File size: 1,642 Bytes
198d4a7
09740f2
198d4a7
 
09740f2
 
 
198d4a7
 
 
 
 
 
 
 
 
 
09740f2
 
5f7d44e
 
 
198d4a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09740f2
f4e0c07
d5068f1
09740f2
198d4a7
21dc9e1
 
09740f2
 
 
 
 
29ec5b5
 
5f7d44e
 
 
09740f2
198d4a7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: allenai/scibert_scivocab_uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: patentClassfication2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# patentClassfication2

This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6121
- Accuracy: 0.6746
- F1: 0.6765

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.54241e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 41
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 24
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.6169        | 1.0   | 4438  | 0.6919          | 0.6121   | 0.6906 |
| 0.5475        | 2.0   | 8876  | 0.6121          | 0.6746   | 0.6765 |
| 0.4521        | 3.0   | 13314 | 0.7167          | 0.6706   | 0.6827 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.14.4
- Tokenizers 0.13.3