mrs83's picture
Update README.md
bf5e05e verified
metadata
license: mit
datasets:
  - flwrlabs/code-alpaca-20k
language:
  - en
metrics:
  - accuracy
base_model:
  - Qwen/Qwen2.5-Coder-0.5B-Instruct
pipeline_tag: text-generation
library_name: peft
tags:
  - text-generation-inference
  - code

Model Card for FlowerTune-Qwen2.5-Coder-0.5B-Instruct-PEFT

Training Loss

Evaluation Results (Accuracy)

  • MBPP: 25.60 %
  • HumanEval: 37.81 %
  • MultiPL-E (JS): 41.00 %
  • MultiPL-E (C++): 32.92 %
  • Average: 34.34 %

Model Details

This PEFT adapter has been trained by using Flower, a friendly federated AI framework.

The adapter and benchmark results have been submitted to the FlowerTune LLM Code Leaderboard.

Please check the following GitHub project for details on how to reproduce training and evaluation steps:

https://github.com/ethicalabs-ai/FlowerTune-Qwen2.5-Coder-0.5B-Instruct/

How to Get Started with the Model

Use this model as:

from peft import PeftModel
from transformers import AutoModelForCausalLM

base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-0.5B-Instruct")
model = PeftModel.from_pretrained(base_model, "ethicalabs/FlowerTune-Qwen2.5-Coder-0.5B-Instruct")

Communication Budget

8766.51 MB Megabytes

Virtual Machine Details

For this experiment, I utilized CUDO Compute as the GPU compute provider.

Component Specification
GPU 1 × RTX A4000 16 GB
vCPUs 4
CPU AMD EPYC (Milan)
Memory 16 GB

Cost Breakdown

Compute Costs

Component Details Cost/hr
vCPUs 4 cores $0.0088/hr
Memory 16 GB $0.056/hr
GPU 1 × RTX A4000 $0.25/hr

Storage Costs

Component Details Cost/hr
Boot Disk Size 70 GB $0.0077/hr

Network Costs

Component Details Cost/hr
Public IPv4 Address N/A $0.005/hr

Total Cost

Total Cost/hr
$0.3275/hr

Simulation Details

Parameter Value
Runtime 1924.52 seconds (00:32:04)
Simulation Cost $0.18

Framework versions

  • PEFT 0.14.0
  • Flower 1.13.1