_read_back) actual_operation_count = len(entity_test_operation_collection_read_back.extends_entity.explicit_reference.operations) self.assertEqual(9, actual_operation_count) operations = entity_test_operation_collection_read_back.extends_entity.explicit_reference.operations self.assertEqual(CdmOperationType.ADD_COUNT_ATTRIBUTE, operations[0].type) self.assertEqual(CdmOperationType.ADD_SUPPORTING_ATTRIBUTE, operations[1].type) self.assertEqual(CdmOperationType.ADD_TYPE_ATTRIBUTE, operations[2].type) self.assertEqual(CdmOperationType.EXCLUDE_ATTRIBUTES, operations[3].type) self.assertEqual(CdmOperationType.ARRAY_EXPANSION, operations[4].type) self.assertEqual(CdmOperationType.COMBINE_ATTRIBUTES, operations[5].type) self.assertEqual(CdmOperationType.RENAME_ATTRIBUTES, operations[6].type) self.assertEqual(CdmOperationType.REPLACE_AS_FOREIGN_KEY, operations[7].type) self.assertEqual(CdmOperationType.INCLUDE_ATTRIBUTES, operations[8].type) def _create_default_manifest(self, corpus: 'CdmCorpusDefinition', local_root: 'CdmFolderDefinition') -> 'CdmManifestDefinition': """Create a default manifest""" manifest_name = 'default' manifest_doc_name = '{}.manifest.cdm.json'.format(manifest_name) manifest_default = corpus.make_object(CdmObjectType.MANIFEST_DEF, manifest_name) local_root.documents.append(manifest_default, manifest_doc_name) return manifest_default def _create_entity_test_source(self, corpus: 'CdmCorpusDefinition', manifest_default: 'CdmManifestDefinition', local_root: 'CdmFolderDefinition') -> 'CdmEntityDefinition': """Create a simple entity called 'TestSource' with a single attribute""" entity_name = 'TestSource' entity_test_source = corpus.make_object(CdmObjectType.ENTITY_DEF, entity_name) attribute_name = 'TestAttribute' entity_test_attribute = corpus.make_object(CdmObjectType.TYPE_ATTRIBUTE_DEF, attribute_name, False) entity_test_attribute.data_type = corpus.make_ref(CdmObjectType.DATA_TYPE_REF, 'string', True) entity_test_attribute.purpose = corpus.make_ref(CdmObjectType.PURPOSE_REF, 'hasA', True) entity_test_attribute.display_name = attribute_name entity_test_source.attributes.append(entity_test_attribute) entity_test_source_doc = corpus.make_object(CdmObjectType.DOCUMENT_DEF, '{}.cdm.json'.format(entity_name), False) entity_test_source_doc.imports.append(self.foundation_json_path) entity_test_source_doc.definitions.append(entity_test_source) local_root.documents.append(entity_test_source_doc, entity_test_source_doc.name) manifest_default.entities.append(entity_test_source) return entity_test_source def _create_projection(self, corpus: 'CdmCorpusDefinition') -> 'CdmProjection': """Create a simple projection object""" projection = corpus.make_object(CdmObjectType.PROJECTION_DEF) projection.source = corpus.make_object(CdmObjectType.ENTITY_REF, 'TestSource', True) return projection def _create_nested_projection(self, corpus: 'CdmCorpusDefinition') -> 'CdmProjection': """Create a 3-level nested projection object""" projection3 = corpus.make_object(CdmObjectType.PROJECTION_DEF) projection3.source = corpus.make_object(CdmObjectType.ENTITY_REF, 'TestSource', True) inline_projection_entity_ref3 = corpus.make_object(CdmObjectType.ENTITY_REF, None) inline_projection_entity_ref3.explicit_reference = projection3 projection2 = corpus.make_object(CdmObjectType.PROJECTION_DEF) projection2.source = inline_projection_entity_ref3 inline_projection_entity_ref2 = corpus.make_object(CdmObjectType.ENTITY_REF, None) inline_projection_entity_ref2.explicit_reference = projection2 projection1 = corpus.make_object(CdmObjectType.PROJECTION_DEF) projection1.source = inline_projection_entity_ref2 return projection1 def _create_entity_test_entity_projection(self, corpus: 'CdmCorpusDefinition', manifest_default: 'CdmManifestDefinition', local_root: 'CdmFolderDefinition') -> 'CdmEntityDefinition': """Create an entity 'TestEntityProjection' that extends from a projection""" entity_name = 'TestEntityProjection' inline_projection_entity_ref = corpus.make_object(CdmObjectType.ENTITY_REF, None) inline_projection_entity_ref.explicit_reference = self._create_projection(corpus) entity_test_entity_projection = corpus.make_object(CdmObjectType.ENTITY_DEF, entity_name) entity_test_entity_projection.extends_entity = inline_projection_entity_ref entity_test_entity_projection_doc = corpus.make_object(CdmObjectType.DOCUMENT_DEF, '{}.cdm.json'.format(entity_name), False) entity_test_entity_projection_doc.imports.append(self.foundation_json_path) entity_test_entity_projection_doc.imports.append('TestSource.cdm.json') entity_test_entity_projection_doc.definitions.append(entity_test_entity_projection) local_root.documents.append(entity_test_entity_projection_doc, entity_test_entity_projection_doc.name) manifest_default.entities.append(entity_test_entity_projection) return entity_test_entity_projection def _create_entity_test_entity_nested_projection(self, corpus: 'CdmCorpusDefinition', manifest_default: 'CdmManifestDefinition', local_root: 'CdmFolderDefinition') -> 'CdmEntityDefinition': """Create an entity 'TestEntityNestedProjection' that extends from a projection""" entity_name = 'TestEntityNestedProjection' inline_projection_entity_ref = corpus.make_object(CdmObjectType.ENTITY_REF, None) inline_projection_entity_ref.explicit_reference = self._create_nested_projection(corpus) entity_test_entity_nested_projection = corpus.make_object(CdmObjectType.ENTITY_DEF, entity_name) entity_test_entity_nested_projection.extends_entity = inline_projection_entity_ref entity_test_entity_nested_projection_doc = corpus.make_object(CdmObjectType.DOCUMENT_DEF, '{}.cdm.json'.format(entity_name), False) entity_test_entity_nested_projection_doc.imports.append(self.foundation_json_path) entity_test_entity_nested_projection_doc.imports.append('TestSource.cdm.json') entity_test_entity_nested_projection_doc.definitions.append(entity_test_entity_nested_projection) local_root.documents.append(entity_test_entity_nested_projection_doc, entity_test_entity_nested_projection_doc.name) manifest_default.entities.append(entity_test_entity_nested_projection) return entity_test_entity_nested_projection def _create_entity_test_entity_attribute_projection(self, corpus: 'CdmCorpusDefinition', manifest_default: 'CdmManifestDefinition', local_root: 'CdmFolderDefinition') -> 'CdmEntityDefinition': """Create an entity 'TestEntityAttributeProjection' that contains an entity attribute with a projection as a source entity""" entity_name = 'TestEntityAttributeProjection' inline_projection_entity_ref = corpus.make_object(CdmObjectType.ENTITY_REF, None) inline_projection_entity_ref.explicit_reference = self._create_projection(corpus) entity_test_entity_attribute_projection = corpus.make_object(CdmObjectType.ENTITY_DEF, entity_name) attribute_name = 'TestAttribute' entity_test_entity_attribute = corpus.make_object(CdmObjectType.ENTITY_ATTRIBUTE_DEF, attribute_name, False) entity_test_entity_attribute.entity = inline_projection_entity_ref entity_test_entity_attribute_projection.attributes.append(entity_test_entity_attribute) entity_test_entity_attribute_projection_doc = corpus.make_object(CdmObjectType.DOCUMENT_DEF, '{}.cdm.json'.format(entity_name), False) entity_test_entity_attribute_projection_doc.imports.append(self.foundation_json_path) entity_test_entity_attribute_projection_doc.imports.append('TestSource.cdm.json') entity_test_entity_attribute_projection_doc.definitions.append(entity_test_entity_attribute_projection) local_root.documents.append(entity_test_entity_attribute_projection_doc, entity_test_entity_attribute_projection_doc.name) manifest_default.entities.append(entity_test_entity_attribute_projection) return entity_test_entity_attribute_projection def _create_projection_with_operation_collection(self, corpus: 'CdmCorpusDefinition', owner: 'CdmObject') -> 'CdmProjection': """Create a projection object with operations""" projection = corpus.make_object(CdmObjectType.PROJECTION_DEF) projection.source = corpus.make_object(CdmObjectType.ENTITY_REF, 'TestSource', True) # AddCountAttribute Operation add_count_attribute_op = CdmOperationAddCountAttribute(corpus.ctx) add_count_attribute_op.count_attribute = corpus.make_object(CdmObjectType.TYPE_ATTRIBUTE_DEF, 'countAtt') projection.operations.append(add_count_attribute_op) # AddSupportingAttribute Operation add_supporting_attribute_op = CdmOperationAddSupportingAttribute(corpus.ctx) add_supporting_attribute_op.supporting_attribute = corpus.make_object(CdmObjectType.TYPE_ATTRIBUTE_DEF, 'supportingAtt') projection.operations.append(add_supporting_attribute_op) # AddTypeAttribute Operation add_type_attribute_op = CdmOperationAddTypeAttribute(corpus.ctx) add_type_attribute_op.type_attribute = corpus.make_object(CdmObjectType.TYPE_ATTRIBUTE_DEF, 'typeAtt') projection.operations.append(add_type_attribute_op) # ExcludeAttributes Operation exclude_attributes_op = CdmOperationExcludeAttributes(corpus.ctx) exclude_attributes_op.exclude_attributes = [] exclude_attributes_op.exclude_attributes.append('testAttribute1') projection.operations.append(exclude_attributes_op) # ArrayExpansion Operation array_expansion_op = CdmOperationArrayExpansion(corpus.ctx) array_expansion_op.start_ordinal = 0 array_expansion_op.end_ordinal = 1 projection.operations.append(array_expansion_op) # CombineAttributes Operation combine_attributes_op = CdmOperationCombineAttributes(corpus.ctx) combine_attributes_op.select = [] combine_attributes_op.merge_into = corpus.make_object(CdmObjectType.TYPE_ATTRIBUTE_DEF, 'combineAtt') combine_attributes_op.select.append('testAttribute1') projection.operations.append(combine_attributes_op) # RenameAttributes Operation rename_attributes_op = CdmOperationRenameAttributes(corpus.ctx) rename_attributes_op.rename_format = '{m}' projection.operations.append(rename_attributes_op) # ReplaceAsForeignKey Operation replace_as_foreign_key_op = CdmOperationReplaceAsForeignKey(corpus.ctx) replace_as_foreign_key_op.reference = 'testAttribute1' replace_as_foreign_key_op.replace_with = corpus.make_object(CdmObjectType.TYPE_ATTRIBUTE_DEF, 'testForeignKey', False) projection.operations.append(replace_as_foreign_key_op) # IncludeAttributes Operation include_attributes_op = CdmOperationIncludeAttributes(corpus.ctx) include_attributes_op.include_attributes = [] include_attributes_op.include_attributes.append('testAttribute1') projection.operations.append(include_attributes_op) return projection def _create_entity_test_operation_collection(self, corpus: 'CdmCorpusDefinition', manifest_default: 'CdmManifestDefinition', local_root: 'CdmFolderDefinition'): """Create an entity 'TestOperationCollection' that extends from a projection with a collection of operations""" entity_name = 'TestOperationCollection' inline_projection_entity_ref = corpus.make_object(CdmObjectType.ENTITY_REF, None) entity_test_operation_collection = corpus.make_object(CdmObjectType.ENTITY_DEF, entity_name) inline_projection_entity_ref.explicit_reference = self._create_projection_with_operation_collection(corpus, entity_test_operation_collection) entity_test_operation_collection.extends_entity = inline_projection_entity_ref entity_test_operation_collection_doc = corpus.make_object(CdmObjectType.DOCUMENT_DEF, '{}.cdm.json'.format(entity_name), False) entity_test_operation_collection_doc.imports.append(self.foundation_json_path) entity_test_operation_collection_doc.imports.append('TestSource.cdm.json') entity_test_operation_collection_doc.definitions.append(entity_test_operation_collection) local_root.documents.append(entity_test_operation_collection_doc, entity_test_operation_collection_doc.name) manifest_default.entities.append(entity_test_operation_collection) return entity_test_operation_collection
kafka_utils/kafka_rolling_restart/task.py
dbgrigsby/kafka-utils
302
12759637
<gh_stars>100-1000 # -*- coding: utf-8 -*- # Copyright 2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import shlex class TaskFailedException(Exception): pass class Task(object): """Base class for implementing Task All the args passed can be accessed via self.args :param args: The program arguments """ def __init__(self, args): if args: self.args = self.parse_args(list( shlex.split(args) )) else: self.args = self.parse_args([]) def parse_args(self, args): """Parse args command line arguments. :param args: The list of arguments as strings. """ pass def run(self, host): """This contains the main logic of the task Please note an exception from this method will completely stop the restart :param host: the host on which precheck is executed on :type host: string """ raise NotImplementedError("Implemented in subclass") class PreStopTask(Task): """Class to be used for any pre stop checks""" class PostStopTask(Task): """Class to be used for any post stop checks"""
tests/unit/core/metrics/test_regression_metrics.py
cswarth/whylogs
603
12759681
import os import pandas as pd import pytest from whylogs.core.metrics.regression_metrics import RegressionMetrics from whylogs.proto import RegressionMetricsMessage TEST_DATA_PATH = os.path.abspath( os.path.join( os.path.realpath(os.path.dirname(__file__)), os.pardir, os.pardir, os.pardir, os.pardir, "testdata", ) ) def my_test(): regmet = RegressionMetrics() assert regmet.count == 0 assert regmet.sum_diff == 0.0 assert regmet.sum2_diff == 0.0 assert regmet.sum_abs_diff == 0.0 assert regmet.mean_squared_error() is None assert regmet.mean_absolute_error() is None assert regmet.root_mean_squared_error() is None def test_load_parquet(): mean_absolute_error = 85.94534216005789 mean_squared_error = 11474.89611670205 root_mean_squared_error = 107.12094154133472 regmet = RegressionMetrics() df = pd.read_parquet(os.path.join(os.path.join(TEST_DATA_PATH, "metrics", "2021-02-12.parquet"))) regmet.add(df["predictions"].to_list(), df["targets"].to_list()) assert regmet.count == len(df["predictions"].to_list()) assert regmet.mean_squared_error() == pytest.approx(mean_squared_error, 0.01) assert regmet.mean_absolute_error() == pytest.approx(mean_absolute_error, 0.01) assert regmet.root_mean_squared_error() == pytest.approx(root_mean_squared_error, 0.01) msg = regmet.to_protobuf() new_regmet = RegressionMetrics.from_protobuf(msg) assert regmet.count == new_regmet.count assert regmet.mean_squared_error() == new_regmet.mean_squared_error() assert regmet.root_mean_squared_error() == new_regmet.root_mean_squared_error() assert regmet.mean_absolute_error() == new_regmet.mean_absolute_error() def test_empty_protobuf_should_return_none(): empty_message = RegressionMetricsMessage() assert RegressionMetrics.from_protobuf(empty_message) is None def test_merging(): regmet_sum = RegressionMetrics() regmet = RegressionMetrics(prediction_field="predictions", target_field="targets") df = pd.read_parquet(os.path.join(os.path.join(TEST_DATA_PATH, "metrics", "2021-02-12.parquet"))) regmet.add(df["predictions"].to_list(), df["targets"].to_list()) regmet_sum.add(df["predictions"].to_list(), df["targets"].to_list()) regmet_2 = RegressionMetrics(prediction_field="predictions", target_field="targets") df_2 = pd.read_parquet(os.path.join(os.path.join(TEST_DATA_PATH, "metrics", "2021-02-13.parquet"))) regmet_2.add(df_2["predictions"].to_list(), df_2["targets"].to_list()) regmet_sum.add(df_2["predictions"].to_list(), df_2["targets"].to_list()) merged_reg_metr = regmet.merge(regmet_2) assert merged_reg_metr.count == regmet_sum.count assert merged_reg_metr.mean_squared_error() == pytest.approx(regmet_sum.mean_squared_error(), 0.001) assert merged_reg_metr.root_mean_squared_error() == pytest.approx(regmet_sum.root_mean_squared_error(), 0.001) assert merged_reg_metr.mean_absolute_error() == pytest.approx(regmet_sum.mean_absolute_error(), 0.001)
html_parsing/get_population_from_wikidata.py
DazEB2/SimplePyScripts
117
12759719
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import requests from bs4 import BeautifulSoup def get_populations(url: str) -> dict: rs = requests.get(url) root = BeautifulSoup(rs.content, 'html.parser') # P1082 -- идентификатор для population population_node = root.select_one('#P1082') populations = dict() # Перебор строк в соседнем от population столбце for row in population_node.select('.wikibase-statementview'): # Небольшая хитрость -- берем только первые 2 значения, поидеи это будут: количество людей и дата number_str, data_str = row.select('.wikibase-snakview-value')[:2] # Вытаскиваем текст из number_str = number_str.text.strip() data_str = data_str.text.strip() # Делаем разделение и берем последнуюю часть, после приводим к числу # "1 July 2012" -> 2012, "2010" -> 2010 year = int(data_str.split()[-1]) # Добавляем в словарь populations[year] = number_str return populations def get_population_by_year(populations: dict, year: int) -> str: # Если такой год не будет найден, вернем -1 return populations.get(year, -1) # Аналогично get_population_by_year, но сначала вытащит данные из # указанного url, а после достанет значение по year def get_population_from_url_by_year(url: str, year: int) -> str: populations = get_populations(url) return get_population_by_year(populations, year) if __name__ == '__main__': url = 'https://www.wikidata.org/wiki/Q148' populations = get_populations(url) print(populations) # {2012: '1,375,198,619', 2010: '1,359,755,102', 2015: '1,397,028,553', ... # Выводим данные с сортировкой по ключу: по возрастанию for year in sorted(populations): print("{}: {}".format(year, populations[year])) # 2010: 1,359,755,102 # 2011: 1,367,480,264 # 2012: 1,375,198,619 # 2013: 1,382,793,212 # 2014: 1,390,110,388 # 2015: 1,397,028,553 # 2016: 1,403,500,365 # 2017: 1,409,517,397 print(get_population_by_year(populations, 2012)) # 1,375,198,619 print(get_population_by_year(populations, 2013)) # 1,382,793,212 print(get_population_by_year(populations, 2014)) # 1,390,110,388
Algorithms/Searching & Sorting/Fibonacii Search/fibinacci_search.py
strangestroad/interview-techdev-guide
320
12759748
<reponame>strangestroad/interview-techdev-guide def FibonacciSearch(arr, key): fib2 = 0 fib1 = 1 fib = fib1 + fib2 while (fib < len(arr)): fib2 = fib1 fib1 = fib fib = fib1 + fib2 index = -1 while (fib > 1): i = min(index + fib2, (len(arr)-1)) if (arr[i] < key): fib = fib1 fib1 = fib2 fib2 = fib - fib1 index = i elif (arr[i] > key): fib = fib2 fib1 = fib1 - fib2 fib2 = fib - fib1 else : return i if(fib1 and index < (len(arr)-1) and arr[index+1] == key): return index+1 return -1 key= 15 arr = [5, 10, 15, 20, 25, 30, 35] ans = FibonacciSearch(arr, key) print(ans) if (ans): print("Found at "+ str(ans+1) +" position") else: print("Not Found")
materials/make_induced_graph.py
lavig17/Knowledge-Graph-Image
189
12759759
<reponame>lavig17/Knowledge-Graph-Image import argparse import json from nltk.corpus import wordnet as wn import torch from glove import GloVe def getnode(x): return wn.synset_from_pos_and_offset('n', int(x[1:])) def getwnid(u): s = str(u.offset()) return 'n' + (8 - len(s)) * '0' + s def getedges(s): dic = {x: i for i, x in enumerate(s)} edges = [] for i, u in enumerate(s): for v in u.hypernyms(): j = dic.get(v) if j is not None: edges.append((i, j)) return edges def induce_parents(s, stop_set): q = s vis = set(s) l = 0 while l < len(q): u = q[l] l += 1 if u in stop_set: continue for p in u.hypernyms(): if p not in vis: vis.add(p) q.append(p) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input', default='imagenet-split.json') parser.add_argument('--output', default='imagenet-induced-graph.json') args = parser.parse_args() print('making graph ...') xml_wnids = json.load(open('imagenet-xml-wnids.json', 'r')) xml_nodes = list(map(getnode, xml_wnids)) xml_set = set(xml_nodes) js = json.load(open(args.input, 'r')) train_wnids = js['train'] test_wnids = js['test'] key_wnids = train_wnids + test_wnids s = list(map(getnode, key_wnids)) induce_parents(s, xml_set) s_set = set(s) for u in xml_nodes: if u not in s_set: s.append(u) wnids = list(map(getwnid, s)) edges = getedges(s) print('making glove embedding ...') glove = GloVe('glove.6B.300d.txt') vectors = [] for wnid in wnids: vectors.append(glove[getnode(wnid).lemma_names()]) vectors = torch.stack(vectors) print('dumping ...') obj = {} obj['wnids'] = wnids obj['vectors'] = vectors.tolist() obj['edges'] = edges json.dump(obj, open(args.output, 'w'))
applications/tensorflow/dynamic_sparsity/ipu_sparse_ops/fp_slot_opt.py
payoto/graphcore_examples
260
12759771
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. """ This module exposes an Optimizer wrapper to get regular tf.train.Optimizers to allow for selecting the slots FP precision independently of the variable type. Currently only supports Adam """ import os import tensorflow.compat.v1 as tf from tensorflow.python.ops import math_ops from tensorflow.python.training.optimizer import _var_key from tensorflow.python.training import slot_creator from tensorflow.python.training.adam import AdamOptimizer from typing import Type from logging import getLogger tf.disable_v2_behavior() tf.disable_eager_execution() logger = getLogger(os.path.basename(__file__)) def SelectableSlotFPFormatOptimizer(cls: Type[tf.train.Optimizer]) -> Type[tf.train.Optimizer]: if not issubclass(cls, AdamOptimizer): raise ValueError(f'Class {cls} does not inherit from tf.python.training.adam.AdamOptimizer') class Wrapped(cls): def __init__(self, slots_dtype, force_fp32_weight_update=True, use_nesterov=False, *args, **kwargs): self.slots_dtype = tf.as_dtype(slots_dtype) self.use_nesterov = use_nesterov self.force_fp32_weight_update = force_fp32_weight_update super(Wrapped, self).__init__(*args, **kwargs) def _zeros_slot(self, var, slot_name, op_name): """Find or create a slot initialized with 0.0. This is effectively a copy of the original TF optimizer method excepts this one allows to pass a dtype to `create_zeros_slot`. Args: var: A `Variable` object. slot_name: Name for the slot. op_name: Name to use when scoping the Variable that needs to be created for the slot. Returns: A `Variable` object. """ named_slots = self._slot_dict(slot_name) if _var_key(var) not in named_slots: new_slot_variable = slot_creator.create_zeros_slot(var, op_name, dtype=self.slots_dtype) self._restore_slot_variable( slot_name=slot_name, variable=var, slot_variable=new_slot_variable) named_slots[_var_key(var)] = new_slot_variable return tf.cast(named_slots[_var_key(var)], var.dtype) def _apply_weight_update(self, grad, var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, use_nesterov): if self.force_fp32_weight_update: # Cast to fp32 for extra precision weight_update_dtype = tf.float32 else: weight_update_dtype = var.dtype # cast all variables to the same desired dtype for the update m_c = tf.convert_to_tensor(tf.cast(m, weight_update_dtype)) v_c = tf.convert_to_tensor(tf.cast(v, weight_update_dtype)) var_c = tf.cast(var, weight_update_dtype) lr_c = tf.cast(lr, weight_update_dtype) beta1_power_c = tf.cast(beta1_power, weight_update_dtype) beta2_power_c = tf.cast(beta2_power, weight_update_dtype) beta1_c = tf.cast(beta1, weight_update_dtype) beta2_c = tf.cast(beta2, weight_update_dtype) epsilon_c = tf.cast(epsilon, weight_update_dtype) grad_c = tf.cast(grad, weight_update_dtype) # correct for the bias of the first and second order moments alpha = lr_c * math_ops.sqrt(1 - beta2_power_c) / (1 - beta1_power_c) # update the first order moment m_t = beta1_c * m_c + (1.0 - beta1_c) * grad_c # update the second order moment v_t = beta2_c * v_c + (1.0 - beta2_c) * grad_c * grad_c # store the moments in the right dtype assign_m = tf.assign(m, tf.cast(m_t, self.slots_dtype)) assign_v = tf.assign(v, tf.cast(v_t, self.slots_dtype)) # update the variable with tf.control_dependencies([assign_m, assign_v]): if use_nesterov: return tf.cast(var_c - ((grad_c * (1.0 - beta1_c) + beta1_c * m_t) * alpha) / (math_ops.sqrt(v_t) + epsilon_c), var.dtype) else: return tf.cast(var_c - (m_t * alpha) / (math_ops.sqrt(v_t) + epsilon_c), var.dtype) def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") beta1_power, beta2_power = self._get_beta_accumulators() return var.assign( self._apply_weight_update( grad=grad, var=var, m=m, v=v, beta1_power=beta1_power, beta2_power=beta2_power, lr=self._lr_t, beta1=self._beta1_t, beta2=self._beta2_t, epsilon=self._epsilon_t, use_nesterov=self.use_nesterov)) return Wrapped
NAS/single-path-one-shot/src/MNIST/utils.py
naviocean/SimpleCVReproduction
923
12759773
<gh_stars>100-1000 import os import re import torch import torch.nn as nn import random import json import numpy as np def get_num_correct(preds, labels): return preds.argmax(dim=1).eq(labels).sum().item() class ArchLoader(): ''' load arch from json file ''' def __init__(self, path): super(ArchLoader, self).__init__() self.arc_list = [] self.arc_dict = {} self.get_arch_list_dict(path) random.shuffle(self.arc_list) self.idx = -1 self.level_config = { "level1": [4, 8, 12, 16], "level2": [4, 8, 12, 16, 20, 24, 28, 32], "level3": [4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64] } def get_arch_list(self): return self.arc_list def get_arch_dict(self): return self.arc_dict def get_random_batch(self, bs): return random.sample(self.arc_list, bs) def get_part_dict(self): keys = list(self.arc_dict.keys())[:10] return dict([(key, self.arc_dict[key]) for key in keys]) def convert_list_arc_str(self, arc_list): arc_str = "" arc_list = [str(item)+"-" for item in arc_list] for item in arc_list: arc_str += item return arc_str[:-1] def __next__(self): self.idx += 1 if self.idx >= len(self.arc_list): raise StopIteration return self.arc_list[self.idx] def __iter__(self): return self def get_arch_list_dict(self, path): with open(path, "r") as f: self.arc_dict = json.load(f) self.arc_list = [] for _, v in self.arc_dict.items(): self.arc_list.append(v["arch"]) def generate_fair_batch(self): rngs = [] seed = 0 # level1 for i in range(0, 7): seed += 1 random.seed(seed) rngs.append(random.sample(self.level_config['level1'], len(self.level_config['level1']))*4) # level2 for i in range(7, 13): seed += 1 random.seed(seed) rngs.append(random.sample(self.level_config['level2'], len(self.level_config['level2']))*2) # level3 for i in range(13, 20): seed += 1 random.seed(seed) rngs.append(random.sample(self.level_config['level3'], len(self.level_config['level3']))) return np.transpose(rngs) def generate_niu_fair_batch(self): rngs = [] seed = 0 # level1 for i in range(0, 7): seed += 1 random.seed(seed) tmp_rngs = [] for _ in range(4): tmp_rngs.extend(random.sample(self.level_config['level1'], len(self.level_config['level1']))) rngs.append(tmp_rngs) # level2 for i in range(7, 13): seed += 1 random.seed(seed) tmp_rngs = [] for _ in range(2): tmp_rngs.extend(random.sample(self.level_config['level2'], len(self.level_config['level2']))) rngs.append(tmp_rngs) # level3 for i in range(13, 20): seed += 1 random.seed(seed) rngs.append(random.sample(self.level_config['level3'], len(self.level_config['level3']))) return np.transpose(rngs) # arch_loader = ArchLoader("Track1_final_archs.json") # print(arch_loader.generate_niu_fair_batch()) # arc_dc = arch_loader.get_random_batch(1000) # for i, arc in enumerate(arc_dc): # print(i, arc) # cnt = 0 # for i,ac in enumerate(arch_loader): # print(i,ac) # cnt += 1 # print(cnt) class CrossEntropyLabelSmooth(nn.Module): def __init__(self, num_classes, epsilon): super(CrossEntropyLabelSmooth, self).__init__() self.num_classes = num_classes self.epsilon = epsilon self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, inputs, targets): log_probs = self.logsoftmax(inputs) targets = torch.zeros_like(log_probs).scatter_( 1, targets.unsqueeze(1), 1) targets = (1 - self.epsilon) * \ targets + self.epsilon / self.num_classes loss = (-targets * log_probs).mean(0).sum() return loss class AvgrageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 self.val = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt def accuracy(output, target, topk=(1,)): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def save_checkpoint(state, iters, tag=''): if not os.path.exists("./models"): os.makedirs("./models") filename = os.path.join( "./models/{}checkpoint-{:06}.pth.tar".format(tag, iters)) torch.save(state, filename) # latestfilename = os.path.join( # "./models/{}checkpoint-latest.pth.tar".format(tag)) # torch.save(state, latestfilename) def get_lastest_model(): if not os.path.exists('./models'): os.mkdir('./models') model_list = os.listdir('./models/') if model_list == []: return None, 0 model_list.sort() lastest_model = model_list[-1] iters = re.findall(r'\d+', lastest_model) return './models/' + lastest_model, int(iters[0]) def get_parameters(model): group_no_weight_decay = [] group_weight_decay = [] for pname, p in model.named_parameters(): if pname.find('weight') >= 0 and len(p.size()) > 1: # print('include ', pname, p.size()) group_weight_decay.append(p) else: # print('not include ', pname, p.size()) group_no_weight_decay.append(p) assert len(list(model.parameters())) == len( group_weight_decay) + len(group_no_weight_decay) groups = [dict(params=group_weight_decay), dict( params=group_no_weight_decay, weight_decay=0.)] return groups def bn_calibration_init(m): """ calculating post-statistics of batch normalization """ if getattr(m, 'track_running_stats', False): # reset all values for post-statistics m.reset_running_stats() # set bn in training mode to update post-statistics m.training = True # if use cumulative moving average if getattr(FLAGS, 'cumulative_bn_stats', False): m.momentum = None
