|
|
|
|
|
import os |
|
import sys |
|
import json |
|
from pathlib import Path |
|
|
|
|
|
if any(arg.startswith("--execution-provider") for arg in sys.argv): |
|
os.environ["OMP_NUM_THREADS"] = "1" |
|
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" |
|
import warnings |
|
from typing import List |
|
import platform |
|
import signal |
|
import shutil |
|
import argparse |
|
import onnxruntime |
|
import tensorflow |
|
import roop.globals |
|
import roop.metadata |
|
|
|
from roop.predictor import predict_image, predict_video |
|
from roop.processors.frame.core import get_frame_processors_modules |
|
from roop.utilities import ( |
|
has_image_extension, |
|
is_image, |
|
is_video, |
|
detect_fps, |
|
create_video, |
|
extract_frames, |
|
get_temp_frame_paths, |
|
restore_audio, |
|
create_temp, |
|
move_temp, |
|
clean_temp, |
|
normalize_output_path, |
|
resolve_relative_path, |
|
) |
|
|
|
warnings.filterwarnings("ignore", category=FutureWarning, module="insightface") |
|
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision") |
|
|
|
CONFIG_PATH = Path(__file__).parent / "model_config.json" |
|
|
|
|
|
def load_model_path(): |
|
default_model_path = resolve_relative_path("../models/inswapper/inswapper_128.onnx") |
|
|
|
if CONFIG_PATH.exists(): |
|
try: |
|
with CONFIG_PATH.open("r") as f: |
|
config = json.load(f) |
|
model_path = config.get("model_path") |
|
if model_path and os.path.exists(model_path): |
|
print(f"[CORE] Loaded model path from config: {model_path}") |
|
return model_path |
|
else: |
|
print(f"[CORE] Invalid model path in config: {model_path}, using default: {default_model_path}") |
|
except Exception as e: |
|
print(f"[CORE] Error reading model config: {str(e)}, using default: {default_model_path}") |
|
else: |
|
print(f"[CORE] Model config not found at {CONFIG_PATH}, using default: {default_model_path}") |
|
|
|
return default_model_path |
|
|
|
|
|
def parse_args() -> None: |
|
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy()) |
|
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100)) |
|
program.add_argument("-s", "--source", help="select an source image", dest="source_path") |
|
program.add_argument("-t", "--target", help="select an target image or video", dest="target_path") |
|
program.add_argument("-o", "--output", help="select output file or directory", dest="output_path") |
|
program.add_argument( |
|
"--frame-processor", |
|
help="frame processors (choices: face_swapper, face_enhancer, ...)", |
|
dest="frame_processor", |
|
default=["face_swapper"], |
|
nargs="+", |
|
) |
|
program.add_argument("--keep-fps", help="keep target fps", dest="keep_fps", action="store_true") |
|
program.add_argument("--keep-frames", help="keep temporary frames", dest="keep_frames", action="store_true") |
|
program.add_argument("--skip-audio", help="skip target audio", dest="skip_audio", action="store_true") |
|
program.add_argument("--many-faces", help="process every face", dest="many_faces", action="store_true") |
|
program.add_argument( |
|
"--reference-face-position", help="position of the reference face", dest="reference_face_position", type=int, default=0 |
|
) |
|
program.add_argument( |
|
"--reference-frame-number", help="number of the reference frame", dest="reference_frame_number", type=int, default=0 |
|
) |
|
program.add_argument( |
|
"--similar-face-distance", help="face distance used for recognition", dest="similar_face_distance", type=float, default=0.85 |
|
) |
|
program.add_argument( |
|
"--temp-frame-format", |
|
help="image format used for frame extraction", |
|
dest="temp_frame_format", |
|
default="png", |
|
choices=["jpg", "png"], |
|
) |
|
program.add_argument( |
|
"--temp-frame-quality", |
|
help="image quality used for frame extraction", |
|
dest="temp_frame_quality", |
|
type=int, |
|
default=0, |
|
choices=range(101), |
