davelotito's picture
End of training
b750673 verified
|
raw
history blame
3.25 kB
metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: donut-base-sroie-metrics-combined-new
    results: []

donut-base-sroie-metrics-combined-new

This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1662
  • Bleu score: 0.0215
  • Precisions: [0.9469914040114613, 0.9204368174726989, 0.8938356164383562, 0.872865275142315]
  • Brevity penalty: 0.0237
  • Length ratio: 0.2109
  • Translation length: 698
  • Reference length: 3310
  • Cer: 0.7917
  • Wer: 0.8253
  • Cer Hugging Face: 0.7954
  • Wer Hugging Face: 0.8274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu score Precisions Brevity penalty Length ratio Translation length Reference length Cer Wer Cer Hugging Face Wer Hugging Face
0.5956 1.0 253 0.2372 0.0231 [0.9258741258741259, 0.8890577507598785, 0.8519134775374376, 0.8180147058823529] 0.0265 0.2160 715 3310 0.7922 0.8383 0.7969 0.8412
0.2509 2.0 506 0.1730 0.0213 [0.9425287356321839, 0.9217527386541471, 0.8969072164948454, 0.88] 0.0234 0.2103 696 3310 0.7928 0.8285 0.7966 0.8306
0.22 3.0 759 0.1777 0.0215 [0.9469914040114613, 0.9188767550702028, 0.8921232876712328, 0.872865275142315] 0.0237 0.2109 698 3310 0.7914 0.8282 0.7948 0.8306
0.1687 4.0 1012 0.1662 0.0215 [0.9469914040114613, 0.9204368174726989, 0.8938356164383562, 0.872865275142315] 0.0237 0.2109 698 3310 0.7917 0.8253 0.7954 0.8274

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.1.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1