internetdefense/settings/dev.py
gnubrasil/idl-members
175
12759788
""" Settings specific to development environments """ from os import path from settings.base import PROJECT_DIR, MIDDLEWARE_CLASSES, INSTALLED_APPS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': path.join(PROJECT_DIR, 'data', 'data.db'), } } DEBUG = True TEMPLATE_DEBUG = True SITE_ID = 1 INCLUDE_DOMAIN = 'localhost:8000' INCLUDE_URL = INCLUDE_DOMAIN + '/include/' STATIC_URL = '/static/' def show_toolbar(request): return True DEBUG_TOOLBAR_CONFIG = { 'INTERCEPT_REDIRECTS': False, 'SHOW_TOOLBAR_CALLBACK': show_toolbar, } INTERNAL_IPS = ('127.0.0.1', '10.0.1.3',) MIDDLEWARE_CLASSES = MIDDLEWARE_CLASSES + [ 'debug_toolbar.middleware.DebugToolbarMiddleware', ] INSTALLED_APPS = INSTALLED_APPS + [ 'debug_toolbar', ] CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache', 'LOCATION': path.join(PROJECT_DIR, 'cache'), 'TIMEOUT': 60 * 60 * 24 * 365 } } COMPRESS_ENABLED = True
openvim/dhcp_thread.py
acasana/openmano_movilnet
204
12759794
# -*- coding: utf-8 -*- ## # Copyright 2015 Telefónica Investigación y Desarrollo, S.A.U. # This file is part of openmano # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # For those usages not covered by the Apache License, Version 2.0 please # contact with: <EMAIL> ## ''' This is thread that interact with the dhcp server to get the IP addresses ''' __author__="<NAME>, <NAME>" __date__ ="$4-Jan-2016 12:07:15$" import threading import time import Queue import paramiko import random import subprocess #TODO: insert a logging system class dhcp_thread(threading.Thread): def __init__(self, dhcp_params, db, db_lock, test, dhcp_nets, debug=None): '''Init a thread. Arguments: thread_info must be a dictionary with: 'dhcp_params' dhcp server parameters with the following keys: mandatory : user, host, port, key, ifaces(interface name list of the one managed by the dhcp) optional: password, key, port(22) 'db' 'db_lock': database class and lock for accessing it 'test': in test mode no acces to a server is done, and ip is invented ''' threading.Thread.__init__(self) self.name = "dhcp_thread" self.dhcp_params = dhcp_params self.debug = debug self.db = db self.db_lock = db_lock self.test = test self.dhcp_nets = dhcp_nets self.ssh_conn = None self.mac_status ={} #dictionary of mac_address to retrieve information #ip: None #retries: #next_reading: time for the next trying to check ACTIVE status or IP #created: time when it was added #active: time when the VM becomes into ACTIVE status self.queueLock = threading.Lock() self.taskQueue = Queue.Queue(2000) def ssh_connect(self): try: #Connect SSH self.ssh_conn = paramiko.SSHClient() self.ssh_conn.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.ssh_conn.load_system_host_keys() self.ssh_conn.connect(self.dhcp_params["host"], port=self.dhcp_params.get("port",22), username=self.dhcp_params["user"], password=self.dhcp_params.get("password"), pkey=self.dhcp_params.get("key"), timeout=2) except paramiko.ssh_exception.SSHException as e: text = e.args[0] print self.name, ": ssh_connect ssh Exception:", text def load_mac_from_db(self): #TODO get macs to follow from the database print self.name, " load macs from db" self.db_lock.acquire() r,c = self.db.get_table(SELECT=('mac','ip_address','nets.uuid as net_id', ), FROM='ports join nets on ports.net_id=nets.uuid', WHERE_NOT={'ports.instance_id': None, 'nets.provider': None}) self.db_lock.release() now = time.time() self.mac_status ={} if r<0: print self.name, ": Error getting data from database:", c return for port in c: if port["net_id"] in self.dhcp_nets: self.mac_status[ port["mac"] ] = {"ip": port["ip_address"], "next_reading": now, "created": now, "retries":0} def insert_task(self, task, *aditional): try: self.queueLock.acquire() task = self.taskQueue.put( (task,) + aditional, timeout=5) self.queueLock.release() return 1, None except Queue.Full: return -1, "timeout inserting a task over host " + self.name def run(self): print self.name, " starting, nets", self.dhcp_nets next_iteration = time.time() + 10 while True: self.load_mac_from_db() while True: self.queueLock.acquire() if not self.taskQueue.empty(): task = self.taskQueue.get() else: task = None self.queueLock.release() if task is None: now=time.time() if now >= next_iteration: next_iteration = self.get_ip_from_dhcp() else: time.sleep(1) continue if task[0] == 'add': print self.name, ": processing task add mac", task[1] now=time.time() self.mac_status[task[1] ] = {"ip": None, "next_reading": now, "created": now, "retries":0} next_iteration = now elif task[0] == 'del': print self.name, ": processing task del mac", task[1] if task[1] in self.mac_status: del self.mac_status[task[1] ] elif task[0] == 'exit': print self.name, ": processing task exit" self.terminate() return 0 else: print self.name, ": unknown task", task def terminate(self): try: if self.ssh_conn: self.ssh_conn.close() except Exception as e: text = str(e) print self.name, ": terminate Exception:", text print self.name, ": exit from host_thread" def get_ip_from_dhcp(self): now = time.time() next_iteration= now + 40000 # >10 hores #print self.name, "Iteration" for mac_address in self.mac_status: if now < self.mac_status[mac_address]["next_reading"]: if self.mac_status[mac_address]["next_reading"] < next_iteration: next_iteration = self.mac_status[mac_address]["next_reading"] continue if self.mac_status[mac_address].get("active") == None: #check from db if already active self.db_lock.acquire() r,c = self.db.get_table(FROM="ports as p join instances as i on p.instance_id=i.uuid", WHERE={"p.mac": mac_address, "i.status": "ACTIVE"}) self.db_lock.release() if r>0: self.mac_status[mac_address]["active"] = now self.mac_status[mac_address]["next_reading"] = (int(now)/2 +1)* 2 print self.name, "mac %s VM ACTIVE" % (mac_address) self.mac_status[mac_address]["retries"] = 0 else: #print self.name, "mac %s VM INACTIVE" % (mac_address) if now - self.mac_status[mac_address]["created"] > 300: #modify Database to tell openmano that we can not get dhcp from the machine if not self.mac_status[mac_address].get("ip"): self.db_lock.acquire() r,c = self.db.update_rows("ports", {"ip_address": "0.0.0.0"}, {"mac": mac_address}) self.db_lock.release() self.mac_status[mac_address]["ip"] = "0.0.0.0" print self.name, "mac %s >> set to 0.0.0.0 because of timeout" % (mac_address) self.mac_status[mac_address]["next_reading"] = (int(now)/60 +1)* 60 else: self.mac_status[mac_address]["next_reading"] = (int(now)/6 +1)* 6 if self.mac_status[mac_address]["next_reading"] < next_iteration: next_iteration = self.mac_status[mac_address]["next_reading"] continue if self.test: if self.mac_status[mac_address]["retries"]>random.randint(10,100): #wait between 10 and 100 seconds to produce a fake IP content = self.get_fake_ip() else: content = None elif self.dhcp_params["host"]=="localhost": try: command = ['get_dhcp_lease.sh', mac_address] content = subprocess.check_output(command) except Exception as e: text = str(e) print self.name, ": get_ip_from_dhcp subprocess Exception", text content = None else: try: if not self.ssh_conn: self.ssh_connect() command = 'get_dhcp_lease.sh ' + mac_address (_, stdout, _) = self.ssh_conn.exec_command(command) content = stdout.read() except paramiko.ssh_exception.SSHException as e: text = e.args[0] print self.name, ": get_ip_from_dhcp: ssh_Exception:", text content = None self.ssh_conn = None except Exception as e: text = str(e) print self.name, ": get_ip_from_dhcp: Exception:", text content = None self.ssh_conn = None if content: self.mac_status[mac_address]["ip"] = content #modify Database self.db_lock.acquire() r,c = self.db.update_rows("ports", {"ip_address": content}, {"mac": mac_address}) self.db_lock.release() if r<0: print self.name, ": Database update error:", c else: self.mac_status[mac_address]["retries"] = 0 self.mac_status[mac_address]["next_reading"] = (int(now)/3600 +1)* 36000 # 10 hores if self.mac_status[mac_address]["next_reading"] < next_iteration: next_iteration = self.mac_status[mac_address]["next_reading"] print self.name, "mac %s >> %s" % (mac_address, content) continue #a fail has happen self.mac_status[mac_address]["retries"] +=1 #next iteration is every 2sec at the beginning; every 5sec after a minute, every 1min after a 5min if now - self.mac_status[mac_address]["active"] > 120: #modify Database to tell openmano that we can not get dhcp from the machine if not self.mac_status[mac_address].get("ip"): self.db_lock.acquire() r,c = self.db.update_rows("ports", {"ip_address": "0.0.0.0"}, {"mac": mac_address}) self.db_lock.release() self.mac_status[mac_address]["ip"] = "0.0.0.0" print self.name, "mac %s >> set to 0.0.0.0 because of timeout" % (mac_address) if now - self.mac_status[mac_address]["active"] > 60: self.mac_status[mac_address]["next_reading"] = (int(now)/6 +1)* 6 elif now - self.mac_status[mac_address]["active"] > 300: self.mac_status[mac_address]["next_reading"] = (int(now)/60 +1)* 60 else: self.mac_status[mac_address]["next_reading"] = (int(now)/2 +1)* 2 if self.mac_status[mac_address]["next_reading"] < next_iteration: next_iteration = self.mac_status[mac_address]["next_reading"] return next_iteration def get_fake_ip(self): fake_ip= "192.168.%d.%d" % (random.randint(1,254), random.randint(1,254) ) while True: #check not already provided already_used = False for mac_address in self.mac_status: if self.mac_status[mac_address]["ip"] == fake_ip: already_used = True break if not already_used: return fake_ip #EXAMPLE of bash script that must be available at the DHCP server for "isc-dhcp-server" type # $ cat ./get_dhcp_lease.sh # #!/bin/bash # awk ' # ($1=="lease" && $3=="{"){ lease=$2; active="no"; found="no" } # ($1=="binding" && $2=="state" && $3=="active;"){ active="yes" } # ($1=="hardware" && $2=="ethernet" && $3==tolower("'$1';")){ found="yes" } # ($1=="client-hostname"){ name=$2 } # ($1=="}"){ if (active=="yes" && found=="yes"){ target_lease=lease; target_name=name}} # END{printf("%s", target_lease)} #print target_name # ' /var/lib/dhcp/dhcpd.leases
panaroo/post_run_alignment_gen.py
AMARTELKE/Pangenome-with-Panaroo
116
12759839
import shutil import tempfile import os import networkx as nx from .generate_output import * from .isvalid import * from .__init__ import __version__ def get_options(): import argparse description = 'Generate multiple sequence alignments after running Panaroo' parser = argparse.ArgumentParser(description=description, prog='generate_panaroo_msa') io_opts = parser.add_argument_group('Input/output') io_opts.add_argument("-o", "--out_dir", dest="output_dir", required=True, help="location of the Panaroo output directory", type=lambda x: is_valid_folder(parser, x)) # alignment core = parser.add_argument_group('Gene alignment') core.add_argument( "-a", "--alignment", dest="aln", help=("Output alignments of core genes or all genes. Options are" + " 'core' and 'pan'. Default: 'None'"), type=str, choices={'core', 'pan'}, default='core') core.add_argument( "--aligner", dest="alr", help= "Specify an aligner. Options:'prank', 'clustal', and default: 'mafft'", type=str, choices={'prank', 'clustal', 'mafft'}, default="mafft") core.add_argument("--core_threshold", dest="core", help="Core-genome sample threshold (default=0.95)", type=float, default=0.95) # Other options parser.add_argument("-t", "--threads", dest="n_cpu", help="number of threads to use (default=1)", type=int, default=1) parser.add_argument("--verbose", dest="verbose", help="print additional output", action='store_true', default=False) parser.add_argument('--version', action='version', version='%(prog)s ' + __version__) args = parser.parse_args() return (args) def main(): args = get_options() # make sure trailing forward slash is present args.output_dir = os.path.join(args.output_dir, "") # Create temporary directory temp_dir = os.path.join(tempfile.mkdtemp(dir=args.output_dir), "") # Load isolate names seen = set() isolate_names = [] with open(args.output_dir + "gene_data.csv", 'r') as infile: next(infile) for line in infile: iso = line.split(",")[0] if iso not in seen: isolate_names.append(iso) seen.add(iso) # Load graph G = nx.read_gml(args.output_dir + "final_graph.gml") #Write out core/pan-genome alignments if args.aln == "pan": if args.verbose: print("generating pan genome MSAs...") generate_pan_genome_alignment(G, temp_dir, args.output_dir, args.n_cpu, args.alr, isolate_names) core_nodes = get_core_gene_nodes(G, args.core, len(isolate_names)) concatenate_core_genome_alignments(core_nodes, args.output_dir) elif args.aln == "core": if args.verbose: print("generating core genome MSAs...") generate_core_genome_alignment(G, temp_dir, args.output_dir, args.n_cpu, args.alr, isolate_names, args.core, len(isolate_names)) # remove temporary directory shutil.rmtree(temp_dir) return if __name__ == '__main__': main()
tools/bin/pythonSrc/pychecker-0.8.18/test_input/test84.py
YangHao666666/hawq
450
12759842
<filename>tools/bin/pythonSrc/pychecker-0.8.18/test_input/test84.py 'this crashed pychecker from calendar.py in Python 2.2' class X: 'd' def test(self, item): return [e for e in item].__getslice__() # this crashed in 2.2, but not 2.3 def f(a): a.a = [x for x in range(2) if x > 1]
tests/mem.py
caplena/django-hashid-field
310
12759861
#!/usr/bin/env python import os import sys import django from memory_profiler import profile @profile(precision=8) def no_cache(): from hashid_field.hashid import Hashid instances = [Hashid(i, salt="asdf", min_length=7) for i in range(1, 10_000)] return instances @profile(precision=8) def with_cache(): from hashid_field.hashid import Hashid from hashids import Hashids hashids = Hashids(salt="asdf", min_length=7) instances = [Hashid(i, hashids=hashids) for i in range(1, 10_000)] return instances if __name__ == "__main__": print("Python:", sys.version) print("Django:", django.get_version(django.VERSION)) os.environ['DJANGO_SETTINGS_MODULE'] = 'tests.test_settings' django.setup() no_cache() with_cache()
DQMOffline/CalibCalo/python/MonitorAlCaEcalPi0_cfi.py
ckamtsikis/cmssw
852
12759862
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer EcalPi0MonDQM = DQMEDAnalyzer('DQMSourcePi0', prescaleFactor = cms.untracked.int32(1), FolderName = cms.untracked.string('AlCaReco/EcalPi0'), AlCaStreamEBpi0Tag = cms.untracked.InputTag("hltAlCaPi0RegRecHits","pi0EcalRecHitsEB"), AlCaStreamEEpi0Tag = cms.untracked.InputTag("hltAlCaPi0RegRecHits","pi0EcalRecHitsEE"), AlCaStreamEBetaTag = cms.untracked.InputTag("hltAlCaEtaRegRecHits","etaEcalRecHitsEB"), AlCaStreamEEetaTag = cms.untracked.InputTag("hltAlCaEtaRegRecHits","etaEcalRecHitsEE"), isMonEEpi0 = cms.untracked.bool(True), isMonEBpi0 = cms.untracked.bool(True), isMonEEeta = cms.untracked.bool(True), isMonEBeta = cms.untracked.bool(True), SaveToFile = cms.untracked.bool(False), FileName = cms.untracked.string('MonitorAlCaEcalPi0.root'), clusSeedThr = cms.double( 0.5 ), clusSeedThrEndCap = cms.double( 1.0 ), clusEtaSize = cms.int32( 3 ), clusPhiSize = cms.int32( 3 ), seleXtalMinEnergy = cms.double( -0.15 ), seleXtalMinEnergyEndCap = cms.double( -0.75 ), selePtGamma = cms.double(1 ), selePtPi0 = cms.double( 2. ), seleMinvMaxPi0 = cms.double( 0.22 ), seleMinvMinPi0 = cms.double( 0.06 ), seleS4S9Gamma = cms.double( 0.83 ), selePi0Iso = cms.double( 0.5 ), ptMinForIsolation = cms.double( 1 ), selePi0BeltDR = cms.double( 0.2 ), selePi0BeltDeta = cms.double( 0.05 ), selePtGammaEndCap = cms.double( 0.8 ), selePtPi0EndCap = cms.double( 3.0 ), seleS4S9GammaEndCap = cms.double( 0.9 ), seleMinvMaxPi0EndCap = cms.double( 0.3 ), seleMinvMinPi0EndCap = cms.double( 0.05 ), ptMinForIsolationEndCap = cms.double( 0.5 ), selePi0IsoEndCap = cms.double( 0.5 ), selePi0BeltDREndCap = cms.double( 0.2 ), selePi0BeltDetaEndCap = cms.double( 0.05 ), selePtGammaEta = cms.double(1.2), selePtEta = cms.double(4.0), seleS4S9GammaEta = cms.double(0.9), seleS9S25GammaEta = cms.double(0.8), seleMinvMaxEta = cms.double(0.8), seleMinvMinEta = cms.double(0.3), ptMinForIsolationEta = cms.double(1.0), seleEtaIso = cms.double(0.5), seleEtaBeltDR = cms.double(0.3), seleEtaBeltDeta = cms.double(0.1), massLowPi0Cand = cms.double(0.104), massHighPi0Cand = cms.double(0.163), selePtGammaEtaEndCap = cms.double(1.5), selePtEtaEndCap = cms.double(5), seleS4S9GammaEtaEndCap = cms.double(0.9), seleS9S25GammaEtaEndCap = cms.double(0.85), seleMinvMaxEtaEndCap = cms.double(0.8), seleMinvMinEtaEndCap = cms.double(0.3), ptMinForIsolationEtaEndCap = cms.double(0.5), seleEtaIsoEndCap = cms.double(0.5), seleEtaBeltDREndCap = cms.double(0.3), seleEtaBeltDetaEndCap = cms.double(0.1), posCalcParameters = cms.PSet( T0_barl = cms.double(5.7), T0_endc = cms.double(3.1), T0_endcPresh = cms.double(1.2), LogWeighted = cms.bool(True), W0 = cms.double(4.2), X0 = cms.double(0.89) ) )
python codes/rock-paper-scissor.py
mflilian/Hacktoberfest2020-1
266
12759921
<gh_stars>100-1000 import random def rps(str): if (str==1): return "Rock" elif (str==2): return "Paper" else: return "Scissor" print("1. Rock 2.Paper 3.Scissor \n") choice=int(input()) print("You "+rps(choice)) computer = random.randint(1,3) print("Computer "+rps(computer)) print() if (choice==computer): print('Tie!') elif (choice==1): if (computer==2): print("Computer Wins!") print(rps(computer),"beat",rps(choice)) elif (computer==3): print("You Wins!") print(rps(choice),"beat",rps(computer)) elif (choice==2): if (computer==3): print("Computer Wins!") print(rps(computer),"beat",rps(choice)) elif (computer==1): print("You Wins!") print(rps(choice),"beat",rps(computer)) elif (choice==3): if (computer==1): print("Computer Wins!") print(rps(computer),"beat",rps(choice)) elif (computer==2): print("You Wins!") print(rps(choice),"beat",rps(computer))
pytorchvideo/transforms/augmentations.py
kevinmtian/pytorchvideo
2,391
12759928
<gh_stars>1000+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Video transforms that are used for advanced augmentation methods.""" from typing import Any, Callable, Dict, Optional, Tuple import torch import torchvision import torchvision.transforms.functional_tensor as F_t from torchvision.transforms.functional import InterpolationMode # Maximum global magnitude used for video augmentation. _AUGMENTATION_MAX_LEVEL = 10 def _check_fill_arg(kwargs): """ Check if kwargs contains key ``fill``. """ assert "fill" in kwargs, "Need to have fill in kwargs." def _autocontrast(video: torch.Tensor, **kwargs) -> torch.Tensor: """ Maximize contrast of a video by remapping its pixels per channel so that the lowest becomes black and the lightest becomes white. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). """ return torchvision.transforms.functional.autocontrast(video) def _equalize(video: torch.Tensor, **kwargs) -> torch.Tensor: """ Equalize the histogram of a video by applying a non-linear mapping to the input in order to create a uniform distribution of grayscale values in the output. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). """ if video.dtype != torch.uint8: video_type = video.dtype video = (video * 255).to(torch.uint8) return (torchvision.transforms.functional.equalize(video) / 255).to(video_type) return torchvision.transforms.functional.equalize(video) def _invert(video: torch.Tensor, **kwargs) -> torch.Tensor: """ Invert the colors of a video. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). """ return torchvision.transforms.functional.invert(video) def _rotate(video: torch.Tensor, factor: float, **kwargs) -> torch.Tensor: """ Rotate the image by angle. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): The rotation angle value in degrees, counter-clockwise. """ _check_fill_arg(kwargs) return torchvision.transforms.functional.rotate( video, factor, fill=kwargs["fill"], interpolation=InterpolationMode.BILINEAR ) def _solarize(video: torch.Tensor, factor: float, **kwargs) -> torch.Tensor: """ Solarize an video by inverting all pixel values above a threshold. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). """ if video.dtype == torch.uint8: return torchvision.transforms.functional.solarize(video, int(factor * 255.0)) else: return torchvision.transforms.functional.solarize(video, factor) def _adjust_contrast(video: torch.Tensor, factor: float, **kwargs) -> torch.Tensor: """ Adjust contrast of an a video. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): How much to adjust the contrast. Can be any non-negative number. 0 gives a solid gray video, 1 gives the original video while 2 increases the contrast by a factor of 2. """ return torchvision.transforms.functional.adjust_contrast(video, factor) def _adjust_saturation(video: torch.Tensor, factor: float, **kwargs) -> torch.Tensor: """ Adjust the saturation of a video. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): How much to adjust the saturation. 0 will give a black and white video, 1 will give the original video while 2 will enhance the saturation by a factor of 2. """ return torchvision.transforms.functional.adjust_saturation(video, factor) def _adjust_brightness(video: torch.Tensor, factor: float, **kwargs) -> torch.Tensor: """ Adjust brightness of a video. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). sharpness_factor (float): How much to adjust the sharpness. Can be any non-negative number. 0 gives a blurred video, 1 gives the original video while 2 increases the sharpness by a factor of 2. """ return torchvision.transforms.functional.adjust_brightness(video, factor) def _adjust_sharpness(video: torch.Tensor, factor: float, **kwargs) -> torch.Tensor: """ Adjust the sharpness of a video. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): How much to adjust the sharpness. Can be any non-negative number. 0 gives a blurred video, 1 gives the original video while 2 increases the sharpness by a factor of 2. """ return torchvision.transforms.functional.adjust_sharpness(video, factor) def _posterize(video: torch.Tensor, factor: float, **kwargs): """ Posterize an image by reducing the number of bits for each color channel. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): The number of bits to keep for each channel (0-8). """ if factor >= 8: return video if video.dtype != torch.uint8: video_type = video.dtype video = (video * 255).to(torch.uint8) return (torchvision.transforms.functional.posterize(video, factor) / 255).to( video_type ) return torchvision.transforms.functional.posterize(video, factor) def _shear_x(video: torch.Tensor, factor: float, **kwargs): """ Shear the video along the horizontal axis. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): How much to shear along the horizontal axis using the affine matrix. """ _check_fill_arg(kwargs) translation_offset = video.size(-2) * factor / 2 return F_t.affine( video, [1, factor, translation_offset, 0, 1, 0], fill=kwargs["fill"], interpolation="bilinear", ) def _shear_y(video: torch.Tensor, factor: float, **kwargs): """ Shear the video along the vertical axis. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): How much to shear along the vertical axis using the affine matrix. """ _check_fill_arg(kwargs) translation_offset = video.size(-1) * factor / 2 return F_t.affine( video, [1, 0, 0, factor, 1, translation_offset], fill=kwargs["fill"], interpolation="bilinear", ) def _translate_x(video: torch.Tensor, factor: float, **kwargs): """ Translate the video along the vertical axis. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): How much (relative to the image size) to translate along the vertical axis. """ _check_fill_arg(kwargs) translation_offset = factor * video.size(-1) return F_t.affine( video, [1, 0, translation_offset, 0, 1, 0], fill=kwargs["fill"], interpolation="bilinear", ) def _translate_y(video: torch.Tensor, factor: float, **kwargs): """ Translate the video along the vertical axis. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): How much (relative to the image size) to translate along the horizontal axis. """ _check_fill_arg(kwargs) translation_offset = factor * video.size(-2) return F_t.affine( video, [1, 0, 0, 0, 1, translation_offset], fill=kwargs["fill"], interpolation="bilinear", ) def _randomly_negate(magnitude: float) -> float: """ Negate input value with 50% chance. Args: magnitude (float): Input value. """ return magnitude if torch.rand(1).item() > 0.5 else -magnitude def _increasing_magnitude_to_arg(level: int, params: Tuple[float, float]) -> float: """ Convert level to transform magnitude. This assumes transform magnitude increases linearly with level. Args: level (int): Level value. params (Tuple[float, float]): Params contains two values: 1) Base transform magnitude when level is 0; 2) Maxmimum increasing in transform magnitude when level is at Maxmimum. """ magnitude = (level / _AUGMENTATION_MAX_LEVEL) * params[1] return (params[0] + magnitude,) def _increasing_randomly_negate_to_arg( level: int, params: Tuple[float, float] ) -> Tuple[float]: """ Convert level to transform magnitude. This assumes transform magnitude increases (or decreases with 50% chance) linearly with level. Args: level (int): Level value. params (Tuple[float, float]): Params contains two values: 1) Base transform magnitude when level is 0; 2) Maxmimum increasing in transform magnitude when level is at maxmimum. """ magnitude = (level / _AUGMENTATION_MAX_LEVEL) * params[1] return (params[0] + _randomly_negate(magnitude),) def _decreasing_int_to_arg(level: int, params: Tuple[int, int]) -> Tuple[int]: """ Convert level to transform magnitude. This assumes transform magnitude decreases linearly with level. The return value is converted to int. Args: level (int): Level value. params (Tuple[float, float]): Params contains two values: 1) Base transform magnitude when level is 0; 2) Maxmimum decreasing in transform magnitude when level is at maxmimum. """ magnitude = (level / _AUGMENTATION_MAX_LEVEL) * params[1] return (params[0] - int(magnitude),) def _decreasing_to_arg(level: int, params: Tuple[float, float]) -> Tuple[float]: """ Convert level to transform magnitude. This assumes transform magnitude decreases linearly with level. Args: level (int): Level value. params (Tuple[float, float]): Params contains two values: 1) Base transform magnitude when level is 0; 2) Maxmimum decreasing in transform magnitude when level is at maxmimum. """ magnitude = (level / _AUGMENTATION_MAX_LEVEL) * params[1] return (params[0] - magnitude,) # A dictionary that contains transform names (key) and their corresponding transform # functions (value). _NAME_TO_TRANSFORM_FUNC = { "AdjustBrightness": _adjust_brightness, "AdjustContrast": _adjust_contrast, "AdjustSaturation": _adjust_saturation, "AdjustSharpness": _adjust_sharpness, "AutoContrast": _autocontrast, "Equalize": _equalize, "Invert": _invert, "Rotate": _rotate, "Posterize": _posterize, "Solarize": _solarize, "ShearX": _shear_x, "ShearY": _shear_y, "TranslateX": _translate_x, "TranslateY": _translate_y, } # A dictionary that contains transform names (key) and their corresponding level # functions (value), which converts the magnitude to the transform function arguments. _LEVEL_TO_ARG = { "AdjustBrightness": _increasing_randomly_negate_to_arg, "AdjustContrast": _increasing_randomly_negate_to_arg, "AdjustSaturation": _increasing_randomly_negate_to_arg, "AdjustSharpness": _increasing_randomly_negate_to_arg, "AutoContrast": None, "Equalize": None, "Invert": None, "Rotate": _increasing_randomly_negate_to_arg, "Posterize": _decreasing_int_to_arg, "Solarize": _decreasing_to_arg, "ShearX": _increasing_randomly_negate_to_arg, "ShearY": _increasing_randomly_negate_to_arg, "TranslateX": _increasing_randomly_negate_to_arg, "TranslateY": _increasing_randomly_negate_to_arg, } # A dictionary that contains transform names (key) and their corresponding maximum # transform (value). _TRANSFORM_MAX_PARAMS = { "AdjustBrightness": (1, 0.9), "AdjustContrast": (1, 0.9), "AdjustSaturation": (1, 0.9), "AdjustSharpness": (1, 0.9), "AutoContrast": None, "Equalize": None, "Invert": None, "Rotate": (0, 30), "Posterize": (4, 4), "Solarize": (1, 1), "ShearX": (0, 0.3), "ShearY": (0, 0.3), "TranslateX": (0, 0.45), "TranslateY": (0, 0.45), } # Hyperparameters for sampling magnitude. SAMPLING_DEFAULT_HPARAS = {"sampling_std": 0.5} # Hyperparameters for transform functions. TRANSFORM_DEFAULT_HPARAS = {"fill": (0.5, 0.5, 0.5)} class AugmentTransform: def __init__( self, transform_name: str, magnitude: int = 10, prob: float = 0.5, name_to_transform_func: Optional[Dict[str, Callable]] = None, level_to_arg: Optional[Dict[str, Callable]] = None, transform_max_paras: Optional[Dict[str, Tuple]] = None, transform_hparas: Optional[Dict[str, Any]] = None, sampling_type: str = "gaussian", sampling_hparas: Optional[Dict[str, Any]] = None, ) -> None: """ The AugmentTransform composes a video transform that performs augmentation based on a maximum magnitude. AugmentTransform also offers flexible ways to generate augmentation magnitude based on different sampling strategies. Args: transform_name (str): The name of the video transform function. magnitude (int): Magnitude used for transform function. prob (float): The probablity of applying each transform function. name_to_transform_func (Optional[Dict[str, Callable]]): A Dictionary that contains mapping of the transform name to the transform function. level_to_arg (Optional[Dict[str, Callable]]): A Dictionary that contains mapping of the transform name to its level function, which converts the the magnitude to the transform function arguments. transform_max_paras (Optional[Dict[str, Tuple]]): A Dictionary that contains mapping of the transform name to its maximum transform magnitude. transform_hparas (Optional[Dict[Any]]): Transform hyper parameters. Needs to have key fill. By default, it uses transform_default_hparas. sampling_type (str): Sampling method for magnitude of transform. It should be either gaussian or uniform. sampling_hparas (Optional[Dict[Any]]): Hyper parameters for sampling. If gaussian sampling is used, it needs to have key sampling_std. By default, it uses transform_default_hparas. """ assert sampling_type in ["gaussian", "uniform"] name_to_transform_func = name_to_transform_func or _NAME_TO_TRANSFORM_FUNC level_to_arg = level_to_arg or _LEVEL_TO_ARG transform_max_paras = transform_max_paras or _TRANSFORM_MAX_PARAMS self.transform_hparas = transform_hparas or TRANSFORM_DEFAULT_HPARAS self.sampling_type = sampling_type self.sampling_hparas = sampling_hparas or SAMPLING_DEFAULT_HPARAS assert "fill" in self.transform_hparas if self.sampling_type == "gaussian": assert "sampling_std" in self.sampling_hparas if self.sampling_type == "uniform": assert "sampling_data_type" in self.sampling_hparas assert "sampling_min" in self.sampling_hparas if self.sampling_hparas["sampling_data_type"] == "int": assert isinstance(self.sampling_hparas["sampling_min"], int) elif self.sampling_hparas["sampling_data_type"] == "float": assert isinstance(self.sampling_hparas["sampling_min"], (int, float)) assert transform_name in name_to_transform_func self.max_level = _AUGMENTATION_MAX_LEVEL self.transform_name = transform_name self.magnitude = magnitude self.transform_fn = name_to_transform_func[transform_name] self.level_fn = level_to_arg[transform_name] self.level_paras = transform_max_paras[transform_name] self.prob = prob self.sampling_type = sampling_type def _get_magnitude(self) -> float: """ Get magnitude based on sampling type. """ if self.sampling_type == "gaussian": return max( 0, min( self.max_level, torch.normal( self.magnitude, self.sampling_hparas["sampling_std"], size=(1,) ).item(), ), ) elif self.sampling_type == "uniform": if self.sampling_hparas["sampling_data_type"] == "int": return torch.randint( self.sampling_hparas["sampling_min"], self.magnitude + 1, size=(1,) ).item() elif self.sampling_hparas["sampling_data_type"] == "float": return ( torch.rand(size=(1,)).item() * (self.magnitude - self.sampling_hparas["sampling_min"]) + self.sampling_hparas["sampling_min"] ) else: raise ValueError("sampling_data_type must be either 'int' or 'float'") else: raise NotImplementedError def __call__(self, video: torch.Tensor) -> torch.Tensor: """ The input is a video tensor. Args: video (torch.Tensor): Input video tensor with shape (T, C, H, W). """ if torch.rand(1).item() > self.prob: return video magnitude = self._get_magnitude() level_args = ( self.level_fn(magnitude, self.level_paras) if self.level_fn is not None else () ) return self.transform_fn(video, *level_args, **self.transform_hparas)