|
metavar="[0-100]", |
|
) |
|
program.add_argument( |
|
"--output-video-encoder", |
|
help="encoder used for the output video", |
|
dest="output_video_encoder", |
|
default="libx264", |
|
choices=["libx264", "libx265", "libvpx-vp9", "h264_nvenc", "hevc_nvenc"], |
|
) |
|
program.add_argument( |
|
"--output-video-quality", |
|
help="quality used for the output video", |
|
dest="output_video_quality", |
|
type=int, |
|
default=35, |
|
choices=range(101), |
|
metavar="[0-100]", |
|
) |
|
program.add_argument("--max-memory", help="maximum amount of RAM in GB", dest="max_memory", type=int) |
|
program.add_argument( |
|
"--execution-provider", |
|
help="available execution provider (choices: cpu, ...)", |
|
dest="execution_provider", |
|
default=["cpu"], |
|
choices=suggest_execution_providers(), |
|
nargs="+", |
|
) |
|
program.add_argument( |
|
"--execution-threads", help="number of execution threads", dest="execution_threads", type=int, default=suggest_execution_threads() |
|
) |
|
program.add_argument("--model-path", help="path to face swapper model", dest="model_path") |
|
program.add_argument("-v", "--version", action="version", version=f"{roop.metadata.name} {roop.metadata.version}") |
|
|
|
args = program.parse_args() |
|
|
|
roop.globals.source_path = args.source_path |
|
roop.globals.target_path = args.target_path |
|
roop.globals.output_path = normalize_output_path(roop.globals.source_path, roop.globals.target_path, args.output_path) |
|
roop.globals.headless = ( |
|
roop.globals.source_path is not None and roop.globals.target_path is not None and roop.globals.output_path is not None |
|
) |
|
roop.globals.frame_processors = args.frame_processor |
|
roop.globals.keep_fps = args.keep_fps |
|
roop.globals.keep_frames = args.keep_frames |
|
roop.globals.skip_audio = args.skip_audio |
|
roop.globals.many_faces = args.many_faces |
|
roop.globals.reference_face_position = args.reference_face_position |
|
roop.globals.reference_frame_number = args.reference_frame_number |
|
roop.globals.similar_face_distance = args.similar_face_distance |
|
roop.globals.temp_frame_format = args.temp_frame_format |
|
roop.globals.temp_frame_quality = args.temp_frame_quality |
|
roop.globals.output_video_encoder = args.output_video_encoder |
|
roop.globals.output_video_quality = args.output_video_quality |
|
roop.globals.max_memory = args.max_memory |
|
roop.globals.execution_providers = decode_execution_providers(args.execution_provider) |
|
roop.globals.execution_threads = args.execution_threads |
|
|
|
|
|
if args.model_path and os.path.exists(args.model_path): |
|
roop.globals.model_path = args.model_path |
|
print(f"[CORE] Using model path from command line: {roop.globals.model_path}") |
|
else: |
|
roop.globals.model_path = load_model_path() |
|
|
|
|
|
def encode_execution_providers(execution_providers: List[str]) -> List[str]: |
|
return [execution_provider.replace("ExecutionProvider", "").lower() for execution_provider in execution_providers] |
|
|
|
|
|
def decode_execution_providers(execution_providers: List[str]) -> List[str]: |
|
return [ |
|
provider |
|
for provider, encoded_execution_provider in zip( |
|
onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()) |
|
) |
|
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers) |
|
] |
|
|
|
|
|
def suggest_execution_providers() -> List[str]: |
|
return encode_execution_providers(onnxruntime.get_available_providers()) |
|
|
|
|
|
def suggest_execution_threads() -> int: |
|
if "CUDAExecutionProvider" in onnxruntime.get_available_providers(): |
|
return 8 |
|
return 1 |
|
|
|
|
|
def limit_resources() -> None: |
|
gpus = tensorflow.config.experimental.list_physical_devices("GPU") |
|
for gpu in gpus: |
|
tensorflow.config.experimental.set_virtual_device_configuration( |
|
gpu, [tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)] |
