|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: openai-community/gpt2 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabic-nano-gpt-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabic-nano-gpt-v2 |
|
|
|
This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.2532 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:------:|:---------------:| |
|
| 4.9097 | 0.2924 | 5000 | 4.3161 | |
|
| 4.0426 | 0.5849 | 10000 | 3.8633 | |
|
| 3.8791 | 0.8773 | 15000 | 3.6969 | |
|
| 3.7452 | 1.1698 | 20000 | 3.6052 | |
|
| 3.6927 | 1.4622 | 25000 | 3.5420 | |
|
| 3.6348 | 1.7547 | 30000 | 3.4976 | |
|
| 3.6038 | 2.0471 | 35000 | 3.4622 | |
|
| 3.562 | 2.3396 | 40000 | 3.4329 | |
|
| 3.5374 | 2.6320 | 45000 | 3.4098 | |
|
| 3.5216 | 2.9245 | 50000 | 3.3897 | |
|
| 3.4918 | 3.2169 | 55000 | 3.3743 | |
|
| 3.4805 | 3.5094 | 60000 | 3.3585 | |
|
| 3.4724 | 3.8018 | 65000 | 3.3445 | |
|
| 3.4519 | 4.0943 | 70000 | 3.3337 | |
|
| 3.4422 | 4.3867 | 75000 | 3.3224 | |
|
| 3.4376 | 4.6791 | 80000 | 3.3133 | |
|
| 3.4316 | 4.9716 | 85000 | 3.3042 | |
|
| 3.4123 | 5.2640 | 90000 | 3.2972 | |
|
| 3.4076 | 5.5565 | 95000 | 3.2897 | |
|
| 3.4018 | 5.8489 | 100000 | 3.2823 | |
|
| 3.3943 | 6.1414 | 105000 | 3.2772 | |
|
| 3.3891 | 6.4338 | 110000 | 3.2720 | |
|
| 3.3805 | 6.7263 | 115000 | 3.2661 | |
|
| 3.3786 | 7.0187 | 120000 | 3.2625 | |
|
| 3.3713 | 7.3112 | 125000 | 3.2587 | |
|
| 3.3662 | 7.6036 | 130000 | 3.2553 | |
|
| 3.365 | 7.8961 | 135000 | 3.2532 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|