applications/GeoMechanicsApplication/python_scripts/gap_closure_interface_activation_process.py
lkusch/Kratos
778
12759960
import KratosMultiphysics import KratosMultiphysics.GeoMechanicsApplication as KratosGeo def Factory(settings, Model): if(type(settings) != KratosMultiphysics.Parameters): raise Exception("expected input shall be a Parameters object, encapsulating a json string") return GapClosureInterfaceActivationProcess(Model, settings["Parameters"]) ## All the python processes should be derived from "python_process" class GapClosureInterfaceActivationProcess(KratosMultiphysics.Process): def __init__(self, Model, settings ): KratosMultiphysics.Process.__init__(self) model_part = Model[settings["model_part_name"].GetString()] params = KratosMultiphysics.Parameters("{}") params.AddValue("model_part_name",settings["model_part_name"]) params.AddValue("gap_width_threshold",settings["gap_width_threshold"]) params.AddValue("consider_gap_closure",settings["consider_gap_closure"]) self.process = KratosGeo.GapClosureInterfaceProcess(model_part, params) def ExecuteInitialize(self): self.process.ExecuteInitialize() def ExecuteInitializeSolutionStep(self): self.process.ExecuteInitializeSolutionStep() def ExecuteFinalizeSolutionStep(self): self.process.ExecuteFinalizeSolutionStep() def ExecuteFinalize(self): self.process.ExecuteFinalize()
tests/integration/s2n_handshake_test_old_s_client.py
bryce-shang/s2n-tls
4,256
12759968
# # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # """ Handshake tests using Openssl 0.9.8 s_client against s2nd """ import argparse import os import sys import subprocess import itertools import multiprocessing import threading import uuid import re import string from os import environ from multiprocessing.pool import ThreadPool from s2n_test_constants import * from time import sleep S_CLIENT_NEGOTIATED_CIPHER_PREFIX="Cipher : " PROTO_VERS_TO_S_CLIENT_ARG = { S2N_TLS10 : "-tls1", S2N_TLS11 : "-tls1_1", S2N_TLS12 : "-tls1_2", } use_corked_io=False def cleanup_processes(*processes): for p in processes: p.kill() p.wait() def validate_version(expected_version, output): for line in output.splitlines(): if ACTUAL_VERSION_STR.format(expected_version or S2N_TLS10) in line: return 0 return -1 def validate_data_transfer(expected_data, s_client_out, s2nd_out): """ Verify that the application data written between s_client and s2nd is encrypted and decrypted successfuly. """ found = 0 for line in s2nd_out.splitlines(): if expected_data in line: found = 1 break if found == 0: print ("Did not find " + expected_data + " in output from s2nd") return -1 found = 0 for line in s_client_out.splitlines(): if expected_data in line: found = 1 break if found == 0: print ("Did not find " + expected_data + " in output from s_client") return -1 return 0 def find_expected_cipher(expected_cipher, s_client_out): """ Make sure s_client and s2nd negotiate the cipher suite we expect """ s_client_out_len = len(s_client_out) full_expected_string = S_CLIENT_NEGOTIATED_CIPHER_PREFIX + expected_cipher for line in s_client_out.splitlines(): if full_expected_string in line: return 0 break print("Failed to find " + expected_cipher + " in s_client output") return -1 def read_process_output_until(process, marker): output = "" while True: line = process.stdout.readline().decode("utf-8") output += line if marker in line: return output return output def try_handshake(endpoint, port, cipher, ssl_version, server_name=None, strict_hostname=False, server_cert=None, server_key=None, server_cert_key_list=None, expected_server_cert=None, server_cipher_pref=None, ocsp=None, sig_algs=None, curves=None, resume=False, no_ticket=False, prefer_low_latency=False, enter_fips_mode=False, client_auth=None, client_cert=DEFAULT_CLIENT_CERT_PATH, client_key=DEFAULT_CLIENT_KEY_PATH, expected_cipher=None, expected_extensions=None): """ Attempt to handshake against s2nd listening on `endpoint` and `port` using Openssl s_client :param int endpoint: endpoint for s2nd to listen on :param int port: port for s2nd to listen on :param str cipher: ciphers for Openssl s_client to offer. See https://www.openssl.org/docs/man1.0.2/apps/ciphers.html :param int ssl_version: SSL version for s_client to use :param str server_name: server_name value for s_client to send :param bool strict_hostname: whether s_client should strictly check to see if server certificate matches the server_name :param str server_cert: path to certificate for s2nd to use :param str server_key: path to private key for s2nd to use :param list server_cert_key_list: a list of (cert_path, key_path) tuples for multicert tests. :param str expected_server_cert: Path to the expected server certificate should be sent to s_client. :param str ocsp: path to OCSP response file for stapling :param str sig_algs: Signature algorithms for s_client to offer :param str curves: Elliptic curves for s_client to offer :param bool resume: True if s_client should try to reconnect to s2nd and reuse the same TLS session. False for normal negotiation. :param bool no_ticket: True if s2n server should not use session ticket to resume the same TLS session. :param bool prefer_low_latency: True if s2nd should use 1500 for max outgoing record size. False for default max. :param bool enter_fips_mode: True if s2nd should enter libcrypto's FIPS mode. Libcrypto must be built with a FIPS module to enter FIPS mode. :param bool client_auth: True if the test should try and use client authentication :param str client_cert: Path to the client's cert file :param str client_key: Path to the client's private key file :param str expected_cipher: the cipher we expect to negotiate :param list expected_extensions: list of expected extensions that s_client should receive. :return: 0 on successfully negotiation(s), -1 on failure """ # Override certificate for ECDSA if unspecified. We can remove this when we # support multiple certificates if server_cert is None and server_cert_key_list is None and "ECDSA" in cipher: server_cert = TEST_ECDSA_CERT server_key = TEST_ECDSA_KEY # Fire up s2nd s2nd_cmd = ["../../bin/s2nd"] if server_cert is not None: s2nd_cmd.extend(["--cert", server_cert]) if server_key is not None: s2nd_cmd.extend(["--key", server_key]) if server_cert_key_list is not None: for cert_key_path in server_cert_key_list: cert_path = cert_key_path[0] key_path = cert_key_path[1] s2nd_cmd.extend(["--cert", cert_path]) s2nd_cmd.extend(["--key", key_path]) if ocsp is not None: s2nd_cmd.extend(["--ocsp", ocsp]) if prefer_low_latency == True: s2nd_cmd.append("--prefer-low-latency") if client_auth is not None: s2nd_cmd.append("-m") s2nd_cmd.extend(["-t", client_cert]) if use_corked_io: s2nd_cmd.append("-C") s2nd_cmd.extend([str(endpoint), str(port)]) s2nd_ciphers = "test_all_tls12" if server_cipher_pref is not None: s2nd_ciphers = server_cipher_pref if enter_fips_mode == True: s2nd_ciphers = "test_all_fips" s2nd_cmd.append("--enter-fips-mode") s2nd_cmd.append("-c") s2nd_cmd.append(s2nd_ciphers) if no_ticket: s2nd_cmd.append("-T") s2nd = subprocess.Popen(s2nd_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) # Make sure s2nd has started s2nd.stdout.readline() s_client_cmd = ["openssl", "s_client", "-connect", str(endpoint) + ":" + str(port)] if ssl_version is not None: s_client_cmd.append(PROTO_VERS_TO_S_CLIENT_ARG[ssl_version]) if cipher is not None: s_client_cmd.extend(["-cipher", cipher]) # For verifying extensions that s2nd sends expected extensions s_client_cmd.append("-tlsextdebug") # Fire up s_client s_client = subprocess.Popen(s_client_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) s_client_out = "" s2nd_out = "" openssl_connect_marker = "CONNECTED" openssl_reconnect_marker = "drop connection and then reconnect" end_of_msg_marker = "__end_of_msg__" # Wait until openssl and s2n have finished the handshake and are connected to each other s_client_out += read_process_output_until(s_client, openssl_connect_marker) s2nd_out += read_process_output_until(s2nd, openssl_connect_marker) if resume == True: for i in range(0,5): # Wait for openssl to resume connection 5 times in a row, and verify resumption works. s_client_out += read_process_output_until(s_client, openssl_reconnect_marker) s2nd_out += read_process_output_until(s2nd, openssl_connect_marker) data_to_validate = cipher + " " + str(uuid.uuid4()) # Write the data to openssl towards s2n server msg = (data_to_validate + "\n" + end_of_msg_marker + "\n\n").encode("utf-8") s_client.stdin.write(msg) s_client.stdin.flush() # Write the data to s2n towards openssl client s2nd.stdin.write(msg) s2nd.stdin.flush() # Wait for the Data transfer to complete between OpenSSL and s2n s_client_out += read_process_output_until(s_client, end_of_msg_marker) s2nd_out += read_process_output_until(s2nd, end_of_msg_marker) cleanup_processes(s2nd, s_client) if validate_data_transfer(data_to_validate, s_client_out, s2nd_out) != 0: return -1 if validate_version(ssl_version, s2nd_out) != 0: return -1 if resume is True: if validate_resume(s2nd_out) != 0: return -1 if ocsp is not None: if validate_ocsp(s_client_out) != 0: return -1 if expected_cipher is not None: if find_expected_cipher(expected_cipher, s_client_out) != 0: return -1 if strict_hostname is True: if validate_hostname(s_client_out) != 0: return -1 if expected_server_cert is not None: if validate_selected_certificate(s_client_out, expected_server_cert) != 0: return -1 if expected_extensions is not None: for extension in expected_extensions: if extension.s_client_validate(s_client_out) != 0: return -1 return 0 def cert_path_to_str(cert_path): # Converts a path to a cert into a string usable for printing to test output # Example: "./test_certs/rsa_2048_sha256_client_cert.pem" => "RSA-2048-SHA256" return '-'.join(cert_path[cert_path.rfind('/')+1:].split('_')[:3]).upper() def print_result(result_prefix, return_code): suffix = "" if return_code == 0: if sys.stdout.isatty(): suffix = "\033[32;1mPASSED\033[0m" else: suffix = "PASSED" else: if sys.stdout.isatty(): suffix = "\033[31;1mFAILED\033[0m" else: suffix ="FAILED" print(result_prefix + suffix) def create_thread_pool(): threadpool_size = multiprocessing.cpu_count() * 4 # Multiply by 4 to increase parallelization between integration tests print("\tCreating ThreadPool of size: " + str(threadpool_size)) threadpool = ThreadPool(processes=threadpool_size) return threadpool def run_handshake_test(host, port, ssl_version, cipher, fips_mode, no_ticket, use_client_auth, client_cert_path, client_key_path): cipher_name = cipher.openssl_name cipher_vers = cipher.min_tls_vers # Skip the cipher if openssl can't test it. 3DES/RC4 are disabled by default in 1.1.1 if not cipher.openssl_1_1_1_compatible: return 0 if ssl_version and ssl_version < cipher_vers: return 0 client_cert_str=str(use_client_auth) if (use_client_auth is not None) and (client_cert_path is not None): client_cert_str = cert_path_to_str(client_cert_path) ret = try_handshake(host, port, cipher_name, ssl_version, no_ticket=no_ticket, enter_fips_mode=fips_mode, client_auth=use_client_auth, client_cert=client_cert_path, client_key=client_key_path) result_prefix = "Cipher: %-30s ClientCert: %-16s Vers: %-8s ... " % (cipher_name, client_cert_str, S2N_PROTO_VERS_TO_STR[ssl_version]) print_result(result_prefix, ret) return ret def handshake_test(host, port, test_ciphers, fips_mode, no_ticket=False, use_client_auth=None, use_client_cert=None, use_client_key=None): """ Basic handshake tests using all valid combinations of supported cipher suites and TLS versions. """ print("\n\tRunning handshake tests:") failed = 0 for ssl_version in [S2N_TLS10, None]: print("\n\tTesting ciphers using client version: " + S2N_PROTO_VERS_TO_STR[ssl_version]) port_offset = 0 results = [] # Only test non ECC ciphers, openssl 0.9.8 has trouble with ECDHE. # Only test 1.0/SSLv3 ciphers since 0.9.8 only supports those. for cipher in filter(lambda x: "ECDHE" not in x.openssl_name and x.min_tls_vers < S2N_TLS11, test_ciphers): async_result = run_handshake_test(host, port + port_offset, ssl_version, cipher, fips_mode, no_ticket, use_client_auth, use_client_cert, use_client_key) port_offset += 1 results.append(async_result) for async_result in results: if async_result != 0: failed = 1 return failed def main(): parser = argparse.ArgumentParser(description='Runs TLS server integration tests against s2nd using Openssl s_client') parser.add_argument('host', help='The host for s2nd to bind to') parser.add_argument('port', type=int, help='The port for s2nd to bind to') parser.add_argument('--use_corked_io', action='store_true', help='Turn corked IO on/off') parser.add_argument('--libcrypto', default='openssl-1.1.1', choices=S2N_LIBCRYPTO_CHOICES, help="""The Libcrypto that s2n was built with. s2n supports different cipher suites depending on libcrypto version. Defaults to openssl-1.1.1.""") args = parser.parse_args() use_corked_io = args.use_corked_io # Retrieve the test ciphers to use based on the libcrypto version s2n was built with test_ciphers = S2N_LIBCRYPTO_TO_TEST_CIPHERS[args.libcrypto] host = args.host port = args.port libcrypto_version = args.libcrypto fips_mode = False if environ.get("S2N_TEST_IN_FIPS_MODE") is not None: fips_mode = True print("\nRunning s2nd in FIPS mode.") print("\nRunning tests with: " + os.popen('openssl version').read()) if use_corked_io == True: print("Corked IO is on") failed = 0 failed += handshake_test(host, port, test_ciphers, fips_mode) return failed if __name__ == "__main__": sys.exit(main())
examples/rest-api-python/src/list.py
drewfish/serverless-stack
5,922
12759982
<reponame>drewfish/serverless-stack<gh_stars>1000+ import json from db.notes import getNotes def main(event, context): return { "statusCode": 200, "body": json.dumps(getNotes(), indent=2) }
research/delf/delf/python/datasets/generic_dataset.py
NasTul/models
82,518
12759993
# Lint as: python3 # Copyright 2021 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for generic image dataset creation.""" import os from delf.python.datasets import utils class ImagesFromList(): """A generic data loader that loads images from a list. Supports images of different sizes. """ def __init__(self, root, image_paths, imsize=None, bounding_boxes=None, loader=utils.default_loader): """ImagesFromList object initialization. Args: root: String, root directory path. image_paths: List, relative image paths as strings. imsize: Integer, defines the maximum size of longer image side. bounding_boxes: List of (x1,y1,x2,y2) tuples to crop the query images. loader: Callable, a function to load an image given its path. Raises: ValueError: Raised if `image_paths` list is empty. """ # List of the full image filenames. images_filenames = [os.path.join(root, image_path) for image_path in image_paths] if not images_filenames: raise ValueError("Dataset contains 0 images.") self.root = root self.images = image_paths self.imsize = imsize self.images_filenames = images_filenames self.bounding_boxes = bounding_boxes self.loader = loader def __getitem__(self, index): """Called to load an image at the given `index`. Args: index: Integer, image index. Returns: image: Tensor, loaded image. """ path = self.images_filenames[index] if self.bounding_boxes is not None: img = self.loader(path, self.imsize, self.bounding_boxes[index]) else: img = self.loader(path, self.imsize) return img def __len__(self): """Implements the built-in function len(). Returns: len: Number of images in the dataset. """ return len(self.images_filenames)
f5/bigip/tm/sys/test/functional/test_sshd.py
nghia-tran/f5-common-python
272
12760002
<reponame>nghia-tran/f5-common-python<filename>f5/bigip/tm/sys/test/functional/test_sshd.py<gh_stars>100-1000 # Copyright 2016 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest V11_SUPPORTED = ['11.5.4', '11.6.0', '11.6.1', '11.6.2'] V12_SUPPORTED = ['12.0.0', '12.1.0'] def setup_sshd_test(request, mgmt_root): def teardown(): d.allow = ['ALL'] d.banner = 'disabled' d.bannerText = '' d.inactivityTimeout = 0 d.logLevel = 'info' d.login = 'enabled' if pytest.config.getoption('--release') in V12_SUPPORTED: d.port = 22 d.update() request.addfinalizer(teardown) d = mgmt_root.tm.sys.sshd.load() return d @pytest.mark.skipif(pytest.config.getoption('--release') not in V11_SUPPORTED, reason='Needs v11 TMOS to pass') class TestSshd11(object): def test_load(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) assert ssh1.allow == ssh2.allow assert ssh1.banner == ssh2.banner assert ssh1.inactivityTimeout == ssh2.inactivityTimeout assert ssh1.logLevel == ssh2.logLevel assert ssh1.login == ssh2.login def test_update_allow(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) ssh1.allow = ['192.168.1.1'] ssh1.update() assert ['192.168.1.1'] == ssh1.allow assert ['192.168.1.1'] != ssh2.allow # Refresh ssh2.refresh() assert ['192.168.1.1'] == ssh2.allow def test_update_banner(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) banners = ['enabled', 'disabled'] for banner in banners: ssh1.banner = banner ssh1.update() assert banner == ssh1.banner assert banner != ssh2.banner # Refresh ssh2.refresh() assert banner == ssh2.banner def test_update_bannerText(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) ssh1.bannerText = 'foo banner' ssh1.update() assert 'foo banner' == ssh1.bannerText assert not hasattr(ssh2, 'bannerText') # Refresh ssh2.refresh() assert 'foo banner' == ssh2.bannerText def test_update_inactivityTimeout(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) ssh1.inactivityTimeout = 10 ssh1.update() assert 10 == ssh1.inactivityTimeout assert 10 != ssh2.inactivityTimeout # Refresh ssh2.refresh() assert 10 == ssh2.inactivityTimeout def test_update_logLevel(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) levels = ['debug', 'debug1', 'debug2', 'debug3', 'error', 'fatal', 'info', 'quiet', 'verbose'] for level in levels: ssh1.logLevel = level ssh1.update() assert level == ssh1.logLevel assert level != ssh2.logLevel # Refresh ssh2.refresh() assert level == ssh2.logLevel def test_update_login(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) logins = ['disabled', 'enabled'] for login in logins: ssh1.login = login ssh1.update() assert login == ssh1.login assert login != ssh2.login # Refresh ssh2.refresh() assert login == ssh2.login @pytest.mark.skipif(pytest.config.getoption('--release') not in V12_SUPPORTED, reason='Needs v12 TMOS to pass') class TestSshd12(object): def test_load(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) assert ssh1.allow == ssh2.allow assert ssh1.banner == ssh2.banner assert ssh1.inactivityTimeout == ssh2.inactivityTimeout assert ssh1.logLevel == ssh2.logLevel assert ssh1.login == ssh2.login assert ssh1.port == ssh2.port def test_update_allow(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) ssh1.allow = ['192.168.1.1'] ssh1.update() assert ['192.168.1.1'] == ssh1.allow assert ['192.168.1.1'] != ssh2.allow # Refresh ssh2.refresh() assert ['192.168.1.1'] == ssh2.allow def test_update_banner(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) banners = ['enabled', 'disabled'] for banner in banners: ssh1.banner = banner ssh1.update() assert banner == ssh1.banner assert banner != ssh2.banner # Refresh ssh2.refresh() assert banner == ssh2.banner def test_update_bannerText(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) ssh1.bannerText = 'foo banner' ssh1.update() assert 'foo banner' == ssh1.bannerText assert not hasattr(ssh2, 'bannerText') # Refresh ssh2.refresh() assert 'foo banner' == ssh2.bannerText def test_update_inactivityTimeout(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) ssh1.inactivityTimeout = 10 ssh1.update() assert 10 == ssh1.inactivityTimeout assert 10 != ssh2.inactivityTimeout # Refresh ssh2.refresh() assert 10 == ssh2.inactivityTimeout def test_update_logLevel(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) levels = ['debug', 'debug1', 'debug2', 'debug3', 'error', 'fatal', 'info', 'quiet', 'verbose'] for level in levels: ssh1.logLevel = level ssh1.update() assert level == ssh1.logLevel assert level != ssh2.logLevel # Refresh ssh2.refresh() assert level == ssh2.logLevel def test_update_login(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) logins = ['disabled', 'enabled'] for login in logins: ssh1.login = login ssh1.update() assert login == ssh1.login assert login != ssh2.login # Refresh ssh2.refresh() assert login == ssh2.login def test_update_port(self, request, mgmt_root): ssh1 = setup_sshd_test(request, mgmt_root) ssh2 = setup_sshd_test(request, mgmt_root) ssh1.port = 1234 ssh1.update() assert 1234 == ssh1.port assert 1234 != ssh2.port # Refresh ssh2.refresh() assert 1234 == ssh2.port
rigl/experimental/jax/prune_test.py
vishalbelsare/rigl
276
12760015
# coding=utf-8 # Copyright 2021 RigL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for weight_symmetry.prune.""" import glob from os import path from absl.testing import absltest from absl.testing import flagsaver from rigl.experimental.jax import prune class PruneTest(absltest.TestCase): def test_prune_fixed_schedule(self): """Tests training/pruning driver with a fixed global sparsity.""" experiment_dir = self.create_tempdir().full_path eval_flags = dict( epochs=1, pruning_rate=0.95, experiment_dir=experiment_dir, ) with flagsaver.flagsaver(**eval_flags): prune.main([]) outfile = path.join(experiment_dir, '*', 'events.out.tfevents.*') files = glob.glob(outfile) self.assertTrue(len(files) == 1 and path.exists(files[0])) def test_prune_global_pruning_schedule(self): """Tests training/pruning driver with a global sparsity schedule.""" experiment_dir = self.create_tempdir().full_path eval_flags = dict( epochs=10, pruning_schedule='[(5, 0.33), (7, 0.66), (9, 0.95)]', experiment_dir=experiment_dir, ) with flagsaver.flagsaver(**eval_flags): prune.main([]) outfile = path.join(experiment_dir, '*', 'events.out.tfevents.*') files = glob.glob(outfile) self.assertTrue(len(files) == 1 and path.exists(files[0])) def test_prune_local_pruning_schedule(self): """Tests training/pruning driver with a single layer sparsity schedule.""" experiment_dir = self.create_tempdir().full_path eval_flags = dict( epochs=10, pruning_schedule='{1:[(5, 0.33), (7, 0.66), (9, 0.95)]}', experiment_dir=experiment_dir, ) with flagsaver.flagsaver(**eval_flags): prune.main([]) outfile = path.join(experiment_dir, '*', 'events.out.tfevents.*') files = glob.glob(outfile) self.assertTrue(len(files) == 1 and path.exists(files[0])) if __name__ == '__main__': absltest.main()
course/admin.py
khanhduy8/relate
284
12760024
