|
--- |
|
license: mit |
|
base_model: naver-clova-ix/donut-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- wer |
|
model-index: |
|
- name: donut_experiment_5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# donut_experiment_5 |
|
|
|
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3987 |
|
- Bleu: 0.0661 |
|
- Precisions: [0.8020833333333334, 0.7375886524822695, 0.6994535519125683, 0.6601941747572816] |
|
- Brevity Penalty: 0.0915 |
|
- Length Ratio: 0.2948 |
|
- Translation Length: 480 |
|
- Reference Length: 1628 |
|
- Cer: 0.7576 |
|
- Wer: 0.8280 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| |
|
| 0.3274 | 1.0 | 253 | 0.4698 | 0.0586 | [0.7707006369426752, 0.6956521739130435, 0.6582633053221288, 0.62] | 0.0857 | 0.2893 | 471 | 1628 | 0.7660 | 0.8432 | |
|
| 0.2539 | 2.0 | 506 | 0.4198 | 0.0643 | [0.799163179916318, 0.7315914489311164, 0.6868131868131868, 0.6416938110749185] | 0.0902 | 0.2936 | 478 | 1628 | 0.7605 | 0.8313 | |
|
| 0.224 | 3.0 | 759 | 0.3941 | 0.0658 | [0.8075313807531381, 0.7387173396674585, 0.7060439560439561, 0.6710097719869706] | 0.0902 | 0.2936 | 478 | 1628 | 0.7573 | 0.8283 | |
|
| 0.1566 | 4.0 | 1012 | 0.3987 | 0.0661 | [0.8020833333333334, 0.7375886524822695, 0.6994535519125683, 0.6601941747572816] | 0.0915 | 0.2948 | 480 | 1628 | 0.7576 | 0.8280 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |
|
|