|
--- |
|
license: mit |
|
datasets: |
|
- en1ak/ygo_lua |
|
language: |
|
- zh |
|
base_model: |
|
- deepseek-ai/deepseek-coder-1.3b-base |
|
--- |
|
|
|
## 数据构建 |
|
|
|
### 获取原始数据 |
|
|
|
1. **下载中/日文卡片数据库:** |
|
```bash |
|
cd ./cdb_cn |
|
wget -O cards.cdb https://cdn02.moecube.com:444/ygopro-database/zh-CN/cards.cdb |
|
|
|
cd ./cdb_jp |
|
wget -O cards.cdb https://cdn02.moecube.com:444/ygopro-database/ja_JP/cards.cdb |
|
``` |
|
|
|
2. **下载lua脚本:** |
|
```bash |
|
git clone https://github.com/mycard/ygopro-scripts.git |
|
``` |
|
|
|
### 数据处理与格式 |
|
|
|
3. **运行数据构造脚本:** |
|
```bash |
|
python all_in_one.py |
|
``` |
|
|
|
4. **最终生成的训练数据格式如下(JSONL,每行为一条训练样本):** |
|
|
|
- `instruction`: |
|
``` |
|
下面是卡片的信息,请根据这些信息生成lua脚本:{name},{desc},{tag},卡密为{id} |
|
``` |
|
- `output`: |
|
``` |
|
{code} |
|
``` |
|
训练集token总数约为20m,平均每条1k,最大token数3019 |
|
|
|
这里也提供可以直接使用的数据集:https://huggingface.co/datasets/en1ak/ygo_lua |
|
|
|
--- |
|
|
|
## 模型微调 |
|
|
|
### 训练环境 |
|
|
|
- **基座模型**: [deepseek-coder-1.3b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct) |
|
- **训练脚本**:官方 `finetune_deepseekcoder.py` |
|
- **GPU**:NVIDIA RTX 5090 |
|
|
|
### 训练参数 |
|
|
|
```bash |
|
deepspeed finetune.py \ |
|
--model_name_or_path $MODEL_PATH \ |
|
--data_path $DATA_PATH \ |
|
--output_dir $OUTPUT_PATH \ |
|
--num_train_epochs 3 \ |
|
--model_max_length 4096 \ |
|
--per_device_train_batch_size 8 \ |
|
--per_device_eval_batch_size 1 \ |
|
--gradient_accumulation_steps 4 \ |
|
--evaluation_strategy "no" \ |
|
--save_strategy "epoch" \ |
|
--save_total_limit 5 \ |
|
--learning_rate 2e-5 \ |
|
--warmup_steps 10 \ |
|
--logging_steps 100 \ |
|
--lr_scheduler_type "cosine" \ |
|
--gradient_checkpointing True \ |
|
--report_to "tensorboard" \ |
|
--deepspeed configs/ds_config_zero3.json \ |
|
--bf16 True |
|
``` |
|
|
|
## 性能评测 |
|
|
|
| 模型路径 | ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU | BERTScore Precision | BERTScore Recall | BERTScore F1 | |
|
|------------|---------|---------|---------|--------|---------------------|------------------|--------------| |
|
| base model | 0.0753 | 0.0125 | 0.0539 | 0.0010 | 0.6216 | 0.6621 | 0.6400 | |
|
| on_cn+jp | 0.4603 | 0.4214 | 0.4302 | 0.1183 | 0.8841 | 0.8541 | 0.8673 | |
|
| on_cn | 0.3042 | 0.2610 | 0.2750 | 0.0769 | 0.7955 | 0.7647 | 0.7767 | |