emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6256
  • Accuracy: 0.5625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00025
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 10 1.7794 0.4875
No log 2.0 20 1.6813 0.4938
0.2276 3.0 30 1.7602 0.4875
0.2276 4.0 40 1.9172 0.4562
0.2048 5.0 50 1.9316 0.4625
0.2048 6.0 60 1.8285 0.5
0.2048 7.0 70 1.6341 0.5687
0.1617 8.0 80 1.7461 0.5375
0.1617 9.0 90 1.6544 0.5312
0.1766 10.0 100 1.9449 0.4875
0.1766 11.0 110 1.7565 0.5125
0.1766 12.0 120 1.8936 0.5
0.1979 13.0 130 1.6812 0.5687
0.1979 14.0 140 1.7619 0.5188
0.1694 15.0 150 1.6903 0.55

Framework versions

  • Transformers 4.33.1
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dini-r-a/emotion_classification

Finetuned
(1791)
this model

Evaluation results