File size: 5,310 Bytes
21bfe6f
eec7490
21bfe6f
636df3a
2a6fab4
21bfe6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208802b
 
 
1b0ecaa
 
 
 
208802b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bfe6f
 
 
 
 
 
 
 
80f22f7
 
21bfe6f
 
b037273
 
21bfe6f
 
 
 
 
 
 
 
 
 
 
 
 
 
2a6fab4
 
 
 
80f22f7
 
 
 
 
 
 
b324d54
208802b
1b0ecaa
5328cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bfe6f
bbf728c
5328cf0
 
1b0ecaa
 
5328cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf728c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import datasets
import numpy as np
import pandas as pd
import hickle as hkl
from pathlib import Path

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {rsna-atd},
author = {Yeow Zi Qin},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset is the processed version of Kaggle Competition: RSNA 2023 Abdominal Trauma Detection.
It comprises of segmentation of 205 series of CT scans with 5 classes (liver, spleen, right_kidney, 
left_kidney, bowel).
"""

_NAME = "rsna-atd"

_HOMEPAGE = f"https://huggingface.co/datasets/ziq/{_NAME}"

_LICENSE = "MIT"

_DATA = f"https://huggingface.co/datasets/ziq/{_NAME}/resolve/main/data/"


class RSNAATD(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    # "test": datasets.Value("string"),
                    "patient_id": datasets.Value("int64"),
                    "series_id": datasets.Value("int64"),
                    "image_path": datasets.Value("string"),
                    "mask_path": datasets.Value("string"),
                    # "image": datasets.Array3D(shape=(None, 512, 512), dtype="uint8"),
                    # "mask": datasets.Array3D(shape=(None, 512, 512), dtype="uint8"),
                    "aortic_hu": datasets.Value("float64"),
                    "incomplete_organ": datasets.Value("int64"),
                    "bowel_healthy": datasets.Value("int64"),
                    "bowel_injury": datasets.Value("int64"),
                    "extravasation_healthy": datasets.Value("int64"),
                    "extravasation_injury": datasets.Value("int64"),
                    "kidney_healthy": datasets.Value("int64"),
                    "kidney_low": datasets.Value("int64"),
                    "kidney_high": datasets.Value("int64"),
                    "liver_healthy": datasets.Value("int64"),
                    "liver_low": datasets.Value("int64"),
                    "liver_high": datasets.Value("int64"),
                    "spleen_healthy": datasets.Value("int64"),
                    "spleen_low": datasets.Value("int64"),
                    "spleen_high": datasets.Value("int64"),
                    "any_injury": datasets.Value("int64"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        train_images = dl_manager.download_and_extract(f"{_DATA}images.zip")
        train_masks = dl_manager.download_and_extract(f"{_DATA}masks.zip")

        metadata = dl_manager.download(f"{_DATA}metadata.csv")
        train_images = dl_manager.iter_files(train_images)
        train_masks = dl_manager.iter_files(train_masks)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": train_images,
                    "masks": train_masks,
                    "metadata": metadata,
                },
            ),
        ]

    def _generate_examples(self, images, masks, metadata):
        df = pd.read_csv(metadata)
        # yield 0, {
        #         "test": images
        #     }
        # return
        # for i, image in enumerate(images):
        #     # image_path = Path(image).name
        #     # test = hkl.load(image_path)
        #     yield i, {
        #         "test": image
        #     }
        # return
        for idx, (image_path, mask_path) in enumerate(zip(sorted(images), sorted(masks))):
            data = df.loc[df["path"] == Path(image_path).name].to_numpy()[0]
            # image, mask = [hkl.load(image_path)], [hkl.load(mask_path)]
            (
                patient_id,
                series_id,
                aortic_hu,
                incomplete_organ,
                bowel_healthy,
                bowel_injury,
                extravasation_healthy,
                extravasation_injury,
                kidney_healthy,
                kidney_low,
                kidney_high,
                liver_healthy,
                liver_low,
                liver_high,
                spleen_healthy,
                spleen_low,
                spleen_high,
                any_injury,
            ) = data[1:]

            yield idx, {
                "patient_id": patient_id,
                "series_id": series_id,
                "image_path": image_path,
                "mask_path": mask_path,
                "aortic_hu": aortic_hu,
                "incomplete_organ": incomplete_organ,
                "bowel_healthy": bowel_healthy,
                "bowel_injury": bowel_injury,
                "extravasation_healthy": extravasation_healthy,
                "extravasation_injury": extravasation_injury,
                "kidney_healthy": kidney_healthy,
                "kidney_low": kidney_low,
                "kidney_high": kidney_high,
                "liver_healthy": liver_healthy,
                "liver_low": liver_low,
                "liver_high": liver_high,
                "spleen_healthy": spleen_healthy,
                "spleen_low": spleen_low,
                "spleen_high": spleen_high,
                "any_injury": any_injury,
            }