dstefa's picture
End of training
36b240c verified
metadata
license: cc-by-nc-4.0
base_model: mental/mental-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: mental-roberta_stress_classification
    results: []

mental-roberta_stress_classification

This model is a fine-tuned version of mental/mental-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0096
  • Accuracy: 0.9984
  • F1: 0.9984
  • Precision: 0.9984
  • Recall: 0.9984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0006 1.0 8000 0.0239 0.9966 0.9966 0.9966 0.9966
0.0002 2.0 16000 0.0096 0.9984 0.9984 0.9984 0.9984

Framework versions

  • Transformers 4.38.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.15.2