|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- big_patent |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: my_T5_summarization_model |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: big_patent |
|
type: big_patent |
|
config: f |
|
split: validation |
|
args: f |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.2277 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_T5_summarization_model |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the big_patent dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9477 |
|
- Rouge1: 0.2277 |
|
- Rouge2: 0.1286 |
|
- Rougel: 0.1988 |
|
- Rougelsum: 0.1988 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.156 | 1.0 | 5348 | 2.0181 | 0.2264 | 0.1267 | 0.1971 | 0.1972 | 19.0 | |
|
| 2.1095 | 2.0 | 10696 | 1.9737 | 0.227 | 0.1276 | 0.1977 | 0.1978 | 19.0 | |
|
| 2.0867 | 3.0 | 16044 | 1.9545 | 0.2277 | 0.1285 | 0.1987 | 0.1988 | 19.0 | |
|
| 2.0577 | 4.0 | 21392 | 1.9477 | 0.2277 | 0.1286 | 0.1988 | 0.1988 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|