File size: 6,493 Bytes
29878be
 
 
 
 
22a6274
 
 
 
29878be
 
 
 
 
 
6e633bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10df9cf
6e633bd
29878be
 
 
6e633bd
29878be
 
 
 
 
 
 
 
 
 
 
10df9cf
29878be
10df9cf
29878be
 
 
 
 
 
 
 
 
 
 
 
 
 
10df9cf
 
 
 
29878be
 
 
 
 
 
10df9cf
29878be
10df9cf
29878be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e633bd
 
29878be
 
10df9cf
 
 
 
 
 
 
 
 
29878be
 
 
 
 
 
 
10df9cf
29878be
 
 
 
 
 
 
10df9cf
6e633bd
 
 
29878be
 
10df9cf
29878be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10df9cf
29878be
 
6e633bd
29878be
 
 
 
 
 
6e633bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29878be
6e633bd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
language:
  - el
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
metrics:
  - accuracy_cosinus
  - accuracy_euclidean
  - accuracy_manhattan
model-index:
  - name: st-greek-media-bert-base-uncased
    results:
      [
        {
          "task": { "name": "STS Benchmark", "type": "sentence-similarity" },
          "metrics":
            [
              { "type": "accuracy_cosinus", "value": 0.9563965089445283 },
              { "type": "accuracy_euclidean", "value": 0.9566394253292384 },
              { "type": "accuracy_manhattan", "value": 0.9565353183072198 },
            ],
          "dataset":
            {
              "name": "all_custom_greek_media_triplets",
              "type": "sentence-pair",
            },
        },
      ]
---

# Greek Media SBERT (uncased)

## Sentence Transformer

This is a [sentence-transformers](https://www.SBERT.net) based on the [Greek Media BERT (uncased)](https://huggingface.co/dimitriz/greek-media-bert-base-uncased) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```

pip install -U sentence-transformers

```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('dimitriz/st-greek-media-bert-base-uncased')
embeddings = model.encode(sentences)
print(embeddings)
```

## Usage (HuggingFace Transformers)

Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input
through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word
embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]  # First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('dimitriz/st-greek-media-bert-base-uncased')
model = AutoModel.from_pretrained('dimitriz/st-greek-media-bert-base-uncased')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```

## Evaluation Results

<!--- Describe how your model was evaluated -->

For an automated evaluation of this model, see the _Sentence Embeddings
Benchmark_: [https://seb.sbert.net](https://seb.sbert.net?model_name=dimitriz/st-greek-media-bert-base-uncased)

## Training

The model was trained on a custom dataset containing triplets from the **combined** Greek 'internet', 'social-media'
and 'press' domains, described in the paper [DACL](https://...).

- The dataset was created by sampling triplets of sentences from the same domain, where the first two sentences are more
  similar than the third one.
- Training objective was to maximize the similarity between the first two sentences and minimize the similarity between
  the first and the third sentence.
- The model was trained for 3 epochs with a batch size of 16 and a maximum sequence length of 512 tokens.
- The model was trained on a single NVIDIA RTX A6000 GPU with 48GB of memory.

The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 10807 with parameters:

```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:

```
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
```

Parameters of the fit()-Method:

```
{
    "epochs": 3,
    "evaluation_steps": 1000,
    "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 17290,
    "weight_decay": 0.01
}
```

## Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

The model has been officially released with the article "DACL: A Domain-Adapted Contrastive Learning Approach to Low Resource Language Representations for Document Clustering Tasks".
Dimitrios Zaikis, Stylianos Kokkas and Ioannis Vlahavas.
In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham".

If you use the model, please cite the following:

```bibtex
@InProceedings{10.1007/978-3-031-34204-2_47,
author="Zaikis, Dimitrios
and Kokkas, Stylianos
and Vlahavas, Ioannis",
editor="Iliadis, Lazaros
and Maglogiannis, Ilias
and Alonso, Serafin
and Jayne, Chrisina
and Pimenidis, Elias",
title="DACL: A Domain-Adapted Contrastive Learning Approach to Low Resource Language Representations for Document Clustering Tasks",
booktitle="Engineering Applications of Neural Networks",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="585--598",
isbn="978-3-031-34204-2"
}


```