duyv's picture
Upload 24 files
898516b verified
#!/usr/bin/env python3
import os
import sys
import json
from pathlib import Path
# single thread doubles cuda performance - needs to be set before torch import
if any(arg.startswith("--execution-provider") for arg in sys.argv):
os.environ["OMP_NUM_THREADS"] = "1"
# reduce tensorflow log level
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import warnings
from typing import List
import platform
import signal
import shutil
import argparse
import onnxruntime
import tensorflow
import roop.globals
import roop.metadata
# import roop.ui as ui
from roop.predictor import predict_image, predict_video
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import (
has_image_extension,
is_image,
is_video,
detect_fps,
create_video,
extract_frames,
get_temp_frame_paths,
restore_audio,
create_temp,
move_temp,
clean_temp,
normalize_output_path,
resolve_relative_path,
)
warnings.filterwarnings("ignore", category=FutureWarning, module="insightface")
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision")
CONFIG_PATH = Path(__file__).parent / "model_config.json"
def load_model_path():
default_model_path = resolve_relative_path("../models/inswapper/inswapper_128.onnx")
if CONFIG_PATH.exists():
try:
with CONFIG_PATH.open("r") as f:
config = json.load(f)
model_path = config.get("model_path")
if model_path and os.path.exists(model_path):
print(f"[CORE] Loaded model path from config: {model_path}")
return model_path
else:
print(f"[CORE] Invalid model path in config: {model_path}, using default: {default_model_path}")
except Exception as e:
print(f"[CORE] Error reading model config: {str(e)}, using default: {default_model_path}")
else:
print(f"[CORE] Model config not found at {CONFIG_PATH}, using default: {default_model_path}")
return default_model_path
def parse_args() -> None:
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100))
program.add_argument("-s", "--source", help="select an source image", dest="source_path")
program.add_argument("-t", "--target", help="select an target image or video", dest="target_path")
program.add_argument("-o", "--output", help="select output file or directory", dest="output_path")
program.add_argument(
"--frame-processor",
help="frame processors (choices: face_swapper, face_enhancer, ...)",
dest="frame_processor",
default=["face_swapper"],
nargs="+",
)
program.add_argument("--keep-fps", help="keep target fps", dest="keep_fps", action="store_true")
program.add_argument("--keep-frames", help="keep temporary frames", dest="keep_frames", action="store_true")
program.add_argument("--skip-audio", help="skip target audio", dest="skip_audio", action="store_true")
program.add_argument("--many-faces", help="process every face", dest="many_faces", action="store_true")
program.add_argument(
"--reference-face-position", help="position of the reference face", dest="reference_face_position", type=int, default=0
)
program.add_argument(
"--reference-frame-number", help="number of the reference frame", dest="reference_frame_number", type=int, default=0
)
program.add_argument(
"--similar-face-distance", help="face distance used for recognition", dest="similar_face_distance", type=float, default=0.85
)
program.add_argument(
"--temp-frame-format",
help="image format used for frame extraction",
dest="temp_frame_format",
default="png",
choices=["jpg", "png"],
)
program.add_argument(
"--temp-frame-quality",
help="image quality used for frame extraction",
dest="temp_frame_quality",
type=int,
default=0,
choices=range(101),
metavar="[0-100]",
)
program.add_argument(
"--output-video-encoder",
help="encoder used for the output video",
dest="output_video_encoder",
default="libx264",
choices=["libx264", "libx265", "libvpx-vp9", "h264_nvenc", "hevc_nvenc"],
)
program.add_argument(
"--output-video-quality",
help="quality used for the output video",
dest="output_video_quality",
type=int,
default=35,
choices=range(101),
metavar="[0-100]",
)
program.add_argument("--max-memory", help="maximum amount of RAM in GB", dest="max_memory", type=int)
program.add_argument(
"--execution-provider",
help="available execution provider (choices: cpu, ...)",
dest="execution_provider",
default=["cpu"],
choices=suggest_execution_providers(),
nargs="+",
)
program.add_argument(
"--execution-threads", help="number of execution threads", dest="execution_threads", type=int, default=suggest_execution_threads()
)
program.add_argument("--model-path", help="path to face swapper model", dest="model_path")
program.add_argument("-v", "--version", action="version", version=f"{roop.metadata.name} {roop.metadata.version}")
args = program.parse_args()
roop.globals.source_path = args.source_path
roop.globals.target_path = args.target_path
roop.globals.output_path = normalize_output_path(roop.globals.source_path, roop.globals.target_path, args.output_path)
roop.globals.headless = (
roop.globals.source_path is not None and roop.globals.target_path is not None and roop.globals.output_path is not None
)
roop.globals.frame_processors = args.frame_processor
roop.globals.keep_fps = args.keep_fps
roop.globals.keep_frames = args.keep_frames
roop.globals.skip_audio = args.skip_audio
roop.globals.many_faces = args.many_faces
