whisper-base-en / README.md
dongim04's picture
End of training
2051338 verified
|
raw
history blame
3.84 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-base-en
    results: []

whisper-base-en

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1212
  • Wer: 3.6561

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1587 0.3676 100 0.1626 7.1105
0.1464 0.7353 200 0.1325 5.7486
0.0699 1.1029 300 0.1217 4.3894
0.0714 1.4706 400 0.1147 4.2034
0.0529 1.8382 500 0.1117 4.0358
0.0315 2.2059 600 0.1087 3.8865
0.0305 2.5735 700 0.1077 3.8787
0.0307 2.9412 800 0.1031 3.5958
0.0137 3.3088 900 0.1075 3.5304
0.0125 3.6765 1000 0.1065 3.4858
0.0103 4.0441 1100 0.1069 3.5592
0.0066 4.4118 1200 0.1093 3.5539
0.0063 4.7794 1300 0.1072 4.0332
0.0043 5.1471 1400 0.1095 3.5880
0.0045 5.5147 1500 0.1109 5.1672
0.0048 5.8824 1600 0.1114 3.5723
0.0035 6.25 1700 0.1128 3.5775
0.0033 6.6176 1800 0.1117 4.6591
0.0032 6.9853 1900 0.1132 3.5435
0.0032 7.3529 2000 0.1138 3.5801
0.0026 7.7206 2100 0.1151 3.6246
0.0024 8.0882 2200 0.1155 3.6639
0.0023 8.4559 2300 0.1167 3.6613
0.0022 8.8235 2400 0.1176 3.6299
0.0019 9.1912 2500 0.1177 3.5592
0.0018 9.5588 2600 0.1169 3.5827
0.0018 9.9265 2700 0.1175 3.5985
0.0016 10.2941 2800 0.1183 3.6142
0.0017 10.6618 2900 0.1190 3.6246
0.0016 11.0294 3000 0.1184 3.6954
0.0016 11.3971 3100 0.1192 3.6194
0.0015 11.7647 3200 0.1197 3.6508
0.0014 12.1324 3300 0.1202 3.6142
0.0013 12.5 3400 0.1202 3.6194
0.0014 12.8676 3500 0.1204 3.6561
0.0013 13.2353 3600 0.1208 3.6351
0.0014 13.6029 3700 0.1209 3.6561
0.0013 13.9706 3800 0.1211 3.6456
0.0014 14.3382 3900 0.1212 3.6613
0.0013 14.7059 4000 0.1212 3.6561

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1