<filename>course/admin.py __copyright__ = "Copyright (C) 2014 <NAME>" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from django.utils.translation import ( gettext_lazy as _, pgettext) from django.contrib import admin from course.models import ( Course, Event, ParticipationTag, Participation, ParticipationPermission, ParticipationRole, ParticipationRolePermission, ParticipationPreapproval, AuthenticationToken, InstantFlowRequest, FlowSession, FlowPageData, FlowPageVisit, FlowPageVisitGrade, FlowRuleException, GradingOpportunity, GradeChange, InstantMessage, Exam, ExamTicket) from django import forms from relate.utils import string_concat from course.enrollment import (approve_enrollment, deny_enrollment) from course.constants import ( participation_permission as pperm, exam_ticket_states ) from typing import Any, Text, Tuple # noqa # {{{ permission helpers def _filter_courses_for_user(queryset, user): if user.is_superuser: return queryset z = queryset.filter( participations__user=user, participations__roles__permissions__permission=pperm.use_admin_interface) return z def _filter_course_linked_obj_for_user(queryset, user): if user.is_superuser: return queryset return queryset.filter( course__participations__user=user, course__participations__roles__permissions__permission # noqa =pperm.use_admin_interface ) def _filter_participation_linked_obj_for_user(queryset, user): if user.is_superuser: return queryset return queryset.filter( participation__course__participations__user=user, participation__course__participations__roles__permissions__permission # noqa =pperm.use_admin_interface) # }}} # {{{ list filter helper def _filter_related_only(filter_arg: str) -> Tuple[str, Any]: return (filter_arg, admin.RelatedOnlyFieldListFilter) # }}} # {{{ course class UnsafePasswordInput(forms.TextInput): # This sends passwords back to the user--not ideal, but OK for the XMPP # password. input_type = "password" class CourseAdminForm(forms.ModelForm): class Meta: model = Course widgets = { "course_xmpp_password": UnsafePasswordInput } exclude = () class CourseAdmin(admin.ModelAdmin): list_display = ( "identifier", "number", "name", "time_period", "start_date", "end_date", "hidden", "listed", "accepts_enrollment") list_editable = ( "number", "name", "time_period", "start_date", "end_date", "hidden", "listed", "accepts_enrollment") list_filter = ( "number", "time_period", "hidden", "listed", "accepts_enrollment") date_hierarchy = "start_date" search_fields = ( "identifier", "number", "name", "time_period") form = CourseAdminForm save_on_top = True # {{{ permissions def has_add_permission(self, request): # These are created only through the course creation form. return False def get_queryset(self, request): qs = super().get_queryset(request) return _filter_courses_for_user(qs, request.user) # }}} admin.site.register(Course, CourseAdmin) # }}} # {{{ events class EventAdmin(admin.ModelAdmin): list_display = ( "course", "kind", "ordinal", "time", "end_time", "shown_in_calendar") list_filter = (_filter_related_only("course"), "kind", "shown_in_calendar") date_hierarchy = "time" search_fields = ( "course__identifier", "kind", ) def __unicode__(self): # pragma: no cover # not used return "{}{} in {}".format( self.kind, " (%s)" % str(self.ordinal) if self.ordinal is not None else "", self.course) __str__ = __unicode__ list_editable = ("ordinal", "time", "end_time", "shown_in_calendar") # {{{ permissions def get_queryset(self, request): qs = super().get_queryset(request) return _filter_course_linked_obj_for_user(qs, request.user) def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "course": kwargs["queryset"] = _filter_courses_for_user( Course.objects, request.user) return super().formfield_for_foreignkey( db_field, request, **kwargs) # }}} admin.site.register(Event, EventAdmin) # }}} # {{{ participation tags class ParticipationTagAdmin(admin.ModelAdmin): list_filter = (_filter_related_only("course"),) # {{{ permissions def get_queryset(self, request): qs = super().get_queryset(request) return _filter_course_linked_obj_for_user(qs, request.user) def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "course": kwargs["queryset"] = _filter_courses_for_user( Course.objects, request.user) return super().formfield_for_foreignkey( db_field, request, **kwargs) # }}} admin.site.register(ParticipationTag, ParticipationTagAdmin) # }}} # {{{ participations class ParticipationRolePermissionInline(admin.TabularInline): model = ParticipationRolePermission extra = 3 class ParticipationRoleAdmin(admin.ModelAdmin): inlines = (ParticipationRolePermissionInline,) list_filter = (_filter_related_only("course"), "identifier") def get_queryset(self, request): qs = super().get_queryset(request) if request.user.is_superuser: return qs return _filter_course_linked_obj_for_user(qs, request.user) admin.site.register(ParticipationRole, ParticipationRoleAdmin) class ParticipationPermissionInline(admin.TabularInline): model = ParticipationPermission extra = 3 class ParticipationForm(forms.ModelForm): class Meta: model = Participation exclude = ("role",) def clean(self): super().clean() for tag in self.cleaned_data.get("tags", []): if tag.course != self.cleaned_data.get("course"): from django.core.exceptions import ValidationError raise ValidationError( {"tags": _("Tags must belong to same course as " "participation.")}) for role in self.cleaned_data.get("roles", []): if role.course != self.cleaned_data.get("course"): from django.core.exceptions import ValidationError raise ValidationError( {"roles": _("Role must belong to same course as " "participation.")}) class ParticipationAdmin(admin.ModelAdmin): form = ParticipationForm def get_roles(self, obj): return ", ".join(str(role.name) for role in obj.roles.all()) get_roles.short_description = _("Roles") # type: ignore def get_tags(self, obj): return ", ".join(str(tag.name) for tag in obj.tags.all()) get_tags.short_description = _("Tags") # type: ignore # Fixme: This can be misleading when Non-superuser click on the # link of a user who also attend other courses. def get_user(self, obj): from django.urls import reverse from django.conf import settings from django.utils.html import mark_safe return mark_safe(string_concat( "<a href='%(link)s'>", "%(user_fullname)s", "</a>" ) % { "link": reverse( "admin:%s_change" % settings.AUTH_USER_MODEL.replace(".", "_") .lower(), args=(obj.user.id,)), "user_fullname": obj.user.get_full_name( force_verbose_blank=True), }) get_user.short_description = pgettext("real name of a user", "Name") # type:ignore # noqa get_user.admin_order_field = "user__last_name" # type: ignore get_user.allow_tags = True # type: ignore list_display = ( "user", "get_user", "course", "get_roles", "status", "get_tags", ) def get_list_filter(self, request): if request is not None and request.user.is_superuser: return ("course", "roles__name", "status", "tags") return (_filter_related_only("course"), _filter_related_only("roles"), "status", _filter_related_only("tags")) raw_id_fields = ("user",) filter_horizontal = ("tags", "roles",) search_fields = ( "course__identifier", "user__username", "user__first_name", "user__last_name", ) actions = [approve_enrollment, deny_enrollment] inlines = (ParticipationPermissionInline,) save_on_top = True # {{{ permissions def get_queryset(self, request): qs = super().get_queryset(request) return _filter_course_linked_obj_for_user(qs, request.user) def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "course": kwargs["queryset"] = _filter_courses_for_user( Course.objects, request.user) # Fixme: This seems not to be not reachable if db_field.name == "tags": kwargs["queryset"] = _filter_course_linked_obj_for_user( ParticipationTag.objects, request.user) return super().formfield_for_foreignkey( db_field, request, **kwargs) # }}} admin.site.register(Participation, ParticipationAdmin) class ParticipationPreapprovalAdmin(admin.ModelAdmin): def get_roles(self, obj): return ", ".join(str(role.name) for role in obj.roles.all()) get_roles.short_description = _("Roles") # type: ignore list_display = ("email", "institutional_id", "course", "get_roles", "creation_time", "creator") list_filter = (_filter_related_only("course"), _filter_related_only("roles")) search_fields = ( "email", "institutional_id", ) # {{{ permissions def get_queryset(self, request): qs = super().get_queryset(request) if request.user.is_superuser: return qs return _filter_course_linked_obj_for_user(qs, request.user) exclude = ("creator", "creation_time", "role") def save_model(self, request, obj, form, change): obj.creator = request.user obj.save() def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "course": kwargs["queryset"] = _filter_courses_for_user( Course.objects, request.user) return super().formfield_for_foreignkey( db_field, request, **kwargs) # }}} admin.site.register(ParticipationPreapproval, ParticipationPreapprovalAdmin) # }}} class AuthenticationTokenAdmin(admin.ModelAdmin): list_display = ("id", "participation", "restrict_to_participation_role", "description", "valid_until", "revocation_time") date_hierarchy = "creation_time" search_fields = ( "id", "description", "participation__user__username" ) admin.site.register(AuthenticationToken, AuthenticationTokenAdmin) class InstantFlowRequestAdmin(admin.ModelAdmin): list_display = ("course", "flow_id", "start_time", "end_time", "cancelled") list_filter = (_filter_related_only("course"),) date_hierarchy = "start_time" search_fields = ( "email", ) admin.site.register(InstantFlowRequest, InstantFlowRequestAdmin) # {{{ flow sessions class FlowPageDataInline(admin.TabularInline): model = FlowPageData extra = 0 class FlowSessionAdmin(admin.ModelAdmin): def get_participant(self, obj): if obj.participation is None: return None return obj.participation.user get_participant.short_description = _("Participant") # type: ignore get_participant.admin_order_field = "participation__user" # type: ignore search_fields = ( "=id", "flow_id", "access_rules_tag", "participation__user__username", "participation__user__first_name", "participation__user__last_name", "user__username", "user__first_name", "user__last_name", ) list_display = ( "id", "flow_id", "get_participant", "course", "start_time", "completion_time", "access_rules_tag", "in_progress", #"expiration_mode", ) list_display_links = ( "flow_id", "get_participant", ) date_hierarchy = "start_time" list_filter = ( _filter_related_only("course"), "flow_id", "in_progress", "access_rules_tag", "expiration_mode", ) inlines = (FlowPageDataInline,) raw_id_fields = ("participation", "user") save_on_top = True # {{{ permissions def has_add_permission(self, request): # These are only created automatically. return False def get_queryset(self, request): qs = super().get_queryset(request) return _filter_course_linked_obj_for_user(qs, request.user) def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "course": kwargs["queryset"] = _filter_courses_for_user( Course.objects, request.user) return super().formfield_for_foreignkey( db_field, request, **kwargs) # }}} admin.site.register(FlowSession, FlowSessionAdmin) # }}} # {{{ flow page visit class FlowPageVisitGradeInline(admin.TabularInline): model = FlowPageVisitGrade extra = 0 class HasAnswerListFilter(admin.SimpleListFilter): title = "has answer" parameter_name = "has_answer" def lookups(self, request, model_admin): return ( ("y", _("Yes")), ("n", _("No")), ) def queryset(self, request, queryset): if self.value() is None: return queryset return queryset.filter(answer__isnull=self.value() != "y") class FlowIdListFilter(admin.SimpleListFilter): """ This is only necessary when flow_id is only accessible by FlowSession, which is a ForeignKey in the model """ title = _("Flow ID") parameter_name = "flow_id" def lookups(self, request, model_admin): qs = model_admin.get_queryset(request) if not request.user.is_superuser: qs = qs.filter( flow_session__course__participations__user=request.user, flow_session__course__participations__roles__permissions__permission # noqa =pperm.use_admin_interface) flow_ids = qs.values_list("flow_session__flow_id", flat=True).distinct() return zip(flow_ids, flow_ids) def queryset(self, request, queryset): if self.value(): return queryset.filter(flow_session__flow_id=self.value()) else: return queryset class FlowPageVisitAdmin(admin.ModelAdmin): def get_course(self, obj): return obj.flow_session.course get_course.short_description = _("Course") # type: ignore get_course.admin_order_field = "flow_session__course" # type: ignore def get_flow_id(self, obj): return obj.flow_session.flow_id get_flow_id.short_description = _("Flow ID") # type: ignore get_flow_id.admin_order_field = "flow_session__flow_id" # type: ignore def get_page_id(self, obj): if obj.page_data.page_ordinal is None: return string_concat("%s/%s (", _("not in use"), ")") % ( obj.page_data.group_id, obj.page_data.page_id) else: return "{}/{} ({})".format( obj.page_data.group_id, obj.page_data.page_id, obj.page_data.page_ordinal) get_page_id.short_description = _("Page ID") # type: ignore get_page_id.admin_order_field = "page_data__page_id" # type: ignore def get_participant(self, obj): if obj.flow_session.participation: return obj.flow_session.participation.user else: return string_concat("(", _("anonymous"), ")") get_participant.short_description = _("Owner") # type: ignore get_participant.admin_order_field = "flow_session__participation" # type: ignore def get_answer_is_null(self, obj): return obj.answer is not None get_answer_is_null.short_description = _("Has answer") # type: ignore get_answer_is_null.boolean = True # type: ignore def get_flow_session_id(self, obj): return obj.flow_session.id get_flow_session_id.short_description = _("Flow Session ID") # type: ignore get_flow_session_id.admin_order_field = "flow_session__id" # type: ignore list_filter = ( HasAnswerListFilter, "is_submitted_answer", "is_synthetic", _filter_related_only("flow_session__participation__course"), FlowIdListFilter, ) date_hierarchy = "visit_time" list_display = ( "id", "get_course", "get_flow_id", "get_page_id", "get_participant", "get_flow_session_id", "visit_time", "get_answer_is_null", "is_submitted_answer", "is_synthetic", "user", "impersonated_by", ) list_display_links = ( "id", ) search_fields = ( "=id", "=flow_session__id", "flow_session__flow_id", "page_data__group_id", "page_data__page_id", "flow_session__participation__user__username", "flow_session__participation__user__first_name", "flow_session__participation__user__last_name", ) raw_id_fields = ("flow_session", "page_data") inlines = (FlowPageVisitGradeInline,) save_on_top = True # {{{ permissions def has_add_permission(self, request): # These are created only automatically. return False def get_queryset(self, request): qs = super().get_queryset(request) if request.user.is_superuser: return qs return qs.filter( flow_session__course__participations__user=request.user, flow_session__course__participations__roles__permissions__permission # noqa =pperm.use_admin_interface) # }}} admin.site.register(FlowPageVisit, FlowPageVisitAdmin) # }}} # {{{ flow access class FlowRuleExceptionAdmin(admin.ModelAdmin): def get_course(self, obj): return obj.participation.course get_course.short_description = _("Course") # type: ignore get_course.admin_order_field = "participation__course" # type: ignore def get_participant(self, obj): return obj.participation.user get_participant.short_description = _("Participant") # type: ignore get_participant.admin_order_field = "participation__user" # type: ignore ordering = ("-creation_time",) search_fields = ( "flow_id", "participation__user__username", "participation__user__first_name", "participation__user__last_name", "comment", ) list_display = ( "get_participant", "get_course", "flow_id", "kind", "expiration", "creation_time", ) list_display_links = ( "get_participant", "flow_id", ) list_filter = ( _filter_related_only("participation__course"), "flow_id", "kind", ) date_hierarchy = "creation_time" raw_id_fields = ("participation",) # {{{ permissions def has_add_permission(self, request): # These are only created automatically. return False def get_queryset(self, request): qs = super().get_queryset(request) return _filter_participation_linked_obj_for_user(qs, request.user) exclude = ("creator", "creation_time") def save_model(self, request, obj, form, change): # pragma: no cover # This won't work since it's not allowed to add obj.creator = request.user obj.save() # }}} admin.site.register(FlowRuleException, FlowRuleExceptionAdmin) # }}} # {{{ grading class GradingOpportunityAdmin(admin.ModelAdmin): list_display = ( "name", "course", "identifier", "due_time", "shown_in_grade_book", "shown_in_participant_grade_book", ) list_filter = ( _filter_related_only("course"), "shown_in_grade_book", "shown_in_participant_grade_book", ) list_editable = ( "shown_in_grade_book", "shown_in_participant_grade_book", ) # {{{ permissions exclude = ("creation_time",) def get_queryset(self, request): qs = super().get_queryset(request) return _filter_course_linked_obj_for_user(qs, request.user) def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "course": kwargs["queryset"] = _filter_courses_for_user( Course.objects, request.user) return super().formfield_for_foreignkey( db_field, request, **kwargs) # }}} admin.site.register(GradingOpportunity, GradingOpportunityAdmin) class GradeChangeAdmin(admin.ModelAdmin): def get_course(self, obj): return obj.participation.course get_course.short_description = _("Course") # type: ignore get_course.admin_order_field = "participation__course" # type: ignore def get_opportunity(self, obj): return obj.opportunity.name get_opportunity.short_description = _("Opportunity") # type: ignore get_opportunity.admin_order_field = "opportunity" # type: ignore def get_participant(self, obj): return obj.participation.user get_participant.short_description = _("Participant") # type: ignore get_participant.admin_order_field = "participation__user" # type: ignore def get_percentage(self, obj): if obj.points is None or obj.max_points is None: return None else: return round(100*obj.points/obj.max_points) get_percentage.short_description = "%" # type: ignore list_display = ( "get_opportunity", "get_participant", "get_course", "state", "points", "max_points", "get_percentage", "attempt_id", "grade_time", ) list_display_links = ( "get_opportunity", "get_participant", ) date_hierarchy = "grade_time" search_fields = ( "opportunity__name", "opportunity__flow_id", "opportunity__identifier", "participation__user__username", "participation__user__first_name", "participation__user__last_name", "attempt_id", ) list_filter = ( _filter_related_only("opportunity__course"), _filter_related_only("opportunity"), "state", ) raw_id_fields = ("participation", "flow_session", "opportunity") # {{{ permission def get_queryset(self, request): qs = super().get_queryset(request) return _filter_participation_linked_obj_for_user(qs, request.user) exclude = ("creator", "grade_time") def save_model(self, request, obj, form, change): obj.creator = request.user obj.save() # }}} admin.site.register(GradeChange, GradeChangeAdmin) # }}} # {{{ instant message class InstantMessageAdmin(admin.ModelAdmin): def get_course(self, obj): return obj.participation.course get_course.short_description = _("Course") # type: ignore get_course.admin_order_field = "participation__course" # type: ignore def get_participant(self, obj): return obj.participation.user get_participant.short_description = _("Participant") # type: ignore get_participant.admin_order_field = "participation__user" # type: ignore list_filter = (_filter_related_only("participation__course"),) list_display = ( "get_course", "get_participant", "time", "text", ) date_hierarchy = "time" search_fields = ( "text", "participation__user__username", "participation__user__first_name", "participation__user__last_name", ) raw_id_fields = ("participation",) # {{{ permissions def has_add_permission(self, request): # These are created only automatically. return False def get_queryset(self, request): qs = super().get_queryset(request) return _filter_participation_linked_obj_for_user(qs, request.user) # }}} admin.site.register(InstantMessage, InstantMessageAdmin) # }}} # {{{ exam tickets class ExamAdmin(admin.ModelAdmin): list_filter = ( _filter_related_only("course"), "active", "listed", ) list_display = ( "course", "flow_id", "active", "listed", "no_exams_before", ) search_fields = ( "flow_id", ) date_hierarchy = "no_exams_before" # {{{ permissions def get_queryset(self, request): qs = super().get_queryset(request) return _filter_course_linked_obj_for_user(qs, request.user) def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "course": kwargs["queryset"] = _filter_courses_for_user( Course.objects, request.user) return super().formfield_for_foreignkey( db_field, request, **kwargs) # }}} admin.site.register(Exam, ExamAdmin) class ExamTicketAdmin(admin.ModelAdmin): def get_course(self, obj): return obj.participation.course get_course.short_description = _("Course") # type: ignore get_course.admin_order_field = "participation__course" # type: ignore list_filter = ( _filter_related_only("participation__course"), "state", ) raw_id_fields = ("participation",) list_display = ( "get_course", "exam", "participation", "state", "creation_time", "usage_time", ) date_hierarchy = "usage_time" search_fields = ( "exam__course__identifier", "exam__flow_id", "exam__description", "participation__user__username", "participation__user__first_name", "participation__user__last_name", ) # {{{ permissions def get_queryset(self, request): qs = super().get_queryset(request) return _filter_participation_linked_obj_for_user(qs, request.user) exclude = ("creator",) def save_model(self, request, obj, form, change): obj.creator = request.user obj.save() # }}} def revoke_exam_tickets(self, request, queryset): # noqa queryset \ .filter(state=exam_ticket_states.valid) \ .update(state=exam_ticket_states.revoked) revoke_exam_tickets.short_description = _("Revoke Exam Tickets") # type: ignore actions = [revoke_exam_tickets] admin.site.register(ExamTicket, ExamTicketAdmin) # }}} # vim: foldmethod=marker
pg_view/models/consumers.py
bocytko/pg_view
402
12760078
<filename>pg_view/models/consumers.py import sys if sys.hexversion >= 0x03000000: from queue import Empty else: from Queue import Empty class DiskCollectorConsumer(object): """ consumes information from the disk collector and provides it for the local collector classes running in the same subprocess. """ def __init__(self, q): self.result = {} self.cached_result = {} self.q = q def consume(self): # if we haven't consumed the previous value if len(self.result) != 0: return try: self.result = self.q.get_nowait() self.cached_result = self.result.copy() except Empty: # we are too fast, just do nothing. pass else: self.q.task_done() def fetch(self, wd): data = None if wd in self.result: data = self.result[wd] del self.result[wd] elif wd in self.cached_result: data = self.cached_result[wd] return data
jsonpath_ng/bin/jsonpath.py
transfluxus/jsonpath-ng
339
12760099
<gh_stars>100-1000 #!/usr/bin/python # encoding: utf-8 # Copyright © 2012 <NAME> <<EMAIL>> # This work is free. You can redistribute it and/or modify it under the # terms of the Do What The Fuck You Want To Public License, Version 2, # as published by Sam Hocevar. See the COPYING file for more details. # Use modern Python from __future__ import unicode_literals, print_function, absolute_import # Standard Library imports import json import sys import glob import argparse # JsonPath-RW imports from jsonpath_ng import parse def find_matches_for_file(expr, f): return expr.find(json.load(f)) def print_matches(matches): print('\n'.join(['{0}'.format(match.value) for match in matches])) def main(*argv): parser = argparse.ArgumentParser( description='Search JSON files (or stdin) according to a JSONPath expression.', formatter_class=argparse.RawTextHelpFormatter, epilog=""" Quick JSONPath reference (see more at https://github.com/kennknowles/python-jsonpath-rw) atomics: $ - root object `this` - current object operators: path1.path2 - same as xpath / path1|path2 - union path1..path2 - somewhere in between fields: fieldname - field with name * - any field [_start_?:_end_?] - array slice [*] - any array index """) parser.add_argument('expression', help='A JSONPath expression.') parser.add_argument('files', metavar='file', nargs='*', help='Files to search (if none, searches stdin)') args = parser.parse_args(argv[1:]) expr = parse(args.expression) glob_patterns = args.files if len(glob_patterns) == 0: # stdin mode print_matches(find_matches_for_file(expr, sys.stdin)) else: # file paths mode for pattern in glob_patterns: for filename in glob.glob(pattern): with open(filename) as f: print_matches(find_matches_for_file(expr, f)) def entry_point(): main(*sys.argv)
CondTools/BeamSpot/test/BeamSpotOnlineRecordsWriter_cfg.py
malbouis/cmssw
852
12760102
<reponame>malbouis/cmssw import FWCore.ParameterSet.Config as cms import FWCore.ParameterSet.VarParsing as VarParsing process = cms.Process("write2DB") options = VarParsing.VarParsing() options.register('unitTest', False, # default value VarParsing.VarParsing.multiplicity.singleton, # singleton or list VarParsing.VarParsing.varType.bool, # string, int, or float "are we running the unit test?") options.register('inputFile', "BeamFitResults_Run306171.txt", # default value VarParsing.VarParsing.multiplicity.singleton, # singleton or list VarParsing.VarParsing.varType.string, # string, int, or float "location of the input data") options.register('inputTag', "myTagName", # default value VarParsing.VarParsing.multiplicity.singleton, # singleton or list VarParsing.VarParsing.varType.string, # string, int, or float "output tag name") options.register('inputRecord', "BeamSpotOnlineLegacyObjectsRcd", # default value VarParsing.VarParsing.multiplicity.singleton, # singleton or list VarParsing.VarParsing.varType.string, # string, int, or float "type of record") options.register('startRun', 306171, # default value VarParsing.VarParsing.multiplicity.singleton, # singleton or list VarParsing.VarParsing.varType.int, # string, int, or float "location of the input data") options.register('startLumi', 497, # default value VarParsing.VarParsing.multiplicity.singleton, # singleton or list VarParsing.VarParsing.varType.int, # string, int, or float "IOV Start Lumi") options.parseArguments() process.load("FWCore.MessageLogger.MessageLogger_cfi") from CondCore.CondDB.CondDB_cfi import * if options.unitTest : if options.inputRecord == "BeamSpotOnlineLegacyObjectsRcd" : tag_name = 'BSLegacy_tag' else: tag_name = 'BSHLT_tag' else: tag_name = options.inputTag ################################# # Produce a SQLITE FILE ################################# CondDBBeamSpotObjects = CondDB.clone(connect = cms.string('sqlite_file:test_%s.db' % tag_name)) # choose an output name process.PoolDBOutputService = cms.Service("PoolDBOutputService", CondDBBeamSpotObjects, timetype = cms.untracked.string('lumiid'), #('lumiid'), #('runnumber') toPut = cms.VPSet(cms.PSet(record = cms.string(options.inputRecord), # BeamSpotOnline record tag = cms.string(tag_name))), # choose your favourite tag loadBlobStreamer = cms.untracked.bool(False) ) process.source = cms.Source("EmptySource") process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(1)) process.beamspotonlinewriter = cms.EDAnalyzer("BeamSpotOnlineRecordsWriter", isHLT = cms.bool((options.inputRecord == "BeamSpotOnlineHLTObjectsRcd")), InputFileName = cms.untracked.string(options.inputFile), # choose your input file ) if(options.startRun>0 and options.startLumi>0): process.beamspotonlinewriter.IOVStartRun = cms.untracked.uint32(options.startRun) # Customize your Run process.beamspotonlinewriter.IOVStartLumi = cms.untracked.uint32(options.startLumi) # Customize your Lumi process.p = cms.Path(process.beamspotonlinewriter)
jmilkfansblog/tests/test_urls.py
xiaoyh121/program
176
12760117
import unittest from jmilkfansblog.controllers import admin from jmilkfansblog.controllers import rest_api from jmilkfansblog import create_app from jmilkfansblog.models import db class TestURLs(unittest.TestCase): """Unit test for route functions.""" def setUp(self): # Destroy the Flask-Admin and Flask-Result object after delete app # object admin._views = [] rest_api.resource = [] app = create_app('jmilkfansblog.config.TestConfig') self.client = app.test_client() # Using Test app for db db.app = app db.create_all() def tearDown(self): db.session.remove() db.drop_all() if __name__ == '__main__': unittest.main()
integration_tests/samples/issues/issue_522.py
priya1puresoftware/python-slack-sdk
2,486
12760129
# export SLACK_SDK_TEST_CLASSIC_APP_BOT_TOKEN=<KEY> # python3 integration_tests/samples/issues/issue_522.py import asyncio import logging import os from slack_sdk.rtm import RTMClient logging.basicConfig(level=logging.DEBUG) LOGGER = logging.getLogger(__name__) token = os.environ["SLACK_SDK_TEST_CLASSIC_APP_BOT_TOKEN"] async def sleepy_count(name, sleep_for): for i in range(10): await asyncio.sleep(sleep_for) LOGGER.debug(f"{name} - slept {i + 1} times.") async def slack_client_and_sleeps(): # real-time-messaging Slack client client = RTMClient(token=token, run_async=True) sleepy_count_task = asyncio.create_task(sleepy_count("first counter", 1)) sleepy_count_task2 = asyncio.create_task(sleepy_count("second counter", 3)) await asyncio.gather(client.start(), sleepy_count_task, sleepy_count_task2) async def slack_client(): # real-time-messaging Slack client client = RTMClient(token=token, run_async=True) await asyncio.gather(client.start()) async def sleeps(): sleepy_count_task = asyncio.create_task(sleepy_count("first counter", 1)) sleepy_count_task2 = asyncio.create_task(sleepy_count("second counter", 3)) await asyncio.gather(sleepy_count_task, sleepy_count_task2) if __name__ == "__main__": LOGGER.info(f"Try: kill -2 {os.getpid()} or ctrl+c") if len(sys.argv) > 1: option = sys.argv[1] if option == "1": # sigint closes program correctly asyncio.run(slack_client()) elif option == "2": # sigint closes program correctly asyncio.run(sleeps()) elif option == "3": # sigint doesn't actually close properly asyncio.run(slack_client_and_sleeps()) else: # sigint doesn't actually close properly asyncio.run(slack_client_and_sleeps())
src/mcedit2/panels/pending_imports.py
elcarrion06/mcedit2
673
12760143