roop.globals.reference_face_position = args.reference_face_position
roop.globals.reference_frame_number = args.reference_frame_number
roop.globals.similar_face_distance = args.similar_face_distance
roop.globals.temp_frame_format = args.temp_frame_format
roop.globals.temp_frame_quality = args.temp_frame_quality
roop.globals.output_video_encoder = args.output_video_encoder
roop.globals.output_video_quality = args.output_video_quality
roop.globals.max_memory = args.max_memory
roop.globals.execution_providers = decode_execution_providers(args.execution_provider)
roop.globals.execution_threads = args.execution_threads
# Thiết lập model_path: ưu tiên tham số dòng lệnh, nếu không thì đọc từ config
if args.model_path and os.path.exists(args.model_path):
roop.globals.model_path = args.model_path
print(f"[CORE] Using model path from command line: {roop.globals.model_path}")
else:
roop.globals.model_path = load_model_path()
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
return [execution_provider.replace("ExecutionProvider", "").lower() for execution_provider in execution_providers]
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
return [
provider
for provider, encoded_execution_provider in zip(
onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers())
)
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)
]
def suggest_execution_providers() -> List[str]:
return encode_execution_providers(onnxruntime.get_available_providers())
def suggest_execution_threads() -> int:
if "CUDAExecutionProvider" in onnxruntime.get_available_providers():
return 8
return 1
def limit_resources() -> None:
gpus = tensorflow.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tensorflow.config.experimental.set_virtual_device_configuration(
gpu, [tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)]
)
if roop.globals.max_memory:
memory = roop.globals.max_memory * 1024**3
if platform.system().lower() == "darwin":
memory = roop.globals.max_memory * 1024**6
if platform.system().lower() == "windows":
import ctypes
kernel32 = ctypes.windll.kernel32
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
else:
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
def pre_check() -> bool:
if sys.version_info < (3, 9):
update_status("Python version is not supported - please upgrade to 3.9 or higher.")
return False
if not shutil.which("ffmpeg"):
update_status("ffmpeg is not installed.")
return False
return True
def update_status(message: str, scope: str = "ROOP.CORE") -> None:
print(f"[{scope}] {message}")
# if not roop.globals.headless:
# ui.update_status(message)
def start() -> None:
print(f"[CORE] Starting with model: {roop.globals.model_path}")
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
if not frame_processor.pre_start():
return
if has_image_extension(roop.globals.target_path):
if predict_image(roop.globals.target_path):
destroy()
shutil.copy2(roop.globals.target_path, roop.globals.output_path)
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
update_status("Progressing...", frame_processor.NAME)
frame_processor.process_image(roop.globals.source_path, roop.globals.output_path, roop.globals.output_path)
frame_processor.post_process()
if is_image(roop.globals.output_path):
update_status("Processing to image succeed!")
else:
update_status("Processing to image failed!")
return
if predict_video(roop.globals.target_path):
destroy()
update_status("Creating temporary resources...")
create_temp(roop.globals.target_path)
if roop.globals.keep_fps:
fps = detect_fps(roop.globals.target_path)
update_status(f"Extracting frames with {fps} FPS...")
extract_frames(roop.globals.target_path, fps)
else:
update_status("Extracting frames with 30 FPS...")
extract_frames(roop.globals.target_path)
temp_frame_paths = get_temp_frame_paths(roop.globals.target_path)
if temp_frame_paths:
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
update_status("Progressing...", frame_processor.NAME)
frame_processor.process_video(roop.globals.source_path, temp_frame_paths)
frame_processor.post_process()
else:
update_status("Frames not found...")
return
if roop.globals.keep_fps:
fps = detect_fps(roop.globals.target_path)
update_status(f"Creating video with {fps} FPS...")
create_video(roop.globals.target_path, fps)
else:
update_status("Creating video with 30 FPS...")
create_video(roop.globals.target_path)
if roop.globals.skip_audio:
move_temp(roop.globals.target_path, roop.globals.output_path)
update_status("Skipping audio...")
else:
if roop.globals.keep_fps:
update_status("Restoring audio...")
else:
update_status("Restoring audio might cause issues as fps are not kept...")
restore_audio(roop.globals.target_path, roop.globals.output_path)
update_status("Cleaning temporary resources...")
clean_temp(roop.globals.target_path)
if is_video(roop.globals.output_path):
update_status("Processing to video succeed!")
else:
update_status("Processing to video failed!")
def destroy() -> None:
if roop.globals.target_path:
clean_temp(roop.globals.target_path)
sys.exit()
def run() -> None:
parse_args()
if not pre_check():
return
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
if not frame_processor.pre_check():
return
limit_resources()
if roop.globals.headless:
start()
# else:
# window = ui.init(start, destroy)
# window.mainloop()