File size: 6,493 Bytes
29878be 22a6274 29878be 6e633bd 10df9cf 6e633bd 29878be 6e633bd 29878be 10df9cf 29878be 10df9cf 29878be 10df9cf 29878be 10df9cf 29878be 10df9cf 29878be 6e633bd 29878be 10df9cf 29878be 10df9cf 29878be 10df9cf 6e633bd 29878be 10df9cf 29878be 10df9cf 29878be 6e633bd 29878be 6e633bd 29878be 6e633bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
language:
- el
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
metrics:
- accuracy_cosinus
- accuracy_euclidean
- accuracy_manhattan
model-index:
- name: st-greek-media-bert-base-uncased
results:
[
{
"task": { "name": "STS Benchmark", "type": "sentence-similarity" },
"metrics":
[
{ "type": "accuracy_cosinus", "value": 0.9563965089445283 },
{ "type": "accuracy_euclidean", "value": 0.9566394253292384 },
{ "type": "accuracy_manhattan", "value": 0.9565353183072198 },
],
"dataset":
{
"name": "all_custom_greek_media_triplets",
"type": "sentence-pair",
},
},
]
---
# Greek Media SBERT (uncased)
## Sentence Transformer
This is a [sentence-transformers](https://www.SBERT.net) based on the [Greek Media BERT (uncased)](https://huggingface.co/dimitriz/greek-media-bert-base-uncased) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('dimitriz/st-greek-media-bert-base-uncased')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input
through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word
embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('dimitriz/st-greek-media-bert-base-uncased')
model = AutoModel.from_pretrained('dimitriz/st-greek-media-bert-base-uncased')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the _Sentence Embeddings
Benchmark_: [https://seb.sbert.net](https://seb.sbert.net?model_name=dimitriz/st-greek-media-bert-base-uncased)
## Training
The model was trained on a custom dataset containing triplets from the **combined** Greek 'internet', 'social-media'
and 'press' domains, described in the paper [DACL](https://...).
- The dataset was created by sampling triplets of sentences from the same domain, where the first two sentences are more
similar than the third one.
- Training objective was to maximize the similarity between the first two sentences and minimize the similarity between
the first and the third sentence.
- The model was trained for 3 epochs with a batch size of 16 and a maximum sequence length of 512 tokens.
- The model was trained on a single NVIDIA RTX A6000 GPU with 48GB of memory.
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 10807 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
```
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
```
Parameters of the fit()-Method:
```
{
"epochs": 3,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 17290,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
The model has been officially released with the article "DACL: A Domain-Adapted Contrastive Learning Approach to Low Resource Language Representations for Document Clustering Tasks".
Dimitrios Zaikis, Stylianos Kokkas and Ioannis Vlahavas.
In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham".
If you use the model, please cite the following:
```bibtex
@InProceedings{10.1007/978-3-031-34204-2_47,
author="Zaikis, Dimitrios
and Kokkas, Stylianos
and Vlahavas, Ioannis",
editor="Iliadis, Lazaros
and Maglogiannis, Ilias
and Alonso, Serafin
and Jayne, Chrisina
and Pimenidis, Elias",
title="DACL: A Domain-Adapted Contrastive Learning Approach to Low Resource Language Representations for Document Clustering Tasks",
booktitle="Engineering Applications of Neural Networks",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="585--598",
isbn="978-3-031-34204-2"
}
```
|