<reponame>elcarrion06/mcedit2<filename>src/mcedit2/panels/pending_imports.py<gh_stars>100-1000 """ pending_imports """ from __future__ import absolute_import, division, print_function, unicode_literals from PySide import QtGui import logging log = logging.getLogger(__name__) class PendingImportsWidget(QtGui.QWidget): def __init__(self): super(PendingImportsWidget, self).__init__() self.importsListWidget = QtGui.QListView() self.importsListModel = QtGui.QStandardItemModel() self.importsListWidget.setModel(self.importsListModel) self.importsListWidget.clicked.connect(self.listClicked) self.importsListWidget.doubleClicked.connect(self.listDoubleClicked)
questionary/prompts/autocomplete.py
qualichat/questionary
851
12760194
<filename>questionary/prompts/autocomplete.py<gh_stars>100-1000 from typing import ( Any, Callable, Dict, List, Optional, Tuple, Union, Iterable, ) from prompt_toolkit.completion import CompleteEvent, Completer, Completion from prompt_toolkit.document import Document from prompt_toolkit.formatted_text import HTML from prompt_toolkit.shortcuts.prompt import PromptSession, CompleteStyle from prompt_toolkit.styles import Style, merge_styles from prompt_toolkit.lexers import SimpleLexer from questionary.constants import DEFAULT_QUESTION_PREFIX, DEFAULT_STYLE from questionary.prompts.common import build_validator from questionary.question import Question class WordCompleter(Completer): choices_source: Union[List[str], Callable[[], List[str]]] ignore_case: bool meta_information: Dict[str, Any] match_middle: bool def __init__( self, choices: Union[List[str], Callable[[], List[str]]], ignore_case: bool = True, meta_information: Optional[Dict[str, Any]] = None, match_middle: bool = True, ) -> None: self.choices_source = choices self.ignore_case = ignore_case self.meta_information = meta_information or {} self.match_middle = match_middle def _choices(self) -> Iterable[str]: return ( self.choices_source() if callable(self.choices_source) else self.choices_source ) def _choice_matches(self, word_before_cursor: str, choice: str) -> int: """Match index if found, -1 if not. """ if self.ignore_case: choice = choice.lower() if self.match_middle: return choice.find(word_before_cursor) elif choice.startswith(word_before_cursor): return 0 else: return -1 @staticmethod def _display_for_choice(choice: str, index: int, word_before_cursor: str) -> HTML: return HTML("{}<b><u>{}</u></b>{}").format( choice[:index], choice[index : index + len(word_before_cursor)], choice[index + len(word_before_cursor) : len(choice)], ) def get_completions( self, document: Document, complete_event: CompleteEvent ) -> Iterable[Completion]: choices = self._choices() # Get word/text before cursor. word_before_cursor = document.text_before_cursor if self.ignore_case: word_before_cursor = word_before_cursor.lower() for choice in choices: index = self._choice_matches(word_before_cursor, choice) if index == -1: # didn't find a match continue display_meta = self.meta_information.get(choice, "") display = self._display_for_choice(choice, index, word_before_cursor) yield Completion( choice, start_position=-len(choice), display=display.formatted_text, display_meta=display_meta, style="class:answer", selected_style="class:selected", ) def autocomplete( message: str, choices: List[str], default: str = "", qmark: str = DEFAULT_QUESTION_PREFIX, completer: Optional[Completer] = None, meta_information: Optional[Dict[str, Any]] = None, ignore_case: bool = True, match_middle: bool = True, complete_style: CompleteStyle = CompleteStyle.COLUMN, validate: Any = None, style: Optional[Style] = None, **kwargs: Any, ) -> Question: """Prompt the user to enter a message with autocomplete help. Example: >>> import questionary >>> questionary.autocomplete( ... 'Choose ant specie', ... choices=[ ... 'Camponotus pennsylvanicus', ... 'Linepithema humile', ... 'Eciton burchellii', ... "Atta colombica", ... 'Polyergus lucidus', ... 'Polyergus rufescens', ... ]).ask() ? Choose ant specie Atta colombica 'Atta colombica' .. image:: ../images/autocomplete.gif This is just a really basic example, the prompt can be customised using the parameters. Args: message: Question text choices: Items shown in the selection, this contains items as strings default: Default return value (single value). qmark: Question prefix displayed in front of the question. By default this is a ``?`` completer: A prompt_toolkit :class:`prompt_toolkit.completion.Completion` implementation. If not set, a questionary completer implementation will be used. meta_information: A dictionary with information/anything about choices. ignore_case: If true autocomplete would ignore case. match_middle: If true autocomplete would search in every string position not only in string begin. complete_style: How autocomplete menu would be shown, it could be ``COLUMN`` ``MULTI_COLUMN`` or ``READLINE_LIKE`` from :class:`prompt_toolkit.shortcuts.CompleteStyle`. validate: Require the entered value to pass a validation. The value can not be submitted until the validator accepts it (e.g. to check minimum password length). This can either be a function accepting the input and returning a boolean, or an class reference to a subclass of the prompt toolkit Validator class. style: A custom color and style for the question parts. You can configure colors as well as font types for different elements. Returns: :class:`Question`: Question instance, ready to be prompted (using ``.ask()``). """ merged_style = merge_styles([DEFAULT_STYLE, style]) def get_prompt_tokens() -> List[Tuple[str, str]]: return [("class:qmark", qmark), ("class:question", " {} ".format(message))] def get_meta_style(meta: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: if meta: for key in meta: meta[key] = HTML("<text>{}</text>").format(meta[key]) return meta validator = build_validator(validate) if completer is None: if not choices: raise ValueError("No choices is given, you should use Text question.") # use the default completer completer = WordCompleter( choices, ignore_case=ignore_case, meta_information=get_meta_style(meta_information), match_middle=match_middle, ) p = PromptSession( get_prompt_tokens, lexer=SimpleLexer("class:answer"), style=merged_style, completer=completer, validator=validator, complete_style=complete_style, **kwargs, ) p.default_buffer.reset(Document(default)) return Question(p.app)
tests/integrational/native_sync/test_fetch_messages.py
natekspencer/pubnub-python
146
12760200
import time from pubnub.models.consumer.history import PNFetchMessagesResult from pubnub.models.consumer.pubsub import PNPublishResult from pubnub.pubnub import PubNub from tests.helper import pnconf_copy from tests.integrational.vcr_helper import use_cassette_and_stub_time_sleep_native COUNT = 120 class TestFetchMessages: @use_cassette_and_stub_time_sleep_native( 'tests/integrational/fixtures/native_sync/fetch_messages/max_100_single.yaml', filter_query_parameters=['uuid', 'pnsdk', 'l_pub']) def test_fetch_messages_return_max_100_for_single_channel(self): ch = "fetch-messages-ch-1" pubnub = PubNub(pnconf_copy()) pubnub.config.uuid = "fetch-messages-uuid" for i in range(COUNT): envelope = pubnub.publish().channel(ch).message("hey-%s" % i).sync() assert isinstance(envelope.result, PNPublishResult) assert envelope.result.timetoken > 0 while True: time.sleep(1) if len(pubnub.history().channel(ch).count(COUNT).sync().result.messages) >= 100: break envelope = pubnub.fetch_messages().channels(ch).sync() assert envelope is not None assert isinstance(envelope.result, PNFetchMessagesResult) assert len(envelope.result.channels[ch]) == 100 @use_cassette_and_stub_time_sleep_native( 'tests/integrational/fixtures/native_sync/fetch_messages/max_25_multiple.yaml', filter_query_parameters=['uuid', 'pnsdk', 'l_pub']) def test_fetch_messages_return_max_25_for_multiple_channels(self): ch1 = "fetch-messages-ch-1" ch2 = "fetch-messages-ch-2" pubnub = PubNub(pnconf_copy()) pubnub.config.uuid = "fetch-messages-uuid" for i in range(COUNT): envelope1 = pubnub.publish().channel(ch1).message("hey-%s" % i).sync() assert isinstance(envelope1.result, PNPublishResult) assert envelope1.result.timetoken > 0 envelope2 = pubnub.publish().channel(ch2).message("hey-%s" % i).sync() assert isinstance(envelope2.result, PNPublishResult) assert envelope2.result.timetoken > 0 while True: time.sleep(1) if len(pubnub.history().channel(ch1).count(COUNT).sync().result.messages) >= 100 and \ len(pubnub.history().channel(ch2).count(COUNT).sync().result.messages) >= 100: break envelope = pubnub.fetch_messages().channels([ch1, ch2]).sync() assert isinstance(envelope.result, PNFetchMessagesResult) assert len(envelope.result.channels[ch1]) == 25 assert len(envelope.result.channels[ch2]) == 25 @use_cassette_and_stub_time_sleep_native( 'tests/integrational/fixtures/native_sync/fetch_messages/max_25_with_actions.yaml', filter_query_parameters=['uuid', 'pnsdk', 'l_pub']) def test_fetch_messages_actions_return_max_25(self): ch = "fetch-messages-actions-ch-1" pubnub = PubNub(pnconf_copy()) pubnub.config.uuid = "fetch-messages-uuid" for i in range(COUNT): envelope = pubnub.publish().channel(ch).message("hey-%s" % i).sync() assert isinstance(envelope.result, PNPublishResult) assert envelope.result.timetoken > 0 while True: time.sleep(1) if len(pubnub.history().channel(ch).count(COUNT).sync().result.messages) >= 100: break envelope = pubnub.fetch_messages().channels(ch).include_message_actions(True).sync() assert envelope is not None assert isinstance(envelope.result, PNFetchMessagesResult) assert len(envelope.result.channels[ch]) == 25
examples/ocaml_rockstar.py
hoojaoh/rockstar
4,603
12760214
from rockstar import RockStar ocaml_code = 'print_string "Hello world!\n";;' rock_it_bro = RockStar(days=400, file_name='hello.ml', code=ocaml_code) rock_it_bro.make_me_a_rockstar()
POSITIONMANAGE/api_position.py
CJuanvip/quant-trading-system
281
12760243
import json def api_position(db,cursor,temp,principal5,principal30,principal60,principal300,principal900,principal1800,coin_number5,coin_number30,coin_number60,coin_number300,coin_number900,coin_number1800,judge_position,sell_amount,buy_amount,current_price): all_buyamount = 0 all_sellamount = 0 trade_amonut = {} flee = 0.0025 for i in temp: if(i == '5'): trade_amonut['5'] = position(coin_number5,principal5,buy_amount,sell_amount,flee,judge_position,temp[i],current_price) if(trade_amonut['5']['action'] == 'buy'): principal5 = trade_amonut['5']['value']['principal'] coin_number5 = trade_amonut['5']['value']['coin_number'] all_buyamount += trade_amonut['5']['value']['buy_amount'] if(trade_amonut['5']['action'] == 'sell'): principal5 = trade_amonut['5']['value']['principal'] coin_number5 = trade_amonut['5']['value']['coin_number'] all_sellamount += trade_amonut['5']['value']['sell_amount'] if(i == '30'): trade_amonut['30'] = position(coin_number30,principal30,buy_amount,sell_amount,flee,judge_position,temp[i],current_price) if (trade_amonut['30']['action'] == 'buy'): principal30 = trade_amonut['30']['value']['principal'] coin_number30 = trade_amonut['30']['value']['coin_number'] all_buyamount += trade_amonut['30']['value']['buy_amount'] if (trade_amonut['30']['action'] == 'sell'): principal30 = trade_amonut['30']['value']['principal'] coin_number30 = trade_amonut['30']['value']['coin_number'] all_sellamount += trade_amonut['30']['value']['sell_amount'] if (i == '60'): trade_amonut['60'] = position(coin_number60,principal60,buy_amount,sell_amount,flee,judge_position,temp[i],current_price) if (trade_amonut['60']['action'] == 'buy'): principal60 = trade_amonut['60']['value']['principal'] coin_number60 = trade_amonut['60']['value']['coin_number'] all_buyamount += trade_amonut['60']['value']['buy_amount'] if (trade_amonut['60']['action'] == 'sell'): principal60 = trade_amonut['60']['value']['principal'] coin_number60 = trade_amonut['60']['value']['coin_number'] all_sellamount += trade_amonut['60']['value']['sell_amount'] if (i == '300'): trade_amonut['300'] = position(coin_number300,principal300,buy_amount,sell_amount,flee,judge_position,temp[i],current_price) if (trade_amonut['300']['action'] == 'buy'): principal300 = trade_amonut['300']['value']['principal'] coin_number300 = trade_amonut['300']['value']['coin_number'] all_buyamount += trade_amonut['300']['value']['buy_amount'] if (trade_amonut['300']['action'] == 'sell'): principal300 = trade_amonut['300']['value']['principal'] coin_number300 = trade_amonut['300']['value']['coin_number'] all_sellamount += trade_amonut['300']['value']['sell_amount'] if (i == '900'): trade_amonut['900'] = position(coin_number900,principal900,buy_amount,sell_amount,flee,judge_position,temp[i],current_price) if (trade_amonut['900']['action'] == 'buy'): principal900 = trade_amonut['900']['value']['principal'] coin_number900 = trade_amonut['900']['value']['coin_number'] all_buyamount += trade_amonut['900']['value']['buy_amount'] if (trade_amonut['900']['action'] == 'sell'): principal900 = trade_amonut['900']['value']['principal'] coin_number900 = trade_amonut['900']['value']['coin_number'] all_sellamount += trade_amonut['900']['value']['sell_amount'] if (i == '1800'): trade_amonut['1800'] = position(coin_number1800,principal1800,buy_amount,sell_amount,flee,judge_position,temp[i],current_price) if (trade_amonut['1800']['action'] == 'buy'): principal1800 = trade_amonut['1800']['value']['principal'] coin_number1800 = trade_amonut['1800']['value']['coin_number'] all_buyamount += trade_amonut['1800']['value']['buy_amount'] if (trade_amonut['1800']['action'] == 'sell'): principal1800 = trade_amonut['1800']['value']['principal'] coin_number1800 = trade_amonut['1800']['value']['coin_number'] all_sellamount += trade_amonut['1800']['value']['sell_amount'] if(all_buyamount > all_sellamount): uid = exec('buy', all_buyamount - all_sellamount) sql = "INSERT INTO order_table(uid , valuess , timess) VALUES ('%s', '%s', '%s')" % (str(uid), json.dumps( {'principal5': principal5, 'coin_number5': coin_number5, 'principal30': principal30, 'coin_number30': coin_number30, 'principal60': principal60, 'coin_number60': coin_number60, 'principal300': principal300, 'coin_number300': coin_number300, 'principal900': principal900, 'coin_number900': coin_number900, 'principal1800': principal1800, 'coin_number1800': coin_number1800, 'result': trade_amonut, 'current_price': current_price}), 0) cursor.execute(sql) db.commit() if(all_sellamount > all_buyamount): uid = exec('sell',all_sellamount-all_buyamount) sql = "INSERT INTO order_table(uid , valuess , timess) VALUES ('%s', '%s', '%s')" % (str(uid), json.dumps( {'principal5': principal5, 'coin_number5': coin_number5, 'principal30': principal30, 'coin_number30': coin_number30, 'principal60': principal60, 'coin_number60': coin_number60, 'principal300': principal300, 'coin_number300': coin_number300, 'principal900': principal900, 'coin_number900': coin_number900, 'principal1800': principal1800, 'coin_number1800': coin_number1800, 'result': trade_amonut, 'current_price': current_price}), 0) cursor.execute(sql) db.commit() return {'principal5': principal5, 'coin_number5': coin_number5, 'principal30': principal30, 'coin_number30': coin_number30, 'principal60': principal60, 'coin_number60': coin_number60, 'principal300': principal300, 'coin_number300': coin_number300, 'principal900': principal900, 'coin_number900': coin_number900, 'principal1800': principal1800, 'coin_number1800': coin_number1800} def position(coin_number,principal,buy_amount,sell_amount,flee,judge_position,index,current_price): sposition = ( coin_number * current_price ) / (principal + ( coin_number * current_price )) if ((index['buy_index'] > index['sell_index']) and (judge_position > sposition)): buy_amount2 = (index['buy_index'] / (index['buy_index'] + index['sell_index'])) * buy_amount if(buy_amount2 < principal): coin_number = ((buy_amount2 - buy_amount2 * flee) / current_price) + coin_number principal = principal - buy_amount2 else: buy_amount2 = principal coin_number = ((principal - principal * flee) / current_price) + coin_number principal = 0 return {'action':'buy','value':{'buy_amount':buy_amount2,'principal':principal,'coin_number':coin_number}} if (index['buy_index'] < index['sell_index'] and (sposition > 0)): sell_amount2 = (index['sell_index'] / (index['buy_index'] + index['sell_index'])) * sell_amount if((sell_amount2 / current_price) < coin_number): coin_number = coin_number - (sell_amount2 / current_price) principal = principal + (sell_amount2 - sell_amount2 * flee) else: sell_amount2 = coin_number * current_price principal = principal + (coin_number - coin_number * flee) * current_price coin_number = 0 return {'action':'sell','value': {'sell_amount': sell_amount2, 'principal': principal, 'coin_number': coin_number}} return {'action': 'none'} def exec(action,buy_amount): return 23231321
cookies/run_test.py
nikicc/anaconda-recipes
130
12760260
# new cookies.py from cookies import Cookies, Cookie cookies = Cookies(rocky='road') # Can also write explicitly: cookies['rocky'] = Cookie['road'] cookies['rocky'].path = "/cookie" assert cookies.render_request() == 'rocky=road'
venv/Lib/site-packages/dask_ml/cluster/__init__.py
ZhangQingsen/CISC849Proj
803
12760291
<gh_stars>100-1000 """Unsupervised Clustering Algorithms""" from .k_means import KMeans # noqa from .spectral import SpectralClustering # noqa
lib/metrics/F1_running_score.py
shampooma/openseg.pytorch
1,069
12760335
<gh_stars>1000+ ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: JingyiXie, RainbowSecret ## Microsoft Research ## <EMAIL> ## Copyright (c) 2019 ## ## Code adapted from: ## https://github.com/nv-tlabs/GSCNN/blob/master/utils/f_boundary.py ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from __future__ import absolute_import from __future__ import division from __future__ import print_function import pdb import numpy as np import torch from multiprocessing.pool import Pool class F1RunningScore(object): def __init__(self, configer=None, num_classes=None, boundary_threshold=0.00088, num_proc=15): assert configer is not None or num_classes is not None self.configer = configer if configer is not None: self.n_classes = self.configer.get('data', 'num_classes') else: self.n_classes = num_classes self.ignore_index = -1 self.boundary_threshold = boundary_threshold self.pool = Pool(processes=num_proc) self.num_proc = num_proc self._Fpc = 0 self._Fc = 0 self.seg_map_cache = [] self.gt_map_cache = [] def _update_cache(self, seg_map, gt_map): """ Append inputs to `seg_map_cache` and `gt_map_cache`. Returns whether the length reached our pool size. """ self.seg_map_cache.extend(seg_map) self.gt_map_cache.extend(gt_map) return len(self.gt_map_cache) >= self.num_proc def _get_from_cache(self): n = self.num_proc seg_map, self.seg_map_cache = self.seg_map_cache[:n], self.seg_map_cache[n:] gt_map, self.gt_map_cache = self.gt_map_cache[:n], self.gt_map_cache[n:] return seg_map, gt_map def update(self, seg_map, gt_map): if self._update_cache(seg_map, gt_map): seg_map, gt_map = self._get_from_cache() self._update_scores(seg_map, gt_map) else: return def _update_scores(self, seg_map, gt_map): batch_size = len(seg_map) if batch_size == 0: return Fpc = np.zeros(self.n_classes) Fc = np.zeros(self.n_classes) for class_id in range(self.n_classes): args = [] for i in range(batch_size): if seg_map[i].shape[0] == self.n_classes: pred_i = seg_map[i][class_id] > 0.5 pred_is_boundary = True else: pred_i = seg_map[i] == class_id pred_is_boundary = False args.append([ (pred_i).astype(np.uint8), (gt_map[i] == class_id).astype(np.uint8), (gt_map[i] == -1), self.boundary_threshold, class_id, pred_is_boundary ]) results = self.pool.map(db_eval_boundary, args) results = np.array(results) Fs = results[:, 0] _valid = ~np.isnan(Fs) Fc[class_id] = np.sum(_valid) Fs[np.isnan(Fs)] = 0 Fpc[class_id] = sum(Fs) self._Fc = self._Fc + Fc self._Fpc = self._Fpc + Fpc def get_scores(self): if self.seg_map_cache is None: return 0, 0 self._update_scores(self.seg_map_cache, self.gt_map_cache) F_score = np.sum(self._Fpc / self._Fc) / self.n_classes F_score_classwise = self._Fpc / self._Fc return F_score, F_score_classwise def reset(self): self._Fpc = self._Fc = 0 def db_eval_boundary(args): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. Returns: F (float): boundaries F-measure P (float): boundaries precision R (float): boundaries recall """ foreground_mask, gt_mask, ignore_mask, bound_th, class_id, pred_is_boundary = args assert np.atleast_3d(foreground_mask).shape[2] == 1 bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th*np.linalg.norm(foreground_mask.shape)) # print(bound_pix) # print(gt.shape) # print(np.unique(gt)) foreground_mask[ignore_mask] = 0 gt_mask[ignore_mask] = 0 # Get the pixel boundaries of both masks if pred_is_boundary: fg_boundary = foreground_mask else: fg_boundary = seg2bmap(foreground_mask) gt_boundary = seg2bmap(gt_mask) from skimage.morphology import disk from cv2 import dilate def binary_dilation(x, d): return dilate( x.astype(np.uint8), d).astype(np.bool) fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F, precision def seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. <NAME> <<EMAIL>> January 2003 """ seg = seg.astype(np.bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not (width > w | height > h | abs(ar1 - ar2) > 0.01),\ 'Can''t convert %dx%d seg to %dx%d bmap.' % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + floor((y - 1) + height / h) i = 1 + floor((x - 1) + width / h) bmap[j, i] = 1 return bmap
krop/build_rop.py
tszentendrei/henkaku
534
12760371
#!/usr/bin/env python3 from sys import argv, exit import tempfile import os.path import subprocess tpl = """ .equ ENC_PAYLOAD_ADDR, {payload_addr} .equ ENC_PAYLOAD_SIZE, {payload_size} .equ BASE, {sysmem_base} .equ SECOND_PAYLOAD, {second_payload} """ prefix = "arm-vita-eabi-" def build(tmp, code): src_file = os.path.join(tmp, "rop.S") obj_file = os.path.join(tmp, "rop.o") bin_file = os.path.join(tmp, "rop.bin") fout = open(src_file, "wb") fout.write(code) fout.close() subprocess.check_call([prefix + "as", src_file, "-o", obj_file]) subprocess.check_call([prefix + "objcopy", "-O", "binary", obj_file, bin_file]) return bin_file def analyze(tmp, bin_file): db_file = os.path.join(tmp, "rop.db") subprocess.check_call(["python3", "krop/ropfuscator.py", "analyze", bin_file, db_file, "DxT9HVn5"]) return db_file def obfuscate(tmp, bin_file, db_file): obf_file = os.path.join(tmp, "rop.obf") subprocess.check_call(["python3", "krop/ropfuscator.py", "generate", bin_file, obf_file, db_file]) fin = open(obf_file, "rb") data = fin.read() fin.close() return data def chunk(b, size): if len(b) % size != 0: raise RuntimeError("chunk: b % size != 0") return [b[x * size:(x + 1) * size] for x in range(0, len(b) // size)] def write_rop_code(krop, relocs, addr_pos, size_shift_pos, size_xor_pos, size_plain_pos, second_payload_pos): output = "" output += "from rop import Ret, Load\n" output += "def krop(rop):\n" output += " c = rop.caller\n" output += " d = rop.data\n" tpl = " c.store({}, d.krop + 0x{:x})\n" for x, (addr, reloc) in enumerate(zip(krop, relocs)): addr = int.from_bytes(addr, "little") if reloc == 0: s = "0x{:x}".format(addr) else: output += " c.add(Load(d.sysmem_base), 0x{:x})\n".format(addr) s = "Ret" output += tpl.format(s, x * 4) output += " c.store(Load(d.kx_loader_addr), d.krop + 0x{:x})\n".format(addr_pos * 4) # I've hardcoded payload size to be 0x200, deal with it payload_size = 0x200 output += " c.store(0x{:x}, d.krop + 0x{:x})\n".format((payload_size >> 2) + 0x10, size_shift_pos * 4) output += " c.store(0x{:x}, d.krop + 0x{:x})\n".format(payload_size ^ 0x40, size_xor_pos * 4) output += " c.store(0x{:x}, d.krop + 0x{:x})\n".format(payload_size, size_plain_pos * 4) output += " c.store(d.second_payload, d.krop + 0x{:x})\n".format(second_payload_pos * 4) return output def main(): if len(argv) != 3: print("Usage: build_rop.py rop.S output-directory/") return -1 fin = open(argv[1], "rb") code = fin.read() fin.close() tags = { "payload_addr": 0xF0F0F0F0, "payload_size": 0x0A0A0A00, "sysmem_base": 0xB0B00000, "second_payload": 0xC0C0C0C0, } with tempfile.TemporaryDirectory() as tmp: first_bin = build(tmp, tpl.format(payload_addr=0, payload_size=0, sysmem_base=0, second_payload=0).encode("ascii") + code) db_file = analyze(tmp, first_bin) first = obfuscate(tmp, first_bin, db_file) second_bin = build(tmp, tpl.format(**tags).encode("ascii") + code) second = obfuscate(tmp, second_bin, db_file) if len(first) != len(second): print("wtf? got different krop lengths") return -2 # Find differences in krops, a difference indicates either that this address depends on sysmem base or it's # payload addr/size krop = first = chunk(first, 4) second = chunk(second, 4) relocs = [0] * len(first) addr_pos = size_shift_pos = size_xor_pos = size_plain_pos = second_payload_pos = -1 for i, (first_word, second_word) in enumerate(zip(first, second)): if first_word != second_word: second = int.from_bytes(second_word, "little") if second == tags["payload_addr"]: addr_pos = i elif second == (tags["payload_size"] >> 2) + 0x10: size_shift_pos = i elif second == tags["payload_size"] ^ 0x40: size_xor_pos = i elif second == tags["payload_size"]: size_plain_pos = i elif second == tags["second_payload"]: second_payload_pos = i else: relocs[i] = 1 if -1 in [addr_pos, size_shift_pos, size_xor_pos, size_plain_pos, second_payload_pos]: print("unable to resolve positions: addr={}, size_shift={}, size_xor={}, size_plain={}, second_payload={}".format( addr_pos, size_shift_pos, size_xor_pos, size_plain_pos, second_payload_pos)) return -2 print("Kernel rop size: 0x{:x} bytes".format(len(krop) * 4)) with open(os.path.join(argv[2], "krop.py"), "w") as fout: fout.write(write_rop_code(krop, relocs, addr_pos, size_shift_pos, size_xor_pos, size_plain_pos, second_payload_pos)) if __name__ == "__main__": exit(main())
FeatureProject/cut_td_idf.py
liruifeng-01/nlp_xiaojiang
1,379
12760393
# -*- coding: UTF-8 -*- # !/usr/bin/python # @time :2019/4/1 10:35 # @author :Mo # @function :cut sentences from conf.path_config import chicken_and_gossip_path, td_idf_cut_path, td_idf_cut_pinyin from utils.text_tools import txtWrite, txtRead, get_syboml, strQ2B from conf.path_config import projectdir from gensim import corpora, models import xpinyin import pickle import jieba def cut_td_idf(sources_path, target_path): """ 结巴切词,汉语 :param path: :return: """ print("cut_td_idf start! ") corpus = txtRead(sources_path) governments = [] for corpus_one in corpus: corpus_one_clear = corpus_one.replace(' ', '').strip() ques_q2b = strQ2B(corpus_one_clear.strip()) ques_q2b_syboml = get_syboml(ques_q2b) governments.append(ques_q2b_syboml.strip()) government_ques = list(map(lambda x: ' '.join(jieba.lcut(x)), governments)) topic_ques_all = [] for topic_ques_one in government_ques: top_ques_aqlq = topic_ques_one.replace(' ', ' ').replace(' ', ' ').strip() + '\n' topic_ques_all.append(top_ques_aqlq) txtWrite(topic_ques_all, target_path) print("cut_td_idf ok! " + sources_path) def cut_td_idf_pinyin(sources_path, target_path): #获取拼音 """ 汉语转拼音 :param path: :return: """ pin = xpinyin.Pinyin() corpus = txtRead(sources_path) topic_ques_all = [] corpus_count = 0 for corpus_one in corpus: corpus_count += 1 # time1 = time.time() corpus_one_clear = corpus_one.replace(' ', '').strip() ques_q2b = strQ2B(corpus_one_clear.strip()) ques_q2b_syboml = get_syboml(ques_q2b) ques_q2b_syboml_pinying = pin.get_pinyin(ques_q2b_syboml.replace(' ', '').replace(' ', '').strip(), ' ') topic_ques_all.append(ques_q2b_syboml_pinying + '\n') # time2 = time.time() # print(str(corpus_count) + 'time:' + str(time2 - time1)) txtWrite(topic_ques_all, target_path) print("cut_td_idf_pinyin ok! " + sources_path) def init_tfidf_chinese_or_pinyin(sources_path): """ 构建td_idf :param path: :return: """ questions = txtRead(sources_path) corpora_documents = [] for item_text in questions: item_seg = list(jieba.cut(str(item_text).strip())) corpora_documents.append(item_seg) dictionary = corpora.Dictionary(corpora_documents) corpus = [dictionary.doc2bow(text) for text in corpora_documents] tfidf_model = models.TfidfModel(corpus) print("init_tfidf_chinese_or_pinyin ok! " + sources_path) file = open(sources_path.replace(".csv", "_dictionary_model.pkl"), 'wb') pickle.dump([dictionary, tfidf_model], file) if __name__ == '__main__': # path_text = projectdir + '/Data/chicken_gossip.txt' # sentences = txtRead(path_text) # sentences_q = [] # for sentences_one in sentences: # sentences_one_replace = sentences_one.replace(" ", "").replace("\t", "") # sentences_one_replace_split = sentences_one_replace.split("|") # sentence_new = sentences_one_replace_split[0] + "\t" + "".join(sentences_one_replace_split[1:]) # sentences_q.append(sentence_new) # sentences = txtWrite(sentences_q, projectdir + '/Data/chicken_and_gossip.txt') cut_td_idf(chicken_and_gossip_path, td_idf_cut_path) cut_td_idf_pinyin(chicken_and_gossip_path, td_idf_cut_pinyin) init_tfidf_chinese_or_pinyin(td_idf_cut_path) init_tfidf_chinese_or_pinyin(td_idf_cut_pinyin) print("corpus ok!")
