dini-r-a's picture
End of training
0d5d042
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: FastJobs--Visual_Emotional_Analysis
          split: train[:-1]
          args: FastJobs--Visual_Emotional_Analysis
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5625

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6256
  • Accuracy: 0.5625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00025
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 10 1.7794 0.4875
No log 2.0 20 1.6813 0.4938
0.2276 3.0 30 1.7602 0.4875
0.2276 4.0 40 1.9172 0.4562
0.2048 5.0 50 1.9316 0.4625
0.2048 6.0 60 1.8285 0.5
0.2048 7.0 70 1.6341 0.5687
0.1617 8.0 80 1.7461 0.5375
0.1617 9.0 90 1.6544 0.5312
0.1766 10.0 100 1.9449 0.4875
0.1766 11.0 110 1.7565 0.5125
0.1766 12.0 120 1.8936 0.5
0.1979 13.0 130 1.6812 0.5687
0.1979 14.0 140 1.7619 0.5188
0.1694 15.0 150 1.6903 0.55

Framework versions

  • Transformers 4.33.1
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1