whisper-base-zh / README.md
dongim04's picture
End of training
5cacb1f verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
model-index:
  - name: whisper-base-zh
    results: []

whisper-base-zh

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3717
  • Cer: 15.8574

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.5054 0.25 100 0.4976 21.1112
0.4526 0.5 200 0.4336 18.1724
0.4131 0.75 300 0.4105 20.9577
0.3772 1.0 400 0.3952 17.7166
0.297 1.25 500 0.3872 17.8054
0.2837 1.5 600 0.3798 18.3740
0.2801 1.75 700 0.3747 15.5887
0.2776 2.0 800 0.3677 16.4739
0.1981 2.25 900 0.3697 17.1169
0.2198 2.5 1000 0.3662 16.7474
0.2133 2.75 1100 0.3624 15.8334
0.2015 3.0 1200 0.3597 15.9798
0.1597 3.25 1300 0.3633 15.7902
0.1796 3.5 1400 0.3611 16.7834
0.145 3.75 1500 0.3607 16.6947
0.1581 4.0 1600 0.3602 16.2005
0.1235 4.25 1700 0.3639 14.9530
0.1118 4.5 1800 0.3674 15.3344
0.1266 4.75 1900 0.3654 15.3728
0.1214 5.0 2000 0.3644 15.3248
0.0911 5.25 2100 0.3678 15.8238
0.0969 5.5 2200 0.3703 15.8046
0.0956 5.75 2300 0.3717 15.8574

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3