ygo-lua-coder / README.md
en1ak's picture
Create README.md
1496ba7 verified
---
license: mit
datasets:
- en1ak/ygo_lua
language:
- zh
base_model:
- deepseek-ai/deepseek-coder-1.3b-base
---
## 数据构建
### 获取原始数据
1. **下载中/日文卡片数据库:**
```bash
cd ./cdb_cn
wget -O cards.cdb https://cdn02.moecube.com:444/ygopro-database/zh-CN/cards.cdb
cd ./cdb_jp
wget -O cards.cdb https://cdn02.moecube.com:444/ygopro-database/ja_JP/cards.cdb
```
2. **下载lua脚本:**
```bash
git clone https://github.com/mycard/ygopro-scripts.git
```
### 数据处理与格式
3. **运行数据构造脚本:**
```bash
python all_in_one.py
```
4. **最终生成的训练数据格式如下(JSONL,每行为一条训练样本):**
- `instruction`
```
下面是卡片的信息,请根据这些信息生成lua脚本:{name},{desc},{tag},卡密为{id}
```
- `output`:
```
{code}
```
训练集token总数约为20m,平均每条1k,最大token数3019
这里也提供可以直接使用的数据集:https://huggingface.co/datasets/en1ak/ygo_lua
---
## 模型微调
### 训练环境
- **基座模型**: [deepseek-coder-1.3b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct)
- **训练脚本**:官方 `finetune_deepseekcoder.py`
- **GPU**:NVIDIA RTX 5090
### 训练参数
```bash
deepspeed finetune.py \
--model_name_or_path $MODEL_PATH \
--data_path $DATA_PATH \
--output_dir $OUTPUT_PATH \
--num_train_epochs 3 \
--model_max_length 4096 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 4 \
--evaluation_strategy "no" \
--save_strategy "epoch" \
--save_total_limit 5 \
--learning_rate 2e-5 \
--warmup_steps 10 \
--logging_steps 100 \
--lr_scheduler_type "cosine" \
--gradient_checkpointing True \
--report_to "tensorboard" \
--deepspeed configs/ds_config_zero3.json \
--bf16 True
```
## 性能评测
| 模型路径 | ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU | BERTScore Precision | BERTScore Recall | BERTScore F1 |
|------------|---------|---------|---------|--------|---------------------|------------------|--------------|
| base model | 0.0753 | 0.0125 | 0.0539 | 0.0010 | 0.6216 | 0.6621 | 0.6400 |
| on_cn+jp | 0.4603 | 0.4214 | 0.4302 | 0.1183 | 0.8841 | 0.8541 | 0.8673 |
| on_cn | 0.3042 | 0.2610 | 0.2750 | 0.0769 | 0.7955 | 0.7647 | 0.7767 |