File size: 4,489 Bytes
a566f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf3092
a566f06
bbf3092
a566f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: llama3
base_model: maywell/Llama-3-Ko-Luxia-Instruct
tags:
- generated_from_trainer
model-index:
- name: data/output/1min-v2-luxia-8b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: maywell/Llama-3-Ko-Luxia-Instruct
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
  - path: "../data/generated_ds.json"
    type: alpaca
    conversation: chatml
dataset_prepared_path: ../data/dataset_v2_pre
val_set_size: 0.05
output_dir: ../data/output/1min-v2-luxia-8b
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: 
wandb_entity: 
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: null
tf32: false
gradient_checkpointing: true
early_stopping_patience: null
resume_from_checkpoint: null
local_rank: null
logging_steps: 1
xformers_attention: null
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size: null
eval_max_new_tokens: 128
saves_per_epoch: 1
save_total_limit: 4
debug: true
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>
```

</details><br>

# data/output/1min-v2-luxia-8b

This model is a fine-tuned version of [maywell/Llama-3-Ko-Luxia-Instruct](https://huggingface.co/maywell/Llama-3-Ko-Luxia-Instruct) on the manipulated [instructkr/ko_youtube_transcription_v2_filtered](https://huggingface.co/datasets/instructkr/ko_youtube_transcription_v2_filtered) dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0986

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 28
- total_eval_batch_size: 7
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.6145        | 0.0513 | 1    | 2.7217          |
| 2.7668        | 0.2564 | 5    | 2.7018          |
| 2.6304        | 0.5128 | 10   | 2.5065          |
| 2.3635        | 0.7692 | 15   | 2.3580          |
| 2.4553        | 1.0256 | 20   | 2.2813          |
| 2.2344        | 1.2436 | 25   | 2.2339          |
| 2.4562        | 1.5    | 30   | 2.2017          |
| 2.0943        | 1.7564 | 35   | 2.1726          |
| 2.0695        | 2.0128 | 40   | 2.1425          |
| 1.8616        | 2.2308 | 45   | 2.1171          |
| 2.0498        | 2.4872 | 50   | 2.1040          |
| 1.9028        | 2.7436 | 55   | 2.0984          |
| 1.9057        | 3.0    | 60   | 2.0841          |
| 1.7464        | 3.2179 | 65   | 2.0784          |
| 1.8284        | 3.4744 | 70   | 2.0788          |
| 1.8866        | 3.7308 | 75   | 2.0761          |
| 1.8927        | 3.9872 | 80   | 2.0673          |
| 1.5778        | 4.2051 | 85   | 2.0779          |
| 1.7274        | 4.4615 | 90   | 2.0934          |
| 1.7431        | 4.7179 | 95   | 2.0652          |
| 1.8728        | 4.9744 | 100  | 2.0618          |
| 1.5729        | 5.1923 | 105  | 2.0837          |
| 1.4631        | 5.4487 | 110  | 2.0873          |
| 1.4758        | 5.7051 | 115  | 2.0744          |
| 1.5289        | 5.9615 | 120  | 2.0899          |
| 1.515         | 6.1795 | 125  | 2.0919          |
| 1.5757        | 6.4359 | 130  | 2.0978          |
| 1.5392        | 6.6923 | 135  | 2.0986          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1