librarian-bot's picture
Librarian Bot: Add base_model information to model
4ef8a05
|
raw
history blame
3.59 kB
---
language:
- nl
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
widget:
- text: In de Zaaktypeconfiguratie kan per fase een andere behandelaar worden geconfigureerd
waardoor bij de overgang naar de volgende status de behandelaar automatisch wordt
gewijzigd. De behandelaar/groep behandelaren kan automatisch worden bepaald op
basis van een kenmerk.
- text: Er kan informatie aan het digitale formulier worden toegevoegd (gespreksverslagen
en resultaatafspraken bijvoorbeeld) door medewerker en/of leidinggevende, dit
kan tussentijds opgeslagen en/of afgesloten worden voordat het wordt vrijgegeven
voor de andere partij.
- text: De Oplossing ondersteunt parafering en het plaatsen van een gecertificeerde
elektronische handtekening.
- text: De Aangeboden oplossing biedt de functionaliteit om individuele en bulkmutaties
te verwerken met ingangsdatum op elke willekeurige datum in de maand, zowel in
het verleden als in de toekomst, binnen een lopend kalenderjaar.
base_model: GroNLP/bert-base-dutch-cased
model-index:
- name: requirements_ambiguity_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# requirements_ambiguity_v2
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on a private dataset with 2,523 labeled software requirements for ambiguity detection in Dutch.
Please contact me via [LinkedIn](https://www.linkedin.com/in/denizayhan/) if you have any questions about this model or the dataset used.
The dataset and this model were created as part of the final project assignment of the Natural Language Understanding course (XCS224U) from the Professional AI Program of the Stanford School of Engineering.
It achieves the following results on the evaluation set:
- Loss: 0.7485
- Accuracy: 0.8458
- F1: 0.8442
- Recall: 0.7474
## Intended uses & limitations
The model performs automated ambiguity detection through binary text classification. Its intended use is as a tool voor requirements engineers to detect spurious and ambiguous formulations.
## Training and evaluation data
The model was trained on ReqAmbi dataset. This dataset is private and contains 2,523 requirement formulations. Each requirement is manually
labeled 0 (unambiguous) or 1 (ambiguous). The dataset is split 2,019/253/253 into train, validation and test. The reported metrics are from the evaluation on the test set. The validation set was used for cross-validation during training.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
| 0.5268 | 1.0 | 36 | 0.5424 | 0.8063 | 0.8057 | 0.7263 |
| 0.318 | 2.0 | 72 | 0.4688 | 0.8182 | 0.8182 | 0.7579 |
| 0.1244 | 3.0 | 108 | 0.6019 | 0.8379 | 0.8366 | 0.7474 |
| 0.0308 | 4.0 | 144 | 0.7485 | 0.8458 | 0.8442 | 0.7474 |
### Framework versions
- Transformers 4.24.0
- Pytorch 2.0.0
- Datasets 2.9.0
- Tokenizers 0.11.0