dfurman's picture
Adding Evaluation Results (#1)
2b49a35 verified
metadata
language:
  - en
license: llama3
library_name: transformers
tags:
  - orpo
  - llama 3
  - rlhf
  - sft
base_model:
  - meta-llama/Meta-Llama-3-8B
datasets:
  - mlabonne/orpo-dpo-mix-40k
model-index:
  - name: Llama-3-8B-Orpo-v0.1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 30
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 13.77
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 3.78
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.57
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 2.73
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 14.23
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
          name: Open LLM Leaderboard

dfurman/Llama-3-8B-Orpo-v0.1

This is an ORPO fine-tune of meta-llama/Meta-Llama-3-8B on 4k samples of mlabonne/orpo-dpo-mix-40k.

It's a successful fine-tune that follows the ChatML template!

🔎 Application

This model uses a context window of 8k. It was trained with the ChatML template.

🏆 Evaluation

Open LLM Leaderboard

Model ID Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
meta-llama/Meta-Llama-3-8B-Instruct 📄 66.87 60.75 78.55 67.07 51.65 74.51 68.69
dfurman/Llama-3-8B-Orpo-v0.1 📄 64.67 60.67 82.56 66.59 50.47 79.01 48.75
meta-llama/Meta-Llama-3-8B 📄 62.35 59.22 82.02 66.49 43.95 77.11 45.34

📈 Training curves

You can find the experiment on W&B at this address.

💻 Usage

Setup
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

if torch.cuda.get_device_capability()[0] >= 8:
    !pip install -qqq flash-attn
    attn_implementation = "flash_attention_2"
    torch_dtype = torch.bfloat16
else:
    attn_implementation = "eager"
    torch_dtype = torch.float16

model = "dfurman/Llama-3-8B-Orpo-v0.1"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={
        "torch_dtype": torch_dtype,
        "device_map": "auto",
        "attn_implementation": attn_implementation,
    }
)

Run

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Tell me a recipe for a spicy margarita."},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print("***Prompt:\n", prompt)

outputs = pipeline(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print("***Generation:\n", outputs[0]["generated_text"][len(prompt):])
Output
"""***Prompt:
 <|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Tell me a recipe for a spicy margarita.<|im_end|>
<|im_start|>assistant

***Generation:
 Sure! Here's a recipe for a spicy margarita:

Ingredients:

- 2 oz silver tequila
- 1 oz triple sec
- 1 oz fresh lime juice
- 1/2 oz simple syrup
- 1/2 oz fresh lemon juice
- 1/2 tsp jalapeño, sliced (adjust to taste)
- Ice cubes
- Salt for rimming the glass

Instructions:

1. Prepare the glass by running a lime wedge around the rim of the glass. Dip the rim into a shallow plate of salt to coat.
2. Combine the tequila, triple sec, lime juice, simple syrup, lemon juice, and jalapeño slices in a cocktail shaker.
3. Add ice cubes to the cocktail shaker and shake vigorously for 30 seconds to 1 minute.
4. Strain the cocktail into the prepared glass.
5. Garnish with a lime wedge and jalapeño slice.

Enjoy! This spicy margarita has a nice balance of sweetness and acidity, with a subtle heat from the jalapeño that builds gradually as you sip."""
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__Llama-3-8B-Orpo-v0.1)
Metric Value
Avg. 11.01
IFEval (0-Shot) 30.00
BBH (3-Shot) 13.77
MATH Lvl 5 (4-Shot) 3.78
GPQA (0-shot) 1.57
MuSR (0-shot) 2.73
MMLU-PRO (5-shot) 14.23