dstefa's picture
End of training
36b240c verified
---
license: cc-by-nc-4.0
base_model: mental/mental-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: mental-roberta_stress_classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mental-roberta_stress_classification
This model is a fine-tuned version of [mental/mental-roberta-base](https://huggingface.co/mental/mental-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0096
- Accuracy: 0.9984
- F1: 0.9984
- Precision: 0.9984
- Recall: 0.9984
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0006 | 1.0 | 8000 | 0.0239 | 0.9966 | 0.9966 | 0.9966 | 0.9966 |
| 0.0002 | 2.0 | 16000 | 0.0096 | 0.9984 | 0.9984 | 0.9984 | 0.9984 |
### Framework versions
- Transformers 4.38.0
- Pytorch 2.2.1+cu121
- Datasets 2.14.7
- Tokenizers 0.15.2