mocodo/dynamic.py
JeanHenri79/mocodo
158
12760394
#!/usr/bin/env python # encoding: utf-8 class Dynamic(str): """Wrapper for the strings that need to be dynamically interpreted by the generated Python files.""" pass
tests/test_repr.py
dolfinus/pexpect
2,132
12760402
""" Test __str__ methods. """ import pexpect from . import PexpectTestCase class TestCaseMisc(PexpectTestCase.PexpectTestCase): def test_str_spawnu(self): """ Exercise spawnu.__str__() """ # given, p = pexpect.spawnu('cat') # exercise, value = str(p) # verify assert isinstance(value, str) def test_str_spawn(self): """ Exercise spawn.__str__() """ # given, p = pexpect.spawn('cat') # exercise, value = str(p) # verify assert isinstance(value, str) def test_str_before_spawn(self): """ Exercise derived spawn.__str__() """ # given, child = pexpect.spawn(None, None) child.read_nonblocking = lambda size, timeout: b'' try: child.expect('alpha', timeout=0.1) except pexpect.TIMEOUT as e: str(e) # Smoketest else: assert False, 'TIMEOUT exception expected. No exception raised.'
controlcenter/__init__.py
EnriqueSoria/django-controlcenter
980
12760428
from .dashboards import Dashboard # NOQA
workshop_material/029_find_paper2.py
nrupatunga/pyimageconf2018
106
12760496
<gh_stars>100-1000 from dlib import * import numpy as np import sys sys.path = ['./superfast/build'] + sys.path import superfast # NEW!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! def discard_all_but_largest_blob(img): labels, num_blobs = label_connected_blobs(img, connected_if_both_not_zero=True) h = get_histogram(labels, num_blobs) # ignore background blobs h[0] = 0 largest_blob = np.argmax(h) superfast.zero_pixels_not_labeled_with_val(img, labels, largest_blob) return img #img = load_grayscale_image(sys.argv[1]) # discarding all but largest blob fixes this image img = load_grayscale_image('./images/find_page/paper22.jpg') # What about this image? Need to do something to fix it #img = load_grayscale_image('./images/find_page/tissue_04.jpg') ht = hough_transform(300) img = resize_image(img, ht.size, ht.size) win1 = image_window(img) ig = image_gradients(10) x = ig.gradient_x(img) y = ig.gradient_y(img) edges = suppress_non_maximum_edges(x,y) win3 = image_window(edges) edges = discard_all_but_largest_blob(hysteresis_threshold(edges)) # NEW!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! win4 = image_window(edges) himg = ht(edges) hits = ht.find_strong_hough_points(himg, hough_count_thresh=ht.size/5, angle_nms_thresh=15, radius_nms_thresh=10) lines = [ht.get_line(p) for p in hits[0:4]] win1.add_overlay(lines) page = extract_image_4points(img, lines, 200,200) win_page = image_window(page) input("hit enter to exit")
runway/cfngin/actions/init.py
onicagroup/runway
134
12760497
"""CFNgin init action.""" from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Optional, Union, cast from ...compat import cached_property from ...config.models.cfngin import CfnginStackDefinitionModel from ...core.providers.aws.s3 import Bucket from ..exceptions import CfnginBucketAccessDenied from . import deploy from .base import BaseAction if TYPE_CHECKING: import threading from ..._logging import RunwayLogger from ...context import CfnginContext from ..providers.aws.default import ProviderBuilder LOGGER = cast("RunwayLogger", logging.getLogger(__name__)) class Action(BaseAction): """Initialize environment.""" NAME = "init" DESCRIPTION = "Initialize environment" def __init__( self, context: CfnginContext, provider_builder: Optional[ProviderBuilder] = None, cancel: Optional[threading.Event] = None, ): """Instantiate class. This class creates a copy of the context object prior to initialization as some of it can perform destructive actions on the context object. Args: context: The context for the current run. provider_builder: An object that will build a provider that will be interacted with in order to perform the necessary actions. cancel: Cancel handler. """ super().__init__( context=context.copy(), provider_builder=provider_builder, cancel=cancel ) @property def _stack_action(self) -> Any: """Run against a step.""" return None @cached_property def cfngin_bucket(self) -> Optional[Bucket]: """CFNgin bucket. Raises: CfnginBucketRequired: cfngin_bucket not defined. """ if not self.context.bucket_name: return None return Bucket( self.context, name=self.context.bucket_name, region=self.context.bucket_region, ) @cached_property def default_cfngin_bucket_stack(self) -> CfnginStackDefinitionModel: """CFNgin bucket stack.""" return CfnginStackDefinitionModel( class_path="runway.cfngin.blueprints.cfngin_bucket.CfnginBucket", in_progress_behavior="wait", name="cfngin-bucket", termination_protection=True, variables={"BucketName": self.context.bucket_name}, ) def run( self, *, concurrency: int = 0, dump: Union[bool, str] = False, # pylint: disable=unused-argument force: bool = False, # pylint: disable=unused-argument outline: bool = False, # pylint: disable=unused-argument tail: bool = False, upload_disabled: bool = True, # pylint: disable=unused-argument **_kwargs: Any, ) -> None: """Run the action. Args: concurrency: The maximum number of concurrent deployments. dump: Not used by this action force: Not used by this action. outline: Not used by this action. tail: Tail the stack's events. upload_disabled: Not used by this action. Raises: CfnginBucketAccessDenied: Could not head cfngin_bucket. """ if not self.cfngin_bucket: LOGGER.info("skipped; cfngin_bucket not defined") return if self.cfngin_bucket.forbidden: raise CfnginBucketAccessDenied(bucket_name=self.cfngin_bucket.name) if self.cfngin_bucket.exists: LOGGER.info("cfngin_bucket %s already exists", self.cfngin_bucket.name) return if self.context.get_stack("cfngin-bucket"): LOGGER.verbose( "found stack for creating cfngin_bucket: cfngin-bucket", ) self.context.stack_names = ["cfngin-bucket"] else: LOGGER.notice("using default blueprint to create cfngin_bucket...") self.context.config.stacks = [self.default_cfngin_bucket_stack] # clear cached values that were populated by checking the previous condition self.context._del_cached_property( # pylint: disable=protected-access "stacks", "stacks_dict" ) if self.provider_builder: self.provider_builder.region = self.context.bucket_region deploy.Action( context=self.context, provider_builder=self.provider_builder, cancel=self.cancel, ).run( concurrency=concurrency, tail=tail, upload_disabled=True, ) return def pre_run( self, *, dump: Union[bool, str] = False, # pylint: disable=unused-argument outline: bool = False, # pylint: disable=unused-argument **__kwargs: Any, ) -> None: """Do nothing.""" def post_run( self, *, dump: Union[bool, str] = False, # pylint: disable=unused-argument outline: bool = False, # pylint: disable=unused-argument **__kwargs: Any, ) -> None: """Do nothing."""
octavia/image/image_base.py
zhangi/octavia
129
12760534
<reponame>zhangi/octavia # Copyright 2020 Red Hat, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc class ImageBase(object, metaclass=abc.ABCMeta): @abc.abstractmethod def get_image_id_by_tag(self, image_tag, image_owner=None): """Get image ID by image tag and owner. :param image_tag: image tag :param image_owner: optional image owner :raises: ImageGetException if no images found with given tag :return: image id """
hwt/serializer/verilog/context.py
ufo2011/hwt
134
12760550
<reponame>ufo2011/hwt from hdlConvertorAst.to.verilog.constants import SIGNAL_TYPE class SignalTypeSwap(): """ An object which is used as a context manager for signalType inside of :class:`hwt.serializer.verilog.serializer.ToHdlAstVerilog` """ def __init__(self, ctx, signalType: SIGNAL_TYPE): self.ctx = ctx self.signalType = signalType def __enter__(self): self.orig = self.ctx.signalType self.ctx.signalType = self.signalType def __exit__(self, exc_type, exc_val, exc_tb): self.ctx.signalType = self.orig
haiku/_src/batch_norm_test.py
pierricklee/dm-haiku
1,647
12760569
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.batch_norm.""" import os from absl.testing import absltest from haiku._src import batch_norm from haiku._src import test_utils from haiku._src import transform import jax import jax.numpy as jnp import numpy as np class BatchNormTest(absltest.TestCase): @test_utils.transform_and_run def test_basic(self): data = jnp.arange(2 * 3 * 4, dtype=jnp.float32).reshape([2, 3, 4]) norm = batch_norm.BatchNorm(True, True, 0.9) result = norm(data, is_training=True) result_0_replicated = jnp.broadcast_to(result[:, :, :1], result.shape) # Input data is symmetrical variance per-channel. np.testing.assert_allclose(result, result_0_replicated) # Running through again in test mode produces same output. np.testing.assert_allclose(norm(data, is_training=False), result, rtol=2e-2) @test_utils.transform_and_run def test_simple_training(self): layer = batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9) inputs = np.ones([2, 3, 3, 5]) scale = np.full((5,), 0.5) offset = np.full((5,), 2.0) result = layer(inputs, True, scale=scale, offset=offset) np.testing.assert_equal(result, np.full(inputs.shape, 2.0)) @test_utils.transform_and_run def test_simple_training_nchw(self): layer = batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9, data_format="NCHW") inputs = np.ones([2, 5, 3, 3]) scale = np.full((5, 1, 1), 0.5) offset = np.full((5, 1, 1), 2.0) result = layer(inputs, True, scale=scale, offset=offset) np.testing.assert_equal(result, np.full(inputs.shape, 2.0)) @test_utils.transform_and_run def test_simple_training_normalized_axes(self): layer = batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9, axis=[0, 2, 3]) # Not the second axis. # This differs only in the second axis. inputs = np.stack([2.0 * np.ones([5, 3, 3]), np.ones([5, 3, 3])], 1) result = layer(inputs, True) # Despite not all values being identical, treating slices from the first # axis separately leads to a fully normalized = equal array. np.testing.assert_equal(result, np.zeros(inputs.shape)) def test_simple_training_cross_replica_axis(self): ldc = jax.local_device_count() def f(x, is_training=True): return batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9, cross_replica_axis="i", )(x, is_training=is_training) f = transform.transform_with_state(f) inputs = np.arange(ldc * 4).reshape(ldc, 4) key = np.broadcast_to(jax.random.PRNGKey(42), (ldc, 2)) params, state = jax.pmap(f.init, axis_name="i")(key, inputs) result, _ = jax.pmap(f.apply, axis_name="i")(params, state, key, inputs) mean = np.mean(inputs, axis=0) std = np.std(inputs, axis=0) + 1e-10 expected = (inputs - mean) / std np.testing.assert_array_almost_equal(result, expected) def test_simple_training_cross_replica_axis_index_groups(self): ldc = jax.local_device_count() if ldc < 2: self.skipTest("Cross-replica test requires at least 2 devices.") num_groups = ldc // 2 num_group_devices = ldc // num_groups # for 8 devices this produces [[0, 1], [2, 3], [4, 5], [6, 7]] groups. groups = np.arange(ldc).reshape(num_groups, num_group_devices).tolist() def f(x, is_training=True): return batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9, cross_replica_axis="i", cross_replica_axis_index_groups=groups, )(x, is_training=is_training) f = transform.transform_with_state(f) inputs = np.arange(ldc * 4).reshape(ldc, 4).astype(np.float32) key = np.broadcast_to(jax.random.PRNGKey(42), (ldc, 2)) params, state = jax.pmap(f.init, axis_name="i")(key, inputs) result, _ = jax.pmap(f.apply, axis_name="i")(params, state, key, inputs) expected = np.empty_like(inputs) for g in range(num_groups): group_inputs = inputs[num_group_devices*g:num_group_devices*(g + 1)] group_mean = np.mean(group_inputs, axis=0) group_std = np.std(group_inputs, axis=0) + 1e-10 group_inputs = (group_inputs - group_mean) / group_std expected[num_group_devices*g:num_group_devices*(g + 1)] = group_inputs np.testing.assert_array_almost_equal(result, expected) @test_utils.transform_and_run def test_no_scale_and_offset(self): layer = batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9) inputs = jnp.ones([2, 5, 3, 3, 3]) result = layer(inputs, True) np.testing.assert_equal(result, np.zeros_like(inputs)) @test_utils.transform_and_run def test_no_scale_and_init_provided(self): with self.assertRaisesRegex( ValueError, "Cannot set `scale_init` if `create_scale=False`"): batch_norm.BatchNorm( create_scale=False, create_offset=True, decay_rate=0.9, scale_init=jnp.ones) @test_utils.transform_and_run def test_no_offset_beta_init_provided(self): with self.assertRaisesRegex( ValueError, "Cannot set `offset_init` if `create_offset=False`"): batch_norm.BatchNorm( create_scale=True, create_offset=False, decay_rate=0.9, offset_init=jnp.zeros) def test_eps_cast_to_var_dtype(self): # See https://github.com/google/jax/issues/4718 for more info. In the # context of this test we need to assert NumPy bf16 params/state and a # Python float for eps preserve bf16 output. def f(x, is_training): return batch_norm.BatchNorm(True, True, 0.9, eps=0.1)(x, is_training) f = transform.transform_with_state(f) x = np.ones([], jnp.bfloat16) key = jax.random.PRNGKey(42) params, state = jax.device_get(f.init(key, x, True)) y, _ = f.apply(params, state, None, x, False) self.assertEqual(y.dtype, jnp.bfloat16) if __name__ == "__main__": _xla_flags = os.environ.get("XLA_FLAGS", "") os.environ["XLA_FLAGS"] = (_xla_flags + " --xla_force_host_platform_device_count=8") absltest.main() os.environ["XLA_FLAGS"] = _xla_flags
test/hlt/pytest/python/com/huawei/iotplatform/client/dto/NorthInDTO.py
yuanyi-thu/AIOT-
128
12760588
class NorthInDTO(object): def __init__(self): self.platformIp = None self.platformPort = None def getPlatformIp(self): return self.platformIp def setPlatformIp(self, platformIp): self.platformIp = platformIp def getPlatformPort(self): return self.platformPort def setPlatformPort(self, platformPort): self.platformPort = platformPort
app/api/__init__.py
TestAuto2018/TestAuto
249
12760615
<filename>app/api/__init__.py # -*- coding: utf-8 -*- __author__ = "苦叶子" """ 公众号: 开源优测 Email: <EMAIL> """ from flask import Blueprint from flask_restful import Api api_bp = Blueprint('api', __name__) api = Api(api_bp) from .auth import Auth api.add_resource(Auth, "/auth/") from .product import Product api.add_resource(Product, "/product/") from .project import Project api.add_resource(Project, "/project/") from .suite import Suite api.add_resource(Suite, "/suite/") from .object import Object api.add_resource(Object, "/object/") from .case import Case api.add_resource(Case, "/case/") from .step import Step api.add_resource(Step, "/step/") from .var import Var api.add_resource(Var, "/var/") from .keyword import Keyword api.add_resource(Keyword, "/keyword/") from .help import Help api.add_resource(Help, "/help/") from .task import Task api.add_resource(Task, "/task/") from .trigger import Triggers api.add_resource(Triggers, "/trigger/") from .stats import Stats api.add_resource(Stats, "/stats/") from .user import Users api.add_resource(Users, "/user/") from .role import Roles api.add_resource(Roles, "/role/") from .user_keyword import UserKeywordSuite, UserKeyword api.add_resource(UserKeywordSuite, "/user_keyword_suite/") api.add_resource(UserKeyword, "/user_keyword/")
mrgeo-services/mrgeo-services-core/src/main/scripts/wps-shell-example.py
ngageoint/mrgeo
198
12760623
#!/usr/bin/python import sys import time # read all the input values into a dictionary for easy access. args = {} for v in sys.argv[1:]: s = v.split("=") args[s[0]] = s[1] # put an artificial pause to simulate an expensive operation for i in range(1, 10): print "progress:" + str(i * 10) time.sleep(1) # write out the results. print "summary:" + str(args) print "output:" + args['output']
ch12-ann/classification_example.py
GaoX2015/intro_ds
314
12760633
# -*- coding: UTF-8 -*- """ 此脚本用于展示如何利用神经网络解决分类问题 """ import os from mlp import ANN import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs, make_circles, make_moons from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler, OneHotEncoder def generateData(n): """ """ np.random.seed(12046) blobs = make_blobs(n_samples=n, centers = [[-2, -2], [2, 2]]) circles = make_circles(n_samples=n, factor=.4, noise=.05) moons = make_moons(n_samples=n, noise=.05) blocks = np.random.rand(n, 2) - 0.5 y = (blocks[:, 0] * blocks[:, 1] < 0) + 0 blocks = (blocks, y) # 由于神经网络对数据的线性变换不稳定,因此将数据做归一化处理 scaler = StandardScaler() blobs = (scaler.fit_transform(blobs[0]), blobs[1]) circles = (scaler.fit_transform(circles[0]), circles[1]) moons = (scaler.fit_transform(moons[0]), moons[1]) blocks = (scaler.fit_transform(blocks[0]), blocks[1]) return blobs, circles, moons, blocks def drawData(ax, data): """ 将数据可视化 """ X, y = data label1 = X[y>0] ax.scatter(label1[:, 0], label1[:, 1], marker="o") label0 = X[y==0] ax.scatter(label0[:, 0], label0[:, 1], marker="^", color="k") return ax def drawModel(ax, model): """ 将模型的分离超平面可视化 """ x1 = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 100) x2 = np.linspace(ax.get_ylim()[0], ax.get_ylim()[1], 100) X1, X2 = np.meshgrid(x1, x2) Y = model.predict_proba(np.c_[X1.ravel(), X2.ravel()])[:, 1] Y = Y.reshape(X1.shape) ax.contourf(X1, X2, Y, levels=[0, 0.5], colors=["gray"], alpha=0.4) return ax def trainLogit(data): """ """ X, y = data model = LogisticRegression() model.fit(X, y) return model def trainANN(data, logPath): """ """ X, y = data enc = OneHotEncoder() y = enc.fit_transform(y.reshape(-1, 1)).toarray() model = ANN([4, 4, 2], logPath) model.fit(X, y) return model def visualize(data): """ """ # 创建一个图形框 fig = plt.figure(figsize=(10, 10), dpi=80) fig1 = plt.figure(figsize=(10, 10), dpi=80) # 在图形框里画四幅图 for i in range(len(data)): ax = fig.add_subplot(2, 2, i+1) ax1 = fig1.add_subplot(2, 2, i+1) drawData(ax, data[i]) # Windows下的存储路径与Linux并不相同 if os.name == "nt": drawModel(ax, trainANN(data[i], "logs\\data_%s" % (i+1))) else: drawModel(ax, trainANN(data[i], "logs/data_%s" % (i+1))) drawData(ax1, data[i]) drawModel(ax1, trainLogit(data[i])) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax1.get_xaxis().set_visible(False) ax1.get_yaxis().set_visible(False) plt.show() if __name__ == "__main__": data = generateData(200) visualize(data)
lib/pystatsml/plot_utils.py
gautard/pystatsml
123
12760674
# -*- coding: utf-8 -*- """ Created on Mon Aug 29 10:58:31 2016 @author: <EMAIL> """ import numpy as np import scipy import matplotlib.pyplot as plt import seaborn as sns from matplotlib.patches import Ellipse def plot_cov_ellipse(cov, pos, nstd=2, ax=None, **kwargs): """ Plots an `nstd` sigma error ellipse based on the specified covariance matrix (`cov`). Additional keyword arguments are passed on to the ellipse patch artist. Parameters ---------- cov : The 2x2 covariance matrix to base the ellipse on pos : The location of the center of the ellipse. Expects a 2-element sequence of [x0, y0]. nstd : The radius of the ellipse in numbers of standard deviations. Defaults to 2 standard deviations. ax : The axis that the ellipse will be plotted on. Defaults to the current axis. Additional keyword arguments are pass on to the ellipse patch. Returns ------- A matplotlib ellipse artist """ def eigsorted(cov): vals, vecs = np.linalg.eigh(cov) order = vals.argsort()[::-1] return vals[order], vecs[:,order] if ax is None: ax = plt.gca() vals, vecs = eigsorted(cov) theta = np.degrees(np.arctan2(*vecs[:,0][::-1])) # Width and height are "full" widths, not radius width, height = 2 * nstd * np.sqrt(vals) ellip = Ellipse(xy=pos, width=width, height=height, angle=theta, **kwargs) ax.add_artist(ellip) return ellip
ubpf/asm_parser.py
dongxingshui/ubpf
466
12760688
#!/usr/bin/env python from __future__ import print_function from parcon import * from collections import namedtuple hexchars = '0123456789abcdefABCDEF' Reg = namedtuple("Reg", ["num"]) Imm = namedtuple("Imm", ["value"]) MemRef = namedtuple("MemRef", ["reg", "offset"]) def keywords(vs): return First(*[Keyword(SignificantLiteral(v)) for v in vs]) hexnum = SignificantLiteral('0x') + +CharIn(hexchars) decnum = +Digit() offset = (CharIn("+-") + Exact(hexnum | decnum))[flatten]["".join][lambda x: int(x, 0)] imm = (-CharIn("+-") + Exact(hexnum | decnum))[flatten]["".join][lambda x: int(x, 0)][Imm] reg = Literal('r') + integer[int][Reg] memref = (Literal('[') + reg + Optional(offset, 0) + Literal(']'))[lambda x: MemRef(*x)] unary_alu_ops = ['neg', 'neg32', 'le16', 'le32', 'le64', 'be16', 'be32', 'be64'] binary_alu_ops = ['add', 'sub', 'mul', 'div', 'or', 'and', 'lsh', 'rsh', 'mod', 'xor', 'mov', 'arsh'] binary_alu_ops.extend([x + '32' for x in binary_alu_ops]) alu_instruction = \ (keywords(unary_alu_ops) + reg) | \ (keywords(binary_alu_ops) + reg + "," + (reg | imm)) mem_sizes = ['w', 'h', 'b', 'dw'] mem_store_reg_ops = ['stx' + s for s in mem_sizes] mem_store_imm_ops = ['st' + s for s in mem_sizes] mem_load_ops = ['ldx' + s for s in mem_sizes] mem_instruction = \ (keywords(mem_store_reg_ops) + memref + "," + reg) | \ (keywords(mem_store_imm_ops) + memref + "," + imm) | \ (keywords(mem_load_ops) + reg + "," + memref) | \ (keywords(["lddw"]) + reg + "," + imm) jmp_cmp_ops = ['jeq', 'jgt', 'jge', 'jlt', 'jle', 'jset', 'jne', 'jsgt', 'jsge', 'jslt', 'jsle'] jmp_instruction = \ (keywords(jmp_cmp_ops) + reg + "," + (reg | imm) + "," + offset) | \ (keywords(['ja']) + offset) | \ (keywords(['call']) + imm) | \ (keywords(['exit'])[lambda x: (x, )]) instruction = alu_instruction | mem_instruction | jmp_instruction start = ZeroOrMore(instruction + Optional(Literal(';'))) + End() def parse(source): return start.parse_string(source) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Assembly parser", formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('file', type=argparse.FileType('r'), default='-') args = parser.parse_args() result = parse(args.file.read()) for inst in result: print(repr(inst))
acme/agents/jax/bc/agent_test.py
ostap-viniavskyi/acme
2,650
12760689
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the BC agent.""" from absl.testing import absltest from absl.testing import parameterized from acme import specs from acme import types from acme.agents.jax import bc from acme.jax import networks as networks_lib from acme.jax import utils from acme.testing import fakes import chex import haiku as hk import jax import jax.numpy as jnp from jax.scipy import special import numpy as np import optax def make_networks( spec: specs.EnvironmentSpec, discrete_actions: bool = False) -> networks_lib.FeedForwardNetwork: """Creates networks used by the agent.""" if discrete_actions: final_layer_size = spec.actions.num_values else: final_layer_size = np.prod(spec.actions.shape, dtype=int) def _actor_fn(obs, is_training=False, key=None): # is_training and key allows to defined train/test dependant modules # like dropout. del is_training del key if discrete_actions: network = hk.nets.MLP([64, 64, final_layer_size]) else: network = hk.Sequential([ networks_lib.LayerNormMLP([64, 64], activate_final=True), networks_lib.NormalTanhDistribution(final_layer_size), ]) return network(obs) policy = hk.without_apply_rng(hk.transform(_actor_fn)) # Create dummy observations and actions to create network parameters. dummy_obs = utils.zeros_like(spec.observations) dummy_obs = utils.add_batch_dim(dummy_obs) network = networks_lib.FeedForwardNetwork( lambda key: policy.init(key, dummy_obs), policy.apply) return network class BCTest(parameterized.TestCase): @parameterized.parameters( ('logp',), ('mse',), ('peerbc',) ) def test_continuous_actions(self, loss_name): with chex.fake_pmap_and_jit(): num_sgd_steps_per_step = 1 num_steps = 5 # Create a fake environment to test with. environment = fakes.ContinuousEnvironment( episode_length=10, bounded=True, action_dim=6) spec = specs.make_environment_spec(environment) dataset_demonstration = fakes.transition_dataset(environment) dataset_demonstration = dataset_demonstration.map( lambda sample: types.Transition(*sample.data)) dataset_demonstration = dataset_demonstration.batch(8).as_numpy_iterator() # Construct the agent. network = make_networks(spec) if loss_name == 'logp': loss_fn = bc.logp( logp_fn=lambda dist_params, actions: dist_params.log_prob(actions)) elif loss_name == 'mse': loss_fn = bc.mse( sample_fn=lambda dist_params, key: dist_params.sample(seed=key)) elif loss_name == 'peerbc': base_loss_fn = bc.logp( logp_fn=lambda dist_params, actions: dist_params.log_prob(actions)) loss_fn = bc.peerbc(base_loss_fn, zeta=0.1) else: raise ValueError learner = bc.BCLearner( network=network, random_key=jax.random.PRNGKey(0), loss_fn=loss_fn, optimizer=optax.adam(0.01), demonstrations=dataset_demonstration, num_sgd_steps_per_step=num_sgd_steps_per_step) # Train the agent for _ in range(num_steps): learner.step() @parameterized.parameters( ('logp',), ('rcal',)) def test_discrete_actions(self, loss_name): with chex.fake_pmap_and_jit(): num_sgd_steps_per_step = 1 num_steps = 5 # Create a fake environment to test with. environment = fakes.DiscreteEnvironment( num_actions=10, num_observations=100, obs_shape=(10,), obs_dtype=np.float32) spec = specs.make_environment_spec(environment) dataset_demonstration = fakes.transition_dataset(environment) dataset_demonstration = dataset_demonstration.map( lambda sample: types.Transition(*sample.data)) dataset_demonstration = dataset_demonstration.batch(8).as_numpy_iterator() # Construct the agent. network = make_networks(spec, discrete_actions=True) def logp_fn(logits, actions): max_logits = jnp.max(logits, axis=-1, keepdims=True) logits = logits - max_logits logits_actions = jnp.sum( jax.nn.one_hot(actions, spec.actions.num_values) * logits, axis=-1) log_prob = logits_actions - special.logsumexp(logits, axis=-1) return log_prob if loss_name == 'logp': loss_fn = bc.logp(logp_fn=logp_fn) elif loss_name == 'rcal': base_loss_fn = bc.logp(logp_fn=logp_fn) loss_fn = bc.rcal(base_loss_fn, discount=0.99, alpha=0.1) else: raise ValueError learner = bc.BCLearner( network=network, random_key=jax.random.PRNGKey(0), loss_fn=loss_fn, optimizer=optax.adam(0.01), demonstrations=dataset_demonstration, num_sgd_steps_per_step=num_sgd_steps_per_step) # Train the agent for _ in range(num_steps): learner.step() if __name__ == '__main__': absltest.main()
