metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: donut_experiment_bayesian_trial_19
results: []
donut_experiment_bayesian_trial_19
This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5754
- Bleu: 0.0724
- Precisions: [0.8450413223140496, 0.7892271662763466, 0.7486486486486487, 0.7028753993610224]
- Brevity Penalty: 0.0941
- Length Ratio: 0.2973
- Translation Length: 484
- Reference Length: 1628
- Cer: 0.7493
- Wer: 0.8177
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.0668629620167924e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0069 | 1.0 | 253 | 0.5825 | 0.0710 | [0.8423236514522822, 0.7858823529411765, 0.7418478260869565, 0.6977491961414791] | 0.0928 | 0.2961 | 482 | 1628 | 0.7509 | 0.8197 |
0.0113 | 2.0 | 506 | 0.5684 | 0.0703 | [0.841995841995842, 0.785377358490566, 0.7411444141689373, 0.6935483870967742] | 0.0921 | 0.2955 | 481 | 1628 | 0.7505 | 0.8199 |
0.0074 | 3.0 | 759 | 0.5754 | 0.0724 | [0.8450413223140496, 0.7892271662763466, 0.7486486486486487, 0.7028753993610224] | 0.0941 | 0.2973 | 484 | 1628 | 0.7493 | 0.8177 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1