|
) |
|
if roop.globals.max_memory: |
|
memory = roop.globals.max_memory * 1024**3 |
|
if platform.system().lower() == "darwin": |
|
memory = roop.globals.max_memory * 1024**6 |
|
if platform.system().lower() == "windows": |
|
import ctypes |
|
|
|
kernel32 = ctypes.windll.kernel32 |
|
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory)) |
|
else: |
|
import resource |
|
|
|
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory)) |
|
|
|
|
|
def pre_check() -> bool: |
|
if sys.version_info < (3, 9): |
|
update_status("Python version is not supported - please upgrade to 3.9 or higher.") |
|
return False |
|
if not shutil.which("ffmpeg"): |
|
update_status("ffmpeg is not installed.") |
|
return False |
|
return True |
|
|
|
|
|
def update_status(message: str, scope: str = "ROOP.CORE") -> None: |
|
print(f"[{scope}] {message}") |
|
|
|
|
|
|
|
|
|
def start() -> None: |
|
print(f"[CORE] Starting with model: {roop.globals.model_path}") |
|
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): |
|
if not frame_processor.pre_start(): |
|
return |
|
if has_image_extension(roop.globals.target_path): |
|
if predict_image(roop.globals.target_path): |
|
destroy() |
|
shutil.copy2(roop.globals.target_path, roop.globals.output_path) |
|
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): |
|
update_status("Progressing...", frame_processor.NAME) |
|
frame_processor.process_image(roop.globals.source_path, roop.globals.output_path, roop.globals.output_path) |
|
frame_processor.post_process() |
|
if is_image(roop.globals.output_path): |
|
update_status("Processing to image succeed!") |
|
else: |
|
update_status("Processing to image failed!") |
|
return |
|
if predict_video(roop.globals.target_path): |
|
destroy() |
|
update_status("Creating temporary resources...") |
|
create_temp(roop.globals.target_path) |
|
if roop.globals.keep_fps: |
|
fps = detect_fps(roop.globals.target_path) |
|
update_status(f"Extracting frames with {fps} FPS...") |
|
extract_frames(roop.globals.target_path, fps) |
|
else: |
|
update_status("Extracting frames with 30 FPS...") |
|
extract_frames(roop.globals.target_path) |
|
temp_frame_paths = get_temp_frame_paths(roop.globals.target_path) |
|
if temp_frame_paths: |
|
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): |
|
update_status("Progressing...", frame_processor.NAME) |
|
frame_processor.process_video(roop.globals.source_path, temp_frame_paths) |
|
frame_processor.post_process() |
|
else: |
|
update_status("Frames not found...") |
|
return |
|
if roop.globals.keep_fps: |
|
fps = detect_fps(roop.globals.target_path) |
|
update_status(f"Creating video with {fps} FPS...") |
|
create_video(roop.globals.target_path, fps) |
|
else: |
|
update_status("Creating video with 30 FPS...") |
|
create_video(roop.globals.target_path) |
|
if roop.globals.skip_audio: |
|
move_temp(roop.globals.target_path, roop.globals.output_path) |
|
update_status("Skipping audio...") |
|
else: |
|
if roop.globals.keep_fps: |
|
update_status("Restoring audio...") |
|
else: |
|
update_status("Restoring audio might cause issues as fps are not kept...") |
|
restore_audio(roop.globals.target_path, roop.globals.output_path) |
|
update_status("Cleaning temporary resources...") |
|
clean_temp(roop.globals.target_path) |
|
if is_video(roop.globals.output_path): |
|
update_status("Processing to video succeed!") |
|
else: |
|
update_status("Processing to video failed!") |
|
|
|
|
|
def destroy() -> None: |
|
if roop.globals.target_path: |
|
clean_temp(roop.globals.target_path) |
|
sys.exit() |
|
|
|
|
|
def run() -> None: |
|
parse_args() |
|
if not pre_check(): |
|
return |
|
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): |
|
if not frame_processor.pre_check(): |
|
return |
|
limit_resources() |
|
if roop.globals.headless: |
|
start() |
|
|
|
|
|
|
|
|