woid/apps/services/migrations/0006_auto_20150902_1522.py
emognato/project
229
12760694
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('services', '0005_auto_20150901_1253'), ] operations = [ migrations.AlterField( model_name='story', name='content_type', field=models.CharField(blank=True, max_length=1, null=True, choices=[(b'T', b'text'), (b'U', b'url'), (b'I', b'image')]), ), migrations.AlterField( model_name='story', name='date', field=models.DateField(auto_now_add=True), ), ]
tools/dia_dll.py
xumoyan/engine
5,823
12760698
<reponame>xumoyan/engine<filename>tools/dia_dll.py #!/usr/bin/env python3 # # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ This script is based on chromium/chromium/main/tools/clang/scripts/update.py. It is used on Windows platforms to copy the correct msdia*.dll to the clang folder, as a "gclient hook". """ import os import shutil import stat import sys # Path constants. (All of these should be absolute paths.) THIS_DIR = os.path.abspath(os.path.dirname(__file__)) LLVM_BUILD_DIR = os.path.abspath(os.path.join(THIS_DIR, '..', '..', 'buildtools', 'windows-x64', 'clang')) def GetDiaDll(): """Get the location of msdia*.dll for the platform.""" # Bump after VC updates. DIA_DLL = { '2013': 'msdia120.dll', '2015': 'msdia140.dll', '2017': 'msdia140.dll', '2019': 'msdia140.dll', } # Don't let vs_toolchain overwrite our environment. environ_bak = os.environ sys.path.append(os.path.join(THIS_DIR, '..', '..', 'build')) import vs_toolchain win_sdk_dir = vs_toolchain.SetEnvironmentAndGetSDKDir() msvs_version = vs_toolchain.GetVisualStudioVersion() if bool(int(os.environ.get('DEPOT_TOOLS_WIN_TOOLCHAIN', '1'))): dia_path = os.path.join(win_sdk_dir, '..', 'DIA SDK', 'bin', 'amd64') else: if 'GYP_MSVS_OVERRIDE_PATH' in os.environ: vs_path = os.environ['GYP_MSVS_OVERRIDE_PATH'] else: vs_path = vs_toolchain.DetectVisualStudioPath() dia_path = os.path.join(vs_path, 'DIA SDK', 'bin', 'amd64') os.environ = environ_bak return os.path.join(dia_path, DIA_DLL[msvs_version]) def CopyFile(src, dst): """Copy a file from src to dst.""" print("Copying %s to %s" % (str(src), str(dst))) shutil.copy(src, dst) def CopyDiaDllTo(target_dir): # This script always wants to use the 64-bit msdia*.dll. dia_dll = GetDiaDll() CopyFile(dia_dll, target_dir) def main(): CopyDiaDllTo(os.path.join(LLVM_BUILD_DIR, 'bin')) return 0 if __name__ == '__main__': sys.exit(main())
src/visitpy/examples/matexprs.py
visit-dav/vis
226
12760709
############################################################################### # # Purpose: Use VisIt CLI to iterate over Curves in a material database and # compute and plot some common difference curves and output the results # to either a curve or image file format. # # Programmer: <NAME> # Date: Wed May 27 13:15:07 PDT 2009 # # # Modifications: # <NAME>, Mon Jun 15 17:52:15 PDT 2009 # Removed subclassing used to override behavior of Optparse in presence of # unrecognized options. By using Argv(), VisIt-specific options never wind # up getting passed to this script. ############################################################################### import sys, re, os, glob from optparse import * # # Convert '#FFCC13" strings to color tuple # def ColorTupleFromHexString(s): if s[0] != '#': return (0, 0, 0, 255) return (int("0x%s"%s[1:3],16), \ int("0x%s"%s[3:5],16), \ int("0x%s"%s[5:7],16), \ 255) # # Command-line options # def BuildCommandLineOptions(): parser = OptionParser() parser.add_option("--image-width", help="Set width of images [%default].", type="int", dest="image_width", default="500", metavar="INT") parser.add_option("--image-height", help="Set height of images [%default].", type="int", dest="image_height", default="500", metavar="INT") parser.add_option("--data-min", type="float", dest="data_min", metavar="FLOAT", help="Mininum data value to be applied to all plots. If no " "value is specified, the minimum will be allowed to vary " "as needed from plot to plot.") parser.add_option("--data-max", type="float", dest="data_max", metavar="FLOAT", help="Mininum data value to be applied to all plots. If no " "value is specified, the minimum will be allowed to vary " "as needed from plot to plot.") parser.add_option("--log-data", help="Display data (y) axis in log scaling.", action="store_true", dest="log_data", default=False) parser.add_option("--x-min", type="float", dest="x_min", metavar="FLOAT", help="Mininum positional (x) value to be applied to all plots. If no " "value is specified, the minimum will be allowed to vary " "as needed from plot to plot.") parser.add_option("--x-max", type="float", dest="x_max", metavar="FLOAT", help="Maximum positional (x) value to be applied to all plots. If no " "value is specified, the minimum will be allowed to vary " "as needed from plot to plot.") parser.add_option("--log-x", help="Display positional (x) axis in log scaling.", action="store_true", dest="log_x", default=False) parser.add_option("--image-format", help="Set output format for images (e.g. 'tiff', 'png', 'jpeg'). " "If none specified, no images will be saved.", dest="image_format", metavar="STRING") parser.add_option("--curve-format", help="Set output format for curves (e.g. 'ultra', 'curve'). " "If none specified, no curve files will be saved.", dest="curve_format", metavar="STRING") parser.add_option("--color0", help="Set color to be used for first curve plot.", dest="color0", metavar="#RRGGBB") parser.add_option("--color1", help="Set color to be used for second curve plot.", dest="color1", metavar="#RRGGBB") parser.add_option("--line-width", help="Set line width for curves.", type="int", default=0, dest="line_width", metavar="INT") parser.add_option("--point-density", help="Plot symbols representing individual points in curves every Nth point. " "A value of zero turns the display of points off [%default].", type="int", default=0, dest="point_density", metavar="N") parser.add_option("--point-size", help="Size of symbols representing individual points in curve plots.", type="int", default=5, dest="point_size", metavar="INT") parser.add_option("--show-legend", help="Display curve plot legends.", action="store_true", dest="show_legend", default=False) parser.add_option("--show-labels", help="Display curve plot labels.", action="store_true", dest="show_labels", default=False) parser.set_usage("matexprs.py [options] dbname") return parser # # Iterate through curves, finding all unique 'dirs' containing curves. # def GetVarMap(metadata): dirMap = {} for i in range(metadata.GetNumCurves()): dirinfo = re.search("(.*)/([^/]*)", metadata.GetCurves(i).name) if dirinfo != None: dirname = dirinfo.group(1) varname = dirinfo.group(2) varMap = {} if dirname in dirMap: varMap = dirMap[dirname] varMap[varname] = 1 dirMap[dirname] = varMap return dirMap # # Begin main program # parser = BuildCommandLineOptions() # # This bit of logic allows users to get usage/help from # the command 'python matexpers.py --help'. Without it # using VisIt's cli the '--help' will get interpreted # in internallauncher and never make it into this script. # if "-h" in sys.argv or \ "--help" in sys.argv or \ "-help" in sys.argv or \ "help" in sys.argv: parser.print_help() sys.exit(1) # # Argv() is a function defined by VisIt's cli that # returns ONLY the options after the argument (filename) # to the '-s' command-line option. In theory, that # should be only the arguments that this script itself # should interpret. # (clOpts, clArgs) = parser.parse_args(list(Argv())) # # Set the name of the database. It is the only 'positional' # argument on the command line. # dbname = "" if len(clArgs) > 0: dbname = clArgs[0] if not glob.glob(dbname): if dbname == "": sys.stderr.write("No database specified.\n") else: sys.stderr.write("Invalid database, \"%s\", specified.\n"%dbname) parser.print_usage() sys.exit(1) # # Open the database, get metadata, get info on curve 'dirs' # OpenDatabase(dbname) metadata = GetMetaData(dbname) dirMap = GetVarMap(metadata) # # Build up base save window attributes # swa = SaveWindowAttributes() swa.family = 0 swa.width = clOpts.image_width swa.height = clOpts.image_height # # Build up base curve attributes # ca = CurveAttributes() ca.lineWidth = clOpts.line_width if clOpts.color0 != None: ca.color = ColorTupleFromHexString(clOpts.color0) ca.cycleColors = 0 ca.showLabels = clOpts.show_labels #if clOpts.point_density > 0: # ca.showPoints = 1 #ca.pointSize = clOpts.point_size ca.showLegend = clOpts.show_legend #ca.symbolDensity = clOpts.point_density SetDefaultPlotOptions(ca) # # Iterate through all curve 'dirs', finding instances where # all essential variables exist. Create expressions and plot 'em # for k in list(dirMap.keys()): if not ("Ec" in dirMap[k] and \ "cEc" in dirMap[k] and \ "cEc_fit" in dirMap[k]): print("Ignoring %s because not all required vars are present."%k) #del dirMap[k] continue DefineCurveExpression("%s/c0"%k, "<%s/Ec>-<%s/cEc_fit>"%(k,k)) DefineCurveExpression("%s/c1"%k, "<%s/cEc>-<%s/cEc_fit>"%(k,k)) AddPlot("Curve","%s/c0"%k) AddPlot("Curve","%s/c1"%k) DrawPlots() v = GetViewCurve() if clOpts.x_min != None: v.domainCoords = (clOpts.x_min, v.domainCoords[1]) if clOpts.x_max != None: v.domainCoords = (v.domainCoords[0], clOpts.x_max) if clOpts.log_x: v.domainScale = v.LOG if clOpts.data_min != None: v.rangeCoords = (clOpts.data_min, v.rangeCoords[1]) if clOpts.data_max != None: v.rangeCoords = (v.rangeCoords[0], clOpts.data_max) if clOpts.log_data: v.rangeScale = v.LOG SetViewCurve(v) if clOpts.color1 != None: ca2 = CurveAttributes() ca2.color = ColorTupleFromHexString(clOpts.color1) ca2.cycleColors = 0 SetActivePlots((1,)) SetPlotOptions(ca2) DrawPlots() if clOpts.curve_format != None: swa.format = getattr(swa,clOpts.curve_format.upper()) swa.fileName = k # .curve is added automatically SetSaveWindowAttributes(swa) SaveWindow() if clOpts.image_format != None: swa.format = getattr(swa,clOpts.image_format.upper()) #swa.fileName = "%s.%s"%(k,clOpts.image_format.lower()) swa.fileName = k SetSaveWindowAttributes(swa) SaveWindow() DeleteAllPlots()
tests/test_version.py
grdorin/mopidy
6,700
12760721
import unittest from distutils.version import StrictVersion from mopidy import __version__ class VersionTest(unittest.TestCase): def test_current_version_is_parsable_as_a_strict_version_number(self): StrictVersion(__version__)
scripts/JustFaceNet.py
nfsergiu/PyOpenPose
300
12760723
<filename>scripts/JustFaceNet.py """ Example script using only the Face detector of Openpose. """ import PyOpenPose as OP import time import cv2 import numpy as np import os OPENPOSE_ROOT = os.environ["OPENPOSE_ROOT"] def ComputeBB(face, padding=0.4): minX = np.min(face[:, 0]) minY = np.min(face[:, 1]) maxX = np.max(face[:, 0]) maxY = np.max(face[:, 1]) width = maxX - minX height = maxY - minY padX = width * padding / 2 padY = height * padding / 2 minX -= padX minY -= padY width += 2 * padX height += 2 * padY score = np.mean(face[:, 2]) return score, [int(minX), int(minY), int(width), int(height)] def run(): cap = cv2.VideoCapture(0) ret, frame = cap.read() imgSize = list(frame.shape) outSize = imgSize[1::-1] print("Net output size: ", outSize) download_heatmaps = False with_hands = False with_face = True op = OP.OpenPose((656, 368), (240, 240), tuple(outSize), "COCO", OPENPOSE_ROOT + os.sep + "models" + os.sep, 0, download_heatmaps, OP.OpenPose.ScaleMode.ZeroToOne, with_face, with_hands) actual_fps = 0 paused = False delay = {True: 0, False: 1} newFaceBB = initFaceBB = faceBB = [240, 120, 150, 150] print("Entering main Loop. Put your hand into the box to start tracking") while True: start_time = time.time() try: ret, frame = cap.read() rgb = frame[:, :outSize[0]] except Exception as e: print("Failed to grab", e) break t = time.time() op.detectFace(rgb, np.array(faceBB, dtype=np.int32).reshape((1, 4))) t = time.time() - t op_fps = 1.0 / t res = op.render(rgb) cv2.putText(res, 'UI FPS = %f, OP-FACE FPS = %f. Press \'r\' to reset.' % (actual_fps, op_fps), (20, 20), 0, 0.5, (0, 0, 255)) cv2.rectangle(res, (faceBB[0], faceBB[1]), (faceBB[0] + faceBB[2], faceBB[1] + faceBB[3]), [50, 155, 50], 2) cv2.rectangle(res, (newFaceBB[0], newFaceBB[1]), (newFaceBB[0] + newFaceBB[2], newFaceBB[1] + newFaceBB[3]), [250, 55, 50], 1) cv2.imshow("OpenPose result", res) face = op.getKeypoints(op.KeypointType.FACE)[0].reshape(-1, 3) score, newFaceBB = ComputeBB(face) print("Res Score, faceBB: ", score, newFaceBB) if score > 0.5: # update BB only when score is good. faceBB = newFaceBB key = cv2.waitKey(delay[paused]) if key & 255 == ord('p'): paused = not paused if key & 255 == ord('q'): break if key & 255 == ord('r'): faceBB = initFaceBB actual_fps = 1.0 / (time.time() - start_time) if __name__ == '__main__': run()
model-optimizer/unit_tests/extensions/front/kaldi/tdnn_component_replacer_test.py
monroid/openvino
2,406
12760762
<filename>model-optimizer/unit_tests/extensions/front/kaldi/tdnn_component_replacer_test.py # Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import unittest import numpy as np from generator import generator, generate from extensions.front.kaldi.tdnn_component_replacer import TdnnComponentReplacer from mo.utils.ir_engine.compare_graphs import compare_graphs from unit_tests.utils.graph import build_graph, regular_op, result, connect_front, const @generator class TdnnComponentReplacerTest(unittest.TestCase): @generate(*[ ([[1, 1, 1], [4, 4, 4]], [1, 2], [-1, 1],), ([[1, 1, 1], [4, 4, 4]], [1, 2], [-1, 1, 2, 10, 1000],), ([[1, 1, 1], [4, 4, 4]], [1, 2], [-1, 0]), ]) def test_tdnnreplacer(self, weights, biases, time_offsets): def generate_offsets(): offset_edges = [] offset_nodes = {} for i, t in enumerate(time_offsets): offset_nodes.update(**regular_op('memoryoffset_' + str(i), {'type': None})) if t != 0: offset_edges.append(('placeholder', 'memoryoffset_' + str(i), {'out': 0, 'in': 0})) offset_edges.append(('memoryoffset_' + str(i), 'concat', {'out': 0, 'in': i})) else: offset_edges.append(('placeholder', 'concat', {'out': 0, 'in': i})) return offset_nodes, offset_edges offset_nodes, ref_offset_edges = generate_offsets() nodes = { **offset_nodes, **regular_op('placeholder', {'type': 'Parameter'}), **regular_op('tdnncomponent', {'op': 'tdnncomponent', 'weights': np.array(weights), 'biases': np.array(biases), 'time_offsets': np.array(time_offsets)}), **const('weights', np.array(weights)), **const('biases', np.array(biases)), **regular_op('concat', {'type': 'Concat', 'axis': 1}), **regular_op('memoryoffset_0', {'type': None}), **regular_op('memoryoffset_1', {'type': None}), **regular_op('memoryoffset_2', {'type': None}), **regular_op('fully_connected', {'type': 'FullyConnected'}), **result('result'), } graph = build_graph(nodes, [ *connect_front('placeholder', 'tdnncomponent'), *connect_front('tdnncomponent', 'result') ], nodes_with_edges_only=True) graph.stage = 'front' ref_graph = build_graph(nodes, [ *ref_offset_edges, *connect_front('concat', '0:fully_connected'), *connect_front('weights', '1:fully_connected'), *connect_front('biases', '2:fully_connected'), *connect_front('fully_connected', 'result') ], nodes_with_edges_only=True) TdnnComponentReplacer().find_and_replace_pattern(graph) (flag, resp) = compare_graphs(graph, ref_graph, 'result', check_op_attrs=True) self.assertTrue(flag, resp)
tests/test_topn_precision.py
keener101/lkpy
210
12760787
import numpy as np import pandas as pd from pytest import approx from lenskit.topn import precision from lenskit.util.test import demo_recs from lenskit import topn def _test_prec(items, rel, **k): recs = pd.DataFrame({'item': items}) truth = pd.DataFrame({'item': rel}).set_index('item') return precision(recs, truth, **k) def test_precision_empty_none(): prec = _test_prec([], [1, 3]) assert prec is None def test_precision_simple_cases(): prec = _test_prec([1, 3], [1, 3]) assert prec == approx(1.0) prec = _test_prec([1], [1, 3]) assert prec == approx(1.0) prec = _test_prec([1, 2, 3, 4], [1, 3]) assert prec == approx(0.5) prec = _test_prec([1, 2, 3, 4], [1, 3, 5]) assert prec == approx(0.5) prec = _test_prec([1, 2, 3, 4], range(5, 10)) assert prec == approx(0.0) prec = _test_prec([1, 2, 3, 4], range(4, 10)) assert prec == approx(0.25) def test_precision_series(): prec = _test_prec(pd.Series([1, 3]), pd.Series([1, 3])) assert prec == approx(1.0) prec = _test_prec(pd.Series([1, 2, 3, 4]), pd.Series([1, 3, 5])) assert prec == approx(0.5) prec = _test_prec(pd.Series([1, 2, 3, 4]), pd.Series(range(4, 10))) assert prec == approx(0.25) def test_precision_series_set(): prec = _test_prec(pd.Series([1, 2, 3, 4]), [1, 3, 5]) assert prec == approx(0.5) prec = _test_prec(pd.Series([1, 2, 3, 4]), range(4, 10)) assert prec == approx(0.25) def test_precision_series_index(): prec = _test_prec(pd.Series([1, 3]), pd.Index([1, 3])) assert prec == approx(1.0) prec = _test_prec(pd.Series([1, 2, 3, 4]), pd.Index([1, 3, 5])) assert prec == approx(0.5) prec = _test_prec(pd.Series([1, 2, 3, 4]), pd.Index(range(4, 10))) assert prec == approx(0.25) def test_precision_series_array(): prec = _test_prec(pd.Series([1, 3]), np.array([1, 3])) assert prec == approx(1.0) prec = _test_prec(pd.Series([1, 2, 3, 4]), np.array([1, 3, 5])) assert prec == approx(0.5) prec = _test_prec(pd.Series([1, 2, 3, 4]), np.arange(4, 10, 1, 'u4')) assert prec == approx(0.25) def test_precision_array(): prec = _test_prec(np.array([1, 3]), np.array([1, 3])) assert prec == approx(1.0) prec = _test_prec(np.array([1, 2, 3, 4]), np.array([1, 3, 5])) assert prec == approx(0.5) prec = _test_prec(np.array([1, 2, 3, 4]), np.arange(4, 10, 1, 'u4')) assert prec == approx(0.25) def test_prec_long_rel(): rel = np.arange(100) items = [1, 0, 150, 3, 10] r = _test_prec(items, rel, k=5) assert r == approx(0.8) def test_prec_long_items(): rel = np.arange(100) items = [1, 0, 150, 3, 10, 30, 120, 4, 17] r = _test_prec(items, rel, k=5) assert r == approx(0.8) def test_prec_short_items(): rel = np.arange(100) items = [1, 0, 150] r = _test_prec(items, rel, k=5) assert r == approx(2 / 3) def test_recall_bulk_k(demo_recs): "bulk and normal match" train, test, recs = demo_recs assert test['user'].value_counts().max() > 5 rla = topn.RecListAnalysis() rla.add_metric(precision, name='pk', k=5) rla.add_metric(precision) # metric without the bulk capabilities rla.add_metric(lambda *a, **k: precision(*a, **k), name='ind_pk', k=5) rla.add_metric(lambda *a: precision(*a), name='ind_p') res = rla.compute(recs, test) assert res.precision.values == approx(res.ind_p.values) assert res.pk.values == approx(res.ind_pk.values)
tools/moduletests/unit/test_selinuxpermissive.py
stivesso/aws-ec2rescue-linux
178
12760799
<filename>tools/moduletests/unit/test_selinuxpermissive.py # Copyright 2016-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """ Unit tests for the selinuxpermissive module """ import os import sys import unittest import mock import moduletests.src.selinuxpermissive try: # Python 2.x from cStringIO import StringIO except ImportError: # Python 3.x from io import StringIO if sys.hexversion >= 0x3040000: # contextlib.redirect_stdout was introduced in Python 3.4 import contextlib else: # contextlib2 is a backport of contextlib from Python 3.5 and is compatible with Python2/3 import contextlib2 as contextlib class Testselinuxpermissive(unittest.TestCase): config_file_path = "/etc/selinux/config" def setUp(self): self.output = StringIO() def tearDown(self): self.output.close() @mock.patch("moduletests.src.selinuxpermissive.os.path.isfile", return_value=False) def test_detect_no_selinux(self, isfile_mock): self.assertFalse(moduletests.src.selinuxpermissive.detect(self.config_file_path)) self.assertTrue(isfile_mock.called) @mock.patch("moduletests.src.selinuxpermissive.os.path.isfile", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.open", mock.mock_open(read_data="SELINUX=enforcing")) def test_detect_problem(self, isfile_mock): self.assertTrue(moduletests.src.selinuxpermissive.detect(self.config_file_path)) self.assertTrue(isfile_mock.called) @mock.patch("moduletests.src.selinuxpermissive.os.path.isfile", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.open", mock.mock_open(read_data="SELINUX=permissive")) def test_detect_noproblem(self, isfile_mock): self.assertFalse(moduletests.src.selinuxpermissive.detect(self.config_file_path)) self.assertTrue(isfile_mock.called) @mock.patch("moduletests.src.selinuxpermissive.open", mock.mock_open(read_data="SELINUX=enforcing")) def test_fix_success(self): self.assertTrue(moduletests.src.selinuxpermissive.fix(self.config_file_path)) @mock.patch("moduletests.src.selinuxpermissive.open", side_effect=IOError) def test_fix_exception(self, open_mock): with contextlib.redirect_stdout(self.output): self.assertRaises(IOError, moduletests.src.selinuxpermissive.fix, self.config_file_path) self.assertEqual(self.output.getvalue(), "[WARN] Unable to replace contents of /etc/selinux/config\n") self.assertTrue(open_mock.called) @mock.patch("moduletests.src.selinuxpermissive.get_config_dict") @mock.patch("moduletests.src.selinuxpermissive.detect", side_effect=(True, False)) @mock.patch("moduletests.src.selinuxpermissive.os.path.isfile", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.backup", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.fix", return_value=True) def test_run_success_fixed(self, fix_mock, backup_mock, isfile_mock, detect_mock, config_mock): config_mock.return_value = {"BACKUP_DIR": "/var/tmp/ec2rl", "LOG_DIR": "/var/tmp/ec2rl", "BACKED_FILES": dict(), "REMEDIATE": True} with contextlib.redirect_stdout(self.output): self.assertTrue(moduletests.src.selinuxpermissive.run()) self.assertTrue("[SUCCESS] selinux set to permissive" in self.output.getvalue()) self.assertTrue(fix_mock.called) self.assertTrue(backup_mock.called) self.assertTrue(isfile_mock.called) self.assertTrue(detect_mock.called) self.assertTrue(config_mock.called) @mock.patch("moduletests.src.selinuxpermissive.get_config_dict", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.detect", return_value=False) def test_run_success(self, detect_mock, config_mock): with contextlib.redirect_stdout(self.output): self.assertTrue(moduletests.src.selinuxpermissive.run()) self.assertTrue("[SUCCESS] selinux is not set to enforcing" in self.output.getvalue()) self.assertTrue(detect_mock.called) self.assertTrue(config_mock.called) @mock.patch("moduletests.src.selinuxpermissive.get_config_dict") @mock.patch("moduletests.src.selinuxpermissive.detect", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.os.path.isfile", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.backup", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.fix", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.restore", return_value=True) def test_run_failure_isfile(self, restore_mock, fix_mock, backup_mock, isfile_mock, detect_mock, config_mock): config_mock.return_value = {"BACKUP_DIR": "/var/tmp/ec2rl", "LOG_DIR": "/var/tmp/ec2rl", "BACKED_FILES": {self.config_file_path: "/some/path"}, "REMEDIATE": True, "SUDO": True} with contextlib.redirect_stdout(self.output): self.assertFalse(moduletests.src.selinuxpermissive.run()) self.assertTrue("[FAILURE] failed to set selinux set to permissive" in self.output.getvalue()) self.assertTrue(restore_mock.called) self.assertTrue(fix_mock.called) self.assertTrue(backup_mock.called) self.assertTrue(isfile_mock.called) self.assertTrue(detect_mock.called) self.assertTrue(config_mock.called) @mock.patch("moduletests.src.selinuxpermissive.get_config_dict") @mock.patch("moduletests.src.selinuxpermissive.detect", return_value=True) @mock.patch("moduletests.src.selinuxpermissive.os.path.isfile", return_value=False) @mock.patch("moduletests.src.selinuxpermissive.fix", return_value=True) def test_run_failure(self, fix_mock, isfile_mock, detect_mock, config_mock): config_mock.return_value = {"BACKUP_DIR": "/var/tmp/ec2rl", "LOG_DIR": "/var/tmp/ec2rl", "BACKED_FILES": dict(), "REMEDIATE": True, "SUDO": True} with contextlib.redirect_stdout(self.output): self.assertFalse(moduletests.src.selinuxpermissive.run()) self.assertTrue("[FAILURE] failed to set selinux set to permissive" in self.output.getvalue()) self.assertTrue(fix_mock.called) self.assertTrue(isfile_mock.called) self.assertTrue(detect_mock.called) self.assertTrue(config_mock.called) @mock.patch("moduletests.src.selinuxpermissive.get_config_dict") @mock.patch("moduletests.src.selinuxpermissive.detect", side_effect=IOError) @mock.patch("moduletests.src.selinuxpermissive.restore", return_value=True) def test_run_failure_exception(self, restore_mock, detect_mock, config_mock): config_mock.return_value = {"BACKUP_DIR": "/var/tmp/ec2rl", "LOG_DIR": "/var/tmp/ec2rl", "BACKED_FILES": {self.config_file_path: "/some/path"}, "REMEDIATE": True} with contextlib.redirect_stdout(self.output): self.assertFalse(moduletests.src.selinuxpermissive.run()) self.assertTrue(self.output.getvalue().endswith("Review the logs to determine the cause of the issue.\n")) self.assertTrue(restore_mock.called) self.assertTrue(detect_mock.called) self.assertTrue(config_mock.called) @mock.patch("moduletests.src.selinuxpermissive.get_config_dict", side_effect=IOError) def test_run_failure_config_exception(self, config_mock): with contextlib.redirect_stdout(self.output): self.assertFalse(moduletests.src.selinuxpermissive.run()) self.assertTrue(self.output.getvalue().endswith("Review the logs to determine the cause of the issue.\n")) self.assertTrue(config_mock.called)
