|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-base-patch4-window7-224-in22k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swin-base-patch4-window7-224-in22k-MM_Classification_base_web_images |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8819619527847811 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-base-patch4-window7-224-in22k-MM_Classification_base_web_images |
|
|
|
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3085 |
|
- Accuracy: 0.8820 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.517 | 0.9927 | 68 | 0.4430 | 0.8157 | |
|
| 0.4211 | 2.0 | 137 | 0.3800 | 0.8457 | |
|
| 0.3532 | 2.9927 | 205 | 0.3563 | 0.8616 | |
|
| 0.3365 | 4.0 | 274 | 0.3333 | 0.8700 | |
|
| 0.2976 | 4.9927 | 342 | 0.3017 | 0.8838 | |
|
| 0.2611 | 6.0 | 411 | 0.3119 | 0.8810 | |
|
| 0.255 | 6.9489 | 476 | 0.3085 | 0.8820 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|