metadata
license: mit
datasets:
- flwrlabs/code-alpaca-20k
language:
- en
metrics:
- accuracy
base_model:
- Qwen/Qwen2.5-Coder-0.5B-Instruct
pipeline_tag: text-generation
library_name: peft
tags:
- text-generation-inference
- code
Model Card for FlowerTune-Qwen2.5-Coder-0.5B-Instruct-PEFT
Evaluation Results (Accuracy)
- MBPP: 25.60 %
- HumanEval: 37.81 %
- MultiPL-E (JS): 41.00 %
- MultiPL-E (C++): 32.92 %
- Average: 34.34 %
Model Details
This PEFT adapter has been trained by using Flower, a friendly federated AI framework.
The adapter and benchmark results have been submitted to the FlowerTune LLM Code Leaderboard.
Please check the following GitHub project for details on how to reproduce training and evaluation steps:
https://github.com/ethicalabs-ai/FlowerTune-Qwen2.5-Coder-0.5B-Instruct/
How to Get Started with the Model
Use this model as:
from peft import PeftModel
from transformers import AutoModelForCausalLM
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-0.5B-Instruct")
model = PeftModel.from_pretrained(base_model, "ethicalabs/FlowerTune-Qwen2.5-Coder-0.5B-Instruct")
Communication Budget
8766.51 MB Megabytes
Virtual Machine Details
For this experiment, I utilized CUDO Compute as the GPU compute provider.
Component | Specification |
---|---|
GPU | 1 × RTX A4000 16 GB |
vCPUs | 4 |
CPU | AMD EPYC (Milan) |
Memory | 16 GB |
Cost Breakdown
Compute Costs
Component | Details | Cost/hr |
---|---|---|
vCPUs | 4 cores | $0.0088/hr |
Memory | 16 GB | $0.056/hr |
GPU | 1 × RTX A4000 | $0.25/hr |
Storage Costs
Component | Details | Cost/hr |
---|---|---|
Boot Disk Size | 70 GB | $0.0077/hr |
Network Costs
Component | Details | Cost/hr |
---|---|---|
Public IPv4 Address | N/A | $0.005/hr |
Total Cost
Total Cost/hr |
---|
$0.3275/hr |
Simulation Details
Parameter | Value |
---|---|
Runtime | 1924.52 seconds (00:32:04) |
Simulation Cost | $0.18 |
Framework versions
- PEFT 0.14.0
- Flower 1.13.1