File size: 6,329 Bytes
f43cbe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d2b94
f43cbe0
8254765
 
f43cbe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8254765
f43cbe0
 
 
c048eb7
f10e494
 
 
f43cbe0
 
 
6569b85
 
8254765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f43cbe0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
base_model: yhavinga/ul2-large-dutch
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: ul2-large-dutch-finetuned-oba-book-search
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ul2-large-dutch-finetuned-oba-book-search

This model is a fine-tuned version of [yhavinga/ul2-large-dutch](https://huggingface.co/yhavinga/ul2-large-dutch) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8688
- Top-5-accuracy: 4.1194

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.6
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Top-5-accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------------:|
| 6.4431        | 0.0424 | 500   | 4.7239          | 0.0796         |
| 6.4068        | 0.0848 | 1000  | 5.1338          | 0.0398         |
| 5.7971        | 0.1272 | 1500  | 4.6127          | 0.0199         |
| 5.452         | 0.1696 | 2000  | 4.5181          | 0.1194         |
| 5.3971        | 0.2120 | 2500  | 4.5498          | 0.1393         |
| 5.2693        | 0.2544 | 3000  | 4.3622          | 0.1393         |
| 5.2788        | 0.2968 | 3500  | 4.3456          | 0.1990         |
| 5.2129        | 0.3392 | 4000  | 4.3400          | 0.2388         |
| 5.133         | 0.3815 | 4500  | 4.3021          | 0.2786         |
| 5.0346        | 0.4239 | 5000  | 4.2458          | 0.9751         |
| 5.113         | 0.4663 | 5500  | 4.2746          | 0.7363         |
| 5.1276        | 0.5087 | 6000  | 4.2369          | 0.9552         |
| 5.0586        | 0.5511 | 6500  | 4.1962          | 1.8706         |
| 4.9369        | 0.5935 | 7000  | 4.1843          | 2.9254         |
| 4.9152        | 0.6359 | 7500  | 4.1641          | 3.0846         |
| 4.9369        | 0.6783 | 8000  | 4.1089          | 3.7413         |
| 4.9185        | 0.7207 | 8500  | 4.1150          | 3.6418         |
| 4.8469        | 0.7631 | 9000  | 4.0996          | 3.6418         |
| 4.8854        | 0.8055 | 9500  | 4.0817          | 3.5821         |
| 4.8362        | 0.8479 | 10000 | 4.0456          | 4.2587         |
| 4.7867        | 0.8903 | 10500 | 4.0699          | 3.9204         |
| 4.7926        | 0.9327 | 11000 | 4.0692          | 3.3831         |
| 4.7933        | 0.9751 | 11500 | 4.0356          | 3.1642         |
| 4.793         | 1.0175 | 12000 | 4.0607          | 2.6667         |
| 4.7664        | 1.0599 | 12500 | 4.0430          | 3.5622         |
| 4.7409        | 1.1023 | 13000 | 4.0239          | 3.8806         |
| 4.7558        | 1.1446 | 13500 | 4.0134          | 3.7413         |
| 4.7642        | 1.1870 | 14000 | 3.9884          | 3.9403         |
| 4.7298        | 1.2294 | 14500 | 4.0087          | 3.6219         |
| 4.7433        | 1.2718 | 15000 | 3.9809          | 4.0995         |
| 4.6858        | 1.3142 | 15500 | 3.9984          | 4.2985         |
| 4.7023        | 1.3566 | 16000 | 3.9655          | 4.0199         |
| 4.6963        | 1.3990 | 16500 | 3.9798          | 4.1791         |
| 4.7239        | 1.4414 | 17000 | 4.0001          | 4.0597         |
| 4.7312        | 1.4838 | 17500 | 3.9532          | 4.0796         |
| 4.6408        | 1.5262 | 18000 | 3.9487          | 4.2388         |
| 4.669         | 1.5686 | 18500 | 3.9303          | 4.1990         |
| 4.6589        | 1.6110 | 19000 | 3.9346          | 4.1393         |
| 4.6887        | 1.6534 | 19500 | 3.9563          | 3.9403         |
| 4.5856        | 1.6958 | 20000 | 3.9374          | 4.2786         |
| 4.6744        | 1.7382 | 20500 | 3.9157          | 4.0995         |
| 4.6395        | 1.7806 | 21000 | 3.9279          | 4.1393         |
| 4.6191        | 1.8230 | 21500 | 3.9259          | 3.8408         |
| 4.6256        | 1.8654 | 22000 | 3.9215          | 3.9005         |
| 4.5945        | 1.9077 | 22500 | 3.9214          | 4.0796         |
| 4.6325        | 1.9501 | 23000 | 3.9076          | 3.8607         |
| 4.6476        | 1.9925 | 23500 | 3.8955          | 4.0199         |
| 4.6362        | 2.0349 | 24000 | 3.8923          | 4.0398         |
| 4.5991        | 2.0773 | 24500 | 3.8923          | 4.3383         |
| 4.6189        | 2.1197 | 25000 | 3.8800          | 4.0            |
| 4.5933        | 2.1621 | 25500 | 3.8869          | 3.8806         |
| 4.6165        | 2.2045 | 26000 | 3.8918          | 4.0398         |
| 4.5998        | 2.2469 | 26500 | 3.8819          | 3.9602         |
| 4.5827        | 2.2893 | 27000 | 3.8848          | 3.9204         |
| 4.528         | 2.3317 | 27500 | 3.8847          | 3.9005         |
| 4.5685        | 2.3741 | 28000 | 3.8879          | 3.9204         |
| 4.5698        | 2.4165 | 28500 | 3.8739          | 3.9801         |
| 4.5472        | 2.4589 | 29000 | 3.8761          | 4.0398         |
| 4.5605        | 2.5013 | 29500 | 3.8753          | 4.0398         |
| 4.5329        | 2.5437 | 30000 | 3.8791          | 4.0796         |
| 4.5687        | 2.5861 | 30500 | 3.8698          | 4.0            |
| 4.5716        | 2.6285 | 31000 | 3.8659          | 4.0995         |
| 4.547         | 2.6708 | 31500 | 3.8713          | 4.0597         |
| 4.6466        | 2.7132 | 32000 | 3.8729          | 4.0995         |
| 4.5963        | 2.7556 | 32500 | 3.8698          | 4.1194         |
| 4.629         | 2.7980 | 33000 | 3.8703          | 4.1194         |
| 4.5859        | 2.8404 | 33500 | 3.8699          | 4.1194         |
| 4.6239        | 2.8828 | 34000 | 3.8688          | 4.1393         |
| 4.5052        | 2.9252 | 34500 | 3.8688          | 4.1393         |
| 4.5933        | 2.9676 | 35000 | 3.8688          | 4.1194         |


### Framework versions

- PEFT 0.11.0
- Transformers 4.44.2
- Pytorch 1.13.0+cu116
- Datasets 3.0.0
- Tokenizers 0.19.1