dilkasithari-IT's picture
Upload tokenizer
e98e639 verified
|
raw
history blame
2.06 kB
metadata
tags:
  - generated_from_trainer
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
metrics:
  - accuracy
model-index:
  - name: fine-tuned-twitter-roberta-base-sentiment-latest
    results: []

fine-tuned-twitter-roberta-base-sentiment-latest

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3062
  • Accuracy: {'accuracy': 0.8868131868131868}
  • F1score: {'f1': 0.88247351021472}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1score
0.461 0.2443 500 0.3381 {'accuracy': 0.8565934065934065} {'f1': 0.8483856477235431}
0.3702 0.4885 1000 0.3378 {'accuracy': 0.865934065934066} {'f1': 0.8655309886906097}
0.3574 0.7328 1500 0.2971 {'accuracy': 0.8714285714285714} {'f1': 0.8709435986031107}
0.3358 0.9770 2000 0.3062 {'accuracy': 0.8868131868131868} {'f1': 0.88247351021472}

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1