metadata
license: apache-2.0
base_model: nandovallec/whisper-tiny-bg-l
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-medium-order
results: []
whisper-medium-order
This model is a fine-tuned version of nandovallec/whisper-tiny-bg-l on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0173
- Wer: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.624 | 3.0 | 5 | 1.4084 | 111.7647 |
0.5102 | 6.0 | 10 | 0.5733 | 43.1373 |
0.2173 | 8.78 | 15 | 0.3225 | 31.3725 |
0.0178 | 11.29 | 20 | 0.2035 | 27.4510 |
0.0138 | 14.0 | 25 | 0.1143 | 21.5686 |
0.036 | 17.0 | 30 | 0.0603 | 3.9216 |
0.0296 | 20.0 | 35 | 0.0366 | 1.9608 |
0.0074 | 22.59 | 40 | 0.0250 | 1.9608 |
0.0014 | 25.1 | 45 | 0.0191 | 0.0 |
0.0051 | 28.0 | 50 | 0.0173 | 0.0 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0