|
--- |
|
language: en |
|
license: cc-by-4.0 |
|
datasets: |
|
- squad_v2 |
|
model-index: |
|
- name: deepset/bert-large-uncased-whole-word-masking-squad2 |
|
results: |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_v2 |
|
type: squad_v2 |
|
config: squad_v2 |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 80.8846 |
|
name: Exact Match |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2E5ZGNkY2ExZWViZGEwNWE3OGRmMWM2ZmE4ZDU4ZDQ1OGM3ZWE0NTVmZjFmYmZjZmJmNjJmYTc3NTM3OTk3OSIsInZlcnNpb24iOjF9.aSblF4ywh1fnHHrN6UGL392R5KLaH3FCKQlpiXo_EdQ4XXEAENUCjYm9HWDiFsgfSENL35GkbSyz_GAhnefsAQ |
|
- type: f1 |
|
value: 83.8765 |
|
name: F1 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFlNmEzMTk2NjRkNTI3ZTk3ZTU1NWNlYzIyN2E0ZDFlNDA2ZjYwZWJlNThkMmRmMmE0YzcwYjIyZDM5NmRiMCIsInZlcnNpb24iOjF9.-rc2_Bsp_B26-o12MFYuAU0Ad2Hg9PDx7Preuk27WlhYJDeKeEr32CW8LLANQABR3Mhw2x8uTYkEUrSDMxxLBw |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad |
|
type: squad |
|
config: plain_text |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 85.904 |
|
name: Exact Match |
|
- type: f1 |
|
value: 92.586 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: adversarial_qa |
|
type: adversarial_qa |
|
config: adversarialQA |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 28.233 |
|
name: Exact Match |
|
- type: f1 |
|
value: 41.170 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_adversarial |
|
type: squad_adversarial |
|
config: AddOneSent |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 78.064 |
|
name: Exact Match |
|
- type: f1 |
|
value: 83.591 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts amazon |
|
type: squadshifts |
|
config: amazon |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 65.615 |
|
name: Exact Match |
|
- type: f1 |
|
value: 80.733 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts new_wiki |
|
type: squadshifts |
|
config: new_wiki |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 81.570 |
|
name: Exact Match |
|
- type: f1 |
|
value: 91.199 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts nyt |
|
type: squadshifts |
|
config: nyt |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 83.279 |
|
name: Exact Match |
|
- type: f1 |
|
value: 91.090 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts reddit |
|
type: squadshifts |
|
config: reddit |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 69.305 |
|
name: Exact Match |
|
- type: f1 |
|
value: 82.405 |
|
name: F1 |
|
--- |
|
|
|
# bert-large-uncased-whole-word-masking-squad2 for Extractive QA |
|
|
|
This is a berta-large model, fine-tuned using the SQuAD2.0 dataset for the task of question answering. |
|
|
|
## Overview |
|
**Language model:** bert-large |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline) |
|
|
|
## Usage |
|
|
|
### In Haystack |
|
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. |
|
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/): |
|
```python |
|
# After running pip install haystack-ai "transformers[torch,sentencepiece]" |
|
|
|
from haystack import Document |
|
from haystack.components.readers import ExtractiveReader |
|
|
|
docs = [ |
|
Document(content="Python is a popular programming language"), |
|
Document(content="python ist eine beliebte Programmiersprache"), |
|
] |
|
|
|
reader = ExtractiveReader(model="deepset/bert-large-uncased-whole-word-masking-squad2") |
|
reader.warm_up() |
|
|
|
question = "What is a popular programming language?" |
|
result = reader.run(query=question, documents=docs) |
|
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]} |
|
``` |
|
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline). |
|
|
|
### In Transformers |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
|
|
model_name = "deepset/bert-large-uncased-whole-word-masking-squad2" |
|
|
|
# a) Get predictions |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
QA_input = { |
|
'question': 'Why is model conversion important?', |
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' |
|
} |
|
res = nlp(QA_input) |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
``` |
|
|
|
## About us |
|
|
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> |
|
</div> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> |
|
</div> |
|
</div> |
|
|
|
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/). |
|
|
|
Some of our other work: |
|
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2) |
|
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1) |
|
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio) |
|
|
|
## Get in touch and join the Haystack community |
|
|
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. |
|
|
|
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> |
|
|
|
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai) |
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs) |