klue-roberta-base-kornli
- This model trained with Korean dataset.
- Input premise sentence and hypothesis sentence.
- You can use English, but don't expect accuracy.
- If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well.
KLUE-RoBERTa-base-KorNLI DEMO: Ainize DEMO KLUE-RoBERTa-base-KorNLI API: Ainize API
Overview
Language model: klue/roberta-base Language: Korean Training data: kakaobrain KorNLI Eval data: kakaobrain KorNLI Code: See Ainize Workspace
Usage
In Transformers
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/klue-roberta-base-kornli")
classifier = pipeline(
"text-classification",
model="ehdwns1516/klue-roberta-base-kornli",
return_all_scores=True,
)
premise = "your premise"
hypothesis = "your hypothesis"
result = dict()
result[0] = classifier(premise + tokenizer.sep_token + hypothesis)[0]