metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5600
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: What is the main factor of signal interference in MCFs?
sentences:
- >-
The main factor of signal interference in MCFs is crosstalk, which is
the leakage of a fraction of the signal power from a given core to its
neighboring core.
- >-
An integrity group temporal key (IGTK) is a random value used to protect
group addressed medium access control (MAC) management protocol data
units (MMPDUs) from a broadcast/multicast source station (STA).
- >-
Wireless sensing through the combined use of radio wave and AI
technologies aims to identify objects and recognize actions with high
precision.
- source_sentence: >-
What types of drones can be used to construct multi-tier drone-cell
networks?
sentences:
- >-
The coupling coefficient represents the tightness of coupling between
transmit and receive coils in wireless charging systems.
- >-
A cheap, slow photodiode placed next to the rear face of the laser
package is commonly used as the monitor detector in laser drive
circuits.
- >-
Multi-tier drone-cell networks can be constructed by utilizing several
drone types, similar to terrestrial HetNets with macro-, small-,
femtocells, and relays.
- source_sentence: >-
Which technology was explored for high capacity last mile and
pre-aggregation backhaul in small cell networks?
sentences:
- >-
According to Pearl's Ladder of Causation, counterfactual questions can
only be answered if information from all other levels (associational and
interventional) is available. Counterfactuals subsume interventional and
associational questions, and therefore sit at the top of the hierarchy.
- >-
Shannon's classical source coding theorem provides the minimum
distortion achievable in encoding a Gaussian stationary input signal.
- >-
The passage mentions that 60 GHz and 70-80 GHz millimeter wave
communication technologies were explored for high capacity last mile and
pre-aggregation backhaul in small cell networks.
- source_sentence: >-
What is the main output of the design procedure for a passive lossless
Huygens metasurface?
sentences:
- >-
Entanglement distillation is the process of purifying imperfect
entangled states to obtain maximally entangled states.
- >-
The main output of the design procedure is the transmitted fields as
well as the surface impedance and admittance.
- >-
The component of IoT responsible for sensing and collecting data is the
sensors.
- source_sentence: >-
What is the formula for the relative entropy between two probability
density functions?
sentences:
- >-
The consequence of the fact that the total power radiated varies as the
square of the frequency of the oscillation is that shorter wavelength
(higher frequency) light is scattered much more strongly than longer
wavelength (lower frequency) light.
- >-
Hybrid infrastructures are comprised of various proximate and distant
computing nodes, either mobile or immobile.
- >-
The relative entropy between two probability density functions f and g
is equal to the negative integral of f(x) multiplied by the logarithm of
the ratio of f(x) and g(x), with respect to x.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: telecom ir eval
type: telecom-ir-eval
metrics:
- type: cosine_accuracy@1
value: 0.9733333333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.995
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.995
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.995
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9733333333333334
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.9733333333333334
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.985912396714286
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9827777777777778
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9831452173557438
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What is the formula for the relative entropy between two probability density functions?',
'The relative entropy between two probability density functions f and g is equal to the negative integral of f(x) multiplied by the logarithm of the ratio of f(x) and g(x), with respect to x.',
'The consequence of the fact that the total power radiated varies as the square of the frequency of the oscillation is that shorter wavelength (higher frequency) light is scattered much more strongly than longer wavelength (lower frequency) light.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
telecom-ir-eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9733 |
cosine_accuracy@3 | 0.995 |
cosine_accuracy@5 | 0.995 |
cosine_accuracy@10 | 0.995 |
cosine_precision@1 | 0.9733 |
cosine_recall@1 | 0.9733 |
cosine_ndcg@10 | 0.9859 |
cosine_mrr@10 | 0.9828 |
cosine_map@100 | 0.9831 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 5,600 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 18.48 tokens
- max: 56 tokens
- min: 8 tokens
- mean: 29.0 tokens
- max: 85 tokens
- Samples:
anchor positive How can the unique decodability of a code be tested using the Sardinas and Patterson test?
The Sardinas and Patterson test for unique decodability involves checking if no codewords are prefixes of any other codewords.
What is the purpose of encapsulation in the OSI (Open System Interconnection) model?
Encapsulation is used to add control information and transform data units into protocol data units.
What advantages do measurements from user equipment (UE) have over drive tests in disaster small cell networks?
Measurements from user equipment (UE) have the advantages of reduced labor intensity, measurements obtained from additional locations, such as inside buildings, and better adaptation to specific characteristics and requirements in disaster scenarios.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
csv
- Dataset: csv
- Size: 1,400 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 18.92 tokens
- max: 49 tokens
- min: 8 tokens
- mean: 29.0 tokens
- max: 96 tokens
- Samples:
anchor positive What are the three major steps in SLAM-based techniques for THz localization?
SLAM-based techniques for THz localization involve imaging the environment, estimating ranges to the user, and fusing the images with the estimated ranges.
What is the service time distribution in the M/M(X)/1 model?
In the M/M(X)/1 model, the service time distribution is exponential with parameter µ.
What is the main advantage of the ensemble patch method in generating adversarial patches?
The main advantage of the ensemble patch method is that it achieves a higher attack success rate compared to single patches.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128weight_decay
: 0.01num_train_epochs
: 5lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | telecom-ir-eval_cosine_ndcg@10 |
---|---|---|---|---|
1.1364 | 50 | 0.2567 | 0.0419 | 0.9844 |
2.2727 | 100 | 0.0502 | 0.0397 | 0.9859 |
3.4091 | 150 | 0.0277 | 0.0399 | 0.9846 |
4.5455 | 200 | 0.0231 | 0.0406 | 0.9840 |
5.0 | 220 | - | - | 0.9859 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}