tencentcloud/facefusion/v20181201/facefusion_client.py
PlasticMem/tencentcloud-sdk-python
465
12760862
<filename>tencentcloud/facefusion/v20181201/facefusion_client.py # -*- coding: utf8 -*- # Copyright (c) 2017-2021 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException from tencentcloud.common.abstract_client import AbstractClient from tencentcloud.facefusion.v20181201 import models class FacefusionClient(AbstractClient): _apiVersion = '2018-12-01' _endpoint = 'facefusion.tencentcloudapi.com' _service = 'facefusion' def DescribeMaterialList(self, request): """通常通过腾讯云人脸融合的控制台可以查看到素材相关的参数数据,可以满足使用。本接口返回活动的素材数据,包括素材状态等。用于用户通过Api查看素材相关数据,方便使用。 :param request: Request instance for DescribeMaterialList. :type request: :class:`tencentcloud.facefusion.v20181201.models.DescribeMaterialListRequest` :rtype: :class:`tencentcloud.facefusion.v20181201.models.DescribeMaterialListResponse` """ try: params = request._serialize() body = self.call("DescribeMaterialList", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeMaterialListResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def FaceFusion(self, request): """本接口用于人脸融合,用户上传人脸图片,获取与模板融合后的人脸图片。未发布的活动请求频率限制为1次/秒,已发布的活动请求频率限制50次/秒。如有需要提高活动的请求频率限制,请在控制台中申请。 > - 公共参数中的签名方式必须指定为V3版本,即配置SignatureMethod参数为TC3-HMAC-SHA256。 :param request: Request instance for FaceFusion. :type request: :class:`tencentcloud.facefusion.v20181201.models.FaceFusionRequest` :rtype: :class:`tencentcloud.facefusion.v20181201.models.FaceFusionResponse` """ try: params = request._serialize() body = self.call("FaceFusion", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.FaceFusionResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def FaceFusionLite(self, request): """人脸融合活动专用版,不推荐使用。人脸融合接口建议使用[人脸融合](https://cloud.tencent.com/document/product/670/31061)或[选脸融合](https://cloud.tencent.com/document/product/670/37736)接口 :param request: Request instance for FaceFusionLite. :type request: :class:`tencentcloud.facefusion.v20181201.models.FaceFusionLiteRequest` :rtype: :class:`tencentcloud.facefusion.v20181201.models.FaceFusionLiteResponse` """ try: params = request._serialize() body = self.call("FaceFusionLite", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.FaceFusionLiteResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def FuseFace(self, request): """本接口用于单脸、多脸融合,用户上传人脸图片,获取与模板融合后的人脸图片。查看 <a href="https://cloud.tencent.com/document/product/670/38247" target="_blank">选脸融合接入指引</a>。 未发布的活动请求频率限制为1次/秒,已发布的活动请求频率限制50次/秒。如有需要提高活动的请求频率限制,请在控制台中申请。 > - 公共参数中的签名方式必须指定为V3版本,即配置SignatureMethod参数为TC3-HMAC-SHA256。 :param request: Request instance for FuseFace. :type request: :class:`tencentcloud.facefusion.v20181201.models.FuseFaceRequest` :rtype: :class:`tencentcloud.facefusion.v20181201.models.FuseFaceResponse` """ try: params = request._serialize() body = self.call("FuseFace", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.FuseFaceResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message)
src/robotide/lib/robot/running/randomizer.py
ludovicurbain/SWIFT-RIDE
775
12760886
# Copyright 2008-2015 Nokia Networks # Copyright 2016- Robot Framework Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from random import Random from robotide.lib.robot.model import SuiteVisitor class Randomizer(SuiteVisitor): def __init__(self, randomize_suites=True, randomize_tests=True, seed=None): self.randomize_suites = randomize_suites self.randomize_tests = randomize_tests self.seed = seed # Cannot use just Random(seed) due to # https://ironpython.codeplex.com/workitem/35155 args = (seed,) if seed is not None else () self._shuffle = Random(*args).shuffle def start_suite(self, suite): if not self.randomize_suites and not self.randomize_tests: return False if self.randomize_suites: self._shuffle(suite.suites) if self.randomize_tests: self._shuffle(suite.tests) if not suite.parent: suite.metadata['Randomized'] = self._get_message() def _get_message(self): possibilities = {(True, True): 'Suites and tests', (True, False): 'Suites', (False, True): 'Tests'} randomized = (self.randomize_suites, self.randomize_tests) return '%s (seed %s)' % (possibilities[randomized], self.seed) def visit_test(self, test): pass def visit_keyword(self, kw): pass
face_alignment/detection/dlib/dlib_detector.py
NovemberJoy/VTuber_Unity
669
12760928
<filename>face_alignment/detection/dlib/dlib_detector.py import os import cv2 import dlib try: import urllib.request as request_file except BaseException: import urllib as request_file from ..core import FaceDetector from ...utils import appdata_dir class DlibDetector(FaceDetector): def __init__(self, device, path_to_detector=None, verbose=False): super().__init__(device, verbose) base_path = os.path.join(appdata_dir('face_alignment'), "data") # Initialise the face detector if 'cuda' in device: if path_to_detector is None: path_to_detector = os.path.join( base_path, "mmod_human_face_detector.dat") if not os.path.isfile(path_to_detector): print("Downloading the face detection CNN. Please wait...") path_to_temp_detector = os.path.join( base_path, "mmod_human_face_detector.dat.download") if os.path.isfile(path_to_temp_detector): os.remove(os.path.join(path_to_temp_detector)) request_file.urlretrieve( "https://www.adrianbulat.com/downloads/dlib/mmod_human_face_detector.dat", os.path.join(path_to_temp_detector)) os.rename(os.path.join(path_to_temp_detector), os.path.join(path_to_detector)) self.face_detector = dlib.cnn_face_detection_model_v1(path_to_detector) else: self.face_detector = dlib.get_frontal_face_detector() def detect_from_image(self, tensor_or_path): image = self.tensor_or_path_to_ndarray(tensor_or_path, rgb=False) detected_faces = self.face_detector(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)) if 'cuda' not in self.device: detected_faces = [[d.left(), d.top(), d.right(), d.bottom()] for d in detected_faces] else: detected_faces = [[d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom()] for d in detected_faces] return detected_faces @property def reference_scale(self): return 195 @property def reference_x_shift(self): return 0 @property def reference_y_shift(self): return 0
L1Trigger/GlobalTriggerAnalyzer/python/l1GtPatternGenerator_cfi.py
ckamtsikis/cmssw
852
12760976
<filename>L1Trigger/GlobalTriggerAnalyzer/python/l1GtPatternGenerator_cfi.py import FWCore.ParameterSet.Config as cms l1GtPatternGenerator = cms.EDAnalyzer("L1GtPatternGenerator", # input tags for various records GtInputTag = cms.InputTag("gtDigis"), GmtInputTag = cms.InputTag("gmtDigis"), GctInputTag = cms.InputTag("gctDigis"), CscInputTag = cms.InputTag("gtDigis", "CSC"), DtInputTag = cms.InputTag("gtDigis", "DT"), RpcbInputTag = cms.InputTag("gtDigis", "RPCb"), RpcfInputTag = cms.InputTag("gtDigis", "RPCf"), # file name PatternFileName = cms.string("GT_GMT_patterns.txt"), # bunch crossing numbers to write bx = cms.vint32(0), # header PatternFileHeader = cms.string( """#GT_GMT_patterns_VD # # editors - HB 220606 # # remarks: # values in this template are for version VD (same as VB) for the cond-chips of GTL9U (from IVAN) # # syntax: # character "#" indicates a comment line # header line 1 => hardware of sim- and spy-memories # header line 2 => hardware location (FPGA-chip) of sim-memories # header line 3 => channel number of sim-memories (PSB) # header line 4 => hardware location (FPGA-chip) of spy-memories # header line 5 => name of patterns # header line 6 => number of objects (calos, muons) or other declarations # (header line 7 => only graphics) # (header line 8 => only text and graphics) # header line 9 => number of columns, starting with 0 # # patterns: # values in column 0 are event numbers (decimal), starting with 0 (synchronisation data) # patterns for 1024 events (memories of cond-chips on GTL9U can contain only 1024 events) are in this file # values in columns 1-119 are the hexadecimal patterns, the rightmost digit in a string is LSB # # header: # e |<--------------------------------------------------------------------------PSB/GTL9U(REC)------------------------------------------------------------------------------------------------------------->|<--------------------------------------------------------------------------PSB/GMT(AUF,AUB)--------------------------------------------------------------------------------------------------------------------------------------------------->|<----------------------------------------------------------------GMT REGIONAL MUONs----------------------------------------------------------->|<----GMT(SORT)/GTL9U(REC)----->|<--------------GTL9U(COND)/FDL(ALGO)---------------->|<-----------FDL----------->| # v |PSB slot13/ch6+7 |PSB slot13/ch4+5 |PSB slot13/ch2+3 |PSB slot13/ch0+1 |PSB slot14/ch6+7 |PSB slot14/ch4+5 |PSB slot14/ch2+3 |PSB slot14/ch0+1 |PSB slot15/ch2+3 |PSB slot15/ch0+1 |PSB slot19/ch6+7 |PSB slot19/ch4+5 |PSB slot19/ch2+3 |PSB slot19/ch0+1 |PSB slot20/ch6+7 |PSB slot20/ch4+5 |PSB slot20/ch2+3 |PSB slot20/ch0+1 |PSB slot21/ch6+7 |PSB slot21/ch4+5 |PSB slot21/ch2+3 |PSB slot21/ch0+1 |GMT INF |GMT INC |GMT IND |GMT INB |GMT SORT |COND1 |COND2 |PSB slot9/ch0+1 |FINOR | # e |ch6 ch7 ch6 ch7 |ch4 ch5 ch4 ch5 |ch2 ch3 ch2 ch3 |ch0 ch1 ch0 ch1 |ch6 ch7 ch6 ch7 |ch4 ch5 ch4 ch5 |ch2 ch3 ch2 ch3 |ch0 ch1 ch0 ch1 |ch2 ch3 ch2 ch3 |ch0 ch1 ch0 ch1 |ch6 ch7 ch6 ch7 |ch4 ch5 ch4 ch5 |ch2 ch3 ch2 ch3 |ch0 ch1 ch0 ch1 |ch6 ch7 ch6 ch7 |ch4 ch5 ch4 ch5 |ch2 ch3 ch2 ch3 |ch0 ch1 ch0 ch1 |ch6 ch7 ch6 ch7 |ch4 ch5 ch4 ch5 |ch2 ch3 ch2 ch3 |ch0 ch1 ch0 ch1 | | | | | | | |ch0 ch1 ch0 ch1 | | # n |GTL9U REC1 |GTL9U REC1 |GTL9U REC2 |GTL9U REC2 |GTL9U REC2 |GTL9U REC2 |GTL9U REC3 |GTL9U REC3 |GTL9U REC3 |GTL9U REC3 |GMT AUF |GMT AUF |GMT AUB |GMT AUB |GMT AUF |GMT AUF |GMT AUB |GMT AUB |GMT AUF |GMT AUF |GMT AUB |GMT AUB | | | | |GTL9U REC1 |FDL ALGO |FDL ALGO |FDL ALGO | | # t |calo1 (ieg) |calo2 (eg) |calo3 (jet) |calo4 (fwdjet) |calo5 (tau) |calo6 (esums) |calo7 (hfbc/etsums)|calo8 (free) |calo9 (totem) |calo10 (free) |MQF4 |MQF3 |MQB2 |MQB1 |MQF8 |MQF7 |MQB6 |MQB5 |MQF12 |MQF11 |MQB10 |MQB9 |RPC forward |CSC |DT |RPC barrel |muon (sorted four) |algo |algo |techtrigger | | # | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 |45M 45Q 6M 6Q |45M 45Q 6M 6Q |01M 01Q 23M 23Q |01M 01Q 23M 23Q |45M 45Q 6M 6Q |45M 45Q 6M 6Q |01M 01Q 23M 23Q |01M 01Q 23M 23Q |45M 45Q 6M 6Q |45M 45Q 6M 6Q |01M 01Q 23M 23Q |01M 01Q 23M 23Q | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 |191--160 159--128 127---96|95----64 63----32 31-----0|15-0 47-32 31-16 63-48| | # | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | # columns: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | # 0 | 1 2 3 4 | 5 6 7 8 | 9 10 11 12 | 13 14 15 16 | 17 18 19 20 | 21 22 23 24 | 25 26 27 28 | 29 30 31 32 | 33 34 35 36 | 37 38 39 40 | 41 42 43 44 | 45 46 47 48 | 49 50 51 52 | 53 54 55 56 | 57 58 59 60 | 61 62 63 64 | 65 66 67 68 | 69 70 71 72 | 73 74 75 76 | 77 78 79 80 | 81 82 83 84 | 85 86 87 88 | 89 90 91 92 | 93 94 95 96 | 97 98 99 100 | 101 102 103 104 | 105 106 107 108 | 109 110 111 | 112 113 114 | 115 116 117 118|119 | """), # footer PatternFileFooter = cms.string(""), # A vector of column names to be written for each pattern file line PatternFileColumns = cms.vstring(), # A vector of the lengths (in bits!) of each column PatternFileLengths = cms.vuint32(), # A vector of default values for each column PatternFileDefaultValues = cms.vuint32(), # By default, do not add comments with detailed information DebugOutput = cms.bool(False) ) def addBlock(analyzer, name, count, length, default): for i in range(1,count+1): analyzer.PatternFileColumns.append("%s%d" % (name, i)) analyzer.PatternFileLengths.append(length) analyzer.PatternFileDefaultValues.append(default) def addPSB(analyzer, name): addBlock(analyzer, name, 4, 16, 0) def addRegionalMuons(analyzer, name): # regional muons are different - they need to have a default of 0x0000ff00 when # empty to make input cable disconnects recognizable addBlock(analyzer, name, 4, 32, 0x0000ff00) def addGMTMuons(analyzer, name): addBlock(analyzer, name, 4, 26, 0) # set up format: fields = l1GtPatternGenerator.PatternFileColumns lengths = l1GtPatternGenerator.PatternFileLengths defaults = l1GtPatternGenerator.PatternFileDefaultValues # column 1..20: some fairly standard PSBs (calo1 - calo5) for name in [ "gctIsoEm", "gctEm", "cenJet", "forJet", "tauJet" ]: addPSB(l1GtPatternGenerator, name) # then the energy sums, which are slightly more complicated # (calo6) fields += ["etTotal1", "etMiss1", "etHad1", "etMissPhi1"] lengths += [ 16, 16, 16, 16] defaults += [ 0, 0, 0, 0] # HF bit counts / etsums (which are mangled in the C++ code) # (calo7) fields += [ "hfPsbValue1_l", "htMiss1", "hfPsbValue1_h", "unknown"] lengths += [ 16, 16, 16, 16] defaults += [ 0, 0, 0, 0] # calo8 - free addPSB(l1GtPatternGenerator, "unknown") # calo9 - "totem", currently addPSB(l1GtPatternGenerator, "unknown") # calo 10 # BPTX/Castor and TBD data - default to 0xffff to get BPTX triggers matching GT emulator addBlock(l1GtPatternGenerator, "unknown", 4, 16, 0xffff) # 12 more PSBs we don't fill for i in range(12): addPSB(l1GtPatternGenerator, "unknown") # regional muons addRegionalMuons(l1GtPatternGenerator, "fwdMuon") addRegionalMuons(l1GtPatternGenerator, "cscMuon") addRegionalMuons(l1GtPatternGenerator, "dtMuon") addRegionalMuons(l1GtPatternGenerator, "brlMuon") # global muons addGMTMuons(l1GtPatternGenerator, "gmtMuon") # GT stuff addBlock(l1GtPatternGenerator, "gtDecisionExt", 2, 32, 0) addBlock(l1GtPatternGenerator, "gtDecision", 4, 32, 0) # tech triggers: a bit complicated, since we like to mix up # half-words (see header) fields += ["gtTechTrigger1_l", "gtTechTrigger2_l", "gtTechTrigger1_h", "gtTechTrigger2_h"] lengths += [ 16, 16, 16, 16] defaults += [ 0, 0, 0, 0] fields += ["gtFinalOr"] lengths += [ 9] defaults += [ 0] # just to make sure the python magic adds up to the proper output format if len(fields) != 119: raise ValueError("Expecting 119 data fields (120 - event number) in pattern file format, got %d!" % len(fields) ) # For debugging: Get an overview of your pattern file format #print fields #print lengths #print defaults
scripts/plain_models/cifar_resnet/train_pytorch.py
microsoft/archai
344
12760982
<reponame>microsoft/archai import argparse import math from typing import List, Mapping, Optional, Tuple, Any import os import logging import numpy as np import time import torch from torch import nn from torch.optim.optimizer import Optimizer from torch.optim.lr_scheduler import _LRScheduler from torch.nn.modules.loss import _Loss from torch.utils.data import DataLoader import torchvision import torchvision.transforms as transforms import yaml from archai.common import utils from archai import cifar10_models def train(epochs, train_dl, val_dal, net, device, crit, optim, sched, sched_on_epoch, half, quiet, grad_clip:float) -> List[Mapping]: train_acc, test_acc = 0.0, 0.0 metrics = [] for epoch in range(epochs): lr = optim.param_groups[0]['lr'] train_acc, loss = train_epoch(epoch, net, train_dl, device, crit, optim, sched, sched_on_epoch, half, grad_clip) val_acc = test(net, val_dal, device, half) if val_dal is not None else math.nan metrics.append({'val_top1': val_acc, 'train_top1': train_acc, 'lr': lr, 'epoch': epoch, 'train_loss': loss}) if not quiet: logging.info(f'train_epoch={epoch}, val_top1={val_acc},' f' train_top1={train_acc}, lr={lr:.4g}') return metrics def optim_sched_orig(net, epochs): lr, momentum, weight_decay = 0.1, 0.9, 1.0e-4 optim = torch.optim.SGD(net.parameters(), lr, momentum=momentum, weight_decay=weight_decay) logging.info(f'lr={lr}, momentum={momentum}, weight_decay={weight_decay}') sched = torch.optim.lr_scheduler.MultiStepLR(optim, milestones=[100, 150, 200, 400, 600]) # resnet original paper sched_on_epoch = True logging.info(f'sched_on_epoch={sched_on_epoch}, sched={str(sched)}') return optim, sched, sched_on_epoch def optim_sched_cosine(net, epochs): lr, momentum, weight_decay = 0.025, 0.9, 1.0e-4 optim = torch.optim.SGD(net.parameters(), lr, momentum=momentum, weight_decay=weight_decay) logging.info(f'lr={lr}, momentum={momentum}, weight_decay={weight_decay}') sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, epochs) sched_on_epoch = True logging.info(f'sched_on_epoch={sched_on_epoch}, sched={str(sched)}') return optim, sched, sched_on_epoch def get_data(datadir: str, train_batch_size=128, test_batch_size=4096, cutout=0, train_num_workers=-1, test_num_workers=-1, val_percent=10.0)\ -> Tuple[DataLoader, Optional[DataLoader], DataLoader]: if utils.is_debugging(): train_num_workers = test_num_workers = 0 logging.info('debugger=true, num_workers=0') if train_num_workers <= -1: train_num_workers = torch.cuda.device_count()*4 if test_num_workers <= -1: test_num_workers = torch.cuda.device_count()*4 train_transform = cifar10_transform(aug=True, cutout=cutout) trainset = torchvision.datasets.CIFAR10(root=datadir, train=True, download=True, transform=train_transform) val_len = int(len(trainset) * val_percent / 100.0) train_len = len(trainset) - val_len valset = None if val_len: trainset, valset = torch.utils.data.random_split( trainset, [train_len, val_len]) train_dl = torch.utils.data.DataLoader(trainset, batch_size=train_batch_size, shuffle=True, num_workers=train_num_workers, pin_memory=True) if valset is not None: val_dl = torch.utils.data.DataLoader(valset, batch_size=test_batch_size, shuffle=False, num_workers=test_num_workers, pin_memory=True) else: val_dl = None test_transform = cifar10_transform(aug=False, cutout=0) testset = torchvision.datasets.CIFAR10(root=datadir, train=False, download=True, transform=test_transform) test_dl = torch.utils.data.DataLoader(testset, batch_size=test_batch_size, shuffle=False, num_workers=test_num_workers, pin_memory=True) logging.info( f'train_len={train_len}, val_len={val_len}, test_len={len(testset)}') return train_dl, val_dl, test_dl def train_epoch(epoch, net, train_dl, device, crit, optim, sched, sched_on_epoch, half, grad_clip:float) -> Tuple[float, float]: correct, total, loss_total = 0, 0, 0.0 net.train() for batch_idx, (inputs, targets) in enumerate(train_dl): inputs = inputs.to(device, non_blocking=True) targets = targets.to(device, non_blocking=True) if half: inputs = inputs.half() outputs, loss = train_step(net, crit, optim, sched, sched_on_epoch, inputs, targets, grad_clip) loss_total += loss _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() if sched and sched_on_epoch: sched.step() return 100.0*correct/total, loss_total def train_step(net: nn.Module, crit: _Loss, optim: Optimizer, sched: _LRScheduler, sched_on_epoch: bool, inputs: torch.Tensor, targets: torch.Tensor, grad_clip:float) -> Tuple[torch.Tensor, float]: outputs = net(inputs) loss = crit(outputs, targets) optim.zero_grad() loss.backward() nn.utils.clip_grad_norm_(net.parameters(), grad_clip) optim.step() if sched and not sched_on_epoch: sched.step() return outputs, loss.item() def test(net, test_dl, device, half) -> float: correct, total = 0, 0 net.eval() with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(test_dl): inputs = inputs.to(device, non_blocking=False) targets = targets.to(device) if half: inputs = inputs.half() outputs = net(inputs) _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() return 100.0*correct/total def param_size(model: torch.nn.Module) -> int: """count all parameters excluding auxiliary""" return sum(v.numel() for name, v in model.named_parameters() if "auxiliary" not in name) def cifar10_transform(aug: bool, cutout=0): MEAN = [0.49139968, 0.48215827, 0.44653124] STD = [0.24703233, 0.24348505, 0.26158768] transf = [ transforms.ToTensor(), transforms.Normalize(MEAN, STD) ] if aug: aug_transf = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip() ] transf = aug_transf + transf if cutout > 0: # must be after normalization transf += [CutoutDefault(cutout)] return transforms.Compose(transf) class CutoutDefault: """ Reference : https://github.com/quark0/darts/blob/master/cnn/utils.py """ def __init__(self, length): self.length = length def __call__(self, img): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1: y2, x1: x2] = 0. mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return img def log_metrics(expdir: str, filename: str, metrics, test_acc: float, args) -> None: print('filename:', f'test_acc: {test_acc}', metrics[-1]) results = [ ('test_acc', test_acc), ('val_acc', metrics[-1]['val_top1']), ('epochs', args.epochs), ('train_batch_size', args.train_batch_size), ('test_batch_size', args.test_batch_size), ('model_name', args.model_name), ('exp_name', args.experiment_name), ('exp_desc', args.experiment_description), ('seed', args.seed), ('devices', utils.cuda_device_names()), ('half', args.half), ('cutout', args.cutout), ('train_acc', metrics[-1]['train_top1']), ('loader_workers', args.loader_workers), ('date', str(time.time())), ] utils.append_csv_file(os.path.join(expdir, f'{filename}.tsv'), results) with open(os.path.join(expdir, f'{filename}.yaml'), 'w') as f: yaml.dump(metrics, f) def create_crit(device, half): crit = nn.CrossEntropyLoss().to(device) if half: crit.half() return crit def create_model(model_name, device, half) -> nn.Module: model_class = getattr(cifar10_models, model_name) net = model_class() logging.info(f'param_size_m={param_size(net):.1e}') net = net.to(device) if half: net.half() return net def main(): parser = argparse.ArgumentParser(description='Pytorch cifar training') parser.add_argument('--experiment-name', '-n', default='train_pytorch') parser.add_argument('--experiment-description', '-d', default='Train cifar usin pure PyTorch code') parser.add_argument('--epochs', '-e', type=int, default=1) parser.add_argument('--model-name', '-m', default='resnet34') parser.add_argument('--device', default='', help='"cuda" or "cpu" or "" in which case use cuda if available') parser.add_argument('--train-batch-size', '-b', type=int, default=128) parser.add_argument('--test-batch-size', type=int, default=4096) parser.add_argument('--seed', '-s', type=float, default=42) parser.add_argument('--half', type=lambda x: x.lower() == 'true', nargs='?', const=True, default=False) parser.add_argument('--cutout', type=int, default=0) parser.add_argument('--grad-clip', type=float, default=5.0) parser.add_argument('--datadir', default='', help='where to find dataset files, default is ~/torchvision_data_dir') parser.add_argument('--outdir', default='', help='where to put results, default is ~/logdir') parser.add_argument('--loader-workers', type=int, default=-1, help='number of thread/workers for data loader (-1 means auto)') args = parser.parse_args() if not args.datadir: args.datadir = os.environ.get('PT_DATA_DIR', '') or '~/dataroot' if not args.outdir: args.outdir = os.environ.get('PT_OUTPUT_DIR', '') if not args.outdir: args.outdir = os.path.join( '~/logdir', 'cifar_testbed', args.experiment_name) expdir = utils.full_path(args.outdir) os.makedirs(expdir, exist_ok=True) utils.setup_cuda(args.seed) datadir = utils.full_path(args.datadir) os.makedirs(datadir, exist_ok=True) utils.create_logger(filepath=os.path.join(expdir, 'logs.log')) # log config for reference logging.info( f'exp_name="{args.experiment_name}", exp_desc="{args.experiment_description}"') logging.info( f'model_name="{args.model_name}", seed={args.seed}, epochs={args.epochs}') logging.info(f'half={args.half}, cutout={args.cutout}') logging.info(f'datadir="{datadir}"') logging.info(f'expdir="{expdir}"') logging.info(f'train_batch_size={args.train_batch_size}') if args.device: device = torch.device(args.device) else: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # load data just before train start so any errors so far is not delayed train_dl, val_dl, test_dl = get_data(datadir=datadir, train_batch_size=args.train_batch_size, test_batch_size=args.test_batch_size, train_num_workers=args.loader_workers, test_num_workers=args.loader_workers, cutout=args.cutout) epochs = args.epochs net = create_model(args.model_name, device, args.half) crit = create_crit(device, args.half) optim, sched, sched_on_epoch = optim_sched_orig(net, epochs) train_metrics = train(epochs, train_dl, val_dl, net, device, crit, optim, sched, sched_on_epoch, args.half, False, grad_clip=args.grad_clip) test_acc = test(net, test_dl, device, args.half) log_metrics(expdir, 'train_metrics', train_metrics, test_acc, args) if __name__ == '__main__': main()