|
--- |
|
tags: |
|
- generated_from_trainer |
|
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: fine-tuned-twitter-roberta-base-sentiment-latest |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine-tuned-twitter-roberta-base-sentiment-latest |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3062 |
|
- Accuracy: {'accuracy': 0.8868131868131868} |
|
- F1score: {'f1': 0.88247351021472} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1score | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:--------------------------:| |
|
| 0.461 | 0.2443 | 500 | 0.3381 | {'accuracy': 0.8565934065934065} | {'f1': 0.8483856477235431} | |
|
| 0.3702 | 0.4885 | 1000 | 0.3378 | {'accuracy': 0.865934065934066} | {'f1': 0.8655309886906097} | |
|
| 0.3574 | 0.7328 | 1500 | 0.2971 | {'accuracy': 0.8714285714285714} | {'f1': 0.8709435986031107} | |
|
| 0.3358 | 0.9770 | 2000 | 0.3062 | {'accuracy': 0.8868131868131868} | {'f1': 0.88247351021472} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|