|
# klue-roberta-base-kornli |
|
|
|
* This model trained with Korean dataset. |
|
* Input premise sentence and hypothesis sentence. |
|
* You can use English, but don't expect accuracy. |
|
* If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. |
|
|
|
KLUE-RoBERTa-base-KorNLI DEMO: [Ainize DEMO](https://main-klue-roberta-base-kornli-ehdwns1516.endpoint.ainize.ai/) |
|
KLUE-RoBERTa-base-KorNLI API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/klue-roberta-base_kornli) |
|
|
|
## Overview |
|
|
|
Language model: klue/roberta-base |
|
Language: Korean |
|
Training data: [kakaobrain KorNLI](https://github.com/kakaobrain/KorNLUDatasets/tree/master/KorNLI) |
|
Eval data: [kakaobrain KorNLI](https://github.com/kakaobrain/KorNLUDatasets/tree/master/KorNLI) |
|
Code: See [Ainize Workspace](https://a966119d3186.ngrok.io/notebooks/DJ/KLUE-NLI/klue-roberta-base-kornli.ipynb) |
|
|
|
## Usage |
|
## In Transformers |
|
|
|
``` |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/klue-roberta-base-kornli") |
|
|
|
classifier = pipeline( |
|
"text-classification", |
|
model="ehdwns1516/klue-roberta-base-kornli", |
|
return_all_scores=True, |
|
) |
|
|
|
premise = "your premise" |
|
hypothesis = "your hypothesis" |
|
|
|
result = dict() |
|
result[0] = classifier(premise + tokenizer.sep_token + hypothesis)[0] |
|
``` |
|
|